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'This book demonstrates how to use multilevel- and longitudinal-modeling techniques avail-
able in the IBM SPSS mixed-effects program (MIXED). Annotated screen shots provide read-
ers with a step-by-step understanding of each technique and navigating the program. Readers
learn how to set up, run, and interpret a variety of models. Diagnostic tools, data management
issues, and related graphics are introduced throughout. Annotated syntax is also available for
those who prefer this approach. Extended examples illustrate the logic of model development
to show readers the rationale of the research questions and the steps around which the analyses

are structured. The data used in the text and syntax examples are available at www.routledge.
com/9780415817110.

Highlights of the new edition include the following:

* Updated throughout to reflect IBM SPSS Version 21.

* Further coverage of growth trajectories, coding time-related variables, covariance structures,
individual change, and longitudinal experimental designs.

* Extended discussion of other types of research designs for examining change (e.g., regression
discontinuity, quasi-experimental) over time.

* New examples specifying multiple latent constructs and parallel growth processes.

* Discussion of alternatives for dealing with missing data and the use of sample weights within
multilevel data structures.

'The book opens with the conceptual and methodological issues associated with multilevel and
longitudinal modeling, followed by a discussion of SPSS data management techniques that fa-
cilitate working with multilevel, longitudinal, and cross-classified data sets. Chapters 3 and 4 in-
troduce the basics of multilevel modeling: developing a multilevel model, interpreting output,
and trouble-shooting common programming and modeling problems. Models for investigating
individual and organizational change are presented in Chapters 5 and 6, followed by models with
multivariate outcomes in Chapter 7. Chapter 8 provides an illustration of multilevel models with
cross-classified data structures. The book concludes with ways to expand on the various multilevel-
and longitudinal-modeling techniques and issues when conducting multilevel analyses.

Ideal as a supplementary text for graduate courses on multilevel and longitudinal modeling,
multivariate statistics, and research design taught in education, psychology, business, and sociol-
ogy, this booK’s practical approach also appeals to researchers in these fields. The book provides
an excellent supplement to Heck and Thomas’s 4n Introduction to Multilevel Modeling Techniques
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(2nd ed.); however, it can also be used with any multilevel- and/or longitudinal-modeling book
or as a stand-alone text.

Ronald H. Heck is professor of education at the University of Hawai‘i at Manoa. His areas of
interest include organizational theory, leadership, policy, and quantitative research methods.

Scott L. Thomas is professor and dean of the School of Educational Studies at Claremont Grad-
uate University. His specialties include sociology of education, policy, and quantitative research
methods.

Lynn N.Tabata is an affiliate graduate faculty member and research consultant at the University
of Hawai'i at Manoa. Her research interests focus on faculty, distance learning, and technology
issues in higher education.
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his series presents methodological techniques to investigators and students. The goal is to

provide an understanding and working knowledge of each method with a minimum of
mathematical derivations. Each volume focuses on a specific method (e.g. Factor Analysis, Mul-
tilevel Analysis, Structural Equation Modeling).

Proposals are invited from interested authors. Each proposal should consist of: a brief de-
scription of the volume’s focus and intended market; a table of contents with an outline of each
chapter; and a curriculum vita. Materials may be sent to Dr. George A. Marcoulides, University
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Preface

Multilevel modeling has become a mainstream data analysis tool over the past decade, emerging
from a somewhat niche technique in the late 1980s to a technique now figuring prominently in
a range of social and behavioral science disciplines. As the approach gained popularity over the
1990s, specialty software programs began to appear addressing the needs of an ever-widening
group of users. Eventually, mainstream statistics packages such as SAS, SPSS, and Stata began to
include routines for multilevel modeling in their programs.

Although some devotees of the various mainstream packages began making use of this new
multilevel-modeling functionality, progress toward carefully documenting these routines was
slow, thereby hindering meaningful access to the average user. In the meantime, the specialty
software packages were becoming increasingly refined and accessible, offering users a growing
number of generalizations of the traditional multilevel model. In some ways, the software proved
to be both driving and limiting the development of the field.

'The various approaches to multilevel modeling represented in these packages have in some
ways made it difficult for a clear lingua franca to emerge and have long challenged those inter-
ested in teaching these techniques. In addition to the considerable expense of purchasing the
better-documented specialty software programs, there is also the additional challenge of master-
ing the new programming logic, syntax, and file structure unique to each program. Our second
edition demonstrates how to use the multilevel- and longitudinal-modeling techniques available
in IBM SPSS (Version 21). We have devoted most of our energy to providing both new and sea-
soned multilevel analysts with a set of concepts and programming skills to enable the develop-
ment, specification, and testing of a broad range of multilevel models using a statistical program
that is standard in many graduate programs and organizations around the world.

Drawing on our own teaching and workshop experience with graduate students and research-
ers from diverse fields (e.g., education, management, sociology, psychology, and public health)
and our work explicating the multilevel approach (Heck & Thomas, An Introduction to Multilevel
Modeling Techniques, 2nd ed., 2009), we have chosen to adopt a workbook format here. Our in-
tent is to help readers set up, run, and interpret a variety of different types of multilevel and longi-
tudinal models using the linear mixed-effects models (MIXED) procedure in SPSS. The routine
enables users to fit linear mixed-effects models with continuous outcomes. Readers interested
in estimating single-level and multilevel models with categorical outcomes in IBM SPSS might
consult our recently completed workbook on that topic (Heck, Thomas, & Tabata, Multilevel
Modeling of Categorical Outcomes Using IBM SPSS, 2012). In that volume, we provide a concep-
tual treatment of single-level and multilevel models for categorical outcomes (i.e., dichotomous,
multinomial, ordinal, and count) and then walk readers in a step-by-step fashion through data
management, model conceptualization, and model specification issues related to these types of
quantitative models.

New to This Edition

In the second edition of Multilevel and Longitudinal Modeling with IBM SPSS, we have broad-
ened our presentation to consider a number of different types of research designs and model
specifications than can be readily adapted to multilevel analyses. These more complex models are
included in Chapters 5-7, after we present our basic multilevel-modeling material in Chapters

1-4. Highlights include the following:

* A significant reworking of Chapter 5 to reduce coverage of repeated measures ANOVA
and provide more coverage of defining various types of growth trajectories using MIXED.

XV
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B Preface

Discussion and annotated illustrated instruction is provided for alternative ways of coding
the time-related variables and specifying various covariance structures. The chapter presents
the basic two-level approach for examining individual change and includes a new example
illustrating a simple longitudinal experimental design with treatment and control groups.

* In Chapter 6, extending the individual-change model to organizational settings and to other
types of research designs, more specifically, illustrating the applicability of MIXED for con-
ducting regression-discontinuity analyses and for specifying a quasi-experimental design to
investigate the effects of policy implementation over time. In this latter example, we develop a
piecewise growth model, which provides a means of examining two or more different growth
trends within one model.

* In Chapter 7, introducing the multilevel multivariate approach in MIXED with expanded
examples including defining multiple latent constructs and parallel growth processes.

* Updating our earlier coverage of missing data and the use of sample weights by offering some
considerations of different alternatives for dealing with these issues within multilevel data
structures. As these issues can be problematic when working with multilevel models in IBM
SPSS, we offer some guidance regarding the program’s limitations and possible options for
analyzing multilevel data in each case.

Similar to the first edition, we continue to offer multiple examples of several types of multi-
level models with continuous outcomes, carefully showing how to set up each model and how to
interpret the output. Most chapters feature one or more extended examples illustrating the logic
of model development. These examples show readers the context and rationale of the research
questions and the steps around which the analyses are structured. Annotated screen shots from
SPSS are provided to help readers navigate the software program and facilitate learning the vari-
ous techniques developed sequentially in each chapter.

We also provide an introduction to data management, diagnostic tools, and relevant graphics.
Readers can work with the various examples developed in each chapter by using the correspond-
ing data and syntax files on the Web site at http://www.routledge.com/9780415817110.

'The workbook begins with an introductory chapter highlighting several relevant conceptual
and methodological issues associated with defining and investigating multilevel and longitudinal
models, followed by a chapter highlighting available IBM SPSS data management techniques
that we have found facilitate working with various combinations of multilevel, longitudinal, and
cross-classified data sets. In our experience, the first challenge in undertaking multilevel analyses
is properly organizing the data we wish to examine. In Chapters 3 and 4, we detail the basics of
multilevel modeling including how to develop two- and three-level multilevel models, how to
interpret relevant output, and how to solve common programming and modeling problems. We
develop several basic models for investigating individual and organizational change in Chapters 5
and 6, followed by an introduction to multilevel models with multivariate outcomes in Chapter 7.
Chapter 8 illustrates SPSS’s facility for examining models with cross-classified data structures, a
type of hierarchical structure that greatly expands the possibilities for following subjects through
multiple organizational units or subunits over time. We conclude with thoughts about ways to
expand on the various multilevel- and longitudinal-modeling techniques introduced and issues
to keep in mind in conducting multilevel analyses.

Intended Audience

We hope the workbook is a useful guide to readers’ efforts to learn more about the basics of
multilevel and longitudinal modeling and the expanded range of research problems that can be
addressed through their application. Ideal as a supplementary text for graduate-level courses on
multilevel, longitudinal, and latent variable modeling; multivariate statistics; and/or advanced
quantitative techniques taught in departments of psychology, business, education, health, and
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sociology, we hope the workbook’s practical approach will also appeal to researchers in these
fields. We believe the workbook provides an excellent supplement to our other workbook, Multi-
level Modeling of Categorical Outcomes Using IBM SPSS, and our earlier volume, An Introduction to
Multilevel Modeling Techniques (2nd ed.); however, it can also be used with any multilevel- and/
or longitudinal-modeling book or as a stand-alone text.
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CHAPTER

Introduction to Multilevel Modeling
with IBM SPSS

Social science research presents an opportunity to study phenomena that are multilevel, or hi-
erarchical, in nature. Examples might be college students nested in institutions within states
or elementary-school-aged students nested in classrooms within schools. Attempting to under-
stand individuals’behavior or attitudes in the absence of group contexts known to influence those
behaviors or attitudes can severely handicap one’s ability to explicate the underlying processes
of interest. People within particular organizations may share certain properties including social-
ization patterns, traditions, attitudes, and goals. The interactions between individuals and their
social groups within various settings therefore lend themselves to numerous investigations.

For studying the relationships between individuals and their social groupings, multilevel mod-
eling is an attractive approach because it allows the incorporation of substantive theory about
individual and group processes into the clustered sampling schemes of many research studies
(e.g., repeated measures designs or multistage stratified samples) or into the hierarchical data
structures found in many existing data sets. Consider, as a different example, the examination of
individual-level change within specific social or organizational settings. This becomes a problem
of understanding change over time where a series of repeated measurements (Level 1) are nested
within individuals (Level 2) who may be associated with particular groups (Level 3) that are also
undergoing change over time. We could extend the analysis of such change trajectories to include
situations where individual change processes accelerate or decelerate after the introduction of
group-level treatments or where there are parallel change processes occurring (e.g., where people
are changing in two or more domains simultaneously).

Multilevel modeling is fast becoming the standard analytic approach for examining data in
many fields (e.g., sociology, education, psychology, and management) due to its applicability to a
broad range of research designs and data structures (e.g., nested, cross-classified, cross-sectional,
and longitudinal data). It is referred to by a variety of different names including random-
coeflicient models, mixed-eftect models, multilevel regression models, hierarchical linear models,
and multilevel covariance structure (or structural equation) models. This diversity of names is an
artifact of the statistical theory underlying multilevel models, theory that has developed out of
methodological work in several different fields, and this has led to differences in the manner in
which the methods (and software) are used in various fields. At the core of these types of proce-
dures, however, is an interest in the decomposition of variance in outcomes across several hierar-
chical levels and the explanation of this variance with variables specified at corresponding levels.

Despite a growing recognition of the promise and importance of this approach, multilevel-
modeling procedures have not yet been fully integrated into research and statistics texts used in
typical first- or second-year graduate courses. Two major obstacles are responsible for this reality.
First, no standard language has emerged from this work. Second, until recently, the specification
of multilevel models has generally required special software programs. With respect to the first
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obstacle, despite the varied ways in which multilevel models are conceptualized, notated, and
specified, they focus on the relationships between variables within and across multiple levels of
a data hierarchy. Such potentially complex sets of empirical relationships must be explained by
multilevel theories, a conceptual limitation that has not kept equal pace with advances in quanti-
tative modeling incorporated into various computer software packages (Hox, 2002). Theories for
dealing with the complexity of the multilevel features of organizations, for example, have been
somewhat limited historically in terms of defining direct, mediating, or moderating relationships
both within and between organizational layers (MacKinnon, 2008).

Available software, the second obstacle, has been largely an artificial barrier resulting from
the increasing use of multilevel modeling in many areas of the social, behavioral, and health sci-
ences. Simply put, our interpretation is that there have been several camps of scholars who have
popularized these methods through the development of their own software and approach. Three
of the best known of these packages are HLM (Raudenbush, Bryk, Cheong, & Congdon, 2004),
MLwiN (Goldstein, 2003), and Mplus (Muthén & Muthén, 1998-2006). Although the main-
stream emergence and acceptance of these methods is in large part due to the work and activity of
these researchers, other more widely used statistical programs have implemented routines over
the years that enable the development and specification of a wide variety of multilevel models.
IBM SPSS, SAS, and Stata all have such routines (see Albright & Marinova, 2010, for an over-
view of each package’s offering).

Despite the widespread availability of these packages, there is little available to help the re-
searcher align the concepts and methods popularized through the specialty programs with the
terminology and conceptualization used within these mainstream statistical packages. Important
exceptions to this can be found in Rabe-Hesketh and Skondral’s (2008) Mu/tileve! and Longi-
tudinal Modeling Using Stata (2nd ed.) and in Singer and Willett’s (2003) Applied Longitudinal
Data Analysis, which provides detailed setups for examples in their book using procedures in
these widely available statistical packages. Also noteworthy are the resources available through
the University of California at Los Angeles’ Academic Technology Services Statistical Comput-
ing Web site (http://www.ats.ucla.edu/stat/) that have used a wide variety of statistical pack-
ages and developed annotated output for a number of multilevel texts. Few resources, however,
provide a start-to-finish overview of how to actually carry out a multilevel analysis. This is the
relative void that we hope to address.

Our Intent
IBM SPSS MIXED is a very flexible modeling routine that can be used to estimate a wide

variety of multilevel, multilevel cross-classified, and multilevel repeated measures designs with
continuous and categorical outcomes. This makes the program quite useful in estimating a wide
variety of models with single or multivariate outcomes from numerous sampling distributions
(e.g., normal, binomial, multinomial, and Poisson). The term mixed model implies the existence
of data in which individual observations on an outcome are distributed (or vary at random) across
identifiable groups. The variance of the random effect indicates its distribution in the population
and therefore describes the degree of heterogeneity present (Hedeker, 2005).

Our intent is to help you conceptualize, set up, estimate, and interpret the output from a vari-
ety of different types of multilevel and longitudinal models with continuous outcomes using the
linear mixed-effects (MIXED) procedure available in IBM SPSS. In this second edition, we have
also attempted to broaden our presentation to consider a number of different types of research
designs than can be readily adapted to multilevel analyses. Some of these include a typical treat-
ment intervention, an example of a regression-discontinuity design, a parallel growth model, and
a piecewise growth model. These more complex models are included in Chapters 5-7, after we
present our basic multilevel-modeling material in Chapters 1-4. We assume readers have had at
least an introductory statistics course (e.g., descriptive statistics, analysis of variance, and multiple
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regression) prior to using this workbook. It is intended for use in a second course (e.g., multi-
variate statistics) or a third course (e.g., introduction to multilevel and longitudinal models). In
our own series of courses, we have used the materials presented in this workbook in multivariate
statistics courses (i.e., after presenting multivariate analysis of variance [MANOVA], exploratory
factor analysis, and repeated measures analyses) and in beginning multilevel-modeling courses.

Mixed, or multilevel, models are differentiated from more familiar linear models (e.g.,
ANOVA and multiple regression) through their capability of examining correlated data and
unequal variances. Such data are commonly encountered where subjects are nested in groups
within a data hierarchy or as repeated measures nested within individuals. Where designs are
unbalanced (i.e., having different numbers of participants within groups), estimation procedures
available in multilevel-modeling routines yield asymptotically efficient estimates of a model’s
structural parameters and covariance components. We run the examples in this workbook using
IBM SPSS Version 21 and Windows 7 Professional, both in the 64-bit version. Users running
the models with earlier versions of MIXED or with IBM SPSS/SPSS for Mac or Windows
(e.g., XP and Vista) may notice slight differences between their screens and our text screen shots,
as well as slight differences in output appearance (and perhaps even estimates).

For our second edition, there are a few updates regarding multilevel-modeling procedures
available in SPSS to note. Most important, at the time we finished our first edition (April 2010),
a major limitation of the MIXED routine was that dependent variables had to be continuous.
'This precluded many situations where researchers might be interested in applying multilevel ana-
lytic procedures to various types of categorical (e.g., dichotomous, ordinal, and count) outcomes.
Since then, the MIXED routine has been expanded to include procedures for modeling several
different types of multilevel models with categorical outcomes (which are referred to as general-
ized linear mixed models). The routine is referred to as GENLINMIXED in IBM SPSS termi-
nology. This capability begins with Version 19, which was introduced in Fall 2010 and is refined
in Versions 20 and 21 (introduced in Fall 2012). The inclusion of this new categorical multilevel-
modeling capability in MIXED prompted us to develop a companion workbook focused on es-
timating single-level and multilevel models with categorical outcomes (Heck, Thomas, & Tabata,
2012). We refer readers to that volume for an applied treatment of single-level and multilevel
models with categorical outcomes using IBM SPSS.

A second issue concerns the SPSS program’s features to deal with missing data. For examin-
ing models with missing data, there are several different approaches that can be used to estimate
model parameters in the presence of missing data. Some of the traditional approaches include
listwise deletion (i.e., eliminating any case with at least one missing value), pairwise deletion
(e.g., eliminating pairs of cases when missing data are present, as in calculating a correlation),
mean substitution, and various regression-based approaches. These approaches will lead to biased
parameter estimation under most conditions that analysts encounter with real data. Two newer
approaches are full information maximum likelihood (FIML) estimation with the partially com-
plete data included in the analysis and multiple imputation (MI) of plausible values (Peugh &
Enders, 2004). FIML estimation with missing data present is not presently available in IBM
SPSS for typical multilevel models where there is a single data row for each subject. An indi-
vidual with any missing data will be dropped from the analysis. For situations where the data are
vertically arranged (i.e., as in a growth model), however, the information on the Y outcome will
only be dropped for that occasion or occasions where the data are missing.

IBM SPSS has a missing data module that can be used to impute values for missing data;
however, users should check whether or not it is included in the particular SPSS package they
purchase or have available to use by licensing agreement. In some cases, the missing data mod-
ule may have to be purchased as an add-on program. It is important to note, however, that MI
routines are typically designed for single-level analyses of data with missing observations. It is
important for the analyst to be aware of how missing data may affect the analysis. The MIXED
routine in SPSS does a good job of accounting for the clustering effects present in the data (i.e.,
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where individuals within a unit share some common characteristics) but does not necessarily ad-
dress the patterns of missing data that may be present in various types of hierarchical data struc-
tures. Given these concerns, we suggest that users consider carefully the nature of their missing
data and devise an appropriate strategy for dealing with data shortcomings. We spend some time
later in this chapter discussing how to develop a strategy to deal with missing data.

A final issue concerns the program’s limited capability to incorporate sample weights for
multilevel data. Currently, the basic IBM SPSS software does not support techniques for the
adjustment of design eftects, although there is an add-on module that can be used for conduct-
ing single-level analyses of continuous and (some) categorical outcomes from complex survey
designs. As Kish (1987) notes, traditional methods for statistical analysis are based on simple
random sampling, which assumes independence of observations. This assumption seldom holds
with most data sets that are encountered. Sample weights used in most secondary data sets have
been devised to deal with more complex sampling designs than simple random sampling, but
they treat the clustering of individuals within higher level units as “noise” to be filtered out, rather
than as the focus of the analysis. For example, two-stage sampling involves first selecting a ran-
dom sample of units (e.g., universities) from a population of universities having the individuals
one is interested in studying. At the second step, a random sample of individuals (e.g., students)
is drawn from within the sampled institutions. The unit selection process will influence the char-
acteristics of the student sample.

At present, sample weights at two (or more) levels cannot be incorporated into multilevel
analyses using MIXED. In the last section of the chapter, we update our earlier coverage of
sample weights, offering some considerations of different weighting schemes that help guide the
use of sample weights at different levels in the analysis. This is an area in which we feel more at-
tention needs to be focused in subsequent versions of IBM SPSS and other software programs
designed to analyze multilevel data structures. Population estimates can be affected by the vari-
ous sample-weighting options in each software program and their underlying assumptions. We
attempt to offer some clear guidance in the interim.

Overview of Topics

In this chapter, we provide a number of conceptual and methodological issues associated with
multilevel modeling, which foreshadows our further development of these issues in subse-
quent chapters. In Chapter 2, we present several issues to deal with in structuring and working
with various types of multilevel, longitudinal, and cross-classified data sets. Chapter 3 develops
the basics of two-level multilevel regression models. Chapter 4 extends this general two-level
model to three-level, cross-sectional models. Chapter 5 presents the basic two-level approach
for examining individual change. In this edition, we have also included a new example illus-
trating a simple experimental design with treatment and control groups. Chapter 6 extends
the individual-change model to organizational settings and to other types of research designs,
more specifically, its applicability for conducting regression-discontinuity analyses and piece-
wise growth models. Chapter 7 introduces the multilevel multivariate approach in IBM SPSS.
In this second edition, we have expanded the examples presented to include multiple latent
outcome variables and parallel growth models. Chapter 8 presents examples of two-level and a
three-level cross-classified data structures. Finally, Chapter 9 provides a short synthesis of our
presentation.

Analysis of Multilevel Data Structures

We begin with the principle that theoretical frameworks are essential guides to empirical inves-
tigation and suggest that quantitative analysis concerns the translation (or operationalization)
of abstract theories into concrete models. Our statistical models represent a set of proposed
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theoretical relations that are thought to exist in a population—a set of theoretical relationships
that account for relationships actually observed in the sample data from that population (Singer &
Willett, 2003). Decisions about analysis therefore are located within the researcher’s method-
ological framework that begins with research questions, designs, data structures, and methods of
analysis (Raudenbush, 1988). These decisions about how to conceptualize and conduct a study
are critical to the credibility of one’s results and the study’s overall contribution to the relevant
knowledge base.

Clearly there is also a place for less theoretically bound exploratory work, and we believe that
these models can provide a powerful platform for this purpose. The multilevel framework opens
up a range of new possibilities for exploratory analyses. With opportunities to examine relation-
ships at multiple levels of analysis, to specify cross-level relationships between higher and lower
levels of a hierarchical data structure, to include multiple group membership, and to incorporate
a time dimension, the potential for exploratory work is great. That opportunity also presents a
risk, however. With multiple levels within which one could test for specific relationships and
a wide range of potential interactions, there is much to explore, and the models can easily bog
down. This can yield questionable and perhaps even nonsensical results. Multilevel models are
very data demanding. Adequate sample sizes are needed at each level to ensure sufficient power
to detect effects, and, as a result, the models can very quickly become quite complicated, difficult
to estimate, and even more difficult to interpret. Even in a simple two-level model, one might
allow the intercept and multiple slopes to vary across groups, while sets of variables from the
higher level are used to explain the variances in this set of intercepts and slopes. Correct model
specification in a single-level framework is one thing; correct specification with a multilevel
context is quite another (Goldstein, 1995). It is for this reason that we place an emphasis on the
importance of sound conceptual frameworks to guide multilevel model development, even if it
is largely exploratory in nature.

One’s choice of analytic strategy and model specification is therefore critical to whether the
research questions can be appropriately answered. More complete modeling formulations may
suggest inferences based on relationships in the sample data that are not revealed in more sim-
plistic models. At the same time, however, better modeling formulations may lead to fewer find-
ings of substance than have often been claimed in studies that employ more simplistic analytic
methods (Pedhazur & Schmelkin, 1991). We feel it is important to draw a clear distinction
between concerns over model specification limited to the exclusion or inclusion of theoretically
relevant variables and model specification related to the mathematical explication of the relation-
ships among these variables. Although theory should guide both considerations, the former con-
cern deals with the availability of the relevant variables in the data set, while the latter deals with
the structure of the data itself and the choice of modeling approach used to exploit theoretically
important relationships presumed to exist in the population (Heck & Thomas, 2009). This is im-
portant to keep in mind because compromise is often necessary, since the complexity of proposed
theoretical models (e.g., multiple levels and multiple random intercepts and slopes) can at times
overwhelm the capability of the statistical software to estimate the model. We recall one example
in Chapter 7 where simply changing the structure of the covariance matrix of random effects in
a three-level model from a more simplified structure to one that might be considered as optimal
resulted in lengthening the time it took to estimate the model by approximately two hours. At
the end of that, the model estimation procedure failed to reach a viable solution that converged.
In short, this is a case where our data and model specification failed to meet the demands of the
propositions we attempted to test.

Besides the choices we make about methods of analysis, our inferences are also aftected in
practice by potential biases in our sample (e.g., size, sampling variation, and missing data). An-
other of our guiding principles is that when making decisions about analytic methods, the re-
sponsible researcher should consider approaches that are likely to take full advantage of the
features of particular data structures and the goals of the overall research.
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Multilevel data sets are distinguished from single-level data sets by the nesting of individual
observations within higher level groups. In single-level data sets, participants are typically selected
through simple random sampling. Each individual is assumed to have an equal chance of selec-
tion, and, at least in theory, the participants do not belong to any groups that might influence their
responses. For example, individuals can be differentiated by variables such as gender, religious
affiliation, and participation in a treatment or control group. However, in practice, in single-level
analyses individual variation within and between a large number of these types of subgroups
cannot be considered simultaneously—for example, cell means consisting of differences due to
gender, religious affiliation, an intervention, their various interactions, and perhaps even a number
of separate workplace settings. The number of groups created will quickly overwhelm the capacity
of the analytic technique. In contrast, in multilevel (or nested) data sets, the groupings of partici-
pants may result from the overall sampling scheme used to select participants in a large study (e.g.,
neighborhoods may be selected first, and then individuals are selected second), or the social group-
ing of participants (i.e., their degree of common experiences due to closeness in space or time) is
the primary focus of the theory and conceptual model proposed in the study (Kreft & de Leeuw,
1998). For example, we might be interested in whether differences in organizations’ productivity
can be explained by their employee and management value and decision-making structures.

We refer to the lowest level of a data hierarchy (Level 1) as the microlevel, with all successive
levels in the data structure referred to as macrolevels. The relationships among variables observed
for the microlevel often refer to individuals within a number of macrolevel groups or contexts
(Kreft & de Leeuw, 1998). Within a contextual model, therefore, one could envision successive
levels extending well beyond an organization (e.g., region, state, nation, etc.). Each of these suc-
cessive groupings might exert effects on organizational productivity. Organizational outcomes
may be influenced by combinations of variables related to the backgrounds and attitudes of indi-
viduals (demographics, experience, education, work-related skills, attitudes, etc.), the processes of
organizational work (e.g., leadership, decision making, professional development, organizational
values, resource allocation, etc.), the context of the organization, or the cross-level interactions
of these variables within the structure of the organization (e.g., size, management arrangements
within its clustered groupings, etc.). We summarize some of these possible relationships within
and between levels in Figure 1.1.

MACROLEVEL

Context
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What comextual, compositional, structural, and resource variables affect
organizational productvity? How do they moderate depanimental productmvity?
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How do structural charactenstics, compositional variables, and decision-making
processes affect departmental productivly? How do they moderate indmidual productmty?
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How do background factors, attitudes, and previous experiences affect an employee's
productmity?

FIGURE 1.1 Defining variables in a multilevel model.
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In the past, analytic strategies for dealing with the complexity of the multilevel, or contex-
tual, features of organizations were somewhat limited. Researchers did not always consider the
implications of the assumptions they make about measuring variables at their natural levels, or
about moving them from one level to another level through aggregation or disaggregation. These
possible choices are summarized in Figure 1.1 with two-headed arrows. Aggregation, for example,
meant that the productivity level of individuals within departments or organizations would be
combined at a higher level of the data hierarchy (e.g., the organizational unit). The comparison
is then made between organizations’ mean productivity outcomes. Failing to acknowledge the
potential variability present among individuals within groups, however, can bias estimates of pa-
rameters between such units, a situation Robinson (1950) called the ecological fallacy. Averaging
estimates over groups also drastically reduces the statistical power to detect proposed relation-
ships by ignoring the number of individuals in a study (Tabachnick, 2008).

In contrast, disaggregation refers to moving a variable conceptualized at a higher level to a
lower level of the data hierarchy. For example, in a different analysis we might have productivity
measured at the organizational level but also have information about employee job satisfaction,
motivation, and intention to leave the workplace. In this type of analysis, we might intend to
analyze the data at the individual-employee level to see whether employees’ perceptions influence
their productivity. If we assign all employees the same value on the productivity outcome (and
possibly other organizational variables), we attribute properties of the organization to individu-
als. This can also bias the estimation of model parameters since we are basing analyses of some of
the variables on the number of individuals in the study instead of the number of groups.

Examples such as these suggest that analyses conducted at the microlevel or macrolevels
may produce different results. Treating individuals as if they were independent of their orga-
nizational groupings ignores the complexity inherent in the data and introduces a potentially
important source of bias into the analysis. This is because individuals in a group or context tend
to be more similar on many important variables (e.g., attitudes, socialization processes, percep-
tions about the workplace, etc.) compared with individuals in other contexts. With hierarchi-
cal data, therefore, a more complex error structure must be added to the model to account for
the dependence among observations within groups. Such dependencies violate key assump-
tions of single-level multiple regression models (e.g., simple random sampling that provides
independent errors) and will lead to underestimated variances and standard errors, which, in
turn, may lead to erroneous conclusions (Thomas & Heck, 2001). As we have noted, eliminat-
ing within-group variability also biases relationships observed between groups. One important
contribution of multilevel modeling is that it allows the researcher to avoid the aggregation or
disaggregation problem.

Developing a multilevel conceptual framework of relationships to guide the analysis also helps
the researcher avoid another potential source of bias in the analysis—that of ignoring the dif-
ferent levels of the explanatory (independent) variables. As the reader may surmise, it is impor-
tant to develop a conceptual scheme to place the explanatory variables hypothesized to affect
individuals and other types of processes in their proper hierarchical locations (Hox, 2002). In a
single-level model, we are faced with the problem of whether the outcome variable (or other pre-
dictors) should be defined as aggregate, or collective, measures or as individual (or disaggregated)
measures. In a multilevel formulation, analysts must consider the implications of how they define
variables within the proposed model before actually testing the model. This preliminary process
of building a model helps clarify the organizational, or contextual, level to which they rightly
belong. Examining variability in an outcome present at each level of the data hierarchy implies
different types of research questions that can be asked, as summarized in Figure 1.1. These po-
tential relationships are represented by horizontal arrows in the figure. A second contribution of
multilevel modeling, therefore, is that through investigating the variation in outcomes that exists
at different levels of the data hierarchy we can develop more refined conceptual models about
how explanatory variables at each level contribute to variation in outcomes.
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Finally, multilevel procedures also facilitate the investigation of variability in regression coef-
ficients (slopes) across higher order units in the study. Cross-level interaction involves the effects
of explanatory variables at a higher level of the data hierarchy on a relationship at a lower level
(e.g., employee motivation and productivity). Cross-level interactions are shown in Figure 1.1
with arrows that extend from the macrolevels toward the microlevel. To illustrate, we might
ask whether the relative degree of departmental teamwork moderates the relationship between
employee motivation and productivity. In the past, mapping these sorts of relations has often
been problematic, frequently focusing on single, discrete elements while ignoring the multi-
dimensional and interrelated aspects of broader sets of organizational processes that influence
subgroups or individuals within organizations.

Partitioning Variation in an Outcome

Generally, the first step in a multilevel analysis is partitioning the variance (referred to as ¢2) in
an outcome variable into its within- and between-group components. If it turns out that there
is little or no variation (perhaps less than 5%) in outcomes between groups, there would be no
compelling need for conducting a multilevel analysis. In this case, a simple ordinary least squares
(OLS) regression analysis conducted at the microlevel (individual) would be adequate. The pro-
portion of variance that exists between groups compared to the total variation is described by an
intraclass correlation (p), or the proportion of variance explained by the grouping structure in the
population. It is defined as

p=07%/(0%+0%), (1.1)

where 0%, is the between-group variance and o2, is the within-group variance. The intraclass
correlation (also referred to as the ICC) can also be interpreted as the expected correlation be-
tween any two randomly chosen individuals in the same group (Hox, 2002). If it is substantial,
therefore, it suggests that the groups are relatively homogeneous and likely quite different from
each other.

‘There are at least two ways to think about the relative homogeneity of groups. The first is in
terms of the potential remedies required for conducting a conventional single-level analysis of
data that are hierarchically differentiated. A common example is the multistage type of sampling
strategy used in large-scale surveys (where higher units may be sampled first and then individuals
within these units). The focus in this type of analysis to remedy possible bias due to multistage
sampling is on statistical adjustments to yield unbiased estimates of variances and standard er-
rors. Acknowledging the ICC is important because it changes the error variance in single-level
regression analyses. When clusters and nontrivial ICCs are present, the OLS regression assump-
tion of independent errors resulting from simple random sampling will likely be violated. This
problem results in a downward bias in the estimation of standard errors (i.e., the errors calculated
will be too small).

Let’s develop this important point. Because statistical tests of model parameters are based on
the ratio of an estimate to its standard error, the underestimation of standard errors will often
lead to more findings of significance than would be observed if clustering were considered. Sup-
pose in a single-level analysis we observe that the estimate of the effect of gender on achieve-
ment is 4.0 points, and the standard error is estimated as 2.0. This would result in a #-ratio of 2.0
(i-e., the ratio of the estimate to its standard error). At a commonly adopted significance level of
=05 and a sample size of 500 individuals, the required #-ratio would be 2.0. Suppose the same
analysis conducted as a two-level analysis (e.g., individuals clustered in schools) results in an
estimated standard error of 2.5. Now when we calculate the #-ratio (4.0/2.5), the result would be
1.6, which would not be significant at p = .05. Single-level analytic approaches, such as multiple
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regression, ignore the clustered nature of individuals within higher level groupings; therefore,
in the presence of similarities among individuals within groups, estimated parameters may be
biased. Although there are various ways to adjust the estimates produced by these analytic tech-
niques, these remedies do not facilitate the investigation of models that specify presumed effects
at different levels of the data hierarchy.

To address this shortcoming, the second way to think about group-level homogeneity in hi-
erarchical data is in terms of the opportunities it presents to specify conceptual models designed
to operationalize organizational processes at more than a single level. After determining that an
outcome varies across units, the analyst can investigate how various within-group and between-
group variables explain variance in the outcome at each successive level. As readers may notice in
Figure 1.1, with horizontal arrows we can model variability in intercepts; that is, the predictors
at each level will account for variability in the outcome at that level. Moreover, the concept of in-
vestigating random slope coeflicients across groups is also central to multilevel modeling. As we
noted, the cross-level arrows in Figure 1.1 suggest how higher level explanatory variables might
explain random variability in slopes at that specific level.

Multilevel modeling, then, also contributes to our understanding of hierarchical data struc-
tures by allowing the analyst to estimate structural and variance/covariance parameters (e.g.,
residual variance in intercepts or slopes at Level 2 and covariance between intercepts and slopes
at Level 2) more efficiently and accurately. In a multilevel model, we typically focus on output
concerning two types of model parameters. Structural parameters are referred to as the model’s

Jixed effects. These include intercept coefficients (e.g., a group mean) or slope coeflicients (e.g., the
relationship between gender and achievement). The complete set of variances and covariances in
model parameters is referred to as its covariance components (Singer & Willett, 2003). Specific
parameters can be designated as randomly varying, which means that the sizes of the estimates
are allowed to vary across groups. Investigating these randomly varying intercepts and slopes is at
the center of our general multilevel-modeling strategy presented in subsequent chapters.

Developing a General Multilevel-Modeling Strategy

In this workbook, we apply a general strategy for examining multilevel models (e.g., Bryk &
Raudenbush, 1992; Heck & Thomas, 2009; Hox, 2010; Raudenbush & Bryk, 2002). Multilevel
models are useful and necessary only to the extent that the data being analyzed provide sufficient
variation at each level. “Sufficiency” of variation is relative and depends as much on theoreti-
cal concerns as it does on the structure and quality of data. Multilevel modeling can be used to
specify a hierarchical system of regression equations that takes advantage of the clustered data
structure (Heck & Thomas, 2009). Multilevel models can be formulated in two ways: (a) by pre-
senting separate equations for each of the levels in a data hierarchy (e.g., employees, workgroups,
departments, divisions, corporations, etc.) or (b) by laying out the separate equations and then
combining all equations through substitution into a single-model equation.

For readers familiar with HLM (Raudenbush et al., 2004), the software uses separate equa-
tions specified at each level to build the multilevel model. This approach results in the need to
generate separate data sets at each level first (e.g., individuals, classrooms, schools, etc.), which
then are “combined” within the software program to make the final data file (called a multivari-
ate data matrix or .mdm file). The user can neither see nor edit the case-specific contents of this
final data set. Most other software packages, such as IBM SPSS MIXED, use single-equation
representation (through algebraic substitution), so all analyses can be conducted from within one
data set. As we will show in Chapter 2, however, we sometimes need to reorganize the single data
set for particular types of analyses (e.g., longitudinal and multivariate analyses).

As Hox (2002) describes, both ways of specifying multilevel models have advantages and
disadvantages. The separate-equation approach such as that used in HLM has the advantage of
being clear about how the proposed model is built up from Level 1 through successive levels.
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'The disadvantage of this approach is that it hides from view the fact that modeling a cross-level
interaction on a Level 1 regression slope results in adding an interaction to the overall model
(Hox, 2002). The single-equation approach makes the existence of interactions obvious, but it is
a little more difficult to see the sets of predictors that may be explaining each of the randomly
varying slopes. We will walk readers through this process for one example in the following sec-
tion. In successive chapters, however, we primarily adopt the approach of laying out separate
equations by level for clarity in building models and often leave it to users to recognize that the
sets of equations are reduced to single-model equations in MIXED when substitution is applied.

lllustrating the Steps in Investigating a Proposed Model

We have found that in many instances multilevel investigations unfold as a series of analytic
steps. Of course, there may be times when the analyst might change the specific steps, but, in
general, we have found that this overall model development strategy works pretty well. In Figure
1.2, we provide an illustration of what a simple two-level model to explore a random intercept
describing productivity and a random slope describing the effect of employee attitudes on their
productivity might look like. We use this model to provide a conceptual overview of the model-
ing strategy we adopt in successive chapters.

In a single-level model we could focus on the overall relationship between employee attitudes
and their productivity. In the traditional OLS model, we would get a slope expressing the re-
lationship between the two variables and an intercept representing some adjusted value of the
outcome. This would be fine if our interests were limited to an overall relationship. But if we were
interested in understanding how employee groupings (e.g., workgroups or departments) might
moderate that relationship (or even controlling for such a possibility), we would need to incorpo-
rate information about the organization or grouping of employees in our sample. Once we shift
into thinking about such multilevel relationships, where employees are now nested within groups
of some kind, a range of new analytic possibilities emerges.

Within groups we might define a randomly varying intercept (productivity) and randomly
varying slope (i.e., the effect of employee attitudes on productivity). The random slope is shown
in the figure with a filled dot on the line representing the relationship between attitudes and
productivity. The Greek symbol beta (f), which is often used to describe a slope or regression
parameter at Level 1, is above the line. Between groups, we might propose that differences in
resource allocation affect levels of organizational productivity. Additionally, we might propose
that these variables also moderate the size of the effect of employee attitudes on productivity.

Resources

Organizational
Productivity

)(’o;

Within

h ey
Attitude  |—e—s® Productivity [+— 4

FIGURE 1.2 Proposed two-level model examining a random intercept and slope.
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This type of effect, which is referred to as a cross-level interaction, implies that the magnitude
of a relationship observed within groups is dependent on contextual or organizational features
defined by higher level units. We therefore formulate a Level 2 model to explain variability in
intercepts and variability in slopes (shown as ovals representing unknowns, or latent variables,
in Figure 1.2) across organizations.

1. One-Way ANOVA (No Predictors) Model

A good first step is to examine the extent to which variation in a Level 1 outcome exists wizhin
Level 2 units relative to its variation bezween Level 2 units. In our example, we want to know if
there exists significant variance in productivity across groups—something that would be invisible
to us in a single-level model. Little variability within the Level 2 units suggests greater homo-
geneity among all Level 1 observations than exists among Level 1 observations from different
Level 2 groups—that is, such evidence suggests that the nesting of Level 1 observations is not
systematically associated with levels of an outcome. The partitioning of outcome variance into
Level 1 and Level 2 components without other predictors in the model allows the researcher
to test the validity of this assumption and provides important information about the sources of
variation in the outcome variable, productivity in our example here.

Notice that in Equation 1.2, we add a subscript for individuals (i) and for organizations ().
'The null model for individual 7 in organization ; can be represented as:

Y, =B, T €y, (1.2)

where f3; is the mean of productivity (intercept) for the jth group, and the Greek lowercase letter
epsilon (g;) represents the errors in estimating individual productivity within groups. In a two-
level model, Level 1 fixed effects are typically expressed as unstandardized S coeflicients. Unstan-
dardized means the coeflicients are in their original metrics. The subscript ; indicates that the
intercept represents the mean outcome for groups. Individual-level error (referred to as residual
in the MIXED output) is also considered a random component.

Between groups, variation in intercepts (f,,) can be represented as

Boj= Yoo+ - (1.3)

Level 2 fixed-eftect coefficients (which are also unstandardized) are generally expressed as the
Greek lowercase letter gamma (y). Variation in estimating organizational intercepts is repre-
sented as u, which is considered a Level 2 random effect. Through substituting Equation 1.3
into Equation 1.2, we arrive at the single-equation model, which can be written as

'The null model therefore provides an estimated mean productivity score for all organizations.
It also provides a partitioning of the variance between Level 1 (g;) and Level 2 (zy). Altogether,
Equation 1.4 suggests that there are three parameters to estimate: the intercept; the between-
organization error, or deviation, from the average intercept (z,); and the individual-level residual,
or variation in individual scores within organizations (g;).

We can confirm this specification by examining the output from the intercept-only model in
IBM SPSS. The average intercept is considered a fixed effect, while the between-group variation
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TABLE 1.1 Model Dimension®

Number Covariance Number of  Subject
of Levels  Structure Parameters  Variables

Fixed Effects Intercept 1 1
Random Effects  Intercept 1 Identity 1 orgid
Residual 1
Total 2 3

@ Dependent variable: productivity.

in average intercepts is referred to as a random effect. The Level 1, or individual-level, error is
referred to as residual in the output. We note that the “Number of Levels” column in Table 1.1
refers to whether the predictors are defined as continuous (number of levels = 1) or categorical.
If a predictor such as gender is defined as categorical (i.e., as a factor) in building the model, the
number of levels will be two, which refers to the categories of female and male. If it is defined as a
covariate (i.e., because it is a dichotomous variable), as in a typical multiple regression model, the
number of levels in the table will be one instead of two. Of course, predictors with three or more
categories must be defined as factors (or else dummy coded). Information about the model’s
parameters in the model dimension table is also useful in examining the baseline (no predictors)
model with three estimated parameters against subsequent models with more estimated param-
eters. It is good practice to always check this output to ensure that the model estimated was the
one that the analyst intended.

2. Analyze a Level 1 Model with Fixed Predictors

Assuming that sufficient levels of variance in Yexist at each level, we can investigate a model with
only fixed predictors at Level 1. Level 1 predictors are often referred to as X. For each individual 7
in organization j, a proposed model similar to Equation 1.1 (summarizing the effect of employee
attitudes on productivity) can be expressed as

Y= Boj+ By Xy + €. (1.5)

Equation 1.5 suggests that, within groups, X, (employee attitude) is related to productivity levels.
Often, the unstandardized within-group predictors (3,X;) are either grand-mean or group-mean
centered to facilitate interpretation of the coefficients. Grand-mean centering indicates that the
variable is compared against the mean for the sample. For example, if the sample mean for em-
ployee attitude were 4.4 (on a 7-point scale), an individual on the grand mean would have her or
his score rescaled to 0. In contrast, group-mean centering implies that the individual’s attitude
score is rescaled against the mean for her or his group, with the group mean now equal to 0. We
describe in Chapter 2 how grand-mean and group-mean centered predictors can be developed
in IBM SPSS.

At Level 2, Equation 1.6 implies that variation in intercepts can be described by an organi-
zation-level intercept (yy), or grand mean, and a random parameter capturing variation in indi-
vidual organization means (u,) from the grand mean:

Boj = Yoo + . (1.6)
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TABLE 1.2 Model Dimension®

Number Covariance Number of Subject
of Levels Structure  Parameters Variables

Fixed Effects Intercept 1 1
attitude 1 1
Random Effects Intercept 1 Identity 1 orgid
Residual 1
Total 3 4

@ Dependent variable: productivity.

In the case where we wish to specify the within-group slope as fixed (i.e., it does not vary across
organizations), we can express the Level 2 slope equation as follows:

By = . (1.7)

'This suggests that the variance component of the slope is fixed at 0. Because there is no random
effect (u;,) in Equation 1.7, the slope coefficient is therefore fixed to one value for the sample.
Through substitution of ), and f;; into Equation 1.5, the single-equation model can be sum-
marized as the following:

Y= 700 + thoj + V10X + €5 (1.8)
and then reorganized with fixed parameters (ys) and variance parameters (x,, + £;) as follows:

Y, = Yoo + Yioattitude; + uy + € (1.9)

where we have replaced X with the individual-level variable name. Equation 1.9 and the follow-
ing output in Table 1.2 suggest that there are four parameters to estimate. The two fixed effects
are the intercept and the Level 1 predictor a#titude. The third parameter is the randomly varying
intercept between groups (referred to as the random effect in the table). The fourth parameter is
the Level 1 residual variance. With one random effect in the model, the default covariance ma-
trix is an identity covariance matrix (ID). This is because there is only one Level 2 variance in
the model (i.e., variability due to differences in outcome means between groups). We note that
if other covariance structures are specified (e.g., variance components or diagonal), they will be
ignored, which results in the same output.

3. Add the Level 2 Explanatory Variables

At the third step, it is often useful to add the between-group predictors of variability in inter-
cepts. Group variables are often referred to as I (or Z). From Figure 1.2, the Level 2 model with
resources added will look like the following:

Boi= Yoo + 7’01VVJ» + g, (1.10)
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TABLE 1.3 Model Dimension®

Number Covariance Number of Subject
of Levels  Structure Parameters Variables

Fixed Effects Intercept 1 1
resources 1 1
attitude 1 1
Random Effects Intercept 1 Identity 1 orgid
Residual 1
Total 4 5

@ Dependent variable: productivity.

where W, refers to the level of resources in the organization. When we substitute the new Level
2 intercept equation (Eq. 1.10) and the previous fixed slope for attitude (Eq. 1.7) into the Level
1 equation (Eq. 1.5), we obtain the new combined equation:

Y, = Yoo + Yorresources; + yyoattitude; + uy + € (1.11)

72

where we have included the names of the individual- and group-level predictors for // and X,
respectively. We find that it is sometimes useful to write in the variable names to provide easy
recognition of the predictors in the model. Readers will notice that in a two-level model, after
substitution, all estimates of group-level and individual-level predictors are expressed as ¥ coefti-
cients. Equation 1.11 suggests that there are five parameters to be estimated in this model. Table
1.3 confirms that there are three fixed effects, one random effect (i.e., the intercept), and the
residual to be estimated, since the Level 1 slope (attitude) is still considered as fixed at Level 2.

4. Examine Whether a Particular Slope Coefficient Varies Between Groups

We may next assess whether key slopes of interest have a significant variance component be-
tween the groups. Our theoretical model (Figure 1.2) proposes that the relationship between
employee attitudes and productivity may vary across organizations. Testing random slopes is best
accomplished systematically, one variable at a time, since if we test several slopes simultaneously,
we are unlikely to achieve a solution that converges (Hox, 2002). As we suggested previously, if
the within-unit slope (e.g., attitude-productivity) is defined to be randomly varying across units,
the Level 2 slope model can be written as follows:

Bij= Y10+ t. (1.12)

Equation 1.12 suggests variability in slopes can be described by a group-level intercept coef-
ficient (y;), often centered on the grand mean or the group mean, and a random parameter
capturing variation in individual organization coeflicients (x;,) from the mean.

Through substitution, the combined model will be

Y; = Yoo + Yoresources; + yioattitude; + wattitude; + uy + €. (1.13)

As we suggested earlier, notice the substitution of B; in the within-group (Level 1) model
(Eq. 1.5) results in the addition of the interaction #;.X;; (i.e., where X, is employee attitude) to
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TABLE 1.4 Model Dimension®

Number of Covariance Number of  Subject
Levels Structure Parameters  Variables

Fixed Effects  Intercept 1 1
resources 1 1
attitude 1 1
Random Effects  Intercept + attitude 2 Diagonal 2 orgid
Residual 1
Total 5 6

@ Dependent variable: productivity.

the single-equation model. This interaction is considered to be a random effect, which is defined
as the deviation in slope for cases in group j multiplied by the Level 1 predictor score (X;) for
the ith case in group ;j (Tabachnick, 2008). With a random slope and intercept, we typically first
specify a diagonal (DIAG) covariance matrix at Level 2. A diagonal covariance matrix provides
an estimate of the variance for each random effect, but the covariance between the two random
effects is restricted to be 0. Specifying variance components (VC) will also provide this same
diagonal covariance matrix specification. We can confirm in Table 1.4 that there are six param-
eters to estimate. The three fixed effects are the intercept, the Level 2 predictor (resources), and
the Level 1 predictor (a#titude). The two random effects are the variability in intercepts (1) and
the variability in the attitude-productivity slope (#,.X;). The Level 1 residual variance is the final
estimated parameter.

5. Adding Cross-Level Interactions to Explain Variation in the Slope

Finally, we would build a Level 2 model to explain variation in the Level 1 randomly varying
slope of interest (i.e., assuming the slope has significant variance across groups). Our simplified
model in Figure 1.2 suggests that organizational resource levels may moderate the within-unit
(e.g., attitude-productivity) slope:

B = Y10 + Yuresources; + uy; (1.14)

'This cross-level interaction term is built during the model specification phase in IBM SPSS.
Substitution of the previous f3; ; equation and the previous intercept equation (Eq. 1.10) into
Equation 1.5 results in the final single-equation model to be estimated:

Y, = oo + Yarresources; + yipattitude; + yiiresources;” attitude, + uj jattitude; + uy; + €. (1.15)

'The model represented in Equation 1.15 results in seven parameters to estimate. The four fixed
effects are the intercept, resources, attitudes, and the cross-level interaction (a#titude * resources).
The two random effects at the organizational level (Level 2) are the intercept (x,;) and the
attitude-productivity slope (u;;aztitude;). The final parameter is the individual-level residual (g;).
We can confirm this from the model dimensions output in Table 1.5.

When investigating the covariance structures associated with random eftects, we adopt a simi-
lar strategy. One of the advantages of IBM SPSS MIXED is the ease in which users can specify
alternative covariance structures for random effects. If this model converges, or reaches a solu-
tion without any warnings in the output, we can also try using a completely unstructured (UN)
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TABLE 1.5 Model Dimension®

Number of Covariance Number of  Subject
Levels Structure Parameters Variables

Fixed Effects Intercept 1 1
resources 1 1
attitude 1 1
attitude * resources 1 1
Random Effects  Intercept + attitude 2 Diagonal 2 orgid
Residual 1
Total 6 7

@ Dependent variable: productivity.

TABLE 1.6 Model Dimension®

Number of Covariance Number of  Subject

Levels Structure  Parameters Variables

Fixed Effects Intercept 1 1

resources 1 1

attitude 1 1

attitude * resources 1 1
Random Effects  Intercept + attitude 2 Unstructured 3 orgid
Residual 1
Total 6 8

@ Dependent variable: productivity.

covariance matrix of random effects. Specifying an unstructured covariance matrix the Level 2
provides an additional covariance term in the estimated model, which represents the covariance
between the random intercept and random slope (i.e., there are three random parameters to be
estimated in the unstructured covariance matrix in Table 1.6). This additional term in the covari-
ance structure of the model will result in eight total parameters estimated, instead of the seven
specified in Equation 1.15. We note, however, that specifying this type of covariance matrix for
random effects sometimes results in models that fail to converge.

WEe can then use various objective tests (e.g., likelihood ratio test) to determine which covari-
ance structure best describes the data. This allows the analyst to compare several models before
arriving at a model that provides the closest fit to the observed data. It is generally best to keep
models simplified, for example, by including only random effects that are of strong theoreti-
cal or empirical interest. Three-level models are more complicated to specify and estimate than
two-level models because of the possibility of more cross-level interactions, random effects, and
differing sample sizes; however, the strategy for building models is basically the same. We will
address these issues more completely in subsequent chapters.

Syntax Versus IBM SPSS Menu Command Formulation

In IBM SPSS MIXED, we can formulate models using either syntax statements or menu com-
mands. We suspect most users are more familiar with the menu framework since they have likely
used that to examine single-level models (e.g., analysis of variance, multiple regression, and factor
analysis). We have chosen the menu-command approach, but we also provide examples of syntax
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in an appendix for each chapter. Readers should keep in mind that with more complex models,
it is often beneficial to use the syntax to formulate and run models for a couple of reasons. First,
the syntax statements provide a nice record of a progression of models (if you save the syntax files
and label them according to the general modeling steps we have laid out). This is helpful if you
close the IBM SPSS program. You can return later and easily start up from where you left off.

Second, we have found that it is easier to reorganize the syntax statements than to rebuild the
whole model from the menu commands if you wish to change the order of the variables in your
output tables. Generally, we like to organize the output such that the predictors explaining inter-
cepts are organized by levels of the data hierarchy, and predictors that explain variation in slopes
(i.e., cross-level interactions) can be similarly organized. In the IBM SPSS Windows format, one
can always use the PASTE function (within the IBM SPSS MIXED dialog box) to generate
the underlying syntax before actually running the model. The syntax is sent to its own window
within IBM SPSS and can be saved for future use. We find this is a good way to check whether
the model you are running actually corresponds with the model that you had in mind. Often, we
find doing this helps us see where we have forgotten or incorrectly specified something. This gets
more important when the multilevel models that one is investigating take a considerable amount
of time to produce a solution.

For readers unaccustomed to the syntax approach, following is an example of the syntax gen-
erated by IBM SPSS MIXED when we built the model within the menu system to produce the
model in Equation 1.15.

MIXED

productivity WITH attitude resources

/CRITERIA = CIN(95) MXITER(100) MXSTEP(5) SCORING (1)

SINGULAR (0.000000000001) HCONVERGE (0, ABSOLUTE) LCONVERGE (0, ABSOLUTE)
PCONVERGE (0.000001, ABSOLUTE)

/FIXED = resources attitude resources*attitude | SSTYPE (3)

/RANDOM INTERCEPT attitude | SUBJECT (orgid) COVTYPE (DIAG)

/METHOD = REML

/PRINT = SOLUTION TESTCOV.

The initial syntax lines provide the dependent variable (productivity) and identify covari-
ates in the analysis (signified by the key word “WITH?”). Categorical variables (variables with
two or more categories) can be specified with the key word “By,” with the last category serving
as the reference group. Note that dichotomous variables (0, 1) can be defined as continuous
(covariate) variables as in multiple regression. The criteria command (/CRITERIA) provides
information concerning IBM SPSS default values (e.g., confidence intervals for estimates, itera-
tion information, and convergence criteria) for the estimation algorithm. The statements can be
excluded if the analyst chooses to maintain the default criteria. We recommend that the analyst
exercise caution in reflexively adopting the IBM SPSS defaults as these will sometimes intro-
duce problematic conditions on the models being estimated. Regardless of the type of model
being developed, it is always good practice to review the default settings to ensure that they are
appropriate for your purposes. Following this, the fixed effects (/FIXED = resources, attitudes,
resources *attitudes) in the model are defined, with the intercept also included as a default, and
the random effects /RANDOM = intercept, attitude). The Level 1 residual is also estimated as
a default. The syntax also identifies the Level 2 cluster (SUBJECT) variable (orgid) and the type
of covariance matrix used for the random effects (DIAG). If UN is specified for the covariance
matrix instead of DIAG, the additional covariance between the intercept and random slope will
be estimated. Finally, the syntax includes the default estimation procedure used (/METHOD =
REML), which is restricted maximum likelihood, default model convergence criteria, and user-

specified output (/PRINT = G SOLUTION TESTCOV). SOLUTION provides the tests of
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fixed effects and TESTCOV the tests of random variances and covariances. Predicted values and
residuals can be saved using the /SAVE command.

One can easily change the method of estimation (/METHOD), for example, from restricted
maximum likelihood (REML) to maximum likelihood (ML) by just typing ML to replace
REML in the appropriate syntax line. The order of the fixed effects (FIXED = resources attitude
resources *attitude) in the output can easily be changed by switching the order of the variables in
that command line. Keep in mind that you can also add information to the IBM SPSS output
tables (by using the Chart Editor) to help readers understand your presentation of output. We
will explore many of these options in subsequent chapters.

Model Estimation and Other Typical Multilevel-Modeling Issues

We now turn our attention to several important issues related to model estimation (see Heck &
Thomas, 2009; Hox, 2010; Marcoulides & Hershberger, 1997; or Raudenbush & Bryk, 2002, for
further discussion). Model estimation attempts to determine the extent to which the sample co-
variance matrix representing our model specification is a good approximation of the true popula-
tion covariance matrix. This determination is made through a formal test of a null hypothesis that
the data are consistent with the model we have proposed. Note that, in general, confirmation of
a proposed model relies on a failure to reject the null hypothesis. In contrast to the common use
of the null hypothesis that readers may be more familiar with (e.g., rejecting the null hypothesis
that two means are the same), here one wishes to accept the null hypothesis that the model can-
not be rejected on statistical grounds alone. This implies that the model is a plausible represen-
tation of the data (although it is important to emphasize that it may not be the only plausible
representation).

Unlike traditional single-level approaches using OLS, IBM SPSS MIXED (and other mul-
tilevel-modeling programs) employs maximum likelihood (ML) estimation. This is necessary
where individuals are clustered within groups of differing size and, therefore, we have to deal
with more than one set of residuals and distinguish between multiple levels (Hox, 2010). While
we could certainly estimate a large number of single-level OLS regression models (i.e., one for
each group), multilevel modeling is a more efficient approach that proceeds by estimating a single
average intercept (or slope) and then a variance component describing the variance in intercepts
or slopes across the Level 2 units in the study (Hox, 2010). Diftering sample sizes, however, affect
the reliability of the individual estimates produced for each unit (i.e., with estimates produced
from smaller units being less reliable) and, hence, the overall reliability for that unit within the
complete set of Level 2 units. Units where the group estimate is further from the overall grand-
mean estimate of units tend to be estimated less reliably than units closer to the grand mean,
other factors being equal (Hox, 2010).

In the past, multilevel models were limited by the need to have balanced sample size designs,
which were required for using closed-form mathematical formulas to estimate the variance and
covariance components (Raudenbush & Bryk, 2002). For designs with unbalanced sample sizes,
what is needed is an iterative process that incorporates information about each group to obtain
efficient estimates of the model’s fixed and random parameters. Most often, maximum likeli-
hood estimation (ML) is used for this purpose. Because of the relative complexity added with
models where there are several predictors and potential random parameters, we often start with
relatively simple models that estimate fixed effects and then add random components, in steps,
one at a time.

Maximum likelihood determines the optimal population values for parameters in a model that
maximize the probability or likelihood function—that is, the function that gives the probability
of finding the observed sample data given the current parameter estimates (Hox, 2002). This in-
volves an iterative process that determines a set of weights for random parameters in the model
that minimizes the negative of the natural logarithm multiplied by the likelihood of the data.
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Because the likelihood, or probability, can vary from 0 to 1, minimizing this discrepancy function
amounts to maximizing the likelihood of the observed data. Since the process is iterative (i.e.,
beginning with a set of starting values and proceeding through rounds of parameter adjusting to
reach an optimal set of estimates where further adjustment would not improve the estimates), it
is not guaranteed to stop. Most programs, therefore, put limits on the number of iterations since
most “good” models will converge within a relatively short number of iterations (e.g., perhaps
20-50 iterations). Often, making a change in the proposed model (e.g., eliminating a random
slope or a covariance between an intercept and a slope) will result in the model converging. At
other times, the small sample size (e.g., available number of Level 2 units) may be the culprit
(Hox, 2010) since the data in such cases may not be relatively normally distributed.

If we consider the sample covariance matrix () to represent the population covariance matrix
(2), then the difference between the observed sample matrix § and the model-implied covariance
matrix (8) should be small if the proposed model fits the data. The evaluation of the difference
between these two matrices depends on the estimation method used to solve for the model’s
parameters (Marcoulides & Hershberger, 1997). The mathematical relationships implied by the
model are solved iteratively until the estimates are optimized. As suggested, the difference be-
tween S and § is described as a discrepancy function—that is, the actual difference in the two
estimates based on a likelihood. The greater the difference between these two covariance ma-
trices, the larger the discrepancy in the function becomes (Marcoulides & Hershberger, 1997).
ML estimation produces a model deviance statistic, defined as -2*log likelihood (-2LL), where
likelihood is the value of the likelihood function at convergence and log is the natural logarithm.
The deviance is an indicator of how well the model fits the data. Models with lower deviance (i.e.,
a smaller discrepancy function) fit better than models with higher deviance. Nested models (i.e.,
where a more specific model is formed from a more general one) can be compared by examining
differences in these deviance coeflicients under specified conditions (e.g., changes in deviance
between models per differences in degrees of freedom).

IBM SPSS MIXED currently offers two estimation choices: full information ML estimation
(which we will abbreviate as ML) and REML estimation, which is the default setting. In ML
estimation, both regression coeflicients and variance components are included in the likelihood
function, while in REML, only the variance components are included in the likelihood function
(Hox, 2002). REML, therefore, is referred to as a restricted solution. One of the shortcomings of
ML estimation is that the estimates of variances and covariances depend on the point estimates
obtained for the regression coeflicients. As there are more parameters in the model and smaller
sample sizes, the variance estimates obtained through ML may be too small, which leads to
overly liberal hypothesis tests (Raudenbush & Bryk, 2002). In contrast, REML considers the
regression coeflicients to be unknowns to be estimated, which can lead to better estimates when
there are small numbers of groups in the study (Raudenbush & Bryk, 2002). In other words,
REML takes into account the loss in degrees of freedom due to the estimation of the P + 1
regression coeflicients in the model in order to obtain unbiased estimation of the variance
components (Snijders & Bosker, 1999).

To illustrate this concept, in a simple model for estimating the variance in a sample mean,
the REML approach amounts to dividing the sum of the squared deviations about the mean by
the total sample size minus 1 (z - 1) instead of 7 (Hox, 2002). This correction in the denomina-
tors used to calculate the variance will be greatest when the sample size is small. As described
previously, when a series of nested models is to be compared in terms of fixed effects (e.g.,
regression coefficients), ML should be used because the approach takes into consideration the
regression coefficients in solving the likelihood function (Hox, 2002). In later chapters, we show
that MIXED also provides other fit indices that can be used to compare various models.

We note in passing that for the GENLINMIXED program, the available estimation proce-
dure for models with continuous outcomes (i.e., which result from normal versus other types of

probability distributions) is REML. This means that currently the GENLINMIXED estimation
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option for continuous outcomes is limited to the REML approach used in MIXED. We there-
fore recommend estimating multilevel models with continuous outcomes using MIXED, even
though they can also be estimated in the GENLINMIXED routine with REML. As mentioned
previously, the REML approach would not be optimal when the research focus is on comparing
successive models with both fixed regression coeflicients and random coefficients.

Sample Size

Power

Under various sampling conditions (size of sample and normality of data) there has been con-
siderable debate among methodologists about the efficiency of maximum likelihood estima-
tion, given nonnormal features of the data (Goldstein, 1995; Longford, 1993; Morris, 1995). An
important conceptual difference between single-level and multilevel approaches is that sample
size considerations are quite different. With the multilevel approach, a sufficient sample size
is required at each level of analysis. In smaller group samples, the difference in estimation be-
tween ML and REML results in a downward bias in variance components estimated with ML
compared to REML. With small group samples, therefore, we generally prefer REML estima-
tion. With large sample sizes, there should be no difference in the estimates produced by either
method. It is important to keep in mind that under less-than-ideal sampling conditions (e.g.,
small numbers of groups and convenience samples), it may be difficult to determine whether
model results might be replicated in other samples. IBM SPSS applies the Satterthwaite (1946)
correction to standard errors, which provides more conservative estimates of standard errors,
especially in small groups (e.g., Loh, 1987). We note that it is often more efficient to add higher
level units than to add individuals within in groups since this former approach generally reduces
that need for sizable samples within the groups and tends to be more efhicient in estimating
random coefhicients.

Power refers to the ability to detect an effect, should one exist. In the single-level analysis, most
researchers know that the significance level (@), the effect size (i.e., with larger effects easier
to detect), and the sample size are determinants of power. Multilevel models raise a number
of additional issues involving power. Issues about power typically concern the appropriate (or
minimum) sample size needed for various types of multilevel analyses (e.g., determining whether
an intercept or a slope varies across groups). As we suggested previously, one issue refers to the
sample size required to ensure that estimates of fixed effects (e.g., at Level 1 and Level 2) and
variances are unbiased (i.e., sampling bias). In most multilevel studies, the estimation of Level
2 effects is generally of greater concern as the number of groups available may be limited. As
Snijders (2005) shows, when fixed effects are the focus, characteristics of the groups themselves
have little bearing on the precision of Level 1 estimates. In general, we prefer adding groups (as
opposed to individuals) to reduce parameter bias.

Another issue refers to the minimum sample size required to ensure that an effect would be
detected if, in fact, one exists (i.e., power). In addition to these two determinants of power, in
multilevel analyses there are at least two other considerations that inform estimates of power:
sample size at each level (i.e., the number of individuals i within each group 7, and the number
of 7 groups) and the intraclass correlation (see Muthén & Satorra, 1995, for further discussion).
With higher ICCs, the power to detect Level 1 effects will be lower (since the groups are more
homogeneous), holding sample size constant at all levels. This suggests that the power to detect
Level 2 effects is much more sensitive to the number of groups in the sample, as opposed to the
number of observations within groups.

As designs become more complex, the need for larger samples at both levels increases. For
example, in a given sample of individuals within groups, slopes in some units may be less reli-
ably estimated than intercepts because, while intercepts depend only on the average level (mean)
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of a variable within each group, slope estimates depend both on the levels of an outcome and a
particular covariate, as well as the variability of their covariance among individuals within each
group (Mehta & Neale, 2005). This means that estimating variability in random slopes across
units generally requires larger sample sizes for more stable estimates than simply estimating ran-
dom intercepts. Complications can also arise due to correlations between random effects and the
investigation of cross-level interactions (Raudenbush & Bryk, 2002). As this limited discussion
of power suggests, a number of considerations must take place to assess potential bias in param-
eter estimates and power in various types of multilevel designs. Readers can consult Scherbaum
and Ferreter (2009), Snijders and Bosker (1999), and Snijders (2005) for further discussion of

issues related to power.

Differences Between Multilevel Software Programs

In preparing this workbook, we compared models estimated in IBM SPSS with models esti-
mated with other multilevel software with which we are familiar (e.g., HLM and Mplus). Dif-
ferent software programs use slightly different algorithms to estimate models, for example, in
calculating standard errors, especially in small groups. There are also differences in the means
of testing the variance components. For example, IBM SPSS uses a Wald Z test, and HLM
uses a chi-square test. In general, however, we have found that the differences between software
programs are generally small—that is, output will carry the same substantive interpretation. We
provide several examples in Appendix B.

Standardized and Unstandardized Coefficients

We present the analyses in subsequent chapters using unstandardized regression coefficients.
Unstandardized coefficients provide estimates of changes in the dependent variable associated
with a unit change in the explanatory variable (e.g., male versus female; a standard-deviation
increase in motivation). Standardizing variables is useful in comparing the size of effects due to
several variables measured on different scales within a sample. If the goal is to compare estimates
across samples, one should use unstandardized estimates (Hox, 2010). Standardizing estimates is
more complicated in multilevel modeling, however, due to the presence of variance components
for outcomes at different levels of the data hierarchy. Because standardizing variables depends
on their standard deviations, in multilevel modeling the analyst faces the issue of using Level 1
standard deviations and Level 2 standard deviations to compute standardized effects of predic-
tors (Bloom, Hill, Black, & Lipsey, 2008).

'There are a number of different ways to approach standardizing variables in multilevel model-
ing. Some software programs (e.g., Mplus and LISREL) provide a variety of different standard-
izations. For example, standardizing estimates to the within-group variance implies a focus on
within-group relations without concern for how large or small the portion is of the within-group
variance to the total variance. Mplus standardizes estimates within each level (which requires
the between-group and within-group covariance matrices in order to construct accurate esti-
mates). Other programs (e.g., HLM and SPSS MIXED) currently do not provide standardized
solutions.

One can standardize all the indicators in the model first (e.g., by saving standardized estimates
of each variable, which can be obtained using the Descriptives command in IBM SPSS). Essen-
tially, this amounts to modeling with all z-scores. This approach succeeds in putting the variables
in the same metric, but it does have a few drawbacks. First, it does not completely resolve the
issue about the “proper” size of the coeflicients in relation to an assumption about decomposing
variance in the model. Second, as Hox (2002) notes, this type of linear transformation of the
fixed coeflicients in a model through standardizing also has the effect of changing estimates of
the random part of the model (i.e., the model’s variance components). If one has random slopes
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in the model, standardizing the estimates can alter the calculation of the variance components at
each level. Standardizing tends to reduce variability at different levels, which is often important
in the focus of the multilevel analysis—and maybe even the theory underlying the relationships
in a proposed model. Third, in the process of standardizing things, we usually find that p values
can be changed slightly. So for example, something significant in a raw metric may or may not
be significant when everything is standardized. Interactions are more challenging to standardize
since standardizing before the analysis can change the size of the interaction, the model’s vari-
ance components, and also significance levels of variables (Hox, 2010; Preacher, 2003).

We have found that various assumptions about standardizing variables (i.e., standardizing
with respect to within-group variance only, the between-group variance only, within each level of
the data hierarchy, or with respect to total variance) can lead to very different sets of coeflicients
and interpretations of the results, such that it can be difficult to determine what each stan-
dardization means (Heck & Thomas, 2009). It is important to understand the assumptions and
possible consequences of providing standardized solutions. Despite these cautions, we do favor
providing a standardized solution in many instances since an audience may well understand the
effect of a predictor as producing a 0.6 standard deviation (SD) increase in the dependent vari-
able. In such cases, however, we recommend examining both unstandardized and standardized
results and then comparing the pattern of significant and nonsignificant effects of predictors and
variance components for consistency. These choices about the presentation of empirical results
need to be considered in terms of both the technical and substantive issues they raise, as well as
with respect to the overall goals of the research study.

Missing Data

It is often the case that the weakest point of a study is the quality of the data that can be brought
to bear on the research problem. Missing data can be a problem in multilevel applications, de-
pending on the sampling design underlying the data set, the extent to which the data are missing
at each level, and whether or not the data can be assumed to be missing at random. The more
one can find out about why the data are “as they are,” the more one can develop a case about the
patterns of missing data, as well as a rationale about why the pattern may or may not matter. In
some modeling situations, there may be considerable missing data.

Users should consider data preparation and data analysis as two separate steps. In preparing
the data for analysis, it is often useful first to determine the amount of missing data present, as
well as the number of missing data patterns (e.g., For which variables do missing values occur?
Are there specific patterns of missing data?). It is important to keep in mind that the reality is
that there is no real way to get data that are missing back (short of actually following up with
subjects in a study). In a sense, then, we are always dealing with the problem of missing informa-
tion to some extent when we use actual data. The quality of our analysis depends on assumptions
we make about the patterns of missing responses present and what is reasonable to conclude
about those patterns in relation to the study’s design (e.g., experimental or quasi-experimental
and survey) and data collection (e.g., cross-sectional and longitudinal).

What we do about the missing data we have becomes a more pressing concern. There are a
number of available options for dealing with missing data. It helps to know what the defaults
and options are for handling missing data in the software programs that we are considering to
use in each given research situation. Typically used approaches such as listwise or pairwise dele-
tion, mean substitution, or simple imputation using regression-based techniques (e.g., estimating
outcomes with dummy-coded missing data flags to determine whether there were differences in
outcomes associated with individuals with missing versus complete data) lead to biased results in
most situations (Acock, 2005; Allison, 2002; Larsen, 2011; Peugh & Enders, 2004). Currently,
for single-level models, acceptable approaches include full information maximum likelihood
(FIML) estimation with the partial data included and multiple imputation (MI) of plausible
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values (Asparouhov, 2006; Enders, 2011; Enders & Bandalos, 2001; Peugh & Enders, 2004).
Additionally, as Enders notes, inverse probability weighting methods are also gaining attention
in the statistics literature (e.g., Little & Rubin, 2002; Robins & Rotnitzky, 1995). It is impor-
tant to note that few studies have examined the use of these commonly accepted, single-level
approaches with multilevel data structures (e.g., see Larsen, 2011; van Buuren, 2011).

Handling missing data in an appropriate manner depends on one’s knowledge of the data set
and why particular values may be missing. In general, there are three main types of missing data
(see Hox, 2010; or Little & Rubin, 2002, for further discussion). Rubin (1976) introduced the
notion of the distribution of “missingness” as a way to classify the probability conditions under
which missing data can be ignored. These include data that are missing completely at random
(MCAR), missing at random (MAR), and nonignorable missing (NIM), which is also referred
to as missing not at random (IMNAR). For data to be MCAR, strong assumptions must hold.
The missing data on a given outcome should be unrelated to either a subject’s standing on the
outcome or to other observed data or unobserved (missing) data in the analysis. This is the as-
sumption underlying listwise deletion. Typically, this assumption is only met when the data are
missing by design, as in the situation where we draw a random sample of the studied population.

In contrast, if the probability of data being missing on the outcome is related to missing data
on a covariate, but not to subjects’ standing on the outcome, then the data are MAR (Little &
Rubin, 2002). It is reasonable to assume there will be some relationships between data that are
missing on two or more variables in a study. For example, if students have missing data on at-
tendance for a number of different reasons such as changing schools, having a health condition,
or living in a particular region, they may also have missing data on math outcomes. These other
variables provide a mechanism for explaining the missing values present. The MAR assumption
underlies the MI and FIML approaches to dealing with missing data. Although it is often rea-
sonable to assume that data are MAR, under some circumstances, this assumption may not hold
(Enders, 2011).

More problematic is the situation where the probability of missing data on the outcome is re-
lated to standing on the outcome for individuals with the same value on a covariate. For example,
if there is more missing low-math data than missing average- and high-math data among stu-
dents with the same attendance level, then the data are NIM. Suppose we have 500 students who
take a test, but 150 have missing data, and these missing individuals also tend to have relatively
high absenteeism (e.g., 20 or more days). Then we might have to acknowledge there is some bias
present. Perhaps two thirds of the missing data are students who are in the high-absenteeism
group and low-math achievement group. It will now be hard to argue that the missing data on
the student absenteeism predictor will not affect the estimation of students’ math test scores for
the population. This latter type of missing data can produce more bias for model estimation than
either of the other situations because the missing data on math achievement are related to actual
values of individual achievement for those subjects who do not take the test. We would prefer to
be able to say the pattern of missing data on student outcomes is relatively similar for students
with high, average, and low absenteeism. This would then indicate data that are MAR.

Other techniques have been developed for data that are NIM. Enders (2011) demonstrates the
usefulness of two of the NIM approaches for longitudinal data (i.e., selection models and pattern
mixture models) and demonstrates their use on a real data set. More specifically, selection models
for longitudinal data combine a substantive model (i.e., a growth curve model) with a set of re-
gression equations that predict missingness, while a pattern mixture analysis stratifies the sample
into subgroups that share the same missing data pattern and estimates a growth model separately
within each pattern. Interested readers can consult Hedeker and Gibbons (1997, 2006) for one
example of a pattern mixture—modeling approach that uses the missing data pattern (represented
by one or more dummy variables) as a predictor in the growth model. Their approach can be
estimated with standard mixed-modeling procedures (e.g., the MIXED procedures in SPSS and
SAS). Choosing an approach for handling missing data (whether assuming MAR or NIM) is a
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matter of choosing among competing assumptions. As Enders (2011) concludes, “Researchers
should choose a model with the most defensible set of assumptions, and they should provide a
logical argument that supports this choice” (p. 15).

As we have cautioned, IBM SPSS is limited in its ability to deal with various patterns of
missing data. As a default, the program uses listwise deletion of cases when there is any miss-
ing data. This means any individual with data missing on any variable will be dropped from the
analysis. As a first step, we suggest examining the amount of missing data on each variable. Even
with 5% or less per variable, in some situations, listwise deletion can result in a tremendous loss
of data and biased parameter estimation. IBM SPSS does provide a number of options for ex-
amining missing data. The standard solutions provided in most routines are listwise, pairwise, or
mean substitution. In most situations, however, none of these would be considered as optimal
(or acceptable) approaches (Enders & Bandalos, 2001; Peugh & Enders, 2004). For example,
listwise deletion leads to inflated standard errors when the data are MCAR and biased param-
eter estimates when the data are MAR (Allison, 2002; Larsen, 2011). Mean substitution treats
individuals with missing data as if they were on the “grand mean” (MCAR), which is also likely
to introduce bias in most situations (e.g., by reducing variance). The IBM SPSS Base Statistics
program also provides a basic program that provides several replacement methods (e.g., series
mean, mean of nearby points, median of nearby points, and linear interpolation). We also note
that although “user-missing” values can be specified in IBM SPSS, this approach is typically
used for categorical responses, where some possible responses are coded as missing (e.g., “not
applicable”in survey questions). If these user-defined missing values are included in the analysis,
however, they will also bias parameter estimates.

For users who have access to the SPSS multiple imputation (MI) data module, patterns of
missing data can first be identified, and then plausible values can be imputed using the expec-
tation maximization (EM) algorithm. EM is a common method for obtaining ML estimates
with incomplete data that has been shown to reduce bias due to missing data (Peugh & Enders,
2004). Obtaining estimates involves an iterative, two-step process where missing values are first
imputed and then a covariance matrix and mean vector are estimated. This repeats until the
difference between covariance matrices from adjacent iterations differs by a trivial amount (see
Peugh and Enders, 2004, for further discussion). The imputed data sets can be saved as separate
data sets and then analyzed. It is often the case, for example, that even with 25-35% missing,
one can impute plausible values into a number of data sets and do a reasonable job of creating a
complete data set with the missing values given random values.

One of the advantages of this approach is that other variables can also be used to supply
information about missing data, but they need not be included in the actual model estimation.
'This approach to missing data is recommended when the assumption that the data are MAR is
plausible. The analyst can generate a relatively large number of imputed data sets (Bodner, 2008)
and then analyze the complete data sets and report the mean estimates and standard errors across
several imputations. The values imputed through MI represent draws from a distribution; in
other words, they inherently contain some variation. This parameter variation across multiple im-
putations is important for creating reasonable distributions of plausible values for variables with
missing values. If we assume some degree of normality, we can average the parameter estimates
over the imputed data sets. Our practical experience with MI approaches suggests they do pretty
well at estimating the total data set where missing values are randomly dispersed across a sizable
number of individuals (100-200 or more) found in most published studies. It is important to
keep in mind, however, that the MI approach as implemented in SPSS does not assume missing
values on group-level (Level 2) variables.

For multilevel data, there is less guidance available from previous research (e.g., Daniels &
Hogan, 2008; Larsen, 2011; van Buuren, 2011). Larsen recently conducted a study comparing
MI and FIML approaches in situations where there were individuals nested within groups. Both
approaches were relatively similar in handling Level 1 estimates under the different conditions
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examined. More importantly, however, as missing data increased at Level 2, the estimates of the
Level 2 predictor from imputed data sets displayed increased parameter bias and decreased stan-
dard errors compared to the estimates predicted from the full data set. For Level 2 estimation,
Larsen found that FIML estimation with the missing data performed much better than the MI
approach. This is because the MI procedure used in his study did not account for random effects.
More specifically, the student-level data (Level 1) were assumed to be “randomly sampled” from
the same population (i.e., in this case, a classroom), rather than to come from different class-
rooms (Larsen, 2011).

Van Buuren (2011) provides an introduction to a number of different missing data situations
encountered with multilevel data. Where data are missing for Level 2 predictors (e.g., as for a
school covariate), for programs defaulting to listwise deletion such as IBM SPSS, this will result
in losing all the individuals within those units. These individuals may not have any missing data
on the outcome or the Level 1 predictors. This may also complicate the estimate of group-level
effects (van Buuren, 2011). We reiterate that the sampling frame through which the data were
generated may have an impact on assumptions we make about the distribution of the data at each
level. This implies that the nature of missing data at Level 2 in relation to the manner in which
the units were selected—whether units themselves were randomly sampled from a population of
units or were just an unspecified “collection” of available units—can further complicate the in-
terpretation of the Level 1 results. As van Buuren (2011) notes, although ML methods are quite
good at estimating repeated measures values of Y in longitudinal studies, no generally accept-
able approach has been developed for handing missing values on Level 1 and Level 2 predictors
(i.e., since the data are assumed to be MAR). If MAR is correct, van Buuren cautions that the
variables governing the probability of the missing data should be included in the analysis, for
example, in order not to bias the estimate of a treatment effect.

Much of our discussion about missing data suggests that dealing with missing data is not so
much about how much missing data is allowable, but rather how to develop a process to deal
with the missing data. We favor a strategy of triangulating our results with different approaches
that are currently recommended for examining missing data. One possible approach is to do
something like the following. First, one can try running the model using listwise deletion (which
assumes MCAR). This data set will likely be considerably smaller than the “partially complete”
data, but it gives the analyst a baseline view (albeit likely a biased one) for comparing subsequent
results. With MIXED, the results with listwise deletion should match the results of the existing
(partially complete) data set since the variables with missing values are listwise deleted, unless the
data are vertically arranged as in a growth model.

Second, if there is not too much missing data per variable, the listwise results can be compared
against a number of complete data sets generated using an MI program, which can be applied to
hierarchical data structures (e.g., Mplus or HLM). Some have discussed the use of single-level
MI, which ignores the grouping structure in multilevel data; however, this approach may under-
estimate standard errors (Cheung, 2007; Gibson & Olejnik, 2003). In contrast, Zhang (2005)
found it worked reasonably well with missing data up to about 30%. As van Buuren (2011) cau-
tions, there is no consensus yet, and further work is needed in this area. Others have suggested
using an individual and group data set to perform separate imputations, while using information
from one level to inform the other (Gelman & Hill, 2007; Petrin, 2006).

Analysts may wish to keep in mind the cautions we have mentioned about estimating plau-
sible values when individuals are nested within groups. There are a number of sources that can
be consulted for dealing with missing data under MAR and NIM in growth-modeling studies
(e.g., see Enders, 2011; Muthén & Muthén, 1998-2006). We also note that van Buuren (2011)
examined several types of missing multilevel data situations and found the multilevel multiple
imputation used (i.e., which generated multiple imputations from prior distributions of the pa-
rameters using the Gibbs sampler) worked generally the best of several approaches (e.g., listwise,
single-level MI, and MI with separate groups), but it was not optimal in all situations with
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respect to recovering true values by 95% confidence intervals across different cluster sizes and
numbers of individuals within clusters.

'Third, if the analyst has access to an SEM program (or special multilevel software such as
HLM) that will perform multilevel analyses, she or he can also try estimating the model with
FIML with the cases with partial data included in the analysis and then comparing these results
with the other approaches. If sample weights are available in existing data sets, users should
check whether they include adjustments for nonresponse. If so, making use of sample weights at
two levels will facilitate accurate estimation, but this option is currently only available in a limited
number of multilevel software with which we are familiar. We contrast some of these problems
briefly in the next section with two short examples where missing data are encountered.

Missing Data at Level 2

It is clear that more work needs to be done on the use of multiple imputation procedures for
hierarchical data structures (LLarsen, 2011; van Buuren, 2011). We caution in this situation that
users should be careful about imputing values for Level 2 variables within the larger data set that
contains missing values. This is because the program will create different “group” values on Level
2 variables for individuals in the same group. This happens because the imputation routine will
borrow information from similar individuals who are 7oz in the same group. In this case, if data
are missing at the group level (Level 2) for individuals in the data set, we must ensure that the
same value is imputed for the group variable for all individuals within the group. We recommend
that analysts first check the data for “stray” missing values for Level 2 variables for individuals at
Level 1. Values for Level 2 covariates for individuals within each unit should be inserted where
they are missing, so that no individuals will be dropped from the unit where that information is
available for other subjects within the unit.

'The bigger problem is where data on a Level 2 covariate is missing for all members of a par-
ticular unit. In two-level designs, the selection of students within a school cannot be considered
as independent observations, since the students selected within the school will likely have some
common characteristics (Organization for Economic Cooperation and Development, 2009). As-
suming independence of observations (i.e., simple random sampling) simplifies analyses but gen-
erally tends to lead to mild to severe underestimation of standard errors (Kish, 1987). In Table
1.7 we provide a simple multilevel analysis to illustrate the potential effects of missing data at
Level 2 on the analysis. In this case, we start with a complete sample of 1,000 students randomly
selected from within 139 schools, which were randomly selected from some 180 schools in the
database. We specified a two-level simple model with one predictor at each level and a random
intercept.

The coeflicients in column 1 of Table 1.7 suggest that community socioeconomic status
(CSES), which is reverse coded, and /owSES are statistically significant (p < .05) in explaining
students’ reading scores. In columns 2-5, we illustrate several possible approaches for dealing
with missing data. In column 2, we eliminated data regarding school SES composition in 24 of
the 139 schools (17.3%). We assume the school-level data are MAR. To simplify matters, at the
individual level, there was no missing data. Because of the missing data on the Level 2 covariate,
however, we lose nearly 30% of the Level 1 student data (i.e., 289/1,000 = 28.9%). In columns
3-5, we used FIML estimation or MI to deal with the missing Level 2 data.

In column 2, we can see the listwise results indicate that both CSES and /owSES affect stu-
dents’ reading scores (p > .05); however, with nearly 20% missing data at Level 2 and a result-
ing 30% missing data at Level 1, the listwise analysis appears to be a bit further away from the
original estimates than the other approaches we demonstrated in estimating both the CSES
and lowSES parameters. We suspect this is due to the effect of the missing data on the school
SES variable, which we can see may influence both Level 2 and Level 1 estimates. We note that
listwise results will typically produce the largest errors in estimating the parameters (since the
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TABLE 1.7 Comparison of SPSS and Mplus Results

Mplus SPSS
SPSS SPSS Impute Impute

Variables Complete Listwise Mplus FIML (N=5) N=5)
Between Schools

Intercept 642.58* 641.86* 642.05* 641.88* 642.26*

CSES -6.09* -7.73* -7.39* -6.05* -6.09*
Within Schools

Low SES -12.22* -10.41* -12.16* -12.49* -12.37*
Variance Components

Level 2 Intercept 45.83 60.24 52.70 49.82 54.14

Residual 1,654.55* 1,627.85* 1,643.28* 1,645.73* 1,645.59*
Sample Size

Level 1 Students 1,000.00 711.00 1,000.00 1,000.00 1,000.00

Level 2 Schools 139.00 115.00 139.00 139.00 139.00
*p<.0l.

sample size may be severely reduced), as well as reduced power, which can both lead to errors in
interpreting the results.

In column 3, we present the results of FIML estimation with missing data (estimated with
Mplus), which appears to do a reasonable job of recapturing the original estimates in the com-
plete data set presented in column 1. In addition to the intercept, the FIML approach accurately
estimates /owSES. In contrast, however, the estimate for the CSES covariate (—7.39) is not as
close to the estimate in column 1, since it was generated from nearly 20% missing data on the
covariate at Level 2. In this specific example, we suspect this estimate is a bit stronger because the
reverse-coded mean CSES of the missing schools was about 0.37 of a standard deviation higher
than the set of schools with complete data on this covariate. What this means is that there were
higher percentages of students participating in the federal free/reduced lunch program in those
schools. This would overattend to the schools where there are lower percentages of low-income
students in generating the school-level estimate.

In column 4, we report results using five imputed data sets at Level 2 with specialized multi-
level software to estimate the missing data at that level (i.e., Mplus). We obtained these estimates
by specifying our multilevel model in Mplus and then using the MI routine to impute missing
values (assuming the data at Level 2 were MAR). The estimates in column 4 represent the aver-
aged output from the five data imputations we conducted (Muthén & Muthén, 1998-2006).
Mplus has this MI capability beginning in Version 6. We can see that the averaged results across
five data imputations produce an estimate of the Level 2 fixed effect for CSES that is quite close
to the actual estimate with the complete data.

Finally, in column 5, we present results from SPSS using the MI routine for our Level 2
school sample (estimated separately). We remind readers that if they attempt to impute plausible
values using the MI routine in IBM SPSS without first separating the Level 2 variables from
the larger database, the program will impute different “random” values for the group covariate for
individuals within the same unit since it does not recognize “random effects” due to clustering.
This, of course, would be impossible in terms of producing an accurate analysis of the effects of
Level 2 predictors on the outcomes in a study since the definition of clustering within multilevel
analysis is that all individuals within a given unit are assigned the same values on Level 2 predic-
tors. Imputing values into the Level 2 data set might be viable if we know the process through
which units were selected at Level 2 (e.g., simple random sample or stratified random sample).
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A common problem, however, is that in many multilevel studies the number of Level 2 units
available tends to be considerably smaller and, therefore, less likely to represent a “randomly
sampled” population of units. We therefore need to keep the likely distribution of Level 2 units
in mind since our assumption about the nature of the Level 2 units will certainly affect estimates
that might be generated. If we can assume the data at Level 2 are MCAR (or more likely MAR),
we may be able to provide reasonable estimates for missing data on one or more covariates.

In order to impute plausible values for the Level 2 covariate, we used existing information
about CSES drawn from the 115 schools with existing data on this variable, as well as informa-
tion from aggregated unit means for each unit that we created from the complete Level 1 data
set. More specifically, we aggregated student data on reading scores and individual SES to gener-
ate means on these variables for each unit. Using Level 1 information about each unit helped in
generating better “plausible” values for community SES at Level 2 in those units that were miss-
ing data. It is generally important to include information about the dependent variable in the
imputation model; otherwise, the imputed values will not have the same strength of relationship
to the dependent variable that the observed values do.

We reiterate the point that the MI approach has the advantage of incorporating some vari-
ability in the Level 2 estimates that are saved into separate data sets. Readers should keep in
mind that imputing values at Level 2 may not adequately deal with the nature of the random ef-
fects present. Again, this relates back to assumptions about the sampling process through which
units and individuals were selected. Even in this simple case, we noted considerable variation in
the size of the estimates, their standard errors, and their statistical significance. We suspect that
in many situations, it is probably reasonable to consider the Level 2 units as comprising a ran-
dom sample of a population (i.e., each unit has an equal probability of being selected), even if in
practice this assumption may be violated, which can lead to some underestimation of sampling
variance (Kish, 1987). Sample weights at Level 2 are created to deal with these types of selection
probability issues, but they are not available in many multilevel data sets. Our practical experi-
ence with imputing plausible values suggests that this problem can become more important
where there are small numbers of Level 2 units available for analysis (or where there are only a
few individuals within each unit). For example, smaller samples will lead to greater imputation
errors, which necessitate increasing the number of imputations conducted (OECD, 2009). Ac-
curately estimating variance parameters typically takes much more data than estimating fixed
effects. Using MI procedures in some fashion would certainly require imputing a sizable number
of Level 2 sets of estimates (perhaps 30 or more) where there is 20% or so missing data (e.g., see
Bodner, 2008; Larsen, 2011). This would provide a broader distribution of values. This might be
a reasonable approach for Level 2 data, where there are a relatively large number of units in the
study (as in our example) and the assumption of MAR can be made.

No definitive conclusion should be drawn from this simple illustration in Table 1.7. Our point
is simply to suggest that missing data can have a considerable influence on the credibility of our
modeling results. It is a problem that should be addressed in preparing the data for analysis. On
a positive note, in this example, the estimates for the three fixed parameters and variance compo-
nents in columns 2-5 all covered the 95% confidence intervals in the original set of estimates in
column 1. From this preliminary analysis, if we were preparing the data for further analysis, we
would likely conclude that the data are MAR instead of MCAR since the listwise results were
different substantively. We might choose either the MI or FIML estimation with missing data
as viable approaches to use in examining these data.

Missing Data in Vertical Format in IBM SPSS MIXED

As we noted in the previous section, at present IBM SPSS does not generally support FIML es-
timation in situations where there may be observations missing, as is found in typical SEM soft-
ware programs. What this means is that the cases with missing values are simply dropped from
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TABLE 1.8 Vertical Data Format

Subject Time Score
01 0 4
01 1

01 2 6
02 0] 5
02 1 8
02 2

03 0 6
03 1 8
03 2 9
04 0

04 1

04 2 7

TABLE 1.9 Model Dimension® Table

Number of Covariance  Number of Subject ~ Number of

Levels  Structure Parameters Variables  Subjects
Fixed Effects Intercept 1 1
time 1 1
Random Effects  Infercept 1 Variance 1 Subject
Components
Repeated Effects time 3 Identity 1 Subject 4
Total 6 4

@ Dependent variable: score.

the analysis. Where the data set is vertically arranged (e.g., where a single individual may have
repeated observations that comprise several rows in the data set), however, only that particular
occasion will be dropped if there is a missing value present on the outcome. We also illustrate this
situation in the next section. If covariates are missing, however, the subject will also be listwise
deleted, which will lead to bias if the data are in fact MAR (Larsen, 2011).

Besides repeated measures data, arranging the outcome data vertically can also be useful in
situations where an analyst may wish to examine several univariate outcomes (e.g., results on a
reading, math, and language test). If there are considerable missing data on each outcome, treat-
ing the outcome as multivariate (i.e., with vertical arrangement of the data at Level 1) can result
in keeping most of the missing data since only cases where data are missing on all outcomes
will be dropped. We note that keeping participants with partial data is important for justifying
the MAR assumption (Hox, 2010). We provide a simple illustration of retaining missing cases
due to vertical arrangement in Table 1.8, where there are three observations per individual (e.g.,
three successive math scores) and different patterns of missing data for each particular individual.
SPSS can handle different missing data patterns (i.e., missing on the first occasion, the second
or third occasion, or various multiple occasions) and amounts of missing data. Some individuals
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have no missing observations, some have missing data on one occasion, and some have missing
data on two occasions. As long as Y'is not missing on all occasions, the program will come up
with an “estimated” growth over each time interval, as well as an initial status (intercept) estimate,
even though the initial data point is missing for subject 4.

We provide the model dimension table from this model in Table 1.9. It shows that all four
subjects are retained in the analysis. This can be important information for analysts concerning
how many individuals in the data set are actually being included in the analysis.

Design Effects, Sample Weights, and the Complex Samples Routine in IBM SPSS

When working with secondary data sets, applying sample weights is important to correct the
analyses for features of the sampling design (e.g., probability of selection at multiple levels of the
data hierarchy) and data collection problems (Thomas & Heck, 2001). Procedures for the selec-
tion of Level 2 units and individuals within those units can vary from being simple (e.g., simple
random sampling at each level) to relatively complex. Weights may be available only at the indi-
vidual level (Level 1) or the group level (Level 2), or they may be available at both levels. Cur-
rently, there are no commonly established procedures for applying weights in multilevel analyses,
although a considerable number of different approaches have been proposed (e.g., Asparouhov,
2005, 2006; Grilli & Pratesi, 2004; Jia, Stokes, Harris, & Wang, 2011; Pfeffermann, Skinner,
Holmes, Goldstein, & Rasbash, 1998; Stapleton, 2002).

'The consideration of sample weights and design effects are vitally important in analyses using
disproportionate sampling and multistage cluster samples. Disproportionate sampling will lead
to samples that overrepresent certain segments of the populations of interest. Typically, this re-
sults from the researcher’s interest in including a sufficient number of subjects (or objects) from
smaller but important subpopulations. Sampling members of such groups proportionally often
results in too few sample members to allow meaningful analyses. We therefore oversample many
groups to ensure sufficient numbers in the final sample. The result is that the analytic sample is
not representative of the true populations since it has too many sample members from the overs-
ampled groups. Sample weights, typically probability or frequency weights, are used to readjust
the sample to be representative of the population from which it was drawn. Failure to use a
sample weight in these instances can result in incorrect parameter estimates, biased in the direc-
tion of the oversampled members of the population (Thomas & Heck, 2001).

Disproportionate sampling is often found in multistage cluster samples. Cluster sampling is
simply where the researcher first draws a sample at a higher level—organizations, for example—
and then draws a sample of lower level units within each organization—employees, for example.
'The units at each level may or may not be drawn proportionate to their presence in the larger
population. To illustrate this point, if one were to sample organizations, for some substantive
reason related to the research purposes, it might be desirable to oversample rural organizations.
If this were to occur, one would want to be sure to adjust for this at the organizational level by
using a Level 2 (organizational) weight in the same fashion that the Level 1 individual weight
discussed previously was used. Hence, there can be sampling weights for each level of the data,
although we note that many currently available data sets do not include weights at multiple levels
of the data hierarchy.

To the degree that the observations within each of the higher order clusters are more similar
to each other, there will be a design effect present that biases the estimated standard errors down-
ward. Because hypothesis tests are based on the ratio of the estimate to its standard error, having
standard errors that are too small will lead to a greater propensity to commit a Type I error (i.e.,
falsely concluding that an effect is statistically significant when it is not) than if the sample were
drawn through a simple random-sampling procedure. The design effect is defined as the ratio
of the biased standard error to the standard error that would be estimated under a true random
sample design. So, for example, if we know that the true standard error was 1.5, but the biased
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standard error estimated from the data collected through the multistage cluster sample was 1.2,
the calculated design effect would be 1.5/1.2 = 1.25.

One standard measure of this within-unit (dis)similarity is the intraclass correlation. As we
have noted earlier in the chapter, the ICC is the proportion of total variance in the outcome due
to within-unit differences at higher levels. The higher the ICC, the larger will be the design ef-
fect. Hox (2010) notes that the ICC can be viewed as another way to think about the degree of
correlation within clusters. An ICC of 0.165, which suggests that 16.5% of the variance in the
individual-level outcome exists detween clusters, could also be viewed as an indication that one
might expect a within-cluster correlation of 0.165 between individuals. This conceptual con-
nection between the ICC and within-cluster correlation is important in understanding design
effects. In short, the greater the between-cluster variance in the individual-level outcome, the
more homogenous will be the individual observations within each of the clusters. To the extent
that there exist within-cluster similarities, estimates of the Level 1 variances will be smaller than
they would be if the sample were collected through a simple random sample design (where such
clustering would be irrelevant to the variance structure). The implication central to our interests
is that ignoring the clustering that is part of the sample design will yield downwardly biased
estimates of the standard error.

'The last several versions of SPSS have made available a COMPLEX SAMPLES module that
allows the user to incorporate design information into the model to adjust for the design eftects
described previously. This module produces results for single-level models incorporating design
information and sample weights. As such, the parameter estimates are adjusted for both dispro-
portionate sampling and cluster sampling. In the single-level context, this is the appropriate way
to analyze data collected through complex sample designs. In this type of approach, similarities
among individuals due to clustering are treated as “noise,” which is adjusted out of the analysis,
rather than considered as the focus of the analysis.

Multilevel models, by design, capitalize on the clustered nature of data, and it is quite common
to see these models used with large-scale survey data that have been collected through complex
sample designs. The same cautions outlined previously apply to estimates produced using vari-
ous forms of multilevel models. Although multilevel models capitalize on the clustered nature of
the data, they do nothing to address disproportionate sampling, and, without proper weighting,
they will produce incorrect parameter estimates. Sample weights are often essential to generate
accurate estimates.

Weighting for unequal selection is relatively well established for single-level analyses. The
COMPLEX SAMPLES module allows adjustments to be made for sample design effects
(which can include clustering)—but maintains a single-level analysis after adjustment for fea-
tures of the sampling scheme. In this type of approach, similarities among individuals due to
clustering are treated as unwanted variance that is adjusted out of the analysis. In contrast,
standard two-level models can result from two-stage cluster sampling designs (rather than the
basic simple random or stratified samples that comprise the majority of single-level analyses).
One document that does discuss multilevel models as complex sampling models within IBM
SPSS is the PISA Data Analysis Manual (OECD, 2009). Because SPSS cannot at present deal
with sample weights at two-level results from these types of sampling designs, it can give a
preliminary indication of relationships in models where sample weights exist but should not be
relied on to provide final, unbiased estimates, even when using plausible values as the dependent
variable (OECD, 2009).

In contrast to weighting in single-level analyses, developing weighted analyses in the multi-
level context presents a number of more complicated challenges and limitations. Research in this
area is ongoing, and important advances have been made over the past 10 years. Most multilevel
software programs now include one or more weighting options. Several programs with which
we are familiar (HLM 7, LISREL 8.8, and Mplus 7) incorporate design weights that combine

information on clustering, the degree of intraclass correlation, and disproportionate sampling
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to create a set of scaled weights that will produce accurate estimates at each level of analysis.
Although IBM SPSS allows for the incorporation of simple sample weights (an approximate
frequency weight) in the MIXED and GENLINMIXED routines, the current version does not
enable a scaling adjustment that accommodates the effects of clustering in the sample design. As
we noted earlier in this chapter, this is an important limitation of the IBM SPSS program for
conducting multilevel analyses.

A number of factors can influence the estimation of model parameters. These factors include
the method of scaling the weights at Level 1 (i.e., how weights are scaled within the clusters), the
size of the clusters, the relative invariance of the selection method applied to clusters (referred
to as informativeness), the presence of missing data, and the intraclass correlation (Asparouhov,
2006). The scaling of Level 1 sample weights is very important in the multilevel context, helping
to improve efficiency and decrease bias in estimation (Pfefferman et al., 1998; Skinner, 2005).
Asparouhov explains that the scaling of the weights at Level 1 involves multiplying the weights
by a scaling constant, so that the sum of the weights is equal to some kind of characteristic of the
cluster (e.g., cluster size).

An Example Using Multilevel Weights

We provide one simple example of a comparison between results we obtained with Mplus, which
has the capability of incorporating Level 1 and Level 2 weights into multilevel analyses, and the
unweighted estimates obtained through using MIXED. In the example, there are 5,952 students
nested in 185 schools with a continuous outcome. In Table 1.10, we first provide unweighted
estimates for the within- and between-group variables using IBM SPSS MIXED. We next
provide unweighted estimates and weighted estimates using Mplus. For Mplus, Level 1 weights
were scaled within Level 2 units such that the sum of these weights equals the size of the respec-
tive Level 2 unit (Asparouhov, 2006).

The results suggest that providing proper weights can affect both the size of the estimated
coeflicients as well as the calculation of the standard errors at both Level 1 and Level 2. First, the
estimates of average school achievement are quite different in the unweighted versus weighted
estimates. For example, the unweighted SPSS and Mplus estimates of the adjusted level of
achievement are very similar (543.02 and 542.94, respectively). The weighted estimates, which
take into consideration the proper representation of the schools in the stratified sample drawn
trom the population, are considerably lower at 515.03 than the unweighted estimates.

Second, at the school level, we notice one difference in the pattern of hypothesis testing. Be-
cause hypothesis tests are based on the ratio of the estimate to its standard error, on many occa-
sions we can note differences in significance testing of estimates in unweighted versus weighted
solutions. In the unweighted solutions, school SES and school type (i.e., private or public) are
the only significant predictors of math scores. In the weighted solution, however, the hypothesis
test for curriculum orientation (academic) is significant (15.60, p < .05), but it is not in the two
unweighted solutions provided. Regarding the slope model, we can see that students who receive
outside tutoring have significantly lower math scores in both the unweighted and weighted so-
lutions. There is a considerable difference in the size of the randomly varying slope (regarding
students who receive outside tutoring in math). More specifically, the unweighted estimates are
approximately —17.4 versus the weighted estimate of -24.0. Similarly, the cross*level interaction
(tutoring*School SES) is also different—that is, approximately 31.0 in the unweighted sample and
42.6 in the weighted sample. These results suggest that students who are likely to get tutoring
in high SES school settings are more highly achieving than their peers in schools at the grand
mean of school achievement. For example, at 1 SD above the grand mean, the advantage would
be about 18.7 points in the standardized math test (—23.98 + 42.63 = 18.65).

Finally, we note considerable differences in calculating the variance components in the
weighted and unweighted models in Table 1.10. Despite these differences, however, in all three



Introduction to Multilevel Modeling with IBM SPSS = 33

TABLE 1.10 Unweighted and Weighted Level 1 and Level 2 Estimates Explaining Math

IBM SPSS Mplus
Unweighted Unweighted Weighted
Estimates SE Estimates SE Estimates SE

School Model

Intercept 543.02** 7.97 542.94** 7.56 515.03** 7.75
SchSES 141.80** 9.95 141.82** 9.88 131.36** 11.87
Public -57.08** 7.18 =57.11** 6.75 -55.57** 6.91
Academic 10.25 7.81 10.41 7.25 15.60* 7.76
City -2.37 6.94 -2.30 7.06 5.23 8.82
Large City 6.93 8.25 6.82 8.03 8.40 9.23
Individual

SES 7.75%* 1.33 7.76** 1.54 6.87** 2.08
Female -16.40** 1.81 -16.42** 1.96 —14.04** 2.66
Slope Model

Tutoring —17.42** 2.87 —17.41** 2.96 -23.98** 4.58
Tutoring*SchSES 31.02** 7.72 31.10** 7.56 42.63** 8.40
Random Effects

Residual 3,693.79** 69.59 3,692.37** 89.82 3,849.48** 128.24
Level 2{1) 1,466.58** 168.27 1,413.14** 166.00 1,360.03** 195.40
Level 2(S) 173.09 120.46 158.05 109.05 284.20 188.17
*p<.05; **p<.01.

models, after accounting for school SES, we note there is not significant random variance in
slopes left to explain across schools (p > .05). We emphasize that no definitive conclusions should
be drawn from this one simple comparison of unweighted and weighted multilevel results. We
provide these results only to make the point that using sample weights, and using them correctly,
does make a difference in the accuracy of the estimates obtained and certainly can affect the as-
sociated hypothesis tests in multilevel analyses.

Although many of the software programs used for estimating multilevel models enable the
appropriate scaling, IBM SPSS does not yet include this feature. If sample weighting is essential
to the analysis, it will likely be better currently to use another of the available programs or to
revert to a single-level formulation within SPSS through its COMPLEX SAMPLES module.
More specifically, as Asparouhov (2006) suggests, if sampling weights present in a secondary data
set are designed for a single-level analysis, it may be best to stick with that type of design and
conduct a single-level analysis designed for stratified- and cluster-sampling designs. Asparouhov
provides two contrasting situations illustrating this point. First, he suggests that when weights
are only present at Level 2 (i.e., where clusters have been sampled with unequal probability), we
can identify this situation as being within the framework of single-level weighted modeling, and
methods available for single-level weighted analysis can be applied with consistent estimations
regardless of the size of the clusters. Although the model is multilevel, the nature of the weight-
ing is not. Of course, if sample weights are also provided at Level 1, this will change. Second, he
cautions that the situation is different when weights are only provided at Level 1, as the unequal
probability of selection is applied to dependent units, and, therefore, the assumptions of the
single-level method of analysis will be violated.

'The bottom line is that if the single-level sample weights cannot be properly scaled to the
multilevel context, it may be better to use the single-level approach. This threat may be more
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severe when estimating models with categorical outcomes (Rabe-Hesketh & Skrondal, 2006).
We are hopeful that the application of multilevel sampling weights will be included in future
versions of the software. In the interim, we call attention to recent work by Chantala, Blanchette,
and Suchinindran (2011) providing SAS and Stata routines to generate scaled weights that could
be imported into other multilevel software programs (such as IBM SPSS).

Summary

In this chapter, we have developed a context and rationale for the use of multilevel models in
the social and behavioral sciences. The use of multilevel analysis can add substantive information
about how processes unfold at various levels of a data hierarchy. We suggested that multilevel
techniques support the specification of more complex theoretical relationships than is possible
using traditional single-level regression analyses. Analytic approaches that can be used to model
complex relationships have greatly expanded over the past couple of decades, and these analytic
alternatives allow us to investigate social processes in more theoretically and methodologically
appropriate ways. Substantive progress in a field is often achieved when headway occurs simul-
taneously on conceptual and methodological fronts.

One attractive feature of SPSS MIXED is that it is not limited in terms of the number of
levels in a nested or cross-classified data structure that can be analyzed simultaneously. The abil-
ity to specify multiple RANDOM (i.e., randomly varying intercept and slopes) commands at
successive levels of a data hierarchy facilitates investigating a variety of multilevel models that
are difficult, or not currently possible, to estimate optimally in other software packages. As with
most current software programs, however, adding levels to examine in a data hierarchy, randomly
varying parameters, and cross-level interactions can greatly increase the amount of time it takes
to produce a solution (i.e., from seconds to several hours) and will require increasingly large
amounts of memory and disk space as models become more complex.

We see another advantage in MIXED concerning the easy manner in which various types of
covariance structures can be specified at different levels of the data hierarchy. Our comparison of
IBM SPSS MIXED with other multilevel software suggests that the program produces results
substantively consistent with other programs, given similar model specification. Given our as-
sessment of these limitations and several advantages, we feel that using IBM SPSS to investigate
multilevel and longitudinal models is a useful way in which to introduce researchers to the uses
and benefits of multilevel modeling since it takes immediate advantage of a software program
they are likely to have encountered already in their quantitative preparation.

In the next chapter, we take care of a bit of housekeeping by providing an overview of some
important data management techniques. Arranging the data for analysis in IBM SPSS is fairly
straightforward. We provide readers with a few essential steps necessary to put their data sets in

proper order for analysis using MIXED.



CHAPTER 2

Preparing and Examining the Data
for Multilevel Analyses

ssential to any type of analysis is the organization and vetting of the data that will be ana-

lyzed. In this chapter, we identify a number of practical and substantive issues associated
with preparing data for analysis in IBM SPSS MIXED and assessing the adequacy of those data
for a variety of multilevel analyses.

Data Requirements

In this workbook, we deal exclusively with multilevel models using continuous-level outcomes.
While other multilevel statistical programs including IBM SPSS can accommodate binary or
ordinal outcomes, MIXED is restricted to outcomes measured on a continuous scale. Although
we deal only with continuously measured outcomes, predictors can be continuous, ordinal, or
dichotomous.

'The sample sizes we employ throughout our examples are large at each level of the analysis.
'The variables used may come from a variety of different sources, many of which are specific
to a particular level of analysis. One might, for example, draw on student-level attitudinal,
behavioral, or performance data from national surveys such as the National Educational Lon-
gitudinal Study of 1988 (Curtin, Ingels, Wu, & Heuer, 2002). If an objective were to under-
stand the effects of school settings on these individual characteristics, we might assemble
school-level data drawing on information from the Common Core of Data (Sable & Noel,
2008). School-level data might include school size, demographic composition, financial char-
acteristics such as state dollars per enrolled student, on-time progression or graduation rates,
teacher and administrative numbers, and the like. To carry this to a third level, we could draw
on U.S. Census data to define characteristics of the school districts in which the schools at
Level 2 were located (e.g., household income, number of people in the household, their levels
of education, etc.).

We will show that there are many variants on this modeling framework. We might, for ex-
ample, want to understand change in some outcome over time. In such an instance, we might
conceptualize time points across which we presume change to occur within students who could,
in turn, be nested within schools, and so on. However the nesting is conceptualized, each level
of analysis will have its own set of variables defining features of the units being measured at that
level. While conceptualizing data at discrete levels of the hierarchy may be relatively straightfor-
ward, organizing the data set requires an understanding of how the data need to be arranged to
represent that hierarchical conceptualization correctly. In the next section, we outline the main
organizational features of data sets that can be used in a multilevel analysis. We return to data
requirements in more detail in a subsequent section.
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File Layout

We described in the previous chapter an important difference between the single-equation and
multiple-equation approaches to estimating multilevel models. The multiple-equation approach
(e.g., used in HLM) requires a separate data set for each level of data being analyzed. This can
make conceptualization of the different levels clear. If Level 1 consisted of 6,871 students, for ex-
ample, the Level 1 file would contain student data, including information about higher order group
membership (e.g., the classroom or school membership for each of the 6,871 students in the file).

Figure 2.1 shows what such a Level 1 file might look like based on the data set used in Chapter 3.
In this particular example (ch2/evel-I1data.sav), we have included a student identity (ID)
variable (id), a school ID variable (schcode), and three variables describing student characteristics,
gender ( female), socioeconomic status on a normalized scale (ses), and a raw math score (math).

If Level 2 in the analysis consisted of schools of which students were members, the Level 2
data set would contain all information about those 419 schools, including a unique school identi-
fier, and perhaps aggregated data from the Level 1 student file given previously.

'The Level 2 file (ch2/evel-2data.sav) shown in Figure 2.2 contains a unique school identifier
(scheode) and two variables describing the characteristics of the school, average socioeconomic status
(ses_mean) and the proportion of students planning to attend a 4-year college (per4yrC). The data
sets are linked through a group-level identifier (in this case, schcode) during the multilevel analysis.

In contrast, the single-level approach makes use of one file that combines data from each
level (Figure 2.3). In the univariate multilevel model, the file will consist of one record for each
Level 1 unit. Values for variables from higher levels will be constant within groups. For example,
in a data set (ch2level-1852data.sav) with 6,871 students from 419 schools, there would be a
single file of 6,871 records. The values for the student-level variables would vary across all 6,871
students. However, values on the school-level variables would be constant within each of the
419 schools—that is, students within each school would all have the same value on each of the
school-level variables.

£3 ch2level-1data.sav [DataSet1] - IBM SPSS Statistics Data Editor l—lﬁ‘: 1=
Fle Edt View [Data Transform Analyze DirectMarketng Graphs Utiies Addpns Window Hep
e | == o o .'-4
SHE -~ BHhIA N S8 B
il Visible: § of 6 Variables
| schcudeg id female| ses math perdyrc var [
Tl 1 6701 1 59 4714 08 =
=z 1 6702 1 30 6361 08 —
| 1 6703 1 -84 5T 08
a7 1 6704 0 -85 5390 08
5 | 1 6705 0 .00 5801 08
mea| 1 6706 0 -1 5987 08
Tl 1 6707 0 .33 6256 08
grl| 1 6708 1 -89 4701 08
[ 1 6708 0 21 7242 08
0 | 1 6710 1 -3 6584 08
R | 1 611 0 -7 5734 08
| 1 6712 1 107 6256 08
13 2 3703 0 -1 6195 1.00
u | 2 3704 0 128 T0.22 1.00
G| 2 35 0 106 5878 1.00
L =R 2 3706 0 80 6554 1.00
==l 2 3707 0 73 5977 1.00
18 2 3708 0 13 64.07 1.00
| 2 39 0 68 6195 1.00
2 | 2 3710 0 92  66.83 1.00 B
[ — [»]
Data View | Variable View
BM SPSS Statistics Processor is ready

FIGURE 2.1 A Level 1 data file (multiple-equation approach, NV = 6,871).
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FIGURE 2.3 Combined multilevel data file (single-equation approach, N = 6,871).
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IBM SPSS MIXED uses the single-equation approach and one omnibus file containing data on
each level of the analysis. In the sections that follow, we provide an overview of some of the data
management steps within IBM SPSS that will help you organize and prepare your data and files
tor use within the MIXED routine.

Getting Familiar with Basic IBM SPSS Data Commands

Organizing and managing the data at various levels is accomplished through five basic IBM SPSS
procedures. There are, of course, many other procedures that can be used to modify a data set, but we
teel that these are primary to the data management tasks associated with organizing files for multi-
level analyses within IBM SPSS. We will have much more to say about the IBM SPSS commands
and the menu system itself in the chapters that follow. Here, however, we wish only to introduce these
commands and a few principles of data management that we think will prove helpful for getting the
most out of the workbook. The five primary procedures are (in order of importance) the following:

1. RECODE: Changes, rearranges, or consolidates the values of an existing variable.

2. COMPUTE: Creates new numeric variables or modifies the values of existing string or

numeric variables.

. MATCH FILES: Combines variables from IBM SPSS-format data files.

4. AGGREGATE: Aggregates groups of cases in the active data set into single cases and cre-
ates a new aggregated file or creates new variables in the active data set that contain aggre-
gated data. The values of one or more variables in the active data set define the case groups.

5. VARSTOCASES: Restructures complex data structures (i.e., in which information about
a variable is stored in more than one column) into a data file in which those measurements
are organized into separate rows of a single column.

W

In this section, we will build a multilevel data set using each of the primary commands identified
previously.

The data set we use here (ch2multivarML1.sav) is based on the example used in Chapter 5
but is modified to exclude missing data. The data set contains three raw test scores taken over
time (est1, test2, and zest3), dichotomous indicators of teacher effectiveness (¢ffective) and gender
(female), a continuous variable capturing the number of Advanced Placement courses a student
has taken (courses), and a continuous measure of family socioeconomic status (ses). There is also
an identifier for students (id) and for the schools in which they are enrolled (7schcode). The de-
scriptive statistics in Table 2.1 show that there are 8,335 records in the data set. Each record
represents a single student. Figure 2.4 displays a partial view of the data structure.

TABLE 2.1 Descriptive Statistics

N Minimum  Maximum Mean Std. Deviation
id 8,335 1.000 8,670.000 4,308.352 2,510.578
nschcode 8,335 1.000 525.000 261.976 152.817
test] 8,335 24.350 69.250 47.644 6.325
test2 8,335 27.480 74.780 52.379 7.781
test3 8,335 26.960 79.720 57.109 9.450
effective 8,335 0.000 1.000 0.562 0.496
courses 8,335 0.000 4.000 0.748 0.790
female 8,335 0.000 1.000 0.505 0.500
ses 8,335 -2.410 1.870 0.034 0.784

Valid N (Listwise) 8,335
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@mmulmmmj-msmmbmm [F=SIE )
Ele Edt View Data Iranst ng Graphs Utites Addons Window Hep
ﬁl% o E&ﬁ &Y Boas
Vaiale 9 of 9 Variables
| id | nschcode | test! | test? | test3 |effective| courses | female | ses |
1 1 1 4966 5009 5472 .00 .00 1 59|~
2 2 1 4792 5826 6433 .00 .00 1 30
3 3 1 4912 5063 5574 .00 .00 1 -54
4 4 1 3877 5093 4612 .00 .00 0 -8
5 5 1 4754 5153 6090 100 1.00 0 .00
6 6 1 4174 4882 5455  1.00 2.00 0 -1
7 7 1 3283 4243 4873 .00 .00 0 -33
8 8 1 5591 5636 6091 .00 .00 1 -89
9 9 1 5293 6375 6837 .00 .00 0 21
10 10 1 3947 4230 4415 .00 .00 1 -
1 11 1 4269 5243 5636 .00 .00 0 -17
12 12 1 4864 5898 6217 .00 .00 1 107
13 13 2 4754 5153 59.26 1.00 1.00 0 -10
14 14 2 4683 5370 5209 .00 .00 0 128
15 15 2 4589 5295 5616 .00 .00 0 1.06
16 16 2 4754 5153 5806  1.00 1.00 0 .80
17 17 2 3411 5172 4365 .00 .00 0 73
18 18 2 4754 5153 6087  1.00 1.00 0 .13
19 19 2 4004 3503 3499 .00 .00 0 .68
20 20 2 3694 4372 4866 .00 .00 0 9215
4] i | [x]
Data View = Variable View
| Bl SPSS Statistics Processor is ready | | I

FIGURE 2.4 Horizontal data matrix.

Recode: Creating a New Variable Through Recoding

We begin by demonstrating recoding old values to new values. For the first example, we recode
the variable zime, which is measured on three linear occasions (0,1,2), to quadtime, which is a
“squared” quadratic sequence (0,1,4), to capture any changes (acceleration or deceleration) in the
rate of change that might occur over the three measurement occasions.

Recoding Old Values to New Values

This example uses a trun-
cated version of a data set
from Chapter 5 (ch5growth-
data-vertical.sav). (Refer to
Chapter 5 for further discus-
sion and examples on coding
time-related variables.)
Launch the IBM SPSS
application program, and se-
lect the data file ch2growth-
data-verticalAbbr.sav.

'@_j ch2growthdata-verticalAbbr.sav [DataSet1] - IBM SPSS Statistics Data Editor

Ele Edt View Data

Transform Analyze DirectMarketing Graphs Utiies Add-ons Window Help

= compute Variable...

=1 IEX
At

| [ count Values within Cases..,

Shift Values...

H 5 B4

|Visible: 7 of 7 Variables.

id

@~ bW M-

1]

[E Recode into Same Variables. . | test | effecti
Recode ito Diferent Variables. [ : An =
e 1 50.09 F
b2 Visual Binning... 2 54.72
B optimal Binning... 0 47.92

1 58.26

Prepare Data for Modeling »

2 64.33
g{] Rank Cases... 0 49.12
fiil Dote and Time Wizerd... 1 50.63 ~
[ creste Tims Series...

| Dsta View | varabie v

|Reou¢.e thtI‘fereanadl

Bf] Replace Missing Yelues...
0 Random Number Generators...

B run pendn

g Transforms
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1. Go to the toolbar and select TRANSFORM, RECODE INTO DIFFERENT VARIABLES.

'This command will open the Recode into Different Variables dialog box.

2a. Recode into Dif-
ferent Variables
enables creating a
new variable using
a variable from the
current data set.
Click to select time
from the left col-
umn, and then click
the right-arrow
button to move the
variable into the
Input Variable —
Output Variable box.
b. Now enter the new
variable name by

2 Recode into Different Variables

e8]

&
dﬂ nschcode

Rid
test

f effective

& ses

Input Variable -> Output Variable:
time —> quadtime

4 hot

]
I
]
[ -
]
L
I

%gu and New Vales... _"

(]

case ion)

Qutput Variable

Gua”Mk})

[}Cnam

Loc Jl

Cancel j|

Help _J

|

typing quadtime into the Output Variable Name box.
c. Then click the CHANGE button, which will add guadtime and complete the RECODE com-
mand for #ime — quadtime.
d. Click the OLD AND NEW VALUES button, which will then display the Recode into Different
Variables: Old and New Values screen.

3. Within the Recode
into Different
Variables: Old and
New Values, we
will begin chang-
ing the time values
(0,1,2) to reflect
quadtime (0,1,4).
a. Begin by enter-

ing the first
value for time
(0) in the Value
(old) box.

b. Next, enter the
new value (0)
for quadtime in
the Value (new)
box.

c. Click the but-

@ Recode into Different Variables: Old and New Values

=)

() All gther values

["] Output variables are strings

IECont'nue |[ cancet |[ Hep |

-0ld Value ~New Value
(3) Value: (&) vape: |0 <(b) |
o v
b<{a) () System-missing
O system-missing (O Cogy oid value(s)
() System- or yser-missing '
- Oid —> New:
() Range: >0 -
I —— ‘lx
iFroval [ add [ﬁ s @
[ 2 >4
() Range, LOWEST through value:
() Range, value through HIGHEST:

ton to place the first command 0 — 0 into the O/d — New box.
d. Repeat steps 3a to 3c to complete the remaining coding changes for guadtime values:

1—>1
254
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Click the CONTINUE button to return to the Recode into Different Variables main dialog box.

4. Click the OK but- =
{2 Recode into Different Variables [
ton to generate the
recoded variable & r::r:-eric !u:;yle -> Output Variable: Output Variable—
quadtime and corre- 4 % e Home
. . nschcode T |
sponding time values & R L J
(0,1,4). & test s 1
7 & ettective — ’
l ses | "’ hange |
| o and New Vaes... |
Lo oo sscncmtr |
| o« %j[ paste || Reset || cancel || Hep
5. The new variable guad— r@ *ch2growthd icalAbbr.sav [DataSet1] - IBM SPSS Statistics Data Editor
”:‘3 Wlt}}ultbs r‘;md‘;d. Fie Edt Vew Data Transform Analyze DrectMarketng Graphs Utites Addons Window Hebp
values will be found in m— ; el
the last column of the H % W e~ E & % H
data window. | | |Visie: 8 of 8 Variabies
: id |nschcode| Rid | time ! test |effective| ses | quadtime |
(The two-decimal placement | 1 11 01 4966 0 59 00 %
for quadtime may be changed ‘ 2 1 1 1 1} 50.09 0 59 1.00
in the Variable View window.) 3 1 1 1 2] 54m2 0 59 4.00
4 2 1 2 0r 4792 0 30 .00
Note: The asterisk displayed 5 2 1 2 11 5826 0 30 1.00
next to the filename at the 6 = 1 - 2; 643 0 30 4.00
top of the display window is a U S L} S ol ie DR 0
. .. 8 3 1 3} 11 5063 0 -54 1.00
reminder that the original file i
has b h dIf ish 9 3 1 3 21 5574 0 -54 4.00
as been changed. If you wis s % - - of S ol %0
to save the modifications made 1 4 1 4 1 5093 0 -8 1000
here, go to the toolbar and d =7 I i

select FILE, SAVE. L =
[

Recoding Old Values to New Values Using “Range”

B SPSS Statistics Processorsready | | [ [ |

Our second task will be to create a new categorical SES variable by recoding ses into a variable
called ses4cat (suggesting that we are going to recode this into a four-category variable). We will
use the Range feature to recode three somewhat arbitrary cut points and create four categories

for our recoded variable: -0.5180, 0.0250, and 0.6130 (these actually represent the 25th, 50th,
and 75th percentiles, respectively).

vww .allitebooks.cond
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Launch the IBM SPSS application (2 ch2multivarMLL.sav [DataSet2] - IBM SPSS Statistics Data Editor e ) e
program and select the data file ch2multi- Fle Edt View Data | Iransform Analyze DirectMarketing Graphs Utiles Add-gns Window Help
varMI.1.sav = ), | & compute Varisbl. . Rl | B
:_(3_ E L-:i_ E Count Values within Cases... L H _3 E_
; Shift Values... | Visible: 9 of 9 Variables
1. Go to the toolbar and select ] s Bl e |
— It & Recode into Same Variabies... cie —coursad) femae |
TRANSFORM, RECODE INTO 1 ! | il s s et v IS 00 00 |
DIFFERENT VARIABLES. e 2| B avtomatic Recode... 0 00
3 i 00 00
. . . 4 4 00 00
'This command will open the Recode into : 5 | e Ot Y
. . . _— i Modeling » : :
Different Variables dialog box. 6 DY o 100 200
7 7 | Ronk Coses... 00 00
8 N 3. f pete and Time Wizard... 00 .00 Zi
Cl [ creste Tine Series... 3
_Data View | Variabie ";Fj Replace Missing Values. ..
[Recade into Different Var| @ Random Number Generators... eessor is ready|
-] @ Furi Pending Transform
2a. Recode into Different 2 Recode into Ditferent Variables 25
Variables enables creating ,
. . Input Variable -> Output Variable: - Output Variable .
a new variable using a S s65 > sesdcal iu ® _
LS | aame. = .
variable from the current ‘; :‘:::W"’ ! SR [ sesdcat t@
data set. Click to select & tese2 ! e éf--"’" |
T . | Il |
ses from the left column, # s (W]} b -
i . &b effective | “~.. Change
and then click the right- & courses .Eﬁr-——
arrow button to move the : : (a) '
variable into the Input .

Variable — Output Vari-
able box.
. Now enter the new

variable name by typing

case )

| [ . |

OK

| ote J[_mme ] _coree ] [_vew ]

ses4cat into the Qutput
Variable Name box.

mand for ses — ses4cat.

. Then click the CHANGE button, which will add ses#cas and complete the RECODE com-

d. Click the OLD AND NEW VALUES button, which will then display the Recode into Different

Variables: Old and New Values screen.
3a. The Recode into Different {3 Recode into Different Variables: Old and New Values i)

Variables: Old and New Values v S =
screen displays multiple op- Oyt Ovape [1_& - m—
tions. To define the first cut i O System-missing
point (-.5180), click to select O system-mssing O Cogy ol value(s)
the option Range, LOWEST STSION. O Sher: D) o e _
through value. 3 . Bagox _/

b. Now enter the value: -.5180. a) @-5&00 N

c. Next, enter “1” as the New ! :

() Range, LOWEST through value:

Value. [-s10 <{b}]

d. Then click the ADD button, O e e e
which will place the first range ‘ (] Output varisples are sirings
command Lowest thru -.5180 O At gther vaves :

— 1 into the O/d — New box.

|| concet |
— 4

Continue

Heb_J




e. Enter the second range of
values by first clicking the
Range option.

f. Now enter the low value of
-.5181 and then the upper
value limit of .0250.

g. Next, enter “2”as the New
Value.

h. Then click the ADD
button, which will place
the first range command
-.5181 thru .0250 — 2 into
the O/d — New box.

i. The third value also uses a
range of values, but since
the Range option was se-
lected previously, only the
values need to be entered.
First, enter .0251 and then
.6130.

j- Next, enter “3” as the New
Value.

k. Then click the ADD but-
ton, which will place the
range command .0251 thru
.6130 — 3 in the Old —
New box.

1. To define the final cut-
point value, click to select

the Range, value through
HIGHEST option.

m. Now enter the value: .6131.

. Next, enter “4” as the New
Value.

o. Then click the ADD but-

ton, which will place the

range command .6131 thru

Highest — 4 into the Old —

New box.

Click the CONTINUE button to
return to the Recode into Different
Variables main dialog box.

=
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{3 Recode into Different Variables: Old and New Values &
i-{)ld Value rNew Value
O youe: © vape: [2 <(Q) |
| | _) System-missing
() System-missing () Copy oid value(s)
(e System- or yser-missing ;
g " Ogstew s
) Rapge: |Lowest thru - 5180 —-> 1
| [-5181 <= —— [-518Tthni"0250=> 2
| fwough 7 @‘!ﬁﬁu. >
[o250 &~ | N
| () Range, LOWEST through value: |
(O Range, value through HIGHEST: -
| ["] Output variables are strings
| Continue Cancel || Hep
{3 Recode into Different Variables: Old and New Values ﬁ
r Old Value rHew Value
| O Vale: @ vape: | 3 1—(\;! |
| ) System-mssing
O System-missing ) Cogy oid vake(s)
[=
() System- or yser-missing
_ O—>Mew:
| © Renow: | Lowest thru - 5180 —> 1
| [.0251 —— L8181 they 0260 > 2
| through A ®T%_ﬁf_£}: 0251 thru 6130 -> 3
| [6130 '
| [ &~ ] e
(_) Range, LOWEST through value: OV |
[T .
! (O Range, value through HIGHEST:
: ["] Output variables are strings
!(;;‘Al!ﬂl«\rm r R T I
| Continue Cancel || tep
{3 Recode into Different Variables: Old and New Values =
rOld Value rHew Value
) Value: () Vape: | 4 <—(r?) |
| O System-missing
| O System-missing ) Cogy old value(s)
| C) System- or yser-missing '
[~ : Ofd—>New:
[ b Renge: | Lowest thru -.5180 —> 1
———— |- 5181 thru .0250 -> 2
[}; 0251 thry 6130 > 3
[ t1]:6131 thru Highest > 4]
7= i .
( l' () Range, LOWEST through value: T
| (3) Range, value through HIGHEST:
| [6131 < | [ Output variables are strings
| O Angther vaies [[] Convert numeric strngs to r
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4. Click the OK button 2 Recode into Different Variables [
to generate the recoded
N ariable -> Output Variable:
variable ses4cat and cor- o g iu - -Output Variable——
responding values. & nscheode [J ]
5. The new variable ses4cat g:::; Label
with its recoded cat- & st | ]
egorical scores will be ﬁ'"‘““ B’ [ change ]
. courses
found in the last column & femais
of the data window. & sesdcat
You may also verify that the [ QuanaNew vakes.. |
raw ses scores conform to the —— e g
categories defined through [“m’"" SR ) |
the RECODE process. [ ox %” paste || meset || cancel |[ ew |
Note: The asterisk located (€8 “chamutivarMLL.sav [DataSet1] - BM SPSS Statistics Data Editor E 9 [
next to the data file name at Fle Edt Vew Data Transform Analyze DrectMarketng Graphs Ufitles Add-gns Window Help |
the top of the screen indi- : : o [
: SHO M~ Bl b 58 @O S 4
cates changes were made to l e
the data. At the COIlC.hlSiOfl | id | nschcode | test1 | test? | test3 | eflective| courses | female | ses } sesdcat |
of each of the following nine 1 1 1 4966 5009 5472 00 .00 1 59 3004~ |
tutorials, we will save the ’ g YISIL 2 G T S L 0 3o
... 3 3 1 4912 5063 6574 00 .00 1 540 1.004
changes by overwriting the 4 4 1 377 5093 4612 00 00 0 -85 100}
ch2multivarML1.sav data 5 g 1 4754 5153 6090 100 100 0 00i 200
. 7 7 1 3283 4243 4873 00 .00 o -3 2008
renaming the saved file to - < St —— = ol
preserve the original data 9 9 1 5293 6375 6837 00 .00 o 21f 300
10 10 1 3947 4230 4415 00 00 1 -3  200)
e). To save these changes, i
11 1 1 4269 5243 5636 00 .00 0 -17  200f%
go to the toolbar, select o = . R
FILE, SAVE.
Compute: Creating a New (& chamultivarML1.sav [DataSet1] - 18M SPSS Statistics Data Editor
V?;IdHe ;r)hﬁi‘ |Sv0 EUE?"O" Fle Edt View Data | Transform Analyze Direct Marketing Graphs Utities Add-ons Window Help
ot Some Other Variable — = T .
SEO (Do b 64 B
= 144 Court Values within Cases... o
Suppose that we wanted to [ Shift Velues... |Visible: 10 of 10 Variables
create a Var}able t}l:at was a id | e bctive| courses | female | S
summary of the three exist- J ! | @ gecode nto itterent Veriabies... o 1 ' =
ing test scores. Using the 2 2 | B autometic Recode... 00 00 1
TRANSFORM, COM- 3 3 | B8 visuel ginning... 00 .00 1
PUTE VARIABLE menu : < | ontmaraming.. A2
command, we call up the = o/ MESREs Cebs r¥edeis ) R -
COMPUTE VARIABLE 7 7 I}E Rank Cases... 00 00 0
dialog box. 8 8 | fl pate and Time Wizard... .00 .00 1|+
[ creste Time Serees.. I
 Data View | Varisble \f %] Replace Missing Values..
Compute Variable... | @ Random Number Generstors... pocessorisready| | | | |
w Run Pending Transforms Cirl-G
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Continue using the ch2multivarML1.sav data file.

1. Go to the toolbar
and select TRANS-
FORM, COMPUTE
VARIABLE.

'This command will open the
Compute Variable dialog box.

a. Enter festmean as the
Target Variable.

b. Scroll down the
Function group list to
locate, and then click
to select the Statistical
group, which displays
assorted statistical
Functions and Special
Variables.

c. Click to select the
Mean function, and

@ Compute Variable

Target Variable;
testmean <4

[ Type s Label.

& effectve
& courses
&. female
& ses

% sesdcal

Numeric Expression:

= MEAN(?,7) 4

I MEAN(test, test2 test3)
e e

evaluated,

MEAN(numexpr,numexpr],..]). Numeric. Returns the arthmetic mea
wof its arguments that have vald, nonmssing values. This function
requires two or more arguments, which must be numeric. You can
ispecify a minimum number of vald arguments for this function to be

if... |(eptional case selection condition)

Lo (opeei J{ casent | cosont [ b

Function group:
Iiscetaneous
Missing Values

POF & Noncentral POF
Random Numbers
Search

Significance "

Eunctions and Special Variables:
Ctvar

Variance

then click the up-arrow button, which will place it in the Numeric Expression box formatted as:
MEAN(?,?). The question marks indicate the placement for a variable.

d. The mean will be computed from three variables: zesz1, test2, and fest3. To build the correspond-
ing numeric expression, click zesz1, and then click the right-arrow button to place the variable
in the box. Note that a comma must appear following the variable: MEAN(test1,?).

e. Continue to build the numeric expression by next clicking zesz2 and then the right-arrow but-
ton to move the variable into the box: MEAN(test1,test2,?).

t. Complete the numeric expression by clicking esz3 and then the right-arrow button to move the
variable into the box: MEAN(test1,test2, test3).

Click the OK button to per-

form the function.

2. Scroll across the col-
umns, and the new
variable zestmean with
its computed mean from
the three test scores is
found in the last column
of the data window.

You may also verify that the
raw festmean values represent
the average of the three test
scores for each individual in
the data set.

{2 *ch2multivarML1.sav [DataSet1] - IBM SPSS Statistics Data Editor [E=SEEE=)
Fde Edt View Data Transform Analyze DirectMarketing Graphs Utiities Add-ons Window Help
FHe @ «~ B H ik
I | |Visibe: 11 of 11 Variables
| test2 [ test3 leﬁemlcaurses] female [ ses [ sesdcat |r:estmean
1 5 5009 5472 .00 .00 1 .59 3,005 51491
2 2 5826 6433 .00 .00 1 .30 3.00; 56.84
3 2 5063 5574 .00 .00 1 -54 1.00! 51.83
4 7 5093 46.12 .00 .00 0 -85 1.00! 4527
5 4 5153 60.90 1.00 1.00 0 .00 Z.WE 53.32
6 4 4882 5455 1.00 2.00 0 -1 2.00 48.37
7 3 4243 4873 .00 .00 0 -33 2.00i 41.33
8 1 5636 60.91 .00 .00 1 -89 1.0-05 57.73
9 3 6375 68.37 00 .00 0 21 3.005 61.68 ‘
10 T 4230 4415 .00 .00 1 -34 2.00} 41.97
11 3 5243 56.36 .00 .00 0 -17 2.00!_ 50493+
lr [ fe——— 1 i
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Although we have created two new variables using the RECODE and COMPUTE com-
mands, our data file is still strictly an individual-level (Level 1) file. More specifically, aside from
the school ID, nschcode, we do not have any variables that are school specific and therefore do not
have anything to analyze at Level 2. Typically, data from other sources would be brought in and
merged with our Level 1 file. If we had information about the schools these students attend (e.g.,
public or private control, etc.), we could very easily merge those data with the individual-level file
with which we have been working.

Match Files: Combining Data From Separate IBM SPSS Files
The MATCH FILES command allows us to combine data from different sources. To demon-

strate one use of this command, we will use the existing Level 1 file with which we have been
working. MATCH FILES can combine data in two general ways: by adding variables to the
existing data set or by adding cases to the data set. We will limit our interest here to the addition
of variables that are found in a separate data set. For our example, we are going to show how to
merge a file containing school-level information with our existing file containing student-level
data. We want to add information about the frequency of Advanced Placement testing at each
school. The file containing this information (apexams.sav) has two variables in it. The first is a
school identifier that is the same as the school identifier used in our Level 1 data file (nschcode).
'The second variable is named apexams. It is a ratio of the number of Advanced Placement exams
taken by students at the school to the total number of students in the 12th grade at the school.
While our student-level (Level 1) file contains 8,335 observations (i.e., the number of students),
as shown in Table 2.2, the school-level (Level 2) file shown in Table 2.3 contains 525 observa-
tions representing the schools that the 8,335 students attend. Consider the contents of each
file given subsequently. The Level 1 file will be the target for the data contained in the Level 2
(apexams.sav) file; that is, we are going to merge the data from the Level 2 file onto the records
in the Level 1 file.

TABLE 2.2 Descriptive Statistics

N Minimum  Maximum Mean Std. Deviation
id 8,335 1.000 8,670.000 4,308.352 2,510.578
nschcode 8,335 1.000 525.000 261.976 152.817
test] 8,335 24.350 69.250 47 .644 6.325
test2 8,335 27.480 74.780 52.379 7.781
test3 8,335 26.960 79.720 57.109 9.450
effective 8,335 0.000 1.000 0.562 0.496
courses 8,335 0.000 4.000 0.748 0.790
female 8,335 0.000 1.000 0.505 0.500
ses 8,335 -2.410 1.870 0.034 0.784

Valid N (Listwise) 8,335

TABLE 2.3 Descriptive Statistics

N Minimum  Maximum Mean Std. Deviation
nschcode 525 1.000 525.000 263.000 151.699
apexams 525 0.000 0.800 0.164 0.133

Valid N (Listwise) 525
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Because this is not a one-to-one match (i.e., there are not the same number of records in each
file), we will have to identify a “key” to be used to match the data from the schools to the data
from the students. Notice that matching student data to the schools would require aggregating
student-level variables because there are fewer schools than students in this case. We will use the
single common identifier variable, nschcode, which represents the schools in both files. Both data
sets will need to be sorted on the key variable. This can be accomplished by opening each data set

and choosing the DATA, SORT CASES menu and dialog box. For each file, the sort should be
on the variable 7schcode, and each file needs to be saved after sorting.

'This example will combine data
from two files: ch2multivarML1.
sav (primary file) and apexams.sav
(secondary file). When combining
data from separate files, we recom-
mend that the cases are sorted
before you begin this procedure

to prevent interruption of the
workflow.

If you are continuing from
the prior section concerning
the COMPUTE function, the
ch2multivarML1.sav file is already
open. If not, locate and open the

data file.

1. Go to the toolbar and select
DATA, SORT CASES.

'This command will open the Sorz

Cases dialog box.

2a. Within the Sor# Cases dialog box,
select nschcode from the left column,
and then click the right-arrow button
to transfer the variable into the Sor#

by box.

b. The default Sorz Order setting is As-
cending (low to high), which we will

retain.

c. Later versions of IBM SPSS (version
20.0 forward) provide an option for & ses
saving the sorted data directly to a
file. We will forgo using this option

for the current example.

Click the OK button to begin sorting the
cases. The next step is to sort the cases for the

secondary file, apexams.sav.

i-; ch2multivarML1.sav [DataSet1] - IBM SPSS Statistics Data Editor

S

F= B (Ll03 pefine Yariabie Properties...
=1 TP

?A Set Level for U
| i Copy Data Properties...

Fie Edit gnewiﬂm Transform Analyze Direct Marketing Graphs LUtities Add-gns Window Help

B H S @

Visible: 11 of 11 Variables

i | F’r?' e fom Al _!_aﬁecti_\fg_:_ cuurses_:_ female |
1 | | @ oefine Dates... 72 .00 .00 1|4
2 | |[H oefine utipie Response Sets.., B3 00 00 14
1) e , 7 00 00 1
4 { |5 identity Dupicate Cases... 2 o » g
8 || F2 wentify Unusual Cases... po. 1.00 1.00 0
G| 55 1.00 2.00 0
7| |Csatosses. [3 73 .00 00 0
g | |G sotVerkbes.. b1 .00 00 1
9 | | Trenspose.. 57 .00 00 0
10 | Merge e b 00 00 1
1| | gestructre.. b6 .00 00 e
4| aggregate... ol
1 Orthogonal D »
Data View | Val )
Sort Cases... | & Copy Dataset Istics Processor is ready
(150 Caves.- S |17
5 Spit Fe...
[H select Cases...
é?l Weight Cases. ..
F hY
2 Sort Cases [
Sort by:
ra ) & nschcode (A)

& testt
f test2
& testa
& effective
&b courses
& female

~Sort Order
P(5) Ascending

() Descending

Save Sorted Data

> "] Save fie with sorted data
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3. Begin by opening the secondary file
(apexams.sav) while keeping the
ch2multivarML1.sav file open.

Go to the toolbar and select FILE, OPEN,
DATA.

'This command will then display the Open

Data screen.

4a. Locate and click to select the data
file (apexams.sav).

b. Then click the OPEN button.

5. With the data file apexams.sav opened,
go to the toolbar and select DATA,
SORT CASES.

'This command will open the Sorz Cases
dialog box.

3 *ch2multivarMLLsav [DataSet1] - IBM SPSS Statistcs Data Editor [Pl
(Ele| Edt Vew Dota Transform Anslyze Deectlarketng Graphs Utites Addgns Window Hel
- "TY L L
L SR I
Open Database |Visible: 11 of 11 Variables
() Read Tesd Data... 3 | effactive| | female
8 e 72 00 00 1 i
Il gave . 33 00 .00 1
ik 5:.:3 is_::a 00 _:u 1
| et cn : -53 s:'s: $ 'o: :
L S ::z.a; 5455 : 00 ;qu 0
"8 Mark File Read Only : : ;
= 4243 4873 00 .00 0
N Renaie Dataset... 5636 6091 .00 00 1
LA Des bhe ohretion B oea7s 683 00 00 0
3 cache pata.. 4230 415 00 00 1
@ Siop Processor Ciri-Periad 5243  56.36 00 00 =
S Swich Server... D
‘ Repostory »
@“m - _.l.i.n_g_p.s.s.. ....."_.ﬁ.y\i .l......l.._ .i.._..i.. — H
S print,. cuip -
Recently Uised Data »
Recently Used Files »
Ext
{3 Open Data i L [
Fles of iype: [spsS Statstics (sav) ~] [ pame ]
[[] Minimize string widths based on observed vales
[ Betrieve Fie From Repostory_. I |
#3) apexams.sav [DataSet2] - IBM SPSS Statistics Data Editor o] ) 3
Fde Edt View |Dala Transtorm Ansyze Direct Graphs Utities Add-gns Window Hep
1 2 set Level for
[ [ Copy Dala Propertiss... |Visible: 2 of 2 Variabies
it W hiow Custom Atirkste | var | var I
1 fid Dafine Dates... =
2 [ Define Mutiple Response Sets... —
: Valdation »
5 BB ity 0
- 3 identify Unusual Cases...
8 [ sort Variables... ‘
9 ﬂ Transpose...
10 Merge Files »
| 11 = Restructure... =
| q 5l aogregate... o] | |
; Design »
|| DataView | Va E
SortCases.. | i CopyDataset Processorsready| | | | | |
. — =
1581 spit Ee...
[ Select Cases.
& weight Cases...
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6a. Within the Sorz Cases dialog box, select (& sort Cases -

nscheode from the left column, and then
click the right-arrow button to transfer the

variable into the Sorz &y box.

b. The default setting for sorting is the

Ascending order, which we will retain. - Sort Order
c. Later versions of IBM SPSS (version 20.0 @@ Ascending
forward) provide an option for saving the () pescending
sorted data directly to a file. We will forgo
using this option for the current example. || [ Save Sorted Data-
@D Saye fie with sorted data
Click the OK button to begin sorting the cases. [ Fe.. |

7. Once the files are sorted, then
merging may begin.

Return to the primary data file
(ch2multivarML1.sav). Then go to the
toolbar and select DATA, MERGE
FILES, ADD VARIABLES.

'This command will open the Add
Variables dialog box.

8. Since the data file apexams.sav
is an opened file, the option An
open dataset is preselected and
displays the file name in the
box below. If apexams.sav had
not been opened, the option An
external SPSS Statistics data file
would have been preselected
instead, requiring you to locate
and identify the file using the
BROWSE button.

Sort by:

il nschcode ()

[ ok h” paste || Reset || cancel || e
(6 “ch2multivarML1.sav [DataSet1] - IBM SPSS Statistics Data Editor B
Fie Edt gew[m Transform Analyze DrectMarkstng Graphs Utites Add-gns Window Help
5 L_j (32 Define Varisbie Properties... @ E 5 B A
. A L--t:_-“&=| i H ] s
| i Copy Dats Properties... Visible: 11 of 11 Variables
R new Custom Attriae } | effective| courses | female |
1 | | i@ Define Dates... 72 .00 .00 1|4
2 | |[EE pefine Mutiple Response Sets... 83 .00 00 15
= 5
' 1 ; .
5 : £ et 80 1.00 1.00 0
E . . .
6 - E5 1.0 2.00 0
7 [ Sort Cases... 3 .00 00 0
g | |EH sodVeriotles.. 81 .00 00 1
9 ' & Transpose... 87 nn nn 0
10 | | MergeFies » B3 AddCases 1
11| | Eestuctue.. 1 Add veriables... [ 0=
<] = 2ogregate... Tl |
Orthogaonal Design »
Data View | Val
[Add Variabies... | T Copy Dataset kstes Frocessor s ready =
£ SoRtEe..
BS select Cases.
b Weight Cases...
3 Add Variables to chZmultivarMLLsav[DataSet1] [=53]

Select a dataset from the kst of open datasets or from a fie to merge with the active dataset
(3) An gpen dataset

apexams saviDataSet2] |

() An external SPSS Statistics data fie

Hon—ﬁpssmmﬁesws!bewmm&&mwhreﬁwymumﬁs.m&amgei

|[:('.mmue |I cancet ||  Hep

Now click to select apexams.sav(DataSer2), and then click the CONTINUE button to access the 4dd

Variables from DataSet2 screen.
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&)

93.. Withln the Add eriablesfrom @ Add Variables from DataSet2 ﬂ
DataSer2 display screen, click to
Excluded Variables: Active Dataset:
select nschcode(+) trom the Ex- R frete Acue Defeee
. . . = (") -
cluded Variables box. This action leachendey
will activate the Match cases on testi()
. . . test2(*)
key variables in sorted files option st
below, enabling the box to be effective(’)
checked. SOUNCHE)
female(*)
b. Click to select the Non-active . ses() |
dataset is keyed table option. Malch CRsee 09 key Sanshies i soiied e Key Variables:
() Both fies provide cases @El..#nscncodetv)
Note: A “keyed” table or table lookup ) Non-active dataset is keyed table
file is a file that contains data for each ) Active dataset s keyed table
case that can be applied to numerous [ ] bticaie case sots a8 varible: | Sourcen ]
cases in another data file. e satsen
(+)=DataSet2
c. Now click the right-arrow but-
ton to move nschcode(+) into the Lox [k” goste || meset || cancel || nes
Key Variables box. :
Click the OK button to process this function.
10. A warning to presort the £3) [BM SPSS Statistics 20 -

data appears but may be dis-
regarded since the data from

both files had been sorted

using the nschcode variable at

the outset.

Click the OK button.

11. Scroll across the col-
umns, and the merged
variable apexams taken
from the apexams.sav
data file is found in
the last column of the
ch2multivarMI1.sav data
window.

Warning: Keyed match will fail if data are not sorted in ascending order of Key Variables.
.-fm

R *ch2multivarML1.sav [DataSet1] - IBM SPSS Statistics Data Editor

Fie Edit View Data Transform Analyze Direct Marketing Graphs Utiies Add-ons Window Heip

ER 9

E‘i@ -~ B2 W

[visivle: 12 o 12 Variables

test3 |eiacl.'wa|coutses[ female 1 ses | sesdcatltestman apexams
1 5472 .00 .00 1| .59 3.00 5149 -08 211

2 64.33 .00 00 1) 30 3.00 56.84 .08 &
3 55.74 .00 {00 1 -54 1.00 51.83 .08
4 46.12 .00 .00 0 -85 1.00 4527 .08
5 60.90 100  1.00 0 .00 2.00 53.32 .08
6 5455 100 200 0 -1 2.00 48.37 .08
7 48.73 .00 .00 0| =33 2.00 4133 .08
8 60.91 .00 .00 1 -89 1.00 57.73 .08
9 68.37 00 .00 0 21 3.00 61.68 .08
44.15 .00 .00 1 -34 2.00 41.97 .08

56.36 .00 .00 o 17 2.00 50.49 0815
Ll | | I»

I
i

B SPSS Statstis Processorisresdy | | [ [ |
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(R *ch2multivarMLL.sav [DataSet1] - IBM SPSS Statistics Data Editor 1 1
fie Edt View Data Transform Anshze DrectMarketng Graphs Utilies Addons Wndow  Heb
IH@ - e~ B i H5E Ba= 1900 4
|Visible: 12 of 12 Variables
id | nschcode | testi ] tsslzl test3 |m|m|hmala[ seslsostlcaltwtmm apexams
54 54 41 4816 5526 58.39 .00 .00 1 87 4.00 53.94 A8
l 55 55 4} 6312 6770 7436 100 200 1 72 400 6839} el
| 56 56} 4] 4823 5012 4841 00 00 1 56 300 4892 RE B
' 57 57 4] 5585 5296 5241 00 .00 1 45 300 53741 18
58 581 41 4945 5417 5231 00 00 1 112 400 5198 18
59 59 4) 3952 4213 4977 100 200 1 146 400 4381 18
60 60} 4; 4824 5677 59.24 .00 .00 1 T4 4.00 54.75 18
61 61 51 4763 5170 56.88 1.00 1.00 1 -150 1.00 52.07 41
62 62 51 4250 4941 51.18 .00 .00 0 58 3.00 47.70 4
63 63 5\ 4763 5170 6995 100 1.00 1= 32 200 5643 41
64 64 5/ 6291 6195 5946 100 200 1 -7 200 6144 41
65 65 51 5977 7032 6256 100 200 112 200 6422 reE
66 66 51 4792 4925 6230 00 .00 0 -02 200 53161 414 |l
| 67 67 5 5704 599 6029 1.00 3.00 0 -31 2.00 59.08} A1
< = I [»
B spssmamwbwl i

FIGURE 2.5 Data matrix after performing the MATCH FILES function.

Once the merge is complete, the new variable, apexams, will appear in the active data set
window as shown in Figure 2.5. Notice that while the individual-level variables vary across all
cases within the window, the new school-level variable, apexams is constant within each school
(compare nscheode 4 with nscheode 5 in the subsequent screen shot).

Descriptive statistics on the data set, summarized in Table 2.4, will now show a value for
apexams for each of the 8,335 Level 1 observations. Notice that the descriptive statistics provide
no hint of the lack of variance within each nschcode for the apexams variable. It now looks like an
individual-level variable.

TABLE 2.4 Descriptive Statistics

N  Minimum Maximum Mean  Std. Deviation

id 8,335 1.000 8,670.000 4,308.352 2,510.578
nschcode 8,335 1.000 525.000 261.976 152.817
test1 8,335 24.350 69.250 47 .644 6.325
test2 8,335 27.480 74.780 52.379 7.781
test3 8,335 26.960 79.720 57.109 9.450
effective 8,335 0.000 1.000 0.562 0.496
courses 8,335 0.000 4.000 0.748 0.790
female 8,335 0.000 1.000 0.505 0.500
ses 8,335 -2.410 1.870 0.034 0.784
apexams 8,335 0.000 0.800 0.166 0.130

Valid N (Listwise) 8,335
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Aggregate: Collapsing Data Within Level 2 Units

Many times the analyst will be interested in creating group-level measures by aggregating the
characteristics of individuals within each group. One candidate variable might be student socio-
economic status (ses). Another might be gender (female) (aggregating this to the mean will yield
the proportion of students at Level 1 who are female). In this section, we will use the AGGRE-
GATE command to create both of these variables.

'The objective in this in-

stance is to take the within- 3 ch2multivarMLLsav [DataSet1] - IBM SPSS Statistics Data Editor e ]
SChOOl means ofthe variables Fle Edt Vew | Data Transform Analyze DirectMarketing Graphs Utilies Add-ons Window Help
female and ses. This will yield 3 Eﬁ;L_: 2 :m !mf;m = _ &E_j E_ %:
the proportion of females in |\ o Do preparton. Visble: 12 of 12 Varisbles
the sample for each school | e custom e | effective| courses | fomale | |
and the average socioeco- L 3 Define Dates... 2 o0 .00 ! ﬂ'
nomic status of students in — —g— —| | Ot Mo tesnes Sus.. : i gg gg : '
the sample for each school. — @ ::::':” e % i 0 !
= 2] Dupiicate
5 | |we 0 100 100 o ||
If you are continuing from the prior | [ e 5 100 200 o ||
section concerning the MERGE G 5 Z::C:’;e 3 0 00 0 ||
. . Vi S...
FILES function, the ch2multi- : — ey ; zg gg ; |
varML1.sav file is already open. If 0 . _ Wergories B 1
not, locate and open the data file. 11| [P Bestuchre.. 00 .00 0 [
L [y = —l' ]
1 Orthogonal Design »
1. Go to the toolbar and select Data View | Va —
DATA AGGREGATE Aggregate. .. 'ﬂ- Copy Dataset  Jbics Processor is ready
) . =
E2 o fe..
'This command will open the Ag- B vt Coves
. 5> Weight Cases...
gregate Data dialog box.
2a. Click to select nscheode from the left col- (@ Aggregate Data [
umn of the Aggregate Data dialog box, and o Vs
then click the right-arrow button to move i = ol [ =
the variable into the Break Variable(s) box. —
b. Now click to select fernale and ses from g“"i Aggregated Variables
. i test
the left column, and then click the right- & oftective Summaries of Variable(s):

arrow button to move the variables into
the Summaries of Variable(s) box.

Note: IBM SPSS uses MEAN as the default

function, which will be used for this example.

, testmean
f apexams

female_mean = MEAN(female)
ses_mean = MEAN(ses)

Other functions besides MEAN are also available
to generate a variety of aggregated data.

c. Click the option Add aggregated vari-
ables to active dataset, which will add the
two variables fernale_mean and ses_mean
directly into the active Level 1 data set.

Note: Besides the Add aggregated variables to the
active dataset option, we could also choose two
other options: Create a new dataset containing only
the aggregated variables or Write a new data file

(] Number of cases Name:

Sa‘\-@
(3) Bggregated variables to active dataset

() Create a new dataset containing only the aggregated variables

() Wirite a new data fie containing only the aggregated varisbles

Options for Very Large Datasets

[] Fie is giready sorted on break variable{s)

| oxé'gasm__ Reset || cancet |[ hep
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containing only the aggregated variables. The latter choices would require us to use the MATCH FILES
routine to merge the new aggregated variables back onto the individual-level data set. Choosing to have
the variables written straight to the active data set is much more efficient and reduces the risk of errors.

Click the OK button to run the aggregation and merge the new variables to the student-level data set
(shown in the active data window).

3. Scroll across the col- {8 *ch2multivarMLL.sav [DataSet1] - 1M SPSS Statistics Data Editor |
umns, an(ilthe _HE‘{V Fle EGR View Data Transform Analyze DiectMarkelng Graphs Uties Add-ons Window Help
aggregated variables =
ﬁgn%alf_mean and @ H d% . e E é % n ﬁ = - % 4
ses_mean appear in the [Viswie: 14 of 14 Variables
last two columns of the id | nschcode | _l—l—% ffema!e_mean ses_mears
h2multivarML1.sav 54 54 4 4816 5526 5839 1.00] 821} 2
data window. 55 55 4 6312 6770 7436 1.00; 821} [

56 56 4 4823 5012 4841 1.00} 821
Notice that school 4 (nschcode = 57 &7 4 5585 5296 5241 1.00; 821
4) has an all-female sample 58 58 4 4945 5417 5231) 1.00; 821
(female_mean = 1.00) while 59 59 4 3952 4213 4977 1.00} 821}

60 60 4 4824 5677 5924 1.00, 821!
less than half of the school 5 = = T s = 9
sample was female (fernale_ 62 62 5 4250 4941 5118 -390
mean = 47). The SES average 63 63 5 4763 5170 69.95! an -391f
for school 4 was also higher 64 64 5 6291 6195 5945 4y -39 1
than the average for school 5 65 85 5 5977 7032 6256 A7y -391
(.82 vs. -.39, respectively). £ = g6 b ‘”'Tz 4950016230 ol L 01 " IE

Data View | Variable View .
| BM SPSS Statistics Processor is ready [l

'The RECODE, COMPUTE, MATCH FILES, and AGGREGATE commands provide all
the tools necessary for structuring our IBM SPSS files for a multilevel analysis within IBM SPSS
MIXED. We will expand on some of the commands in subsequent sections to create variables
that can be very useful in multilevel analyses. Before turning our attention to those additional
examples, however, we introduce a different data structure that enables multivariate analyses and
analyses of change over time using the multilevel model through IBM SPSS MIXED.

VARSTOCASES: Vertical Versus Horizontal Data Structures

'The data sets we created in the previous sections are arranged horizontally; that is, each observa-
tion is contained on a single row with variables arrayed across the columns. In the horizontal
data sets, we have the variables arranged in such a way that the lower level units can be seen as
nested within high-level units (e.g., students within schools where student values vary within and
between schools while school-level values vary only between schools).

In multivariate and time-varying models, we reconceptualize the nesting and deal with verti-
cal rather than horizontal data structures. Instead of students being our Level 1 unit of analysis,
we might nest time periods or indicator variables within students who could, in turn, be nested
within schools. In this case, our time periods or indicator variables become Level 1, students be-
come Level 2, and schools become Level 3. In terms of the data structure, what this means is that
each individual (i.e., students, to continue our example) will have multiple records. If there are
three occasions of interest, each student will have three records, one for each occasion. Similarly,
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&2 *ch2multivarML1.sav [DataSet1] - IBM SPSS Statistics Data Editor @E@
Fie Edt View Data Transform Analyze Direct Marketing Graphs uﬂus Add—szns Wndow Help
@HL-J 0 e~ Bhf i
Visible: 14 of 14 Variables
_id [_nschcode_] test1 ] test2 ] _!esl3__| eﬁe;!ive]_ cor_urses___| female [ ses |
1 1 1 4966 5009 54.72 .00 .00 1 59 |53
2 2 1 4792 5826 64.33 .00 .00 1 30! [T
3 3 1 4912 5063 5574 .00 .00 1 -.54
4 4 1 38.77 5093 46.12 .00 .00 0 -85
5 5 1 4754 5153 6090 1.00 1.00 0 00
6 6 1 4174 4882 54.55 1.00 2.00 0 -1
i T 1 3283 4243 4873 00 .00 0 -33
8 8 1 5591 56.36 60.91 00 .00 1 -89
9 9 1 5293 6375 68.37 00 .00 0 21
10 | 10 1 3947 4230 44.15 00 .00 1 -3
11 1 1 4269 5243 56.36 00 .00 0 -7
12 12 1 4864 5898 6217 00 .00 1 -1.07
13 13 2 4754 5153 5926 1.00 1.00 0 -10
14 14 2 46.83 53.70 5209 00 00 0 128
15 15 2 4589 5295 56.16 00 00 0 1.06
16 16 2 4754 5153 58.06 1.00 1.00 0 .80
17 17 2 3411 5172 4365 00 .00 0 73
18 18 2 4754 5153 60.87 1.00 1.00 0 13
19 19 2 4004 3503 3499 .00 .00 0 68
20 20 2 3694 4372 4866 .00 .00 0 92 IS
4] i | Il
DataView | Varisble View |
I = /B SPSS Statistics Processor is ready| | [

LS ¥

FIGURE 2.6 Horizontal data matrix.

if we are interested in defining a latent variable with five indicators, each student would have five
records. So if we have a data set with 1,000 students and we are interested in looking at change,
say in test scores, over three occasions, our data set will have three occasions x 1,000 students =
3,000 records. Using the latent variable example, if we had 1,000 students and five indicators,
we would have 5,000 records in the data set. This is quite in contrast to the univariate outcome
models in which individuals are nested in successively higher organizational levels. In those
models, the individual defines Level 1 of the analysis, and there are as many records as there are
individuals.

Rearranging the data to accommodate the change and multivariate models is quite straight-
forward. Let’s refresh our memory of the data set we have been using. Note that in the subse-
quent data view illustrated in Figure 2.6 there is a single record for each student, and we have
three test scores across successive time periods.

Our objective is to create three records for each student, each representing a distinct time
point for each individual in the sample. In other words, we are going to nest these three testing
occasions within each student (students will still be nested within their schools). To accomplish
this, we will use the VARSTOCASES routine that is contained in the Restructure Data Wizard.

If you are continuing from the prior section concerning the MERGE FILES function, the
ch2multivarML1.sav file is already open. If not, locate and open the data file.
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1. Go to the toolbar

[ €2 ch2multivarML1.sav [DataSet1] - IBM SPSS Statistics Data Editor [E=REE S0
and select DATA, Fle Edt Vew | Dats Transform Anayze Drectlarketng Graphs Utites Addons Window Help
RESTRUCTURE. 3 Dot ver . =

T T Y ]
Note: If you’ ted t { M o wrmnea e fr —
ote: If youre prompte (.) | IE Copy Data Properts Visible: 14 of 14 Variables
save the file before proceeding, | e s el
you may save it or elect not to 1 | & Define Dates.. 2 00 00 1 |«
do so. 2 BB Define Mutiple Response Sets... 33 .00 00 1 B
‘ ) 3 v I 1
'This command will open the 4 ER i 2 00 .00 0
Welcome to the Restructure Data 5 73 iers B0 100  1.00 0
. . Identify Unusual Cases. 1
Wizard dialog box. 6 = 5 1.00  2.00 0
7 ¥ Syt Cacoz.S 73 00 00 0
8 Sort Veries... b1 00 00 1
9 Trenspose... 57 00 00 0
10 NeroRles > s 00 00 1
11 7 Restrcture... [ B6 00 00 0 [+
4| 5 Aogregate... I
- — Orthogonial Design » — —
Data View = Va
Restructure.. | Fis Copy Dataset
o —
S SpitFle...
&fs weight Cases...

2. The Restructure Data
Wizard presents three
options: Restructure
selected variables into
cases, Restructure selected
cases into variables, and
Transpose all data.

S

#2 Restructure Data Wizard

Welcome to the Restructure Data Wizard!
This wizard helps you to restructure your data from muRtiple variables (columns) in a single case to groups of
related cases (rows) or vice versa, or you can choose to transpose your data.

The wizard replaces the current data set with the restructured data. Note that data restructuring
cannot be undone.

For this situation, we want
to treat the three test vari-

G D(®) Restrugture selecied variabes nto cases]

ables (zest1, test2, and test3)
as a single grouped vari-
able, so will use the default
setting: Restructure selected
variables into cases.

Click the NEXT button to
go to the Variables to Cases
screen.

Use this when each case in your current data has some
variables that you would ke to rearrange into groups of
related cases in the new data set.

() Restructure selected cases into variables

Use this when you have groups of reiated cases that you
want to rearrange so that data from each group are
represented as a single case in the new data set.

() Transpose all data
Al cases will b iables and selected will
become cases in the new data set. (Choosing this option
wil end the wizard, and the Transpose dialog will appear.)

cancel || Hep




56 W Preparing and Examining the Data for Multilevel Analyses

3. The Variables to Cases: Num- (€2 Restructure Data Wizard - Step 2 of 7 =]
ber of Variable Groups display
screen allows defining the
number of variable groups to

Variables to Cases: Number of Variable Groups
You have chosen to restructure selected variables into groups of related cases in the new file.

A group of related variables, caled a variable group, represents measurements on one variabke.

create in the new data ﬁle __ For example, the variable may be width. ifitis in three , each one
4 representing a different point in time—w1, w2, and w3, then the data are arranged in a group of
3 \ variables.
In this case, the three tests (l‘é‘Sf], If there is more than one variable in the fie often & is also recorded in a variable group, for example

height, recorded in h1, h2, and h3.

How many variable groups do you want to restructure?
(3 [gne (for example, w1, w2, and w3}

test2, and fest3) are to be treated as

a single group, so the default setting
of One will be used.

-
Click the NEXT button to ZIsTel7]

continue to the next screen.

() More than one (for exampie, w1, w2, w3 and h1, h2, h3, etc.)

4. 'The Variables to Cases: Select 3 Restructure Data Wizard - Step 3 of 7 [
Variables screen allows defin-
ing the variables for the new
data. This includes specifying

Variables to Cases: Select Variables

For each variable group you have in the current data the resiructured fie will have one target variable.
In this step, choose how to identify case groups in the restructured data, and choose which variables belong with

a new group 1D (Case Group each target variable.
Identﬁmiion) the Vafiab].es to Optionally, you can also choose variables to copy to the new file as Foced Variables.
)

define the transposition (Vari- Variabies in the Current Fie:
ables to be Transposed), and the [Es e G
variables to include with each A {uncare e -
new record [ Fixed Variable(s)]. |": s "’“:%—i
a. Begin by entering Rlﬂ’ & effective rVariables to be Transposed

(recoded ID) as the Case %::;f‘ Torget Varise: [test 4={ D)) v

Group 1dentifier Name. & ses [ test p— W::(‘)_

& sesécat | & testz 3 PrEEE—

b. Enter fest as the Target % tesmenn P o £

Variable. & apexams g s

effeciive
c. Click to select fest1, test2, 5;:?:;::' B & courses
= Fixed Variable(s):
and fest3 from the left & %::m
column, and then click ﬁ:;f‘;:“ ?“"““
. Lok L M testmean _
the right-arrow button to - = & wears |
. . - ———— 1|4 femate_mean
move the variables into the _J([cmen J{I% oronme

Variables to be Transposed
box. The three variables will
be combined to form a single variable (#es?) that is related to each record (row).

d. Click to select all the remaining variables (excluding fesz1, fest2, and zest3) from the left column,
and then click the right-arrow button to move them into the Fixed Variable(s) box. [Refer to
the Fixed Variable(s) boxed insert.] These variables will then be appended to each of the new
rows in the data set.

Click the NEXT button to continue to the Variables to Cases: Create Index Variables screen.



5. The Variables to Cases: Cre-
ate Index Variables screen
allows for creating one or
more index variables.

In this case, we want to create
one indexed variable encom-
passing the “timing” of each
test. Since One is the default
option, click the NEXT button
to continue to the Variables to
Cases: Create One Index Variable
screen.

6. Further information

may be specified for the

indexed variable.

a. Sequential numbers is
the default setting,
which will be retained
for this example.

b. 'The variable name may
be changed by click-
ing on Index1 and then
changing it to time.

Click the FINISH button to
indicate that no further changes
will be made.
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A Restructure Data Wizard - Step 4 of 7

ety

Variables to Cases: Create Index Variables

In the current data, values for a variable group appear in a single case in multiple variables. For example, a single

case contains the values for w1, w2, and w3.

In the new data, values for a variable group will appear in muliple cases in a single variable. For example, there

will be three cases, one each for wi, w2, and w3.

An index is a new variable that dentifies the group of new cases that was created from the original case. For

example, an index named “w" would have the values 1,2, and 3.

How many ndex variables do you want to create?

©)ond

Use this when a variable group records the effects of a single

factor, treatment or condtion.

Use this when a variable group records the effects of more than one

faclor, treatment or condition.

Use this if index information is stored in one of the sets of variables
1o be transposed.

{3 Restructure Data Wizard - Step 5 of 7

Variables to Cases: Create One Index Variable

You have chosen to create one index variable. The variable's values can be sequential numbers or the names of

variables in a group.
In the table you can specify the name and iabel for the index variable.

rWhat kind of index values?

(@) Seaventai numbers

() Variable names

Index Valves: 1,23

-

Edi the index Variable Name and Labet

Mame_ | Label Leves [ ndexvaues |
1 b 3INZS
i
‘J
Edit the inde Variable Name and Labet
| 4 Home Label
1 ]
|
(] IC
< Back e || concet || mHew

L
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7. After clicking the FINISH button, a mes- {3) IBM SPSS Statistics 20 )
sage immediately appears warning that
some of the original data will remain in use _ Sets from the original data wil stil be in use In the restructured
and that care should be administered to e L S R o e -
ensure use of the appropriate data set for

subsequent analyses.

Click the OK button to proceed with generating the new data set.

R “ch2multivarMLL sav [DataSet1] - mmmmaﬂu - M
miﬂwnﬂmmwmwummwmﬂw

SFHE W e~ Bl B e B9

8. The new data set appears, and
scrolling across the columns, the
time and fest variables are found
in the last two columns. A trun-

! |Visble: 14 of 14 Variables
cated view of the data set shows Rid | id | nschcode | ———T———T— | time | test |
that each student (as identified 1 1 1 00 00 e 49.55%
by Rid and id) now has three LI, 1. 00 00 2 5009
lines of data, one line for each of o — AN g5 .1
3 ) E 1 00 00 1 11 4700
the three tests and time peri- 2 2 1 00 .00 - B R
ods. A more complete picture is 2l 2 1 00 00 1 3 6433
presented in Figure 2.7. 33 A g1 4013
3 3 1 00 .00 1 21 5063
i
Notice that each student now has o3 S g3 S5
hree | f data—one f h 4 4 1 00 00 of 1 387
three lines of data—one for each test. N e o 2 s0se
The test scores (Level 1) vary across

all respondents, student characteris-
tics vary across all students (Level 2)
but are constant within the group of
three test scores, and school characteristics vary across all schools (Level 3) but are constant within the
group of students attending each school.

{3 *ch2multivarMLLsav [DataSet1] - IBM SPSS Statistics Data Editor b O
Fle Ed¢ View Data Transform Analyze DirectMarketng Graphs [LUtities Addgns Window Hep
@Ha% e~ Bl S BO= 100 %
Visible: 14 of 14 Vndlm
Rid | id ,fns:h:ode| aﬁuc‘l;m|coms: male| | apmns| female_mean |sos_rnear4 ume| test |
1 1 1 1 00 00 1) .99 3.00 5149 08 50 =27 149.66 _‘.:
2 1 1 1 00 00 1 59 3.00 5149 .08 50 =27 2 50.09
3 11 1 00 00 1 53 3.00 5149 .08 50 =27 35472
4 2 2 1 .00 .00 1 .30 3.00 56.84 .08 .50 =21 14792
b 2 2 1 00 .00 1 .30 3.00 56.84 08 50 =27 25826
| 2 2 1 00 .00 1 .30 3.00 56,84 08 .50 =27 36433
7 3 3 1 .00 00 1 -54 1.00 51.83 08 50 =27 14912
8 3 3 1 00 .00 1 -54 1.00 5183 08 .50 -271 25063
9 3 3 1 .00 .00 1 -54 1.00 5183 08 50 =27 35574
10 4 4 1 00 00 0 -85 1.00 4527 .08 50 =27 13877
11 4 4 1 .00 .00 0 -85 1.00 4527 .08 50 =27 25093
12 4 4 1 00 .00 0 -85 1.00 4527 08 50 =27 346.12
13 5 5 1 1.00 1.00 0 .00 2.00 53.32 08 50 =27 14754
14 5 5 1 1.00 1.00 0 .00 200 53.32 08 .50 -2 25153
15 5 5 1 1.00 1.00 0 .00 2.00 5332 08 50 =27 3 60.90 [+
< g | I3
Data View [ Varisbie view ||
| 1B SPSS Statistics Processor s ready | | | =

FIGURE 2.7 Data matrix after performing the VARSTOCASES function.
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TABLE 2.5 Descriptive Statistics

N Minimum  Maximum Mean Std. Deviation
Rid 25,005 1.000 8,335.000 4,168.000 2,406.155
id 25,005 1.000 8,670.000 4,308.352 2,510.477
nschcode 25,005 1.000 525.000 261.976 152.811
effective 25,005 0.000 1.000 0.562 0.496
courses 25,005 0.000 4.000 0.748 0.790
female 25,005 0.000 1.000 0.505 0.500
ses 25,005 -2.410 1.870 0.034 0.784
ses4cat 25,005 1.000 4.000 2.496 1.118
testmean 25,005 28.027 74.583 52.377 6.964
apexams 25,005 0.000 0.800 0.166 0.130
female_mean 25,005 0.000 1.000 0.505 0.153
ses_mean 25,005 -1.297 1.416 0.034 0.500
time 25,005 1.000 3.000 2.000 0.817
test 25,005 24.350 79.720 52.377 8.843

Valid N (Listwise) 25,005

Notice also that when looking at the descriptive statistics for the new data set in Table 2.5, there are
25,005 observations. The original data set had 8,335 observations. From our earlier description, we can
see that 8,335 (students) multiplied by 3 (test scores) equals 25,005 records in the new data set.

Using “Compute” and “Rank” to Recode the Level 1 or Level 2 Data for Nested Models

From this it becomes apparent how quickly data sets can expand as models become more compli-
cated. As the models become more complicated, the computing time necessary for the solution
to converge within each level can become substantial. This is especially true in the multivariate
and change models where variables or time periods are nested within individuals. Leyland (2004)
notes that one can save a great deal of the time it takes to estimate a proposed model by rein-
dexing the Level 1 (and, in some cases, the Level 2) identifiers within each school. Reindexing
the individual-level data in these models can yield significant savings in run time and, in some
cases, may make a difference in whether the model can even be estimated within the confines of
the computer’s available memory. The objective of reindexing is to create a new set of individual
identifiers that are numbered only with reference to each group. So, for example, the 10 individu-
als in group 1 would be numbered from 1 to 10 (assuming there were only 10 in the group), and
the 14 individuals in group 2 would be numbered from 1 through 14, and so forth (1,2,..., n).

Situations in which this may prove beneficial will be identified in later chapters. For now,
however, we want to introduce the steps involved. This reindexing can be easily accomplished
using the IBM SPSS RANK command. From the TRANSFORM > RANK CASES menu
within IBM SPSS, we can call up the Rank Cases dialog box.

Creating an Identifier Variable

Creating identification variables is straightforward in IBM SPSS. We will first show how to
generate an ID variable for each case. This can be useful in those instances when an identifier is
not found in the file being used. For this first example, we will use the ch2/eve/-1data.savhile we
introduced at the beginning of this chapter (see Figure 2.1 on page 36). You may recall that this
data set is single-level and cross-sectional with 6,871 observations. We have removed the id vari-
able that appeared in the version of the data set we used earlier. Our first task will be to recreate

an individual-level identifier using the COMPUTE command.
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Creating an Individual-Level Identifier Using “Compute”

Continue using the ch2multivarML1.sav data set.

1. Begin by deleting the current id
variable from the data set.

a. First, click on the Variable View
tab, which displays the variables
in the data set.

b. To delete id, first locate and
click to select the row (2). You
may then delete id by one of
two methods: Right-click your
mouse to display the submenu,
and select Clear, which will
delete the variable; or

c. An alternative method to
deleting the variable is to go to
the toolbar and select EDIT,
CLEAR.

2. After removing id from the data

set, go to the toolbar and select
TRANSFORM, COMPUTE
VARIABLE.

'This command will open the Compute
Variable dialog box.

3a. Enter id as the Target Variable.

b. Within the Function group list,
click to select A/, which will
display assorted functions in the
Functions and Special Variables
box.

c. Click to select the §Casenum
function, and then click the
up-arrow button, which will
place the term into the Numeric
Expression box.

Click the OK button to perform the

function.

@_ ch2multivarMLL sav [DataSet1] - IBM SPSS Statistics Data Editor
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4. Scroll across the columns, {8 *ch2multivarML1.sav [DataSet1] - IBM SPSS Statistics Data Editor

End tjle nehw Yariablle id is Fle Edt Vew Data Transform Anasyze DrectMarketng Graphs Utiies Add-ons Window Help
ound in the last column
of the data window and . H % m e E & % H E @ g 3
corresponds to the case [Visiie: 14 of 14 Variables
number (or row number) Rid |rwd1code| — id
for each case. 1 1 1 00 00 1 59 300 5149} 100{~
2 1 1 00 .00 1 59 3.00 5149; 200 B ‘
Note: The decimal place set- 3 1 1 .00 .00 1 59 3.00 5149! 3.00 |
ting may be adjusted by click- 4 2 1 0 00 1 30 300 5684} 4.00
ing on the Variable View tab 2 2 L 20
and changing the number to J 2 1) 00 . o9 iR s O
. . . €y 7 3 1 .00 .00 1 -54 1.00 51.83! 7.00
the desired setting (i.e., “07). 8 3 1 00 00 1 -54 100 5183} 800
9 3 1 .00 .00 1 -54 1.00 51.83; 9.00
4 1 .00 .00 0 -8 1.00 45.27; 10.00
4 1 .00 .00 0 i
=

Once a Level 1 identifier exists, it is quite easy to create a variety of different within-group
identifiers. These within-group identifiers will become very important in later chapters where
we use more complex models. Using the TRANSFORM, RANK CASES commands from the
IBM SPSS menu, we will now create another identifier assigning a sequential ID variable Rid
within each group. The Rid variable will range from 1 through 7 within each Level 2 unit.

Creating a Group-Level Identifier Using “Rank Cases”
Continue using the ch2multivarML1.sav data set.

1. Begin by (.ieletiflg the A ch2multivarMLLsav [DataSet1] - IBM SPSS Statistics Data Editor (o ]
current Rid variable from = m R T e R e e S R
the data set. =
a. First, click on the Vari- { [% . e E % % ﬁ E j 9

able View tab, which | Type | width | Decimals | Label | Value
displays the variables 1 QJF"' | Numeric 8 g None =
in the data set. 2 o L 0 None |5
b. To delete Rid, first | Pasts ‘:' g 2 one
locate and click to : Clear : 2 E ::::
select the row (1). You = EZ insert Varisble 4 2 None
may then delete Rid 7 te Ve 8 2 None
by one of two meth- 8 testmean Numeric 8 2 None
ods: Right—click your 9 | apexams Numeric 8 2 None (%
mouse to display the Kl N— I 0
submenu, and select T

,
L=

Clear, which will delete
the variable; or

c. An alternative method to deleting the variable is to go to the toolbar and select EDIT,
CLEAR.



62 B Preparing and Examining the Data for Multilevel Analyses

2. After removing Rid from the
data set, go to the IBM SPSS
toolbar and select TRANS-
FORM, RANK CASES.

'This command will open the Rank
Cases dialog box, which enables
creating new variables containing
ranks, normal and Savage scores,
and percentile values for numeric

variables (IBM Corporation, 2012).

3a. Click to select the Level 1
identifier (id) from the left
column, and then click the
right-arrow button to move it
into the Variable(s) box.

Next, click to select group

identifier (nschcode) from the

left column, and then click the
right-arrow button to move
the variable into the By box.

. In the Assign Rank 1 to section,
confirm that Smallest value
(default setting) is selected.

. Click the RANK TYPES but-
ton, which will open the Rank
Cases: Types dialog box.

. There are several ranking
methods with a simple Rank
as the default setting. We will

use Rank, so click the CONTINUE button to

close the dialog box.

ration, 2012).

Now click the TTES button, which will open the
Rank Cases: Ties dialog box; this box controls the
method for assigning rankings to cases with the

same value on the original variable (IBM Corpo-

. Among the options listed for Rank Assigned to

Tiies, click to select Sequential ranks to unique
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values. The option must be selected to ensure that

each person is assigned an identifier within each unit. Then click the CONTINUE button to

close the box.

Now click the OK button to create the Rid Level 1 group identifier.




4. Scroll across the columns,
and the Rid Level 1
group identifier variable
is located in the last col-
umn of the data window.

Note that each Level 2 unit
(nscheode) will have its own
sequence of Rid beginning
with 1.
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&R *ch2multivarMLLsav [DataSet1] - muspssw:snagamu =8

Fle Edt View Data Transform Analyze Direct Markefing Graphs Utities Add-ons Window Help
.H%W!‘”‘! = H E@ .
| Visible: 14 of 14 Variables
nschcode — : | Rid
1 .00 .00 0 -17 2.00 50.49 32.000: |=
1 .00 .00 0 -17 2.00 50.49 33.000 —
1 .00 ] 1-1.07 1.00 56.60 34.000
1 .00 .00 1-1.07 1.00 56.60 35.000
1 .00 .00 1-1.07 1.00 56.60 36.000
2 1.00 1.00 0 -10 2.00 52.78 1.000
2 1.00 1.00 0 -10 2.00 52.78 2.000
2 1.00 1.00 0 -10 2.00 52.78 3.000
2 .00 .00 0 128 4.00 50.87 4.000
2 .00 .00 0 128 4.00 50.87 5.000
2 .00 .00 0 128 4.00 50.87 6.000! |+
3 I

Finally, we will take this one step further by creating a new within-group id (Rid) variable for the
multivariate data set shown in cA2multivarML1.sav (see Figure 2.7 on page 58).

Creating a Within-Group-Level Identifier Using “Rank Cases”

Continue using the ch2multivarML1.sav data set.

1. Begin by deleting the
current Rid variable from
the data set.

a. First, click on the Vari-
able View tab, which
displays the variables
in the data set.

b. To delete Rid, first
locate and click to se-
lect the row (14). You
may then delete Rid
by one of two meth-
ods: Right-click your
mouse to display the
submenu, and select
Clear, which will delete

the variable; or

@ chZmultivarML1.sav [DataSetl] - IBM SPSS Statistics Data Editor

Fie View Data Transform Analyze DirectMarketing Graphs Utiities Addons Window Help
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Type Width | Decimals | Label
testmean Numeric 8 2
8 apexams Numeric 8 2
9 female_mean Numeric 8 2
10 ses_mean Numernic ] 2
11 time Copy 0
1 test Baste 2
13 id Clear 2
14 ¥ |Rid Emwar‘m 3 Rank of id by n... None
15 T -
.——4'?;3? I l’]_—

BM SPSS Statisfics Processor is ready. |
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Data View [ Variable View _ _
| — : - ||

s

c. An alternative method to deleting the variable is to go to the toolbar and select EDIT,

CLEAR.
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2. After removing Rid f1om (6 ~chamultiverMLLsav [Dataset] - IEM SPSS Statistics Data Editor [E=REER T
;%i\jllastaneSt’ go 1? the 4 Fle Edt Vew Data | Transfom Anayze DrectMarketng Graphs Utiies Add-ons Window Help
toolbar an D 8 , I —p——= o
=} Compute Variable... N i % /N
sclect TRANSFORM,  ||&8 Fl &) [Z &meoveee: g B & B
RANK CA.SES. | Nam Shift Values... J Value_
4 ifemale | None E
'This command will open the 5  |ses im BI s et At None
Rank Cases dialog box. DI sesdcat | = None
Automatic Recode... L
7 testmear Be None
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9 Efemale_n; R D0 None
10  |ses_mea . Fopsebasi o None
1 time Bﬂ Rank Cases... N None
12 test | e end TimeWezard.. % None
13 Eid | romto Tige Sevien-. None U
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1 o
“on view [ Varabie| © Ro00om e Genersors..
[P.ani_i‘:u_us._, i % Run Pending Transforms Cirl-G . r_isrud);_- T F
3. The default settings from the (& Rank Cases [
prior example display id within
the Variable(s) box and nschcode &b effective Yarable(s).
in the By box i o
) box. e
- i
In the previous example, we selected & sestoat
only one group identifier, nschcode. & testmean
Since the data in the multivariate & apexams =
example are vertically arranged (i.e., ¢ temale_meen & vesing
. & ses_mean
there are multiple records for each & tme
individual), we need to generate
sequential, within-group identifiers
for each person, constant across the

three time points (recall that we had
three time points nested within each
person).

We will now add the other grouping
variable (#ime) to the By box. This
will generate a sequential identifier
for each person across the three time
periods within each group.

Assign Rank 1 to [¥] Display summary tables
(5) Smalest value
(O Largest value
(o g o J[zesm ][ comm J[_re

The settings for Rank Types and Ties remain the same as the prior example, so skip over these buttons

and click OK.
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4. Scroll across the columns, {2 *ch2multivarML1.sav [DataSet1] - IBM SPSS Statistics Data Editor (=] O [z
a}rlld th? R’ﬁ’ V'i‘rlablells Fle EGR View Data Transform Analze DirectMarketing Graphs Utities Add-ons Window Help
shown in the last column
of the data viewer. @ H (%i IE e i é % ﬂ E E &
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data set after completing the 8 000 S O BLES 3,000
tutorial sections to this point i ! o L ) 5 R 3000
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[ | B SPSS Statistics Processor is ready| | [ I

In this section we have shown the primary commands necessary to create new variables, re-
code existing variables, merge new data onto the existing data set, create group-level aggregates
from individual-level variables, and restructure the data set for multivariate analyses using IBM
SPSS MIXED. In the sections that follow, we use these data management procedures to offer
instruction on the creation of new variables that will be needed for the analyses presented in
subsequent chapters.

Centering

The basic multilevel model (i.e., a random intercept model) treats the Level 1 intercept as an
outcome with variance that can be explained using variables from a higher level. While we de-
velop this model in some detail in the following chapter, we want to convey the importance of
the intercept here. Consider as a starting point the traditional fixed-effect ordinary least squares
(OLS) regression model using zesz1 as a predictor for some outcome.

Y. = Bo + PifestI; = €, 2.1)

From the earlier descriptive statistics table (Table 2.2), we know that values on zesz1 range
from 24.35 to 69.25 with a mean of 47.64. Recall that the intercept in a model such as that in
Equation 2.1 is the value of the outcome (Y) when the predictor (zesz7 in this example) is equal
to 0. When additional terms are added to the model, the interpretation generalizes to the value of
the outcome (Y) when each of the predictors in the model is equal to 0. So in instances where the
predictor cannot be 0 (such as this example with the test score), the intercept is of little substan-
tive use. This is fine when the emphasis is on the interpretation of slopes that are constant across
groups that may exist in the sample.

But imagine a scenario in which, for some reason, we did have an interest in an interpretable
slope. One way to ensure a meaningful and interpretable intercept is to alter the predictor in a
way that makes 0 a meaningful value. This is often accomplished by “centering” the predictor on
0 (or some other value). First, consider the results of the OLS model specified previously. We will
use scores on ZestI to predict scores on zesz3 (which has a mean of 57.11).
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TABLE 2.6 Coefficients®

Unstandardized  Standardized

Coefficients Coefficients
Model B Std. Error Beta t Sig.
1 (Constant) 13.272 0.620 21.414 .000
test] 0.920 0.013 0.616 71.351 .000

¢ Dependent variable: test3.

From these results in Table 2.6, we can see that a 1-point increase in performance on zes#1 is as-
sociated with a 0.92-point increase on zesz3. The intercept value is 13.272. With these two values,
one could calculate a predicted value for zesz3 given knowledge of performance on zesz1. The
intercept is used only to generate that predicted value for zesz3 and has no real interpretative use
because 0 is not a valid option for fesz performance.

By centering the zesz7 variable on 0, we can make the intercept more interpretable. To do this,
we simply subtract the mean of zesz7 from the fesz1 score for each student in the data set; that is,

(X. - X.) (2.2)

g

We will show how to do this in a moment. For now, let us just consider the change in the OLS
results.

In Table 2.7, notice that the zesz1 slope coefficient (and standard error) remains the same as
in the previous model but that the intercept is now 57.11 or the raw mean for 7esz3 (see previous
discussion). So when 7esz1 is equal to 0 (and 0 is now the overall mean for zesz1), zest3 is equal to
its overall mean. The intercept now has a useful interpretation.

Because the multilevel model treats the intercept as an outcome, as we will show in the next
chapter, it is very important that the Level 1 model yield an interpretable value for f,. Center-
ing makes this possible and therefore is an important feature of the multilevel model. There are
two types of centering that we will be concerned with throughout the workbook: grand-mean
centering, such as that used in the previous example; and group-mean centering, which centers
the variable on the mean of each higher level group. In the sections that follow, we demonstrate
how to create these within IBM SPSS MIXED. We further develop the rationale of each of
these methods at length in subsequent chapters. Here, however, we focus on how to compute the
variables that will be needed.

TABLE 2.7 Coefficients®

Unstandardized Standardized

Coefficients Coefficients
Model B Std. Error Beta t Sig.
1 (Constant) 57.108 0.082 700.254 .000
gmtest] 0.920 0.013 0.616 71.351 .000

@ Dependent variable: test3.
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TABLE 2.8 Descriptive Statistics

N  Minimum Maximum Mean Std. Deviation

test] 8,335 24.350 69.250 47.644 6.325
gmtest] 8,335 -23.294 21.606  0.000 6.325
Valid N (Listwise) 8,335

Grand-Mean Centering

As in our previous example, variables in a multilevel model are most frequently grand-mean cen-
tered. For example, in Table 2.8 the grand mean for zesz1 is 47.64. Using COMPUTE in IBM
SPSS, one can name the new variable gmfest1 and then compute the new variable by subtract-
ing the grand mean of zeszI from students’ scores on that variable (i.e., feszZ — 47.64). This will
transform the scores in terms of the grand mean of the sample. So, if a student has a zes#1 score
of 50.64, her new score will be 3 (50.64 — 47.64 = 3), which carries the meaning that its rela-
tive position is three points above the grand mean with respect to other students in the sample.
Grand-mean centering results in unit-level means that have been adjusted for differences among
individuals within the units. Notice that the distribution remains exactly the same when we cen-
ter. The only thing that shifts is the scale itself.

For this tutorial we will use the original nine-variable “horizontal” ch2multivarML1.sav data
file for this section.

1. Go to the toolbar {2 ch2multivarML1.sav [DateSet1] - IBM SPSS Statistics Data Editor [ESSIE==)
and select TRANS- Fle Edt View Data | Transform Analyze DrectMarketng Graphs Utidles Add-ons Window Help
FORM, COMPUTE = e = = = —
VARIABLE =S (3w i

: —— " T [E count Values witin Cases... =S
Nam | Label Value
'This command will open the il e None |2
Compute Variable dialog box. T 2 |nschcod{ B Recode nto Same Veristies... None
Recode into Different Variables. .
3 |test1 None -
4 jteslz E aut None
5 |test3 B;: Yaues : s None
| 6 | effective Ortmel o= None
7 %courses Eropere Doe tor . d None
8 |female | B4l Rank Cases... None
9 |ses {7 Date and Tme Wizard... None )
10 [ create Time Series... bt

K : [»]
Data View || Vark “‘-._,Reﬂwehimq!m,..

[Compute Varabe. | @ Random Number Generators...

IrOCESSor is ready’
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2a. In the Compute Variable [ compute variatie [

display screen, enter e v

gmitest] as the Target [gmtest1 <
Variable. | Type SLobel.,

b. Now select zest1, and

Numaric Expression: =
= |test-47.6439 |

"b

: : S 2 =(b) : _ Funcion group:______
click the right-arrow — . ] L
button to move the vari- imts :;n :”::..m.,.. cor
. . fact »u |
able into the Numeric 2?,:,,’: [canversion
E . b U & il | :!Culrenl Date/Time
xPT&UZO?’Z 0OX. Use Date Arthmetic

p ses |
the numeric keypad !J J| J | |_] owecwston
(or enter from your |._] |jli] [ ouee 5| Funclons and Special Varisies

keyboard) to complete —
the equation: zesz1 -
47.6439. Insert a minus
sign (-) by clicking on

the key. — _ |
|L:mnmmnmmnmmn) i ,
Note: Use ANALYZE, DE- o< ([ puste [ meset [ concet J[_ew ]
SCRIPTIVE STATISTICS,

DESCRIPTIVES to obtain the
mean of fest1 (47.6439).

Click the OK button to create the computed variable gmzest1.

3. Scroll across the columns, {2 *ch2multvarMLLsav [DataSet1] - 1BM SPSS Statistics Data Editor
and the computed variable Be TR Vew Dol Treskon A DiectHarkeling Graphs Utities Addgns Wndow Heb
gmitest] is found in the last @ E E & % ﬁ @ E
column of the ch2multi- E H £ ﬂ 9
varML1.sav data window. |Visie: 10 of 10 Variabies

id ] nschcode] [ | l ] ,rgm'tesu .
1 1 1 4966 5009 5472 .00 00 202 g '
2 2 1 4792 5826 64.33 .00 _ong 288
3 3 1 4912 5063 55.74 .00 00f 148
4 4 1 3877 5093 4612 .00 oo 887k (Il
5 5 1 4754 5153 60.90 1.00 1,0|JE -10
6 6 1 4174 4882 545  1.00 200} -5.90
7 7 1 3283 4243 4873 .00 00! -14.81
8 8 1 5591 56.36 60.91 .00 .OOE 8.27
9 9 1 5293 6375 68.37 .00 ,OOE 5.29
10 10 1 3947 4230 4415 .00 00} 817
11 11 1 4269 5243 5636 .00 000 495

A quick look at the descriptive statistics of the original zes# variable and its grand-mean cen-
tered counterpart in Table 2.8 show that although the standard deviation remains the same, the
means and ranges stay the same while the minimum and maximum values have changed. Again,
this simply demonstrates that only the scale has changed and that the distribution (or variability
around the mean) itself remains the same. Note that we have not standardized the variable, but
rather we have simply readjusted it so its mean is equal to 0.
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Group-Mean Centering

Group-mean centering of variables yields values that represent the unadjusted mean for group ;.
So rather than using the overall mean as the reference, the group mean is used instead.

X. -X. (2.3)

Group-mean centering of variables is a two-step process that first involves the aggregation of
the focal variable to the group level and then follows a logic similar to that used for grand-mean
centering described previously. We will use the AGGREGATE and COMPUTE commands to
accomplish this.

Continue using the ch2multivarML1.sav data file, which now contains 10 variables at the
conclusion of the prior tutorial.

1. Go to the toolbar {2 ch2multivarML1.sav [DataSet1] - IBM SPSS Statistics Data Editor [E=EE T
and select DATA, Fle Edt View | Data Transform Analyze DirectMarkefing Graphs Utiies Add-ons Window Help
AGGREGATE. — : 5 e

% £ Define Variabie Properties... E H E g % /j
Thi d the 2d setm el
is command opens | - : e
Agoregate Data dialog box. W cov Dl Prroadis -
8878 g R New Custom Affribute t3 | effective| cuurses| female|
i | & Define Dates.. 72 .00 .00 114
2 | EE Define Mutiie Response Sets... 33 .00 .00 17
3 T , B74 00 .00 1
4 f% ;mwe - 12 .00 00 0
5 90 1.00 1.00 0
6 55 1.00 2.00 0
7 73 .00 .00 0
8 91 .00 .00 1
9 37 .00 .00 0
10 L ET .00 .00 1
1 .36 .00 .00 U=
[r]
Data View = Va .
Aggregate.. | Fio Copy Detaset bics Processors ready| | | |||
7,’% Spit File
E= Select Cases
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2a. Within the Aggregate Data ) Aggregate Data [
dialog box, click to select nschcode ==
from the left column, and then 2 ’gwn;;m
click the right-arrow button to & nscheode |
move the variable into the Break F‘“"_ \ :
) ¢ test2 rAggregated Variables
Variable(s) box. & st _ _
b. Next, click to select zesz1 from &b etfectve ,mﬂm,
the left column, and then click 2::;::’ '\‘ o S REANTen
the right-arrow button to move & ses 'L—Ix -
the variable into the Summaries & griest :
of Variable(s) box. (IBM SPSS ';" '
uses MEAN as the default func- 7 |
. . . . i
Zf;n;}:)c owill be used for this 17 e omc i e
c. Change the output variable Sf" F
name by clicking on the NAME 7 uroguied verkies K |
& LABEL button, which will O Craste 8 26w dehast contd "6 Aggregate Data: Varibie Nome. BIES
open the Aggregate Data: Variable DTS i T T
Name and Label box. Then replace O Wrio & pow dets fis contalag o4 fﬁmmu - ‘_,'_" i
the initial variable name fes#7 |_re JsersiyrNOY | pame: | testigom <g===""
mean with the current tgv]gp . -Options for Very Large Dataset}‘. o l. [
Click the CONTINUE button S o R “pcomwe | concn [ new |
to close the box when completed SN i
to return to the Aggregate Data =
main dialog box. L{}OK || peste || meset || cancel || Hep |
Click the OK button to perform the ag-
gregation and create the new zest1gpm.
3. Scroll across the columns, and (€2 *chamultivarMLLsav [DataSet1] - 1M SPSS Statistics Data Editor
the new aggregated variable T Ve Dl s Ao O iy ke (e A e e
test1gpm appears in the. last @ = % @ = & % H s E I
column of the ch2multivarML1.
sav data window. | - | IR 1A Vi
: id_}nschcode} test1 | test? | test3 | | testigom}

. . . . | G 6 11 41741 4882 5455 100 2001 45601 |A]
Notice that this new variable is ; ; | oL R % ol
constant within each Level 2 unit 3 8 1} 5591} 5636 6091 .00 00] 4560
(schools); that is, the value repre- 9 9 1} 6293} 6375 6837 .00 00 45560
sents the mean fesz score within S 0 1] 304TiEee IS U L
each school. These values provide ! :; :; : :i:: :i:;: g:i: :g g :z:g |
the reference value for the group 13 13 2! 4754 5153 5926 100  100; 4459
centering of est1 (just as the overall 14 " 2; 46831 5370 5209 .00  .00; 4459
mean provided the reference value £ L 2 dsaoim il m S G W

i ) 16 16 20 4754) 5183 5806 100 100} 4459 v
for grand-mean centering). With the | i = T momill
group-mean value known, it is easy = GG

to calculate the group-centered zesz1 N T |
variable, which we will call grouptest1. o o

We will specify the target variable we wish to create (grouptest1) and create the Numeric Ex-
pression fest1 - test1gpm.



Continue using the ch2multi-
varML1.sav data file.

1. Go to the toolbar
and select TRANS-
FORM, COMPUTE
VARIABLE.

'The command opens the

Compute Variable dialog box.

Note: The formula (zest1 -
47.6439) used in the preced-
ing exercise may appear in the
Numeric Expression box. To
remove the formula, click the
RESET button at the bottom
of the screen.

2a. Enter grouptest as
the Target Variable.

b. Click to select zest1
from the left column,
and then click the
right-arrow button
to move the variable
into the Numeric
Expression box. Insert
a minus sign (-) by
clicking on the key.

c. To complete the
numeric expression,
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A *ch2multivarML1.sav [DataSet1] - IBM SPSS Statistics Data Editor

Fie Edt View Data

Transform Analyze Direct Marketing Graphs

ﬁerﬁ

) Gompute Variable... [\
[ count values within Cases...

Utiities Add-ons Window Help

A FLE

[Visivte: 11 0f 11 variables

Shitt Values...
i | B Recode nto Seme Verlabies., ive| courses | female | ¢
: L Recode into Diferent Variables... 00 00 1 =
2 2 | E avtomatic Recode... 00 00 1
: : [} Visual Binning... gg gg ;
5 5 b g 00 100 0
6 6 Prepare Data for Modeling » '00 2'00 .
7 7 E{l Rank Cases... 00 00 0
8 | 8 |[fl pateand Timeizard.. 00 .00 1[5
< [ create Time Series... I
n..uwm [ Varisble V| B Replace Missing Yalues... - | —
| Compute Variable... @ Random Number Generators.. e s i |
; D Run Pending Transforms Ctrl-G
13 Compute Variable [0
MNumgricExpression: _——— e
= tesl1 - test1gpm
X
r" "
i
':,m 2 )
PR DT =" Function group:
A8
' Ldled (zdled =

(COF & Noncentral COF
Conversion

Current Date/Time
Date Arthmetic

Date Creation

4]

unctons and | Variables:

o e ][ [F=r [

click zest1gpm from the left column, and then click the right-arrow button to move the variable
into the box. This completes the Numeric Expression of subtracting fest1gpm from fest1.

Click the OK button to perform the function.
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3. Scroll across the columns, (A "ch2multivarMLLsav [DataSet1] - IBM SPSS Statistics Data Editor [E=g ™)
and the new graupz‘esl] Fle Edt View Data Transf A Direct Marketing Graphs Utities Add-ons Window Help
variable appears in th.e last @ H [’%‘ m e E % % H
column of the data window.

]Vm: 12 of 12 Varisbles
We will specify the target variable id | nschcnde| testl | test2 | ! : > I[gmupues,n
we wish to create (grouptest]) and 1 1 R4 66 S0.UDJS SETEIN 00 00} 4068
create the Numeric Expression 2 2 1 4792 5826 6433 .00 .00} 2.324
3 3 1 4912 5063 5574 .00 .00 3.52
test] - test1gpm. 4 4 1 3877 5093 4612 .00 00 683
5 5 1 4754 5153 6090 1.00 1.00} 1.94
We can now compare the three 6 6 1 4174 4882 5455  1.00 2.00} -3.86
variables: (a) zest1, (b) gmtest1, and 7 7 1 3283 4243 4873 .00 00 A2.77
(¢c) grouptest1. 8 8 1 5591 5636 6091 .00 00 10.31
9 9 1 5293 6375 6837 .00 .00 7.33
10 10 1 3947 4230 4415 .00 00} 613
1 11 1 4269 5243 5636 .00 .00} 291
4] e [ I3
Data View | Varisble View
‘ [ [BM SPSS Statistics Processoris ready| | | | |

TABLE 2.9 Descriptive Statistics

N Minimum Maximum Mean Std. Deviation

test] 8,335 24.350  69.250 47.644 6.325
gmtest] 8,335 -23.294 21.606 0.000 6.325
grouptest1 8,335 -22.897 22904 0.000 5.879

Valid N (Listwise) 8,335

Notice in Table 2.9 that while the uncentered zesz7 and the grand-mean-centered zesz variables
share the same distribution (but different means), the group-mean-centered zesz1 variable has
a mean of 0 (like the grand-mean version) but a different standard deviation. This results from
the variance in fesz] means across the schools in the sample—an artifact that will become very
important in subsequent analyses.

For reasons we will discuss in Chapter 4, researchers often enter dummy variables in the model
as uncentered (although there are occasions when analysts may also wish to grand-mean center
them), and they grand-mean center the continuous variables at Level 1 and Level 2. We will also
show how this logic generalizes to situations in which there are more than two levels of analysis.

Checking the Data

The diligent analyst always takes great care to examine the data thoroughly. As data sets for mul-
tilevel analyses can become quite complex, in terms of structure and content, great attention to
detail should be given when reviewing the contents of the data set. IBM SPSS has a rich set of
tools for the exploratory analysis of the data. The IBM SPSS EXPLORE routine, for example,
can provide rich detail on data coding, distributions, missing data, and the like (this can be

accessed through the ANALYZE, DESCRIPTIVE STATISTICS, EXPLORE menu). From
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Chapter 1, it should be clear that missing data can prove to be a real headache when using IBM
SPSS MIXED or any other multilevel-modeling routine. We highly recommend that missing
data be carefully assessed to determine any patterns that may exist and to find remedies where
at all possible.

Beyond a careful examination of the data, thought should be given to model specification and
the distribution of residuals. Raudenbush and Bryk (2002, p. 253) point out that model specifica-
tion assumptions apply at each level and that misspecification at one level can impact the results
at other levels. Moreover, as with OLS regression at a single level, there are assumptions about
the distribution of the residuals that apply at each level in the multilevel model. Although we
do not spend a great amount of time addressing these important issues in this workbook, we do
recommend that the reader familiarize him- or herself with the possibilities that exist for model
checking in the multilevel framework.

A Note About Model Building

As will become clear in the chapters that follow, developing and testing multilevel models re-
quires a great deal of thought as well as trial and error. Even with a basic two-level model, there
are many intermediate steps over which the model evolves. Keeping track of this evolution is
essential for understanding the way the model is behaving and for replicating the models in
subsequent steps.

We have over the years developed a fairly simple naming scheme for our models and take
care to document each model as fully as possible. Moreover, while we may use the IBM SPSS
graphical user interface to develop the model, we always have IBM SPSS export the syntax so
we can save it for future reference. Our naming scheme is applied to the syntax files themselves.
At a glance, we can determine the type of model specified through the syntax (e.g., from a simple
ANOVA model to a fully specified three-level, random-slopes and intercept model). With the
syntax for each model saved and annotated, we can always document the evolution of model
specification and easily modify models at any point in the future. We will have more to say about
this throughout the workbook.

Summary

'This chapter has provided an overview of the data management tools necessary for understand-
ing and working with the hierarchical data files used in multilevel modeling. We have introduced
five primary commands for manipulating data files to suit the needs of univariate and multi-
variate analyses using IBM SPSS MIXED. There is, of course, a great deal more than could be
presented. Our main purpose in this workbook is, however, the modeling techniques themselves
rather than treating the more universal data management skills used to structure data within
IBM SPSS. The treatment provided in this chapter is designed to highlight the elementary skills
associated with data management relating to the specification of the multilevel model within

IBM SPSS.
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CHAPTER 3

Defining a Basic Two-Level Multilevel
Regression Model

his chapter introduces the basic approach to two-level multilevel modeling. The material

is challenging because the models are more complex than the general linear model, which
most readers will be familiar with from their basic statistics courses. Like everything else, how-
ever, one has to start somewhere. The general concepts we present in this chapter become more
familiar as one reads more research that makes use of multilevel techniques. After first reviewing
some basic concepts of the single-level multiple regression model, we develop the basic steps of
conducting a multilevel regression analysis using an extended example. Our intent is to develop
the rationale behind the specification of this general class of models in a relatively nontechnical
manner and to illustrate its use in an applied research situation. The methods presented in this
chapter should provide a basis for the application of these techniques to a wider set of research
problems in the chapters that follow.

From Single-Level to Multilevel Analysis

Statistical modeling depends on a family of probability distributions for outcome variables
(Agresti, 2007). We often use the term random wvariable to describe possible values that an out-
come may have. A probability distribution is a mathematical function that links a particular
observed outcome obtained in a sample to the probability of its occurrence in a specific popula-
tion. The most common example involves the sampling distribution of the mean from which
the probability of obtaining particular samples with a particular mean can be estimated (Azen
& Walker, 2011). Most commonly, the observed mean is assumed to result from a normal dis-
tribution of possible values around the population mean, which has some variance. We assume
that the general shape of this distribution resembles a bell-shaped curve; that is, the majority
of individuals are closer to the mean, and there are fewer individuals as the distance from the
mean increases. The normal distribution is commonly associated with continuous outcomes (i.e.,
variables measured on an interval or ratio scale). Other types of categorical (discrete) variables
(e.g., nominal, ordinal, and count) have different probability distributions and require other types
of analytic methods for optimal analysis. Examples include being proficient or not proficient in
reading, purchasing a sports car (among several possible types of cars), expressing a level of agree-
ment or disagreement on a political issue, or receiving a number of traffic tickets during a speci-
fied interval of time. Random values of these difterent types of categorical outcomes are obtained
from probability distributions (i.e., binomial, multinomial, and Poisson) other than the normal
distribution (for further discussion, see Agresti, 2007; Azen & Walker, 2011; Heck, Thomas, &
Tabata, 2012; Hox, 2010).

75
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Linear models (e.g., analysis of variance [ANOVA], analysis of covariance, multiple regres-
sion, and multivariate analysis of variance [MANOVA]) have long been used in the social sci-
ences to analyze data from experimental, quasi-experimental, and nonexperimental designs.
Univariate analysis, such as multiple regression, is concerned with examining the variability in a
single continuous outcome (or dependent) variable from information provided by one or more
predictor (or independent) variables. Multivariate analysis (e.g., MANOVA and factor analysis)
is the more general case of univariate analysis; that is, it facilitates the examination of multiple
independent and dependent variables in one simultaneous model. A commonality between these
univariate and multivariate approaches, however, is that they are confined to single-level analyses;
that is, either individuals are the unit of analysis or groups are the unit of analysis.

Multiple linear regression requires a continuous dependent variable (i.e., measured on an in-
terval or ratio scale) and can handle both continuous and dichotomous (e.g., gender) indepen-
dent variables. It cannot handle categorical variables (i.e., referred to as factors in analysis of
variance terminology) without recoding them in some way. There are two broad conceptual ap-
proaches to the regression model, predictive and explanatory. Through the predictive approach,
the analyst uses the multiple regression model to optimize predictions about an outcome based
on values of a set of independent variables. The linear regression model assumes that a unit in-
crease in the independent variable is related to an expected constant change in the dependent
variable. For example, we might wish to predict someone’s likely starting salary in a new job if she
or he has a certain level of education and experience. For the linear model to hold, it is assumed
that an increase in education (or experience) will bring an expected similar change in starting
salary, regardless of where someone starts in terms of education. In this type of single-level
regression model, the coefficients that describe the prediction equation (i.e., the intercept and
slope coeflicients for each predictor in the model) are generally considered as fixed values in the
population estimated from the sample data. For this type of research purpose, the focus of the
analysis is primarily on the efficiency of the prediction and the parsimony of variables included
in the prediction equation. In other words, the analyst hopes to make the best predictions using
the smallest number of variables.

The second broad approach is explanatory rather than predictive. Through the explanatory
approach, the analyst sets out to determine how a set of independent variables affects a de-
pendent variable and to estimate the magnitude of the effects for each independent variable.
For example, existing research may suggest that a particular model (e.g., consisting of iden-
tified market processes, individual background, and perhaps organizational factors) interacts
in a way that influences beginning salary. The focus in this type of study rests on the correct
specification and testing of a theoretical model that is under consideration. In this case, it is
important to include in the model a set of variables identified as important by theory and previ-
ous research. More specifically, the researcher formulates a model from theory, tests the model
against the data, and determines how well the empirical test of the model conforms to theoretical
expectations.

Of course, these goals are not mutually exclusive. We distinguish between these two goals,
however, because in predictive studies variables might be retained in a model only because they
are statistically significant and dropped simply because they are not (Heck & Thomas, 2009).
In other words, theory would not enter into decisions about model efficiency. In contrast, in the
explanatory approach, the specification of the theoretical model should be carefully considered,
and subsequent changes (i.e., whether to add or remove a variable from a model) should be made
sparingly with careful attention to theory. Otherwise, it may be difficult to attach any substan-
tive meaning to the final model. This latter point has particular relevance to the investigation of
multilevel data (i.e., data on individuals and the groups they define) that tend to go with more
complex theories about how processes operate across multiple social groupings.

Although researchers were aware of problems due to the nesting of individuals within higher
level units of the data hierarchy in the past, the presence of similarities among individuals in the
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same groups did not enter directly into single-level analyses. For example, in analyses of large-
scale survey data, the analyst typically applied sample weights to address the oversampling of
some subgroups in the data set (e.g., by socioeconomic status [SES] or by ethnicity). Failure to
account for similarities among individuals (due to grouping) within the study, however, can lead
to biased estimates of model parameters and therefore erroneous conclusions about the effects of
some predictors in the model (Thomas & Heck, 2001).

Multilevel modeling represents a compromise between modeling each unit separately and
modeling all unit contexts simultaneously within the same model (Kreft & de Leeuw, 1998).
These models obviate the forced choice of conducting either an individual-level analysis or a
group-level analysis. We use the term multilevel model with respect to two separate statistical ob-
jectives described within one model. The first objective concerns inferences made about a model’s
structural parameters (Morris, 1995), often referred to as the model’s fixed effects. The second
objective concerns inferences about the unknown variance parameters in the model, referred to as
the random parameters (Morris, 1995). Although researchers are generally most interested in the
model’s structural parameters, the distribution of a model’s random parameters (e.g., variances
and covariances) is also of interest.

There are several advantages of multilevel analysis over traditional single-level univariate and
multivariate approaches (Heck & Thomas, 2009). First, as we have stated, multilevel analysis
helps researchers avoid the choice of individuals or groups as the unit of analysis. Second, it allows
researchers to deal with more complicated sampling strategies. Single-level analyses are based on
the assumption of simple random samples. In many data collection strategies, however, individu-
als may be sampled within the same neighborhoods or schools, or subgroups of individuals (e.g.,
by ethnicity or SES) may be oversampled compared with their representation in the population.
Such complex sampling strategies create clustering effects that violate the assumptions of simple
random sampling (i.e., that every individual has an equal chance of being selected in the sample).
'Third, where similarities among individuals are present (e.g., clustering effects due to sharing
similar circumstances), multilevel models are acknowledged to provide more accurate estimates
of model parameters than single-level analyses (Hox, 2002). This is primarily due to their greater
accuracy in calculating standard errors associated with parameter estimates. Because hypothesis
tests are based on the ratio of the unstandardized estimate to its standard error, ignoring the
presence of nested data structures can lead to underestimating standard errors and, therefore,
false inferences about the significance of model parameters (Thomas & Heck, 2001). Fourth,
multilevel analysis allows the researcher to define variables at their correct theoretical level of
the data hierarchy. So, for example, in a two-level hierarchy, a variable such as school size can be
determined with respect to the number of schools in the sample, while a variable like gender can
be evaluated with respect to the number of individuals in the sample. Finally, multilevel modeling
allows researchers to ask more complex questions about the data. One is about the distribution of
outcomes (e.g., means or regression slopes) across a sample of groups (such as schools). We may
attempt to determine what types of school variables might reduce gaps in student learning due
to socioeconomic status or previous skill levels. Examples might include the quality of a school’s
teachers, its leadership practices, and its classroom learning activities.

Building a Two-Level Model

'The basics of multilevel modeling involve the investigation of randomly varying outcome param-
eters. These typically include variation in the levels of the outcome (intercepts) and the strength
of within-group relationships indicated by regression coeflicients (slopes) across groups. Once
we identify that variation exists in the parameters of interest, we can build models to explain this
variation. As we suggested in Chapter 1, in some cases, we may have a specific theoretical model
in mind that we wish to test; in others, however, we might be trying to explore possible new
mechanisms that explain this variation.
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Consider an analysis where the researcher wishes to determine whether there is an associa-
tion between a predictor, X, such as SES, and an outcome, Y, such as a math test score. Because
the current educational policy context in the United States demands increasing accountability
for student outcomes, schools are accountable for reducing gaps in achievement due to students’
social backgrounds. Such concerns are related to the social distribution of learning within schools
(e.g., see Lee & Bryk, 1989). Ideally, we may wish to identify school settings where achievement
is generally high for all the students in the school and where there is little or no relationship
between student SES and outcomes. Such schools would be considered both effective (i.e., pro-
ducing high achievement outcomes) and equitable (i.e., having little or no social distribution of
learning due to students’ social backgrounds). In contrast, we may also wish to identify schools
where achievement is consistently low for students and where student SES background is conse-
quential for their outcome levels. We might be able to intervene effectively (e.g., increase teacher
quality and reallocate resources) if we could identify such settings that are ineffective and ineq-
uitable for students.

Research Questions

Our first research question focuses on whether student achievement in math varies across schools.
We can ask simply: Does student math achievement vary across schools? We might then inves-
tigate the relationship between students’socioeconomic status and their math achievement. Sec-
ond, we might ask whether the effects of individual SES tend to compound at the school level
to influence student math achievement; that is, do both individual-level SES and school-level
aggregate (or average) student SES influence math achievement? Third, we investigate whether
features of schools’ contexts (i.e., student composition and type of school) and their academic
environments (i.e., the proportion of students planning to attend 4-year universities after they
graduate from high school) affect the relationship between individual student SES and math
achievement. More specifically, we ask: Do features of schools’ contexts and academic environ-
ments moderate the relationship between individual student SES and math achievement? Our
research questions, therefore, provide an illustration of building a two-level model to investigate
(a) a randomly varying intercept (math achievement level) and, subsequently, (b) a randomly
varying slope (i.e., the individual SES—math achievement relationship).

The Data

The data set used in this example consists of 6,871 secondary students in 419 schools (see

Table 3.1).

Specifying the Model

We will begin with a single-level analysis (i.e., considering only the students and not their nest-
ing within schools) as a starting point. One typical research question for a single-level analysis
might be: Is there a relationship between students’ SES background and their achievement levels
in math? We might hypothesize that socioeconomic status is positively related to the subject’s
score on the math test. The single-level multiple regression model to explain an individual’s (1)
math achievement outcome would be

Y, =B+ BSES; + €, (3.1)

where f, is the intercept, §; is a slope parameter, and &; represents error in predicting individual
outcomes from the equation. The intercept represents the expected math achievement score for
a student whose SES is 0. It is important to consider the scaling of the independent variable
or variables in a model. In this simple case, because SES (which is a continuous variable) was
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TABLE 3.1 Data Definition of ch3multilevel.sav (N = 6,871)

Variable Level Description Values Measurement
schcode  School School identifier (419 schools). Integer Ordinal
Rid Individual A within-group level identifier representing a sequential 1 to 37 Ordinal
identifier for each student within 419 schools.
id Individual Student identifier (6,871 students). Integer Ordinal
female  Individual Demographic predictor variable representing 0 = Male Scale
student’s gender. 1 = Female
ses Individual Predictor interval variable (z-score) measuring student -2.41to Scale
socioeconomic status composition within the schools. 1.87
femses  Individual Predictor variable (grand-mean centered) measuring -2.41 to Scale
student socioeconomic status by gender (female). 1.85
math Individual Student math achievement test score. 27.42 1o Scale
99.98
ses_mean School Predictor variable (grand-mean centered) -1.30 1o Scale
measuring student socioeconomic status. 1.44
prodyrc  School Variable measuring the school’s academic 0.00 to Scale
program (i.e., aggregate percentage of students 1.00
who intend to study at 4-year universities).
public  School Dichotomous variable identifying school type. 0 = Other Scale
1 = Public
School

¢ Individual = Level 1; school = Level 2.

standardized (i.e., rescaled into a standardized score, or z-score), the mean is O and the standard
deviation (8D) is 1.0.This is often a convenient scale for continuous variables in multilevel model-
ing, since a score of 0 on SES, therefore, represents the score for a person whose SES background
is equal to the SES grand mean for the sample. We discuss these types of centering options in
further detail at the end of this chapter and also in Chapter 4. The slope coeflicient (f;) represents
the expected change in math achievement for a 1-unit (in this case, 1 SD) change in SES.

'The key point about a single-level model is that the estimates of the intercept and slope are
each fixed to one value that describes the average for the sample. For example, the slope express-
ing the relationship between SES and math scores will be the same across all cases. This also
means that the errors (€) in estimating the intercept and slope parameters are assumed to be
independent, to be normally distributed, to have constant variance, and to have a mean of 0.

To examine her research question preliminarily, the researcher might first develop a scatterplot
of the relationship between student SES and math achievement. To illustrate this in relation to
single and multilevel designs, we will develop a scatterplot for the first 80 students in the data
set. The resulting graph is summarized in Figure 3.1. The figure suggests that as student SES
increases, so do math scores. The goal of the overall analysis is to determine the best-fitting line
that describes the relationship between student SES and test scores in this sample. This is ac-
complished by estimating values for the intercept and slope. Of course, once we estimate the
predicted values for each subject on the two variables, there will be a discrepancy between the
predicted values (which would lie on the line) and subjects’ actual values on the SES and math
test score measures. The difference between observed and predicted values is represented as error.
'The intercept coeflicient represents the average level of student scores when SES is 0 (which
represents a mean adjusted for SES), and the slope represents the average effect of SES on the
math score across the sample of students. These values become “fixed” for the entire sample; that
is, because individuals are randomly sampled, it is assumed that the value represents population
averages.
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FIGURE 3.1 Regression line describing the fixed intercept and slope for student SES and math achievement.

Fixing the values of the intercept and slope results in the regression line in Figure 3.1 that sum-
marizes the relationship between SES and math test scores. The principle of least squares states
that the correct regression line is the one that best fits the data points. Model fit is assessed by
summing the squared distances of each observed value from the predicted value that rests on the
regression line. The line that minimizes the sum of these squared distances (they are squared to
cancel out positive and negative errors above or below the line) is said to fit the data best; hence,
the term /east squares regression (Neter, Kutner, Nachtsheim, & Wasserman, 1996). In the linear
regression model, the error term is a random source of variation, which we assume is 0 on average
and normally distributed, varies independently of X and has constant variance across all levels of
X.Interested readers can reproduce the scatterplot in Figure 3.1 in IBM SPSS menu commands.

Graphing the Relationship Between SES and Math Test Scores with IBM SPSS Menu Commands

Launch the IBM SPSS application
and select the data file: ch3multilevel.sav.

1. Go to the toolbar and select DATA,
SELECT CASES.

'This command will open the Select Cases
dialog box.
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2a. Within the Select Cases dialog box, [0 setect cases =)
select the option Based on time or
) . . Select
case range, which will activate the I Er—
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b. Click on the RANGE button, g:‘:m! |
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4. Click the SIMPLE SCATTER option in the
Scatter/Dot box. Then click the DEFINE button to
open the Simple Scatterplot box.
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5a. Within the Simple Scatterplot
box, click to select the math
variable from the left column.
Then click the right-arrow
button to move math into the

Y Axis box.

b. Next, click ses to select the
variable from the left column,
and then click the right-
arrow button to move the
variable into the X Axis box.

Click OK to generate the scatterplot.

6. The IBM SPSS
output will display the
scatterplot.
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open the Chart Editor.
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7. On the Chart Editor short-cut icon
bar, click the ADD FIT LINE AT
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As Figure 3.1 emphasizes, in a single-level linear model, the coefficients describing the in-
tercept and slope are generally considered as fixed values in the population estimated from the
sample data. As shown in Table 3.2 on page 84 (based on an analysis of the full sample), the in-
tercept is estimated as 57.598.This can be interpreted as the sample mean adjusted for individual
SES (note that, while not shown, the sample mean unadjusted for SES is 57.734). Referring back

to Equation 3.1, we obtain the following estimated linear relationships to explain achievement:

Y = 57.798 + 4.255 * SES,

where Y, (or Y hat) indicates that the predicted value of Y, is equal to the estimated intercept plus
the coeflicient for SES (plus some unknown error). The unstandardized regression coeflicient
describing the effect of individual SES (8,) on math achievement is 4.255. The slope coefficient
suggests that, on average, as student SES goes up by 1 unit (in this example, 1 SD), the predicted
student test score would be expected to increase by 4.255 points to 62.053 [57.798 + 4.255(1)].
'This is arrived at by multiplying the regression weight (4.255) by the desired 1-unit increase in
SES. If we wanted to know the predicted value, a student’s test score for a 2-unit increase in SES
(i.e., in this case, a 2-SD increase), we would multiply as follows:

Y =57.798 + 4.255(2),

where the predicted of Y, would then be 66.308 [57.798 + (4.255)(2) = 57.798 + 8.510]. We
note in the output that in the single-level analysis we also have a standardized regression weight
(0.378), which provides a common metric for examining the effects of predictors on the outcome.
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TABLE 3.2 Coefficients®

Standardized

Unstandardized Coefficients  Coefficients
Model B Std. Error Beta t Sig.
1 (Constant) 57.598 0.098 586.608 .000
ses 4.255 0.126 0.378 33.858 .000

@ Dependent variable: math.

TABLE 3.3 ANOVA-“

Model Sum of Squares df Mean Square F Sig.
1 Regression 75,813.316 1 75,813.316 1146.382 .000k
Residual 454,265.500 6,869 66.133
Total 530,078.816 6,870

° Dependent variable: math.
b Predictors: (Constant), ses.

For a continuous predictor, such as SES in this case, this can be interpreted as a 1-SD increase
in the predictor producing a 0.378-8D increase in the math outcome. As we noted in Chapter 1,
most multilevel software programs do not produce standardized estimates as part of the output,
given various ways of standardizing estimates and the changes in the model’s variance compo-
nents that can result from standardizing estimates when there are random slopes in the model
(Heck & Thomas, 2009; Hox, 2010).

'The analysis also provides a table describing the variability in math achievement accounted for
by the predictors in the model (Table 3.3). This can be used to estimate the variance accounted
for in achievement by mean student composition and individual SES. From the table, we can
calculate R? as the ratio of the regression variance to the total variance (75813.3/530078.8 =
0.143).

As we have noted, however, there would likely be problems in the accuracy of this analysis.
'The assumptions necessary for multiple regression models to yield the best, unbiased estimates
are most realistic when the data have been collected through simple random sampling. Random
sampling assumes that subjects in a study are independent of each other. As groups are added as
a feature of a study, however, this assumption becomes more tenuous. In large-scale educational
research, for example, simple random sampling would rarely be used. Instead, various types of
complex sampling strategies are employed to select schools, classrooms, and students. These can
include multistage-sampling strategies where individuals may be sampled within various groups
and the likely oversampling of some groups. Clustered data, therefore, result from the strate-
gies used in large-scale databases, as well as the natural groupings of students in classrooms and
schools.

Single-level analyses are appropriate when there is little interest in considering group-level
influences on the outcomes. The key point about a single-level model is that the estimates of the
intercept and slope are each fixed to one value that describes the average for the sample.

'The single-level regression model cannot take into consideration that the students may be
clustered within a number of schools with other students having similar backgrounds and math
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scores. In our example, the multiple regression analysis does not take into consideration that
students are nested within the 419 schools in the sample (or that the estimated slope might
be different between these schools). Multilevel models imply that individuals are “clustered”
in higher order social groupings (a department, a school, or some other type of organization).
In these types of studies, simple random sampling does not hold because people clustered in
groups will tend to be “similar” in some ways. In this example, the size of the student samples
within their schools ranges from 12 to 37 (mean = 17.4, §D = 4.74). If the clustering of stu-
dents is ignored, it is likely that bias will be introduced in estimating the coefficients and their
standard errors.

We can again develop a scatterplot of the relationship between students’ SES and math
achievement from Figure 3.1, this time taking into consideration their schools (i.e., in this case
the 80 students are in six schools). We can therefore estimate a separate regression equation
for each school. Each school would have its own intercept (describing the level of its students’
outcomes adjusted for SES) and a slope (describing the relationship between SES and math
achievement within that school). Where data hierarchies exist, the school intercepts (i.e., average
math scores adjusted for student SES) would likely vary across the sample of schools in the study.
Moreover, there might be some schools where the effect of student SES on math achievement
(represented by the slope of regression line) is greater than or less than the average (or fixed)
effect. There might also be some schools where there is no relationship at all. In other words,
where there are clustered data, it is likely that there is a distribution of both intercepts and slopes
around their respective average fixed effects. In this situation, we might wish to investigate the
“random” variability in intercepts and slopes across the sample of higher level units in the study
(e.g., classrooms, schools).

Figure 3.2 presents the relationship between SES and math achievement for the previous
subset of 80 individuals nested in six schools. The figure suggests that the slope relationship
accounts for differing amounts of variance within each unit (i.e., with R? coefficients ranging
from 0.02 to 0.205). This suggests considerable social distribution of math learning within
these six schools.
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FIGURE 3.2 Randomly varying SES-achievement slopes in six schools.
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Graphing the Subgroup Relationships Between SES and Math Test Scores
with IBM SPSS Menu Commands
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Multilevel modeling can be used to specify a hierarchical system of regression equations that
take advantage of the clustered data structure (Heck & Thomas, 2009). Multilevel regression
modeling involves first estimating a Level 1 model within each higher level unit (e.g., schools)
and then estimating a series of between-unit models using the within-unit estimates (i.e., inter-
cepts or slopes) as dependent variables. In contrast to a single-level regression model, where the
impact of a variable like SES is assumed to be fixed across all individuals in the sample, within
multilevel regression modeling one can specify a single-level regression equation that can be
estimated within each school (as shown in Figure 3.2). In this way, the researcher can determine
whether the effect of SES on math achievement is stronger or weaker in some schools. The for-
mal test of this is whether the distribution of slopes (i.e., the R? coefficients in Figure 3.2) varies
significantly different across units.

In this case, the researcher might be interested in estimating the average intercept and the
SES effect on math achievement across the set of schools, as well as determining how particular
schools deviate from the overall average intercept and average SES-achievement slope. Although
the researcher’s primary concern is usually with a model’s structural parameters (e.g., the level of
achievement and the average effect of SES on achievement), in some cases examining the ap-
propriateness and distribution of the random variance parameters (e.g., variance associated with
intercepts, slopes, and covariances between intercepts and slopes) may be of equal interest to the
researcher. In a multilevel model, the math achievement intercept and the SES-achievement
slope can be defined to vary as probability distributions across the set of schools. The variability
of intercepts (i.e., where each unit’s regression line crosses the Y axis) and slopes (the steepness
of each institution’s regression line) gives rise to different types of questions that can be asked of
the data. In addition to our initial research question (Is there a relationship between student SES
and math achievement?), we can now ask other questions of the data.

If we inspect Figure 3.2 visually, it looks like the levels of the intercepts vary considerably
across the six schools. For example, in one school, a student somewhat below 2 §D in SES would
have a math score of about 34.0. In contrast, in another school, a similar student (somewhat
below 2 8D in SES) would score approximately 61.0 in math. This observed variability in in-
tercepts gives rise to a second question: Do the average math scores students receive vary across
schools in the sample? Answering this question would provide information about each school’s
effectiveness, given the SES background of its students. The figure also suggests the possibility of
randomly varying slopes in the data set. Five of the six schools in our illustrative subsample have
positive slope relationships, and one school has a negative slope relationship. One can also notice
that the R? coeflicients associated with the slope relationship within each unit, which summarize
the strength of the relationship between student SES and math, also vary considerably in the
first six schools (i.e., from 0.02 to 0.21). This small data set suggests that there may be schools
where there is little gap in math achievement due to students’ SES background. These schools
could be viewed as more equitable in terms of the social distribution of learning due to students’
social backgrounds (e.g., SES or perhaps gender and race/ethnicity if we were to include those
variables).

In other schools, students’social background might be very consequential in determining their
achievement. A second question that could be posed is the following: Do the slopes (i.e., the
strength of relationship between student SES and math achievement) vary across schools? An-
swering this question would provide information about schools’ equity in producing outcomes,
given the social backgrounds of their students. We might examine whether the relationship be-
tween individual SES and math achievement is stronger or weaker in schools of differing average
social composition. Moreover, we can investigate whether there is a difference in the strength of
association between individual SES and achievement in public and private schools or in schools
having a stronger academic focus, after controlling for the mean SES level at the school.

Parameters that are proposed to vary randomly across units are referred to as random effects or
random coefficients from various statistical perspectives. In experimental research, for example,
a random effect describes a situation where the levels of a treatment are assumed to represent a
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sample drawn from a universe of treatments or treatment levels. Because the effect is considered
as randomly varying across a universe of treatment levels, the intent is to make inferences be-
yond the specific treatment levels included in the study. The effects, therefore, are not assumed
to be constant. In contrast, a fixed effect describes the situation where all possible treatments are
present in the experiment (Kreft & de Leeuw, 1998). In this latter case, inferences can only be
made about the specific treatments used. The effects are considered to be constant and measured
without error because all possible cases are included.

Unlike single-level (ordinary least squares [OLS]) regression, where random errors are as-
sumed to be independent, to be normally distributed, and to have constant variance, in multilevel
models the error structures are more complex. The individual-level errors are dependent within
each unit because they are common to every individual within that unit (Heck & Thomas, 2009).
Errors do not have constant variance because the residual components describing intercepts
and slopes may also vary across units. The estimation of these unknown random parameters as-
sociated with intercepts or slopes may also depend on characteristics of the data (e.g., sample
size, degree of imbalance in sample sizes of higher level units, and degree of similarity among
individuals within groups), the type of analysis conducted, and the measurement scale of the
dependent variables (Muthén & Muthén, 1998-2006; Raudenbush & Bryk, 2002). Because the
model’s random parameters must be estimated with group samples containing differing numbers
of individuals, iterative estimation procedures must be used to obtain efficient estimates (Muthén

& Muthén, 1998-2006).

Building a Multilevel Model with IBM SPSS MIXED
We can use IBM SPSS MIXED to run a variety of different multilevel cross-sectional and lon-

gitudinal (e.g., growth) models. The program is flexible and can be used to estimate a number of
different types of models with random intercepts (i.e., means that vary across groups) and ran-
dom slopes (i.e., within-group regression coeflicients that vary across groups). It is also useful in
looking at individual change over repeated measurements or in studies of changes of individuals
within organizations over time. In addition, it can also be applied to situations where individu-
als may be cross-classified by higher level groupings (e.g., in several different classrooms within
schools or within various high schools and subsequent universities). In the chapters that follow,
we develop each of these possibilities in more detail. In the remainder of this chapter, we focus
on the univariate cross-sectional multilevel model.

'There are several ways to develop models using IBM SPSS MIXED. Some users prefer the
IBM SPSS graphical user interface (GUI), while others favor using syntax statements to define
the model. We will build models in the chapters that follow using the GUI, and we also provide
some of the key syntax in Appendix A. As we mentioned in Chapter 2, syntax can be very use-
ful on occasions since one does not have to return to the specific window to make successive
changes in a model that is being investigated. Syntax also provides a record of what has been
done previously. This record can be saved and used on subsequent occasions without having to
set the model up again through the IBM SPSS menu system (i.e., GUI). We have found that
small differences may result depending on whether models are developed with syntax commands
or the GUI (e.g., owing to some default commands that users may not specify with the syntax
commands). Also, we note that if users have different versions of IBM SPSS (e.g., Version 15
forward), estimates may be slightly different (owing to different default rounding procedures).
In this chapter, we take the reader through the steps in the IBM SPSS GUI to develop the basic
two-level regression model. An alternative to writing your own syntax is to develop models using
the IBM SPSS GUI and then tell IBM SPSS to generate the syntax (which is then pasted into
a syntax window). Although we use the GUI interface, we will also demonstrate how to gener-
ate syntax through the menu system. We follow this convention throughout the remainder of
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the book. Note that all screen shots from the IBM SPSS GUI provided here are based on IBM
SPSS for Windows Version 21.0.0.1 (64 bit).

Examining Variance Components Using the Null Model

There are three distinct steps in developing the multilevel model. We develop these in this chap-
ter in the following order: (a) specification of the null, or no predictors, model; (b) specification
of the Level 1 model; and (c) specification of the Level 2 model. This latter step can include the
model to explain intercepts and the model or models to explain randomly varying slopes. The
first step in a multilevel analysis usually is to develop a null (or no predictors) model to partition
the variance in the outcome into its within- and between-groups components. This will help the
researcher determine how much of the variance in math achievement lies between the schools
in the sample. Notice that in Equation 3.2, we add a subscript for schools (7). The null model for
individual 7 in school j can be represented as

Y;=By+e€; (3.2)

where 3, is the intercept and € represents variation in estimating individual achievement within
groups. Between groups, variation in intercepts can be represented as

Boj = Yoo + - (3.3)
Through substitution, the null model can be written as

'The null model therefore provides an estimated mean achievement score for all schools. It also
provides a partitioning of the variance between Level 1 (g;) and Level 2 (). Altogether there
are three effects to estimate: the intercept, the between-school variation in intercepts (z,), and
the variation in individual scores within schools (g;).

'This model also provides a measure of dependence within each Level 2 unit by way of the
intraclass correlation (p). The intraclass correlation (or ICC) describes the proportion of vari-
ance that is common to each unit, as opposed to variation that is associated with individuals
within their units. It can be thought of as the population estimate of the amount of variance in
the outcome explained by the grouping structure (Hox, 2002). The proportion of variance found
between groups can be calculated in IBM SPSS by using either the Variance Components or
MIXED procedures. Both will give the same estimation of within-groups and between-groups
variance components. As we noted in Chapter 1, the ICC can be represented as

p=oc,/(c,+0,), (3.5)

where o represents the variance and B and W stand for between groups and within groups, re-
spectively. (Refer to Appendix C for a syntax routine that enables calculating rho from a model’s
variance components.) Stated difterently, the ICC is the ratio of between-groups variance to the
total variance. The higher the ICC, the more homogeneous are the units (i.e., there exists sub-
stantial variability between schools). In contrast, if the ICC is quite small (i.e., researchers often
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use 0.05 as a rough “cutoff” point), then there would be little advantage to conducting a multi-
level analysis. Simply put, the higher level grouping does not aftect the estimates in any mean-
ingful way. In these cases, a single-level analysis conducted at the individual level would suffice.

Defining Model 1 (Null) with IBM SPSS Menu Commands

- [ €2 ch3mltitevelsav [DataSet1] - IBM SPSS Statistics Data Editor (=2 E ]
aunch the pro
gram application and select the Ele Edt Vew Deta Transform| Analyze DirectMarketing Graphs Utities Add-ons Window Help
; E— D - = -.
ch3multilevel.sav data file. % =) ) Reports 8
¥ | Descripive Statistics D sl
1. Go to the toolbar and | Tables X Fo B e
select ANALYZE schcode | Ri  CompareMeans » | ses | femses |
’ 1 1 General Linear Model > 59 59 |~
MIXEf MODELS, 2 1 Generalized Linear Models b 30 .30
LINE R Z 1 Mixed Models | Linear... b
. 4 1 Correlate » | B Generalized Linear...
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. . 5 1 Regression 3 .00 .00
to the Linear Mixed Models: 6 1 e S 11 00
Specify Subjects and Repeated 7 1 Netral Ned wekks » .33 00
dialog box. 8 1 Classify 3 -89 -89
9 1 Dimension Reduction 3 21 .00
10 1 Scale 8 -34 -34
1 1 Nonparametric Tests » =17 .00
12 1 Forecasting 3 -1.07 -1.07 |
4 I s Survival 3 | ’l
DataView | Variabie View ||  Muliple Response 2
|Linear... i L [ missing Value Anaiysis... cessorisready| | | | |
Muitiple Imputation »
Complex Samples >
Quality Control 3
IEM SPSS Amos...
2. 'The Linear Mixed Models: Specify Subjects and {2 Linear Mixed Models: Specify Subjects and Repeated =
Repeated screen displays options for defining
variables as subjects, repeated observations, and A O £ R S
type of covariance structure in a model. SESCH Sublect vareble for Sodels wilh Corrsmed taedo offecis
Specify both Rep d and Subject for modeis with correiated
A subject is an observational unit that may be e e
independent of other subjects. For this model, we F = N ! R
will designate schcode as a subject identifier for the & e .
model. ol 4 | % |
& temake —
Click to select schcode from the Variables column :;?::m
and then click the right-arrow button to move the & mann P
variable into the Subjects box. & ses_mean
f prodyrc |T
. . biic
Click the CONTINUE button to display the . +)
Linear Mixed Models dialog box.
Repeated Covariance Type: | Dacon ¥ |
LI}Cmm..e || Reset cancel || Hep |




3. The Linear Mixed Models main screen
enables specifying the dependent
variable; factors; covariates; access
to dialog boxes for defining Fixed
and Random eftects; and options for
Estimation, Statistics, EM Means, and
Save.

At Level 1, we will use math as the de-
pendent variable. Click to select the mazh
variable from the left column listing. Then
click the right-arrow button to transfer
math into the Dependent Variable box.

Since this first model (null) excludes

predictor variables, as summarized by Equation
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#3 Linear Mixed Models

Dependent Variable:
& math

Eactor(s):

ol scheode | = J

Statistics...

|
Covariate(s): EM Means... |
Saye...
& ses_mean - ! |
.f prodyre ﬂootstrap..._|
bic
é’ o Rescual Weght
oK Paste Reset Cancel Help
Y =5,+5 (Eq.32)

3.2, we will skip over the FIXED button, which

enables adding fixed effects to a model.

Next, we will add random intercept effect at Level 2 to this model. Click the RANDOM button to
access the Linear Mixed Models: Random Effects dialog box.

4. The Linear Mixed Models: Random
Effects displays the Random Effect
1 of 1 screen. This is the default
screen when creating a model for
the first time. The random-effects
screen allows specifying random
effects, interactions, intercept
terms, and subject groupings.
a. The default covariance structure

is Variance Components (VC).

VC is the default covariance
structure for random effects.
'This specifies a diagonal cova-
riance matrix for the random
effects; that is, it provides a sepa-
rate variance estimate for each
random effect, but not covari-

{3 Linear Mixed Models: Random Effects

Random Effect 1 of 1

Coyariance Type: Variance Components %

Random Effects

*) Buid terms () Buid pested terms
Eactors and Covariates Modet
Factorial -
¥
Subject Groupings
Subjacts. Combinations:
schcode ] | il schcode
Y |
|
Continue Cancel | Help

@-’ [¥] nclude intercept

-

ances between random effects.

In this case, there is only one random effect (the intercept), so we can use the default VC.
For models with random intercepts and slopes, a common choice is an “unstructured” (UN),
or a completely general, covariance matrix, which fits all variances and covariances between ran-

dom effects.

b. We want the intercept to be included in the model, so click the Include intercept option.

c. 'The Subject Groupings box displays the schcode variable that was specified as a subject variable
in the Specify Subjects and Repeated dialog box shown in step 2. We will specify schcode as the
subject for the random-effects Level 1 part of this model. Click to select schcode then click the
right-arrow button to move the variable into the Comébinations box.

Click the CONTINUE button to return to the Linear Mixed Models dialog box.




92 B Defining a Basic Two-level Multilevel Regression Model

5. In the Linear Mixed Models dia- &R Linear Mixed Models -
log box, click the ESTIMATION »
button to access the Linear Mixed @ Linear Mixed Models: Estimation ‘*'---.._l“él — [ Fed..
Models: Estimation dialog box. The =
estimation method choices are Likeihood (REML)
maximum likelihood (ML) or | O Maximum Liceihood (ML)
restricted maximum likelihood s .
(REML). In ML, both regression | Maximum gerations: [ |
coefficients and variance compo- Maximum step-halvings: o]
nents are included in maximizing [ Printneration pistory forevery. [1___ ] %0p(0)

the likelihood function—that is, the
process of minimizing the differ-
ence between the sample covariance
matrix and the model-implied co-

rLog-Likelihood Convergence

(3) Absolute () Relative

Vaue |g -

1

variance matrix. In REML, only the rParameter Convergence
variance components are included in © Apsowte © Reitive
. . . . . Vale |0.000001
estimating the likelihood function; . 5
thus, REML is a restricted solution. Hessian Convergence-
. . (5) Absolute ) Relative
Because in REML the regression coef- Vaue

ficients are considered to be unknowns,
taking the loss in degrees of freedom due

Maximum scoring steps: | 1 |

to estimating P + 1 regression coefhicients Singuiarty tolerance: |0,000000000001 2
in the model results in unbiased estimates

of variance components when there are \_DYC""“'“ J| concet || ne» |
small numbers of groups (Snijders & ’

Bosker, 1999). With sufficient numbers

of groups, the differences in estimation methods are negligible. In this chapter and subsequent chapters,
we will use REML to estimate the models when we are not making comparisons between successive
models using modeling fit criteria involving both regression coefhicients and variance components. In
this latter situation, ML estimation should be used (Hox, 2010).

Click the CONTINUE button to return to the Linear Mixed Models dialog box.

6. In the .Linmr Mixed Models dialog £2 Linear Mixed Models = ]
box, click the STATISTICS button > :
to access the Linear Mixed Models: @ Linear Mixed Models: Statistics ‘e--% s ] Lo Fled -
Statistics dialog box. MRy Stifiatics i | v, Rapdom.
e
. ) [ ] Descriptive statistics bggtmeton... |
Click and select the following three = _ o
T . ; ["] case Processing Summary Statistics. ]
statistics to be included in the output: “Niodel Statistics [ emeans.. |
Parameter estimates, Tests for covariance [ e J
|

parameters, and Covariances of random

effects.

Click the CONTINUE button to return
to the Linear Mixed Models dialog box.

[v] parameter estimates l_ Saye...
[v] Tests for covariance parameters

["] Corrglations of paramater estimates
[7] covariances of parameter estimates l

[v] Covariances of random effects — - -
i H
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Confidence interval |g5 | %
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Interpreting the Output From Model 1 (Null)

The first table (Table 3.4) in the resulting output summarizes the total number of parameters
being estimated (three). This is the same as we noted in Equation 3.4. The total parameters esti-
mated include the fixed-effect value for the intercept, random Level 2 variance, and the Level 1
variance (referred to as “Residual” in the IBM SPSS output).

The column referred to as “Number of Levels” describes the fixed effects (1) and the number
of random effects (1). There is one fixed effect to be estimated (the intercept) and one random ef-
fect (the randomly varying intercept). The column referred to as “Subject Variables” indicates the
number of levels in the analysis (i.e., in this case, schcode [the school identifier] implies a two-level
analysis). The covariance structure describes the way the covariance matrix of random effects is
dimensionalized at the group level. In this case, we use the default (VC), which provides an esti-
mate of the intercept variance (07). However, in this first example, at Level 2 there is no random
slope variance (03) or covariance between the intercept and slope. In this case, the VC covariance
matrix will be the same as an identity matrix.

'The next MIXED output describes model-fitting criteria (Table 3.5). The -2* log likelihood

can be useful in examining the improvement of model fit when comparing two successive (or

TABLE 3.4 Model Dimension®

Number  Covariance  Number of Subject
of Levels Structure  Parameters  Variables
Fixed Effects Intercept 1 1
Random Effects  Intercept 1 Variance 1 schcode
Components
Residual 1
Total 2 3

@ Dependent variable: math.

TABLE 3.5 Information Criteria®

-2 Restricted Log Likelihood 48,877.256
Akaike’s Information Criterion (AIC) 48,881.256
Hurvich and Tsai’s Criterion (AICC) 48,881.257
Bozdogan's Criterion (CAIC) 48,896.925
Schwarz's Bayesian Criterion (BIC) 48,894.925

The information criteria are displayed in smaller-is-better forms.
@ Dependent variable: math.
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nested) models (i.e., by constructing a likelihood ratio test). Note that comparing nested models
with this test should only be done when using ML estimation (and not REML, unless only the
random parameters are compared). This output also includes other types of information about
overall model fit. We will discuss model fit in further detail in Chapter 4.

Table 3.6 reports the estimates of fixed effects in the model. The intercept (or grand mean for
school outcomes) is estimated as 57.674. This represents the average level of math outcomes in the
419 schools (and is close to the unadjusted mean of 57.734 for the 6,871 students in the sample).
'The variance component output (Table 3.7) indicates that the proportion of variance in achieve-
ment that lies between schools is 0.138. This can be calculated from Equation 3.5 [10.642/
(10.642 + 66.551) = 10.642/77.193], or 13.8%. The intraclass correlation provides a sense of the
degree to which differences in the outcome Y exist between Level 2 units; that is, it helps answer
the question of the existence or nonexistence of meaningful differences in outcomes between
the Level 2 units. The results of the null or no-predictors model (basically a one-way ANOVA
analysis) suggest that the development of a multilevel model is warranted. Because intercepts
vary significantly across schools (Wald Z = 10.346, p < .001), and the ICC suggests that about
13.8% of the total variability in math scores lies between schools, we can develop a multilevel
model first to explain this variability in intercepts within and between schools.

'The reliability of the sample mean for any unit as an estimate for its population mean can also
be assessed with information drawn from the variance components. This can provide the analyst
with a means by which the assumption of differences in outcomes across units can be checked.
Because sample sizes are likely to differ within each unit j, this reliability will vary across the
Level 2 units. Reliability within any particular unit can be estimated as

0_2

:m (3.6)

In this example, the within-group sample sizes range from 12 to 37. Using the within-group sam-
ple sizes, we can estimate the reliability for the smallest unit as 10.64/[10.64 + (66.55/12)] = 0.657.
'This is contrasted with the school that has 37 students tested: 10.64/[10.64 + (66.55/37)] = 0.855.

Our first type of multilevel question was the following: Do the average math scores students
receive vary across schools in the sample? We can answer that question from Table 3.7. The

TABLE 3.6 Estimates of Fixed Effects®

95% Confidence Interval

Parameter Estimate  Std. Error df t Sig.  Lower Bound Upper Bound
Intercept 57.674 0.188 416.066 306.344 .000 57.304 58.044

@ Dependent variable: math.

TABLE 3.7 Estimates of Covariance Parameters®

95% Confidence Interval

Parameter Estimate Std. Error Wald Z Sig. Lower Bound Upper Bound
Residual 66.551 1.172  56.802 .000 64.293 68.887
Intercept [subject = schcode] Variance 10.642  1.029 10.346 .000 8.806 12.862

@ Dependent variable: math.
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Residual parameter describes the variance due to differences among individuals within their
respective units. As the table suggests, there is significant variance to be explained within groups
(Wald Z = 56.802, p < .001). Similarly, the intercept parameter indicates that the intercepts vary
significantly across the sample of schools (Wald Z = 10.346, p < .001). The Wald Z test provides
a Z statistic summarizing the ratio of the estimate to its standard error.

Researchers have noted several problems with this statistic, which analysts may want to keep
in mind. First, the Wald Z test is a two-tailed test. Because variances cannot be smaller than 0
(i.e., the null hypothesis is that the parameter = 0), when using the Wald Z to test a variance
component, the test can be conducted as a one-tailed test (Hox, 2010). This means that when
testing variances (as in Table 3.7), the significance level can be divided by 2 to reflect a one-tailed
probability level. Of course, in this instance this will not make a difference, since the two-tailed
p value is very small. Note that for testing covariances between random effects (which can take
on positive or negative values), the two-tailed significance test can be maintained. Second, for a
large estimated variance coefficient, the standard error can be inflated, which lowers the Wald
statistic value and, therefore, can make it overly conservative. Third, the Wald Z test can also
perform poorly under conditions of extreme multicollinearity or where there are small sample
sizes and a variance component close to 0 since the test is based on a normal distribution (Hox,
2010). In situations with small samples, the likelihood-ratio test (which can be constructed from
IBM SPSS output) tends to be more reliable than the Wald test. This test, which is based on a
chi-square distribution, can be constructed from the difference in model deviance (i.e., defined as
-2"log likelihood) between two models (i.e., one with the parameter in question included versus
one with it excluded). Models with lower deviance generally fit better than models with higher
deviance. The chi-square difference test, however, is also a two-tailed test, so the significance level
should be divided by 2 if a variance component is tested (Berkhof & Snijders, 2001). Where
there may be a discrepancy between the equivalent Wald Z test and a likelihood ratio test, the
latter is preferred (Hox, 2010).

Building the Individual-Level (or Level 1) Random Intercept Model

We will first build a model to examine variability in intercepts across schools. The individual-
level model is represented as Equation 3.7, which suggests that students’ SES background affects
math achievement. In a multilevel analysis, we work primarily with three equations: a within-
group (or individual-level) equation, a between-groups intercept equation, and a between-groups
slope equation. For each individual 7 in school 7, a proposed model similar to Equation 3.1 (sum-
marizing the effect of student SES on math achievement) can be expressed as

Equation 3.7 suggests that at the individual level, within-groups student SES is related to
achievement levels.

Equation 3.8 (which is the same as Eq. 3.3) implies that variation in intercepts can be de-
scribed by a school-level intercept (yy), or grand mean, and a random parameter capturing varia-
tion in individual school means () from the grand mean:

Boj = Yoo + - (3.8)

Equation 3.9 indicates that a within-unit slope (e.g., SES-achievement) can also be examined as
randomly varying across units in the sample:

Bij = Y10+ (3.9)
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More specifically, the equation suggests that variability in slopes can be described by a school-
level average slope coeflicient (yy), or grand mean, and a random parameter capturing variation
in individual school coefficients (u;;) from the grand mean. Because the slope is considered to
be randomly varying across schools, the corresponding test of significance of the parameter will
be based on the number of schools in the sample. Often, in building models, we may treat the
within-group slopes as fixed in preliminary analyses (i.e., in situations where we are not testing a
particular hypothesized relationship). In the case where we wish to treat the within-group slope
as fixed (i.e., it does not vary across schools), Equation 3.9 would be rewritten as

Bii =710 (3.10)

As Equation 3.10 indicates, there is no random component (uy), so the slope coeflicient is fixed
to one value for the sample. In the case where the Level 1 slope coeflicient is fixed, the signifi-
cance test for the slope will be based on the number of individuals in the sample. If it turns out
that both intercepts and slopes vary randomly across schools, Equations 3.8 and 3.9 suggest that
group-level models can subsequently be built to explain variation in the random intercept and
slope across groups.

'The school-level model is represented as Equations 3.8 and 3.10, suggesting that only the
school-level intercepts vary randomly across schools. We discuss the school-level predictive
model in a subsequent section. Through substitution of Equations 3.8 and 3.10 into Equation
3.7, we arrive at the combined equation describing Model 1:

Y; = Yoo + 1o + Y10SES; + € (3.11)

7

which reflects that the component representing the Level 1 slope (y;) is multiplied by SES,,
which suggests it is a cross-level interaction, but with variance fixed to 0 at Level 2. The terms

can then be reorganized with fixed effects and variance components:

Ylj = 7/00 + }/10SES1] + qu + 8y' (3.12)

Defining Model 2 with IBM SPSS Menu Commands
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2. 'The Linear Mixed Models: Specify Subjects and ) Linear Mixed Models: Specify Subjects and Repeated [
Repeated screen displays the default settings
from the prior model. e et e
Specify Subject variable for modeis with correlated random effects.
Click the CONTINUE button to display the Linear ot
Mixed Models dialog box. g
& ra il schcode
ol L,
& temaie | w |
& ses e
f femses
f math )
& ses_mean Repeated.
& prosyre
& pubic —
124
Repeated Coyariance Type: |- =
N I R W
3. At Level 1, we will specify a predic- ) Linear Mixed Models |
tor variable (ses) to be used in the S
model. Locate and click ses from the A sccics W | [ mom - | !j
left column listing, and then click the & ra Factor(s} |_Random..
right-arrow button to move the vari- ol 4 l: | :jm"_
able into the Covariate(s) box. =4l | Statsts..
. ;GO?“W“ [ EM Means...
We may now proceed to define fixed 5 S e ses [ see. |
effects for the variable. y :::4:: _ ‘ [ Bootsiren..
Click the FIXED button to access \l—) Resdual Yeght |
the Linear Mixed Models: Fixed Effects :
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4a. Within the Linear Mixed Models:
Fixed Effects dialog box, click the

pull-down menu to change the O B ptediaone
factorial setting to Main Effects. Facturs and Coyares oo |
. (L] |
b. Click to select ses from the Factors
a |

and Covariates box, and then click
the ADD button to move the vari-
able into the Model box. We now
have the Level 1 model specified
(Eq.3.7).

c. Note on lower left of the screen
that the intercept and the sum of
squares (7ype III) are the default

settings.

Click the CONTINUE button to return
to the Linear Mixed Models dialog box.

3 Linear Mixed Models: Fixed Effects
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Finally, in the Linear Mixed Models dialog (R Linear Mixed Models |
box, click the OK button to run the model.
- Q:;endent Variable: | Fixed.. |
. . . . hcod math
Note: It is possible to save predicted esti- g:ﬁd o S | mandom.. |
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pubkc [
Bootstrap... |

Residual Weight
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Interpreting the Output From Model 2

Following is the IBM SPSS output generated from the Level 1 model. Table 3.8 summarizes the
total number of parameters being estimated (four). This fits with Equation 3.11, suggesting two
fixed-effect parameters to be estimated (i.e., the intercept and the within-school predictor SES)
and two variance parameters (the random Level 2 variance and the Level 1 residual variance).
The column referred to as “Number of Levels” in Table 3.8 describes the fixed effects (two) and
the number of random effects (one). There are two fixed effects to be estimated (the intercept
and SES) and one random effect (the Level 2 variance component describing variability in the
intercept across schools in the sample). The covariance structure describes the way the covariance
matrix of random effects is dimensionalized at the group level. In this case, we use the default
(VC), which provides an estimate of the intercept variance but again no slope variance because
we opted to fix the slope (nor will there be covariance between intercept and slope). This is the
same as specifying an identity covariance matrix.

Table 3.9 presents the typical ANOVA table for examining the significance of the fixed-effect
parameters in the model. The large F-ratio associated with SES in the table suggests that student
SES is significantly related to student math scores. The test of the significance of the intercept is
generally not of interest, as it is merely a test of whether the intercept is 0 in the model. As the
table suggests, we can reject the null hypothesis that the intercept is O (i.e., we already know from
the null model and descriptive analysis that it is approximately 57.6).

Table 3.10 provides the estimates of the fixed-effect coefficients. First, we can see that the
intercept (adjusted for student SES) is 57.596. This represents the average school mean adjusted
for student SES. The standard error is 0.133. Once again, the # test of the significance of the

TABLE 3.8 Model Dimension®

Number Covariance Number of Subject
of Levels Structure  Parameters Variables

Fixed Effects Intercept 1 1
ses 1 1
Random Intercept 1 Variance 1 schcode
Effects Components
Residual 1
Total 3 4

@ Dependent variable: math.
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TABLE 3.9 Type lll Tests of Fixed Effects®

Source Numerator df  Denominator df F Sig.
Intercept 1 375.699 187,802.817 .000
ses 1 3,914.638 803.954 .000

@ Dependent variable: math.

TABLE 3.10 Estimates of Fixed Effects®

95% Confidence Interval

Parameter Estimate Std. Error df t Sig. Lower Bound Upper Bound

Intercept  57.596  0.133 375.699 433.362 .000 57.335 57.857
ses 3.874 0.137 3,914.638 28.354 .000 3.606 4.142

@ Dependent variable: math.

intercept is not really interesting, since it is a test of whether the intercept is equal to 0. The
degrees of freedom reported for each fixed effect, which reflect the Satterthwaite (1946) correc-
tion for approximating the denominator degrees of freedom for significance tests of fixed effects
in models where there are unequal variances and group sizes, are useful in determining at what
level each variable is measured in the model. For example, we know there are 419 schools in the
sample. This is consistent with the 375.7 degrees of freedom reported in Table 3.10. In contrast,
we know that SES is an individual-level variable. There are 6,871 individuals in the sample, so
the degrees of freedom of 3,914.6 are consistent with a variable measured at Level 1. We note
in passing that if we wish to estimate a model without using the Satterthwaite correction for
degrees of freedom, we can use GENLINMIXED (instead of MIXED) and specify a continu-
ous dependent variable with normal distribution and identity link function. In the Build Options
dialog box, for estimating degrees of freedom it is possible to select Residual method instead of
Satterthwaite approximation. It is also possible to select robust (rather than model-based) standard
errors. In this case, for example, with robust standard errors, the standard error of the SES pa-
rameter would be more conservatively estimated at 0.145 (not tabled) as opposed to 0.137, as
in Table 3.10. Analysts should keep in mind, however, that presently only REML estimation is
available with that routine.

When we compare the intercepts between this model and the single-level linear regression
analysis at the beginning of the chapter, we find that they are very similar (57.598 for the OLS
model vs. 57.596 for the multilevel model). The difference in standard errors between these two
estimates is larger, as we would expect given the clustering and associated intraclass correlation.
More specifically, the estimated standard error (SE) from the OLS model was 0.098, and the
standard error from the Level 1 multilevel model is 0.133, which is 36% larger. In that original
single-level OLS analysis, the intercept described the average student achievement in the sample,
without regard for students’ school settings.

Second, in this case, we are more interested in the slope for SES (8 = 3.874) and the standard
error (0.137). When we compare these against the single-level model, we find that they are con-
siderably different (i.e., for the single-level analysis, the slope was 4.255 and the standard error
was 0.126). When we test hypotheses about fixed-effect estimates (e.g., whether an unstandard-
ized regression coeflicient is significantly related to the dependent variable), the hypothesis test
(generally a # test) is based on the ratio of the unstandardized estimate to its standard error (e.g.,

for SES in the single-level model, this is 4.255/0.126 = 33.858). If the #-ratio is significantly
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large, given the sample under consideration, the parameter is considered statistically significant.
In the multilevel analysis, the ratio of the unstandardized estimate of SES to its standard error is
smaller (#ratio = 28.344, but still is significant as we might expect).

These contrasting results in our example illustrate the general point that parameter estimates
and standard errors can be different in single-level versus multilevel analyses. As this simple mul-
tilevel analysis suggests, standard errors are often underestimated in single-level analyses, which
can lead to a greater number of significant #values and, hence, support for a proposed model
than would be observed if a proposed model were tested with multilevel techniques. Directly as
a result, in a multilevel analysis, adjusting for clustering generally results in a reduction of Type I
errors (false rejection of the null hypothesis).

'The output also provides information about the model’s random parameters. The output sug-
gests that the addition of the within-group predictor, SES, reduces the residual (within-group)
variability (i.e., from 66.551 in the null model to 62.807 in the Level 1 model). This reduction
in variance between the one-way ANOVA (or null) model and the current model can be used
to calculate a reduction in variance estimate (similar to R?) estimate for the within-school and
between-school portions of the model. For each level, it is calculated as follows:

(ot-ts) [ (5.13)

where M1 refers to the one-way ANOVA (no predictors) Level 1 or Level 2 variance compo-
nents and M2 refers to the current model’s variance components. For the within-groups portion,
this is calculated as 0.056 (66.551 — 62.807 = 3.744/66.551 = 0.056). This suggests that student
SES background accounts for about 6% of the within-school variability in student scores. No-
tice also that the within-school predictor also affects that residual variability in intercepts at the
school level. In particular, the initial variance component for schools, from the null model, was
10.642. After SES is added, however, the between-school variance in math achievement shrinks
to 3.469 (see Table 3.11). For the reduction in variance between schools, this would be calculated
as 0.674 [(10.642 - 3.469)/10.642]. This suggests that within-group SES accounts for almost
two thirds (67.4%) of the between-groups variability in achievement. In other words, a full two
thirds of the variation in means across schools can be attributed to differences in the socioeco-
nomic status of students in those schools. Another way of looking at this is that the initial vari-
ability in math achievement observed between schools (i.e., the ICC) is reduced considerably
after controlling for student SES. From Equation 3.2, we find that ICC is now a little more than
5% [3.469/(3.469 + 62.807) = 0.052].

We note, however, this reduction-in-variance type of R? statistic should be interpreted cau-
tiously because it is sometimes possible to obtain negative values for R2. This is because the vari-
ance components may be less accurately estimated when there are no predictors in the model.
For example, when an individual variable is sampled through a multilevel-sampling process, it
may show some between-group variability even if there is no between-group variability present
in the population (Hox, 2010). In these cases, Hox notes that the reduction-in-variance proce-
dures described previously may work as described in our example (i.e., where the within-group
variable reduces between-group variability). In other situations, however, there may be variables
that have almost no variation at one of the levels in the model. For example, this might occur if
we had exactly the same percentage of males and females (50%) in each school. If there were no
school-level variation in average gender composition, this would be less variance than expected
by simple random sampling and could produce negative explained variance (for further discus-
sion, see Hox, 2010; or Snijders & Bosker, 1999). Hox notes that another problem that can occur
is that if random slopes are present, the estimated residual variances are related to the scale of
measurement chosen for the explanatory variables (i.e., how they are centered and whether they
might be standardized). When the interest is in the size of the variance components produced,
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TABLE 3.11 Estimates of Covariance Parameters®

95% Confidence Interval

Parameter Estimate Std. Error Wald Z Sig. Lower Bound Upper Bound
Residual 62.807 1.109 56.640 .000 60.671 65.019
Intercept [subject = Variance 3.469 0.539  6.439 .000 2.559 4.704
schcode]

@ Dependent variable: math.

TABLE 3.12 Random-Effect Covariance Structure (G)°

Intercept | schcode

Intercept | schcode 3.469

Variance Components
@ Dependent variable: math.

it is therefore desirable to center the explanatory variables with random slopes on their grand
means since this will provide estimates for an “average” sampling unit (Hox, 2002). We discuss
centering decisions further in subsequent chapters.

'The covariance parameters table (Table 3.11) also suggests that after the introduction of SES
into the model, there is still significant variability to be explained both within schools (Wald
Z =56.640, p <.001) and between schools (Wald Z = 6.439, p < .001). The Wald Z test suggests
that, even after controlling for student SES within schools, a statistically significant amount of
variation in outcomes still remains both within and between schools. This suggests that we could
add other predictors (e.g., gender, ethnicity, and motivation) within schools and between schools
(e.g., student composition and school process indicators) that might explain this residual vari-
ability in intercepts.

'The final output (Table 3.12) provides the random-effect covariance structure for Level 2. In
this case, there is only one random effect. Because we specified the SES-achievement slope to be
fixed within schools, there is no variance component describing variability in slopes.

Building the Group-Level (or Level 2) Random Intercept Model

Next, we will add school-level variables to explain the variability in intercepts across schools. In
this case, our thesis is that school context variables (i.e., aggregated student SES composition
and type of school [public = 1, other = 0]) and the focus of the school’s academic program (i.e.,
the aggregate percentage of students who intend to study at 4-year universities after high school)
will impact the remaining variability in achievement between schools. It is important to note that
when Level 2 predictors are added to the model, care should be taken that every individual in each
unit has the same value on that variable. This will ensure that the estimates are calculated based
on the number of Level 2 units, rather than the number of Level 1 units in the model. If there are
different values or missing values for some individuals, they should be changed for consistency.

At the school level, we must modify the intercept equation (Eq. 3.8) to indicate the three
predictors that we are adding to the between-group portion of the model:

Bo; = Yoo + Yorses_mean; + Yoprodyre; + Yospublic; + uy,. (3.14)
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Public school is a dummy-coded variable (1 = public, O = private). Because it is dichotomous, we
can add it to the model either as a factor or as a covariate. Variables with three or more categories
should be added as factors. When categorical variables are entered as factors, the reference group
is the last category. If the user wishes to select a different category as the reference group, she or
he could recode the variable. Substituting the intercept equation (Eq. 3.14) and the fixed slope
equation (Eq. 3.10) into the Level 1 equation (Eq. 3.7) will result in the following combined

equation with random Level 2 intercept:

Y = Yoo + Yoises_mean; + Yoprodyre; + yospublic; + y10SES; + uy; + €. (3.15)

We will first demonstrate how to add a public school indicator to the model as a factor. The
other two variables are continuous, so they are added as covariates. In all, we are adding three
fixed effects, but the other parameters remain the same, so we are estimating a total of seven
parameters in this model (i.e., five fixed effects, the random Level 2 residual variance, and the
Level 1 residual variance).

Defining Model 3 with IBM SPSS Menu Commands

Settings will default to those (€2 ch3multilevel.sav [DataSet1] - IBM SPSS Statistics Data Editor E=E
used in Model 2. Fle Edt View Dala Transform| Analze DiectMarketing Graphs Utities Add-ons Window Help
. g O Reports » /
1. Go to the toolbar and ? E E-:_-] _ i Dgzr.wm i > pe _gl_ %"
select ANALYZE, | Tables » Visible: 10 of 10 Variables
MIXED MODELS, schcode | Ri  Compare Means » ses | femses |
LINEAR. 1 1 General Linear Model » 59 59 |~
2 1 Genersiized Linear Models  » | .30 30 [
This command enables access 3 1 Mixed Models » PE«] unear.. [%
to the Linear Mixed Models: 4 1 Correlate ¥ | LLf Generalized Linear...
Specify Subjects and Repeated 2 L L epead 2 i AN
dialog bOX. 6 1 Loglinear ] -1 .00
7 1 Meural Metworks 3 -33 .00
8 1 Classify » -89 -89
9 1 Dimension Reduction > 21 .00
10 1 Scale 8 34 -34
11 1 Nonparametric Tests » -17 .00
12 1 Forecasting 3 -1.07 -1.07 |+
| & Survival » ]|
DataView | Variabie View ||  Mulinle Response 2 — —
[Grsacs Missing Value Analysis... Ecch el
: Multiple Imputation »
Complex Samples >
GQuality Control »
ROC Curve...
IEM SPSS Amos...




2. 'The Linear Mixed Models: Specify Subjects and
Repeated screen displays the default settings
from the prior model.

Click the CONTINUE button to display the Lin-
ear Mixed Models dialog box.

3. 'The Linear Mixed Models dialog box settings
default to those used in the prior model.

If there is a categorical indicator, it should be added
as a factor. Each level of a factor can have a different
linear effect on the value of the dependent variable.
If a variable is dichotomous, however, it may be
added as either a factor or a covariate. We will dem-
onstrate by adding public as a factor first and then as
a covariate. We note that in MIXED, the reference
group for a variable entered as a factor is the last

Defining a Basic Two-Level Multilevel Regression Model ® 103
{2 Linear Mixed Models: Specify Subjects and Repeated oo
Céck Continue for modeis with uncorrelated terms.
Specify Subject variable for models with correlated random effects.
Specify both Repeated and Subject variables for models with correlated
residuals within the random effacis.
_§H_m:
& R il scheode
ol =
f female L 3
f ses —
f femses
& math
f ses_mean Repeated:
f prodyrc
& pubic —_—
=%
Repeated Coyariance Type: = T . B4 _'-_
\'Drmue || meset || cancet || Hep J

category. This means the estimate will be for the cat-
egory coded O (i.e., in this case, private schools = 0).

Often, we find it is convenient to add dichotomous variables as covariates, so that the estimate will be
for the category coded 1 (i.e., in this case, public = 1) instead of for the category coded 0. This is con-
sistent with dummy coding in multiple regression models. We note in passing that in some instances
researchers might prefer other coding schemes such as effect coding (e.g., -1, +1).

We will now introduce three Level 2

&3 Linear Mixed Models

e

predictors to the previous model (public,

| Dependent Variable:
ses_mean, and prodyrc). ol schcode % | [ man | | Fixed.. E_]
o Factor(s): Q Randoa
a. First, click to select public, and then g“ ; | | [ Estmation... |
. . female
click the right-arrow button (or & s

“drag”) the variable to the Factor(s)

& ses_mean

box.

b. Now click to select ses_mean and
prodyre, and then “drag” both vari-
ables above ses in the Covariate(s)
box.

'The sequence of the variables is the follow-

prodyre | ol
5 public &~

Covariate(s):
& ses P ses_mean R
r ’ﬁ) ) mea _r_gootslrap...
" e I 1
\“\
Covariate(s): 7
& ses_mesn  g” ]
R f prodyrc F
o Il 5 b

ing: ses_mean, prodyrc, and ses (see insert).

Statistics...
| EM Means...
Saye...

We will now designate fixed eftects, so

click the FIXED button to access the Linear Mixed Models: Fixed Effects dialog box.
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4a. The Linear Mixed Models:
Fixed Effects dialog box dis-
plays the default setting from
the prior model. To facilitate
reading the output tables, we
will rearrange the sequence

12 Linear Mixed Models: Fixed Effects

Fixed Effects
) Buig terms
Factors and Coyariates:

7 publc
K ses_maan

() Build pested terms

Modet

fes |

public
ses_mean

| prodyre
fd

prodyre
ses

order of the variables. First,
remove ses from the model by
clicking to select the variable
and then clicking the RE-
MOVE button. 3

| Main Etfacts v

e

by =
> |
a

Note: Main Effects is the
default setting from the prior
model.

Sum of squares: :_Tm [ ]

[¥] nciude intercept

(jycommnue J(_canemt ][ vew ]

Y, = ¥ + VorSes_mean; + y o, prodyre,; + yo public,;

. Now click to select four vari-
ables (public, ses_mean, prodyrc,
and ses) from the Factors and
Covariates box, and then click
the ADD button to move
the variables into the Mode/ box. Through substitution, the two levels can be summarized as a
single-equation model with fixed and random effects (Eq. 3.15).

(Eq. 3.15)
+-‘/mSES‘a. +Uy, +E

Click the CONTINUE button to return to the Linear Mixed Models dialog box.

5. Finally, in the Linear Mixed Models E,? Linear Mixed Models Iﬁ?-l
dialog box, click the OK button to
Dependent Variable: ———
run the model. W ecicode W | (Pman Fised... |
Rid : | Rapdom.. |
di Factor(s): = ~!
& :1 & pubic Estimaton... |
emale < .
.f femses | Statistics... |
Govariate(s): =] Sl Meana...
& ses_mean i_f' Saye.. |
- & |
| J ﬁ provyrc :J | Bootstrap. |
] Residual Weight:
-
(o (e ][ et ][ coen J[_vew

Interpreting the Output From Model 3
The first IBM SPSS output table (Table 3.13) confirms that we are estimating seven total pa-

rameters in this model.

Table 3.14 describes the fixed-effect estimates. Level 2 predictive models describe how differ-
ences in school variables (e.g., context, resources, student composition, and educational processes)
may influence individual processes within each school (Raudenbush & Bryk, 2002), for example,
students’ levels achievement outcomes or the relationships between students’ background, moti-
vation, and previous learning and their current outcomes. In order to interpret the coefficients,
however, we need to know how the predictors are measured. More specifically, ses_mean is defined
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TABLE 3.13 Model Dimension®

Number of Covariance Number of Subject

Levels Structure Parameters Variables
Fixed Effects Intercept 1 1
public 2 1
ses_mean 1 1
prodyrc 1 1
ses 1 1
Random Intercept 1 Variance 1 schcode
Effects Components
Residual 1
Total 7 7

@ Dependent variable: math.

TABLE 3.14 Estimates of Fixed Effects®

95% Confidence Interval

Parameter  Estimate Std. Error df t Sig. Lower Bound Upper Bound
Intercept  56.277  0.430 411.160 130.978 .000 55.433 57.122
[public=0] 0.164 0.276 409.345 0.595 .552 -0.378 0.707
[public = 1] 0.000° 0.000 - - - - -
ses_mean  2.473 0.307 709.247  8.059 .000 1.871 3.076
prodyrc 1.420 0.471  413.879  3.012 .003 0.493 2.346
ses 3.191 0.158 6,448.937 20.220 .000 2.881 3.500

@ Dependent variable: math.
b This parameter is set to O because it is redundant.

a standardized (z) score (mean = 0, §D = 1). The measure of the school’s academic focus (pro4yrc)
is defined by the proportion of students planning to attend a 4-year university (ranging from =
0 to 1). School type is a dummy-coded variable (coded 1 = public high school, and 0 = private
high school), and student SES is also a z-score. We can therefore interpret the intercept as the
average school math achievement in pub/ic high schools (since the reference category in this case
is the category coded 1), where the proportion of students planning to attend a 4-year institution
is 0, and where school SES composition and student SES are at their respective grand means (0).
Regarding the school-level predictors, controlling for the other predictors in the model, we
first note that school type does not affect achievement (yy; = 0.164, p > .05). Because school type
has been defined as a factor in MIXED, the second category is the reference group. In this case,
the variable was dummy coded as “public” (i.e., private = 0; public = 1), so the second category is
redundant. The output in Table 3.14 therefore suggests that private schools have slightly higher
math scores. If instead we wish the reference category to be “private” schools (since we coded it
0), we might choose to enter public as a covariate or else recode the variable. Regarding the type
of academic environment (i.e., as defined by the proportion of students who say they plan to
attend a 4-year institution after high school), we find a positive relationship with math achieve-
ment (yy, = 1.420, p < .01). Turning to SES, aggregate student SES composition affects math
achievement (¥, = 2.473, p < .001), even after controlling for individual SES within schools.
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We can write the estimated predictive score for individual 7 in school 7 for this model as
tollows:

f{j = 56.28 + 2.47(ses_mean,) + 1.42(prodyrc;) + 0.16(private) + 3.19(SES,).

We can interpret the intercept as the adjusted school math score when the predictors in the
model are all equal to 0 (i.e., ses_mean = 0, prodyrc = 0, and student SES = 0). In the case of public,
the reference group is actually public schools (coded 1) since when a dichotomous variable is
entered in the model as a factor, the reference group is the second category. This suggests that the
average school intercept of 56.28 is the predicted score for students in public schools (coded 1)
when average school SES (ses_mean) is 0, where no students plan to attend 4-year institutions,
and where individual SES is held at the grand-mean average (0).

If we hold the other variables in the predictive model constant, we can estimate the likely
school mean if one of the predictors is increased by a unit. For example, if the proportion of stu-
dents planning to go to a 4-year institution after high school changes from 0 to 1 (i.e., implying
a strong academic focus), the relevant part of the equation is as follows, since the other variables
are held constant at 0:

Y; = 56.28 + 1.42(prodyre).

For schools where the proportion of students planning to attend 4-year universities after high
school is 0, the expected achievement intercept is 56.28 [56.28 + 1.42(0.0) = 56.28]. In contrast,
where all students are planning to attend a 4-year institution the expected math level would be
57.69 [56.28 + 1.42(1.0) = 57.70]. Readers should keep in mind that because of the coding of
this variable as a proportion (i.e., ranging from 0 to 1), a change from 0 to 1 represents a 1-unit
change. This illustrates why it is important to know what the unit of measurement is for each pre-
dictor. For the school where 0.75 plan to attend this type of institution, the estimated intercept
would be a little lower at 57.35 [56.28 + 1.42(0.75) = 57.35].

For aggregate SES composition, controlling the other variables in the model, a 1-SD increase
in aggregate student SES composition above the grand mean would be expected to increase
achievement from 56.28 to 58.75 [56.28 + 2.47(1) = 58.75]. We also note in passing that the
addition of aggregate student SES background as a school predictor reduces the size of the SES
effect on math achievement observed within schools (i.e., the f; slope for SES has an average
effect of ;0 = 3.19 vs. 3.87 in the previous model). The model indicates that the effects of student
SES background are significant at both the individual and school levels. This is an example of a
compositional effect, or an effect that tends to compound across levels of the data hierarchy. The
compositional effect is defined as the extent to which the size of the organizational eftect differs
from the person-level effect. More specifically, compositional effects occur when the aggregate of
a person-level characteristic (i.e., ses_mean) is related to the outcome, even after controlling for
the effect of the individual-level characteristic (SES) in the Level 1 model (Raudenbush & Bryk,
2002). Compositional effects often represent proxies for other types of organizational processes
that occur (e.g., curricular organization, expectations for students, etc.). We take up estimating
these types of models further in Chapter 4.

We also might want to think about how the Level 2 continuous predictors are centered.
Let’s consider the proportion of students who are planning on attending a 4-year university.
Since the intercept is the level of the outcome when the predictors are all 0, the intercept is the
outcome when there are no students in the school planning on attending a 4-year university.
In the sample, there may not be any schools where no students are planning to attend a 4-year
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university. Instead, we may wish to center this variable on its grand mean, so the intercept would
then be defined as the level of math outcomes for schools at the sample average in terms of
students planning to attend 4-year universities. Centering continuous predictors on their grand
means (which provides a mean of 0 but maintains the original standard deviation) can provide
some advantages in multilevel modeling for interpreting intercepts, interaction terms, and vari-
ances (Hox, 2010). Standardizing the predictor, which is a type of centering, produces the same
mean (0) as grand-mean centering but requires an additional calculation to make the standard
deviation equal to 1.0 which, unlike grand-mean centering, also affects the slope and variance
estimates. For now, however, we will leave pro4yrc in its raw proportion metric.

In Table 3.15, we present results where we entered public as a covariate instead of a factor.
We provide MIXED menu commands for treating public school as a covariate (Model 3A) at
the end of this section. Readers may also notice that this change results in a slightly different
intercept (Yoo = 56.44 vs. 56.28 in the previous model). This is because the intercept in this cur-
rent model now represents the mean for private schools (i.e., with public schools [coded 1] now
being 0.16 of a point lower). Note that if we add the public school intercept and private school
estimate (56.28 + 0.16), we obtain 56.44, which is the intercept in Table 3.14 when public school
is entered in the model as a factor instead of a covariate. In Table 3.15, we can see that public
schools are 0.16 of point lower than this intercept. This suggests the two model formulations are
the same, as we would expect. Since the estimates are the same, we will continue to define school
type as a covariate rather than a factor for the rest of the analysis.

'The estimates of the variance components in Table 3.16 suggest that student SES at Level 1
and the three predictors at Level 2 (public, ses_mean, and pro4yrc) reduce the variance component
at the school level substantially (i.e., from 10.64 in the one-way ANOVA model to about 2.40
in Table 3.16). We also point out that it is often the case that adjusting Level 2 unit means by
characteristics of individuals within the units will reduce the variance at Level 2, even before the
Level 2 predictors are added to the model.

From Equation 3.13, the reduction in variance observed at Level 2 between Models 1 and
3A can be used to calculate the amount of variance accounted for (R?) at Level 2, which is

TABLE 3.15 (Public School Defined as a Covariate) Estimates of Fixed Effects®

95% Confidence Interval

Parameter Estimate Std. Error df t Sig. Lower Bound Upper Bound
Intercept 56.442 0.474 421.055 118.966 .000 55.509 57.374
public -0.164 0.276 409.345 -0.595 .552 -0.707 0.378
ses_mean 2.473 0.307 709.247 8.059 .000 1.871 3.076
prodyrc 1.420 0.471 413.879 3.012 .003 0.493 2.346
ses 3.191 0.158  6,448.937 20.220 .000 2.881 3.500

@ Dependent variable: math.

TABLE 3.16 Estimates of Covariance Parameters®

95% Confidence Interval

Parameter Estimate Std. Error Wald Z Sig. Lower Bound Upper Bound
Residual 62.630 1.103 56.784 .000 60.505 64.830
Intercept [subject = Variance 2.395 0.444 5.399 .000 1.666 3.444
schcode]

@ Dependent variable: math.
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0.774 [(10.64 - 2.40)/10.64], or 77.4%. We could also calculate an R? coefficient for Level 1
using the Level 1 one-way ANOVA and current Level 1 variance components in the same man-
ner [(66.55 - 62.63)/66.55 = 0.059]. Student SES therefore accounts for about 6% of the Level
1 variance in individual math achievement (about the same as the estimate in Table 3.11).

Defining Model 3A [Public as Covariate) with IBM SPSS Menu Commands

Settings will default to those used in
Model 2. The following instructions

generate results shown in Table 3.15.

1. Go to the toolbar and select
ANALYZE, MIXED MOD-
ELS, LINEAR.

'This command enables access to the
Linear Mixed Models: Specify Subjects
and Repeated dialog box.

2. 'The Linear Mixed Models: Specify Subjects and
Repeated screen displays the default settings

from the prior model.

Click the CONTINUE button to display the Linear

Mixed Models dialog box.
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3. 'The Linear Mixed Models dialog

box settings default to those used in

Model 3.

a. We will change public from a factor
to a covariate. First, click to select
public then click or drag to remove
the variable from the Factor(s) box.

b. Click to select public, and then
drag the variable above ses_mean in
the Covariate(s) box.

'The sequence of the variables is: public,
ses_mean, prodyrc, and ses (see insert).

We will now designate fixed effects, so click
the FIXED button to access the Linear
Mixed Models: Fixed Effects dialog box.
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#3 Linear Mixed Models

et

ol scheode

& R

4a. The Linear Mixed Models: Fixed

{8 Linear Mixed Models: Fixed Effects

Effects dialog box displays the
default setting from the prior
model. To facilitate reading of
the output tables, we will rear-
range the sequence order of the
variables. First, remove ses_mean,
prodyre,and ses from the

model by clicking to

select the variables and then

clicking the REMOVE button.

Note: Main Effects is the default setting
from the prior model.

[¥] nciyde intercept

Fixed Effects

(2) Bui terms.

Factors and Coyariates:

() Buid pested terms

public

| Main Effects '! ' e
oLt 2 | [

Add

e T”e —

(g ][ (oo ]

b. Now click to select the four
variables (public, ses_mean,

prodyre, and ses) from the Factors and Covariates box, and then click the ADD button to move

the variables into the Mode/ box.

Click the CONTINUE button to return to the Linear Mixed Models dialog box.

5. Finally, in the Linear Mixed Models
dialog box, click the OK button to run
the model.

3 Linear Mixed Models

il sehcode
& Rd

ol 0

& temale
& femses

o] Varable: i
- ’Ntﬂ - | Lasthed _]
Eactor(s): | Rapdom.. |
[l | Estmaton... |
= '[; _ sutstcs... |
4| EM Means... J
Covariate(s): ===
1 | & puvkc o L_sme. |
|‘P | & ses_mean [___| Bootsirap... |
— (& prouyre -
[, | Residualyeght
L2 |
I Reset . .Canoel- Help _J




110 ® Defining a Basic Two-Llevel Multilevel Regression Model

Step 4: Adding a Randomly Varying Slope (the Random Slope and Intercept Model)

Since individual SES is significantly related to achievement, we might want to see if the slope
varies across schools. This could help us identify schools that are more (or less) equitable in pro-
ducing outcomes for students of varying SES backgrounds. It may be that school composition,
school type, or school academic environment interact with the size of the within-school slope.
We would like to find settings where the effect of individual SES on achievement is reduced.
In this case, we might ask: Do the slopes vary randomly across schools, and if they do, is there a
relationship between features of schools’ environments and the strength of the slope relationship?

The important equation in this step is Equation 3.10 (8,; = 7y). First, we will examine whether
the slope varies, so we need to specify the SES-achievement slope as a randomly varying param-
eter in the model as it was originally defined in Equation 3.9 (B, = 1o + u;,). When we substitute
Equation 3.12 (i.e., the random intercept equation) and Equation 3.9 (i.e., the random slope
equation) into the Level 1 equation (Eq. 3.7), we obtain the combined equation in Equation
3.16. In creating the random slope portion of the combined equation, we note that y,,SES; +
u,SES;; is substituted for S, as a result of multiplying 3 + # 1, in Equation 3.9 by SES; in Equa-
tion 3.7:

Boj = Yoo + Yorses_mean; + Yoprodyre; + Yospublic; + uy; + y10SES; + u SES; + €. (3.16)

Ly
We can then reorder the terms, with the fixed effects and then the random effects and residual:

Y = Yoo + Yorses_mean; + yoprodyre; + yospublic; + y10SES; + uy ,SES; + uy; + €. (3.17)

We note that the substitution results in the more complex error term (u;,SES;), which represents
the Level 2 variance for the Level 1 SES-achievement slope (8,).

Second, we need to change the covariance matrix of random effects to accommodate the
randomly varying slope. The other parameters in the model will remain the same. Adding the
randomly varying slope will change the number of random effects in the model from one (i.e.,
the intercept) to two (i.e., the intercept and the SES-achievement slope). If we only add the
randomly varying slope, we will have a diagonal covariance structure. We can estimate this struc-
ture using the default VC matrix or by specifying a diagonal covariance matrix (DIAG) in IBM
SPSS. As Equation 3.18 suggests, this provides estimates of the intercept and slope variances:

2
o, O

2 |
0 oy

(3.18)

In contrast, an UN covariance matrix implies that the intercept and slope variances are esti-
mated, as well as the covariance between the intercept and slope. If we also estimate the covari-
ance (oy5) between the intercept and slope, an additional parameter is added to the model:

2
O, Oy
5 | (3.19)
O O

Notice that because the covariance matrix is a square matrix, the covariance appears both above
and below the diagonal. We can also specify an unstructured covariance-correlation matrix (ab-
breviated as UNR in MIXED). This would provide a correlation between the intercept and slope,

which is often easier to interpret. Where we estimated seven parameters before (i.e., five fixed



Defining a Basic Two-level Multilevel Regression Model m 111

Warnings

Iteration was terminated but convergence has not been achieved. The MIXED
procedure continues despite this waming. Subsequent results produced are based
on the last iteration. Validity of the model fit is uncertain.

FIGURE 3.3 Warning message.

effects, the random Level 2 variance, and the Level 1 residual variance), we will be estimating
nine parameters now (i.e., five fixed effects, three random Level 2 effects, and the Level 1 residual
variance).

Although it is usually desirable to obtain an estimate of the covariance between the intercept
and slope, we note that sometimes a warning is issued when an unstructured covariance structure
is used. For example, if the covariance or slope component is small, the estimation procedure may
not be able to estimate the parameter adequately. In this case, when we ran the model with an
unstructured matrix (i.e., Eq. 3.19), we received an error message (Figure 3.3).

In such cases, the user can try specifying a diagonal covariance structure for the random pa-
rameters. The VC specification used in previous models will accomplish the needed change (see
Eq. 3.18). This means that we will estimate a total of eight parameters as suggested by Equation
3.17 (i.e., five fixed effects, two random effects at Level 2, and the Level 1 residual) since we are
eliminating the covariance between the intercept and slope at Level 2 (as would be specified in
Eq.3.19).

Defining Model 4 with IBM SPSS Menu Commands
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2. 'The Linear Mixed Models: Specify Subjects and
Repeated screen displays the default settings

.

@ Linear Mixed Models: Specify Subjects and Repeated

from the prior model.

Click the CONTINUE button to display the Linear

Mixed Models dialog box.

3. The Linear Mixed Mod-
els dialog box settings
default to those used in
Model 3A.

We will change the model’s
random effects, so click the
RANDOM button to access
the Linear Mixed Models:
Random Effects dialog box.

Chck Continue for models with uncormrelated terms.
Specify Subject variable for models with comrelated random effects.

Specify both Repeated and Subject variables for models with correlated
iduals within the random effects.
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4a. The Linear Mixed Models: 3 tinesr Mixed Models: Random Effects [
Rﬂndom Eﬁ‘:ts displays Random Effect 1ol 1
the Random Effect 1 of 1
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effects model, so first e | B
click the pull-down menu S A1 2-way i e
and change the setting to prereind f"‘} '
Main Effects.
. Subject Groupings
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and then Cth thC ADD ol seheode dll seheode
button to move the vari- | - |
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Interpreting the Output From Model 4

We can first confirm that we are estimating the eight parameters we anticipated (see Table 3.17
on page 114).

Similar to the last model, the fixed-effects table (Table 3.18) indicates that school aggregate SES,
percentage of students attending 4-year universities, and individual SES all impact math achieve-
ment. We can observe that defining individual SES as randomly varying changes the estimates
slightly (y;, = 3.16) from the previous model with a fixed SES-achievement slope (y;, = 3.19). For
example, the intercept changes slightly from 56.44 in Table 3.15 to 56.47, and the coefficient for
the proportion of students planning to attend a 4-year university changes from 1.42 to 1.36.
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TABLE 3.17 Model Dimension®

Number of Covariance Number of  Subject
Levels Structure  Parameters Variables

Fixed Effects  Intercept 1 1
public 1 1
ses_mean 1 1
prodyrc 1 1
ses 1 1
Random Effects Intercept + sesa 2 Variance 2 schcode
Components
Residual 1
Total 7 8
@ Dependent variable: math.
TABLE 3.18 Estimates of Fixed Effects®
95% Confidence Interval
Parameter Estimate Std. Error df t Sig.  Lower Bound Upper Bound
Intercept  56.470 0.472 419.501 119.749  .000 55.543 57.397
public -0.120 0.274 407.915 -0.437 .662 -0.659 0.419
ses_mean  2.660 0.314 698.064 8.480 .000 2.044 3.275
prodyrc 1.360 0.468 410.212 2.907 .004 0.440 2.280
ses 3.164 0.169 635541 18.734 .000 2.832 3.496

@ Dependent variable: math.

For this model, our primary interest is with the estimates of the variance components (see
Table 3.19). Defining the SES-math slope as randomly varying slightly changes the variance
remaining at Level 1 (i.e., from 62.63 to 62.11). The intercept variance is slightly different also
(i.e., from 2.40 to 2.11). The remaining intercept variance is still significant (Wald Z = 4.74,
p <.001), which indicates that even after adding the three predictors to the model, there is still
variance in intercepts that could be explained across schools by adding additional school-level
variables.

Most important for our purposes, the slope variance (1.31) is significant (Wald Z = 2.32, one-
tailed p = .01). This suggests that the slopes vary across schools in the sample. We note that it can
be more challenging to identify random slopes that vary significantly at higher levels in multi-
level models and to explain this variation because slopes are generally less reliably estimated than
intercepts are estimated. Because the Level 1 slope depends on the distribution of the outcome
within each unit and the strength of correlation between the two, as well the sample size of the
unit (i.e., with smaller within-unit samples increasing error variance in estimating slopes), this
lower reliability can also weaken the power to detect Level 2 relationships that might explain
variation in slopes (Raudenbush & Bryk, 2002).

Because we could not fit the model with a proposed covariance between the intercept and
slope, we cannot examine their relationship with information from this model. It turns out in
this case that the “public” school variable is the problem. If we remove that variable from the
model, we can estimate the covariance as -1.59 (p < .01).
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TABLE 3.19 Estimates of Covariance Parameters®

95% Confidence Interval

Parameter Estimate Std. Error Wald Z Sig. Lower Bound Upper Bound
Residual 62.115 1.111  55.893 .000 59.974 64.331
Intercept [subject = schcode] Variance  2.112  0.445 4.741 .000 1.397 3.194
ses [subject = schcode] Variance  1.314  0.566 2.320 .020 0.565 3.059

@ Dependent variable: math.

Step 5:

Explaining Variability in the Random Slope (More Complex Random Slopes and

Intercept Models)

'The results in the variance components table (Table 3.19) suggest that a model could be devel-
oped to explain the variability in the SES-achievement slope across schools (instructions pro-
vided in Model 5). Building such a model requires the introduction of cross-level interactions,
or school-level variables that moderate (i.e., enhance or diminish) the size of the within-school
SES—-math achievement slopes. In simple models, the effects of predictors on the outcome do not
depend on the values of other predictors in the model. Interactions indicate that the relationship
between a predictor and the outcome depends on the value of a third variable. MIXED allows
the analyst to build a variety of different interactions within the fixed-effects syntax statements
or within the model-building menu statements.

Interactions are built as product terms from two predictors in the model (4 *B), so there are
three relevant parameters in the model (4, B, and 4 *B). More specifically, interactions estimate
the linear impact of 4 on Y when 4 increases by 1 unit and the slope of B remains constant.
'This implies that the slope coefficient of 4 added to the slope coeflicient of 4 *B should be the
complete coefficient for 4 (Hamilton, 1992). The same would apply for predicting the complete
impact of B on Y with the interaction.

Cross-level interactions indicate similar types of interactions but across levels of the data
hierarchy. For example, assume we wish to estimate the cross-level interaction of student SES
composition (ses_mean) on the individual SES-achievement slope within schools in our data set.
This is an example of a covariate-covariate interaction. Table 3.20 suggests that if the impact
of individual SES (4) on math achievement (Y) is 3.18 and the cross-level interaction term
(ses™ ses_mean) is —0.25, then the impact of a 1-8D increase in individual SES on math achieve-
ment is actually about 2.93 [3.18 + (-0.25) = 2.93] when the slope of ses_mean is held constant
(2.78). This result implies that math achievement advantages due to individual SES become less
pronounced in schools where the student SES composition is higher. (Refer to Appendix A for
Table 3.20 syntax.)

TABLE 3.20 Estimates of Fixed Effects®

95% Confidence Interval

Parameter Estimate Std. Error df t Sig. Lower Bound Upper Bound
Intercept 57.606 0.138 495962  418.600 .000 57.335 57.876
ses_mean 2.782 0.309 794.877 8.997 .000 2.175 3.389
ses 3.179 0.158 6,483.723 20.088 .000 2.869 3.489
ses_mean * ses -0.251 0.257 1,607.930 -0.976 329 -0.756 0.254

@ Dependent variable: math.
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Settings will default to those used in Model 4.

1. Go to the toolbar and select ANALYZE, Vi

This command enables access to the Linear Mixed

Models: Specify Subjects and Repeated dialog box.

A factor-covariate cross-level interaction (public*ses) implies that the linear relationship be-
tween SES (4) and math achievement (Y) changes for different levels of factor (B)—that is, types
of schools. The output will provide an estimate for each level of the factor except the last category
(which is the reference group). A factor-factor cross-level interaction (e.g., public * female) im-
plies that each combination of factor levels may have a different linear effect on the outcome. For
this interaction, the output will provide coefficients for each nonredundant combination using
the last category of each factor as the reference group. We will discuss how to build these types
of models in further detail in the next chapter.

For our purposes here, we will simply note that we add the three school-level predictors to the
slope model to determine whether they might account for variability in the size of the SES—math
achievement relationships across schools. The model can be written as

By = Yio + Yuses_mean; + yrprodyr, + yispublic; + u. (3.20)

When we substitute Equation 3.20 and Equation 3.14 into the Level 1 model (Eq. 3.7), we ob-
tain the following combined equation:

Y = Yoo + Yoises_mean; + yoprodyre; + Yopublic; + y10SES;; + yiises_mean; * SES;;
+ yiprodyre; *SES; + yispublic; * SES; + u SES; + uy; + £ (3.21)

After substitution, in Equation 3.21 we can see that the first and second lines specify the three
cross-level interactions explaining (f;). The cross-level effects (referred to as y;; to y;3) appear
in the output as interactions between aggregate school SES composition and the within-school
SES-math achievement slope (i.e., ses_mean™ SES), between aggregate proportion of students
planning to attend 4-year colleges and the within-school SES—math achievement slope (i.e.,
prodyrc* SES), and between school type and SES (public* SES). The random coeflicient for the
slope u,; takes into consideration reduction in variance due to the cross-level interactions on
the SES-math slope (8,). This residual variance for the slope at Level 2 will reflect a difference
from the previous model with random slope (but no cross-level predictors) to the current model.
Equation 3.21 will add 3 extra parameters to be estimated, making a total of 11 parameters to
estimate.

Defining Model 5 with IBM SPSS Menu Commands
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2. 'The Linear Mixed Models: Specify Subjects and
Repeated screen displays the default settings
from the prior model.

Click the CONTINUE button to display the Lin-
ear Mixed Models dialog box.

117

e

@ Linear Mixed Models: Specify Subjects and Repeated

Céick Continue for modeis with uncorreiated terms.
Specify Subject variable for models with comreiated random effects.

Specify both Repeated and Subject vanables for models with correlated
residuals within the random effects.
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3. The Linear Mixed Models screen
displays the default settings from the
prior model.

We will add cross-level interactions to the
model, so click the FIXED button to dis-
play the Linear Mixed Models: Fixed Effects
dialog box.

"Three cross-level interactions (or nested
terms) will be created and added to the
model: ses_mean *ses, prodyrc*ses, and
public * ses. These interactions will tell us
if individual student socioeconomic status
(ses) affects math achievement for (a)
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(v Bootstrap...

ok | Paste || Reset | cancei || Hep

school aggregate student socioeconomic status within schools (ses_mean); (b) percentage of students
attending 4-year universities (pro4yrc); and (c) school type (public).

Note: To reproduce Table 3.19, perform steps 4a to 4g, and then generate the model results.



118 ® Defining a Basic Two-Llevel Multilevel Regression Model

Add First Interaction to Model 5: ses_mean * ses
4a. Click to select Build nested

rerms. ' 3 Linear Mixed Models: Fixed Effects oS
b. Now click to select the vari- Fixed Eflecls—
able ses_mean from the Fac- O Buig terms ' Buid pested terms
tors and Covariates box. Factors and Coyarites: Hgdet
c. Click the arrow button below é.;:T_I e Vel
the Factors and Covariates I‘Z%i' poidin P
box. This moves ses_mean into . S | protyre
the Build Term box to create ? o i
a cross-level interaction by E g
linking variables and terms. b, _ Ly : :
d. Next, click the BY * button, AN [ e | [ cosTom(gQmiase | Bomore |
which will insert the com- 'ﬁ-: T
putation command symbol: Do misrcont. Sumotsnvares: (i %)

3 - -
ses_mean EéConlnue l Cancel J Hep |

e. Click to select ses from the

Factors and Covariates box.

f. Cth the arrow button belOW }:r = Yo+ :/m‘ges_n;eanj + ;-/mpro4‘}.-rcj +

the Factors and Covariates box .
) blic, + 7,,SES, + y,,5es_mean, * SES, +
to move ses into the Build Term TosPublic, + 11oSES, + 7, 5es_mean, T (Eq.321)

5 enduorn X 3 P
box and complete the interaction Haprodyre, * SES, + yispublic,* SES, +
term: ses_mean *ses. U SES; + Uy, + &

g. Click the ADD button to transfer

the interaction into the Model/
box.

Add Second Interaction to Model 5: pro4yrc * ses

Repeat steps 4b to 4g using pro4yrc and ses for the interaction.
Add Third Interaction to Model 5: public * ses
Repeat steps 4b to 4g using public and ses for the interaction.

'The completed model (Eq. 3.21) is shown in the insert. Click the CONTINUE button to
return to the Linear Mixed Models dialog box.

5. Finally, in the Linear Mixed Models £2 Linear Mixed Models ===
dialog box, click the OK button to : |
Dependent Variable: [
run the model. - o B
ﬁ:ﬂ o Eactor(s):
:: :::: |_:> J
Covariate(s):
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[, | Residual Weight: =
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Interpreting the Output From Model 5

We can confirm in the model dimension table (Table 3.21) that we estimated 11 parameters. No-
tice also that the Level 2 variance components table is designated as Variance Components (i.e.,
a diagonal matrix of random effects). The table specifies the three cross-level interactions (ses_
mean” ses, public* ses, and pro4yrc* ses) that were added to the fixed-effect portion of the model.

Once again, the fixed-effects table (Table 3.22) indicates that aggregate SES and proportion
of students planning on attending 4-year postsecondary institutions affect achievement in math.
School type is not related to math achievement. Within schools, individual SES remains signifi-
cantly related to math achievement.

Regarding the slope model, the cross-level interactions suggest that the within-school
SES-achievement slope is different for public and private schools. As we noted previously,
this is an example of a factor by covariate interaction, which suggests that in public schools
the relationship between student SES and math achievement is weaker than in private schools

TABLE 3.21 Model Dimension®

Number of Covariance Number of Subiject
Levels Structure Parameters Variables

Fixed Effects  Infercept
public
ses_mean
prodyrc
ses
ses_mean * ses
prodyrc * ses

1
1
1
1
1
1
1
public * ses 1
2

N — — — e a0 o

Variance schcode
Components

Residual 1
Total 10 11

Random Effects Intercept + ses®

@ Dependent variable: math.

TABLE 3.22 Estimates of Fixed Effects®

95% Confidence Interval
Parameter Estimate Std. Error df t Sig. Lower Bound Upper Bound
Intercept 56.505 0.485 450.229 116.427 .000 55.551 57.459
public -0.120 0.274 405.467 -0.437 662 -0.659 0.419
ses_mean 2.706 0.324 759.554 8.351 .000 2.070 3.343
prodyrc 1.362 0.479 439.899 2.841 .005 0.420 2.304
ses 3.757 0.606 518.400 6.203 .000 2.567 4.947
ses_mean * ses -0.137 0.299 303.798 -0.457 .648 -0.724 0.451
prodyrc * ses -0.130 0.592 479.307 -0.220 826 -1.294 1.033
public * ses -0.668 0.331 404.838 -2.018 .044 -1.319 -0.017

@ Dependent variable: math.
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(713 = —0.668, p < .05). More specifically, in public schools (coded 1), the combined effect of
individual SES on math achievement would be 3.09 [3.76 + (-0.67)(1) = 3.09]. In contrast,
in private schools (coded 0), the SES-achievement slope would be 3.76 [3.76 + (-0.67)(0)
= 3.76]. Since the slopes are different, it implies that the social distribution effects due to
individual SES on math learning are less consequential for students in public schools (i.e.,
indicated by a flatter slope) than for students in private schools. Table 3.22 also suggests that
aggregate school SES composition did not moderate the within-school SES—math achieve-
ment slope (y = -0.14, p > .05). Similarly, the proportion of students indicating that they
plan to attend a 4-year college did not moderate the within-school SES-achievement slope
(y=-0.13, p > .05). These findings provide partial support for our initial research goal of iden-
tifying school settings where the within-school relationship between SES and math achieve-
ment (i.e., our measure of the social distribution of learning) is diminished.

'The variance components table (Table 3.23) suggests that there is still significant variance in
the intercept and the SES-achievement slope to be explained across schools, even after adding
this set of school variables to the model. For example, the SES-achievement slope still varies
across schools (Wald Z = 2.375, one-tailed p = .009).

We can remove the interaction terms that are not statistically significant if we wish to obtain
a more parsimonious model (see Table 3.24 and instructions for Model 5A). The variables that
comprise the significant interaction term in the model, however, should be retained in the model
even if they are not significant (e.g., public). In a subsequent chapter, we describe procedures for
examining the fit of a comparison model against a more restricted model. We exclude the pre-
sentation of the variance components for this reduced model, as they are similar to the previous
model.

TABLE 3.23 Estimates of Covariance Parameters®

95% Confidence Interval
Parameter Estimate  Std. Error Wald Z  Sig.  Lower Bound  Upper Bound
Residual 62.101 1.111 55.882 .000 59.961 64.318
Intercept [subject = schcode]  Variance 2.087 0.445 4.687 .000 1.374 3.171
ses [subject = schcode] Variance 1.345 0.566 2.375 .018 0.589 3.070

@ Dependent variable: math.

TABLE 3.24 Estimates of Fixed Effects®

95% Confidence Interval
Parameter Estimate Std. Error df t Sig. Lower Bound Upper Bound
Intercept 56.440 0.471 418.862 119.855 .000 55.515 57.366
public -0.123 0.274 406.624 -0.449 .653 -0.662 0.415
ses_mean 2.659 0.313 697.326 8.491 .000 2.044 3.274
prodyrc 1.404 0.468 410.165 3.003 .003 0.485 2.323
ses 3.659 0.292 461.438 12.527 .000 3.085 4.234
public * ses -0.682 0.328 395.850 -2.078 .038 -1.328 -0.037

@ Dependent variable: math.



Defining Model 5A with IBM SPSS Menu Commands

Settings will default to those
used in Model 5.

1. Go to the toolbar and
select ANALYZE,
MIXED MODELS,
LINEAR.

This command enables access
to the Linear Mixed Models:
Specify Subjects and Repeated
dialog box.

2. 'The Linear Mixed Models: Specify Subjects and
Repeated screen displays the default settings

from the prior model.

Click the CONTINUE button to display the Lin- s

ear Mixed Models dialog box.
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3. We will modify the model’s fixed
effects, so click the FIXED button to
access the Linear Mixed Models: Fixed

Effects dialog box.

4. The Linear Mixed Models:
Fixed Effects dialog box
displays the default setting
from the prior model. We
will remove two cross-level
interactions (ses_mean *ses
and prodyrc*ses) from the
model.

Click to select ses_mean *ses and
prodyrc*ses, and then click the
REMOVE button. The final

model is shown in the insert.

Click the CONTINUE button
to return to the Linear Mixed
Models dialog box.

5. Finally, in the Linear Mixed Models
dialog box, click the OK button to

run the model.

We next provide a simple graph to
illustrate what the effect of a cross-level
interaction looks like (Figure 3.4). We
include the menu commands for creating
the graph at the end of this section. For a
factor * covariate interaction, the relation-
ship implies that the group regression lines
are not parallel. A cross-level interaction
represents the effect of a unit-level variable

on a within-unit relationship.
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FIGURE 3.4 SES-achievement relationships in high- and low-achieving public and private schools.

To illustrate this relationship in a rough way, we first aggregated individual math achieve-
ment and SES to the school level. We then created a subset of schools roughly 1 §D above and
below the grand mean of achievement. This illustrates the approximate 0.7-point steeper SES-
achievement slope associated with private schools. Because we focused on groups of schools
some distance from the grand mean, the graph also provides a sense of where the regression lines
for public and private school SES-achievement slopes cross.

Graphing a Cross-Level Interaction (SES-Achievement Relationships in High-
and Low-Achieving Schools) with IBM SPSS Menu Commands
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2a. Within the Select Cases T Select Cases =i

dialog box, select the option P |-sm=
If condition is satisfied. Sumn o ?:’;_mw

. Click the TF button, which | 525
will open the Select Cases: If g’;’;wx
dialog box.
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d. Next, click the equal sign (=d 2l | [] [roemesmsmuemes

(=) to add the term to the

box.

e. Finally, click “1” to complete

the condition: graph = 1.
Click CONTINUE then OK to

close the main Select Cases dialog
box and return to the IBM SPSS

main screen.
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Centering Predictors

In this last section of the chapter, we discuss centering the predictors in a little more detail. In
multilevel models, it is important that the fixed effects can be readily interpreted in relation to
the proposed goals of the research. Centering decisions concern how to rescale the explanatory
variables so that the intercept can be defined most advantageously. Although there is no one cor-
rect decision in every instance, centering decisions should be made primarily on the basis of the
conceptual questions under investigation (Hofmann & Gavin, 1998).

Centering provides the expected value of an outcome Y when the covariate is equal to some
designated value of theoretical interest (e.g., the unit mean or the overall sample mean). Mean
centering is most commonly used in multilevel studies (e.g., grand mean and group mean). There
are, however, other options (e.g., the median and the within-group standard deviation of the
within-group coeflicient of variation) for centering variables (Plewis, 1989). We note that cen-
tering is also required in some situations in order to achieve a solution that converges (i.e., does
not produce an error message). Where there are widely different means and variances across
groups, it may be necessary to center the raw estimates in order to achieve model convergence
(Hox, 2010). In the examples in this workbook, for example, we encountered several situations
when investigating random Level 1 slopes where the raw metric results would not converge,
whereas centered results did converge.

As we have noted, alternative centering strategies can change the values of some parameters
in a model. In Table 3.25, we illustrate the effects of different centering strategies where there
is a random intercept only (Model 1) and where there is a random intercept and random slope
(Model 2). We used a similar data set from the extended example in this chapter with a continu-
ous Level 1 predictor (student SES) to illustrate the effects of the centering strategies on model
parameters. In this case, we created a natural metric for SES, which ranges from 0 to 100, with a
mean of 50.00 and standard deviation of 28.868. Model 1 illustrates the effects of different cen-
tering strategies for a random intercept and fixed Level 1 slope. As the table suggests, the natural
metric estimate of SES and grand-mean-centered estimate (GMSES) are the same (y = 0.082,
2 < .05); however, the location of the respective Yintercepts differs. The raw metric produces a Y
intercept, which represents family SES for the lowest individual in the sample (which was coded
SES = 0). For this individual, the expected math score would be 56.847. Keep in mind that in our
example SES = 0 represents the individual with the lowest family income in the sample, but not
an individual with family income of $0.00.

Grand-mean centering (i.e., where the grand mean is subtracted from individuals’ levels of
family income) often facilitates the interpretation of a multilevel model since it results in an in-
tercept that can be interpreted as the expected value of Y'when the predictor is at its grand-mean
value (0). The standard deviation, however, remains in the original metric. In this case, the origi-
nal grand mean for SES (50.00) is rescaled to be 0, but the standard deviation remains 28.868.
Where Level 1 predictors are all grand-mean centered, the solution provides a Level 2 intercept
that has been adjusted for the Level 1 predictors. One related advantage of grand-mean center-
ing is that it helps the analyst interpret the variances for the intercept and slopes as the expected
variance when all explanatory variables are equal to 0—that is, the expected variances for the
“average” individual (Hox, 2010). o

In contrast, standardizing a continuous predictor (X = 0, D = 1) has the same effect on the
intercept as grand-mean centering, but it also changes the metric of the predictor by transform-
ing the standard deviation from its original metric (in this case, 28.868) to be equal to 1.0.
More specifically, when the continuous predictor is standardized (i.e., a z-score), it is in standard
deviation units. Therefore, as in Model 1, the predictor’s metric will be different from the grand-
mean-centered estimate (y = 0.082). In contrast, the standardized estimate of SES is 2.366,
suggesting that an increase in student SES of 1 §D would produce a 2.344 increase in the math
outcome.
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In many cases, the uncentered or natural metric may be a logical choice since for the natural
metric the intercept is defined as the level of Ywhen X'is 0 (0.0). Some natural metric solutions,
however, may have little practical importance in organizational studies (Kreft, de Leeuw, &
Aiken, 1995). In the example in Table 3.25, there might be occasions where we prefer center-
ing on the lowest individual in the sample (i.e., where SES is scaled to be equal to 0), but most
often it is convenient to center on the average level of the predictor in the sample. Importantly,
we draw attention to the fact that for models with a random intercept only, solutions where the
Level 1 predictors are in their natural metrics, grand-mean centered, or standardized will produce
equivalent models (i.e., in terms of deviance, or -2 log likelihood [-2LL], and residual variances)
as shown in Table 3.25 (for further discussion, see Hox, 2010; or Raudenbush & Bryk, 2002).
Group-mean centering produces an intercept equal to the expected value of Y for an indi-
vidual when X is equal to the group’s mean. Unlike grand-mean centering, with group-mean
centering, the unit means are unadjusted for differences among their members. Group-mean cen-
tering puts the attention more on relational advantages that some individuals may enjoy within
their particular social group. It is important to emphasize that group-mean-centered solutions
are not the same as grand-mean or natural metric solutions. In contrast to the previous center-
ing strategies, when we use group-mean centering of explanatory variables, the meaning of the

TABLE 3.25 The Effects of Different Centering Strategies

Variables SES ZSES GMSES GRPSES GRPSES(1)
Model 1: Random Intercept
Between Schools
Intercept 56.847* 60.945* 60.945* 60.896* 53.567*
Mean SES 0.148*
Within Schools
Estimate 0.082* 2.366* 0.082* 0.065* 0.065*
Variance Components
Level 2 Variance 23.515* 23.515* 23.515* 29.957* 21.667*
Level 1 Variance 215.435* 215.435* 215.435* 215.125* 215.416*
Parameters 4.000 4.000 4.000 4.000 5.000
-2 Log Likelihood 104,289.430 104,289.430 104,289.430 104,403.419 104,246.714
Model 2: Random Slope
Between Schools
Intercept 56.862* 61.079* 61.079* 60.904* 53.587*
Mean SES 0.148*
Within Schools
Estimate 0.084* 2.434* 0.084* 0.063* 0.036
Mean SES*Estimate 0.001
Variance Components
Level 2 Slope 0.003* 2.459* 0.003* 0.003* 0.003*
Covariance -0.375* -6.571* -0.228* -0.243* -0.249*
Level 2 Variance 53.062* 22.924* 22.924* 30.186* 21.915*
Level 1 Variance 213.682* 213.682* 213.682* 213.415* 213.660*
Parameters 6.000 6.000 6.000 6.000 8.000
-2 Log Likelihood 104,229.679 104,229.679 104,229.679 104,365.540 104,196.881

*p < .05.
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model is changed (Hox, 2010). This is because group-mean centering separates the within-group
and between-group portion of the predictor estimate; that is, the information concerning pos-
sible differences in the predictor across Level 2 units is removed.

As Raudenbush and Bryk (2002) suggest, it often desirable to group-mean center a predictor
if the focus of the analysis is on producing an unbiased estimate of the within-group (Level 1)
effect, since group-mean centering results in a Level 2 mean that is unadjusted for the Level 1
predictor. If the analyst is interested in person-level variables (but where individuals are nested
in groups), ignoring the nested structure of the data can lead to misleading results at Level 1
(Cronbach, 1976), since slope coefficients derived from the total covariance matrix (i.e., the
covariance matrix based on the number of individuals in the study) will generally represent un-
interpretable blends of their within-group and between-group estimates. Similarly, in this situ-
ation, the grand-mean-centered estimates also represent a mix of the within-group slope and
any difference in the slopes that might exist across groups (i.e., in the case where the slope varies
randomly across groups) since the model with grand-mean centering actually involves both the
individual estimates of X and the Level 2 mean of X as adjusted (Raudenbush & Bryk, 2002).

In Table 3.25, for the model with random intercept only (Model 1), we can observe that the
group-mean-centered solution (GRPSES) results in a different intercept estimate (60.896), a
different estimate of the Level 1 predictor (y = 0.065), as well as different estimates of the Level 2
intercept variance (29.957) and model deviance, or ~2LL. The Level 2 intercept variance will
typically be larger than in the previous solutions. This is because the Level 2 intercepts in the
group-centered solution are unadjusted, whereas the intercepts in the previous solutions are ad-
justed for the Level 1 predictor (Raudenbush & Bryk, 2002). As Raudenbush and Bryk note,
because Mean SES is likely related to the intercept (and also the slope, as in Model 2), we might
attempt to add Mean SES to the Level 2 model [as we do with GRPSES(1) in the last column]
in an effort to resolve the discrepancy in Level 2 intercept variance between the previous center-
ing solutions and the group-centered solution. Because group-mean centering results in a differ-
ent type of model (i.e., by isolating the within-group portion of the estimate and removing the
between-group differences in that portion of the estimate), however, one cannot simply add the
mean for the variable back at the group level [as in the GRPSES(1) column], since that results
in adding more information that is not present in the raw scores (i.e., by adding one additional
parameter to estimate). By adding another parameter, the model deviance will be smaller than
the previous solutions for Model 1 (Raudenbush & Bryk, 2002). For example, in Table 3.25 we
can observe for GRPSES(1) that the —2LL estimate is the lowest of the previous four centering
decisions, reflecting the addition of the Mean SES parameter at Level 2.

Centering Predictors in Models with Random Slopes

Centering decisions can also be important in multilevel models where there are anticipated
cross-level interactions—that is, where the analyst wishes to examine variability in slopes across
groups by building a model with Level 2 predictors to explain this variability. Where the focus
in on random slopes, grand-mean-centering and group-mean-centering approaches generally
address different research questions since grand-mean centering puts the focus on Level 2 rela-
tionships after adjustment for Level 1 relationships. Moreover, the effects of Level 2 predictors
will be adjusted for differences between organizations in the mean of the X predictor (Rauden-
bush & Bryk, 2002). In contrast, group-mean centering is the better approach if the focus is on
optimal estimation of Level 1 effects that consider nesting since group-mean centering removes
confounding between-group effects in the Level 1 predictors.

It is important to note that modeling random slopes at Level 2 introduces modeling cross-
level interactions. Cross-level interactions refer to situations where Level 2 variables are proposed
to moderate the strength of Level 1 relationships, such as the eftect of student SES on students’
achievement. Cross-level interactions can actually be proposed as moderators of randomly vary-
ing Level 1 slopes or as moderators of fixed within-group relationships. In this latter case, the
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slopes do vary from group to group, but rather than their variation being random, they vary as a
function of the Level 2 moderator (Raudenbush & Bryk, 2002). Cross-level interactions intro-
duce another aspect to be considered—that is, the interpretation of the interaction. In regression
models, the interpretation is typically the expected value of one predictor when the other one
is equal to 0 and vice versa (Hox, 2010). Therefore, we want to exercise some care in selecting a
value for O that is meaningful and actually occurs in the data (Hox, 2010).

Given this, natural (or raw) metric solutions are often difficult to interpret since the level of Y
(i.e., the Yintercept) may be difficult to interpret when Xis 0. In contrast, centering on the grand
mean will produce an interaction coefficient interpreted as the effect of the first predictor on Y
for individuals who are at the grand mean (0) on the other predictor. Grand-mean centering is
one straightforward way to facilitate the interpretation of interactions. Group-mean centering
is also appropriate where there are hypotheses involving interactions among Level 1 variables,
as in the case with cross-level interactions, since the Level 2 variables proposed to moderate the
Level 1 relationship will be unaffected by adjustment within groups (as takes place in grand-
mean centering).

In models where there is a randomly varying Level 1 slope, different centering strategies will
also produce different results. In Table 3.25, Model 2 indicates that the choice of centering will
make a difference in estimating the Level 2 intercept variance, as well as the slope variance and
covariance between the intercept and slope. As we noted previously, the variance of Y at Level 2
will typically be larger in group-mean models than in grand-mean or raw metric models since
the group means in the group-centered solution are unadjusted. The slope variance will also be
different (i.e., generally larger in group-mean solutions), although that is not the case in our
example (except for the standardized solution). This is likely because our sample sizes are fairly
large for any given Level 2 unit since we have 12,600 students nested in some 400 schools. In
such cases, centering generally does not make much difference (Raudenbush & Bryk, 2002).
We again note in the last column of Model 2 that incorporating mean SES as a predictor in the
Level 2 intercept model and also in the Level 2 random-slope model does not solve the problem
of the different estimates of slope variability produced by the different centering approaches.
This actually introduces two extra parameters to be estimated, which again results in a better-
fitting model.

In some situations, group-mean centering may be preferable to estimate slope heterogeneity
properly (Raudenbush & Bryk, 2002). For example, when the Level 1 sample size is small or
moderate, or if the group mean of X varies across units, group-mean centering should be con-
sidered as a viable alternative if the focus of the analysis is to produce more robust estimates of
unit-specific regression equations (Raudenbush & Bryk, 2002). Because grand-mean-centered
models produce an adjusted intercept for the Level 1 predictors, in some cases (e.g., schools
that are very high or very low in mean SES), the adjusted means can be estimated with little
accuracy. This happens because the adjusted mean for school j represents the expected outcome
for a child in the school who is at the grand mean of SES, and if there are few children like
this in a particular school, the school mean will be less reliably measured than for some other
schools where a larger number of students have family income levels that are at the grand mean
for SES in the sample (Raudenbush & Bryk, 2002). This can result in making the slope vari-
ability more homogeneous than it actually is and, therefore, results in the underestimation of
the slope variability at Level 2. As we noted, where sample sizes are large for any given Level
2 unit, centering will not make much difterence, as well as when the slope does not vary across
Level 2 units.

At the top of the data hierarchy (e.g., schools), the centering choices are not as critical as
for predictors at lower levels (Raudenbush & Bryk, 2002). Usually it is convenient to center
continuous variables around their grand means, as opposed to leaving them uncentered. We
note that variables cannot be group centered at the highest level, since their “group” at that level
is the Level 2 sample of schools. Centering strategies are the same for dichotomous variables.
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Dummy-coded variables (0, 1) are often left in their natural metric, depending on the analyst’s
choice for the meaning of the reference group (coded 0) in the unit-level model. They can also
be grand-mean or group centered. Dichotomous variables can also be effect coded (e.g., -1, +1),
which results in a type of grand-mean centering. We discuss interpreting results with dichoto-
mous outcomes in the next chapter.

Summary

We have shown in this chapter how multilevel analyses allow the analyst to investigate a wider
range of research questions than can be addressed in single-level analyses. In Chapter 4, we con-
tinue to illustrate the flexibility of multilevel techniques by extending the basic two-level model
to a three-level model. We also address issues regarding building a variety of within-level and
cross-level interactions.



CHAPTER

Three-Level Univariate Regression Models

he examples presented in the previous chapter demonstrated the basic multilevel regres-

sion model for examining hierarchical data structures. The basic two-level model can be
readily extended to cross-sectional models involving several levels in a data hierarchy, regres-
sion discontinuity designs, and multilevel longitudinal models involving individuals and groups.
In this chapter, we provide an overview of three-level, cross-sectional modeling. We also intro-
duce a strategy for centering predictors in multilevel models to facilitate the interpretation of
effects and a strategy for comparing the fit of successive proposed models to the data.

Three-Level Univariate Model

As a first example, consider a three-level model with a univariate outcome, math achievement.
In this example, we primarily wish to examine whether classroom teaching effectiveness (i.e., a
characteristic of teachers at Level 2) and aggregate teaching effectiveness (i.e., as a characteristic
of schools at Level 3) affect student outcomes. At the classroom level, we also focus on whether
teacher effectiveness may be related to student composition. Finally, at the school level, we wish
to examine whether the size of individual teacher effects varies across schools.

Research Questions

We investigate three research questions in this example. The first question concerns whether a
key organizational process, in this case the effectiveness of students’ teachers, has an individual
and an organizational effect on their academic outcomes, after relevant background and orga-
nizational context indicators have been controlled. This involves examining whether effects at
lower levels (i.e., the classroom) of the data hierarchy tend to compound at a higher level (i.e.,
the school). As we mentioned in the previous chapter, this type of relationship is often referred to
as a compositional effect. More specifically, we might ask: At the classroom level, does having a
more effective teacher confer an academic advantage to those students compared with their peers
having a teacher of average effectiveness? Moreover, does being in a school with more effective
teachers on average confer any additional advantage compared with students in schools with less
effective teachers?

The second research question concerns whether the teacher effectiveness slope varies across
schools. We can address this question by examining the variance components for the slope at
Level 3 of the model. If the slope does vary across schools, we can focus on building a model
that explains variability in the random slope at the school level. This type of model concerns the
presence of a cross-level interaction—that is, the potential effect a variable at a higher level of the
data hierarchy may have on a relationship at a lower level.

'The third question focuses on whether teacher effectiveness at the classroom level is contin-
gent on student composition. Addressing this question allows us to demonstrate how to inves-
tigate an interaction between two variables at the same level of the data hierarchy. This is also

131
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a common type of specification in a multilevel model. Interactions can be interpreted as the
amount of change in the slope of Y (achievement) with respect to X (teacher effectiveness) when
Z (student classroom socioeconomic status [SES] composition) changes by 1 unit. More specifi-
cally, we ask: Does the dependence of a student’s achievement score on the effectiveness of her
teacher also depend on differing levels of socioeconomic status in the classroom? Keep in mind
that interactions are not simply “additive,” as are the main effects of variables in a model (i.e., the
additional effect of teacher effectiveness in explaining achievement while holding SES composi-
tion constant), but, rather, they depend on the specific levels of the two variables from which they
are produced (effectiveness and classroom SES). We can then test whether the interaction term

added to the model produces a better fit than the main-effects-only model.

The Data

For this example, we will use a random sample of 9,196 students nested in 516 classrooms in
160 schools.

Table 4.1 provides a summary of the variables used in the example. The outcome is student
scaled scores on a standardized math test. The sample data are found in the file ch4¢hrecleve-
IURM.sav. The data have an identification code for the school (schcode) and teacher (feachid),

TABLE 4.1 Data Definition of ch4threelevelURM.sav (N = 9,196)
Variable Level® Description Values Measurement
schcode School School identifier (160 public  Integer Ordinal
schools).
teachid Class Teacher identifier (516 (1,2,3,...51¢) Ordinal
teachers in their classrooms).
Rteachid Class Recoded teachid identifying (1,2,3,...29 Ordinal
individual teachers within
schools (schcode).
math Individual Dependent variable 48110 775 Scale
measuring student math
achievement score.
lowses Individual Dichotomous variable 0 = Not Low Scale
representing student Socioeconomic Status
socioeconomic status. 1 = Low Socioeconomic
Status
teacheffect Class A standardized measure of -2.64 10 3.05 Scale
each teacher’s classroom
teaching effectiveness.
classlowses_mean  Class Predictor variable measuring .00 to 1.00 Scale
student socioeconomic
composition within school
classrooms.
schlowses_mean School Predictor variable measuring  0.00 to 1.00 Scale
student economic status.
gmlowses Individual Predictor variable (grand- -0.41 = Not Low Scale
mean centered) measuring Socioeconomic Status
socioeconomic status. 0.59 = Low Socioeconomic
Status
gmclasslowses_ Class Predictor variable (grand- -0.41 t0 0.59 Scale
mean mean centered) measuring

student socioeconomic status
within classrooms.

(Continued)
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Variable

Level°

Description

Values

Measurement

gmteacheffect

Class

Predictor variable (grand-

-2.62 10 3.06

Scale

mean centered) measuring
teacher effectiveness by their
students’ math scores.

gmschlowSES_ School Predictor variable (grand- -0.41 t0 0.59 Scale

mean centered) measuring
school socioeconomic status.

gmaggtcheffect School Predictor variable (grand- -0.97 to 1.57 Scale

mean centered) measuring
teacher effectiveness.

grouplowses Individual Predictor variable (group- -0.95 10 0.96 Scale

mean centered) measuring
socioeconomic status.

groupclasslowses_  Class Predictor variable (group- -0.72 10 0.80 Scale

mean centered) measuring
student socioeconomic status
within classrooms.

groupteacheffect Class Predictor variable (group- -.3.49 to 3.41 Scale

mean centered) measuring
teacher effectiveness by their
students” math scores.

o Individual = Level 1; Class = Level 2; School = Level 3.

as well as a recoded teacher identity (Rzeachid ). The recoded Level 2 identification code (i.e.,
individual teachers within schools) substantially reduces the amount of time it takes to run the
model. Next is a math score, a measure of individual student socioeconomic status (coded 1 =
low SES, 0 = else), a standardized (mean [M] = 0, standard deviation [SD] = 1) assessment of
each teacher’s classroom teaching effectiveness (feacheffect), a classroom SES composition vari-
able (classlowses_mean), and an aggregate (school-level) measure of student SES composition
(schlowses_mean). These latter two variables were created from the individual-level SES variable
(lowses) by using the “aggregate” command within IBM SPSS (DATA, AGGREGATE) and

teachid and scheode as the “break” variables, respectively.

Defining the Three-Level Multilevel Model

Our notation follows that used by Raudenbush and Bryk (2002). For three-level models, fixed-
effect coeflicients at Level 1 are defined as 7, so that Level 2 coefficients can be defined as § and
Level 3 as y. For individual 7 in class 7 in school £, the general Level 1 model can be defined as

P

l]zj/e =Tt Eﬂpjk”}w T & (4.1)
7=1

where 7y, is an intercept; a,; represents Level I predictors (p = 1, .. ., P), such as socioeconomic
status, for individual i in Level 2 unit j and Level 3 unit £; ,; represents corresponding Level 1
coeflicients; and €, is the Level 1 residual. The Level 1 residual £, is assumed to be normally
distributed with the mean equal to 0 and variance o?.

At Level 2, the general classroom model can be specified as

Q,
7 = Boox * Zﬂme T (4.2)
g=1
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where B,y is the intercept for school £ in modeling the teacher effect; X, ; represents Level 2
predictors (¢ = 1, ..., Q,), such as teaching effectiveness; f,, represents corresponding Level 2
coefficients; and r,; represents Level 2 random effects. Level 1 coefficients can be modeled at
Level 2 as fixed at the same value for all Level 2 units (i.e., 77,3 = B,:), which indicates that no
predictors or random 7,, component in Equation 4.2 is included in the model; as nonrandomly
varying among Level 2 units (i.e., Eq. 4.2 without the random 7,; component); or as randomly
varying (Eq. 4.2 with the random component 7,; included). The Level 2 random effects are
collected in a covariance matrix whose dimensions depend on the number of random eftects
specified in the Level 2 model (see Raudenbush, Bryk, Cheong, & Congdon, 2004, for further
discussion).
Between schools (Level 3), a general model can be defined as

N

29
ﬂMk =V ppo T ZlymeVf% e (4.3)
where 7,, is an intercept; W, represents Level 3 predictors (s = 1, ..., §,,), such as student

composition; ¥,, represents corresponding Level 3 coefficients; and «,,, represents Level 3
random effects. The dimensions of the Level 3 covariance matrix of random effects depend on
the number of randomly varying effects in the model. As Raudenbush et al. (2004) suggest,
Level 2 coefficients can be modeled at Level 3 as fixed (8, = ¥,,0), as nonrandomly varying
(i.e., Eq. 4.3 without the random component #,,), or as randomly varying (as specified in

Eq. 4.3).
The Null Model (No Predictors)
For this first no-predictors, or null, model, we can examine the decomposition of variance in

math achievement associated with students, classrooms, and schools. For a three-level model, the
proportion of variability (intraclass correlation) in outcomes at Level 3 can be defined as

2 2 2 2
P =003/ (Orss ¥ Oy + Orys) (4.4)
For Level 2, the intraclass correlation (ICC) would be
2 2 2 2
P =012/ Oy + Ol ¥ O L3 (4.5)

and for Level 1, the ICC would be

. 2 . 2
Level 1 + GL:’W] 2 + JL./,"Z/z'/ 3 ) (46)
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Defining Model 1 (Null) with IBM SPSS Menu Commands

'The appropriate baseline model from which to compare subsequent models is the intercept-only,
or no-predictors, model.

Launch the IBM SPSS program appli- 2 chathreclevelURM.sav [DataSet1] - M SPSS Statistics Data Editor ]
cation, and select the ch4threelevel URM. Fle Edt Vew Daia Iransform| Ansyze Drectllarketng Graphs Utites Addgns Window Heb
sav data file. = O =5 5 T == y
SEHE M v = | B B¢
! ] Taies » i ‘Visible: 16 of 16 Variables
1. Go to the toolbar and select el s wns i
ANALYZE, MIXED MODELS, 1 1 GeneraiLinearodel ¥ 1 251 ||
LINEAR 2 1 Generaiized Linear Modsis  » 0 251 [
) 3 1 Meed Models > | near. [
: 4 1 Correlate ¥ | (] generaiized Linear...
'I}}ls comrTland enables access to Fhe = - S e < " -
Linear Mixed Models: Specify Subjects 6 1 Logtness > 0 251
and Repeated dialog box. 7 1 Neural Networks » 0 251
3 1 Classity > 0 251
9 1 Dimension Reduction > 1 261
10 1 Scale » 0 251
11 1 Nonparametric Tests » 0 251
12 1 Forecasting > 1 251 5
Dota View | Varisbie View |||  Mdtiple Responss 2
|Linear... @ Missing Value Analyss Cessoris ready| | ==
Mutticie Imputation >
Compiex Samples »
Quaity Control »

2. 'The Linear Mixed Models: Specify Subjects and (B Linear Mired Modei= Speaty S DIt st Fepested o)
Repeated screen displays options for defining

variables as subjects, repeated observations, Chck Continue for models wih uncorrelated terms.
and type of covariance structure in a model. Speclly, Sublect variahle, r modsi> with coneied fandon ffects.
Specify both Repeated and Subject vanables for models with correlated
L ) ) ) iduals wihin the random effects.
A subject is an observational unit that may be in- _

. . . Subjects:
dependent of other subjects. For this model, we will al scicode
designate two subject identifiers (schcode, Rteachid ) D & Reeacn

W

for the model. e T L |
& lowses WM

Click to select schcode and Rteachid from the Vari- & teacneect o,

. . f classlowses_mean -
ables column, and then click the right-arrow button S,
to move the variables into the Subjects box. & gmiowses n

] f gmciassiowses_mean
& gmteacheffect

Click the CONTINUE button to display the Lin- & gmschiowSES_mean | v,
ear Mixed Models dialog box. Repeatod Couarioce Tyie: [Dopons =

(e ) ][ men ][vew |
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3. 'The Linear Mixed Models main
screen enables specifying the depen-
dent variable, factors, covariates, and
access to dialog boxes for defining
Fixed and Random eftects, and op-
tions for Estimation, Statistics, EM
Means, and Save.

For this model, we will use math as the
dependent variable. Click to select math
from the left column listing. Then click
the right-arrow button to transfer math
into the Dependent Variable box.

&2 Linear Mixed Models [z
= | Dependent Variable: | ==
ol seheode = Hi;‘f math | _—/“
& teachid N [Roston_
Esctor(s): R
[ gciotr. ]
& lovises = | __ Statistics... |
G v || po oo, |
' Saye...
&9 schiowses_mean M ‘ % | _’f_]
& gmiowses —— | | Bootstrap...
y gmciasslowses_mean —— ResidualWeight
& gmteacheffect — =
e SIS |
OK || Paste .. Reset | CanceI—H Help J

Since this first model (null) excludes predictor variables, we will skip over the FIXED button, which

enables adding fixed effects to a model.

We will add random effects to this model. Click the RANDOM button to access the Linear Mixed

Models: Random Effects dialog box.

4. The Linear Mixed (€0 Linear Mixed Models: Random Effects
Models: Random Effects e e o
displays the Random K;)[ Next E‘@
Effect 1 of 1 screen. This Coyariance Type: Scaled Kentty
is the default screen (%) Buid t::l:zcm () Buid pested terms @hiﬂhqde intercept
when creating a model Eactors and Covaristes: Modet
for the first time. The |
random-effects screen |
allows specifying ran- Eachoon b
dom effects, interactions,
intercept terms, and | |-
subject groupings. y :
a. Begin by specifying [asa- e s PR AT =
the covariance struc- iSubljlect Grouping —
ture from the default im,i:'ﬂm : cﬁm,::’;
variance components Hmac) -
(VC) to scaled iden- | \-?J
tity. Click the pull-
down menu and select ([Ccantiee 3 [ cancet ) [ ew ]
Scaled Identity.

The Scaled Identity covariance structure has constant variance and assumes no correlation between any

elements (IBM Corporation, 2012).

b. We want the intercept to be included in the model, so click the Inc/ude intercept option.

c. 'The Subject Groupings box displays the schcode variable that was specified as a subject variable in
the Specify Subjects and Repeated dialog box show in step 2. We will specify schcode as the subject
for the random-eftects Level 1 part of this model. Click to select schcode, and then click the
right-arrow button to move the variable into the Comébinations box.

d. After adding schcode as a subject in the prior step, the NEXT button is activated at the top-
right section of the window. Click the NEXT button to access the Random Effect 2 of 2 screen.
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Note: The NEXT button may not work in earlier or unpatched versions of IBM SPSS when creating
multilevel models with random intercepts. An update issued by IBM SPSS for software Version 19 ad-
dressed the problem, and Version 20 appears to have resolved the issue. A workaround to activating the
NEXT button is to either (a) add or reenter a subject variable into the Comébinations box or (b) add a
variable from the Factors and Covariates column to the Mode/ box and then remove it before proceeding

to the Random Effect 2 of 2 screen.

The Random Eﬁéth OJFZ screen 2 Linear Mixed Models: Random Effects [
display is similar to the first
. A rRandom Effect 2 of 2
screen and requires the following | @ -
Changes. Coyariance Type: Scaled ientity Vi
Random Effects
3 (3) Buig terms () Build nested terms @-ﬂgl Inclyde intercept
e. Change the covariance Faclors and Covaristes: Modet 2
type by clicking on the
pull-down menu and i
selecting Scaled Identity. = -
f. We want the intercept to
be included, so click the S T
| |
Include intercept option. puidTerme i
g. We will specify scheode C
and Rteachid as the sub- gk any e
jects for the random- [l ssheose ], :gscnmda
effects Level 2 part of ' fesene
this model. Click to select |
scheode and Rteachid, and -
then click the right-arrow (fycontoe J(_conowt ][t ]
button to move the vari-
ables into the Combinations box.
Click the CONTINUE button to return to the Linear Mixed Models dialog box.
5. In‘ the Linear Mixed Models dialog box, ST =
click the ESTIMATION button to ac- :
cess the Linear Mixed Models: Estimation & Uinear Mixed Models: Estmation e~ | % 1 | Foced..
dialog box, which displays two estimation Method T==~tauRontom.
g DoXx, play .
method choices: maximum likelihood [ 14| © Restricted Meamum Liaiiood (REML) |'—i ===
. . T S Maimum Lieihood (UL os.. |
(ML) or restricted maximum likelihood P T |:::%
(REML). In this chapter, we will use Roiions |
K . X Maximum garations: 100 | save.
maximum likelihood to estimate the S 2 = e
. o ) aximum step-halvings: 10 ] |
models, which facilitates making com- [ rint eration bistory for every step(s) _
parisons between successive models using |
model fit criteria (Hox, 2002). _Lozmi:hwd Fiadoven [ neo |
||| | ® absokte ) Relative
— Value :.g v —
Click to select ML, and then click the CON- R
. . arameter Convergence
TINUE button to return to the Linear Mixed B ass e
Models dialog box. Ve (0000001 ]
Hessian Convergence
(3) Absglute ) Relative
vabe [o -
Maximum scoring steps: | 1 |
Sing o ! %
u}c‘anﬁwe ) cancel Hep |
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6. In the Linear Mixed Models dialog T Lincar Mixed Models T
box, click the STATISTICS but- :
ton to access the Linear Mixed {3 Linear Mixed Models: Statistics ‘,ﬁuﬁ "—"'—"ﬁ Fixed..
Models: Statistics dialog box. L Silmmary Statistice | T [ Random... _
[] Descriptive statistics “Mhgatimaton... |
Click and select the following three [7] Case Processing Summary
statistics to be included in the output: ~Model Statistics €M Means..

Parameter estimates, Tests for covariance
parameters, and Covariances of random

effects.

Click the CONTINUE button to re-
turn to the Linear Mixed Models dialog
box.

[] parameter estimates |__ Seve: J
3 [V] Tests for covariance parameters | 2001

[] corrglations of parameter estimates
it

[7] covariances of parameter estimates ]

Covariances of random effects - — —
| H J
[ ] covariances of residuals E‘me;l [_039

[] contrast coefficient matrix

Confidence interval %

th‘.ont'nue I [ Cancel ] [ Help ]
7. Finally, in the Linear Mixed Models R Linear Mixed Models [
dialog box, click the OK button to ATl
run the model. gl schoode Q[ [Pmen ] | Faed..

- T  Rapdom.. |
& teachid Factor(s): [_Rogeom.._]
49 lowses | - o
& teschetiocs 2 | [ sotstes..]
gchssbwses_meun Covariato(o} |_Eﬂ!-!uns...

schiowses_mean - | Save).
f gmiowses B = —
| Bootstrap...

E
& gmclassiowses_mean L=
mteacheffect :
y aomes dual Weight:
f gmschiowSES_mean e

Assosiowand= | | |
[_ox h’“ Ea-‘m’-_i: Reset || CancelJl Hep |

Interpreting the Output From Model 1 (Null)

Table 4.2 presents the variance decomposition for the null (no-predictors) model. The variance
component associated with schools is 189.89; with classrooms, it is 131.42; and with individuals,
it is 1,333.79. From Equation 4.4, we can calculate the proportion of variance between schools
as 0.115 [189.8867/(1,333.7850 + 131.4211 + 189.8867)] or 11.5%. Following Equation 4.5, the
variance is 0.079 (7.9%) between classrooms, and from Equation 4.6, the student-level variance
is 0.806 (80.6%). This suggests there is adequate variability at each level to conduct a multilevel
analysis.

We reiterate here that in multilevel modeling, explaining variance is more complex than in
single-level regression models (Hox, 2010). First, there is the issue of dealing with unexplained
variance at several levels. Second, if there are random slopes, the model becomes more complex,
and explained variance (at each level) has no unique definition. As we noted in Chapter 3, one
approach often used is to examine the change in residual variance that occurs by adding predic-
tors within a sequence of models. The analyst begins with the intercept-only model as we have
just presented. This serves as a baseline against which to evaluate subsequent reduction in the
variance at each level as other variables are subsequently added to the model. The analyst should
keep in mind, however, that when variables are added at Level 1, they can explain (i.e., reduce)
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TABLE 4.2 Estimates of Covariance Parameters®

95% Confidence Interval

Parameter Estimate  Std. Error Wald Z  Sig. Lower Bound Upper Bound

Residual

1,333.785 20.836 64.012 .000 1,293.565 1,375.255

Intercept [subject = schcode] ~ Variance ~ 189.887 27.933 6.798 .000 142.324 253.344

Intercept [subject = Variance 131.422 15.963 8.233 .000 103.581 166.746
schcode * Rteachid]

@ Dependent variable: math.

variance at both Level 1 and at Level 2 (and perhaps even at Level 3). In contrast, variables added
at higher levels of the model do not affect the variance present at lower levels. In other situa-
tions, a variable added at a lower level may appear to explain negative variance. This may happen
because the program may not make a very good “initial” estimate of the variance at each level,
depending on the nature of the data (e.g., normality, sample size at each level, unequal sampling
distribution of Level 1 variables across groups, etc.). We therefore remind analysts to be cautious
about placing too much emphasis on variance reduction approaches in accounting for outcome
variance. Adding random slopes can also complicate accounting for variance at each level (Hox,
2010). For these reasons, it can be more challenging to assess the outcome variance explained in
multilevel models.

Model 2: Defining Predictors at Each Level

We will next illustrate the three-level model by building a simplified model with one or two pre-
dictors at each level. This results in combining a couple of general steps in the overall modeling
strategy that we laid out previously (i.e., no-predictors model, within-group model, group-level
model, random slope, and cross-level interactions). We illustrate two primary centering strategies
discussed in Chapter 3 in this example.

As we discussed earlier, grand-mean centering (where the grand mean is subtracted from indi-
viduals’values on the variable) results in redefining the sample mean of the predictor to zero (0.0).
Grand-mean centering the continuous predictors produces an equivalent model to leaving the
predictors in their natural metrics, but it has the advantage of being able to interpret the result-
ing intercept in the model as the expected value of Y when they are at their mean values. This has
the effect of adjusting the unit intercepts for differences in Level 1 predictors within the units. In
contrast, group-mean centering (where each group’s mean is subtracted from individuals’ values
on the variable) results in unit intercepts that are unadjusted for differences within the units.
More specifically, it produces an intercept equal to the expected value of Y for an individual when
Xis equal to the group’s mean.

We reiterate that group-mean-centered solutions are not the same as grand-mean, standard-
ized, or raw metric solutions. In IBM SPSS, grand-mean-centered or group-mean-centered
variables must be created using COMPUTE and saved in the data set. In our examples, we
designate variables that we have grand-mean centered by placing “gm” in front of the variable
(e.g., SES becomes gmSES). We designate group-mean-centered variables as “group” (e.g., SES
becomes groupSES). Analysts, of course, can devise their own naming schemes.

Categorical variables, such as dichotomous indicators, also present different options for cen-
tering using low SES as an example. We present some of these options in Table 4.3. We have
two options if we leave a dummy-coded (coded 0, 1) predictor in its natural metric. If /owSES is
entered as a covariate in MIXED, as is typical in multiple regression analyses, the reference group
for the intercept (604.315) will be the group coded 0 (did not participate). For a dummy-coded
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variable entered into MIXED as a factor, it is important to note in Table 4.3 that the default
reference group is the last category (i.e., participated in free/reduced lunch program) instead of
the first category. In this case, the intercept for achievement (587.538) will correspond to the
expected scores for students who participated in the free/reduced lunch program (coded 1) in
school %, and the variance associated with the intercept will be interpreted as the variance in
outcomes for that group of students across schools (Raudenbush & Bryk, 2002).

If we grand-mean center a dummy-coded variable (i.e., in this case, coded -0.41, 0.59) and
enter it as a covariate in the model, it results in an intercept that may be defined as the mean out-
come in school %, adjusted for differences among schools in the proportion of students partici-
pating in the federal free/reduced lunch program. This is an important distinction, for example,
if we are concerned with making comparisons between schools after adjusting the outcomes for
differences due to the various backgrounds of students within each school. We can observe in
Table 4.3 that centering a dummy-coded variable on the grand mean or leaving it uncentered
will result in similar slope coefficients but different estimated intercepts. Leaving the SES vari-
able in its raw metric would result in the intercept representing students in the reference group,
after adjusting for the other predictors. We can see that for a dummy-coded variable entered in
the model as a factor, the alternative coding schemes (e.g., uncentered and grand-mean centered)
will not make a difference in the intercept.

We also point out that some fields prefer effect coding for dichotomous variables. As shown
in Table 4.3, when a variable is effect coded (=1, +1) and entered as a covariate, the estimate can
be interpreted as the change above or below the grand mean for the predictor. Note that the
coeflicient in the effect-coded solution is half the size of the other estimates (8.389 vs. 16.778),
and if we subtract that effect-coded estimate from the intercept of the natural metric solution
(604.315-8.389), we obtain the grand mean of 595.926 in the effect-coded model in Table 4.3
(with slight difference due to rounding).

TABLE 4.3 Estimates of Fixed Effects®

Parameter Estimate Esrtrcir df t Sig.
Raw Metric Intercept 604.315 1.192 183.847 506.943 0.000
lowses -16.778 0.849 9,165.850 -19.752 0.000
Grand-Mean Intercept 597.437 1.138 154.141 524.936 0.000
Centered gmlowses -16.778 0.849 9,165.850 -19.752 0.000
Raw Metric Intercept 587.538 1.241 217.152 473.441 0.000
(Factor) [lowses = 0] 16.778 0.849 9,165.850 19.752 0.000
[lowses = 1] (0 0 . . .
Grand-Mean Intercept 587.538 1.241 217.152 473.441 0.000
Centered (Factor) [gmlowses = -0.41] 16.778 0.849 9,165.850 19.752 0.000
[gmlowses = 0.59] (0 0 . . .
Effect Coded Intercept 595.927 1.140 155.420 522.628 0.000
lowseseffect -8.389 0.425 9,165.850 -19.752 0.000
Group-Mean Intercept 597.278 1.298 156.533 460.172 0.000
Centered grouplowses -14.449 0.887 9,068.494 -16.286 0.000

@ Dependent variable: math.
b This parameter is set to O because it is redundant.
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Finally, as we have noted previously, centering the variable on the group mean produces a
different intercept (597.278) and slope coeflicient (—14.449) from the other centering solutions
presented in Table 4.3. The analyst, therefore, should keep in mind the desired interpretation
of the intercept, especially when there are several continuous and dichotomous variables in the
analysis. For other categorical variables entered into the model as factors, the default reference
group is also the last category.

In our first model, we grand-mean centered the low SES predictor (though we could have just
as easily chosen to leave it in its raw metric). At Level 1, we will propose that for individual 7 in
class 7 in school %, student SES background (gm/lowses) affects math achievement:

Y = mop + mipgmlowsesy, + €. (4.7)

At Level 2 (classrooms), we will add a measure of teacher effectiveness (with higher standardized
scores indicating greater effectiveness) in producing student learning in the classroom and an
aggregate measure of classroom SES composition:

Tz = Boor + Boegmteacheffecty, + By gmelasslowses_meany + ry;,

Ty = Bios (4.8)

We also grand-mean centered these predictors. For this model, we will assume that student SES
(grmses) is fixed at the same value for all Level 2 units. Therefore, we do not include any predictors
or a random variance component (”1/%) in Equation 4.8.

At Level 3 (schools), we will add aggregated measures of school SES and teacher effectiveness
(which we also grand-mean centered) to explain variation in between-school math achievement:

Booz = Y100 + Yo gmschlowSES_mean; + Yoo, gmaggtcheffect, + uoo,

Bior = Y1005
Bows = Yoo,
Boz = Yoo- (4.9)

Equation 4.9 suggests that we will also assume that all Level 2 slopes are fixed, but the ad-
justed math intercepts vary across schools. The combined equation will then be the following:

Boor = Yooo + Yioagmlowsesy + Yo gmiteacheffecty + Yoy gmelasslowses_mean;, +
Yoor gmschlowSES_meany, + Yoo, gmaggtcheffect, + uyy + o5 + € (4.10)

'This suggests nine parameters to estimate (six fixed effects, two random effects—the intercept
at Levels 2 and 3, and the Level 1 residual). We note that the Level 3 (school) intercepts in this
model have been adjusted for individual SES at Level 1 and for student SES composition and
teacher effectiveness at Level 2.
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Defining Model 2 with IBM SPSS Menu Commands

Note: IBM SPSS settings will default {2 chathreelevelURM.av [DataSet1] - IBM SPSS Statistics Data Editor =l ]
to those used in Model 1. Fie Edt View Data Transform| Analyze DrectMarketng Graphs Utites Addons Window Heb
SEHG M« = i 5 B
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a. We will introduce five additional
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%2 Linear Mixed Models

variables to be used in the model
( gmlowses, gmclasslowses_mean,
gmteacheffect, gmschlowSES_mean,
gmaggtcheffect). First, click to
select all five variables, and then
“drag” them to the Covariate(s)
box.

. To facilitate reading of the
output tables, we will change
the sequence of the variables by
dragging variables to rearrange
them. First, click to select gm-
schlowSES_mean and gmaggtchef~
fect, and then drag them to the
top of the Covariate(s) box. Now
the variables are listed in first and
second place. Continue rearrang-

;f gmschiowSES_mean
f gmaggtcheffect

;[Eschwde

i Random.
& teachid Faclor(s):
& Rteachis Estimation...
f lowses —
& teachettect % tistes..
49 classlowses_mean EM Means...
;f schiowses_mean Save

f grouplowses

f groupteacheffect

&9 groupciassiowses_mean

gmsc _mean
& gmciassiowsel
f g-meacr-ef‘eci

ing the variables to achieve the
final sequence order (see insert):
gmschlowSES_mean, gmaggtcheffect, gmteacheffect, gmclasslowses_mean, and gmlowses.

C
|é9 gmschlowSES_mean
lf gmaggtcheffect

:é gmieacheffect

| & omeiassiowses_mean
f gmiowses

Note: An alternate method for arranging the variables in the desired sequence order is to select variables
individually and then use the right-arrow button to move each variable into the Covariate(s) box.

We may now proceed to define fixed eftects for the variables.

Click the FIXED button to access the Linear Mixed Models: Fixed Effects dialog box.

4a. Within the Linear Mixed
Models: Fixed Effects dia-
log box, click the pull-
down menu to change

the factorial setting to
Main Effects.

b. Click to select the five
variables from the Fac-
tors and Covariates box,
and then click the ADD
button to move the vari-
able into the Model box.

c. Note on lower left of the
screen that the intercept
and the sum of squares
(Type III) are the default
settings.

@ Linear Mixed Models: Fixed Effects

rFixed Effects

(%) Buid terms () Buid pested terms

E'ommbwses_,mnn
/ gmaggicheffect
|/ gmteachertect
ik nn'uuwwan frean

Main Effects =

rruea cheffect

M [gmiowses

Model:
gmschiowSES_mean
gmaggicheffect

gmclasslowses_mean

|Factorial

Main Effects b
Interaction

Al 2-way

' |Al 3-way

A 4-way

AN S-way

.l.:...-..---_-.p

%gdq

Sum of sqmlrns_ {T\fpﬂ [ ] ~|

I-h'(‘.ent'nue “ Cancel || Help

Click the CONTINUE button to return to the Linear Mixed Models dialog box.
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5. Finally, in the Linear Mixed Models A Linear Mixed Models [
dialog box, click the OK button to :
Dependent Variable: | Fixed |
run the model. gl schesde % | [& nan | ed... ——
& teachid Factor(s): Random...
Esclor(s).
& Rieschid 2 X e mﬁm
& lowses I - |
& teacnettect - | Statstics...
& classiowses_mean ; | EM Means... J
&9 schiowses_mean Lovariate(s):
& grouplowse-s i S & gmschiowSES_mean -" l Saye... . |
y groupclassiowses_mean '.L- fqmaqg'mef o | Bootstrap... J
& oroupteachetrect | & omteachetfect
[ Residual Weight:
(] ==—
! )
I OK N[ Paste || Reset || Cancel || Help I

Interpreting the Output From Model 2

'The fixed-effects output for Model 2 is presented in Table 4.4. The table suggests a composition
effect associated with student SES; that is, there is an effect at the individual level (y;o, = -14.534,
2 < .001), which compounds significantly at the classroom level (g, = =11.073, p < .001) and the
school level (yy;; = -31.138, p < .001).

As we noted previously, compositional effects refer to the extent to which the size of the
organizational-level effect differs from the size of the individual-level effect. With grand-mean
centering, the compositional effect for schools is estimated directly as the between-group fixed
effect for SES (yp; = =31.138). At the school level, the effect for SES can be interpreted as the
expected difference in math outcomes between two students who have the same individual SES
background (and are in classes with the same SES composition) but attend schools differing by
1 unit (i.e., in this case, 1 SD in mean SES). Similarly, the composition effect at the classroom
level (450 = —11.073) is the difference in size between the individual SES and class-level SES ef-
fects. At the classroom level, the compositional effect for SES can be interpreted as the expected
difference in math outcomes between two students who have the same individual SES but who
are in classes differing by 1 unit (1 §D) in mean classroom SES.

'The output also provides support for our initial contention that there is an academic ad-
vantage for students that compounds due to teacher effectiveness. First, the table suggests that
the classroom-level effect is significant (y4,0 = 7.571, p < .001). This suggests that students in a
classroom with a teacher whose effectiveness is 1 SD above the grand mean would score about
7.6 points higher than their peers in classrooms with teachers at the grand mean of effectiveness.

TABLE 4.4 Estimates of Fixed Effects®

95% Confidence Interval

Parameter Estimate  Std. Error df t Sig. Lower Bound  Upper Bound
Intercept 596.742  0.741 148.020 804.861 .000 595.277 598.208
gmschlowSES_mean -31.138  4.565 436.869 -6.821 .000 -40.110 -22.166
gmaggtcheffect 7.448 1.963 208.719 3.794  .000 3.578 11.319
gmteacheffect 7.571 0.619  656.308 12.223 .000 6.355 8.787
gmclasslowses_mean -11.073 3.472 1,759.121 -3.189 .001 -17.882 -4.264
gmlowses -14.534  0.862 8,841.429 -16.868 .000 -16.222 -12.845




Three-level Univariate Regression Models ® 145

Moreover, the effect of teachers on outcomes compounds at the school level (yyy, = 7.448, p < .001).
The interpretation of this school-level coefficient is straightforward: For two students having
teachers of average effectiveness, attending a school differing by 1 §D in collective teacher ef-
fectiveness is associated with a 7.45-point increase on the standardized math test. This output,
therefore, provides evidence to answer our first research question regarding potential academic
advantages associated with teacher effectiveness.

Model 3: Group-Mean Centering

We contrast these results in Model 1 with a second model where we group-mean centered the
within-school variables. It is important to keep in mind that cross-level interactions can some-
times be a source of instability in a model’s estimates. If this may be a potential problem, group-
mean centering is a good centering choice since this approach removes correlations between
variables across levels (Kreft & de Leeuw, 1998). Group-mean centering results in an intercept
for each unit that is unadjusted for Level 1 or Level 2 predictors. In group-mean-centered solu-
tions, the effects of between-group predictors will also be unadjusted for within-group predictors.
Because grand-mean centering produces group means that are adjusted for the predictors in
the model, in some modeling situations the adjustments for some units may not be very reliable.
'This can occur where there are small within-group sample sizes and considerable variability in
slopes for particular covariates. For units with small sample sizes, the random slope may be es-
timated with little precision, which weakens the likelihood of detecting relationships between
groups (Raudenbush & Bryk, 2002). In this situation, it can be difficult to disentangle parameter
variance and error variance. In cases where the slope varies considerably across units for a predic-
tor, and there is also variability across units in the levels of the predictors, resulting grand-mean-
centered estimates may be less credible than group-mean-centered estimates (Raudenbush &
Bryk, 2002). It is also important to note that compositional effects may change the size and
significance of other parameters in the model. It is, therefore, important to give attention to
decisions about model specification, especially when the focus is on the cross-level interactions.

Defining Model 3 with IBM SPSS Menu Commands
Note: IBM SPSS settings

(2 chathreelevelURM.sav [DataSet1] - [BM SPSS Statistics Data Editor =y
. . B d
will default to those used in
Fie Ed;t View Data Transform| Analyze DrectMarketing Graphs Utiies Add-ons Window Hea
Model 2. =
& @ o = ' HE B
= L—— SRS \ -
1. Go to the toolbar and select Tebies ’ Vs 16 of 16 Variables
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ELS’ LINEAR. 2 1 Genersiized Linear Modeis  » | 0 251 ’:
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7 1 Neural Networks » 0 251
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| 1 Dimension Reduction ’ 1 251
10 | 1 Scale » 0 251
11 1 Nonparametric Tests » 0 2.51
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2. 'The Linear Mixed Models: Specify Subjects and 50 Linesr Mixed Modets: Specfy Subjacts sod Repeated [
Repeated screen displays the default settings
from the prior model.

Cick Continue for models with uncorrelated terms.

Specify Subject variable for models with correlated random effects.

Click the CONTINUE button to display the Linear ff:;::::f;?;:f :.,:::,mmm Rrmoh e cnened
Mixed Models dialog box. Subj
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We may now proceed to define fixed eftects for the variables.

Click the FIXED button to access the Linear Mixed Models: Fixed Effects dialog box.

4a. 'The Linear Mixed Models: B Do Miocd Modets T B ==
Fixed Effects default setting _
. . rFixed Effects
from the prior model is o Sree ol
Main Effects.
Factors and Coyariales: Mgd_gl s s
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]
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Factors and Covariates box, _ _._._é__ S
and then click the ADD ¥ ; | Takas |
button to move the vari-
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dialog box.
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Interpreting the Output From Model 3

Given the previous grand-mean-centered estimates in Model 1, if we instead used group-mean
centering, we should expect a classroom-level SES group-centered effect of approximately -25.6
[i.e.,-14.5 + (-11.1) in Table 4.3] and a school-level effect of approximately -56.7 [i.e., -25.6 +
(=31.1) in Table 4.3]. For teacher effectiveness, we would expect an aggregated Level 3 teacher
effectiveness coefficient of about 15.02 (i.e., 7.57 + 7.45 in the previous table).

'The group-mean-centered estimates are presented in Table 4.5 and are consistent with our ex-
pected output translated from the grand-mean estimates. Note that the Level 3 estimates are still
grand-mean centered. This is because the estimates of the highest level in the data set cannot be
centered on a group—that is, their group is the school sample. Comparison of Tables 4.4 and 4.5
suggests that the only difference between the models is related to the coefficients for the Level
3 composition (yy; = =56.744) and aggregated teacher effectiveness (Yoo, = 15.019) variables and
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TABLE 4.5 Estimates of Fixed Effects®

95% Confidence Interval
Parameter Estimate  Std. Error df t Sig. Lower Bound Upper Bound
Intercept 596.759 0.741 148.049 804.847 .000 595.294 598.224
gmschlowSES_mean -56.744 3.698 192.134 -15.346 .000 -64.037 -49.450
gmaggtcheffect 15.019 1.882 176.732 7.978 .000 11.304 18.734
groupteacheffect 7.571 0.619 656.308 12.223 .000 6.355 8.787
groupclasslowses_mean  -25.606 3.411 1,628.983 -7.507 .000 -32.297 -18.916
grouplowses -14.534 0.862 8,841.429 -16.868 .000 -16.222 -12.845

@ Dependent variable: math.

the coefficient for the Level 2 group-centered class composition effect (g = —25.606). It would
be easy to misinterpret the meaning of these coefficients without a clear understanding of the
difference between the two centering strategies.

Covariance Estimates

'The covariance estimates in Table 4.6 (which are the same for the two models) suggest that the
addition of predictors at each level reduces the proportion of variance associated with each level
of the data hierarchy (see Table 4.2 on page 139) substantially (i.e., from 1,333.785 to 1,288.363
at the student level, from 131.422 to 73.310 at the classroom level, and from 189.887 to 43.369
at the school level). These reductions in variance can be used to calculate an estimate of R? at each
level. For example, at the school level (Level 3) the reduction in variance would be calculated as
(189.887 - 43.369)/189.887 and results in an R? coefficient of 0.772.

It is important to reiterate that predictors entered into the model can affect variance ac-
counted for at the level at which they are entered (e.g., Level 1 or Level 2), and they may also
affect the variance accounted for at higher levels. For example, if grand-mean centering is used,
adjustments for Level 1 predictors may change the level and variability in the intercept across
higher groupings. If group-mean centering is used, however, the Level 1 predictors will not affect
the level of the intercept or its variance across groups. In situations where accounting for variance
is an important aim, the analyst may want to consider developing a Level 1 model first and then
adding Level 2 and Level 3 predictors as separate sets of variables, so that the variance accounted
for at each subsequent level is only affected by predictors added at that level.

TABLE 4.6 Estimates of Covariance Parameters®

95% Confidence Interval

Parameter Estimate  Std. Error WaldZ  Sig. Lower Bound Upper Bound
Residual 1,288.363 19.974 64.501 .000 1,249.803 1,328.112
Intercept [subject = schcode]  Variance 43.369  9.759  4.444 .000 27.903 67.408
Intercept [subject = Variance 73.310 11.640 6.298 .000 53.705 100.072

schcode * Rteachid)]

@ Dependent variable: math.
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Another point to keep in mind is that where there are multiple random effects (e.g.,a random
intercept and random slope), accounting for variance at successive levels may become more com-
plicated if the slope and intercept are correlated. In this case, predictors entered into the slope
equation, for example, may also affect variance estimates in the intercept equation (Raudenbush
& Bryk, 2002). Centering on the group means tends to stabilize the model because it removes
correlations (Paccagnella, 2006), so the resulting estimates may be more accurate. Group-mean
centering may also be advantageous where the slope varies considerably for a particular predictor,
and there is also considerable variability in the levels of the predictors across the units (Rauden-

bush & Bryk, 2002).

Model 4: Does the Slope Vary Randomly Across Schools?

We next investigate whether the random teacher effect varies across schools. This will help us
answer our second research question. The appropriate baseline slope model is the model with
random slopes but no cross-level interactions (Hox, 2002). To indicate a random slope for the
teacher effect, we make a change in Equation 4.9 as follows:

Boix = Yoro + Uou (4.11)

In this model (Model 4), we will also need to change the covariance matrix from identity (ID) to
unstructured (UN) at Level 3 in order to accommodate the two additional random parameters in
the model (i.e., the randomly varying slope and the covariance between the intercept and slope).
'This change will be the following:

2 (4.12)

We will leave the Level 2 covariance matrix as an identity matrix, since there is only one random
effect (the intercept) at that level. As Equation 4.10 indicated, there were nine parameters to
estimate in the previous model. Through substitution, we arrive at the new combined equation,
which adds the random slope parameter at Level 3:

Boor = Yooo + Yioagmmlowses,; + Yogmteacheffecty + Yoyngmclasslowses_mean;, +
YongmschlowSES_mean,, + Yongmaggtcheffect, + uygmteacheffect, + uyy + rop + €. (4.13)
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Defining Model 4 with IBM SPSS Menu Commands

Note: IBM SPSS settings
will default to those used in

Model 3.

1. Go to the toolbar and
select ANALYZE,
MIXED MODELS,
LINEAR.

"This command enables access
to the Linear Mixed Models:
Specify Subjects and Repeated
dialog box.

2. 'The Linear Mixed Models: Specify Subjects and
Repeated screen displays the default settings

from the prior model.

Click the CONTINUE button to display the

Linear Mixed Models dialog box.
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3. 'The Linear Mixed Models dialog box
settings default to those used in the
prior model.

a. We will change the model by
exchanging the group-mean-
centered variables for the grand-
mean-centered variables used in
Model 2 (gmlowses, gmclasslowses_
mean, and gmteacheffect). Remove
the group-mean-centered vari-
ables by clicking to select groupt-
eacheffect, groupclasslowses_mean,
and grouplowses and then clicking
left-arrow button (or “dragging”
the variables).

b. Now click to select three grand
mean variables (gm/owses, gm-
classlowses_mean, and gmteachef-
fect), and drag them to the
Covariate(s) box.

c. To facilitate reading of the output
tables, we will change the se-
quence of the variables by drag-
ging variables to rearrange them.
First, click to select gmteacheffect,
and then drag the variable below
gmaggtcheffect. Continue rear-
ranging the variables to achieve
the final sequence order (see
insert): gmschlowSES_mean,
gmaggtcheffect, gmteacheffect,

gmeclasslowses_mean, and gmlowses.

Note: An alternate method for arranging
the variables in the desired sequence order
is to select variables individually and then
use the right-arrow button (or drag the
variable) to move each variable into the
Covariate(s) box.
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2 Linear Mixed Models
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& groupteacheffect

& cheff B
oK i Easte L f :::g:tse:{%? gmteachaffect _J

L’ groupclassiowses_mean
& groupowses
5 Linear Mixed Models 5
DRependent Variable:
r v % | [ reo ] %
m..
% e Factor(s): C Riadom.. ]
Estimation...
& lowses r -
& tescnetict (%] [ sotstes.. |
classiowses_mean _} EM Means...

(NG oo

»

[ sese.

Bootstrap...

L

Covariate(s):
f gmschiowSES_mean
f gmaggtcheffect

& amt

Covariate(s):
’ gmschiowSES_mean

& gmcassowses_mean

We may now proceed to define fixed effects for the variables.

:(;avamne(s}:

& omschiowsEs_mean |
f gmaggicheffect

f gmeeachefiect

& gmciassiowses_mean
l gmiowses

Click the FIXED button to access the Linear Mixed Models: Fixed Effects dialog box.
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4a. The Linear Mixed Models: 1 Linear Mixed Models: Fixed Effects [
Fixed Effects default C R
setting from the prior © Bukgterms O Buld pested terms
model is Main Effects.

b. Click to select the three
grand-mean-centered
variables (gmteacheffect,
gmclasslowses_mean, and
gmlowses) from the Fac-
tors and Covariates box,

Factors and Coyariates:
lﬁ gmschiowSES_mean
7 gmaggicheffect

gn Eftects

\-] gmiowses

o K

Modet

|lgmschiowSES_mean
|gmaggicheffect
gmteacheffect
gmclassiowses_mean

and then click the ADD . L .
button to move the vari- !: f = = Bfleesd (o
ables into the Model box. [l
[¥] Include intercept Sum of squares: Tm;_'
Click the CONTINUE button to [{}Cunmu || concet |[ Hep

return to the Linear Mixed Models
dialog box.

We will modify the model’s random effects, so click the RANDOM button to access the Linear Mixed

Models: Random Effects dialog box.

5a. The Linear Mixed Models: 2 Linear Mixed Models: Random Effects oo
Random Effects displays the el e i, pe PNy e W & e | e
Random Effect 2 of 2 screen Previous |3 [ tem |
as it was the final screen | ety (it % ,

. . | = .
used in an earlier model. We
want to access the Level 1 e e e )
dialog box, so click the Random Effect 1 of 2 @ B |
PREVIOUS button. (Tl R Lot
Coyariance Type: | - |
b. From the Random Effect 1 of -‘_‘_“":":""‘“'5' = s e e T
. £2) Build terms L) nes arms V] L]
2 screen, change the covari- | Eactors and Covarates: odet =" |
ance type by clicking the : gx;ﬁfj’““ c .“"?"_“‘"""”“
pull-down menu and select- | [Zamtsachetiec ") =
1 [~ gmciassiowses_m Main Effects o [
ing Unstructured. 7 omowses Factoral i
Main [l‘!“ﬁ‘ b i
Unstructured is a completely IEalmr e i ko . |
general covariance matrix (i s = :
(IBM Corporation, 2012). I :hni |
|‘Subject Grouping — —
c. We will add a variable | Sublects Com
| d scheode ﬂ schcode
(gmteacheffect) to the model & Riescnid s
to test whether the random [+]
teacher effect varies across ||
schools, so first click the (jcommse [ cancer_J[_res

pull-down menu and change
the setting to Main Effects.
d. Now click to select grm-

teacheffect, and then click the ADD button to move the variable into the Model box.

Click the CONTINUE button to return to the Linear Mixed Models dialog box.
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6. Finaﬂy, in the Linear szed MOdElS té Linear Mixed Models |—S;hi
dialog box, click the OK button to Rt
run the model. gl scheode W | (Pt | Losmal

ted...
Random...
- Jos P |
69 T —— I Estimation...
f lowses | - | —
& teachetfect =4 Statistics...
f classlowses_mean - | EM Means...

f schiowses_mean Covariate(s): . —
& grouplowses — | & omschiowses_mean |~ !_ Seve.s
& groupciassiowses_mean | % | | ¢ gmaggicnettect - | | pootstrap... |

& gmteacheffect |*

& groupteacheffect

—— Residual Weight
%
[ ox !}”g_nsa Reset || cancet |[ Hep |

Interpreting the Output from Model 4

'The addition of the random slope and the covariance between the slope and intercept at Level 3
in Model 4 makes a total of 11 parameters to estimate. We can verify this from the model dimen-
sion output for Model 3 in Table 4.7.To look at this table in a little more detail, there are now
two random effects at Level 3 (intercept and teacher effectiveness slope) and one random effect
at Level 2 (intercept). In addition, there are two other random parameters (i.e., Level 1 residual,
Level 3 slope-intercept covariance). The estimates for these five parameters are summarized in

Table 4.8.

TABLE 4.7 Model Dimension®

Number of Covariance  Number of

Levels Structure Parameters  Subject Variables
Fixed Effects Intercept 1 1
gmschlowSES_mean 1 1
gmaggtcheffect 1 1
gmteacheffect 1 1
gmclasslowses_mean 1 1
gmlowses 1 1
Random Effects Intercept + gmteacheffect 2 Unstructured 3 schcode
Intercept 1 Identity 1 schcode * Rteachid
Residual 1
Total 9 11

@ Dependent variable: math.
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TABLE 4.8 Estimates of Covariance Parameters®

Parameter Estimate Std. Error Wald z Sig.
Residual 1,288.878 19.989 64.478 .000

UN (1,1) 42.153 9.657 4.365 .000
Infercept + gmteacheffect ;5 1) 2.826 4.887 578 563
[subject = schcode]

UN (2,2) 5.759 6.568 .877 .381
Intercept [subject = Variance 68.701 12.359 5.559 .000
schcode * Rteachid]

@ Dependent variable: math.

Table 4.8 provides the new variance components for Model 4. As the table shows, however, the
variance in teacher effectiveness slopes (UN 2, 2) is not significant between schools (6%, = 5.759,
Wald Z = 0.877, one-tailed p = .1905). Therefore, in this sample data it would not be necessary
to try to build a Level 3 model with cross-level interactions to explain variation in the size of
teacher classroom effects across schools. We therefore can answer our second research question
by noting that the size of individual teacher effects do not seem to vary between schools. This
may suggest that differences in individual teacher effects are more apparent between classrooms
but within schools, rather than between schools.

Developing an Interaction Term

Because classroom teacher effectiveness did not vary across schools, we turn our attention to
answering our third research question. Interactions suggest that the relationship between a pre-
dictor (A4) and the outcome (Y) is contingent on levels of another predictor (B). Because inter-
actions are product terms (4*B), they depend on the levels of the predictors from which they
are produced. This concerns whether the impact of teacher effectiveness on student learning
is contingent on various types of classroom composition features. In this case, we will investi-
gate a covariate*covariate interaction (class SES*teacher effectiveness). We initially propose that
teacher effectiveness is a stronger predictor of achievement in classrooms with more challenging
student composition. If this is true, then we would expect a positive interaction effect between
teacher effectiveness and classroom composition.

We will next define an interaction term between teacher effectiveness and classroom SES
composition (defined as the percentage of low SES students) and add it to the Level 2
model:

Moz = Boow + Powe (gmteacheffect) y + Py (gmelasslowses _mean); +

Bosi (gmelasslowses _mean®gmteacheffect), + ryy. (4.14)
& & i + 1o

We call attention to the importance of thinking about the meaning of the coding of each pre-
dictor comprising an interaction. When continuous variables that are part of an interaction are
left in natural metrics, it may make it more difficult to interpret the meaning of the interaction
(e.g., a motivation score of 0 or a family income score of 0). Because no one in the data set might
have a score of 0, it is often useful to recenter the scores in a way that they can be more mean-
ingfully interpreted. Grand-mean centering continuous 4 and B covariates facilitates this type
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of meaningful interpretation since if we grand-mean center each, then the interpretation of the
interaction slope is that it is the expected value of the slope when the other variable has the value
of 0 (i.e., the average effect). For a factor*covariate interaction (e.g., ethnicity*family income), the
interaction can be interpreted as a test of parallel lines (for each racial/ethnic group) regarding
the relationship between the continuous variable (family income) across levels of the factor and Y.
Here, grand-mean centering family income can facilitate interpreting the difference in its “average
effect” across levels of the factor. For a factor*factor interaction (e.g., female*lowSES), with each
variable coded 0 and 1, there are four possible cells (0, 0; 0, 1; 1, 0; and 1, 1). Multiplication in
the first three cells will equal 0, leaving only the last cell (1, 1) as defining the added advantage or
disadvantage for outcomes due to the interaction effect. The interpretation of the interaction will
be the advantage or disadvantage associated with being female and low SES against the other
three cells combined. This choice might be the one the analyst desires in interpreting the interac-
tion. Centering the factors (4, B) in the interaction will carry a slightly different interpretation of
the intercept from leaving them in their natural metrics.

Preliminary Investigation of the Interaction

Before actually running the full model, we will pause for a moment to consider the pro-
posed interaction in a little more detail. We can create this interaction variable implied in
Equation 4.14 using the Menu commands by combining classroom composition and class-
room teacher effectiveness (instructions provided in Model A at the end of this section). Inter-
actions can also be computed easily using the syntax statements (or by using COMPUTE and
saving the interaction in the data set). We focus on just the two main effects and the interaction
to make a point about how centering the interactions differently can affect the interpretation
of the coeflicients.

In Table 4.9, we summarize the estimates for the natural metric solution. The intercept is
611.325, which can be interpreted as the point where class SES is 0—that is, where there is no
student participating in the federal free/reduced lunch program. We might be able to find a bet-
ter centering solution for this variable, however, since more than 40% of the sample participated
in the free/reduced lunch program. The intercept can also be interpreted as the achievement level
where teacher effectiveness is 0. Since teacher effectiveness is a factor score (developed from a
separate analysis with M = 0, §D = 1), this can be interpreted roughly as “average” teacher eftec-
tiveness, but it is uncentered within the current multilevel model. In the table, both of the main
effects (classroom SES and teacher effectiveness) are significant predictors of math scores. The
interaction, however, is not significant, so we could consider removing it if desired. When an
interaction term (4*B) is significant, however, we suggest leaving both the direct effects of 4 and
B in the model whether they are significant or not.

TABLE 4.9 Estimates of Fixed Effects®

95% Confidence Interval

Parameter Estimate  Std. Error df t Sig. Lower Bound Upper Bound
Intercept 611.365 1.507 420.970 405.670 .000  608.403 614.328
teacheffect 5.988 1.424 763.172 4.204 .000 3.192 8.785
classlowses_mean -35.605 2913 968.782 -12.225 .000 -41.321 -29.889
teacheffect * classlowses_mean 4.515 3.121 818.673 1.447 .148 -1.611 10.641

@ Dependent variable: math.
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TABLE 4.10 Estimates of Fixed Effects®

95% Confidence Interval

Parameter Estimate  Std. Error df t Sig. Lower Bound Upper Bound
Intercept 596.647  0.896 135799 666.267 .000 594.876 598.418
gmteacheffect 7.840 0.605 680.886 12.956 .000 6.652 9.028
gmclasslowses_mean -35.674 2911 968.896 -12.255 .000 -41.387 -29.962
gmteacheffect * gmclasslowses_ 4515 3.121  818.673 1.447 148 -1.611 10.641
mean

° Dependent variable: math.

Next, in Table 4.10 we provide the grand-mean-centered solution (instructions provided in
Model B at the end of this section). Notice that the intercept is a bit lower (596.647), which
results from classlowses_mean and fteacher effectiveness being centered around their grand means.
'The intercept can now be interpreted as the point where the proportion of students participat-
ing in free/reduced lunch is the average for the sample (0). This is a more meaningful centering
because of the high proportion of students in the sample who participate in this program. We
reiterate the point that grand-mean centering the interaction slope facilitates interpretation since
it implies what the expected value of the slope is when the other variable has the value of 0 (i.e.,
the average effect).

Defining Models A and B (Preliminary Testing of Interactions) with IBM SPSS Menu Commands

Note: IBM SPSS settings will de- (& chéthreclevelURM sav [DataSet1] - IBM SPSS Statistics Data Editor - E); S
fault to those used in Model 4. _Ele Edt View Data Transform| Analyze DirectMarketing Graphs Ut Window Help
% = L% M|l e ’ F gl b
1. Go to the toolbar and select : De: y = =
| Tables » Visble: 16 of 16 Variables
QESAi};\%EE;,AI\éHXED MOD | schcode | te:  Comparemeans > [Nicases | teachetioct]
) . Tl 1 General Linear Model ’ 1 251 |~
2 1 Generaiized Linear Models ¥ 0 251 —
This command enables access to the 3 1 Mixed Models b B near. [
. . . . 1 a'at i
Linear Mixed Models: Specify Subjects : . E‘""” : 5] ﬁ“’:""—"“’ .
. Regresson &
and Repeated dialog box. - ; : 5 5 —_
7 1 Newral Networks > 0 251
8 1 Classify > 0 251
9 1 Dimension Reduction v 1 251
10 1 Seae > 0 251
1 1 Nonparametric Tests » 0 251
12 1 Forecasting > 1 2515
Survival 13 | ’]
' DataView | Variable View | Miuitiple Response L
|Linear... @ MEssing Value Analysis... Fessori ready =
Mustite Imputation »
Complex Samples »
Guaity Cortrol »
EM SPSS Amos...




2. 'The Linear Mixed Models: Specify Subjects and
Repeated screen displays the default settings

from the prior model.

Linear Mixed Models dialog box.

3. 'The Linear Mixed Models dialog
box settings default to those used
in Model 4.

a. We will remove variables
that aren’t needed for the
interactions. Click to select
gmschlowSES_mean, gmag-
gtcheffect, and gmlowses, and
then click the left-arrow
button (or drag the variables
left) to remove them from the
Covariate(s) box.

b. We will now add two variables
(teacheffect and classlowses_mean)
that will be used to test the sec-
ond interaction. Click to select
teacheffect and classlowses_mean,
and then drag the variables
to the Covariate(s) box below
gmclasslowses_mean.

The four variables to be used for inter-
action testing are shown in the insert:
gmteacheffect, gmclasslowses_mean,
teacheffect, and classlowses_mean.

We will introduce a fixed effect to the
model, so click the FIXED button to

access the Linear Mixed Models: Fixed
Effects dialog box.
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{2 Linear Mixed Models: Specify Subjects and Repeated =50

Ciick Continue for models with uncorrelated terms.
Specify Subject variable for models wih comrelated random effects.

Click the CONTINUE button to display the Specily buth Rupssin s Subiect Yeetiss 3 mdels wils conesing

f lowses

f teacheffect
f classlowses_mean

residuals within the random effects.

. Subjects:
& teachid - il seheode
& matn & rteachid

f schiowses_mean

f gmiowses Repeated:

f gmciassiowses_mean

& amteachetfect
f gmschiowSES_mean

& gmaggtcheffect

& aroupiowises ~

Repeated Covariance Type: | Disgona vi
I [ R

Q’a Linear Mixed Models

(=)

| Dependent Variable:

Fixed...

] | Random...

il scheode | [ & matn

;% ::Iamc:id Factor(s):
ea

f lowses

f teacheffect
2
& classlowses_mean

f schiowses_mean

| Estimation...

& gmteacheft
f grouplowses Covariate(s):

| Bootstrap...

f groupciasslowses_mean
f groupteacheffect

2 Linear Mixed Models

Covariate(s):
f gmteacheffect

f gmiowses
f gmschlowSES_mean

f gmaggtcheffect
& gmteacheft

teacheffect

e
ol sencode 2l e | |& math | e
j Random...
& teachid Factor(s): n
f&leacmd Estimation...
F | EM Means... [
f schiowses_mean I Save

f grouplowses 49 classlowses_mean

Bootstrap...

& groupciassiowses_me...

f

| oK | Paste [I I-gacheﬂlec.t

f classlowses_mean

— Covariate(s):
& aroupteacheffect - D || & omteacheifect @

es_mean
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Model A Test Interaction: feacheffect*classlowses mean

4a. The Linear Mixed Models:
Fixed Effects dialog box
displays the default setting
from Model 4. We will clear
the Model box by clicking to
select gmclasslowses_mean and
then clicking the REMOVE
button.

b. Note that Main Effects is the
default setting.

c. Click to select feacheffect and
classlowses_mean, and then
click the ADD button to
move the variables into the

Model box.

We will now add one cross-level interaction (or nested term) to the model: zeacheffect*classlowses_
mean. The interaction will tell us if teacher effectiveness (zeacheffect) predicts achievement in

1A Linear Mixed Models: Fixed Effects

rFixed Effects

(3) Buig terms () Buid pested terms

Factors and Coyariates:

| gmteacnettect
/" gmclassiowses_mean

" ‘teacheffect
|~ classiowses_mean

[y

. fain Effects

Sum of squares: |Typel -/

Continue ]l_ Canc_el ][_ Help

[] Include intercept

classrooms with more challenging student composition (c/asslowses_mean).

d. Note that Build nested terms
is the default setting from
the prior model.

e. Click to select the variable
teacheffect from the Factors
and Covariates box.

f. Then click the arrow but-
ton below the Fuctors and
Cowvariates box. This moves
teacheffect into the Build
Term box to create a cross-
level interaction by linking
variables and terms.

g. Next, click the BY* button,
which will insert the com-

putation command symbol:
teacheffect”.

PN
Bui

#32 Linear Mixed Models: Fixed Effects

rFixed Effects

@-’_\* Buid pested terms.

Factors and Coyariates: Mgdet
E gmteacheffect

# gmclasslowses_mean

| BT — e
[~ clsssiwses mean'| ‘D‘

4

() Buig terms

teacheffect
classiow Ses_mean

209
g{ [} enn) | Cgor?u@.;:&au || Bemove

=i teacheffect * classlowses_mean

erm

[#] Inelude ntercept Sum of squares: |Type B

>
[Ecmme J[ concet |[ hep

teacheffect'classiowses_mean

h. Click to select classlowses_mean from the Factors and Covariates box.

i. Click the arrow button below the Fuactors and Covariates box to move classlowses_mean into the

Build Term box and complete the interaction term: feacheffect” classlowses_mean.
j. Click the ADD button to transfer the interaction into the Model box.

Click the CONTINUE button to return to the Linear Mixed Models dialog box.

We will modify the model’s random effects, so click the RANDOM button to access the Linear Mixed

Models: Random Effects dialog box.
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5. 'The Random Effect 1 of 2 {2 Linear Mixed Models: Random Effects [
screen is displayed first, as it T~
was the last dialog box used [Corevous_ @_km_j
in Model 4. Coyariance Type: Iscaled identity ']
Effects
a. Change the covariance ) Buig terms O Buid pested terms ] nciude ntercept
. . _ Eaclors and Covariales: Model
type by clicking the pu‘ll e e T()
down menu and selecting [Z gmetsssiowses_mean
. |# teachettect
Scaled Identity. E7 Guvewiss. st (ManErecs v
'The Scaled Identity covariance ,
structure has constant vari- 3| O | T || Bemve
ance and assumes no correlation |:' Al ]
between any elements (IBM AT = = '_
Corporation, 2012). Subjects: Cmbinatons:
g schcode ;{H schcode
Rteachid -
b. We will remove grm- Ei/
teacheffect from the
quel. Click to sele§t the lhf““"‘“’ P
variable, and then click

the REMOVE button.

Click the CONTINUE button to return to the Linear Mixed Models dialog box.

6. Finally, in the Linear Mixed

( 3 Linear Mixed Models
Models dialog box, click

the OK button to run the

dent Variable:

.d:ﬂschmde B ’gﬂ: = I Fixed...
model. & teachid m
& Rteachid Eactor(s): :
| Estimation...
f lowses
f schiowses_mean
# e
:f gmschlowSES_mean Covariate(s):
|& gmaggtcheffect & teachefiect &
|4 grouplowses f classlowses_mean : Bootstrap.
f groupclassiowses_mean f gmclassiowses_mean | ¥
& groupteacheffect Residual Weight
| |
Hep |

Lo NI psste (L peset | cancel J

Model B Test Interaction: gmteacheffect*gmclasslowses_mean

Repeat Model A steps 1 and 2, and then click the FIXED button to access the Linear Mixed

Models: Fixed Effects dialog box.
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3a. 'The Linear Mixed
Models: Fixed Effects
dialog box displays the
default setting from
Model A. We will
clear the Model box
by clicking to select
the fixed effects from
Model A (zeacheffect,
classlowses_mean, and
teacheffect classlowses_
mean) and then click-
ing the REMOVE
button.

b. Click to select the
Build terms option.

c. Note that Main Effects
is the default setting.

rFixed Effects— =
Cb‘ > (3) Buid terms () Buid pested terms

3 Linear Mixed Models: Fixed Effects

Faclors and Covariates:

" teacheffect

|7 classiowses_mean - gmteacheffect |
I [Man Effects '] gmclassiowses_mean
I |
|
. |
3 B | [ oee h hﬁaa || gemove
| Build Term:

[¥] Include intercept Sum of squares: |Type [ ] =

| contnve || concel || tep |

d. We will now create a test model using grand-mean-centered variables. Click to select gm-
teacheffect and gmclasslowses_mean, and then click the ADD button to move the variables into

the Model box.

We will now add one cross-level interaction (or nested term) to the model using grand-mean-centered
variables: gmteacheffect"gmclasslowses_mean. The interaction will tell us if teacher effectiveness (gmzeachef-
fect) predicts achievement in classrooms with more challenging student composition ( gmclasslowses_mean).

e. Note that Build
nested terms is the
default setting from
the prior model.

f. Click to select the
variable gmteacheffect
from the Factors and
Covariates box.

g. Then click the arrow
button below the
Factors and Covari-
ates box. This moves
gmteacheffect into
the Build Term box
to create a Cross-
level interaction by
linking variables and
terms.

,".i ¥ 1|
Bu@emﬂ
L,.

2 Linear Mixed Models: Fixed Effects

rFixed Effects -
() Buid terms @D (3) Buid pested terms
Factors and Covariates: Mgdet
gmteacheffect

| gmieachatfect 4
|7 teachettect
K classlowses_mean

|gmciassiowses_mean

|;ﬂeacneffect'q mclassiowses_mean ]

A

ﬂ;" | (Within) | | CgarT:m%&dﬂ
TN .

~=p gmteacheffect * gmclasslowses_mean

Bemove _'

[¥] include intercept Sum of squares: |Typell b s

Hebl

Lhr:ontnue J Cancel |

h. Next, click the BY* button, which will insert the computation command symbol: gmzeacheffect*.

i. Click to select gmclasslowses_mean from the Factors and Covariates box.

j. Click the arrow button below the Factors and Covariates box to move gmclasslowses_mean into
the Build Term box and complete the interaction term: gmzeacheffect” classlowses_mean.

k. Click the ADD button to transfer the interaction into the Mode/ box.
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Click the CONTINUE button to return to the Linear Mixed Models dialog box.

4. Finally, in the Linear Mixed Models dialog box, click the OK button to run the model.

Model 5: Examining a Level 2 Interaction

This investigation of adding a Level 2 interaction term to the model also allows us to demon-
strate how an analyst can compare successive models to see whether an added variable (or set of
variables) makes a difference in the overall fit of the proposed model to the data. We will again
use ML estimation to facilitate the comparison of the previous model without the Level 2 inter-
action against this current model with the interaction added (which will increase the number of
estimated parameters from 11 to 12). Using REML to compare successive models would only
be optimal when the focus is on a difference in random parameters between the two models. The
rest of the model remains as Model 4.

Defining Model 5 with IBM SPSS Menu Commands

Note: If continuing onward {2 chathreelevelURM.sav [DataSet1] - IBM SPSS Statistics Data Editor [E=NE
from ';he last sectiorIl, “Prelim- e ER Viw Doia Transform|[EEREE] Dicct Manetiog Graphs, Uliics Addons Window, Heo
inary Investigation Interac- = 3 = j i
tion,” reset the default settings @ H & . iigm Statist > iﬁ o < % 4
to replicate Model 4 before | . Tebles » Visible: 16 of 16 Variables
proceeding. | schcode | tez  Compare Means » | lowses | teacheffect ‘
1 1 Genersl Linear Mode! » 1 251 |~
1. Go to the toolbar and z 1 Sencrolzes Lucac Moty 0 2.51 I
select ANALYZE, 2 I : ‘% b L3
MIXED MODELS, 5 - e § 5 5T
LINEAR. 6 1 Loginear » 0 251
7 1 Newral Networks » 0 2.51
This command enables access 8 1 Classify » 0 251
to the Linear Mixed Models: 9 1 Dimension Reduction J 1 2.51
Specify Subjects and Repeated 0 L Scale " 8 251
dialog box. 11 1 Norgarametic Tests » 0 251
12 1 Forecasting » 1 2.51 i~
4 25 Survival ’ [»]
Data View | Variabe View | | MutivieResponse :
Linear... = @ Missing Value Analysis... Cessoris ready = | :_
Mutiple Imputation
Complex Samples »
Qualty Cortrol »
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2. 'The Linear Mixed Models: Specify Subjects and 5 Linesr Miad Modele: Speciy SUbIects sod Rapested [
Repeated screen displays the default settings
from thC prior model. Chick Continue for models with uncomrelated terms.
Specify Subject variable for models with comelated random effects.
Click the CONTINUE button to display the Linear R R
Mixed Models dialog box. i) Subects:

% teachid E ig schcode
math | & Rteachid

f lowses E i

.f teacheffect

f classlowses_mean = |

& schiowses_mean 3

’ gmiowses ngcﬂlw:

f gmclassiowses_mean

& gmteacheffect

’ gmschiowSES_mean [ E

f gmaggtcheffect
grouplowses I

Repeated Covariance Type: __ onal.__~_ = E . "J
[Dscmme J| Reset || cencet |[ e |

3. 'The Linear Mixed Models dialog 2 Linear Mixed Models =
box settings default to those used in g
Model 4. ol échcode [ | (& men : | TR
& teachid = ERE Rapdom... |
We will introduce a fixed effect to the g:';:f;” '
model, so click the FIXED button to & teachettect ‘ Statistics,

access the Linear Mixed Models: Fixed Ef-

f classlowses_mean

fects dialog box. g::t:::::;:! " Eg?;;:wsss_mn ]
f groupciassiowses_mean I gmaggtcheffect E Bootstrap..
One cross-level interaction (or nested & oroupteschettect |_I_f"f"dlmfw =
term) will be created and added to the | Moot |
model: gmclasslowses_meangmteacheffect. e T e
"The interaction will tell us if there’s a = =
relationship between teacher effectiveness ) )
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Add Interaction to Model 5: gmclasslowses_mean *gmteacheffect

b. Change the build terms option by clicking to select Build nested terms.

c. Click to select the variable gmclasslowses_means from the Factors and Covariates box.

d. Then click the arrow button below the Factors and Covariates box. This moves gmclasslowses_
means into the Build Term box to create a cross-level interaction by linking variables and terms.

e. Next, click the BY* button, which will insert the computation command symbol:
gmc/asslowses_meam*.

t. Click to select gmteacheffect from the Factors and Covariates box.

g. Click the arrow button below the Factors and Covariates box to move gmteacheffect into the
Build Term box and complete the interaction term: gmclasslowses_means*gmteacheffect.

h. Click the ADD button to transfer the interaction into the Model box.

We will now add gm/owses T Linear Mixed Models: Fixed Effects [
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Interpreting the Output From Model 5

We present the results for Model 5 in Table 4.11.The first two variables below the intercept are
the between-school predictors of math outcomes. Both school SES composition and aggregate
teacher effectiveness are significant predictors of achievement. Next are the classroom variables
(i-e., classroom composition, teacher effectiveness, and the interaction term). The results suggest
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TABLE 4.11 Estimates of Fixed Effects®

95% Confidence Interval

Parameter Estimate  Std. Error df t Sig.  Lower Bound Upper Bound
Intercept 596.859 0.733 147.494  814.737  .000 595.411 598.306
gmschlowSES_mean  -31.181 4.517 429.003 -6.903 .000 -40.059 -22.303
gmaggtcheffect 7.676 1.950 208.991 3.937  .000 3.832 11.520
gmteacheffect 7.432 0.677 74918 10.970  .000 6.082 8.782
gmclasslowses_mean  -10.933 3.469 1,748.372 -3.152 .002 -17.736 -4.130
gmteacheffect * 5.385 3.138 373.263 1.716 .087 -0.785 11.555
gmclasslowses_mean

gmlowses -14.543 0.862 8,837.068 -16.880 .000 -16.232 -12.854

@ Dependent variable: math.

TABLE 4.12 Estimates of Covariance Parameters®

95% Confidence Interval

Parameter Estimate  Std.Error Wald Z  Sig.  Lower Bound Upper Bound
Residual 1,288.768 19.985 64.485 .000 1,250.186 1,328.540
Intercept + gmteacheffect  UN (1, 1) 41.227 9.544 4.320 .000 26.190 64.898
[subject = schcode] UN (2, 1) 3.041 4932  0.617 537 6.625 12.708
UN (2, 2) 6.201 6.536 0.949  .343 0.786 48.932
Intercept [subject = Variance 68.321 12.279 5564  .000 48.036 97.171

schcode * Rteachid]

@ Dependent variable: math.

that the interaction between teacher effectiveness and classroom SES composition (8 () is sig-
nificant at p < .10 (y 3 = 5.385). Because of coding, this result suggests that in a classroom 1
§D above the grand mean (0) in low SES composition, the combined teacher effect would be
considerably larger (7.432 + 5.385 = 12.817) than the teacher effect (7.432) in a class at the grand
mean (0) in SES composition. This provides supportive evidence for answering our third research
question, which focused on whether teacher effectiveness might be contingent on classroom
composition factors.

Table 4.12 suggests that the variance at Level 2 was little affected by adding the interaction
effect to the model.

Comparing the Fit of Successive Models

We can compare model-fitting evidence from the previous model with no interaction at Level 2
(Model 4) and the current model (Model 5) to determine whether the addition of the interaction
term enhanced the fit of the model. Tests of nested models should be conducted with ML when
regression coeflicients are being compared for their fit to the data. Model 4 without the interac-
tion term included (11 estimated parameters) yields the model fit criteria shown in Table 4.13.

Model 5 (estimated similarly with ID and UN matrices and the Level 2 interaction) yields the
model fit criteria (for 12 estimated parameters) shown in Table 4.14.

With ML estimation, the probability of obtaining the observed results given the parameter
estimates is referred to as the likelihood function. Since the likelihood is less than 1.0, it is



Three-Level Univariate Regression Models ® 165

common to use -2 times the log of the likelihood (—2LL) as a measure of model fit to the data.
Good models result in a high likelihood of obtaining the observed results (which corresponds to
a small value for -2LL). A perfect model would have a likelihood of 1, and the log of likelihood
would be 0 (which when multiplied by -2 is also 0). The analyst can test the difference in -2LL
(also referred to model deviance) between two models if the models are nested, which means a
specific model can be derived from a more general model by removing parameters from the more
general model. The difference in —2LL for two such models being compared can be conceptual-
ized as a likelihood ratio test, which follows a chi-square distribution, with degrees of freedom
(df) equal to the difference in the number of parameters estimated between the two models
(Azen & Walker, 2011).

In this case, we will assume that the model with the interaction is more general since it has
12 estimated parameters. We then compare it against the more restricted model, which has
the interaction removed (i.e., 11 parameters are estimated). The difference in -2LL between
the two models is 2.928. There is 1 4f'in the model test since one regression parameter is being
removed. The required chi-square at p = .05 for 1 4f’is 3.84. Therefore, we can conclude that the
model with 11 estimated parameters (i.e., without the interaction term) fits the data the same
as the model with the interaction term added. Another way of looking at this would be that
adding the interaction does not “significantly improve” the model’s fit to the data. When the
difference between models is small (i.e., not statistically significant), we will usually accept the
restricted model since it provides the same fit to the data with fewer parameters estimated (as
summarized in Table 4.8). In this case, the likelihood ratio test is consistent with the # test in
Table 4.11 (z = 1.716, p = .087), which suggests that the interaction is not significant at p < .05.
If the difference in model deviances was statistically significant, we would accept that the more
general model (with more parameters) improves the model’s fit to the data. For models that are
not nested, we can use the Schwarz’s Bayesian criterion (BIC) or Akaike’s information criterion
(AIC) indices in Tables 4.13 and 4.14 to compare models. We prefer smaller values regardless of

TABLE 4.13 Information Criteria®

-2 log Likelihood 92,325.317
Akaike's Information Criterion (AIC)  92,347.317
Hurvich and Tsai’s Criterion (AICC) 92,347.346
Bozdogan's Criterion (CAIC) 92,436.693
Schwarz’s Bayesian Criterion (BIC) 92,425.693

Note: The information criteria are displayed in
smaller-is-better forms.
@ Dependent variable: math.

TABLE 4.14 Information Criteria®

-2 log Likelihood 92,322.389
Akaike’s Information Criterion (AIC) ~ 92,346.389
Hurvich and Tsai’s Criterion (AICC) 92,346.423
Bozdogan’s Criterion (CAIC) 92,443.891
Schwarz’s Bayesian Criterion (BIC) 92,431.891

Note: The information criteria are displayed in
smaller-is-better forms.
@ Dependent variable: math.
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the number of parameters estimated in the models. Other criteria presented as part of the output
represent similar ways of comparing models (users can consult SPSS MIXED Help for further
information).

Summary

'The previous discussion suggests that researchers should proceed with caution when building
multilevel models. It is often the case that different sets of variables are hypothesized to explain
variation in random intercepts and slopes. Raudenbush and Bryk (2002) suggest using a com-
mon set of variables when building the models between groups. We decided to add the intercept
predictors first and then to consider variation in slopes.



CHAPTER

Examining Individual Change with Repeated
Measures Data

In our previous chapters, the outcome and explanatory variables were only measured on one
occasion. One of the limitations of such cross-sectional analyses is that they are not well
suited to studying processes that are assumed to be developmental. Because data are collected
only at one point in time, they are insufficient to examine possible temporal relationships in a
theoretical model. Time is a key factor in understanding how developmental processes unfold.
When an outcome is measured several times for an individual, we have a repeated measures de-
sign (RMD). A simple example is the pretest and posttest design. For studying developmental
processes, however, adding measurement occasions between the pretest and posttest can provide
a more thorough examination and often can increase the power of the statistical test used to
determine whether a change has taken place (Hox, 2010; Willett, 1989).

Ways to Examine Repeated Observations on Individuals

In the past, analyses of repeated observations on individuals were typically conducted using uni-
variate analysis of variance (ANOVA) or multivariate analysis of variance (MANOVA), depend-
ing on the goals of the research and the specific features of the data. There are, however, several
limitations of both approaches that arise from assumptions underlying their appropriate use in
longitudinal research (e.g., see Hox, 2010; Raudenbush & Bryk, 2002). One primary shortcom-
ing is that both approaches are limited to a subset of research situations involving change within
and between individuals, where the timing of the repeated measurements is equidistant, subjects
are independently and randomly sampled, and the change is considered as a fixed, rather than
randomly varying, parameter between individuals. Most importantly for our purposes, analyses
using either approach cannot be extended to include higher level groups such as classrooms or
schools since this violates the assumption of sampling independence.

A second limitation concerns the normality of the data. For the univariate ANOVA approach,
because differences in means of an outcome are tested over levels of a within-subjects factor
(¢ime), we must restrict the nature of the residual variances between the repeated measures as well
as possible covariances between them (referred to as sphericity). The sphericity assumption im-
plies that the within-subject model consists of independent (orthogonal) components. One type
of sphericity is compound symmetry, which requires the repeated measures variances to be equal
and any covariances between them to be the same. Where the assumption is not met, researchers
can either use a degrees of freedom (df) correction to the F tests for hypothesis testing (to guard
against Type I errors), or they often use the multivariate (MANOVA) approach since it does
not require the sphericity assumption. Repeated measures ANOVA (RM-ANOVA) also re-

quires homogeneity of variance for different levels of between-subjects factors such as treatment
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and control groups, while MANOVA requires the related assumption of homogeneity of the
variance-covariance matrices for dependent variables across between-subjects factors.

A third limitation is the inability to include individuals with partial data in the analysis in
either approach. Any individual with missing data on any occasion is eliminated from the analy-
sis through listwise deletion. This can result in a tremendous loss of information about indi-
viduals within a longitudinal analysis. Therefore, we suggest having little or no missing data if
either approach is to be used. Provided their basic assumptions are met, however, ANOVA and
MANOVA remain viable approaches for examining repeated measures data.

Increasingly, however, both the concepts and methods are becoming available that can pro-
vide a more rigorous and thorough examination of repeated measures data. One well-known
approach, which draws on structural-equation-modeling (SEM) methods, is latent change (or
curve) analysis (LCA). In the LCA approach to examining growth, the repeated measures of
Y are defined in a covariance matrix, which accommodates a single-level confirmatory factor
analysis (CFA); that is, the repeated measures are treated as observed variables that define latent
intercept and growth factors. In this way, a time dimension is incorporated into the specification
of the latent variables. The SEM specification of individual latent change amounts to a multi-
variate specification at a single level. Change involving individuals within groups can then be
accommodated as a two-level CFA (Muthén & Muthén, 1998-2006).

Repeated measures data with within-subjects and between-subjects factors can also be speci-
fied as another type of linear mixed (or random coefficients) model (Laird & Ware, 1982). In
this latter approach, change involving individuals can be conceptualized as a two-level analysis,
with the repeated measures of Y and the change in their levels over time specified at Level 1 and
random variation in the individual intercepts and growth rates examined at Level 2. Difterences
between individuals (e.g., background or an experimental treatment) can be proposed to explain
random variation in individuals’ growth parameters at Level 2. Moreover, in the mixed model,
the repeated measures can be observed at fixed or varying occasions, and the approach can in-
corporate missing data on some occasions. This can be beneficial if there are subjects who drop
out during a longitudinal study. The mixed model can also accommodate time-varying covariates
at Level 1. Using a multilevel framework, univariate analyses of individual growth can easily be
extended to include more than one growth process or differences in growth due to successive
groupings such as classrooms (Level 3) and schools (Level 4). We note, however, that the com-
plexity of adding more analytic levels can begin to challenge available computer memory needed
to estimate a proposed model’s parameters.

Models with time-ordered relationships definitely offer increased possibilities for studying
various types of individual change processes using either the multivariate SEM or univariate
two-level mixed model approaches. They encourage researchers to ask a number of different
questions of the data: Is there a change in the level of the means over time? If so, what is the
shape of the change trajectory? Is the change the same for different groups of individuals?

Considerations in Specifying a Linear Mixed Model

There are a number of considerations to keep in mind in specifying a repeated measures analysis
using a linear mixed-modeling approach. First, we should decide whether we are examining one
or more growth processes. For our presentation in this chapter, we will use a univariate approach
to examine our proposed research questions; that is, we assume there is only one outcome being
examined over time. In Chapter 7, we consider a multivariate (e.g., parallel) growth model—one
that facilitates the examination of individual changes in reading and math achievement simul-
taneously. Our primary hypothesis in a univariate RMD concerns whether or not there is a dif-
ference in the levels of the means of the dependent variable over time (Raykov & Marcoulides,
2008). If we are able to reject the null hypothesis that the means are the same, then we can as-
sume that some change has taken place.
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For investigating individual development in a single outcome, we can test this assumption of
equal means using RM-ANOVA; however, as we suggested earlier, we must assume sphericity.
'The sphericity assumption refers to the structure of the repeated measures covariance matrix and
stems from the assumption that the repeated observations should be independent and therefore
have constant variance and ideally be uncorrelated with each other. This is an important assump-
tion underlying the RM-ANQOVA approach (which can be tested using Mauchly’s sphericity test)
since it affects the calculation of significance levels of the related F tests for proposed hypotheses.
Mauchly's test provides a test of whether the repeated measures used to define within-subjects
growth are represented by a spherical covariance matrix. The test, however, is highly sensitive to
even mild departures from the required covariance structure. If sphericity is not met (which is
generally the case with real data), there are other options including adjusting the F'tests in RIM-
ANOVA for purposes of hypothesis testing or using the multivariate approach. Another alterna-
tive is the mixed model approach. A clear advantage of this latter approach is that it provides
greater flexibility in identifying a suitable Level 1 covariance structure that captures the nature
of the observed relationships between the repeated measures of Y'in varied longitudinal studies,
regardless of time-trend patterns within individuals and among the groups being compared.

Second, after determining an approach to use, we need to consider the expected within-
subjects (Level 1) effect for time, which concerns individuals’ possible change over the zemporal
period of the study. The time effect describes whether individuals are indeed changing over some
relevant interval of time and by how much. This part of the within-subjects model represents the
change we would anticipate that each individual would experience over the course of the study
(Singer & Willett, 2003). For example, the relevant time interval may be days, weeks, months, or
years. In a mixed model, the potential difference in means across measurement occasions can be
summarized as a time-related slope. The time slope is generally the most important parameter in
the model because it provides a test of whether the outcome means are equal across occasions, as
well as information about the 7aze at which individual i changes over a particular time interval .

If we find that the means of Y are not the same across time, we next would want to investigate
further how individuals are changing over time. The analysis of repeated measures facilitates the
representation of several different growth trajectories. These can concern, for example, a natu-
rally occurring developmental trend (e.g., students’ acquisition of vocabulary between 12 and
36 months of age) or perhaps individuals’ reading skills before and after a classroom treatment
is introduced. When a categorical variable represents an increasing level of a treatment dosage,
age, or a series of successive measurements, the growth trend is often summarized using poly-
nomial curves within individuals (Level 1) because they are very adaptable to a variety of differ-
ent growth trajectories and can be estimated using standard linear-modeling procedures (Hox,
2010). Most common is a linear growth trend, which assumes that the rate of individual change
is the same across each interval of time (). However, it is not always the case that individuals
are changing at the same rate over time. In some cases, adding higher order polynomials to the
model for defining the time-related trend can improve prediction.

'The polynomial equation is not nonlinear; in fact, mathematically it is linear (Hox, 2010). If
there are 2 measurements, there is a £ — 1 polynomial that can be used to fit the model. A qua-
dratic trend is interpreted as a change in the rate of change (i.e., accelerating or decelerating)
over an interval of time (4%). A cubic trend (4°) is S-shaped, which describes changes in the rate
of change over time such as accelerating, decelerating, and accelerating again. For example, for
three measurement occasions, the highest degree term is a? (quadratic), while for four measure-
ment occasions, the highest degree term is cubic, or one less than the number of measurement
occasions (£ — 1). Of course, we might prefer to interpret the results of a linear growth model
for ease of interpretation, but sometimes a higher order polynomial may describe the data more
accurately. Generally, we only include up to the highest significant polynomial in the model.
In terms of actually describing the change over time, it becomes increasingly more difficult to
interpret models of higher polynomial degrees. There also may be cases where developmental
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processes cannot be well approximated by using a polynomial function. For example, the logistic
curve (which cannot be transformed to a linear model) may be better in approximating a process
that is slower in the beginning of the trend, speeds up in the middle, and then slows at the end
(representing an § curve). In other cases, however, a logistic or exponential function may be well
approximated by using a cubic polynomial if there are at least four measurements (Hox, 2010).

It is important to note that the parameters of a higher order polynomial model (e.g., cubic)
have no direct interpretation in the growth process over any particular interval, such that inter-
pretation must be made by looking at average plots of the growth or some more typical individual
growth curves (Hox, 2010). To illustrate this point, in Figure 5.1 we have plotted the actual
growth in an academic outcome Y (solid line) over four intervals against what the growth might
look like if it were strictly linear, quadratic, or cubic (dotted lines). At the bottom of the figure,
we can observe that linear growth rises (or declines) constantly over time. In contrast, quadratic
growth tends to rise more quickly (or decline) relative to the constant rate of growth represented
in the linear trajectory. We can also notice that the cubic growth curve increases much more
rapidly over the four time periods compared to linear or quadratic growth curves. The actual
growth trajectory plotted in the figure for Y appears to have elements of linear, quadratic, and
cubic growth. It appears to change linearly between intervals 1 and 2, to slow between intervals
2 and 3 (quadratic trajectory), and then to accelerate more rapidly between intervals 3 and 4
than between intervals 1 and 2. The cubic polynomial actually combines the effects of four coef-
ficients (i.e., linear, quadratic, and cubic slope coeflicients, and the intercept). Different values
of each coefhicient will move the average trajectory up or down with respect to the horizontal
axis (i.e., changing the intercept) and alter the steepness of the cubic curve (changing the cubic
coefficient), its slope (changing the linear component), or the curvature of the parabolic element
(changing the quadratic coefficient). As we reiterate, when a cubic element is present in a trajec-
tory, it suggests a focus on the whole growth trend and not just any particular interval.

'Third, after settling on a reasonable growth trajectory to describe individual development,
we can consider possible between-subjects variables that might aftect individuals’ growth tra-
jectories. A third hypothesis often tested in a RMD is a test of parallelism (Raykov & Marcou-
lides, 2008); that is, are the trajectories the same for different levels of a factor (e.g., subjects in
treatment or control groups)? In repeated measures multilevel designs, it is also important to
distinguish within-subjects (Level 1) variables, which change over time, from between-subjects
(Level 2) variables, which are considered to be static over the temporal period of the study. For
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FIGURE 5.1 Examining several different individual growth curves.
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example, we can enter motivation as a time-varying covariate at Level 1 that predicts changes in
reading scores. In contrast, we could also enter motivation as a between-subjects covariate (i.e.,
continuous predictor), in which case it would be considered as static over the temporal period
of the study. Covariates, which are continuous variables that might affect the rate of growth, can
also be added to the model. When covariates are added, the means for each occasion are adjusted
for the presence of the covariates.

An Example Study

Consider study where we wish to examine students’ growth trajectories in math achievement
over time (a within-subjects factor with three levels) and to assess whether their socioeconomic
status (SES) background (a between-subjects covariate) and perceptions about their math teach-
er’s effectiveness (a between-subjects factor) are related to different achievement growth patterns.

Research Questions

We may be interested first in whether a change takes place in student math achievement over
time. This type of question addresses whether the levels of the means for the outcome are the
same or different over the occasions of measurement. The assumption is that if we can reject the
null hypothesis of no difference in means across measurement occasions, it implies that a change
in individuals has taken place. A second question concerns what the shape of the developmental
change might look like for individuals in the study. For example, we might ask whether the rate
of individual change per occasion is linear or whether the change might be more complex. Once
we have described the shape of individuals’ change trajectories over time, we might ask a third
question: Are there differences in development between groups of individuals? These differences
might be due to an experimental treatment or other types of factors (e.g., background). In this
case, we examine whether student growth is related to their individual perceptions about the
teaching skill of their teachers. We might also wish to adjust our estimates for the presence of
covariates that might affect individuals’ development over time. In this example, we use students’
SES as a covariate.

The Data

'The data used for this study consist of 8,670 secondary students. We will assume that they have
been randomly sampled from a larger population of students. The variables used in the example
are summarized in Table 5.1.

TABLE 5.1 Data Definition of ch5growthdata-vertical.sav (N = 8,670)

Variable Level® Description Values Measurement'
id Individual Individual student identifier (8,670 students) across  Integer Ordinal
three time (test) occasions.
nschcode  School School identifier (515 schools). Integer Ordinal
Rid Individual A within-group level identifier® representing a 1to 46 Ordinal
sequential identifier for each student within each
school.
Index1 Within Identifier variable resulting from indexing the math 1 = First Time Scale
Individual outcomes to create a new identifier with a number 2 = Second Time

sequence (1, 2, 3) corresponding to the three time 3 = Third Time
occasions measuring students’ math achievement.

(Continued)
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TABLE 5.1 (Continued)

Variable  Level® Description Values Measurement'
time Within Variable representing three linear occasions in time O = First Time Scale
Individual measuring students math achievement. 1 = Second Time
2 = Third Time
quadtime  Within Recoded time variable from three occasions in 0 = First Time Scale
Individual time (O, 1, 2) into a “squared” quadratic sequence 1 = Second Time
(0, 1, 4) to capture any changes (acceleration or 4 = Third Time

deceleration) in the rate of change that might occur
over the three measurement occasions.

orthtime Within Recoded time variable from three occasions in —1 = First Time Scale
Individual time (O, 1, 2) into an orthogonal linear (-1, O, 1) 0 = Second Time
sequence. 1 = Third Time
orthquad ~ Within Recoded time variable from three occasions in time 1 = First Time Scale
Individual (O, 1, 2) into an orthogonal quadratic (1, -2, 1) -2 = Second Time
sequence. 1 = Third Time
test Within The dependent variable representing each 24.35 to 99.99 Scale
Individual students’ individual scores on the repeated math
measurements.
effective Individual Two-category predictor variable representing 0 = Not Effective ~ Nominal
teachers’ effectiveness in teaching math. 1 = Effective
ses Individual Predictor interval variable (z score) measuring student -2.41 to 1.87 Scale
socioeconomic status composition within the schools.
timenonlin1 Within Recoded time variable from three occasions in 0.00 = First Time  Scale
Individual time (O, 1, 2) into a time sequence variation that 0.50 = Second Time

encompasses the whole 3-year period of time (0.00, 1.00 = Third Time
0.50, 1.00) measured from O to 1.

timenonlin2 Within Recoded time variable from three occasions in time ~ 0.00 = First Time  Scale
Individual (0, 1, 2) into a time sequence variation representing  0.60 = Second Time
the whole 3-year period of time (0.00, 0.60, 1.00)  1.00 = Third Time

measured from O to 1.

timenonlin3 Within Recoded time variable from three occasions in time ~ 0.00 = First Time Scale
Individual (0, 1, 2) into a time sequence variation representing  0.70 = Second Time
the whole 3-year period of time (0.00, 0.70, 1.00)  1.00 = Third Time
measured from O to 1.
timenonlin ~ Within Recoded time variable from three occasions in time ~ 0.00 = First Time Scale
Individual (0, 1, 2) into a time sequence variation representing  0.53 = Second Time
the whole 3-year period of time (0.00, 0.53, 1.00)  1.00 = Third Time

measured from O to 1.

@ Individual = Level 1; school = Level 2; Within Individual = repeated measures, Level 1; Individual = Level 2; School =
Level 3.

b Results from ranking student cases (id) with the school group identifier (nschcode).

! Measurement icon settings displayed in subsequent model screenshots may differ from Table 5.1 but will not affect
the output.

Using a random-coefhicients approach to investigate individual change provides considerably
more flexibility than either the univariate ANOVA approach or the multivariate approach, espe-
cially in situations where there may be missing data, varying occasions of measurement, and more
complex error structures. It is generally useful to spend some time examining the nature of the
data initially. To examine individual change using MIXED, the data must first be organized dif-
terently. As we noted in Chapter 2, the time-related variable describing the shape of the growth
trajectory (e.g., linear or quadratic) is entered into the data set as a variable, with the successive
math measurements structured vertically or stacked (i.e., instead of as a horizontal, multivariate
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FIGURE 5.2 Vertical data matrix for repeated measures analysis in IBM SPSS.

set of variables as in MANOVA or SEM) for each subject within the data set (y1;, y5;, ..., y)". As
this suggests, the number of lines for each individual is defined by the number of measurement
occasions. In this case, therefore, we will have 8,670 x 3, or 26,010 lines, in the database. We can
use DATA and RESTRUCTURE menu commands to restructure the data vertically. Figure 5.2
presents data on three subjects in a hypothetical data set.

Closer inspection of the data suggests that there are three observations per individual on
the math “test” outcome, and individual and school identifiers, as well as any predictors (e.g.,
perceived teacher effectiveness), are repeated in the data set for each time interval. The outcome
(test) represents each individual’s scores on the repeated math measurements. We can also see
that the repeated observations of Zes# are nested within individual identification (id) numbers,
and student IDs are nested within school identifiers (schcode). The grouping variables (id, scheode)
are used to identify each predictor as belonging to a particular level of the data hierarchy. As we
noted, often a polynomial function will describe individual growth pretty well. As Figure 5.2
also indicates, the time-related variables (linear and quadratic) are also entered as data. Most
often, researchers assume that individuals are changing at a constant rate over time, which can
be represented as linear growth, especially over a short period of time, but it may also be the case
that subjects are experiencing more complex patterns of growth over time. Since there are three
occasions, we can also enter a quadratic component to test for the presence of a change in the
rate of growth occurring over time.

Examining the Shape of Students’ Growth Trajectories

We will begin by examining descriptive statistics showing the level of the outcome means on
each occasion, as summarized in Table 5.2. The table suggests that the average math achievement
for the first occasion is 48.632, while for the last occasion it is 57.094, indicating considerable
change over time. The table suggests that the grand mean is 52.945, which falls somewhere be-
tween the first and second measurement occasions. The grand mean is often not of much interest
in examining growth since it just represents the average achievement level across the three mea-
surement occasions. Examining the means more closely, one can see that the change between the
first two test means is about 4.5 points, while between the second two means it is about 4.0. This
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TABLE 5.2 Means for Each Measurement Occasion

Test
Mean Std. Deviation Std. Error 95% Confidence Interval for Mean
Lower Bound Upper Bound
0 48.632 9.713 0.104 48.428 48.837
1 53.107 9.888 0.106 52.899 53.316
2 57.094 9.894 0.106 56.886 57.303
Total 52.945 10.421 0.065 52.818 53.071

suggests slightly less growth during the latter part of the trend compared with the initial part.
'The difterences in observed means summarized in Table 5.2 suggest that they probably are not
the same over time (hypothesis 1).

Visual inspection of the data can provide important preliminary clues about the shape of
change in math that is taking place among individuals over time. Figure 5.3 provides a plot of
the linear growth trajectories of the first 17 subjects in the data set. The plot of these individuals’
scores over time suggests that individuals are increasing in their knowledge. Readers will note
that the intercepts (i.e., individuals’ status at Time 0) appear to vary considerably (i.e., from
about 32 to 55) and the steepness of the growth over time also seems to vary within this subset
of individuals. Many times, with a few waves of data, a linear model will be adequate to describe
individuals’ growth. Notice, however, in the graph of these individuals’ growth, the linear model
does not seem to capture the change over time of all individuals equally well; that is, not all of
the individuals’ observed scores fall on their predicted growth lines.

70.00

Test Scores

30,00

Time

FIGURE 5.3 Individual linear math growth trajectories.
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FIGURE 5.4 Individual nonlinear math growth trajectories.

For purposes of contrast, Figure 5.4 is a graph of the same 17 subjects, this time using a
quadratic trajectory. With three time points, one can observe that the fit of the curved lines to
the data points will be perfect. For some individuals, the plot of their trajectories in the figure
suggests that a linear shape might be adequate to describe the growth. For others, however, it
appears that their growth might be better described by a curvilinear trajectory. These plots show
visually our preliminary interest in determining whether a linear shape, or both linear and qua-
dratic components, would be required to describe the shape of individuals’ growth trajectories
accurately.

Graphing the Linear and Nonlinear Growth Trajectories with IBM SPSS Menu Commands

We can use the IBM SPSS menu commands to display the information for the subset of indi-
viduals in the study, as shown in Figures 5.2, 5.3, and 5.4 in the following series of instructions.
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Select Subset of Individuals (D chgrowthdata-verticalsav [Dataset] - B SPSS Statistcs Data Editor =)
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We will begin by selecting the 2 B Define Mutipie Response Sels... 2 1 e
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4 = 2y — 1 0 0
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S =l R
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T Orthogonal Design » I ’]—
Data View | Va 75 Copy Dateset >
||| Select Cases... g Spit Fie... Stics Processor is ready | =1Ed |
2a. Within the Se- TR Select Cases i
lect Cases dialog Sl
box, click to ' g preeem Oalsses
select If condi- R
tion is satisfied. ‘2’2 hent |
b. Then click the 13 Select Cases: If 42= o]
IF button, which
will activate the
Select Cases: If n
b = & ———————— Function group:
OX. Al =
c. Click the vari- & auadiine E s B ]z‘ o . N
able Zd from g:::::" [j B[E I_‘J[g[_T_] Conversion |
the left column e (e (ed(=d Cad(=d(d S
fing, and hen | | 5o Doy e L
click the right- Ao = __ and Specil Variables:
arrow butt(%n to gm:::i D BE i I i ]
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move id into the
box.

Use the keypad to enter
the less than sign (<)
followed by the number
18.The resulting com-
mand (id < 18) instructs
IBM SPSS to select

1

I I:unl'nueﬁ| Cancel || Help

only the first 17 cases of the data set.

Click the CONTINUE button to return to the Seect Cases dialog box.
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N 8 =
4. To graph the 17 @ *chSgrowthdata-verticalsav [DataSet1] - IBM SPSS Statistics Data Editor BT
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6a. Within the Simple Scatterplot

dialog box click to select the
variable zesz from the left

column listing. Then click the
right-arrow to move the vari-

able into the Y Axis box.

. Click to select fime from the
left column listing, and then
click the right-arrow button
to move the variable into the
X Axis box.

. Click to select id from the
left column listing, and then
click the right-arrow button
to move the variable into the
Set Markers by box.

Then click the OK button to gener-
ate the scatterplot.

Generate Figure 5.3 (Linear
Trajectory)

7a. Double-click on the graph
in the output to select
it and activate the IBM
SPSS Chart Editor.

. In the Chart Editor, click
on the icon ADD FIT
LINE OF SUBGROUPS,
which will insert lines on
the graph.

. Clicking the Add Fit Line
of Subgroups icon also ac-
tivates the Properties box,
which provides assorted
options.
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Generate Figure 5.4 (Nonlinear ] Chart Editor
Quadratic Trajectory) Fie Edt Vew OQotons Elements Hebo|
9a. To display the 17 subjects o0 BXYEAMS B

using a quadratic trajectory

as shown in Figure 5.4, I
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élLl:Li Cle@mL kL
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£

double-click the graph to
select the graph’s fit lines,
which will also open the
Properties box.

b. In the Properties box, click
to select Quadratic.

c. Click the APPLY button
to make the change and
activate the Close button. g

d. Click the CLOSE button
to exit from the Properties
box.
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quadratic trajectory.

Graph labels for the Yand X axes may be
changed by clicking and typing the pre-
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Close the Chart Editor box, and return to

the IBM SPSS output document by either
clicking the “x”located in the upper-right-
hand corner or by selecting FILE, CLOSE

or CTRL+F4.
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Coding the Time-Related Variables

There are various ways that the time-related within-subjects factor may be coded in defining pos-
sible individual changes over time. Careful thought should be given to coding the time variable,
as it can affect the interpretation of the model’s parameters (Hox, 2010). We first illustrate the
polynomial approach for describing individual growth in math. Where there are three repeated
measures, the linear time variable (#ime) is most often coded 0 for year 1, 1 for year 2, and 2 for
year 3 (0, 1, 2). This coding pattern is useful because it identifies the intercept as students’ initial
(year 1) math achievement level. This approach is often preferred since the intercept can be inter-
preted as the mean when the predictors in a model are all zero (0). For linear growth, the slope
would then be defined as the change occurring between each interval (i.e., between 0 and 1 and
between 1 and 2). We can also define a quadratic component (guadtime) to capture any changes
(acceleration or deceleration) in the rate of change that might occur over the three measurement
occasions. We simply “square” the zime intervals; therefore, guadtime is correspondingly coded 0,
1,and 4. If instead we wished to define the intercept as students’ending math achievement status
(year 3), we could instead code the linear variable -2, -1, 0, and the quadratic variable would then
be -4, -1, 0. In some situations, we might wish to code the time-related variables such that the
second measurement (i.e., year 2) represents the intercept.

We can see in Figure 5.5 that the shape of the “average” growth trend is not quite linear. The
average trend suggests a slight slowing of the growth rate between the second and third intervals.
This suggests that a trajectory with both linear and quadratic components may be necessary to

define student growth optimally (hypothesis 2).
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§4.00
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FIGURE 5.5 Curvilinear average math growth trend.
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Coding Time Interval Variables (time to quadtime) with IBM SPSS Menu Commands

Note: Continue using
ch5growthdata-vertical.sav. If
continuing from the prior set
of graphing instructions (Fig-
ures 5.2,5.3,and 5.4), remove
the Select Cases conditional set-
ting before proceeding, as the
following models will use all
cases in the data set. To clear
the filter, go to the toolbar, se-
lect DATA, SELECT CASES,
RESET, OK.

1. Go to the toolbar and
select TRANSFORM,
RECODE INTO DIF-
FERENT VARIABLES.

'This command will open the
Recode into Different Variables
dialog box.

@ ch5growthdata-vertical.sav [DataSet1] - IBM SPSS Statistics Data Editor
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{ { WD Run Pending T o]

Data View | Variable View |

Recode into Different Variables...

Bl SPSS Statistics Processor is ready| |

2a. The Recode into

) Recode into Different Variables

(B

Different Variables
enables creating a
new variable using
a variable from
the current data
set. First, click to
select time from
the left column,
and then click the
right-arrow button
to move the vari-
able into the Input

&id

.;[ﬂ nschcode 4

Input Variable -> Output Variable:

4 fime =7

rOutput Variable—
Name:

=01

ic Variable -> Output Variable:

time —> quadtime

& orthquad * \

test 2 A
f effective \ l:—

1
I

:g ::tsenonMI . Oid and New Values... /
Y % ; £

timenonin2 o [ 4 g =
A s 'E‘ (.. d &R 18h spss satisics 20 <- B

hY
LS

5,
[: 2 ‘\\ This variable name duplicates an existing variable name.

!}‘\

Variable — Output

Variable box.
b. Now enter the new
variable name by

"\

T (Dlpec

typing quadtime into the Output Variable Name box.
c. Then click the CHANGE button, which will add guadtime and complete the RECODE com-

mand for time — quadtime.

Note: A warning message appears as guadtime is an existing variable in the data set.

d. Click OK to continue, which will overwrite the preexisting guadtime variable. If you prefer not
to overwrite the original variable, rename the output variable (e.g., guadtimel).

e. Click the OLD AND NEW VALUES button, which will then display the Recode into Different
Variables: Old and New Values screen.
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3. Within the Recode into {2 Recode into Different Variables: Old and New Values 5]
Different Variables: Old and
New Values. we Wlﬂ bC in rOld Value New Value
’ 8 (3) Value: %) Vaje: |0 4—(91 |

changing the time values

(0,1, 2) to reflect guadtime

(C) System-missing | Copy oid value(s)
(07 17 4) . () System- or user-missing
a. Begin by entering the e G Sk .
- . (_) Range: 0->0
first value for #ime (0) in X
the Value (old) box. &dd [Jfr—>1 ,_©
2 —> 4 ¥
b. Next, enter the new

I_O _) System-missing

value (0) for quadtime in
the Value (new) box.
Click the button to
place the first command
0 — 0O into the Old —
New box. chonfnue ]| cancat Hep
Repeat steps 3a to 3c to
complete the remaining
coding changes for guadtime values:
11

2—>4

(_) Range, LOWEST through value: ‘

() Range, value through HIGHEST:
["] Output variables are strings

() All gther values

Click the CONTINUE button to return to the Recode into Different Variables main dialog box.

Click the OK button to generate the recoded variable guadtime and corresponding time values (0, 1, 4).

One disadvantage of using polynomial functions in defining growth trajectories, however, is
that there are strong correlations between the components comprising the function (e.g., linear,
quadratic, and cubic). This occurs because the components of the polynomial function must be
defined as data for each individual within the data set. As we previously described, with three
repeated measures, the linear component would be defined as 0, 1, 2 and the quadratic compo-
nent would be defined as 0, 1, 4. One can see these two components required for defining a cur-
vilinear trajectory will be highly correlated for the individuals in the study. In fact, for the linear
and quadratic contrasts the correlation is 0.958. Readers familiar with multiple regression will
recognize that this type of strong correlation can potentially cause problems in estimating the
model parameters optimally.

If the occasions are equally spaced, as in our example, and there is little or no missing data, one
approach for dealing with multicollinearity is to transform the polynomials to be orthogonal, or
uncorrelated (Hox, 2010). Polynomials can be transformed to be orthogonal by recoding using
available tables for defining orthogonal contrasts. Recoding helps simplify calculations and inter-
pretations involved in polynomial regression. Because of the way the orthogonal polynomials are
defined, the intercept for the transformed model (coded 0) will be centered near the middle of
the growth sequence (i.e., representing the grand mean instead of initial status). Readers can con-
sult a table of orthogonal polynomials for other numbers of repeated measures (e.g., Guilford &
Frunchter, 1978). Although not required, we can then standardize the orthogonal estimates so
that they will be on the same scale of measurement (Hox, 2010). As Hox suggests, even in
data situations where the repeated measurements may not be exactly spaced, using orthogonal
polynomials will tend to reduce any potential multicollinearity problem. Of course, in situations
where the higher order polynomial components are not needed, it would not be necessary to use
orthogonal transformation.
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TABLE 5.3 Orthogonal Coding for Three and Four
Measurement Occasions for Equally Spaced Intervals

Model Description k-1=2 k-1=3

Linear -1,0,1 -3,-1,1,3
Quadratic 1,-2,1 1, 1, -1, 1
Cubic 1,3,-3,1

We summarize orthogonal coding for three and four repeated measures in Table 5.3. For
three repeated measures, we can simply use RECODE to transform the linear tread (0, 1, 2) to
the orthogonal coding (-1, 0, 1), as illustrated in Table 5.3. This simple transformation creates
a grand-mean centering. Centering at the midpoint will minimize the correlation between the
time-related variables, which tends to stabilize the model estimation procedure (Raudenbush &
Bryk, 2002). The quadratic component is then recoded from 0, 1, 4 to 1, -2, 1. As Raudenbush
and Bryk indicate, for higher order polynomials, the highest order coefficient will have an invari-
ant interpretation, while the lower order coefhicients will have meanings that depend on the cen-
tering strategy employed. We reiterate that in defining the growth trajectory using higher order
polynomials, we typically only include up to the highest significant component.

Coding Time Interval Variables (time to orthtime, orthquad ) with IBM SPSS Menu Commands

Continue using the ch5growthdata-vertical.sav data.

1. Go to the toolbar and A chSgrowthdata-vertical.sav [DataSet1] - IBM SPSS Statistics Data Editor o B |
select T NSFO 4 Eie Edt W Data ] Transform Analyze DirectMarketing Graphs Utities Add-gns Wind Help
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RECODE INTO DIF- [ﬁ E = — ]
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. . . a | - - ime | juadiume
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dialog box. > | (2 Recode into Ditferent Variables... [ ; ol
3 . o 2 4
Note: If continuing from 3 i&ﬂ MDA = .
. . . |BZ optimal Birning...
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) . Prepare Data for Modeling >
example (¢ime to quadtime), 6 : 2 4
click the RESET button 7 | B Rk Coses.. 0 0
before proceeding to clear the 8 | Date end Time Wizerd... 1 1
default settings. ) (I create Time Seres... 2 4
10 | 5F Replace Missing Values... 0 0
11 | @ Random Number Generalors... 1 1
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2a. The Recode into Different [ recode into Difterent Varisbles B

Variables screen enables . i

f iabl : i g!’?w => Output Variable: ~Output Variable-
creating a new variable [ ime —

. & . ol nscheode 4 Hame S
using a variable from & o / [ortntme <—@J
| Label:
the current data set. &b ndext — I ]
First, click to select #ime &quaanm \&}f Numeric Varabie > Outpal Varabie: Change el C
from the left column € stsine 5 W e Sy
’ d?) orthquad A %
and then click the right- ﬁ fest . | 3
f /i {
arrow button to move S @ \ : ’5"
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Input Variable — Output & timenoning q@ Im‘spss e b 15 il

. L)
Vvﬂrlﬂble bOX' l _| l Pasle ] i ‘.“\ This variable name duplicates an existing variable name.

b. Now enter the new AT
variable name by typing '@@
orthtime into the Qutput :
Variable, Name box.
c. Then click the CHANGE button, which will add orzhtime and complete the RECODE com-

mand for fime — orthtime.

Note: A warning message appears as orzhtime is an existing variable in the data set.

d. Click OK to continue, which will overwrite the preexisting orzhtime variable. If you prefer not
to overwrite the original variable, rename the output variable (e.g., orzhtimel).

e. Click the OLD AND NEW VALUES button, which will then display the Recode into Different

Variables: Old and New Values screen.

. Within the Recode into Different

Variables: Old and New Values, we
will begin changing the #ime values

(0,1, 2) to reflect orthtime (1,0, 1).
a. Begin by entering the first value
for time (0) in the Value (old) box.
Next, enter the new value (-1) for
orthtime in the Value (new) box.

. Click the button to place the first
command 0 — -7 into the O/d —
New box.

Repeat steps 3a to 3¢ to complete
the remaining coding changes for
orthtime values:

150

b.
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Click the CONTINUE button to return to the Recode into Different Variables main dialog box.

Click the OK button to generate the recoded

variable orthtime and corresponding time values (-1, 0, 1).

Note: To generate orthguad (coded 1,-2, 1), repeat all steps but rename the output variable (orthguad)

and code the O/d — New values as follows:
0—1

1—>-2

2—>1
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A second approach, which we illustrate later in the chapter, is to code the time-related vari-
able in a way that represents the growth taking place over the whole trend, rather than over a
specific interval. This is referred to as a level-and-shape model in the SEM literature on LCA
(e.g., McArdle & Anderson, 1990; Raykov & Marcoulides, 2006). In the LCA approach, it is
possible to estimate more general types of change, where maximum likelihood (ML) estimation
is used to provide estimates of some of the factor loadings, which define the shape (or growth)
factor (McAurdle, 1988; Meredith & Tisak, 1990). One of the advantages of the latent variable
approach to modeling change is that it permits development in the repeated measures variable
to occur in any fashion (e.g., growth followed by decline followed by growth). Importantly, this
makes it generally easier to fit empirical data than many other models where growth is assumed
to follow a particular function (Raykov & Marcoulides, 2006). Although it is not possible to
provide all of these possibilities using a mixed model approach, since the repeated measures must
be specified as series of data points occurring within the specific temporal period of the study,
there is one often used SEM specification that can be adapted. More specifically, since the slope
is interpreted as the change in Y for a unit change in X, if we code the first measurement occa-
sion as 0 and the last measurement occasion as 1, we can then describe the slope as the change
in Y occurring over the entire trend for a unit change in X. We then use the middle measures to
estimate the general shape of the trend in between these two endpoints.

If we obtain a graph of the average growth trajectory for the sample or several representative
individual trajectories, we can often experiment a little to find an appropriate coefficient for the
middle measurement occasion (or occasions). For example, we might start by coding the middle
measurement in our example (year 2) as 0.5 if the trend is assumed to be linear, or some other
value (e.g., 0.7) if a nonlinear trend is hypothesized. This strategy can of course be adjusted if
there are several repeated measures to be specified between the first and last measurement. We
can save predicted values from the estimated model using various coding schemes and generate
a new graph to see which coding scheme seems to best capture the actual shape of the observed
data. We can also examine various model fit indices to determine which coding approach (or
implied hypothesis about the general shape of the growth) may capture the individual growth
trajectories most accurately. As Raykov and Marcoulides (2008) caution, the downside of this ap-
proach is that in some instances one may not be able to obtain a specific quantitative description
of the development occurring over the timeframe under consideration.

Various curved or §-shaped polynomial growth trajectories create additional challenges in
terms of interpretation and model building. It is also possible to treat the time variable as cat-
egorical and model each occasion separately either by using a reference occasion or by eliminat-
ing the intercept in the model so that each occasion can be modeled separately (see Hox, 2010,
for further discussion). We emphasize that this type of examination of the time-related variable
is typically conducted preliminarily before settling on a final set of coefficients that describe indi-
vidual growth and then investigating a subsequent set of predictors that might explain variability
in individuals’ growth trajectories. The important point is that various ways of defining individu-
als’ growth trajectories (e.g., alternative ways of coding the time-related variable) may result in
somewhat different estimates of individual growth, owing to the underlying assumptions of each
type of statistical model.

Specifying the Two-Level Model of Individual Change

After setting up the data set appropriately and considering possible ways to code the time-
related variables, we are ready to build a series of models. At Level 1, each person’s successive
measurements over time are defined by an individual growth trajectory and random error. At
Level 2, differences in trajectories between groups of individuals can be examined. Following
Raudenbush and Bryk’s (2002) notation, we will use two subscripts to describe individuals (7)
and occasions of measurement (£). We assume the observed status, Y, at time £ for individual 7 is
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a function of a systematic growth trajectory plus random error. At Level 1, the systematic growth
for each individual in reading can be represented as a polynomial of degree P for £ — 1 repeated
measures. In this example, with three measurements, the highest polynomial will thenbe 2 (3 -1
= 2), or quadratic, with the Level 1 model at time # for individual 7 written as

— 2
Yii _ﬂ()i +ﬂ17ﬂ1.‘1 + 7,4 +gii (5-1)

207t

where 4, and 4%, are time-varying variables of interest (e.g., which are coded to indicate the linear
and quadratic components hypothesized to describe the shape of the trajectories); 7, is an in-
tercept; 7y, and 7,; describe the linear and quadratic growth rates, respectively; and €, represents
variation in estimating growth within individuals. We note that in specifying a growth model,
we often use the Greek letter pi to represent the Level 1 coeflicients, so that we can maintain
the typical beta coeflicients to describe between-individual relationships and gamma coeflicients
to describe between-group relationships. Because we have coded the first repeated measure as 0,
the intercept parameter (i.e., the point where the trajectory crosses the Y axis) is interpreted as
the child’s true score at initial status (or the beginning) of the study. As Singer and Willet (2003)
note, the Level 1 model assumes that all the individual change trajectories have the same alge-
braic form in Equation 5.1, but not every individual has exactly the same trajectory.

'The slope parameters (75, and 7,,) represent the predicted change in individuals over a specified
time interval. The linear component describes the rate of change per unit of time. A quadratic
component can be interpreted as a “change” in the rate of change (e.g., accelerating or decelerat-
ing). As shown in Figure 5.5, the linear component of the time-related variable (a) is coded 0,1,2
in the data set (referred to as “¢ime”), which ensures that the intercept is interpreted as students’
frue initial status (i.e., their corrected achievement level at Time 1). We can also add a quadratic
component to the model to test for a change in the rate of growth over time. This component
is also coded as a variable (quadtime). The interval values for the variable can be generated using
COMPUTE and multiplying the time variable by itself (¢ime*time).

If this coding scheme is used, the linear component (7;,;) represents the yearly growth rate
for each child in the study. The quadratic component (7,,) represents any increase or decrease in
the rate of change for each time interval. Alternatively, the time-related variable might also be
conceptualized as students’ age in months at the time of each measurement. The intercept and
slope coeflicients represent the model’s structural, or fixed, effects. As mentioned previously, we
have also created orthogonal polynomials in our example data in order to remove the sizable
correlation between the linear and quadratic components of individuals’ growth trajectories. We
have added these orthogonal linear and quadratic components into the data set as or#htime and
orthquad, respectively.

We can also specify one or more time-varying covariates (X,) at Level 1. Time-varying co-
variates (i.e., predictors that also change over repeated measurement occasions) provide a way
of accounting for temporal variation that may increase (or decrease) the value of an outcome
predicted by the individual’s growth trajectory (Raudenbush & Bryk, 2002). For example, we
could consider a situation where a variable like motivation, which changes over time, might also
affect students’ learning in math or reading. Alternatively, we could also consider motivation as
a static variable (i.e., individuals’ average motivation level), which requires only one value for the
covariate. In this latter case, we would then enter the covariate at the between-subjects level (i.e.,
Level 2). One of the advantages of the time-varying formulation at Level 1, however, is that the
effect of motivation level on student achievement can then be modeled as a random parameter
at Level 2.
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Level 1 Covariance Structure

'The other part of the Level 1 model is the sfochastic part, or the part that describes the variation
in measuring each individual 7 on occasion £ This part of the model implies that there is some
error (g,) associated with measuring each individual’s true growth trajectory. The errors are un-
observed, which means that we must make some assumptions about their distribution at Level 1
(Singer & Willett, 2003). Often, a simple residual structure is assumed from occasion to occasion
and person to person, with each error independently and normally distributed, a mean of 0, and
constant variance:

£, ~N(0,07) (5.2)

where ~ means “distributed as,” V refers to normal distribution, O refers to the mean, and
refers to the variance. One way to represent this simplified error structure is as a scaled identity
matrix, which provides a single residual variance associated with measurement occasions. With
longitudinal data, however, this type of simple Level 1 error structure may have less credibility
(Singer & Willett, 2003).

Restrictions about the within-individual residuals over time can be relaxed. This is often nec-
essary because the error covariance matrix for the repeated measures typically will exhibit some
correlation between occasions. For example, often the repeated measures will correlate more
strongly when they are taken closer together and less strongly as the time interval increases. It is
often useful to examine different error structures (e.g., compound symmetry, autocorrelated, or
unstructured) in preliminary analyses, depending on the nature of the repeated measurements
per subject. The fit of particular covariance structures to the data can then be compared to see
which covariance structure provides the best overall choice. IBM SPSS provides a considerable
number of choices for the Level 1 residual covariance matrix in a repeated measures model (a

complete list of covariance structures can be obtained from the MIXED Commands in the IBM
SPSS Help Menu).

Repeated Covariance Dialog Box

'The Level 1 covariance matrix can be specified by opening the Repeated Covariance dialog box in
the Commands menu (Figure 5.6) or with a REPEATED syntax command. There are actually
a number of different uses for this dialog box, which we will briefly summarize. The first is the
typical growth specification we have just described, where this is used to specify the individual
variation around the repeated measures of Y. A second use is when the focus is on defining a
multivariate model, for example, when we have several survey items used to define an underly-
ing (or latent) dependent variable such as job satisfaction. The individual items defining the
construct can be specified vertically for each individual in the data set using an index variable
and the Repeated Covariance dialog box used to describe variance and covariance relationships
between the items, which is similar to representing repeated measures over time. We cover these
multivariate situations in more detail in Chapter 7. A third use would be where the researcher
has different amounts of data on an outcome for individuals at Level 1. For example, workers
might be measured performing a series of work-related tasks. One individual might have one
such measure of task performance, while others might have five or six (or even more) measures.
'This specification amounts to having multiple pieces of data nested within individuals at Level 1,
but not incorporating a growth parameter in the sense that individuals are assumed to be chang-
ing in performance over time. In this case, the Repeated Covariance dialog box is useful in or-
ganizing the differing amounts of performance information regarding individuals in the study.
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FIGURE 5.6 'The Repeated Covariance Type dialog box and available covariance structures.

We note that if the Repeated Covariance dialog box (or repeated syntax statement) is not used,
the default Level 1 matrix will be a scaled identity covariance matrix. As Equation 5.3 indicates,
the scaled identity matrix (abbreviated as ID in MIXED syntax) assumes a constant variance
across occasions, where o2 is the variance, and no covariances between occasions. Therefore, it has
only one estimated parameter, as suggested in Equation 5.3. We note that because a covariance
matrix is a square matrix, the same elements appear above and below the diagonals. This simpli-
fied within-subject error structure may sometimes be sufficient for repeated measures studies
of short duration, if the focus is not primarily on defining the relationships between successive
measurements:

(5.3)

oS R O
= O O

Specifying an identity covariance matrix for the repeated measures structure amounts to accept-
ing that Mauchly’s test for sphericity holds.

A special form of sphericity is compound symmetry (abbreviated CS) or uniformity (Hox,2010).
Conditions for compound symmetry are met if all the variances are equal in the population being
sampled and all the covariances (the oft-diagonal elements of the covariance matrix) are equal.
'This means there is one variance and one constant covariance in the Level 1 covariance matrix
(or one more parameter to estimate than in Eq. 5.3). If the observed covariances are roughly
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equal and the variances are similar too, we can generally assume that compound symmetry is
not violated and, therefore, sphericity should not be a problem (Raykov & Marcoulides, 2008).
It turns out that for a two-level model of repeated measures with random intercept only, the
residual variance at any occasion can be defined as * ~N@.o) (i.e., the sum of the occasion-level
and person-level residual variances, respectively) in the diagonals of the matrix, and the covari-
ance between any two occasions (i.e., the off-diagonal elements) is B

110, For this simple type of
repeated measures model, the matrix of variances and covariances among occasions would then

be defined as follows:

o +o o, o,
o
2 G?‘FO’Z o, (54)
lto & HO
O'2 0'2 ()'24-(72
uo MO & uo

'This suggests that the typical linear trend two-level model with single residual term at the occa-
sion (Level 1) and person (Level 2) levels is the same as assuming compound symmetry in the
univariate repeated measures ANOVA model (Hox, 2010; Raudenbush & Bryk, 2002). In fact,
for a simple linear two-level model with random intercept only, specifying an ID covariance
matrix at Level 1 (as in Eq. 5.3) and Level 2 (since there is one random effect) will produce an
identical model to specifying CS at Level 1 and ID at Level 2.

An alternative Level 1 structure assuming different variances across measurement occasions
could also be summarized as a diagonal (DIAG) covariance matrix. This type of covariance ma-
trix assumes heterogeneous variances for each measurement occasion in the diagonals of the
matrix and Os for the oft-diagonal elements, which indicates no covariances between occasions:

L )

o O

(5.5)

o
o 9, o

wq.\,

Relative to the scaled identity or compound symmetry covariance matrices, however, the di-
agonal covariance matrix will have more parameters to estimate for the assumed heterogeneous
variances. The limitation of this type of covariance structure is also that it assumes no relationship
between measurement occasions (similar to the scaled identity matrix).

Often we find that the repeated measures structures for longitudinal data may have a complex
covariance structure. This autoregressive error covariance matrix (AR1) assumes that the Level
1 variance remains constant across occasions but facilitates specifying an autocorrelation
coefficient between occasions. The autocorrelation coefficient rho (p) represents the correlation
between any two adjacent occasions, where | p | < 1. It follows, then, that p? represents the cor-
relation when there is a skip between occasions. This structure is useful when it is likely that the
correlations become weaker as there is longer distance in time between them:

1
ol p

pz
P (5.6)
Yo 1

T~
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'The autoregressive covariance structure differs from compound symmetry, which assumes that
the covariance between residuals is the same despite the time lag between them. One advantage
of the autoregressive covariance structure is that it can be specified with only two estimated
parameters (i.e., a variance parameter and the correlation parameter). This makes it a relatively
simplified covariance structure, but one that does not assume that all covariances between occa-
sions are the same. We note that it is also possible to assume heterogeneity among the occasion
variances; that is, the diagonal elements can be replaced with separate variance estimates in the
autoregressive structure (abbreviated as ARH1).

In contrast to an autoregressive error structure, a completely unstructured (UN) covariance
matrix provides separate occasion variance estimates in the diagonals and separate covariances
estimated for the off-diagonal elements:

2
0, Oy Oy
(o} oy 2 (op
21 2 32
5 (5.7)
031 O3 O

This type of error structure, however, can become overly complex when the number of measure-
ment occasions increases beyond three or four.

A general goal is to identify a parsimonious covariance structure that will adequately describe
the data, both at Level 1 and Level 2. In this example, we will first assume an identity Level 1
covariance matrix within individuals to examine how much variance in the outcome lies within
and between individuals. MIXED provides several fit indices (e.g., AIC and BIC) that can also
be used to evaluate various combinations of fixed effects and covariance structures. In simulation
studies of growth curve modeling, the AIC has been noted to work well in selecting the true
model, provided the sample size is not below 100 individuals (Liu, Rovine, & Molenaar, 2012).
We discuss these indices later in this chapter.

More complex covariance structures can also make it more difficult to arrive at a solution that
converges (i.e., provides reasonable estimates for all proposed parameters). Often, it is necessary
to exercise some type of compromise between the complexity of some covariance structures and
the parsimony provided by others in arriving at solution that defines model covariance structures
adequately. We illustrate some of these differences in Level 1 covariance matrices subsequently.
As Hox (2010) notes, if the focus is primarily on the model’s fixed effects, one can often assume a
more simplified variance and covariance structure across occasions, as some misspecification in the
random part of the model does not generally affect the model’s fixed effects (see also Verbeke &
Lesaffre, 1997). In some circumstances, however, different user choices regarding the error vari-
ance structure at Level 1 may affect the outcome of tests for random effects at higher levels.

Model 1.1: Model with No Predictors

There is some difference of opinion among researchers about what is the proper model to begin
with in building a growth model. We can start with a “no-predictors” model if desired. However,
when we calculate the intraclass correlation (within individuals = Level 1; between individuals =
Level 2) we will only get a rough estimate since the within-individual variance may be differ-
ent at each measurement occasion. Moreover, this initial estimate of the variance components
may not be very accurate. This is because when the variance components are initially estimated,
the estimation procedure is assuming random sampling at both levels. What this means is that
the initial estimate of the variance in the outcome at the between-individual level (Level 2)
can ignore possible variation in the between-individual variance component that may be due
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to additional within-individual variance that actually exists. If this occurs, the initial between-
individual estimate must be corrected by the ML estimation procedure as subsequent variables
are added (Hox, 2010).

In this first type of null model, for example, we could test whether the grand-mean intercept
for math varies across individuals. From Equation 5.1, this is simply defined at Level 1 without
the time-related variables as follows:

Y, = (5.8)

Tho; + E4y

where 7y, is the average achievement across the three occasions, and €, represents errors in pre-
dicting the average achievement for individuals. Between individuals, we can describe the aver-
age growth across occasions as

(5.9)

7o; = Boo + oy,

where fy, is the intercept describing the average initial status mean between individuals, and u,
is the Level 2 random component associated with describing differences in average achievement
between individuals. Substituting Equation 5.9 into Equation 5.8, we would arrive at the com-
bined equation

(5.10)

Y, = Boo + ty; + £,

which indicates three parameters to estimate. These include the fixed effect describing average
math achievement, the between-individual random variance, and the Level 1 residual variance.

Defining Model 1.1 (Null) with IBM SPSS Menu Commands

Continue using ch5, growthdata-vertical.sav.

1. Go to the toolbar and select
ANALYZE, MIXED MODELS,
LINEAR.

This command enables access to the [EI id | nsch

(=B ]

Analyze Direct Marketing Graphs Ubities Add-ons Window Help

TEELE

Visible: 15 of 15 Variables

ta chSgrowthdata-vertical.sav [DataSetl] - IBM SPSS Statistics Data Editor

Fie Edt View Data Transform

=1 I=NR
[ [

Reports L3
D

Taljes

Compare Means
General Linear Model

time | quadtime

0 o/~

Linear Mixed Models: Specify Subjects and
Repeated dialog box.

e |~|o || e w ||

iy
=}

-
pry

12

4]

T R L R B R |

_Data View | varisbie view [

|Linear...

Generalized Linear Models
Mixed Models
Correlate
Regression
Loginear

Meural Networks
Classify

Dimension Reduction
Scgle

Nonparamelric Tests
Forecasting

Survival

Mytiple Response

B2 Missing vaiue Analysis...

Muttiple:
Complex Samples
Qualty Confrol

ROC Curve...

IBM SPSS Amos...

v T T O®T WY ¥ O¥Y OWY OFW OFY VWV ¥V OV PR W VW

1

| EE] genersiized Linear ..

‘IM—LQM—MQM_»

=
11

e oo+ oo s

LI

cessor is ready




Examining Individual Change with Repeated Measures Data ® 193
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c. 'The Repeated Covariance Type specifies a model’s covariance structure. For this model, we will use
the Scaled Identity (ID) covariance type. Click the pull-down menu and select Scaled Identity. The
ID structure has constant variance and assumes that no correlation occurs between elements.

d. Click the CONTINUE button to display the Linear Mixed Models dialog box.

3. 'The Linear Mixed Models main screen enables (3 Gocor vied Modes =
schifying the depender}t variable, factors, co- R — [
variates, and access to dialog boxes for defin- | [ [ 2 test = e <
ing Fixed and Random effects, and options for || g ko Eactoris) il
Estimation, Statistics, EM Means, and Save. [ & sutatcs.. | [
a. For this model, we will use math achieve- [ 1B === e Veors... |

ment (test) as the dependent variable. Click ‘,‘."’::l""ﬂ ;'-r-';e ' L_swe. | |
. S-SR uadter
to select the zesz variable from the left column || [¢ R
listing. Then click the right-arrow button to e | [N Resiulsteont
transfer fest into the Dependent Variable box. | L4 o —
. Ol | cFoxts st Concel ) | =il
b. 'The null model does not have predictors,

but since we will be designating a random

effect in step 3, we will need to introduce

variable(s) at this point as factors or covariates as a workaround. (Omitting this step will pre-
vent specifying a random effect.)

Factors and covariates may be specified in predicting the dependent variable. Factors are categorical
predictors that may be numeric or string. Covariates are scale predictors that must be numeric.

We will designate two predictor variables, which will be used later in the upcoming model (Model
5.1A). Locate and click the variables #ime and quadtime from the left column listing, and then click the
right-arrow button to move the variables into the Covariate(s) box.

Since we are not defining effects for the two predictors, we will skip over the FIXED effects button and
go to set up the model’s random eftects.

Click the RANDOM button to access the Linear Mixed Models: Random Effects dialog box.
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so click Include intercept.

c. 'The Subject Groupings box displays the id variable that was selected as a subject variable in the
Select Subjects and Repeated dialog box show in step 2a. We will specify id as the subject for the
random-effects part of this model. Click to select id, and then click the right-arrow button to
move the variable into the Combinations box.

Click the CONTINUE button to return to the Linear Mixed Models main dialog box.
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6. In the Linear Mixed Models dialog
box, click the STATISTICS button
to access the Linear Mixed Models:
Statistics dialog box.

Click and select the following three
statistics to be included in the output:
Parameter estimates, Iests for covariance
parameters, and Covariances of random

effects.

Click the CONTINUE button to return
to the Linear Mixed Models dialog box.

7. Finally, in the Linear Mixed Models
dialog box, click the OK button to
run the model.
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Interpreting the Output From Model 1.1 (Null)

'The grand mean for achievement is 52.945 (not tabled), as summarized previously in Table 5.2.
'The variance component table (Table 5.4) can be used to determine how much variability in
math achievement is present at each level. At Level 1, the variance (***) summarizes the popu-
lation variability in the average individual’s achievement estimates around her or his own true
growth trajectory (Singer & Willet, 2003). The estimate is 78.101.The Level 2 variance is 30.505
(Wald Z = 33.777, p < .001), which suggests there is sufficient variation in intercepts across in-
dividuals. The null hypothesis is that the population parameter for the variance is 0 (Singer &
Willett, 2003). Keep in mind that the Wald Z statistic provides a two-tailed test and because the
null hypothesis is that the population variance is 0, we should use a one-tailed test for variances.
As a rough estimate, we can calculate the proportion of variance in math achievement that is

between individuals as about 0.281 [30.505/(30.505 +78.101)], or 28.1%.
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TABLE 5.4 Initial Estimates of Covariance Parameters®

Parameter Estimate Std. Error Wald Z Sig.
Repeated Measures Variance 78.101 0.839 93.113 .000
Intercept [subject = id] Variance 30.505 0.903 33.777 .000

@ Dependent variable: test.

Model 1.1A: What Is the Shape of the Trajectory?

Alternatively, we can start with Model 1.1A as a model that includes the time-related variables
(time and quadtime). If one begins with the linear component and quadratic components, and
they are not transformed, this model will provide a variance component for the intercept at Time
0 (at initial status). The Level 1 model is specified in Equation 5.1, where we have defined lin-
ear and quadratic time-related components describing the shape of individual growth in math
achievement over the three time points. In describing the shape of the growth trajectory, we can
also estimate £ - 1 random effects. Since there are three time points in this example, we can es-
timate two random effects. This allows us to estimate a Level 2 randomly varying intercept and
either a randomly varying linear component or quadratic component.

In this model, we will initially treat both time-related components as fixed (i.e., with no u,;
and u,; residual variances) between individuals:

1 = Bro (5.11)
T3 = Bao- (5.12)

Substituting the Level 2 equations (Eq. 5.10 for the intercept and Egs. 5.11 and 5.12 for the
time-related slopes) into the Level 1 equation (Eq. 5.1) results in the following combined
equation:

Y, =P+ Proa; + :3204121‘ tuy, t &, (5.13)

'This suggests five parameters to estimate including three fixed effects, one random intercept (zy,),
and the Level 1 residual (g,).



Defining Model 1.1A with IBM SPSS Menu Commands

Continue using the ch5growthdata-
vertical.sav data. Settings will
default to those used in Model 1.1
(Null).

1. Go to the toolbar and select
ANALYZE, MIXED MOD-
ELS, LINEAR.

This command enables access to the

Linear Mixed Models: Specify Subjects
and Repeated dialog box.
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3. 'The Linear Mixed Models main dialog
box displays est as the dependent
variable and the predictor variables
time and quadtime as covariates.

Once the predictor variables have been
specified, we may now proceed to define

fixed effects for the variables.

Click the FIXED button to access the
Linear Mixed Models: Fixed Effects dialog

box.

4a. Within the Linear

Mixed Models: Fixed
Effects dialog box, click
the pull-down menu to
change the factorial set-
ting to Main Effects.

. Click to select #ime and

quadtime from the Fac-
tors and Covariates box,
and then click the ADD
button to move the vari-
able into the Model box.

. Note on lower left of the

screen that the intercept
and the sum of squares
(Type III) are the default

settings.
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Interpreting the Output From Model 1.1A

'The fixed effects are presented in Table 5.5. We can observe that both the linear and quadratic
polynomials are significant in explaining student growth in math, which suggests that both should
be retained in subsequent analyses. The linear component is the portion of the sum of squares
(SS) attributable to the linear regression of Y on X, and the quadratic component measures the
additional improvement in fit due to that component. Notice that the intercept corresponds to
students’ math achievement level at the beginning of the study. We can use the estimates in Table
5.5 to obtain the observed means for the second and third intervals summarized in Table 5.2.
Next, readers will notice in Table 5.6 that when we include the time-related variables in the
initial model, the within-individual variance is reduced from 78.10 in Table 5.4 to 60.19. The
estimate of the between-individual variance, however, is actually a little larger (36.48) than the
initial estimate in Table 5.4 (30.51) with no time-related parameter in the model. This would
seem to be explaining “negative” variance between individuals (at Level 2) since the variance
component is reduced by adding the time-related variables. As we have noted previously, this
problem regarding negative variance is actually quite common in multilevel analyses of repeated
measures. It often occurs because the variability among subjects in the repeated measures por-
tion (Level 1) of the outcome is usually much larger than the sampling model assumes (Hox,
2010). This leads to overestimating occasion variance and underestimating between-individual
(Level 2) variance in the intercept-only model. If we calculated the proportion of the variance
between individuals based on the variance components in Table 5.6 for Model 1.1A, we would
find that the between-individual proportion of the variance in math achievement is now 0.377

(36.477/96.664), or almost 38%, rather than 28% from Model 1.1 with no predictors.

TABLE 5.5 Estimates of Fixed Effects®

95% Confidence Interval

Parameter Estimate  Std. Error df t Sig. Lower Bound  Upper Bound
Intercept 48.632 0.106 20,242.098 460.579 .000 48.425 48.839
time 4.719 0.212 17,338.000 22.216 .000 4.303 5.135
quadtime -0.244 0.102 17,338.000 -2.391 .017 -0.444 -0.044

@ Dependent variable: test.

TABLE 5.6 Estimates of Covariance Parameters Including Time Variables®

Parameter Estimate Std. Error Wald Z Sig.
Repeated Measures Variance 60.187 0.646 93.107 .000
Intercept [subject = id]  Variance 36.477 0.885 41.198 .000

@ Dependent variable: test.
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Does the Time-Related Slope Vary Across Groups?

We emphasize there is no “one way” to proceed in developing an initial growth model. We gener-
ally favor this latter approach (Model 1.1A), where the analysis begins with focusing on whether
the means of the repeated measures differ across time and defining the shape of the growth
trajectory. This initial model could include both the linear and quadratic components since both
were found to be significantly related to student growth. Therefore, our first model focuses on
defining the shape of students’ growth trajectories and determining whether the intercept and
slopes vary across individuals. We can now test whether the time-related slopes are randomly
varying across individuals at Level 2:

1y = Bro + 1, (5.14)
Ty = Boo + i, (5.15)

where the § coefficients represent the intercepts, and the  coefhicients represent the variance
estimates for the equations. We note that determining which time-related component or com-
ponents to use in building the Level 2 explanatory models can take a bit of trial and error. It is
generally the case that alternative models with various trajectory shapes and covariance struc-
tures should be preliminarily investigated in order to arrive at an optimal solution (e.g., see Liu
etal.,2012).

As we have noted, when we estimate a polynomial growth model, we need to keep in mind
that we are limited in the number of random effects by the number of repeated measures. We can
estimate a random effect for the intercept and linear or quadratic term, but not both. If we choose
the linear term, this means we will need to assume that the slowing indicated by the quadratic
parameter is the same for every person in the sample. Therefore, it is often the choice to consider
the quadratic as a fixed effect within individuals in subsequent models to explain differences in
students’ growth trajectories. Since it does not vary across individuals, we can fix its variability at
0 by removing the random term (u,,), as in Equation 5.12. If we do try to estimate the quadratic
effect also, we receive the warning message in Figure 5.7 regarding the model’s failure to converge
on a solution.

With the quadratic component fixed, through the substitution of Equations 5.10 (intercept)
and 5.14 and 5.12 (time-related slopes) into Equation 5.1, we arrive at the single-equation model
for examining the fixed and random components without Level 2 predictors:

Y, = Boo + Puotime,; + Brquadtime,; + uytime,; + uy; + €, (5.16)
Equation 5.16 suggests that the intercept and linear component (time) are randomly varying

across individuals. Because the quadratic component is merely defining the shape of growth

Warnings

Iteration was terminated but convergence has not been achieved. The MIXED procedure
continues despite this warning. Subsequentresults produced are based onthe last itera-
tion. Validity of the model fitis uncertain.

FIGURE 5.7 Warning message.
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within individuals, this suggests building the explanatory model for student growth rates on the
randomly varying linear component.

Level 2 Covariance Structure

Continue using ch5growthdata-
vertical.sav. Settings will
default to those used in Model

It is also possible to define different covariance structures at successive levels of the proposed
model. For Level 2, the dimensionality of the covariance matrix describing the variances and
covariances between random effects depends on the number of random effects in the model. In
this case, because we are treating the quadratic component as fixed across individuals due to our
preliminary examination, we will assume a 2 x 2 unstructured covariance matrix of random effects

for the intercept (1) and slope (S) at Level 2:

O; Ops
; (5.17)
s Os

'The variances are contained in the diagonals of the matrix, and the covariance is represented by
the off-diagonal element. When we combine the covariance parameter estimated in Equation
5.17 with the six parameters defined in Equation 5.16 (i.e., three fixed effects, one random Level
2 intercept, one random Level 2 slope, and the Level 1 residual), we will have a total of seven
parameters to estimate in our final version of Model 1.

Defining Model 1.1B with IBM SPSS Menu Commands
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2. 'The Linear Mixed Models: Specify Subjects and Re- i
peated displays the default settings from the prior

model. We will retain the settings, so click the
CONTINUE button to display the Linear Mixed

Models dialog box.

3. 'The Linear Mixed Models main dialog box
displays the settings used in the prior model.

We will now add random effects to this model.

Click the RANDOM button to access the Linear
Mixed Models: Random Effects dialog box.

4a. Within the Linear Mixed
Models: Random Effects box,
change the covariance type
by clicking on the pull-
down menu and selecting
Unstructured.

b. Click to select Include
intercept.

c. Change Factorial Effects by
clicking on the pull-down
menu and selecting Main
Effects.

d. Click to select time from
the Factors and Covariates
box, and then click the
ADD button to move the

variable into the Mode/ box.

Click the CONTINUE button to
return to the Linear Mixed Models
dialog box.

2 Linear Mixed Models: Specify Subjects and Repeated =5
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5. Finally, in the Linear Mixed Models te Linear Mixed Models I-?Z"E‘
dialog box, click the OK button to = =
D dent Varia| [
run the model. & | [P ] bl
. ;[ﬂ n.sa:ccde Factor(s) | Rapdom... |
Interpreting the Output From & Ri =2 | gstimaton... |
Model 1.1B - sl £2 [ surmics.. |
Results of this first model test are & orthauad _ |_EMMeons... |
. . & ettective Lovariate(s): -
presented in the following tables. b | | & tme [_see.. |
As in previous chapters, it is often & timenonint £ | |& quactme
useful to examine the total number & timenonin2 =
; . & timenonin3 N Residual Weight:
of parameters being estimated and f;.menonm < |2 |
the number of random and fixed ef- = !}Il oo ol [ pesllicseeill Lnen ol
fects to make sure they correspond :

with what the analyst might have in

mind. The first output (Table 5.7)

confirms that there are seven total parameters being estimated, which is consistent with Equa-
tions 5.16 and 5.17.

The fixed-effect results in Table 5.8 are summarized as § parameters since they are Level 2
parameters (as suggested in Eq. 5.16). For the true intercept (7,), the estimate for initial status
By in Eq. 5.16) is 48.632. This estimate is consistent with estimated mean for Time 0 in Table
5.2. For the linear growth rate (7,), the estimate (B, in Eq. 5.16) is 4.72 points per year. For
the quadratic growth rate (1), the estimate (B, in Eq. 5.16) is —0.244. The significance of each
fixed effect is tested with a £ test (i.e., defined as the ratio of the unstandardized estimate to its
standard error). We note that MIXED applies the Satterthwaite (1946) correction for calculat-
ing the degrees of freedom used in testing parameter significance, which explains the presence
of decimals in the degrees of freedom column in Table 5.8.The significant # tests for the growth

TABLE 5.7 Model Dimension®

Number of Covariance Number of Subject
Levels Structure Parameters Variables
Intercept 1 1
Fixed Effects time 1 1
quadtime 1 1
Random Effects Intercept + time 2 Unstructured 3 id
Repeated Effects  time 3 Identity 1 id
Total 8 7
° Dependent variable: test.
TABLE 5.8 Estimates of Fixed Effects
95% Confidence Interval
Parameter Estimate Std. Error df t Sig.  Lower Bound  Upper Bound
Intercept 48.632 0.103 10,597.930  472.847 .000 48.431 48.834
time 4.719 0.206 10,329.959 22.948 .000 4316 5.122
quadtime -0.244 0.098 8,669.000 -2.485 .013 -0.436 -0.052

@ Dependent Variable: fest.
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TABLE 5.9 Estimates of Covariance Parameters®

95% Confidence Interval

Parameter Estimate  Std. Error  Wald Z Sig.  LowerBound Upper Bound
Repeated Measures  Variance 55.720 0.846 65.837 .000 54.085 57.403
Intercept + time UN (1, 1) 35.992 1.437 25.048 .000 33.283 38.922
[subject = id] UN(2,1) -1.247 0764  -1.631 .103 -2.745 0.251
UN (2, 2) 4.467 0.648 6.891 .000 3.361 5.936

@ Dependent variable: test.

terms suggest that both should be retained in the model and that, on average, individuals’ growth
rates slow slightly over time.

Next, we can examine the covariance parameters in Table 5.9.The Level 1 estimate is 55.72
(Wald Z = 65.837, p < .001). At Level 2, we specified an unstructured covariance matrix, which
means that there are variance estimates for the random intercept (UN 1, 1), the random linear
slope (UN 2, 2), and an estimate of the covariance between them (UN 2, 1). The table suggests
that there is significant variability in the random intercept to be explained between individuals
(Wald Z = 25.048, p < .001). The linear time slope also varies significantly across individuals
(Wald Z = 6.891, p < .001). The third parameter represents the covariance between the Level 2
initial status and linear growth estimates. We note that the relationship between these two pa-
rameters can depend on how the intercept is specified (i.e., with the intercept is defined as initial
status, the grand mean, or end status) as well as the presence of other variables in the model (Hox,
2010). In this model, the results suggest that the covariance parameter between the initial status
intercept and growth rate is not significantly different from 0 (Wald Z = -1.631, p > .05).

Because the covariance can be positive or negative, the two-tailed test Wald Z test implies that
we could fix the covariance (UN 2, 1) in subsequent models if we wished to simplify the covari-
ance structure. We also note in passing that researchers have cautioned about the use of these
single parameter tests of significance of the model’s variance components (Hox, 2010; Rauden-
bush & Bryk, 2002). The Wald Z test can also perform poorly under multicollinearity problems
and in small sample sizes. For small samples, the likelihood ratio test (which can be estimated

from MIXED output) tends to be more reliable than the Wald Z test.

Examining Orthogonal Components

We reiterate that analysts should keep in mind that the polynomial components when untrans-
formed are highly correlated. As we have discussed previously, when repeated measures ANOVA
is used, the program automatically transforms the polynomials to be orthogonal. When we use
MIXED, the recommendation is that we also transform the coded polynomial components so
that they are orthogonal, or we consider other possible ways of coding the time variables. In this
next model, we will use the transformed polynomial contrasts for time (orzhtime and orthquad).
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Defining Model 1.2 with IBM SPSS Menu Commands
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3. We will change the predictors by using
the transformed polynomial contrasts
for time in the model (orthtime and

orthquad).

a.

Once the predictor variables have been speci-
fied, we may now proceed to define fixed

Begin by selecting #ime and quadtime
and then clicking the left-arrow but-
ton to remove the variables from the

Covariate(s) box.

Now click to select orthtime and
orthquad. Then click the right-
arrow button to add them to the

Cowvariate(s) box.

effects for the variables.

Click the FIXED button to access the Linear
Mixed Models: Fixed Effects dialog box.

4a.

Click the CONTINUE button to return to the Linear Mixed Models dialog box.

Within the Linear
Mixed Models: Fixed
Effects dialog box,
click the pull-down
menu to change the
factorial setting to
Main Effects.

Click to select orth-
time and orthquad
from the Factors and
Covariates box, and
then click the ADD
button to move the
variable into the
Model box.

Note on lower left of
the screen that the

intercept and the sum
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Click the RANDOM button to access the Linear Mixed Models: Random Effects dialog box.
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Interpreting the Output From Model 1.2

When we rerun the model using these transformed polynomials, we obtain the fixed-effects
estimates summarized in Table 5.10. We can observe that both contrasts are significant and,
therefore, should be retained in subsequent analyses. We can note that the intercept is now the
grand mean of the growth trend instead of the initial status mean (see Table 5.2). Adding the
growth components to the intercept provides an estimate of ending achievement (57.095) with
a slight difference due to rounding (see Table 5.2 on page 174). We note that transforming the
polynomials places the interpretation on the overall growth trend rather than change within any

particular interval (Hox, 2010).
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TABLE 5.10 Estimates of Fixed Effects®

95% Confidence Interval

Parameter Estimate Std. Error df t Sig. Lower Bound Upper Bound
Intercept 52.945 0.081 8,669 655.630 .000 52.786 53.103
orthtime 4.231 0.061 8,669.000 69.291 .000 4111 4.351
orthquad -.081 0.033 8,669 -2.485 .013 -0.145 -0.017

@ Dependent variable: test.

TABLE 5.11 Repeated Measures ANOVA Tests of Within-Subjects Contrasts

Measure:test
Type Ill Sum of Noncent.  Observed
Source Time Squares df Mean Square F Sig. Parameter  Power®
Time Linear 310,416.221 1 310,416.221 4,801.239 .000 4,801.239 1.000
Quadratic 344.115 1 344.115 6.176 013 6.176  0.700
Error(time) Linear 560,479.947 8,669 64.653
Quadratic 483,033.589 8,669 55.720

@ Computed using alpha = 0.05.

Readers may wish to verify that transforming the polynomials does succeed in creating no cor-
relation between them. Adding the coeflicients will provide the estimate of ending achievement
in Table 5.2 (57.095, with a slight difference due to rounding). We can compare the results in
Table 5.10 to the similar specifications using repeated measures ANOVA (we include the syntax
in Appendix A). We provide the within-subjects contrasts from the same repeated measures
ANOVA analysis in Table 5.11. Readers will notice that if we take the square root of the / tests
for the time-related contrasts (4,801.239) for the linear contrast and for the quadratic contrast
(6.176), we obtain the # tests for the contrasts in Table 5.10. This suggests that the MIXED solu-
tion with orthogonal polynomial linear and quadratic contrasts is consistent with the repeated
measures ANOVA solution for the time-related effects.

Specifying the Level 1 Covariance Structure

We also need to consider the nature of the Level 1 (within individuals) covariance matrix in a
repeated measures design. For repeated measures ANOVA, Mauchly’s sphericity test assumes a
specific structure for the repeated measures covariance matrix. We note that the associated test
for sphericity was significant (Mauchly’s W= 0.977,2 df, p < .001), which in a similar two-level
model (with only random intercept) amounts to not accepting compound symmetry. In MIXED,
there is no specific test conducted for the covariance matrix between repeated measures. We can,
however, begin by examining whether the Level 1 covariance matrix is consistent with a more
simplified covariance structure. We will assume that the Level 1 error covariance matrix is scaled
identity (ID) and specify an unstructured (UN) covariance structure for the Level 2 random
effects.

In Table 5.12, we present the covariance parameters for the Model 1.2. First, we can see that
the linear contrast varies randomly across individuals (Wald Z = 42.001, p < .001). Second, we
can also see that with transformed polynomials the covariance between the intercept and slope
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TABLE 5.12 Estimates of Covariance Parameters®

95% Confidence Interval

Parameter Estimate  Std.Error WaldZ  Sig.  Lower Bound  Upper Bound
Repeated Measures  Variance 55.720 0.846 65.837  .000 54.085 57.403
Intercept + orthtime ~ UN (1, 1) 37.965 0.904 42.001 .000 36.235 39.779
[subject = id] UN (2, 1) 3.220 0.460 6.993  .000 2.317 4.122
UN (2, 2) 4.467 0.648 6.891  .000 3.361 5.936

@ Dependent variable: test.

(UN 2, 1) is significant and positive, which contrasts with the similar parameter using untrans-

formed polynomials (see Table 5.9 on page 204).

Investigating Other Level 1 Covariance Structures

As we suggested previously, we can test the fit of the scaled identity covariance matrix for the
repeated measures against other possible covariance structures. We summarize several of these
alternative structures in Table 5.13. As we noted previously, often there will be little difference in
terms of the fixed effects associated with different covariance structures. How can we then decide
which structure to use? For nested models, one way is to conduct a likelihood ratio test using the
difference in deviance (=2 times the log of the likelihood [-2LL]) between models. For models
that may not be nested, we can compare the Akaike information criterion (AIC) index for each
model. The AIC index (D + 2p) is computed by multiplying the number of parameters (p) by 2
and adding this product to the deviance statistic, computed using FIML. The addition of 2p to the
deviance statistic provides a penalty based on the model’s complexity. We can also use the Bayes-
ian information criterion (BIC), which is defined as the sum of the deviance and the product of
the natural log (In) of the sample size and the number of parameters [D + In(7)p]. We prefer the
smallest AIC or BIC among models compared, regardless of the number of parameters.

For Model 1, with seven estimated parameters (summarized as Model 1.2 in Table 5.12), the
AIC is 189,290.45. After examining Models 2—4, we might select Model 3, with diagonal covari-
ance structure at Level 1 and unstructured covariance structure at Level 2 as a reasonable choice
based on available model-fitting information. For this model, the AIC is 189,125.70.

In Table 5.14, we can see that this model more adequately accounts for the different vari-
ances between occasions than a model that assumes constant variance across occasions. We also

TABLE 5.13 Comparing Models, AIC Index, and Number of Parameters

Model Model Description AIC Parameters

Model 1 Identity Covariance Matrix, Level 1; 189,290.45 7
Unstructured Matrix, Level 2

Model 2 Diagonal Covariance Matrix, Level 1; 189,295.75 8
Diagonal Covariance Matrix, Level 2

Model 3 Diagonal Covariance Matrix, Level 1; 189,125.70 9
Unstructured Covariance Matrix, Level 2

Model 4 Autoregressive Errors (AR1), Level 1; 189,282.16* 8

Diagonal Covariance Matrix, Level 2

*Note: Model did not converge.
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TABLE 5.14 Estimates of Covariance Parameters®

95% Confidence Interval

Parameter Estimate Std. Error Wald Z  Sig. Lower Bound Upper Bound
Repeated Measures  Var: [Index] = 1] 63.583 2.026 31.385 .000 59.734 67.681
Var: [Index1 = 2] 58.779 1.158 50.756 .000 56.552 61.093
Var: [Index1 = 3] 35.619 1.980 17.987  .000 31.942 39.720
Intercept + orthtime ~ UN (1, 1) 38.985 0.946  41.216 .000 37.175 40.884
[subject = id] UN (2, 1) 7.881  0.610 12926 .000 6.686 9.076
UN (2, 2) 7.526 0.964 7.805 .000 5.855 9.675

° Dependent variable: test.

investigated a number of other possibilities at Level 1 (unstructured and autoregressive) but
tfound that the model did not converge. We suggest, therefore, that models should generally be
judged on various criteria including model fit indices, as well as their substance and sensibility in

relation to the study’s research purposes.

Defining Other Level 1 Covariance Structures Using IBM SPSS Menu Commands

(Examples in this section are based on Model 1.2, with scaled identity covariance structure at Level
1 and unstructured covariance structure at Level 2, but illustrate changes to the Level 1 and Level 2

covariance structures as summarized in Table 5.13.)

Model 1: ID (Level 1), UN (Level 2)

1. Go to the toolbar and select ANALYZE,
MIXED MODELS, LINEAR.

This command enables access to the Linear Mixed

Models: Specify Subjects and Repeated dialog box.

Scaled Identity Covariance Matrix at Level 1

2. 'The Linear Mixed Models: Specify Subjects and
Repeated dialog box displays the default setting
used for Model 1.2. Note that the Repeated Co-
variance Type function is set as Scaled Identity.

'The Scaled Identity covariance structure has het-
erogeneous variances and zero correlation between

elements (IBM Corporation, 2012).

Click the CONTINUE button to display the Lin-
ear Mixed Models dialog box. Click the RANDOM
button to access the Linear Mixed Models: Random

Effects dialog box.

W

A Linear Mixed Models: Specify Subjects and Rep

Click Continue for modeis with uncorrelated terms.

Specify Subject variable for models with correlated random effects.

Specify both Repeated and Subject varnables for models with correlated

residuals within the random effects.

:[H nschcode
& R

& time

& quadtime
& orntime
& orthquad
f test

f effective
& ses

& timenonin
f timenonin2
& timenonin3

-l

|
-

Subjects:

&

Repeated:

&b index1

NS

Repeated Covariance Type: iScaied denlly & =

I‘bc::nt'nue ] | Reset

Cancel

Hep |
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Unstructured Covariance Matrix at Level 2

3. The Linear Mixed Models:

#3 Linear Mixed Models: Random Effects

Random Effects dialog box rRandom Effect 1 of 1-
displays the default set- i '
ting used for Model 1.2.

Coyariance Type:

Unstructured @

|

‘Random Effects

Note that the Covariance

Next

(%) Buid terms () Build pested terms [¥] nclude intercept
T_)/Pe function is set as I_E_nqtura and Covariates: Modet
Unstructured. Lé s o
Unstructured is a completely (MonEftects v
general covariance matrix
(IBM Corporation, 2012). .
Click the CONTINUE button ; L — —
to return to the Linear Mixed
Models dialog box. Then click Foanic i =
OK to generate the Model 1 [0 &
results. Compare the output’s EJ
AIC and model parameters to
those in Table 5.13. =
LI}Continue ” Cancel H Help

(Settings default to Model 1.)

Model 2: DIAG (Level 1), DIAG (Level 2)

1. Go to the toolbar and select ANALYZE, MIXED MODELS, LINEAR.

'This command enables access to the Linear Mixed Models: Specify Subjects and Repeated dialog box.

Diagonal Covariance Matrix at Level 1

2. 'The Linear Mixed Models: Specify Subjects and Re-
peated dialog box displays the default setting used
for Model 1. Change the covariance setting by
clicking the pull-down menu to select Diagonal.

'The Diagonal covariance structure has heterogeneous
variances and zero correlation between elements (IBM
Corporation, 2012).

Click the CONTINUE button to display the Linear
Mixed Models dialog box. Click the RANDOM but-
ton to access the Linear Mixed Models: Random Effects
dialog box.

3 Linear Mixed Models: Specify Subjects and Repeated

[

Ciick Continue for models with uncorrelated terms.

Specify Subject variable for models with correlated random effects.

Specify both Repeated and Subject variables for models with correlated

residuals within the random effects.

Subjects:

&hid

d:i nschcode Z

[+]

f quadtime

& orthtime

&b orthquad
& test
f effective

f sS85
f timenoniini |:

Repeated:

&b Indext

f timenoniin2
f timenoniin3

=
P

Repeated Covariance Type: | Diagonal

&Cﬂnmue I C ¥
C: " Ci

ion Metric

Diagonal
Factor Analytic: First Order

Huynh-Feldt

Factor Analytic: First Order, Heterogeneous

T X

Cl .
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Diagonal Covariance Matrix at Level 2

3. The Linear Mixed Models: [ # tinear Mixed Models: Random Effects =z
Random Effects dialog box TR ==
displays the default set- =7 {}L Next
ting used for Model 1. Coyariance Type: Diagonal ——— -
Change the Covari- e ) _

. (%) Build terms () Build nested terms [¥] nclyde intercept
ance T‘ype by Cthlng the Eactors and Covariates: Modet
pull-down menu to select | s (ormaes
. lli orthquad
Diagonal. S :
MonEftects v

'The Diagonal covariance
structure has heterogeneous .
variances and zero correla- il | | I
tion between elements (IBM AU TE 2 =
Corporation, 2012).Click the '

-Subject Groupings

CONTINUE button to return Subjects: Combinats
to the Linear Mixed Models |dbu &
dialog box. Then click OK to \iJ
generate the Model 2 results.

Compare the output’s AIC and —

model parameters to those in [Q""“f““ J[__concet || tew

Table 5.13.
(Settings default to Model 2.)

Model 3: DIAG (Level 1), UN (Level 2)

1. Go to the toolbar and select ANALYZE, MIXED MODELS, LINEAR.
'This command enables access to the Linear Mixed Models: Specify Subjects and Repeated dialog box.

Diagonal Covariance Matrix at Level 1

{2 Linear Mixed Models: Specify Subjects and Repeated =5
2. 'The Linear Mixed Models: Specify Subjects and Clck Contioue for Sodsis Wt incorpiseed feres.
Repeated dialog box displays the default set- S I I ey
ting used for Model 2. Note that the Repeated S
Covariance Type is set to Diagonal. - Subjects:
ol nschcode E (& «d
'The Diagonal covariance structure has heteroge- & rua Ao,
neous variances and zero correlation between ele- g“’* _ | ,|
. quadtime ——
ments (IBM Corporation, 2012). & ontime |
& orthquad 5 ;
Click the CONTINUE button to display the Linear & test RE::H
Mixed Models dialog box. Click the RANDOM o i fi |
button to access the Linear Mixed Models: Random & timenonint i |9
Effects dialog box. & timenonin2 |
ﬁécs 1alog box & timenoning -
Repeated Covariance Type: | Diagonal @ 'i
LD:nnmue || meset || cancet |[ hep |
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Unstructured Covariance Matrix at Level 2

3. The Linear Mixed Models:

18 Linear Mixed Models: Random Effects

Random Effects dialog box
displays the default setting
used for Model 2. Change the
Covariance Type by clicking
the pull-down menu to select
Unstructured.

Random Effect1 of 1

Coyariance Type:
Random Effects
() Buid terms
Eactors and Covariates:
E orthtime
|~ ertnquad

Unstructured is a completely
general covariance matrix (IBM
Corporation, 2012).

Click the CONTINUE button to i

Eunsuudured >

() Build pested terms [#] Inciyde intercept
Model:

orthtime

ManEflects )

return to the Linear Mixed Models
dialog box. Then click OK to gen-
erate the Model 3 results. Com-
pare the output’s AIC and model
parameters to those in Table 5.13.

Subject Groupings
Subjects:
S

Combinations:

¥y

(2]

(Settings default to Model 3.)

_tep ]

EConl:\ue I Cancel J.

Model 4: AR1 (Level 1), DIAG (Level 2)

1. Go to the toolbar and select ANALYZE,
MIXED MODELS, LINEAR.

This command enables access to the Linear Mixed

Models: Specify Subjects and Repeated dialog box.

Autoregressive Errors (AR 1) Covariance Matrix at
Llevel 1

2. 'The Linear Mixed Models: Specify Subjects and
Repeated dialog box displays the default setting
used for Model 3. Change the covariance set-

ting by clicking the pull-down menu to select
AR(1).

AR(1) is a first-order autoregressive structure with
homogenous variances. The correlation between any
two elements is equal to rho (p) for adjacent ele-
ments, p* for elements that are separated by a third,
and so on. We note that p is constrained so that -1

<p <1 (IBM Corporation, 2012).

2 Linear Mixed Models: Specify Subjects and Repeated

Click Continue for models with uncorrefated terms.

Specify Subject variable for models with correlated random effects.

Specify both Repeated and Subject variables for models with correlated

residuals within the random effects.

Siihiapie

41l nscheode [a &
& R
o
49 quadtime
& orthtime
rthquad
ﬁ?? tqua Repeated:
esf
Index1
& etfective &
09 ses |
f timenoniini — =
& timenonin2 [ _
timenonkin3 hd N
& tmen - \
Repeated Covariance Type: |AR(1) -
|Ante-Dependence: First Order =l
NG [ N
AR(1): Heterog =
ARMA(1,1) &l
Compound Symmetry
Compound Symmetry: Correlation Metric
Compound Symmetry: Heterogeneous
Diagonal -

Click the CONTINUE button to display the Linear Mixed Models dialog box. Click the RANDOM
button to access the Linear Mixed Models: Random Effects dialog box.
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Diagonal Covariance Matrix at Level 2

3. 'The Linear Mixed ( {5 Linear Mixed Models: Random Effects =)
Models: Random Effects
. . Random Effect 1 of 1
dialog box displays the i o
&,
default setting used = : - —_—
ovariance Type: | Diagonal -
tor Model 3. Change Random Effects
the Covariance Type () Buid terms O Buid pested terms [] melude intercept
b 1 kl th H— _Eactors and Covariates: Il;lodelz
y clicking the pu | ortntime orthtime
down menu to select |2 orthquad
Dmgonal' Main Effects =
Click the CONTINUE
button to return to the -
Linear Mixed Models dialog \

box. Then click OK to gen-
erate the Model 4 results, T

which shows that the model Subjects: Cambnatons:
does not converge. Com- % ®u
pare the output’s AIC and

model parameters to those

in Table 5.13.

LQCun!mue J I Cancel . Help

Model 1.3: Adding the Between-Subjects Predictors

'The initial results presented previously suggest that intercepts and linear growth rates vary across
individuals. We can next proceed with explaining variability in the random parameters across
individuals (at Level 2). This part of the analysis addresses the third research question: Are there
differences in development across groups of individuals? A first issue to be addressed is which of
the polynomial coefficients should be used to build our successive models concerning differences
in growth trajectories by student background factors (e.g., gender and socioeconomic status)?
'The best advice is that it depends on the specifics of the data set. We suggest trying to build a
model that is parsimonious but does justice to the particular features of the data set. This will
usually require some preliminary analyses. This part of specifying the model can be challenging
since it may not be immediately clear which components may be randomly varying and on which
polynomial contrast (or contrasts) we should actually build the explanatory model. Of course, we
have more flexibility regarding the number of time-related random eftects that can be specified
if we have more time points in the study.

In this case, since the quadratic component is fixed within individuals, it seems clear that we
should build the Level 2 models on the randomly varying linear component; that is, we seek to
explain its variability across individuals. We will propose that students’ perceptions of their teach-
ers’ effectiveness (coded 1 = effective vs. O = average or below) and students’ SES might explain
differences in their math intercepts and linear growth rates. In order to examine the parallelism
hypothesis regarding variability in linear growth rates for different student subgroups (i.e., that
growth rates are the same for students having effective vs. not effective teachers), or to consider
the impact of an interval variable such as SES on student growth rates, we need to create cross-
level interaction terms.
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Cross-level interactions involve the effects of Level 2 (between-individual) variables such as
teacher effectiveness on a Level 1 slope coefficient—that is, students’ growth rates. As we have
shown in previous chapters, cross-level interaction terms can be created within SPSS MIXED
in the menu command format. We reiterate that for this exercise, we define students’ percep-
tions of teacher effectiveness as a between-student factor; that is, it is simply used as a means of
identifying subsets of students (e.g., similar to gender) who are likely to have different growth
trajectories. In this example, we do not link groups of students to their individual teachers, so
we will not consider the more complicated nesting of students within teachers. For Level 2, the
following equations can be formulated:

7o; = Boo + Borses; + Boseffective; + uy, (5.18)

i = Pro + Buises; + Proeffective; + uy;, (5.19)

where u,; and u,; represent variation associated with estimating the intercept and slope param-
eters between individuals. The quadratic component is specified as fixed at Level 2 (7, = ) as in
Equation 5.12. When we substitute the intercept and slope equations (Eqs. 5.18,5.19,and 5.12)
into the Level 1 model (Eq. 5.1 using the transformed components), we obtain the following
combined equation:

Y, = Boo + Boses: + Poeffective; + Proorthtime,; + Puyses; *orthtime, +
Buoeffective; *orthtime,; + Byorthquad,; + uy; orthtime,; uy; + €, (5.20)

We note that the cross-level interaction terms in Equation 5.20 are created within SPSS MIXED
in the menu command format. We reiterate that the Level 1 repeated measures covariance ma-
trix in Model 1.3 is diagonal (as in Eq. 5.5) and the Level 2 covariance matrix is unstructured
(Eq. 5.17). The dimensionality of the Level 2 matrix depends on the number of random effects.
This makes a total of 13 parameters to estimate (i.e., seven fixed effects, three Level 2 random
effects, and three Level 1 residual variances).

If we wished to examine possible differences in the quadratic component (even though we
will treat this component as fixed across individuals), we could also add the Level 2 predictors

to that portion of the model, but the random component (u,;) would remain 0 (Raudenbush &
Bryk, 2002):

M = Poo + Puses; + Preffective; (5.21)

'This equation could then also be substituted into the Level 1 equation.

Defining Model 1.3 with IBM SPSS Menu Commands

In this model, we proposed that students’initial status intercept (7,;) will vary across individuals,
and this variation in intercepts will in part be explained by students’ socioeconomic status and
teacher effectiveness. We also proposed that variation in students’ average linear growth rates
(7;;) will be explained by the same predictors.
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Continue using the. 2 chSgrowthdata-vertical.sav [DataSet1] - IBM SPSS Statistics Data Editor E=NEET
ch5 grng‘/yda‘ta—‘wr tical.sav Fie Edt View Data Transform| Analyze Direct Marketing Graphs Utities Add-ons Window Help
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Repeated displays the default settings from
Model 1.2.

Change the covariance setting by clicking the
Repeated Covariance Type pull-down menu to select
Diagonal.

Click the CONTINUE button to display the Lin-
ear Mixed Models dialog box

Click Continue for models with uncorrelated terms.
Specify Subject variable for models with correlated random effects.

Specify both Repeated and Subject variables for models with correlated
residuals within the random effects.
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3. The Linear Mixed Models dialog box
displays test in the Dependent Variable
box with orthtime and orthquad in the
Covariate(s) box.

a. We will add two variables (ses and
effective) into the model. Entering
variables in sequential order helps
facilitate reading of the output tables.
So first click to select ses, and then
click the right-arrow button to add
the variable the Covariate(s) box.

b. Click to select effective, and then click
the right-arrow button to add the
variable the Covariate(s) box.

{3 Linear Mixed Models l&j
[ Dependent Variable:
& ™ |
g n.sdacade Eactor(s): | Bepdom>
R [ Estmation...
| EM Means...
Covariate(s): | Saue... J
[ orthtime i
& orthquad =
| = | f s i
& ettective =
T dual ¥Weight
i |
[ ok ][ paste ][ Reset ][ cance Hep

'The variable sequence is orzhtime, orthquad, ses, and effective.

Note: An alternative method is to select both variables simultaneously and then “drag” them into the
Covariate(s) box. The variables may be rearranged by clicking to select a variable and then dragging it
upward or downward to change the order of the sequence.

Click the FIXED button to access the Linear Mixed Models: Fixed Effects dialog box.

4a. Within the

2 Linear Mixed Models: Fixed Effects

Linear Mixed

Models: Fixed Fixed Effects
Effects dialog ©) Buid terms

box, Conﬁrm Faclors and Coyariates:
that Main Ef- i)

Jects is selected.

b. Confirm that
Include intercept
is selected.

c. To facilitate
reading the
output tables,
click to select
a variable, and
then click the
ADD button
to move it into
the Model box
in the follow-

[/ ettective |

=
B

| incude intercept

Sum of squares: |Type ll b ]

() Buikd nested terms

Model:
ses
effective
orthtime
(orthquad

Main Effects

[ Continue H Cancel ” Help

ing order: ses, effective, orthtime, and orthquad.

These variables are the “main effects” in the model and will modify the intercept.

Two cross-level interactions (or nested terms) will be created and added to the model: ses*orthtime and
effective’orthtime. These interactions will tell us if the growth trajectories are parallel for different groups

of students.
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Add First Cross-Level Interaction to Model 1.3: ses*orthtime

d. Click to select Build nested

terms.

. Click to select the variable

ses from the Factors and

Covariates box.

Then click the arrow button

below the Factors and Co-

variates box. This moves ses
into the Build Term box to
create a cross-level interac-
tion by linking variables
and terms.

. Next, click the BY* button,
which will insert the com-
putation command symbol:

*

ses™,
. Click to select orthtime

3 Linear Mixed Models: Fixed Effects

r oy L
Buid Term: -~
1~ ses * onntime

@i’?; EyL-_b_! {(Within) | | Elgar;erm J
¥

[¥] nclude intercept Sum of squares:

Type 8 J

rFixed Effects
() Buig terms. @Q(' Buid pested tarms)
Factors and Coyariates: Modet
7 orihime h ses
|7 orthquad effective
ief!’er:trae orthguad
.
A
i
)
)
1
1
1
i
1
ot — —

Continue

|
L

from the Factors and Covariates box.
i. Click the arrow button below the Fuactors and Covariates box to move orthtime into the Build
Term box and complete the interaction term: ses*orzhtime.
j. Click the ADD button to transfer the interaction into the Model box.

Add Second Cross-Level Interaction to Model 1.3: effective*orthtime

k. Click to select the vari-
able ¢ffective from the
Factors and Covariates box.

1. Next, click the arrow

button below the Fuctors

and Covariates box. This
moves ¢ffective into the

Build Term box.

Now click the BY* but-

ton, which will insert the

computation command
symbol: effective.

Click to select orthtime

from the Fuactors and Co-

variates box.

Click the arrow button

below the Factors and

8 Linear Mixed Models: Fixed Effects

rFixed Effects

() Buid terms. (%) Bulld pested terms.

Factors and Coyariates:

Modet

M [ ¥
"= affective * orthlime

[¥] Include intercept

" orthtime n lses
# orthquad effective
/!Q! orthtime
ki
1
plok |
.
-2l 30l By {}ll ) | | CgarTaM&dd |
Buid Term: 'f’

Covariates box to move orthtime into the Build Term box and complete the interaction term:

effective’orthtime.

p. Click the ADD button to transfer the interaction into the Mode/ box.

Click the CONTINUE button to return to the Linear Mixed Models dialog box.
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5. Finally, in the Linear Mixed Models dialog 2 Linear Mixed Models oo |
box, click the OK button to run the model. v
& | P Fixed... |
i nfchwu: Eacior(s): ; Rapdom... J
‘f Rid Estimation... |
@b Index1
& time Statistics... |
& quadtme ; o) EM Means... |
d9t nontn ovanate(s )
& t:rrm;e:::mz & onmime ,‘ Sawo: |
ytlmenonhni | o itiyiad B
f timenonkn & ses =
— | Residual Weight
(o [ pese ][ meset ][ concer ][ new ]

Interpreting the Output From Model 1.3

Results of the second model test are presented next. Once again, it is useful to examine the
random effects and total parameters estimated summarized in Table 5.15. There are seven fixed
effects estimated. In addition, there are six variance-covariance parameters to be estimated. At
Level 1 (within individuals), there are three variance parameters (i.e., the variances for each oc-
casion). These are listed in the diagonal covariance matrix at Level 1. In addition, there are three
random effects at Level 2 (i.e., the intercept, the linear time slope, and the covariance between
them). This suggests 13 total parameters to be estimated.

'The fixed-effect estimates are summarized in Table 5.16. Students’ achievement intercept (3y,)
is 49.672.'This can be described as students’ true grand-mean achievement adjusted for SES and
perceptions of teacher effectiveness. The intercept in this case can be interpreted as the grand-
mean test score for students who perceived that they did not have an effective teacher (coded 0)
and whose SES status was 0.00 (since SES was defined as a z-score).

'The first question we can ask is whether the predictors are related to differences in average
achievement. We can see that perceived teacher effectiveness is related to students’ achievement
level (p < .001). The coefficient for effectiveness (B, = 5.944) suggests that students with effec-
tive teachers would have an estimated grand-mean achievement level of about 55.616 (49.672 +
5.944). In this model, student SES is not a significant predictor of average achievement level
(p>.10).

'The second question we can ask is whether there are differences in student growth rates re-
lated to the predictors. The average linear growth rate (orzhtime) increases significantly over time
(p < .001). Keep in mind that the actual polynomial contrast coefficients do not have direct

TABLE 5.15 Model Dimension®

Subject  Number
Variables of Subjects

Number of
Parameters

Covariance
Structure

Number of
Levels

Fixed Effects Intercept
ses
effective
orthtime
orthquad
orthtime * ses
Random Effects Intercept + orthtimea Unstructured
Repeated Effects Index1

Total 12

1 1
1 1
1 1
1 1
1 1
1 1
orthtime * effective 1 1
2 3
3 3

Diagonal id 8,670

j—

3

° Dependent variable: test.
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.16 Estimates of Fixed Effects®

95% Confidence Interval

Parameter Estimate  Std. Error df t Sig.  Lower Bound Upper Bound
Intercept 49.672 0.111 8,701.861  447.802 .000 49.455 49.890
ses 0.074 0.095 8,667.000 0.784 433 -0.112 0.260
effective 5.944 0.149 8,667.000 39.838 .000 5.652 6.237
orthtime 2.307 0.086 8,795.556 26.693 .000 2.138 2.477
orthquad -0.081 0.033 8,669.000 -2.485 .013 -0.145 -0.017
orthtime * ses -0.154 0.074 8,667.000 -2.090 .037 -0.298 -0.010
orthtime * effective 3.508 0.116 8,667.000 30.324 .000 3.281 3.735

@ Dependent variable: test.

meaning regarding a particular time interval after they have been transformed. Because the linear
contrast was specified as a random effect, we are primarily interested in whether it varies between
individuals in the study. The variation in the size of the within-individual growth parameter
across individuals (UN 2, 2) can be examined by referring to Wald Z test (Wald Z = 8.547,
 <.001) in the variance components table (Table 5.17). The significant test suggests we can re-
ject the null hypothesis that the population growth parameter is 0, and we can infer that growth
varies significantly across the population of individuals.

Regarding variables that might explain variability in math growth rates between individu-
als, we can see that the linear interaction (orzhtime*ses) is significant at p < .05 (B;; = -0.154,
2 =.037). This coefficient can be interpreted as students at higher SES levels demonstrate slightly
less growth over time compared with students at the grand mean for SES. The test for students’
perceptions of teacher effectiveness is also significant (8;, = 3.508, p < .001). This suggests that
students with teachers they perceived as effective have a higher growth rate over time compared
to their peers who perceive their teachers to be average or below in effectiveness (since they are
coded 0). The quadratic polynomial is also significant, which implies that student growth rates
slow slightly over time (8,, = -0.081, p <.001). In this model, we did not propose any cross-level
interaction related to explaining the slowing of math growth rates.

After the addition of the predictors, Table 5.17 suggests that there is still significant residual
variance in intercepts to be explained (Wald Z = 37.906, p < .001). There is also significant re-
sidual variance in slopes left to be explained across individuals (Wald Z = 8.547, p < .001). The
covariance between the intercept and slope is positive (4.159) and also significant (p < .001). If
desired, we could select an unstructured covariance matrix with a correlation for the slope pa-
rameter (UNR). In this case, the correlation between students’ initial status (i.e., intercept) and
growth of time is 0.27 (not tabled). We reiterate that while this correlation is often of interest in
growth models, it can be different depending on how the intercept and slope are defined and the
other variables added to the model.

For comparative purposes in Table 5.18, we also provide the repeated measures ANOVA
solution that we would obtain for the polynomial contrasts. The relevant output is the tests of
within-subject contrasts. That solution also has additional tests of contrasts for the quadratic
time-related component and the predictors in the model (i.e., SES and teacher effectiveness). We
can see that the linear effect is also significant for individual SES in the ANOVA formulation
(but the quadratic effect is not), and the linear and quadratic effects are both significant for effec-
tive (p < .001) We could of course provide this same set of model tests using MIXED by adding
the two quadratic contrasts to the fixed-effect model.
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TABLE 5.17 Estimates of Covariance Parameters®

95% Confidence Interval

Parameter Estimate Std. Error Wald Z  Sig.  Lower Bound Upper Bound
Repeated Measures  Var: [Index1=1]  61.400 2.004  30.641 .000 57.595 65.456
Var: [Index1=2] 61.448 1.156 53.158 .000 59.224 63.756
Var: [Index1=3] 27.124 1.727 15.708 .000 23.942 30.729
Intercept + orthtime ~ UN (1, 1) 31.503 0.831 37.906 .000 29.915 33.174
[subject = id] UN (2, 1) 4159 0566  7.343 000 3.049 5.269
UN (2, 2) 7.465 0.873 8.547  .000 5.935 9.389

@ Dependent variable: test.

TABLE 5.18 Tests of Within-Subjects Contrasts

Measure:test
Type Ill Sum of Noncent.  Observed

Source Time Squares df Mean Square F Sig. Parameter  Power®
time Linear 283,779.090 1 283,779.090 4,795.547 .000 4,795.547  1.000

Quadratic 637.493 1 637.493 11.551 .001 11.551 0.925
time * ses  Linear 244.668 1 244.668 4.135 .042 4135 0.529

Quadratic 1.270 1 1.270 0.023 .879 0.023  0.053
time * Linear 47,359.971 1 47,359.971  800.330 .000  800.330  1.000
effective  Quadratic  4,712.361 1 4,712.361 85.386 .000 85.386  1.000
Error(time) Linear 512,874.459 8,667 59.176

Quadratic 478,319.939 8,667 55.189

@ Computed using alpha = 0.05.

In Table 5.19, we provide a summary of the various models we have tested using untrans-
tormed and transformed polynomials. Model 1 summarizes the initial results for time with the
polynomial contrasts untransformed. In Model 1, without transformed time-related contrasts,
the intercept (48.632) corresponds to student achievement at the beginning of the study. Model 3
is the same model as Model 1 but with orthogonal polynomial contrasts. In Model 3, the inter-
cept (52.945) now corresponds to the grand mean for the trend, which is somewhere between
interval 1 and interval 2. We can see that the polynomial components are significant (p < .05),
again suggesting they should be retained in subsequent analyses. Because the intercept is now
the grand mean, however, the time-related estimates no longer correspond to any particular time
interval in the study.

Readers can see that the pattern of results is the same despite the strong correlation between
the linear and quadratic polynomial components in Model 1. Model 2 in Table 5.19 summarizes
the Level 2 effects built only on the randomly varying linear time effect. Model 4 presents those
same results but with transformed time-related components. Once again, the pattern of results
is almost the same for Models 3 and 4 (with only slight differences in the variance parameters).
Model 5 represents the MIXED specification of the repeated measures ANOVA analysis, which
is in the last column of the table. Regarding the ANOVA results in the last column, as noted
previously, the predictors enter in as interactions with growth over time (i.e., /inear effect*SES,
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TABLE 5.19 Comparing Results of Untransformed Polynomial Models (1-2) and Orthogonal Polynomial
Models (3-5) with Repeated Measures ANOVA

Within-Subijects

Variables Model 1 Model 2 Model 3 Model 4 Model 5 ANOVA
Intercept 48.632* 47.284*
time 4.719* 2.795*%
time quadratic -0.244* -0.244*
SES 0.228
effective 2.436*
time*SES -0.154*
time *effective 3.508*
Intercept 52.945* 49.672* 49.741* NA
orthtime 4.231* 2.307* 2.409* *
orth quadratic -0.081* -0.081* -0.414* *
SES 0.074 0.076 NA
effective 5.944* 5.820* NA
orthtime*SES -0.154* -0.152* *
orth quadratic*effective 3.508* 3.322* *
orth quadratic*SES -0.006
orth quadratic*effective 0.605* *
AIC 189,123.5 186,832.7 189,125.7 186,834.9 186,758.0 NA

*p < .05; NA = parameter is not applicable to the ANOVA model.

linear effect*teacher effectiveness, quadratic effect*SES, and quadratic effect*teacher effectiveness). As
shown in the last column, five of the six effects specified are significant, which exactly matches

the MIXED results in Model 5, as well as the repeated measures within-subject contrasts sum-
marized in Table 5.18.

Graphing the Results

We can summarize the initial difference in growth trajectories with a graph of different growth
rates by teacher effectiveness (Figure 5.8).The trajectories are best interpreted as not parallel over
time; that is, the initial observed gap in test learning between students with effective and inef-
fective teachers widens over time. This graph will look slightly different from the one produced
in Repeated Measures MANOVA) since there is no control for student SES in the latter graph.
'This graph can be produced using the following IBM SPSS commands.
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FIGURE 5.8 Individual growth trajectories differentiated by teacher effectiveness.

Graphing the Growth Rate Trajectories with SPSS Menu Commands

1. Go to the toolbar and select €2 chSgrowthdata-vertcalsav [DataSet1] - IBM SPSS Statisics Data Edtor SOy ==
GRAPHS, LEGACY DIA- He EO Vew Duis Transtom Ansyze Orectlarieing Gughs imes Acogns Vindow Heb
0 = | il Chent Budder . A
LOGS, LINE, T EL I T e
| [ESEESte Y
. . . { Legacy Disings > |l .
'This command will open the Line id_ | nschcode | Rid | lnvexr——ume——q R
. 1 1 : | 1 1 0 (1]
Charts dialog box. > 3 . 3 % - : 2:‘: s
3 1 1 1 3 2 4
4 2 1 2 1 0 0 g%"
5 2 1 2 2 1 et
6 2 1 2 3 2 o|H Bopit..
7 3 1 3 1 0 0| K B B
8 3 1 3 2 1 1| BB Popusstion pyramia
9 3 1 3 3 2 4| scatteriet.
10 4 1 4 1 0 0| g Histogrom,
1 4 1 4 2 1 1
12 4 1 4 3 2 4:
| DN

2. In the Line Charts dialog box, click to select Multiple.

Confirm that Summaries for groups of cases is selected. /V

Click the DEFINE button to continue, which will open the Define <S> @ o
Multiple Line: Summaries for Groups of Cases dialog box.

1131 | oropane

{Data in Chart Are

.
@@Summ;nmofm

O s of sep

() Values of indvidual cases

I
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33" Wlthln the D(ﬁne M”[ﬁ]ﬂé’ ( t—:l Define Multiple Line: Summaries for Groups of Cases &J
Line: Summaries for Groups :
of Cases dialog box, click to & e | [_ztes..
select Other statistic (e.g., offl nscheode O MNofcases D %ofcases | [ ootons.. |
mean,). 6? ::m ) Cum. N Cum. %
b. Click to select the variable 3 S Otioc iiellc (8.9, Sate)
test from the left column, and gq“a‘“m ol L}"‘:?; e
then click the right-arrow & ::::::a e
button to move fest into the & test
Variable box. The setting P o T
MEAN(test) defines the use & timenonint P | [ tme
of mean values for Zesz. & timenonin2 Dok thos by
c. Click to select fime from the g :::::::3 P | (& ettectne
left column. Then click the Panel by
right-arrow button to move i
the variable into the Caz- » |
egory Axis box.
d. Click to select effective from
the left column. Next, click CIP,
the right-arrow button to hd
move the variable into the
Define Lines by box.
r Template
Click the OK button, which will it e eebiiss b
generate the plot graph. e
Note: The resulting plot graph’s [ ox N poste_|(_Beset ][ concet J[_tiew_J
labels and lines may be edited or b :

changed through the Chart Editor.
To activate the Chart Editor, double-

click on the plot graph in the output (Fig. 5.8).

Examining Growth Using an Alternative Specification of the Time-Related Variable

Since we know that the growth trajectory slows slightly between the second and third measure-
ment occasions, we might consider a different manner of coding the repeated measures to repre-
sent the growth occurring over the entire period under consideration. To determine the growth
that occurs over the entire trend, we can code the first measurement as O and the last one as 1.
Since the meaning of the slope is the change in Y for a unit change in X, coding the time-related
variable in this manner will capture the growth over the entire trend regardless of whether the
growth dips or spikes between the beginning and ending intervals. Steps for coding four varia-
tions (i.e., timenonlinl, timenonlin2, timenonlin3, and timenonlin) of the time-related variable are
provided at the end of this section. This is similar to the level-and-shape approach discussed pre-
viously for estimating a latent growth factor. With a little trial and error, it is possible to obtain
a variety of growth curves that may match the actual data quite well. More specifically, if we see
that the relationship is linear (perhaps by inspecting several individuals’ growth trajectories or
the average individual trajectory), we could code the middle interval as 0.5 (i.e., 0.0, 0.5, 1.0). We
can then test this hypothesized linear formulation against the data. If we specify the time-related
variable in this way (¢imenonlinl), we obtain an AIC coeflicient of 189,125.5. We provide the
model syntax in Appendix A.
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Coding Time Interval Variables (time to timenonlin Variations) with IBM SPSS Menu Commands

Continue using the ch5growthdata- (3 chSgrowthdata-vertical.sav [DataSet1] - IBM SPSS Statistics Data Editor = E ]
vertical.sav data. Fle Edt View Data | Tmnsform Anayze DrectMarketng Grahs Utites Addons Window Heb
&= == A
S (2o H 5= B
1. Go to the toolbar and se- & count vaes witin Cases... e m”s:m
Shift Values... =
lect TRANSFORM, RE- o - T tme | quadtime |
CODE INTO DIFFERENT i D ey 0 o]
VARIABLES. 2 s i AlE
. . 3 [b2 visual Binning... 2 4
This command will open the Recode : B optimal Binning . [1' ‘1’
into Different Variables dialog box. . Brepare Deta for Modeing X > 7
7 B Ren Coses.. 0 0
Note: If continuing from performing P e e 1 1
the prior coding example (¢ime to orth- 9 [ creste Tipe Series.. 2 4
time or orthquad), click the RESET 10 S Replnce Meshg Vakee 2 9
. 1 @ Rendom Number Generators... 1 1
button before proceeding to clear the = > e
default settings. RS e erstope 0l
_DataView, | Veribe View |
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. — = > put Variable
enables creating a & - e —2 | I“’"“"
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a variable from the & '." ""’“I:I
I

current data set. First,

f quadtime

ic Variable -> Output Variable:
tme —> timenonin1

@
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click to select fime & ot
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and then click the & eftective
. & ses
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to move the vari- & timenonin2
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able into the Input
Variable — Output

|
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{& le‘l SPSS Statistics 20 <« [
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Variable box.

. Now enter the new
variable name by typ-
ing timenonlinl into
the Output Variable, Name box.

command for fime — timenonlinl.

‘_

D\

, This variable name dupicates an existing variable name.

T @m

. 'Then click the CHANGE button, which will add timenonlinl and complete the RECODE

Note: A warning message appears as #imenonlinl is an existing variable in the data set.

d. Click OK to continue, which will overwrite the preexisting #imenonlin1 variable. If you prefer
not to overwrite the original variable, rename the output variable (e.g., timenonlinla).

e. Click the OLD AND NEW VALUES button, which will then display the Recode into Different

Variables: Old and New Values screen.
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3. Within the Recode into
Different Variables: Old and
New Values dialog box, we
will begin changing the #ime
values (0, 1, 2) to reflect
timenonlinl (0,0.5,1).

a.

Click the CONTINUE button to return to the Recode into Different Variables main dialog box.

Begin by entering the first
value for #ime (0) in the
Value (old) box.

Next, enter the new value
(0) for timenonlinl in the
Value (new) box.

Click the ADD button to
place the first command 0
— 0 into the O/d — New
box.

Repeat steps 3a to 3c to
complete the remaining

3 Recode into Different Variables: Old and New Values

rOld Value

| =
(2) Valu e.’_\

@)
() System-mssing
| ©) System- or yser-missing

| (_) Rapge:

| (_) Range, LOWEST through value:
| ) Range, valse through HIGHEST:

I

| O A gther values

~New Value

%) Vale: o “m
St

) System-missing
) Cogy old value(s)

Ol —> New:
@ =Y
— - A f'
Add q!l._.u.s
2> 1 £

2

["] Output variables are strings

Cancel | Help |

[%Cunthue I |

coding changes for timenonlinl values:

1—-05

2—-1

Click the OK button to generate the recoded variable #imenon/inl and corresponding time values (0,

0.5,1).

Note: To generate variations of #imenonlin, repeat all steps but change the output variable and O/d —
New values as follows:

timenonlin2 (0, 0.6, 1)

0—0
1—-06
2—1

timenonlin3 (0, 0.7, 1)

0—-0
1—-0.7
2—1

timenonlin (0, 0.53, 1)

0—0
1—-0.53
2—1
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TABLE 5.20 Estimates of Fixed Effects®

95% Confidence Interval

Parameter ~ Estimate Std. Error df t Sig. Lower Bound Upper Bound

Intercept 48.725 .097  8,669.000 500.287 .000  48.534 48.916
timenonlin 8.421 121  8,669.000 69.589 .000 8.184 8.658

@ Dependent variable: fest.

Because we have some evidence that the growth is slightly greater between the first and
second intervals and slows between the second and third intervals, we might instead try cod-
ing the middle interval as 0.6 (i.e., 0.0, 0.6, 1.0). This coding will represent a slightly slowing
trend (¢imenonlin2). When we code the time variable like this, we obtain an AIC coefficient of
189,157.5 (model syntax is provided in Appendix A). If, instead, we thought the slowing might
be a bit more extreme, we could code the middle interval as 0.7 (0.0, 0.7, 1.0). In this case (#ime-
nonlin3), however, we obtain an AIC of 189,335.3 (model syntax is provided in Appendix A). So
clearly, coding the middle interval as 0.7 does not fit the data as well as either the first (linear) or
second (slightly slowing) coding schemes. In Table 5.20, we provide the estimates of the linear
example where we coded the time-related variable as 0.0, 0.5, 1.0. The initial status intercept is
estimated to be 48.725, which is a bit higher than the initial intercept of 48.632 in Table 5.2.
'The growth over the entire trend is estimated as 8.421. In this case, then, we would estimate the
ending achievement level as 57.146 (48.725 + 8.421 = 57.146), which is close to the observed
intercept of 57.094 in Table 5.2.The linear model estimates in Table 5.20, therefore, fit the data

quite well.

Estimating the Final Time-Related Model

We note that the optimal estimate for the middle interval is actually 0.529 (which does suggest
a bit of slowing over time). We obtained this optimal estimate using SEM software, as the level-
and-shape LCA approach provides the exact, model-estimated parameter for the middle interval
of the latent growth factor (see comparison in Appendix B). In this final IBM SPSS model, the
initial intercept was estimated as 48.632, and the time-related estimate (¢imenonlin) was 8.462.
'The key modeling changes for this model are illustrated in Model 2.1. If we add those, we obtain
the intercept estimate for Time 3 in Table 5.2 (57.094). This model also had the lowest AIC

coefhicient compared with the other coding schemes.

Defining Model 2.1 with IBM SPSS Menu Commands

Continue using the ch5growthdata-vertical.sav data. Settings default to those used for Model 1.3.

1. Go to the toolbar and select ANALYZE, MIXED MODELS, LINEAR. This command enables
access to the Linear Mixed Models: Specify Subjects and Repeated dialog box.

2. 'The Linear Mixed Models: Specify Subjects and Repeated box displays the default settings from
Model 1.3. Place the variables id and #ime within the Subjects and Repeated boxes. The Repeated
Covariance Type is specified as Diagonal. Click the CONTINUE button to display the Linear
Mixed Models dialog box.
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3. The Linear Mixed Models dialog box
displays zest in the Dependent Variable
box with orthtime, orthquad, ses, and
effective in the Covariate(s) box.

a. Remove all variables from the
Covariate(s) box by clicking to
select them and then clicking the
left-arrow button.

b. Click to select timenonlin, and
then click the right-arrow but-
ton to move the variable into the
Cowvariate(s) box.

Click the FIXED button to access the
Linear Mixed Models: Fixed Effects dialog
box.

3 Linear Mixed Models
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confirm that Main
Effects is selected. Féciote Sad Cojareias: Modet

b. Confirm that Inc/ude
intercept is selected.

c. Click to select
timenonlin, and then
click the ADD but-
ton to move it into

the Model box.

Click the CONTINUE b)Y
button to return to the Lin-
ear Mixed Models dialog box.

(o

[E‘I Include intercept

timenonkn

4

Main Effects b

Lw.’:om‘nue ” Cancel H Help J

Click the RANDOM but-

ton to access the Linear

Mixed Models: Random Effects dialog box.
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5. Within the Linear Mixed ) Linear Mixed Models: Random Effects =
Models: Random Effects box, the AR S
covariance type and intercept [ preveus ] [ hem ]
are set to the default settings CosarnceTyse:  [unsinacured 3
. _-Rnndom&'llecls-- = —— —_—
Of the prlor mOdel- +) Buigd terms () Build pested terms. [¥] Inclyde intercept
a. 'The Main Effects option is Escorssnd Courts: Hodet

_/tmemmﬁl

itmenenh
A

preselected.

b. Click to select timenonlin
from the Factors and Covari-
ates box, and then click the
ADD button to move the (¥ .
variable into the Mode/ box. I =

i

Click the CONTINUE button to ST e =
return to the Linear Mixed Models [[ds &
dialog box. [¢]

Finally, in the Linear Mixed Models L
dialog box, click the OK button to [pgomene J(_concs J[_ 10 J

run the model.

Adding the Two Predictors

Finally, we add the two between-individual predictors. In this case, we use the optimal estimate

for Time 2 (0.529). Key modeling changes are illustrated in Model 2.2.

Defining Model 2.2 with IBM SPSS Menu Commands
Continue using the ch5growthdata-vertical.sav data. Settings default to those used for Model 2.1.

1. Go to the toolbar and select ANALYZE, MIXED MODELS, LINEAR. This command enables
access to the Linear Mixed Models: Specify Subjects and Repeated dialog box.

2. 'The Linear Mixed Models: Specify Subjects and Repeated box displays the default settings from
Model 2.1. Place the variables id and #ime within the Subjects and Repeated boxes. The Repeated
Covariance Type is specified as Diagonal. Click the CONTINUE button to display the Linear
Mixed Models dialog box.

3. The Linear Mixed Models dialog & Linear Mixed Models =)
box displays the default settings for )

Model 2.1. — i ra— N

a. Click to select ses, and then click ol nscheode I o | Repdom.. |
) : Eactor(s) !
the right-arrow button to move the ﬁ:::’m |--E> ) [ Estimation..._|
variable into the Covariate(s) box. & time =4 | Sttstcs... |
b. Click to select ¢ffective, and g i Covariietey . | EM Mun_l
then click the right-arrow but- _ & tmenonin [« [

L 2 y - : ==
ton to move the variable into the A ; ;
Covariate(s) box. T Residual Weight

& ‘ = |
Click the FIXED button to access the e Y e e

Linear Mixed Models: Fixed Effects
dialog box.
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4a. To facilitate read-

ing of the output
tables, we will
change the se-
quence order of
the model vari-
ables. Click to
select timenonlin,
and then click the
REMOVE button.

b. Click to select ses
and effective, and
then click the
ADD button to
move the variables
into the Mode/ box.

c. Click to select
timenonlin, and

then click the

{3 Linear Mixed Models: Fixed Effects
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ADD button to move it into the Mode/ box.

Two cross-level interactions (or nested terms) will be created and added to the model: ses*timenontin
and effective*timenonlin. These interactions will tell us if the growth trajectories are parallel for different

groups of students.

Add First Interaction to Model 2.2: ses *timenonlin

d. Click to select Build
nested terms.

e. Click to select the
variable ses from the
Factors and Covari-
ates box.

f. Then click the arrow
button below the
Factors and Covari-
ates box. This moves
ses into the Build
Term box to create
a cross-level inter-
action by linking
variables and terms.

g. Next, click the BY*
button, which will
insert the compu-
tation command
symbol: ses™.

¢;J Linear Mixed Models: Fixed Effects
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h. Click to select timenonlin from the Factors and Covariates box.

i. Click the arrow button below the Factors and Covariates box to move timenonlin into the Build
Term box and complete the interaction term: ses*imenontin.

j. Click the ADD button to transfer the interaction into the Model box.
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Add Second Interaction to Model 2.2: effective *timenonlin
k. Click to select the vari-

able tﬁ ctive from the 't;l Linear Mixed Models: Fixed Effects &J
Factors and Covariates [FtxedEffects
bOX_ {_) Buid terms 3) Buld nested terms
I. Next, click the arrow Factors and Coyarates: tgde!

button below the Factors e = ] O
and Covariates box. This [ cttectve | *@ ikpetoni
moves ¢ffective into the -
Build Term box. A

m. Now click the BY* but- . H
ton, which will insert the < @ @ E
computation command N (2 (o ] | _:_ggf_vef@p_,g_&aa P
symbol: effective*. f sutfon %

n. Click to select timenon- [Sqigecths  Bmconin
lin from the Factors and Elncudeiomercept  Sumof squres: (Typll. .3
Covariates box. [ cancet ][ new ]

o. Click the arrow button
below the Factors and
Covariates box to move timenonlin into the Build Term box and complete the interaction term:
effectivetimenonltin.

p. Click the ADD button to transfer the interaction into the Mode/ box.

Click the CONTINUE button to return to the Linear Mixed Models dialog box. Finally, click OK to

run the model.

Interpreting the Output From Model 2.2

'The fixed effects for the MIXED solution are presented in Table 5.21. The adjusted initial status
intercept is estimated as 47.300. We can see that perceived teacher effectiveness affects the in-
tercept (2.406, p < .001). Student SES is again not significantly related to initial status (p > .05).
Turning to growth, we can see that the ses*timenonlin effect is negative and significant (-.308,
2 <.05), once again suggesting that students with higher SES demonstrated less growth over the
time of the study. Similar to the polynomial model, we can also note that students with teachers
who are rated as effective demonstrated more growth over time (6.976, p < .001), compared to
their peers who rated their teachers as average or ineffective.

TABLE 5.21 Estimates of Fixed Effects®

95% Confidence Interval

Parameter Estimate Std. Error df t Sig. Lower Bound Upper Bound
Intercept 47.300 0.145 8,667.000  325.943 .000 47.015 47.584
ses 0.231 0.124 8,667.000 1.856 .063 -0.013 0.475
effective 2.406 0.196 8,667.000 12.302 .000 2.022 2.789
timenonlin 4.637 0.173 8,667.000 26.861 .000 4.298 4.975
ses * timenonlin -0.308 0.148 8,667.000 -2.084 .037 -0.598 -0.018
effective * 6.976 0.233 8,667.000 29.989 .000 6.520 7.432
timenonlin

@ Dependent variable: test.



232 B Examining Individual Change with Repeated Measures Data
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FIGURE 5.9 Mean predicted values from nonlinear growth model.

We can also save mean predicted values from the fixed-eftect model in the data set. In Figure
5.9, we can see that the average predicted trajectory appears to slow a bit between the second and
third intervals.

We also provide the variance components in Table 5.22. We can see that there is still signifi-
cant variation in both intercepts and slopes left to be explained between individuals. In this for-
mulation, we note that the covariance between the intercept and slope is significant and negative
(-6.917, p = .001). In this case, this negative relationship represents the well-known tendency for
students who start with higher achievement to demonstrate less growth over time and vice versa.
We again make the point that it is typically the case in growth modeling that when the coding of
the growth parameters is changed, the relationship between the intercept and slope also changes.

We also draw attention to the fact that this latter solution using SPSS MIXED produces
results almost identical to the level-and-shape specification estimated using Mplus. We note
that there are some advantages to defining growth models in this manner. One of the main
advantages is that it is easier to build models on one randomly varying time slope parameter, as
opposed to sometimes building them on two or more polynomials (depending on the number of

TABLE 5.22 Estimates of Covariance Parameters®

95% Confidence Interval

Parameter Estimate  Std. Error Wald Z Sig.  Lower Bound Upper Bound
Repeated Var: [Index1 = 1] 61.090 2.107 28.993 000  57.097 65.363
Measures

Var: [Index1 =2]  61.343 1.153 53.212 000  59.125 63.644

Var: [Index1 = 3] 28.489 1.633 17.450 .000 25.463 31.876
Intercept + UN (T, 1) 30.968 1.943 15.934 .000 27.384 35.022
timenonlin UN (2, 1) -6.917 2.154 -3.211 001 -11.139 -2.695
[subject = id] N (2, 2) 28.798 3.506 8.214 .000 22.685 36.559

@ Dependent variable: test.
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random effects that can be supported by the repeated measures). This alternative to polynomial
growth models tends to simplify the model-building process. It does, however, take some work in
finding a coding of the time-related variable that is consistent with the observed data.

An Example Experimental Design

Before we leave the individual growth-modeling approach, we provide an example illustrating
a comparison of individual growth trajectories using an experimental design. Consider a study
to examine whether or not students’ participation in a treatment designed to target their defi-
ciencies in solving math problems helps increase their math scores over time. The variables are
summarized in Table 5.23.The data in this study consist of 55 middle-school students who were
randomly assigned to either a control (V= 30) group or a treatment (V= 25), where they received
individualized instruction with a math tutor over a semester.

'The students were measured on four occasions (one pretest) regarding their math achievement

during the period of the study. The design is specified as follows:

R O 0, O; O,
R O, X O, 0N O,

'The Rs refer to random assignment. Fixed effects include the treatment (coded = 1) versus con-
trol (coded 0), time (coded 0-3 for the four occasions), and the treatment-by-time interaction.

TABLE 5.23 Data Definition of ch5experimentaldesigndata.sav (N = 55)
Variable Level® Description Values Measurement
id Individual = Student identifier (55 students across four time Integer Ordinal
[test] occasions).
treatment Individual Two-category predictor variable representing 0 = No Treatment, (No  Scale
students assigned for nontreatment (control) or Tutor), 1 = Treatment
treatment. (Tutored)
time Within Variable representing four linear occasions in time O = First Time, 1 = Second Scale
Individual (O, 1, 2, 3) measuring students math achievement. Time, 2 = Third Time, 3 =
Fourth Time
timenonlin Within Recoded time variable from four occasions in 0.00 = First Time, 0.50 = Scale
Individual time (O, 1, 2, 3) info a time sequence variation Second Time, 0.70 = Third
representing the whole four time occasions (0.00, Time, 1.00 = Fourth Time
0.50, 0.70, 1.00) measured from O to 1.
math Within The dependent variable representing each 523 to 856 Scale
Individual  students individual scores on the repeated math
measurements.
orthtime ~ Within Recoded time variable from four occasions in time -3 = First Time, -1 = Scale
Individual (O, 1, 2, 3) into a different time sequence (-3, =1, Second Time, 1 = Third
1, 3). Time, 3 = Fourth Time
orthquad  Within Recoded time variable from four occasions in time 1 = First Time, -1 = Scale
Individual (0, 1, 2, 3) into a time sequence Second Time, -1 = Third
variation(1, =1, =1,1). Time, 1 = Fourth Time
orthcubic  Within Recoded time variable from four occasions in time -1 = First Time, 3 = Scale
Individual (O, 1, 2, 3) into a time sequence variation Second Time, -3 = Third
(-1, 3,-3,1). Time, 1 = Fourth Time

¢ Individual = Level 2; Within individual = repeated measures, Level 1.
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'The initial O, coeflicients refer to students’initial status achievement. We expect no initial differ-
ence between the treatment and control groups. This is captured by the relationship between the
treatment variable and the students’ initial status intercept at the beginning of the study (where
time is coded 0). After implementing the treatment after the initial pretest measurement, we
propose that the treatment group will increase more in math achievement over time than the
control group. This will be tested by a treatment-by-time interaction; that is, we would expect
different growth trends for the control and treatment groups.
We can specify the Level 1 model for individual 7 measured at time occasion # as follows:

Y, = my; + mytime,; + £, (5.22)

Since the time period for the study is short (i.e., one semester), we might assume a linear model
as fitting reasonably well. We note that we could fit the model to a higher order polynomial
function. One complication with that approach, however, is that transforming higher order poly-
nomials will shift the intercept to the grand mean. This will obscure the achievement level where
each group started before the intervention. We illustrate the two different growth trajectories
in Figure 5.10. The figure suggests that the two groups are close before the treatment begins
(Time 0). We can see that the treatment growth is closer to a linear growth model over time;
however, the control group definitely slows in its progress over the semester.

We first provide results using the model with time specified as linear to describe growth over
the short period of time of the study. At Level 2, we assume that the intercept varies between
subjects:

To; = Boo + Bortreatment. + ug;. (5.23)
720 7
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FIGURE 5.10 Examining treatment and control growth trends.
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We will also model that the time slope is randomly varying:

Ty; = Pro + Putreatment; + uy;. (5.24)

After substituting the Level 2 equations into the Level 1 equation, the combined model will then
be the following:

Y, = Boo + Bortreatment; + Bitime,; + Biitime,; *treatment; + uytime,; + uy; + £, (5.25)

We can see that the key parameter in this simple illustration is the time*treatment interaction.
This is used to determine if there are different growth trajectories for individuals in the treat-
ment and control groups. We will also specify a diagonal matrix for the residual error structure
at Level 1:

ol 0 0 0]
0 o 0 O (5.26)
0 0 of O
0 0 0 o
At Level 2, we will specify an unstructured covariance matrix:
% % (5.27)
01 O3, .

We present the fixed-effects estimates in Table 5.24 and syntax to replicate the analysis in Ap-
pendix A. We note in passing that we investigated several different covariance structures for the
Level 1 repeated measures, but we decided to stay with a diagonal structure, which fit slightly
better than the simple scaled identity covariance structure since the within-subject covariance
structure was really not the focus of the study. The ~2LL for this model with 11 parameters was
2,054.67, and the AIC was 2,068.67.

'The fixed-effect estimates suggest that the students in the control group started with a mean
score of 609.057. This linear model seems to slightly overestimate the control group’s starting
achievement in Figure 5.10 (as well as its ending achievement). Over each interval, individuals’

TABLE 5.24 Estimates of Fixed Effects®

95% Confidence Interval

Parameter Estimate Std. Error df t Sig. Lower Bound Upper Bound
609.057 6.636 51.556 91.782 .000 595.738 622.376
23.813 2.500 47.331 9.525 .000 18.785 28.842
0.664 9.843 51.556 0.067 .946 -19.091 20.419
12.996 3.708 47.331 3.505 .001 5.538 20.454

@ Dependent variable: math.
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scores in the control group increased by 23.813 points on average. We can also confirm that there
was no difference between the treatment and control groups initially (8 = 0.664, p = .946). Over
time, however, we can observe that students who received the targeted intervention increased
their scores over each interval at a greater rate (12.996 points) than their peers in the control
group.

We present the covariance parameter estimates in Table 5.25. We can see that the correlation
between initial status and growth was negative (-0.266), suggesting that students who started
higher in achievement demonstrated a bit less growth over time (and vice versa), but it was not
significant (p > .05).

One problem with this specification, however, is that we do not take in the curvilinear nature
of the growth occurring over time. Alternatively, as we mentioned earlier, if we were to treat the
time variable as categorical, we could also specify the model to determine the difference between
treatment and control group at each occasion, instead of assuming a polynomial growth curve over
the entire temporal sequence. This model, summarized in Table 5.26, fits the data slightly better
than the previous one, using AIC as an index of model fit (2,013.91 to 2,068.67, respectively).

TABLE 5.25 Estimates of Covariance Parameters®

95% Confidence Interval

Parameter Estimate Std. Error Wald Z Sig. Lower Bound Upper Bound
Repeated Var: [time = 0] 305.773 188.462 1.622 .105 91.362 1,023.373
Measures

Var: [time = 1] 421.087 104.377 4.034 .000 259.048 684.485

Var: [time =2] 150.015 55.704 2.693 .007 72.454 310.604

Var: [time = 3] 251.289 118.592 2.119 .034 99.646 633.701
Intercept +  Var(1) 1,099.161 290.476 3.784 .000 654.807 1,845.054
time [subject var(2) 131.754  37.409 3.522 .000 75523  229.851
= id] Corr(2, 1) -0.266 0.179 -1.480 139 -0.572 0.106

@ Dependent variable: math.

TABLE 5.26 Estimates of Fixed Effects®

95% Confidence Interval

Parameter Estimate Std. Error df t Sig.  Lower Bound Upper Bound
Intercept 674.900 8.595 94.019 78.524 .000 657.835 691.965
[time = O] -75.286 6.832 58.889 -11.019 .000 -88.958 -61.614
[time = 1] -25.400 6.412 51.339 -3.961 .000 -38.270 -12.530
[time = 2] -16.167 7.879 74257  -2.052 .044 -31.864 -0.469
[time = 3] 0.000>  0.000 . . : . .
Treatment 46.220 12.748 94.019 3.626 .000 20.908 71.532
[time = O] * treatment  -38.685 10.134 58.889  -3.817 .000 -58.964 -18.405
[time = 1] * treatment ~ -40.480 9.510 51.339  -4.256 .000 -59.569 -21.391
[time = 2] * treatment  -24.033 11.686 74257  -2.057 .043 -47.317 -0.750
[time = 3] * treatment ob 0

@ Dependent variable: math.

b This parameter is set to O because it is redundant.
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In this case, since IBM SPSS uses the last category of #ime as the reference group, we now have
the intercept defined as “ending” math achievement status (674.900) for the control group (coded
0). This ending achievement level for the control group is consistent with Figure 5.10. The treat-
ment group would be estimated as 721.120. We can see that students demonstrated considerable
(but differing) growth at each time occasion as represented by the zime effects. The time coefhi-
cients refer to how much lower the control group was at each interval preceding the ending status
intercept. We can use the coefficients to estimate achievement for each group at any occasion. For
example, the control group’s achievement at the beginning of the study will be 674.900-75.286,
or 599.614. As we might expect, Table 5.26 also suggests that growth for the control group
slows considerably over successive intervals. We can also note that at the end of the study, there
is a positive effect for being in the treatment group (46.220, p < .001). We can also see that the
amount of difference at each occasion between the treatment and control groups, which is mod-
eled as the time*treatment interactions, is significant for each occasion (p < .05). In this case, the
coeflicients for each interaction suggest a differing achievement “advantage” for the treatment
group at each of the preceding intervals, rather than assuming a constant linear effect over time, as
summarized in Table 5.24.'The information about the treatment can be used along with the other
relevant time-related information to calculate where the treatment group is at any occasion in the
study. The pattern of results observed in Table 5.26 reflects the different coding scheme between
using initial status in the previous model (see Table 5.24 on page 235, where there was no differ-
ence between the two groups) and ending status (Table 5.26), where it is obvious in Figure 5.10
that there is considerable difference in achievement between the treatment and control groups.

We also provide results using an alternative coding for time in Table 5.27. In this case, we de-
fined the time-related variable as 0, 0.5, 0.7, 1.0 (¢imenonlin), in order to capture the change tak-
ing place over the whole study. This is one way we can easily deal with the curvilinear shape of the
average growth trajectories in each group. We can simply substitute imenonlin for time in Equa-
tion 5.22. This solution has the advantage of having an initial status (602.058) for the control
group and illustrates that the treatment growth was not significantly different at the beginning
of the study (3.217, p = .742). Over the time period studied, the treatment group demonstrated
considerably higher growth compared to the control group (31.428, p < .01). The covariance pa-
rameters were similar to the previous linear growth model in Table 5.25, so we do not reproduce
them here. We note also that this model fit better than the first model summarized in Table 5.27
(AIC =2,048.35 to 2,068.67, respectively), but not as well as the previous model summarized in
Table 5.26 (AIC = 2,048.35 to 2,013.91, respectively). Substantively, however, all three models
provide the same interpretation regarding the positive effect of the educational treatment under
consideration. At the end of the study, for example, we would estimate the math achievement
of the control group as 602.058 + 79.072, or 681.130. We would estimate the treatment group’s
math achievement as 602.058 + 3.217 + 79.072 + 31.428, or 715.775.

These are slightly different from the previous model but certainly consistent with it substan-
tively.

TABLE 5.27 Estimates of Fixed Effects®

95% Confidence Interval

Parameter Estimate Std. Error df t Sig. Lower Bound Upper Bound
Intercept 602.058 6.552 50.555 91.885 .000 588.901 615.215
timenonlin 79.072 6.738 47.201 11.735 .000 65.518 92.626
treatment 3.217 9.719 50.555 0.331 742 16.298 22.732
timenonlin * 31.428 9.995 47.201 3.145 .003 11.324 51.532

treatment

@ Dependent variable: math.
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Summary

In this chapter, we presented a basic two-level model for investigating individual change. Lon-
gitudinal analysis represents a rapidly growing application of basic multilevel-modeling tech-
niques. In comparison to ANOVA, we suggested that multilevel modeling of growth trajectories
is a more flexible approach because of its ability to handle a wide range of data situations (incom-
plete data and varying occasions of measurement). The model provides considerably more infor-
mation about students’ initial status and growth rates. The individual growth model can easily
be extended to include successive grouping structures above the individual level. We investigate
models with individual and group components in the next chapter. As we noted previously in this
chapter, there are a considerable number of ways to investigate changes in individuals over time.
We provided several different coding possibilities throughout the chapter. We encourage readers
to consult a number of introductory sources that provide overviews of the assumptions, uses, and
programming of longitudinal models (e.g., Duncan, Duncan, & Strycker, 2006; Raudenbush,
Bryk, Cheong, & Congdon, 2004; Raykov & Marcoulides, 2008; Singer & Willett, 2003).



CHAPTER

Applications of Mixed Models
for Longitudinal Data

In this chapter, we expand on our introduction to methods that can be used to examine changes
in individuals over time. As we noted in the last chapter, time is often a key factor in under-
standing how developmental processes may unfold, as well in observing their impact. Longitu-
dinal data collection facilitates the investigation of proposed relationships whose effects become
more apparent over time. Presently, there is a wider set of options available for including a tem-
poral dimension in studies, depending on the specific goals of the research and the data structure
used to investigate proposed theoretical models. We saw in the last chapter that the mixed-model
approach for examining individual change is quite straightforward for repeated measures that
are continuous. We examined growth in students’ achievement scores related to differences in
their backgrounds and the perceived effectiveness of their teachers. In such two-level models of
growth, the unit of analysis is the individual student. If we had linked students to their teachers
or to their schools, this would have necessitated a third level in the model. In fact, if we included
both teachers and schools, we would require a four-level model to examine variability in their
achievement—with differences likely due to within-individual growth rates, between-individual
variables, between-teacher variables, and between-school variables. SPSS MIXED can actually
facilitate this type of complex analysis, although it may take a considerable amount of time and
some effort to reduce the computer space it takes to complete the analysis.

In this chapter, we consider several useful research applications of the two-level growth model
provided in the last chapter. First, we extend the basic two-level growth model to include a
grouping structure as a third level. Second, we provide an example of a multilevel formulation of
a regression discontinuity design, which can be used to investigate the effect of an intervention
in a treatment versus a control group. This research design is useful in examining changes that
occur as a result of an intervention when prior random assignment of individuals to groups is
not possible. In this case, we use an assessment of math skills as a means of assigning individuals
to the treatment and control groups and then examine the effects of the treatment on students’
subsequent achievement. Third, we develop a piecewise growth model, which provides a means of
examining two or more difterent growth trends within one model. In this illustration, we develop
a model to investigate institutional trends in admitting freshman student athletes before and
after a policy to raise admission standards is introduced.

Examining Growth in Undergraduate Graduation Rates

Consider a national study to investigate whether undergraduate degree completion levels are
rising over time. In this example, we will consider an application of random-coefficients growth
modeling to examine between-state differences in the proportion of undergraduates who graduate

239
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from public universities and changes in the proportion of graduates over an 11-year period. In our
example study, summarized in Figure 6.1, the within-subjects data (Level 1) consist of repeated
measures on the proportion of undergraduate students who graduate nested within institutions.
'The between-subjects data (Level 2) consist of institutional variables that may explain differences
in graduation levels between institutions, and the group-level data (Level 3) consist of state-level
information such as financial resources appropriated to support public higher education.

Research Questions

'The three-level growth formulation facilitates investigating a number of different types of mul-
tilevel relationships. As the figure indicates, within institutions (Level 1), we can examine rela-
tionships involving various time-varying covariates that might influence institutional graduation
rates over time. Time-varying covariates provide a way of accounting for temporal variation in
predictors that may increase (or decrease) the value of an outcome predicted by the individual’s
growth trajectory (Raudenbush & Bryk, 2002). For example, we could focus on how fluctuation
in tuition levels might affect graduation rates. Other examples of time-varying covariates that
might influence graduation rates include the proportion of the institution’s budget allocated to
instructional support or the proportion of students receiving financial aid.

In contrast, we could consider the time-varying covariates as “static” variables (i.e., the aver-
age tuition level or the average proportion receiving financial aid), which requires only one value
for the covariate. In this type of formulation, we would enter the static covariate as a between-
institution variable (i.e., Level 2). We note, however, that one of the advantages of the Level 1
(time-varying) formulation is that the slope of the time-varying covariate (e.g., institutional
tuition) on graduation rates can then be modeled as a random parameter at Level 2 (between
institutions) and perhaps at Level 3 (between states). In the conceptual model, possible cross-
level interactions are shown with arrows extending from a higher level to a lower level. For
example, we might propose that differences in student selectivity moderate the effect of resources
spent to support student learning on graduation rates, or that differences in student composition
moderate the effect of student tuition on graduation rates.

Between institutions (Level 2), we can investigate how various institutional characteristics
(e.g., mission, selectivity of admissions, student composition, and faculty characteristics) are
related to graduation rates or changes in graduation rates over time. As noted previously, we
could also investigate a random covariate—outcome slope that might be of theoretical interest
(e.g., tuition—graduation rate or financial aid—graduation rate). Finally, at the state level (Level 3),
we can examine how different patterns of state economic and political activity might affect grad-
uation outcomes. For example, we might examine how family share of higher education costs or
legislative appropriation for higher education is related to graduation rates and change in gradu-
ation rates over time. We could also examine whether a particular type of state higher education
policy (such as merit-based tuition support) might influence graduation rates.

'The multilevel model implies several research questions such as the following:

What is the average level and shape of institutions’ graduation trajectories over time?
Which within- and between-institutional variables explain institutional graduation levels?
How do graduation trajectories vary according features of states?

The Data

In this example, we focus on a subset of data from a larger study of financing public higher edu-
cation and changes in student graduation rates over time (Heck, Lam, & Thomas, 2012). The
subset consists of undergraduate (6-year) graduation rates from 649 public 4-year institutions
within the 50 states. The graduation rates were compiled over an 11-year period. The variables in
the example are summarized in Table 6.1.



Context

Composition Initial Graduation
Structure Rate and Growth
Resources

How do differences between states affect grad growth trajectories?

Between Institutions

Academic Selectivity Initial Graduation
Institutional Characteristics :> Rate and Growth

Faculty Characteristics

Student Characteristics
Resources

How do differences between institutions affect graduation growth traj ies?

Within Individual Institulions\j

Time-varying Covariates Initial Graduation
(e.g., tuition, student financial Rate and Growth
aid, resource allocations)

How do institutional time-varying covariates affect an institution’s graduation growth trajectory?

FIGURE 6.1 Proposed three-level graduation trajectory model.

TABLE 6.1 Data Definition of chégraduationdata.sav (N = 8,670)

Variable Level® Description Values Measurement?
id Within Individual  Student identifier (8,670 students). Integer Ordinal
Rid Within Individual A within-group level identifier® 1to 46 Ordinal

representing a sequential identifier for
each student within 649 schools within
11 time periods within 50 states.

state State State identification number. Integer Ordinal
time Within Individual ~ Variable representing 11 linear 0=Time O Scale
occasions (years) in time measuring 1 =Time 1
undergraduate graduation rates. 2 =Time 2
3 =Time 3
4 =Time 4
5=Time 5
6 =Time 6
7 =Time 7
8 =Time 8
9 =Time 9
10 =Time 10
quadtime Within Individual ~ Recoded time variable from 11 0=Time O Scale
occasions in time (O, 1, 2,...,10) into 1 =Time 1
a “squared” quadratic time sequence 4 =Time 2
(0.1,4,...,100) to capture any changes 9 =Time 3
(acceleration or deceleration) in the 16 = Time 4
rate of change that might occur over 25 =Time 5
the 11 measurement occasions. 36 =Time 6
49 =Time 7
64 =Time 8
81 =Time 9
100 =Time 10

(Continued)
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TABLE 6.1 (Continued)
Variable Level® Description Values Measurement?
timel Within Individual ~ Recoded time variable from 11 0.00 =Time O Scale
occasions in time (0, 1, 2,...,10) into a 0.10 =Time 1
time sequence variation that captures 0.20 = Time 2
the whole 11-year period of time 0.30=Time 3
measured from O to 1. 0.40 = Time 4
0.50 =Time 5
0.60 =Time 6
0.70 =Time 7
0.80 =Time 8
0.90 =Time 9
1.00 =Time 10
quadtimel Within Individual ~ Recoded time variable from 11 0.00 =Time O Scale
occasions in time (0, 1, 2,...,10) into 0.01 =Time 1
a “squared” quadratic time sequence 0.04 =Time 2
that captures the whole 11-year period 0.09 =Time 3
of time measured from O to 1. 0.16 =Time 4
0.25 =Time 5
0.36 =Time 6
0.49 =Time 7
0.64 =Time 8
0.81 =Time 9
1.00 =Time 10
gradproportion  School Proportion of graduating students. 0.00 to 1.00 Scale
mathselect Within Individual  Predictor interval variable (zscore) -2.30t02.94 Scale
measuring percentage of students
admitted with SAT or ACT math scores
in the 75th percentile or above.
percentFinAid ~ Within Individual  Predictor interval variable (zscore) -5.691t01.67  Scale
measuring the percentage of students
within schools receiving financial aid.
tuition Within Individual  Predictor interval variable (zscore) -1.57 to 1.64 Scale
measuring the average tuition level at
the school.
percentFTfaculty ~ School Predictor interval variable (zscore) -3.56t0 1.83 Scale
measuring percentage of fulltime
faculty.
aveRetention State Predictor interval variable (zscore) -2.761t0 1.55 Scale
measuring average percentage of
freshman retained in the state.
aveFamilyshare ~ State Predictor interval variable (zscore) -2.41 10 1.87 Scale

measuring the percentage share
that families have to pay for higher
education in the state.

o Within individual schools = Level 1; School = Level 2; State = Level 3.
b Results from ranking student cases (id) with the school group identifier (not tabled).
2 Measurement icon settings displayed in subsequent model screenshots may differ from Tables 6.1, 6.14, and 6.19
but will not affect the output.

Defining the Model

In modeling changes in institutional graduation rates over time, we assume that a number of
institutions have been sampled and measured on one or more variables over several occasions.
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Because multilevel modeling does not require balanced data, it is not a problem if all measure-
ments are not available on all participants. This model can be extended to include situations
where the timing and spacing of the measurements differ across participants. As we illustrated
in the last chapter, in random-coefhicients growth modeling, within- and between-individual
changes are typically represented through a two-level univariate model (see also Hox, 2010;

Raudenbush & Bryk, 2002; Singer & Willett, 2003). A third level (and successive levels) can be
added to model changes between higher order units.

Level 1 Model

'The Level 1 part of the model represents the change each member of the population is expected
to experience during the time period under study (Singer & Willett, 2003). In this case, each
institution’s successive graduation measurements can be represented by an individual growth tra-
jectory (or growth curve) and random error. Following Raudenbush and Bryk’s (2002) notation,
the systematic growth for each individual can be represented as a polynomial of degree P, with
the Level 1 model for the proportion of undergraduates who graduate at time # for institution i
in state j written as

2

_ P
Vg = Ty T Myl + Moyl + o+ Tty + €,

(6.1)

where 7, is the intercept parameter (which is defined as the level of the institution’s “true”
status at some relevant point in the series of measurement occasions); a,; is a time-varying
variable of interest, with individual i measured on # occasions; and 7,; is the growth trajec-
tory parameter p for subject i in group ;j associated with the polynomial of degree P (i.e.,
p=0,...,P). One or more time-varying covariates (X,) can also be added to the Level 1
model as needed.

The growth (slope) parameters are the most important parameters because they represent
the rate at which institution 7 within state j changes over time. The polynomial curves facili-
tate the representation of several different growth trajectories including, for example, linear
(@), quadratic (4?), and cubic (4%). In terms of interpretation, however, if one considers that
the linear trajectory model represents a constant rate of change over time and the quadratic
trajectory models represent change (accelerating or decelerating) in the rate of change over
time, it becomes increasingly more difficult to interpret models of higher polynomial de-
grees. The specification of the general Level 1 model implicitly assumes that all the change
trajectories have a common algebraic form, but not every individual institution has the same
trajectory (Singer & Willett, 2003). Each institution, therefore, draws its parameter values
(i.e., intercept and slope) from an unknown (underlying) bivariate distribution of intercepts
and slopes.

As we noted in the last chapter, a simple error structure is often assumed for &, represented as

Eij~ N(O) 0-28)) (62)

which suggests that the errors are independent and normally distributed (2V), with a mean of
0 and constant variance across time (Raudenbush & Bryk, 2002). The residual variance param-
eter (0%) represents the variation in residuals around each individual institution’s true change
trajectory (Singer & Willett, 2003). Restrictions about the residuals can be relaxed, however.
We reiterate that other types of repeated measures covariance structures (e.g., autocorrelated) can
be considered where there are many measurements per subject.
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Level 2 Model

At Level 2, a set of between-institution predictors (e.g., student selectivity and student com-
position) can be added to the model to explain variation in institutions’ intercepts (often de-
fined as initial status) and growth rates. Specifically, for each of the P + 1 individual growth
parameters,

o
oy =Boo; + ZlﬂMXqif i (6.3)
p

where X ;; might include institutional characteristics, 3,, represents the effect of X ;; on the pth
growth parameter, and 7,; is a matrix of random effects. The set of P + 1 random effects for insti-
tution i can be contained in one of several different types of covariance matrices at Level 2. The
exact dimensionality of this covariance matrix depends on the number of random Level 2 coef-
ficients in the model. Common choices are diagonal, with variances for random effects only and
no covariances between intercepts and slopes, or a completely unstructured covariance matrix,
with variances for each random effect and covariances between each pair of random effects. If the
choice is an unstructured covariance matrix, it is dimensioned (P + 1) x (P + 1) and is assumed
to be multivariate normally distributed, with means of 0, and some variances and covariances
between Level 2 residuals.

Level 3 Model

At Level 3, we can model differences in growth between states using the general modeling
framework to examine variation in the Level 2 random intercept (8,,) and slope (B,) parameters.
The model defining Level 3 relationships can be written as:

S/”{
_ 6.4
ﬂm—J’MoJ’;?’MSVVyJF”M/’ (6.4)

where 7, is the intercept for the state-level model, J¥; represents predictors such as level of state
resources for public higher education, y,,, represents structural parameters for the Level 3 predic-
tors, and u,,; represents the state-level random effects. There are also similar choices regarding
the covariance matrix of residuals from the Level 3 equations (e.g., diagonal and unstructured).
Similarly, the dimensionality of the covariance matrix at Level 3 depends on the number of ran-
dom coefficients at that level.

Figure 6.2 summarizes the average of the institutional graduation rates over time, without
regard to the nesting of institutions within states. One can see from the figure that public under-
graduate graduation rates appear to increase over the decade by about 4%.

We next provide a small sample of eight individual states’ trajectories in Figure 6.3. Readers
who wish to develop this graph can do so by using the “select if” command and then defining
the subset (szateid > 15 & stateid < 24). There is one state trajectory considerably higher than
the others in this subset. In general, however, it appears that most of the individual trajectories
increase slightly over time.

The first concern in the analysis is whether there is any significant change in graduation rates
that took place over the period studied. For example, it might be that there was no increase in
graduation rates over time. Second, we might want to examine possible differences in institutions’
and states’ graduation rates over time due to their resources (e.g., tuition levels and percentages
of students receiving financial aid), institutional characteristics (selectivity and faculty character-
istics), and state characteristics (e.g., average student retention rates and family share of higher
education).
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FIGURE 6.2 Public institutional graduation level rates over time.
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FIGURE 6.3 Graduation rates for selected states.

The Null Model: No Predictors

As we noted in the last chapter, it is possible to examine an unconditional means model first—that
is, a simple model consisting only of the repeated measurements of y,; without the time-related
parameter. This model can be used to partition the variance in the grand-mean estimate into its
within-individual and between-individual components, regardless of time (see Singer & Willett,
2003, for further discussion). These components can be used to calculate an intraclass correlation
(ICC). We begin with a simple unconditional model to examine the variance decomposition of
graduation rates across levels of the data hierarchy:
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Veij = Moy + €4y (6.5)

where y,; is the graduation proportion for institution 7 in state j measured at time point # The
intercept is 7y; and £, is the error term. At Level 2, the model is

To; = Booy + Toip (6.6)

where By, is the intercept, and we will use 7, as the error term for the between-individuals model.

At Level 3, the model is
Booj = Yooo + og)s (6.7)

where ¥y is the intercept and #y, is the error in equations at Level 3.

For this first “no-predictors” model (i.e., with no time-related variable specified), we can
examine the decomposition of variance in graduation rates associated with difterences within
institutions, between institutions, and between states. The proportion of variability (intraclass
correlation) in outcomes at Level 3 is defined as

=013/t +0rss TOrrs) (6.8)
For Level 2, the ICC would be

P =012/ Oty + Oy + Ols) (6.9)
and for Level 1, the ICC would be

p=0,.,./(cr . +0r ., +0r ) (6.10)

We remind readers that this first estimate of the variance in graduation rates at each level
of the data hierarchy is approximate only, owing to estimation assumptions about sampling
variability made in the initial estimates of variance at each level (Hox, 2010; Snijders &

Bosker, 1994).

Level 1 Error Structures

The Level 1 residuals (g,,) represent the variability in measuring individual-level outcomes at
each occasion. They are typically assumed to be independent, normally distributed, and with
mean of 0 and common variance (6%). For repeated measures models, MIXED has a variety of
different error structures that can be considered. The default Level 1 structure in MIXED is a
diagonal covariance matrix with heterogeneous variances in the diagonals for each measurement
occasion, which has no off-diagonal covariances between occasions. Using just the first four oc-
casions for ease of presentation, the diagonal Level 1 covariance matrix would look like the fol-
lowing (with variances o7 to o} in the diagonals and Os representing fixed covariances between
occasions):
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b—*qN

0
: (6.11)
0

N

o o o
o o 8 o
o 8, o o

(e}

N

Compound symmetry (CS) assumes one equal variance across all occasions and one equal
covariance between pairs of covariances. As we suggested in the last chapter, with a linear lon-
gitudinal model with random intercept only, this amounts to accepting homogeneity of variance
over the repeated measures similar to the repeated measures analysis of variance (RM-ANOVA)
formulation. At the other end of the spectrum, we could consider an unstructured (UN) covari-
ance matrix, which assumes heterogeneous variances for each occasion and heterogeneous
covariances for pairs of occasions. This may be overly complex, however, in many research situa-
tions since it results in the calculation of many variances and covariances, which might not be of
real substantive interest.

Another choice for repeated measures is an autoregressive covariance structure. Since we have
reason to believe there are covariances between the oft-diagonal elements in the matrix, we might
try either a heterogeneous first-order autoregressive structure (i.e., with separate variances in the
diagonals and covariances in the off-diagonals) or the more simplified first-order autoregressive
structure with constant diagonal variance and an off-diagonal covariance. Once again, using
the first four occasions as an example, we have the following (where | p | < 1):

1 p p P
2

o~ Loror (6.12)
pp 1 p
PP op 1

'The first-order autoregressive covariance structure therefore requires the estimation of two
parameters (i.e., one variance and one autocorrelation). Equation 6.12 implies that the size of
the covariance between the repeated measures depends on the number of steps between occa-
sions; that is, the strength of the relationship diminishes as the distance between measurements
increases. This provides an advantage over the compound symmetry repeated measures specifica-
tion, especially where there are more repeated measures in the study.

We investigated several different covariance structures for the repeated-measures estimates
at Level 1. We can use restricted pa&imum likelihood (REML) estimation to examine the fit
of various structures since we are only comparing differences in variance components. Because
there are 11 years of measurements, it is quite likely that there are considerable correlations
between occasions. Therefore, the default diagonal covariance (i.e., with variances only and no
covariances) would not likely capture this complexity (-2LL = -17,698.122). We note that
the model -2LL (or deviance) in this case is negative, which can occur in model estimation if
the probability density is greater than 1, meaning that the log of the likelihood function at the
maximum is positive (i.e., > 0), and therefore, when multiplied by -2, the resulting deviance and
Akaike’s information criterion [AIC] are negative. The fit of the model with a single variance at
Level 1 (scaled identity) fit the data somewhat better (-2LL = -17,424.371). The model with
compound symmetry (five estimated parameters) did not converge. Similarly, the model with an
unstructured covariance matrix was overly complex (i.e., taking more than 2 hours to converge
on a solution for 69 estimated parameters). It is likely that we can find a more parsimonious
structure for the Level 1 repeated measures.
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We also compared the autoregressive heterogeneous structure (—2LL = -18,988.848) against
the autoregressive homogeneous structure (—2LL = -18,776.575). We note that in evaluating
model fit, the negative sign matters; that is, we prefer the smallest value of fit indices such as
-2LL or AIC.In order, the heterogeneous autoregressive covariance structure (ARH1) provided
the best fit; the homogeneous autoregressive structure (AR1), the second best; the diagonal cova-
riance structure (DIAG), the third best; and the identity covariance structure (ID), the worst. We
might settle, however, on the autoregressive homogeneous (AR1) structure as being a reasonable
compromise between an identity covariance matrix and a more fully specified covariance struc-

ture as in the autoregressive heterogeneous structure.

Defining Model 1.1 (Null) with IBM SPSS Menu Commands

Launch the IBM SPSS pro-
gram application, and select the
chbgraduationdata.sav data file.

1. Go to the toolbar and
select ANALYZE,
MIXED MODELS,
LINEAR.

This command enables access
to the Linear Mixed Models:
Specify Subjects and Repeated
dialog box.

{2 chgraduationdata.sav [DataSet1] - IBM SPSS Statistics Data Editor E=EERT)
Fie Edt View Data Transform| Analyze DirectMarketing Graphs Utiities Add-ons Window Help
S B E 0 o fe ' IH e 2 BB 4
% H {"_""] _ = B Descriptive Statistics > ! o =< R :—
| ' Teljes > [Visiote: 14 of 14 Varisbles
id | rd || compereMeans » bdtime | timel |
1 1 1 General Linear Model » 0 .00 |2
2 1 1| GenerslzedlinearModels » | 1 10 [
[ 1 1| Mixed Models » | Lneer.. [y
4 1 1 Correlate » Generalized Linear...
5 1 1 Regression 5 16 40
B 1 1 Loglinear 3 25 .50
7 1 1 Meural Netyorks 3 36 .60
8 | 1 1 Classity 3 49 .70
9 1 1 Dimension Reduction » 64 .80
o 1 1| Scae » 81 90
11 1 1] Nonparametric Tests » 100 1.00
12 2 2 Forecasting 3 0 .00 =
EC | Survivel » ]
DataView | Varisble View || MulipleResponse >
,[Linur.., Missing Value Analysis... YCESS0ris readyf' [ [ | [
Muttiple Imputation »
Complex Samples »
Quality Control »
ROC Curve...

IEM SPSS Amos...
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2. 'The Linear Mixed Models: Specify Subjects and

Repeated screen displays options for defining vari-
ables as subjects, repeated observations, and type

of covariance structure in a model.

a. A subject is an observational unit that may be
independent of other subjects. For this model,
we will designate rid (individual identifica-
tion number reindexed to nest students within
11 time periods within each state to facilitate
model processing) and szateid (state identifica-
tion number) as the subject variables. Click to
select 7id and stateid from the Variables col-
umn, and then click the right-arrow button to
move the variables into the Subjects box.
. 'The Repeated box allows specifying variables
that identify repeated observations. For this
model, #ime identifies repeated observations
over 11 time periods. Click to select #ime, and
then click the right-arrow button to move the
variable into the Repeated box.

The combination of values for rid, stateid,
and zime defines a particular student from a
particular state across 11 time periods.

= 249

3 Linear Mixed Models: Specify Subjects and Repeated

[

Ciick Continue for models with uncorrelated terms.

Specify Subject variable for models with correlated random effects.

Specify both Rep

and Subject

residuals within the random effects.

&b time1
&)quadtmei
f gradproportion
& mathselect
f percentFinAid
f tuition

& percentFTiacuty

Repeated Covariance Type: ';AR{I}

(g ][

for modeis with correiated

I‘.rid :

== f stateid

Ante-Dependence: First Order
JAR(1)

AR{1): Hed
|ARMA(11)
Compound Symmetry

Compound Symmetry: Correlation Metric
Compound Symmeiry: Heterogeneous

[Diagonal

Y

N

c. 'The Repeated Covariance Type specifies a model’s covariance structure. For this model, we will
use the autoregressive covariance matrix, AR(7). Click the pull-down menu to select the au-
toregressive covariance matrix, AR(1), as the Repeated Covariance Type.

AR(1) is a first-order autoregressive structure with homogenous variances. The correlation between any
two elements is equal to rho (p) for adjacent elements, p* for elements that are separated by a third, and
so on. We note that p is constrained so that -1 < p < 1 (IBM Corporation, 2012).

Click the CONTINUE button to display the Linear Mixed Models dialog box.

3. The Linear Mixed Models main screen
enables specifying the dependent
variable, factors, and covariates, as
well as access to dialog boxes for de-
fining Fixed and Random effects, and
options for Estimation, Statistics, EM
Means, and Sawve.

For this model, we will use gradproportion
as the dependent variable. Click to select
the gradproportion variable from the left
column listing. Then click the right-arrow
button to transfer gradproportion into the
Dependent Variable box.

{2 Linear Mixed Models =5
— 1 D dent Variable: -
= e Faed.. |
& b ‘\jb__l‘f gradproportion | | wed
& ra . [ Rapdom...
/ Eactor(s): RSN
& stateid _ | Estmation...
fome > et
- B | statstics.. l
?-b tim‘. 1 Covariate(s): |—EMM“"""
g quadtime | Saye...
- | - | Sarar
A — Rescualweght
& tution — | s T ]
o p—— ] J
| ok |[ peste || Reset || cancei || rew |

'The null model does not have predictors, but we will be designating a random effect. So skip over the

FIXED button, and click the RANDOM button to access the Linear Mixed Models: Random Effects

dialog box.
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4. The Linear Mixed
Models: Random
Effects displays
the Random Effect
1 of 1 screen. The
random-effects
screen allows
specifying ran-
dom effects, inter-
actions, intercept
terms, and subject
groupings.

a. Begin by speci-
fying the cova-
riance structure
from the
default vari-
ance compo-
nents (VC) to
scaled identity.
Click the pull-
down menu
and select

Scaled Identity

2 Linear Mixed Models: Random Effects

o2

Random Effect 1 of 1

[owen ]

Coyariance Type:

R =@

Scaled identity

‘Random Effects
(3) Build terms
Eactors and Covariates:

() Buid pested terms = [¥] Include intercept

Model:

[Ij'_aclorm; B _'J
L3 | I |
-Subject Groupings
Subjects: Combinati
& rd & stateid
& stateid

B

L{’\‘!(':nnMue ” Cance]_” Help J

(ID). The scaled identity structure has constant variance and assumes that no correlation occurs

between elements.

b. We want the intercept to be included in the model, so click Include intercept.

c. 'The Subject Groupings box displays the rid and stateid variables that were specified as a subject
variable in the Specify Subjects and Repeated dialog box show in step 2a. We will specify szateid as
the subject for the random-efects part of this model. Click to select szazeid, and then click the
right-arrow button to move the variable into the Comébinations box.

d. At the top-right section of the window, click the NEXT button to access the Random Effect 2

of 2 screen.

Note: The NEXT button may not work in earlier or unpatched versions of IBM SPSS when creating
multilevel models with random intercepts. An update issued by IBM SPSS for software Version 19
addressed the problem, and Version 20 appears to have resolved the issue. A workaround to activating
the NEXT button is to either (a) add or reenter a subject variable into the Comébinations box or (b) add a

variable from the Factors and Covariates column to the Model/ box and then remove it before proceeding
to the Random Effect 2 of 2 screen.
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'The Random Effect 2 of 2 (£ Linear Mixed Models: Random Effects

==

screen display is similar to the

-Random Effect 2 of 2-

first screen and requires the
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following changes. Coyariance Type:
Random Effects
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Ird

model. Click to select
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I_w:enh‘nue ” Cancel ” Help

the variables into the

Combinations box.

Click the CONTINUE button to return to the Linear Mixed Models dialog box.

5. Click the ESTIMATION button to
access the Linear Mixed Models: Esti-
mation dialog box, which displays two
estimation method choices: maximum

likelihood (ML) or REML.

In this chapter, we will use the default setting
of REML to estimate the models.

Click the CONTINUE button to return to
the Linear Mixed Models dialog box.

)

Linear Mixed Models

3 Linear Mixed Models: Estimation %=~

ﬁﬁﬁﬁﬁ

- |

f
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6. In the Linear Mixed Models dialog
box, click the STATISTICS button
to access the Linear Mixed Models:
Statistics dialog box.

Click and select the following three
statistics to be included in the output:
Parameter estimates, Tests for covariance
parameters, and Covariances of random

effects.

Click the CONTINUE button to return
to the Linear Mixed Models dialog box.

7. Finally, in the Linear Mixed Models (6 Linear Mixed Modeis =)

dialog box, click the OK button to =

run the model. 2 = [»| (e wnm:a':m‘ ) [L_Fess.
g rid Factore) | Random...
e ::::e’“ \--\# : | Estimaton...
&b quadtime L _ | e _]
&, time1 = 3 EM Means...
. Covariate(s): B Means. 8
ob quadtime1
& mathselect | > | |_5"_%f“'_l
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it || —
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~
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-Model Statistics

2 (V] parameter estimates
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[] case Processing Summary
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Confidence interval: |gg %
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-
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Interpreting the Output From Model 1.1 (Null)

'The output for the initial “no predictors” model is summarized in Table 6.2. Averaging across the
period of time, the estimates suggest that about 13.7% of the variability in graduation rates is be-
tween states (0.003255/0.004104 + 0.016397 + 0.003255 = 0.003255/0.023756 = 0.137), about
69% of the variability is between institutions (0.016397/0.023756 = 0.690), and about 17.3% of
the variability is within institutions (0.004104/0.023756 = 0.173). As we mentioned in the last
chapter, if we added the time-related variables, we might have a somewhat different estimate of
the proportion of variance at each level. At Level 1, rho (p) represents the correlation between
any two consecutive occasions across the time series (i.e., 0.513).

In Table 6.3, the grand mean for graduation rates at the state level across the 11 observations
is 0.431, or about 43%.

Model 1.2: Adding Growth Rates

At the next step, we can add the growth rate indicators. In many situations where we examine
change over time, it is sufficient to propose that a linear growth trajectory will describe the data
adequately. When the time periods are reasonably short and there are not too many observations
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TABLE 6.2 Estimates of Covariance Parameters®

95% Confidence Interval

Parameter Estimate Std. Error WaldZ  Sig. Lower Bound Upper Bound
Repeated Measures AR1 0.004 0.000 34.806 .000 0.004 0.004
diagonal
AR1 rho 0.513 0.014 36.169 .000 0.484 0.540
Intercept [subject = stateid)] Variance 0.003  0.001 3.254 .001 0.002 0.006
Intercept [subject = rid * stateid)] Variance 0.016 0.001 16350 .000  0.015 0.018

@ Dependent variable: gradproportion.

TABLE 6.3 Estimates of Fixed Effects®

95% Confidence Interval

Parameter Estimate Std. Error df t Sig. Lower Bound Upper Bound

Intercept 0.431 0.010 47.374 42.668 .000 0.411 0.451

@ Dependent variable: gradproportion.

per individual (i.e., an individual subject or, in this case, an individual institution), the linear

growth model will often provide a good approximation for more complex models that cannot

be fully modeled because of the sparse number of observations (Raudenbush & Bryk, 2002).

y % Y

In this case, because we are not sure, we may wish to check for the shape of the growth trajector
y p g ) y

first. We can define a quadratic component at Level 1 to take into consideration the idea that the

q p
growth rates may accelerate or decelerate over time.

Level 1 Model

To add a quadratic component to the model, the Level 1 equation can be written as follows:

_ 2 6.13
Yy = Toy + 7,4, + 7% + Ei> ( )

where y,; is the response variable for institution 7 in state j measured at time £ The intercept is
Ty, and 7y, is the linear growth rate for institution 7 in state j over the data-collection period,
representing the expected change during a fixed unit of time. The quadratic component 7,; repre-
sents any change in the rate of change over time. Each institution, therefore, has its own growth
trajectory (developed from the intercept and slope), with likely variability present in the random
coefficients across the set of institutions.

At Level 2, we will have the intercept vary across institutions, but we will first fix the variances
of the time-related components to 0 (shown by removing the variance parameters 7;; and 7,;,
respectively):

Ty = ﬂooj‘ + Ty

1 = Biop (6.14)

Thij = ﬁzoj'-
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At Level 3, we will again allow the intercept to vary at random across states but again fix the
variances of the time-related components to 0.

Booj = Yooo + oy

Bio; = Y100 (6.15)
ﬁZOj = Y200

Coding the Time Variable

It is important to note that the meaning of the intercept parameter (7,;) depends on the scaling
of the time variable. Figure 6.4 illustrates two coding schemes for time. We could code the linear
time variable in yearly intervals (0, 1,2, ..., N=1¢). Most often, researchers code the first measure-
ment occasion as 0, so that the intercept parameter can be interpreted as the true initial status of
graduation rates in institution 7 in state ; at time point a,; = 0. Defining the intercept as initial
status serves as a baseline for interpreting the subsequent change that takes place over time for
each individual institution in the sample. If there is a quadratic term (guadtime), the correspond-
ing variable would be scaled in a similar manner (i.e.,0,1,4,9, ..., N= ), as shown in the table.
'The figure also shows an alternative coding for the linear (#/me1) and quadratic (quadtimel) com-
ponents using 0 and 1 as the end points for the growth trajectory. We note in passing that varying
intervals between measurement occasions can also be accommodated (e.g.,0,1,3,7, ..., N).

As Figure 6.4 indicates, the time intervals are again entered in the Level 1 data set in vertical
format as a variable (#ime), and each time point corresponds to a specific graduation proportion
for each institution. This necessitates 11 data lines in the data set per institution. For example,
for institution ID #1, the graduation proportion corresponding to #ime = 0 (the first year) is 0.35,
and for #ime = 10 (the last year), it is 0.33.The data are linked to successive levels with unique
identifiers (e.g., institution and state). We note that the institutional identifier (id) has also been
recoded within institutions (rid) to reduce the time it takes to run the model.

We reiterate that centering the time-related variables in various ways (i.e., as initial status, end
status, and middle status) will affect the level of the intercept, the variance at higher levels (e.g.,
Level 2 and Level 3), and the covariance between the intercept and slope (see Raudenbush &
Bryk, 2002, for further discussion of centering options). For example, if we define the intercept as
initial status, the intercept is 0.41, and the correlation between the intercept and slope is negative.
Selecting the last time point would result in a factor that describes the institutions’ graduation
rates at the end of the time series (e.g., a; = =10, -9,. . ., 0). In this case, if we define graduation
rate as end status, the intercept is about 0.44, and the correlation between the intercept and slope
is positive. Centering in the middle of the time series may also have desirable effects in some
instances. We also have to keep in mind the possibility of higher order polynomials in defining
the growth trajectories. In general, such decisions should be made with respect to the purposes
of the study and characteristics of the model and data.

'The choice of the appropriate modeling approach and coding of time should be based on
the ease with which model parameter estimates can be interpreted, always keeping in mind the
substantive questions of the research study. In this example, it is convenient to code the time
variable in the following manner (0, 0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9, 1.0). We will call this
variable #imel, to differentiate it from the yearly #ime variable in the data set. This will allow us to
capture the change in graduation growth over the entire period under study (i.e., the change in
graduation proportion as #imel changes from 0 to 1). We can create a similar quadratic compo-
nent (quadtimel) by computing timel*timel and saving it in the database. When we estimated a
model with both components, however, we found that the quadratic component was not signifi-
cant (p = .197). We could also recenter the linear and quadratic components at the grand mean
(i.e., year 6 mean) of the trend (¢imelmid and quadtimelmid), which will remove the correlation
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FIGURE 6.4 Level 1 data structure for graduation percentages.

between them (r = 0.008) and often facilitates model estimation (Hox, 2010). When we esti-
mated this model with linear and quadratic trends, however, we confirmed that the quadratic
component was again not significant (p = .197).

We present the fixed-effect results of this latter model centered at the midpoint of the trend in
Table 6.4. Readers should keep in mind that we are actually testing a population of universities and
states, so statistical testing is not really needed since we are not making inferences from a sample to
a population. For purposes of demonstration, however, we will interpret them as if we were making
these types of inferences. The table indicates that the average midpoint graduation proportion is
0.429. As expected, this is between the initial status proportion of 0.41 and the end status propor-
tion of 0.44. The table also suggests that the linear component is necessary in describing gradu-
ation growth over time (y = 0.039, p < .001). The quadratic component, however, is not required
(y=10.013, p > .10) to model growth over time. Because the quadratic component does not con-
tribute to modeling growth in graduation rates over time, we can drop it from successive models.

TABLE 6.4 Estimates of Fixed Effects®

Parameter Estimate  Std. Error df t Sig.
Intercept 0.429 0.010 48.633  42.214 .000
time 1mid 0.039 0.003 1,391.355 12.407 .002

quadtime 1mid 0.013 0.010 2,737.942 1.289 197

° Dependent variable: gradproportion.
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We note in passing that centering the time-related components at the beginning of the trend
or in the middle results in different estimates of the intercept and linear time component; how-
ever, the quadratic component (as the higher order polynomial) is unaffected by the recentering.
In this example, a linear growth model using #imel should be sufficient to capture the change in
graduation rates over the period of the study. Since we have settled on the shape of the trajectory,
we can also specify the linear growth component (#imel) as randomly varying across institutions
and states. At Level 1, we will have the following equation without the quadratic component:

v e, (6.16)

_ytij = T[Oij + ﬂli]‘l‘lmelﬂj

Between institutions (Level 2), we will specify the linear component as randomly varying by
adding the respective variance (r,;) at Level 2, as shown in Equation 6.14. At Level 3, we will
also specify the linear component as randomly varying (i), as shown in Equation 6.15. When
we substitute the new Equations 6.14 and 6.15 into Equation 6.16, we will obtain the following
combined equation:

Vi = Yooo + Yiootimel g + wygitimel ; + oy + rytimel ;i + 1 + €, (6.17)

'This suggests a total of eight parameters to estimate. This includes two fixed effects, two random
effects at Level 3, two random effects at Level 2, and two repeated effects (Level 1) parameters
(i.e., the variance and autocorrelation). Note also that we will first assume diagonal covariance
matrices for the fixed effects at Levels 2 and 3. We could, of course, define those covariances as
unstructured.

Defining Model 1.2 with IBM SPSS Menu Commands
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2. 'The Linear Mixed Models: Specify Subjects and Re-
peated displays the default settings from the prior
model. We will retain the settings, so click the
CONTINUE button to display the Linear Mixed

Models dialog box.

3. The Linear Mixed Models main dialog box
displays gradproportion as the dependent

variable.

Factors and covariates may be specified in
predicting the dependent variable. Factors are
categorical predictors that may be numeric or
string. Covariates are scale predictors that must
be numeric. We will designate a predictor vari-
able (¢imel), which will be used in the model.
Locate and click the variable #imel from the
left column listing, and then click the right-
arrow button to move the variable into the

Covariate(s) box.
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We may now proceed to define fixed effects for the variable.

Click the FIXED button to access the Linear Mixed Models: Fixed Effects dialog box.

4a. Within the Linear Mixed Mod-
els: Fixed Effects dialog box, click
the pull-down menu to change
the factorial setting to Main
Effects.

b. Click to select #imel from the
Factors and Covariates box, and
then click the ADD button to
move the variable into the Mode/
box.

c. Note on lower left of the screen
that the intercept and the sum of
squares (7ype III) are the default
settings.

13 Linear Mixed Models: Fixed Effects

Fixed Effects
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Click the CONTINUE button to return to the Linear Mixed Models dialog box.

We will now add random effects to this model.

Click the RANDOM button to access the Linear Mixed Models: Random Effects dialog box.

5. The Random Effect 2 of 2 screen
display is displayed as it was the
last.

a. Change the covariance type
by clicking on the pull-
down menu and selecting
Diagonal.

'The Diagonal covariance structure
has heterogeneous variances and zero
correlation between elements (IBM
Corporation, 2012).

b. We will specify a Level 2
random effect (¢imel) by first
clicking the pull-down menu
to change the factorial set-
ting to Main Effects.

c. Next, click to select timel
from the Factors and Covari-
ates box, and then click the

13 Linear Mixed Models: Random Effects

Random Effect 2 of 2

@

| Previous :
Coyariance Type: lmgunnl "
| Effects
(%) Buid terms. (_} Buid pested terms [¥] nciude intercept
Eactors and Covaristes: uoder
[ time ) [tme1
A
1
i
Main Effects e 'l
i
Factorial |
Wain Effects % '
interaction L
| | [an2-way i 1/
+ | Loadd ||
! |an3-way |fh@""__"'
fols N Al 4-way /
I pasway A
|-Subject Groupings
subiects camonstons:
|| ra &
& stateid — ’ stateid
(]
[ Continue ” Cancel || Help

ADD button to move the variable into the Mode/ box.
d. Click the PREVIOUS button to access the Random Effect 1 of 2 screen display.

'The Random Effect 1 of 2 screen
displays the default settings used
for the prior model.

e. Change the covariance
type by clicking on the
pull-down menu and se-
lecting Diagonal.

f. We will specify a Level 1
random effect (¢imel) by
first clicking the pull-down
menu to change the facto-
rial setting to Main Effects.

g. Next, click to select timel
from the Factors and Covari-
ates box, and then click the
ADD button to move the
variable into the Mode/ box.

Click the CONTINUE button to
return to the Linear Mixed Models
dialog box.
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6. Finally, in the Linear Mixed
Models dialog box, click the OK

button to run the model.

Interpreting the Output From Model 1.2
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We can confirm the model specification of eight parameters to estimate in Table 6.5.

InTable 6.6, we next present the fixed effects, noting that we now have initial status defined as
the beginning of the time trend, suggesting that the initial state 6-year graduation rate was 0.411
(or about 41.1%). Over the period of the study, state graduation rates grew by about 0.04 (or 4%).

Next, it is important to consider the nature of the deviations of the individual growth trajec-
tories from the mean growth trajectory. The estimates of the initial status and slope variances are
presented in Table 6.7. Once again, the Wald Z statistic is provided as a test of homogeneity; that
is, there is no true variation in individual growth parameters (0). Since the variance cannot be
below 0, the Wald Z test should be conducted as a one-tailed test. For initial status, at the state

TABLE 6.5 Model Dimension®

Number of  Covariance Number of Subject Number of
Levels Structure Parameters  Variables Subjects
Fixed Effects Intercept 1 1
time 1 1 1
Random Effects  Intercept + time| 2 Diagonal 2 stateid
Intercept + time 2 Diagonal 2 rid * stateid
Repeated Effects quadtime 11 FirstOrder 2 rid * statied 649
Autoregressive
Total 17 8
@ Dependent variable: gradproportion.
TABLE 6.6 Estimates of Fixed Effects®
95% Confidence Interval
Parameter Estimate Std. Error t Sig. Lower Bound Upper Bound
Intercept 0.411 0.010 48.862 42.029 .000 0.392 0.431
timel 0.040 0.005 27.359 8.120 .000 0.030 0.050

@ Dependent variable: gradproportion.
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TABLE 6.7 Estimates of Covariance Parameters®

95% Confidence Interval

Paramenter Estimate Std. Error  Wald Z Sig. Lower Bound Upper Bound
Repeated Measures AR1 Diagonal 0.003 0.000 37.747 .000 0.003 0.003
AR1 rho 0.287 0.018 16.071 .000 0.252 0.322
Intercept + time 1 Var: Intercept 0.003 0.001 3.206 .001 0.002 0.005
[subject = stateid] Var: timel 0.000 0.000 1.331 .183 0.000 0.002
Intercept + time 1 Var: Intercept 0.016 0.001 16.357 .000 0.014 0.018
[subject = rid * stateid] var: time1 0.005  0.001 9.860  .000  0.004 0.007

@ Dependent variable: gradproportion.

level the Wald Z is 3.206, one-tailed p < .01.This leads to rejecting the null hypothesis that there
is no variation among states’ initial status graduation proportions. At the institutional level, the
Wald Z was 16.357, one-tailed p <.001, also suggesting that we should reject the null hypothesis
of no significant variation in institutions’ initial graduation proportions. At Level 1, the average
correlation between any two consecutive repeated measures across the time series was about
0.287. Regarding growth rates, at the state level, we might have some preliminary evidence that
graduation growth rates do vary across states (Wald Z = 1.331, one-tailed p = .0915), keeping in
mind that in this study we actually have a population of states instead of a small (» = 50) random
sample. At the institutional level, the evidence is clearer that growth in graduation rates varies
across institutions (Wald Z = 9.860, one-tailed p < .001).

'The random-coefficients growth model can also provide an estimate of the covariance be-
tween initial status and the growth rate. In this subsequent analysis when we examined an un-
structured covariance matrix (not tabled), at the institutional level we found that the covariance
was negative (p = .052), which suggests some tendency for institutions with higher graduation
rates at the beginning of the study to demonstrate less growth over time. At the state level, how-
ever, the same relationship was not statistically significant (p = .383). We reiterate the importance
of giving some attention to the definition and scaling of the model’s initial status and growth
parameters because this affects the meaning one attaches to the coefficients (for other discus-
sions, see Hox, 2002; and Singer & Willett, 2003). For this reason, we decided not to include the
covariance between intercept and time slope in our subsequent models.

Model 1.3: Adding Time-Varying Covariates

We will next add two time-varying covariates to the model. These are variables that are measured
through the 11-year period. In this case, we will use the percentage of students within the insti-
tution receiving financial aid and the average tuition level at the institution. We will standardize
each variable (mean [M] = 1, standard deviation [SD] = 0).

Vi = Moy + Mytimel ,; + o, finaid,

J+ T tuition; + €., (6.18)

where 7, is the intercept for institutions, 7, is the linear growth rate, 7,; represents the coeffi-
cient describing the effect of the percentage of students receiving federal financial aid (standard-
ized), m;; is the coefficient describing the effect of institutional tuition level (standardized), and
£,;1s the residual variance associated with predicting institutional graduation rates. We will keep
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Levels 2 and 3 the same as in the last model (see Eqgs. 6.14 and 6.15). When we substitute those
equations into Equation 6.18, we will have the following single-equation model:

YVaii = Yooo + Yiootimel ; + Yaoofinaid,; + Ysootuition,; + uygtimel,;

+ g, + rytimel,

(6.19)

+ 75 + €4

'This provides a total of 10 parameters to estimate (four fixed effects, four random effects, and two

repeated effects).

Defining Model 1.3 with IBM SPSS Menu Commands

Note: IBM SPSS settings will default
to those used in Model 1.2.

1. Go to the toolbar and select
ANALYZE, MIXED MODELS,
LINEAR.

'This command enables access to the
Linear Mixed Models: Specify Subjects and
Repeated dialog box.

2. 'The Linear Mixed Models: Specify Subjects and
Repeated displays the default settings from the
prior model. We will retain the settings, so

click the CONTINUE button to display the

Linear Mixed Models dialog box.
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3. 'The Linear Mixed Models main dialog
box displays default settings from the

prior model.

We will introduce two additional predictors
to be used in the model (percentFinAid and
tuition). First, click to select percentFinAid
and fuition, and then “drag” both variables to
the Covariate(s) box above timel.

Click the FIXED button to access the Linear
Mixed Models: Fixed Effects dialog box.

4a. The Linear Mixed
Models: Fixed Effects
dialog box displays
the default setting
from the prior model.
To facilitate reading
the output tables, we
will first remove timel
by clicking to select
the variable and then
clicking the REMOVE
button.

b. Confirm that the fac-
torial setting is Main
Effects before adding
the predictor variables
to the model.

c. Now click to select the
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variables percentFinAid, tuition, and timel from the Factors and Covariates box. Then click the
ADD button to move the variables into the Mode/ box.

Click the CONTINUE button to return to the Linear Mixed Models dialog box.

5. Finally, in the Linear Mixed Models dia-
log box, click the OK button to run the

model.
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.8 Estimates of Fixed Effects®

95% Confidence Interval

Parameter Estimate  Std. Error df t Sig. Lower Bound Upper Bound
Intercept 0.469 0.011 98.626 41.737 .000 0.447 0.492
percentFinAid 0.002 0.001 5,693.474 1.779 .075 0.000 0.003
tuition 0.049 0.005 5,044.319 9.269 .000 0.039 0.060
timel 0.016 0.005 59.168 3.063 .003 0.006 0.027

@ Dependent variable: gradproportion.

TABLE 6.9 Estimates of Covariance Parameters®

95% Confidence Interval

Parameter Estimate  Std. Error ~ Wald Z Sig. Lower Bound Upper Bound
Repeated Measures AR1 Diagonal  0.003 0.000 38.123 .000 0.003 0.003
ART rho 0.276 0.018 15.391 .000 0.240 0.310
Intercept + time Var: Intercept  0.003 0.001 3.143 .002 0.001 0.005
[subject = stateid]  var: fime1 0.000 0.000 1.419 156 0.000 0.001
Intercept + timel Var: Intercept  0.015 0.001 16.276 .000 0.014 0.017
[subject = Var: time]l 0.005 0.001 10.076 .000 0.004 0.007

rid * stateid)]

@ Dependent variable: gradproportion.

Model

Interpreting the Output From Model 1.3

'The fixed-effect estimates are provided in Table 6.8. After adding the time-varying covariates at
Level 1, the new state graduation intercept was 0.469 (or about 47%). This can be interpreted as
the initial graduate rate for an institution at the grand means (0) of percentage of students receiv-
ing financial aid and tuition levels. Table 6.8 suggests that the average tuition level was positively
associated with student graduation rates; that is, a 1-SD increase in institutional tuition would
result in about a 5% (0.050) increase in initial graduation rate. Similarly, percentages of students
receiving financial aid was associated with higher graduation rates (p < .10). After adjusting for
the covariates, state graduation rates appeared to grow about 1.6% (0.016) over the decade.

Again, the variance components table (Table 6.9) suggests that that intercepts vary across
institutions and states. Growth rates also varied across institutions (Wald Z = 10.076, one-tailed
2 < .01). There is some evidence suggesting that they also varied across states (Wald Z = 1.419,
one-tailed p = .078).

1.4: Explaining Differences in Growth Trajectories Between Institutions

Because there was significant variation in each parameter present among individual institutions,
both the intercept and growth parameters can be allowed to vary across institutions. The variation
in each may likely be partially explained by between-institutional characteristics as in Equation
6.3. In this example, we consider two institutional predictors that may account for systematic
variation in the intercept and slope parameters between institutions.

The first is selectivity in student admissions (i.e., defined as the percentage of students ad-
mitted with SAT or ACT math scores at the 75th percentile or above), which we standardized
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(M =0, 8D =1).The other variable is percentage of full-time faculty, which is also standardized.
The two Level 2 submodels are now defined as follows:

(6.20)

1o = Boo; + Bormmselect; + PBoyfulltime;; + 1y,

(6.21)

;= Broj + Brumselect; + Bryfulltime; + 1y,

'The covariance matrix of random effects at Level 2 can be defined as diagonal or unstructured;
however, we will maintain a diagonal covariance matrix at each level.

At Level 3 (between states), we will also add two predictors. The first is the percentage share
that families have to pay for higher education in the state, which we standardized. The second
variable is the average percentage of freshman retained in the state (which we also standardized),
which may serve as one proxy indicator of the quality of the state’s public higher education system.

(6.22)

Booj = Yooo + Yomavefamilyshare; + yopaveretention; + uy.

For this model, we will consider the growth rate to vary also across states but will not try to ex-
plain that variation:

(6.23)

Bioj = Y100 + tho-

When we combine these, we will have 16 parameters to estimate (keeping in mind two repeated

measures effects at Level 1).

Vi = Yooo + Yooravefamilyshare; + yoaveretention; + Yoomselect; + Yoyfulltime;

+ Yigotimel

+ Vaootuition; + uygitimely; + gy + rigtimely; + o5 + €4 (6.24)
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Two cross-level interactions (or nested terms) will be created and added to the model: timel*mathselect
and timeI*percentF'Tfaculty. These interactions will tell us if the growth trajectories vary between

institutions.

Add First Interaction to Model
1.4: time1 *mathselect
d. Click to select Build

nested terms.
. Click to select the
variable #imel from
the Factors and Co-
variates box.
Then click the arrow
button below the
Factors and Covari-
ates box. This moves
timel into the Build
Term box to create
a cross-level inter-
action by linking
variables and terms.
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. Next, click the BY*

button, which will insert the computation command symbol: #imel*.

. Click to select mathselect from the Factors and Covariates box.
1. Click the arrow button below the Factors and Covariates box to move mathselect into the Build

Term box and complete the interaction term: timel*mathselect.

Add Second Interaction to Model
1.4: time1 *percentFTfaculty

k. Click to select the vari-
able timel from the Fac-
tors and Covariates box.
Next, click the arrow
button below the Factors
and Covariates box. This
moves timel into the
Build Term box.
Now click the BY™* but-
ton, which will insert the
computation command
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. Click to select percent-
FTfaculty from the Fac-
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. Click the ADD button to transfer the interaction into the Model box.
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Click the arrow button below the Factors and Covariates box to move percentFTfaculty into the

Build Term box and complete the interaction term: zimel*percentF T faculty.

p:

Click the ADD button to transfer the interaction into the Model box.

Click the CONTINUE button to return to the Linear Mixed Models dialog box.
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Interpreting the Output From Model 1.4

As Table 6.10 indicates, after adjusting for the institutional variables, the true initial status grad-
uation rate for states is 0.475 (or about 47.5%). At Level 3, the coeflicients suggest that aver-
age family share (y = 0.020, p < .01) and average year 1 retention rates (y = 0.046, p < .01) are
both significant in explaining graduation rates. At Level 2, selectivity (y = 0.094, p < .01) and
percentage of full-time faculty remain significant predictors (y = 0.037, p < .01) of graduation
rates. Within institutions, the percentage of students receiving financial aid (y = 0.002, p < .05)
and tuition levels (y = 0.043, p < .01) also remain significant predictors of graduation rates. We
draw attention to the degrees of freedom in Table 6.10 as a means of checking that variables are
defined at their correct levels of the data hierarchy (i.e., keeping in mind that they reflect adjust-
ments used in calculating significance tests, so they may be larger or smaller than the “exact”
number of degrees of freedom at each level). We can see, for example, that family share and aver-
age freshman retention are state-level predictors (with degrees of freedom in the range between
40 and 50). Student selectivity and percentage of full-time faculty are institutional indicators (with

TABLE 6.10 Estimates of Fixed Effects®
95% Confidence Interval

Parameter Estimate  Std. Error df t Sig.  Lower Bound Upper Bound
Intercept 0.475 0.008 166.118 57.204 .000 0.459 0.491
aveFamilyshare 0.020 0.006 47.667 3.669 .001 0.009 0.031
aveRetention 0.046 0.005 44.386 8.277 .000 0.034 0.057
mathselect 0.094 0.005 706.719 18.129 .000 0.084 0.104
percentFTfaculty 0.037 0.004 651.637 9.005 .000 0.029 0.045
percentFinAid 0.002 0.001 5,654.256 2.110 .035 0.000 0.004
tuition 0.043 0.005 4,999.898 8.253 .000 0.033 0.053
timel 0.019 0.005 66.645 3.756 .000 0.009 0.030
mathselect * time ] 0.006 0.005 678.626 1.316 .189 0.003 0.016
percentFTfaculty * timel ~ 0.019 0.004 536.271 5.131 .000 0.012 0.027

@ Dependent variable: gradproportion.
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TABLE 6.11 Estimates of Covariance Parameters®

95% Confidence Interval

Paramenter Estimate  Std. Error  Wald Z Sig.  Lower Bound Upper Bound
Repeated Measures ~ AR1 Diagonal  0.003 0.000 34.057 .000 0.003 0.003
AR1 rho 0.312 0.019 16.269 .000 0.274 0.349
Intercept + time 1 Var: Intercept  0.001 0.000 2.362 .018 0.000 0.002
[subject = stateid] Var: time] 0.000  0.000  1.602  .109 0.000 0.001
Intercept + time 1 Var: Intercept  0.007 0.000 14.951 .000 0.006 0.008
[subject = rid * stateid]  vqr: time1 0.004  0.000  7.984  .000 0.003 0.005

@ Dependent variable: gradproportion.

degrees of freedom between 600 and 700). The percentage of students receiving financial aid and
average fuition are within-institutional variables (reflecting several thousand repeated measures
observations). Regarding the growth parameters, we can also observe that the average growth
slope (timel) is defined at the state level and the two growth cross-level interactions are specified
at the institutional level.

Turning to the growth rate model (#imel), the adjusted growth in graduation rate for states
over time was approximately 2% (0.019). The percentage of full-time faculty was positively re-
lated to within-institution growth in graduation rates (8 = 0.019, p < .01). Holding other vari-
ables in the model constant, this implies that a 1-§D increase in percentage of full-time faculty
would be related to a 1.9% increase in graduation growth rate over the period of the study, com-
pared with institutions at the grand mean of full-time faculty. Student selectivity, however, was
not related to growth in state graduation rates (3 = 0.006, p > .10).

'The variance components table (Table 6.11) suggests initial graduation rates still varied
across states (Wald Z = 2.362, one-tailed p < .05) and institutions (Wald Z = 14.951, one-tailed
p <.01) after inclusion of the Level 2 and Level 3 predictors. After addition of the institutional-
level predictors, graduation growth rates still varied across institutions (Wald Z = 7.984, one-
tailed p <.01). Growth may also still vary across states (Wald Z = 1.602, one-tailed p <.055). We
note that because Wald Z coeflicients are likely to be too conservative in small data sets (Hox,
2002), it might be instructive to develop a simple model to examine growth rates across states
using the same two predictors at Level 3.

Model 1.5: Adding a Model to Examine Growth Rates at Level 3

'The new model for the state-level growth rate is as follows:

Bioj = Y100 + Vioavefamilyshare; + yypaveretention; + iy (6.25)

When we combine all the predictors, we will have 18 parameters to estimate (including two
repeated measures parameters at Level 1).

Vi = Yooo + Yomavefamilyshare; + Yoyaveretention; + Yogmselect;; + Yofulltime; + yigotimel
+ yin Zavefamilysharetimel ;; + yiaaveretention; timel ,; + Yygmselect,; timel,

+ Yiofulltime; timel ; + YVaoofinaid,; + Ysptuition; + wygtimel,

tij

;
+ gy, + rytimel; + 1o+ €4 (6.26)

i i
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timel from the Factors and
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Build Term box and complete the interaction term: #imel“aveFamilyshare.

Add Second Interaction to Model 1.5: time1*aveRetention

Repeat steps 4c to 4h using #imel and aveRetention.

Add Third Interaction to Model 1.5: time1*mathselect

Repeat steps 4c to 4h using timel and mathselect.

Click the ADD button to transfer the interaction into the Model box.

Then click the arrow button below the Factors and Covariates box. This moves #imel into the
Build Term box to create a cross-level interaction by linking variables and terms.

Next, click the BY* button, which will insert the computation command symbol: #imel*
Click to select aveFamilyshare from the Factors and Covariates box.
Click the arrow button below the Factors and Covariates box to move aveFamilyshare into the
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Add Fourth Interaction to Model 1.5: time1*percentFTfaculty
Repeat steps 4c to 4h using timel and percentFTfaculty.
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Interpreting the Output From Model 1.5

Our primary interest is the growth rate portion of the model in Table 6.12. Once again, the aver-
age state growth rate is estimated as about 0.020. Average family share of higher education costs
did not affect growth in state graduation rates over time (y = -0.002, p > .10). In contrast, how-
ever, average retention of freshman students was significantly related to increases in graduation
growth rates (¥ = 0.011, p < .05). This suggests that a 1-SD increase in year 1 student retention
rates would result in about a 1% increase in graduation growth rate over time, compared with
states at the grand mean for retention rate, holding the #imel slope and other variables constant.
'The other fixed effects remained consistent with the previous model.

TABLE 6.12 Estimates of Fixed Effects®

95% Confidence Interval

Parameter Estimate  Std. Error df t Sig.  Lower Bound Upper Bound
Intercept 0.475 0.008 166.959  57.074 .000 0.458 0.491
aveFamilyshare 0.020 0.006 49.395 3.666 .001 0.009 0.032
aveRetention 0.044 0.006 46.191 7.846 .000 0.032 0.055
mathselect 0.094 0.005 707.405 18.178 .000 0.084 0.105
percentFTfaculty 0.037 0.004 653.623 8.960 .000 0.029 0.045
percentFinAid 0.002 0.001  5,655.894 2.136 .033 0.000 0.004
tuition 0.043 0.005 5,100.035 8.186 .000 0.032 0.053
timel 0.020 0.005 60.234 4.015 .000 0.010 0.030
aveFamilyshare * time 1 -0.002 0.004 39.421 -0.372 712 -0.010 0.007
aveRetfention * time 1 0.011 0.004 40.280 2.575 .014 0.002 0.020
mathselect * time 1 0.005 0.005 671.231 1.077 .282 -0.004 0.015
percentFTfaculty * time 1 0.020 0.004 514.186 5.303 .000 0.013 0.027

@ Dependent variable: gradproportion.
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TABLE 6.13 Estimates of Covariance Parameters®

95% Confidence Interval

Parameter Estimate  Std. Error Wald Z Sig.  Lower Bound Upper Bound
Repeated Measures ~ AR1 Diagonal ~ 0.003 0.000 34.100 .000 0.003 0.003
AR1 rho 0.311 0.019 16.266 .000 0.273 0.348
Intercept + timel Var: Intercept 0.001 0.000 2.368 .018 0.000 0.002
[subject = stateid] Var: time] 0.000  0.000 1263 207 0.000 0.001
Intercept + time1 Var: Intercept 0.007 0.000 14.954 .000 0.006 0.008
[subject = rid * stateid]  vqr: time1 0.004  0.000 7.985  .000 0.003 0.005

@ Dependent variable: gradproportion.

'The variance components table (Table 6.13) suggests there is still Level 3 and Level 2 vari-
ance in initial status graduation levels to be explained. After adding the state-level variables to
explain growth in graduation rates over time, there is not sufficient variability left to be explained
(Wald Z = 1.263, one-tailed p = .1035). There is, however, sufficient variability in growth rates
still across institutions (Wald Z = 14.954, one-tailed p < .001). We could include other predictors
at the institutional level to model this variability if we desired.

We can also determine how much variance in the random coefhicients was accounted for by
the predictors, keeping in mind our previous cautions about variance reduction in multilevel
models. The proportion of variance explained is the ratio of the difference between the total
parameter variance estimated from the unconditional model and the residual parameter vari-
ance from the fitted model relative to the total parameter variance. For intercepts, the amount of
variance accounted for is reduced from 0.004 (Table 6.2) to 0.003 in Table 6.13 (0.004-0.003 =
0.001/0.004), or about 25% of the variance accounted for within institutions. At Level 2, the
variance component is reduced from 0.016 in Table 6.2 to 0.007 (or R? of 0.563), or about 56.3%
of the variance accounted for at Level 2. At the state level (Level 3), the variance is reduced from
0.003 to 0.001 (or R? of 0.667), or about 67.7% of the variance at that level. Of course, these

estimates would be a bit different if we began with a baseline model that included #imel.

A Regression Discontinuity Analysis of a Math Treatment

Other types of models to examine change over time can also be formulated in SPSS MIXED. In
the remaining part of the chapter, we focus on two types of research designs for investigating ef-
fects of interventions over time. Both models involve the observation of a discontinuity, or “jump”
in repeated measurements. In the next example, we illustrate how the regression discontinuity
(RD) design can be used to examine the impact of a hypothetical classroom treatment in math
on students. The design provides a strong, reliable alternative to the randomized experiment
(Shadish, Cook, & Campbell, 2002). The RD design is a type of pre- and posttest design, which
makes it possible to assess the impact of a treatment accurately by establishing a precise prein-
tervention criterion for assigning individuals to treatment and control groups. In an RD design,
individuals above the chosen cut point are assigned to one group, those below to another, and the
treatment assigned to either group.

'The RD design compares the outcomes of individuals on either side of the selection cutoff point
but who are similar on other baseline covariates. The observed treatment effects are expected to
be most easily discerned for individuals near the cut point; that is, one can control for confound-
ing factors by simply contrasting participants close to the treatment cut point to nonparticipants
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close to the cut point. In most situations, however, researchers look beyond this examination of
individuals only around the cut point and use all the data they have (or at least data covering a
much broader range of individuals in the study). As Cain (1975, in Pedhazur & Schmelkin, 1991)
noted, “The critical difference for avoiding bias is not whether the assignments are random or
nonrandom, but whether the investigator has knowledge of and can model this selection process”
(p- 304). Thus, estimation bias may be avoided in the RD design, not because of random assign-
ment of subjects, but because the covariate used to assign subjects is known beforehand (see Cook
& Campbell, 1979; Pedhazur & Schmelkin, 1991). We encourage readers to investigate additional
sources on the RD design for further information about the uses of this design.

The Data and Design

In our illustration, we have 4,591 students who were assigned to one of two instructional con-
ditions—we will say one being a more traditional instructional approach consisting of teacher
lecturing and students reading the supporting text material (coded 0), or an alternative approach,
where students work more collaboratively with their peers and the teacher using a lab-based,
problem-solving approach. In our example, 53 math teachers implement the traditional and
alternative approaches within the basic math courses they teach. The treatment, therefore, is
implemented at the individual student level (Level 1) since students assigned to a particular
teacher could have received either instructional approach. At the teacher level (Level 2), covari-
ates related to teacher effectiveness and class composition serve as controls for peer and teacher
effects that might interact with the treatment effects. The variables used in the example are sum-

marized in Table 6.14.

TABLE 6.14 Data Definition of ch6RDdata.sav (N = 4,591)

Variable Level® Description Values Measurement
subjectid  Individual  Student identifier (4,591 students across three Integer Ordinal

time occasions).
teachcode  Teacher Teacher identifier (53 math teachers). Integer Ordinal
pretest Individual ~ Math placement test score used to divide students 148 to 171 Scale

info a treatment or control group.

npretest Individual  The transformed measure of the student’s pretest  -11 to 12 Scale
math placement test score (pretest) in relation to
the cut point for group assignment.

treatment  Individual  Dichotomous variable indicating students 0 = Control group Scale
assigned to the control group (coded O) or the 1 = Treatment Groups
treatment group (coded 1).

nmath Individual ~ Dependent variable representing student 561 to 856 Scale
performance in math.

teachqual  Teacher Standardized composite score (M =0, SD = 1) -2.67 to 340 Scale

of the teacher’s overall teaching effectiveness.

classcomp  Teacher Factor score (M =0, SD = 1) representing the -1.11102.16 Scale
weighted percentage of students in each class
who are low SES, receiving English language
services, and receiving special education services.

npretest2  Individual ~ Quadratic pretest component (npretest*npretest) O to 144 Scale

npretest3  Individual ~ Cubic pretest component (npretest?* npretest) -1331t0 1728 Scale

o Individual = Level 1; teacher = Level 2.
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Students are assigned to the treatment and control conditions based on a math pretest score.
In our example, we set a cut score on the pretest of 159. Therefore, students with scores of 160
or higher are assigned to the treatment, and those with scores of 159 or lower are assigned to
the control (although this assignment can also be reversed). If the treatment has no effect (i.e.,
assuming a linear relationship between the covariate and outcome), a single regression line is
expected; that is, there would be no discontinuity between students who scored 159 or below and
those who scored 160 and above. If the treatment is effective, a discontinuity in the regression
line reflects the size of the treatment effect (Shadish et al., 2002).

Several advantages and cautions regarding the design have been noted (Cook & Campbell,
1979). First, RD can produce an unbiased causal inference, if it is precisely implemented with
correct modeling of the relation between the assignment criterion (i.e., age) and the inde-
pendent variable (i.e., achievement). Its major drawback is the possibility that effects may
be biased if the relationship between the assignment covariate and the outcome variable is
incorrectly modeled (e.g., nonlinear relationship or possible interactions ignored). A second
advantage is that, in principle, controlling various background variables to assess the effect of
the treatment is not required. This is because the exact criterion of assignment to treatment
or control group is known, and its effect is accounted for in the analysis. We do have the flex-
ibility, however, to include student-level covariates as a check for the robustness of treatment
estimates.

Misclassification can sometimes be a problem, if other factors besides the criterion used to
assign individuals also influence assignment decisions (e.g., self-selection and individuals who
are eligible to participate but choose not to participate). When other factors may potentially
influence treatment effects, this is referred to as a fuzzy discontinuity. In practice, this potential
problem is sometimes addressed by comparing subgroups of eligible versus noneligible partici-
pants. Moreover, the RD design identifies the mean impact of the treatment at the cut point for
selection (versus an experimental design that provides the average treatment effect for all indi-
viduals). The RD design, therefore, does not directly inform us about the impact for individuals
who might be further away from the cut point. Individuals at the extreme ends of the distribu-
tion on the assignment criterion are unlikely to be comparable, which can make the analyst rely
more on covariates to control for the differences between individuals.

Assumptions of the Design

As Trochim (1984) notes, interpreting results of studies using the RD design depends on the
support of three assumptions. These assumptions were met in conducting the analyses presented
in the following section.

1. The assignment of participants according to the cut score must be followed.

2. The pattern of pretest scores must be specified correctly by the statistical model used. Models can
be tested initially for possible higher order polynomial effects related to the pretest scores
(i-e., quadratic and cubic) and for interactions between the higher order polynomials and
the treatment. This amounts to testing for higher order terms above and below the cut
point (i.e., including higher order polynomials and interactions between the polynomials
and the treatment). As Shadish et al. (2002) note, if interactions or nonlinear effects are
suspected, the analysis should be conducted with the higher order terms in the model, and
then nonsignificant terms should be dropped from higher to lower order. When there is
doubt, the terms should be kept in the model because this overfitting will yield unbiased
coeflicients.

3. There is no coincidental factor at the chosen cut score that would result in program effects. This as-
sumption can be tested by conducting a study over a repeated number of semesters and with
situations where students above the cut score were assigned to the treatment group and with
situations where students above the cut score were assigned to the control group.
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Steps in the Regression Discontinuity Analysis

In the RD approach, an important first step is to determine the functional relationship between
the assignment variable and the outcome variable (Shadish et al., 2002). In this case, the assign-
ment variable is students’scores on a math pretest. Determining the functional relationship (i.e.,
whether it is linear or curvilinear) between the assignment and outcome variable is important
in order to ensure unbiased treatment effects (Shadish et al., 2002). This can be accomplished
by initially including higher order (i.e., quadratic and cubic) assignment (pretest) effects and
possible interactions with the treatment and then removing the nonsignificant effects (Moss &
Yeaton, 2006). In our example, we created the higher order terms but found that none of them
were significant in explaining the relationship between the pretest, treatment, and outcome.
‘Therefore, we eliminated them. We retained the zreatment x pretest interaction to illustrate that
this might mean there was an advantage or disadvantage associated with the treatment depen-
dent on students’ pretest scores. If this were significant, it would suggest that the treatment
worked difterentially for students with differing levels of prior math ability.

In the multilevel analysis of a RD design, there are three primary equations to consider: the
student-level equation to model individuals’ pretest and treatment effects on an achievement
intercept, the equation to explain variation in between-teacher intercepts, and the equation to
explain variability in between-teacher treatment slopes.

Predictors in the Models

Treatment effect. 'This variable is simply an indicator of the student being assigned to the control
group (coded 0) or the treatment group (coded 1).

Pretest. Students took a math placement test before entering the developmental math sequence.
'The variable npretest represents the transformed measure of the student’s pretest in relation to the
cut point for group assignment. Student math placement test scores were used for purposes of as-
signment to the traditional or redesigned course sequence. The highest score at the cut point (159)
was coded 0, which with respect to the intercept in the model equation represents the achieve-
ment of the students with most prior ability in either the control or treatment group, depending
on whether the treatment is assigned to the set of students with lower math prior skills or higher
prior math skills. In this case, we assigned the students with scores of 159 or lower to the control
group. Prior math scores of 160 or above were assigned to the treatment group. The scores were
then recoded to be centered on the cut score such that scores below 159 were negatively coded
(e.g., 158 = -1; 157 = -2) and scores above 159 are positively coded (e.g., 160 = 1; 161 = 2).

Classroom composition. This is the factor score (M = 0, SD = 1) describing the weighted per-
centage of students in each class who are low socioeconomic status (SES), receive English lan-
guage services, and receive special education services.

Teacher quality. This is a standardized composite score (M = 0, SD = 1) of the teacher’s over-
all teaching effectiveness considering several domains (e.g., academic expectations, monitor-
ing of student process, implementation of curriculum standards, and classroom performance
evaluations).

Specifying the Model

Equation 6.27 represents the reduced RD model examined after testing for higher order treat-
ment effects and interactions:

Y, = By, + Binpretest; + Potreatment;; + €. (6.27)

Covariates (X) can be added to the model to increase the precision of the treatment by account-
ing for additional residual variance. It should be noted that in the RD equation, the pretest score
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is transformed by taking into consideration the cut point, or highest score that will separate the
groups, which is transformed to 0. This defines the intercept in the model as the mean math
achievement score for students with the highest pretest score in the control group. The coef-
ficients 8, and f3, represent the potential effects of the pretest and the effect of the treatment,
respectively, on math achievement.

At Level 2, we will allow the achievement intercept and the treatment slope to vary at random:

Boj =Yoo + (6.28)
Boi =720 + ty. (6.29)

We will also fix the pretest slope (B;; = 710). Through substitution, we arrive at the combined
model:

Y, = yoo + Yionpretest; + Yytreatment; + uyitreatment; + uy; + €. (6.30)

We note that we also specified the covariance between the intercept and treatment slope Level
2 by specifying a UN covariance matrix. This suggests seven parameters to estimate in the initial
model (i.e., three fixed effects, three random effects at Level 2, and one residual).

In Table 6.15, we provide the preliminary models where we examined possible nonlinearities
in the effects of students’ entrance pretest scores and treatment effects. As those can be removed,
it strengthens the case for the difference in effect on either side of the cut point. We note that in
the preliminary two models having higher order polynomial terms, no predictor was significant.
We then eliminated the cubic and quadratic terms. We can see in the last model (with linear
term) that the interaction between the pretest and treatment was nonsignificant, suggesting it
could also be removed from subsequent models.

TABLE 6.15 Examination of Higher Order Polynomial Interactions

Variables Cubic Term Quadratic Term  Linear Term

Between Teachers

Intercept 672.648* 672.267* 671.466*
treatment 5.563 3.702 4.661**
Student Level
npretest 1.450 0.900 0.400**
treatment* npretest -2.501 -0.314 0.125
npretest2 0.179 0.047
treatment*npretest2 0.112 -0.051
npretest3 -0.008
treatment™® npretest3 -0.023
Variance Components
Level 2 Intercept 148.48* 148.51* 148.17*
Level 2 Slope 25.49** 25.47** 25.45**
Covariance 5.88 5.86 6.08
Residual 1,340.22* 1,339.78* 1,339.32*

*p<.05; **p < .10.
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Regression Discontinuity Models to Explain Learning Differences
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The initial research question asked if there is a difference in learning outcomes between students
in traditional and problem-based learning groups.

Defining Model 2.1 with IBM SPSS Menu Commands

Launch the IBM SPSS pro-
gram application, and select

the ¢h6 RD-1data.sav data file.

1. Go to the toolbar and
select ANALYZE,
MIXED MODELS,
LINEAR.

This command enables access
to the Linear Mixed Models:
Specify Subjects and Repeated
dialog box.

@ ch6RD-1data.sav [DataSetl] - IBM SPSS Statistics Data Editor
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2. Within the Linear Mixed Models: Specify
Subjects and Repeated dialog box, click to
select teachcode from the left column. Then
click the arrow button to transfer the vari-
able into the Subjects dialog box.

Click the CONTINUE button to display the Lin-
ear Mixed Models dialog box.

@ Linear Mixed Models: Specify Subjects and Repeated

Céck Continue for models with uncormrelated terms.
Specify Subject variable for models with correlated random effects.

Specify both for models with correlated

d and Subject

residuals within the random effacis.

Subjects:

’ teachcode

& pretest
f npretest

f treatment

fnmath

f teachqual Repeated:

f classcomp
&) npretest?
f npretest3

Repeated Covariance Type: | Diagona

Hep |

e I |
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3a. In the Linear Mixed Models dialog ) Linear Mixed Models [z
box, click to select the nmath vari- —F=
able from the left column listing, & subpecta W | [ & nman | |_Fxed..
and then click the right-arrow but- & teachcode Eactorta) Roadon.
ton to move it into the Dependent :re::u [ 1 [_gstmaton... |
Variable box. At [i[ [ statatcs.._|
b. Click to select mpretest and treat- — -;‘!._,.,!,,__@; _ @
ment and then click the right- e | | npretest !L
arrow button (or “drag them”) to & npretest2 f et | [ goststrop.. |
move them into the Covariate(s) & npretests Residual Weight
box. 2] |
[ ok ][ paste ][ meset ][ concel || nep |

Click the FIXED button to access the

Linear Mixed Models: Fixed Effects dialog

box.

4a. Within the (€2 Linear Mixed Models: Fixed Effects [
Linear Mixed
Models: Fixed -Fi_xed Effects — = ——————————————
Eﬁécts dialog (3) Buid terms () Buid pested terms
box, click the Factors and Coyariates: Modet:
pu]l—down ' npretest | npretest
menu to change ' - v
the factorial 2 T
setting to Main ManEffects v i
Eﬁcts. Factorial !
b. Click to select :::E:f’ N i

npretest and Al 2-way |
treatment from | ::i::: [._'_E] Bl
the Factors and e . Aisway A =
Covariates box, @"’"f"-;,-__ 5 a ]
:ESA}E%CESE include intercept  Sumof ;q:l:;e;!’ @

ton to move the

Lb'(:onlinue ” Cancel ” Help

variables into

the Model box.

c. Note on lower left of the screen that the intercept and the sum of squares (7ype III) are the

default settings.

Click the CONTINUE button to return to the Linear Mixed Models dialog box.

We will now add random effects to this model.

Click the RANDOM button to access the Linear Mixed Models: Random Effects dialog box
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5a. Within the Lin-

#3 Linear Mixed Models: Random Effects

[

|Unstructured

ear Mixed Models:
~Random Effect 1 of 1
Random Effects box, )|
change the covari- Coveteace Tvoe:
ance type by clicking L ects
the pull-d S
on € p u own Eactors and Covariates:

menu and selecting
Unstructured.

() Buiid pested terms @t [¥] Include intercept

Model:

b. Click to select: Include
intercept.

c. Change Factorial Ef-
fects by clicking on the

treatment
( ; 1 A
IMain Effects !

|Factorial

Main Effects h
interaction

A0 2-way

N AL 3-way

2 A ——

pull-down menu and

4-way
Al 5-

selecting Main Effects.

d. Click to select treat-
ment from the Factors
and Covariates box,
and then click the

-Subject Grouping

e

& teachcode

ADD button to move
the variable into the

Model box.
e. Click teachcode from

the Subjects box, and then click the right-arrow button to add the variable to the Combinations

box.

Click the CONTINUE button to return to the Linear Mixed Models dialog box.

6. The Linear Mixed Models: Estimation
dialog box displays two estimation
method choices: ML or REML.

In this chapter, we will use the default setting
of REML to estimate the models.

Click the CONTINUE button to return to
the Linear Mixed Models dialog box.

(A Linear Mixed Models
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7. In the Linear Mixed Models dialog
box, click the STATISTICS button
to access the Linear Mixed Models:
Statistics dialog box.

Click and select the following three

statistics to be included in the output:
Parameter estimates, Tests for covariance
parameters, and Covariances of random

effects.

Click the CONTINUE button to return
to the Linear Mixed Models dialog box.

8. Finally, in the Linear Mixed Models
dialog box, click the OK button to

run the model.

2 Linear Mixed Models

~Summary Statistics:

["] Descriptive statistics

["] case Processing Summary
Model Statistics—

[v] parameter estimates

: ) (V] Tests for covariance parameters

i ["] Correlations of parameter estimates
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Interpreting the Output From Model 2.1
The fixed-effect estimates in Table 6.16 suggest that the mean for students in the control group
(holding other variables at 0) was 671.818. Higher pretest scores tend to be related to higher
scores (0.465, p < .01). Students in the treatment group also have significantly higher scores than
students in the control group (y = 4.710, p < .05).

TABLE 6.16 Estimates of Fixed Effects®

95% Confidence Interval

Parameter Estimate Std. Error df t Sig. Lower Bound Upper Bound
Intercept 671.818 2.126 76.299 316.041 .000 667.584 676.051
npretest 0.465 0.161 4,540.936 2.889 .004 0.150 0.781
treatment 4.710 2.382 397.711 1.978 .049 0.028 9.392

@ Dependent variable: nmath.
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Table 6.17 presents the summary of the covariance parameters. The table suggests that math
achievement varies across teachers in the study, as we might expect. There is some evidence that
the treatment also varies across teachers (Wald Z = 1.603, one-tailed p < .06).

The results suggest we might build a model to examine variability in the math achievement
intercepts and the treatment effect across teachers in the study.

In Figure 6.5, we summarize the predicted scores of individuals based on their pretest and
membership in the treatment or control group. The figure illustrates the discontinuity present
between the pretest scores (i.e., with 159 describing the highest score in the control group and
160 the lowest score in the treatment group).

As noted, we transformed the pretest variable (nprefest) so that it is centered on 159 (i.e., the
highest score in the control group). This suggests that individuals in the treatment group with the
lowest scores on the pretest (i.e., 160) will have predicted scores of about 5.18 points higher (i.e.,
4.71 + 0.47 = 5.18) than their immediate peers in the control group, as summarized in Table 6.16.

TABLE 6.17 Estimates of Covariance Parameters®

95% Confidence Interval

Parameter Estimate  Std. Error  Wald Z Sig. Lower Bound Upper Bound
Residual 1,339.071 28.210 47 .469 .000 1,284.907 1,395.519
Intercept + freatment  UN (1, 1) 148.064 36.588 4.047 .000 91.224 240.320
[subject = teachcode] UN (2, 1) 6.180  17.257 0.358 720 -27.643 40.002
UN (2, 2) 25.430 15.859 1.603 .109 7.490 86.336
@ Dependent variable: nmath.
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FIGURE 6.5 Regression discontinuity design illustrating treatment effect.
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Adding Explanatory Variables at Level 2

We might add two explanatory predictors at Level 2 (i.e., a classroom composition variable and
a teacher quality variable). For the intercept model, we propose that the student composition
(classcomp) in each class affects overall classroom achievement. We also propose that teacher
quality (feachqual) influences student progress in each class.

Boj = Yoo + Yoteachqual; + yoyclasscomp; + uy, (6.31)

Boj = Va0 + Yuteachqual: + yyyclasscomp; + uy; (6.32)

When we substitute these into the Level 1 equation (Eq. 6.27), we will have a combined equa-
tion with 11 parameters to estimate (i.e., seven fixed effects, three random effects, and one Level

1 residual).

Yij =Yoo + yOItEﬂc/ygualj + yozclasscompj + Yronpretest; + yYylreatment;

+ Yoteachqual, *treatment; + Yyclasscomp; * treatment;; + uytreatment; + uy + €

Defining Model 2.2 with IBM SPSS Menu Commands

Continue using the ch6RD-1data.sav data. Settings default to those used for Model 2.1.

(6.33)

1. Go to the toolbar and select ANALYZE, MIXED MODELS, LINEAR. This command enables
access to the Linear Mixed Models: Specify Subjects and Repeated dialog box.

2. The Linear Mixed Models: Specify
Subjects and Repeated displays the

default settings from Model 2.1. The & suvpeeid o I‘é m;amvmw ] %l Fix;ed... E _]

variable feachcode is within the Subject & teachcode e Regdom...

box. Click the CONTINUE button i Estrmaton._]
. . . teachqual B —

to display the Linear Mixed Models Wi Statistics...

dialog box. % :s;::z:ﬁ \M@te(s} [ EM Means... J

3. 'The Linear Mixed Models dialog box
settings default to those used in the
prior model.

We will introduce two additional predic-
tors to be used in the model (feachqual and
classcomp). First, click to select reachqual
and classcomp, and then “drag” the variables
to the Covariate(s) box above npretest. The
sequence of the variables is the following:
teachqual, classcomp, npretest, and treatment.

# Linear Mixed Models

e

. nprele t achqual Save...

& lreatment & \ cClasscomp Bootsirap

|1 |Covariate(s): 4

‘ teachqual &

e e & classcomp
L oK " Paste L fﬂpretest

o

Help

Click the FIXED button to access the Linear Mixed Models: Fixed Effects dialog box.
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4a. The Linear Mixed

.té Linear Mixed Models: Fixed Effects

]

Models: Fixed Effects
dialog box displays
the default setting
from the prior model.
To facilitate reading
the output tables, we
will first remove the
two variables (npretest
and treatment) by
clicking to select the
variables and then
clicking the RE-
MOVE button.

. Confirm that the
factorial setting is
Main Effects before

Fixed Effects

(%) Build terms

/" teachqual
| casscomp
v npretest
 treatment

[¥] nciude intercapt

Factors and Coyariates:

() Build nested terms

pdet:
poretest
atment a
iJum Effects — w[opretest
L
Factorial
ManEffects [\ | A
interaction :
1
AN 2-way :
Al 3-way i
= ~t .—."‘]
Al 4-way -"t add || Remove A
M S-way -
Sum of squares: |Typell >
I Continue H Cancel J[ Help

adding the predictor

variables to the model.

button to move the variables into the Mode/ box.

. Now click to select all the variables from the Factors and Covariates box, and then click the ADD

"Two cross-level interactions (or nested terms) will be created and added to the model: classcomp *treat-
ment and teachqual* treatment. These interactions will tell us whether (a) teacher quality (zeachqual)
influences the strength of the treatment effect in each class and (b) student composition (c/asscomp) in

each class influences the treatment effect.

Add First Interaction fo Model 2.2:
teachqual*treatment

d. Click to select Build nested terms.
e. Click to select the variable
teachqual from the Factors and
Covariates box.
Then click the arrow button
below the Factors and Covariates
box. This moves feachqual into
the Build Term box to create a
cross-level interaction by linking
variables and terms.
. Next, click the BY * button,
which will insert the computa-
tion command symbol: zeachqual®.

| &2 Linear Mixed Models: Fixed Effects

Fixed Effects

@\A Buid pested terms.

{_) Build terms

Factors and Covariates.

*

# classcomp

+ npretest
[l trentment|
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Hep |

. Click to select treatment from the Factors and Covariates box.
. Click the arrow button below the Factors and Covariates box to move treatment into the Build

Term box and complete the interaction term: feachqual*treatment.

j

Add Second Interaction to Model 2.2: classcomp *treatment

Click the ADD button to transfer the interaction into the Model box.

Repeat steps 4d to 4j using classcomp and treatment for the interaction. The final model is shown in the insert.

Click the CONTINUE button to return to the Linear Mixed Models dialog box.



284 W Applications of Mixed Models for Longitudinal Data

5. Finally, in the Linear Mixed Models 2 Linear Mixed Models =
dialog box, click the OK button to
Dependent Variable: L F ed—|
run the model. e - f — s wed..
& teacncode Eactor(s): !_Egdorn... |
é_f pretest 1 | gstmaton.. ]
@0 npretest2
& npretest3 ‘ ! Statistics... |
Covariste(s): : | Em.teans |
& teachqual 5__‘ |
, & classcomp = ﬂoubm |
nnratagt
Residual Weight:
- LI —— |
l OK L\\‘Jl Paste Reset Cancel || Hep |

Interpreting the Output From Model 2.2
We provide the fixed effects in Table 6.18.The results suggest that teacher quality affects achieve-

ment levels (y,, = 3.418, p < .05) and, as we might expect, classroom composition does affect
achievement levels (y, = —15.644, p < .001). With respect to the treatment, however, neither
teacher quality nor classroom composition aftects the strength of the treatment effect. In terms
of our research goals, we can interpret these results in positive terms by suggesting that the prob-
lem-based treatment appeared to enhance student learning, regardless of the specific classroom
composition or teacher quality.

Investigating a Change Due to Policy Implementation

In this final example, we examine whether a policy, or some other type of intervention, has an
impact on its intended targets. One design that is useful in examining trends before and after
a policy is introduced is a time series design. The essence of a time series design is the presence
of periodic measurements and the introduction of an experimental change into this time series
of measurements. The introduction of the treatment is expected to produce a discontinuity in
the series of measurements at some hypothesized interval after its introduction. Consider an
example concerning the introduction of a policy to increase the academic standards for freshman
student athletes and institutions’ responses to recruiting freshman student athletes before and
after the policy was introduced (e.g., see Heck & Takahashi, 2006, a more extended treatment of
this approach). In this case, we examine whether the introduction of Proposition 48 during the

TABLE 6.18 Estimates of Fixed Effects®

95% Confidence Interval

Parameter Estimate  Std. Error df t Sig. Lower Bound Upper Bound
Intercept 671918  1.679 85.023  400.185 .000 668.579 675.256
teachqual 3.418 1.476 62.980 2.316 .024 0.468 6.368
classcomp -15.644  2.419 45.706 -6.466 .000 -20.514 -10.773
npretest 0.462 0.161 4,544.787 2.865 .004 0.146 0.777
treatment 4.912 2.406 360.340 2.042 .042 0.180 9.644
teachqual*treatment 0.542 1.521 68.353 0.356 723 -2.493 3.578
classcomp*treatment -0.756  2.362 43.662 -0.320 751 -5.517 4.006

@ Dependent variable: nmath.
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mid-1980s had any impact on institutional behavior regarding freshman student athletes. Propo-
sition 48 was implemented to increase institutions’ graduation rates by upgrading their academic
standards for admitting student athletes.

A thorough test of the policy’s impact on changing institutions’recruiting behavior would require
the analyst to compare the behavioral trend before and after the policy was introduced. A piecewise
growth model—where the growth trajectories are split into two or more trends—can be used to
compare growth rates during two different prepolicy and policy implementation periods. In our
example, we study freshman student athletes admitted to Division 1A football programs during a
9-year period. More specifically, 3 years of data were collected before the introduction of the policy,
and 6 years of data were collected after the policy’s implementation. In a time series design, evidence
of a treatment’s effect is indicated by a discontinuity in the measurements recorded in the time series

(Campbell & Stanley, 1966). In this example, the time series design may be diagrammed as follows:
0,0,0;.X0,050,0,0505,

where the three Os preceding the X represent a yearly trend in freshman athletes admitted be-
fore the introduction of the policy. The design is a sound quasi-experimental design, provided
certain threats to internal validity can be successfully argued away (Campbell & Stanley, 1966).
Basically, the problem of internal validity reduces to the question of whether plausible compet-
ing hypotheses offer likely alternative explanations for any shift in the time series other than the
introduction of the policy (Campbell & Stanley, 1966).

'The major threats to the internal validity of the single-group time series design are instru-
mentation, testing, and history. Instrumentation and testing can be argued away more easily in
this case because the data were collected utilizing the same variables and no repeated testing
on individuals was done, as might be the case if the data were collected from individuals who
received a treatment of some type. The determination of change is considered solely on the
fluctuations in the institutional data prior to policy implementation and the years following its
implementation. Threats due to history, however, could be a potential problem. Rival explana-
tions could include changes in the institutional norms within the set of schools (that may or
may not correspond to the policy’s introduction) or perhaps cyclical events. The observational
series can be arranged to hold these types of cycles relatively constant (e.g., the data are col-
lected at the same time and over a relatively long period of time). This lessens the possibility that
some other corresponding extraneous event would produce the expected trends other than the
implementation of the policy (or other type of treatment). To deal with history as a rival expla-
nation, however, it is important for the researcher to specify in advance the expected relation-
ship between the introduction of the treatment and the manifestation of an effect (Campbell
& Stanley, 1966)—that is, how soon the effect would be seen. Importantly, as the time between
implementation and resultant effects increases, the effects of extraneous events become more
plausible.

By raising institutions’ academic standards to increase graduation rates (i.e., the policy’s
intended effect), it is likely that the policy also resulted in a reduction of freshman athletes
being admitted to programs, especially in some types of institutions. If this were true, over
the course of data collection, first, we should note a discontinuity of measurements (i.e., the
decline of freshman being admitted) after the policy was introduced. Second, it is likely that
a shrinking pool of student athletes might affect the football recruiting practices of some
schools more than others. We might hypothesize that schools with greater prestige (defined as
schools with outstanding on-field performance and frequent bowl appearances) would be less
affected in their efforts to recruit freshman athletes than would less prestigious schools. We
might also test whether the policy affected public and private institutions differently in terms
of recruiting.
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We can formulate a piecewise growth model to test these hypotheses against the data. In our
formulation, we first focus on comparing the growth trend before the policy was implemented
versus the growth trend after it was implemented. We will assume that the effects of the policy
will be seen immediately after the policy was introduced (since compliance was immediate). It
is possible, however, to investigate lagged (or delayed) effects. The second part of the analysis
involves examining how covariates such as institutional prestige and institutional type (i.e.,
public or private) might affect the key initial status and growth coeflicients before and after
the policy was introduced. Piecewise growth models can be used to represent difterent phases
of development or change. One way to do this is to examine whether there is a “discontinuity,”
or change, in the time series at the point where the policy is introduced (X) or at some speci-
fied point afterward. In this example, it is likely that the growth (slope) parameter of freshman
admits in Division I football programs would be negatively aftected by the introduction of
Proposition 48. Therefore, we can develop separate growth slopes before and after the policy
was introduced. Covariates can be added to the model to help refine the examination of the
contrasting trends.

The Data

'The data in this example consist of outcome data on the number of freshman student athletes
admitted to 105 Division 1A football programs over a 9-year period (i.e., 3 years before the
introduction of the policy and 6 years after its implementation). Data were also collected on pro-
gram prestige (i.e., program success over a 5-year period of time) and institutional type (public
or private). The variables are presented in Table 6.19.

TABLE 6.19 Data Definition of ch6RD-2data.sav (N = 105)

Variable Level® Description Values Measurement
schid Individual School identifier (105 schools). Infeger Ordinal
private School Dichotomous variable identifying institutions as O = Not Private Scale
private or public. 1 = Private
prestige School Predictor variable measuring program success. 2.00 to 4.551 Scale
Index1 Individual Variable represents the nine repeated (1,2,3,4,5,6,7, Nominal
measures of graduation status. 8,9
freshadmit  Individual Dependent variable representing the number 1 to 38 Scale

of freshman student athletes admitted to
football programs.

implement Individual Independent variable representing the 0 = No Policy Scale
prepolicy and policy periods. 1 = Policy

time Individual Preliminary variable representing the pre-policy (0, 1, 2, 3, 4, 5) Nominal
and policy time periods (0,1,2,0,1,2,3,4,5).

implement0  Individual Recoded Index1 variable to a time-related (0,1,2,2,2,2,2, Nomindl

variable representing the prepolicy period's 2, 2)
yearly growth
0,1.2,2,2,2,2,2,2).
implement]  Individual Recoded Index] variable to a time-related (0,0,0,1,2,3,4, Nominal
variable representing the policy period's 5, 6).
yearly growth (0,0, 0, 1, 2, 3, 4, 5, ).

o Individual = Level 1; school = Level 2.
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Model 3.1: Establishing the Prepolicy and Policy Trends

Model 3.1 consists of one intercept and two growth trends. The data were coded such that the
intercept represents initial status (i.e., Year 1). The first growth parameter then describes the
change per year over the 3 years before the policy was implemented. The second growth trend
represents change taking place after the policy was implementation (i.e., Year 4). Once again,
we can open the Repeated dialog box using the Index1 variable, which represents the nine re-
peated measures of graduation status. We then can recode this variable into two time-related
variables, which we named implementO (representing the prepolicy period) and implementl
(representing the policy implementation period). Readers may wish to examine the data set
to see how the two time-related variables are coded. ImplementO is coded to indicate yearly
growth during the prepolicy period (0, 1, 2, 2, 2, 2, 2, 2, 2). The first measurement is coded 0,
so it will be interpreted as the intercept, or the average number of freshman student athletes
admitted to Division 1A football programs at the beginning of the study. The 2s from Year 4
to the end of the study indicate that the prepolicy period ends after Year 3. The policy imple-
mentation variable is coded to indicate no growth during the prepolicy period (0, 0,0, 1, 2, 3,
4,5, 6) and then captures the yearly change beginning at Year 4. Interested readers can consult
Raudenbush and Bryk (2002) or Orsuwan and Heck (2009) for further information about
coding piecewise growth models.
From Equation 6.1, at Level 1, for institution 7 at time # we have the following model:

Y, = my; + myimplement0,; + myimplementl,; + €, (6.34)

where 7, is the initial status intercept in terms of entering freshman student athletes, 7y, is
the yearly rate of change before the policy was implemented (implement0), m,, is the yearly
rate of change after the policy was implemented (implementI), and &, represents errors in
estimating each institution’s growth trajectory, which are assumed to be normally distrib-
uted with a mean of 0 and some variance. We note that it is possible to add a second inter-
cept for the policy implementation trend, which requires defining a multivariate model (see
Chapter 7).
"The Level 2 (between institutions) model is defined as

T0; = Poo + tois
71, = Bios
75 = Booy (6-35)

where f3;, and S, are the prepolicy implementation and policy implementation intercepts and u,
is a random initial status intercept. In preliminary analyses, we found that the policy slopes did
not vary across institutions, so we fixed those parameters (4; 1;) between institutions in Equa-
tion 6.35. Through substitution, the combined model is then

Y, =+ Booi + Broiimplement0,; + Pyyimplementl,; + uy; + €. (6.36)

We found in preliminary investigation that a diagonal covariance structure fit the data well at
Level, and there is only a single random intercept at Level 2.
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Defining Model 3.1 with IBM SPSS Menu {2 ch6RD-2data.sav [DataSetl] - IBM SPSS Statistics Data Editor [ESEe =

Commands Fie Eﬂl View Qm Transform| Analyze Direct Markeling Graphs _mius Add-ons  Window Help

Ljﬁw-w e
Launch the IBM SPSS program application, Toties ,
and select the ch6 RD-2data.sav data file. j _schid | p ;:::.“m :
Generaiged Linear Madels
Miged Mdils ’
Corralale b
Begrassion L]
Lgginear ]

]

|Visibie: 9 of § Variables

1 | fleshz_igl_nll i
1 T

2 0 [

1. Go to the toolbar and select ANALYZE, =
MIXED MODELS, LINEAR. || &

MNeural Networks
Classify
Dimension Reduclion
Scalo
Monparametric Tests
Forecasting
I 1 — Survival
Data View, | Vorove View || MiteloResponse
Lnear.. : Missing Volua Analysis... cessor is ready
Wutiple ]
Complex Samples »
Qualty Control ]
ROC Curve...
IBM SPSS Amos...

'This command enables access to the Linear
Mixed Models: Specify Subjects and Repeated
dialog box.

w‘m-lmm
IR R PN S R i e

2a. Within the Linear Mixed Models: Specify Subjects A Linear Mixed Modeis: Specify Subjects and Repeated =5
and Repeated dialog box, click to select the schid
variable from the left column, and then click the

Click Continue for models with uncorreiated terms.
Specify Subject variable for models with correlated random effects,

arrow button to transfer the variable into the Sub- Specify both Repeated and Sublect varibles for mode’s wih correlated
residuals within the random effects.

Jjects dialog box.

b. The Repeated box allows specifying variables that
identify repeated observations. For this model,
Index1 identifies repeated observations over nine
time periods. Click to select Index1, and then
click the right-arrow button to move the variable
into the Repeated box.

c. 'The Repeated Covariance Type specifies a model’s

covariance structure. For this model, we will use the 5
Diagonal covariance matrix. Click the pull-down Repeated Coyarance Type:[Dagona >
menu to select the Diagonal covariance matrix as [pconnve || Becor amaytc: Frst orer ks
the Repeated Covariance Type. e — iR L
|Scaled identty
Click the CONTINUE button to display the Linear Mixed e
Models dialog box. Uostructured
3a. In the Linear Mixed Models dialog boxX, [ Linear Mixed Models [E=)
click to select the freshadmit variable
Repandent Variabie: e I
from the left column listing, and then & schie B J & tresnsdmt ]
click the right-arrow button to move it %:::::;e . S— [m
into the Dependent Variable box. & ; [w] _sntescn.
b. Click to select implementO and imple- B bt — | Eu Means.. |
ment1,and then click the right-arrow time _ o [ seye.. |
« N e | | - | %n‘oierm
‘!)utton (or drag them”) to move them & ookt [} AL % implementt |
into the Covariate(s) box. Resicual egnt ]
Click the FIXED button to access the Linear (Cox | gm I - oset ] (_cancet JJ 1o
Mixed Models: Fixed Effects dialog box.




4a. Within the Linear Mixed

Models: Fixed Effects dialog
box, click the pull-down
menu to change the facto-
rial setting to Main Effects.

b. Click to select implementO
and implement1 from the
Factors and Covariates box,
and then click the ADD
button to move the vari-
ables into the Mode/ box.

c. Note on lower left of the
screen that the intercept
and the sum of squares
(Type III) are the default
settings.

Click the CONTINUE button to return to the Linear Mixed Models dialog box.

We will now add random effects to this model.

Click the RANDOM button to access the Linear Mixed Models: Random Effects dialog box.

5a. Within the Linear Mixed
Models: Random Effects box,
change the covariance type
by clicking on the pull-down
menu and selecting Scaled
Identity.

b. Click to select Include
intercept.

c. Click schid from the Subjects
box, and then click the right-
arrow button to add the
variable to the Combinations
box.

Click the CONTINUE button to
return to the Linear Mixed Models
dialog box.
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6. In the Linear Mixed Models dialog box,
click the ESTIMATION button to
access the Linear Mixed Models: Esti-
mation dialog box.

'The Linear Mixed Models: Estimation dialog
box displays two estimation method choices:
ML or REML.

In this chapter, we will use the default
setting of REML to estimate the models.
Readers should keep in mind that if they
compare models with regression slopes and
covariance parameters, ML estimation is

preferred (Hox, 2010).

Click the CONTINUE button to return to
the Linear Mixed Models dialog box.

7. In the Linear Mixed Models dialog
box, click the STATISTICS button
to access the Linear Mixed Models:
Statistics dialog box.

Click and select the following three
statistics to be included in the output:
Parameter estimates, 1ests for covariance pa-
rameters, and Covariances of random effects.

Click the CONTINUE button to return
to the Linear Mixed Models dialog box.

8. Finally, in the Linear Mixed Mod-
els dialog box, click the OK button

to run the model.

#3 Linear Mixed Models

A Linear Mixed Models: Estimation ®~~__
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Interpreting the Output From Model 3.1

'This proposed model suggests 13 parameters to estimate (three fixed effects, one random effect,
and nine diagonal variances at Level 1). This can be confirmed in Table 6.20, which summarizes
the model dimensions.

We present the fixed effects in Table 6.21 on page 292. We can see that the first slope (before the
policy was introduced) is negative but not declining significantly (8;, = -0.441, p > .05). The slope
after the introduction of the policy, however, does decline significantly (8, = -0.585 p <.001).

We present the variance components in Table 6.22. We can see that there is significant vari-
ance in initial status intercepts across institutions (Wald Z = 5.317, p < .001). The variances for
the repeated measures are considerably different, providing some evidence for why in our pre-
liminary models the diagonal structure fit the data better than an autoregressive or compound
symmetry covariance structure.

TABLE 6.20 Model Dimension®

Number of Covariance ~ Number of  Subject ~ Number of

Levels Structure Parameters  Variables  Subjects
Fixed Effects Intercept 1 1
implementO 1 1
implement1 1 1
Random Effects  Intercept 1 Identity 1 schid
Repeated Effects  Index] 9 Diagonal 9 schid 105
Total 13 13

@ Dependent variable: freshadmit.

TABLE 6.

21 Estimates of Fixed Effects®

95% Confidence Interval

Parameter Estimate Std. Error df t Sig. Lower Bound Upper Bound
Intercept 22.206 0.444 176.312 49.978 .000 21.329 23.083
implementO -0.441 0.251 224.738 -1.755 .081 -0.935 0.054
implement1 -0.585 0.070 357.231 -8.391 .000 -0.722 -0.448

@ Dependent variable: freshadmit.
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TABLE 6.22 Estimates of Covariance Parameters®

95% Confidence Interval

Parameter Estimate Std. Error Wald Z Sig.  Lower Bound Upper Bound

Repeated Measures Var: [Index1 =1]  18.209  2.729 6.671 .000 13.573 24.427
Var: [Index1 =2]  23.806 3.487 6.827 .000 17.865 31.722
Var: [Index1 = 3] 19.046 2.846 6.692 .000 14.210 25.527
Var: [Index1 =4]  24.754 3.644 6.792 .000 18.549 33.034
Var: [Index1 =5]  20.872 3.084 6.768 .000 15.624 27.882
Var: [Index1 = 6] 15.408 2.341 6.583 .000 11.441 20.752
Var: [Index1 = 7] 12.117 1.888 6.417 .000 8.928 16.445
Var: [Index1 = 8] 12.287 1.909 6.436 .000 9.061 16.661
Var: [Index1 = 9] 9.960 1.599 6.228 .000 7.271 13.644

Intercept Variance 5.230 0.984 5317 .000 3.617 7.561

[subject = schid)]

@ Dependent variable: freshadmit.

Final Model with Covariates Added

Our final model adds school type (By,), defined as private (coded 1) versus (public = 0), and in-
stitutional prestige (fy,) at Level 2 for the intercept model:

1o = oo + Poprivate; + Poprestige; + ;. (6.37)
'The nonrandomly varying slope models will be the following:
;= Pro + Puprivate; + Pryprestige; + uy;, (6.38)
My = Poo + ﬂ21pri7/ate,- + ,Bzzpresz‘igel- + Uy
TABLE 6.23 Model Dimension®
Number of  Covariance ~ Number of Subject Number of
Levels Structure  Parameters  Variables Subjects
Fixed Effects Intercept 1 1
private 1 1
prestige 1 1
implementO 1 1
implement1 1 1
private * implementO 1 1
prestige * implementO 1 1
private * implement1 1 1
prestige * implement1 1 1
Random Effects  Intercept 1 Identity 1 schid
Repeated Effects Index 9 Diagonal 9 schid 105
9 9

Total

pa—

—_

@ Dependent variable: freshadmit.
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The Level 1 model remains the same as Equation 6.34. Though substitution of Equations
6.37 and 6.38 into Equation 6.34, we obtain the combined model (we leave this last step to
readers). As the previous equations suggest, this model will add six more parameters to be
estimated (i.e., two effects on the intercept, two effects on the prepolicy trend, and two effects
on the policy implementation trend), which can be confirmed in the model dimension table

(Table 6.23).
Defining Model 3.2 with IBM SPSS Menu Commands

Continue using the ch6RD-2data.sav data. Settings default to those used for Model 3.1.

1. Go to the toolbar and select ANALYZE, MIXED MODELS, LINEAR. This command enables
access to the Linear Mixed Models: Specify Subjects and Repeated dialog box.

2. 'The Linear Mixed Models: Specify Subjects and Repeated displays the default settings from Model 3.1.
'The variables schid and Index1 are in the Subject and Repeated box, respectively. The chosen covariance
type is Diagonal. Click the CONTINUE button to display the Linear Mixed Models dialog box.

3. 'The Linear Mixed Models dialog box

settings default to those used in the o Linear Mised Mode i
prior model. _ o | Rependent Varibe: T
schid | @0 freshadmt G —
We will introduce two additional predic- |§“ﬂ7v Facio(s): | Random.. |
tors to be used in the model (private and oy ;:::F (o Iw
prestige). First, click to select private and & inplemen | sustcs.. |
prestige, and then “drag” the variables to & time varamg); | LM Jeons.. J
the Covariate(s) box above implementO. [ % "’“:’“‘"1 NP private J
'The sequence of the variables is the fol- —J |®T mm'.: P prating
lowing: private, prestige, implement0, and O | [eemmmetx: _\_.‘:_.
implement1. _ o ?::;:_;e s
| oK ] Paste | - elp
Click the FIXED button to access the | 2 % 5 )
Linear Mixed Models: Fixed Effects dialog
box.
4a. 'The Linear Mixed Models: G Lineer Mied Models Foed Effecs . i
leea’ Eﬁfﬂ' dlalog bOX rFixed Effects
displays the default setting © uig terms © Buld gested terms
from the pl'iOI' model. To Facinrs and Coyariates: Modet

make reading the output
tables easier, we will rear-
range the sequence order
of the variables by first
removing the two variables
(implement0 and imple-
ment1). Click both variables ¥
to select them, and then
click the REMOVE button.

b. Confirm that the facto-
rial setting is Main Effects
before adding the predictor
variables to the model.

c. Now click to select all the variables from the Factors and Covariates box, and then click the
ADD button to move the variables into the Model box.

implement0
ment] 1

private

; |prestige
| Man Effects | impiemento
|implement1

[#] Include intercept  Sum of squares: |'i';pu__ =

| Continue || Cancel || Help
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Four cross-level interactions (or nested terms) will be created and added to the model:

implementQ*private, implement0”prestige, implement1*private, and implementI prestige.

Add First Interaction fo Model 3.2:
implementO*private

d. Click to select Build nested
terms.

e. Click to select the variable
implementO from the Factors
and Covariates box.

f. Then click the arrow button
below the Factors and Covari-
ates box. This moves implementO
into the Build Term box to cre-
ate a cross-level interaction by
linking variables and terms.

g. Next, click the BY* button. This
will insert the computation
command symbol: implement0”.

A Linear Mixed Models: Fixed Effects

rFixed Effects-

| © Buid terms

| Factors and Coyariates:

|||# prestige

RPP

@.,'\" ) Buid pested terms

Mpdet

private Wgdet

|prestige [ -

i - private

:rrvq'm!m prestge

|rmplement1

- |n'olemenr0'9'~r.e | implement]

A implementd*private
! mplementl prestige
H implement1®private
E implement | prestige

.:-w “.

| Build Term:

e ) Comaie

[P
“=# implement * private

[¥] Include ntercept

Sumofsquares: (Typel  ~|

Lbcm‘.l!uej cancet || Hew |

h. Click to select private from the Factors and Covariates box.

i. Click the arrow button below the Factors and Covariates box to move private into the Build
Term box and complete the interaction term: implementO*private.

j. Click the ADD button to transfer the interaction into the Model box.

Add Second Interaction to Model 3.2: implementO *prestige

Repeat steps 4d to 4j using implement0 and prestige for the interaction.

Add Third Interaction to Model 3.2: implement1 *private

Repeat steps 4d to 4j using implement and private for the interaction.

Add Fourth Interaction to Model 3.2: implement 1 *prestige

Repeat steps 4d to 4j using implement1 and prestige for the interaction.

'The completed model is shown in the insert. Click the CONTINUE button to return to the Linear

Mixed Models dialog box.

5. Finally, in the Linear Mixed

2 Linear Mixed Models

Models dialog box, click
the OK button to run the
model.

&b schid
&b Index1
& implement

& time

1 Dependent Varisble:
| | [& treshadmz ]

Random...
Factor(s):

Estimation...

EM Means... |

Save...

Jilf
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Residual Weight
|
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TABLE 6.24 Estimates of Fixed Effects®

95% Confidence Interval

Parameter Estimate  Std. Error df t Sig. Lower Bound Upper Bound
Intercept 22147 0.485 171.064 45.660 .000 21.190 23.105
private -0.426 1.138 171.064 -0.374 709 -2.672 1.821
prestige 0.904 0.346 171.064 2.611 .010 0.221 1.588
implementO -0.447 0.278 224.030 -1.607 .109 -0.995 0.101
implement1 -0.651 0.077 355.077 -8.434 .000 -0.802 -0.499
private * implementO 0.189 0.652 224.030 0.290 772 -1.096 1.475
prestige * implementO -0.203 0.199 224.030 -1.025 307 -0.595 0.188
private * implement1 0.374 0.181 355.077 2.064 .040 0.018 0.730
prestige * implement1 -0.008 0.055 355.077 -0.144 .886 -0.116 0.100

@ Dependent variable: freshadmit.

Interpreting the Output From Model 3.2

We next provide the fixed-effects results in Table 6.24. The intercept model suggests that initially
schools with higher prestige got more freshman athletes (5, = 0.904, p = .01). School type, how-
ever, did not influence freshman athletes admitted initially. Moreover, neither predictor affected
the institutional growth trend before the policy was implemented (p > .05). After implementa-
tion, however, private schools got increased numbers of students over each yearly interval (8, =
0.374, p <.05).In contrast, higher prestige schools did not appear to receive more freshmen after
implementation (5, =-0.008, p > .05). We could, of course, also add other variables to the model,
but our analysis seems to suggest the policy did result in fewer freshman student athletes being
entered to Division 1A programs (8, = -0.651, p < .001), after controlling for other variables
that might also affect the admission of freshman student athletes. The variance components are
similar to previous models, so we do not provide them here.

Summary

Longitudinal analysis represents a rapidly growing application of multilevel-modeling tech-
niques. Because they provide stronger ways for dealing with causal relationships between vari-
ables than cross-sectional analyses, they should continue to draw the increased attention of
researchers. In this chapter, we introduced a basic multilevel model considering change at several
levels of a data hierarchy. The approach is very flexible for fitting a number of research purposes
and designs (e.g., experimental, time series, and nonexperimental).
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CHAPTER

Multivariate Multilevel Models

I n the last chapter, we introduced a three-level modeling framework for examining change in
individuals and groups over time. Another variation on the basic three-level modeling frame-
work is a multivariate multilevel model—that is, a model that has more than one dependent
variable (defined at Level 1), with individuals at Level 2 and groups at Level 3. The multivariate
multilevel model follows directly from the traditional single-level multivariate analysis of vari-
ance (MANOVA) model. One of the advantages of the multilevel formulation is that subjects
with partial data on outcomes can be included in the analysis, which is a limitation of MANOVA
(Hox, 2010). A second advantage is that the multivariate approach facilitates the development of
more flexible models with multiple response variables, which can have different sets of explana-
tory variables (Wright, 1998). A third advantage is that the multivariate provides simultaneous
estimation of the outcomes and adjustment for correlations between them. Moreover, it facili-
tates the use different covariance structures at multiple levels along with a choice in methods to
estimate them (Wright, 1998).

'There are a number of different ways to specify and set up multilevel models with multivariate
outcomes. In this chapter, we provide three examples of two- and three-level models with mul-
tivariate outcomes. The first example is where several survey items are combined to define one or
more latent constructs at the lowest level of the model. This type of latent variable formulation al-
lows the incorporation of measurement error, as well as possible missing data on items, in the anal-
ysis of differences in the constructs within and between groups. The second is where there are two
or more observed outcomes, for example, where we might examine students’ reading, math, and
language test scores simultaneously, rather than modeling each outcome separately. This formula-
tion is useful in adjusting parameters for the expected correlation between students’ performance
on each test. The third example is where we are interested in examining individual development
in two or more domains simultaneously, rather than examining each growth trajectory separately.

We hope that our basic introduction to these types of models will encourage readers to think
about situations in their own research where they might examine several outcomes simultane-
ously. Multilevel models with multivariate outcomes can be constructed much like the univariate
growth models presented in Chapters 5 and 6. We do caution, however, that multivariate formu-
lations can be more complicated to specify and to interpret than their univariate counterparts.
They may also require more computer memory space and, therefore, be more challenging to esti-
mate. Readers can also consult Raudenbush and Bryk (2002) or Hox (2010) for other examples

of multivariate multilevel models.

Multilevel Latent-Outcome Model

Our first example focuses on using a set of observed indicators (e.g., survey items) to measure
an underlying construct (e.g., job satisfaction or motivation). We propose a model consisting of
two latent constructs measured with three survey items each (with items measured on five-point
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scales). Individuals were asked several questions about their job satisfaction (i.e., my work is chal-
lenging and varied; I feel my work is valued; I feel like I am a member of a team) and the evalu-
ation of their work performance (i.e., my work is regularly assessed; I am provided with feedback
regarding my progress; I am evaluated according to clearly known evaluation standards). We
assume the two constructs are positively correlated at the individual and organizational levels.
We will next build a three-level model to examine variability in employee perceptions within and
between organizations. We note in passing that this same model could also be defined as a two-
level structural equation model (i.e., individuals nested in organizations).

The Data

'The data consist of 650 employees in 105 organizations who were asked several questions about
their work lives. At Level 1, there are six survey items nested within 650 individuals. The basic
means of specifying multivariate models in MIXED is to define the multiple response (Y) vari-
ables vertically in the same manner that the growth models in Chapters 5 and 6 were defined. In
this case, when the items are stacked vertically within individuals, we have 3,900 data lines. We
use the Repeated dialog box to define the measurement model at Level 1. We can use an index
variable to define the set of items measuring the constructs and a dichotomous indicator (assess-
Jjob) to define each construct (i.e., with assessjob = 0 referring to job satisfaction and assessjod = 1
referring to job performance). In our example, each construct is measured by three items, but it is
easy to vary the number of items that would define each factor. At Level 2, we obtain background

TABLE 7.1 Data Definition of ch7worklifeorg.sav (N = 650)

Variable Level® Description Values Measurement®

id Individual Employee identifier (650 employees). Integer Ordinal

orgcode Organization Organization identifier (150 Integer Ordinal
organizations).

Rid Individual A within-group level identifier (1,2,3,...,12) Ordinal
representing recoded employee
identifiers (id) rankingwith the
organizational identifier (orgcode).

Index1 Within Individual |dentifier variable resulting from (1,2,3,4,5, 4 Nominal
indexing the id individual identifier
(1 to 650) to create a new identifier
to define each of the six items.

work Within Individual Dependent variable measuring (1,2,3,4,5) Nominal
work life (scale).

assessjob Within Individual Dichotomous indicator variable 0 = Job Satisfaction Nominal
measuring job assessment. 1 = Job Performance

female Individual Demographic predictor variable 0 = Male Nominal
representing gender. 1 = Female

stability Individual Dichotomous variable representing 0 = < 5 Years Nominal
years employed. 1 =25 Years

gmorgprod  Organization Predictor interval variable (grand- -0.54 10 1.30 Scale
mean centered) measuring
organizational productivity.

gmresources Organization Predictor inferval variable grand- -3.17t02.18 Scale
mean centered) measuring
resource allocation.

@ Within Individual = repeated measures, Level 1; Individual = Level 2; Organization = Level 3.

3 Measurement icon settings displayed in subsequent model screenshots may differ from Tables 7.1, 7.17, and 7.24,
but will not affect the output
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N Mean Std. Deviation Skewness Kurtosis

Statistic Statistic Statistic Statistic Std. Error Statistic Std. Error
W 1lvaried 650 3.96 1.058 -0.892 0.096 0.128 0.191
W2value 650 4.21 0.847 -1.099 0.096 1.339 0.191
W3team 650 3.56 1.096 -0.524 0.096 -0.396 0.191
P1assess 650 3.94 1.028 -0.680 0.096 -0.401 0.191
P2progress 650 3.76 0917 -0.422 0.096 -0.114 0.191
P3evstand 650 3.78 1.137 -0.722 0.096 -0.248 0.191
Valid N (Listwise) 650

data on the 650 individuals in the study. We include two predictors—gender (coded male = 0,
and female = 1) and stability (coded 0 = less than 5 years with company, and 1 =5 years or more).
At Level 3, we also include two organizational predictors (resource allocation and organizational
productivity). A complete description of the data used in the example is provided in Table 7.1.

Research Questions

The first research question concerns whether individuals’ perceptions differ according to their
backgrounds and experience working in their organizations. We might ask: Are individuals’ per-
ceptions of their job satisfaction and job performance difterentiated by gender and their length
of time working in their workplace? The second research question concerns whether the slope
describing the proposed positive relationship between the length of time individuals have been
employed in their workplace and their perceptions of the work life constructs specified varies
across organizations. This research question focuses on whether the size of a within-group slope
varies randomly across organizations; that is, do organizational variables moderate the effect of
length of service within the organization on individuals’ workplace perceptions?

Defining the Constructs

We note that there are a number of potential problems to consider when measuring underly-
ing constructs with observed ordinal indicators. One common problem is the situation where
individuals are bunched at the top or the bottom of an ordinal scale. Although with ordinal data
from five-point scales acceptable solutions can be generated where data do not depart too much
from normality (Boomsma, 1987; Rigdon, 1998), we suggest that researchers check the prop-
erties of their data in each specific instance (Flora & Curran, 2004). Alternatively, we can also
estimate such models using a multilevel ordinal formulation. For dichotomous items, multilevel
logistic regression can be used (Hox, 2010). In Table 7.2, we provide a summary of the descrip-
tive statistics on the individual items across the 650 individuals. We can see that the means
are relatively high (ranging from 3.56 to 4.21) and, therefore, the items are negatively skewed.
Skewness ranges from -1.10 to -0.422 and kurtosis ranges from -0.401 to 1.34. This suggests
more responses in the higher categories (i.e., four and five). Although there may be some bias
in calculating correlations based on the assumption that the data are interval, our preliminary
investigations suggest we should be able to obtain a satisfactory solution.

The goal of the analysis is to examine individual and organizational predictors of employees’
beliefs about their work life and evaluation of their productivity. Our first concern is whether
there is evidence that the six items in the study do indeed define two separate latent dimen-
sions. To build our case, we first used exploratory factor analysis (i.e., principal axis factoring
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TABLE 7.3 Factor Matrix

Factor
1 2
W 1varied -0.035 0.768
W2value -0.003 0.617
W3team 0.241 0.474
Plassess 0.720 0.069
P2progress 0.836 -0.044
P3evstand 0.764 0.018

Extraction method: principal axis
factoring.

Rotation method: oblimin with Kaiser
normalization.

TABLE 7.4 Factor Correlation Matrix

Factor 1 2
1 1.000 0.823
2 0.823 1.000

Extraction method: principal axis
factoring with oblimin rotation.

with oblimin rotation) to examine whether the six items define the two proposed constructs. In
Table 7.3, we provide the pattern (or weighted loading) matrix. As the table indicates, the three
performance assessment items load primarily on Factor 1 (with hypothesized loadings ranging
from 0.720 to 0.836, while the three workplace items (W1-W?3) load highly on Factor 2 (with
hypothesized loadings ranging from 0.474 to 0.768).

We can also note that the correlation between the two factors for the 650 individuals (ignor-
ing clustering) is 0.823 (see Table 7.4). Given this preliminary evidence, we can proceed with
developing our model with the two correlated latent factors as outcomes in our proposed study
of employees’ work lives.

Organizing the Data Set

In this type of latent variable multilevel formulation, the Repeated dialog box in IBM SPSS
MIXED can be used to define a measurement model at Level 1 that consists of multiple mea-
sures of an outcome Y nested within individuals, similar to the multiple measurement occasions
of Y that are used to define growth trajectories (Leyland, 2004; Raudenbush & Bryk, 2002).
Closer inspection of the data in Figure 7.1 suggests there are six survey items per individual and
that individuals’identity (ID) and organizational code must be repeated in the data set for each
individual. The grouping variables (id and orgcode) are used to identify the other predictors as
belonging to a particular level of the data hierarchy. The individual responses to the survey items
comprising the work life responses (work) are nested within individual identification numbers,
and recoded employee IDs (Rid) are nested within organizations (orgcode). The variable Index1
is used to identify the items used in defining the latent constructs. Similar to our discussion of
growth models, this vertical format will accommodate individuals with partial data on the items
comprising the constructs as long as at least one measure is included.

After creating the Index1 variable, we can also use it to define a dummy-coded job assessment
(assessjob) variable (with O = job satisfaction, and 1 = job performance). This variable is used to



Multivariate Multilevel Models m 301

{2 ch7worklifeorg.sav [DataSet1] - IBM SPSS Statistics Data Editor [E=RER
Fle EGt View Data Iransform Anslyze DrectMarketing Graphs Utiies Add-ons Window Help
SHO W -~ Bhdll h 5
[ i " [Visble: 10 of 10 Variables
id | orgcode ‘ Rid | Index1 | work | assessjoh|
1 1 1 1 2 4 e
2 1 1 1 3 4 o [
3 1 1 1 4 4 1
4 1 1 1 5 4 1
5 1 1 1 6 4 1
6 1 1 1 1 5 0
7 2 1 2 1 2 0
8 2 1 2 3 3 0
9 2 1 2 4 3 1
10 2 1 2 2 4 0
11 2 1 2 5 4 1
12 2 1 2 6 4 1
13 3 1 3 1 2 0
14 3 1 3 3 3 0
15 3 1 3 5 3 1
16 3 1 3 6 3 1
17 3 1 3 2 4 0
18 3 1 3 4 4 1
19 4 1 4 3 2 0
20 4 1 4 1 4 =
<
| DataView | Variable View
|

FIGURE 7.1 Data matrix for latent variable analysis.

differentiate the two constructs. We recode IndexI into assessjob by specifying 1-3 on IndexI as O
to define job satisfaction and 4-6 on IndexI as 1 to define job performance. Other predictors (i.e.,
resources and organizational productivity), which are grand-mean centered, are repeated on each
of the six lines comprising each student’s data since they will be defined at levels above Level 1.

Specifying the Model

Following Raudenbush and Bryk’s (2002) general notation, a general multilevel, multivariate
model can be formulated to specify one or more latent constructs. As we have noted previously,
we use the Repeated dialog box to represent variation among the items defining the constructs
within each individual at Level 1. We also note that we must designate individuals as nested
in organizations (orgcode*Rid) on the REPEATED command line (if we refer to the syntax
statements). We again use the recoded individual identities (Rid) to reduce the required time it
takes to estimate the model. In this case, we use Level 1 to define the measurement part of the
model—that is, to link the observed items to their underlying constructs. The items measuring
Y are defined as a vector (y,s V- - -» Vi) for individual ; in school £ measured on item 7 and, as
we noted, are stacked vertically in the data set. The general Level 1 model may then be written as

p
Yy = 2T il + E (7.1)
=1
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where Y, is the observed score on item i for individual j in organization &, 7, is the latent true
score for individual ; in organization £ on construct p, and €;; is an error associated with indi-
vidual j&’s response to item i (assumed to be normally distributed with a mean of 0 and a variance
of 0?). The key to specifying a multivariate analysis in MIXED is to create an indicator variable
(a,), which can link the multiple observed items to each construct (p). The constructs are speci-
fied through using a set of dummy variables specified at Level 1, where 4,;, takes on the value of
1 if the indicator 7 measures construct p and 0 otherwise for constructs p =1, ..., P. In this case,
the dummy-coded variable we use to define the constructs is assessjob.

As Equation 7.1 indicates, in order to incorporate the multiple measures in defining each
construct, as well as specifying more than one construct in the model, we must exclude the usual
intercept term at the lowest level. In general, the function of the Level 1 model for a multivariate
formulation is to aggregate the separate indicators into one or more constructs. In accomplish-
ing this, we can specify a relatively simplified covariance structure (e.g., scaled identity) or more
complete covariance structure (diagonal or unstructured) to describe relationships among the six
items within individuals (Raudenbush & Bryk, 2002). We caution that when defining constructs
in this vertical manner, it is best if the items or subtests are measured on the same scale (e.g., Lik-
ert-type scales or scaled scores) and have similar variances (Hox, 2010). Variables can be rescaled
as needed prior to the analyses, however, to achieve more similar error variances. Analysts should
also keep in mind that ordinal data may not meet the assumptions of continuous normal data.

'The Level 2 model describes the distribution of true scores 7, across individuals within orga-
nizations, including any predictors that are proposed to explain this variation. The general model
can be written as

T = Boor + Tpins (7.2)

where f3,0, is the true score mean of construct p in organization %, and 7, is the Level 2 random
coefficient for individual 7 in organization £ on construct p.

At Level 3, we represent the organizational-level model. The intercept model with no predic-
tors would be

Boor = Y00 + tyos (7.3)

where 7, is the Level 3 intercept for construct p and u, is the Level 3 random effect capturing
variation in organizational means for construct p. The dimensionality of the covariance matrices
of random effects at Levels 2 and 3 depends on the number of random effects at each level. We
note that when predictors are entered into the model at Levels 2 or 3 in multivariate formula-
tions with no intercept at Level 1, they are added as interactions with the variable that is used to
define the constructs. In this example, the variable is assessjob. This will provide a set of estimates
for each construct. If we wish to impose equality constraints across the two constructs, we simply
enter the predictors into the model as fixed effects. This latter formulation tests the hypothesis
that the effects of the predictors are the same in explaining variation in each construct in the
model (see Hox, 2010, for further discussion).

Model 1.1: The Null or “No-Predictors” Model

For the null model, we can examine the variability in the constructs that exists at each level. Be-
cause there are two constructs within individuals (Level 1), we can simply define the performance
variable with its six component measures (i = 1, 2, 3, 4, 5, 6), as specifying the dummy-coded
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job assessment variable (assessjob). By declaring no intercept at Level 1 (NOINT), we can obtain
estimates for each construct separately. Following Equation 7.1, the first set of three items com-
prises the job satisfaction construct (which we have coded 0), and the second set of three items
comprises the evaluation of performance construct (which we have coded 1):

Y. = massessjoby + €, 74

where assessjob takes on the value of 1 if item i measures construct p (in this case, evaluation
of performance) and 0 when it measures the other construct (job satisfaction); 7, is the latent
true score for person j in school Z on construct p, and €;; is an error term assumed to be nor-
mally distributed with a mean of 0 and variance & (see Raudenbush & Bryk, 2002, for further
discussion).

At Level 1, we will first assume a simple covariance structure by specifying an identity co-
variance matrix at Level 1. This implies one constant variance for all items comprising the two
constructs. If this does not appear to be a reasonable assumption, another possibility might be a
diagonal covariance matrix, which would provide a separate variance for each item. The Level 1
portion of the model, however, is generally not the focus of the analysis.

By not specifying an intercept at Level 1 (NOINT) and specifying the assessjos dummy-coded
variable as randomly varying at Level 2, we can obtain separate intercepts for each construct. In
our example, since we have two latent constructs, the Level 2 model will simply represent the
grand mean for each construct. We will label the constructs 7, (job satisfaction) and 7, (evalu-
ation of performance). The Level 2 (between individuals) model can then be defined as

1= Brox + 710

T = Baok + Tajss (7.5)

where f,0; and By, are intercepts and ry;; and 7,; are person-specific, random effects. The random
effects are assumed to be multivariate normal with means of 0 and contained in a covariance ma-
trix whose dimensions depend on the number of random effects specified (Raudenbush & Bryk,
2002). We will first assume a diagonal covariance at Level 2.

Similarly, the intercepts at Level 3 are the grand mean of the items defining each construct at
the organizational level. Between organizations, the model with random intercepts is defined as

Biox = Y100 + 10

Baok = Y00 + a0z (7.6)

We will also assume a diagonal matrix of random effects at Level 3. Substituting the Level 2
and Level 3 equations into Equation 7.4, we arrive at the single-equation model, which includes
the two organizational-level intercepts and the variance components for each level of the model:

Y = V100 + Vaoo + thoe + thaop + 11 + 1o + € (7.7)

'This suggests, in its basic format, seven parameters to estimate (i.e., two fixed Level 3 intercepts,
four random effects, and one residual variance at Level 1). We can confirm this familiar speci-
fication by examining the model dimensions for the null model in Table 7.5. The fixed-effect
intercepts are defined along with the random effects at Level 3 () and Level 2 (7;;), and the
Level 1 residual (g;;).
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TABLE 7.5 Model Dimension®

Number of  Covariance Number of Subiject Number of
Levels Structure Parameters Variables Subjects
Fixed Effects assessjob 2 2
Random Effects assessjob 2 Diagonal 2 orgcode
assessjob 2 Diagonal 2 Rid * orgcode
Repeated Effects Index1 6 Identity 1 orgcode * Rid 650
Total 12 7
@ Dependent variable: work.
Defining the Model 1.1 (Null) with IBM SPSS Menu Commands
L h the IBM SPSS - . ;
aune y pro {2 ch7workiifeorg.sav [DataSetl] - IBM SPSS Statistics Data Editor [ESNEE

gram application, and select the

ch7worklifeorg.sav data file.

1. Go to the toolbar and
select ANALYZE,
MIXED MODELS,
LINEAR.

This command enables access to

the Linear Mixed Models: Specify
Subjects and Repeated dialog box.
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2. The Linear Mixed Models: Specify Subjects and 3 Linear Mixed Models: Specify Subjects and Repeated (==
Repeated screen displays options for defining
variables as subjects, repeated observations, R S R S T e
and type of covariance structure in a model. s T o0k, e ol o ot
a. A subject is an observational unit that may

be independent of other subjects. For this —
model, we will designate two subject iden- ; |l e
tifiers for the model (Rid and orgcode). To ‘ & orgeode
facilitate reading the output tables, we will
enter the variables in sequence. Click to
select Rid from the Variables column, and "9 fﬁi“”"
then click the right-arrow button to move 2 stabity
the variable into the Subjects box. & grorgorod
b. Next, click to select orgcode from the £ ciiorens
Variables column, and then click the right-

Specify both Repeated and Subject varables for models with correlated
residuals within the random effects.

Repeated:
&b ndex1

arrow button to move the variable into the Repeated Covariance Type: |Scaied entty =
Subjects box. — o g

c. 'The Repeated box allows specifying vari- LI}CM == Ef:::: ::z: ;E gx; e i)
ables that identify repeated observations. uynh-Feidt —
For this model, Index1 identifies the six l:::zldwﬂy N
items that measure the constructs. Click Toepitz: Heterogeneous ]
to select Index1, and then click the right- Hestmclored 7
arrow button to move the variable into the
Repeated box.

'The combination of values for Rid, orgcode, and Index1 defines a particular employee from a
particular organization with data from one to six items (i.e., individuals with partial data will be
included in the analysis).

d. The Repeated Covariance Type specifies a model’s covariance structure. For this model, at Level
1 we will use scaled identity. Click the pull-down menu to select the autoregressive covariance
matrix, Scaled Identity, as the Repeated Covariance Type.

The Scaled Identity covariance structure has constant variance and assumes that no covariance
exists between any elements (IBM Corporation, 2012).

Click the CONTINUE button to display the Linear Mixed Models dialog box.
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3. The Linear Mixed Models main
screen enables specifying the depen-
dent variable, factors, and covariates,
as well as access to dialog boxes for
defining Fixed and Random effects,
and options for Estimation, Statistics,
EM Means, and Save.

a. For this model, we will use wor#k
as the dependent variable. Click
to select the work variable from
the left column listing. Then click
the right-arrow button to transfer
work into the Dependent Variable
box.

2 Linear Mixed Models [
[ P
— e : Fixed...
& [ [& work e
3 |  Rapdom...
ﬁ pryeode Eactor(s): :
a e & assessiob | | Estimation.., |
¥ | i 1
/ ) [ | Statistics... |
— i =
| & assessiob | oy | EMMeans.. |
&:) female : 1 | Saye l
@b stabiity - — T
& gmorgprod b
f gmresources Residual Weight :
J
ok || peste Reset || Cancel || Hep |

b. We will create a no-intercept null model that defines the observed measures of assessjob (assess-
J0b0 and assessjob1). Click to select the assessjob variable from the left column listing. Then click
the right-arrow button to transfer assessjo into the Factor(s) box.

Click the FIXED button to access the Linear Mixed Models: Fixed Effects dialog box.

4a. Within the Linear

t-)_ Linear Mixed Models: Fixed Effects

Mixed Models:
Fixed Effects dialog
box, we will retain

the default Facto-

Fixed Effects

(3) Build terms

() Build gested terms

rial setting, which
creates all possible
interactions and
main effects of the
specified variable
(IBM Corporation,
2012).

b. Now click to select
assessjob from the
Factors and Covari-
ates box. Then click
the ADD button to

Factors and Coyariates:

.L] fnclude intercep!  Sum of squares: |Type -

Mgdet

assessjob
A

]_hCnnn'nun ” Cancel ” Help |

move the variable
into the Model box.

c. To create the no-intercept model, uncheck the Include intercept option.

We will now add random effects to this model.

Click the CONTINUE button to return to the Linear Mixed Models dialog box.

Click the RANDOM button to access the Linear Mixed Models: Random Effects dialog box.
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5. 'The Linear Mixed (2 Linear Mixed Models: Random Effects S
MOdElS.‘ Random Eﬁ()l‘& Random Effect 1 of 1
displays the Random Ef- . mﬁ@
ﬁff 1 Qf‘] screen, Wthh Coyariance Type: il:)iagcnnl ':i
iS the default When Random Effects

5) Buid terms () Buid nested terms @hl | Inclyde intercept
Eactors and Covariates: Modet:

@assesspn
A

creating a model for the
first time. The random-
effects screen allows
specifying random ef-
fects, interactions, inter-
cept terms, and subject
groupings.
a. Begin by specifying
the covariance struc- Subject Groupings
ture from the default Subjects: Combinatons:
variance components | e
(VC) to diagonal.
To do so, click the
pull-down menu —

and select Diagonal '
(DIAG). )

/" assesspb

| Factorial By

Help

'The Diagonal covariance type has heterogeneous variances and zero correlation between the elements

(IBM Corporation, 2012).

b. We want the intercept to be excluded from the model, so the model will define the measures of
assessjob. Therefore, we will retain the current default setting.

c. We will retain the default Factorial setting as this will be a null model (no-predictor, no-intercept),
so the setting will have no effect.

d. Click to select assessjob, and then click the ADD button to move the variable into the Mode/
box.

e. 'The Subject Groupings box displays the orgcode and Rid variables that were specified as subject
variables in the Specify Subjects and Repeated dialog box show in step 2a. We will specify orgcode
as the subject for the random-effects Level 1 part of this model. Click to select orgcode, and
then click the right-arrow button to move the variable into the Combinations box.

f. At the top-right section of the window, click the NEXT button to access the Random Effect 2
of 2 screen.
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'The Random Effect 2 of 2 screen
display is similar to the first
screen and requires the following
changes.

g. Change the covariance
type by clicking on the
pull-down menu and
selecting Diagonal.

. We want the intercept
to be excluded from the
model so that separate
constructs comprising
assessjob will be speci-
fied. Therefore, we will
retain the current default
setting.

i. Retain the default Facto-

rial setting.

j. Click to select assessjob,
and then click the ADD

#2 Linear Mixed Models: Random Effects

1

Random Effect 2 of 2
| Previous J
Coyarisnce Type:

Random Effects—

(%) Buig terms

Eactors and Covariates:

-

() Buid pested terms. ®hi_? Include intercept

Modet
|assesspob

[ < =

Subject Groupings
Subjects:
1" T

C_n_mhmna:
, orgcode

ol ria

[_h'c:ml'nue l | Cancel ' Help

button to move the variable into the Mode/ box.

. We will specify orgcode and Rid as the subjects for the random-eftects Level 2 part of this

model. Click to select orgcode and Rid, and then click the right-arrow button to move the vari-

ables into the Combinations box.

Click the CONTINUE button to return to the Linear Mixed Models dialog box.

6. Click the ESTIMATION button to
access the Linear Mixed Models: Esti-
mation dialog box, which displays two ~
estimation method choices: maximum
likelihood (ML) or restricted maximum

likelihood (REML).

In this chapter, we will primarily use the de-
fault setting of REML to estimate the models.
Where nested models are compared in terms
of both variance components and regression
components, however, ML estimation should

be used (Hox, 2010).

Click the CONTINUE button to return to
the Linear Mixed Models dialog box.

3 Linear Mixed Models

2 Linear Mixed Models: Estimation W~ __(S308)

rMethod

-0 &) Restricteg Maximum Likeihood (REWL]

(_) Maximum Likelhood (ML)

o |

Iterations

Maximum Rerations: 'mo

Maximum step-halvings: 'lo -

[] Print teration history for every step(s)
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Belatrve

Help

_E!, Means... ]

Yaue | -
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7. In the Linear Mixed Models dialog
box, click the STATISTICS but-
ton to access the Linear Mixed
Models: Statistics dialog box.

Click and select the following three
statistics to be included in the output:
Parameter estimates, Tests for covariance
parameters,and Covariances of random

effects.

Click the CONTINUE button to re-
turn to the Linear Mixed Models dialog
box.

8. Finally, in the Linear Mixed Models
dialog box, click the OK button to

run the model.
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Interpreting the Output From Model 1.1 (Null)

In this case, we first used a scaled identity (ID) covariance matrix at Level 1 and a diagonal cova-
riance matrix at Levels 2 and 3 since there were two random effects at those levels (i.e., the work
life intercept and the evaluation of performance intercept). Table 7.6 suggests that the grand
mean for work life was 3.926 (i.e., the mean of the first set of items across the organizations) and

3.845, which represents the grand mean of the second set of items across organizations.
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TABLE 7.6 Estimates of Fixed Effects®

95% Confidence Interval

Parameter Estimate  Std. Error df t Sig. Lower Bound Upper Bound
[assessjob = 0] 3.926 0.045 105.724 87.347 .000 3.837 4.015
[assessjob = 1] 3.845 0.053 104.133 72.509 .000 3.739 3.950

@ Dependent variable: work.

TABLE 7.7 Estimates of Covariance Parameters®

95% Confidence Interval

Paramenter Estimate Std. Error WaldZ  Sig. Lower Bound Upper Bound
Repeated Measures  Variance 0.544 0.015 36.056 .000 0.515 0.574
assessjob [subject =  Var: [accessjob = 0]  0.123 0.029 4.238 .000 0.077 0.195
orgcode] Var: [accessjob = 1] 0.192 0.041 4.707 .000 0.127 0.291
assessjob [subject = Var: [accessjob =0] 0.336  0.032 10.635 .000 0.279 0.404
Rid * orgcode] Var: [accessjob = 1] 0.413  0.036  11.385 .000  0.347 0.490

@ Dependent variable: work.

TABLE 7.8 Estimates of Covariance Parameters®

95% Confidence Interval

Parameter Estimate  Std. Error  Wald Z Sig.  Lower Bound Upper Bound
Repeated Measures Variance 0.544 0.015 36.056  .000 0.515 0.574
assessjob [subject = Var(1) 0.124 0.029 4.249  .000 0.078 0.196
orgcode] Var(2) 0.192  0.041 4707 .000 0.127 0.291
Corr(2, 1) 0.773 0.070 10.995 .000 0.595 0.879
assessjob [subject = Var(1) 0.335 0.032 10.637  .000 0.279 0.403
Rid * orgcode] Var(2) 0.413 0.036 11.385  .000 0.347 0.490
Corr(2, 1) 0.953 0.034 27.766 .000 0.812 0.989

@ Dependent variable: work.

'The variance components associated with each level are summarized in Table 7.7.The table sug-
gests a single variance at Level 1 (0.544), separate intercept variances for the job satisfaction and
evaluation of performance constructs at Level 3 (0.123 and 0.192, respectively), and separate
variances for the same two constructs at Level 2 (0.336 and 0.413, respectively).

We might next examine the correlation between each construct at the individual employee
level (Level 2) and at the organizational level (Level 3). We can specify the relevant covariance
matrices of random effects at each level as unstructured (UN) and designate (R) to obtain a
correlation (UNR). When we do this, we will now have nine parameters to estimate since we
are adding a correlation each at Level 2 and Level 3. In Table 7.8, we provide the relevant cor-
relations (model syntax is provided in Appendix A). The table suggests that the items are more
strongly correlated at the individual level (r = 0.953) than at the organizational level (r=0.773).
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Conducting a Likelihood Ratio Test

We can formulate at likelihood ratio test to evaluate the two added correlation parameters. Any
model where one or more parameters are fixed to zero can be referred to as a restricted model (L),
which can then be compared to an alternative model (Z,;) where the parameter or parameters are
estimated. The change in model likelihoods can then be compared as long as the restricted model
is nested in the alternative model (i.e., can be obtained from the unrestricted model by setting
parameters to zero). The second (alternative) model with more parameters estimated will always
fit at least as well (have a greater log likelihood) as the first model with restricted parameters.
The ratio of the two likelihoods (L,/L,) is referred to as the likelihood ratio. Where there is no
difference between models (i.e., the log likelihoods are the same), the likelihood ratio will be 1.0,
and the test statistic will be 0. A larger, more positive test result provides evidence against the null
hypothesis that there is no difference between models. The likelihood ratio statistic (referred to
as LR, G?, or A) can then be formulated as follows:

G*=-2 log( - j = —flog(L,) ~ log(Z,)] = [~2log(L,)]~[~2log(L,)] (7.8)

-
Ll
'The difference between two models has a chi-square distribution with degrees of freedom (&f)
of the test equal to the difference in the number of parameters being tested.

We summarize the tests for these two models in Table 7.9. We estimated both models using
REML estimation since we were only examining differences between variance components. If re-
gression parameters are also included, we remind readers that ML should be used to conduct the
likelihood ratio test between the two competing models (Hox, 2010). The original -2LL (-2*log
likelihood) for 7 estimated parameters was 10,358.406. The -2LL with 9 estimated parameters
was 9,995.447.The relevant degrees of freedom, then, is 2 for this test (i.e., from 7 to 9 param-
eters estimated). The required chi-square coefficient for 2 degrees of freedom at p = .05 is 5.99.
In this case, the likelihood ratio test easily exceeded 5.99.This suggests that the alternative model
with 9 parameters fit the data better than the restricted model with only 7 parameters estimated.

We can also test the assumption that there is a single variance at Level 1 to describe the items
comprising the latent constructs. We might also examine whether a diagonal covariance matrix
fits better at Level 1. In changing from a scaled identity covariance matrix to a diagonal covari-
ance matrix, we will add 5 estimated parameters (i.e., resulting in 14 parameters to estimate). To
conduct a likelihood ratio test, we can use Model 2 as our nested model (-2LL = 9,995.447, for
9 estimated parameters). The new model (Model 3) has 14 estimated parameters and a —2LL of
9,871.989.The relevant degrees of freedom is 5 (which at p = .05 requires a coefficient of at least
11.07). We can see the resulting likelihood ratio coefficient describing the difference in deviance
between Model 2 and Model 3 easily exceeds the required coefficient. We can therefore accept
that a diagonal covariance structure at Level 1 fits the data better than a single variance estimate.

TABLE 7.9 Likelihood Ratio Tests (REML Estimation)

Variables -21L Parameters G df p
Models
Model 1 (No Correlations) 10,358.406 7 NA NA NA
Model 2 (Correlations) 9,995.447 9 362.959 2 < .001
Model 3 (Diagonal Covariance 9,871.989 14 123.458 5 < .001

Matrix)
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TABLE 7.10 Estimates of Covariance Parameters®

95% Confidence Interval

Parameter Estimate Std. Error WaldZ  Sig.  Lower Bound Upper Bound
Repeated Measures  Var: [Index1 =1]  0.587 0.041 14.383 .000 0.512 0.672
Var: [Index1 = 2] 0.534 0.039 13.829 .000 0.464 0.616
Var: [Index1 = 3] 0.863 0.056 15.409 .000 0.760 0.980
Var: [Index1 = 4] 0.420 0.030 13.892 .000 0.365 0.484
Var: [Index1 = 5] 0.298 0.024 12.243 .000 0.254 0.350
Var: [Index1 = 6] 0.565 0.037 15.067 .000 0.496 0.643
assessjob [subject = Var(1) 0.123 0.029 4.288 .000 0.078 0.194
orgcode] Var(2) 0.181 0.039 4.653 .000 0.119 0.276
Corr(2, 1) 0.758 0.074 10.249 .000 0.572 0.869
assessjob [subject =  Var(1) 0.285 0.031 9.118 .000 0.230 0.354
Rid * orgcode] Var(2) 0.442  0.035 12.575 .000 0.379 0.517
Corr(2, 1) 0.943 0.038 24.989 .000 0.799 0.985

@ Dependent variable: work.

We provide the covariance parameter estimates for this final null model (Model 1.2) in
Table 7.10. As noted in Table 7.10, this current model now has 14 estimated parameters. These
include the two fixed-effect intercepts and the 12 variance components summarized in the table.
We can see, for example, that there is some inconsistency in the items measuring the constructs
at Level 1.

Defining Model 1.2 (Final Null Model) with IBM SPSS Menu Commands

Settings will default to those used in
Model 1.1.

A ch7worklifeorg.sav [DataSet1] - [BM SPSS Statistics Data Editor [E=SEn =
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2. 'The Linear Mixed Models: Specify Subjects

and Repeated screen displays the default
settings from the prior model.

We will change the Level 1 covariance type
by clicking the pull-down menu and selecting
Diagonal.

'The Diagonal covariance type has heteroge-
neous variances and zero correlation between

the elements (IBM Corporation, 2012).

Click the CONTINUE button to display the
Linear Mixed Models dialog box.

3. We will change the random-effects
covariance type, so from the Linear
Mixed Models main screen, click the
RANDOM button to access the
Linear Mixed Models: Random Effects
dialog box.
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R Linear Mixed Models: Specify Subjects and Repeated

=)

&bid

@ work

& assessiob
& female

&b stabity

& gmorgprod
& amresources

Click Continue for models wih uncorrelated terms.
Specify Subject variable for models wih correlated random effects.

Specify both Repeated and Subject variables for models with correlated
residuals within the random effects.
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4. 'The Random Effect 2 of 2
screen is displayed first as
it was the last dialog box
used in the prior model.
a. Change the covariance

type by clicking the
pull-down menu and
selecting Unstructured:
Correlation Metric.

The Unstructured:
Correlation Metric co-
variance structure has
both heterogeneous
variances and correla-
tions (IBM Corpora-
tion, 2012).

b. Click the PREVIOUS
button to access the
Random Effect 1 of 2

screen.

c. From the Random
Effect 1 of 2 screen,
change the covariance
type by clicking the
pull-down menu and
selecting Unstructured:
Correlation Metric.

Click the CONTINUE but-
ton to return to the Linear
Mixed Models dialog box.

A Linear Mixed Models: Random Effects
Random Effect 2 of 2 ’a‘
Coyariance Type: |unstructured: Corretation Metric -
Random Effects
(2) Buid terms O Buid pested terms ["] Inciude intercept
Eactors and Covariates: Modet:
iﬂ assesspb assesspb
B 0 i P
l
-Subject
I orgcode ’ orgcode
e Rd
[ contrue [ concel ][ Hes |
3 Linear Mixed Models: Random Effects
rRandom Effect 1 of 2 "E
Coyariance Type: | Unstructured: Correlation Metric -
Effects
(3) Buid terms () Build pested terms [7] nciyde intercept
| Eactors and Covariates: Model:
[ |i assessjob assessiob
K3 | | (e
;-Summ Groupings ———— — -
Subjects: gmbinats
& orgeode & orgeode
ol rig

I_Qconthue || cancer [ hep
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5. Finally, in the Linear Mixed Models £ Linear Mixed Models )
dialog box, click the OK button to
Dependent Variable: ]
run the model (Table 7.10). & W | [ wor | wed. |
ﬁurg:ode Factor(s): . Rapdom... |
o o & sssessiob Estmation... |
@O Index1
0-(3 female Statistics... |
:’3 stabity Covariste(s) EM Means... |
Sfovance Saye... |
f gmresources J
Residual Weight
oK E ] Paste Reset || Cancel Help

Model 1.3: Adding Level 2 Predictors

For the next model, we will add the individual background variables. At Level 2, we propose
that employee gender (fémale) may result in different perceptions about work life and evaluation
of performance. We will also propose that employees who have been in the organization longer
(stability) will have more favorable perceptions about work life issues and performance evalua-
tion. We can define the model to estimate perceptions for individual 7 in organization % on the
two constructs as follows:

1 = Proe + B femaley + Buyistability + 1y,
772]‘/% = ﬁzo& + ﬁzuﬁmﬂlejk + ﬁzzéﬁl‘ﬂbl[ll‘yj,& + ij}c' (79)

Equation 7.9 indicates that individuals’ perceptions vary across individuals. The model remains
the same at the organizational level (Level 3) as in Equation 7.6, with the intercepts varying at
that level also. We will assume the slopes for female and stability are fixed at Level 3.

For the single-equation (or combined) model, when we add the predictors to the model we
multiply them by the dummy indicators:

C g% < 7%
Y, = Y100 + Yaoo + Yir0assessjoby” femaley + yyoassessjob;” female; +

Yisoassessjoby* stabilityy + Yopassessjoby* stabilityy + wuyop + o + Tijp + T + € (7.10)

'This makes a total of 18 parameters to estimate. These include six fixed effects, six random effects
combined at Levels 2 and 3 (including covariances), and six Level 1 residual variances. This can
be confirmed in Table 7.11.

As we noted previously, multiplying the set of dummy outcome variables (assessjob) by each
Level 2 (or Level 3) predictor results in a separate regression coeflicient for each response vari-
able. If we wish to impose an equality constraint across the response variables (i.e., assume the
effect of the predictor is the same on each), we would add the predictor directly to the model
instead of multiplying it by the dummy indicators. In our specific case, this would amount to one
parameter describing the effect of gender and one for the effect of szability. One can then test the
fit of this “nested” model specification against the model as specified in Equation 7.10.
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TABLE 7.11 Model Dimension®

Number  Covariance ~ Number of Subject Number
of Levels Structure Parameters Variables of Subjects
Fixed Effects assessjob 2 2
assessjob * stability 2 2
assessjob * female 2 2
Random Effects assessjob 2 Unstructured 3 orgcode
Correlations
assessjob 2 Unstructured 3 Rid * orgcode
Correlations
Repeated Effects  Index] 6 Diagonal 6 orgcode * Rid 650
Total 16 18
@ Dependent variable: work.
Defining Model 1.3 with IBM SPSS Menu Commands
Settings will default to those used {2 ch7worklifeorg.sav [DataSet1] - IBM SPSS Statistics Data Editor o 0 S
in Model 1.2. File Edit View Data Transform Analyze DirectMarketn Graphs Utiities Add-ons Window Help
]} Regorts » e B
1. Go to the toolbar and select @E[‘i_ _I Descriptive Statistics » Ha_ﬁj@_g
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1 1 Genersi Linear Model » 4 2
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2. The Linear Mixed Models: Specify Subjects and B Lneer Moed Moticts Suety et ts st Fepented o)
Repeated screen displays the default settings
from the prior model. Chick Continue for modeis with uncorrelated terms.
Specify Subject variable for models with correlated random effects.
Click the CONTINUE button to display the Lin- i’:;:r:;‘m‘:’&mm T T
ear Mixed Models dialog box. S
& K il ria
&b work | & orgeode
assessjob | =2 ]
& female ==
&b stabiy
& gmorgorod 'n”m!d_
& grresources &')'nde;d
[»]
Repeated Coyariance Type: | Diag ~|
Contiue || Reset || cancet || Hep |
3. We will designate two variables to €3 Linear Mixed Models [
be used in the model. Locate and s
click female and stability from the & W | (& wort ; L fae.
left column listing, and then click & orgeode Factor(e): L_Rendom..

the right-arrow button to move the
variable into the Covariate(s) box.

We may now proceed to define fixed ef-
tects for the variable.

Click the FIXED button to access the
Linear Mixed Models: Fixed Effects dialog o

box.

"Two cross-level interactions (or nested terms) will be created and added to the model: szability*assessjob
and female*assessjob. These interactions will tell us if (a) employees who have been with the organization
longer (stability) have more favorable perceptions about work life issues (assessjob) and (b) employee
gender (fermale) may result in different perceptions about work life (assessjod).
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Add First Interaction to Model 1.3: stability *assessjob

4a. Click to select Build
nested terms.

b. Now click to select the
variable szability from
the Factors and Covari-
ates box.

c. Click the arrow but-
ton below the Factors
and Covariates box. This
moves sfability into the
Build Term box to create
a cross-level interaction
by linking variables and
terms.

d. Next, click the BY* but-
ton, which will insert the
computation command
symbol: szability”.

A Linear Mixed Models: Fixed Effects

Miet

assessjob
slabiity*assessp
female*assesspob

Fixed Effects
() Bui terms. l;? Buid pested terms
il
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Fiae—]«(t) ]
' X
1
1
1
= |
1
1
i
1
1
1
1
1
1
1
‘r’dj | By: b“ (Within) Cigar Term g ! Add H Remove J
q Buld Term: J
I~rBe stability * assessjob
[] nclude intercept  Sum of squares: | Type i v_i
LkConlmie ] Cancel ] Help

e. Click to select assessjob from the Factors and Covariates box.

f. Click the arrow button below the Factors and Covariates box to move assessjob into the Build
Term box and complete the interaction term: stability*assessjob.

g. Click the ADD button to transfer the interaction into the Mode/ box.

Add Second Interaction to Model 1.3: female *assessjob

Repeat steps 4a to 4g using female and assessjob to create the interaction.

Click the CONTINUE button to return to the Linear Mixed Models dialog box.

5. Finally, in the Linear Mixed Models
dialog box, click the OK button to

run the model.

&3 Linear Mixed Models
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Interpreting the Output From Model 1.3

'The fixed-effect estimates for Model 1.3 are summarized in Table 7.12. After adjusting for the
within-organization background controls, the intercepts of the two constructs are 3.939 for job
satisfaction (assessjob = 0) and 3.762 for evaluation of performance (assessjob = 1). The table in-
dicates that gender does not significantly affect either job satisfaction (y = -0.031, p > .05) or
performance (y = 0.005, p > .05) perceptions. Employee stability is positively related to job satis-
faction perceptions (y =0.125, p = .05) and perceptions about the assessment of their performance
(y=0.171,p < .05).

'The variance component output (Table 7.13) suggests that after addition of the set of indi-
vidual predictors, there is still variance in the constructs to be explained at both the individual

and organizational levels.

TABLE 7.12 Estimates of Fixed Effects®

95% Confidence Interval

Parameter Estimate  Std. Error df t Sig. Lower Bound Upper Bound
[assessjob = 0] 3.939 0.059 253.776  66.480 .000 3.822 4.055
[assessjob = 1] 3.762 0.067 243.767 56.240 .000 3.631 3.894
[assessjob = 0] * stability 0.125 0.063 609.739 1.968 .050 0.000 0.249
[assessjob = 1] * stability 0.171 0.069 640.637 2474 014 0.035 0.307
[assessjob = 0] * female -0.031 0.058 595213 -0.532 .595 -0.144 0.083
[assessjob = 1] * female 0.005 0.063 601.425 0.079 937 -0.118 0.128
@ Dependent variable: work.
TABLE 7.13 Estimates of Covariance Parameters®
95% Confidence Interval
Parameter Estimate Std. Error WaldZ  Sig. Lower Bound Upper Bound
Repeated Measures Var: [Index1 = 1]  0.588  0.041 14.340 .000 0.513 0.674
Var: [Index1 =2]  0.533 0.039 13.782 .000 0.462 0.614
Var: [Index1 = 3] 0.864 0.056 15.399 .000 0.761 0.981
Var: [Index1 = 4] 0.418 0.030 13.872 .000 0.363 0.482
Var: [Index1 =5]  0.300 0.024 12260 .000 0.255 0.352
Var: [Index1 = 6] 0.564 0.037 15.065 .000 0.496 0.643
assessjob [subject = Var(1) 0.114  0.028 4.103 .000 0.071 0.183
orgcode] Var(2) 0.170  0.038 4.525 .000 0.110 0.262
Corr(2, 1) 0.738  0.080 9.185 .000 0.537 0.859
assessjob [subject = Var(1) 0.287  0.031 9.126 .000 0.232 0.356
Rid * orgcode] Var(2) 0.442 0.035 12.543 .000  0.378 0.517
Corr(2, 1) 0.943 0.038 25.038 .000 0.800 0.984

@ Dependent variable: work.
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Model 1.4: Adding the Organizational Predictors

Model 1.4 adds two organizational predictors at Level 3. These include a measure describing the
level of each organization’s productivity and a measure of its resources allocated to support em-
ployees. Both were grand-mean centered. They are each proposed to affect work life perceptions
of job satisfaction and evaluation of performance:

Biok = Y100 + Yigmorgprod, + yipgmresource, + oz
Boor = Vavo + Yai@morgprody, + yapgmresource, + tyy. (7.11)

'This combined model will add 4 more parameters to estimate (i.e., from 18 parameters in the
last model to 22 parameters), since we are specifying a separate predictor for each outcome vari-

able at Level 3:

. % . %
Y1 = Yioo + Yaoo + Yiorassessjoby” gmorgprod, + Yy assessjoby” gmorgprod,
+ Vi02a55essjob” gmresources, + Yapassessjoby gmresourcesy + yiyoassessjoby femaley
+ Yawassessjoby femaley + yiyoassessjobystability, + yyoassessjobystabilityy
+ U0 + Uy + rljk + rzjk + 814]‘&. (7.12)

This can be confirmed in the model dimension table (Table 7.14). We note that we also had
to change from an unstructured correlation covariance matrix (UNR) to an unstructured covari-
ance matrix (UN) in order for the model to converge. We estimated this model and the following
model with equality constraints with ML estimation (instead of REML) since we are subse-
quently going to compare the fit of the model in Equation 7.12 against a model with equality
constraints added for the fixed-effect regression slopes.

TABLE 7.14 Model Dimension®

Number Covariance  Number of Subject Number of
of Levels  Structure  Parameters Variables Subjects
Fixed Effects assessjob 2 2
assessjob * gmorgprod 2 2
assessjob * gmresources 2 2
assessjob * stability 2 2
assessjob * female 2 2
Random Effects  assessjob 2 Unstructured 3 Orgcode
assessjob 2 Unstructured 3 orgcode * Rid
Repeated Effects  Index] 6 Diagonal 6 orgcode * Rid 650

Total

@ Dependent variable: work.
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Defining Model 1.4 with IBM SPSS Menu Commands
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2. 'The Linear Mixed Models: Specify Subjects and
Repeated screen displays the default settings
from the prior model.

Click the CONTINUE button to display the
Linear Mixed Models dialog box.

2 Linear Mixed Models: Specify Subjects and Repeated

[

Click Continue for modeis with uncorrelated terms.
Specify Subject variable for models with comrelated random effects.
Specify both Repeated and Subject variables for models with correlated

residuals within the random effecis.

i

& work

f assessiob
&b female

&b stabiiy

& gmorgorod
’ gmresources

[»]

Subjects:

ET
& orgeode

&b Index1

Coyariance Type: | Dag

Ly

[geme (e s ]|

]




322 ®  Multivariate Multilevel Models

3. The Linear Mixed Models dialog box
settings default to those used in the
prior model.

We will introduce two new variables to
be used in the model (gmorgprod and gm-
resources). First, click to select gmorgprod
and gmresources, and second, “drag” the
variables to the Covariate(s) box below
stability.

The sequence of the variables is as fol-
lows: female, stability, gmorgprod, and

ngESOZIT’C(,’S.

Click the FIXED button to access the
Linear Mixed Models: Fixed Effects dialog

box.

té Linear Mixed Models | g i
| [ e
& % | [& won | TN
g ;rﬂcode Eactor(s): . !w
&h:em == & sssession | _E!trnﬂ.nnJ
[ 12 [ stotstcs... |
— [_ueons..
Covariate(s): [ Saye... J
&, female G
| - | gy stabaty
L4 " IR
{7 4 ESOLICES
N & Fmesour
Covariate(s): ™,
" & female i ]
& oty 'y |
| 1 sta
0K || eese & amorgprod Help
& gMYesources

Two new cross-level interactions (or nested terms) will be created and added to the model:
gmordprod’assessjob and gmresources*assessjob. These interactions will tell us if (a) each organization’s pro-
ductivity (gmorgprod) supports employees’ perceptions of job satisfaction and performance evaluation
(assessjob) and (b) each organization’s resource allocation (gmresources) supports employees’ job satisfac-
tion and performance evaluation (assessjob).

4a. The Linear Mixed

. #2 Linear Mixed Models: Fixed Effects =)
Models: Fixed Effects e 1 et
dialog box displays “Fixed Effects
the default set- L0 s () Pabd podled Jetmm
ting from the pI'iOI' Factors and Coyariates: Modet
model. To facili- mﬂe‘- ””s’f-b _
. 2
tate reading of the 7 staby erasses ay |
output tables, we I ‘@ [romrosssessin | e
will first remove the | [assession
. . . Enrnurnumd‘u:essph
two interactions to | ! lgmresources*assessiob
) (]
clear the model and @2@ @ | i:lsni:,"nsuu):n
| female”assessjol
then later add them 8 2 _ e —
back into the model = RN _3_!_';_..[}”_ wen) | | cgarTem(Q : ae || B ﬁ S :
: K Buid Term: [
First, click to select "“--gp:_gmmprod “e’]sssssmh
stability*assessjob and T s e S of e Tl
7 . (ypes v
ﬁ male ﬂﬁ?&yOb’ and Lw:onhnue II Cancel ” Hep |
second, click the

REMOVE button.




Add First Interaction to Model 1.4: gmorgprod*assessjob
Note: Build nested terms is the default setting from the prior model.
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b. Click to select the variable gmorgprod from the Factors and Covariates box.
c. Then click the arrow button below the Factors and Covariates box. This moves gmorgprod into

the Build Term box to create a cross-level interaction by linking variables and terms.

= 323

d. Next, click the BY* button, which will insert the computation command symbol: gmorgprod”.

@

Click to select assessjob from the Factors and Covariates box.

f. Click the arrow button below the Factors and Covariates box to move assessjob into the Build
Term box and complete the interaction term: gmorgprod*assessjob.
g. Click the ADD button to transfer the interaction into the Mode/ box.

Add Second Interaction to Model 1.4: gmresources*assessjob

Repeat steps 4b to 4g using gmresources and assessjob to create the interaction.

Add Third Interaction to Model 1.4: stability*assessjob

Repeat steps 4b to 4g using szability and assessjob to create the interaction.

Add Fourth Interaction to Model 1.4: female*assessjob

Repeat steps 4b to 4g using female and assessjob to create the interaction.

The completed model is shown in the insert. Click the CONTINUE button to return to the
Linear Mixed Models dialog box.

Click the RANDOM button to access the Linear Mixed Models: Random Effects dialog box.

5. The Random Effect 1 of 2

screen is displayed first,

as it was the last dialog

box used in the prior
model.

a. Change the covari-
ance type by click-
ing the pull-down
menu and selecting
Unstructured.

The Unstructured covariance
structure has a completely
general covariance matrix

(IBM Corporation, 2012).

b. Click the NEXT
button to access the
Random Effect 2 of 2

screen.

3 Linear Mixed Models: Random Effects

sl

Random Effects
2) Build terms

| assessjob
li female

|£ stavaey

E gmorgprod
|# gmresources

Subject Groupings
Subjects:

¢9 orgcode

ol rig

Random Effect 1 of 2

Coyariance Type:

E Unstructured

e' Next N @

-

Eactors and Covariates:

Build pested terms
Modet:
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|

|
| Factorial |

Combinations
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[] mciyde intercept

| Bemove
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c. From the Random (€A Linear Mixed Models: Random Effects B N =)
Eﬂé 2 0f2 screen, -Random Effect 2 of 2 - =
change the covari- Y|
ance type by click- Chace Toe: (
ing the pull-down Random Effects
menu and selecting | S e IS O Bl remg s s L} ockpe oot
Unstructured. [ assession assessjob
|£ temate
|£ stavaty
Click the CONTINUE but- |2 amorgorod
ton to return to the Linear b pratoues
Mixed Models dialog box.

Iﬁm][ cancel || Hep |

6. Click the ESTIMATION button

{2 Linear Mied Models S |
to access the Linear Mixed Mod- —
els: Estimation dialog box. We will {2 Linear Mixed Models: Estimation \-:--.g ] [ Fmea..
change the estimation method by _Method N —
clicking to select ML. | 1| O Restricteg waximum Lieinoos ew) |_Estmation)
Click the CONTINUE button to return TR
to the Linear Mixed Models dialog box. bt Raaions: I
s s o
[C] Print Reration history forevery || | Ste¥(®)
rLog-Likelihood Convergence——————— :]
I [feres s |
| e |
rParameter Convergence
(%) Apsolute ) Relative
Vo
-Hessian Converg
© Aveous O Rese
Value |° vi
Maximum scoring steps: [1 |
Singulariy tolerance: | 9,000000000001 -/
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7. Finally, in the Linear Mixed Models [ Linear Mixed Models [z
dialog box, click the OK button to
n del Dependent Variable: |
run the model. &1 W | (2 wor -
Random..
- i —— | ¢ assessiob __ Estmation... |
Index1 - : J
O S 4 Statistics... |
1 Means... |
Covreiesy L HEERe
-+ | g female [«] | Save..
% | | stabiy .—-I
& omoronend |7
— Residual Weight
L
| ok ] :"_ paste || Reset || cancer |[ Hep |

Interpreting the Output from Model 1.4

'The fixed-effect results are presented in Table 7.15.The table suggests that between individuals
(Level 2), gender once again does not affect individual perceptions, but employee stability does.
Between organizations (Level 3), resource adequacy affects perceptions of job satisfaction (as-
sessjob = 0) but not perceptions about the assessment of individuals’ performance (assessjod = 1).
Finally, organizational performance positively affects both organizational job satisfaction (assess-
Jjob = 0) and organizational evaluation of employee performance (assessjob = 1).

Because the covariance parameters are very similar to the previous model, we do not reproduce
them here.

TABLE 7.15 Estimates of Fixed Effects®

95% Confidence Interval

Parameter Estimate  Std. Error df t Sig. Lower Bound Upper Bound
[assessjob = 0] 3.909 0.056  266.183 69.537 .000 3.798 4.019
[assessjob = 1] 3.738 0.065 250.718 57.681 .000 3.610 3.865
[assessjob = O] * gmorgprod 0.344 0.119 106311 2.878 .005 0.107 0.581
[assessjob = 1] * gmorgprod 0.383 0.144  106.371 2.666 .009 0.098 0.668
[assessjob = O] * gmresources ~ 0.101 0.044 108.941 2.273 .025 0.013 0.188
[assessjob = 1] * gmresources  0.060 0.053 108.492 1.124 263 -0.046 0.165
[assessjob = 0] * stability 0.129 0.062  599.753 2.071 .039 0.007 0.251
[assessjob = 1] * stability 0.171 0.069  639.944 2.493 .013 0.036 0.306
[assessjob = 0] * female -0.038 0.057  604.741 -0.666 .506 -0.151 0.075
[assessjob = 1] * female -0.001 0.062 608.417 -0.016 .988 -0.123 0.121

@ Dependent variable: work.
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Examining Equality Constraints

We can compare the model in Table 7.15 (which has a separate estimate for each predictor on
each construct) against a model with equality constraints on the predictors (Hox, 2010). This
type of model makes the assumption that the effects of predictors are the same on the constructs.
'This proposed model has only 18 parameters instead of 22 since 1 parameter is removed for
each of the four predictors in the model. We estimated both models with ML to facilitate the
comparison of models with different numbers of regression slope coeflicients. The model with
equality constraints added has a deviance (—2LL) of 9,837.799 and Akaike’s information crite-
rion (AIC) of 9,873.799. The model with 22 parameters in Table 7.15 has a deviance 9,835.713.
We can estimate the likelihood ratio test coefficient as 2.086 (which is not significant for 4 df).
Since the reduced model does not worsen the fit, however, it could be accepted on the grounds
that it is more parsimonious (i.e., having only 18 vs. 22 parameters). It also has a smaller AIC.
We present the fixed effects for this model in Table 7.16 (instructions for Model 1.5 shown
after the table). Similar to the previous model, it suggests that resources and productivity affect
perceptions at the organizational level and stability affects perceptions at the individual level.

TABLE 7.16 Estimates of Fixed Effects®

95% Confidence Interval

Parameter Estimate  Std. Error df t Sig. Lower Bound  Upper Bound
[assessjob = 0] 3.896 0.055 247.746 70.822 .000 3.788 4.005
[assessjob = 1] 3.758 0.061 216.609 61.204 .000 3.637 3.879
female -0.024 0.054 602.279 -0.437 662 -0.129 0.082
stability 0.143 0.059 614.094 2.426 .016 0.027 0.258
gmorgprod 0.352 0.118 103.555 2.984 .004 0.118 0.586
gmresources 0.091 0.044 105.907 2.077 .040 0.004 0.177
@ Dependent variable: work.
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2. 'The Linear Mixed Models: Specify Subjects and Re-
peated screen displays the default settings from the
prior model. We will retain the default settings.

Click the CONTINUE button to display the Linear
Mixed Models dialog box.

3. 'The Linear Mixed Models dialog box settings

default to those used in the prior model.

We will modify the fixed effects so click the
FIXED button to access the Linear Mixed Models:
Fixed Effects dialog box.

4a. The Linear Mixed

Models: Fixed Effects
dialog box displays
the default setting

from the prior model.

We will first remove
the four cross-level
interactions from the
model by clicking to
select them and then
clicking the RE-
MOVE button.

b. Click to select the
Build terms option,
which enables adding
nonnested terms to
the model.
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{3 Linear Mixed Models: Specify Subjects and Repeated ===
Chck Continue for models with uncorreisted terms.
Specify Subject variable for models with correlated random effects.
Specify both Repeated and Subject variables for modeis with correlated
residuals within the random effects.
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c. Change the factorial setting by clicking the pull-down menu and selecting Main Effects.
d. Now click to select four variables (female, stability, gmorgprod, and gmresources) from the Factors
and Covariates box, and then click the ADD button to move the variables into the Model box.

Click the CONTINUE button to return to the Linear Mixed Models dialog box.
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5. Finally, in the Linear Mixed Models {2 Linear Mixed Models ===
dialog box, click the OK button to run o —
the model (Table 7.16). & S| [ & work :

f orgcode = Rapdom...
_gﬂ Eactor(s)
.ob :: - & assession Estimation
3 ex
Statistics
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@ fermale I~ Saye...
@b stabity ==
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Investigating a Random Level 2 Slope

Another of our research goals was to determine whether the effects of particular individuals’
background variables (e.g., gender and stability) on perceptions might vary across organizations
at Level 3. If a slope parameter does vary across organizations, we can build a model to explain
this variation in slopes at Level 3. To illustrate this, we will propose that the slope describing the
effect of individuals’stability in the organization on their perceptions of the two constructs varies
across organizations (instructions provided in Model 1.6). The stability slopes from Equation
7.9 (Biy: and ;) can be designated as randomly varying at Level 3 (between organizations) as
tollows:

Bioz = Y120 + 12
Boai = Vazo + taoss (7.13)

where ¥, and ¥y are the average slope effects at the organizational level and u;,; and u,,; repre-
sent variation in the female-work life and female-performance slopes across organizations. We
can summarize this combined model as follows:

. % . *
Y, = Yioo + Yaoo + Yiorassessjoby” gmorgprod, + Yy assessjob;” gmorgprod,
+ Vi0aassessjob” gmresources, + Yagpassessjoby gmresources, + yiygassessjoby femaley,
+ Yawassessjoby femaley + yiyoassessjoby stability, + yyoassessjobystabilityy
+ U0 + Uy + uleﬂsses.yObjk Stﬂbllll‘_yjk + lezéﬂfse.f.yobjk Jfaél[lfyjk + rljé + rzjk + gijk' (7.14)

At Level 3, we can specify a UN covariance matrix to capture variability in intercepts, slopes,
and the covariance between the intercept and slope. We note that in order to specify each sta-
bility slope as randomly varying, we have to create an interaction term (assessjob*stability) in
the Random command (instructions provided in Model 1.7). This creates a relatively complex
covariance matrix of random effects. If instead we wanted to build a random slope on the model
with quality constraints, as in Table 7.16, we would not need to specify an interaction term in
the Random command. At Level 2, we can also continue to use a UN covariance matrix at the
between-individual level.

When we actually specified the model in Table 7.15 as having a random slope, however, we
found that the effect of individuals’ szability on the constructs did not vary significantly across
organizations. We also received a warning message that the model did not converge. For the
model with equality constraints (Table 7.16), we found we could obtain a solution by specifying



Multivariate Multilevel Models m 329

the random-effects covariance matrices to be diagonal at Levels 2 and 3, but, even so, the ef-
fect of employee stability on the two constructs did not vary across organizations (p = .751).
We therefore stopped our model investigation at this point. For interested readers, we provide
a comparison of the estimates produced with Mplus (using a two-level latent variable analysis)
and the MIXED specification in Table 7.15 in Appendix B. As we might expect, the analyses
produce very similar results. We note in passing that for models where there are several latent
constructs under consideration, multilevel structural equation modeling may be an approach that
is easier to implement. This latter approach requires specialized software that is not available in

IBM SPSS, however.

Defining Models 1.6 and 1.7 with IBM SPSS Menu Commands

Note: IBM SPSS settings will default to those used in Model 1.5.

1. Go to the toolbar and select ANALYZE, MIXED MODELS, LINEAR.

'This command enables access to the Linear Mixed Models: Specify Subjects and Repeated

dialog box.

2. 'The Linear Mixed Models: Specify Subjects and Repeated screen displays the default settings from the
prior model. We will retain the default settings.

Click the CONTINUE button to display the Linear Mixed Models dialog box. We will change the

model’s random effects, so click the Random Effects button to access the random-effects main screen.

Model 1. -
Ode 6 #3 Linear Mixed Models: Random Effects &J
3' The Rl’%ndo.m EﬁCt 2 0‘f‘2 i Random Effect 2 of 2
screen is displayed first, as it [ ervous =
was the last dialog box used Coyariance Type:  [Diagonal -]
. . Random Effects
in the prior model.
. 2) Buig terms (_) Buid pested terms. ¥ inciyde intercept
a. Change the covariance Eactors and Covariates Modet
H H _ | assessiob assesspb
type by clicking the pull 17 o
down menu and selecting | sisvaty )
D . [ |'_ gmorgprod | Main Effects b
lﬂgOnﬂ . |~ gmresources
'The Diagonal covariance type has -
) 3
heterogeneous variances and zero
correlation between the elements
(IBM Corporation, 2012) Subject Groupings
Subjects: Combinations:
c’ orgcode dﬂ Rid
b. Click the PREVIOUS oll R
F |
button to access the Ran- ;
dom Effect 1 of 2 screen.
_. Continue -Cancel __ _. Help -_i
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c. From the Random
Effect 1 of 2 screen
change the covariance
type by clicking the
pull-down menu and
selecting Diagonal.

d. Click to select stabil-
ity, and then click the
ADD button to move
the variable into the
Model box.

Click the CONTINUE but-
ton to return to the Linear
Mixed Models dialog box.

Click the OK button to run
the model.

Model 1.7

Repeat steps 1 and 2 from
Model 1.6, and then click the
FIXED button to access the
Linear Mixed Models: Fixed
Effects dialog box.

#A Linear Mixed Models: Random Effects

rRandom Effect 1 of 2
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Add First Interaction to Model 1.7: gmorprod*assessjob

4a. 'The Linear Mixed Models: Fixed Effects dialog box displays the default setting from the prior
model. We will modify the model by first removing four variables (female, stability, gmorprod,

and gmresources). Click to select female, stability, gmorprod, and gmresources, and then click the

REMOVE button.

b. Click to select Build nested terms.

c. Now click to select the variable gmorprod from the Factors and Covariates box.

d. Click the arrow button below the Fuctors and Covariates box. This moves gmorprod into the
Build Term box to create a cross-level interaction by linking variables and terms.

e. Next, click the BY* button, which will insert the computation command symbol: grmorprod*
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f. Click to select assessjob from the Factors and Covariates box.

g. Click the arrow button below the Factors and Covariates box to move assessjob into the Build
Term box and complete the interaction term: gmorprodassessjob

h. Click the ADD button to transfer the interaction into the Model box.

Add Second Interaction to Model 1.7: gmresources *assessjob

Repeat steps 4c to 4h using gmresources and assessjob for the interaction.

Add Third Interaction to Model 1.7: stability *assessjob
Repeat steps 4c to 4h using stability and assessjob for the interaction.

Add Fourth Interaction to Model 1.7: female *assessjob

Repeat steps 4c to 4h using female and assessjob for the interaction.

'The completed model is shown in the insert. Click the CONTINUE button to return to the
Linear Mixed Models dialog box.

Finally, in the Linear Mixed Models dialog box, click the OK button to run the model.

Multivariate Multilevel Model for Correlated Observed Outcomes

In our second example, we use the multivariate multilevel formulation to define separate outcome
models that take into consideration the correlation between the multiple outcomes. This formu-
lation is similar to the previous model, with the major difference being there are no underlying
constructs to define. In this example, we have three tests summarizing individual achievement
in reading, math, and language. The goal is to build a model where the fixed effects are used to
control for differences in the means between individual responses and the random effects can be
used to model the different variances for the outcomes, as well as the covariances (or correlations)
between the outcome measures (Leyland, 2004). One benefit of this specific type of model is in
testing the equality of the size of effect of a specific predictor on each of the outcomes.

We note that in this multivariate formulation, the repeated measures (Level 1) specification
is again used to collect three subtest measures within individuals; however, we do not include
an error term at the lowest level. At Level 2 (between individuals), we specify the individual
background variables in the model. These estimates are considered as “fixed” (i.e., not varying)
at the individual level. At the school level (Level 3), we can define possible random effects (e.g.,
variation in the achievement scores across schools and variation in the effects of background vari-
ables). We can also consider the effects of school predictors on the randomly varying outcomes.

The Data

The data set consists of 2,715 students (Level 1, N = 8,145 observations) nested in 353 schools
(Table 7.17). Between individuals, we will investigate the effect of gender (coded 1 = female, 0 =
male) on the three achievement outcomes. Between schools, we investigate the effect of academic
press (i.e., the same school variable indicating the relative focus on academic outcomes) on the
set of correlated subtests.

Research Questions

In this example, the primary research question concerns whether gender affects students’achieve-
ment on each test. In this instance, we wish to control for the likely correlation between stu-
dent performance on each test. We then can ask whether the size of the gender effect is the
same across all three tests. In answering this latter question, we are interested in investigating
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TABLE 7.17 Data Definition of ch7achievement.sav (N = 8,670)

Variable

Level Description Values Measurement

schcode

id

Rid

female

Index 1

achieve

gmses

School School identifier (353 schools). Integer Ordinal
Individual Individual student identifier (2,715 Integer Ordinal
students).

Individual Recoded individual student identifiers 1,2,...30 Ordinal
(id) with the school identifier (schcode)
identifying students within their school
groups (1,2,...,30).

Individual Demographic predictor variable 0 = Male Scale
representing students gender 1 = Female

Within Individual  Identifier variable resulting from (1,2,3) Nominal
representing the three fests comprising
achievement within individuals.

Within Individual Dependent variable measuring 25.29 t0 99.98 Scale
achievement on three achievement
outcomes for math and reading.

Individual Predictor variable (grand-mean centered)  -2.05 to 1.52 Scale

measuring the socioeconomic status of
students within schools.

gmacademic  School Predictor variable (grand-mean centered)  -2.61 to 339 Scale

representing average years of teaching
experience of the staff

gmses_mean  School Predictor variable (grand-mean centered)  -0.83 to 1.52 Scale

representing average years of teaching
experience of the staff.

gmacadpress  School Predictor variable (grand-mean centered)  -2.51 to 1.22 Scale

measuring each schools academic
outcomes.

o Within

individual = Level 1; Individual = Level 2; School = Level 3.

hypotheses about the effect of gender on each of the student subtests comprising the multivariate
outcome. More specifically, we wish to determine whether the effect of gender is the same across
the correlated subtest outcomes or whether it may be related to some subtests but not others.
In each case, the hypothesis proposed is that the strength of the effect of the predictor on the
three outcomes is the same. For example, for gender, the null hypothesis would be that the three
unstandardized betas (;) would be the same:

HO = ﬂlRead = ﬂlMat/y = ﬁlLanguage'

We will also pose a question about whether the effect of the school’s academic press is the same
across the three subtests.

Formulating the Basic Model

Similar to our previous multivariate formulation, we do not specify an intercept in the Random
dialog box (or syntax subcommand) for the lowest level of the model. We note in passing that we
could define the three observed outcomes as a latent achievement variable at Level 1 and exam-
ine variation due to individuals at Level 2 and variation due to schools at Level 3. This would be
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similar to our previous three-level formulation with measurement model at Level 1. If we were
to do this, we should have variables measured on the same scale (e.g., scaled scores) and with
similar variance.

As we have suggested previously, the multivariate linear model is commonly formulated as a
single-level model specified in matrix notation (e.g., see Leyland, 2004). To define this type of
model in MIXED, we stack the single-level model with reading, math, and language subtests in a
single variable column (Y};), where i refers to the particular subtest (i = 1, 2, 3) for individual 7 in
school 2. As we noted, instead of creating a latent achievement construct at Level 1, in this exam-
ple we will again use a categorical indicator (Index1) to open up the Repeated dialog box for the
Menu commands. At the lowest level, the categorical indicator is used to identify each response
variable. In this case, it is used to generate three design matrix columns corresponding to three
intercept terms (Leyland, 2004). Specifying the fixed-effects portion of the model as having no
intercept (NOINT) ensures that separate intercepts are obtained for each of the three subtests
and prevents MIXED from generating another, unnecessary, intercept column (Leyland, 2004).
At this lowest level, we must also designate students as nested in schools [Subject (schcode*Rid)]
on the Repeated command line (if we refer to the syntax statements).

We note that this particular specification has the effect of combining Levels 1 and 2 to cre-
ate a basic two-level (i.e., student and school) multivariate formulation (Leyland, 2004). As we
indicated previously, in this formulation there is no modeling of the residual variance (g;) at
the lowest level of the model. Moreover, because Levels 1 and 2 are combined to serve as the
student level, we do not specify a random intercept at the individual level. By declaring Index1 as
the random effect at the highest level (using schcode as the subject variable), we can fit a random
intercept model for each test between schools.

For ease of presentation, in Equation 7.15, we specify a separate, combined equation for each
outcome (using R for reading, M for math, and L for language). We can also add one or more
student-level X, predictors and school-level /¥, predictors in each combined model. In this case,
we will add female as a student-level predictor and academic press (gmacadpress) as a school in-
dicator. We could add other predictors, but this should be sufficient to demonstrate this type of
model specification adequately. Following Leyland (2004), the fitted two-level models are then
as follows:

Yz = Yroo + Yrorgmmacadpress; + y piofemaley, + ugo, + 7ry,
Yo = Yo + Yamgmacadpress, + Yangfemaley + unp + Tagp,
Y1 = Voo + Yiogmacadpressy + Yiyfemaley + g, + 77 (7.15)

This suggests that we have separate intercepts and regression coeflicients for the school-level
intercepts and within-group and between-group predictors, with 7 representing within-school
residuals for each equation and « representing random eftects associated with explaining school
achievement for each subtest. For this example, we will consider the slope coeflicients describ-
ing the relationship of gender and each subtest (8;;) within schools to be fixed between schools
(Bu = 710)-

Once again, we note that Index1 is crossed with the within-school predictors (X) and be-
tween-school (/) predictors in the combined model (e.g., Index1female), if we wish to include
a separate regression coeflicient describing the gender effect on each outcome. This is important
in our example since one of our goals is to examine whether the effects of gender are the same or
different on each outcome. If we wished to impose equality constraints on the predictor, however,
that variable (e.g., female) could be added directly into the model (Hox, 2010).

We will select a UN covariance matrix where the residuals are assumed to be normally dis-
tributed (2V) with 0 means in order to examine the variances and covariances between tests at the
school level.
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Upoy 0 O, RM,
2

Uyi |~ V|0, RM,, My,

LT 0 rL, Owmr,

TR0 j2 0 O, RM,
2

Taron |~ N||0], R, "

rLOré 0 o-RLy o-ML.r

(7.16)

9

RL,

(7.17)

O,

'This fully specified model will have 21 parameters to estimate (i.e., three fixed-effect intercepts,
three fixed-effect estimates for female, three fixed-effect estimates for academic press, and 12

covariance parameters).

Model 2.1: Null Model (No Predictors)

We will first define a simple “no-predictors” model with random intercepts for each response
variable at Level 2. This combined model will have 15 parameters to estimate (i.e., three fixed
effects and 12 covariance parameters in the two covariance matrices as specified in Egs. 7.16

and 7.17).

Defining Model 2.1 (Null) with IBM SPSS Menu Commands

Laugch .the IBM SPSS program {2 ch7achievement.sav [DataSet1] - IBM SPSS Statistics Data Editor ESMEE ™)
application, and select the Fie EGt View Data Transforn] Anayze DrectMarketn Graphs Utities Add-ons Window Heb |
ch7achievement.sav data file. —— —
=H 3 8 ' ] E
Descriptive Statistics »

1. Go to the toolbar and select | W » | [Visie: 10 0f 10 Variabes
ANALYZE; MIXED schcode | Compare Means 2 M Index1 |
MODELS, LINEAR. 1 62 General Linear Model » 1 1 ﬁ

2 62 Generalized Linear Models 1 =
This command enables access to 3 62 Mixed Models b Lnear.. [
the Linear Mixed Models: Specify 4 Be Soreete > | ] generaized Linear..
. . 5 62 Regression 3 1 2
Subjects and Repeated dialog box. - = s { : :
i} 369 Neural Networks » 0 1
8 369 Classify 3 0 2
9 369 Dimension Reduction » 0 3
10 160 Scale 3 0 1
1 160 Nonparametric Tests » 0 2
12 160 Forecasting » 0 3 |+
<] Svicel S — T
_DataView | Variable View ||  Multivle Response P —
[Lnear.. | 5 Missing Value Analysis... borisready] | | | |
Muttiple Imputation
Complex Samples »
Guality Control »
ROC Curye...
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2. The Linear Mixed Models: SPL’C?.}f‘y Subjects and 2 Linear Mixed Models: Specify Subjects and Repeated &J
Repeated screen displays options for defining

variables as subjects, repeated observations, Cick Continue for models wih uncorreiated terms.
and type of covariance structure in a model. Specify Subject variable for modeis with correlated random effects.
a. A subject is an observational unit that may SPAcH) DI ianoeind 460 SHiRct bivnes Sormodlle. Wil conemied
. . . residuais within the random effects.
be independent of other subjects. For this e
model, we will designate two subject identi- ] & scheode
fiers for the model (schcode and Rid). Click - |all e

to select schcode, and then click the right-
arrow button to move the variable into the

Subjects box. ;:::‘ Rapested:
b. Click to select Rid, and then click the & orecedenic & indext
right-arrow button to move the variable & gmses_mean
into the Subjects box. ¥ ascanpton ) -
c. 'The Repeated box allows specifying variables _ @
that identify repeated observations. For this Repesied Covariance Type: [Unstructured ¥
model, Index1 identifies indexing the i indi- = |} EIFN‘—W Analytic: Frst Order 2
vidual student identifier to define three test I"k—l = ::::::::lm ebivalboeismd | |
measures each in math and reading. Click to Scaied identty 1] [N
select Index1, and then click the right-arrow I:z B
button to move the variable into the Repeated Unstructured i
bOX. Unstructured: Correlation Metric -

'The combination of values for schcode, Rid, and IndexI defines a particular student from a particular
school group across a single measure of achievement comprising three measures each of reading and
math scores.

d. The Repeated Covariance Type specifies a model’s covariance structure. For this model, we will use
an unstructured matrix. Click the pull-down menu to select Unstructured.

Unstructured is a completely general covariance matrix (IBM Corporation, 2012).

Click the CONTINUE button to display the Linear Mixed Models dialog box.

3. The Linear Mixed Models main ) Linear Mixed Modeis |
screen enables specifying the depen- ==y _ =
dent variable, factors, and covariates, & scheade |94 [# scieve | @
as well as access to dialog boxes for ) | Rapdom. |
defining Fixed and Random effects, & ndext | [_Estmaton.. |
and options for Estimation, Statistics, | | statstes... |
EM Means, and Save. 3 Covariste(a) | Eumeans.. |
a. For this model, we will use iﬂrr::“m N [ seye. |

achieve as the dependent variable. & gmses_mean 4 |

Click to select the achieve variable & gmscadpress Residual Weight

from the left column listing. Then — 2

click the right-arrow button to L0k || Peste || Reset || cancel |[ hep

transfer achieve into the Depen-
dent Variable box.

b. We will create a no-intercept null model that uses Index1. Click to select Index1 from the left
column listing. Then click the right-arrow button to transfer the variable into the Factor(s) box.

Click the FIXED button to access the Linear Mixed Models: Fixed Effects dialog box.
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4a. Within the Linear
Mixed Models: Fixed
Effects dialog box,
we will retain the
default Factorial set-
ting, which creates all
possible interactions
and main effects of
the specified variable
(IBM Corporation,
2012).

Now click to select
Index1 from the Fac-
tors and Covariates
box, and then click
the ADD button to
move the variable
into the Model box.

3 Linear Mixed Models: Fixed Effects

rFixed Effects

) Bui terms

(_) Buid pested terms

Factors and Coyariates:
' index1

’@*

.

_-! Include intercept |

Sum of squares: |Type®

LI}ConmUe “ Cancel |

Help

¢. To create the no-intercept model, uncheck the Inc/ude intercept option.

Click the CONTINUE button to return to the Linear Mixed Models dialog box.

We will now add random effects to this model.

Click the RANDOM button to access the Linear Mixed Models: Random Effects dialog box.

5. The Linear Mixed
Models: Random Effects
displays the Random Ef-

fect 1 of 1 screen, which

is the default when
creating a model for the
first time. The random-
effects screen allows
specifying random ef-
fects, interactions, inter-
cept terms, and subject
groupings.

a. Begin by specifying
the covariance struc-
ture from the default
variance components
(VC) to Unstructured.
Click the pull-down
menu and select Un-
structured (UN).
Unstructured is a
completely general
covariance matrix

(IBM Corporation, 2012)

3 Linear Mixed Models: Random Effects

Random Effect 1 of 1
Coyariance Type: .Uns!':uclured '.'
Random Effects
+) Buig terms () Buid nested terms e [ ] include intercept
Eactors and Covariates: Model
|1 Index1 index1
4
+ Add ]
Eahinaons =
'o"o schcode
|
LI}COnt'nue ” Cancel || Hep
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b. We want the intercept to be excluded from the model, so we will retain the current default

setting.

c. We will also retain the default Facorial setting, which creates all possible interactions and main
effects of the specified variable (IBM Corporation, 2012).

d. Click to select Index1, and then click the ADD button to move the variable into the Mode/ box.

e. 'The Subject Groupings box displays the schcode and Rid variables that were specified as subject
variables in the Specify Subjects and Repeated dialog box show in step 2a. We will specify schcode
as the subject for the random-eftects Level 1 part of this model. Click to select schcode, and then

click the right-arrow button to move the variable into the Combinations box.

Click the CONTINUE button to return to the Linear Mixed Models dialog box.

6. Click the ESTIMATION
button to access the Linear
Mixed Models: Estimation
dialog box, which displays
two estimation method

choices: ML, or REML.

We will use the default setting of
REML to estimate the models.

Click the CONTINUE button to
return to the Linear Mixed Models
dialog box.

{5 Linear Mixed Models

A Linear Mixed Models: Estimation €=~

~-
~——

-Method-
LLG
=3 .5 Restricted Maximum Likeihood (REML)
(O Maximum Likelhood (ML)
Iterations
Maximum Rerations: 100
egmmsipavngs [0
[] Print eration history for every
Log-Likelihood Convergence
L[| |® absoute (O Reiative
= Vawe |[g v I‘
Parameter Convergence
(2) Apsolute () Relative
Value |0,000001 v
Hessian Convergence-
(3) Absolute O Reiative
Vale g - ‘[
Maximum scoring steps: | 1 |

Singularty tolerance: | 0,000000000001

Lh(hnthuej[ Cancel ]| Help ]
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7. In the Linear Mixed Models dialog
box, click the STATISTICS but-
ton to access the Linear Mixed
Models: Statistics dialog box.

Click and select the following three
statistics to be included in the output:
Parameter estimates, Tests for covariance
parameters, and Covariances of random

effects.

Click the CONTINUE button to re-
turn to the Linear Mixed Models dialog

box.

8. We recommend view-
ing your syntax com-
mands before running
the null model to first
check if the model
has been properly
specified.

Click the PASTE but-

ton on the Linear Mixed
Models dialog box, which
will open a new window
that displays the null
model’s syntax. Discussion
of syntax occurs in the next
section, “Examining the
Syntax Commands.”

Note: Executing the Paste
command will generate the
syntax but also close the
Linear Mixed Models dialog
box. You will then need to
repeat several steps in order

2 Linear Mixed Models

3 Linear Mixed Models: Statistics ‘Jﬁ :

~al

- Summary Statistics -
[_] pescriptive statistics
L—]_ Case Processing Summary
-Model Statistics—

(%] Parameter estimates

y (| Tests for covgriance parameters

[ ] Corrglations of parameter estimates
i [7] covariances of parameter estimates ]
Covariances of random effects

[ "] covariances of residyals Sance) ” e I
| D Contrast coefficient matrix
Confidence intervat %
Lk(:onl:'nue [ concet [ hep |
{3 Linear Mixed Models ==
& scheade -] mm | i ]
Fu - | Random. |
10 (%] %ﬂi' | [ gsmaron ]
4 2| ==
: Covariste(s): Lmsce_
Y e ol L_l
D Mﬂﬂ‘t
M_JL...QL,_J =
) “Syntaxi - 'ﬁM;;ssmmmsdm \\ b ) ]

Ele [Edt View Data Transform Analyze DirectMarketng

SHE @ - ~ ﬁﬁ%% L 1LY

mm—-@uﬁm'ﬁ»‘ﬂhﬂunﬂﬁ

) B»

A5 O MW — oo

DATASET ACTM DATASET ACTIVATE DataSet! ./ [l
s |2 DIMIXED achieve BY Index1
a :cnnenm-cm(%) IlXJTERUOO) HXSTEP(10) SCORING(1) SNGULAR(0.000000000001)
14 OLUTE) LCONVERGE(D, A LUTE) PCONVERGE(0.000001, ABSOLUTE) I
5 [FIXED=Index | NOINT SSTYPE[S}
I8 || METHOD=REML ‘
7 || PRINT=G SOLUTION TESTCOV
8 /RANDOM=Index1 | SUBJECT(schcode) COVTYPE(UN) r
EQ O /REPEATED=Index1 | SUBJECT(schcodeRid) COVTYPE(UN). =
o 41 g T )
g ] | " ' - — :
Gﬂwml Bl SPSS Siatistics Processor is ready n11Col0| [NUM

to reaccess the Linear Mixed Models dialog box where you may then be able to run the model:

a. Go to the toolbar and select ANALYZE, MIXED MODELS, LINEAR. This command
enables access to the Linear Mixed Models: Specify Subjects and Repeated dialog box.

b. Within the Linear Mixed Models: Specify Subjects and Repeated dialog box, click the

CONTINUE button to open the Linear Mixed Models dialog box.

Now continue on to the final step (9).
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9. Finally, in the Linear MixedMade[s t_] Linear Mixed Models i-ﬁ&_l\
dialog box, click the OK button to 5
pendent Variable: 3
run the model. & schcide W | |2 scheve _ wed.. J
Rapdom...

ﬁ g Eactor(s): o i |

- ?n & ndext Estimation... _i

emake )

7 Sa— 3 Statistics... |

g g::::d::'; Covariate(s) £ Mesta....

9 = Saye... |

f gmacadpress

Resdual Weght

| OK E :_ Paste Resat Cancel | Help

Examining the Syntax Commands

We suggest examining the syntax statements to see whether the model has been set up properly
using the Repeated Covariance Type menu option. The /FIXED command specifies Index1 as
the single predictor and no intercept (NOINT) in the fixed-effects portion of the model. The /
REPEATED command line shows the variable IndexI has been defined to represent the subtests
and that the proper nesting of students within schools was accomplished correctly (schcode*Rid).
Next notice that the /RANDOM command includes IndexI as a random effect, which allows
the intercepts for the each test to vary across schools, and the school level (schcode) has been
properly defined. We note there is no random term at the individual level.

MIXED
achieve BY Indexl

/CRITERIA = CIN(95) MXITER(100) MXSTEP(5) SCORING (1)

SINGULAR (0.000000000001) HCONVERGE (0, ABSOLUTE) LCONVERGE (0, ABSOLUTE)
PCONVERGE (0.000001, ABSOLUTE)

/FIXED = Indexl |NOINT SSTYPE (3)

/METHOD = REML

/PRINT = G SOLUTION TESTCOV

/RANDOM Indexl |SUBJECT (schcode) COVTYPE (UN)

/REPEATED = Indexl|SUBJECT (schcode*Rid) COVTYPE (UN) .

Interpreting the Output From Model 2.1
We present the fixed effects for a simple “no-predictors” model first (Table 7.18). The school-

level means (corrected for correlations between outcomes) are as follows: reading (R = 57.421),

math (M = 59.238), and language (L = 57.816).

TABLE 7.18 Estimates of Fixed Effects®

95% Confidence Interval

Paramenter Estimate Std. Error df t Sig. Lower Bound  Upper Bound
[Index1 = 1] 57.421 0.259 291.975 221.903 .000 56.912 57.931
[Index1 = 2] 59.238 0.284 304.979 208.703 .000 58.680 59.797
[Index1 = 3] 57.816 0.276 306.376 209.702 .000 57.274 58.359

@ Dependent variable: achieve.
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TABLE 7.19 Estimates of Covariance Parameters®

95% Confidence Interval

Parameter Estimate  Std. Error  Wald Z Sig. Lower Bound Upper Bound

Repeated Measures UN (1, 1) 89.770 2.591 34.645 .000 84.832 94.995
UN (2, 1) 55.555 2.082 26.689 .000 51.475 59.635
UN (2, 2) 80.659 2.339 34.486 .000 76.202 85.375
UN (3, 1) 54.857 2.163 25.363 .000 50.618 59.096

UN (3, 2) 59.393 2137  27.786 .000 55.203 63.582
UN (3, 3) 91.458 2.637  34.682 .000 86.433 96.775

Index1 UN(1, 1)  9.992 1.755  5.695 .000 7.083 14.097
[subject = schcode]  UN(2,1) 11.217 1746  6.425 .000 7.795 14.639
UN(2,2) 15239 2.128  7.163 .000 11.591 20.035
UN(3,1)  9.894 1.644  6.018 .000 6.671 13.116
UN(3,2) 12.354 1.865  6.624 .000 8.699 16.010
UN(3,3) 12.532 1.966  6.373 .000 9.214 17.044

@ Dependent variable: achieve.

We also show the specification of the two covariance matrices between and within schools in
Table 7.19. As specified, the structure is fairly complex but with all the variances and covariances
statistically significant within and between schools.

Model 2.2: Building a Complete Model (Predictors and Cross-Level Interactions)

We will next build the model with individual-level and school-level predictors, as specified in

Egs. 7.15-7.17.
Defining Model 2.2 with IBM SPSS Menu Commands
Settings will default to those used in (88 ch7achievement.sav [DstaSets] - 1BM SPSS Statistcs Data Editor =] & et
MOdel 2.1 Fie Edt :ew Data Transforn] Analyze Drel:l Marhetn_grapd!s Utiities Add-ons Wndnw_Heb-‘
—_‘l' 11] = 3 . H ’“’E"“.S_ Statistics : &a s 4] g
1. Go to the toolbar and select ANA- ' DeeTeie — |
| Tables » Visible: 10 of 10 Variables
LYZE’ MIXED MODELS) | scheode I Compare Means b ale | Index1 |
LINEAR. 1 62 General Linear Model » 1 1] |2
2 62 Generalized Linear Models  # 1 2
This command enables access to the Linear & 62 Miged Models X !%3 unear.. [y
. . . [EETL A 62 Correlate » | Ll Generalized Linear...
szed Models: Specify Subjects and Repeated : 62 | i y T 5
dialog box. 6 62 | Loginear v | 1 3
7 369 Neursi Networks vl o 1
ga| 369 Clossity vl o0 2
9 369 Dimension Reduction »| o 3
10 | 160 Scale (] 0 1
1 | 160 Monparametric Tests 3 0 2
12 | _1_5_0___ Forecasting » 0 3Ev_
L NS sewa )| Dl )
| Data View | Veribie View |  MiliieResponse %
Linear... | ] Messing Vatue Analysis... b ready
: ; S
Complex Samples b
Quaity Contral »
ROC Curye...
IBM SPSS Amos...
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2. 'The Linear Mixed Models: Specify Subjects and

{2 Linear Mixed Models: Specify Subjects and Repeated [
Repeated screen displays the default settings

from the prior model. Click Continue for modeis with uncorrelated terms.

Specify Subject variable for models with correlated random effects.
Click the CONTINUE button to display the Specify both Repeated and Subject variables for models with correlated
Linear Mixed Models dialog box. e e

& temaie — {allre

& achieve | 9 '

& gmses

f gmacademic

& gmses_mean

& gmacadpress LIt

| g Index1
B

Repeated Covariance Type: | Unstructured -

[anm“ || meset || cancet || hHe» |

3. 'The Linear Mixed Models dialog box ) Linear Mixed Models
settings default to those used in the
prior model.

We will introduce two additional

variables to be used in the model

(female and gmacadpress).

a. First, click to select female, and
then “drag” the variable below
Index1 in the Factor(s) box.

b. Next, click to select gmacadpress, — Residvsl Wekht
and then click the arrow but- \:)' ' |
ton or drag the variable into the Lok | paste || Reset || cancel || mep |

Covariate(s) box.

Click the FIXED button to access the Linear Mixed Models: Fixed Effects dialog box.

Two cross-level interactions (or nested terms) will be created and added to the model:
Index1*gmacadpress and Index1female. These interactions will tell us if (a) each school’s academic
outcomes affect students’ achievement on each of the subtests (Index?) and (b) student achievement on
each of the subtests (IndexI) is affected by gender ( fermale).
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Add First Interaction to Model 2.2: Index1*gmacadpress

4a.

b.

.

Click to select Build nested €3 Uinear Mined Models:Fired Effects et
l‘erms' Fixed Effects |
Click to select the variable usgerms () NCT
Index1 from the Factors and Factors and Coyarates Madet
. female IIndext
Cowvariates box. b (b
. Then click the arrow button (e ) K} s :
bClOW the Fﬂffors ﬂﬂd CO?Jﬂri— | i ::::::?:‘:::Enreu'
ates box. This moves Index1 into
the Build Term box to create a Q @ @ !
cro§s—lcve1 interaction by linking A5 Jlamn] (o S o]
variables and terms. ) el
. Next, click the BY* button, il e
[ meiyde intercept  Sumof squares: | Type B >

which will insert the computa- :
tion command symbol: IndexI™. ‘ e e

. Click to select gmacadpress from

the Factors and Covariates box.

Click the arrow button below the Factors and Covariates box to move gmacadpress into the Build
Term box and complete the interaction term: IndexI*gmacadpress.

Click the ADD button to transfer the interaction into the Mode/ box.

Add Second Interaction to Model 2.2: Index1*female
Repeat steps 4b to 4g using IndexI and female to create the interaction.

'The completed model is shown in the insert. Click the CONTINUE button to return to the Linear

Mixed Models dialog box.
5. Finally, in the Linear Mixed Models & Linear Mixed Models |
dialog box, click the OK button to
h del Dependent Variable: 1 Fued.. |
run the model. &b schcode - f acheve | —
Random...
ﬁd Eactor(s): e =it |
i & temsie | Estmaton... |
gmses p . ndext 1
-’ gmacademic . .GK) * | A Statistics... |
f gmses_mean Covariste(s): 1| Ef-!__Munl... |
& gmacadpress N Saye... |
=
Residual Weight:
=
| oK Paste Besei || Cancel Help

Interpreting the Output From Model 2.2

'The second model summarized in Table 7.20 presents the adjusted means (i.e., adjusted for gen-
der), which are as follows: reading (R = 58.319), math (M = 58.466), and language (L = 56.109).
Because we entered female as a factor (categorical variable) in this model (instead of a covariate),
we see in the table that there are estimates for female = O (i.e., males), but not for female = 1
(females). This is because when a categorical variable is used, MIXED declares the last cat-
egory as the reference group. The output, therefore, will show estimates for the £ - 1 categories
comprising the variable. If one wishes to change the reference group, it is necessary to recode
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TABLE 7.20 Estimates of Fixed Effects®

95% Confidence Interval

Parameter Estimate  Std. Error df t Sig. Lower Bound Upper Bound
[Index1=1] 58.319 0.306 588.784 190.818 0.000 57.719 58.919
[Index1=2] 58.466 0.320 550.415 182.866 0.000 57.838 59.094
[Index1=3] 56.109 0.322 594.823 174.051 0.000 55.476 56.742
[Index1=1] * gmacadpress 1.590 0.268 289.596 5.929 0.000 1.062 2.118
[Index1=2] * gmacadpress 1.683 0.291 303.129 5.786 0.000 1.111 2.256
[Index1=3] * gmacadpress 1.149 0.289 314.798 3.973 0.000 0.580 1.717
[Index1=1] * [female=0] -1.964 0.375 2715.088 -5.240 0.000 -2.699 -1.229
[Index1=2] * [female=0] 1.504 0.362 2692.912 4.149 0.000 0.793 2.214
[Index1=3] * [female=0] 3.477 0.378 2706.867 9.197 0.000 2.736 4218
[Index1=1]* [female=1] 0.000°>  0.000 - - - - -
[Index1=2] * [female=1] 0.000>  0.000 - - - - -
[Index1=3] * [female=1] 0.000>  0.000 - - - - -

@ Dependent variable: achieve.
b This parameter is set to O because it is redundant.

TABLE 7.21 Estimates of Fixed Effects®

95% Confidence Interval

Parameter Estimate Std. Error df t Sig. Lower Bound Upper Bound

[Index1 = 1] 56.356 0.315 649.589 178.770 .000 55.737 56.975

Index1 = 2 59.970 0.328 602.740 182.658 .000 59.325 60.615

[

Index1 =3 59.586 0.332 653.536 179.657 .000 58.935 60.237

[

Index1 = 1] * gmacadpress 1.590 0.268 289.596 5.929 .000 1.062 2.118
9 p

Index1 = 2] * gmacadpress 1.683  0.291 303.129 5.786 .000 1.111 2.256
9 p

[Index1 = 3] * gmacadpress 1.149  0.289 314.798 3.973 .000 0.580 1.717

Index1 = 1] * female 1.964 0375 2,715.088 5.240 .000 1.229 2.699

[

Index1 = 2] * female -1.504 0362 2,692.912 4.149 .000 -2.214 -0.793

[

Index1 = 3] * female -3.477 0.378 2,706.867 9.197 .000 -4.218 -2.736

[

@ Dependent variable: achieve.

the variable. The output suggests that males score significantly lower than females (y = -1.964,
p <.001) in reading (Index1 = 1, female = 0), but significantly higher than females in math
(y = 1.504, p < .01) and language (y = 3.477, p < .001). We can also see the redundant effects
from the categorical specification used. Turning to the school portion of the model, we can
observe that the school’s academic press is positively related to students’ achievement on each of
the subtests (with y coeflicients ranging from 1.149 to 1.683 and p < .001).

For comparative purposes, we also provide the output for the same model if we defined fe-
male as a covariate instead of as a factor. We provide the syntax for this model in Appendix A.
Table 7.21 reveals two noteworthy differences. First, the intercepts will be different. If we take
the intercept from Table 7.20 for reading (58.319) and subtract the coefficient for males (1.963),
we get a coefficient of 56.356, which represents the reading intercept for males in Table 7.21
(with slight difference due to rounding). Second, the direction of the coeflicients regarding
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gender is different, reflecting that when female (coded 1) is defined as a covariate, the reference
group will now be males (coded 0). The coeflicients in the model in Table 7.21 will now refer to
females instead of males.

Testing the Hypotheses

We can examine whether the effect of gender and academic press are the same across the three
subtests. In Table 7.22, we present results from Model 2.2, where female is treated as categorical
rather than as a covariate (which produces different coeflicients for IndexI but the same inter-
pretation). The Type III (sum of squares) tests of the fixed effects provide this information. The
significant F ratios for female and academic press suggest the impact of each predictor is not the
same across the subtests. We would, therefore, reject the null hypothesis for each variable.

Correlations Between Tests at Each Level

TABLE 7.

Finally, we turn our attention to the covariance components table (Table 7.23 from Model 2.3).
We can specify the UN covariance matrices as unstructured with a correlation metric (UNR)
and examine the correlations between the tests in the off-diagonals of the matrix at each level.
Within schools, the correlations between the subtests are all moderate and significant (ranging
from 0.64 to 0.69 and p < .001). Between schools, the correlations between subtests are also
significant (p < .001) and are considerably stronger than the individual-level correlations (with
coefficients ranging from 0.86 to 0.89).

TABLE 7.22 Model 2.2 (Female Treated as Categorical) Type lll Tests of Fixed Effects®

Source Numerator df ~ Denominator df F Sig.
Index1 3 294.230 19,787.638 .000
Index1 * gmacadpress 3 296.041 14.037 .000
Index1 * female 3 2,703.990 103.927 .000

@ Dependent variable: achieve.

23 Estimates of Covariance Parameters®

95% Confidence Interval

Parameter Estimate  Std. Error ~ Wald Z Sig. Lower Bound Upper Bound
Repeated Measures  Var(1) 88.632 2.558 34.651 .000 83.758 93.790
Var(2) 80.281 2.327 34.495 .000 75.847 84.975
Var(3) 88.533 2.550 34.722 .000 83.674 93.674
Corr(2, 1) 0.666 0.011 58.781 .000 0.644 0.688
Corr(3, 1) 0.638 0.012 52.958 .000 0.614 0.661
Corr(3, 2) 0.691 0.011 64.875 .000 0.669 0.711
Index1 [subject = Var(1) 8.297 1.598 5.192 .000 5.688 12.103
schcode] Var(2) 12.569 1.902 6.608 .000 9.343 16.909
Var(3) 11.302 1.815 6.226 .000 8.250 15.484
Corr(2, 1) 0.894 0.038 23.424 .000 0.789 0.948
Corr(3, 1) 0.862 0.045 19.014 .000 0.742 0.928
Corr(3, 2) 0.875 0.034 25.704 .000 0.790 0.928

@ Dependent variable: achieve.
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Defining Model 2.3 with IBM SPSS Menu Commands
1. Go to the toolbar and select ANALYZE, MIXED MODELS, LINEAR.

= 345

'This command enables access to the Linear Mixed Models: Specify Subjects and Repeated dialog box.

2. 'The Linear Mixed Models: Specify Subjects and
Repeated screen displays the default settings

from the prior model.

We will change the Repeated Covariance Type by

clicking the pull-down menu and selecting Unstruc-
tured: Correlation Metric (UNR).

'The Unstructured: Correlation Metric has heteroge-
neous variances and correlations (IBM Corporation,

2012).

Click the CONTINUE button to display the Linear

Mixed Models dialog box.

{3 Linear Mixed Models: Specify Subjects and Repeated

i)

Click Continue for models with uncorreiated terms.
Specify Subject variable for modeis with correlated random effects.

Specity both and Subject for models with correlated
residuals within the random effects.
& & schcode
& temaie iﬂ Rid
& achieve L
& grses |24
f gmacademic

gmses_mean
& gmacadpress Repeated:

&b Index

D>

Click the RANDOM button to access the random-effects main screen.

4. From the Random Effect
1 of 1 screen, change the
covariance type by click-
ing the pull-down menu
and selecting Unstruc-
tured: Correlation Metric.

Click the CONTINUE but-
ton to return to the Linear
Mixed Models dialog box.

Click the OK button to run
the model.

d Covariance Type: |Unstructured: Correlation Metric
= ——|Factor Analytic: First Order
[t e s o
: ynh-Feidt =
Scaled dentty 14
oeplitz
‘oepitz: Heterogeneous
Unstructured
d Correiation Metric N [+
3. 'The Linear Mixed Models dialog box settings default to those used in the prior model.
(€ Linear Mixed Models: Random Effects e
Random Effect 1 of 1—— - | = — —
@
Coyariance Type: Unstructured: Correlation Metric '1
‘Random Effects—
() Bui terms. () Buid pested terms [] nciyde intercept
Eactors and Covariates: Model:
!li female Index1
[ index1
|# gmacadpress | |
I[Eclnml vi
| - - ‘ ‘..__ - R p— — — i
¥ I |
— = =
SI.I_hJeEI Glon;:ml_:]S =
=
: &b scheode

iq‘?) schcode
ol R
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Investigating a Random Slope

As in our other models, it is easy to investigate a random gender slope across schools using the
previous model formulation. We can specify female as randomly varying by adding it as a random
effect at the school level /RANDOM Index1 female). When we do so, we can obtain a covari-
ance estimate for gender with each outcome in the model, as well as a variance component for
the gender slope, which is significant (p < .05). We might then investigate whether other school
predictors (e.g., gmcadpress or gmses_mean) explain variation in this slope. We can add such cross-
level interactions into the model as three-way interactions (gmacadpress’female*Index1). If we
instead add a school-level predictor as a typical cross-level interaction (gmacadpress*female), this
specification becomes a test of an equality constraint across the three outcomes. Tests of fit be-
tween the two formulations should be conducted with ML estimation. We leave this investiga-
tion to interested readers to conduct (see syntax in Appendix A).

Defining a Parallel Growth Process

Our third example concerns specifying two growth processes within one model. Similar to our
other multivariate models in this chapter, this can be accomplished by stacking the measures
of reading and math in one “achievement” column. Once again, we can use an index variable to
specify the repeated measures and then we can differentiate the reading or math repeated mea-
sures by using a dichotomous variable to define each achievement domain. In this case, we will
develop an achievement variable consisting of three repeated measures of students’ reading and
math scores. We can specify each type of achievement outcome by using a dummy coded variable
which we will call math (coded 0 = read, 1 = math). This Level 1 specification facilitates building
a separate explanatory model for each outcome.

The Data

For purposes of demonstration, in this example we use a subset of our data (see Table 7.24),
as it is relatively easy to run into problems of “insufficient” computer memory because of the
complexity of the data structure (i.e., six lines of data for each individual, and 1,836 individuals
nested within 30 schools). We also recoded the individual identifiers (Rid) within their school
groups (1,2,...,7) in order to reduce required computer memory space to estimate the model. We
provide the observed means for the reading and math indicators in Table 7.25.

TABLE 7.24 Data Definition of ch7PGachievement.sav (N = 1,836)

Variable Level Description Values Measurement
id Individual Individual student identifier (1,836 Integer Ordinal
students).
Rid Individual Recoded individual student identifiers (1,2,3,...,30)  Ordindl
(id) with the school identifier (schcode)
identifying students within their school
groups (1,2,. . .,30).
schcode School School identifier (30 schools). Integer Ordinal
female Individual Demographic predictor variable 0 = Male Scale
representing students gender. 1 = Female
schcontext School Variable measuring school composition. -1.87t0 1.85 Scale
Index1 Within Individual  Identifier variable resulting from indexing (1,2,3,4,5,6) Ordindl

the id individual identifier (1 to 1,836) to
create a new identifier to define reading
(1-3) and math (4-6).

(Continued)
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TABLE 7.24 (Continued)

Variable Level® Description Values Measurement

achieve Within Individual ~ Dependent variable measuring 480 to 849 Scale
achievement on three achievement
outcomes for math and reading.

math Within Individual ~ Dichotomous variable specifying student 0 = Read Nominal
achievement in math or reading. 1 = Math

time Within Individual ~ Variable representing three linear 0 = First Time Scale
occasions in time measuring students math 1 = Second Time
achievement. 2 = Third Time

orthtime Within Individual ~ Recoded time variable from three -1 = First Time Scale
occasions in time (0, 1, 2) into an 0 = Second Time
orthogonal linear —(1, O, 1) sequence. 1 = Third Time

orthquadtime  Within Individual ~ Recoded time variable from three 1 = First Time Scale
occasions in time (0, 1, 2) info an -2 = Second Time
orthogonal quadratic (1, -2, 1) sequence. 1 = Third Time

o Within Individual = Level 1; Individual = Level 2; School = Level 3.

TABLE 7.25 Observed Reading and Math

Achieve
Index Mean N Std. Deviation
Read1 589.44 1,836 34.426
Math1 600.25 1,836 39.638
Read? 648.24 1,836 29.929
Math2 652.06 1,836 30.240
Read3 650.99 1,836 33.720
Math3 661.38 1,836 39.874
Total 633.73 11,016 44.686

Research Questions

One advantage of specifying a parallel growth model is that researchers can examine the extent
to which concurrent individual changes in math and reading are mutually interrelated, as well as
the extent to which these changes may be explained by the hypothesized individual- and school-
level factors in the model. In particular, the goal was to define a single simultaneous model of
parallel student growth in reading and math and to investigate how the specific school factors
might moderate student growth. The study addresses one primary research question: Do school
measures of teaching effectiveness and school instructional practices moderate student growth
trajectories in reading and math?

Preparing the Data

In specifying this type of stacked outcome, we generally would begin with a horizontal data
set with the three repeated measures of reading (Read1, Read2, and Read3) and three repeated
measures of math (Mathl, Math2, and Marh3) specified horizontally. We then use the Daza:
Restructure procedure in IBM SPSS to create a single measure of achievement that is stacked
vertically with an index variable that specifies the six measures of reading and math, which will
now comprise that achievement dependent variable (see Chapter 2). The restructuring procedure
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FIGURE 7.2 Observed math and reading trajectories.

will automatically refer to this new index variable as Index1.'The first three numbers of the Index1
variable (1-3) will represent reading, while the last three numbers (4—6) will represent math.

After the data are restructured, we can use the Index] variable to create two other necessary
variables for defining the parallel growth model. First, we create a dummy variable to define the
two outcomes (read, math), which we label mazh. Using the recode command, from the Index1
variable, we can recode 1-3 to 0 to represent the reading indicators (math = 0), and we can recode
4-6 to 1 to represent the math indicators (math = 1). We also need to define the time-related
polynomials (remembering that we can have 4-1 polynomials, or two in this example). In growth
modeling, we can also estimate 4-1 random effects. Since there are three time points in this
example, we can estimate two random effects. This allows us to estimate a random effect for the
intercept and a random eftect for either the linear component or the quadratic component.

Once again using the Index1 variable, we can recode 1-3 into a linear #ime variable coded as
0,1, 2 to define the repeated measures for reading. Then we also recode 4-6 as 0, 1, 2 to define
the repeated measures of math. Readers can confirm for themselves the coding of the variables
Index1 (coded 1-6), math (coded 0-1), and time (coded 0-2) in the data set for this example. We
also created some additional variables (i.e., a quadratic time component and orthogonal poly-
nomials) to use as we develop our analyses, but this should be sufficient to get started with the
model specification of a parallel growth process.

We illustrate the actual growth trajectories in Figure 7.2. From the trajectories, we can see
there is considerable slowing over time (between the second and third observations). This sug-
gests we should add a quadratic component to the model.

Model 3.1: Specifying the Time Model

To fit our proposed model, we can declare a three-level model, with schools at the highest level
[Subject(scheode)] and the repeated measures on students combined at Levels 1 and 2 (Leyland,
2004). At the lowest level, we use the Repeated dialog box to specify the repeated measures
of achievement using the IndexI variable. This addresses the nesting of the repeated measures
within individuals [Subject(schcode*Rid)]. We can make use of an indicator variable (i.e., in this
case, a dummy-coded variable to define the multivariate response structure; Hox, 2010). We can
define the indicator variable (I;;) as follows:
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Yy =LYy + (1- Iij/e)YRj/e) (7.18)

Yy

where the indicator takes on a value of 1 if 7 is the math test and 0 otherwise (Leyland, 2004;
Raudenbush & Bryk, 2002) for individual ; in school 4. By using a “no intercept” designation
(INOINT) in specifying the model’s fixed effects, we ensure that an intercept is estimated for each
response variable.

As in the previous example, we do not model variance at the student level in this formula-
tion. More specifically, we do not include a Random subcommand with subjects (schcode*Rid)
specified. By specifying the dummy-coded indicator as randomly varying (Random = marh) and
specifying the Subject subcommand schcode [Subject(schcode)], we can define the two achieve-
ment intercepts at the school level. In Equation 7.19, we define a separate model for each out-
come, which includes the time-related orthogonal polynomials at the individual level (orzhtime
and orthquadtime) and the randomly varying reading and math variance parameters (zzy and
) at the school level. For individual ; in school £ at time # then, we have the following equa-
tions for reading and math:

YRtkj = Yroo + J/Rl()Orl‘/]fl.me{]} + J/Rzoarquuﬂd[imefjk + URos
Yo = Yamo + Yanoorthtime,y + Yapoorthquadtime,y, + . (7.19)

Because the outcomes are represented as a dummy variable in the multivariate formu-
lation, if we do not multiply the predictors by the dummy outcome (e.g., math*orthtime and
math*orthquadtime) in specifying the combined, single-equation model, we will obtain only one
set of coeflicients, which amounts to imposing equality constraints that the regression coeffi-
cients are the same for both outcomes.

At the school level, we assume the intercept residual variances for reading and math are nor-
mally distributed with means of 0. The time-related polynomials are fixed at the school level. We
will select a UN covariance matrix to examine the variances and covariances between tests at the
school level.

u
AR O V4 O (7.20)
Upros 0o RM, M,

Within individuals, we will specify the covariance structure as autoregressive (AR1), with the
constraint |p| < 1 imposed for stationarity. This will include an estimated correlation between
repeated measures over time, but result in only two parameters to estimate (the variance 0% and
the p correlation). Of course, we could also investigate other possible covariance structures.

1 p o p pt P
p 1 p p° p p
APt e 1 popt P
TN P e 1 p P (7.21)
Pt p 1 p
Pt PP op 1
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Defining Model 3.1 with IBM SPSS Menu Commands

Launch the IBM SPSS program

'hl ch7PGachievement .sav [DataSet1] - IBM SPSS Statistics Data Editor

EEay =)

appliCﬂtiOIl, and select the ¢A7PG- Fie EGt Vew Data Iransf ; Drect Marketn Graphs Utities Add-ons Window Hel
achievement.sav data file. % H “*,l . ll el » ﬂ :@ :] E
Descriptive Statistics » i
Takles » | Visible: 11 of 11 Variables
1. Go to the toolbar and select
C » i
ANALYZE, MIXED MOD- - ﬁf"ﬂ‘iﬂm e 1 el
=1, QGIMI’ 2
ELS’ LINEAR 2 -1.04 Generalized Linear Models  » 1 0
. 3 -1.04 | Mixed Models » | i Linear...
This command enables access to the 7 04 s 5 ‘EI oarevilzed E“,_._
Linear Mixed Models: Specify Subjects B ] 104 |  Regression » [0 2
and Repeated dialog box. 6 “1,04) (IS Eot il ! 2
i -1.04 Neural Networks » 0 0
B _3_ | -1.04 | Classity » 1 0
SHalE 4.04 | Dimension Reduction » | o 1
10 4.04 | Scae il 4 1
=T -1.04 Nonparametric Tests » 0 2
11 ! -1.04 |  Forecasiing » 1 2
< | survival prpEs———— |
| Data View. | Varisbie View || Multole Response 2
_Lnear | EE] wissing Vaue Anaiysis... or is ready
4 Multiphe Imputation »
Complex Samples »
Quality Control »
| roc curve...
IBM SPSS Amos...

2. 'The Linear Mixed Models: Specify Subjects
and Repeated screen displays options for de-
fining variables as subjects, repeated obser-
vations, and type of covariance structure in a
model.

a. For this model, we will designate two
subject identifiers for the model (schcode
and Rid). To facilitate reading of the output
tables, we will enter the variables in a par-
ticular sequence. First, click to select schcode,
and then click the right-arrow button to
move the variable into the Subjects box.

b. Next, click to select Rid, and then click the
right-arrow button to move the variable
into the Subjects box.

c. 'The Repeated box allows specifying variables
that identify repeated observations. For
this model, Index1 identifies the repeated
measures, which define the math and read
achievement. Click to select Index1, and
then click the right-arrow button to move
the variable into the Repeated box.

3 Linear Mixed Models: Specify Subjects and Repeated

(25

Click Continue for models with uncorreiated terms.

Specify Subject variable for models wih correlated random effects.

Specify both Repeated and Subject vatiables for models with correlated
residuals within the random effecis.

| gl schcode

& R

Repeated:

[& index

& orinquadtime
Repeated Covariance Type: [AR(1)
- Ante-Degendence: First Order
N [ .

AR(1): Heterog
ARMA(1,1)
Compound Symmetry
Comp Sy try: Cs Metric
(Comp Sy try: Heterog
Diagonal

'The combination of values for schcode, Rid, and Index1 defines a particular student from a par-
ticular school across the three math and reading measures.



Multivariate Multilevel Models m 351

d. The Repeated Covariance Type specifies a model’s covariance structure. For this model, we will
use the autoregressive covariance matrix, AR(7). Click the pull-down menu to select the au-
toregressive covariance matrix, AR(1), as the Repeated Covariance Type.

AR(1) is a first-order autoregressive structure with homogenous variances. The correlation between any
two elements is equal to rho (p) for adjacent elements, p? for elements that are separated by a third, and
so on. Rho is constrained so that -1 < p <1 (IBM Corporation, 2012).

Click the CONTINUE button to display the Linear Mixed Models dialog box.

3. The Linear Mixed Models main screen 2 Linear Mixed Models i)
enables specifying the dependent variable, D Vet s
factors, and covariates, as well as access to & || & screve BTN
dialog boxes for defining Fixed and Random fﬁ::,m, Eoctorts) :z::ﬂ l
effects, and options for Estimation, Statistics, & fomale g sm,m_'_'_' |
EM Means, and Save. ;mmm EMeans. |
a. For this model, we will use achieve as & onnime soye.. |

the dependent variable. Click to select & s

the achieve variable from the left column o

listing. Then click the right-arrow button

to transfer achieve into the Dependent = i i el

Variable box.

Now we will introduce three additional variables to be used in the model (ath, orthtime, and
orthquadtime).

b. First, click to select 7azh, and then click the right-arrow button (or “drag” the variable) to move
the variable into the Factor(s) box.

c. Next, click to select orthtime and orthquadtime. Then click the right-arrow button (or “drag” the
variables) to move them into the Covariate(s) box.

Click the FIXED button to access the Linear Mixed Models: Fixed Effects dialog box.

4a. Within the Linear

| 3 Linear Mixed Models: Fixed Effects [
Mixed Models: Fixed [ ]
. Fixed Effects
Effects dialog box, we
. . (%) Buid terms. Buld pested terms
will retain the default
| | Factors and Coyaristes Ugdet

Factorial setting, which - ]
creates all possible inter- i
actions and main effects
of the specified variable
(IBM Corporation,
2012).

b. Now click to select math
from the Factors and
Covariates box, and then

|£ orthquadtime

click the ADD button 7 =
. . |_| include intercept Sum of squares: |Typem ¥/
to move the variable into
Continue Cancel Heip
the Model box. e e ——— =

c. To create the no-inter-
cept model, uncheck the Inc/ude intercept option.
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Two interactions (or nested terms) will be created and added to the model: math*orthtime and

math*orthquadtime. These interactions will tell us if each student’s achievement (7ath) trajectories have

linear (orzhtime) and quadratic (orthquadtime) components.

Add First Interaction to Model 3.1: math*orthtime

d. Click to select Build nested
terms.

e. Click to select the variable
math from the Factors and
Covariates box.

f. Then click the arrow but-
ton below the Factors and
Covariates box. This moves
math into the Build Term
box to create a cross-level
interaction by linking vari-
ables and terms.

g. Next, click the BY* button,
which will insert the com-
putation command symbol:
math®.

| 2 Linear Mixed Models: Fixed Effects

Fixed Effects

) Builg terms

@'...\‘ ) Buid pested terms
Factors and tn;.;amles:

| orthquadtime

Mgdet
Eﬂ'\n]n
frne'.n'onr.rrne
| math*arthquadtime

RE
:

PP

’,_..{ :}?l %; ':?l _(wehin) | Cigar Term{ ’ M‘ Add Bemove |
Buid Term: *
"P=c. matn "inhnme
[] mciude intercept Sumof squares: | Type -
W} cancel || mep |

h. Click to select orthtime from the Factors and Covariates box.

i. Click the arrow button below the Factors and Covariates box to move orthtime into the Build

Term box and complete the interaction term: math*orthtime.
j. Click the ADD button to transfer the interaction into the Model box.

Add Second Interaction to Model 3.1: math*orthquadtime
Repeat steps 4e to 4j using math and orthquadtime for the interaction.

'The completed model is shown in the insert. Click the CONTINUE button to return to the Linear

Mixed Models dialog box.

Click the RANDOM button to access the Linear Mixed Models: Random Effects dialog box.

5. The Linear Mixed Models: Ran-
dom Effects displays the Random
Effect 1 of 1 screen, which is the
default when creating a model for
the first time. The random-effects
screen allows specifying random
effects, interactions, intercept
terms, and subject groupings.

a. Begin by specifying the
covariance structure from the
default variance components
(VC) to Unstructured. Click
the pull-down menu and
select Unstructured (UN).

Unstructured is a completely general
covariance matrix (IBM Corporation,

2012).

£ Linear Mixed Models: Random Effects

Random Effect 1 of 1

Coyariance Type: |Unstructured \
Random Effects
(%) Buig terms (O Buid pested terma 5[] inciyde intercept

Eactors and Covariates:

Subject Groupings:
Subjects: Combinations:
& R il scheade
il scheode |
|
| Cantinue Cancel Help
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b. We want the intercept to be excluded from the model, so we will retain the current default

setting.

c. We will also retain the default Facorial setting, which creates all possible interactions and main
effects of the specified variable (IBM Corporation, 2012).

d. Click to select math, and then click the ADD button to move the variable into the Mode/ box.

e. 'The Subject Groupings box displays the schcode and Rid variables that were specified as subject
variables in the Specify Subjects and Repeated dialog box show in step 2a. We will specify schcode
as the subject for the random-eftects Level 1 part of this model. Click to select schcode, and then
click the right-arrow button to move the variable into the Combinations box.

Click the CONTINUE button to return to the Linear Mixed Models dialog box.

6. Click the ESTIMATION button to ac-
cess the Linear Mixed Models: Estimation
dialog box, which displays two estima-
tion method choices: ML or REML.

We will use the default setting of REML to

estimate the models.

Click the CONTINUE button to return to
the Linear Mixed Models dialog box.

7. In the Linear Mixed Models dialog box,
click the STATISTICS button to ac-
cess the Linear Mixed Models: Statistics
dialog box.

Click and select the following three statis-
tics to be included in the output: Parameter
estimates, Tests for covariance parameters, and
Covariances of random effects.

Click the CONTINUE button to return to
the Linear Mixed Models dialog box.

R Linear Mixed Models

3 Linear Mixed Models: Estimation e __ lSsidus

rMethod
C;"r,.‘:?q (5) Restricted M Likeihood (REML)

() Maximum Ligeihood (ML)

rterations
Madimum gerations: [100
Maximum step-halvings: _' 10
[] Print teration history for every

Log-Likelihood Convergence

(3) Absolute .
Yeue |p -

Parameter Convergence

() Apsolute

Vae |0.000001 -

rHessian Convergence

() Absgite
Vae

10 b |

Maximum scoring steps: |

e — s Fged..._ ._J

step(s)

Singuiariy tolerance: [ 0,000000000001

Help |

{3 Linear Mixed Models

-

A Linear Mixed Models: Statistics 5, i ove:

rSummary Statistics-
[_] Descriptive statistics
["] case Processing Summary
rModel Statistics
(] parameter estimates
[V] Tests for covgriance parameters

[] Corrglations of parameter estimates

[] covariances of parameter estimates
| [v] Covariances of random effects
[] covariances of residyals
[ Contrast coefficient matrix

Confidence intervat [95 %

s | Rendom.

I —

-

. l. - EM Mnnl_._.._ ]
:l_ﬂ‘L |

L

it

_Canr':el J[ _.Hep J

(pycommue J[_concet J[_rew ]
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8. Finally, in the Linear Mixed Models
dialog box, click the OK button to

run the model.

-

| oK [: '_ Paste

Rescual Weght

Reset

Cancel

Help

#3 Linear Mixed Models o]
Dependent Variable:
3 7 Fixed...
&u = f acheve L |
Rapdom...

f e Factor(s): |
dﬂ SEAOEs & math Estmation... |
@b female ik )
& scheontext Statistics... |
& Index1 R
2 lnd“ Covariate(s): EM Means... |
. f orthtime Saye... |

& orthquadtime

Interpreting the Output From Model 3.1

'The model with then have 11 parameters to estimate. This is confirmed in the model dimension

table (Table 7.26).

We will specify an unstructured covariance matrix at Level 2 and a first-order autoregressive
covariance matrix to simplify the structure at Level 1. Table 7.27 presents the results of this first
parallel growth model with orthogonal time-related polynomials. We can see that polynomials
are significant for both reading and math, suggesting they should be retained in further analyses.

We provide the variance components for this initial model in Table 7.28.

TABLE 7.26 Model Dimension®

Number Covariance Number of Subject Number
of Levels Structure Parameters Variables  of Subjects
Fixed Effects math 2 2
math * orthtime 2 2
math * orthquadtime 2 2
Random Effects  math 2 Unstructured 3 schcode
Repeated Effects Index]1 6 First-Order 2 schcode *Rid 1,836

Autoregressive

Total 14 11
@ Dependent variable: achieve.
TABLE 7.27 Estimates of Fixed Effects®

95% Confidence Interval
Parameter Estimate  Std. Error df t Sig. Lower Bound Upper Bound
[math = 0] 635.213 3.016 29.105 210.611 .000 629.046 641.381
[math = 1] 643.254  3.319 28.977 193.810 .000 636.465 650.042
[math = O] * orthtime 30.770  0.436 10,678.551 70.591 .000 29.916 31.625
[math = 1] * orthtime 30.562 0.436 10,678.551 70.113 .000 29.707 31.416
[math = 0] * orthquadtime ~ -9.341  0.180 8,582.880 -51.880 .000 -9.694 -8.988
[math = 1] * orthquadtime ~ -7.080  0.180 8,582.880 -39.323 .000 -7.433 -6.727

@ Dependent variable: achieve.
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TABLE 7.28 Estimates of Covariance Parameters®

95% Confidence Interval

Parameter Estimate  Std. Error WaldZ  Sig.  Lower Bound Upper Bound
Repeated Measures AR1 Diagonal  1,046.835 23.142 45.234 .000 1,002.445 1,093.190
AR1 rho 0.760 0.006 130.537 .000 0.748 0.771
math [subject = UN (1, 1) 255352  71.433  3.575 .000 147,579  441.831
schcode] UN (2, 1) 274344  77.453  3.542 000 122.539  426.150
UN (2, 2) 312.753 86.732 3.606 .000 181.613 538.587

@ Dependent variable: achieve.

Model 3.2: Adding the Predictors

We can also add one or more student-level X}, predictors and school-level ¥, predictors. In this
case, we will add female as a student-level predictor and school composition (schcontexs). The
combined models for reading and math are summarized in Equation 7.22.

Yt = Vroo + Yro1Scheontext, + ypioorthtime, + Y aoorthquadtime,, + ¥ gy, femaley
+ YruScheontext, orthtime,y + Yry female, orthtime;, + ugo,

Yo = Yoo + YamiScheontext, + yanoorthtime,; + Yapoorthquadtime,, + Yaro femaley,
+ YamScheontext; orthtime,; + Yap female, orthtime,; + upp; (7.22)

'This suggests we have separate intercepts and regression coeflicients for the school-level models
and within-group and between-group predictors, again with representing random effects as-
sociated with explaining school achievement for each subtest. In Equation 7.22, we have added
fixed-effect interactions for fermale and school context (schcontext) and linear growth (orthtime),
but we again consider linear and quadratic growth as fixed between schools. We also consider
the slope coefhicients describing the relationship between female and each subtest to be fixed
between schools.

Defining Model 3.2 with IBM SPSS Menu Commands

NOte: Settlngs WIH default to thOSC used n I 3 ch7PGachievement ;sav [DataSetl] - IBM SPSS Statistics Data Editor (=) ﬁ
MOdCl 3'1 .-Eu Edt View Data Iransfonl;'i Analyze Eteagaf_he; g-r;nn_sju-na Add-gns Window uﬂ;
SHS @ | 1 ]
1. Go to the toolbar and select ANA- L R e —— %ﬂe.,.n ln%m
LYZE, MIXED MODELS, LINEAR. o [ 1 ' —
|_schcontext | | Cogpare Means » kh | time | (|
1 -1.04 General Linear Modsl 3 0 0 1=
"This command enables access to the Linear 2 4.0 | GonorolzodLinoar Models » | 1 0o M
Mixed Models: Specify Subjects and Repeated 3 .04 | lieone e, [y
. 4 -1.04 |  Cormrelate b !L_d Generalized Linsor...
dialog box. 5 104 | Rogression » [0 Z
6 4.04 | Loginear o 2
7 4.04 | Neural Networks v | oo 0
8 1.04 . Classity v | o1 0
9 .04 | Dmension Reduclion »| o 1
10 -1.04 | Scale b 1 1
1 -1.04 , Nonparametric Tests 3 0 2 |
12 -1.04 Forecasfing » 1 2 =
(| 1 swvwa » o] |
Data View | Variable View ||  Multiple Response E
Linear... [ Missing Vaiue Analysis.. bor is ready
Mutiple Imputation ’
Complex Samples 3
GQualty Confrol 3
ROC Curye...
EM SPSS Amos...
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2. 'The Linear Mixed Models: Specify Subjects and

Repeated screen displays the default settings from

the prior model.

Click the CONTINUE button to display the Linear

Mixed Models dialog box.

3. Within the Linear Mixed Models main screen
we will introduce two additional variables to
be used in the model ( female and scheontext).

Click to select fermale and scheontext, and then click
the right-arrow button (or “drag” the variables) to

move them into the Covariate(s) box.

Click the FIXED button to access the Linear Mixed

Models: Fixed Effects dialog box.

Two new interactions (or nested terms) will be
created and added to the model: math*schcontext
and math*female. These interactions will tell us if:(a)
students’ achievement (math) is affected by school composition (schcontext) and (b) students’ achieve-

ment (math) is affected by gender (female).

Add First Interaction to Model 3.2: math*schcontext

4a. The Linear Mixed Models:
Fixed Effects dialog box
displays the default set-
ting from the prior model.
To facilitate reading of the
output tables, we will rear-
range the sequence order of
the variables by removing
the interactions. Click to
select them and then click
the REMOVE button.

b. Click to select Build nested

terms.

3 Linear Mixed Models: Specify Subjects and Repeated [
Click Continue for models with uncorrelated terms.
Specify Subject variable for models with correisted random effects.
Specify both Repeated and Subject varisbies for modeis with correiated
residuals within the random effects.
Subjects:
& ol scheode
&fmle — ’ﬂ.d
fsmcontcﬂ L3 |
achieve —
&math
a)tme
& orthtime e e
& orthauadiine @b ndex1
52
Repeated Covariance Type: | AR{1) VJ
l&c‘mm»e || Resat cancel || nep |

2 Linear Mixed Models =)
Rependent Varisbie: [ VS
fa W | (2 scneve | TN
& ra Factor(s): : _—J L
- & man sumston._|
& bdexi T
& time Sagn... _]
:‘.
Covariste(s): | =
& omnime &7
[ [ & orhquactme
O (- & female —J s

| math"orthquadtime

3 Linear Mixed Models: Fixed Effects [
Fixed Effects
() Buid terms @'ﬂ'\'_—!" Build nesied terms
| Factors and Covariates: Modet:
Lo i) i
| ertntime [rethomnime | a ) 1
| orthauactime msthvorhguactime|
Ii female
T = ) - . et
R : ;m!n‘c&conlox‘
i | math*femaie
L | math*orthtime
i
1}
1

'~*B math * scheontext

[ nclude intercept

Sum of squares: ‘T_y_pal b

[ Continue I[ Cancel |i Heip
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Click to select the variable math from the Factors and Covariates box.

"Then click the arrow button below the Factors and Covariates box. This moves math into the
Build Term box to create a cross-level interaction by linking variables and terms.

e. Next, click the BY* button, which will insert the computation command symbol: mazh*.

f. Click to select schcontext from the Factors and Covariates box.

g. Click the arrow button below the Factors and Covariates box to move scheontext into the Build
h.

/o

Term box and complete the interaction term: math*schcontext.
Click the ADD button to transfer the interaction into the Model box.

Add Second Interaction to Model 3.2: math*female
Repeat steps 4c to 4h using math and female for the interaction.

We will now reinstate two interactions used in the prior model: math*orthtime and
math*orthquadtime.

Add Third Interaction to Model 3.2: math*orthtime

Repeat steps 4c to 4h using math and orthtime for the interaction.

Add Fourth Interaction to Model 3.2: math*orthquadtime
Repeat steps 4c to 4h using math and orthquadtime for the interaction.

'The partially completed model is shown in the insert.

Add Fifth Interaction to Model 3.2: -
schcontext*math*orthtime

3 Linear Mixed Models: Fixed Effects [

Fixed Effects

i. Click to select the variable
scheontext from the Factors
and Covariates box.

j. Then click the arrow but- e o

ton below the Factors and 7 female b orthime math*schcontext

. . [7 Senconien | orhouading math* female <\;
Covariates box. This moves ® : mathorthlime
scheontext into the Build

math*orthquadtime
Term box to create a cross- (i MI(pXk)

schoontext* math*orthtime
level interaction by linking

Build terms *) Buld pested terms

Factors and Coyariates: Mpdet

math

female"mathorihtime

——— ——u

e

AT 2 By n |l opmmy | | C'&anerm@r Add || Remove
. Lr= 1L | | j | 4 i
variables and terms. s 4 "
| )
k. Next. click the BY* but- =+ scheontext ¥ man™ orthtime
. )
tOIl, Wthh WIH insert the [ nclude intercept  Sum of squares: '\Tnlel v
computation command Ipgontmwe J[ cancet || new |

symbol: schcontext™.
1. Click to select math from the Factors and Covariates box.

m. Then click the arrow button below the Factors and Covariates box. This moves math into the
Build Term box to create a cross-level interaction by linking variables and terms.

n. Next, click the BY* button, which will insert the computation command symbol:
scheontext*math™.

o. Click to select orthtime from the Factors and Covariates box.

p. Then click the arrow button below the Factors and Covariates box. This moves orzhtime into the
Build Term box to complete the interaction: schcontext*math*orthtime.

q. Click the ADD button to transfer the interaction into the Mode/ box.
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Add Sixth Interaction to Model 3.2: female*math*orthtime

Repeat steps 4j to 4q using female, math,

and orthtime for the interaction. il e Vo Mo =)
. ‘ o | Rependent varsti aad
'The completed model is shown in the g:ﬂ & acheve | e
insert. ol seheode ot nr(s.)' i E;u-natnn_,. :
& Index1 e |
Click the CONTINUE button to return & time Samstcrll
to the Linear Mixed Models dialog box. Covariste(s): Sbeens-- 4
& orntime = Saye.. |
5. Finally, in the Linear Mixed Models ﬁ f:_::rm E
dialog box, click the OK button to Residual Weight
run the model. F
L2k y Posie | Resel | iConcel ) | wulich
TABLE 7.29 Model Dimension®
Number  Covariance ~ Number of Subject Number
of Levels Structure Parameters  Variables  of Subjects

Fixed Effects math 2 2

math * schcontext 2 2

math * female 2 2

math * orthtime 2 2

math * orthquadtime 2 2

math * orthtime * schcontext 2 2

math * orthtime * female 2 2
Random Effects math 2 Unstructured 3 schcode
Repeated Effects Index1 6 FirstOrder 2 schcode *Rid 1,836

Autoregressive

Total 22 19

@ Dependent variable: achieve.

Interpreting the Output From Model 3.2

Once again, we note that the multivariate outcome 7azh is crossed with the within-school pre-
dictors (X) and between-school (W) predictors in the combined model (e.g., math *female), if we
wish to have a separate term for each outcome. This is important in our example since one of our
goals is to examine whether the effects of gender are the same or different on each outcome. If
we wished to impose equality constraints on the predictor, however, that variable (e.g., female)
could be added directly into the model. Readers will recall that we provided an example of this
type of specification in our previous example. The final model as estimated has 19 parameters,
which we can confirm in Table 7.29.

We present the fixed effects in Table 7.30. Because of the coding of the orthogonal time vari-
ables, the intercepts can be interpreted as the adjusted grand means for reading and math. Both
gender and school composition affected levels of reading and math significantly (p < .001). We
can also observe that gender had a significant effect on growth over time; that is, females experi-
enced greater growth in both subject areas than their male peers (p < .001).
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TABLE 7.30 Estimates of Fixed Effects®

95% Confidence Interval

Parameter Estimate Std. Error df t Sig. Lower Bound Upper Bound
[math=0] 627.765 1.707 34.232 367.771 0.000 624.297 631.233
[math=1] 636.377 2.086 31.171 305.101 0.000 632.124 640.630
[math=0] * schcontext -12.006 1.354 29.039 -8.864 0.000 -14.776 -9.236
[math=1] * schcontext -12.759 1.678 27.933 -7.601 0.000 -16.197 -9.320
[math=0] * female 8.094 1.208  2235.499 6.700 0.000 5.725 10.463
[math=1] * female 6.675 1.209  2237.038  5.523 0.000 4.305 9.045
[math=0] * orthtime 29.674 0.587 10678.166 50.525 0.000  28.523 30.825
[math=1] * orthtime 29.577 0.587 10678.166 50.360 0.000  28.426 30.729
[math=0] * orthquadtime -9.341 0.180 8583.859 -51.979 0.000  -9.694 -8.989
[math=1] * orthquadtime -7.080 0.180 8583.859 -39.398 0.000  -7.433 -6.728
[math=0] * orthtime * schcontext -1.270 0.404 10696.211 -3.140 0.002 -2.062 -0.477
[math=1] * orthtime * schcontext ~ -0.485 0.404 10696.211 -1.199 0.231 -1.277 0.308
[math=0] * orthtime * female 2260 0.834 10696.211 2.709 0.007 0.625 3.895
[math=1] * orthtime * female 2.057 0.834 10696.211 2.466 0.014 0.422 3.692

@ Dependent Variable: achieve.

TABLE 7.31 Estimates of Covariance Parameters®

95% Confidence Interval

Parameter Estimate Std. Error WaldZ  Sig. Lower Bound Upper Bound

Repeated Measures AR1 diagonal 1,033.054 22766 45377 0.000 989.384  1,078.652
AR1 rho 0.758 0.006 129.376 0.000 0.746 0.769

math [subject = schcode] UN (1, 1) 58.311  19.721 2.957 0.003 30.052 113.144
UN (2, 1) 68.404  23.636 2.894 0.004 22.078 114.730
UN (2, 2) 98.797 31.117 3.175 0.001 53.291 183.164

° Dependent Variable: achieve.

Between schools, there is some evidence in this small school sample that students in schools
with more challenging student composition demonstrated significantly less growth in reading
over time than their peers in schools at the grand mean of composition (y = -1.270, p < .01);
however, school composition did not affect student growth in math over time (p > .05).

Table 7.31 provides the variance component estimates for this model.

Figure 7.3 provides the predicted values of achievement (which we can save within the data
set) to illustrate that the model captures the shape of the observed growth trajectories quite well.

Further Considerations

We note that we can also specify the orzhtime parameter as randomly varying. Freeing this pa-
rameter will add two estimated parameters to estimate. The resulting covariance parameters in
Table 7.32 indicate that the random parameter is significant (one-tailed tests, p < .05), which
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FIGURE 7.3 Predicted achievement values.
TABLE 7.32 Estimates of Covariance Parameters®
95% Confidence Interval
Lower Upper
Parameter Estimate  Std. Error Wald Z  Sig. Bound Bound
Repeated AR1 Diagonal 1,033.674 22.847 45244 000 989.851 1,079.437
Measures
AR1 rho 0.759 0.006 129.797 .000 0.747 0.770
math + Var: [math = 0] 41.234 14.873 2.772 .006 20.334 83.615
math * orthtime Var: [math = 1] 79.831 26117  3.057 .002  42.043 151.583
ﬁifi]: Var: [math = 0] * orthtime 3.287 1911 1720 .085 1.052 10.272
Var: [math = 1] * orthtime 6.726 3.440 1.955 .051 2.468 18.328
CSH rho 0.770 0.103 7.508 .000 0.483 0.907

@ Dependent variable: achieve.

suggests that we could continue to build random slope and intercept models to explain this
variation across schools. Readers will note we had to change the Level 2 covariance matrix [het-
erogeneous compound symmetry (CSH)] to simplify model estimation, given the small number
of schools in our example (instructions provided at the end of this section). We will stop our

investigation at this point.

Defining Model 3.3 with IBM SPSS Menu Commands

Settings will default to those used in Model 3.2.

1. Go to the toolbar and select ANALYZE, MIXED MODELS, LINEAR.

'This command enables access to the Linear Mixed Models: Specify Subjects and Repeated dialog box.
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2. 'The Linear Mixed Models: Specify Subjects and Repeated screen displays the default settings from the
prior model.

Click the CONTINUE button to display the Linear Mixed Models dialog box.

3. 'The Linear Mixed Models main screen displays the default settings from the prior model.

Click the RANDOM button to access the Linear Mixed Models: Random Effects dialog box.

4. The Linem’ Mixea’Mode/s.’ f t_‘) Linear Mixed Models: Random Effects &J
Random Eﬁ[l‘S dlsplays Random Effect 1 of 1
the Random Effect 1 of % Nest
1 screen with default Coyariance Type [c Symmetry: Heterog >
Settings from the prior Random ENects »
Build terms ( :}’ *) Build pested terms || inclyde intercept
mOde].. Factors and Covariates; Modet
; | — math
a. Change the coyanance ———— @
structure by click- 7 oqusdime \id
. h 11 d ]_/ female = i ?
ing the pull-aown | schcontext i
menu and selecting i
i 1
. L ; L : 3
Compound Symmetry: -{a(_er NEN Cmr‘fer@-_b__ L}guc Bemove |
Heterogeneous. 1l | BusdPerm
1=7# math * orthtime
The COmPOllnd Symmetry Het— Subject Groupings
. t tu _sunsms. _ Combinations:
erogeneous covariance structure @ na | r o
has heterogeneous variances and offl sencose —
constant correlations between =24
elements (IBM Corporation,
2012) LQCuntnue ! Car\cel__: Help
b. Click the Build nested — ——— =

S

€.

f.
g.
h.

terms option.

Click to select the variable mazh from the Factors and Covariates box.

Then click the arrow button below the Fuactors and Covariates box. This moves math into the
Build Term box to create a cross-level interaction by linking variables and terms.

Next, click the BY* button, which will insert the computation command symbol: mazh*.
Click to select orthtime from the Factors and Covariates box.

Click the arrow button below the Factors and Covariates box to move orthtime into the Build
Term box and complete the interaction term: math*orthtime.

Click the ADD button to transfer the interaction into the Mode/ box.

Click the CONTINUE button to display the Linear Mixed Models dialog box.

Click the OK button to generate the model results.

Summary

In this chapter, we presented three examples using multilevel multivariate outcomes. The com-
posite (or latent construct) formulation is appropriate when one wishes to incorporate multiple
measurements in defining constructs. Our first example provided a case where we estimated a
construct with a simple error structure within individuals. Since the multilevel (i.e., vertical) for-
mulation does not assume that all outcome data must be available for each individual, it provides
another way for incorporating missing data into the analysis (Hox, 2010). We next showed how
the repeated measures format at Level 1 can be used to define a multivariate type of model. We
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also demonstrated how it is possible to test the equality of regression coefficients across outcome
measures in this type of modeling formulation. In our last example, we showed that this type of
multilevel model can be generalized to situations where the analyst wishes to examine parallel
growth processes. We illustrated what that might look like for examining growth in reading and
math simultaneously. This type of growth model can be specified by stacking the reading and
math repeated measures in one achievement outcome. As we showed, if each variable has three
repeated observations, the Index] variable will have six lines. A dummy indicator (i.e., math)
can then be defined to specify each outcome. Linear and quadratic time-related variables can be
added as needed to define each trajectory and, finally, predictors can then be added within and
between groups to explain variation in individuals’ growth processes.



CHAPTER 8

Cross-Classified Multilevel Models

In the models we have previously presented, the data structures have been purely hierarchical;
that is, each individual was in only one Level 2 setting (e.g., a classroom) and only one Level
3 setting (e.g., a school). In this chapter, we present situations where the nesting of subjects
within groups is more complicated. Cross-classified data structures represent a special type of
multilevel model. In school settings, for example, researchers are often interested in monitoring
student progress longitudinally. This has proven difficult, however, since students move regularly
(and irregularly) between classrooms and schools. Students may belong to more than one unit
(e.g., classrooms) over time at a particular level of the data hierarchy. Another use of a cross-
classified model might be where we are interested in studying how students transition from high
schools to postsecondary institutions. In this latter case, within a particular state, students from
several hundred high schools transition to various 2-year and 4-year institutions. Each student
in the study, therefore, would be cross-classified by a high school and postsecondary institution
entered after high school. Cross-classified hierarchical models extend the analytic tools available
for studying student progress (Hill & Goldstein, 1998). Beretvas (2011), Goldstein (1987), Hox
(2010), Raudenbush and Bryk (2002), and Snijders and Bosker (1999) provide general overviews
of cross-classified models.

Multiple-membership models extend the cross-classified model to situations where students
might be members of more than one unit at the highest level. More specifically, students might
attend more than one postsecondary institution in the particular study described previously, for
example, depending on whether they entered a 2-year institution and then transferred to a 4-year
institution to finish their undergraduate degree. A smaller number may also have entered one
4-year institution and then transferred to another, perhaps if they switched majors. In either case,
we might assign Level 1 weights, which describe student membership in one or more postsec-
ondary institutions (Rasbash & Browne, 2001). For interested readers, Beretvas (2011) provides
an accessible overview of multiple-membership models.

Students Cross-Classified in High Schools and Postsecondary Institutions

Consider the contribution of students’ high school and college settings to their undergraduate
educational attainment. Students from any particular public high school may attend a number
of different college campuses within a state’s higher education system. In this first example, we
examine whether student background and features of their high school and college entry point
influence their college attainment. We will use students’ cumulative grade point average (GPA)
at the time they earned their highest undergraduate degree (i.e., associate or bachelor’s). We
could extend this basic model to a multiple-membership model, if we also wanted to consider
whether students transferred from one entry campus to another before graduating with a 4-year

degree.

363
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Research Questions

Odur first research question might ask simply: Do features of students’ high school and college
entry campuses affect their educational attainment, after controlling for student background?
Second, we ask: Does the slope describing the effect of individual socioeconomic status (SES)
on student college attainment vary randomly across either or both Level 2 units? Third, if it
does vary randomly across units, are there high school and college variables that explain this
variation?

The Data

In this subset of a larger data set (Table 8.1), we randomly selected 1,767 students within 30 pub-
lic high schools who entered college at 10 difterent campuses within a state’s higher education
system. This type of data is considered a two-level cross-classified data set since we have students
at Level 1 cross-classified in high schools and colleges at Level 2.

Using Raudenbush and Bryk’s (2002) cross-classified terminology, in our example data matrix
summarized in Table 8.2, at Level 2 we will consider high schools as the row data set (i.e., the
larger number of Level 2 units) and colleges as the co/umn data set. In the data matrix, therefore,

TABLE 8.1 Data Definition of ch8crossclass1.sav (N = 1,767)

Variable Level® Description Values Measurement*

schcode School School identifier (30 public high schools).  Integer Ordinal

nschcode School Recoded school identifier for high schools. (1, 2, 3,...,30) Ordinal

campus School College campus identifier (10 campuses (1,2,3,...,10) Scale
within a state’s higher education system).

female Individual Demographic predictor variable 0 = Male1 = Female Scale
representing student’s gender.

lowses Individual ~ Dichotomous variable representing 0 = Did Not Participate,1 = Scale
student socioeconomic status. Participant in Federal Free/

Reduced Lunch Program

CUM_GPR Individual Dependent variable measuring students’ 0.0 to 4.00 Scale
cumulative GPA.

lowses_mean  School Predictor variable (grand-mean centered)  0.02 to 0.46 Scale
measuring student socioeconomic status.

fouryear School Dichotomous variable representing the 0 = Not 4-Year1 = 4-Year  Scale
institutional type students attended.

gmfemale Individual ~ Predictor variable (grand-mean centered)  -0.51 to 0.49 Scale
measuring student cumulative GPA by
gender (female).

gmlowses Individual ~ Predictor variable (grand-mean centered)  -0.17 to 0.83 Scale
measuring student cumulative GPA by
socioeconomic status.

gmlowSES_ School Predictor variable (grand-mean centered)  -0.15 to 0.29 Scale

mean representing an aggregate measure of
socioeconomic composition for high school.

gmfouryear  School Predictor variable (grand-mean centered)  -0.30 to 0.70 Scale

measuring student cumulative GPA by
institutional type (4-year).

@ Individual = Level 1; school = Level 2.
4 Measurement icon settings displayed in subsequent model screenshots may differ from Tables 8.1 and 8.13 but will
not affect the output.
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TABLE 8.2 schcode*campus Cross-Tabulation

Count Campus Total
1 2 3 4 5 6 7 8 9 10

schcode 1 2 1 41 9 0 1 1 0 0 3 58
2 1 1 20 47 0 1 7 0 0 0 77
3 1 0] 16 41 0 0] 1 0 0 0 59
4 2 2 47 43 0 0 4 0 0 0 98
5 1 1 40 25 0 0 5 0 0 0 72
6 1 3 17 54 0 0 5 0 2 2 84
7 2 0 26 25 1 29 2 0 0 1 86
8 4 2 18 3 0 11 3 0 0 0 41
9 3 6 27 15 1 68 7 0 0 2 129
10 5 4 79 24 0 29 9 0 2 2 154
11 0 0 14 7 0 3 2 0 0 1 27
12 0 1 9 5 1 1 0 0 0 0 17
13 1 3 17 8 0 13 1 0 0 2 45
14 1 0 4 3 0 0 0 0 0 1 9
15 1 4 35 16 0 58 6 0 0 1 121
16 2 1 11 9 0 12 0 0 0 1 36
17 0 2 33 13 0 26 3 0 0 1 78
18 1 1 37 24 0 3 4 0 7 2 79
19 2 1 8 2 0 3 1 0 4 0 21
20 0 2 15 16 0 1 2 0 8 1 45
21 1 0] 17 7 0 1 2 0 3 0 31
22 72 6 0 0 0 0] 3 1 0 0 82
23 23 3 1 0 0 0] 0] 1 0 0 28
24 12 1 1 1 0 0 0 0 0 0 15
25 9 0] 2 0 0 0 0 0 0 0 11
26 53 0] 3 3 1 0] 0] 0 0 1 61
27 5 2 0 0 0 0 0 0 0 0 7
28 10 0] 1 0 0 0 0 0 0 0 11
29 107 8 0 0 0 0 2 0 0 1 118
30 3 3 6 7 0 2 28 16 0 2 67
Total 325 58 545 407 4 262 98 18 26 24 1,767

each student at Level 1 is cross-classified by a row (high school) and column (college). The data
set is considered cross-classified at Level 2 because students attend different high schools and
different colleges. Readers will notice that the data in Table 8.2 are not balanced in either rows
or columns. For example, in High School 1, 58 students entered the higher education system,
primarily enrolling at College Campus 3. Moreover, there were five college campus cells that had
small numbers of students (one to three students) and two campuses that did not receive any
students from this particular high school. In this type of data configuration, the sample sizes vary
considerably, and there are many cells with missing data. Typically, in a cross-classified model, the
goal is to generalize from the sample to a population of high schools and college campuses. So
the high school and college effects are treated as randomly varying.
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'The structure of the data allows us to examine the variance components in student attainment
that exist between high schools, between colleges, and within high school x college cells. Within each
high school-college cell, or the cross-classification, is a unique set of students. For example, 41
students attended High School 1 and College Campus 3. The within-cell model describes the
variation among these students on an outcome of interest.

At Level 2, variation in outcomes between cells of students can be attributed to high school
effects, college effects, or perhaps a school-by-college interaction. At this level, we can also de-
velop a model to examine high school and college features on students’college attainment. In this
case, we will use the mean percentage of low SES students as a high school composition variable
that may influence student attainment, and a dummy variable for institutional type (i.e., 2-year or
4-year institution) as a possible college predictor of cumulative GPA. Of course, in this example
the data set is a little small (V= 10 colleges), but it will suffice for purposes of our demonstration.
We are limited, however, in the number of predictors we could use because of the small size of
the college data set.

Descriptive Statistics
The descriptive statistics at the student level and for the cross-classified Level 2 units are sum-
marized in Tables 8.3, 8.4, and 8.5. We note in Table 8.3 that CUM_GPR refers to students’
cumulative GPA in subsequent analyses.
As a first model, we might examine the variance components in students’ cumulative GPA
that lie between high schools, between colleges, and within cells (i.e., high school x college

TABLE 8.3 Descriptive Statistics

N Minimum Maximum Mean Std. Deviation
female 1,767 0.000 1.000 0.512 0.500
lowses 1,767 0.000 1.000 0.169 0.375
CUM_GPR 1,767 0.000 4.000 2.903 0.633

Valid N (Listwise) 1,767

TABLE 8.4 Descriptive Statistics

N  Minimum Maximum Mean Std. Deviation

lowses_mean 30 0.022 0.462 0.175 0.115
Valid N (Listwise) 30

TABLE 8.5 Descriptive Statistics

N Minimum Maximum Mean Std. Deviation

fouryear 10 0 1 0.300 0.483
Valid N (Listwise) 10
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cells). Following Goldstein (1995) and Hox (2010), at Level 1, this unconditional (no predictors)

model can be defined as follows:
Y;(/k) = ﬁO(jlz) + Eigr)y (8.1)

where Y, is the cumulative GPA of student 7 within the cross-classification of high school ;
and college &, By is the intercept (overall mean GPA) of students in cell j (i.e., students who
attended high school j and college £), and &, is the with-cell residual that represents the devia-
tion of student 77&'s GPA from the cell mean. The residual is assumed to be normally distributed
with the mean equal to 0 and some variance (o). The Level 1 residual can be further modeled
to reflect more complex Level 1 variation if desired (Hill & Goldstein, 1998). The subscripts (k)
suggest that we assume that the intercept varies independently across both high schools and col-
leges that are conceptually at the same level (Hox, 2002).

The Level 2, or “between cells,” model is as follows:
Bog = Yoo + tho; + Vi + Sop (8.2)

where ¥, is the grand mean GPA for all students, uy is the residual random effect for high
school j (i.e., the contribution of high school j averaged over all colleges), vy, is the residual
random effect for college 4 (i.e., the contribution of college %4 averaged over all high schools),
and &, represents a residual random eftect for school-by-college cells. This latter component
specifies a possible random effect due to being in the two cross-classified units (high school
J and college %). As Raudenbush and Bryk (2002) note, however, without sufficiently large
within-cell sizes, it is difficult to separate the variance associated with students at Level 1 (i.e.,
student 7 in cell j£) and the variance due to this particular Level 2 interaction effect (i.e., high
school-college j%). Therefore, this potential random eftect is typically set to O (Beretvas, 2011;
Raudenbush & Bryk, 2002). We follow that suggestion for specifying cross-classified models
in this chapter.

After substitution (and removing the intra-cell variance component), we arrive at the inter-
cept-only model,

Yin = Yoo + tho; + Vo + €y, (8.3)

where the outcome Y, is modeled with an overall intercept ¥y, and an error term each for high
schools and colleges, and &, is the residual error term for student 7 in the cross-classification of
high school j and college 4. The single-equation model in Equation 8.3 implies one fixed effect
(Yo0), two random Level 2 effects (1, v), and the within-cell (Level 1) residual (g;5,). We note
that because of the small data set for our illustration, we will assume a diagonal covariance matrix
structure at Level 2 (i.e., no covariance between random effects) in this model and subsequent
models.

Defining Models in IBM SPSS

IBM SPSS is easy to use for investigating a variety of cross-classified models. Compared to the
models that we have defined previously with nested hierarchical structures, it is relatively easy to
define cross-classified structures. For a two-level cross-classified model, a random effect across
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TABLE 8.6 Mean Student GPA

Mean Std. Error  df  Lower Bound Upper Bound
Student CUM_GPR 2.717 0.129 10.139 2.429 3.004

TABLE 8.7 Estimates of Covariance Parameters®

95% Confidence Interval

Parameter Estimate  Std. Error Wald Z Sig. Lower Bound Upper Bound
Residual 0.331 0.011 29.252 .000 0.309 0.354
Intercept Variance 0.036 0.015 2.494 .013 0.017 0.080
[subject = nschcode]

Intercept Variance 0.142 0.073 1.956 .051 0.052 0.387

[subject = campus]

@ Dependent variable: CUM_GPR.

high schools is referred to by using the “random” statements separately (i.e., RANDOM = high
school identification code), and a random effect across colleges is referred to in a similar manner
(RANDOM = college identification code). This is because the cross-classified part of the model
is “independent” (i.e., students can go to different high schools and colleges). The definition of
this type of cross-classified data structure is in contrast to the typical structure for a two-level
nested model [(RANDOM = college code) and (RANDOM = college code*high school code)],
where the statements would indicate that students are nested in high schools and colleges. This
latter data set would only consider students who went to the same high school and college
campus.

First, we can consider the GPA intercept and the decomposition of variance across the various
cells in the analysis (Table 8.6). The average mean GPA for campuses is 2.72.

Table 8.7 suggests that most variance in student cumulative GPA is due to differences within
individuals. As we might expect, college campus attended contributes more to the total variance
in GPA than high school campus.

Since within Level 2 the high school and colleges are considered to be independent, we can
simply add the estimated variances in the no-predictors model to obtain the total variance. We
will estimate three intraunit variance components. The first is the intrarow correlation (i.e., high
school), which represents the correlation between outcomes of any two students who attend
the same high school but attend different colleges. The intraunit correlation for high schools
(nscheode) is therefore defined as

+orgt+o, ) (8.4)

_ 2 2
pHS - O-HS /(O- College

Student

In this case, it can be calculated as 0.036/(0.331 + 0.036 + 0.142) = 0.036/0.509 = 0.071. This sug-
gests that 7.1% of the total variance in students’ cumulative GPA lies between the high schools
they attended.
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'The intraunit correlation for colleges is the correspondence between outcomes of any two
students who attend the same college but who attend different high schools:

_ 2
IO College - O-Co/lfge

/(c?

Student

+ O-IZ-IS + O-Cz'ollege) (85)

This is estimated as 0.142/(0.331 + 0.036 + 0.142) = 0.142/0.509 = 0.279. This suggests that
27.9% of the variation in students’ cumulative GPAs lies between the colleges they attend. The
remaining variation represents differences in GPA among students not accounted for by their
high schools and colleges (roughly 65% of the variation).

'Third, we can examine the correlation between outcomes of students who attended the same
high school and college. This intracell component can be summarized as

2 2 2 2 2
pHS*Callege = (O-HS + GCU//ege) / (O-Student + GHS + O-Ca//ege) (8‘6)

In this case, it is estimated as (0.036 + 0.142)/(0.331 + 0.036 + 0.142) = 0.178/0.509 = 0.350.
Taken together, the correspondence in outcomes between two students who attend the same
high school and college is 0.35. In other words, about 35% of the variance in cumulative GPA
can be attributed to attending the same high school and college campus.

Model 1.1: Adding a Set of Level 1 and Level 2 Predictors

Next, we can add a set of student (Level 1) predictors to the model. In this case, we will add fe-
male (coded 1) and lowSES (code 1 = participation in federal free/reduced lunch program during
high school, 0 = else). We grand-mean centered both variables and saved them in the data set.
'The Level 1 model is now

Y = Bog) + Brgugmfemale gy + BojygmlowSES, ;) + €, (8.7)

where B is the intercept, ;) and B, are structural coefficients, and €, represents the
Level 1 residual (mean = 0, 62). The regression slopes for the individual-level variables can
be allowed to vary across high schools and/or colleges (as we have shown in past examples).

At Level 2, we might add high school and college predictors that explain students’ grade
point average. In this case, gmlowSES_mean is an aggregate measure of socioeconomic com-
position for the high school, and gmfouryear describes whether students were enrolled in a
2-year (community college) or 4-year postsecondary institution. The Level 2 intercept model
is now

Bogr) = Yoo + YorgmlowSES_mean; + Yy,gmfouryear, + g + Uy, (8.9)
'The combined model with eight estimated parameters can then be written as follows:

Y = Yoogr + YorgmloeSES_mean; + yo,gmfouryear, + yiogmfemale,g,
+ }/ZOgﬂ’lZOTUSESi(fk) + uoj + ka + gl(/k) (89)
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Defining Model 1.1 with IBM SPSS Menu Commands

Launch the IBM SPSS program [ #2 ch8crossclassL.sav [DataSet1] - BM SPSS Statistics Data Editor [E=EEn S
a[pplécatiog, an;lﬂselect the ch8cross- fle EGt View Data Transforr] Analyze DrectMarketn Graphs Utities Add-gns Window Heb |
class1.sav aqat . — = :
ata nle % [%] | Remots » S
2 Descriplive Statistics i 2
1. Go to the toolbar and select | ' Tobes p | |Visie: 12 of 12 Variabies
ANALYZE, MIXED MOD- schcode | 1 Compare Means 4 u lowses
ELS, LINEAR. 1 106 General Linear Model il 1 o |2
2 106 Generalized Linear Models > | 1 0
This command enables access to 3 106 Mixed Models b | Lnear. [y
the Linear Mixed Models: Specify 4 106 Correlate ¥ | Lif Generaized Linear...
Subjects and Repeated dialog box. S 100 Regression | 0
6 106 Loginear » |l oo 0
7 106 Neural Netyvorks » 0 0
8 106 Classify » 0 0
9 106 Dimension Recuction » 0 0
10 106 Scale 3 0 0
1 106 Nonparametric Tests 3 0 0
12 106 Forecasting » 0 1 [+
4] i Survival » =
_DataView | Varisbie View |j]  Mulible Response )
|Linear... [E Missing Value analysis...
- Muttiple Imputation
Complex Samples 13
Qualty Contral »
ROC Curye...
EM SPSS Amos...

2.'The Linear Mixed Models: Specify Subjects and (B (Linear Momd Models Specily Subjects sl Fepested o]
Repeated screen displays options for defining

variables as subjects, repeated observations, and Chck Continue for modeis wh uncorreisted teras.
type of covariance structure in a model. Spoclly SUtiect widabic for odeis Witk comelated saadom effects.

. . . . Specify both Repeated and Subject variables for models with correlated
A subject is an observational unit that may be S ety "
independent of other subjects. For this model, Subs
we will designate two subject identifiers for the & schcose |l nschcode

model (nschcode, and campus). Click to select [

nscheode and campus, and then click the right-
arrow button to move the variables into the

) & cum_ceR ;
Subjects box. & lowses_mean fapesios

f fouryear

Click the CONTINUE button to display the f;:"’,,.’fﬁi El |
Linear Mixed Models dialog box. & gmowsSES_mean

f gmfouryear |

Repeated Covariance Type: | Dzcons v

R [ R




3. The Linear Mixed Models main screen
enables specifying the dependent variable,
factors, and covariates, as well as access-
ing the dialog boxes for defining Fixed and
Random effects, and options for Estimation,
Statistics, EM Means, and Sawve.

a. For this model, we will use CUM_ GPR
as the dependent variable. Click to
select CUM _ GPR from the left column
listing, and then click the right-arrow
button to transfer the variable into the
Dependent Variable box.

b. We will designate four predictor vari-
ables to be used in the model (gmfemale,
gmlowses, gmlowSES_mean, and gmfour-
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3 Linear Mixed Models (]
Dependent Varable: =Y
& schode % | | & cum_om . =L 4
ol nschoode 'EHIor(!l: sl J
s st Estmation... |
famaie -
& lowses - Statstics,.. |
’ ' EM Means... J
& lowses_mean
& touryesr Lovariste(s) sae.. |
gmfemaie L@{'—'ﬂj fe Bootstrap... |
gmiowses ~ |: 5
gmiowSES_mean 5 “¢
‘.‘s\ o
LY

Covarate(s):
gmfouryear

— =& gmiowses

£

T
.

& gmiowSES_mean

Help

year). Click to select the four variables, and then “drag” them to Covariate(s) box. To facilitate
reading of the output tables, we will change the sequence of the variables by dragging individ-
ual variables into the following order (see insert): gmfouryear, gmlowSES_mean, gmlowses, and

gmfemale.

Note: An alternate method for arranging the variables in the desired sequence order is to select variables
individually and then use the right-arrow button to move each variable into the Covariate(s) box.

We may now proceed to define fixed eftects for the variables.

Click the FIXED button to access the Linear Mixed Models: Fixed Effects dialog box.

4a. Within the Linear

| £ Linear Mixed Models: Fixed Effects

Mixed Models: Fixed
Effects dialog box,
click the pull-down
menu to change the
factorial setting to
Main Effects.

b. Click to select the
four variables from
the Factors and Co-
variates box. Then
click the ADD
button to move the
variables into the
Model box.

c. Note on lower left
of the screen that

Fixed Effects

() Buid terms

(_) Buid pested terms

Main Effects ¥

Modet:

jgmfouryear
jgmiow SES_mean
lgmilowses
jgmiemale

A

|Factorial
Main Effects
interaction
Al 2-way

| |AN 3-way
WJAl &-way

g 5-way )
b

pem

Sum of square‘sh_" Type il v/

Dl:onl:nue ] Cancel | Help

the intercept and
the sum of squares
(Type III) are the
default settings.

Click the CONTINUE button to return to the Linear Mixed Models dialog box.

We will now add random effects to this model.

Click the RANDOM button to access the Linear Mixed Models: Random Effects dialog box.
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. 'The Linear Mixed {2 Linear Mixed Models: Random Effects e
Models: Random
. Random Effect 1 of 1 |
Effects displays the @ e
Next -
Random Effect 1 of : Y Nt
h_ h . Coyariance Type: Scaled identity 'i
1 screen, which is Random Effects
the default when 3) Buid terms () Build pested terms [¥] inciude intercept
creating a model Eactors and Covariates: Modet
. ral
for the first time. L gmfouryeer
L{ gmiowSES_mean
The random- |£ gmiowses :
effects screen |£ gmtemale Factorial -
allows specifying
random effects,
interactions, inter- 3
cept terms, and
subject groupings. I
a. Begin by SpCCi— Subject Groupings-
. h Subjects: C_grn_bhalions:

fylng the cova- nschcode }L,...‘ L{ﬂ nschcode

riance structure campus

from the

default variance ‘

components _

(VC) to scaled | Contiwe || Concel || hew |

identity. Click
the pull-down
menu and select Scaled Identity (ID).

'The Scaled Identity structure has constant variance and assumes that no correlation occurs between ele-
ments (IBM Corporation, 2012).

b. We want the intercept to be included in the model, so click Inc/ude intercept.

c. 'The Subject Groupings box displays the nschcode and campus variables that were specified as a
subject variable in the Specify Subjects and Repeated dialog box show in step 2. We will specify
nscheode as the subject for the random-effects Level 1 part of this model. Click to select nschcode,
and then click the right-arrow button to move the variable into the Combinations box.

d. At the top-right section of the window, click the NEXT button to access the Random Effect 2
of 2 screen.

Note: The NEXT button may not work in earlier or unpatched versions of IBM SPSS when creating
multilevel models with random intercepts. An update issued by IBM SPSS for software Version 19 ad-
dressed the problem, and Version 20 appears to have resolved the issue. A workaround to activating the
NEXT button is to either (a) add or reenter a subject variable into the Combinations box or (b) add a
variable from the Factors and Covariates column to the Mode/ box and then remove it before proceeding
to the Random Effect 2 of 2 screen.
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'The Random Effect 2 0f 2 |3 Linear Mixed Models: Random Effects
screen display is similar
rRandom Effect 2 of 2
to the first screen and
. . previous
requires the following P f
changes. Handom Eaets = = -
e. Change the (@) Buid terms () Buid pested terms @-ﬁ; Inclyde intercept
covariance type Eactors and Covariates: Modet:
. . |f_ gmfouryear
by clicking on the [ pmowses: masn
pull-down menu | gmiowses
; [ o
and selecting
Scaled Identity.
f. Click to select L - ] ,
the Include inter- ‘“ o ][ ownw ] Cgartem | [ ads | Re
cept option. I"" -
g. We will specify e
campus as the Subjects: Combinats
subject for the gl nschcode
random-effects
Level 2 part of
this model. Click
to select campus, L&yc:onlhue |[ concer [ nep |
and then click

the right-arrow
button to move the variable into the Comébinations box.

Click the CONTINUE button to return to the Linear Mixed Models dialog box.

6. Click the ESTIMATION button to ER Linear Mixed Models s |
access the Linear Mixed Models: Esti- : _ — :
mation dialog box, which displays two (R Linear ised Models Esimation. Y-, lSsE ==
estimation method choices: maximum -Method— — —
likelihood (ML) or restricted maxi- <;‘.§a®f‘ e Maximum Likeihood (REWL)
mum likelihood (REML). © Maximum Lipeihood (WL)

Merationg ———
In this chapter, we will use the default set- Hoden Meratica: o |
ting of REML to estimate the models. Mo siop haMion o
Click the CONTINUE button to return to LIe By ey (1S .
the Linear Mixed Models dialog box. Log-Likelihood Convergence-
||| |® Absokte ) Relative
T Yae
Parameter Convergence-
(%) Absolute () Ralative
vake [0,000001 -
-Hessian Convergence——————————————
(3) Absglute O Relative
e C—
Maximum scoring steps: 1 ]
Singularty tolerance: | 0,000000000001 ~]
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7. In the Linear Mixed
Models dialog box,
click the STATIS-
TICS button to ac-
cess the Linear Mixed
Models: Statistics
dialog box.

Click and select the fol-
lowing three statistics to
be included in the output:
Parameter estimates, Tests
Jfor covariance parameters,
and Covariances of random

effects.
Click the CONTINUE

button to return to the
Linear Mixed Models dia-
log box.

8. Finally, in the Linear
Mixed Models dialog
box, click the OK but-

ton to run the model.

@ Linear Mixed Models

-~

{3 Linear Mixed Models: Statistics ‘Qz-&J Jiable:

-Summary Statistics—————
[] Descriptive statistics

["] case Processing Summary

|' Model Statistics- —

d (V] parameter estimates

[] Tests for covariance parameters

[ "] Corrglations of parameter estimates
[] covariances of parameter estimates

Covariances of random effects

[7] covariances of residuals

[7] contrast coefficient matrix

-~
el

Confidence interval: %

LhCont‘nue “ Cancel H Help l

———

{3 Linear Mixed Models

(= |
— | Dependent Variable:
& scheode 2 | & cum e | L
il nschcode L Random...
& campus Estimation...
& femae = I [ 7 ]
f lowses Sesds
f lowses_mean Covariate(s): EM Means...
& Tyen j if gmfouryear = Saye...
b 4 f gmiowSES_mean .:
- Bootstrap...
& amiawses o (et
Residual Weight:
b/ I [ |
Lok !g[ paste || meset |[ cancel || hew |

Interpreting the Output From Model 1.1

From the following fixed-effects table (Table 8.8), we can see that of the Level 1 effects, females
have significantly higher cumulative GPAs (y = 0.332, p < .01) than males; however, individual
SES status does not affect cumulative GPA. At Level 2, aggregate high school social composi-
tion is significantly and negatively related to cumulative GPA (y = -1.220, p < .01). Institutional
type, however, is not related to cumulative GPA (y = 0.138, p = .655).



Cross-Classified Multilevel Models = 375

TABLE 8.8 Estimates of Fixed Effects®

95% Confidence Interval

Parameter Estimate Std. Error df t Sig. Lower Bound Upper Bound
Intercept 2.682 0.142 9.070 18.943 .000 2.363 3.002
gmfouryear 0.138 0.298 7.933 0.465 .655 -0.549 0.825
gmlowses_mean -1.220 0.371 32.478 -3.286 .002 -1.977 -0.464
gmlowses 0.017 0.037 1,728.687 0.472 .637 0.055 0.090
gmfemale 0.332 0.028 1,735.674 11.905 .000 0.277 0.386

@ Dependent variable: CUM_GPR.

TABLE 8.9 Estimates of Covariance Parameters®

95% Confidence Interval

Parameter Estimate Std. Error Wald Z  Sig. Lower Bound Upper Bound
Residual 0.305 0.010  29.300 .000 0.285 0.326
Intercept [subject = nschcode] ~ Variance  0.031 0.012 2.602 .009 0.015 0.066
Intercept [subject = campus] Variance  0.177  0.093 1.905 .057 0.063 0.496

@ Dependent variable: CUM_GPR.

The variance component table (Table 8.9) suggests that there is still significant variance
in intercepts across high schools (p < .01) left to explain after the set of predictors was en-
tered into the model. There is also still variance across colleges (Wald Z = 1.905, one-tailed
p =.0285).

Model 1.2: Investigating a Random Slope

Level 2 high school or college variables can also be used to explain variation in Level 1 slopes.
'The Level 2 model can be expanded to include the random effect of gender on cumulative college
GPA across high schools (#;;) and colleges (v;,). We first allow the female-GPA slope to vary
randomly across both high schools and colleges as follows:

ﬂl(/&) =Yt Uy T Uy (8.10)

where 7y is the intercept, u;; is the residual high school effect, and vy, is the residual college effect.
In this model, however, we do not attempt to explain this variation. The combined model (with
10 parameters) will then be the following:

Y. = Yoogy + YogmlowSES_mean; + yogmfouryear, + yiogmfemale; ) + yygmlowSES, ;)
+ uygmfemale,y + Vyfemale;gy + uy; + Vop + € (8.11)
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Defining Model 1.2 with IBM SPSS Menu Commands

Note: Settings will default to those

Analyze Direct Marketin Graphs Utiities Add-ons Window ﬂelp|

: ( #A chicrossclassl.sav [DataSetl] - IBM SPSS Statistics Data Editor
used in Model 1.1. e
1. Go to the toolbar and @ [.%] l ::::m St
select ANALYZE, | ' i
MIXED MODELS, schcode | {  CompareMeans
LINEAR. A 106 General Linear Model
2 106 Genersiized Linear Models
This command enables 3 106 Mixed Models
access to the Linear 4 106 Correlate
Mixed Models: Specify 5 106 Regression
Subjects and Repeated § %o Loginear
dialog box. 7 106 Neural Netyvorks
8 106 Classify
9 106 Dimension Reduction
10 106 Scale
1 106 Nonparametric Tests
12 106 Forecasting
4] s Survival
_DataView | Variabie View ||| Mutiple Response
|Linear... [ missing Value Anslysis...
Mutliple Imputation
Complex Samples
Qualty Contral
ROC Curve..
EM SPSS Amos...

2. 'The Linear Mixed Models: Specify Subjects and
Repeated screen displays the default settings
from the prior model.

Click the CONTINUE button to display the Linear
Mixed Models dialog box.

We will change the random-effects covariance type,
so from the Linear Mixed Models main screen, click
the RANDOM button to access the Linear Mixed
Models: Random Effects dialog box.

| 15
» | |Visible: 12 of 12 Variabies
> B | touses |

» ] 0 1=
5 | IE ol B
b Lnear.. [

» | (L] Genersiized Linear...

3 0 0

» 0 0
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prisveadyl | [ [ | |

{2 Linear Mixed Models: Specify Subjects and Repeated =5
Chck Continue for models with uncormrelated terms.
Specify Subject variable for models with correlated random effects.
Specify both Repeated and Subject variables for models with correlated
residuais within the random effects.
f schcode In‘i nschcode
& temase | & campus
f lowses = I
& cuu_cer
& lowses_mean |
f fouryear
f gmfemale Repeated:
f gmiowses
f gmiowSES_mean
f gmfouryear
Repeated Covariance Type: | Dacons "E
LI,,\,W” Reset || cancel |[ hep




3. The Random Ef-

Jfect 2 of 2 screen is

displayed first as it

was the last dialog
box used in the prior
model.

a. Change the
covariance type
by clicking the
pull-down menu
and selecting:

Diagonal.

'The Diagonal covariance
type has heterogeneous
variances and zero correla-
tion between the elements

(IBM Corporation, 2012).

b. Change the
default Factorial
setting by click-
ing the pull-down
menu to select
Main Effects.
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{3 Linear Mixed Models: Random Effects

~Random Effect 2 of 2

Previous

Coyariance Type: |Diag

‘Random Effects-
(3) Buid terms
Eactors and Covariates:

L{ gmfouryear
E_ gmiowSES_mean

() Bulid pested terms
Modet

Inclyde intercept

gmfemale

4

-sub}ec! Grouping

ﬂ nschcode
& campus

c. Click to select gmfemale, and then click the ADD button to move the variable into the Model

box.

d. Click the PREVIOUS button to access the Random Effect 1 of 1 screen.

e. From the Ran-
dom Effect 1 of 2
screen, change the
covariance type
by clicking the
pull-down menu
and selecting
Diagonal.

t. Note the setting
is Main Effects.

g. Click to select
gmfemale, and
then click the
ADD button to
move the variable
into the Mode!
box.

Click the CONTINUE
button to return to the
Linear Mixed Models
dialog box.

3 Linear Mixed Models: Random Effects

|£ gmiowSES_mean

~Random Effect 1 of 2 ’é“
Covariance Type: lDiagonal S
Random Effects
(3) Buid terms () Buid pested terms Inclyde intercept
Eactors and Covariates: Modet:
|i gmfouryear gn;:‘emie

Main Effects 'I

B e ) w
[
-Subject Grouping
Subjects: o (Eg!_@hauona:_ i (WL Do [ SN 6 4
d nschcode di nschcode
& campus
I_hmnﬁ'me _” Cancel ” Help
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4. Flnally, in the Linear szed t_] Linear Mixed Models i—i?.‘
Models dialog box, click the OK
Dependent Variable: [ =il
r Fixed...
button to run the model. > e W | (& cou o &
. Rand
ol nscheode Factor(s): . $
& campus — __ Estimation... |
f female Y -
f lowses — Stafelcs |
lowses_mean : EM Means...
A |
& Tiiyesr Covarinte(sy . ———
y —— | & omfouryear |~] [ Save..
% | | & gmiowsES_mean B . 1
B =1 Bootstrap...
f OminwWSa: e J
[ | Residual Weight
| ox ) [ Easte -__RM_ [ cancar |[ _l'le_b_ ]

TABLE 8.10 Estimates of Covariance Parameters®

95% Confidence Interval

Parameter Estimate Std. Error Wald Z Sig. Lower Bound Upper Bound
Residual 0.293 0.010 28.863 .000 0.274 0.314
Intercept + gmfemale Var: Intercept  0.036  0.013  2.734 .006 0.017 0.073
[subject = nschcode] Var: gmfemale 0.040 0.020 2.052 .040 0.016 0.105
Intercept + gmfemale Var: Intercept  0.194  0.102  1.908 .056 0.069 0.542
[subject = campus]  var: gmfemale 0.038  0.033  1.155 .248  0.007 0.208

@ Dependent variable: CUM_GPR.

Interpreting the Output From Model 1.2

'The variance components table (Table 8.10) suggests that the random slope (gmfemale) varies
across high schools (Wald Z = 2.052, one-tailed p = .02). However, the female—cumulative GPA
slope does not vary across campuses (Wald Z = 1.16, one-tailed p = .124). One explanation for
the observed lack of variation across colleges may be the small sample size.

Model 1.3: Explaining Variation Between Variables

Since the Level 1 slope varies across high school cells, for demonstration purposes, we will pro-
pose that a Level 2 variable explains variation in the relationship between female and cumulative
GPA. We will propose that the social composition of students’ high schools moderates (enhances
or diminishes) the relationship between gender and cumulative GPA. The proposed cross-level
interaction would look like this:

Bigiy = Yio + YugmlowSES_mean;* gmfemale, ) + u;. (8.12)

Equation 8.12 assumes that the random slope varies across high schools (z;;) but not colleges
(i.e., vy from Eq. 8.10 has been removed from the equation). This cross-level interaction can be
interpreted as the effect of gender on attainment when the effect of high school social compo-
sition is controlled. For this model, in the intercept equation (see Eq. 8.8) we will remove the



Cross-Classified Multilevel Models m 379

gmfouryear variable since it was not significant in the previous model. The combined model with
nine estimated parameters will then be as follows:

Y = Yoogy + YogmlowSES_mean; + gmfemale, ) + y1,gmlowSES_mean; ™ gmfemale, ) +
VaugmlowSES, ;) + wygmfemale + ug; + Vo + ;). (8.13)

Defining Model 1.3 with IBM SPSS Menu Commands

Note: Settings will default to those used [ cracrossclasstsov [Datasett] - 1M 5PSS Staistcs Data Editor [E=RIEn =
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Repeated screen displays the default settings
from the prior model. R R Rt

Specify Subject variable for models with correlated random effects.
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f gmfemale Repeated:

f gmiowses

f gmiowSES_mean
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3. From the Linear Mixed Models main
screen we will remove a variable from
the analysis. Click to select gmfour-
year, and then click the left-arrow
button to remove the variable.

We will now add a fixed effect to the
model, so click the FIXED button to ac-

cess the Fixed Effects main screen.

One cross-level interaction (or nested
terms) will be created and added to the
model: gmlowSES_mean and gmfemale.
'This interaction will tell us if social compo-
sition of students’ high schools moderates

&3 Linear Mixed Models

[

| scheode
rIﬂ nschcode
| & campus

f female

f lowses

f lowses_mean
If fouryear

Dependent Variable:
| (& cuu_cm

Factor(s):

gmiowSES_mean
.69 gmiowses

(] ResidualWeight

3 [ see.. |

| Rapdom... F
| [ gstmaton.. |
‘ [ stotstcs... |

j: EM Means... |

(enhances or diminishes) the relationship between gender and cumulative GPA.

Add Interaction to

{2 Linear Mixed Models:

Fixed Effects

Model 1.3: gmlowSES_

@ (3) Build pested terms

mean*gmfemale rFixed Effects
4a. Click to select /2Nl forme
Build nested Factors and Coyariates:
terms. :'1@
b. Now click o, GTOWSES 0

to select the
variable gm-
lowSES_mean
from the

Factors and

Covariates box.
c. Click the 1" | oy

arrow but-

ton below the

Factors and

Covariates box.

[v] include intercept

Sum of squares: Type u >

Model:
gmiowSES_mean
gmiowses

gmiowSES_mean*gmfemale

4

e [ | [Coeted@hhflass ][ aomoe |
t id Yerm: \».
M=+ gmlowSES_meaf™ gmfemale

h}t:ont'nue ” Cancel jl Help J

This moves
gmlowSES_

mean into the Build Term box to create a cross-level interaction by linking variables and terms.
d. Next, click the BY* button, which will insert the computation command symbol:

gmlowSES_mean*.

e. Click to select gmfemale from the Factors and Covariates box.

f. Click the arrow button below the Factors and Covariates box to move gmfemale into the Build

Term box and complete the interaction term: gmlowSES_mean*gmfemale.

g. Click the ADD button to transfer the interaction into the Mode/ box.

Click the CONTINUE button to return to the Linear Mixed Models dialog box. Then click the RAN-

DOM button to access the random-effects main screen.




5. The Random Ef-

Sect 1 of 2 screen

is displayed first,

as it was the last

dialog box used in
the prior model.

a. Click the
NEXT button
to access the
Random Effect
2 of 2 screen.

b. Change the
covariance type
by clicking
the pull-down
menu and
selecting Scaled
Identity.

'The Scaled Identity
structure has constant
variance and assumes
that no correlation oc-
curs between elements
(IBM Corporation,
2012).
c. We will
remove gmfe-
male from the

model by click-
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£ Linear Mixed Models: Random Effects

et

Random Effect 1 of 2

G
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v]

n Effects

{3 Linear Mixed Models: Random Effects

25y

rRandom Effect 2 of 2
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-
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ing to select the variable and then clicking the REMOVE button.

Click the CONTINUE button to return to the Linear Mixed Models dialog box.

6. Finally, in the Linear Mixed Models
dialog box, click the OK button to

run the model.

2 Linear Mixed Models
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Interpreting the Output From Model 1.3

'The fixed-effects table (Table 8.11) suggests that the intercept model remains about the same as
before. Regarding the model to explain random slopes, the positive Level 1 female—cumulative
GPA slope is moderated by high school social composition (y = =1.400, p < .01). This finding
is consistent with factor*covariate interactions, suggesting that slopes differ across levels of the
factor. In this case, we can interpret the result as the impact of gender on cumulative GPA when
the social composition in students” high school is held constant. This indicates that the impact
of the female slope (y = 0.28, p < .05) on cumulative GPA also depends on high school com-
position (y = =1.40, p < .05). Combining the coeflicients suggests that the female coefficient is
-1.12 (-1.40 + 0.28 = -1.12), when low social composition is high. Therefore, when high school
social composition is increased by a unit (i.e., from the grand mean of 0), the advantage in cu-
mulative GPA for females reported in the table (i.e., 0.28) actually disappears. Of course, this
type of social composition variable is likely a proxy for more complex relationships in students’
academic preparation for doing postsecondary work that might exist across high school settings
within the state.

'The variance component table (Table 8.12) suggests that there is still intercept variance (aver-
age GPA) to be explained between high schools (Wald Z = 2.663, one-tailed p < .01) and col-
leges (Wald Z = 2.006, one-tailed p < .05). After adding the random slope, there is still significant
variance to be explained in the gender-GPA slopes across high schools (Wald Z = 1.601, one-
tailed p = .0495).

TABLE 8.11 Estimates of Fixed Effects®

95% Confidence Interval

Parameter Estimate Std. Error df t Sig.  Lower Bound Upper Bound
Intercept 2.677  0.140 10.201 19.125  .000 2.366 2.989
gmlowses_mean -1.201 0.384 32.258 -3.131 .004 -1.982 -0.420
gmlowses 0.014  0.037 1,718.681 394 693 -0.058 0.086
gmfemale 0.275  0.042 25.535  6.496  .000 0.188 0.362
gmlowses_mean * gmfemale -1.400 0.428 26.800 -3.270  .003 -2.279 -0.521

@ Dependent variable: CUM_GPR.

TABLE 8.12 Estimates of Covariance Parameters®

95% Confidence Interval

Parameter Estimate Std. Error  Wald Z Sig.  Lower Bound Upper Bound
Residual 0.297 0.010 29.017 .000 0.278 0.318
Intercept + gmfemale  Var: Intercept 0.034 0.013 2.663 .008 0.016 0.071
[subject = nschcode]  Var: gmfemale  0.020 0.013 1.601 109 0.006 0.070
Intercept [subject = Variance 0.172 0.086 2.006 .045 0.065 0.456
campus]

@ Dependent variable: CUM_GPR.
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Developing a Cross-Classified Teacher Effectiveness Model

Our second example considers the effects of teacher effectiveness on students’ outcomes in math.
It is similar to our example in Chapter 4, except this time we examine the effects of successive
teachers’ effectiveness on students’ current math scores. Multilevel models hold promise for ex-
amining the contributions of successive teachers and schools to student learning because they
make better use of the available information than more simplified analyses (Thum, 2003). More
specifically, over time, students are clustered in classrooms with teachers of differing skills and
effectiveness, and in schools with differing community expectations, teacher skills, and academic
processes. School factors can moderate learning conditions within classrooms (e.g., prolonged
grouping assignments, differential access to curriculum, and inconsistent academic experiences
for students within a particular grade level). Students, therefore, share similarities with peers
within these hierarchical social groupings. The sum of these varied learning contexts enhances or
diminishes students’ academic outcomes in direct and indirect ways.

The Data Structure and Model

In this example, we use a subset of student data (V = 4,136) cross-classified by two successive
classrooms at Level 2 (i.e., identified by 324 Year 1 teachers and 259 Year 2 teachers). At Level
3, the students attend 81 elementary schools. The data structure is different from the three-level
model in Chapter 4 (i.e., students nested within classrooms within schools) because at the class-
room level the data are “cross-classified”; that is, any two students in the cohort can have different
combinations of Year 1 and Year 2 teachers (i.e., both teachers in common, one teacher in com-
mon, or no teachers in common). The variables are summarized in Table 8.13.

TABLE 8.13 Data Definition of ch8crossclass2.sav (N = 4,136)

Variable Llevel®  Description Values Measurement
schcode School  School identifier (40 schools). Integer Ordinal
teachlid Class Identifier for students’ first-year classroom teacher Integer Scale
(324 teachers).
teach2id Class Identifier for students’ second-year classroom teacher Integer Scale
(259 teachers).
mathl  Individual Student math achievement scores from firstyear classroom. 499 to 775 Scale
math?2  Individual Student math achievement scores from second-year 52310770 Scale
classroom.
female  Individual Demographic predictor variable representing students gender. O = Male1 = Female Scale
lowses  Individual Dichotomous variable representing student socioeconomic 0 = Did Not Scale
status. Participate, T =
Participant in Federal
Free/Reduced Lunch
Program
Zmath1 Individual Standardized variable measuring math achievement. -2.41 10 4.33 Scale
effmath1 Class Predictor variable measuring first-year teacher effectiveness (0, 2, 4, 6, 8, 10)  Scale
in classroom1 on a scale of O to 10 in terms of their
classroom effectiveness in facilitating student learning.
effmath2 Class Predictor variable measuring firstyear teacher effectiveness (0, 2, 4, 5, 6, 7, 8, Scale
in classroom 2 on a scale of O to 10 in terms of their 10)
classroom effectiveness in facilitating student learning.
schqual School  Variable measuring the quality of the schools educational  -4.8 to 1.8 Scale
processes (e.g., leadership, academic expectations, and
climate).

@ Individual = Level 1; Class = Level 2; School = Level 3.
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'The cross-classification of students by their previous and current teachers facilitates the ac-
curacy of estimating the effects of successive teachers on student outcomes within the same
model. One limitation to keep in mind about cross-classified models in examining the effects
of successive teachers, however, is that the model assumes that the effects of previous teachers
do not diminish (i.e., since each classroom contributes independently) in explaining the current
achievement level (McCaftrey, Lockwood, Koretz, Louis, & Hamilton, 2004). The data structure
in this example is similar to that in Figure 8.1.

Figure 8.1 indicates Student 1 and Student 2 have the same first-year teacher and second-year
teacher. Students 3 and 4 have the same first-year teacher as the previous two students but dif-
terent second-year teachers. Students 5 and 6 have different first-year and second-year teachers
from each other, but Student 5 has the same second-year teacher as Student 4. All six of the
students (with different configurations of first and second teachers) attend the same school (1).
Student 7 begins a different school (2) and combination of teachers. Because we are focusing on
two measurement occasions, this approach is similar to a type of gain score achievement model
or a model that uses previous achievement as a control variable.

We reiterate that for cross-classified models, each RANDOM command identifies a separate
cell or level. Their order does not matter. With cross-classified data structures, we need to use the
unique Teacher 1 and Teacher 2 identifiers at Level 2 and not recode (i.e., rank) them within each
school (1, ..., 7). The use of unique teacher identifiers generally will result in a longer computing
time needed for estimating cross-classified models compared with similar nested multilevel mod-
els. For this example, we reduced the student part of the data set substantially (i.e., from more than
9,000 students to 4,136 students) and also reduced the number of Year 1 and Year 2 teachers and
schools in order to decrease the time it takes to run the model from well over 1 hour to the present
4 to 5 minutes (on the final models). We note that the cost of reducing the data for demonstrating
the approach, however, is a model that is a bit more challenging to fit optimally in terms of the our
substantive goals (e.g., the variability in intercepts and slopes across units is reduced).

Research Questions

In this cross-classified example, we can address a number of different types of research questions.
For example, we might first consider: How much variance in students’ math achievement is due
to their previous and current classroom settings? In examining this question, we can consider
whether the intercepts describing levels of Year 2 student achievement vary across classrooms
and schools. A second question we might investigate is the following: Does the effectiveness of

{3 mathscores.sav [DataSetl] - IBM SPSS Statistics Data Editor E=SEE

File Edt View Data Transform Analyze DirectMarketin Graphs Utiities Add-ons Window Help

SHE M e~ Bl b 5 |
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id | teacher! | teacher2 | schcode | math1 | math2 | |
1 1 1 1 1 525 600 |~
2 2 1 1 1 610 625 |-
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S 5 2 4 1 591 610
6 6 3 5 1 600 610
7 7 4 6 2 523 527 <
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Data View | Variable View |
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FIGURE 8.1 Horizontal data matrix for cross-classification analysis in IBM SPSS.
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successive teachers have a measurable effect on students’ Year 2 achievement levels? Subsequently,
we could also investigate whether teacher effectiveness varies across schools. Third, we might ask:
Does a particular variable (or set) explain possible variation in teacher effectiveness?

Model 2.1: Intercept-Only Model (Null)

We will begin with an intercept-only model. This model represents the average achievement
score across all individuals and occasions. It provides a preliminary estimate of the repeated mea-
sures variance, the classroom-level variance, and the school-level variance. Within individuals

(Level 1), the model is the following:
Yimﬂ)k = Togipe + Eigiin (8.14)

where Y5, is the math outcome for individual 7 cross-classified in classrooms /; and 7, in school
k, Tog1,0 1s the intercept, and €5 is the residual term for individual-level model.
At Level 2, the intercept model is

Tog12)r = Boox + Uy + Upypy (8.15)

where S is the intercept, u,, and u,, are residuals associated with Classroom 1 and Classroom
2 in school 4.
At Level 3, the basic model is

Boox = Yoo + Voo (8.16)

Through substitution, the basic random-intercept model can be specified as follows:
Yi(ﬂﬂ)/e =Yooo + Voor + Ujp t Upp T Eigions (8.17)

where ¥y is the grand mean of achievement for schools, and v, #, and € represent residuals (i.e.,
normally and independently distributed in the population with an expected mean equal to 0 and
some variance) associated with schools, classrooms, and students, respectively. For demonstra-
tion purposes, we note that we assume a scaled identity covariance structure at Level 2, with no
covariance between random effects at that level. Equation 8.17 therefore implies five parameters
that must be estimated (i.e., four variance components and one fixed effect). We can confirm the
five estimated effects from the printout from Model 2.1 (Table 8.14).

TABLE 8.14 Model Dimension®

Number of Covariance Number of  Subject

Llevels  Structure  Parameters Variables
Fixed Effects Intercept 1 1
Random Effects  Intercept 1 Identity 1 schcode
Intercept 1 Identity 1 teach2id
Intercept 1 Identity 1 teachlid
Residual 1
Total 4 5

@ Dependent variable: math2.
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Defining Model 2.1 (Null) with IBM SPSS Menu Commands

Launch the IBM SPSS program
application, and select the ch8cross-
class2.sav data file.

1. Go to the toolbar and select
ANALYZE, MIXED MOD-
ELS, LINEAR.

This command enables access to

the Linear Mixed Models: Specify
Subjects and Repeated dialog box.

2. 'The Linear Mixed Models: Specify Subjects and
Repeated screen displays options for defining
variables as subjects, repeated observations, and
type of covariance structure in a model.

A subject is an observational unit that may be
independent of other subjects. For this model, we
will designate three subject identifiers for the model
(scheode, teachlid, teach2id). Click to select scheode,
teachlid, and teach2id, and then click the right-arrow
button to move the variables into the Subjects box.

Click the CONTINUE button to display the Lin-

ear Mixed Models dialog box.

@ ch8crossclass2.sav [DataSetl] - IBM SPSS Statistics Data Editor
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3. The Linear Mixed Models main screen en-
ables specifying the dependent variable,
factors, and covariates, as well as access-
ing dialog boxes for defining Fixed and
Random effects, and options for Estima-
tion, Statistics, EM Means, and Save.

For this model, we will use math2 as the
dependent variable. Click to select marh2 from
the left column listing, and then click the
right-arrow button to transfer the variable into
the Dependent Variable box.

We will now add random effects to this model.
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Click the RANDOM button to access the Linear Mixed Models: Random Effects dialog box.
43 Linear Mixed Models: Random Effects [

4. The Linear Mixed

Models: Random Effects
displays the Random Ef-
fect 1 of 1 screen, which is
the default when creat-
ing a model for the first
time. The random-effects
screen allows specifying
random effects, interac-
tions, intercept terms,
and subject groupings. _
a. Begin by specifying ¥
the covariance struc-
ture from the default
(VC) to scaled iden-

Coyariance Type:
Random Effects
) Buid terms
Eactors and Covariates:

Subject Groupings
Subjects:

Random Effect 1 of 1

{v] Include intercept

Scaled identity

) Build pested terms
Modet:

Factorial |

Combinations:

tity. Click the pull-
down menu and select

Scaled Identity (ID).

teachid
& teachzid

The scaled identity structure
has constant variance and

[ sencode

|

i =
| Continue ||

» |

assumes that no correlation

occurs between elements (IBM Corporation, 2012).

b. We want the intercept to be included in the model, so click Include intercept.

c. 'The Subject Groupings box displays the schcode, teachlid, and teach2id variables that were speci-
fied as a subject variable in the Specify Subjects and Repeated dialog box shown in step 2. We will
specify schcode as the subject for the random-eftects Level 3 part of this model. Click to select
scheode, and then click the right-arrow button to move the variable into the Combinations box.

d. At the top-right section of the window, click the NEXT button to access the Random Effect 2

of 2 screen.

Note: The NEXT button may not work in earlier or unpatched versions of IBM SPSS when creating
multilevel models with random intercepts. An update issued by IBM SPSS for software Version 19 ad-
dressed the problem, and Version 20 appears to have resolved the issue. A workaround to activating the
NEXT button is to either (a) add or reenter a subject variable into the Combinations box or (b) add a
variable from the Factors and Covariates column to the Model box and then remove it before proceeding

to the Random Effect 2 of 2 screen.
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'The Random Effect 2 of 2 screen
display is similar to the first
screen and requires the following
changes.

e. Change the covariance
type by clicking on the
pull-down menu and
selecting Scaled Identity.

f. Click to select the Include
intercept option.

g. We will specify teach2id
as the subject for the
random-effects Level 2
part of this model. Click
to select teach2id, and
then click the right-arrow
button to move the vari-
able into the Combina-
tions box.

h. At the top-right section
of the window;, click the

{3 Linear Mixed Models: Random Effects

Random Effect 2 of 2
! Previous _'

Coyariance Type:

Scaled dentty

Random Effects
2) Build terms
Eactors and Covariates:

f teachiid

(_) Bulid nested terms.

Factorial -/
¥
Subject Groupings
Subjects: Cgmbinations:
f scheode l’ teach2id

NEXT button to access the Random Effect 3 of 3 screen.

Note: The NEXT button may not work in earlier or unpatched versions of IBM SPSS when creating
multilevel models with random intercepts. An update issued by IBM SPSS for software Version 19 ad-
dressed the problem, and Version 20 appears to have resolved the issue. A workaround to activating the
NEXT button is to either (a) add or reenter a subject variable into the Comébinations box or (b) add a
variable from the Factors and Covariates column to the Model box and then remove it before proceeding

to the Random Effect 3 of 3 screen.

'The Random Effect 3 of 3 screen
display is similar to the prior
screen and requires the follow-
ing changes.

i. Change the covariance
type by clicking on the
pull-down menu and
selecting Scaled Identity.

j. Click to select the
Include intercept option.

k. We will specify teachlid
as the subject for the
random-effects Level
3 part of this model.
Click to select teach1id,
and then click the
right-arrow button to
move the variable into
the Combinations box.

Click the CONTINUE button
to return to the Linear Mixed
Models dialog box.

3 Linear Mixed Models: Random Effects
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5. Click the ESTIMATION button to
access the Linear Mixed Models: Es-
timation dialog box, which displays
two estimation method choices: ML
or REML.

In this chapter, we will use the default
setting of REML to estimate the models.

Click the CONTINUE button to return
to the Linear Mixed Models dialog box.

6. In the Linear Mixed Models dialog
box, click the STATISTICS button
to access the Linear Mixed Models:
Statistics dialog box.

Click and select the following three
statistics to be included in the output:
Parameter estimates, Tests for covariance
parameters, and Covariances of random

effects.

Click the CONTINUE button to return
to the Linear Mixed Models dialog box.
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7. Finally, in the Linear Mixed Models dialog (€3 Linear Mixed Models et
box, click the OK button to run the model. i v
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Interpreting Output From Model 2.1 (Null)

Our first model facilitates examining the distribution of math achievement in the data file with
4,136 students. The fixed-effect part of the model (Table 8.15) includes only the Level 3 inter-
cept (or grand mean) for Year 2 math. The grand mean is 654.131 (SE = 2.047).

'The variance components table (Table 8.16) suggests that most of the variance is due to differ-
ences in individuals (residual = 1,482.261), with about 14.7% of the total variation due to schools
(i.e., 266.734/1,810.801 = 0.147), and trivial amounts of variance (about 2%) due to Teacher 2
and Teacher 1 in this subset of the data. As a comparison, in the full data set, the initial estimates
for Classroom 1 variance was 4%, and for Classroom 2 variance, it was 7%.

TABLE 8.15 Estimates of Fixed Effects®

95% Confidence Interval

Parameter  Estimate Std. Error df t Sig.  Lower Bound Upper Bound
Intercept  654.131 2.047 77.947 319.509 .000 650.055 658.207

@ Dependent variable: math2.

TABLE 8.16 Estimates of Covariance Parameters®

95% Confidence Interval

Parameter Estimate  Std. Error Wald Z Sig. Lower Bound Upper Bound
Residual 1,482.261 34.592 42.850 .000 1,415.989 1,551.635

Intercept Variance 266.734 52.720 5.059 .000 181.066 392.934

[subject = schcode]

Intercept Variance 35.184 15.158 2.321 .020 15.123 81.858

[subject = teach2id]

Intercept Variance 26.622 12.915 2.061 .039 10.288 68.893

[subject = teachTid]

@ Dependent variable: math2.

Model 2.2: Defining the Cross-Classified Model with Previous Achievement

For Model 2.2, we will add a covariate for previous achievement with a fixed (i.e., the same) coeflicient
for all persons; that is, we will first treat the effect as fixed across classrooms and schools. In defining
the Level 1 model, we now account for previous achievement at Level 1. The Level 1 model is now

Yi(ﬂﬂ/e) = Togiop + ﬂlﬁij?)kzmatb]i(ﬂﬂ)/e + Einp e (8.18)
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where, in addition to the parameters previously described, 7, represents the effect of begin-
ning math achievement on Year 2 achievement. Entering previous achievement as a covariate is
similar to creating a gain score model since there are only two achievement measurements in the
model (see McCaftrey et al., 2004, for further discussion of teacher effectiveness models).

At the classroom level, we will consider beginning math achievement as fixed across classrooms:

(8.19)

TGk = Biow-
At Level 3 (school level), the equation with a fixed slope for previous achievement is the following:

Biox = Y100- (8.20)

From Equation 8.18, after substitution, the basic random-intercept model can be specified as follows:

(8.21)

Yimﬂ)/e = Yooo + Y1o0Zmathl ik t Voor t Upp + Ui + Eig1n)is

where ¥ is the grand mean of achievement for schools adjusted for initial scores; 1o is the effect
for previous achievement for schools; and ©, %, and € represent residuals (i.e., normally and inde-
pendently distributed in the population with expected mean values equal to 0 and some variance)
associated with schools, classrooms, and students, respectively. This model specifies six estimated
parameters (i.e., two fixed effects, three random variance components, and one residual variance).

Defining Model 2.2 with IBM SPSS Menu Commands

Settings will default to those used (€2 chcrossclass2.sav [DataSet] - IBM SPSS Statistics Data Editor E=EEn )
in MOdel 21 Fie Edt View Data Transform Analyze DirectMarketin Graphs Utiities Add-ons Window Help
= = (i Reports » = ¥
1. Go to the toolbar and select @ k= (= I D;::mve Satiios ; ﬁ E
ANALYZE, MIXED MOD- | Tables N Visible: 11 of 11 Variables
ELS, LINEAR. schcode | Compare Means » b1 [ math2 |
1 100 General Linear Model 3 554 616 |~
"This command enables access to 2 100 Generaized Linear Models  » | 612 642 l:
the Linear Mixed Models: Specify 3 100 Mixed Models > ’Fvﬂ Wnear.. [
Subjects and Repeated dialog box. 3 L Sorrete » | EL] Generaized Lineor..
_5 100 Regression » | 672 702
6 100 Loglinear » | 568 621
7 100 Neural Netyvorks b | 595 642
8 100 Classify » | 617 681
9 100 Dimension Reduction » | 660 691
10 100 Scale » | 610 681
1" 100 Nonparametric Tests » 667 691
12 100 Forecasting » | 604 621 [
AT suvval » o] |
Data View | Variable View |  "fiPle Response 2
T [£0 missing Value Analysis... T
Muttiple Imputation 4
Complex Samples 3
Qualty Control »
ROC Curye...
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2. 'The Linear Mixed Models: Specify Subjects and Re-
peated screen displays the default settings from the

prior model.

Click the CONTINUE button to display the Linear

Mixed Models dialog box.

3. From the Linear Mixed Models main
screen, we will add a variable to the
analysis. Click to select Zmarh1,and
then click the right-arrow button to
move the variable to the Covariate(s)
box.

We will now add a fixed effect to the
model, so click the FIXED button to ac-

{2 Linear Mixed Models: Specify Subjects and Repeated [
Ciick Continue for models with uncorrelated terms.
Specify Subject variable for modeis with correlated random effects.
Specify both and Subject for models with comrelated
residuals within the random effects.
& matni | schcode
& mamn2 JR— & teacniia
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lowses L—I |
& zmatm
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& ettmamz M,—
l schqual :
L - i
1
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B |
ok [ Peste J[ messt |[ concet J[ rew |
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b. Click to select Zmathi
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click the ADD button Interaction s
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into the Model box. [¥] :li:w-v }" & [
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intercept and the sum Trcutemarcon  Somofsaul® (Tpen 3]
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the default settings.

Click the CONTINUE button to return to the Linear Mixed Models dialog box.
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5. Fina].].y’ in the Linear Mlxed Made[s t% Linear Mixed Models I—S.?- . [\
dialog box, click the OK button to
Dependent Variable: ]
run the model. & scheode | [ mamz | B
Random...

49 teachlid Faclor(s): o apdom |
5?8&:?124 Estimation... |
math1 == =
.f female ] . Statistics... |
g 1::;:_:1 Covariate(s): - Fl Mosns; |
& e"m;nz & Zmatnt Saye... |
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Interpreting the Output From Model 2.2
In Model 2.2, we added a standardized (mean [M] = 0, standard deviation [SD] = 1) previous

achievement variable, which changes the intercept (which now represents achievement at Time 2
adjusted for beginning achievement) to 653.48. Table 8.17 suggests that previous math achieve-
ment affects subsequent achievement (49 = 28.62, p < .01). This coeflicient suggests that a 1-SD
increase in Zmathl would produce a 28.62-point increase in the Math 2 score.

If we compare the variance components of Model 2.1 (Table 8.16) and Model 2.2 (Table
8.18), we sce that entering the previous achievement variable into the model decreases the Level
1 variance considerably (i.e., from 1,482.26 to 767.06). This represents a reduction in variance
(or R?) of about 48.3% (715.2/1,482.26 = 0.483). Notice also, however, that the size of the
Classroom 1 variance (6%, = 54.16) and Classroom 2 variance (6%, = 38.20) components are
somewhat larger than in Model 2.1.

TABLE 8.17 Estimates of Fixed Effects®

95% Confidence Interval

Parameter Estimate Std. Error df t Sig.  Lower Bound Upper Bound

Infercept  653.482  1.313 82.082 497.571 .000 650.869 656.094
Zmath1 28.620 0.473 4,066.184 60.542 .000 27.693 20.547

@ Dependent variable: math2.

TABLE 8.18 Estimates of Covariance Parameters®

95% Confidence Interval

Parameter Estimate Std. Error Wald Z Sig.  Lower Bound Upper Bound
Residual 767.060 17.907 42.835 .000 732.753 802.973
Intercept [subject = schcode] ~ Variance 83.983 20.879  4.022  .000 51.591 136.711
Intercept [subject = teach2id]  Variance 38.202 9.855 3.876  .000 23.040 63.339
Intercept [subject = teach1id]  Variance 54160 11.229  4.823 .000 36.074 81.314

@ Dependent variable: math2.
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As Hox (2010) notes, this often occurs in multilevel analyses, but makes it unclear which vari-
ance components to use in establishing a baseline model. As we noted in Chapter 1, this result
can occur because the amount of variance explained is not a simple concept in multilevel mod-
eling (Snijders & Bosker, 1994). Hox explains that the sampling process in multilevel designs
creates some between-group variability in all Level 1 variables, even if there are, in fact, no real
group differences in the population. The variability at successive levels (e.g., Level 2 or Level 3)
may be much greater than the model assumes in calculating initial variance components, such
that the intercept-only model (Model 1.1) can overestimate the variance at Level 1 and may
underestimate the variance at Level 2 (Hox, 2010).

Model 2.2, with the previous achievement variable added, estimates the variance accounted
for in the dependent variable, and, conditional on this effect, the variance components estimated
for Level 2 may be a bit more accurately estimated. Hox (2010) suggests using the classroom
variance components from Model 2.2 as the baseline from which to make comparisons in vari-
ance reduction. We note in passing that after accounting for previous achievement in our ex-

ample, the variance in math achievement at the classroom level is about 6% for Class 1 and 4%
for Class 2.

Model 2.3: Adding Teacher Effectiveness and a Student Background Control

We can next add the teacher effectiveness variables to the model. Individual teachers were
evaluated from 0 to 10 in terms of their classroom effectiveness in facilitating student learn-
ing (after adjustment for student composition) based on their previous student cohort. The
effectiveness scores were then transferred into the current student cohort. We display the
variation in effectiveness scores in the following tables. Tables 8.19 and 8.20 suggest that
teacher effectiveness was distributed similarly across both sets of classrooms in this sample
data set.
In Model 2.2, at Level 1 we will add a control for student SES:

Yi(jlﬁ)/c = Tlogiop + 771(/1]'2)/«277%”‘/911'(;1]'2% + ﬂZOijZ)klgwsesinQM + Eiion (8.22)
At Level 2, the model to explain intercepts can now be defined as

oG = Boor + ﬂoul‘mfbejﬂ(ﬂﬂ)& + ﬁOZkl‘eﬂCbeﬁ(jlﬂ)k T U T Upye (8.23)

TABLE 8.19 Descriptive Statistics

N  Minimum Maximum Mean Std. Deviation

effmath1 324 0 10 5.15 2.959
Valid N (Listwise) 324

TABLE 8.20 Descriptive Statistics

N  Minimum Maximum Mean Std. Deviation

effmath?2 259 0 10 5.01 2.293
Valid N (Listwise) 259
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In this model, we will first assume that teacher effects do not vary randomly across schools:

Bowe = Yor0

Box = Yoro-

(8.24)

(8.25)

We might also consider any number of classroom controls at this level (e.g., aggregated so-
cioeconomic status of students in the classroom, aggregated academic background of students,
and information about teachers’ experience and other background characteristics). Because the
teacher effectiveness scores were previously adjusted for student composition, we note that it
is generally redundant to add similar background controls (e.g., SES) at both the student and
classroom levels or to add similar controls (e.g., SES) for both classrooms since it would not be
expected that there would be much difference in the classroom demographics within schools (or
over time). This could change if schools grouped students within classrooms in some particular
manner (e.g., by previous math ability).

'The combined model with nine estimated parameters will now be the following:

Yo = Yooo + Yowoteacheff ji oy + Yorouteacheff2 jipop + YiooZmathl oy + Ya00lowses;gjon
+ Voor + Upr + Upp + Eiipe

Defining Model 2.3 with IBM SPSS Menu Commands

Note: Settings will default to those
used in Model 2.2.

1. Go to the toolbar and select
ANALYZE, MIXED MOD-
ELS, LINEAR.

This command enables access to
the Linear Mixed Models: Specify
Subjects and Repeated dialog box.

(8.26)
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2. The Linear Mixed Models: S, pecify Subjects and Re- {2 Linear Mixed Models: Specify Subjects and Repeated 55
peated screen displays the default settings from the
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5. Finally, in the Linear Mixed Models (B Lineas Moxed Models 8
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Interpreting the Output From Model 2.3

The fixed-effect estimates (Table 8.21) suggest that in this subset of the data, the effectiveness of
the first teacher (y = 1.09, p < .01) contributed slightly more to ending math outcomes than the
effectiveness of the second teacher (y = 0.73, p = .01). Both effects, however, would be considered
relatively small.

'The variance components table (Table 8.22) suggests that after adding the teacher effects for
Classroom 1 and Classroom 2 to the model, there is still variance in Year 2 achievement levels
to be explained at the classroom and school levels. Adding the Level 2 effectiveness variables
reduces the variance for each classroom, especially in the first classroom (from about 54.16 to
44.60 or R? = 0.177). The school-level variance is also reduced slightly from adding the teacher
effectiveness variables to the model (from 83.98 to 73.81, or R? = 0.121).

TABLE 8.21 Estimates of Fixed Effects®

95% Confidence Interval

Parameter Estimate  Std. Error df t Sig. Lower Bound Upper Bound
Intercept 646.389 2.261 361.609 285.919 .000 641.943 650.835
effmath?2 0.733 0.283 175.141 2.590 .010 0.174 1.292
effmath1 1.093 0.225 225.841 4.856 .000 0.649 1.536
Zmath1 28.426 0.487  4,077.812 58.317 .000 27.470 29.381
lowses -4.498 0.974  4,090.252  -4.619 .000 -6.408 -2.589

@ Dependent variable: math2.

TABLE 8.22 Estimates of Covariance Parameters®

95% Confidence Interval

Parameter Estimate Std. Error Wald Z  Sig.  Lower Bound Upper Bound

Residual 764.150 17.823 42.875 .000 730.005 799.893
Intercept [subject = schcode] Variance  73.806 18.827  3.920 .000 44.767 121.681
Intercept [subject = teach2id] Variance ~ 35.451 9.493  3.734 .000 20.974 59.918
Intercept [subject = teach1id] Variance ~ 44.595 10.065  4.431 .000 28.653 69.407

@ Dependent variable: math2.



398 B Cross-Classified Multilevel Models

Model 2.4: Adding a School-Level Predictor and a Random Slope

Next, we might investigate whether teacher effectiveness varies across schools. At the school
level, the model with random effectiveness slopes would be the following:

Bote = Yo10 + Vo (8.27)

Boze = Y20 + Voo (8.28)

where yy;0 and Yoy are the average teacher effectiveness means for Classroom 1 and Classroom
2, respectively, and we will use vy, and vy, as the respective school residuals for the slope effects.
At Level 3, we will define a diagonal covariance matrix for the intercept and slope (i.e., because
we determined that the unstructured covariance matrix did not converge in this model). The
combined model with 11 estimated parameters will then be the following:

Yo = Yooo + Yoroteachef jinp + Yorouteacheff2 jipp + YiooZmathl iy + Vaoolowsesijpp + Voor
+ UOlkfeﬂCbéﬁ"Z{/‘ljZ)k + U02k[€ﬂfb€j72(]‘1j2)k + ujl/z + ”ﬂk + 81'(]-1]2)&. (8.29)

Defining Model 2.4 with IBM SPSS Menu Commands

Note: Settings will default to those [ #2 checrossclass2:sav [DataSett] - [BM SPSS Statistics Data Editor E=EENTX
used in Model 2.3. Fle Edt View Data Iransform Analyze DirectMarketin Graphs Utities Add-ons Window Help
E D Reports ’ : j
1. Go to the toolbar and select @ H ['__"'_’] ﬂ Descriptive Statistics D L L ETEEE ”d. :
AN ALYZE, MIXED MOD- | Tebles » |Visible: 11 of 11 Variables
ELS, LINEAR. | schcode | | Compare Means bt | mah2 |
[k 100 General Linear Modlel » | 554 616 |
This command enables access to 2 100 Generalized Linear Models b | 612 642 l:
the Linear Mixed Models: Specified L 100 Mied Modlels > ’[‘;ﬂ Unear... [
Subjects and Repeated dialog box. L T L sameiste | EEY Qenarekzad Lieec.
_5 100 Regression » | 672 702
6 100 Loglinear » | 568 621
oot 100 Neural Netyvorks b | 595 642
8 100 Classity | G17 681
9 100 Pimension Reduction » | 660 691
10 100 Scale » | 610 681
11 100 Nonparametric Tests » | 667 691
12 100 Forecasting » | 604 621 5
AT suviva b === F
DataView | Varisbie View ||  Mdtirle Response 2
T Missing Valus Analysis... b
Mutiple Imputation 0
Complex Samples ’
Qualty Control 3
ROC Curye...
IEM SPSS Amos...




2. The Linear Mixed Models: Specify Sub-
Jects and Repeated screen displays the
default settings from the prior model.

Click the CONTINUE button to display
the Linear Mixed Models dialog box.

3. 'The Linear Mixed Mod-
els dialog box displays
default settings from
the prior model.

We will now modify the
random effects to this model.
Click the RANDOM button
to access the Linear Mixed
Models: Random Effects dialog
box.
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4a. The Linear
Mixed Models:
Random Effects
displays the Ran-
dom Effect 3 of 3
screen, which is
the default from
the prior model.
We will change
the Level 3 ran-
dom effects but
need to access
the Random Ef-
Sect 1 of 3 dialog
screen. First,
click the PRE-
VIOUS button
to access the
Random Effect 2
of 3 main screen.

b. From the Ran-
dom Effect 2 of
3 screen, click
the PREVIOUS
button to access
the Random Ef-

fect 1 of 3 main
screen.

c. From the Ran-
dom Effect 1 of 3
screen, change
the covariance
type by clicking
the pull-down

{3 Linear Mixed Models: Random Effects

-Random Effect 3 of 3

&

Covarance Type:

[ Scaied wentty

{3 Linear Mixed Models: Random Effects

rRandom Effect 2 0f 3

|
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menu and selecting Diagonal.

'The Diagonal covariance structure has heterogeneous variances and zero correlation between elements

(IBM Corporation, 2012).

d. Change the default factorial setting by clicking the pull-down menu and selecting Main Effects.
e. We will add two variables to the model (effinarh2 and effinathl). Click to select both variables,

and then click the ADD button to move them to the Model box.

Click the CONTINUE button to return to the Linear Mixed Models dialog box.
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5. Finally, in the Linear Mixed Models dia- 2 Linear Mixed Models =
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Interpreting the Output From Model 2.4

We first examine whether effectiveness varies across schools. We provide the variance compo-
nents table first (Table 8.23). The table suggests that the eftectiveness of Teacher 1 did not seem
to vary across schools (one-tailed p = .205). It may be, however, that the effectiveness of Teacher
2 does vary across schools (one-tailed p = .055). Given these results, we can reformulate the Level
2 model by removing the random effect for Teacher 1 effectiveness (vy;;) in Equation 8.27.

Model 2.5: Examining Level 3 Differences Between Institutions

We will then add a school-level variable that may explain differences in math achievement be-
tween schools. In this example, we will use the quality of the school’s educational processes (e.g.,
the school’s leadership, academic expectations, and climate) as a possible predictor of differences
in school math outcomes. At Level 3, the intercept model is the following:

Boor = Yooo + YoorSchqual, + Vyy, (8.30)

where g is the adjusted school-level mean, ¥y, is the coefficient representing the impact of the
school-level predictor (school quality) on math outcomes, and vy, is the school-level residual. We
could, of course, add other relevant school predictors to the model (e.g., school size, staff stability, and
wstudent composition). The combined model with 11 estimated parameters will then be as follows:

Y106 = Yooo + YoorSchqualy + Yoroteacheffd 1 + Yoroteacheff2 i + YiooZmathl, ),
+ 720010‘10-‘6’51'(;'1]2)& + Voor + Uozx»l‘eﬂfbeﬁz(ﬂjw + Unp + Upp t Eiji ) (8.31)

TABLE 8.23 Estimates of Covariance Parameters®

95% Confidence Interval

Parameter Estimate Std. Error Wald Z  Sig.  Lower Bound Upper Bound
Residual 764311 17.834 42.857 .000  730.144 800.076
Intercept + effmath2 + effmath1Var: Intercept ~ 46.838 21.193  2.210 0.027 19.295  113.695
[subject = schcode] Var: effmath2 0.788 0.493 0.493 0.110 0.231 2.687
Var: effmath1 0.343 0.427 0.804 0.421 0.030 3.929
Intercept [subject = teach2id]  Variance 29.796 9.257  3.219 0.001 16.207 54.780
Intercept [subject = teach1id]  Variance 41.053 10.449 3.929 0.000 24.928 67.608

@ Dependent variable: math2.
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Defining Model 2.5 with IBM SPSS Menu Commands

Note: Settings will default to those
used in Model 2.4.

1. Go to the toolbar and select
ANALYZE, MIXED MOD-
ELS, LINEAR.

This command enables access to
the Linear Mixed Models: Specify
Subjects and Repeated dialog box.

@__ chBcrossclass2.sav [DataSet1] - IBM SPSS Statistics Data Editor
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3. The Linear Mixed Models dia-
log box displays the default
settings for Model 2.4.

We will add one predictor (schgual)
to the model. Click to select
schqual, and then “drag” the vari-
able to Covariate(s) box above
effmath. This changes the sequence
order of the variables (see insert)
to the following: schqual, effmath2,
effmathl, Zmathl, and lowses. We
may now proceed to define fixed
effects for the variable.

Click the FIXED button to access
the Linear Mixed Models: Fixed Ef-
fects dialog box.
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3 Linear Mixed Models
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3 Linear Mixed Models: Fixed Effects

Mixed Models:
Fixed Effects
dialog box
displays the
default Main
Effects setting
used in the
prior model.

rFixed Effects

(3) Buid terms

We will rearrange the
sequence order of the
variables, so click to

select effmath2, ef- (B
fmathl, Zmath1, and ;

lowses. Then click the -
REMOVE button to [} inciude intercept

clear the Model box.
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b. The default
setting is Main
Effects.

c. Now click to select the five variables (schqual, effinath2, effmathl, Zmathl, and lowses) from the
Factors and Covariates box, and then click the ADD button to move the variable into the Mode/

box.

Click the CONTINUE button to return to the Linear Mixed Models dialog box. We will now modify
the Level 1 random effects to this model. Click the RANDOM button to access the Linear Mixed

Models: Random Effects dialog box.
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6. Finally, in the Linear Mixed Models
dialog box, click the OK button to
run the model.
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TABLE 8.24 Estimates of Fixed Effects®

95% Confidence Interval

Parameter  Estimate Std. Error df t Sig.  Lower Bound Upper Bound
Intercept  646.029  2.195 306.310 294.294 .000 641.709 650.348
schqual 2.278 1.303 89.300 1.748 .084 -0.311 4.867
effmath2 0.735 0.309 120.918 2.377 .019 0.123 1.347
effmath1 1.109  0.225 224.520 4.926 .000 0.665 1.552
Zmath1 28.386 0.488 4,075.644 58.202 .000 27.430 29.343
lowses -4.426 0.974 4,087.879 -4.543 .000 -6.337 -2.516

@ Dependent variable: math2.

TABLE 8.25 Estimates of Covariance Parameters®

95% Confidence Interval

Parameter Estimate Std. Error Wald Z  Sig.  Lower Bound Upper Bound
Residual 763.940 17.818 42.875 .000 729.804  799.672
Intercept + effmath2 Var: Intercept  49.916  19.584 2549 011 23.136  107.694
[subject = schcode] Var: effmath2 0.911 0.516 1.765 .078 0.300 2.764
Intercept [subject = teach2id] Variance 29.650  9.231  3.212 .001 16.108 54.578
Intercept [subject = teach1id] Variance 44.841 10.111  4.435 .000 28.823 69.762

@ Dependent variable: math2.

Interpreting the Output From Model 2.5

Table 8.24 provides some preliminary evidence that school quality is related to ending math
achievement (y = 2.28, p < .10), remembering that we have a relatively small subset of 81 schools.
'The variance component table (Table 8.25) suggests that Teacher 2 effectiveness varies across

schools (Wald Z = 1.765, one-tailed p = .039).

Model 2.6: Adding a Level 3 Cross-Level Interaction

Finally, we will add a school-level variable that might moderate the relationship between Teacher
2 effectiveness and Year 2 math achievement. In this case, we will use quality of the school’s edu-
cational processes (e.g., the school’s leadership, academic expectations, and climate). The Level 3
model for explaining the slope is now the following:

Boz = Yoro + 702155;»79”511& + Voo (8.32)
'The combined model with 12 estimated parameters will then be

Yijion = Yoo + YoorSchqualy + Yoroteacheff1 iy + Yoroteacheff2jipp + Youschqual,™ teacheff2
+ yloozmatbli(/lﬂ)k + 720010‘10555i(/1j2)/e + Voor + Vooz l‘eﬂfbeﬁlz(ﬂjm +Upp t Upy t Eiie (8.33)
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Defining Model 2.6 with IBM SPSS Menu Commands

Note: Settings will default to those
used in Model 2.5.

1. Go to the toolbar and select
ANALYZE, MIXED MOD-
ELS, LINEAR.

This command enables access to

the Linear Mixed Models: Specify
Subjects and Repeated dialog box.

2. 'The Linear Mixed Models: Specify Subjects and
Repeated screen displays the default settings

from the prior model.

Click the CONTINUE button to display the Lin- 5

ear Mixed Models dialog box.
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3. 'The Linear Mixed Models dialog
box displays the default settings for
Model 2.5.

We will now add a fixed effect to the
model, so click the FIXED button to ac-
cess the Fixed Effects main screen.

One cross-level interaction (or nested
terms) will be created and added to the
model: effimath2*chqual. This interaction
will tell us the relationship between qual-
ity of the school’s educational processes
(schqual) and math achievement (effmath2).
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#3 Linear Mixed Models
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teraction by linking variables
and terms.
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which will insert the compu-
tation command symbol: effmarh2”.

e. Click to select schgual trom the Factors and Covariates box.

f. Click the arrow button below the Factors and Covariates box to move schqual into the Build
Term box and complete the interaction term: effimath2schqual.

g. Click the ADD button to transfer the interaction into the Mode/ box.

Click the CONTINUE button to return to the Linear Mixed Models dialog box.

5. Finally, in the Linear Mixed Models
dialog box, click the OK button to

run the model.
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TABLE 8.26 Estimates of Fixed Effects®

95% Confidence Interval

Parameter Estimate  Std. Error df t Sig. Lower Bound Upper Bound
Intercept 645.718 2.201 307.461  293.367 .000 641.387  650.049
schqual 4.221 1.905 183.148 2.215 .028 0.462 7.980
effmath?2 0.814 0.314 120.484 2.591 011 0.192 1.437
effmath1 1.110 0.225 224.367 4.933 .000 0.666 1.553
Zmath1 28.378 0.488 4,074.882 58.186 .000 27.422 29.334
lowses -4.433 0.974  4,087.802 -4.550 .000 -6.344 -2.523
schqual * effmath2 -0.458 0.330 90.252 -1.389 168 -1.113 0.197

@ Dependent variable: math2.

TABLE 8.27 Estimates of Covariance Parameters®
95% Confidence Interval

Parameter Estimate Std. Error Wald Z  Sig. Lower Bound Upper Bound
Residual 763.956 17.819 42.874 .000 729.818 799.690
Intercept + effmath2 Var: Intercept  48.876  19.509  2.505 .012 22.353 106.871
[subject = schcode]

Var: effmath2  0.925  0.524 1.765 .078 0.305 2.808
Intercept [subject = teach2id] Variance 29.528 9.218  3.203 .001 16.015 54.445
Intercept [subject = teach1id] Variance 44.688 10.099  4.425 .000 28.696 69.591

@ Dependent variable: math2.

Interpreting the Output From Model 2.6
The fixed-effects table (Table 8.26) suggests that the quality of the school’s key educational

processes does not moderate the relationship between Teacher 2 effectiveness and achievement
levels in math (y = -0.46, p > .10). The effects of the other variables on Year 2 achievement remain
about the same as the previous model. Given that the cross-level interaction is not significant, for
parsimony we should remove it from the final model.

'The variance component table (Table 8.27) suggests that at Level 3, after adding the cross-
level interaction, there may still be some slope variance left to explain at the school level (Wald
Z =1.765, one-tailed p = .039). There is also still significant intercept variance in ending achieve-
ment to be explained across schools and classrooms. We could continue to add predictors to the
model that might explain this variation in school and classroom intercepts.

Summary

IBM SPSS MIXED proves very flexible in handling a variety of multilevel cross-classified data
sets. They extend the types of data structures and problems that can be investigated with multi-
level modeling. Cross-classified models also open up additional opportunities to investigate in-
dividuals’ growth over time within their organizational settings. It is important to keep in mind,
however, that their complexity and size will add to the challenge of trying to estimate these types
of partly hierarchical data structures.



CHAPTER 9

Concluding Thoughts

In our 2009 book, An Introduction to Multilevel Modeling Techniques (2nd ed.), we sought to
expand the application of multilevel-modeling techniques to a new range of research ques-
tions. In that book, we argued that most of the new variants of the simple multilevel model
could, in fact, be subsumed under a general modeling framework of latent variables and simul-
taneous equations. The modeling we present in that book uses two popular multilevel statistical
programs: HLM and Mplus. Although we are very satisfied with those excellent programs, their
cost and the learning curve associated with their use present barriers to many colleagues who
wanted to use the book in their graduate research courses. Unfortunately, relatively few social sci-
ence computing labs make these programs available for student and classroom use. The problem
makes it challenging to take full advantage of these software programs in introducing multilevel-
modeling techniques to students.

Our own initial solution to this problem was to generate sets of handouts we could use with
our students that made use of the familiar IBM SPSS modeling framework to introduce multi-
level modeling. As we began to refine some of these materials, we realized there might be wider
interest in having a set of hands-on activities that would illustrate major concepts in multilevel
and longitudinal models. In this resulting workbook, we have tried to provide an applied intro-
duction to multilevel modeling along with instruction for managing multilevel data, specifying
a range of multilevel models, and interpreting output generated through the SPSS MIXED
procedure. After “driving it around the block” a few times, we feel that it has definite utility for
investigating a variety of multilevel and longitudinal models with continuous outcomes. We also
noted a few cautions along the way. In compiling the workbook, we triangulated many of our
results with other software and sometimes found small differences in individual parameters but,
overall, a high level of substantive convergence. Our goal has been to widen exposure to and un-
derstanding of some general multilevel-modeling principles and applications. The workbook was
designed as a complement to our more in-depth treatment of the statistical and conceptual issues
surrounding multilevel modeling provided in our introductory multilevel book.

With an eye toward the how-to aspect of setting up a study to investigate a research prob-
lem, in the first chapter of the second edition of the workbook we introduced a number of key
conceptual and methodological issues. Several elements have to be brought together including
knowledge of previous research, the definition and development of the specific research prob-
lem, the goals of the research, the consideration of various appropriate methods of investigation
(including their advantages and shortcomings) in light of the structure of the available data, and
the means of communication with potential users of the study’s results. Our presentation there
was designed to set the stage for the subsequent development of several different multilevel
models that are the focus of the following chapters. We also briefly updated readers regarding
issues of potential importance for model building including options for categorical outcomes,
working with missing data, and sample weights. We devoted Chapter 2 to discussing a number
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of conceptual and practical issues associated with the management of multilevel data. We believe
readers will find the material useful in setting up their own data analyses since each study seems
to bring its own unique challenges in preparing the data for the intended analyses. Our objective
there was to highlight the different ways that hierarchical data can be structured, while offering
a general introduction to essential data management procedures available within IBM SPSS.

Each of the remaining chapters dealt with various types of multilevel models for different
types of data structures (cross-sectional, growth, and cross-classified) to cover a broad number
of research possibilities. In particular, in this second edition we expanded the types of multilevel
models that readers might find useful in various situations (e.g., piecewise and parallel growth
models, latent variable outcomes, and regression discontinuity design). Although the traditional
two- or three-level multilevel cross-sectional model has become a more common feature in social
science research over the past decade, the other formulations that we introduced here are rapidly
growing in their popularity and use. It is our hope that making these modeling capabilities avail-
able through SPSS will make them more accessible to a wider audience, even though we only
scratched the surface regarding the use of these techniques with longitudinal and cross-classified
data structures and more complex research designs that can be specified in SPSS MIXED, albeit
with a bit more creativity required in setting up the data set.

As the reader can tell from the treatment we provide in this workbook, multilevel models
can get quite complex. It is one thing to dump a set of variables into a single-level ordinary least
squares (OLS) regression model but quite another to adopt a recklessly exploratory approach in
a multilevel framework. Although exploratory analysis is an important and necessary feature of
empirical research, the models we covered in this workbook demand a more disciplined approach
to model conceptualization and specification. With multiple levels of analysis and the possibil-
ity for numerous cross-level interactions, choices about fixed or random slopes and intercepts,
centering, weighting, and estimation algorithms, as well as the interpretation of the results from
these models, can quickly become bogged down and rendered useless or, worse, misleading.

In this workbook, we began with the principle that quantitative analysis represents the trans-
lation of abstract theories into concrete models and that conceptual frameworks are essential
guides to empirical investigation. The statistical model is therefore designed to represent a set
of proposed theoretical relationships that are thought to exist in a population from which we
have a sample of data. With this as a guiding principle, the researcher makes conscious deci-
sions about the analysis that define research questions, design, data structures, and methods of
analysis. The potential complexity of the multilevel model thus demands the careful attention
of the analyst.

As we pointed out in Chapter 1, this does not ignore the importance of exploratory work. We
recognize its place and suggest only that such work be conducted with careful thought about the
possible relationships one might expect to see. The myriad combinations of model specification
rule out the multilevel model as an effective “data-mining” tool. In fact, the models are very data
demanding and will perform poorly without adequate data at each level of interest. But with
an ample framework for organizing the analysis, adequate data, and careful thought to sensible
model specification, the multilevel framework opens up dramatic new possibilities for explor-
atory work.

'This workbook is written at a time when multilevel statistical models are better able to capture
the complex contextual or environmental factors that condition the behaviors and attitudes of
lower level units operating within those contexts or environments. Coincidently, we also find
ourselves at a moment where large-scale hierarchical data are more readily available than they
were even 10 years ago. Although it would seem to be an incredibly exciting time for social
science researchers (and indeed it is), we still find ourselves in want of data to drive empirical
models suggested by our conceptual frameworks. Perhaps satisfaction on this front will be ever
elusive; that is, as our modeling ability and statistical knowledge expand, so will our need for data
to drive ever more demanding models.
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One issue we call attention to through the activities we provided in this workbook is that
multilevel models are quite demanding of data, and the analyst should be very aware of the limi-
tations that exist as model specification becomes more complicated. As an example, our initial
data sets (e.g., 100 to 200 individuals in 25 or 30 units) that we selected were fine for illustrating
fixed eftects; however, the moment we wished to illustrate random slopes, we needed much larger
data sets to identify significant differences across groups. They often required 20 to 30 individuals
within groups and 200 or more groups to be able to detect variability in the slopes. This gave us
pause to consider that many published multilevel studies may report nonsignificant results due
primarily to making Type II errors (i.e., failure to reject the null hypothesis) related to not having
adequate data to detect the effects to begin with; that is, the available data are not up to the task
of sufficiently supporting the complexity of the desired analyses. This suggests that the failure
may not always be the proposed conceptual model but, rather, the shortcomings of the data and,
perhaps, their measurement qualities. Hence, we emphasize that just because a model can be
complex does not mean it should be complex. Parsimony is one indicator of a good empirical
application of theory.

Another issue we touched on in Chapter 1 concerns the sampling scheme for the data used in
multilevel studies. Researchers have for some time now been concerned about so-called design
effects resulting from complex sampling schemes—that is, where a combination of multistage
cluster sampling and disproportionate stratified sampling is used. The multilevel model actually
capitalizes on such sample designs, incorporating the nesting of data that result from multistage
clustering. Although the multilevel model incorporates this important sample design feature, it
does not address the disproportionate stratified sampling that generally occurs with such sam-
pling. This aspect of the design is usually dealt with through the application of sampling weights
during the model specification stage. Weighting is pretty routine and straightforward in single-
level analyses but becomes more challenging in the multilevel framework. Although some pro-
grams such as Mplus and HLM can now accommodate weights at multiple levels of analysis
(e.g., student-level weights and school-level weights), SPSS uses a global weight and, therefore,
forces the researcher to choose between weights that may exist across levels.

'The efficacy of various weighting schemes used in different software programs is an issue that
needs further research. Applying or not applying sample weights can change model estimates
of standard errors considerably. Failure to take sample design into account by applying the ap-
propriate weights can bias estimates of standard errors downward. Because standard errors are
used in determining hypothesis tests about individual parameters, downward-biased estimates
can lead to more findings of significance than should be the case. For the time being, if sample
weighting is essential to the analysis, it will likely be better currently to use another of the avail-
able programs or to revert to a single-level formulation within SPSS through its COMPLEX
SAMPLES module (see Asparouhov, 2006; and Rabe-Hesketh & Skrondal, 2006).

A third issue we ask readers to consider is missing data. Missing data can present serious
challenges for the researcher and should be dealt with as forthrightly as possible. Rarely are data
missing completely at random (MCAR). If one were to go with the IBM SPSS defaults regard-
ing missing data, any case with even one piece of missing data would be eliminated from the
analysis (i.e., where data are not vertically organized). We emphasize that researchers need to be
aware of this and, where possible, seek viable solutions for data sets that contain considerable
amounts of missing data. We favor situations where the software will actually estimate model pa-
rameters in the presence of the missing data (e.g., where variables are arranged vertically in IBM
SPSS) since, in truth, there is no way of completely compensating for the fact that data have been
irreversibly lost (Raykov & Marcoulides, 2008). We can try to obtain further information about
the patterns of missing data and use this information to help devise a manner for dealing with
the missing data. We do not recommend regression-based missing data substitution, which is an
option within SPSS. For SPSS MIXED, we instead encourage the analyst to employ multiple

imputation strategies, which produce multiple imputed data sets by repeatedly drawing values for
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each missing datum from a distribution (Peugh & Enders, 2004). Unfortunately, this procedure
is not available in the IBM SPSS Base or Advanced program module, but it can be added sepa-
rately. At a minimum, we encourage the analyst to become very familiar with the data being used,
to identify where data are missing, and to develop a strategy for testing the effects of missing data
on the results generated by the model.

Finally, as should be very clear from the models we have developed throughout the workbook,
there is a logical process underlying the development of the models and a series of steps involved
for moving from the partitioning of variance between levels to the specification of models that
may have random intercepts and slopes. We strongly encourage readers to devise their own
naming system to keep track of the various models used in any given analysis. Without a clear
history of model specification, it is sometimes very difficult to understand how one arrived at a
final model. At the risk of twisting an old saw, it is often the journey that is more telling than the
final destination.

Multilevel modeling provides us with another powerful means for investigating the types of
processes referred to by our theories in more refined ways. Although the models presented in this
workbook were simplified for purposes of demonstrating the techniques, we hope that our step-
by-step guide serves as a foundation for the more thorough models that can be formulated and
tested. We encourage the reader searching for more detail to consult the many other excellent
resources available and referenced throughout this workbook.
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Appendix A: Syntax Statements

Please note that syntax statements may be obtained through the “Paste” feature in the IBM SPSS
menu interface. The syntax statements give information about the model such as the routine and
the dependent variable (MIXED math) and the grouping variable [SUBJECT(schcode)]. The /
FIXED command specifies the fixed effects in the model (i.e., achievement and the intercept),
the random effects /RANDOM = INTERCEPT), the type of covariance matrix (COVTYPE =
VARIANCE COMPONENTYS), and the estimation method (METHOD = MAXIMUM
LIKELIHOOD). When using the “Paste” command, the estimation method will display a /
CRITERIA command line' detailing settings for the method, iterations, log-likelihood con-
vergence, parameter convergence, Hessian convergence, maximum scoring steps, and singularity
tolerance. This line has been omitted for the models in this section but may be viewed in the
syntax files (.sps) accompanying the data sets for each chapter and is available for downloading
from the publisher’s Web site.

Using the syntax can be useful in making quick changes to the model as well as helping to
keep a record of what models have been developed. They should be saved in a manner that allows

easy referencing for future use (e.g., RprofMod1.sps and RprofMod2.sps).

Chapter 3: Defining a Basic Two-Level Multilevel Regression Model (ch3multilevel.sav)

Tables 3.2 and 3.3 (ch3multilevel.sav)

REGRESSION

/MISSING LISTWISE

/STATISTICS COEFF OUTS R ANOVA
/CRITERIA = PIN(.05) POUT(.10)
/NOORIGIN

/DEPENDENT math

/METHOD = ENTER ses.

Step 1: Examining Variance Components Using the Null Model

Model 1 (Null): Tables 3.4, 3.5, 3.6, and 3.7 (ch3multilevel.sav)

MIXED math
/FIXED = | SSTYPE (3)
/METHOD = REML
/PRINT = G SOLUTION TESTCOV
/RANDOM = INTERCEPT | SUBJECT (schcode) COVTYPE (VC) .

Step 2: Building the Individual-Level (or Level 1) Random Intercept Model

Model 2: Tables 3.8, 3.9, 3.10, 3.11, and 3.12 (ch3multilevel.sav)

MIXED math WITH ses
/FIXED = ses | SSTYPE (3)
/METHOD = REML
/PRINT = G SOLUTION TESTCOV
/RANDOM = INTERCEPT | SUBJECT (schcode) COVTYPE (VC) .

1. CRITERIA = CIN(95) MXITER(100) MXSTEP(10) SCORING(1) SINGULAR(0.000000000001) HCONVERGE(0, AB-
SOLUTE) LCONVERGE(0, ABSOLUTE) PCONVERGE(0.000001, ABSOLUTE)
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Step 3: Building the Group-Level (or Level 2) Random Intercept Model

Model 3: Tables 3.13 and 3.14 (ch3multilevel.sav)

MIXED math BY public WITH ses mean prodyrc ses

/FIXED = public ses _mean pro4yrc ses | SSTYPE (3)
/METHOD = REML

/PRINT = G SOLUTION TESTCOV
/RANDOM = INTERCEPT | SUBJECT (schcode) COVTYPE (VC) .

Treat “Public” Variable as a Covariate

Model 3A: Tables 3.15 and 3.16 (ch3multilevel.sav)

MIXED math WITH public ses mean prodyrc ses

/FIXED = public ses mean prodyrc ses | SSTYPE(3)
/METHOD = REML

/PRINT = G SOLUTION TESTCOV
/RANDOM = INTERCEPT | SUBJECT (schcode) COVTYPE (VC) .

Step 4: Adding a Randomly Varying Slope (the Random Slope and Intercept Model)

Model 4: Tables 3.17, 3.18, and 3.19 (ch3multilevel.sav)

MIXED math WITH public ses mean prodyrc ses

/CRITERIA = CIN(95) MXITER(100) MXSTEP (10) SCORING (1) SINGULAR(0.000000000001)
HCONVERGE (0, ABSOLUTE) LCONVERGE (0, ABSOLUTE) PCONVERGE (0.000001,
/FIXED = public ses mean pro4yrc ses | SSTYPE (3)

/METHOD = REML

/PRINT = G SOLUTION TESTCOV
/RANDOM = INTERCEPT ses | SUBJECT (schcode) COVTYPE (VC) .

ABSOLUTE)

Step 5: Explaining Variability in the Random Slope (More Complex Random Slopes and Intercept
Models)

Table 3.20 (ch3multilevel.sav)

MIXED math WITH ses mean ses

/FIXED = ses _mean ses ses*ses mean | SSTYPE(3)
/METHOD = REML

/PRINT = G SOLUTION TESTCOV
/RANDOM = INTERCEPT | SUBJECT (schcode) COVTYPE (ID).

Step 5: Explaining Variability in the Random Slope (More Complex Random Slopes and Intercept
Models)

Model 5: Tables 3.21, 3.22, and 3.23 (ch3multilevel.sav)

MIXED math WITH public ses mean prodyrc ses
/FIXED =
SSTYPE (3)
/METHOD = REML
/PRINT = G SOLUTION TESTCOV

/RANDOM = INTERCEPT ses | SUBJECT (schcode) COVTYPE (VC) .

public ses mean prodyrc ses ses mean*ses prodyrc*ses public*ses |
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Removed Nonsignificant Interactions (ses_mean*ses, prodyrc*ses)

Model 5A: Table 3.24 (ch3multilevel.sav)

MIXED math WITH public ses mean prodyrc ses
/FIXED = public ses _mean prodyrc ses public*ses | SSTYPE(3)
/METHOD = REML
/PRINT = G SOLUTION TESTCOV
/RANDOM = INTERCEPT ses | SUBJECT (schcode) COVTYPE (VC) .

Chapter 4: Three-Level Univariate Regression Models (ch4threelevelURM.sav)

Model 1 (Null): Table 4.2 (ch4threelevel URM.sav)

MIXED math
/FIXED = | SSTYPE (3)
/METHOD = ML
/PRINT = G SOLUTION TESTCOV
/RANDOM = INTERCEPT | SUBJECT (schcode) COVTYPE (ID)
/RANDOM = INTERCEPT | SUBJECT (schcode*Rteachid) COVTYPE (ID) .

Defining Predictors at Each Level

Model 2: Table 4.4 (ch4threelevel URM.sav)

MIXED math WITH gmschlowSES mean gmaggtcheffect gmteacheffect gmclasslowses
mean gmlowses a a
/FIXED = gmschlowSES mean gmaggtcheffect gmteacheffect gmclasslowses mean gm-
lowses | SSTYPE (3)
/METHOD = ML
/PRINT = G SOLUTION TESTCOV
/RANDOM = INTERCEPT | SUBJECT (schcode) COVTYPE (ID)
/RANDOM = INTERCEPT | SUBJECT (schcode*Rteachid) COVTYPE (ID).

Group-Mean Centering

Model 3: Tables 4.5 and 4.6 (ch4threelevel URM.sav)

MIXED math WITH gmschlowSES mean gmaggtcheffect groupteacheffect groupclass-
lowses mean grouplowses

/FIXED = gmschlowSES mean gmaggtcheffect groupteacheffect groupclasslowses

mean grouplowses | SSTYPE (3)

/METHOD = ML

/PRINT = G SOLUTION TESTCOV

/RANDOM INTERCEPT | SUBJECT (schcode) COVTYPE (ID)

/RANDOM = INTERCEPT | SUBJECT (schcode*Rteachid) COVTYPE (ID).

Does the Slope Vary Randomly Across Schools?

Model 4: Tables 4.7, 4.8, and 4.13 (ch4threelevel URM.sav)

MIXED math WITH gmschlowSES mean gmaggtcheffect gmteacheffect gmclasslowses
mean gmlowses
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/FIXED = gmschlowSES mean gmaggtcheffect gmteacheffect gmclasslowses mean gm-
lowses | SSTYPE (3)

/METHOD = ML

/PRINT = G SOLUTION TESTCOV

/RANDOM INTERCEPT gmteacheffect | SUBJECT (schcode) COVTYPE (UN)

/RANDOM = INTERCEPT | SUBJECT (schcode*Rteachid) COVTYPE (ID).

Preliminary Investigation of the Interaction

Test Interaction Model A: Table 4.9 (ch4threelevel URM.sav)

MIXED math WITH teacheffect classlowses mean
/FIXED = teacheffect classlowses mean teacheffect*classlowses mean | SSTYPE (3)
/METHOD = ML
/PRINT = G SOLUTION TESTCOV
/RANDOM = INTERCEPT | SUBJECT (schcode) COVTYPE (ID)
/RANDOM = INTERCEPT | SUBJECT (schcode*Rteachid) COVTYPE (ID) .

Table 4.10: Test Interaction Model B (Grand-Mean-Centered Variables) (ch4threelevel URM.sav)

MIXED math WITH gmteacheffect gmclasslowses mean
/FIXED = gmteacheffect gmclasslowses mean gmteacheffect*gmclasslowses mean |
SSTYPE (3)
/METHOD = ML
/PRINT = G SOLUTION TESTCOV
/RANDOM = INTERCEPT | SUBJECT (schcode) COVTYPE (ID)
/RANDOM = INTERCEPT | SUBJECT (schcode*Rteachid) COVTYPE (ID).

Examining a Level 2 Interaction

Model 5: Tables 4.11, 4.12, and 4.14 (ch4threelevelURM.sav)

MIXED math WITH gmschlowSES mean gmaggtcheffect gmteacheffect gmclasslowses
mean gmlowses

/FIXED = gmschlowSES mean gmaggtcheffect gmteacheffect gmclasslowses mean gm-
classlowses mean*gmteacheffect gmlowses | SSTYPE (3)

/METHOD = ML

/PRINT = G SOLUTION TESTCOV

/RANDOM = INTERCEPT gmteacheffect | SUBJECT (schcode) COVTYPE (UN)

/RANDOM = INTERCEPT | SUBJECT (schcode*Rteachid) COVTYPE (ID).

Chapter 5: Examining Individual Change with Repeated Measures
Data (ch5growthdata-vertical.sav, ch5growthdata-horizontal.sav, and
ch5experimentaldesigndata.sav)

Graphing the Linear and Nonlinear Growth Trajectories
Figures 5.2, 5.3, and 5.4 (Select Cases and Generate Graph) (ch5growthdata-vertical.sav)
Select Subset of Individuals

USE ALL.
COMPUTE filter $ = (id < 18).
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VARIABLE LABELS filter $ ‘id < 18 (FILTER)’.

VALUE LABELS filter $ 0 ‘Not Selected’ 1 ‘Selected’.
FORMATS filter $ (£1.0).

FILTER BY filter $.

EXECUTE.

Figures 5.2, 5.3, and 5.4 (ch5growthdata-vertical.sav)
(Variations are achieved by changing the Chart Editor’s Properties options.)

GRAPH
/SCATTERPLOT (BIVAR) = time WITH test BY id
/MISSING = LISTWISE.

Coding Time Interval Variables (time to quadtime) (ch5growthdata-vertical.sav)

RECODE time (0 = 0) (1 = 1) (2 = 4) INTO gquadtime.
EXECUTE.

Coding Time Interval Variables (time to orthtime and orthquad) (ch5growthdata-vertical.sav)
orthtime

RECODE time (0 = 1) (1 = 0) (2 = 1) INTO orthtime.
EXECUTE.

orthquad

RECODE time (0 = 1) (1 = -2) (2 = 1) INTO orthquad.
EXECUTE.

Model with No Predictors

Model 1.1: Table 5.4 (ch5growthdata-vertical.sav)

MIXED test WITH time quadtime

/JFIXED = | SSTYPE (3)

/METHOD = REML

/PRINT = G SOLUTION TESTCOV

/RANDOM = INTERCEPT | SUBJECT (id) COVTYPE (ID)
/REPEATED = Indexl | SUBJECT (id) COVTYPE (ID).

What Is the Shape of the Trajectory?

Model 1.1A: Tables 5.5 and 5.6 (ch5growthdata-vertical.sav)

MIXED test WITH time quadtime
/FIXED = time quadtime | SSTYPE (3)
/METHOD = REML
/PRINT = G SOLUTION TESTCOV
/RANDOM = INTERCEPT | SUBJECT (id) COVTYPE (ID)
/REPEATED = Indexl | SUBJECT (id) COVTYPE (ID).

Does the Time-Related Slope Vary Across Groups?

Model 1.1B: Tables 5.7, 5.8, and 5.9 (ch5growthdata-vertical.sav)
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MIXED test WITH time quadtime
/FIXED = time quadtime | SSTYPE (3)
/METHOD = REML
/PRINT = G SOLUTION TESTCOV
/RANDOM = INTERCEPT time | SUBJECT (id) COVTYPE (UN)
/REPEATED = Indexl | SUBJECT (id) COVTYPE (ID) .

Examining Orthogonal Components

Model 1.2: Tables 5.10 and 5.12 (ch5growthdata-vertical.sav)

MIXED test WITH orthtime orthquad
/FIXED = orthtime orthquad | SSTYPE (3)
/METHOD = REML
/PRINT = G SOLUTION TESTCOV
/RANDOM = INTERCEPT orthtime | SUBJECT (id) COVTYPE (UN)
/REPEATED = Indexl | SUBJECT (id) COVTYPE (ID) .

Investigating Other Level 1 Covariance Structures

Repeated Measures ANOVA Tests of Within-Subjects Contrasts

Table 5.11 (ch5growthdata-horizontal.sav)

GLM testl test2 test3
/WSFACTOR = time 3 Polynomial
/MEASURE = test
/METHOD = SSTYPE (3)

/EMMEANS TABLES (OVERALL)
/EMMEANS = TABLES (time)
/PRINT = OPOWER HOMOGENEITY
/CRITERIA = ALPHA(.05)
/WSDESIGN = time.

Investigating Other Level 1 Covariance Structures

Model 1: Table 5.13 Identity Covariance Matrix, Level 1; Unstructured Covariance Matrix, Level 2
(ch5growthdata-vertical.sav)

MIXED test WITH orthtime orthquad
/FIXED = orthtime orthquad | SSTYPE(3)
/METHOD = REML
/PRINT = G SOLUTION TESTCOV
/RANDOM = INTERCEPT orthtime | SUBJECT (id) COVTYPE (UN)
/REPEATED = Indexl | SUBJECT (id) COVTYPE (ID).

Investigating Other Level 1 Covariance Structures

Model 2: Table 5.13 Diagonal Covariance Matrix, Level 1; Diagonal Covariance Matrix, Level 2
(ch5growthdata-vertical.sav)

MIXED test WITH orthtime orthquad
/FIXED = orthtime orthquad | SSTYPE(3)
/METHOD = REML
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/PRINT = G SOLUTION TESTCOV
/RANDOM = INTERCEPT orthtime | SUBJECT (id) COVTYPE (DIAG)
/REPEATED = Indexl | SUBJECT (id) COVTYPE (DIAG) .

Investigating Other Level 1 Covariance Structures

Model 3: Table 5.13 Diagonal Covariance Matrix, Level 1; Unstructured Covariance Matrix,
Level 2 (ch5growthdata-vertical.sav)

MIXED test WITH orthtime orthquad
/FIXED = orthtime orthquad | SSTYPE(3)
/METHOD = REML
/PRINT = G SOLUTION TESTCOV
/RANDOM = INTERCEPT orthtime | SUBJECT (id) COVTYPE (UN)
/REPEATED = Indexl | SUBJECT (id) COVTYPE (DIAG) .

Investigating Other Level 1 Covariance Structures

Model 4: Table 5.13 Autoregressive Covariance Maitrix, Level 1; Diagonal Covariance Matrix,
Level 2 (ch5growthdata-vertical.sav)

MIXED test WITH orthtime orthquad
/FIXED = orthtime orthquad | SSTYPE(3)
/METHOD = REML
/PRINT = G SOLUTION TESTCOV
/RANDOM = INTERCEPT orthtime | SUBJECT (id) COVTYPE (DIAG)
/REPEATED = Indexl | SUBJECT (id) COVTYPE (AR1) .

Adding the Between-Subjects Predictors

Model 1.3: Tables 5.15, 5.16, and 5.17 (ch5growthdata-vertical.sav)

MIXED test WITH orthtime orthquad ses effective
/FIXED = ses effective orthtime ses*orthtime effective*orthtime orthquad |
SSTYPE (3)
/METHOD = REML
/PRINT = G SOLUTION TESTCOV
/RANDOM = INTERCEPT orthtime | SUBJECT (id) COVTYPE (UN)
/REPEATED = Indexl | SUBJECT (id) COVTYPE (DIAG) .

Tests of within-Subjects Contrasts (Repeated Measures ANOVA, Tests of within-Subject 1°
Contrasts)

Table 5.18 (ch5growthdata-horizontal.sav)

GLM testl test2 test3 BY effective WITH ses
/WSFACTOR = time 3 Polynomial
/MEASURE = test
/METHOD = SSTYPE (3)
/EMMEANS = TABLES (OVERALL) WITH(ses = MEAN)
/EMMEANS = TABLES (time) WITH (ses = MEAN)
/PRINT = OPOWER HOMOGENEITY
/CRITERIA = ALPHA(.05)
/WSDESIGN = time
/DESIGN = ses effective.
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Graphing the Growth Rate Trajectories

Figure 5.8: Growth Rate Trajectories by Teacher Effectiveness (ch5growthdata-vertical.sav)

GRAPH
/LINE (MULTIPLE) = MEAN (test) BY time BY effective.
Recoding time to timenonlinl

Examining Growth Using an Alternative Specification of the Time-Related Variable

Coding Time Interval Variables
Recoding time to timenonlin1 (ch5growthdata-vertical.sav)

RECODE time (0 = 0) (1 = 0.5) (2 = 1) INTO timenonlinl.
EXECUTE.

Recoding time to timenonlin2 (ch5growthdata-vertical.sav)

RECODE time (0 = 0) (1 = 0.6) (2 = 1) INTO timenonlin2.
EXECUTE.

Recoding time to timenonlin3 (ch5growthdata-vertical.sav)

RECODE time (0 = 0) (1 = 0.7) (2 = 1) INTO timenonlin3.
EXECUTE.

Recoding time to timenonlin (ch5growthdata-vertical.sav)

RECODE time (0 = 0) (1 = .53) (2 = 1) INTO timenonlin.
EXECUTE.

Table 5.20 (ch5growthdata-vertical.sav)

MIXED test WITH timenonlinl
/FIXED = timenonlinl | SSTYPE (3)
/METHOD = REML
/PRINT = G SOLUTION TESTCOV
/RANDOM = INTERCEPT timenonlinl | SUBJECT (id) COVTYPE (UN)
/REPEATED = Indexl | SUBJECT (id) COVTYPE (DIAG) .

Estimating the Final Time-Related Model

Model 2.1: (ch5growthdata-vertical.sav)

MIXED test WITH timenonlin
/FIXED = timenonlin | SSTYPE (3)
/METHOD = REML
/PRINT = G SOLUTION TESTCOV
/RANDOM = INTERCEPT timenonlin | SUBJECT (id) COVTYPE (UN)
/REPEATED = Indexl | SUBJECT (id) COVTYPE (DIAG) .

Adding the Two Predictors

Model 2.2: Tables 5.21 and 5.22 (ch5growthdata-vertical.sav)

MIXED test WITH timenonlin ses effective
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/FIXED = ses effective timenonlin ses*timenonlin effective*timenonlin
SSTYPE (3)

/METHOD = REML

/PRINT = G SOLUTION TESTCOV

/RANDOM = INTERCEPT timenonlin | SUBJECT (id) COVTYPE (UN)

/REPEATED = Indexl | SUBJECT (id) COVTYPE (DIAG) .

An Example Experimental Design

Tables 5.24 and 5.25 (ch5experimentaldesigndata.sav)

MIXED math WITH time treatment
/FIXED = treatment time time*treatment | SSTYPE (3)
/METHOD = REML
/PRINT = G SOLUTION TESTCOV
/RANDOM = INTERCEPT time | SUBJECT (id) COVTYPE (UNR)
/REPEATED = time | SUBJECT (id) COVTYPE (DIAG) .

Table 5.26 (ch5experimentaldesigndata.sav)

MIXED math By time WITH treatment
/FIXED = treatment time time*treatment | SSTYPE (3)
/METHOD = REML
/PRINT = G SOLUTION TESTCOV
/RANDOM = INTERCEPT | SUBJECT (id) COVTYPE (UNR)
/REPEATED = time | SUBJECT (id) COVTYPE (DIAG) .

Table 5.27 (ch5experimentaldesigndata.sav)

MIXED math WITH timenonlin treatment
/FIXED = treatment timenonlin timenonlin*treatment | SSTYPE (3)
/METHOD = REML
/PRINT = G SOLUTION TESTCOV
/RANDOM = INTERCEPT timenonlin | SUBJECT (id) COVTYPE (VC)
/REPEATED = time | SUBJECT (id) COVTYPE (DIAG) .

Chapter 6: Methods for Examining Organizational-Level Change (chégraduationdata.sav
and chéRD- 1data.sav)

Model 1.1 (Null): Tables 6.2 and 6.3 (chégraduationdata.sav)

MIXED gradproportion
/FIXED = | SSTYPE (3)
/METHOD = REML
/PRINT = COVB SOLUTION TESTCOV
/RANDOM = INTERCEPT | SUBJECT (stateid) COVTYPE (ID)
/RANDOM = INTERCEPT | SUBJECT (rid*stateid) COVTYPE (ID)
/REPEATED = time | SUBJECT (rid*stateid) COVTYPE (AR1).

Adding Growth Rates

Model 1.2: Tables 6.6 and 6.7 (chégraduationdata.sav)

MIXED gradproportion WITH timel
/FIXED = timel | SSTYPE(3)
/METHOD = REML
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/PRINT = COVB SOLUTION TESTCOV

/RANDOM = INTERCEPT timel | SUBJECT (stateid) COVTYPE (DIAG)
/RANDOM = INTERCEPT timel | SUBJECT (rid*stateid) COVTYPE (DIAG)
/REPEATED = time | SUBJECT (rid*stateid) COVTYPE (AR1).

Adding Time-Varying Covariates

Model 1.3: Tables 6.8 and 6.9 (chégraduationdata.sav)

MIXED gradproportion WITH percentFinAid tuition timel
/FIXED = percentFinAid tuition timel | SSTYPE (3)
/METHOD = REML
/PRINT = COVB SOLUTION TESTCOV
/RANDOM = INTERCEPT timel | SUBJECT (stateid) COVTYPE (DIAG)
/RANDOM = INTERCEPT timel | SUBJECT (rid*stateid) COVTYPE (DIAG)
/REPEATED = time | SUBJECT (rid*stateid) COVTYPE (AR1) .

Explaining Differences in Growth Trajectories Between Institutions

Model 1.4: Tables 6.10 and 6.11 (chégraduationdata.sav)

MIXED gradproportion WITH aveFamilyshare aveRetention mathselect percentFTfac-
ulty percentFinAid tuition timel
/FIXED = aveFamilyshare aveRetention mathselect percentFTfaculty percentFi-
nAid tuition timel timel*mathselect timel*percentFTfaculty | SSTYPE (3)
/METHOD = REML
/PRINT = COVB SOLUTION TESTCOV
/RANDOM = INTERCEPT timel | SUBJECT (stateid) COVTYPE (DIAG)
/RANDOM = INTERCEPT timel | SUBJECT (rid*stateid) COVTYPE (DIAG)
/REPEATED = time | SUBJECT (rid*stateid) COVTYPE (AR1) .

Adding a Model to Examine Growth Rates at Level 3

Model 1.5: Tables 6.12 and 6.13 (chégraduationdata.sav)

MIXED gradproportion WITH aveFamilyshare aveRetention mathselect percentFTfac-
ulty percentFinAid tuition timel
/FIXED = aveFamilyshare aveRetention mathselect percentFTfaculty percentFi-
nAid tuition timel timel*aveFamilyshare timel*aveRetention timel*mathselect
timel*percentFTfaculty | SSTYPE (3)
/METHOD = REML
/PRINT = COVB SOLUTION TESTCOV
/RANDOM = INTERCEPT timel | SUBJECT (stateid) COVTYPE (DIAG)
/RANDOM = INTERCEPT timel | SUBJECT (rid*stateid) COVTYPE (DIAG)
/REPEATED = time SUBJECT (rid*stateid) COVTYPE (AR1) .

Regression Discontinuity Models to Explain Learning Differences

Model 2.1: Tables 6.16 and 6.17 (ch6RD-1data.sav)

MIXED nmath WITH npretest treatment
/FIXED = npretest treatment | SSTYPE (3)
/METHOD = REML
/PRINT = COVB SOLUTION TESTCOV
/RANDOM = INTERCEPT treatment | SUBJECT (teachcode) COVTYPE (UN) .
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Adding Explanatory Variables at Level 2

Model 2.2: Table 6.18 (ch6RD-1data.sav)

MIXED nmath WITH teachqual classcomp npretest treatment
/FIXED = teachqual classcomp npretest treatment teachqual*treatment
classcomp*treatment | SSTYPE (3)
/METHOD = REML
/PRINT = COVB SOLUTION TESTCOV
/RANDOM = INTERCEPT treatment | SUBJECT (teachcode) COVTYPE (UN) .

Establishing the Prepolicy and Policy Trends

Model 3.1: Tables 6.20, 6.21, and 6.22 (ch6RD-2data.sav)

MIXED freshadmit WITH implementO implementl
/FIXED = implementO implementl | SSTYPE (3)
/METHOD = REML
/PRINT = COVB SOLUTION TESTCOV
/RANDOM = INTERCEPT | SUBJECT (schid) COVTYPE (ID)
/REPEATED = Indexl | SUBJECT (schid) COVTYPE (DIAG) .

Final Model with Covariates Added
Model 3.2: Tables 6.23 and 6.24 (ch6RD-2data.sav)

MIXED freshadmit WITH private prestige implementO implementl
/FIXED = private prestige implementO implementl implementO*private
implementO*prestige implementl*private implementl*prestige | SSTYPE (3)
/METHOD = REML
/PRINT = COVB SOLUTION TESTCOV
/RANDOM = INTERCEPT | SUBJECT (schid) COVTYPE (ID)
/REPEATED = Indexl | SUBJECT (schid) COVTYPE (DIAG) .

Chapter 7: Multivariate Multilevel Models (chZlatentconstructs.sav, ch7worklifeorg.sav,
ch7achievement.sav, and ch7PGachievement.sav)

Table 7.2 (ch7latentconstructs.sav)

DESCRIPTIVES VARIABLES = Wlvaried W2value W3team Plassess P2progress P3evstand
/STATISTICS = MEAN STDDEV KURTOSIS SKEWNESS.

Table 7.3 (ch7latentconstructs.sav)

FACTOR
/VARIABLES Wlvaried W2value W3team Plassess P2progress P3evstand
/MISSING LISTWISE
/BANALYSIS Wlvaried W2value W3team Plassess P2progress P3evstand
/PRINT INITIAL EXTRACTION
/CRITERIA FACTORS (2) ITERATE (25)
/EXTRACTION PAF
/ROTATION NOROTATE
/METHOD = CORRELATION.
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Table 7.4 (ch7latentconstructs.sav)

FACTOR
/VARIABLES Wlvaried W2value W3team Plassess P2progress P3evstand
/MISSING LISTWISE
/ANALYSIS Wlvaried W2value W3team Plassess P2progress P3evstand
/PRINT INITIAL EXTRACTION ROTATION
/CRITERIA FACTORS (2) ITERATE (25)
/EXTRACTION PAF
/CRITERIA ITERATE (25) DELTA(0)
/ROTATION OBLIMIN
/METHOD = CORRELATION.

Model 1.1 (Null): Tables 7.5, 7.6, and 7.7 (ch7worklifeorg.sav)

MIXED work by assessjob
/FIXED = assessjob | noint SSTYPE (3)
/METHOD = REML
/PRINT = G SOLUTION TESTCOV
/Random = assessjob | Subject (orgcode) COVTYPE (DIAG)
/Random = assessjob | Subject (Rid*orgcode) COVTYPE (DIAG)
/REPEATED = Indexl | SUBJECT (orgcode*Rid) COVTYPE (ID) .

Table 7.8 (ch7worklifeorg.sav)

MIXED work by assessjob
/FIXED = assessjob | noint SSTYPE (3)
/METHOD = REML
/PRINT = G SOLUTION TESTCOV
/Random = assessjob | Subject (orgcode) COVTYPE (UNR)
/Random = assessjob | Subject (Rid*orgcode) COVTYPE (UNR)
/REPEATED = Indexl | SUBJECT (orgcode*Rid) COVTYPE (ID) .

Model 1.2 (Final Null Model): Table 7.10 (ch7worklifeorg.sav)

MIXED work by assessjob
/FIXED = assessjob | noint SSTYPE (3)
/METHOD = REML
/PRINT = G SOLUTION TESTCOV
/Random = assessjob | Subject (orgcode) COVTYPE (UNR)
/Random = assessjob | Subject (Rid*orgcode) COVTYPE (UNR)
/REPEATED = Indexl | SUBJECT (orgcode*Rid) COVTYPE (DIAG) .

Adding Level 2 Predictors

Model 1.3: Tables 7.11, 7.12, and 7.13 (ch7worklifeorg.sav)

MIXED work by assessjob with stability female
/FIXED = assessjob stability*assessjob female*assessjob | noint SSTYPE (3)
/METHOD = REML
/PRINT = G SOLUTION TESTCOV
/Random = assessjob | Subject (orgcode) COVTYPE (UNR)
/Random = assessjob | Subject (Rid*orgcode) COVTYPE (UNR)
/REPEATED = Indexl | SUBJECT (orgcode*Rid) COVTYPE (DIAG) .
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Adding the Organizational Predictors

Model 1.4: Tables 7.14 and 7.15 (ch7worklifeorg.sav)

MIXED work by assessjob with female stability gmresources gmorgprod
/FIXED=assessjob gmorgprod*assessjob gmresources*assessjob stability*assessjob
female*assessjob| noint SSTYPE (3)

/METHOD = ML

/PRINT = G SOLUTION TESTCOV

/Random = assessjob | Subject (orgcode) COVTYPE (UN)
/Random = assessjob | Subject (orgcode*Rid) COVTYPE (UN)
/REPEATED = Indexl | SUBJECT (orgcode*Rid) COVTYPE (DIAG) .

Examining Equality Constraints

Table 7.16 (ch7worklifeorg.sav)

MIXED work by assessjob with female stability gmresources gmorgprod
/FIXED = assessjob female stability gmorgprod gmresources| noint SSTYPE (3)
/METHOD = ML
/PRINT = G SOLUTION TESTCOV
/Random = assessjob | Subject (orgcode) COVTYPE (UN)
/Random = assessjob | Subject (orgcode*Rid) COVTYPE (UN)
/REPEATED = Indexl | SUBJECT (orgcode*Rid) COVTYPE (DIAG) .

Investigating a Random Level 2 Slope

Defining Models 1.6 and 1.7 with IBM SPSS Menu Commands

Model 1.6 (ch7worklifeorg.sav)

MIXED work by assessjob with female stability gmresources gmorgprod
/FIXED = assessjob female stability gmorgprod gmresources| noint SSTYPE (3)
/METHOD = ML
/PRINT = G SOLUTION TESTCOV
/Random = assessjob stability | Subject (orgcode) COVTYPE (DIAG)
/Random = assessjob | Subject (orgcode*Rid) COVTYPE (UN)
/REPEATED = Indexl | SUBJECT (orgcode*Rid) COVTYPE (DIAG) .

Model 1.7 (ch7worklifeorg.sav)

MIXED work by assessjob with female stability gmresources gmorgprod
/FIXED=assessjobgmorgprpd*assessjob gmresources*assessjob stability*assessjob
female*assessjob| noint SSTYPE (3)

/METHOD = ML

/PRINT = G SOLUTION TESTCOV

/Random = assessjob stability | Subject (orgcode) COVTYPE (DIAG)
/Random = assessjob | Subject (orgcode*Rid) COVTYPE (UN)
/REPEATED = Indexl | SUBJECT (orgcode*Rid) COVTYPE (DIAG) .

Multivariate Multilevel Model for Correlated Observed Outcomes

Model 2.1 (Null): Tables 7.18 and 7.19 (ch7achievement.sav)
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MIXED achieve BY Indexl
/FIXED = Indexl | NOINT SSTYPE (3)
/METHOD = REML
/PRINT = G SOLUTION TESTCOV
/RANDOM = Indexl | SUBJECT (schcode) COVTYPE (UN)
/REPEATED = Indexl | SUBJECT (schcode*Rid) COVTYPE (UN) .

Building a Complete Model (Predictors and Cross-Level Interactions)

Model 2.2: Table 7.20 (ch7achievement.sav)

MIXED achieve BY female Indexl WITH gmacadpress
/FIXED = Indexl Indexl*gmacadpress Indexl*female | NOINT SSTYPE (3)
/METHOD = REML
/PRINT = G SOLUTION TESTCOV
/RANDOM = Indexl | SUBJECT (schcode) COVTYPE (UN)
/REPEATED = Indexl | SUBJECT (schcode*Rid) COVTYPE (UN) .

Table 7.21: Treating Female as a Covariate (ch7achievement.sav)

MIXED achieve BY Indexl WITH gmacadpress female
/FIXED = Indexl Indexl*gmacadpress Indexl*female | NOINT SSTYPE (3)
/METHOD = REML
/PRINT = G SOLUTION TESTCOV
/RANDOM = Indexl | SUBJECT (schcode) COVTYPE (UN)
/REPEATED = Indexl | SUBJECT (schcode*Rid) COVTYPE (UNR) .

Table 7.22: Treating Female as Categorical (Factor) (ch7achievement.sav)

MIXED achieve BY female Indexl WITH gmacadpress
/FIXED = Indexl Indexl*gmacadpress Indexl*female | NOINT SSTYPE (3)
/METHOD = REML
/PRINT = G SOLUTION TESTCOV
/RANDOM = Indexl | SUBJECT (schcode) COVTYPE (UN)
/REPEATED = Indexl | SUBJECT (schcode*Rid) COVTYPE (UNR) .

Correlations Between Tests at Each Level

Model 2.3: Table 7.23 (ch7achievement.sav)

MIXED achieve BY Indexl with gmacadpress female
/FIXED = Indexl gmacadpress*Indexl indexl*female | NOINT SSTYPE (3)
/METHOD = REML
/PRINT = G SOLUTION TESTCOV
/RANDOM = Indexl | SUBJECT (schcode) COVTYPE (UNR)
/REPEATED = Indexl | SUBJECT (schcode*Rid) COVTYPE (UNR) .

Defining a Parallel Growth Process Specifying the Time Model

Model 3.1: Tables 7.25, 7.26, and 7.27 (ch7PGachievement.sav)

MIXED achieve by math with orthtime orthquadtime
/FIXED = math math*orthtime math*orthquadtime | noint SSTYPE (3)
/METHOD = REML
/PRINT = G SOLUTION TESTCOV
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/Random = math | Subject (schcode) COVTYPE (UN)
/REPEATED = Indexl | SUBJECT (schcode*Rid) COVTYPE (AR1) .

Adding the Predictors

Model 3.2: Tables 7.29, 7.30, and 7.31 (ch7PGachievement.sav)

MIXED achieve by math with orthtime orthquadtime female schcontext
/FIXED = math math*schcontext math*female math*orthtime math*orthquadtime
schcontext*math*orthtime female*math*orthtime| noint SSTYPE (3)
/METHOD = REML
/PRINT = G SOLUTION TESTCOV
/Random = math | Subject (schcode) COVTYPE (UN)
/REPEATED = Indexl | SUBJECT (schcode*Rid) COVTYPE (AR1) .

Table 7.32 (ch7PGachievement.sav)

MIXED achieve BY math WITH orthtime orthquadtime female schcontext
/FIXED = math math*schcontext math*female math*orthtime math*orthquadtime
schcontext*math*orthtime female*math*orthtime | NOINT SSTYPE (3)
/METHOD = REML
/PRINT = G SOLUTION TESTCOV
/RANDOM = math math*orthtime | SUBJECT (schcode) COVTYPE (CSH)
/REPEATED = Indexl | SUBJECT (schcode*Rid) COVTYPE (AR1) .

Chapter 8: Cross-Classified Multilevel Models (ch8crossclass1.sav and
ch8crossclass2.sav)

Table 8.7 (ch8crossclass1.sav)

MIXED CUM_GPR
/JFIXED = | SSTYPE (3)
/METHOD = REML
/PRINT = G SOLUTION TESTCOV
/RANDOM = INTERCEPT | SUBJECT (nschcode) COVTYPE (ID)
/RANDOM = INTERCEPT | SUBJECT (campus) COVTYPE (ID) .

Adding a Set of Level 1 and Level 2 Predictors

Model 1.1: Tables 8.8 and 8.9 (ch8crossclass1.sav)

MIXED CUM GPR WITH gmfouryear gmlowSES mean gmlowses gmfemale
/FIXED = gmfouryear gmlowSES mean gmlowses gmfemale | SSTYPE (3)
/METHOD = REML
/PRINT = G SOLUTION TESTCOV
/RANDOM = INTERCEPT | SUBJECT (nschcode) COVTYPE (ID)

/RANDOM = INTERCEPT | SUBJECT (campus) COVTYPE (ID) .

Investigating a Random Slope

Model 1.2: Table 8.10 (ch8crossclass1.sav)

MIXED CUM GPR WITH gmfouryear gmlowSES mean gmlowses gmfemale
/FIXED = gmfouryear gmlowSES mean gmlowses gmfemale | SSTYPE (3)
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/METHOD =
/PRINT =
/RANDOM =
/RANDOM =

Explaining Variatio

Syntax Statements

REML
G SOLUTION TESTCOV
INTERCEPT gmfemale
INTERCEPT gmfemale

n Between Variables

SUBJECT (nschcode)
SUBJECT (campus)

Model 1.3: Tables 8.11 and 8.12 (ch8crossclass1.sav)

MIXED CUM GPR WITH gmlowSES mean gmlowses gmfemale

gmlowSES mean gmlowses gmfemale gmlowSES mean*gmfemale

SUBJECT (nschcode)

COVTYPE (DIAG)

COVTYPE (DIAG) .

COVTYPE (DIAG)

/FIXED =

/METHOD = REML

/PRINT = G SOLUTION TESTCOV

/RANDOM = INTERCEPT gmfemale

/RANDOM = INTERCEPT |
Intercept-Only Model

SUBJECT (campus)

COVTYPE (ID) .

Model 2.1: Tables 8.14, 8.15, and 8.16 (ch8crossclass2.sav)

MIXED math2

/FIXED = | SSTYPE (3)
/METHOD = REML

/PRINT = G SOLUTION TESTCOV
/RANDOM = INTERCEPT |
/RANDOM = INTERCEPT |
/RANDOM = INTERCEPT |

SUBJECT (schcode)
SUBJECT (teach2id)
SUBJECT (teachlid)

COVTYPE (ID)
COVTYPE (ID)
COVTYPE (ID) .

Defining the Cross-Classified Model with Previous Achievement

Model 2.2: Tables 8.17 and 8.18 (ch8crossclass2.sav)

MIXED math2 WITH Zmathl

/FIXED =

/METHOD

/PRINT =

/RANDOM
/RANDOM
/RANDOM

Zmathl | SSTYPE (3)
= REML
G SOLUTION TESTCOV
= INTERCEPT | SUBJECT (schcode) COVTYPE (ID)
= INTERCEPT | SUBJECT (teach2id) COVTYPE (ID)
= INTERCEPT | SUBJECT (teachlid) COVTYPE (ID) .

Adding Teacher Effectiveness and a Student Background Control

Model 2.3: Tables 8.21 and 8.22 (ch8crossclass2.sav)

MIXED math2 WITH effmath2 effmathl Zmathl lowses

/FIXED =
/METHOD
/PRINT =
/RANDOM
/RANDOM
/RANDOM

effmath?2 effmathl Zmathl lowses | SSTYPE (3)
REML

G SOLUTION TESTCOV

INTERCEPT | SUBJECT (schcode) COVTYPE (ID)
INTERCEPT | SUBJECT (teach2id) COVTYPE (ID)
INTERCEPT | SUBJECT (teachlid) COVTYPE (ID) .

SSTYPE (3)
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School-Level Predictor and Random Slope

Model 2.4: Table 8.23 (ch8crossclass2.sav)

MIXED math2 WITH effmath?2 effmathl Zmathl lowses
/FIXED = effmath?2 effmathl Zmathl lowses | SSTYPE (3)
/METHOD = REML
/PRINT = G SOLUTION TESTCOV
/RANDOM = INTERCEPT effmath?2 effmathl | SUBJECT (schcode) COVTYPE (DIAG)
/RANDOM = INTERCEPT | SUBJECT (teach2id) COVTYPE (ID)
/RANDOM = INTERCEPT | SUBJECT (teachlid) COVTYPE (ID).

Level 3 Differences Between Institutions

Model 2.5: Tables 8.24 and 8.25 (ch8crossclass2.sav)

MIXED math2 WITH schqual effmath2 effmathl Zmathl lowses
/FIXED = schqual effmath2 effmathl Zmathl lowses | SSTYPE (3)
/METHOD = REML
/PRINT = G SOLUTION TESTCOV
/RANDOM = INTERCEPT effmath2 | SUBJECT (schcode) COVTYPE (DIAG)
/RANDOM = INTERCEPT | SUBJECT (teach2id) COVTYPE (ID)

/RANDOM = INTERCEPT | SUBJECT (teachlid) COVTYPE (ID).

Adding a Level 3 Cross-Level Interaction

Model 2.6: Tables 8.26 and 8.27 (ch8crossclass2.sav)

MIXED math2 WITH schqual effmath2 effmathl Zmathl lowses
/FIXED = schqual effmath2 effmathl Zmathl lowses effmath2*schqual | SSTYPE (3)
/METHOD = REML
/PRINT = G SOLUTION TESTCOV
/RANDOM = INTERCEPT effmath2 | SUBJECT (schcode) COVTYPE (DIAG)
/RANDOM = INTERCEPT | SUBJECT (teach2id) COVTYPE (ID)
/RANDOM INTERCEPT | SUBJECT (teachlid) COVTYPE (ID) .
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Appendix B: Model Comparisons Across
Software Applications

For comparative purposes, as mentioned in Chapters 5 and 7, we provide the results generated
by IBM SPSS and Mplus. The estimation procedures provide substantial agreement of fixed
effects, robust standard errors, and variance components in the model. These Mplus estimates
(Table B.1) are with the middle interval “freely estimated” as 0.529. This provided the opti-
mal estimate for the SPSS MIXED results (Table B.2) and provides an estimate of the initial
status the same as in Table 5.2. If we add those, we obtain the intercept estimate for time 3 in
Table 5.2 (57.094).

Table B.3 is a comparison of the estimates produced with Mplus (using a two-level latent
variable analysis) and the MIXED specification in chapter 7, Table 7.15.

TABLE B.1 Mplus Estimates

Parameter Estimate Std. Error Est./SE Sig.
Model with T2 = 0.529 Intercept 48.632 0.104 466.258 .000
Time (Nonlinear) 8.462 0.122 69.294 .000
Level 2 Variance

Intercept 30.703 2.853 10.763 .000
Slope 28.377 5.593 5.073 .000

TABLE B.2 SPSS Estimates

Parameter Estimate Std. Error t Sig.
Model with T2 = 0.529 Intercept 48.632 0.098 495.049 .000
Time (Nonlinear) 8.462 0.122 69.564 .000
Level 2 Variance

Intercept 31.283 0.949 32.973* .000
Slope 29.461 2.082 14.150* .000

*Wald Z coefficient.
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Table B.3 is a comparison of the estimates with produced with Mplus (using a two-level latent vari-
able analysis) and the MIXED specification in chapter 7, Table 7.15.

TABLE B.3 Comparison of SPSS Unstandardized Estimates in Table 7.15 with Mplus Unstandardized
Estimates

SPSS Estimates Mplus Estimates
Parameter Estimate Std. Error t Sig. Estimate Std. Error
[assessjob=0] 3.909 0.056 69.537 0.000 3.923 0.077
[assessjob=1] 3.738 0.065 57.681 0.000 3.869 0.083
[assessjob=0] * gmorgprod 0.344 0.119 2.878 0.005 0.306 0.113
[assessjob=1] * gmorgprod 0.383 0.144 2.666 0.009 0.379 0.140
[assessjob=0] * gmresources 0.101 0.044 2.273 0.025 0.086 0.040
[assessjob=1] * gmresources 0.060 0.053 1.124 0.263 0.051 0.052
[assessjob=0] * stability 0.129 0.062 2.071 0.039 0.155 0.067
[assessjob=1] * stability 0.171 0.069 2.493 0.013 0.193 0.072
[assessjob=0] * female -0.038 0.057 -0.666 0.506 -0.029 0.057

[assessjob=1] * female -0.001 0.062 -0.016 0.988 0.000 0.064




Appendix C: Syntax Routine to Estimate Rho
From Model’s Variance Components

We developed a syntax routine that estimates a two-level intraclass correlation (rho) from the
null model’s variance components. The first part generates the variance components and saves the
file to the “C:\Program Files” path noted in the syntax but may be changed to a different location
on your computer’s hard drive. The second part of the routine retrieves the variance component
file estimates, then computes and displays rho on-screen. In this example, we use read as the
outcome and schcode as the grouping (Level 2) variable.

**Part 1: Set Up the Variance Components Model

VARCOMP read BY schcode
/RANDOM = schcode
/JOUTFILE = VAREST (‘C:\Program Files\IBM\VAREST.sav’)
/METHOD = REML
/CRITERIA = ITERATE (50)
/CRITERIA = CONVERGE (1.0E-8)
/DESIGN
/INTERCEPT = INCLUDE.

**Part 2: Retrieve the Variance Component Estimates and Compute and Display Rho

Get file = “C:\Program Files\IBM\VAREST.sav” /Drop = ROWTYPE VARNAME .
Rename Var (VC1l VC2 = Between Within).

Compute rho = Between/ (Between+Within) .

SAVE OUTFILE = ”C:\Program Files\IBM\VAREST.sav”.

LIST.
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