
www.allitebooks.com

http://www.allitebooks.org

Oracle SOA Suite 11g R1
Developer's Guide

Develop Service-Oriented Architecture Solutions with
the Oracle SOA Suite

Antony Reynolds

Matt Wright

P U B L I S H I N G

professional expert ise dist i l led

BIRMINGHAM - MUMBAI

www.allitebooks.com

http://www.allitebooks.org

Oracle SOA Suite 11g R1 Developer's Guide

Copyright © 2010 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the authors, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: June 2010

Production Reference: 1220610

Published by Packt Publishing Ltd.
32 Lincoln Road
Olton
Birmingham, B27 6PA, UK.

ISBN 978-1-849680-18-9

www.packtpub.com

Cover Image by Sandeep Babu (sandyjb@gmail.com)

www.allitebooks.com

http://www.allitebooks.org

Credits

Authors

Antony Reynolds

Matt Wright

Reviewers

John Deeb

Hans Forbrich

Bill Hicks

Marc Kelderman

Manoj Neelapu

ShuXuan Nie

Hajo Normann

Acquisition Editor

James Lumsden

Development Editor

Swapna Verlekar

Technical Editors

Gauri Iyer

Hyacintha D'Souza

Smita Solanki

Alfred John

Copy Editor

Leonard D'Silva

Editorial Team Leader

Aanchal Kumar

Project Team Leader

Priya Mukherji

Project Coordinator

Prasad Rai

Proofreader

Aaron Nash

Indexer

Hemangini Bari

Graphics

Geetanjali Sawant

Production Coordinator

Shantanu Zagade

Cover Work

Shantanu Zagade

www.allitebooks.com

http://www.allitebooks.org

Foreword

First and foremost, let me say what an honor it is to participate in the great work
that Antony Reynolds and Matt Wright are doing through this Oracle SOA Suite
Developer Guide. The original edition of the book provided SOA developers with
practical tips, code examples, and under-the-covers knowledge of Oracle SOA Suite
and has received extremely positive feedback from our developer community. This
edition carries forward all of those benefits, but is completely updated for the 11gR1
release of Oracle SOA Suite, which brings with it not only new features and APIs,
but also some very significant architectural changes.

The original edition filled a very important need for the developer community,
going beyond basic documentation to provide best practices and tips and tricks for
Oracle SOA Suite developers. Antony and Matt were just the right people to create
such content, each having many years hands-on experience of enabling Oracle
SOA Suite implementations for customers and partners, as well as a close working
relationship with Oracle's SOA engineering and product management teams.
However, I believe this update for the 11gR1 release will be even more valuable
to the developer community.

With 11gR1, Oracle invested a tremendous amount of engineering work to not
just integrate, but unify the components that make up the Oracle SOA Suite. This
was done across many areas - adapters, service bus, routing, process orchestration,
business rules, B2B / partner integration, business activity monitoring, and complex
event processing. To achieve this unified experience, new micro-kernel based run-
time architecture was created, called the Service Infrastructure, and new standards
such as SCA (Service Component Architecture) were implemented. These advances
bring great benefits to customers around ease-of-use, manageability and scalability;
however, there is naturally a learning curve with the new features and also new
architectural factors that come into play. For example, architects and developers
will now consider not just how to decompose their requirements into Services and
Processes, but also determine what level of granularity their SOA Composites
should be at.

www.allitebooks.com

http://www.allitebooks.org

As such, besides the many updates and descriptions of new components, Antony
and Matt have also added critically valuable new content on advanced SOA
architecture considerations. I believe that this alone will make this book uniquely
useful for Oracle SOA Suite developers.

Especially coming so soon after the 11gR1 release, the updated content in this
book, including areas such as exception handling, testing, security and operational
automation, will surely be invaluable to anyone working with Oracle SOA Suite.
But even more difficult to find is the information that Matt and Antony have from
working with customer implementations around edge cases, design patterns,
and how these products best fit into the full development lifecycle. This kind of
information comes only from real-world project experience, such as Antony and
Matt have.

I believe that this book will help developers realize their goals with the Oracle SOA
Suite, helping them increase productivity, avoid common pitfalls, and improve ROI
through more scalable, agile, and re-usable implementations. On behalf of the Oracle
SOA Engineering and Product Management team, as well as all the customers and
partners who have asked for this book, we heartily thank Antony and Matt for the
investment of their time and energy and hope that this updated edition help you
achieve your goals with the Oracle SOA Suite.

David Shaffer
Vice President, Product Management
Oracle Integration
david.shaffer@oracle.com

www.allitebooks.com

http://www.allitebooks.org

About the Authors

Antony Reynolds has worked in the IT industry for more than 25 years,
after getting a job to maintain yield calculations for a zinc smelter while still an
undergraduate. After graduating from the University of Bristol with a degree in
Mathematics and Computer Science he worked first for a software house, IPL
in Bath, England, before joining the travel reservations system Galileo as a
development team lead.

At Galileo, he was involved in the development and maintenance of workstation
products before joining the architecture group. Galileo gave him the opportunity
to work in Colorado and Illinois where he developed a love for the Rockies and
Chicago style deep pan pizza.

He joined Oracle in 1998 as a sales consultant and has worked with a number of
customers in that time, including a large retail bank's Internet banking project, for
which he served as the chief design authority and security architect.

After the publication of his previous book, the SOA Suite 10g Developers Guide,
Antony changed roles within Oracle, taking a position in the global customer
support organization. As part of this change of position he moved from a small
village outside Bristol, England to a small town outside Colorado Springs, Colorado.
He is now acclimatized to living at 7,500ft and has learnt to survive on less oxygen.

Within support, Antony deals with customers who have problems with large
complex SOA deployments, often working as an advisor to other support analysts.
Antony also has a role in training support analysts in SOA principles and details of
the Oracle SOA Suite.

Outside of work Antony helps with scouting at church, which gives him the
opportunity to spend time with his two eldest sons. His wife and four children make
sure that he also spends time with them, playing games, watching movies, and
acting as an auxiliary taxi service. Antony is a slow but steady runner and can often
be seen jogging up and down the trails in the shadow of the Rocky Mountains.

www.allitebooks.com

http://www.allitebooks.org

Acknowledgement

I would like to thank my wife Rowan, and my four very patient children, who have
put up with my staying at home on family trips and working late nights in my
basement office. My colleagues in support have often volunteered to be reviewers
of material and have been the unwitting guinea pigs of new explanations. The
reviewers have provided invaluable advice and assistance, challenging me to
explain myself better and expand more on key points.

Matt has been a constant source of enthusiasm and energy and with Prasad and
Swapna at Packt has helped keep me to some sort of schedule.

Finally, thank you to the development team at Oracle under Amlan Debnath, who
have enhanced and improved the SOA Suite product significantly in this release.
I would particularly like to mention Clemens Utschig, who has expanded my
understanding of SOA Suite internals and without whom Chapter 15 in particular
would be much less complete.

www.allitebooks.com

http://www.allitebooks.org

Matt Wright is a director at Rubicon Red, an independent consulting firm helping
customers enable enterprise agility and operational excellence through the adoption
of emerging technologies such as Service-Oriented Architecture (SOA), Business
Process Management (BPM), and Cloud Computing.

With over 20 years experience in building enterprise scale distributed systems, Matt
first became involved with SOA shortly after the initial submission of SOAP 1.1 to
the W3C in 2000, and has worked with some of the early adopters of BPEL since its
initial release in 2002. Since then, he has been engaged in some of the earliest
SOA-based implementations across EMEA and APAC.

Prior to Rubicon Red, Matt held various senior roles within Oracle, most recently
as Director of Product Management for Oracle Fusion Middleware in APAC, where
he was responsible for working with organizations to educate and enable them in
realizing the full business benefits of SOA in solving complex business problems.

As a recognized authority on SOA, Matt is a regular speaker and instructor at
private and public events. He also enjoys writing and publishes his own blog
(http://blog.rubiconred.com). Matt holds a B.Sc. (Eng) in Computer Science
from Imperial College, University of London.

www.allitebooks.com

http://www.allitebooks.org

Acknowledgement

Well, this is the book that Antony and I originally intended to write, when we first
put pen to paper (or finger to keypad) back in May 2007. At this point the 11gR1
version of the Oracle SOA Suite was still in the initial stages of development, with
the goal being to time the publication of the book with the release of 11gR1. Then in
early 2008 Oracle announced the acquisition of BEA, which it finalized in July; at this
point future timings around the release of 11gR1 were very much up in the air.

By this stage a significant amount of the book was already written, and we had
received some really positive feedback from the initial reviews. With this in mind,
Antony and I took the decision to retarget the book for the current 10gR3 release and
bring in the Oracle Service Bus (formally known as the BEA Aqualogic Service Bus).

The first version of the book was published in March 2009, almost two years after our
original start date, and much to the relief of anyone closely connected with Antony
or I. Then in July, Oracle announced the release of the Oracle SOA Suite 11gR1,
Antony and I blinked and then decided to write the 11gR1 version of the book, in
many ways it was unfinished business!

So while this edition has been produced significantly quicker, it's still almost three
years since we began this journey; a journey that we would not have been able to
complete without the support of many others. First, I would like to express my
gratitude to everyone at Oracle who played a part; in particular to David Shaffer,
Demed L'Her, Prasen Palvankar, Heidi Buelow, Manoj Das, Neil Wyse, Ralf Mueller,
Mohamed Ashfar, Andy Gale and all the members of the SOA Development Team.

I would also like to express my deep appreciation to everyone who has reviewed
this book, the original reviewers: Phil McLaughlin, Jason Jones and James Oliver.
Also the reviewers who helped with this edition: Bill Hicks, Normann Hajo, Manoj
Neelapu, Hans Forbrich, Shu Xuan Nie, Marc Kelderman and John Deeb. Their
invaluable feedback and advice not only helped to validate the overall accuracy of
the content, but more importantly ensure its clarity and readability.

www.allitebooks.com

http://www.allitebooks.org

A book like this doesn't make it into print without a lot of work from the publisher.
I would like to thank the team at Packt Publishing for all their support; especially
James Lumsden, Swapna Verlekar, and Prasad Rai.

A special mention must go to John Deeb, for his continual encouragement, input and
above all support in ensuring that I found time to write the book. I couldn't ask for a
more supportive friend and business partner.

Finally, I would like to say a very, very special thank you to my wife Natasha and
my children Elliot and Kimberley, who for the past three years have been incredibly
patient and supportive in allowing me to spend far too many evenings and
weekends stuck away in my office writing these books.

About the Reviewers

John Deeb is a director at Rubicon Red, an independent consulting firm helping
customers enable enterprise agility and operational excellence through the adoption
of emerging technologies such as Service-Oriented Architecture (SOA), Business
Process Management (BPM), and Cloud Computing.

Prior to Rubicon Red, John held senior product management positions at Oracle and
TIBCO Software. His areas of focus include enterprise integration, business process
management, and business activity monitoring. John has worked with organizations
to educate and enable them in realizing the full business benefits of BPM and SOA in
solving complex business problems.

John holds a Bachelors degree in Cognitive Science from the University of Queensland
and a Masters degree in IT from the Queensland University of Technology. He is a
regular speaker on middleware vision, strategy, and architecture.

Hans Forbrich is a well-known member of the Oracle Community. He started
with Oracle products in 1984 and has kept abreast of nearly all of Oracle's Core
Technologies. As ACE Director, Hans has been invited to be present at Oracle Open
World and various Oracle User Group meetings around the world. His company,
Forbrich Computer Consulting Ltd., is well established in western Canada. Hans
specializes in delivering Oracle University training through Oracle University and
partners such as Exit Certified.

Although his special interests include Oracle Spatial, OracleVM, and Oracle
Enterprise Linux, Hans has been particularly excited about the advances in Oracle
SOA, Oracle Web Logic, and Oracle Grid Control.

Hans has been technical reviewer for a number of Packt books, including Mastering
Oracle Scheduler in Oracle 11g Databases, Oracle 10g/11g Data and Database Management
Utilities, and Oracle VM Manager 2.1.2.

I wish to thank my wife Susanne, and the Edmonton Opera, for their
patience while I worked on these reviews as well as on my own book.

Bill Hicks is a Senior Sales Consulting Manager for Australia and New Zealand,
specializing in Oracles' Middleware products.

Over the last 11 years at Oracle, Bill has held various positions within Sales
Consulting and Support.

His current focus is on Service-oriented Architecture and Cloud Computing and how
the varied Oracle Middleware product offerings can be utilized to deliver flexible,
cost effective, and complete business solutions.

Marc Kelderman is working for Oracle Netherlands as a solution architect. He
started his career at Oracle in 1995 working in consulting. His broad knowledge of
Oracle products and IT technology helped making the projects he is involved to be
successful. Since 2005, he is implementing and has designed projects based on Oracle
SOA technology. From that period he started to share his solutions to a broader
audience via his blog (http://orasoa.blogspot.com). Marc is often called for
as a speaker at seminars.

I would like to thank Matt and Antony for giving me the
opportunity to review their book. Good work!

Manoj Neelapu has around nine years of experience in Java/J2EE/SOA
technologies. He started his career as contractor engineer for Hindustan Aeronautics
Limited (Helicopter Division) and later worked for BEA Systems as Developer
Relations Engineer handling level3/4 support. Before joining Oracle, he had
experience working with open-source technologies at Sudhari.

As a Principal Engineer in Oracle, Manoj has expertise in various components of
Oracle Fusion Middleware stack, including Oracle Service Bus, Financial Service
Bus, JCA Adapters, and Oracle WebLogic Integration. He currently works for SOA
product lines as part of the engineering team. Among other activities, he actively
participates on Oracle Technology Network evangelizing, trouble-shooting, and
solving customer issues.

ShuXuan Nie is a software engineer specializing in SOA and Java technologies.

He has more than eight years of experience in the IT industry that includes SOA
technologies such as BPEL, ESB, SOAP, XML, Enterprise Java technologies, Eclipse
plugins, and other areas such as C++ cross-platform development.

Since 2007, he has been working as part of the Oracle Global Customer
Support team and focuses on helping customers solve their Middleware/SOA
integration problems.

Before joining Oracle, he worked for IBM China in their Software Development
Lab for four years as a staff software engineer. She participated in several complex
products involving IBM Lotus Workplace, Websphere, and the Eclipse platform
before joining the Australia Bureau of Meteorology Research Center where she was
responsible for the implementation of the Automated Thunderstorm Interactive
Forecast System for Aviation and Defense.

He holds an M.Sc. in Computer Science from Beijing University of Aeronautics
and Astronautics.

When not reviewing SOA books ShuXuan enjoys swimming, dancing, and visiting
new places.

Hajo Normann is SOA/BPM architect at HP Enterprise Services since 2005. He
helps motivating, designing, and implementing integration solutions using Oracle
SOA Suite and BPA Suite (a BPM-ready version of ARIS from IDS Scheer) and works
on SOA/BPM principles, design guidelines, and best practices.

Since 2007, Hajo is the Oracle ACE Director. Since 2008, he leads together with
Torsten Winterberg from OPITZ Consulting, the special interest group "DOAG SIG
SOA". Hajo is a co-founder of the "Masons-of-SOA", an inter-company network,
consisting of architects of Oracle Germany, Opitz Consulting, SOPERA, and HP
ES - with the mission to spread SOA knowledge and support projects/initiatives
across companies. The masons meet regularly for thought exchange, have written a
multi-article series on Yet Unshackled SOA Topics, have contributed to Thomas Erl's
book SOA Design Patterns and are giving whole day advanced SOA workshops
on conferences.

Websites: http://hajonormann.wordpress.com/, http://soacommunity.com/

Table of Contents
Preface 1

Part 1: Getting Started
Chapter 1: Introduction to Oracle SOA Suite 11

Service-oriented architecture in short 11
Service 11
Orientation 12
Architecture 13

Why SOA is different 14
Terminology 15
Interoperability 15
Extension and evolution 15
Reuse in place 16

Service Component Architecture (SCA) 16
Component 17
Service 17
Reference 17
Wire 17
Composite.xml 17
Properties 18

SOA Suite components 18
Services and adapters 18
ESB – service abstraction layer 19

Oracle Service Bus and Oracle Mediator 20
Service orchestration – the BPEL process manager 21
Rules 22
Security and monitoring 22

Active monitoring – BAM 23

Table of Contents

[ii]

Business to Business – B2B 24
Complex Event Processing – CEP 24
Event delivery network 24

SOA Suite architecture 24
Top level 25
Component view 25
Implementation view 26
A recursive example 27

JDeveloper 27
Other components 27

Service repository and registry 28
BPA Suite 28

The BPM Suite 28
Portals and WebCenter 28
Enterprise manager SOA management pack 29

Summary 29
Chapter 2: Writing your First Composite 31

Installing SOA Suite 31
Writing your first BPEL process 32

Creating an application 34
Creating an SOA project 36
SOA project composite templates 37
Creating a BPEL process 38

Assigning values to variables 40
Deploying the process 42
Testing the BPEL process 45
Adding a Mediator 51
Using the Service Bus 54

Writing our first proxy service 55
Writing the Echo proxy service 56
Creating a Change Session 57
Creating a project 58

Creating the project folders 58
Creating service WSDL 60

Importing a WSDL 61
Creating our business service 64
Creating our proxy service 67

Creating message flow 69
Activating the Echo proxy service 70
Testing our proxy service 72

Summary 75

Table of Contents

[iii]

Chapter 3: Service-enabling Existing Systems 77
Types of systems 77

Web service interfaces 78
Technology interfaces 78
Application interfaces 80

Java Connector Architecture 80
Creating services from files 80

A payroll use case 81
Reading a payroll file 81

Starting the wizard 82
Naming the service 82
Identifying the operation 83
Defining the file location 85
Selecting specific files 86
Detecting that the file is available 88
Message format 89
Finishing the wizards 97

Throttling the file and FTP adapter 98
Creating a dummy message type 98
Adding an output message to the read operation 98
Using the modified interface 98

Writing a payroll file 99
Selecting the FTP connection 99
Choosing the operation 100
Selecting the file destination 100
Completing the FTP file writer service 102

Moving, copying, and deleting files 102
Generating an adapter 102
Modifying the port type 102
Modifying the binding 103
Configuring file locations through additional header properties 104

Adapter headers 105
Testing the file adapters 105

Creating services from databases 106
Writing to a database 106

Selecting the database schema 106
Identifying the operation type 107
Identifying tables to be operated on 108
Identifying the relationship between tables 109
Under the covers 110

Summary 110
Chapter 4: Loosely-coupling Services 111

Coupling 111
Number of input data items 112
Number of output data items 112

Table of Contents

[iv]

Dependencies on other services 113
Dependencies of other services on this service 113
Use of shared global data 114
Temporal dependencies 114

Reducing coupling in stateful services 115
Service abstraction tools in SOA Suite 119

Do you have a choice? 119
When to use the Mediator 120
When to use Oracle Service Bus 120

Oracle Service Bus design tools 121
Oracle Workshop for WebLogic 121
Oracle Service Bus Console 121

Service Bus overview 121
Service Bus message flow 122

Virtualizing service endpoints 122
Moving service location 123
Using Adapters in Service Bus 125
Selecting a service to call 126

Virtualizing service interfaces 128
Physical versus logical interfaces 128
Mapping service interfaces 130
Applying canonical form in the Service Bus 135

An important optimization 136
Using the Mediator for virtualization 136
Summary 138

Chapter 5: Using BPEL to Build Composite Services
and Business Processes 139

Basic structure of a BPEL process 140
Core BPEL process 140

Variables 141
Partner links 142
Messaging activities 142

Synchronous messaging 142
Asynchronous messaging 143

A simple composite service 144
Creating our StockQuote service 145

Importing StockService schema 146
Calling the external web services 148

Calling the web service 150
Assigning values to variables 153
Testing the process 154
Calling the exchange rate web service 154
Assigning constant values to variables 155

Table of Contents

[v]

Using the expression builder 156
Asynchronous service 160

Using the wait activity 163
Improving the stock trade service 164

Creating the while loop 164
Checking the price 166
Using the switch activity 167

Summary 170
Chapter 6: Adding in Human Workflow 171

Workflow overview 171
Leave approval workflow 172

Defining the human task 173
Specifying task parameters 175
Specifying task assignment and routing policy 176

Invoking our human task from BPEL 180
Creating the user interface to process the task 181

Running the workflow process 183
Processing tasks with the worklist application 184
Improving the workflow 186

Dynamic task assignment 186
Assigning tasks to multiple users or groups 188

Cancelling or modifying a task 189
Withdrawing a task 189
Modifying a task 189
Difference between task owner and initiator 190

Requesting additional information about a task 190
Managing the assignment of tasks 191

Reassigning reportee tasks 191
Reassigning your own task 193
Delegating tasks 193
Escalating tasks 193

Using rules to automatically manage tasks 194
Setting up a sample rule 195

Summary 198
Chapter 7: Using Business Rules to Define Decision Points 199

Business rule concepts 200
XML facts 200
Decision services 201

Leave approval business rule 201
Creating a decision service 202
Implementing our business rules 204
Adding a rule to our ruleset 206

Creating the IF clause 207
Creating the Then clause 208

www.allitebooks.com

http://www.allitebooks.org

Table of Contents

[vi]

Calling a business rule from BPEL 211
Assigning facts 212

Using functions 213
Creating a function 214
Testing a function 219
Testing decision service functions 220
Invoking a function from within a rule 221

Using decision tables 222
Defining a bucket set 222
Creating a decision table 224
Conflict resolution 229

Summary 231
Chapter 8: Using Business Events 233

How EDN differs from traditional messaging 233
A sample use case 235
Event Delivery Network essentials 235

Events 235
Event publishers 238

Publishing an event using the Mediator component 238
Publishing an event using BPEL 240
Publishing an event using Java 243

Event subscribers 245
Consuming an event using Mediator 245
Consuming an event using BPEL 248

EDN publishing patterns with SOA Suite 250
Publishing an event on receipt of a message 251
Publishing an event on a synchronous message response 251
Publishing an event on a synchronous message request and reply 252
Publishing an event on an asynchronous response 252
Publishing an event on an asynchronous message request and reply 253
Publishing an event on an event 253

Monitoring event processing in Enterprise Manager 254
Summary 256

Chapter 9: Building Real-time Dashboards 257
How BAM differs from traditional business intelligence 257
Oracle BAM scenarios 258

BAM architecture 259
Logical view 259
Physical view 260

Acquire 260
Store 261
Process 261

Table of Contents

[vii]

Deliver 262
Steps in using BAM 263
User interface 263

Monitoring process state 264
Defining reports and data required 265
Defining data objects 265

A digression on populating data object fields 268
Instrumenting BPEL and SCA 269

Invoking the BAM adapter as a regular service 269
Invoking the BAM adapter through BPEL sensors 273

Testing the events 278
Creating a simple dashboard 278

Monitoring process status 279
Monitoring KPIs 282
Summary 283

Part 2: Putting it All Together
Chapter 10: oBay Introduction 287

oBay requirements 288
User registration 288

User login 288
Selling items 288

List a new item 289
Completing the sale 290
View account 291

Buying items 291
Search for items 292
Bidding on items 292

Defining our blueprint for SOA 294
Architecture goals 294
Typical SOA Architecture 295

Application services layer 297
Virtual services layer 297
Business services layer 299
Business process 302
User interface layer 303
One additional layer 304

Where the SOA Suite fits 306
Composite application 308

Composite granularity 308
Basic composite design pattern 311

Where to implement virtual services 312
Mediator as a proxy for a composite 312

Table of Contents

[viii]

Mediator as a proxy for an external reference 312
Using a composite as a virtual service 313
Service invocation between composite applications 314

oBay high-level architecture 316
oBay application services 316

Workflow services 316
External web services 317
oBay developed services 317

oBay internal virtual services 317
oBay business services 317

oBay business processes 318
oBay user interface 318

Summary 319
Chapter 11: Designing the Service Contract 321

Using XML Schema to define business objects 322
Modeling data in XML 322

Data decomposition 322
Data hierarchy 323
Data semantics 324
Using attributes for metadata 324

Schema guidelines 325
Element naming 325
Namespace considerations 327

Partitioning the canonical model 334
Single namespace 335
Multiple namespaces 336

Using WSDL to define business services 337
Use Document (literal) wrapped 338

Building your abstract WSDL document 338
WSDL namespace 338
Defining the 'wrapper' elements 339
Defining the 'message' elements 341
Defining the 'PortType' Element 342

Using XML Schema and the WSDL within SOA Suite 342
Sharing XML Schemas across composites 343

Defining an MDS connection 344
Importing schemas from MDS 345
Manually importing schemas 346
Deploying schemas to the SOA infrastructure 349

Importing the WSDL document into a composite 352
Sharing XML Schemas in the Service Bus 353
Importing the WSDL document into the Service Bus 354

Strategies for managing change 356
Major and minor versions 357

Service implementation versioning 357

Table of Contents

[ix]

Schema versioning 358
Changing schema location 359
Updating schema version attribute 359
Resisting changing the schema namespace 359

WSDL versioning 360
Incorporating changes to the canonical model 360
Changes to the physical contract 360
Updating the service endpoint 361
Including version identifiers in the WSDL definition 361
Managing the service lifecycle 362

Summary 363
Chapter 12: Building Entity Services Using Service
Data Objects (SDOs) 365

Service Data Objects 367
Oracle 11g R1 support for SDO 367

Oracle SOA Suite 11g SDO support 367
Implementing a Service Data Object 368

Overview of ADF Business Components 368
Creating our ListingSDO application 370

Creating our Listing Business Components 371
Defining Entity objects 372
Defining updatable View objects 373
Defining the application module 373
Testing the listing ADF-BC in JDeveloper 375

Generating the primary key using an Oracle Sequence 375
Creating the ADF extension class for EntityImpl 376
Updating default ADF base classes 377
Configuring Listing entity to use Oracle Sequence 378

Creating the ListingSDO service interface 379
Enabling master detail updates 380

Deploying the Service Data Object 381
Creating a service deployment profile 382
Setting Web Context Root 382

Registering SDO with SOA infrastructure 383
Registering the ListingSDO as an RMI service 383
Configuring global JDBC data source 384
Determining the SDO registry key 385

Using the ListingSDO in an SOA composite 386
Creating an ADF-BC Service Reference 386
Invoking the SDO from BPEL 387

Creating an entity variable 388
Creating a Listing entity 389
Binding to the Listing entity 391
Inserting a detail SDO into a master SDO 393
Updating a detail SDO 395
Deleting a detail SDO 395

Table of Contents

[x]

Deleting a Service Data Object 395
Exposing the SDO as a business service 396

Summary 398
Chapter 13: Building Validation into Services 399

Validation within a composite 400
Using XML Schema validation 402

Strongly-typed services 402
Loosely-typed services 405
Combined approach 406
Schema validation within the Mediator 406

Using schema validation within BPEL PM 407
Using schema validation within the Service Bus 410

Validation of inbound documents 411
Validation of outbound documents 413

Using Schematron for validation 413
Overview of Schematron 414

Assertions 415
Rules 416
Patterns 417
Namespaces 417
Schema 418

Intermediate validation 418
Cross field validation 418
Date validation 420
Element present 420

Using Schematron within the Mediator 421
Using the Metadata Service to hold Schematron files 422
Returning Schematron errors 423

Using Schematron with the Service Bus 423
Putting validation in the underlying service 423

Using Business Rules for validation 424
Coding in validation 425
Returning validation failures in synchronous services 425

Defining faults 426
Custom fault codes 426
Validation failures in asynchronous services 427

Layered validation considerations 428
Dangers of over validation 428
Dangers of under validation 429
Negative coupling of validation 429

Summary 430

Table of Contents

[xi]

Chapter 14: Error Handling 431
Business faults 432

Defining faults in synchronous services 432
Defining faults in asynchronous services 433

Handling business faults in BPEL 434
Catching faults 435

Adding a catch branch 435
Throwing faults 438

Compensation 439
Defining compensation 440
Triggering a Compensation handler 440
Adding a Compensate activity 441

Returning faults 442
Asynchronous Considerations 443

Handling business faults in Mediators 443
Synchronous Mediators 444

System faults 445
Asynchronous Mediators 445

Using timeouts 446
Using the fault management framework 446

Using the fault management framework in BPEL 447
Using the fault management framework in Mediator 447
Defining a fault policies file 448

Defining a fault policy 449
Defining fault policy conditions 450

Specifying the <faultName> 450
Specifying the <condition> 451

Defining fault policy actions 452
Retry action 453
Human intervention action 453
Abort action 454
Rethrow action 454
Replay scope action 455
Java action 456

Binding fault policies 457
Defining bindings on the composite 457

Binding resolution 458
Using MDS to hold fault policy files 458
Human intervention in Fusion Middleware Control Console 459

Handling faults within the Service Bus 461
Handling faults in synchronous proxy services 462

Raising an error 462
Defining an error handler 463
Handling unexpected faults 467
Returning a SOAP Fault 468

Table of Contents

[xii]

Adding a service error handler 469
Handling permanent faults 469
Handling transient faults 471

Handling faults in one-way proxy services 473
Summary 473

Chapter 15: Advanced SOA Suite Architecture 475
Relationship of infrastructure to service engines 475
Composite execution and suspension 476

BPEL dehydration events 476
Threading and message delivery in SOA Suite 476

One-way message delivery 477
Immediate execution of one-way messages in BPEL 478
Activation agent threads 479
Dispatcher threads 479

Transactions 481
BPEL transactions 481

BPEL component properties 481
BPEL partner link properties 482
BPEL activities 483

Transactions and thread wrinkles in BPEL 484
Reply handling 484

Oracle Service Bus (OSB) transactions 485
Transactional binding 485
Non-transactional binding 485

Comparison to EJB 486
Clustering 486

Load balancing 487
JMS considerations 487
Testing considerations 488
Adapter considerations 489
Metadata repository considerations 489

Database connections 489
Summary 490

Chapter 16: Message Interaction Patterns 491
Messaging within a composite 491

Processing of messages within the Mediator 493
Processing of messages within BPEL PM 493

Message addressing 494
Multi-protocol support 494
Message correlation 495
WS-Addressing 496

Request message with WS-Addressing 496

Table of Contents

[xiii]

Response message with WS-Addressing 497
Using BPEL correlation sets 498

Using correlation sets for multiple process interactions 499
Defining a correlation set property 499
Defining correlation set 500
Using correlation sets 501
Defining property aliases 505

Message aggregation 507
Message routing 509

Correlating the callback 510
Specifying the reply to address 510

Creating a proxy process 511
Using the pick activity 511
Defining the correlation sets 513

Completing the aggregation 514
Scheduling services 515

Defining the schedule file 516
Using FlowN 517

Accessing branch-specific data in FlowN 518
Dynamic partner links 519

Defining a common interface 520
Defining a job partner link 521

Recycling the scheduling file 523
Summary 524

Chapter 17: Workflow Patterns 525
Managing multiple participants in a workflow 525

Using multiple assignment and routing policies 526
Determining the outcome by a group vote 526

Using multiple human tasks 529
Linking individual human tasks 530

Using the workflow API 531
Defining the order fulfillment human task 532

Specifying task parameters 532
Specifying the routing policy 534
Notification settings 535

Querying task instances 537
Defining an external reference for the Task Query Service 538
User authentication 539
Querying tasks 541

Flex fields 543
Populating flex fields 543
Accessing flex fields 544
Specifying the query predicate 545
Using flex fields in the query predicate 549

Table of Contents

[xiv]

Ordering the data 550
Getting task details 551
Updating a task instance 552
Using the updateTask operation 552
Updating the task payload 553
Updating the task flex fields 554
Updating the task outcome 554
Summary 556

Chapter 18: Using Business Rules to Implement Services 557
How the rule engine works 557

Asserting facts 558
Executing the ruleset 558

Rule activation 558
Rule firing 559

Retrieving result 559
Session management 560
Debugging a ruleset 561

Debugging a decision service with a test function 561
Debugging a decision service within a composite 561
Using the print function to add additional logging 562

Using business rules to implement auction 562
Defining our XML facts 562
Defining the business rule 565

Configuring the decision function 566
Using a global variable to reference the resultset 567

Defining a global variable 568
Defining a rule to initialize a global variable 568

Writing our auction rules 571
Evaluating facts in date order 571

Checking for non-existent fact 571
Updating the bid status 573

Using inference 574
Processing the next valid bid 575

Using functions to manipulate XML facts 576
Asserting a winning bid 577
Retracting a losing bid 578
Rules to process a new winning bid 579
Validating the next bid 580
Rule to process a losing bid 581

Complete ruleset 582
Performance considerations 583

Managing state within the BPEL process 583
Summary 584

Table of Contents

[xv]

Part 3: Other Considerations
Chapter 19: Packaging and Deployment 587

The need for packaging 587
Problems with moving between environments 587
Types of interface 588

Web interfaces 588
Command-line interfaces 588

SOA Suite packaging 588
Oracle Service Bus 589
Oracle SOA composites 590

Deploying a SCA composite via the EM Console 590
Deploying a SCA composite using Ant 592
Revisions and milestones 598
The default revision 599
Enabling web service endpoint and WSDL location alteration 600
Enabling adapter configuration 602
XML schema locations 602
XSL imports 602
Composite configuration plan framework 603

Web services security 607
Oracle rules 608
Business activity monitoring 608

Commands 608
Selecting items 608
Using iCommand 609

Summary 610
Chapter 20: Testing Composite Applications 611

SOA Suite testing model 611
One-off testing 612

Testing composites 612
Testing the Service Bus 615

Automated testing 616
The composite test framework 616
Composite test suites 616

Injecting data into the test case 618
Data validation 620
Emulating components and references 622
Deploying and running test suites 623

Regression testing 625
System testing 626
Composite testing 627
Component testing 627

www.allitebooks.com

http://www.allitebooks.org

Table of Contents

[xvi]

Unit testing 628
Performance testing 629
User interface testing 629
Summary 630

Chapter 21: Defining Security and Management Policies 631
Security and management challenges in the SOA environment 631

Evolution of security and management 632
Added complications of SOA environment 633

Security Impacts of SOA 634
Management and monitoring impacts of SOA 634

Securing services 636
Security outside the SOA Suite 636

Network security 636
Preventing message interception 636
Restricting access to services 637

Declarative security versus explicit security 637
Security as a facet 637
Security as a service 637

Security model 638
Policy enforcement points 639
Policies 639
Agents and gateways 640

Distinctive benefits of gateways and agents 641
The gateway dilemma 642

Service Bus model 642
Defining policies 643

Creating a new policy to perform authentication and authorization 644
Creating the authorization policy 645

Applying a policy through the Service Bus Console 652
Importing a policy 652
Applying OWSM policies in Service Bus 653

Final thoughts on security 654
Monitoring services 654

Monitoring service health in SOA Suite 655
System up-down status 655
System throughput view 655

Monitoring in the Service Bus 657
Creating an alert destination 658
Enabling service monitoring 659
Creating an alert rule 660
Monitoring the service 663

What makes a good SLA 663
Summary 664

Index 665

Preface
Service-Oriented Architecture is not just changing how we approach application
integration, but the mindset of software development.

Applications as we know them are becoming a thing of the past, in the future we
will increasingly think of services and how those services are assembled to build
complete, "composite" applications that can be modified quickly and easily to adapt
to a continually evolving business environment.

This is the vision of a standards-based Service-Oriented Architecture (SOA),
where the IT infrastructure is continuously adapted to keep up with the pace
of business change.

Oracle is at the forefront of this vision, with the Oracle SOA Suite providing the most
comprehensive, proven, and integrated tool kit for building SOA based applications.

This is no idle boast. Oracle Fusion Applications (the re-implementation of
Oracle's E-Business Suite, Siebel, PeopleSoft and JD Edwards Enterprise as a single
application) is probably the largest composite application being built today and it
has the Oracle SOA platform at its core.

Developers and Architects using the Oracle SOA Suite, whether working on
integration projects, building new bespoke applications or specializing in large
implementations of Oracle Applications will need a book that provides a "hands on"
guide on how best to harness and apply this technology, this book will enable them
to do just that.

Preface

[2]

What this book covers
Part 1: Getting Started

This section provides an initial introduction to the Oracle SOA Suite and its various
components, and gives the reader a fast paced hands-on introduction to each of the
key components in turn.

Chapter 1: Introduction to Oracle SOA Suite: Gives an initial introduction to the Oracle
SOA Suite and its various components.

Chapter 2: Writing Your First Composite: Provides a hands-on introduction to writing
your first SOA composite. We then look at how we can expose this as a proxy service
via the Oracle Service Bus.

Chapter 3: Service-enabling Existing Systems: Looks at a number of key technology
adapters, and how we can use them to service-enable existing systems.

Chapter 4: Loosely Coupling Services: Describes how we can use the Mediator to loosely
couple services within a composite and Oracle Service Bus to loosely couple services
within the Enterprise.

Chapter 5: Using BPEL to Build Composite Services and Business Processes: Covers how
to use BPEL to assemble services to build composite services and long-running
business processes.

Chapter 6: Adding in Human Workflow: Looks at how human tasks can be managed
through workflow activities embedded within a BPEL process.

Chapter 7: Using Business Rules to Define Decision Points: Covers the new Rules Editor
in 11gR1, including Decision Tables and how we can incorporate rules as decision
points within a BPEL Process.

Chapter 8: Using Business Events: Introduces the Event Delivery Network (EDN),
a key new component in Oracle SOA Suite 11g that provides a declarative way to
generate and consume business events within your SOA infrastructure.

Chapter 9: Building Real-time Dashboards: Looks at how Business Activity Monitoring
(BAM) can be used to give business users a real-time view into how business
processes are performing.

Preface

[3]

Part 2: Putting it All Together

This section uses the example of an online auction site (oBay) to illustrate
how to use the various components of the SOA Suite to implement a real-world
SOA-based solution.

Chapter 10: oBay Introduction: Provides a blueprint for our SOA architecture,
highlighting some of the key design considerations and describes how this fits
into our architecture for oBay.

Chapter 11: Designing the Service Contract: Gives guidance on how to design XML
schemas and service contracts for improved agility, reuse, and interoperability.

Chapter 12: Building Entity Services Using Service Data Objects (SDOs): Details how
to use ADF-Business Components to implement Service Data Objects (SDOs) and
embed them as Entity Variables within a BPEL Process.

Chapter 13: Building Validation into Services: Examines how we can implement
validation within a service using XSD validation, Schematron, and Business Rules,
as well as within the service.

Chapter 14: Error Handling: Examines strategies for handling system and business
errors, with detailed coverage of the Composite Fault Management Framework.

Chapter 15: Advanced SOA Suite Architecture: Covers advanced SOA Architecture,
including message delivery to asynchronous / synchronous composites, transaction
handling, and clustering considerations.

Chapter 16: Message Interaction Patterns: Covers complex messaging interactions,
including multiple requests and responses, timeouts, and message correlation (both
system and business).

Chapter 17: Workflow Patterns: Looks at how to implement workflows involving
complex chains of approval and how to use the Workflow Service API.

Chapter 18: Using Business Rules to Implement Services: Looks at the Rules Engine's
inferencing capabilities, and how we can use them to implement types of
business services.

Part 3: Other Considerations

This final section covers other considerations such as the packaging, deployment,
testing, security, and administration of SOA applications.

Chapter 19: Packaging and Deployment: Examines how to package up SOA applications
for deployment into environments such as test and production.

Preface

[4]

Chapter 20: Testing Composite Applications: Looks at how to create, deploy, and run
test cases that automate the testing of composite applications.

Chapter 21: Defining Security and Management Policies: Details how to use policies to
secure and administer SOA applications.

What you need for this book
1. Oracle WebLogic Server 11gR1 (10.3.3) + Coherence + OEPE - Package

Installer
http://www.oracle.com/technology/software/products/ias/htdocs/
wls_main.html

wls1033_oepe111150_win32.exe

2.	 Repository Creation Utility (11.1.1.3.0)
	 http://www.oracle.com/technology/software/products/middleware/

htdocs/

fmw_11_download.htmlofm_rcu_win_11.1.1.3.0_disk1_1of1.zip

 SOA Suite (11.1.1.2.0)

ofm_soa_generic_11.1.1.2.0_disk1_1of1.zip

 SOA Suite (11.1.1.3.0)

ofm_soa_generic_11.1.1.3.0_disk1_1of1.zip

3. Oracle Service Bus (11.1.1.3.0)
http://www.oracle.com/technology/software/products/osb/index.
html.

ofm_osb_generic_11.1.1.3.0_disk1_1of1.zip

4. Oracle JDeveloper 11g (11.1.1.3.0) Studio Edition
http://www.oracle.com/technology/software/products/jdev/htdocs/
soft11.html

jdevstudio11113install.exe

5. XE Universal database version 10.2.0.1 or 10g database version 10.2.0.4+ or
11g database version 11.1.0.7+.

Preface

[5]

6. Enterprise Manager requires Firefox 3 or IE 7.
Firefox 3 - get it from http://portableapps.com if you want
it to co-exist peacefully with your Firefox 2 installation (keep
Firefox 2 if you use Rules Author in 10g R3.)
Firefox 2 and IE 6 do not work in 11g.

7. BAM requires IE 7
IE 7 without special plug-ins (some plug-ins may cause
problems).
IE 8 does not work. IE 6 has a few UI issues. Firefox does
not work.

Who this book is for
The primary purpose of the book is to provide developers and technical architects
with a practical guide to using and applying the Oracle SOA Suite in the delivery of
real world SOA-based applications.

It is assumed that the reader already has a basic understanding of the concepts of
SOA, as well as some of the key standards in this space, including web services
(SOAP, WSDL), XML Schemas, and XSLT (and XPath).

Conventions
In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

There are three styles for code. Code words in text are shown as follows:
"Each schema can reference definitions in other schema's by making use of
the xsd:import directive."

A block of code will be set as follows:

<types>
		<schema	xmlns="http://www.w3.org/2001/XMLSchema">
				<import	namespace="http://xmlns.oracle.com/Echo"	
												schemaLocation="Echo.xsd"/>
		</schema>
</types>

°

°

°

°

Preface

[6]

When we wish to draw your attention to a particular part of a code block, the
relevant lines or items will be made bold:

<types>
		<schema	xmlns="http://www.w3.org/2001/XMLSchema">
 <import namespace="http://xmlns.oracle.com/Echo"
 schemaLocation="Echo.xsd"/>
		</schema>
</types>

New terms and important words are introduced in a bold-type font. Words that you
see on the screen, in menus or dialog boxes for example, appear in our text like this:
"The deployed test suites will appear in the EM console in the composite Unit Tests
tab, as shown in the following screenshot".

Warnings or important notes appear in a box like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book, what you liked or may have disliked. Reader feedback is important for us
to develop titles that you really get the most out of.

To send us general feedback, simply drop an email to feedback@packtpub.com,
making sure to mention the book title in the subject of your message.

If there is a book that you need and would like to see us publish, please
send us a note in the SUGGEST A TITLE form on www.packtpub.com
or email suggest@packtpub.com.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Preface

[7]

Downloading the example code for this book
You can download the example code files for all Packt books you have
purchased from your account at http://www.PacktPub.com. If you
purchased this book elsewhere, you can visit http://www.PacktPub.
com/support and register to have the files emailed directly to you.

Errata
Although we have taken every care to ensure the accuracy of our contents, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in text or
code—we would be grateful if you would report this to us. By doing this you can
save other readers from frustration, and help to improve subsequent versions of this
book. If you find any errata, report them by visiting http://www.packtpub.com/
support, selecting your book, clicking on the Submit Errata link, and entering the
details of your errata. Once your errata have been verified, your submission will be
accepted and the errata added to the list of existing errata. The existing errata can be
viewed by selecting your title from http://www.packtpub.com/support.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you
come across any illegal copies of our works, in any form, on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with
some aspect of the book, and we will do our best to address it.

Part 1
Getting Started

Introduction to Oracle SOA Suite

Writing Your First Composite

Service-enabling Existing Systems

Loosely-coupling Services

Using BPEL to Build Composite
Services and Business Processes

Adding in Human Workflow

Using Business Rules to Define
Decision Points

Using Business Events

Building Real-time Dashboards

www.allitebooks.com

http://www.allitebooks.org

Introduction to Oracle
SOA Suite

Service-Oriented Architecture (SOA) may consist of many interconnected
components. As a result of this, the Oracle SOA Suite is a large piece of software
that initially seems to be overwhelmingly complex. In this chapter, we will provide
a roadmap for your understanding of the SOA Suite and provide a reference
architecture to help you understand how to apply SOA principles with the SOA
Suite. After a review of the basic principles of SOA, we will look at how the SOA
Suite provides support for those principles through its many different components.
Following this journey through the components of SOA Suite, we will introduce
Oracle JDeveloper as the primary development tool that is used to build applications
for deployment into the SOA Suite.

Service-oriented architecture in short
Service-oriented architecture has evolved to allow greater flexibility in adapting the
IT infrastructure to satisfy the needs of business. Let's examine what SOA means by
examining the components of its title.

Service
A service is a term that is understood by both business and IT. It has some key
characteristics as follows:

Encapsulation: A service creates delineation between the service provider
and the service consumer. It identifies what will be provided.
Interface: It is defined in terms of inputs and outputs. How the service is
provided is not of concern to the consumer, only to the provider. The service
is defined by its interface.

•

•

Introduction to Oracle SOA Suite

[12]

Contract or service level agreements: There may be quality of service
attributes associated with the service, such as performance characteristics,
availability constraints, or cost.

The break-out-box uses the example of a laundry service to make more concrete the
characteristics of a service. Later, we will map these characteristics onto
specific technologies.

A clean example
Consider a laundry service. The service provider is a laundry
company, and the service consumer is a corporation or
individual with washing to be done.
The input to the company is a basket of dirty laundry.
Additional input parameters may be a request to iron the
laundry as well as wash it or to starch the collars. The output is
a basket of clean washing with whatever optional, additional
services such as starching or ironing were specified. This
defines the interface.
Quality of service may specify that the washing must be
returned within 24 or 48 hours. Additional quality of service
attributes may specify that the service is unavailable from 5PM
Friday until 8AM Monday. These service level agreements may
be characterized as policies to be applied to the service.

An important thing about services is that they can be understood by both
business analysts and IT implementers. This leads to the first key benefit
of service-oriented architecture.

SOA makes it possible for IT and the business to speak
the same language, that is, the language of services.

Services allow us to have a common vocabulary between IT and the business.

Orientation
When we are building our systems, we are looking at them from a service point of
view or orientation. This implies that we are oriented or interested in the following:

Granularity: The level of service interface or number of interactions required
with the service are typically characterized as course-grained or fine-grained.
Collaboration: Services may be combined together to create higher level or
composite services.

•

•

•

Chapter 1

[13]

Universality: All components can be approached from a service perspective.
For example, a business process may also be considered a service that,
despite its complexity, provides inputs and outputs.

Thinking of everything as a service leads us to another key benefit of service-oriented
architecture, namely composability, which is the ability to compose a service out of
other services.

Composing new services out of existing services allows
easy reasoning about the availability and performance
characteristics of the composite service.

By building composite services out of existing services, we can reduce the amount
of effort required to provide new functionality as well as being able to build
something with prior knowledge of its availability and scalability characteristics.
The latter can be derived from the availability and performance characteristics of
the component services.

Architecture
Architecture implies a consistent and coherent design approach. This implies a need
to understand the inter-relationships between components in the design and ensure
consistency in approach. Architecture suggests that we adopt some of the
following principles:

Consistency: The same challenges should be addressed in a uniform way.
For example, the application of security constraints needs to be enforced in
the same way across the design. Patterns or proven design approaches can
assist with maintaining consistency of design.
Reliability: The structures created must be fit to purpose and meet the
demands for which they are designed.
Extensibility: A design must provide a framework that can be expanded in
ways both foreseen and unforeseen. See the break-out-box on extensions.
Scalability: The implementation must be capable of being scaled to
accommodate increasing load by adding hardware to the solution.

•

•

•

•

•

Introduction to Oracle SOA Suite

[14]

Extending Antony's house
My wife and I designed our house in England. We built in the ability to
convert the loft into extra rooms and also allowed for a conservatory to
be added. This added to the cost of the build, but these were foreseen
extensions. The costs of actually adding the conservatory and two extra
loft rooms were low because the architecture allowed this. In a similar
way, it is relatively easy to architect for foreseen extensions, such as
additional related services and processes that must be supported by the
business. When we wanted to add a playroom and another bathroom,
this was more complex and costly as we had not allowed it in the original
architecture. Fortunately, our original design was sufficiently flexible to
allow for these additions, but the cost was higher. In a similar way, the
measure of the strength of a service-oriented architecture is the way in
which it copes with unforeseen demands, such as new types of business
process and services that were not foreseen when the architecture was
laid down. A well-architected solution will be able to accommodate
unexpected extensions at a manageable cost.

A consistent architecture, when coupled with implementation in "SOA Standards",
gives us another key benefit, that is, inter-operability.

SOA allows us to build more inter-operable systems as it is based
on standards agreed by all the major technology vendors.

SOA is not about any specific technology. The principles of service orientation can
be applied equally well using an assembler as they can in a high-level language.
However, as with all development, it is easiest to use a model that is supported
by tools and is both inter-operable and portable across vendors. SOA is widely
associated with the web service or WS-* standards presided over by groups like
OASIS (http://www.oasis.org). This use of common standards allows SOA
to be inter-operable between vendor technology stacks.

Why SOA is different
A few years ago, distributed object technology, in the guise of CORBA and COM+,
was going to provide benefits of reuse. Prior to that, third and fourth generation
languages such as C++ and Smalltalk (based on object technology) were to
provide the same benefit. Even earlier, the same claims were made for
structured programming. So why is SOA different?

Chapter 1

[15]

Terminology
The use of terms such as services and processes allows business and IT to talk
about items in the same way, improving communication, and reducing impedance
mismatch between the two. The importance of this is greater than what it appears at
first because it drives IT to build and structure its systems around the business rather
than vice versa.

Interoperability
In the past, there have been competing platforms for the latest software
development fad. This manifested itself as CORBA and COM+, Smalltalk and
C++, Pascal and C. However, this time around, the standards are not based upon
the physical implementation, but upon the service interfaces and wire protocols. In
addition, these standards are generally text-based to avoid issues around conversion
between binary forms. This allows services implemented in C# under Windows
to inter-operate with Java or PL/SQL services running on Oracle SOA Suite under
Windows, Linux, or Unix. The major players Oracle, Microsoft, IBM, SAP, and others
have agreed on how to inter-operate together. This agreement has always been
missing in the past.

WS basic profile
There is an old IT joke that standards are great, there are so many to
choose from! Fortunately, the SOA vendors have recognized this and
have collaborated to create a basic profile, or collections of standards that
focus on interoperability. This is known as WS basic profile and details
the key web service standards that all vendors should implement to
allow for interoperability. SOA Suite supports this basic profile as well as
additional standards.

Extension and evolution
SOA recognizes that there are existing assets in the IT landscape and does not
force these to be replaced, preferring instead to encapsulate and later extend these
resources. SOA may be viewed as a boundary technology that reverses many of
the earlier development trends. Instead of specifying how systems are built at the
lowest level, it focuses on how services are described and how they inter-operate
in a standards-based world.

Introduction to Oracle SOA Suite

[16]

Reuse in place
A final major distinguishing feature for SOA is the concept of reuse in place. Most
reuse technologies in the past have focused on reuse through libraries, at best
sharing a common implementation on a single machine through the use of dynamic
link libraries. SOA focuses not only on reuse of the code functionality, but also
upon the reuse of existing machine resources to execute that code. When a service is
reused, the same physical servers with their associated memory and CPU are shared
across a larger client base. This is good from the perspective of providing a consistent
location to enforce code changes, security constraints, and logging policies, but it
does mean that the performance of existing users may be impacted if care is not
taken in how services are reused.

Client responsibility in service contracts
As SOA is about reuse in place of existing machine resources
as well as software resources, it is important that part of the
service contract specifies the expected usage a client will make
of a service. Imposing this constraint on the client is important
for efficient sizing of the services being used by the client.

Service Component Architecture (SCA)
We have spoken a lot about service reuse and composing new services out of existing
services, but we have yet to indicate how this may be done. The Service Component
Architecture in SOA Suite is a standard that is used to define how services in a
composite application are connected. It also defines how a service may interact
with other services.

Chapter 1

[17]

As can be seen in the preceding screenshot, an SCA composite consists of several
different parts.

Component
A component represents a piece of business logic. It may be process logic, such
as a BPEL process, routing logic, such as a mediator, or some other SOA Suite
component. In the next section, we will discuss the components of the SOA Suite.
SCA also supports writing custom components in Java or other languages, but we
will not cover that in this book.

Service
A service represents the interface provided by a component or by the SCA
Assembly itself. This is the interface to be used by clients of the assembly or
component. A service that is available from outside the composite is referred
to as an External Service.

Reference
A reference is a dependency on a service provided by another component, another
SCA Assembly, or by some external entity such as a remote web service. References
to services outside the composite are referred to as External References.

Wire
Services and references are joined together by wires. A wire indicates a dependency
between components or between a component and an external entity.

It is important to note that wires show dependencies
and not flow of control. In the example, the Mediator
component may call the FileWriteService before or
after invoking BPEL, or it may not invoke it at all.

Composite.xml
An SCA Assembly is described in a file named composite.xml. The format of this
file is defined by the SCA standard and consists of the elements identified in the
preceding screenshot.

Introduction to Oracle SOA Suite

[18]

Properties
The components in the SCA may have properties associated with them that can be
customized as part of the deployment of an SCA Assembly. These properties are also
described in the composite.xml.

SOA Suite components
SOA Suite has a number of component parts, some of which may be
licensed separately.

Services and adapters
The most basic unit of service-oriented architecture is the service. This may be
provided directly by a web service-enabled piece of code or it may be exposed by
encapsulating an existing resource.

The only way to access a service is through its defined interface. This interface may
actually be part of the service or it may be a wrapper that provides a standard-based
service interface on top of a more implementation-specific interface. Accessing the
service in a consistent fashion isolates the client of the service from any details of its
physical implementation.

Services are defined by a specific interface, usually specified in a Web Service
Description Language (WSDL) file. A WSDL file specifies the operations supported
by the service. Each operation describes the expected format of the input message
and if a message is returned it also describes the format of that message. Services
are often surfaced through adapters that take an existing piece of functionality and
"adapt" it to the SOA world, so that it can interact with other SOA Suite components.
An example of an adapter is the file adapter that allows a file to be read or written
to. The act of reading or writing the file is encapsulated into a service interface. This
service interface can then be used to receive service requests by reading a file or to
create service requests by writing a file.

Chapter 1

[19]

Out of the box, the SOA Suite includes licenses for the following adapters:

File adapter
FTP adapter
Database adapter
JMS adapter
MQ adapter
AQ adapter
Socket adapter
BAM adapter

The database adapter and the file adapter are explored in more detail in Chapter 3,
Service-enabling Existing Systems, while the BAM adapter is discussed in Chapter 9,
Building Real-time Dashboards. There is also support for other non-SOAP transports
and styles such as plain HTTP, REST, and Java.

Services are the most important part of service-oriented architecture, and in this
book, we focus on how to define their interfaces and how to best assemble services
together to create composite services with a value beyond the functionality of a
single atomic service.

ESB – service abstraction layer
To avoid service location and format dependencies, it is desirable to access services
through an Enterprise Service Bus (ESB). This provides a layer of abstraction over
the service and allows transformation of data between formats. The ESB is aware of
the physical endpoint locations of services and acts to virtualize services.

•
•
•
•
•
•
•
•

www.allitebooks.com

http://www.allitebooks.org

Introduction to Oracle SOA Suite

[20]

Services may be viewed as being plugged into the Service Bus.

An Enterprise Service Bus is optimized for routing and transforming service requests
between components. By abstracting the physical location of a service, an ESB allows
services to be moved to different locations without impacting the clients of those
services. The ability of an ESB to transform data from one format to another also
allows for changes in service contracts to be accommodated without recoding client
services. The Service Bus may also be used to validate that messages conform to
interface contracts and to enrich messages by adding additional information to
them as part of the message transformation process.

Oracle Service Bus and Oracle Mediator

Note that the SOA Suite contains both the Oracle Service Bus (formerly
AquaLogic Service Bus, now known as OSB) and the Oracle Mediator. OSB
provides more powerful service abstraction capabilities that will be explored in
Chapter 4, Loosely-coupling Services. Beyond simple transformation, it can also
perform other functions such as throttling of target services. It is also easier to
modify service endpoints in the runtime environment with OSB.

The stated direction by Oracle is for the Oracle Service Bus to be the preferred
ESB for interactions outside the SOA Suite. Interactions within the SOA Suite may
sometimes be better dealt with by the Oracle Mediator component in the SOA Suite,
but we believe that for most cases, the Oracle Service Bus will provide a better
solution and so that is what we have focused on within this book. However, in
the current release, the Oracle Service Bus only executes on the Oracle WebLogic
platform. Therefore, when running SOA Suite on non-Oracle platforms, there are
two choices:

Use only the Oracle Mediator
Run Oracle Service Bus on a WebLogic Server while running the rest of SOA
Suite on the non-Oracle platform

Later releases of the SOA Suite will support Oracle Service Bus on non-Oracle
platforms such as WebSphere.

•
•

Chapter 1

[21]

Service orchestration – the BPEL process
manager
In order to build composite services, that is, services constructed from other services,
we need a layer that can orchestrate, or tie together, multiple services into a single
larger service. Simple service orchestrations can be done within the Oracle Service
Bus, but more complex orchestrations require additional functionality. These service
orchestrations may be thought of as processes, some of which are low-level processes
and others are high-level business processes.

Business Process Execution Language (BPEL) is the standard way to describe
processes in the SOA world, a task often referred to as service orchestration. The
BPEL process manager in SOA Suite includes support for the BPEL 1.1 standard, with
most constructs from BPEL 2.0 also being supported. BPEL allows multiple services
to be linked to each other as part of a single managed process. The processes may be
short running (taking seconds and minutes) or long running (taking hours and days).

The BPEL standard says nothing about how people interact with it, but BPEL process
manager includes a Human Workflow component that provides support for human
interaction with processes.

The BPEL process manager may also be purchased as a standalone component, in
which case, it ships with the Human Workflow support and the same adapters, as
included in the SOA Suite.

Introduction to Oracle SOA Suite

[22]

We explore the BPEL process manager in more detail in Chapter 5, Using BPEL to
Build Composite Services and Business Processes and Chapter 14, Error Handling. Human
workflow is examined in Chapter 6, Adding in Human Workflow and Chapter 17,
Workflow Patterns.

Oracle also packages the BPEL process manager with the Oracle Business Process
Management (BPM) Suite. This package includes the former AquaLogic BPM
product (acquired when BEA bought Fuego), now known as Oracle BPM. Oracle
positions BPEL as a system-centric process engine with support for human
workflow, while BPM is positioned as human-centric process engine with
support for system interaction.

Rules
Business decision-making may be viewed as a service within SOA. A rules engine is
the physical implementation of this service.

SOA Suite includes a powerful rules engine that allows key business decision logic to
be abstracted out of individual services and managed in a single repository.

In Chapter 7, Using Business Rules to Define Decision Points and in Chapter 18, Using
Business Rules to Implement Services, we investigate how to use the rules engine.

Security and monitoring
One of the interesting features of SOA is the way in which aspects of a service are
themselves a service. Nowhere is this better exemplified than with security. Security
is a characteristic of services, yet to implement it effectively requires a centralized
policy store coupled with distributed policy enforcement at the service boundaries.
The central policy store can be viewed as a service that the infrastructure uses to
enforce service security policy.

Enterprise Manager serves as a policy manager for security, providing a centralized
service for policy enforcement points to obtain their policies. Policy enforcement
points, termed interceptors in SOA Suite 11g, are responsible for applying security
policy, ensuring that only requests that comply with the policy are accepted.

Security policy may also be applied through the Service Bus. Although policy
management is done in the Service Bus rather than in the Enterprise Manager, the
direction is for Oracle to have a common policy management in a future release.

Chapter 1

[23]

Applying security policies is covered in Chapter 21, Defining Security and
Management Policies.

Active monitoring – BAM

It is important in SOA to track what is happening in real time. Some business
processes require such real-time monitoring. Users such as financial traders, risk
assessors, and security services may need instant notification of business events that
have occurred.

Business Activity Monitoring is part of the SOA Suite and provides a real-time view
of processes and services data to end users. BAM is covered in Chapter 9, Building
Real-time Dashboards.

Introduction to Oracle SOA Suite

[24]

Business to Business – B2B
Although we can use adapters to talk to remote systems, we often need additional
features to support external services, either as clients or providers. For example,
we may need to verify that there is contract in place before accepting or sending
messages to a partner. Management of agreements or contracts is a key additional
piece of functionality that is provided by Oracle B2B. B2B can be thought of as
a special kind of adapter that, in addition to support for B2B protocols such as
EDIFACT/ANSI X12 or RosettaNet, also supports agreement management.
Agreement management allows control over the partners and interfaces used
at any given point in time. We will not cover B2B in this book as the B2B space
is a little at the edge of most SOA deployments.

Complex Event Processing – CEP
As our services execute, we will often generate events. These events can be
monitored and processed using the complex event processor. The difference between
event and message processing is that messages generally require some action on
their own with little or minimal additional context. Events, on the other hand, often
require us to monitor several of them to spot and respond to trends. For example, we
may treat a stock sale as a message when we need to record it and reconcile it with
the accounting system. We may also want to treat the stock sale as an event in which
we wish to monitor the overall market movements in a single stock or in related
stocks to decide whether we should buy or sell. The complex event processor allows
us to do time-based and series-based analysis of data. We will not talk about CEP in
this book as it is a complex part of the SOA Suite that requires a complementary but
different approach to the other SOA components.

Event delivery network
Even the loose-coupling provided by a Service Bus is not always enough. We often
wish to just publish events and let any interested parties be notified of the event. A
new feature of SOA Suite 11g is the event delivery network, which allows events to
be published without the publisher being aware of the target or targets. Subscribers
can request to be notified of particular events, filtering them based on event domain,
event type, and event content. We cover the event delivery network in Chapter 8,
Using Business Events.

SOA Suite architecture
We will now examine how Oracle SOA Suite provides the services
identified previously.

Chapter 1

[25]

Top level
The SOA Suite is built on top of a Java Enterprise Edition (Java EE) infrastructure.
Although SOA Suite is certified with several different Java EE servers, including
IBM WebSphere, it will most commonly be used with the Oracle WebLogic server.
The Oracle WebLogic Server (WLS) will probably always be the first available Java
EE platform for SOA Suite and is the only platform that will be provided bundled
with the SOA Suite to simplify installation. For the rest of this book, we will assume
that you are running SOA Suite on the Oracle WebLogic server. If there are any
significant differences when running on non-Oracle application servers, we will
highlight them in the text.

In addition to a Java EE application server, the SOA Suite also requires a database.
The SOA Suite is designed to run against any SQL database, but certification for
non-Oracle databases has been slow in coming. The database is used to maintain
configuration information and also records of runtime interactions. Oracle Database
XE can be used with the SOA Suite, but it is not recommended for production
deployments as it is not a supported configuration.

Component view
In a previous section, we examined the individual components of the SOA Suite and
here we show them in context with the Java EE container and the database. Note that
CEP does not run in an application server and OSB runs in a separate container to
the other SOA Suite components.

Introduction to Oracle SOA Suite

[26]

All the services are executed within the context of the Java EE container, even though
they may use that container in different ways. BPEL listens for events and updates
processes based upon those events. Adapters typically make use of the Java EE
containers connector architecture (JCA) to provide connectivity and notifications.
Policy interceptors act as filters. Note that the Oracle Service Bus (OSB) is only
available when the application server is a WebLogic server.

Implementation view
Oracle has put a lot of effort into making SOA Suite consistent in its use of underlying
services. A number of lower-level services are reused consistently across components.

A Portability Layer provides an interface between the SOA Suite and the specifics of
the JEE platform that hosts it.

At the lowest level, connectivity services, such as SCA, JCA adapters, JMS, and Web
Service Framework, are shared by higher-level components.

A Service Layer exposes higher-level functions. The BPEL process manager is
implemented by a combination of a BPEL engine and access to the Human
Workflow engine. Rules is another shared service that is available to BPEL
or other components.

Chapter 1

[27]

A recursive example
The SOA Suite architecture is a good example of service-oriented design principles
being applied. Common services have been identified and extracted to be shared
across many components. The high-level services such as BPEL and ESB share some
common services such as transformation and adapter services running on a standard
Java EE container.

JDeveloper
Everything we have spoken of so far has been related to the executable or runtime
environment. Specialist tools are required to take advantage of this environment. It
is possible to manually craft the assemblies and descriptors required to build a SOA
Suite application, but it is not a practical proposition. Fortunately, Oracle provides
JDeveloper free of charge to allow developers to build SOA Suite applications.

JDeveloper is actually a separate tool, but it has been developed in conjunction
with SOA Suite so that virtually all facilities of SOA Suite are accessible through
JDeveloper. One exception to this is the Oracle Service Bus, which in the current
release does not have support in JDeveloper but instead has a different tool
named WebLogic Workspace Studio. Although JDeveloper started life as a Java
development tool, many users now never touch the Java side of JDeveloper,
doing all their work in the SOA Suite components.

JDeveloper may be characterized as a model-based, wizard-driven development
environment. Re-entrant wizards are used to guide the construction of many
artifacts of the SOA Suite, including adapters and transformation.

JDeveloper has a consistent view that the code is also the model, so that graphical
views are always in synchronization with the underlying code. It is possible to
exercise some functionality of SOA Suite using the Eclipse platform, but to get
full value out of the SOA Suite it is really necessary to use JDeveloper. The
Eclipse platform does, however, provide the basis for the Service Bus designer,
the Workspace Studio. There are some aspects of development that may be
supported in both tools, but are easier in one than the other.

Other components
We have now touched on all the major components of the SOA Suite. There are,
however, a few items that are either of a more limited interest or are outside the
SOA Suite, but closely related to it.

Introduction to Oracle SOA Suite

[28]

Service repository and registry
Oracle has a service repository and registry product that is integrated with the SOA
Suite but separate from it. The repository acts as a central repository for all SOA
artifacts and can be used to support both developers and deployers in tracking
dependencies between components both deployed and in development. The
repository can publish SOA artifacts such as service definitions and locations to the
service registry. The Oracle Service registry may be used to categorize and index
services created. Users may then browse the registry to locate services. The service
registry may also be used as a runtime location service for service endpoints.

BPA Suite

The Oracle BPA Suite is targeted at business process analysts who want a powerful
repository-based tool to model their business processes. The BPA Suite is not an easy
product to learn, and like all modeling tools, there is a price to pay for the descriptive
power available. The fact of interest to SOA Suite developers is the ability for the
BPA Suite and SOA Suite to exchange process models. Processes created in the BPA
Suite may be exported to the SOA Suite for concrete implementation. Simulation of
processes in the BPA Suite may be used as a useful guide for process improvement.

Links between the BPA Suite and the SOA Suite are growing stronger over time,
and this provides a valuable bridge between business analysts and IT architects.

The BPM Suite

The Business Process Management Suite is focused on modeling and execution of
business processes. As mentioned, it includes BPEL process manager to provide
strong system-centric support for business processes, but the primary focus of the
Suite is on modeling and executing processes in the BPM designer and BPM server.
BPM server and BPEL process manager are converging on a single shared
service implementation.

Portals and WebCenter
The SOA Suite has no real end-user interface outside the human workflow service.
Frontends may be built using JDeveloper directly or they may be crafted as part of
Oracle Portal, Oracle WebCenter, or another Portal or frontend builder. A number of
portlets are provided to expose views of SOA Suite to end users through the portal.
These are principally related to human workflow, but also include some views onto
the BPEL process status. Portals can also take advantage of WSDL interfaces to
provide a user interface onto services exposed by the SOA Suite.

Chapter 1

[29]

Enterprise manager SOA management pack
Oracle's preferred management framework is Oracle Enterprise Manager. This is
provided as a base set of functionality with a large number of management packs,
which provide additional functionality. The SOA management pack extends
Enterprise Manager to provide monitoring and management of artifacts
within the SOA Suite.

Summary
As we have seen, there are a lot of components to the SOA Suite, and even though
Oracle has done a lot to provide consistent usage patterns, there is still a lot to learn
about each component. The rest of this book takes a solution-oriented approach to
the SOA Suite rather than a component approach. We will examine the individual
components in the context of the role they serve and how they are used to enable
service-oriented architecture.

www.allitebooks.com

http://www.allitebooks.org

Writing your First Composite
In this chapter, we are going to provide a hands-on introduction to the core
components of the Oracle SOA Suite, namely, the Oracle BPEL Process Manager
(or BPEL PM), Mediator, and the Oracle Service Bus (or OSB). We will do this by
implementing an Echo service, which is a trivial service that takes a single string as
input and then returns the same string as its output.

We will first use JDeveloper to implement and deploy this as a BPEL process in
an SCA Assembly. While doing this, we will take the opportunity to give you a
high-level tour of JDeveloper in order to familiarize you with its overall layout.

Once we have successfully deployed our first BPEL process, we will use the
Enterprise Manager (EM) console to execute a test instance of our process and
examine its audit trail.

Next, we will introduce the Mediator component and use JDeveloper to create a
Mediator component that fronts our BPEL process. We will deploy this as a new
version of our SCA Assembly.

Finally we will introduce the Service Bus, and look at how we can use its web-based
console to build and deploy a proxy service on top of our SCA Assembly. Once
deployed, we will use the tooling provided by the Service Bus console to test our
end-to-end service.

Installing SOA Suite
Before creating and running your first service, you will need to download and install
the SOA Suite. Oracle SOA Suite 11g deploys on WebLogic 10g R3.

To download the installation guide, go to the support page of Packt Publishing
(www.packtpub.com/support). From here, follow the instructions to download a
zip file containing the code for the book. Included in the zip will be a PDF document
named SoaSuiteInstallationForWeblogic11g.pdf.

Writing your First Composite

[32]

This document details the quickest and easiest way to get the SOA Suite up and
running and covers the following:

Where to download the SOA Suite and any other required components
How to install and configure the SOA Suite
How to install and run the oBay application, as well as the other code
samples that come with this book

Writing your first BPEL process
Ensure that the Oracle SOA Suite has started (as described in the previously mentioned
installation guide) and start JDeveloper. When you start JDeveloper for the first time, it
will prompt you for a developer role, as shown in the following screenshot:

JDeveloper has a number of different developer roles that limit the technology
choices available to the developer. Choose the Default Role to get access to all
JDeveloper functionality. This is needed to access the SOA Suite functionality.

•
•
•

Chapter 2

[33]

After selecting the role, we are offered a Tip of the Day to tell us about a feature
of JDeveloper. After dismissing the Tip of the Day, we are presented with a blank
JDeveloper workspace.

The top-left-hand window is the Application Navigator, which lists all the
applications that we are working on (it is currently empty as we have not yet defined
any). Within JDeveloper, an application is a grouping of one or more related projects.
A Project is a collection of related components that make up a deployable resource
(for example, an SCA Assembly, Java application, web service, and so on).

Within the context of the SOA Suite, each SCA Assembly is defined within its own
project, with an application being a collection of related SCA Assemblies.

On the opposite side of the screen to the Application Navigator tab is the Resource
Palette, which contains the My Catalogs tab to hold resources for use in composites
and the IDE Connections tab. If we click on this it will list the types of connections
we can define to JDeveloper. A connection allows us to define and manage links to
external resources such as databases, application servers, and rules engines.

Once defined, we can expand a connection to inspect the content of an external
resource, which can then be used to create or edit components that utilize the
resource. For example, you can use a database connection to create and configure
a database adapter to expose a database table as a web service.

Writing your First Composite

[34]

Connections also allow us to deploy projects from JDeveloper to an external
resource. If you haven't done so already, then you will need to define a connection
to the application server (as described in the installation guide) because we will need
this to deploy our SCA Assemblies from within JDeveloper.

The connection to the application server is used to connect to the management
interfaces in the target container. We can use it to browse deployed applications,
change the status of deployed composites, or as we will do here, deploy new
composites to our container.

The main window within JDeveloper is used to edit the artifact that we are currently
working on (for example, BPEL Process, XSLT Transformation, Java code, and so on).
The top of this window contains a tab for each resource we have open, allowing you
to quickly switch between them.

At the moment, the only artifact that we have opened is the Start Page, which
provides links to various documents on JDeveloper.

The bottom-left-hand corner contains the Structure window. The content of this
depends on the resource we are currently working on.

Creating an application
Within JDeveloper, an application is the main container for our work. It consists of a
directory where all our application projects will be created.

So, before we can create our Echo SCA Assembly, we must create the application to
which it will belong. Within the Applications Navigator tab in JDeveloper, click on
the New Application… item.

This will launch the Create SOA Application dialog, as shown in the
preceding screenshot.

Give the application an appropriate name like SoaSuiteBook11gChapter2.

Chapter 2

[35]

We can specify the top-level directory in which we want to create our applications.
By default, JDeveloper will set it to the following:

<JDEVELOPER_HOME>\	mywork\<Application	Name>

Normally, we would specify a directory that's not under JDEVELOPER_HOME, as this
makes it simpler to upgrade to future releases of JDeveloper.

In addition, you can specify an Application Template. For SOA projects, select SOA
Application template, and click on the Next button.

Next, JDeveloper will prompt us for the details of a new SOA project.

Writing your First Composite

[36]

Creating an SOA project
We provide a name for our project such as EchoComposite and select the
technologies we desire to be available in the project. In this case, we leave the default
SOA technology selected. The project will be created in a directory that, by default,
has the same name as the project and is located under the application directory.
These settings can be changed.

Chapter 2

[37]

Clicking on Next will give us the opportunity to configure our new composite by
selecting some initial components. Select Composite With BPEL to create a new
Assembly with a BPEL process, as shown in the next screenshot:

SOA project composite templates
We have a number of different templates available to us. Apart from the Empty
Composite template, they all populate the composite with an initial component.
This may be a BPEL component, a Business Rule component, a Human Task, or a
Mediator component. The Composite From Oracle BPA Blueprint is used to
import a process from the Oracle BPA Suite and generate it as a BPEL component
within the composite.

It is possible to create an Empty Composite and then add the components directly
to the composite, so if you choose the wrong template and start working with it, you
can always enhance it by adding more components. Even the Empty Composite is
not really empty, as it includes all the initial files you need to start building your
own composite.

Writing your First Composite

[38]

Creating a BPEL process
Clicking Finish will launch the Create BPEL Process wizard, as shown in the
following screenshot:

Replace the process with a sensible Name like EchoProcess and select a template
of the type Synchronous BPEL Process and click OK. JDeveloper will create a
skeleton BPEL Process and a corresponding WSDL that describes the web service
implemented by our process. This process will be wrapped in an SCA Assembly.

BPEL process templates cover the different ways in which a client may
interact with the process. A Define Service Later template is just the
process definition and will be used when we want to have complete
control over the types of interfaces the process exposes, we can think of
this as an empty BPEL process template. An Asynchronous BPEL Process
template is used when we send a one-way message to a process, and
then later on we send a one-way message from the process to the caller.
This type of interaction is good for processes that run for a long time.
A Synchronous BPEL Process is one in which we have a request/reply
interaction style. The client sends in a request message and then blocks
waiting for the process to provide a reply. This type of interaction is good
for processes that need to return an immediate result. A One Way BPEL
Process simply receives a one-way input message but no reply is expected.
This is useful when we initiate some interaction that will initiate a number
of other activities. We may also create a BPEL process that implements a
specific interface defined in WSDL by using the Base on a WSDL template.
Finally, we may have a BPEL process that is activated when a specific
event is generated by the Event Delivery Network (see Chapter 8, Using
Business Events) using the Subscribe to Events template.

Chapter 2

[39]

If we look at the process that JDeveloper has created (as shown in the following
screenshot), we can see that in the center is the process itself, which contains the
activities to be carried out. At the moment, it just contains an initial activity for
receiving a request and a corresponding activity for sending a response.

Either side of the process we have a swim lane containing Partner Links that
represent either the caller of our process, as is the case with the echoprocess_client
partner links, or services that our BPEL process calls out to. At the moment this is
empty as we haven't defined any external references that we use within our BPEL
process. Notice also that we don't currently have any content between receiving the
call and replying; our process is empty and does nothing.

The Component Palette window (to the right of our process window in the
preceding screenshot) lists all the BPEL Activities and Components that we can use
within our process. To use any of these, we have to simply drag-and-drop them onto
the appropriate place within our process.

If you click on the BPEL Services drop-down, you also have the option of selecting
services which we use whenever we need to call out to an external system.

Getting back to our skeleton process, we can see that it consists of two activities;
receiveInput and replyOutput. In addition it has two variables, inputVariable
and outputVariable, which were created as part of our skeleton process.

www.allitebooks.com

http://www.allitebooks.org

Writing your First Composite

[40]

The first activity is used to receive the initial request from the client invoking
our BPEL process; when this request is received it will populate the variable
inputVariable with the content of the request.

The last activity is used to send a response back to the client, and the content of this
response will contain the content of outputVariable.

For the purpose of our simple EchoProcess we just need to copy the content of the
input variable to the output variable.

Assigning values to variables
In BPEL, the <assign> activity is used to update the values of variables with new
data. The <assign> activity typically consists of one or more copy operations. Each
copy consists of a target variable, that is, the variable that you wish to assign a value
to and a source, which can either be another variable or an XPath expression.

To insert an Assign activity, drag one from the Component Palette on to our
BPEL process at the point just after the receiveInput activity, as shown in the
following screenshot:

Chapter 2

[41]

To configure the Assign activity, double-click on it to open up its configuration
window. Click on the green cross to access a menu and select Copy Operation…,
as shown in the next screenshot:

This will present us with the Create Copy Operation window, as shown in the
following screenshot:

Writing your First Composite

[42]

On the left-hand side, we specify the From variable, that is, where we want to copy
from. For our process, we want to copy the content of our input variable to our
output variable. So expand inputVariable and select /client:process/client:input,
as shown in the preceding screenshot.

On the right-hand side, we specify the To variable, that is, where we want to copy to.
So expand outputVariable and select /client:processResponse/client:result.

Once you've done this, click OK and then OK again to close the Assign window.

Deploying the process
This completes our process, so click on the Save All icon (the fourth icon along, in
the top-left-hand corner of JDeveloper) to save our work.

As a BPEL project is made up of multiple files, we typically use Save All
to ensure that all modifications are updated at the same time.

Our process is now ready to be deployed. Before doing this, make sure the SOA
Suite is running and that within JDeveloper we have defined an Application Server
connection (as described in the installation guide).

To deploy the process, right-click on our EchoComposite project and then select
Deploy | EchoComposite | to MyApplicationServerConnection.

Chapter 2

[43]

This will bring up the SOA Deployment Configuration Dialog. This dialog allows
us to specify the target servers onto which we wish to deploy the composite. We may
also specify a Revision ID for the composite to differentiate it from other deployed
versions of the composite. If a revision with the same ID already exists, then it may
be replaced by specifying the Overwrite any existing composites with the same
revision ID option.

Clicking OK will begin the build and deployment of the composite. JDeveloper
will open up a window below our process containing five tabs: Messages,
Feedback, BPEL, Deployment, and SOA, to which it outputs the status of the
deployment process.

Writing your First Composite

[44]

During the build, the SOA tab will indicate if the build was successful, and assuming
it was, then an Authorization Request window will pop up requesting credentials
for the application server.

On completion of the build process, the Deployment tab should state Successfully
deployed archive …., as shown in the following screenshot:

If you don't get this message, then check the log windows for details of the error and
fix it accordingly.

Chapter 2

[45]

Testing the BPEL process
Now that our process has been deployed, the next step is to run it. A simple way to
do this is to initiate a test instance using the Enterprise Manager (EM) console,
which is the web-based management console for SOA Suite.

To access the EM console, open up a browser and enter the following URL:

http://<hostname>:<port>/em

This will bring up the login screen for the EM console. Log in as weblogic. This will
take us to the EM console dashboard, as shown in the following screenshot:

Writing your First Composite

[46]

The Dashboard provides us with a summary report on the Fusion Middleware
domain. On the left-hand side we have a list of management areas and on the right
we have summaries of application deployments, including our EchoComposite
under the SOA tab.

From here, click on the composite name, that is, EchoComposite. This will take us
to the Dashboard screen for our composite. From here we can see the number of
completed and currently executing composite instances.

Chapter 2

[47]

At the top of the Dashboard there is a Test button that allows us to execute a
composite test. Pressing this button brings up the Test Web Service page, as
shown in the following screenshot:

When we created our process, JDeveloper automatically created a WSDL file which
contained the single operation (that is, process). However, it's quite common to
define processes that have multiple operations, as we will see later on in the book.

Writing your First Composite

[48]

The Operation drop-down list allows us to specify which operation we want to
invoke. In our case, it's automatically defaulted to process.

When you select the operation to invoke, the console will generate an HTML form
with a field for each element in the message payload of the operation (as defined by
the WSDL for the process). Here we can enter into each field the value that we want
to submit.

For operations with large message payloads it can be simpler to just enter the XML
source. If you select the XML View drop-down list the console will replace the form
with a free text area with a skeleton XML fragment into which we can insert the
required values.

To execute a test instance of our composite, enter some text in the input field and
click Test Web Service. This will cause the console to generate a SOAP message and
use it to invoke our Echo process.

Upon successful execution of the process, our test page will be updated to show
the result which displays the response returned by our process. Here we can
see that the result element contains our original input string, as shown in the
following screenshot:

Chapter 2

[49]

If we expand the SOA and soa-infra items on the left-hand side of the page, we
will arrive back at the dashboard for the EchoComposite. Clicking on a completed
instance will give us a summary of the composite. From here we can see the
components that make up our composite. In this case, the composite consists
of a single BPEL process.

Clicking on the BPEL process takes us to an audit record of the instance. We can
expand the tree view to see details of individual operations like the message sent
by replyOutput.

Writing your First Composite

[50]

Clicking on the Flow tab will display a graphical representation of the activities
within the BPEL process.

Chapter 2

[51]

Clicking on any of the activities in the audit trail will pop up a window displaying
details of the actions performed by that activity. In the following screenshot, we can
see details of the message sent by the replyOutput activity:

This completes development of our first BPEL process. The next step is to call it via
the Mediator. This will give us the option of transforming the input into the format
we desire and of routing to different components based on the input content.

Adding a Mediator
By selecting the composite.xml tab in JDeveloper, we can see the outline of the
Assembly that we have created for the BPEL process. We can add a Mediator
to this by dragging it from the Component Palette.

Writing your First Composite

[52]

Dragging the Mediator Component will cause a dialog to be displayed requesting a
Name and Template for the Mediator.

If we select the Define Interface Later template, then we can click OK to add a
Mediator to our Assembly. Defining the interface later will allow us to define the
interface by wiring it to a service. Note that the types of interface templates are the
same as the ones we saw for our BPEL process.

Chapter 2

[53]

We want to have the Mediator use the same interface as the BPEL process. To rewire
the composite to use a Mediator, we first delete the line joining the EchoProcess in
the Exposed Services swimlane to the BPEL process by right-clicking on the line and
selecting Delete.

We can now wire the EchoProcess service to the input of the Mediator by clicking on
the chevron in the top-right corner of the exposed service and dragging it onto the
connection point on the left-hand side of the Mediator.

Writing your First Composite

[54]

Now wire the Mediator to the BPEL process by dragging the yellow arrow on the
Mediator onto the blue chevron on the BPEL process.

We have now configured the Mediator to accept the same interface as the BPEL
process and wired the Mediator to forward all messages onto the BPEL process.
The default behavior of the Mediator, if it has no explicit rules, is to route the input
request to the outbound request and then route the response, if any, from the target
to the client.

We can now deploy and test the Assembly containing the Mediator in the same way
that we deployed and tested the Assembly containing the BPEL process.

Using the Service Bus
In preparation for this, we will need the URL for the WSDL of our process. To obtain
this, from the EM Dashboard, click on the EchoComposite Assembly, and then the
connector icon to the right of the Settings button. This will display a link for the
WSDL location and Endpoint, as shown in the following screenshot:

If you click on this link, the EM console will open a window showing details of the
WSDL. Make a note of the WSDL location as we will need this in a moment.

Chapter 2

[55]

Writing our first proxy service
Rather than allowing clients to directly invoke our Echo process, best practice
dictates that we provide access to this service via an intermediary or proxy, whose
role is to route the request to the actual endpoint. This results in a far more loosely-
coupled solution, which is the key if we are to realise many of the benefits of SOA.

In this section, we are going to use the Oracle Service Bus (OSB) to implement a
proxy Echo service, which sits between the client and our echo BPEL process, as
illustrated in the following diagram:

It is useful to examine the preceding scenario to understand how messages are
processed by OSB. The Service Bus defines two types of services, a proxy service
and a business service.

The proxy service is an intermediary service that sits between the client
and the actual end service being invoked (our BPEL process in the
preceding example).

On receipt of a request the proxy service may perform a number of actions,
such as validating, transforming, or enriching it before routing it to the
appropriate business service.

Within the OSB, a business service is a definition of an external service for which
OSB is a client. This defines whether OSB can invoke the external service and
includes details such as the service interface, transport, security, and so on.

In the preceding example, we have defined an Echo Proxy Service that routes
messages to the Echo Business Service, which then invokes our Echo BPEL Process.
The response from the Echo BPEL Process follows the reverse path with the proxy
service returning the final response to the original client.

Writing your First Composite

[56]

Writing the Echo proxy service
Ensure that the Oracle Service Bus has started and then open up the Service
Bus Console. Either do this from the Programs menu in Windows, select
Oracle Weblogic | User Projects | OSB | Oracle Service Bus Admin Console

Or alternatively, open up a browser, and enter the following URL:

http://<hostname>:<port>/sbconsole

Where hostname represents the name of the machine on which OSB is running and
port represents the port number. So if OSB is running on your local machine using
the default port, enter the following URL in your browser:

http://localhost:7001/sbconsole

This will bring up the login screen for the Service Bus Console, log in as weblogic.
By default, the OSB Console will display the Dashboard view, which provides a
summary of the overall health of the system.

Looking at the console, we can see that it is divided into three distinct areas. The
Change Center in the top-left-hand corner, which we will cover in a moment. Also
on the left, below the Change Center, is the navigation bar which we use to navigate
our way round the console.

Chapter 2

[57]

The navigation bar is divided into the following sections: Operations, Resource
Browser, Project Explorer, Security Configuration, and System Administration.
Clicking on the appropriate section will expand that part of the navigation bar and
allow you to access any of its sub-sections and their corresponding menu items.

Clicking on any of the menu items will display the appropriate page within the main
window of the console. In the previous diagram we looked at the Dashboard view,
under Monitoring, which is part of the Operations section.

Creating a Change Session
Before we can create a new project, or make any configuration changes through
the console, we must create a new change session. A Change Session allows us to
specify a series of changes as a single unit of work. These changes won't come into
effect until we activate a session. At any point we can discard our changes, which
will cause OSB to roll back those changes and exit our session.

While making changes through a session, other users can also be making changes
under separate sessions. If users create changes that conflict with changes in
other sessions, then the Service Bus will flag that as a conflict in the Change
Center and neither user will be able to commit their changes until those conflicts
have been resolved.

To create a new change session, click on Create in the Change Center. This will
update the Change Center to indicate that we are in a session and the user who
owns that session. As we are logged in as weblogic, it will be updated to show
weblogic session, as shown in the following screenshot:

In addition, you will see that the options available to us in the Change Center have
changed to Activate, Discard, and Exit.

Writing your First Composite

[58]

Creating a project
Before we can create our Echo proxy service, we must create an OSB project in which
to place our resources. Typical resources include WSDL, XSD schemas, XSLT, and
XQuery as well as Proxy and Business Services.

Resources can be created directly within our top-level project folder, or we can define
a folder structure within our project into which we can place our resources.

From within the same OSB domain, you can reference any
resource regardless of which project it is included in.

The Project Explorer is where we create and manage all of this. Click on the Project
Explorer section within the navigation bar. This will bring up the Projects view, as
shown in the following screenshot:

Here we can see a list of all projects defined in OSB, which at this stage just includes
the default project. From here we can also create a new project. Enter a project name,
for example Chapter02, as shown in the preceding screenshot, and then click Add
Project. This will create a new project and update our list of projects to reflect this.

Creating the project folders
Click on the project name will take us to the Project View, as shown in the
screenshot on the next page.

We can see that this splits into three sections. The first section provides some basic
details about the project including any references to or from artifacts in other projects
as well as an optional description.

The second section lists any folders within the current project folder and provides
the option to create additional folders within the project.

Chapter 2

[59]

The final section lists any resource contained within this folder and provides the
option to create additional resource.

We are going to create the project folders BusinessService, ProxyService, and
WSDL, into which we will place our various resources. To create the first of these,
in the Folders section, enter BusinessService as the folder name (circled in the
preceding screenshot) and click on Add Folder. This will create a new folder and
updates the list of folders to reflect this.

Writing your First Composite

[60]

Once created, follow the same process to create the remaining folders; your list of
folders will now look as shown in the preceding screenshot.

Creating service WSDL
Before we can create either our proxy or business service, we need to define the
WSDL on which the service will be based. For this, we are going to use the WSDL
of our Echo BPEL process that we created earlier in this chapter.

Before importing the WSDL, we need to ensure that we are in the right folder within
our project. To do this, click on the WSDL folder in our Folders list. On doing this
the project view will be updated to show us the content of this folder, which is
currently empty. In addition, the project summary section of our project view
will be updated to show that we are now within the WSDL folder, as circled in
the following screenshot:

If we look at the Project Explorer in the navigation bar, we can see that it has been
updated to show our location within the projects structure. By clicking on any project
or folder in here, the console will take us to the project view for that location.

Chapter 2

[61]

Importing a WSDL
To import the Echo WSDL into our project, click on the drop-down list next to Create
Resource in the Resources section, and select Resources from URL, as shown in the
following screenshot:

This will bring up the page for loading resources from a URL, which is shown
in the following screenshot:

A WSDL can also be imported from the filesystem by selecting the WSDL
option from the Create Resource drop-down list.

Writing your First Composite

[62]

In the URL/Path, enter the URL for our Echo WSDL. This is the WSDL location we
made a note of earlier (in the WSDL tab for the Echo process in the BPEL console)
and should look like the following:

http://<hostname>:<port>/orabpel/default/Echo/1.0/Echo?wsdl

Enter an appropriate value for the Resource Name (for example Echo), select a
Resource Type as WSDL, and click on Next.

This will bring up the Load Resources window, which will list the resources that
OSB is ready to import.

You will notice that in addition to the actual WSDL file, it will also list the Echo.xsd.
This is because the Echo.wsdl contains the following import statement:

<wsdl:types>
		<schema>
 <import namespace=
 "http://xmlns.oracle.com/SOASuiteBook11gChapter2_jws
/EchoComposite/EchoProcess"
 schemaLocation=
 "http://axreynol-us.us.oracle.com:8001/soa-infra/services/
default/EchoComposite/echoprocess_client_ep?
XSD=xsd/EchoProcess.xsd"/>
		</schema>
</wsdl:types>

This imports the Echo XML schema, which defines the input and output message
of our Echo service. This schema was automatically generated by JDeveloper when
we created our Echo process. In order to use our WSDL, we will need to import this
schema as well. Because of the unusual URL for the XML Schema, the Service Bus
generates its own unique name for the schema.

Chapter 2

[63]

Click Import, the OSB console will confirm that the resources have been successfully
imported and provide the option to Load Another resource, as shown in the
following screenshot:

Click on the WSDL folder within the project explorer to return to its project
view. This will be updated to include our imported resources, as shown in the
following screenshot:

Writing your First Composite

[64]

Creating our business service
We are now ready to create our Echo business service. Click on the Business Service
folder within the Project Explorer to go to the project view for this folder.

In the Resources section, click on the drop-down list next to Create Resource and
select Business Service. This will bring up the General Configuration page for
creating a business service, as shown in the following screenshot:

Here we specify the name of our business service (that is, EchoBS) and an optional
description. Next we need to specify the Service Type, as we are creating our service
based on a WSDL select WSDL Web Service.

Chapter 2

[65]

Next, click the Browse button. This will launch a window from where we can select
the WSDL for the Business Service, as shown on the next page:

By default, this window will list all WSDL resources that are defined to the Service
Bus, though you can restrict the list by defining the search criteria.

In our case, we just have the Echo WSDL, so we click on this. We will now be
prompted to select a WSDL definition, as shown in the following screenshot:

Here we need to select which binding or port definition we wish to use for
our Business Service, select EchoProcess_pt and click Submit. Bindings
provide an abstract interface and do not specify the physical endpoint, requiring
additional configuration later. Ports have a physical endpoint and so require no
additional configuration.

Writing your First Composite

[66]

This will return us to the General Configuration screen with the Service Type
updated to show the details of the selected WSDL and port, as shown in the
following screenshot:

Then, click on Next. This will take us to the Transport Configuration page, as shown
in the following screenshot. Here we need to specify how the business service is to
invoke an external service.

As we based our business service on the EchoPort definition, the transport settings
are already preconfigured, based on the content of our WSDL file.

If we had based our business service on the EchoBinding definition, then
the transport configuration would still have been prepopulated except for
the Endpoint URI, which we would need to add manually.

From here, click on Last. This will take us to a summary page of our business service.
Click on Save to create our business service.

Chapter 2

[67]

This will return us to the project view on the Business Service folder and display the
message The Service EchoBS was created successfully. If we examine the Resources
section, we should see that it now contains our newly created business service.

Creating our proxy service
We are now ready to create our Echo proxy service. Click on the Proxy Service folder
within the Project Explorer to go to the project view for this folder.

In the Resources section, click on the drop-down list next to Create Resource and
select Proxy Service. This will bring up the General Configuration page for creating
a proxy service, as shown in the following screenshot:

Writing your First Composite

[68]

You will notice that this looks very similar to the general configuration screen for a
business service. So as before, enter the name of our service (that is, Echo) and an
optional description.

Next, we need to specify the Service Type. We could do this in exactly the same
way as we did for our business service and base it on the Echo WSDL. However,
this time we are going to base it on our EchoBS business service. We will see why
in a moment.

For the Service Type, select Business Service, as shown in the screenshot, and click
Browse…. This will launch the Select Business Service window from where we can
search for and select the business service that we want to base our proxy service on.

By default, this window will list all the business services defined to the Service Bus,
though you can restrict the list by defining the search criteria.

In our case, we just have the EchoBS, so select this, and click on Submit. This will
return us to the General Configuration screen with Service Type updated, as shown
in the following screenshot:

From here, click Last. This will take us to a summary page of our proxy service. Click
Save to create our proxy service.

This will return us to the project view on the Proxy Service folder and display the
message The Service Echo was created successfully.

Chapter 2

[69]

If we examine the Resources section of our project view, we should see that it now
contains our newly created proxy service as shown in the following screenshot:

Creating message flow
Once we have created our proxy service, the next step is to specify how it should
handle requests. This is defined in the message flow of the proxy service.

The message flow defines the actions that the proxy service should perform when
a request is received such as validating the payload, transforming, or enriching it
before routing it to the appropriate business service.

Within the resource section of our project view, click on the Edit Message Flow
icon, as circled in the preceding image. This will take us to the Edit Message Flow
window, where we can view and edit the message flow of our proxy service, as
shown in the following screenshot:

Looking at this, we can see that Echo already invokes the route node
RouteTo_EchoBS.

Writing your First Composite

[70]

Click on this and select Edit Route (as shown in the preceding screenshot). This will
take us to the Edit Stage Configuration window, as shown in the following screenshot:

Here we can see that it's already configured to route requests to the EchoBS
business service.

Normally, when we create a proxy service we have to specify the message flow
from scratch. However, when we created our Echo proxy service we based it on the
EchoBS business service (as opposed to a WSDL). Because of this, the Service Bus
has automatically configured the message flow to route requests to EchoBS.

As a result, our message flow is already predefined for us, so click Cancel, and then
Cancel again to return to our project view.

Activating the Echo proxy service
We now have a completed proxy service; all that remains is to commit our work.
Within the Change Center click Activate.

Chapter 2

[71]

This will bring up the Activate Session, as shown in the following screenshot:

Before activating a session, it's good practice to give a description of the changes
that we've made, just in case we need to roll them back later. So enter an appropriate
description and then click on Submit, as shown in the preceding screenshot:

Assuming everything is okay, this will activate our changes, and the console will be
updated to list our configuration changes, as shown in the following screenshot:

If you make a mistake and want to undo the changes you have activated, then you
can click on the undo icon (circled in the preceding screenshot), and if you change
your mind, you can revert the undo.

OSB allows you to undo any of your previous sessions as long as it doesn't result in
an error in the runtime configuration of the Service Bus.

Writing your First Composite

[72]

Testing our proxy service
All that's left is to test our proxy service. A simple way to do this is to initiate a test
instance using the Service Bus test console.

To do this, we need to navigate back to the definition of our proxy service, rather
than do this via the Project Explorer. We will use the Resource Browser. This
provides a way to view all resources based on their type.

Click on the Resource Browser section within the navigation bar. By default,
it will list all proxy services defined to the Service Bus, as shown in the
following screenshot:

We can then filter this list further by specifying the appropriate search criteria.

Click on the Launch Test Console icon for the Echo proxy service (circled in the
preceding screenshot). This will launch the test console shown on the next page.

The Available Operations drop-down list allows us to specify which operation we
want to invoke. In our case, it's automatically defaulted to process.

By default, the options Direct Call and Include Tracing are selected within the Test
Configuration section; keep these selected as they enable us to trace the state of a
message as it passes through the proxy service.

Chapter 2

[73]

The Request Document section allows us to specify the SOAP Header and the
Payload for our service. By default, these will contain a skeleton XML fragment based
on the WSDL definition of the selected operation with default values for each field.

To execute a test instance of our service, modify the text in the <echo:input>
element, as we have in the following screen shot, and click Execute. This will cause
the console to generate a request message and use it to invoke our Echo proxy service.

Writing your First Composite

[74]

Upon successful execution of the proxy, the test console will be updated to show the
response returned. Here we can see that the result element contains our original
initial input string, as shown in the following screenshot:

Chapter 2

[75]

We can examine the state of our message as it passed through the proxy service by
expanding the Invocation Trace, as we have in the following screenshot:

In addition, if you log back into the EM console, you should be able to see the
Assembly instance that was invoked by the Service Bus.

Summary
In this section, we have implemented our first SCA Assembly and then built our
first proxy service on top of it. While this example is about as trivial as it can get,
it has provided us with an initial introduction to both the design time and runtime
components of Oracle BPEL PM and Oracle Service Bus.

In the next few chapters we will go into more detail on each of these components
as well as look at how we can use adapters to service enable existing systems.

Service-enabling Existing
Systems

The heart of service-oriented architecture (SOA) is the creation of processes and
applications from existing services. The question arises, where do these services come
from? Within an SOA solution, some services will need to be written from scratch,
but most of the functions required should already exist in some form within the IT
assets of the organization. Existing applications within the enterprise already provide
many services that just require exposing to an SOA infrastructure. In this chapter, we
will examine some ways to create services from existing applications. We refer to this
process as service-enabling existing systems. After discussing some of the different
types of systems, we will look at the specific functionality provided in the Oracle SOA
Suite that makes it easy to convert file and database interfaces into services.

Types of systems
IT systems come in all sorts of shapes and forms; some have existing web service
interfaces which can be consumed directly by an SOA infrastructure, others have
completely proprietary interfaces, and others expose functionality through some
well understood but non web service-based interfaces. In terms of service-enabling
a system, it is useful to classify it by the type of interface it exposes.

Within the SOA Suite, components called adapters provide a mapping between
non-web service interfaces and the rest of the SOA Suite. These adapters allow
the SOA Suite to treat non-web service interfaces as though they have a web
service interface.

Service-enabling Existing Systems

[78]

Web service interfaces
If an application exposes a web service interface, meaning a SOAP service
described by a Web Service Description Language (WSDL) document, then it
may be consumed directly. Such web services can directly be included as part
of a composite application or business process.

The latest versions of many applications expose web services, for example SAP,
Siebel, Peoplesoft, and E-Business Suite applications provide access to at least
some of their functionality through web services.

Technology interfaces
Many applications, such as SAP and Oracle E-Business Suite, currently expose only
part of their functionality or no functionality through web service interfaces, but they
can still participate in service-oriented architecture. Many applications have adopted
an interface that is to some extent based on a standard technology.

Examples of standard technology interfaces include the following:

Files
Database tables and stored procedures
Message queues

While these interfaces may be based on a standard technology, they do not provide
a standard data model, and generally, there must be a mapping between the raw
technology interface and the more structured web service style interface that we
would like.

The following table shows how these interfaces are supported through technology
adapters provided with the SOA Suite.

Technology Adapter Notes
Files File Reads and writes files mounted directly on the

machine. This can be physically attached disks or
network mounted devices (for example, Windows
shared drives or NFS drives).

FTP Reads and writes files mounted on an FTP server.
Database Database Reads and writes database tables and invokes

stored procedures.

•
•
•

Chapter 3

[79]

Technology Adapter Notes
Message
queues

JMS Reads and posts messages to Java Messaging
Service (JMS) queues and topics.

AQ Reads and posts messages to Oracle AQ
(Advanced Queuing) queues.

MQ Reads and posts messages to IBM MQ (Message
Queue) Series queues.

Java EJB Read and writes to EJBs.
TCP/IP Socket Reads and writes to raw socket interfaces.

In addition to the eight technology adapters listed previously, there are other
technology adapters available, such as a CICS adapter to connect to IBM mainframes
and an adapter to connect to systems running Oracle's Tuxedo transaction processing
system. There are many other technology adapters that may be purchased to work
with the SOA Suite.

The installed adapters are shown in the Component Palette of JDeveloper in
the Service Adapters section when SOA is selected, as shown in the
following screenshot:

Service-enabling Existing Systems

[80]

Application interfaces
The technology adapters leave the task of mapping interfaces and their associated
data structures into XML in the hands of the service-enabler. When using an
application adapter, such as those for the Oracle E-Business Suite or SAP, the
grouping of interfaces and mapping them into XML is already done for you by the
adapter developer. These application adapters make life easier for the service-enabler
by hiding underlying data formats and transport protocols.

Unfortunately, the topic of application adapters is too large an area to delve into in
this book, but you should always check if an application-specific adapter already
exists for the system that you want to service-enable. This is because application
adapters will be easier to use than the technology adapters.

There are hundreds of third-party adapters that may be purchased to provide SOA
Suite with access to functionality within packaged applications.

Java Connector Architecture
Within the SOA Suite, adapters are implemented and accessed using a Java
technology known as Java Connector Architecture (JCA). JCA provides a standard
packaging and discovery method for adapter functionality. Most of the time, SOA
Suite developers will be unaware of JCA because JDeveloper generates a JCA
binding as part of a WSDL interface and automatically deploys them with the SCA
Assembly. In the current release, JCA adapters must be deployed separately to a
WebLogic server for use by the Oracle Service Bus.

Creating services from files
A common mechanism for communicating with an existing application is through
a file. Many applications will write their output to a file, expecting it to be picked
up and processed by other applications. By using the file adapter, we can create
a service representation that makes the file producing application appear as
an SOA-enabled service that invokes other services. Similarly, other applications
can be configured to take input by reading files. A file adapter allows us to make
the production of the file appear as an SOA invocation, but under the covers, the
invocation actually creates a file.

Chapter 3

[81]

File communication is either inbound (this means that a file has been created by an
application and must be read) or outbound (this means that a file must be written
to provide input to an application). The files that are written and read by existing
applications may be in a variety of formats including XML, separator delimited files,
or fixed format files.

A payroll use case
Consider a company that has a payroll application that produces a file detailing
payments. This file must be transformed into a file format that is accepted by the
company's bank and then delivered to the bank via FTP. The company wants to
use SOA technologies to perform this transfer because it allows them to perform
additional validations or enrichment of the data before sending it to the bank. In
addition, they want to store the details of what was sent in a database for audit
purposes. In this scenario, a file adapter could be used to take the data from the file,
an FTP adapter to deliver it to the bank, and a database adapter could post it into the
tables required for audit purposes.

Reading a payroll file
Let's look at how we would read from a payroll file. Normally, we will poll to check
for the arrival of a file, although it is also possible to read a file without polling. The
key points to be considered beforehand are:

How often should we poll for the file?
Do we need to read the contents of the file?
Do we need to move it to a different location?
What do we do with the file when we have read or moved it?

Should we delete it?
Should we move it to an archive directory?

How large is the file and its records?
Does the file have one record or many?

We will consider all these factors as we interact with the File Adapter Wizard.

•
•
•
•

°
°

•
•

Service-enabling Existing Systems

[82]

Starting the wizard
We begin by dragging the file adapter from the component palette in JDeveloper
onto either a BPEL process or an SCA Assembly (refer to Chapter 2, Writing your
First Composite for more information on building a composite).

This causes the File Adapter Configuration Wizard to start.

Naming the service
Clicking on Next allows us to choose a name for the service that we are creating
and optionally a description. We will use the service name PayrollinputFileService.
Any name can be used, as long as it has some meaning to the developers. It is a
good idea to have a consistent naming convention, for example, identifying the
business role (PayrollInput), the technology (File), and the fact that this is a
service (PayrollinputFileService).

Chapter 3

[83]

Identifying the operation
Clicking on Next allows us to either import an existing WSDL definition for our
service or create a new service definition. We would import an existing WSDL
to reuse an existing adapter configuration that had been created previously.
Choosing Define from operation and schema (specified later) allows us to
create a new definition.

If we choose to create a new definition, then we start by specifying how we map
the files onto a service. It is here that we decide whether we are reading or writing
the file. When reading a file, we decide if we wish to generate an event when it is
available (a normal Read File operation that requires an inbound operation to receive
the message) or if we want to read it only when requested (a Synchronous Read File
operation that requires an outbound operation).

Service-enabling Existing Systems

[84]

Who calls who?
We usually think of a service as something that we call and then
get a result from. However, in reality, services in a service-oriented
architecture will often initiate events. These events may be delivered
to a BPEL process which is waiting for an event, or routed to another
service through the Service Bus, Mediator, or even initiate a whole
new SCA Assembly. Under the covers, an adapter might need to poll
to detect an event, but the service will always be able to generate an
event. With a service, we either call it to get a result or it generates
an event that calls some other service or process.

The file adapter wizard exposes four types of operation, as outlined in the following
table. We will explore the read operation to generate events as a file is created.

Operation Type Direction Description
Read File Inbound call from service Reads the file and generates one or more

calls into BPEL, Mediator, or Service Bus
when a file appears.

Write File Outbound call to service
with no response

Writes a file, with one or more calls from
BPEL, Mediator, or the Service Bus,
causing records to be written to a file.

Synchronous
Read File

Outbound call to service
returning file contents

BPEL, Mediator, or Service Bus requests a
file to be read, returning nothing if the file
doesn't exist.

List Files Outbound call to service
returning a list of files in a
directory

Provides a means for listing the files in a
directory.

Why ignore the contents of the file?
The file adapter has an option named Do not read file content. This is
used when the file is just a signal for some event. Do not use this feature
for the scenario where a file is written and then marked as available by another
file being written. This is explicitly handled elsewhere in the file adapter.
Instead, the feature can be used as a signal of some event that has no
relevant data other than the fact that something has happened. Although
the file itself is not readable, certain metadata is made available as part of
the message sent.

Chapter 3

[85]

Defining the file location
Clicking on Next allows us to configure the location of the file. Locations can
be specified as either physical (mapped directly onto the filesystem) or logical
(an indirection to the real location). The Directory for Incoming Files specifies where
the adapter should look to find new files. If the file should appear in a subdirectory
of the one specified, then the Process files recursively box should be checked.

Service-enabling Existing Systems

[86]

The key question now is what to do with the file when it appears. One option is
to keep a copy of the file in an archive directory. This is achieved by checking the
Archive processed files attribute and providing a location for the file archive. In
addition to archiving the file, we need to decide if we want to delete the original
file. This is indicated by the Delete files after successful retrieval checkbox.

Logical versus Physical locations
The file adapter allows us to have logical (Logical Name) or physical
locations (Physical Path) for files. Physical locations are easier for
developers as we embed the exact file location into the assembly with
no more work required. However, this only works if the file locations
are the same in the development, test and production environments,
particularly unlikely if development is done on Windows but
production is on Linux. Hence for production systems, it is best to
use logical locations that must be mapped onto physical locations
when deployed. Chapter 19, Packaging and Deploying shows how this
mapping may be different for each environment.

Selecting specific files
Having defined the location where files are found, we can now move on to the next
step in the wizard. Here we describe what the filenames look like. We can describe
filenames using either wildcards (using '*' to represent a sequence of 0 or more
characters) or using Java regular expressions, as described in the documentation for
the java.util.regex.Pattern class. Usually wildcards will be good enough. For
example, if we want to select all files that start with "PR" and end with ".txt", then we
would use the wildcard string "PR*.txt" or the regular expression "PR.*\.txt". As you
can see, it is generally easier to use wildcards rather than regular expressions. We
can also specify a pattern to identify which files should not be processed.

Chapter 3

[87]

The final part of this screen in the adapter wizard asks if the file contains a single
message or many messages. This is confusing because when the screen refers to
messages, it really means records.

XML files
It is worth remembering that a well formed XML document can only have
a single root element, and hence an XML input file will normally have
only a single input record. In the case of very large XML files, it is possible
to have the file adapter batch the file up into multiple messages, in which
case the root element is replicated in each message, and the second level
elements are treated as records. This behavior is requested by setting the
streaming option.

By default, a message will contain a single record from the file. Records will be
defined in the next step of the wizard. If the file causes a BPEL process to be started,
then a 1000 record file would result in 1000 BPEL processes being initiated. To
improve efficiency, records can be batched, and the Publish Messages in Batches
of attribute controls the maximum number of records in a message.

Service-enabling Existing Systems

[88]

Message batching
It is common for an incoming file to contain many records.
These records, when processed, can impact system performance
and memory requirements. Hence it is important to align the
use of the records with their likely impact on system resources.

Detecting that the file is available
The next step in the wizard allows us to configure the frequency of polling for the
inbound file. There are two parameters that can be configured here–the Polling
Frequency and the Minimum File Age.

The Polling Frequency just means the time delay between checking to see if a file
is available for processing. The adapter will check once per interval to see if the
file exists. Setting this too low can consume needless CPU resources, setting it too
high can make the system appear unresponsive. 'Too high' and 'too low' are very
subjective and will depend on your individual requirements. For example, the
polling interval for a file that is expected to be written twice a day may be set to three
hours, while the interval for a file that is expected to be written every hour may be
set to 15 minutes.

Minimum File Age specifies how old a file must be before it is processed by the
adapter. This setting allows a file to be completely written before it is read. For
example, a large file may take five minutes to write out from the original application.
If the file is read three minutes after it has been created, then it is possible for the
adapter to run out of records to read and assume the file has been processed, when
in reality, the application is still writing to the file. Setting a minimum age to ten
minutes would avoid this problem by giving the application at least ten minutes to
write the file.

Chapter 3

[89]

As an alternative to polling for a file directly, we may use a trigger file to indicate
that a file is available. Some systems write large files to disk and then indicate that
they are available by writing a trigger file. This avoids the problems with reading
an incomplete file we identified in the previous paragraph, without the delay in
processing the file that a minimum age field may cause.

Message format
The penultimate step in the file adapter is to set up the format of records or messages
in the file. This is one of the most critical steps, as this defines the format of messages
generated by a file.

Messages may be opaque, meaning that they are passed around as black boxes. This
may be appropriate with a Microsoft Word file, for example, that must merely be
transported from point A to point B without being examined. This is indicated by
the Native format translation is not required (Schema is Opaque) checkbox.

If the document is already in an XML format, then we can just specify a schema and
an expected root element and the job is done. Normally the file is in some non-XML
format that must be mapped onto an XML Schema generated through the native
format builder wizard, which is invoked through the Define Schema for Native
Format button.

Service-enabling Existing Systems

[90]

Defining a native format schema
Invoking the Native Format Builder wizard brings up an initial start screen that
leads on to the first step in the wizard, choosing the type of format, as shown in
the following screenshot:

This allows us to identify the overall record structure. If we have an existing schema
document that describes the record structure, then we can point to that. Usually,
we will need to determine the type of structure of the file ourselves. The choices
available are:

Delimited: These are files such as CSV files (Comma Separated Values),
records with spaces, or '+' signs for separators.
Fixed Length: These are files whose records consist of fixed length fields. Be
careful not to confuse these with space-separated files, as if a value does not
fill the entire field, it will usually be padded with spaces.
Complex Type: These files may include nested records like a master detail
type structure.
DTD to be converted to XSD: These are XML Data Type Definition XML
files that will be mapped onto an XML Schema description of the file content.
Cobol Copybook to be converted to native format: These are files that
have usually been produced by a COBOL system, often originating from
a mainframe.

We will look at a delimited file, as it is one of the most common formats.

•

•

•

•

•

Chapter 3

[91]

Although we are using the separator file type, the steps involved are basically
the same for most file types including the fixed length field format, which is also
extremely common.

Using a sample file
To make it easier to describe the format of the incoming file, the wizard asks us
to specify a file to use as a sample. If necessary, we can skip rows in the file and
determine the number of records to read. Obviously, reading a very large number of
records may take a while, and if all the variability on the file is in the first ten records,
then there is no point in wasting time reading any more sample records. We may
also choose to restrict the number of rows processed at runtime.

Setting the character set needs to be done carefully, particularly in international
environments where non-ASCII character sets may be common.

After selecting a sample file, the wizard will display an initial view of the file with a
guess at the field separators.

Service-enabling Existing Systems

[92]

Record structure
The next step of the wizard allows us to describe how the records appear in the file.

The first option File contains only one record allows us to process the file as a
single message. This can be useful when the file has multiple records, all of the
same format, which we want to read as a single message. Use of this option
disables batching.

The next option of File contains multiple record instances allows batching to take
place. Records are either of the same type or of different types. They can only be
marked of different types if they can be distinguished, based on the first field in
the record. In other words, in order to choose the Multiple records are of different
types, the first field in all the records must be a record type identifier. In the example
shown in the preceding screenshot, the first field is either an H for Header records or
an R for Records.

Chapter 3

[93]

Choosing a root element
The next step allows us to define the target namespace and root element of the
schema that we are generating.

Don't forget that when using the Native Format Builder wizard, we
are just creating an XML Schema document that describes the native
(non-XML) format data. Most of the time this schema is transparent
to us. However, at times the XML constructs have to emerge, for
example, when identifying a name for a root element. The file is
described using an XML Schema extension known as NXSD.

As we can see the root element is mandatory. This root element acts as a wrapper
for the records in a message. If message batching is set to 1, then each wrapper
will have a single sub-element, namely, the record. If the message is set to greater
than 1, then each wrapper will have at least one and possibly more sub-elements,
each sub-element being a record. There can never be more sub-elements than the
batch size.

Message delimiters
Having described the overall structure of the file, we can now drill down into the
individual fields. To do this, we first specify the message delimiters.

Service-enabling Existing Systems

[94]

In addition to field delimiters, we can also specify a record delimiter. Usually record
delimiters are new lines. If fields are also wrapped in quotation marks, then these
can be stripped off by specifying the Optionally enclosed by character.

Record type names
The wizard will identify the types of records based on the first field in each record, as
shown in the preceding screenshot. It is possible to ignore record types by selecting
them and clicking Delete. If this is done by mistake, then it is possible to add them
back by using the Add button. Only fields that exist in the sample data can be added
in the wizard.

Chapter 3

[95]

Note that if we want to reset the record types screen, then the Scan button will
rescan the sample file and look for all the different record types it contains.

The Record Name field can be set by double-clicking it and providing a suitable
record name. This record name is the XML element name that encapsulates the
record content.

Field properties
Now that we have identified record and field boundaries, we can drill down into
the records and define the data types and names of individual fields. This is done
for each record type in turn. We can select which records to define by selecting them
from the Record Name drop-down box or by pressing the Next Record Type button.

It is important to be as liberal as possible when defining field data types because any
mismatches will cause errors that will need to be handled. Being liberal in our record
definitions will allow us to validate the messages, as described in Chapter 13, Building
Validation into Services, without raising system errors.

The Name column represents the element name of this field. The wizard will
attempt to guess the type of the field, but it is important to always check this
because the sample data you are using may not include all possibilities. A common
error is identifying numbers to be tagged as integers, when they should really be
strings—accept integer types only when they are likely to have arithmetic operations
performed on them.

Service-enabling Existing Systems

[96]

Verifying the result
We have now completed our mapping and can verify what has been done by looking
at the generated XML Schema file. Note that the generated schema uses some Oracle
extensions to enable a non-XML formatted file to be represented as XML. In particular
the NXSD namespace prefix is used to identify field separators and record terminators.

The XML Schema generated can be edited manually. This is useful to
support nested records (records inside other records) like those that may
be found in a file containing order records with nested detail records (an
order record contains multiple line item detail records). In this case, it
is useful to use the wizard to generate a schema with order records and
detail records at the same level. The schema can then be modified by
hand to make the detail records children of the order records.

Chapter 3

[97]

Clicking the Test button brings up a simple test screen that allows us to apply our
newly generated schema to the input document and examine the resulting XML.

Clicking Next and then Finish will cause the generated schema file to be saved.

Finishing the wizards
Until now, no work has been saved, except for the XML Schema mapping the file
content onto an XML structure. The rest of the adapter settings are not saved, and
the endpoint is not set up until the Finish button is clicked on the completion screen,
as shown in the following screenshot. Note that the file generated is a Web Service
Description Language (WSDL) file with a JCA binding.

Service-enabling Existing Systems

[98]

Throttling the file and FTP adapter
The file and FTP adapters can consume a lot of resources when processing large
files (thousands of records) because they keep sending messages with batches of
records until the file is processed, while not waiting for the records to be processed.
This behavior can be altered by forcing them to wait until a message is processed
before sending another message. This is done by making the following changes to
the WSDL generated by the wizard. This changes the one-way read operation into a
two-way read operation that will not complete until a reply is generated by our code
in BPEL or the Service Bus.

Creating a dummy message type
Add a new message definition to the WSDL like the one in the following
code snippet:

<message	name="Dummy_msg">
				<part	xmlns:xsd="http://www.w3.org/2001/XMLSchema"
										name="Dummy"	type="xsd:string"/>
</message>

Adding an output message to the read operation
In the <portType>, add an <output> element to the read <operation> element.

				<portType	name="Read_ptt">
						<operation	name="Read">
								<input	message="tns:PayrollList_msg"/>
								<output	message="tns:Dummy_msg"/>
						</operation>
				</portType>

In the <jca:operation> element, add an empty <output/> element.

Using the modified interface
The adapter will now have a two way interface and will need to receive a reply to
a message before it sends the next batch of records, thus throttling the throughput.
Note that no data needs to be sent in the reply message. This will limit the number
of active operations to the number of threads assigned to the file adapter.

Chapter 3

[99]

Writing a payroll file
We can now use the FTP adapter to write the payroll file to a remote filesystem. This
requires us to create another adapter within our BPEL process, Mediator, or Service
Bus. Setting up the FTP adapter to write to a remote filesystem is very similar to
reading files with the file adapter.

Selecting the FTP connection
The first difference is that when using the FTP adapter instead of the File adapter,
we have to specify an FTP connection to use in the underlying application server.
This connection is set up in the application server running the adapter. For example,
when using the WebLogic Application Server, the WebLogic Console can be used.
The JNDI location of the connection factory is the location that must be provided to
the wizard. The JNDI location must be configured in the application server using the
administrative tools provided by the application server. Refer to your application
server documentation for details on how to do this, as it varies between
applications servers.

Service-enabling Existing Systems

[100]

Choosing the operation
When we choose the type of operation, we again notice that the screen is different
from the file adapter, having an additional File Type category. This relates to the
Ascii and Binary settings of an FTP session. ASCII causes the FTP transfer to adapt
to changes in character encoding between the two systems, for example, converting
between EBCDIC and ASCII or altering line feeds between systems. When using text
files, it is generally a good idea to select the ASCII format. When sending binary files,
it is vital that the binary file type is used to avoid any unfortunate and
unwanted transformations.

Selecting the file destination
Choosing where the file is created is the same for both the FTP and the file adapter.
Again, there is a choice of physical or logical paths. The file naming convention
allows us some control over the name of the output file. In addition to the %SEQ%
symbol that inserts a unique sequence number, it is also possible to insert a date or
date time string into the filename. Note that in the current release, you cannot have
both a date time string and a sequence string in the file naming convention.

When using a date time string as part of the filename, files with the
same date time string will overwrite each other. If this is the case,
then consider using a sequence number instead.

Chapter 3

[101]

When producing an output file, we can either keep appending to a single file by
selecting the Append to existing file checkbox, which will keep growing without
limit, or we can create new files, which will be dependent on attributes of the data
being written. This is the normal way of working for non-XML files, and a new
output file will be generated when one or more records are written to the adapter.

The criteria for deciding to write to a new file are as follows:

Number of Messages Equals: This criterion forces the file to be written when
the given number of messages is reached. This can be thought of as batching
the output so that we reduce the number of files created.
Elapsed Time Exceeds: This criterion puts a time limit on how long the
adapter will keep the file open. This places an upper time limit on creating an
output file.
File Size Exceeds: This criterion allows us to limit the file sizes. As soon as a
message causes the file to exceed the given size, no further message will be
appended to this file.

These criteria can all be applied together, and as soon as one of them is satisfied, a
new file will be created.

Writing XML files
When writing XML files, care should be taken to have only a single
message per file, or else there will be multiple XML root elements in
the document that will make it an invalid XML document.

•

•

•

Service-enabling Existing Systems

[102]

Completing the FTP file writer service
The next step in the wizard is to define the actual record formats. This is exactly the
same as when creating an input file. If we don't have an existing XML Schema for the
output file, then we can use the wizard to create one if we have a sample file to use.

Finally, remember to run through the wizard to the end, and click Finish rather than
Cancel or our entire configuration will be lost.

Moving, copying, and deleting files
Sometimes we will just want an adapter to move, copy, or delete a file without
reading it. We will use the ability of the file adapter to move a file (refer to Chapter 16,
Message Interaction Patterns, to set up a scheduler service within the SOA Suite).

The following steps will configure an outbound file or FTP adapter to move, copy, or
delete a file without reading it.

Generating an adapter
Use the file or FTP adapter wizard to generate an outbound adapter with a file
synchronous read or FTP synchronous get operation. You may also use a write or put
operation. The data location should use physical directories, and the content should be
marked as opaque, so that there is no need to understand the content of the file. Once
this has been done, we will modify the WSDL generated to add additional operations.

Modifying the port type
First, we edit the WSDL file itself, which we call <AdapterServiceName>.wsdl.
Modify the port type of the adapter to include the additional operations required,
as shown in the following code snippet. Use the same message type as the operation
generated by the wizard.

				<portType	name="Write_ptt">
						<operation	name="Write">
								<input	message="tns:Write_msg"/>
								</operation>
						<operation	name="Move">
										<input	message="tns:Write_msg"/>
								</operation>
				</portType>

Chapter 3

[103]

Note that the following operation names are supported:

Move
Copy
Delete

Modifying the binding
We now edit the bindings which are contained in a separate file to the WSDL called
<AdapterServiceName>_<file/ftp>.jca. Bindings describe how the service
description maps onto the physical service implementation. For now, we will just
modify the binding to add the additional operations needed and map them to the
appropriate implementation, as shown in the following code snippet:

<endpoint-interaction	portType="Write_ptt"	operation="Write">
		<interaction-spec	className="oracle.tip.adapter.file.outbound.
FileInteractionSpec">
				<property	name="PhysicalDirectory"	value="/user/oracle"/>
				<property	name="FileNamingConvention"	value="fred.txt"/>
				<property	name="Append"	value="false"/>	
		</interaction-spec>
</endpoint-interaction>
<endpoint-interaction	portType="Write_ptt"	operation="Move">
		<interaction-spec	className="oracle.tip.adapter.file.outbound.
FileIoInteractionSpec">
				<property	name="Type"	value="MOVE"/>
				<property	name="SourcePhysicalDirectory"	value="/usr/oracle"/>
				<property	name="SourceFileName"	value="fred.txt"/>
				<property	name="TargetPhysicalDirectory"	value="/usr/payroll"/>
				<property	name="TargetFileName"	value="Payroll.txt"/>
		</interaction-spec>
</endpoint-interaction>

Note that the following types are supported for use with the equivalent operation
names. Observe that operation names are mixed case and types are uppercase:

MOVE

COPY

DELETE

The interaction-spec is used to define the types of operations supported by this
particular binding. It references a Java class that provides the functionality and may
have properties associated with it to configure its behavior. When using the FTP
adapter for move, copy, and delete operations, the InteractionSpec property in the
<AdapterServiceName>_ftp.jca file must be changed to oracle.tip.adapter.
ftp.outbound.FTPIoInteractionSpec.

•
•
•

•

•

•

Service-enabling Existing Systems

[104]

Configuring file locations through additional header
properties
In order to allow runtime configuration of the source and destination locations, it is
necessary to pass the source and destination information as properties of the call to
the adapter.

For example, when using a BPEL invoke activity, we would pass the properties, as
shown in the following code snippet:

<invoke	name="Invoke_Move"	inputVariable="Invoke_Move_InputVariable"
								partnerLink="MoveFileService"	portType="ns1:Write_ptt"
								operation="Move">
		<bpelx:inputProperty	name="jca.file.SourceDirectory"
																							variable="srcDir"/>
		<bpelx:inputProperty	name="jca.file.SourceFileName"
																							variable="srcFile"/>
		<bpelx:inputProperty	name="jca.file.TargetDirectory"
																							variable="dstDir"/>
		<bpelx:inputProperty	name="jca.file.TargetFileName"
																							variable="dstFile"/>
</invoke>

These properties will override the default values in the .jca file and can be used to
dynamically select at runtime the locations to be used for the move, copy, or delete
operation. The properties may be edited in the source tab of the BPEL document, the
.bpel file, or they may be created and modified through the Properties tab of the
Invoke dialog in the BPEL visual editor.

Chapter 3

[105]

With these modifications, the move, copy, or delete operations will appear as
additional operations on the service that can be invoked from the service bus or
within BPEL.

Adapter headers
In addition to the data associated with the service being provided by the adapter,
sometimes referred to as the payload of the service, it is also possible to configure
or obtain information about the operation of an adapter through header messages.
Header messages are passed as properties to the adapter. We demonstrated this in
the previous section when setting the header properties for the Move operation of the
file adapter.

The properties passed are of the following two formats:

<property	name="AdapterSpecificPropertyName"	value="data"/>
<property	name="AdapterSpecificPropertyName"	variable="varName"/>

The former style allows the passing of literal values through the header. The latter
allows the property to be set from a string variable.

Testing the file adapters
We can test the adapters by using them within a BPEL process or a Mediator like
the one shown in the following screenshot. Building a BPEL process is covered in
Chapter 5, Building Composite Services and Business Processes. This uses the two services
we that have just described and links them with a copy operation that transforms
data from one format to the other.

Service-enabling Existing Systems

[106]

Creating services from databases
Along with files, databases are one of the most common ways of interacting with
existing applications and providing them with a service interface. In this section we
will investigate how to write recordrs into the database using the database adapter.

Writing to a database
Before we configure a database adapter, we first need to create a new database
connection within JDeveloper. This is done by creating a Database Connection
from the New Gallery.

Choosing a database connection brings up the database connection wizard, which
allows us to enter the connection details of our database.

Selecting the database schema
With an established database connection, we can now create a service based on a
database table. We will create a service that updates the database with the payroll
details. The model for the database tables is shown in the following screenshot:

Now that we have our database connection, we can run the Database Adapter Wizard
by dragging the database adapter icon from the tool palette onto a BPEL process or an
SCA Assembly. This starts the Database Adapter Wizard, and after giving the service a
name, we come to the Service Connection screen. This is shown as follows:

Chapter 3

[107]

This allows us to choose a local connection in JDeveloper to use and also to select the
JNDI location in the runtime environment of the database connection. Note that this
JNDI connection must be configured as part of the database adapter in the default
application in a similar way to the configuration of the FTP adapter.

How connections are resolved by the database adapter
When the adapter tries to connect to the database, it first tries to use the
JNDI name provided, which should map to a JCA connection factory in the
application server. If this name does not exist, then the adapter will use the
database connection details from the JDeveloper database connection that
was used in the wizard. This behavior is very convenient for development
environments because it means that you can deploy and test the adapters
in development without having to configure the JCA connection factories.
However, best practice is to always configure the JCA adapter in the target
environment to avoid unexpected connection failures.

Identifying the operation type
The database adapter has many ways in which it can interact with the database to
provide a service interface.

Service-enabling Existing Systems

[108]

The Operation Type splits into two groups, calls into the database and events
generated from the database. Calls into the database cover the following operations:

The stored procedure or function call to execute a specific piece of code in the
database. This could either update the database or retrieve information, but
in either case, it is a synchronous call into the database.
Perform an insert, update, delete, or select operation on the database. Again,
this is done synchronously as a call into the database.
Poll for new or changed records in a database table. This is done as a call into
the SCA Assembly or BPEL.
Execute custom SQL. This again runs the SQL synchronously against
the database.

Polling for new or changed records is the only way for the database adapter to
generate messages to be consumed in a BPEL process or an SCA Assembly. If we
wish the adapter to wait for BPEL or the SCA Assembly to process the message, then
we can use the Do Synchronous Post to BPEL checkbox. For this exercise, we will
select insert / update for the operation.

Identifying tables to be operated on
The next step in the wizard asks which table is the root table or the beginning of the
query. To select this, we first click the Import Tables… button to bring up the Import
Tables dialog.

Once we have imported the tables we need, we then select the PAYROLLITEM table
as the root table. We do this because each record will create a new PAYROLLITEM
entry. All operations through the database adapter must be done with a root table.
Any other table must be referenceable from this root table.

•

•

•

•

Chapter 3

[109]

Identifying the relationship between tables
As we have more than one table involved in this operation, we need to decide which
table relationship we want to use. In this case, we want to tie a payroll item back to a
single employee, so we select the one-to-one relationship.

We can now finish the creation of the database adapter and hook it up with the file
adapter we created earlier to allow us to read records from a file and place them
in a database.

Service-enabling Existing Systems

[110]

In our example, the adapter was able to work out relationships
between tables by analysis of the foreign keys. If foreign key
relationships do not exist, then the Create button may be used
to inform the adapter of relationships that exist between tables.

Under the covers
Under the covers, a lot has happened. An offline copy of the relevant database
schema has been created so that the design time is not reliant on being permanently
connected to a database. The actual mapping of a database onto an XML document
has also occurred. This is done using Oracle TopLink to create the mapping and a
lot of the functions of the wizard are implemented using TopLink. The mapping can
be further refined using the features of TopLink.

Using keys
Always identify the Primary Key for any table used by the database
adapter. This can be done by applying a Primary Key constraint in the
database, or if no such key has been created, then TopLink will prompt
you to create one. If you have to create one in TopLink, then make sure
it is really a Primary Key. TopLink optimizes its use of the database by
maintaining an identity for each row in a table with a Primary Key. It
only reads the Primary Key on select statements and then checks to see
which records it needs to read in from the database. This reduces the
amount of work mapping fields that have already been mapped because
a record appears multiple times in the selection. If you don't identify a
Primary Key correctly, then TopLink may incorrectly identify different
records as being the same record and only load the data for the first such
record encountered. So if you seem to be getting a lot of identical records
in response to a query that should have separate records, then check your
Primary Key definitions.

Summary
In this chapter, we have looked at how to use the file and database adapters to turn
file and database interfaces into services that can be consumed by the rest of the SOA
Suite. Note that when using the adapters, the schemas are automatically generated
and changing the way the adapter works may mean a change in the schema.
Therefore, in the next chapter, we will look at how to isolate our applications
from the actual adapter service details.

Loosely-coupling Services
In the previous chapter, we explored how we can take functionality in our existing
applications and expose them as services. When we do this, we often find that the
service interface we create is tightly coupled to the underlying implementation.
We can make our architecture more robust by reducing this coupling. By defining
our interface around our architecture, rather than around our existing application
interfaces, we can reduce coupling. We can also reduce coupling by using a routing
service to avoid physical location dependencies. In this chapter, we will explore
how service virtualization through the Mediator and the Service Bus of the Oracle
SOA Suite can be used to deliver more loosely-coupled services. Loose coupling
reduces the impact of change on our systems, allowing us to deploy new functions
more rapidly into the market. Loose coupling also reduces the maintenance costs
associated with our deployments.

Coupling
Coupling is a measure of how dependent one service is upon another. The more
closely one service depends on another service, the more tightly coupled they are.
There have been a number of efforts to formalize metrics for coupling, and they all
revolve around the same basic items:

Number of input data items: Basically, the number of input parameters
of the service.
Number of output data items: The output data of the service.
Dependencies on other services: The number of services called by this service.
Dependencies of other services on this service: The number of services that
invoke this service.
Use of shared global data: The number of shared data items used by this
service. This may include database tables or shared files.
Temporal dependencies: Dependencies on other services being available at
specific times.

•

•
•
•

•

•

Loosely-coupling Services

[112]

Let us examine how each of these measures may be applied to our service interface.
The principles below are relevant to all services, but widely re-used services have a
special need for all of the items.

Number of input data items
A service should only accept as input the data items required to perform the service
being requested. Additional information should not be passed into the service
because this creates unnecessary dependencies on the input formats. This economy
of input allows the service to focus just on the function it is intended to provide and
does not require it to understand unnecessary data formats. The best way to isolate
the service from changes in data formats that it does not use is to make the service
unaware of those data formats.

For example, a credit rating service should only require sufficient information to
identify the individual being rated. Additional information, such as the amount of
credit being requested or the type of goods or services for which a loan is required,
is not necessary for the credit rating service to perform its job.

Services should accept only the data required to perform their function
and nothing more.

When talking about reducing the number of data items input or output from a
service, we are talking about the service implementation, not a logical service
interface that may be implemented using a canonical data model. The canonical data
model may have additional attributes not required by a particular service, but these
should not be part of the physical service interface. Adding attributes to "make a
service more universal" only serves to make it harder to maintain.

Number of output data items
In the same way that a service should not accept inputs that are unnecessary for
the function it performs, a service should not return data that is related only to
its internal operation. Exposing such data as part of the response data will create
dependencies on the internal implementation of the service that are not necessary.

Sometimes, a service needs to maintain its state between requests. State implies that
state information must be maintained at least in the client of the service, so that it can
identify the state required by the service when making further requests. However,
the state information in the client is often just an index into the state information
held in the service. We will return to this subject later in the chapter.

Chapter 4

[113]

Services should not return public data that relates to their own
internal processing.

Dependencies on other services
Generally, re-use of other services to create a new composite service is a good
thing. However, having dependencies on other services does increase the degree
of coupling because there is a risk that changes in those services may impact
the composite service, and consequently, any services with dependencies on the
composite service. We can reduce the risk that this poses by limiting our use of
functionality in other services to just that required by the composite.

Services should reduce the functionality required of other
services to the minimum required for their own functionality.

For example, a dispatching service may decide to validate the address it
receives. If this functionality is not specified as being required, because, let's
say, all addresses are validated elsewhere, then the dispatching service has an
unnecessary dependency that may cause problems in the future.

Dependencies of other services on this
service
Having a widely used service is great for re-use, but the greater the number of
services that make use of this service, the greater impact a change in this service
will have on other services. Extra care must be taken with widely re-used services to
ensure that their interfaces are as stable as possible. This stability can be provided by
following the guidelines in this section.

Widely re-used services should focus their interface on just
the functionality needed by clients and avoid exposing any
unnecessary functions or data.

Loosely-coupling Services

[114]

Use of shared global data
Shared global data in the service context is often through dependencies on a shared
resource such as data in a database. Such use of shared data structures is subversive
to good design because it does not appear in the service definitions and so the
owners of the shared data may be unaware of the dependency. Effectively, this
is an extra interface into the service. If this is not documented, then the service is
very vulnerable to the shared data structure being changed unknowingly. Even if
the shared data structure is well documented, any changes required must still be
synchronized across all users of the shared data.

Avoid the use of shared global data in services unless it is absolutely
necessary. If it is absolutely necessary, then the dependency needs to be
clearly documented in all users of the shared data. A service's data should
only be manipulated through its defined interface. Consider creating a
wrapper service around the shared data.

Temporal dependencies
Not all service requests require an immediate response. Often a service can be
requested, and the response may be returned later. This is a common model
in message-based systems and allows for individual services to be unavailable
without impacting other services. Use of queuing systems allows temporal or
time decoupling of services, so that two communicating services do not have to be
available at the same instant in time. The queue allows messages to be delivered
when the service is available rather than when the service is requested.

Use asynchronous message interfaces to reduce dependencies
of one service on the availability of another.

Chapter 4

[115]

Reducing coupling in stateful services
A stateful service maintains context for a given client between invocations. When
using stateful services, we always need to return some kind of state information
to the client. To avoid unnecessary coupling, this state information should always
be opaque. By opaque, we mean that it should have no meaning to the client other
than as a reference that must be returned to the service when requesting follow on
operations. For example, a numeric session ID has no meaning to the client and
may be used by the service as an index into a table stored either in memory or in a
database table. We will examine how this may be accomplished later in this section.

A common use of state information in a service is to preserve the position in a
search that returns more results than can reasonably be returned in a single
response. Another use of state information might be to perform correlation between
services that have multiple interactions, such as between a bidding service and a
bidding client.

Whatever the reason may be, the first task, when confronted with the need for state
in a service, is to investigate the ways to remove the state requirement. If there is
definitely a need for state to be maintained, then there are two approaches that the
service can follow.

Externalize all state and return it to the client.
Maintain state within the service and return a reference to the client.

In the first case, it is necessary to package up the required state information and
return it to the client. Because the client should be unaware of the format of this data,
it must be returned as an opaque type. This is best done as an <any> element in the
schema for returning the response to the client. An <any> element may be used to
hold any type of data, from simple strings through to complex structured types.

For example, if a listing service returns only 20 items at a time, then it must pass back
sufficient information to enable it to retrieve the next 20 items in the query.

In the following XML Schema example, we have the XML data definitions to support
two operations on a listing service:

searchItems

nextItems

•
•

•

•

Loosely-coupling Services

[116]

The searchItems operation will take a searchItemsRequest element for input and
return a searchItemsResponse element. The searchItemsResponse has within it a
searchState element. This element is a sequence that has an unlimited number of
arbitrary elements. This can be used by the service to store sufficient state to allow
it to deliver the next 20 items in the response. It is important to realize that this state
does not have to be understood by the client of the service. The client of the service
just has to copy the searchState element to the continueSearchItemsRequest
element to retrieve the next set of 20 results.

The preceding approach has the advantage that the service may still be stateless,
although it gives the appearance of being stateful. The sample schema below could
be used to allow the service to resume the search where it left off without the need
for any internal state information in the service. By storing the state information (the
original request and the index of the next item to be returned) within the response,
the service can retrieve the next set of items without having to maintain any state
within itself. Obviously, the service for purposes of efficiency could maintain
some internal state, such as a database cursor, for a period of time, but this is
not necessary.

Chapter 4

[117]

An alternative approach to state management is to keep the state information within
the service itself. This still requires some state information to be returned to the
client, but only a reference to the internal state information is required. In this case,
there are a couple of options for dealing with this reference.

One is to take state management outside of the request/response messages and
make it part of the wider service contract, either through the use of WS-Correlation
or an HTTP cookie for example. This approach has the advantage that the service
can generally take advantage of state management functions of the platform,
such as support for Java services, to use the HTTP session state.

Use of WS-Correlation
It is possible to use a standard correlation mechanism such as WS-
Correlation. This is used within SOA Suite by BPEL to correlate process
instances with requests. If this approach is used, however, it precludes
the use of the externalized state approach discussed earlier. This makes
it harder to swap out your service implementation with one that
externalizes all its state information. In addition to requiring your service
to always internalize state management, no matter how it is implemented,
your clients must now support WS-Correlation.

Loosely-coupling Services

[118]

The alternative is to continue to keep the state management in the request/response
messages and deal with it within the service. This keeps the client unaware of
how the state is managed because the interface is exactly the same for a service
that maintains internal state and a service that externalizes all states. A sample
schema for this is shown below. Note that unlike the previous schema, there is
only a service-specific reference to its own internal state. The service is responsible
for maintaining all the required information internally and using the externalized
reference to locate this state information.

The Oracle Service Bus (OSB) in SOA Suite enables us to hide a services native
state management and expose it as an abstract state management that is less tightly
coupled to the way state is physically handled by the service.

Some web service implementations allow for stateful web services, with state
managed in a variety of proprietary fashions.

We want to use native state management when we internalize session state because
it is easier to manage. The container will do the work for us using mechanisms native
to the container. However, this means the client has to be aware that we are using
native state management because the client must make use of these mechanisms. We
want the client to be unaware of whether the service uses native state management,
its own custom state lookup mechanism, or externalizes all session state into the
messages flowing between the client and the service. The latter two can look the
same to the client and hence make it possible to switch services with different
approaches. However, the native state management explicitly requires the
client to be aware of how state is managed.

Chapter 4

[119]

To avoid this coupling, we can use the OSB or Mediator to wrap the native state
management services, as shown in the following diagram. The client passes a session
state element of unknown contents back to the service façade, which is provided by
the OSB or Mediator. The OSB or Mediator then removes the session state element
and maps it onto the native state management used by the service, such as placing
the value into a session cookie. Thus we have the benefits of using native state
management without the need for coupling the client to a particular implementation
of the service. For example, a service may use cookies to manage session state, and
by having the OSB or Mediator move the cookie value to a field in the message,
we avoid clients of the service having to deal with the specifics of the services
state management.

Service abstraction tools in SOA Suite
Earlier versions of the SOA Suite had the Oracle Enterprise Service Bus. This
component has become the Mediator in 11g. In Chapter 2, Writing your First Composite,
we introduced the Mediator component of an SCA Assembly. This provides basic
routing and transformation abilities. The SOA Suite also includes the Oracle Service
Bus. The Oracle Service Bus can also be used for routing and transformation but
provides a much richer environment than the Mediator for service abstraction. At
first glance, it is not clear whether to use the Oracle Service Bus or the Mediator to
perform service abstraction. In this section, we will examine the pros and cons of
using each and give some guidance on when to use one and when to use the other.

Do you have a choice?
The Oracle Service Bus currently only runs on the WebLogic platform. The rest
of the SOA Suite has been designed to run on multiple platforms such as WebSphere
and JBoss. If you need to run on these other platforms then, until OSB becomes
multi-platform, you have no choice but to use the Mediator.

Loosely-coupling Services

[120]

When to use the Mediator
Because the Mediator runs within an SCA Assembly, it has the most efficient
bindings to other SCA Assembly components, specifically the BPEL engine. This lets
us focus on using the Mediator to provide service virtualization services within SCA
assemblies. The Mediator enables the virtualization of inputs and outputs within an
SCA Assembly. This leads us to four key uses of the Mediator within SCA.

Routing between components in an SCA Assembly
Validation of incoming messages into an SCA Assembly
Transformation of data from one format to another within an SCA Assembly
Filtering to allow selection of components to invoke based on
message content

The Mediator is an integral part of SCA Assemblies and should be used to adapt
SCA Assembly formats to the canonical message formats, which we will talk about
later in this chapter.

When to use Oracle Service Bus
The Oracle Service Bus runs in a separate JVM to the other SOA Suite components
and so there is a cost associated with invoking SOA Suite components in terms of
additional inter-process communication and hence time. However, the OSB has
some very powerful capabilities that make it well suited to be the enterprise strength
Service Bus for a more general enterprise-wide virtualisation role. As it is separate
from the other components, it is easy to deploy separately and use as an independent
Service Bus.

The Service Bus can be used to virtualize external services, where external may mean
outside the company but also includes non-SCA services. OSB makes it very easy for
operators to modify service endpoint details at runtime, making it very flexible in
managing change.

The Service Bus goes beyond routing and transformation by providing the ability
to throttle services, restricting the number of invocations they receive. This can be
valuable in enforcing client contracts and ensuring that services are not swamped
by more requests than they can handle.

•
•
•
•

Chapter 4

[121]

What should I use to virtualize my services?
Service virtualization within an SCA Assembly is the job of the Mediator.
The Mediator should be used to ensure that the SCA Assembly always
presents a canonical interface to clients and services. Service virtualization
of non-SCA components should be done with the Oracle Service Bus.
Oracle Service Bus may also be used to transparently enforce throughput
restriction on services.

Oracle Service Bus design tools
The Oracle Service Bus can be configured either using the Oracle Workshop for
WebLogic or the Oracle Service Bus Console.

Oracle Workshop for WebLogic
Oracle Workshop for WebLogic provides tools for creating all the artifacts needed by
the Oracle Service Bus. Based on Eclipse, it provides a rich design environment for
building service routings and transformations for deployment to the Service Bus. In
future releases, it is expected that all the Service Bus functionality in the Workshop
for WebLogic will be provided in JDeveloper. The current versions of JDeveloper
do not have support for Oracle Service Bus. Note that there is some duplication
functionality between JDeveloper and Workshop for WebLogic. In some cases, such
as WSDL generation, the functionality provided in the Workshop for WebLogic is
superior to that provided by JDeveloper. In other cases, such as XSLT generation,
the functionality provided by JDeveloper is superior.

Oracle Service Bus Console
In Chapter 2, Writing your First Composite,we introduced the Oracle Service Bus
console and used it to build a proxy service that invoked an SCA Assembly.

Service Bus overview
In this section, we will introduce the key features of the Oracle Service Bus and show
how they can be used to support service virtualization.

Loosely-coupling Services

[122]

Service Bus message flow
It is useful to examine how messages are processed by the Service Bus. Messages
normally target an endpoint in the Service Bus known as a proxy service. Once
received by the proxy service the message is processed through a series of input
pipeline stages. These pipeline stages may enrich the data by calling out to other
web services, or they may transform the message as well as providing logging and
message validation. Finally, the message reaches a routing step where it is routed
to a service known as a business service. The response, if any, from the service is
then sent through the output pipeline stages, which may also enrich the response or
transform it before returning a response to the invoker.

Note that there may be no pipeline stages and the router may make a choice between
multiple endpoints. Finally, note that the business service is a reference to the target
service, which may be hosted within the Service Bus or as a standalone service. The
proxy service may be thought of as the external service interface and associated
transforms required to make use of the actual business service.

The proxy service should be the canonical interface to our service
(see later in the chapter for an explanation of canonical interfaces).
The Business Service is the physical implementation interface.
The pipelines and routing step transform the request to and from
canonical form.

Virtualizing service endpoints
To begin our exploration of the Oracle Service Bus, let us start by looking at how
we can use it to virtualize service endpoints. By virtualizing a service endpoint,
we mean that we can move the location of the service without affecting any of the
services' dependants.

Chapter 4

[123]

Moving service location
To virtualize the address of our service, we use the business service in the Service
Bus. We covered creating a business service in Chapter 2, Writing your First Composite.
Note that we are not limited to services described by WSDL. In addition to already
defined business and proxy services, we can base our service on XML or messaging
systems. The easiest to use is the WSDL web service.

Endpoint address considerations
When specifying endpoints in the Service Bus, it is generally not
a good idea to use localhost or 127.0.0.1. Because the Service Bus
definitions may be deployed across multiple nodes, there is no
guarantee that business service will be co-located with the Service Bus
on every node the Service Bus is deployed upon. Therefore, it is best
to ensure that all endpoint addresses use virtual hostnames. Machines
that are referenced by a virtual hostname should have that hostname
in the local hosts file pointing to the loopback address (127.0.0.1)
to benefit from machine affinity.

When we selected the WSDL we wanted to use in Chapter 2, Writing your First
Composite, we were taken to another dialog that introspects the WSDL, identifies any
ports or bindings, and asks us for which one we wish to use. Bindings are mappings
of the WSDL service onto a physical transport mechanism such as SOAP over
HTTP. Ports are the mapping of the binding onto a physical endpoint such
as a specific server.

Note that if we choose a port, we do not have to provide physical endpoint details
later in the definition of the business service, although we may choose to do so. If we
choose a binding because it doesn't include a physical endpoint address, we have to
provide the physical endpoint details explicitly.

Loosely-coupling Services

[124]

If we have chosen a binding, we can skip the physical endpoint details. If, however,
we chose a port or we wish to change the physical service endpoint or add additional
physical service endpoints, then we hit the Next>> button to allow us to configure
the physical endpoints of the service.

This dialog allows us to do several important things:

Modify the Protocol to support a variety of transports.
Choose a Load Balancing Algorithm. If there is more than one endpoint
URI, then the Service Bus will load balance across them according to
this algorithm.
Change, add, or remove Endpoint URIs or physical targets.
Specify retry logic, specifically the Retry Count, the Retry Iteration Interval,
and whether or not to Retry Application Errors (errors generated by the
service called, not the transport).

Note that the Service Bus gives us the ability to change, add, and remove
physical endpoint URIs as well as change the protocol used at runtime.
This allows us to change the target services without impacting any clients
of the service, providing us with virtualization of our service location.

•
•

•
•

Chapter 4

[125]

Using Adapters in Service Bus
The Service Bus can also use adapter definitions created in JDeveloper. To use an
adapter from JDeveloper, we cannot directly import the WSDL, we need to import
the artifacts in the following order:

1. The XSD generated by the adapter using Select Resource Type | Interface |
XML Schema

2. The WSDL generated by the adapter using Select Resource Type | Interface
| WSDL

3. The JCA file generated by the adapter using Select Resource Type |
Interface | JCA Binding

The WSDL can then be used as a business service. Make sure that references in the
JCA file are configured in the WebLogic Server.

The proxy service provides the interface and adaption to our business service,
typically joining them by a routing step, as we did in Chapter 2, Writing your First
Composite. There are other types of actions besides routing flows. Clicking on Add
an Action allows us to choose the type of Communication we want to add. Flow
Control allows us to add If .. Then … logic to our routing decision. However, in
most cases, the Communication items will provide all the flexibility we need in our
routing decisions. This gives us three types of routing to apply:

1. Dynamic Routing allows us to route to the result of an XQuery. This is
useful if the endpoint address is part of the input message.

2. Routing allows us to select a single static endpoint.
3. Routing Table allows us to use an XQuery to route between several

endpoints. This is useful when we want to route to different services, based
on a particular attribute of the input message.

For simple service endpoint virtualization, we only require the Routing option.

Loosely-coupling Services

[126]

Having selected a target endpoint, usually a business service, we can then configure
how we use that endpoint. In the case of simple location virtualization, the proxy
service and the business service endpoints are the same, and so we can just pass on
the input message directly to the business service. Later on, we will look at how to
transform data to allow virtualization of the service interface.

Selecting a service to call
We can further virtualize our endpoint by routing different requests to different
services, based upon the values of the input message. For example, we may use one
address lookup service for addresses in our own country and another service for all
other addresses. In this case, we would use the routing table option on the add action
to provide a list of possible service destinations.

The routing table enables us to have a number of different destinations, and the
message will be routed based on the value of an expression. When using a routing
table, all the services must be selected based on the same expression; the comparison
operators may vary, but the actual value being tested against will always be the
same. If this is not the case, then it may be better to use "if … then … else" routing.
The routing table may be thought of as a "switch statement", and as with all switch
statements, it is a good practice to add a default case.

In the routing table, we can create additional cases, each of which will have a test
associated with it. Note that we can also add the default case.

We need to specify the expression to be used for testing against. Clicking on the
<Expression> link takes us to the XQuery /XSLT Expression Editor. By selecting
the Variable Structures tab and selecting a new structure, we can find the input
body of the message, which lets us select the field we wish to use as the comparison
expression in our routing table.

Chapter 4

[127]

When selecting in the tab on the left of the screen, the appropriate XPath expression
should appear in the Property Inspector window. We can the click on the XQuery
Text area of the screen prior to clicking on the Copy Property to transfer the property
XPath expression from the property inspector to the XQuery Text area. We then
complete our selection of the expression by clicking on the Save button.

In the example, we are going to route our service based on the country of the
address. In addition to the data in the body of the message, we could also route
based on other information from the request. Alternatively, by using a message
pipeline, we could base our lookup on data external to the request.

Once we have created an expression to use as the basis of comparison for routing,
then we select an operator and a value to use for the actual routing comparison. In
the following example, if the country value from the expression matches the string
uk (include the quotes), then the LocalAddressLookup service will be invoked.
Any other value will cause the default service to be invoked, as yet undefined
in the following example:

Loosely-coupling Services

[128]

Once the routing has been defined, then it can be saved, as shown in Chapter 2,
Writing your First Composite.

Note that we have shown a very simple routing example. The Service Bus is capable
of doing much more sophisticated routing decisions. A common pattern is to use a
pipeline to enrich the inbound data and then route based on the inbound data. For
example, a pricing proxy service may use the inbound pipeline to look up the status
of a customer, adding that status to the data available as part of the request. The
routing service could then route high value customers to one service and low value
customers to another service, based on the looked up status. In this case, the routing
is based on a derived value rather than on a value already available in the message.

In summary, a request can be routed to different references, based on the content
of the request message. This allows messages to be routed based on geography or
pecuniary value for example. This routing, because it takes place in the composite,
is transparent to clients of the composite and so aids us in reducing coupling in
the system.

Virtualizing service interfaces
We have looked at how to virtualize a service endpoint. Now let's look at how we
can further virtualize the service by abstracting its interface into a common format,
known as canonical form. This will provide us further flexibility by allowing us to
change the implementation of the service with one that has a different interface but
performs the same function. The native format is the way the data format service
actually uses, the canonical format is an idealized format that we wish to
develop against.

Physical versus logical interfaces
Best practice for integration projects was to have a canonical form for all messages
exchanged between systems. The canonical form was a common format for all
messages. If a system wanted to send a message, then it first needed to transform it
to the canonical form before it could be forwarded to the receiving system, which
would then transform it from the canonical form to its own representation. This
same good practice is still valid in a service-oriented world and the Service Bus
is the mechanism SOA Suite provides for us to do this.

Chapter 4

[129]

Canonical data and canonical interface
The canonical data formats should represent the idealized data format
for the data entities in the system. The canonical interfaces should be
the idealized service interfaces. Generally, it is a bad idea to use existing
service data formats or service interfaces as the canonical form. There
is a lot of work being done in various industry-specific bodies to define
standardized canonical forms for entities that are exchanged between
corporations.

The benefits of a canonical form are as follows:

Transformations are only necessary to and from canonical form, reducing the
number of different transformations required to be created
Decouples format of data from services, allowing a service to be replaced by
one providing the same function but a different format of data

This is illustrated graphically by a system where two different clients make
requests for one of the four services, all providing the same function but different
implementations. Without the canonical form, we would need a transformation of
data between the client format and the server format inbound and again outbound.
For four services, this yields eight transformations, and for two clients, this doubles
to sixteen transformations.

Using the canonical format gives us two transformations for each client, inbound and
outbound to the canonical form. With two clients, this gives us four transformations.
To this, we add the server transformations to and from the canonical form, of which
there are two per server, giving us eight transformations. This gives us a total of
twelve transformations that must be coded up rather than sixteen if we were using
native-to-native transformation.

•

•

Loosely-coupling Services

[130]

The benefits of the canonical form are most clearly seen when we deploy a new
client. Without the canonical form, we would need to develop eight transformations
to allow the client to work with the four different possible service implementations.
With the canonical form, we only need two transformations, to and from the
canonical form.

Let's look at how we implement the canonical form in Oracle Service Bus.

Mapping service interfaces
In order to take advantage of the canonical form in our service interfaces, we must
have an abstract service interface that provides the functionality we need without
being specific to any particular service implementation. Once we have this, we can
then use it as the canonical service form.

We set up the initial project in the same way we did in the previous section on
virtualizing service endpoints. The proxy should provide the canonical interface,
while the business service provides the native service interface. Because the proxy
and business services are not the same interface, we need to do some more work in
the route configuration.

We need to map the canonical form of the address list interface onto the native
service form of the interface. In the example, we are mapping our canonical interface
to the interface provided by a web-based address solution from the Harte-Hanks
Global Address (http://www.qudox.com). To do this, we create a new Service Bus
project and add the Harte-Hanks WSDL (http://webservices.globaladdress.
net/globaladdress.asmx?WSDL). We use this to define the business service. We
also add the canonical interface WSDL that we have defined and create a new proxy
with this interface. We then need to map the proxy service onto the Harte-Hanks
service by editing the message flow associated with the proxy, as we did in the
previous section.

Our mapping needs to do two things as follows:

Map the method name on the interface to the correct method in the
business service
Map the parameters in the canonical request onto the parameters needed in
the business service request

•

•

Chapter 4

[131]

For each method on the canonical interface, we must map it onto a method in the
physical interface. We do this by selecting the appropriate method from the business
service operation drop-down box. We need to do this because the methods provided
in the external service do not match the method names in our canonical service. In
the following example, we have mapped onto the SearchAddress method.

Having selected an operation, we now need to transform the input data from the
format provided by the canonical interface into the format required by the external
service. We need to map the request and response messages if it is a two-way
method or just the request message for one-way method. The actual mapping may
be done either by XQuery or XSLT. In our example, we will use the XSLT transform.

To perform the transformation, we add a Messaging Processing action to our
message flow, which in this case is a Replace operation. The variable body always
holds the message in the Service Bus flow. This receives the message through the
proxy interface and is also used to deliver the message to the business service
interface. This behavior differs from BPEL and most programming languages, where
we typically have separate variables for the input and output messages. We need to
transform this message from the proxy input canonical format to the business service
native output format.

Loosely-coupling Services

[132]

Be aware that there are really two flows associated with the proxy service. The
request flow is used to receive the inbound message and perform any processing
before invoking the target business service. The response flow takes the response
from the business service and performs any necessary processing before replying to
the invoker of the proxy service.

On selecting replace, we can fill in the details in the Request Actions dialog. The
message is held in the body variable, and so we can fill this (body) in as the target
variable name. We then need to select which part of the body we want to replace.

Clicking on the XPath link brings up the XPath Expression Editor, where we can
enter the portion of the target variable that we wish to replace. In this case, we wish
to replace all the elements so we enter ./*, which selects the top level element and all
elements beneath it. Clicking on the Save button causes the expression to be saved in
the Replace Action dialog.

Chapter 4

[133]

Having identified the portion of the message we wish to replace (all of it) , we now
need to specify what we will replace it with. In this case, we wish to transform
the whole input message, so we click on the Expression link and select the XSLT
Resources tab. Clicking on the Browse button enables us to choose a previously
registered XSLT transformation file. After selecting the file, we need to identify the
input to the transformation. In this case, the input message is in the body variable,
and so we select all the elements in the body by using the expression $body/*. We
then save our transformation expression.

Having provided the source data, the target, and the transformation, we can then
save and repeat the whole process for the response message (in this case, converting
from native to canonical form).

Loosely-coupling Services

[134]

We can use JDeveloper to build an XSLT transform and then upload it into the
Service Bus. A future release will add support for XQuery in JDeveloper, similar to
that provided in Oracle Workshop for WebLogic. XSLT is an XML language that
describes how to transform one XML document into another. Fortunately, most
XSLT can be created using the graphical mapping tool in JDeveloper, and so SOA
Suite developers don't have to be experts in XSLT, although it is very useful to know
how it works. Note that in our transform, we may need to enhance the message
with additional information, for example, all the Global Address methods require
a username and password to be provided to allow accounting of the requests to
take place. This information has no place in the canonical request format, but must
be added in the transform. A sample transform that does just this is shown in the
following screenshot:

Chapter 4

[135]

Note that we use XPath string functions to set the username and password fields.
It would be better to set these from the properties or an external file, as we would
usually want to use them in a number of calls to the physical service. XPath functions
are capable of allowing access to composite properties. We actually only need to set
five fields in the request, namely, a country, postcode, username, password, and the
maximum number of results to return. All the other fields are not necessary for the
service we are using and so are hidden from end users because they do not appear in
the canonical form of the service.

Applying canonical form in the Service Bus
When we think about the canonical form and routing, we have several different
operations that may need to be performed.

Conversion to/from the native business service form from/to the canonical
proxy form
Conversion to/from the native client form from/to the canonical proxy form
Routing between multiple native services, each potentially with its own
message format

The following diagram represents these different potential interactions as distinct
proxy implementations in the service. To reduce coupling and make maintenance
easier, each native service has a corresponding canonical proxy service. This isolates
the rest of the system from the actual native formats. This is shown below in the
Local-Harte-Hanks-Proxy and Local-LocalAddress-Proxy services that transform
the native service to/from the canonical form. This approach allows us to change the
native address lookup implementations without impacting anything other than the
Local-*-Proxy service.

The Canonical-Address-Proxy has the job of hiding the fact that the address lookup
service is actually provided by a number of different service providers, each with
their own message formats. By providing this service, we can easily add additional
address providers without impacting the clients of the address lookup service.

•

•
•

Loosely-coupling Services

[136]

In addition to the services shown in the diagram, we may have clients that are not
written to use the canonical address lookup. In this case, we need to provide a proxy
that transforms the native input request to/from the canonical form. This allows us
to be isolated from the requirements of the clients of the service. If a client requires
its own interface to the address lookup service, we can easily provide that through a
proxy without the need to impact the rest of the system, again reducing coupling.

An important optimization
The previous approach provides a very robust way of isolating service consumers
and service requestors from the native formats and locations of their partners.
However, there must be a concern about the overhead of all these additional proxy
services and also about the possibility of a client accessing a native service directly.
To avoid these problems, the Service Bus provides a local transport mechanism
that can be specified as part of the binding of the proxy service. The local transport
provides two things for us:

It makes services only consumable by other services in the Service Bus, they
cannot be accessed externally
It provides a highly optimized messaging transport between proxy
services, providing in-memory speed to avoid unnecessary overhead in
service hand-offs between proxy services

These optimizations mean that it is very efficient to use the canonical form, and so
the Service Bus not only allows us great flexibility in how we decouple our services
from each other, but it also provides a very efficient mechanism for us to implement
that decoupling. Note, though, that there is a cost involved in performing XSLT or
XQuery transformations. This cost may be viewed as the price of loose coupling.

Using the Mediator for virtualization
As discussed earlier, we can also use the Mediator for virtualization within an SCA
Assembly. The Mediator should be used to ensure that interface into and out of SCA
Assemblies use canonical form. We can also use XSL transforms in Mediator in a
similar fashion to Service Bus to provide mappings between one data format
and another.

To do this, we would select the canonical format WSDL as the input to our composite
and wire this to the Mediator in the same way as we did in Chapter 2, Writing your
First Composite. We can then double-click on the Mediator to open it and add a
transformation to convert the messages to and from the canonical form.

•

•

Chapter 4

[137]

If necessary, we may need to expand the routing rule to show the details. For the
input message, we have the option of filtering the message, meaning that we can
choose what to call, based on the contents of the input message. If no filter expression
is provided, then all messages will be delivered to a single target.

The Validate Semantic field allows us to check that the input message is of the
correct format. This requires a schematron file and is covered in Chapter 13, Building
Validation into Services.

The Assign Values field allows us to set values using either the input message or
message properties. This is particularly useful when using adapters, as some of the
data required may be provided in adapter headers such as the input filename. This
may also be used to set adapter header properties, if invoking an adapter.

Loosely-coupling Services

[138]

The Transform Using field allows us to select an XSL stylesheet to transform the
input (in this case, the canonical format) to the internal format. Clicking the icon
brings up the Request Transformation Map dialog:

Here we can either select an existing XSL or create a new one based on the input and
output formats.

The XSL editor provides a graphical drag-and-drop mechanism for creating XSL
stylesheets. Alternatively, it is possible to select the Source tab and input XSL
commands directly. Note that many XSL commands are not supported by the
graphical editor, and so it is best to do as much as possible in the graphical editor
before switching to the source mode.

Summary
In this chapter, we have explored how we can use the Oracle Service Bus and the
Mediator in the SOA Suite to reduce the degree of coupling. By reducing coupling,
or the dependencies between services, our architectures become more resilient to
change. In particular, we looked at how to use the Service Bus to reduce coupling by
abstracting endpoint interface locations and formats. Crucial to this is the concept of
canonical or common data formats that reduce the amount of data transformation
that is required, particularly in bringing new services into our architecture. Finally,
we considered how this abstraction can go as far as hiding the fact that we are using
multiple services' concurrently by allowing us to make routing decisions at runtime.

All these features are there to help us build service-oriented architectures that are
resilient to change and can easily absorb new functionality and services.

Using BPEL to Build Composite
Services and Business

Processes
In the previous two chapters, we saw how we can service-enable functionality
embedded within existing systems. The next challenge is how to assemble these
services to build "composite" applications or business processes. This is the role of
the Web Service Business Process Execution Language (WS BPEL) or Business
Process Execution Language (BPEL), as it's commonly referred to.

BPEL is a rich XML-based language for describing the assembly of a set of existing
web services into either a composite service or a business process. Once deployed, a
BPEL process itself is actually invoked as a web service.

Thus, anything that can call a web service, can also call a BPEL process, including of
course, other BPEL processes. This allows you to take a nested approach to writing
BPEL processes, giving you a lot of flexibility.

In this chapter, we first introduce the basic structure of a BPEL process, its key
constructs, and the difference between a synchronous and asynchronous service.

We then demonstrate through the building and refinement of two example BPEL
processes (one synchronous the other asynchronous), how to use BPEL to invoke
external web services (including other BPEL processes), and to build composite
services. During this process, we also take the opportunity to introduce the reader
to many of the key BPEL activities in more detail.

Using BPEL to Build Composite Services and Business Processes

[140]

Basic structure of a BPEL process
The following image shows the core structure of a BPEL process, and how it interacts
with components external to it: either web services that the BPEL process invokes
(Service A and Service B in this case) or external clients that invoke the BPEL
process as a web service.

From this, we can see that the BPEL process divides into two distinct parts: the
partner links (with associated WSDL files, which describe the interactions between
the BPEL process and the outside world) and the core BPEL Process itself, which
describes the process to be executed at runtime.

Core BPEL process
The core BPEL process consists of a number of steps or activities as they are called
in BPEL.

These consist of simple activities, including:

Assign: Used to manipulate variables.
Transform: A specialized assign activity that uses XSLT to map data from a
source format to a target format.

•
•

Chapter 5

[141]

Wait: Used to pause the process for a period of time.
Empty: Does nothing. It is used in branches of your process where
syntactically an activity is required, but you don't want to perform an activity.

Structured activities that control the flow through the process, these include:

While: For implementing loops
Switch: Construct for implementing conditional branches
Flow: For implementing branches that execute in parallel
FlowN: For implementing a dynamic number of parallel branches

And messaging activities (for example, Receive, Invoke, Reply, and Pick)

The activities within a BPEL process can be subdivided into logical groups of
activities, using the Scope activity. Along with providing a useful way to structure
and organize your process, it also lets you define attributes such as variables, fault
handlers, and compensation handlers that just apply to the scope.

Variables
Each BPEL process also defines variables, which are used to hold the state of the
process as well as messages that are sent and received by the process. They can be
defined at the process level, in which case, they are considered global and visible to
all parts of the process, or can be declared within a scope, in which case they are only
visible to activities contained within that scope (and scopes nested within the scope
to which the variable belongs).

Variables can be one of the following types:

Simple type: Can hold any simple data type defined by XML Schema (for
example, string, integer, Boolean, and float)
WSDL message type: Used to hold the content of a WSDL message sent to or
received from partners
Element: Can hold either a complex or simple XML Schema element defined
in either a WSDL file or a separate XML Schema

Variables are manipulated using the <assign> activity, which can be used to
copy data from one variable to another, as well as create new data using XPath
expressions or XSLT.

For variables that are WSDL messages or complex elements, we can work with it at
the subcomponent level by specifying the part of the variable we would like to work
with using an XPath expression.

•
•

•
•
•
•

•

•

•

Using BPEL to Build Composite Services and Business Processes

[142]

Partner links
All interaction between a process and other parties (or partners) is via web services,
as defined by their corresponding WSDL files. Even though each service is fully
described by its WSDL, it fails to define the relationship between the process and the
partner, that is, who the consumer of a service is and who the provider is. At first
glance, the relationship may seem implicit. However, this is not always the case, so
BPEL uses partner links to explicitly define this relationship.

Partner links are defined using the <partnerLinkType>, which is an extension to
WSDL (defined by the BPEL standard). Whenever you refer to a web service whose
WSDL doesn't contain a <partnerLinkType>, JDeveloper will automatically ask
you whether you want it to create one for you. Assuming your answer is yes, it will
create this as a separate WSDL document, which then imports the original WSDL.

Messaging activities
BPEL defines three messaging activities <receive>, <reply>, and <invoke>; how
you use these depends on whether the message interaction is either synchronous or
asynchronous and whether the BPEL process is either a consumer or provider of
the service.

Synchronous messaging
With synchronous messaging the caller will block until it has received a reply
(or times out), that is, the BPEL process will wait for a reply before moving on
to the next activity.

As we can see in the following, Process A uses the <invoke> activity to call a
synchronous web service (Process B in this case), once it has sent the initial
request, it blocks and waits for a corresponding reply from Process B.

Process B uses the <receive> activity to receive the request. Once it has processed
the request, it uses the <reply> activity to send a response back to Process A.

Chapter 5

[143]

Theoretically, Process B could take as long as it wants before sending a reply, but
typically Process A will only wait for a short time (for example, 30 seconds) before
it times out the <invoke> operation under the assumption that something has
gone wrong. Thus, if Process B is going to take a substantial period of time before
replying, then you should model the exchange as an Asynchronous Send-Receive
(refer to the following section).

Asynchronous messaging
With asynchronous messaging, the key difference is that once the caller has sent the
request, the send operation will return immediately, and the BPEL process may then
continue with additional activities until it is ready to receive the reply. At this point,
the process will block until it receives the reply (which may already be there).

If we look at the following screenshot, you will notice that just like the synchronous
request Process A uses the <invoke> activity to call an asynchronous web service.
However, the difference is that it doesn't block waiting for a response, rather it
continues processing until it is ready to process the response. It then receives this
using the <receive> activity.

Conversely, Process B uses a <receive> activity to receive the initial request and an
<invoke> activity to send back the corresponding response.

While at a logical level, there is little difference between synchronous and
asynchronous messaging (especially if there are no activities between the <invoke>
and <receive> activity in Process A), at a technical level there is a key difference.

This is because with asynchronous messaging, we have two <invoke>, <receive>
pairs, each corresponding to a separate web service operation. One is for the request
and the other is for the reply.

Using BPEL to Build Composite Services and Business Processes

[144]

From a decision perspective, a key driver as to which to choose is the length of time
it takes for Process B to service the request, as asynchronous messaging supports far
longer processing times. In general, once the time it takes for Process B to
return a response goes above 30 seconds, you should consider switching to
asynchronous messaging.

With potentially many instances of Process A and Process B
running at the same time, BPEL needs to ensure that each reply
is matched (or correlated) to the appropriate request. By default,
BPEL uses WS-Addressing to achieve this. We look at this in more
detail in Chapter 16, Message Interaction Patterns.

One way messaging
A variation of asynchronous messaging is one way messaging (also known as fire
and forget). This involves a single message being sent from the calling process, with
no response being returned.

If we look at the following screenshot, you will notice that just like the asynchronous
request, Process A uses the <invoke> activity to send a message to Process B.

Once Process A has sent the message, it continues processing until it completes, that
is, it never stops to wait for a response from Process B. Similarly, Process B, upon
receipt of the message, continues processing until it has completed and never sends
any response back to Process A.

A simple composite service
Despite the fact that BPEL is intended primarily for writing long running processes,
it also provides an excellent way to build a composite service, that is, a service that is
assembled from other services.

Let's take a simple example: say I have a service that gives me the stock quote for
a specified company, and that I also have a service that gives me the exchange rate
between two currencies. I can use BPEL to combine these two services and provide
a service that gives the stock quote for a company in the currency of my choice.

Chapter 5

[145]

So let's create our stock quote service, we will create a simple synchronous BPEL
process which takes two parameters, the stock ticker and the required currency.
This will then call two external services.

Creating our StockQuote service
Before we begin, we will create an application (named Chapter05), which we will
use for all our samples in this chapter. To do this, follow the same process we used to
create our first application in Chapter 2, Writing your First Composite. When prompted
to create a project, create an Empty Composite named StockService.

Next, drag a BPEL process from the SOA Component Palette onto our StockService
composite. This will launch the Create BPEL Process wizard, specify a name of
StockQuote, and select a Synchronous BPEL Process. However, at this stage
do not click OK.

Using BPEL to Build Composite Services and Business Processes

[146]

You may remember when we created our Echo service back in Chapter 2, Writing
your First Composite, JDeveloper automatically created a simple WSDL file for our
service, with a single input and output field. For our StockQuote service, we need
to pass in multiple fields (that is, Stock Ticker and Currency). So, to define the input
and output messages for our BPEL process, we are going to make use of a predefined
schema StockService.xsd, as shown in the following code snippet (for brevity,
only the parts which are relevant to this example are shown. However, the complete
schema is provided in the downloadable samples file for the book).

<?xml	version="1.0"	encoding="windows-1252"?>
<xsd:schema	xmlns:xsd="http://www.w3.org/2001/XMLSchema"
												xmlns="http://xmlns.packtpub.com/StockService"
												targetNamespace="http://xmlns.packtpub.com/StockService"	
												elementFormDefault="qualified">

 <xsd:element name="getQuote" type=" tGetQuote"/>
 <xsd:element name="getQuoteResponse" type=" tGetQuoteResponse"/>

 <xsd:complexType name="tGetQuote">
 <xsd:sequence>
 <xsd:element name="stockSymbol" type="xsd:string"/>
 <xsd:element name="currency" type="xsd:string"/>
 </xsd:sequence>
 </xsd:complexType>

 <xsd:complexType name="tGetQuoteResponse">
 <xsd:sequence>
 <xsd:element name="stockSymbol" type="xsd:string"/>
 <xsd:element name="currency" type="xsd:string"/>
 <xsd:element name="amount" type="xsd:decimal"/>
 </xsd:sequence>
 </xsd:complexType>

			…	
			
</xsd:schema>

Importing StockService schema
To override the default input schema element generated by JDeveloper, click on
Browse Input Elements … (the magnifying glass circled in the previous screenshot).
This will bring up the Type Chooser , as shown in the following screenshot, which
allows you to browse all schemas imported by the composite and select an element
from them.

Chapter 5

[147]

In our case, we have yet to import any schemas, so click on Import Schema File …
(circled in the previous screenshot). This will launch the Import Schema File window.
Click on the magnifying glass to launch the SOA Resource Browser (in File System
mode), which will allow us to search our filesystem for an appropriate schema.

Find the StockService.xsd located in the samples folder for Chapter 5 and select
this. Ensure that the option to Copy to Project is selected and click OK; JDeveloper
will then bring up the Localize Files window. Keep the default options and click
OK. This will cause JDeveloper to create a local copy of our XML Schema and any
dependant files (of which there are none in this example) within our project.

JDeveloper will now open the schema browser dialog, containing the imported
StockService schema. Browse this and select the getQuote element, as shown in
the following screenshot:

Using BPEL to Build Composite Services and Business Processes

[148]

Repeat this step for the output schema element, but select the getQuoteResponse
element. Click OK and this will create our StockQuote process within our
composite, as shown in the following screenshot:

Within the composite, double-click the StockQuote process to open it in the BPEL
editor. You will see that, by default, JDeveloper has created a skeleton BPEL process,
which contains an initial <receive> activity to receive the stock quote request,
followed by a <reply> activity to send back the result (as we discussed in the earlier
section – Synchronous Messaging). In addition, it will have created two variables;
inputVariable, which contains the initial stockquote request, and outputVariable,
in which we will place the result to return to the requestor.

If you look in the Projects section of the Application Navigator, you
will see that it contains the file StockQuote.wsdl. This contains
the WSDL description (including partner link extensions) for our
process. If you examine this, you will see that we have a single
operation; process, which is used to call the BPEL process.

Calling the external web services
The next step is to call our external web services. For our stock quote service, we are
going to use Xignite's quotes web service, which delivers delayed equity price quotes
from all U.S. stock exchanges (NYSE, NASDAQ, AMEX, NASDAQ OTC Bulletin
Board, and Pink Sheets).

Before you can use this service, you will need to register with
Xignite. To do this, or for more information on this and other
services provided by Xignite, go to www.xignite.com.

Chapter 5

[149]

To call a web service in BPEL, we first need to create a partner link (as discussed at
the start of this chapter). So from the Component Palette, expand the BPEL Services
section and drag a Partner Link (Web Service / Adapter) component into the Partner
Link swim lane in your BPEL process. This will pop up the following screen:

First enter a name for the partner link, for example, XigniteQuotes. Next we need to
specify the WSDL file for the partner link. JDeveloper provides the following ways to
do this:

SOA Resource Lookup: Allows us to browse the filesystem for WSDL files or
any connected application server for deployed services
SOA Service Explorer: Allows us to browse other services that are defined
within the composite (for example, other BPEL processes, Mediator, or
external services)
Define Service: This enables us to define adapter services (refer to
Chapter 3, Service-enabling Existing Systems) directly within the context
of a BPEL process
WSDL URL: Directly enter the URL for the WSDL file into the
corresponding field

For our reference, we have a local copy of the WSDL for Xignite's quotes service,
called XigniteQuotes.wsdl, which is included with the samples for Chapter 5. Click
on the SOA Resource Lookup … icon (circled in the preceding screenshot), then
browse to and select this file (select Yes if prompted to create a local copy of the file).

•

•

•

•

Using BPEL to Build Composite Services and Business Processes

[150]

JDeveloper will parse the WSDL, and assuming it is successful, it will pop up a
window saying that there are no partner link types defined in the current WSDL
and ask if you want to create partner links for the file. Click Yes. JDeveloper will then
create one Partner Link Type for each port type defined in the WSDL. In cases where
we have multiple partner link types, we will need to specify which one to use within
our process. To do this, click on the drop-down list next to Partner Link Type and
select the appropriate one. In our case, we have selected XigniteQuotesSoap_PL,
as shown in the following screenshot:

Finally, we need to specify the Partner Role and My Role. When invoking a
synchronous service, there will only be a single role defined in the WSDL, which
represents the provider of the service. So specify this for the Partner Role and leave
My Role as ----- Not Specified -----.

Best practice would dictate that rather than calling the stock quote
service directly from within BPEL, we would invoke it via the Oracle
Service Bus. This is an area we look at more closely in Chapter 10,
oBay Introduction when we define our blueprint for SOA.

If you look at the composite view, you will see that XigniteQuotes is defined as an
External Reference and is wired to our BPEL process.

Calling the web service
Once we have defined a partner link for the web service, the next step is to call it. As
this is a synchronous service, we will need to use an <invoke> activity to call it, as
we described earlier in this chapter.

Chapter 5

[151]

On the Component Palette, ensure that the BPEL Activities and Components
section is expanded. Then from it, drag an Invoke activity on to your BPEL process.

Next, place your mouse over the arrow next to the Invoke activity. Click and hold
your mouse button, drag the arrow over your partner link, and then release, as
shown in the following screenshot:

This will then pop up the Edit Invoke activity window, as shown in the
following screenshot:

Using BPEL to Build Composite Services and Business Processes

[152]

We need to specify a number of values to configure the Invoke activity, namely:

Name: This is the name we want to assign to the Invoke activity, and can be
any value. So just assign a meaningful value such as GetQuote.
Partner Link: This is the Partner Link whose service we want to invoke; it
should already be set to use XigniteQuotes, as we have already linked this
activity to that Partner Link. An alternate approach would be to click on
the corresponding spotlight icon, which would allow us to select from any
Partner Link already defined to the process.
Operation: Once we've specified a Partner Link, we need to specify which
of its operations we wish to invoke. This presents us with a drop-down
list, listing all the operations that are available, for our purpose, select
GetSingleQuote.
Input: Here we must specify the variable that contains the data to be passed
to the web service that's being invoked. It is important that the variable is
of type Message, and that it is of the same message type expected by the
Operation (that is, as defined in the WSDL file for the web service).
The simplest way to ensure this is by getting JDeveloper to create the variable
for you. To do this, click on the green plus sign to the right of the input
variable field. This will bring up the Create Variable window, as shown in
the following screenshot. You will notice that JDeveloper creates a default
name for the variable (based on the name you gave the invoke operation and
the operation that you are calling). You can override this with something
more meaningful (for example, QuoteInput).
Output: Finally, we must specify the variable into which the value returned
by the web service will be placed. As with the input variable, this should be
of the type Message and corresponds to the output message defined in the
WSDL file for the selected operation. Again, the simplest way to ensure this
is to get JDeveloper to create the variable for you.

Once you've specified values for all these fields, as illustrated in the preceding
screenshot, click OK.

•

•

•

•

•

Chapter 5

[153]

Assigning values to variables
In our previous step, we created the variable QuoteInput, which we pass to our
invocation of GetSingleQuote. However, we have yet to initialize the variable or
assign any value to it.

To do this, BPEL provides the <assign> activity, which is used to update the values
of variables with new data. The <assign> activity typically consists of one or more
copy operations. Each copy consists of a target variable, that is, the variable that you
wish to assign a value to and a source (this can either be another variable or an
XPath expression).

For our purposes, we want to assign the stock symbol passed into our BPEL process
to our QuoteInput variable.

To do this, drag an Assign activity from the Component Palette on to your BPEL
process at the point just before our Invoke activity. Then double-click on it to open
up the Assign configuration window. Click on the green plus sign and select
Copy Operation….

This will present us with the Create Copy Operation window, as shown in the
following screenshot:

On the left-hand side, we specify the From variable (that is, the source). Here we
want to specify the stock symbol passed in as part of the input variable to the
BPEL process. So expand the inputVariable tree, and select /ns2:getQuote/ns2:
stockSymbol.

Using BPEL to Build Composite Services and Business Processes

[154]

For the target, expand QuoteInput and select /ns1:GetSingleQuote/ns1:Symbol.

You will notice that for both the source and target, JDeveloper has created the
equivalent XPath expression (circled in the preceding screenshot).

The source and target can either be a simple type (for example, xsd:int,
xsd:date, or xsd:string), as in the preceding example. Or a complex
type (for example, ns2:getQuote), but make sure the source and target
are either of the same type, or at least compatible.

Testing the process
At this stage, even though the process isn't complete, we can still save, deploy, and
run our composite. Do this in the same way as previously covered in Chapter 2,
Writing your First Composite. When you run the composite from the console you will
notice that it doesn't return anything (as we haven't specified this yet). But if you
look at the audit trail, you should successfully see the GetSingleQuote operation
being invoked. Assuming this is the case, we know we have implemented that part
of the process correctly.

Calling the exchange rate web service
The next step of the process is to determine the exchange rate between the
requested currency and the US dollar (the currency used by the GetSingleQuote
operation). For this, we are going to use the currency convertor service provided by
webserviceX.NET.

For more information on this and other services provided by webserviceX.NET, go to
www.webservicex.net.

This service provides a single operation ConversionRate, which gets the conversion
rate from one currency to another. The WSDL file for this service can be found at the
following URL:

http://www.webservicex.net/CurrencyConvertor.asmx?wsdl

For convenience, we have included a local copy of the WSDL for webserviceX.NET's
currency convertor service, called CurrencyConvertor.wsdl. It's included with the
samples of Chapter 5.

To invoke the ConversionRate operation, we will follow the same basic steps that
we did in the previous section to invoke the GetSingleQuote operation. For brevity,
we won't repeat them here, but will allow the reader to do this.

Chapter 5

[155]

To follow the examples, name the input variable for the exchange
rate web service ExchangeRateInput and the output variable
ExchangeRateOutput.

Assigning constant values to variables
The operation ConversionRate takes two input values as follows:

FromCurrency: This should be set to 'USD'
ToCurrency: This should be set to the currency field contained within the
inputVariable for the BPEL process.

To set the FromCurrency, create another copy operation. However, for the From
value, select Expression as the Type (circled in the following screenshot).

This will replace the variable browser with a free format textbox. Here you can
specify any value, within quotes, that you wish to assign to your target variable.
For our purposes, enter 'USD', as shown in the following screenshot:

To set the value of ToCurrency, create another copy operation and copy in the value
of the currency field contained within the inputVariable.

At this stage again, save, deploy, and run the composite to validate that we are
calling the exchange rate service correctly.

•
•

Using BPEL to Build Composite Services and Business Processes

[156]

Using the expression builder
The final part of the process is to combine the exchange rate returned by one service
with the stock price returned by the other, in order to determine the stock price in the
requested currency and return that to the caller of the composite.

To do this, we will again use an <assign> activity. So drag another <assign>
activity onto the process, just after our second invoke activity. Now in our previous
use of the <assign> activity, we have just used it to copy a value from one variable
to another.

Here, it is slightly different, in that we want to combine multiple values into a single
value, and to do that, we will need to write the appropriate piece of XPath. Create
a copy operation as before, but for the source type, select Expression from the
drop-down list, as shown in the following screenshot:

Chapter 5

[157]

Now, if you want, you can type in the XPath expression manually (into the Expression
area), but it's far easier and less error prone to use the Expression Builder. To do this,
click on the XPath expression builder icon; the calculator icon, which is circled in the
preceding screenshot, will pop up the Expression Builder (shown below):

The Expression Builder provides a graphical tool for writing XPath expressions,
which are executed as part of the copy operation. It consists of the following areas:

Expression: The top textbox contains the XPath expression that you are
working on. You can either type data directly in here, or use the Expression
Builder to insert XPath fragments to build up the XPath required.
BPEL variables: This part of the Expression Builder lets you browse the
variables defined within your BPEL process. Once you've located the variable
that you wish to use, click on the Insert Into Expression button, and this will
insert the appropriate code fragment into the XPath expression.

The code fragment is inserted at the point within the
expression where the cursor is currently positioned.

•

•

Using BPEL to Build Composite Services and Business Processes

[158]

Functions: This shows you all the different types of XPath functions that are
available to build up your XPath expression. To make it easier to locate the
required function, they are grouped into categories such as String Functions,
Mathematical Functions, and so on.
The drop-down list lets you select the category that you are interested
in (for example, Mathematical Functions, as illustrated in the preceding
screenshot), and then the window below that lists all the functions available
to that group.
To use a particular function, select the required function, and click Insert Into
Expression. This will insert the appropriate XPath fragment into the XPath
Expression (again at the point that the cursor is currently positioned).
Content Preview: This box displays a preview of the content that would be
inserted into the XPath Expression if you clicked the Insert Into Expression
button. For example, if you had currently selected a particular BPEL variable,
it would show you the XPath to access that variable.
Description: If you've currently selected a function, this box provides a
brief description of the function, as well as the expected usage and
number of parameters.

So let's use this to build our XPath expression. The expression we want to build is
a relatively simple one, namely, the stock price returned by the stock quote service
multiplied by the exchange rate returned by the exchange rate service.

To build our XPath expression, carry out the following steps:

First, within the BPEL Variables area, in the variable QuoteOutput, locate the
element ns1:GetSingleQuoteResult|ns1:Last, as shown in the following screenshot:

•

•

•

Chapter 5

[159]

Then click Insert Into Expression to insert this into the XPath expression.

Next, within the Functions area, select the Mathematical Functions category, and
select the multiply function (notice the description in the Description box, as shown
in the following screenshot), and insert this into the XPath expression:

Finally, back in the BPEL Variables area, locate the element ConversionRateResult
within the variable ExchangeRateOutput, and insert that into the XPath expression.

You should now have an XPath expression similar to the one illustrated below, once
you are happy with it, click OK.

Finally make sure you specify the target part of the copy operation, which should be
the amount element within the outputVariable.

In order to complete the <assign> activity, you will need to create two more copy
operations to copy the Currency and StockSymbol specified in the inputVariable
into the equivalent values in the outputVariable.

Once done, your BPEL process should be complete. So deploy and run the composite.

Using BPEL to Build Composite Services and Business Processes

[160]

Asynchronous service
Following our StockQuote service, another service would be a stock order service,
which would enable us to buy or sell a particular stock. For this service, a client
would need to specify the stock, whether they wanted to buy or sell, the quantity,
and the price.

It makes sense to make this an asynchronous service, as once the order has
been placed, it may take seconds, minutes, hours, or even days for the order to
be matched.

Now, I'm not aware of any trade services that are free to try (probably for a good
reason!). However, there is no reason why we can't simulate one. To do this,
we will write a simple asynchronous process.

Drag another BPEL process on to our StockService composite and give it the name
StockOrder, but specify that it is an asynchronous BPEL process.

As with the StockQuote process, we also want to specify predefined elements for
its input and output. The elements we are going to use are placeOrder for the input
and placeOrderResponse for the output, the definitions for which are shown in the
following code snippet:

<xsd:element	name="placeOrder"									type="tPlaceOrder"/>
<xsd:element	name="placeOrderResponse"	type="tPlaceOrderResponse"/>

<xsd:complexType	name="tPlaceOrder">
		<xsd:sequence>
				<xsd:element	name="currency"				type="xsd:string"/>
				<xsd:element	name="stockSymbol"	type="xsd:string"/>
				<xsd:element	name="buySell"					type="xsd:string"/>
				<xsd:element	name="quantity"				type="xsd:integer"/>
				<xsd:element	name="bidPrice"				type="xsd:decimal"/>
		</xsd:sequence>
</xsd:complexType>

<xsd:complexType	name="tPlaceOrderResponse">
		<xsd:sequence>

Chapter 5

[161]

				<xsd:element	name="currency"				type="xsd:string"/>
				<xsd:element	name="stockSymbol"	type="xsd:string"/>
				<xsd:element	name="buySell"					type="xsd:string"/>
				<xsd:element	name="quantity"				type="xsd:integer"/>
				<xsd:element	name="actualPrice"	type="xsd:decimal"/>
		</xsd:sequence>
</xsd:complexType>

These are also defined in the StockService.xsd that we previously imported into
the StockService composite. So, for each field, we click on the magnifying glass
to bring up the type chooser and select the appropriate element definitions. Then
click OK to create the process. This will create a second BPEL process within our
composite, so double-click on this to open it.

You will see that, by default, JDeveloper has created a skeleton asynchronous BPEL
process, which contains an initial <receive> activity to receive the stock order
request. But this time it's followed by an <invoke> activity to send the result back
(as opposed to a <reply> activity used by the synchronous process).

If you look at the WSDL for the process, you will see that it defines two operations:
process to call the process, and processResponse, which will be called by the
process to send back the result. Thus the client that calls the process operation will
need to provide the processResponse callback in order to receive the result (this is
something we will look at in more detail in Chapter 15, Message Interaction Patterns.

Now, for the purpose of our simulation, we will assume that the StockOrder
request is successful and the actualPrice achieved is always the bid price. So to
do this, create an assign operation that copies all the original input values to their
corresponding output values. Deploy the composite, and run it from the console.

When you click the Test Web Service button for the StockService
composite, you will now be presented with two options: stockorder_
client_ep and stockquote_client_ep. These correspond to each of the
exposed services we have defined in our composite. Ensure you select
stockorder_client_ep, which is wired to our StockOrder process.

Using BPEL to Build Composite Services and Business Processes

[162]

This time, you will notice that no result is returned (as it's being processed
asynchronously); rather it displays a message to indicate that the service was
invoked successfully, as shown in the following screenshot:

Click on Launch Message Flow Trace to bring up the trace for the composite, and
then select StockOrder to bring up the audit trail for the process. Switch to the flow
view, and expand the callbackClient activity at the end of the trace. This will pop up
a window showing the details of the response sent by our process, as shown in the
following screenshot:

Chapter 5

[163]

Using the wait activity
Now you've probably spotted the most obvious flaw with this simulation, in that the
process returns a response almost immediately, which negates the whole point of
making it asynchronous.

To make it more realistic, we will use the <wait> activity to wait for a period of time.
To do this drag the <wait> activity from the Component Palette onto your BPEL
process just before the <assign> activity, and then double-click on it to open the
Wait activity window, as shown below.

The <wait> activity allows you to specify that the process wait for a specified
duration of time or until a specified deadline. In either case, you specify a fixed
value or choose to specify an XPath expression to evaluate the value at runtime.

If you specify Expression, and then click the calculator icon to the right of it, this will
launch the Expression Builder that we introduced earlier in the chapter. The result
of the expression must evaluate to a valid value of xsd:duration for periods and
xsd:dateTime for deadlines. The format of xsd:duration is PnYnMnDTnHnMnS, for
example. P1M would be a duration of 1 month and P10DT1H25M would be 10 days,
1 hour and 25 minutes.

For deadlines, the expression should evaluate to a valid value of xsd:date.

The structure of xsd:dateTime is YYYY-MM-DDThh:mm:ss+hh:mm, where the +hh:
mm is optional and is the time period offset from UTC (or GMT, if you prefer).
Obviously, the offset can be negative or positive.

For example, 2010-01-19T17:37:47-05:00 is the time 17:37:47 on January 19th
2010, 5 hours behind UTC (that is, Eastern Standard Time in the US).

Using BPEL to Build Composite Services and Business Processes

[164]

For our purposes, we just need to wait for a relatively short period of time, so set it to
wait for one minute.

Now save, deploy, and run the composite. If you now look at the audit trail of
the process, you will see that it has paused on the <wait> activity (which will be
highlighted in orange).

Improving the stock trade service
We have a very trivial trade service, which always results in a successful trade after
one minute. Let's see if we can make it a bit more "realistic".

We will modify the process to call the stockQuote service and compare the actual
price against the requested price. If the quote we get back matches or is better than
the price specified, then we will return a successful trade (at the quoted price).
Otherwise we will wait a minute and loop back round and try again.

Creating the while loop
The bulk of this process will now be contained within a while loop, so from the
Process Activities list of the Component Palette, drag a While activity into
the process.

Click on the plus symbol to expand the While activity. It will now display an area
where you can drop a sequence of one or more activities that will be executed every
time the process iterates through the loop.

We want to iterate through the loop until the trade has been fulfilled, so let's create a
variable of type xsd:Boolean called tradeFulfilled and use an <assign> statement
before the while loop to set its value to false.

Chapter 5

[165]

The first step is to create a variable of type xsd:Boolean. Until now, we've used
JDeveloper to automatically create the variables we've required, typically as part of
the process of defining an Invoke activity. However, that's not an option here.

If you look at the diagram of your BPEL process, you will see that it is surrounded by
a light grey dashed box, and on the top left-hand side there are a number of icons. If
you click on the top one of these (x), as shown in the following screenshot, this will
open a window that lists all the variables defined in the process:

At this stage, it will list just the default inputVariable and outputVariable, which
were automatically created with the process. Click on the green plus button. This will
bring up the Create Variable window, as shown in the following screenshot:

Using BPEL to Build Composite Services and Business Processes

[166]

Here we simply specify the Name of the variable (for example, tradeFulfilled) and
its Type. In our case, we want an xsd:Boolean, so select Simple Type and click the
magnifying glass to the right of it.

This will bring up the Type Chooser, which will list all the simple built-in data types
defined by XML Schema. Select Boolean and click OK.

We need to initialize the variable to false, so drag an <assign> statement on to your
process just before the while loop. Use the function false(), under the category
Logical Functions, to achieve this.

Next, we need to set the condition on the while loop, so that it will execute only
while tradeFulfilled equals false. Double-click on the while loop. This will open
the While activity window, as shown in the following screenshot:

We must now specify an XPath expression, which will evaluate to either true
or false. If you click on the expression builder icon, which is circled in the
preceding screenshot, this will launch the Expression Builder. Use this to
build the following expression:

bpws:getVariableData('tradeFullfilled')	=	false()

Once we are happy with this, click OK.

Checking the price
The first activity we need to perform within the while loop is to get a quote for the
stock that we are trading. For this, we will need to invoke the stock quote process we
created earlier. As both of these processes are in the same composite, the simplest
way to do this is to wire them together.

Chapter 5

[167]

Switch to the composite view in JDeveloper, next place your mouse over the yellow
arrow on the StockOrder process (the one to add a new Reference). Click and hold
your mouse button, then drag the arrow onto the blue arrow on the StockQuote
process (the one that represents the Service Interface), then release, as shown in the
following screenshot:

This will wire these two processes together and create a corresponding partner link
in the StockOrder process. From here, implement the required steps to invoke the
process operation of the StockQuote process, making sure that they are included
within the while loop.

Using the switch activity
Remember our requirement is that we return success if the price matches or is better
than the one specified in the order. Obviously, whether the price is better depends on
whether we are selling or buying. If we are selling we need the price to be equal to or
greater than the asking price; whereas if we are buying, we need the price to be equal
to or less than the asking price.

So for this, we will introduce the <switch> activity. Drag a <switch> activity from
the Process Activities list of the Component Palette on to your process after the
invoke activity for the StockQuote service. Next, click on the plus symbol to expand
the <switch> activity. By default, it will have two branches illustrated as follows:

Using BPEL to Build Composite Services and Business Processes

[168]

The first branch contains a <case> condition, with a corresponding area where you
can drop a sequence of one or more activities that will be executed if the condition
evaluates to true.

The second branch contains an <otherwise> subactivity, with a corresponding area
for activities. The activities in this branch will only be executed if all case conditions
evaluate to false.

We want to cater to two separate tests (one for buying the other for selling), so click
on the Add Switch Case arrow (highlighted in the preceding screenshot) to add
another <case> branch.

Next, we need to define the test condition for each <case>. To do this, click on the
corresponding Expression Builder icon to launch the expression builder (circled in
the preceding screenshot). For the first one, use the expression builder to create
the following:

bpws:getVariableData	('inputVariable','payload',

	 '/ns1:PlaceOrder/ns1:BuySell')	=	'Buy'	and	
bpws:getVariableData	('inputVariable',	'payload',	

	 '/ns1:PlaceOrder/ns1:BidPrice')	>=	
bpws:getVariableData	('stockQuoteOutput',	'payload',	
	 '/ns1:getQuoteResponse/ns1:Amount')

Chapter 5

[169]

For the second branch, use the expression builder to define the following:

bpws:getVariableData	('inputVariable','payload',

	 '/ns1:PlaceOrder/ns1:BuySell')	=	'Sell'	and	
bpws:getVariableData	('inputVariable',	'payload',	

	 '/ns1:PlaceOrder/ns1:BidPrice')	<=
bpws:getVariableData	('stockQuoteOutput',	'payload',	

'/ns1:getQuoteResponse/ns1:Amount')

Once we've defined the condition for each case, we just need to create a
single <assign> activity in each branch. This needs to set all the values in the
outputVariable to the corresponding values in the inputVariable, except for the
ActualPrice element, which we should set to the value returned by the StockQuote
process. Finally, we also need to set tradeFullfilled to true, so that we exit the
while loop.

The simplest way to do this is by dragging the original <assign> we created in the
first version of this process onto the first branch and then modify it as appropriate.
Then create a similar <assign> activity in the second branch.

You've probably noticed that you could actually combine the
two tests into a single test. However, we took this approach to
illustrate how you can add multiple branches to a switch.

If we don't have a match, then we have to wait a minute and then circle back round
the while loop and try again. As we've already defined a <wait> activity, simply
drag this from its current position within the process into the activity area for the
<otherwise> activity.

That completes the process, so try deploying it and running it from the console.

The other obvious thing is that this process could potentially run
forever if we don't get a stock quote in our favor. One way to solve
this would be to put the while activity in a scope and then set a
timeout period on the scope so that it would only run for so long.

Using BPEL to Build Composite Services and Business Processes

[170]

Summary
In this chapter, we've gone beyond individual services and looked at how we can
use BPEL to quickly assemble these services into composite services. By using this
same approach, we can also implement end-to-end business processes or complete
composite applications (something we will do in the second section of this book).

You may have also noticed that although BPEL provides a rich set of constructs for
describing the assembly of a set of existing services, it doesn't try to reinvent the
wheel where functionality is already provided by existing SOA standards. Rather,
it has been designed to fit naturally with and leverage the existing XML and web
services specifications such as XML Schema, XPath, XSLT, and of course, WSDL,
and SOAP.

This chapter should have given you a solid introduction to the basic structure of
a BPEL process, its key constructs, and the difference between a synchronous and
asynchronous service. Building the examples will help to reinforce this as well as
give you an excellent grasp of how to use JDeveloper to build BPEL processes.

Even though this chapter will have given you a good introduction to BPEL, we haven't
yet looked at much of its advanced functionality such as its ability to handle long
running processes, its fault and exception management, and how it uses compensation
to undo events in the case of failures. These are areas we will cover in more detail in
later chapters of the book.

Adding in Human Workflow
Many business processes require an element of human activity. Common tasks
include approving an expense item or purchase order. But even fully automated
processes can require human involvement, especially when things go wrong.

In this chapter, we will introduce you to the various parts of the human workflow
component of the Oracle SOA Suite and take you through a practical example to
create and run your first "simple" workflow. Once we've done that, we will examine
how to carry out other basic workflow activities such as how to:

Dynamically assign a task to a user or group based on the content of the task
Cancel or change a workflow task while it's still in process
Enable the workflow user to request additional details about a task
Reassign, delegate, or escalate a task, either manually or through the use of
user-defined business rules

Workflow overview
The following diagram illustrates the three, typical participants in any workflow:

•
•
•
•

Adding in Human Workflow

[172]

On the left-hand side we have the BPEL process, which creates the task and submits
it to the human workflow service. Once it has initiated the task, the process itself will
pause until the completed task is returned.

On the right-hand side we have the user who carries out the task. Tasks can either
be directly assigned to a user or to a group to which the user belongs; in this case
they need to claim the task before they can work on it. When working on a task, a
user typically does this via the BPM Worklist Application, which is a web-based
application included as part of the SOA Suite.

Sitting between the BPEL process and the worklist application is the human
workflow service. It is responsible for routing the task to the appropriate user or
group, managing the lifecycle of a task until it completes, and returning the result
to the initiator (that is, the BPEL process in the preceding diagram).

The human workflow services have a full set of WSDL and
Java APIs that allow us to build our own custom equivalent of
the BPM worklist application. This is an area we examine in
Chapter 17, Workflow Patterns.

The human workflow service utilizes an external identity store for details of users,
their privileges, and which groups they belong to. In a production deployment, you
would typically configure the identity store to be an LDAP repository such as Oracle
Internet Directory or Active Directory.

For the sake of simplicity, the workflow examples within this
book make use of the sample user community provided by Oracle.
To install this community, go to http://www.oracle.com/
technology/sample_code/products/hwf/index.html and
download the file workflow-001-DemoCommunitySeedApp. Unzip
this file and follow the instructions in README.txt.

Leave approval workflow
For our first workflow, we will create a very simple BPEL process that takes a leave
request and creates a simple approval task for the individual's manager, who can
then either approve or reject the request.

Chapter 6

[173]

The first step is to create a composite containing a simple asynchronous leave
approval BPEL process. The input and output schema elements for the process are
defined in LeaveRequest.xsd, as shown in the following code snippet (note that the
schema is also provided in the samples folder for Chapter 6):

<?xml	version="1.0"	encoding="windows-1252"?>
<xsd:schema	xmlns:xsd="http://www.w3.org/2001/XMLSchema"
											xmlns="http://schemas.packtpub.com/LeaveRequest"
											targetNamespace="http://schemas.packtpub.com/LeaveRequest"
											elementFormDefault="qualified"	>
		<xsd:element	name="leaveRequest" type="tLeaveRequest"/>
 <xsd:complexType name="tLeaveRequest">
 <xsd:sequence>
 <xsd:element name="employeeId" type="xsd:string"/>
 <xsd:element name="fullName" type="xsd:string" />
 <xsd:element name="startDate" type="xsd:date" />
 <xsd:element name="endDate" type="xsd:date" />
 <xsd:element name="leaveType" type="xsd:string" />
 <xsd:element name="leaveReason" type="xsd:string"/>
 <xsd:element name="requestStatus" type="xsd:string"/>
 </xsd:sequence>
 </xsd:complexType>
</xsd:schema>

Make sure you import this file as part of the process of creating the BPEL process and
set the input and output schema elements to LeaveRequest.

Defining the human task
Once you've created your composite, drag a Human Task Component from the SOA
Component Palette onto it. This will pop up the following screen:

Adding in Human Workflow

[174]

Give the task a meaningful name (for example, LeaveRequest) and click OK. This
will add a Human Task with the corresponding name to our composite, as shown in
the following screenshot:

Double-click on the LeaveRequest task tab. This will open up the task definition
form as a new tab within JDeveloper (as shown in the following screenshot) where
we can configure our task:

Chapter 6

[175]

By default, JDeveloper displays the General subtab where we define the basic details
about the task.

For readers familiar with Oracle SOA Suite 10gR3, you will notice
the task definition form looks a lot simpler. This is because it's
been restructured to organize the task configuration parameters
into categories, each accessed by a corresponding tab (rather than
display them all on the same form as was previously the case).

The key things we need to define for the task are its Title, what the possible
Outcomes are (that is, leave request approved or rejected), the Parameters
(or payload) of the task, and who to route or assign it to.

On the General tab, give the task a Title, such as Approval Required for Leave
Request. Note that this is what a user will see in their work queue if they are
allocated the task. For the time being we can leave the other values (Description,
Outcomes, Priority, Category, and Owner) with their default values.

Specifying task parameters
Next, we need to define the task data, that is, the content of the task that we want
the approver to base their decision upon. For this, we can specify one or more
parameters; each parameter can be a standard XML type such as string, integer, or
boolean. In addition, we can use any type or element defined in one of our imported
XML schemas.

For our purposes, we simply want to pass in the leave request received by the BPEL
process. To do this, select the Data tab, click on the plus symbol (circled in the
following screenshot), and select Add other payload:

Adding in Human Workflow

[176]

This will launch the Add Task Parameter window:

Ensure that Element is selected as the parameter type and then click on the
corresponding search icon to bring up the standard type chooser. From here, just
browse the LeaveRequest schema file that we imported at the start, and select the
LeaveRequest element.

If we check Editable via worklist, anyone who has write access to the task
payload will be able to update the content of this parameter. In our case, we
will leave it unchecked.

Click OK. We should now have a LeaveRequest parameter defined for our task.

Specifying task assignment and routing policy
Finally, we need to specify who is going to approve the task. We do this by creating
an Assignment and Routing Policy. An assignment and routing policy consists
of one or more stages that can be executed sequentially or in parallel (or any
combination thereof), with each stage consisting of one or more participant types
that in turn can also be sequential or in parallel (or any combination thereof). A
participant type can be:

Single: Used to specify a single user or group to assign the task to
Serial: Used when a set of users must work in sequence, for example, when a
task has to proceed through several layers of a management chain
Parallel: Used when a set of users must work in parallel, a common usage for
this is when a group of participants need to vote on an outcome
FYI: Used to send a notification to a user or group

•
•

•

•

Chapter 6

[177]

For our purposes we need a single stage containing one participant of type Single
approver (we will examine the other types in more detail in Chapter 17, Workflow
Patterns). Select the Assignment tab. You will see that, by default, our task consists
of a single stage named Stage1, as shown in the following screenshot:

First, we will give our stage a more meaningful name. To do this, select the stage by
clicking on its name. The stage will turn gray to indicate that it has been selected,
as shown in the preceding screenshot. Then select Edit (circled in the preceding
screenshot). This will bring up the Edit window. Give it an appropriate name, and
click OK.

Adding in Human Workflow

[178]

Next, we need to add a participant of type Single to our Approval stage. First, select
the <Edit Participant> section of our stage by clicking on it. It will turn gray to
indicate that it has been selected, as shown in the following screenshot:

Select Edit (circled in the preceding screenshot). This will launch the Add Participant
Type window.

You will notice that the menu icons in the Assignment tab
are context-sensitive, based on whether you have selected
one or more stages or participants.

Chapter 6

[179]

By default, a participant type of Single approver is selected, which is fine for our
purpose. Labels are used to provide a meaningful description of the routing rules
and are also useful if we specify multiple participants for a stage. So for our purpose,
just enter a meaningful value (for example, Manager Approval).

We now need to specify the list of participants that the task is going to be assigned
to. Each participant can either be a specific user, group, or application role (and we
can have any combination of these in our list).

For our purpose, we are going to assume that the CEO of the company is required to
approve every holiday, so we will always assign it to cdickens. This is probably not
ideal! But we will revisit this later in the chapter to look at how we can make it
more realistic.

Click on the plus symbol, and select Add User, as shown in the preceding
screenshot. This will add a participant of type User to our participant list, as
shown in the following screenshot. We can either directly enter the name of a user
into the Value field or click the browse icon (…) to bring up the identity lookup
dialog. This allows you to search and browse the users and groups
defined in the identity service.

Once you've specified the participant details, click OK; this will take us back to the
task definition window, which will have been updated with our routing policy.
Select Save on JDeveloper to make sure you save the task definition.

Adding in Human Workflow

[180]

Invoking our human task from BPEL
So far, we have defined our human task. The next step is to incorporate it into our
LeaveApproval BPEL process. To do this, drag a Human Task activity from the
BPEL component palette onto our process, as shown in the following screenshot:

JDeveloper will prompt us to specify the Task Definition to use for this activity;
from the drop-down list, select LeaveRequest. This will present us with the Human
Task activity window from where we can configure the task within the context of
our BPEL process:

Chapter 6

[181]

The first value we need to specify is the Task Title. This is optional, since if we
don't specify a value, it will use the task title we specified earlier as part of the task
definition. We want to make the task title a bit friendlier, so first type in (without
the quotes):

Leave Request for	

Then click on the calculator icon to the right of the Task Title field. This will launch
the now familiar Expression Builder. Here, from the inputVariable, just select
the element:

ns1:LeaveRequest/ns1:fullName

This expression will be appended to the end of our title text embedded between
<%	%> to give the following:

Leave	Request	for	<%bpws:getVariableData('inputVariable',	'payload',	
'/ns1:LeaveRequest/ns1:fullName')%>

At runtime, the BPEL process will evaluate the expression between <%	%> and
substitute the result. For now, we won't specify a task initiator as this is optional,
and we will leave the Priority set to 3.

The final thing to specify is the value of each of the Task Parameters defined to the
task. Click on the browse icon (…) for the LeaveRequest parameter, and this will
bring up the Task Parameters window, which allows you to browse the variables
defined to the BPEL process. Select the LeaveRequest element passed in as part of
the inputVariable for the BPEL process.

This completes the configuration of the task, so click OK. This will return us to the
BPEL process, which will now contain our human task activity, followed by an
additional switch. If you expand the switch, you will see it contains a Case for each
of our task outcomes (APPROVE or REJECT), where we can specify the appropriate
next step in our process. For the purpose of this example, we don't need to do
anything. However, in a real system we might update the HR system with details
of the leave, if it was approved.

Your composite is now complete, so deploy it to the server in the normal way.

Creating the user interface to process the task
So far, we have defined the task that needs to be carried out and plugged it into a
simple BPEL process. What we need to do next is implement the part of the user
interface that allows someone to view the details of our specific task and then either
approve or reject the leave request.

Adding in Human Workflow

[182]

Out-of-the-box, SOA Suite provides the worklist application with all the main
workflow user interface screens and a framework in which to plug your task-specific
interface component. This can be developed from scratch if you want, using ADF,
but the simplest way is to get JDeveloper to generate an ADF form based on the
task definition.

To do this, go back to the task definition form, click on Create Form, and select
Auto-Generate Task Form, as shown in the following screenshot:

This will launch the Create Project window, prompting us to specify the name
of the project in which to create our form. Specify an appropriate name, such as
LeaveRequestForm, and click OK.

This will generate an ADF form plus all the supporting components; JDeveloper will
automatically open the form, which can then be customized as required.

Chapter 6

[183]

To deploy the form, click on the Application menu (circled in the preceding
screenshot) and select Deploy | LeaveRequestForm. This will launch the
Deployment dialog. Select Deploy to Application Server, and click on Next. On the
Select Server page, uncheck the option Deploy to all server instances in the domain
and click on Next. On the Server Instances page, select the SOA server instance, click
on Next, and then click Finish.

Running the workflow process
Log into the SOA console and launch the composite, ensuring that you specify a
valid employee ID (such as jcooper). This will invoke the BPEL process, which in
turn will create the LeaveRequest task.

If you browse the audit trail for the composite, you will see it paused at the
LeaveRequest activity, as shown in the following screenshot:

Click on the LeaveRequest activity, and this will bring up the Activity Audit Trail
for the workflow task, showing that it is assigned to cdickens, as shown in the
following screenshot:

Adding in Human Workflow

[184]

At the moment, the composite will wait forever, until the task is either approved or
rejected. To do that, we need to log into the BPM worklist application to process
the task.

Processing tasks with the worklist
application
To launch the worklist application, open up a browser and enter the following URL:

http://<hostname>:<port>/integration/worklistapp

This will bring up the login screen for the BPM worklist application; log in as
cdickens (password welcome1). This will bring you into the My Tasks tab, which
provides access to our various tasks and work queues. By default, it displays our
inbox, which lists all the tasks currently allocated to us (or any groups that we
belong to). We can then filter this based on assignee and task status.

The application also provides a number of other views that enable us to quickly
identify high priority tasks, tasks due soon or new tasks. In addition, we can also
define our own views.

Chapter 6

[185]

Here, you should see the LeaveRequest task created by our process. Click on the
task and it will display details of the task in the bottom pane of the page, like the one
shown in the following screenshot:

If we study this, we can see it is made up of the following five areas:

Actions: Contains the actions that can be performed on a task. This is
split into two parts. The first is a drop-down list that lists standard actions
available for tasks such as Escalate and Suspend, which we will examine
later. The second is a set of buttons that correspond to each of the outcomes
defined in the task definition (that is, Approve or Reject).
Details: Contains the standard header information about the task, a
summary of which was displayed for each task in our work queue. In the
preceding screenshot this is minimized. To expand it, click on the > sign
(circled in the preceding screenshot).
Contents: This contains the task specific payload, in our case, details of the
leave request. This may be editable, depending on how we configure the task.

•

•

•

Adding in Human Workflow

[186]

History: Provides a history (in tabular and pictorial form) of when the task
was created, who it's been assigned to, and so on. This is useful as it provides a
complete audit trail of the task. Note this is also available in the SOA console.
Comments, Attachments: Here we can add comments or attach documents
to the task. This can be especially useful when a task is exchanged between
multiple participants.

For our purpose, we just want to approve or reject the task, so just click the
appropriate button. This will complete the task and remove it from our work queue.

However, change the search filter for the task list to show tasks with a completed
status and you will see that the task is still there. If you select the task, it will display
its details in the task pane, where you can view the content of the task but no longer
perform any actions as it is now complete.

Go back to the SOA console and look at the audit trail for the process, you will see
that it is completed.

Improving the workflow
At this point, we have a simple workflow up and running. However, we have the
following issues with it:

At the moment, all requests go to the CEO, but it would be better if requests
went to the applicant's manager.
Also, what happens if the requester makes a mistake with his/her request, or
changes their mind? How do we let the original requester amend or cancel
their request?
What if the approver needs additional information about a task, is there a
simple way to enable that?

Dynamic task assignment
There are two approaches here. One is to assign the task to a specific group, which
may contain one or more individuals. A classic example would be to assign a
support request to the customer support group.

The other is to dynamically specify the user to assign to a task at runtime, based on
the value of some parameter, which is roughly what we want to do. Actually, we
want to look up the manager of the employee requesting the task and assign it
to them.

•

•

•

•

•

Chapter 6

[187]

If we go back to the Human Task Definition form (refer to Defining the human
task section), and double-click on the Manager Approval step in the routing policy
we defined, this will reopen the Edit Participant Type form. For the Data Type,
specify that you want to select the participant By Expression, and then click on
the browse icon for the Value field (circled in the following screenshot):

This will open up the Expression Builder , which was introduced in Chapter 5, Using
BPEL to Build Composite Services and Business Processess. However, the key thing to
notice here is that we only have access to the content of the task we are working on
(not the full content of the BPEL process).

We need to create an expression that evaluates to the user ID of the employee's
manager. Fortunately, one of the services that come with workflow is the identity
service, which provides us with a simple way of querying the underlying identity
layer to find out details about a user. In our case, we can use the getManager
function to get the ID of the manager.

Adding in Human Workflow

[188]

So within the Expression Builder, select the Identity Service Functions, and from
here, select the getManager function and insert it into the expression. We now
need to pass it the employee ID of whoever is requesting the leave. Expand the
task payload; you will find it contains the content of the leave request. Select the
employeeId and insert that as the parameter, as shown in the following screenshot:

You can now save the task, redeploy it, and run the process. Assuming you specify
that the request is for jcooper, you will need to log in as jstein to approve the task.

Assigning tasks to multiple users or groups
So far, we have only looked at scenarios where we assign a task to a single user.
However, workflow enables you to either assign a task to multiple users, or to one or
more groups (or a combination of the two).

In this case, every user who is a member of the group or has the task assigned to
them will be able to see the task on their queue. However, before anyone can work
on the task, they must first claim it. Once claimed, other users will still be able to
see the task, but only the user who has claimed the task will be able to perform any
operations on it.

Although group assignments are more likely to be static, you can also
specify them dynamically in the same way we have for the user.

Chapter 6

[189]

Cancelling or modifying a task
Another common requirement is to cancel or modify a task before it has completed
the workflow. If we take our example, suppose that having submitted the leave
request we changed our mind. Ideally we would like to be able to withdraw the task
or modify it before someone goes to the effort of approving it.

Withdrawing a task
You may remember that when we first added the task to the BPEL process we had
a field where we could specify a task initiator that we previously left blank. Well, if
you specify a task initiator they are effectively the creator of the task and have the
ability to withdraw the task.

To specify the task initiator, go back to your BPEL process and double-click on
the Human Task. This will reopen the Human Task Configuration window (see
Initializing the Workflow Parameter section), click the icon to the right of the initiator
field, and this will launch the Expression Builder. Use this to specify the employeeId
as the task initiator.

Now save the process, redeploy it, and run the process. Again, specify that the
request is for jcooper, then log into the worklist application as jstein. You should
notice that the task creator is jcooper. Don't approve the task, rather log out and log
back into the worklist application as jcooper.

This will take you into the My Tasks tab, which is probably empty, but if you click
the Initiated Tasks tab, then this will list all the tasks that you have initiated. If you
look at the task, you will see that you can perform a single action on the task, which
is to withdraw it.

Modifying a task
When we defined the task parameters on the task definition form, we had the option
to specify if the parameters are Editable via Worklist, and at the time we didn't
select this option. If this option is selected, then anyone who the task is assigned to
has the ability to modify the task payload, including the task owner and initiator.

Adding in Human Workflow

[190]

Difference between task owner and initiator
Now you may have noticed while specifying the various task details that as well as
being able to specify the task initiator, we can also specify the task owner. At this
point, you may be asking what is the difference between these two roles?

The simple answer is the task owner has more administrative privileges when it
comes to a task. The task initiator is the person who creates a particular instance of a
task. Say, in our example, jcooper and jstein both request leave. In this case, they are
both initiators and can each withdraw the task they requested (but not
each other's).

On the other hand, the task owner may be the holiday administrator. They are
responsible for administering all leave requests. This enables them to perform
operations on behalf of any of the assigned task participants; additionally they
can also reassign or escalate tasks.

The task owner can either be specified as part of the task definition, or on the
Advanced tab of the BPEL Human Task Configuration window.

If no task owner is specified, it defaults to the
system administrator.

When the task owner logs into the worklist application they will see an additional
tab, Administration Tasks, which will list all the tasks for which they are the
task owner.

Requesting additional information about a
task
Once assigned a task, sometimes you need additional information about it, before
you can complete it. In our example, the manager may need more information about
the reason for the leave request.

If a task initiator has been specified, then on the Task details form we have the
option of selecting Request Information. If we select this option we are presented
with the Request More Information form, where we can select who we want more
information from, and enter details of the information required (which will be added
as a comment to the task).

Chapter 6

[191]

This will then assign the task to the initiator. The task will then appear on the
task creators work queue, with a state of Info Requested. The task creator can
either update the details of the task (if allowed) or add their own comment to
provide the additional information. Once done, they can choose the action
Submit Information, and the task will be reassigned back to whoever requested
the additional information.

This feature is automatically enabled when the task is opened. You can disable
this feature if you want by overriding the default access settings for Actions in the
Access tab of the task configuration form.

We can request additional information, not just from the person
who created the task, but anyone else who has already worked on
the task or anyone else that we need further information from.

Managing the assignment of tasks
There is often a requirement to reassign tasks; maybe the task approver is about to
go on leave themselves. Before they go, they may want to reassign all uncompleted
tasks so they can be dealt with by someone else while they are away.

Alternatively, the individual may have already gone on leave (or be indisposed
for some other reason) with a series of tasks already on their queue, which their
manager may need to reassign to someone else.

Depending on a user's privileges and whether they are a manager, the worklist
application provides a number of methods for either reassigning, delegating, or
escalating tasks. We will examine these in detail below.

Reassigning reportee tasks
If a user has any direct reports, then the worklist application will treat them as a
manager. This will give them additional privileges to work on tasks that are either
assigned to any of their direct reports or groups that they own.

Within the work list application, managers have the additional tab, My Staff Tasks.
If they select this, it will list all tasks currently assigned to any of their reports.

The list can be further filtered by selecting Advanced Search and specifying an
appropriate query. For example, you could just show tasks assigned to a particular
user or high priority tasks about to expire.

Adding in Human Workflow

[192]

The manager has two basic options when it comes to staff tasks, they can either work
on the task directly themselves, where they can carry out the same sets of actions as
the assignee. Alternatively, they can choose to reassign the task to another of their
direct reports or to any of the groups that they own.

To see how we do this, log in as wfaulk (jstein's manager), and click on My Staff
Tasks. Select the task(s) you want to reassign; then from the Actions drop-down
list, select Reassign. This will open the Reassign Task window, as shown in the
following screenshot:

Here we have the option to either Reassign or Delegate the task. Stick with the
Reassign option for the time being, as we will look at delegation shortly.

The remainder of the screen allows us to search for the users and or groups that
we want to reassign the task to. You can choose to search just Users or Groups. In
addition, you can further filter the list on the ID of the user or group, as well as the
first name or last name of the user.

When specifying the search criteria, you can use a * to match any character. For
example, the pattern st* will bring back the list of users whose user ID, first,
or last name begin with st.

Chapter 6

[193]

You will also notice that if you select a user, the Details panel will display basic
information about the user, including their Manager, Reportees, and any Roles
they have.

Use the arrows to move users/groups that you wish to reassign the task to from the
search results box to the Selected box, and then click OK.

Reassigning your own task
In addition to reassigning staff tasks, any user can reassign their own tasks. To do
this, they simply open the task from their task list as normal and select the Reassign
option from the Action drop-down list. This will bring up the Reassign Task form
that we just looked at.

An important point here is that the same restrictions on who a user can assign a task
to apply regardless of whether it's the user's own task or a task belonging to one of
their reportees.

Thus, users who have no direct reports will not be able to reassign their task to any
other user. However, if they are a group owner, they will still have the ability to
reassign the task to the group.

If a user has the role "BPMWorkflowReassign", then they are
allowed to reassign a task to anyone.

Delegating tasks
The other option we have when reassigning a task is to delegate it. This is very
similar to reassigning a task, but with a number of key differences as follows:

You can only delegate a task to a single user
You cannot delegate a task to a group
You can delegate a task to anyone regardless of where they are in the
organizational hierarchy

When you delegate a task it is assigned to a new user, but it also remains on your
work queue so that either you or the delegated user can work on the task.

Escalating tasks
There will often be cases where a user needs to escalate the task. To do this, they
simply select the task from their task list as normal and choose Escalate from the
Action drop-down list. This will reassign the task to the user's manager.

•
•
•

Adding in Human Workflow

[194]

Tasks can also be automatically escalated, usually if not handled within
a specified period of time. This is specified in Expiration and Escalation
Policy, which forms part of the task definition.

Using rules to automatically manage tasks
Even though it's possible to manually reassign tasks, this can be inefficient and
time-consuming. An alternative approach is to automate this using workflow rules.

You can either define a rule to be applied to a particular task type (for example our
leave request) or to all tasks. In addition, you can also specify when a rule is active,
which can be during vacation periods, for a specified time period, or active all the
time (which is the default).

You can specify various filter criteria that are applied to the task attributes (for
example, priority, initiator, acquired by) to further restrict which tasks the rule
applies to.

Once you've specified the matching criteria for a rule, you can then specify whether
you want to reassign or delegate the task. Essentially, the same criteria applies to
whomever you are allowed to reassign a task to (if you were to do it manually, as
covered in the previous section, with the added caveat that you can only reassign a
task to a single user or group).

For rules defined for a particular task type, we have the option of being able to
automatically set the task outcome. In the case of our leave request task, we can
write a rule to automatically approve all leave requests that are one day in duration.

The final option is to take no action, which may seem a bit strange. However, this
serves a couple of useful purposes. Often you only want a rule to be active at certain
periods of time. One way to do this is to just specify a date range. An alternative is to
use this to turn the rule on and off, as required over time.

The other use comes in when you define multiple rules. Rules are evaluated in order
against a task until a rule is found that matches a particular task.

For example, to create a rule that reassigned all tasks, except say an expense
approval task, you would do the following. Define two rules, a generic rule to
reassign any task and a specific rule that matched the expense approval task that did
nothing. We would then order the rules so that the expense approval rule triggered
first. This way, the generic rule to reassign a task would be triggered for all tasks
except the expense approval task.

Chapter 6

[195]

Setting up a sample rule
For example, let's say Robert Stevenson (user ID rsteven) is John Steinbeck's deputy,
and we want to create a rule that reassigns all leave requests assigned to jstein to
rsteven except for any leave request made by rsteven.

To do this, you log onto the worklist application as jstein, and click on the
Preferences link on the top-right-hand corner of the worklist title bar. This will bring
you into the My Rules tab, where a user can configure various rules for managing
the assignment of tasks. By default it displays the users currently defined Vacation
Period (which in this case is disabled).

Select the My Rules folder (below Vacation Period (Disabled)), and click on the plus
icon (circled in the preceding screenshot). This will display the template for defining
a new rule.

Adding in Human Workflow

[196]

Enter a suitable name for the rule, but leave the checkbox Use as vacation rule
unchecked. If we were to check this, then the rule would only be active during the
user's vacation period.

Next we want to specify which tasks the rule should apply to. Click on the search
icon to the right and this will pop up the Task Type Browser, where we can search
for the required task type. Select the LeaveRequest task for the process default/
LeaveApproval/1.0.

We will not specify a time period for the rule, as we want it to be active all the time.
We now need to specify the conditions that apply to the rule and the appropriate
action to take. First let's add the condition to prevent the rule reassigning leave
requests made by rsteven.

From the Add Condition drop-down list, select the task attribute to which we want
to apply the rule, which is, in our case, the Creator (that is, the task initiator), and
then click the plus icon (circled in the following screenshot):

This will insert a condition line for testing the Creator attribute into our rule, as
shown in the following screenshot:

In the drop-down list, select the test to be applied to the attribute. So in our case, we
select isn't and finally specify the user (rsteven). You can either directly enter the
user ID or click the magnifying glass icon to search for the user with the user search
facility we introduced earlier.

Chapter 6

[197]

Finally, specify the task action, which is to reassign the task to rsteven. Your rule
description should now look like the one shown in the following screenshot:

Finally, click on Save to create the rule. Once you have created the rule, try creating
two leave requests, one for jcooper and another for rsteven. You should see that only
the request created for jcooper is reassigned to rsteven.

Log in as rsteven, and select the leave request that has been reassigned to that user. If
you examine the full task history, you will see that it shows which rule was triggered
to cause the task to be reassigned.

A user can also specify rule conditions against the
content of the task payload through the use of flex fields,
as well as define rules for any groups that they own. We
will examine flex fields in Chapter 17, Workflow Patterns.

Adding in Human Workflow

[198]

Summary
Human workflow is a key requirement for many projects. In this chapter, we saw
how easy it is to insert a human task into a BPEL process, as well as implement the
corresponding user interface to process the task.

We also looked at how business users can use the BPM worklist application
to process their tasks as well as manage routing them, including reassigning,
delegating, and escalating tasks. We also looked at how business users could
automate most of the task management by defining business rules to automatically
delegate, reassign, or complete a task.

Using Business Rules to
Define Decision Points

At runtime, there may be many potential paths through a BPEL process, controlled
by conditional statements such as switch or while activities. Typically, the business
rules that govern which path to take at any given point are written as XPath
expressions embedded within the appropriate activity.

Although this is an acceptable approach, we often find that while the process itself
may be relatively static, the business rules embedded within the activities may
change on a more frequent basis. This will require us to update the BPEL process
and redeploy it, even though the process flow itself hasn't changed.

In addition, by embedding the rule directly within the decision point, we often end
up having to reimplement the same rule every time it is used, either within the same
process or across multiple processes. Apart from being inefficient, this can lead to
inconsistent implementations of the rules, as well as requiring us to update the rules
in multiple places every time it changes.

The Oracle Business Rules engine that comes as part of the SOA Suite provides a
declarative mechanism for defining business rules externally to our application. This
not only ensures that each rule is used in a consistent fashion, but in addition, it makes
it simpler and quicker to modify. We only have to modify a rule once and can do this
with almost immediate effect, thus increasing the agility of our solution.

For those of you familiar with 10gR3, you will notice that JDeveloper comes with
a new rules editor which is a lot more intuitive and simpler to use than the old
browser-based editor. In addition, 11gR1 introduces decision tables, which
provide a spreadsheet-like format for defining rules. While still very much a
developer-oriented tool, these improvements make the tool a lot friendlier for
business analysts, allowing them to better understand the rules that have been
written as well as make simple changes.

Using Business Rules to Define Decision Points

[200]

In this chapter, we will introduce the new rules editor and look at how we can use
it to define a decisions service to automate the approval of leave requests. Then,
once we've done this, we'll see how to invoke the rule from the leave approval BPEL
process. We will first implement these as a standard set of rules and then examine
how we can simplify these rules by using a decision table.

Business rule concepts
Before we implement our first rule, let's briefly introduce the key components which
make up a business rule. These are:

Facts: Represent the data or business objects that rules are applied to.
Rules: A rule consists of two parts, namely, an IF part that consists of one or
more tests to be applied to a fact(s), and a THEN part that lists the actions to be
carried out, should the test evaluate to true.
Rule Set: As the name implies, it is just a set of one or more related rules that
are designed to work together.
Dictionary: A dictionary is the container of all components that make up a
business rule. It holds all the Facts, Rule Sets, and Rules for a business rule.

In addition, a dictionary may also contain decision tables, functions, variables, and
constraints. We will introduce these in more detail later in this chapter.

To execute a business rule, you assert (submit) one or more facts to the rules engine.
It will apply the rules to the facts, that is, each fact will be tested against the IF part
of the rule, and if it evaluates to true, then it will perform the specified actions for
that fact. This may result in the creation of new facts or the modification of existing
facts (which may result in further rule evaluation).

XML facts
The rule engine supports four types of facts: Java Facts, XML Facts, RL Facts, and
ADF Facts. The type of fact that you want to use typically depends on the context in
which you will be using the rules engine.

For example, if you are calling the rule engine from Java, then you would work with
Java Facts as this provides a more integrated way of combining the two components.
As we are using the rule engine within a composite, it makes sense to use XML facts.

•

•

•

•

Chapter 7

[201]

The rule editor uses XML schemas to generate JAXB 2.0 classes, which are then
imported to implement the corresponding XML facts. Using JAXB, particularly when
used in conjunction with BPEL, places a number of constraints on how we define our
XML schemas, including:

Within BPEL, you can only define variables based on globally defined
elements. Thus all input and output facts passed to the decision service
must be defined as global elements within our XML schemas.
When defining the input and output facts for any complexType (for example,
tLeaveRequest), there can only be one global element of that type (for
example, leaveRequest).
The element naming convention for JAXB means that elements or types with
underscores in their names can cause compilation errors.

Decision services
To invoke a business rule within a composite, we need to go through a number of
steps. First, we must create a session with the rules engine, then we can assert one or
more facts, before executing the ruleset and finally we can retrieve the results.

We do this via a decision service (or function). This is essentially a web-service
wrapper around a rules dictionary, which takes care of managing the session with
the rules engine as well as governing which ruleset we wish to apply.

The wrapper allows a composite to assert one or more facts, execute a ruleset(s)
against the asserted facts, retrieve the results, and then reset the session. This can
be done within a single invocation of an operation or over multiple operations.

Leave approval business rule
For our first rule, we are going to build on our leave request example from the
previous chapter, Adding in Human Workflow. If you remember, we implemented a
simple process requiring every leave request to go to an individual's manager for
approval. However, what we would like is a rule that automatically approves a
request as long as it meets certain company guidelines.

To begin with, we will write a simple rule to automatically approve a leave request
that is of the type Vacation and only for one day's duration. This is a pretty trivial
example, but once we've done this, we will look at how to extend this rule to handle
more complex examples.

•

•

•

Using Business Rules to Define Decision Points

[202]

Creating a decision service
Within JDeveloper, open up your LeaveApproval application from the
previous chapter (or alternately open the sample provided with the book).
Open up the composite.xml file for the application and then from the Component
Palette, drag-and-drop a Business Rule onto the composite, as shown in the
following screenshot:

This will launch the Create Business Rules dialog, as shown in the
following screenshot:

Chapter 7

[203]

The first step is to give our dictionary a name, such as LeaveApprovalRules, and a
corresponding Package name.

In addition, we need to specify the Input and Output facts that we will pass to our
decision service. For our purpose, we will pass in a single leave request. The rule
engine will then apply the rules that we define and update the status of the
leave request to either Approved or Manual (to indicate the request needs to be
manually approved).

So we need to define a single input fact and output fact, both of type leaveRequest.
To do this, click on the plus symbol (marked in the preceding screenshot), and
select Input.

This will bring up the standard Type Chooser window; browse the LeaveRequest.
xsd and select leaveRequest. Do the same again to specify an Output fact.

When creating facts based on an XML schema, the rules editor will
generate corresponding JAXB Java classes and place them in the specified
Package. It is a good practice to specify a different package name for
every XML schema to prevent conflicting class definitions.

Next, click the Advanced tab. Here we can see that JDeveloper has given the default
name LeaveApprovalRules_DecisionService_1 to our decision service. Give it a
more meaningful name such as LeaveApprovalDecisonService.

Using Business Rules to Define Decision Points

[204]

Now click OK. JDeveloper will inform you that it is creating the business rule
dictionary for LeaveApprovalRules. Once completed, your composite should now
look as shown in the following screenshot:

We are now ready to implement our business rules. Double-click on the
LeaveApprovalRules component, and this will launch the rules editor,
which is shown in the next screenshot.

Implementing our business rules
The rules editor allows you to view/edit the various components which make up
your business rules. To select a particular component, such as Facts, Functions,
Globals, and so on, just click on the corresponding tab down the left-hand side.

Chapter 7

[205]

You will see that, by default, JDeveloper has created a skeleton rules
dictionary-based on the inputs we just specified.

Select the Facts tab (as shown in the preceding screenshot). You will see that it
contains two XML facts (TLeaveRequest and com.packtpub.schemas.leaverequest.
ObjectFactory), which are based on the inputs/outputs we defined earlier as
well as a set of standard Java facts, which are automatically included within a
rules dictionary.

Next, select the Decision Functions tab. You will see that it contains a single decision
function LeaveApprovalDecisonService (that is, the name we specified on the
Advanced tab when creating our business rule).

We will introduce some of the other tabs later in this chapter, but for the time being,
we will start by defining our first rule. By default, the rules editor will have created
a single ruleset with the name Ruleset_1. Click on the Ruleset_1 tab to open up the
ruleset within the editor.

Expand the ruleset to show its details by clicking on the plus symbol (circled in
the following screenshot). We can see that the ruleset has three properties: Name,
Description, and Effective Date.

The Effective Date enables us to specify a period in time for which the ruleset will be
applied, allowing you to define multiple versions of the same ruleset. For example, a
current ruleset and a future version that we wish to come into effect at a defined time
in the future.

Rename the ruleset to something more meaningful, for example, Employee Leave
Approval Policy; add a description if you want and ensure that Effective Date is set
to Always Valid.

Using Business Rules to Define Decision Points

[206]

Adding a rule to our ruleset
To add a rule, click the green plus symbol on the top-right-hand corner, and select
Create Rule, as shown in the following screenshot (alternatively click on the Create
Rule button, circled in the following screenshot).

This will add a rule to our ruleset with the default name Rule_1, as shown in the
following screenshot. Here, we can see that a rule consists of two parts, an IF part,
which consists of one or more tests to be applied to a fact or facts, and a THEN part,
which specifies the actions to be carried out, should the test evaluate to true.

To give the rule a more meaningful name, simply click on the name and enter a new
name (for example, One Day Vacation). By clicking on the <enter description>
element, you can also add a description for the rule.

Chapter 7

[207]

Creating the IF clause
For our leave approval rule, we need to define two tests, one to check that the
request is only for a day in duration, which we can do by checking that the start date
equals the end date, and the second to check that the request is of type Vacation.

To define the first test, click on <insert test>. This will add the line <operand> = =
<operand> under the IF statement where we can define the test condition.

Click on the first <operand>. This will display a drop-down list listing the valid facts
and their attributes that we can test. From here, we can select the value to be tested,
for example, TLeaveRequest.startDate in our case.

Next from the operator drop-down list, select the test to be applied to the first
operand (== in our case). We can either choose to compare it to a specified value or
a second Operand. For our purpose, we want to check that the request.startDate
equals the request.endDate, so click on the operand and select this from the
drop-down list.

Using Business Rules to Define Decision Points

[208]

To create our second test, we follow pretty much the same process. This time
we want to test that the operand leaveRequest.leaveType is equal to the value
Vacation, so select the right-hand operator and type this in directly:

Note, the rule editor has automatically inserted an and clause between our two tests.
If you click on this, you have the option of changing this to an or clause.

Creating the Then clause
Now that we have defined our test, we need to define the action to take if the test
evaluates to true. Click on <insert action>. This will display a drop-down list where
you need to specify the Action Type you wish to carry out.

Chapter 7

[209]

The rule editor allows us to choose from the following action types:

assert new: We use this to create and assert a new fact, for example, a new
LeaveRequest. Once asserted, the new fact will be evaluated by the rules
engine against the ruleset.
modify: We can use this to either assign a value to a variable or a fact
attribute; in our case we want to assign a status of Approved to the
requestStatus property.
retract: This enables you to retract any of the facts matched in the pattern
(for example, TLeaveRequest) so that it will no longer be evaluated as part
of the ruleset.
call: This allows you to call a function to perform one or more actions.

The actions assert new and retract are important when we are dealing with rulesets
that deal with multiple interdependent facts, as this allows us to control which
facts are being evaluated by the rule engine at any particular time. Here, we are
only dealing with a single fact, so we don't examine these constructs in this chapter,
leaving them to Chapter 18, Using Business Rules to Implement Services.

For our purposes, we want to update the status of our leave, so select modify. Our
rule should now look as shown in the following screenshot:

The next step is to specify the fact to be modified. Click on the <target> element and
you will be presented with a list of facts that are within scope. In our case, this will
only be the TLeaveRequest that has just been matched by the IF clause, so select
this. Our rule will now appear, as shown in the following screenshot:

•

•

•

•

Using Business Rules to Define Decision Points

[210]

We now need to specify the properties we wish to modify, click on <add property>
to open the Properties dialog. This will display a list of all the facts properties,
allowing us to modify them as appropriate.

Select the Value cell for requestStatus. From here, you can directly enter a value,
select a value from the drop-down list, or launch the expression builder. For our
purposes, just enter the string Approved, as shown in the following screenshot,
and then click Close.

We don't need to specify values for any of the other properties, as the rules engine
will only update those properties where a new value has been specified.

This completes the definition of our first rule. The next step is to wire it into our
BPEL process.

Chapter 7

[211]

Calling a business rule from BPEL
Save the rule, and then switch back to our composite and double-click the
LeaveRequest BPEL process to edit it. Drag a Business Rule from the BPEL
Activities and Components palette into your BPEL process (before the Human
Task activity). This will open the Business Rule dialog (as shown in the
following screenshot):

First, we need to specify a name for the Business Rule activity within our BPEL
process, so give it a meaningful name such as LeaveApprovalRules.

Next we need to specify the Business Rule Dictionary that we wish to use. If we
click on the drop-down list, it will list all the dictionaries within our composite
application, which in our case is LeaveApprovalRules that we have just defined.

Select this and the rule dialog will be updated (as shown in the following screenshot)
to enable us to specify additional information about how we want to invoke the
rule. First, we need to select the decision service that we want to invoke from BPEL.
Our rule only contains a single decision service, LeaveApprovalDecisionService, so
select it.

Once we've specified the service, we need to specify how we want to invoke the
decision service. We specify this through the Operation attribute. Here we have
two options:

Execute function and reset the session
Execute function

•

•

Using Business Rules to Define Decision Points

[212]

If we choose the option Execute function and thus don't reset the session, if we were
then to call the decision service several times within the same instance of our BPEL
process, each new invocation would reuse the same session and would also evaluate
facts asserted in any previous invocation. For our purposes, we just need to assert a
single fact and run the ruleset, so accept the default value of Execute function
and reset the session (we will look at other modes of operation in more detail in
Chapter 18, Using Business Rules to Implement Services).

Assigning facts
The final step to invoke our business rules is to assign BPEL variables to the input
and output facts. Click on the green plus symbol (as shown in the preceding
screenshot), and this will launch the Decision Fact Map window, as shown in the
following screenshot:

Chapter 7

[213]

At first glance, this looks like the standard Create Copy Operation window that we
use when carrying out assigns within BPEL (which in reality is exactly what it is).

The key difference is that we are using this to assign values to the input facts to be
submitted to the rules engines, so the Type on the To side of the copy operation is a
Business Rule Facts.

The reverse is true for an output fact, where we use this dialog to map the output
from the decision service back into a corresponding BPEL variable.

For our purpose, we just want to map the initial LeaveRequest in the process
inputVariable into the corresponding fact, as shown in the preceding screenshot.
Then we will map the output fact, which will contain our updated LeaveRequest
back into our inputVariable.

When JDeveloper opens the Decision Fact Map window, the Variables
folder for the Business Rules Facts (circled in the preceding screenshot) is
closed and it appears that there are no input facts. You must double-click
on this to open it and expose the facts.

We have now wired the rule invocation into our BPEL process, before finally running
our process; we need to modify our process to only invoke the workflow if the leave
request hasn't been automatically approved.

To do this, just drag a switch onto your process, and then drag your workflow task
into the first branch in the switch and define a test to check that the LeaveRequest
hasn't been approved. You are now ready to deploy and run your modified process.

Using functions
Our current rule only approves vacations of one day in duration, requiring all other
leave requests to be manually approved. Ideally, we would like to approve holidays
of varying duration as long as sufficient notice has been given, for example:

Approve vacations of one day in duration with a start date that's two weeks
or more in the future
Approve if for 2-3 days and more than 30 days in the future
Approve if 5 days or less and more than 60 days in the future
Approve if 10 days or less and more than 120 days in the future

•

•

•

•

Using Business Rules to Define Decision Points

[214]

To write these rules, we will need to calculate the duration of the leave period, as
well as calculate how long it is before the start date. Out of the box, the rule engine
provides the Duration extension methods, which allow us to calculate the number of
days between two dates, but doesn't allow us to exclude weekends.

So we will need to write our own logic to calculate these values. Rather than
embedding this logic directly in each rule, best practice dictates that we place this
logic into a separate function. This not only ensures that we have a single version of
the logic to implement but minimizes the size of our rules, thus making them simpler
and easier to maintain. For our purposes, we will create the following functions:

startsIn: Which returns the number of days before the specified start date
leaveDuration: Which returns the number of days from the start date to the
end date, excluding weekends

Creating a function
To create our first function, within the rule editor, click on the Functions tab. This
will list all the functions currently defined to our ruleset. To create a new function,
click on the green plus icon, as shown in the following screenshot:

This will add a new function with a default name (for example, Function_1) to
our list. Click on the function name to select it and update it to startsIn. From the
drop-down list, select the Return Type of the function, which is int in our case.

Next, we need to specify the arguments we wish to pass to our function. Click
on the green plus sign, as shown in the following screenshot, and this will add
an argument to our list. Here we can specify the argument name (for example,
startDate), and from the drop-down list, the argument Type, which should be
XMLGregorianCalendar (when creating XML facts, the JAXB processor maps
the type xsd:date to javax.xml.datatype.XMLGregorianCalendar).

•

•

Chapter 7

[215]

The list of valid types is made up of the basic types (for example, int,
double, char, and so on), plus the XML facts (excluding object factories)
and the Java Facts (excluding the Rules Extension Method) defined in our
rules dictionary.

The final step is to implement the business logic of our function, which consists of
one or more actions. We enter these actions in the Body section of the function. The
first action we need to create is one that creates a local variable of type calendar,
which holds the current date.

To do this, click on <insert action> within the Body section of our function. The rule
editor will display a drop-down list that lists all the available actions.

Using Business Rules to Define Decision Points

[216]

For our purpose, we want to create a new variable and assign a value to it, so select
the assign new action, as shown in the preceding screenshot. This will insert a
template for the assign new action into our function body (as shown in the following
screenshot). We then configure the action by clicking on each part within the
template and defining it as appropriate.

The first part we need to define is the type of variable we wish to create. Click on
the <type> element within our <assign> statement, and the rule editor displays a
drop-down list displaying all the available types. For our purposes, select Calendar.

Next, click on var. This will prompt us to enter the name of the variable that we want
to create. Specify today, and hit enter.

Finally, we need to specify the value we want to initialize our variable with. Click on
the <expression> element. The rule editor will display a drop-down box listing all
the valid values we can assign to our variable, as shown in the following screenshot:

Chapter 7

[217]

Select Calendar.getInstance(), which will initialize our variable to hold the
current date.

For our second action, we want to calculate the number of days before the specified
start date and place the result into the variable duration. To calculate this, we will
make use of the Duration extension method provided with the rules engine.

We will do this by defining another assign new action in a similar way to the
previous action. The key difference is how we specify the <expression>. This time,
instead of selecting a value from the drop-down list, click on the Expression Builder
icon (circled in the preceding screenshot) to launch the Expression Builder for the
rules editor.

The Expression Builder provides a graphical tool for writing rule expressions and is
accessed from various parts of the rule editor. It consists of the following areas:

Expression: The top textbox contains the rule expression that you are
working on. You can either type data directly in here or use the Expression
Builder to insert code fragments to build up the expression required.
Variables, Functions, Operators, Constants: This part of the Expression
Builder lets you browse the various components that you can insert into
your expression. Once you've located the component that you wish to use,
click the Insert Into Expression button, and this will insert the appropriate
code fragment into the expression.

•

•

Using Business Rules to Define Decision Points

[218]

The code fragment is inserted at the point within the
expression that the cursor is currently positioned.

Content Preview: This box displays a preview of the content that would be
inserted into the expression if you clicked the Insert Into Expression button.

So let's use this to build our rules expression. The expression we want to build is a
relatively simple one, namely:

Duration.days	between(today,startDate)	+	1

To build our expression, carry out the following steps. First, within the Functions
tab, locate the function Duration.days between and insert this into the expression
(as shown in the previous screenshot).

Next, within the Variables tab, locate the variable today. Then within the expression,
highlight the first argument of the function (as shown in the following screenshot),
and click Insert Into Expression.

This will update the value of the first argument to contain today; repeat this to
update the second argument to contain startDate. Next, manually enter +1 to
the end of the expression to complete it and click OK.

•

Chapter 7

[219]

Finally add a third action to return the duration. The completed body of our function
looks as shown in the following screenshot:

To implement our leaveDuration function, we follow the same approach (for
details of this, see the code samples included with the book).

Testing a function
JDeveloper provides a test option that allows us to run a function in JDeveloper
without the need to deploy it first. However, it will only allow us to run functions
with no input parameters and returns a type of boolean.

In order to test our startsIn function, we need to write a wrapper function (for
example, testStartsIn) which creates the required input parameters for our function,
invokes it, and then prints out the result. So the body of our test function will look as
shown in the following screenshot:

To run this, with the Functions tab, select the testStartsIn function, and click the Test
button, as shown in the following screenshot:

If there are any validation errors within our rules dictionary, then the Test
button will be disabled.

Using Business Rules to Define Decision Points

[220]

This will execute the function and open a window displaying the result of the
function and any output as shown in the following screenshot:

Testing decision service functions
We can also use this approach to test our decision service. The body for this test
function appears as shown in the following screenshot:

A couple of interesting points to note about this: the statement call RL.watch.all()
will cause the function to output details about how the facts are being processed
and which rules are being activated. This is something we cover in more detail in
Chapter 18, Using Business Rules to Implement Services.

The other point to note is that the decision service return type is a result List, so we
need to extract our fact from this list and cast it to the appropriate fact type in order
to examine its content. We do this with the statement:

assign	leaveRequest	=	(TLeaveRequest)	resultList.get(0)

Chapter 7

[221]

Invoking a function from within a rule
The final step is to invoke the functions as required from our ruleset. Before writing
the additional rules for a vacation of less than 3, 5, and 10 days respectively, we will
update our existing rule to use these new functions.

Go back to the One Day Vacation rule, and select the first test (so it has an orange
box around it). Right-click and select Delete Test from the drop-down list, as shown
in the following screenshot:

Next, click on <insert test> to add a new test to our IF clause. Click on the left
operand. This time, instead of selecting an item from the drop-down list, click on the
calculator icon to launch the Expression Builder and use it to build the expression:

startsIn(TLeaveRequest.startDate)

Set the value of the operator to >=. Finally, enter the value of 14 for the second
operand. Follow the same approach to add another test to check that the leave
duration is only one day. Our updated rule should now looks as shown in the
following screenshot:

Using Business Rules to Define Decision Points

[222]

Once we have completed our test pattern, we can click validate just to check that its
syntax is correct. Having completed this test, we can define similar approval rules for
vacations of 3, 5, and 10 days respectively.

When completed, save your dictionary and rerun the leave approval process;
you should now see that the vacations that match our leave approval rules are
automatically approved.

Using decision tables
Our updated ruleset consists of four rules that are very repetitive in nature. It would
make more sense to specify the rule just once and then parameterize it in a tabular
fashion. This is effectively what decision tables allow you to do.

Before creating your decision table, you will need to delete the rules we
have just defined, otherwise we will end up with two versions of the same
rules within our ruleset.

Defining a bucket set
When creating a decision table, you are often required to specify a list of values
or a range of values that apply to a particular rule. For example, in the case of
our vacation approval rule, we will need to specify the following ranges of leave
duration values that we are interested in:

1 day
2-3 days
4-5 days
6-10 days

We define these in a bucketset. To do this, select the Bucketsets tab in the rule editor,
then click on the green plus symbol and select List of Ranges from the drop-down
list, as shown in the following screenshot:

•

•

•

•

Chapter 7

[223]

This will create a new bucketset called Buckset_1. Click on the name and change it
to something more meaningful such as LeaveDuration. By default, the bucketset will
have a Datatype of int, which is fine for our purposes.

Click on the pencil icon. This will launch the Edit Bucketset - LeaveDuration
window, as shown in the following screenshot:

A bucketset, as its name implies, consists of one or more buckets, each corresponding
to a range of values. For each bucket, you specify its Endpoint and whether the
endpoint is included within the bucket. The range of values covered by a bucket is
from the endpoint of the bucket to the endpoint of the next bucket.

You can also choose whether to include the specified endpoint in its corresponding
bucket. If you don't, then the endpoint will be included in the preceding bucket.

For example, in the preceding screenshot, the second bucket (with the endpoint of 5)
covers the integer values from 6 (as the endpoint 5 isn't included in the bucket) to 10
(the end point of the next bucket).

It is good practice to specify a meaningful alias for each bucket, as when you
reference a bucket in a decision table, you do so using its alias. If you don't specify
an alias, then it will default to the description in the Range.

In preparation for defining our decision table, we have defined two bucketsets:
LeaveDuration, as shown in the preceding screenshot, and StartsIn.

Using Business Rules to Define Decision Points

[224]

Creating a decision table
To create a decision table, select the Employee Leave Approval ruleset tab.
Click on the green plus icon and select Create Decision Table, as shown in the
following screenshot:

This will add an empty decision table to our ruleset, as shown in the
following screenshot:

The decision table consists of three areas: the first is for defining our tests
(or conditions), the second is for conflict resolution (for resolving overlapping
rules within our decision table), and the final area is for defining our actions.

Click on <insert condition>. This will add an empty condition with the name C1
to our ruleset. At the same time, the rule editor will also add an additional column
to our decision table. This represents our first rule and is given the name R1. To
specify the condition that we want to test, double-click on C1. This will bring up
a drop-down list (similar to the one used to define an operand within the test part
of a rule), as shown in the following screenshot:

Chapter 7

[225]

As with our original rule, the first condition we want to test is the type of leave
request, so select TLeaveRequest.leaveType from the drop-down list.

For our first rule, we want to check that the leave request is of type Vacation, so click
on the appropriate cell (the intersection of C1 and R1). The rule editor will present us
with a drop-down listing our options. In this case, directly enter Vacation, as shown
in the following screenshot:

The next step is to add a second condition to test the leave duration. To do this, click
on the green plus icon and select Conditions. This will add another condition row
to our decision table. Click on <edit condition> and use the expression builder to
define the following:

leaveDuration(TLeaveRequest.startDate,	TLeaveRequest.endDate)

Using Business Rules to Define Decision Points

[226]

For each rule, we need to test the result of this function against the appropriate value
in our LeaveDuration bucketset. Before we can do this, we must first associate the
condition with that bucketset. To do this, ensure that the condition cell is selected
and then click on the drop-down list above it and select LeaveDuration, as shown
in the following screenshot:

The next step is to check that the leave duration is one day, so click on the
appropriate cell (the intersection of C2 and R1). The rule editor will present us with a
drop-down listing our options, which will be the list of buckets in the LeaveDuration
bucketset. From here, select the option 1 day.

Add three more rules to our decision table (to add a rule, click on the green plus icon
and select Rule). For R2, specify a leave duration of 2..3 days, for R3 4..5 days, and
R4 6..10 days.

Chapter 7

[227]

For each of these rules, we want to check that the leave type is Vacation. Rather than
specifying this individually for each rule (which we could do), we can merge these
into a single cell and specify the test just once. To do this, select each cell (hold down
the Ctrl key while you do this) and then right-click. From the drop-down list, select
Merge Selected Cells.

Next, we need to add the final condition as follows:

startsIn(TLeaveRequest.startDate)

To check whether sufficient notice has been given to automatically approve the
vacation request, add this in the normal way and associate the condition with the
StartsIn bucketset.

For our first rule, we want to approve the leave request if it starts in 14 or more days
time, so select ALL the appropriate buckets from our bucketset (as shown in the
following screenshot). Complete the test for rules R2, R3, and R4.

Using Business Rules to Define Decision Points

[228]

The final step is to specify the action we want to take for each of our rules. Click on
<insert action>. This will display a drop-down list where you need to specify the
Action Type you wish to carry out. Select Modify. This will insert a modify action
into our decision table; double-click on this to open the Action Editor (as shown in
the following screenshot):

The Form option allows us to select from the drop-down list which action we want to
perform. For the Modify action, we first need to specify the fact we wish to update,
so select TLeaveRequest in the Target section.

The Arguments section will then be populated to list all the properties for the
selected fact. Select requestStatus and enter a value of Approved. Also select the
cell to be parameterized. If you don't specify this, then it forces every rule within
our decision table to use the same value.

Chapter 7

[229]

Finally, ensure that the checkbox Always Selected is unchecked (we will see why in
a moment) and click OK. This will return us to our decision table, as shown in the
following screenshot:

At this point, the action will contain an identical configuration for each rule, which
we can then modify as appropriate.

Each rule has an associated checkbox for the action, which, by default, is unchecked.
This specifies whether that action should be taken for that rule. In our case, we want
each rule to update the request status, so ensure that the checkbox is selected for
every rule (as shown in the preceding screenshot).

If you had checked the Always Selected checkbox in the Action
Editor, then the action would be selected for each rule and would
also be read-only to prevent you from modifying it.

The action will also contain a row for every property that we are modifying, which,
in our example, is just one (requestStatus). As we selected this property to be
parameterized, we could override the specified value for each individual rule.

Conflict resolution
This almost completes our decision table. However, we will add one more rule to
handle any other scenario that isn't covered by our current ruleset. Add one more
rule, but don't specify any values for any of the conditions, so the rule will apply
to everything. In the actions section, specify a value of Manual to indicate that the
request requires manual approval.

Using Business Rules to Define Decision Points

[230]

Upon doing this, the rule editor will add a row to the conflicts section of the decision
table, as shown in the following screenshot:

This is indicating that R5 is in conflict with R1, R2, R3, and R4, that is, that they both
apply to the same scenario. Double-click on the conflict warning for R1, and this will
launch the Conflict Resolution window, as shown in the following screenshot:

Here, we can specify how we wish to handle the conflict. Click on the drop-down
list and select Override to specify that R1 takes precedence over R5. Do the same
for rules R2, R3, and R4. The decision table will be updated to show no conflicts and
that rules R1 to R4 override R5.

This completes our decision table, so save the rules dictionary and redeploy the leave
approval composite to test it.

Chapter 7

[231]

Summary
Business rules are a key component of any application. Traditionally, these rules are
buried deep within the code of an application, making them very difficult to change.

Yet, in a typical application, it is the business rules that change most frequently,
by separating these out as a specialized service, it allows us to change these rules
without having to modify the overall application.

In this chapter, we have looked at how we can use the Oracle Business Rules engine
to implement such rules, and how we can invoke these from within BPEL as a
decision service.

It's worth noting that you are not restricted to calling these rules from just BPEL, as
the rules engine comes with a Java API that allows it to be easily invoked from any
Java application, or alternatively, you can expose the rules as web services, which
can then be invoked from any web service client.

Finally, while in this chapter, we have only looked at very simple rules. The Oracle
Business Rules engine implements the industry standard Rete Algorithm, making it
ideal for evaluating a large number of interdependent rules and facts. We examine
some of these capabilities in more detail in Chapter 18, Using Business Rules to
Implement Services.

Using Business Events
In the previous chapters, we focused on routing messages to the correct destination
and managing process flow. All of this requires knowledge of the dependencies,
and for most business processes and service integrations, this is required to ensure
that everything works reliably. However, even with transformation and service
abstraction, there are still dependencies between services. In this chapter, we
will look at the tools available in SOA Suite for completely decoupling providers
of messages from consumers of messages. This is useful if we wish to add new
attributes that do not require responses to be returned, for example, adding fraud
detection services or usage auditing services. In these cases, we just want message
producers to publish events, and allow new services to receive these events by
subscribing to them without impacting the publisher. This is the function of the
Event Delivery Network (EDN) in the SOA Suite and is the focus of this chapter.

How EDN differs from traditional
messaging
Message Oriented Middleware (MOM) uses queuing technologies to isolate
producers from consumers. The classic MOM product was IBM MQ Series, but other
products in this space include Tibco Rendezvous and Oracle AQ. Messages may
be delivered point to point (a single service consumes the message) or one-to-many
(multiple services may consume the same message). The Java Messaging Service
(JMS) provides an abstraction over messaging systems and supports both one-to-one
interactions through queues and one-to-many interactions through topics. When using
JMS to subscribe to an event, a developer must know the format of data associated
with the event and the message channel (topic or queue) on which to listen to receive
the event. This message channel must be configured for each event and filters might be
added to restrict the messages delivered. The Event Delivery Network (EDN) takes
the view that the publishers and subscribers of a message, known as an event, only
need to know the subject matter, the event name, and the event data

Using Business Events

[234]

format. All the delivery details can be hidden under the covers. EDN uses JMS to
deliver events from subscribers to publishers, but the configuration of JMS queues
and topics and any associated filters is hidden from users of the EDN service.

The following table highlights the differences between traditional MOM and
EDN. As can be seen, the focus of EDN is to make it very easy for event producers
to publish an event that can then be received by an arbitrary number of event
subscribers. EDN developers only need to be aware of the events themselves,
as all the underlying delivery mechanisms are taken care of within the EDN.

Interaction
Pattern

Messaging Support Configuration EDN Notes

Request/Reply Separate JMS queues
are used for Request
and Response
messages. JMS
Message Headers
are used to correlate
requests with
responses.

Request and
response queues
must be configured
with appropriate
connection factories
and message store.

EDN does not support
request/reply. It is not
possible to target the
receiver of an event.
Event subscribers are
not visible to event
producers and so
cannot be directly
targeted. Similarly,
event producers are
not visible to event
subscribers and so it
is not possible to send
direct replies just to the
originator of the event.

One way
guaranteed
delivery

Single JMS queue
with a single
subscriber

Queue must be
configured with
appropriate
connection factory
and message store

EDN does not support
guaranteed one way
delivery of events. An
event producer has no
way of knowing how
many subscribers will
receive the message or
if any subscribers will
receive the message.

One-to-many
message
delivery

Single JMS topic
with zero or more
subscribers

Topic must be
configured with
appropriate
connection factory
and message store.

EDN supports
exactly this message
interaction pattern
without the need to
configure any JMS
artifacts. EDN uses
JMS but this is hidden
from the developer.

Chapter 8

[235]

A sample use case
Consider an auction process. The basic auction process accepts new items for auction
from a seller service, accepts bids from a bidder service, and identifies the winning
bid in an auction service. All these operations require co-ordination between the
services involved.

There may be concerns about the proprietary of some bids, but the time taken to
validate the bid and ensure that it is legitimate may be viewed as too lengthy and
instead it may be desired to have a background process to validate bids, so we do
not slow down the normal bid taking process.

This is an extension to the business functionality that does not require a conversation
between the bid process and the validation service. In fact, a conversation may slow
down the auction process and increase the time taken to accept and confirm bids and
winners. This is an excellent use case for the EDN because of the following features:

No conversation is required between the event consumer (bid legitimacy
process) and the event producer (auction process).
The event consumer can be added to the system without any changes to
the event producer. As long as the auction process is publishing bid events,
adding the bid validator will not impact the auction process.
Additional producers may be added to the system without impacting
existing producers and/or consumers. For example, different auction
systems may raise the same event.
Additional consumers may also be added independently of either existing
producers and/or consumers. For example, an automated bidding service
may make use of this event later without impacting the existing services.

Event Delivery Network essentials
The EDN is a very simple but very powerful concept, and we will now explain the
basic principles associated with it.

Events
An event is the message that will be published and consumed on the Event Delivery
Network. Events consist of three parts:

1. A namespace that identifies the general area that the event is associated with
and helps to avoid clashes between event names

2. A name that identifies the type of event within a namespace
3. A data type that defines the data associated with the event

•

•

•

•

Using Business Events

[236]

Namespaces of events behave in the same way as namespaces in XML and identify
the solution area of the events and avoid clashes between events with the same name
that belong to different solution areas. For example, a namespace would differentiate
an event called NewOrder in a military command and control system from an event
called NewOrder in a logistics system.

Events are defined using an XML-based language called the Event Description
Language (EDL).

We can model business events from within JDeveloper by clicking on the event
icon on the top-left-hand corner of the composite editor as shown in the
following screenshot.

This brings up the Create Event Definition File dialog to allow us to create a new
EDL file to contain our event definitions.

After defining the EDL File Name, the Directory it resides in, and the Namespace
of the EDL file, we can add events to it by clicking on the green plus symbol . This
takes us to the Add an Event dialog, where we can choose the XML Element that
represents the data content of the event and give the event a Name.

Chapter 8

[237]

Event elements and data types should always be defined in an XML schema file,
which is separate from other SOA XML artifacts such as message schemas. This
is because the events may be used across many areas, and they should not have
dependencies on other SOA artifacts.

After completing the definition of our EDL file, it is displayed in JDeveloper, where
we can continue to add or remove events.

Using Business Events

[238]

The EDL file itself is a very simple format, shown as follows:

<?xml	version="1.0"	encoding="UTF-8"	standalone="yes"?>
<definitions xmlns=http://schemas.oracle.com/events/edl
 targetNamespace="AuctionEventDefinitions">
				<schema-import	namespace="auction.events"	
						location="xsd/AuctionEvents.xsd"/>
								<event-definition	name="NewAuctionEvent">
								<content	xmlns:ns0="	auction.events"	
										element="ns0:NewAuction"/>
								</event-definition>
								<event-definition	name="NewBidEvent">
										<content	xmlns:ns0="	auction.events"	element="ns0:NewBid"/>
								</event-definition>
</definitions>

The targetNamespace attribute of the <definitions> element defines the
namespace for the events. XML-type definitions are imported using <schema-
import>, and <event-definition> is used to define events and their
associated element.

Event publishers
Events are created by event publishers. An event publisher may be a Mediator
or BPEL component in an SCA Assembly or it may be a custom Java application.
The event publisher raises the event by creating an XML element and passing it to
the Event Delivery Network. Once passed to the EDN, the publisher is unaware
of how many subscribers consume the event or even if the event is consumed by
any subscriber. This provides a degree of isolation between the publisher and
subscribers. The EDN is responsible for keeping track of who is subscribing and
ensuring that they receive the new event.

Publishing an event using the Mediator component
When using a Mediator to publish an event, we usually want to publish the event
in parallel with other processing that the Mediator is doing. Typically, we want the
Mediator to take the request from some service call and publish the event.

In the following example, we have a Mediator NewAuctionMediator that routes
to a dummy service implemented by a Mediator ServiceMediator that uses Echo
functionality to provide a synchronous response to its caller. We will raise a
NewAuction event as part of the inbound processing in the Mediator. Note that
although the Mediator will route a reply to the specific caller of the composite, the
event will be routed to all subscribers of that event type.

Chapter 8

[239]

We can raise an event based on the input request in the following fashion.

We open the routing Mediator component, in this case, NewAuctionMediator, and
add a new sequential static routing rule. When the Target Type dialog comes up,
select the Event button to generate an event.

In the Event Chooser dialog, we can choose the Event Definition File that contains
our event. We can either browse for an existing EDL file using the magnifying glass
icon or we can create a new EDL file by using the thunderbolt icon. Once an EDL file
has been chosen, we can then select the specific event that we wish to produce.

Using Business Events

[240]

If we choose an existing EDL file that is not in our project, JDeveloper will assume
that we want to copy the EDL file and its associated XML schemas into the project.
On the Localize Files dialog, we have the choice of keeping existing directory
relationships between files or flattening any existing directory structure.

Once the event is selected, we then just need to add a transformation to transform
the input of the request to the event format.

Publishing an event using BPEL
We can also publish events using BPEL. Using the previous example, we may decide
that rather than just publishing a NewAuction event that contains the input data
used to create the auction, we also wish to include the auction identifier generated
by the response to the new auction request. This is best achieved using the BPEL
event publisher.

Using the previous example, we insert a BPEL process between the service
requestor, in this case, NewAuctionMediator, and the service provider, in this
case ServiceProvider. We use the Base on a WSDL template to create the process
and select the WSDL of the target service as our WSDL, in this case the WSDL for
ServiceMediator. We then rewire the composite so that the target service is now
invoked by our new BPEL process, and the original client of the service is now a
client of the BPEL process, as shown in the following diagram:

Chapter 8

[241]

We then edit the BPEL process to invoke the original target service. Because we have
used the target service WSDL for the WSDL of the BPEL process, we can use the
input and output variables of the process as parameters to invoke the target service.
With this done, we are ready to publish the event as part of our BPEL process.

Using Business Events

[242]

We publish an event from within BPEL by using an invoke and setting the
Interaction Type to be Event rather than the more usual Partner Link.

This allows us to select an event and a variable to hold the data for that event. The
event itself is chosen from the Event Chooser dialog, which was introduced in the
previous section. We then need to add an assign statement to initialize the variable
used to populate the event. The fact that this invoke is actually raising an event is
identified by the lightning symbol on the Invoke.

Chapter 8

[243]

Note that when we raise an event, there is no indication provided as to how to route
or deliver the event. In the next section, we will look at how events are consumed.

Publishing an event using Java
We can also publish and consume events using Java. In this section, we will look at
how Java code can be used to publish an event.

To publish an event, we need to go through the following steps:

1. Create the event
2. Connect to the Event Delivery Network
3. Publish the event on the connection

Using Business Events

[244]

Creating the event
We create the event in Java by using the oracle.integration.platform.blocks.
event.BusinessEventBuilder class. An instance of this class is created by a
static factory method called newInstance. We need to provide a qualified name
(QName that includes the namespace and the entity name) and a body for the event
through setter methods on the builder class. Once these have been set, we can call
createEvent to generate an instance of a BusinessEvent.

BusinessEventBuilder builder = BusinessEventBuilder.newInstance();

QName	name	=	new	QName(
				"http://schemas.oracle.com/events/edl/AuctionEventDefinitions",	
				"NewAuctionEvent");
builder.setEventName(name);

XMLElement	content	=	…
builder.setBody(content);

BusinessEvent event = builder.createEvent();

The event name is a combination of the event schema, acting as an XML namespace,
and the event name. The content is the XML element containing the event content.

Once we have a BusinessEvent, we need a connection to the Event Delivery
Network in order to publish the event.

Creating the event connection
The event connection can be created using either a JMS queue connection
to the Event Delivery Network or an Oracle AQ connection. The latter
requires the use of a data source and is the approach we will show. We obtain
an oracle.fabric.blocks.event.BusinessEventConnection from a
BusinessEventConnectionFactory. We will use the AQ version of this connection
factory, which is provided by the oracle.integration.platform.blocks.event.
saq.	SAQRemoteBusinessEventConnectionFactory	class.

DataSource	ds	=	…
 BusinessEventConnectionFactory factory = new

 SAQRemoteBusinessEventConnectionFactory(ds, ds, null);

 BusinessEventConnection conn =

 factory.createBusinessEventConnection();

We use the connection factory to create a connection to Event Delivery Network.
The data source we provide must be configured to connect to the SOA infrastructure
schema in the database, which by default is called <PREFIX>_SOAInfra.

Chapter 8

[245]

Publishing the event
Now that we have an EDN connection, we can publish our event on it by calling
publishEvent:

conn.publishEvent(event, EVENT_PRIORITY);

This publishes our event on our previously created connection. The event priority is
usually set to 3, but it is not used in this release.

Event subscribers
Events are consumed by event subscribers. In a similar fashion to event publishers,
event subscribers may be BPEL processes or Mediators. When subscribing to an
event, the subscriber can filter the events. Subscribers subscribe to a specific event
within an event namespace. They can limit the instances of an event that they receive
by applying a filter. Only events for which the filter evaluates to true are delivered to
the event subscriber. Event filters are XPath expressions.

Consuming an event using Mediator
To consume an event, we can add an event subscriber to a Mediator. We do this
by clicking on the green plus sign next to the Event Subscriptions label under
Routing Rules.

Using Business Events

[246]

This brings us to the Subscribed Events dialog where, by clicking on the green plus
sign, we add a new event subscription using the Event Chooser dialog introduced in
the section on publishing an event.

Having chosen an event, we can determine how the event is to be delivered using
the Consistency option. Transactions are discussed later in Chapter 15, Advanced SOA
Suite Architecture. The consistency options are:

Exactly once by selecting the one and only one option. This makes the
event delivery transaction part of the Mediator transaction. If the Mediator
transaction completes successfully, then the event will also be marked as
read, otherwise it will be rolled back and thus appear not to have been
delivered. Transaction boundaries are explained in more detail in Chapter 15,
Advanced SOA Suite Architecture
At least once by selecting guaranteed. This keeps the Mediator transaction
separate from the delivery transaction. The event will be delivered to the
subscriber, but any errors in the Mediator may cause that event to be lost to
that subscriber.
immediate makes the delivery transaction part of the event publishing
transaction. This option should be avoided as it couples the subscriber and
the publisher.

Avoid using the immediate delivery option as it tightly
couples the publisher to a subscriber that it should be
unaware of. The Java API for this is marked as deprecated,
and it is likely that this option will disappear in the future.

•

•

•

Chapter 8

[247]

The Run as publisher option allows the Mediator to run in the same security context
as the event publisher. This allows the subscriber component to perform any actions
that the publisher could perform.

The Filter option brings up the Expression Builder dialog when clicked on. This
allows us to construct an XPath expression to limit the delivered event to only those
for which the XPath expression resolves to true.

Using Business Events

[248]

A component in a composite that has subscribed to an event has a lightning bolt
on its service side to identify it within a composite.

Consuming an event using BPEL
To subscribe to an event using BPEL, we can create a BPEL process using the
Subscribe to Events template. This allows us to add the events to which we wish to
subscribe to in a similar fashion to having the Mediator subscribe to events by using
the Event Chooser dialog and adding quality of service options and filters.

Chapter 8

[249]

This creates a BPEL process with a single receive activity that identifies itself as
subscribing to an event by the lightening icon on the receive.

Events may also be subscribed to by adding a BPEL Receive activity to the process
and choosing an Interaction Type of Event.

Using Business Events

[250]

EDN publishing patterns with SOA Suite
The table in this section summarizes the different ways in which events may be
published within the SOA Suite depending on the requirement.

Requirement Pattern
Publish an event on
receipt of a message

A Mediator can achieve this by implementing the target service
interface and passing the message through the target while
adding a publish event item in sequence.

Publish an event on a
synchronous message
response

A BPEL process can achieve this by implementing the target
service interface and passing the message through the target and
passing the response back to the caller. Either before or after the
return to the caller, the process can publish an event item using
data from the response.

Publish an event on a
synchronous message
request and reply

A BPEL process can achieve this by implementing the target
service interface and passing the message through the target and
passing the response back to the caller. Either before or after the
return to the caller, the process can publish an event item using
data from the request and the response.

Publish an event on an
asynchronous response

A BPEL process can achieve this by implementing the async
interface, and before or after passing the message from the target
back to the caller, it can publish an event item using data from
the response.

Publish an event on an
asynchronous message
request and reply

A BPEL process can achieve this by implementing the target
service interface and the callback interface and passing the
message through the target and passing the callback back to the
caller. Either before or after the callback to the caller, the process
can publish an event item using data from the request and
the response.

Publish an event on an
event

A Mediator can achieve this by subscribing to an event and then
publishing an event.

We will now look at how each of these patterns may be implemented.

Chapter 8

[251]

Publishing an event on receipt of a message
If we receive a message, either a one way or a request/reply interaction, we can use
the Mediator to publish an event based on the content of the inbound message by
using a static routing rule to raise the event before or after forwarding the request to
a target service, as shown in the following screenshot:

Publishing an event on a synchronous
message response
If we wish to raise an event based on the response to a request/reply interaction,
then we need to use a BPEL process to invoke the target service and then raise the
event based on the content of the response, as shown in the following screenshot:

Using Business Events

[252]

Publishing an event on a synchronous
message request and reply
When an event needs to be raised, based on the content of both the request and reply
parts of a synchronous interaction, a BPEL process can be used to do this. The pattern
is essentially the same as the previous pattern, except that in the <assign> to the event
variable, we include data from both the request message and the reply message.

Publishing an event on an asynchronous
response
When an event needs to be raised based on the content of an asynchronous response,
we can use a BPEL process to do this. We invoke the target service and get the reply.
Then, either before or after sending the reply back to the initiator of the service
interaction, we can raise the event, as shown in the following screenshot:

Chapter 8

[253]

Publishing an event on an asynchronous
message request and reply
When an event needs to be raised based on the content of both the request and reply
parts of an asynchronous interaction, a BPEL process can be used to do this. The
pattern is essentially the same as the previous pattern, except that in the <assign>
to the event variable, we include data from both the request message and the
reply message.

Publishing an event on an event
We can use a Mediator to raise an event based on an incoming event. We may want
to do this to map events from one namespace to another or to manage backwards
compatibility between different versions of an event without having to change
subscribers or publishers. The Mediator can simply raise the outgoing event
based on the incoming event by using a sequential routing rule, as shown in the
following screenshot:

Using Business Events

[254]

Monitoring event processing in
Enterprise Manager
We can monitor what is happening with events from within Enterprise Manager. We
can also create new events from the EM console.

We can track what is happening with events by using the Business Events menu
item of the soa_infra tree node. This brings up the Business Events screen.

On the Events tab of this screen, we can see the list of events registered with the
server and the number of subscriptions and failed deliveries for each event. We can
also create database event subscriptions from this screen by selecting an event and
clicking on the Subscribe… link.

Chapter 8

[255]

Selecting an event and clicking the Test… button allows us to publish a new event.
No assistance is provided with the format of the event, which should be laid out as
shown in the following example:

<business-event
		xmlns:ns1=http://soa.suite.book/events/edl/AuctionEvents
		xmlns="http://oracle.com/fabric/businessEvent">
				<name>ns1:NewAuction</name>
						<id>e4196227-806c-4680-a6b4-6f8df931b3f3</id>
								<content>
										<NewAuction	xmlns="http://soa.suite.book/AuctionEvents">
												<seller>Antony</seller>
														<item>Used	Running	Shoes</item>
																<id>12345</id>
										</NewAuction>
								</content>
</business-event>

Note that the event content inside the <content> tab is the data associated with our
new event. The <business-event> identifies the namespace of the event, and under
this, the <name> element identifies the specific event.

The Subscriptions tab gives us more information about subscriptions, identifying
the composite and component within the composite that are subscribing to a
particular event. We can also see the transaction consistency level and any filter
that is being applied.

Using Business Events

[256]

Subscriptions can either be linked to a stored procedure in the database, database
subscriptions, or they can be subscriptions within components in a composite.

The Faults tab allows us to see the details of any faults generated by subscriptions
when trying to receive an event.

Summary
In this chapter, we have explored how EDN differs from traditional MOM systems
and also how it is used to allow seamless extension of business functionality without
requiring any modification of business processes and services. We have looked at
the different ways in which Mediator and BPEL may be used to publish events and
taken a brief overview of the event monitoring abilities of Enterprise Manager.

Building Real-time
Dashboards

The key objective driving service-oriented architecture is to move the IT organization
closer to the business. Creation of services and their assembly into composite
applications and processes is how IT can become more responsive to business.
However, it is the provision of real-time business information via dashboards that
really gives business the confidence that IT can add value. In this chapter, we will
examine how to use Business Activity Monitoring (BAM) to provide real-time
dashboards that give the business an insight into what is currently happening with
their processes, not what happened yesterday or last week.

How BAM differs from traditional business
intelligence
The Oracle SOA Suite stores the state of all processes in a database in documented
schemas so why do we need yet another reporting tool to provide insight into our
processes and services? In other words, how does BAM differ from traditional BI?
In traditional BI, reports are generated and delivered either on a scheduled basis or
in response to a user request. Any changes to the information will not be reflected
until the next scheduled run or until a user requests the report to be rerun. BAM is an
event-driven reporting tool that generates alerts and reports in real-time, based on a
continuously changing data stream, some of whose data may not be in the database.
For example, BAM may gather data from the currently executing state of BPEL
processes to track how many orders are at each step of the order process. As events
occur in services and processes, they are captured by BAM, transformed to business-
friendly reports and views, and delivered and updated in real-time. Where necessary,
these updated reports are delivered to users. This delivery to users can take several
forms. The best known is the dashboard on user desktops that will automatically
update without any need for the user to refresh the screen. There are also other means
to deliver reports to the end user, including sending them via text message or e-mail.

Building Real-time Dashboards

[258]

Traditional reporting tools such as Oracle Reports and Oracle Discoverer, as well
as Oracle's latest Business Intelligence Suite, can be used to provide some real-time
reporting needs, but they do not provide the event-driven reporting that gives the
business a continuously updating view of the current business situation.

Event-Driven Architecture (EDA) is about building business solutions
around responsiveness to events. Events may be simple triggers such
as a stock out event or they may be more complex triggers such as
the calculations to realize that a stock out will occur in three days. An
event-driven architecture will often take a number of simple events
and then combine them through a complex event-processing sequence
to generate complex events that could not have been raised without
aggregation of several simpler events.

Oracle BAM scenarios
Oracle business activity monitoring is typically used to monitor two distinct types
of real-time data. Firstly, it may be used to monitor the overall state of processes in
the business. For example, it may be used to track how many auctions are currently
running, how many have bids on them, and how many have been completed in the
last 24 hours (or other time periods). Secondly, it may be used to track in real-time
Key Performance Indicators, or KPIs. For example, it may be used to provide a
real-time updating dashboard to a seller to show the current total value of all the
sellers' auctions and to track this against an expected target.

In the first case, we are interested how business processes are progressing and
are using BAM to identify bottlenecks and failure points within those processes.
Bottlenecks can be identified by processes spending too much time in given steps
in the process. Currently, BAM requires us to identify key points in a process and
capture data at those key points. There is no direct linkage back to the process
models in the current release of SOA Suite or Oracle's Business Process Analyst tool.
BAM allows us to compute the time taken between two points in a process, such as
the time between order placement and shipping, and provides real-time feedback
on those times. Similarly, BAM can be used to track the percentage drop-out rate
between steps in a sales process, allowing the business to take the appropriate action.
For example, it can do this by tracking the number of shopping carts created, then
by tracking the number of carts that continue to get a shipping cost, and finally by
tracking the number of carts that result in an order being placed. For example,
the business can use this real-time information to assess the impact of a free
shipping offer.

Chapter 9

[259]

In the second case, our interest is on some aggregate number, such as our total
liabilities, should we win all the auctions we are bidding on. This requires us to
aggregate results from many events, possibly performing some kind of calculation
on them to provide us with a single KPI that gives an indication to the business of
how things are going. BAM allows us to continuously update this number in
real-time on a dashboard, without the need for continued polling. It also allows
us to trigger alerts, perhaps through e-mail or SMS, or to notify an individual
when a threshold is breached.

In both cases, reports delivered can be customized based on the individual receiving
the report.

BAM architecture
It may seem odd to have a section on architecture in the middle of a chapter
about how to effectively use BAM, but the key to successfully utilizing BAM
is an understanding of how the different tiers relate to each other.

Logical view

The preceding diagram represents a logical view of how BAM operates. Events are
acquired from one or more sources through event acquisition and then normalized,
correlated, and stored in event storage (generally a memory area in BAM that is
backed up to the disk). The report cache generates reports based on events in storage
and then delivers those reports, together with real-time updates through the report
delivery layer. Event processing is also performed on events in storage, and when
defined conditions are met, alerts will be delivered through the alert delivery service.

Building Real-time Dashboards

[260]

Physical view
To understand the physical view of the architecture of BAM better, we have divided
this section into four parts.

Acquire
This logical view maps onto the physical BAM components, as shown in the
following diagram. Data acquisition in the SOA Suite is primarily handled by a
BAM Adapter. BAM can also receive events from JMS message queues. BAM
exposes a web service interface to allow any web service-capable application to act
as an event source. Finally, there is an Oracle Data Integrator (ODI) knowledge
module that can be used to feed BAM. BAM has the ability to query data in
databases (useful for historical comparison and reference data) but does not detect
changes in that data. For complex data formats, such as master details record
relationships or for other data sources, using the ODI Knowledge Module in
conjunction with Oracle Data Integrator is recommended by Oracle.

As an alternative to using ODI, it is possible to use adapters to acquire data from
multiple sources and feed it into BAM through SCA Assemblies or OSB. This is more
work for the developer, but it avoids an investment in ODI if it is not used elsewhere
in the business.

For high volume, real-time data capture, Oracle provides a Complex Event
Processing Engine (CEP) that can batch events before forwarding them to BAM.
This reduces the number of calls into BAM, allowing it to scale better.

Finally, it is possible to send messages straight from applications into BAM using a
JMS queue or direct web service call. This, however, tightly couples the application
and BAM and generally requires reworking the application to support BAM.
Using the middleware approaches, which were shown earlier, allows us to avoid
this coupling.

At the data capture level, we need to think of the data items that we can provide
to feed the reports and alerts that we desire to generate. We must also consider the
sources of that data and the best way to load it into BAM. If all the data we require
passes through the composite engine, then we can use the BAM adapter within SOA
Suite to capture our BAM data. If there is some data that is not visible through the
composites, then we need to consider the other mechanisms discussed earlier, such
as using ODI, creating new composites to capture the data, or directly wiring the
sources of the data to BAM.

Chapter 9

[261]

Store
Once the data is captured, it is stored in a normalized form in memory in a
component called the Active Data Cache (ADC). This storage facility has the ability
to do simple correlation based on fields within the data, and multiple data items
received from the acquisition layer may update just a single object in the data cache.
For example, the state of a given BPEL process instance may be represented by a
single object in the ADC and all updates to that process state will just update that
single data item, rather than creating multiple data items. The ADC contents are
also stored in the BAM data store to avoid losing data across restarts and to avoid
running out of memory.

Process
Reports are run-based on user demand. Once a report is run, it will update the user's
screen on a real-time basis. Where multiple users are accessing the same report, only
one instance of the report is maintained by the report server. As events are captured
and stored in real-time, the report engine will continuously monitor them for any
changes that need to be made to the reports that are currently active. When changes
are detected that impact active reports, the appropriate report will be updated in
memory and the updates are sent to the user's screen.

Building Real-time Dashboards

[262]

In addition to the event processing required to correctly insert and update items in
the ADC, there is also a requirement to monitor items in the ADC for events that
require some sort of action to be taken. This is the job of the event processor. This
will monitor data in the ADC to see if registered thresholds on values have been
exceeded or if certain timeouts have expired. The event processor will often need
to perform calculations across multiple data items to do this.

This monitoring of events in the event processor is accomplished through BAM
rules, which are used to trigger BAM alerts. A BAM rule may be to monitor the
percentage of aborted sales processes in the last 30 minutes and to raise an alert
when the percentage exceeds a threshold value.

Deliver
Delivery of reports takes place in two ways. First, users can view reports on their
desktop by selecting views within BAM. These reports are delivered as HTML
pages within a browser and are updated whenever the underlying data used in the
report changes. The other approach is that reports are sent out as a result of alerts
being raised by the Event Processing Engine. In this latter case, the report may be
delivered by e-mail, SMS, or voice messaging using the notifications service. A
final option available for these alerts is to invoke a web service to take some sort
of automated action.

Closing the Loop
While monitoring what is happening is all very laudable, it is only
beneficial if we actually do something about what we are monitoring.
BAM not only provides the real-time monitoring ability very well,
but it also provides the facility to invoke other services to respond to
undesirable events such as stock outs. The ability to invoke external
services is crucial to the concept of a closed loop control environment
where, as a result of monitoring, we are able to reach back into the
processes and either alter their execution or start new ones. For example,
when a stock out or low stock event is raised, rather than just notifying
a manager about the stock out, the message centre could invoke a web
service requesting a supplier to send more stock to replenish inventory.
Placing this kind of feedback mechanism in BAM allows us trigger events
across multiple applications and locations in a way that may not be
possible within a single application or process, because they do not have
sufficient visibility. For example, in response to a stock out, we may be
monitoring stock levels in independent systems, and based on stock levels
elsewhere, may redirect stock from one location to another rather than
requesting our supplier to provide more stock. By invoking web services,
we avoid the need for manual intervention in responding to these alerts.

Chapter 9

[263]

Another way of accessing BAM reports is through Application Development
Framework (ADF is Oracle's UI development framework) BAM data controls. These
controls can be used on ADF pages to provide custom applications and portals with
access to BAM data. These controls will update in real-time on a user desktop in the
same way as reports retrieved directly from BAM.

Steps in using BAM
The following steps are used in creating BAM reports:

1.	 Decide what reports are desired
2. Decide what data is required to provide those reports
3. Define suitable data objects
4. Capture events to populate the data objects
5. Create reports from the data objects

The first two steps are paper-based exercises to define the requirements. The
remaining steps are the creation of suitable artifacts in BAM to support the desired
business reports, defined in step 1.

User interface
Development in Oracle BAM is done through a web-based user interface.

Building Real-time Dashboards

[264]

This user interface gives access to four different applications that allow you to
interact with different parts of BAM:

Active Viewer: For giving access to reports, this relates to the deliver stage
for user-requested reports.
Active Studio: For building reports, this relates to the 'process' stage for
creating reports.
Architect: For setting up both inbound and outbound events. Data elements
are defined here, as are data sources. Alerts are also configured here. This
covers setting up acquire and store stages as well as the deliver stage
for alerts.
Administrator: For managing users and roles as well as defining the types
of message sources.

We will not examine the applications individually, but we will take a task-focused
look at how to use them as a part of providing some specific reports.

Monitoring process state
Now that we have examined how BAM is constructed, let us use this knowledge to
construct some simple dashboards that track the state of a business process. We will
create a simple version of an auction process. The process is shown as follows:

An auction is started, then bids are placed until the time runs out, at which point, the
auction is completed. This is modeled in BPEL. This process has three distinct states.
They are as follows:

1. Started
2. Bid received
3. Completed

•

•

•

•

Chapter 9

[265]

Defining reports and data required
We are interested in the number of auctions in each state as well as the total value of
auctions in progress. This leads us to the following reporting requirements:

Display current number of auctions in each state
Display value of all auctions in each state
Allow filtering of reports by bidder and seller
Allow filtering of reports by auction end date

These reports will require the following data:

Auction identifier, so that we can correlate status changes back to a
particular auction
Auction state, so that we can track the number of auctions in each state
Current highest bid, so that we can calculate the worth of all auctions
Current highest bidder, so that we can filter reports by a particular bidder
Seller, so that we can filter reports by a particular seller
Auction end date, so that we can filter auctions by completion date

Having completed our analysis, we can proceed to define our data objects, capture
events, and build our reports.

We will follow a middle-out approach to building our dashboard. We will take the
following steps:

1. Define our data within the Active Data Cache
2. Create sensors in BPEL and map to data in the ADC
3. Create suitable reports
4. Run the reports

Defining data objects
Data in BAM is stored in data objects. Individual data objects contain the information
that is reported in BAM dashboards and may be updated by multiple events.
Generally, BAM will report against aggregations of objects, but there is also the
ability for reports to drill down into individual data objects.

•

•

•

•

•

•

•

•

•

•

Building Real-time Dashboards

[266]

Before defining our data objects, let's group them into an auction folder so that they
are easy to find. To do this, we use the BAM Architect application, and select Data
Objects, which gives us the following screenshot:

We select Create subfolder to create the folder and give it a name (Auction).

We then click on Create folder to actually create the folder, and we get a
confirmation message to tell us that it has been created. Notice that once created,
the folder also appears in the Folders window on the left-hand side of the screen.

Chapter 9

[267]

Now that we have our folder, we can create a data object. Again, we select Data
Objects from the drop-down list. To define the data objects that are to be stored in
our Active Data Cache, we open the Auction folder, if it is not already open, and
select Create Data Object. If we don't select the Auction folder, then we pick it later
when filling in the details of the data object.

We need to give our object a unique name within the folder and optionally provide
it with a tip text that helps explain what the object does when the mouse is moved
over it in object listings. Having named our object, we can now create the data fields
by selecting Add a field. When adding fields, we need to provide a name and type as
well as indicating if they must contain data; the default Nullable does not require a
field to be populated. We may also optionally indicate if a field should be publically
available for display and whether it should have any tool tip text.

Once all the data fields have been defined, we can click Create Data Object to
actually create the object as we have defined it. We are then presented with a
confirmation screen that the object has been created.

Building Real-time Dashboards

[268]

Grouping data into hierarchies
When creating a data object, it is possible to specify "Dimensions" for the
object. A dimension is based on one or more fields within the object. A
given field can only participate in one dimension. This gives the ability
to automatically group the object by the fields in the given dimension.
If multiple fields are selected for a single dimension, then they can be
layered into a hierarchy; for example, to allow analysis by country,
region, and city. In this case, all three elements would be selected into
a single dimension, perhaps called geography. Within geography, a
hierarchy could be set up with country at the top, region next, and
finally city at the bottom, allowing drill down to occur in views. Just as
a data object can have multiple dimensions, a dimension can also have
multiple hierarchies.

A digression on populating data object fields
In the previous discussion, we mentioned the Nullable attribute that can be
attached to fields. This is very important as we do not expect to populate all or
even most of the fields in a data object one at a time. Failing to initialize a field
will generate an error unless it is Nullable. Do not confuse data objects with the
low-level events that are used to populate them. Data objects in BAM do not have
a one-to-one correspondence with the low-level events that populate them. In our
auction example, there will be just one auction object for every auction. However,
there will be at least two, and usually more, messages for every auction; one message
for the auction starting, another for the auction completing, and additional messages
for each bid received. These messages will all populate, or in some cases overwrite,
different parts of the auction data object. The table shows how the three messages
populate different parts of the data object.

Message Auction
ID

State Highest
Bid

Reserve Expires Seller Highest
Bidder

Auction
Started

Inserted Inserted Inserted Inserted Inserted Inserted

Bid
Received

Updated Updated Updated

Auction
Finished

Updated

Chapter 9

[269]

Instrumenting BPEL and SCA
Having defined the data we wish to capture in BAM, we now need to make our
auction process generate appropriate events. We can instrument BPEL and SCA by
making explicit calls to a BAM adapter as we would to any other adapter. Within
BPEL, we may also take advantage of the sensor framework to raise BAM events
from within an activity.

Sensors versus explicit calls
Explicit calls are available within both SCA and BPEL. Within BPEL, they
make it more obvious where the BAM events are being generated. BPEL
sensors, however, provide the ability to generate events at a finer grained
level than explicit calls. For example, a BAM sensor in a BPEL activity
could be set to fire not just on activation and completion (which could be
captured by an explicit call just before and after the event), but also on
events that are harder to catch with an explicit invoke, such as faults and
compensation. Finally, sensors can fire on retry events that are impossible
to capture in any other way. BAM sensors do not use partner links or
references, but refer to the adapter JNDI location directly.

Sensors are not part of the normal BPEL executable flow. They can be thought of as
event generators. They are attached to almost any kind of activity in BPEL, including
partner link operations (invoke, receive, reply) and assigns. They can also be
attached to variables and will fire whenever the variable is modified.

Invoking the BAM adapter as a regular service
When using the BAM adapter, we first need to configure an adapter instance.

Creating a BAM adapter
Let us start by creating a new BAM adapter. We begin by creating a new BAM
Connection from the Connection section of the New Gallery (File | New, and
then select Connection under General).

Building Real-time Dashboards

[270]

We provide a name for the connection and identify if we wish it to be local to
this application or available to all applications. We then define the connection
characteristics of hostnames and port numbers for the Active Data Cache (BAM
Server Host) and web applications (Web Server). Generally, these will be the same
hostname and port number. We also provide a username and password for the BAM
server. Finally, we can test our connection to ensure that it works.

Having created our connection, we can now create a BAM partner link for use in
BPEL or SCA. We do this in the same way as we create any other adapter-based link.
We can drag a BAM Adapter from the Service Adapters section of the Component
Palette onto either the External References section of an SCA or the Partner Links
section of a BPEL process. This will launch the Adapter Configuration Wizard.
After providing a name for our service, we are asked to select a BAM Data Object
and determine the Operation to perform on the object. We must also provide an
Operation Name and determine the batching behavior.

Chapter 9

[271]

The Data Object may be selected directly from the BAM server by using the
Browse… button to pop up the BAM Data Object Chooser dialog box, which
allows selection of the correct data object.

Depending on the operation, we may need to provide a key to locate the correct data
object instance. Update, Upsert, and Delete all require a key, only Insert does not.

Building Real-time Dashboards

[272]

Upsert the universal update mechanism
When using upsert, if the key already exists then that object is updated.
If the object does not exist, then it is inserted. This enables upsert to
cover both insert and update operations and is generally the most useful
operation to perform on BAM objects, as it requires only one BAM
adapter instance to provide two different operations.

Having identified the update characteristics of our adapter, we now must map it
onto a resource in the underlying application server by providing the JNDI location
of the BAM connection. Once this is completed, we can complete the wizard and
finish creating our BAM adapter.

Invoking the BAM adapter
Invoking the BAM adapter is the same as invoking any other adapter from BPEL or
the Mediator. The BAM adapter provides an interface to allow a collection of data
objects to be submitted at the same time, each field in the data object is represented
by an XML element in the interface to the adapter. XSLT or copy operations may be
used to populate the fields of the input variable.

Chapter 9

[273]

Invoking the BAM adapter through BPEL sensors
In this section, we will examine how to use BPEL sensors to invoke the BAM adapter.

Within JDeveloper, there are several modes in which we can view the BPEL process.
On the right-hand side of the title bar for the BPEL editor, there is a drop-down list
that allows us to select the viewing and editing mode.

The drop-down list shows us the three modes available:

BPEL: Lets us edit and view the BPEL activities
Monitor: Lets us edit and view sensor annotations to the BPEL process
BPA: Is only used with the Oracle BPA suite.

After choosing Monitor, we can right-click on a BPEL activity to start creating the
sensor. This brings up a pop-up menu from which we can select the Create | Sensor
item. Note that there are also options to create other monitoring items.

Counter: Creates a count of the number of times an activity has been reached
Business Indicator: Evaluates an XPath expression when an activity has
been reached
Interval: Calculates the elapsed time between two activities

•

•

•

•

•

•

Building Real-time Dashboards

[274]

Sensor: Creates a BAM sensor

When creating a new sensor we need to provide it with a name and indicate when it
should fire. The options are as follows:

Activation: When the activity is started
Completion: When the activity is completed
Fault: When the activity raises a fault
Compensation: When compensation is invoked on a surrounding scope
Retry: When the activity is retried, such as retrying an invoke
All: All of the above

We must also provide a variable that contains the data we want to be part of the
sensor-generated event. This variable must be an element variable, not a simple type
or a message type.

•

•

•

•

•

•

•

Chapter 9

[275]

Sensors can have a number of sensor actions associated with them. Sensor actions
can be thought of as the targets for the sensor event. One option is to send the events
into the BPEL repository, which is useful for testing purposes. Another option is to
send them to BAM. Other options revolve around JMS Queues and Topics.

Unfortunately, we cannot add a BAM sensor from the Create Activity Sensor dialog.
They can only be created by using the structure pane for the BPEL process. To do
this, we navigate to Sensor Actions in the structure pane, right-click, and select Bam
Sensor Action. This brings up the Create Sensor Action dialog.

We provide a name for the sensor action and then select an eligible sensor from the
drop-down list. There is a one-to-one relationship between BAM sensor sections and
sensors. This is not the case for other types of sensors. The reason for the one-to-one
relationship is that BAM sensor actions transform the variable associated with the
action into the relevant fields for the BAM data object. This is done through an
XSLT transform.

Having selected our sensor, we then click the torch next to the Data Object so that
we can choose the BAM data object that we will map the sensor variable onto.

Building Real-time Dashboards

[276]

Having selected the BAM data object, we need to select the operation to be
performed on the data object. The drop-down list gives us four options:

Insert
Update
Delete
Upsert

The Insert operation creates a new instance of the BAM data object. This may result
in multiple data objects having the same field values.

The Insert operation does not use a key as it always creates a new data object. The
remaining three operations require a key because they may operate on an existing
data object. The key must uniquely identify a data object and may consist of one or
more data object fields.

The Update operation will update an existing data object, overwriting some or all
of the fields, as desired. If the object cannot be found from the key, then no data is
updated in the ADC.

The Delete operation will remove a data object from the ADC. If the key does not
identify an object, then no object will be deleted.

The Upsert operation behaves as an update operation if the key does identify an
existing data object in the ADC. If the key does not identify an existing object in the
ADC, then it behaves as an Insert operation.

Generally, we use the Insert operation when we know we are creating an object
for the first time, and we use the Update operation when we know that the object
already exists. We use the Upsert operation when we are unsure if an object exists.

For example, we may use an Insert operation to create an instance of a process status
object and then use an update to change the status value of the object as the process
progresses. When tracking process state, it is a good idea to use the process instance
identifier as a key field in the data object.

Having chosen our operation, an Insert operation for example, we then need to map
the fields in the sensor variable defined in BPEL to the BAM data object. We do this
by creating a new XSLT transformation by clicking the green cross next to the Map
File field.

•

•

•

•

Chapter 9

[277]

Within the XSLT transformation editor, we can map the BPEL variable to the BAM
data object. In addition to the variable itself, there is a host of other information
available to us in the BPEL variable source document. This can be categorized
as follows:

Header Information
This relates to the process instance and the specific sensor
that is firing

Payload
This contains not only the sensor variable contents but also
information about the activity and any fault associated
with it

Useful data includes the instance ID of the process and also the time the sensor fired
as well as the elapsed times for actions. Once we have wired up the variable data, we
can save the transform file.

When we have finished creating the sensor action, we can deploy it to the BPEL
server and events will be fired to populate the BAM active data cache.

•

°

•

°

Building Real-time Dashboards

[278]

Testing the events
After creating our BAM sensors, we can test them by executing a process in BPEL
and ensuring that the events appear in the Active Data Cache. We can find the actual
event data by selecting the object in BAM architect and then clicking Contents,
which will then list the actual data object instances.

Creating a simple dashboard
Now that our sensors are in place and working, we can use the BAM Active Studio
application to create a report based on the sensor information. To help organize our
reports, it is possible to create folders to hold reports in a similar fashion to the way
we created folders to hold data objects.

Let us create a report that shows the status of auctions in the system and also shows
the value of all auctions currently open. We will start by creating the report itself.
The report is just a holder for views, and we create it by selecting the Create A New
Report button.

We can select a report that has the right number of panes for the number of views we
want. Note that it is possible to change the number of panes on the report, so if we
get it wrong, it does not matter. For now, we will choose a simple split-screen report
with two panes, one above the other.

Chapter 9

[279]

We can provide a title for a report by editing the title section directly. Having
updated the title, we can then proceed to create the views.

Monitoring process status
For our first view, let us monitor how many auctions are at particular states. We are
interested in a count of the number of auctions with a given state value. This would
be well represented with a histogram style chart, so we select a 3D bar chart from the
view pane.

A wizard appears at the bottom of the screen, which gives us the opportunity to
select a data object to be used as the basis of the view. We navigate to the Auction
folder and select the AuctionState object. Note that it is possible to have multiple
data objects in a view, but additional data objects are added later.

Building Real-time Dashboards

[280]

Having selected the data object, we select the fields from the data object that we will
need in order to present the current state an auction is in. We choose the state field as
a value we want to use in our report by selecting it from the Chart Values column.
We can choose to group the data by particular fields, in this case, the state of the
auction. By default, date and string fields can be grouped, but by selecting Include
Value Fields, it is possible to group by any field by selecting it in the Group By
column. By selecting a summary function (Count) for our state field, we can count
the number of auctions in a given state.

Finally, the wizard gives us the opportunity to further modify the view by:

Creating a filter to restrict the range of data objects included in the view
Adding additional calculated fields to the view
Adding additional data objects to the view to be displayed alongside the
existing data object
Changing the visual properties of the view

•

•

•

•

Chapter 9

[281]

We will create a filter to restrict the display to those processes that are either
currently running or have completed in the last seven days. To do this, after
selecting the filter link, add a new entry to the filter.

Building Real-time Dashboards

[282]

We can now select a date field (Expires) and select that we want to include any data
object whose Expires field is within a time period of one week ago. This will prevent
us from having an ever increasing number of completed processes. When the filter
expression is completed, we click Update Entry to add the entry to the filter.

Update Entry link
Always remember to click the Update Entry or Add Entry link after
making changes in your filter expressions. Only after clicking this can you
select OK to complete your changes, otherwise your changes will be lost.

When we have clicked Update Entry, we can review the filter and select Apply. This
will update the underlying view and we can verify that the data is as we expect it
to look.

Monitoring KPIs
In the previous section, we looked at monitoring the state of a process. In this
section, we will use BAM to give a real-time view of our KPIs. For example, we may
be interested in monitoring the current value of all open auctions. This can be done
by creating a view, for example, using a dial gauge. The gauge will give us a measure
of a value in the context of acceptable and unacceptable bounds. Creating the view is
done in a similar fashion as done previously, and again, we may make use of filters
to restrict the range of data objects that are included in the view.

Chapter 9

[283]

When we have completed the views in our report and saved the report, we may
view the report through the active viewer application and watch the values change
in real-time.

Note that we can drill down into the reports to gain additional information. This
only gives a list of individual data objects with the same values displayed as on
the top level view. To gain more control over drill down, it is necessary to use the
Drilling tab in the view editor to specify the drill-down parameters.

Summary
In this chapter, we have explored how business activity monitoring differs from and
is complementary to more traditional business intelligence solutions such as Oracle
Reports and Business Objects. We have explored how BAM can allow the business
to monitor the state of business targets and Key Performance Indicators, such as the
current most popular products in a retail environment or the current time taken to
serve customers in a service environment. We also looked at how BAM can be used
to allow the business to monitor the current state of processes, both in aggregate and
also drilling down to individual process instances.

Part 2
Putting it All Together

oBay Introduction

Designing the Service Contract

Building Entity Services Using
Service Data Objects (SDOs)

Building Validation into Services

Error Handling

Advanced SOA Suite Architecture

Message Interaction Patterns

Workflow Patterns

Using Business Rules to Implement
Services

oBay Introduction
By now, you should have a good initial understanding of all the key components that
make up the Oracle SOA Suite. Typically we find that once someone has an initial
grasp of the various components, one of the next questions we get is:

"What is the best way to combine/use all of these different components to
implement a real world SOA solution?"

Answering this question is very much the focus of this section. To do this, we have
built a complete, albeit, relatively small SOA solution designed for an online auction
site for a fictional company called oBay (the o stands for Oracle).

Each chapter in this section tackles specific areas that need to be considered when
developing an SOA-based solution, such as the design of the service contract,
validation, error handling, message interaction patterns, and so on. To highlight and
demonstrate key design considerations, each chapter uses examples based on key
parts of the oBay application to illustrate what it is talking about.

This chapter introduces oBay and details the overall business requirements of the
online auction site. Before looking at the overall design of the oBay application, we
take a step back and consider some of the key goals of a SOA-based approach, such
as interoperability, reusability, and agility, and what we mean by that.

Next, we present you with our outline of a typical SOA Architecture, and in
particular, pay attention to how we might want to layer our services, as well as
highlight some of the key design considerations behind this. Only when we have
our blueprint for SOA do we apply it to the business requirements of oBay and
present you with its overall architecture.

oBay Introduction

[288]

oBay requirements
oBay is a new start-up company that provides a web-based auction site for users to
buy and sell items online.

User registration
Before someone can either sell or bid on items, they must first register as a user on
oBay. When registering, a user will be required to provide the following information:

Name (First Name and Last Name)
Date of Birth
Address (Line 1, Line 2, City, State, Zip, Country)
E-mail Address
User ID and Password
Credit Card (Card Type, Number, Expiry Date)

They will also be required to accept oBay's standard terms and conditions. As part of
the registration process, the system will perform the following checks:

That the User ID is not already in use
That the user is at least 18 years of age
The e-mail address will be validated by sending the user a confirmation
e-mail to the supplied address, with a link for them to activate their account
The Credit Card details provided are valid

User login
Once a user has successfully registered and activated their account, they can log into
oBay. This will take them to their home page, from where they can choose to start
selling or bidding on items.

Selling items
When a user goes to their seller's page, it will list all the items they have put up for
auction. By default, it will be filtered to show just those items where the auction is
still in progress, or the sale has yet to complete (for example, still awaiting payment
or shipping).

•
•
•
•
•
•

•
•
•

•

Chapter 10

[289]

The user can further refine this filter in a number of ways, for example, to show all
listings in a particular state (such as awaiting payment) or all listings regardless of
state. The filter can be further qualified by specifying a time period, for example,
just show me all listings for the last day, week, month, 90 days, 180 days, or year.

From here, they can choose to view the details of any of these items, as well as
update the status of an item where the sale is still in process (for example, Payment
Received, Shipped, and so on) In addition, the user may choose to list a new item or
view the status of their account.

List a new item
Once a user has successfully registered with oBay, they are ready to start selling. The
first step is to create a listing for the item that they want to sell. To do this, the user
will need to enter the following details about the item:

Category and subcategory (from a pre-defined list of values)
Title and description
Condition (new or used)
Confirm accepted payment methods (for example, check, cash, credit card, or
bank transfer)
Starting price, plus an optional reserve price
Auction duration, which can be 1, 3, 7, or 10 days
An optional start time; if not specified, this defaults to an immediate start
Postage description and cost

Once submitted, the system will perform a number of validations on the
listing, including:

Values are specified for all mandatory fields
The starting price is positive and less than the reserve price (if specified)
The reserve price is above a pre-determined amount (for example, $50)
The start time, if specified, is in the future

The final part of the validation is to check whether the item being listed meets the
criteria for what constitutes an acceptable item, for example, the item isn't one that is
prohibited by law. Ideally, the system is required to do an initial automated check on
the listing to identify potentially suspect items. If an item is flagged as suspect, then
a task will need to be created for an oBay administrator to check whether the item is
suitable for sale.

•
•
•
•

•
•
•
•

•
•
•
•

oBay Introduction

[290]

Whether an item is acceptable is not always black and white. The solution will
need to allow for questionable items to be submitted to a panel who will vote on
whether to accept it or not (assuming there is a majority vote, the item will be
deemed acceptable).

For valid non-questionable items, the system will calculate the listing fee and return
this to the user, who can then confirm whether they wish to proceed with the listing
or not. Upon confirmation, the item will be listed immediately, unless a start time
has been specified, in which case the item will be held in a queue until the specified
start time.

Listing fees are calculated according to the starting price (or reserve price, if
specified), as shown in the following table:

Starting or reserve price Listing fee
$0.01 - $0.99 $0.15
$1.00 - $4.99 $0.25
$5.00 - $14.99 $0.40
$15.00 - $29.99 $0.75
$30.00 - $99.99 $1.50
$100.00 or more $2.00

If the item is suspect, the user will be informed that the listing requires manual
vetting before it can be approved for listing. Upon completion of the manual vetting,
the user will be informed of the result by e-mail. If the item has been approved, the
user will be informed of the listing fee and can then choose whether to proceed with
the listing.

Completing the sale
The auction will end automatically after the specified duration. The user with the
highest bid (subject to it meeting the reserve price, if specified) will be declared the
winner. Once completed, the listing will proceed through the following steps to
complete the sale:

1. Specify Shipping Details: The winning bidder will be notified by e-mail and
requested to provide details of where the item is to be delivered to as well as
any preferences for postage. An e-mail will be sent to the seller containing
the shipping details.

2. Invoice Buyer: The seller will invoice the buyer for the winning amount, plus
postage. An e-mail will be sent to the buyer, containing details of the invoice.

Chapter 10

[291]

3. Make Payment: The buyer will then be required to pay the seller via a
method accepted by the seller (note this is done outsite of oBay). Once done,
the buyer will update the status of the item to indicate that they have made
the payment. An e-mail will be sent to the seller to inform them that the
payment has been made.

4. Confirm Receipt of Payment: The seller on receipt of the payment will
update the status of the item accordingly. An e-mail will be sent to the buyer
to inform them that the seller has received the payment.

5. Ship Item: After receiving the payment the seller will pack and ship the item
to the buyer, again they will update the status of the item to indicate that it
has been shipped. An e-mail will be sent to the buyer to inform them that the
item has been dispatched.

6. Receive Item: Upon receipt of the item, the buyer will record the fact that
they have received the item. An e-mail will be sent to the seller to inform
them that it has been received.

Upon successful completion of the sale, a seller's fee, based on the final price as set
out in the following table, will be charged to the seller's account.

Sale price Seller's fee
$0.01 - $50.00 5% of the sale price
$50.01 - $1000.00 $1.00 plus 3% of the sale price
$1000.00 or more $16.00 plus 1.5% of the sale price

If there are no bids or the reserve price isn't met, the auction will just finish without a
winner, in this case, a seller's fee will not be charged to the seller's account.

View account
Whenever a user lists an item, they will be charged a listing fee. Upon successful
sale of an item, they will be charged a seller's fee, based on the actual sale price.
Each of these charges will be billed against the user's oBay account, and then
on a monthly basis, oBay will automatically charge the user's credit card for the
outstanding amount.

Buying items
When a user goes to his buyer's page, it will list all the items on which they
have placed a bid. By default, it will be filtered to show just those items where the
auction is still in progress, but they will be able to view items on which they have
bid, but lost.

oBay Introduction

[292]

From here, the user can choose to view the details of the item, as well as place a bid if
the auction is still in progress.

In addition, it will show those items that they have successfully won. By default,
it will only show those items where the sale is still in progress (for example, still
awaiting payment or shipping). The user can further refine this by listing all items
in a particular state (for example, awaiting payment) or all items regardless of state.

The filter can be further qualified by specifying a time period, for example, just show
me all listings for the last week, month, 90 days, 180 days, or year.

From here they can choose to view the details of any of these items, as well as
perform outstanding tasks on open items (for example, specify shipping details,
confirm receipt of item, and so on). In addition, the user may choose to search for a
new item on which to bid.

Search for items
The first step in bidding for an item is to find something that you're interested in.
oBay will provide buyers with the ability to search for items listed on oBay. The user
will be able to search on a combination of category, subcategory, title, and condition.

The search will return all items that match the criteria, which will display 10 items
at a time.

Bidding on items
Once a user has found an item of interest, they can view all its details, including
existing bids. They can then choose whether to place a bid.

oBay uses an auction format, which lets a user bid the maximum amount they
currently want to go up to. However, their bid will only be increased by a sufficient
amount required to beat the current winning bid.

When the first bid is placed, it must be at least equal to the starting price set by the
seller. However, regardless of the amount actually bid, the current winning bid will
be equal to the starting price of the item.

Chapter 10

[293]

After this, any future bids must be at least equal to the current winning bid plus one
bidding increment, where the bidding increment is determined by the amount of the
current winning bid, as shown in the following table:

Current winning bid Bidding increment
$0.00 to $1.00 $0.05
$1.01 to $5.00 $0.25
$5.01 to $10.00 $0.50
$10.01 to $50.00 $2.50
$50.01 to $100.00 $5.00
$100.01 to $500.00 $25.00
and so on

When a new bid is placed, oBay determines the winning bid by comparing the
maximum amount of the current winning bid with the new bid; whichever is
highest is determined to be the winner. However, the amount of the winning
bid is determined by adding one bidding increment to the maximum amount
of the losing bid.

If the calculated winning bid is greater than the maximum bid of the winning bid,
then the winning bid is set equal to the maximum bid. In the event of a tie, then
whoever placed the bid first is deemed to have the winning bid, and the winning
bid is set to their maximum bid amount.

At first glance, this might sound quite complicated, so let's take an example to clarify.
If the minimum amount set by the seller is $1.00, then the winning bid would be
worked out as follows:

• If bidder A places a bid of $7.00, then they would currently have a winning
bid of $1.00

• If bidder B then bids $3.00, bidder A would still have the winning bid, but it
would now be $3.25 (bidder B's maximum bid plus one bidding increment)
If bidder B then bids $6.99, bidder A would still have the winning bid, but
now it would be $7.00

If it had gone up by a full bidding increment, it would now
be $7.49, but the maximum bid of bidder A is $7.00.

Finally, if bidder B bids $10.00, then they would now be the winning bidder,
with a winning bid of $7.50

•

•

oBay Introduction

[294]

Upon placing a bid, the user will be informed if they have been successful or not as
well as about the amount of the current winning bid. If successful, then the previous
highest bidder will be e-mailed to inform them that they have been outbid.

On completion of the auction, the winning bidder will be notified by e-mail and
requested to provide shipping details and any preferences on postage. Once
provided, they will subsequently receive an invoice from the seller, confirming
the amount to pay (that is, the winning price plus shipping and packing costs) and
instructions on how to pay it.

Once paid, the buyer should notify the seller that they have made the payment. Once
the seller has received the payments, they will then ship the item to the buyer. Upon
receipt of the item, the buyer should then record that they have received the item.

Defining our blueprint for SOA
Before we leap in and start building our service-oriented solution, let's take a
moment to understand why we would want to do this. After all, we could build
this application using a standard web-based architecture with tools such as Java
or .NET.

We will use this section to remind ourselves of the goals we are trying to achieve,
as well as discuss the basic concepts of SOA. We then look at how we can bring this
together to define a blueprint for a typical SOA Architecture, which we can use to
architect our oBay application.

Architecture goals
The core goals of SOA can typically be summarized as:

Improved interoperability: A major cost of any project is the effort required
to integrate an application with existing applications, both inside and outside
the enterprise.
The use of standards-based communication frameworks (for example, web
services); a standard representation for the exchange of data and common
design standards can greatly simplify the integration between disparate
systems, greatly reducing the cost of cross-application integration.
Improved reuse: Designing and building services to be intrinsically reusable
enables you to not just meet initial requirements, but also leverage them in
future applications. Similarly, you can service-enable existing systems, and
this enables you to further leverage existing investments.

•

•

Chapter 10

[295]

This not only saves you the time and effort of rebuilding similar
functionality, but can also help consolidate your IT estate; now you only
need to implement a piece of functionality once, as opposed to having
similar functionality buried in multiple systems. This can help reduce
the cost of administering and maintaining your existing systems.
Improved agility: One of the key design principles behind SOA is that
systems are no longer built to last, but rather built to change.
The following SOA principles not only allows you to more rapidly
implement new solutions through re-using existing functionality, but also
enable you to reduce the time it takes to modify and adapt existing SOA-
based solutions in response to ever-changing business requirements.

Using SOA standards and technologies will take you part of the way towards
achieving some of these goals, but as the A in SOA indicates, a key component
of this is architecture.

Typical SOA Architecture
So far, we've been throwing around the term SOA without really spending much
time looking at what a service is. At least, what a well designed service looks like,
or how we should go about assembling them into an overall solution, that is, the
architecture of our application.

The simple reality is that services come in all shapes and sizes, each of which
has some bearing on how you design, build, and use them within your overall
architecture. So it makes sense to further define the different types of services that
we will need, how they should be used, how they should be organized into different
layers, and so on.

Taking this approach enables us to ensure services are designed, built, and used
in a consistent fashion, improving the overall interoperability and reusability of a
service as well as ensuring the overall implementation is architected in such a way to
address key non-functional requirements such as performance, fault tolerance, and
security, as well as providing a solution that addresses our other goal of agility.

Now before we do this, we should add a health warning that there is no single
definition as to how you should compose your SOA Architecture, but there are
many opinions. It is also a pretty big topic in its own right, so you could quite
easily dedicate an entire book to this subject alone.

•

oBay Introduction

[296]

So we offer this as an introductory opinion on how you might want to design your
overall SOA Architecture. Feel free to agree or disagree with parts of it as you see fit.
However, we would stress that you need to go through the process of defining your
architectural approach to SOA and that you continue the process of refining it over
time, based on the experience and requirements of your organization.

With that caveat out of the way, the following diagram illustrates one way of
organizing our services into distinct layers within our overall architecture:

We can see that this breaks into five layers. It should also be apparent that all layers,
except the top layer, actually provide a set of services to the layer above and typically
do this by building on the layer beneath it.

Chapter 10

[297]

Like most architecture diagrams, this is over simplified. For example, it implies
here that the User Interface layer will always have to go via the business processes
layer to access a business service. In many circumstances, to mandate this as an
architectural requirement would be over-burdensome, and as a result, impair our
key goals of re-usability and agility.

While we've labeled the top layer User Interface, it could potentially be any
consumer of our services, who sits outside our domain of control, whether internal
or external to our organization. Let's examine these layers one-by-one, starting at the
bottom and working our way up.

Application services layer
When we look at the various layers within a service-oriented architecture, each layer
typically builds on the previous layer. However, at some point we need to hit the
bottom. This is the layer we have termed the 'Application Services layer'. This layer
is typically where the core service is actually implemented, or if you like, where the
"real" work happens.

We refer to it as the Application Service layer, as most services are typically
provided by existing applications. These could be packaged applications, such as
Oracle E-Business Suite, Siebel, PeopleSoft, SAP, or custom applications developed
in-house using technologies, such as Java, C#, Oracle Forms, PL/SQL, and so on.

Many modern day applications are web service-enabled, meaning that they provide
web services out-of-the-box. For those that aren't, adapters can be used to service
enable them (as we discussed in Chapter 3, Service-enabling Existing Systems).

The key here is that from our perspective, this is the lowest level of granularity that
we can go down to, and also the actual control we have over the interface of services,
at this level, is limited or non-existent. This tends to be the case regardless of whether
or not we have control of the application that provides the service, as the actual
interface provided is often a reflection of the underlying application.

It's for this reason (that is, lack of control over the service interface) that we also
include in this category native web services provided by other third parties, for
example, services provided by partners, suppliers, customers, and so on, as well
as Software as a Service (SaaS).

Virtual services layer
This is a relatively thin layer that provides a façade on top of the Application
Services layer. The key driver here is to achieve our goal of decoupling the services
provided by the underlying applications (over which we have varying degrees of
control) from any consumers of that service.

oBay Introduction

[298]

The simplest way to illustrate the criticality of this layer is to demonstrate the
potential impacts of trying to bypass it, which, during the pressure of a development
life cycle, can be easily done (and often is).

A typical scenario is where a developer or an architect will argue that it's only used
in one place, and it's unlikely to change for a long time anyway, or we need to do it
this way for performance reasons, and so on. And often, it is the case that the FIRST
time you use something, it is only being used in one place. The trouble is that
before long, you may find it being used in many places (and often you don't
always know where).

Then change happens. It may initially be a simple change, for example it may be
just moving the application to a bigger box (as the amount of requests it is now
processing has increased), or the actual application itself may be changing. Maybe
it's being upgraded to a new version, or maybe it's being replaced with a completely
new application.

Either way the WSDL for the service is likely to change, requiring every caller of
that service to be modified, tested, and redeployed, and of course, this needs to be
coordinated across all users of that service.

This becomes more complicated when you have multiple changes in the same time
frame. You could very quickly end up with hundreds or thousands of changes to
implement and coordinate. Suddenly, change becomes very complicated and our
systems far from agile.

As we mentioned earlier, the job of this layer is to provide a virtual services layer
to decouple consumers of services from the underlying application and thus
minimize the impact of change. It achieves this in two ways:

First, it provides a virtual endpoint for the client to call. Upon receipt of a
request, it then routes it to the underlying application service.
Secondly, it allows us to define an abstract description of the service, that
is, the operations provided by the service and its corresponding input and
output messages, so that these are no longer dictated by the underlying
application. This layer is then responsible for transforming an incoming
input message from the format of our service contract to the one expected
by the application service and vice versa for any response.

•

•

Chapter 10

[299]

Business services layer
As the name suggests, this is a fairly generic term used to describe encapsulated
business logic that is made available through a designed service contract. The
keyword here is designed, particularly when it comes to exchanging data models, as
each service will typically share a common data model defined in one or more XML
schemas. This is often referred to as the canonical model and is something
we will look at in a lot more detail in Chapter 11, Designing the Service Contract.

One of the implications of this is that a virtual service, as discussed in the previous
layer, is in reality a specialized type of business service, and as we will see in a
moment, a business process is also a specialized type of business service. However,
each of these has a specific role and tends to gravitate towards a specific layer.

This still leaves us with a rather large category for all our remaining services,
so from a design perspective, it makes sense to break these down further into
specific subcategories.

There are many ways and many opinions on how exactly business services should
be categorized. From a personal standpoint, we believe that there are two key
perspectives to consider. The first is to look at the type of functionality contained
within the service, as this will guide how we may wish to implement the service.

The second is to consider who is going to call or consume the service, in particular
where they sit within our layered architecture, as this will often drive other
considerations such as granularity, security, and so on.

Functional type
Our first category is the type of functionality provided by a service. We've split this
into three groups: Entity, Functional, and Task-based service. Let's examine each of
these in more detail:

Entity services: Also known as data services, emulate business objects
within an enterprise; for example User, Account, and Item are all entities
within oBay. Entity services often represent data entities held in a relational
database and provide the corresponding lifecycle (that is, create, read,
update, and delete) and query operations.
Entity services can often be used within multiple contexts, making them ex-
cellent candidates for reuse. To further promote this, it is considered a good
practice to minimize any business specific logic (such as validation) that you
place within the service.
One of the drawbacks here is that you wouldn't want to expose an entity
service directly to the presentation layer or any external third-party service;
rather you would use it within a task-based service or business process.

•

oBay Introduction

[300]

Functional services: Are used to implement raw business logic, for example,
business rules, pricing algorithms, and so on. It is quite common to embed
rules directly within task-based (or even entity) services, often leading to
the same rule being implemented in multiple locations and not always
consistently.
By separating out this logic as a standalone service, you not only ensure that
it's used in a consistent fashion, but also make it simpler to modify (that is,
you only have to do it once), thus increasing the agility of your solution.
Functional services typically don't use entity services (except maybe to
look-up reference values used by the algorithm); if you have a functional
service that does, then in reality, you have a task-based service with
functional logic embedded within it.
In many cases this may be fine. However, it will limit how reusable the
service is and could result in the same functionality being reimplemented
in other task-based services.
Task-based services: They are modeled to carry out a specific set of related
activities, often within the context of a business process. By their nature, they
will often act across one or more entity services, and may also make use of
other task-based or functional services.

For example, if we look at the operation placeBid, this would very much
form part of a task-based Auction service, as it supports the task of placing
a bid. However, it is likely to use an entity service (that is, Bid) to store the
received bid in the underlying database, and it may use a functional service
(that is, AuctionEngine) to calculate the result of placing the bid.

Service consumer
A key design point that needs to be considered is who will be consuming our
business services? It could be other business services, business processes, or an
external consumer such as the user interface layer, partners, or other parts of the
organization, though a service could potentially be called by all types of consumers.
Knowing who will call a service will impact on areas such as service granularity,
validation, and security.

Granularity is a key consideration in service design. Current industry wisdom
tends to encourage the use of more coarse-grained services, but it's important to
understand why when considering the granularity of an individual service.

Granularity is essentially the number of operations we need to call on a service in
order to achieve the desired result. The more fine-grained a service is, the more
operations you will typically need to call, the coarse-grained the less.

•

•

Chapter 10

[301]

The key driver for coarse-grained services is the performance impact of going across
a network. Thus if you can achieve the desired result by calling a coarse-grained
service, as opposed to calling say four fine-grained services, then it is likely to be
approximately four times faster, as the actual processing time of the service is likely
to be insignificant in comparison to the cost of going across the network.

However, using coarse-grained services can come at a price. If you combine multiple
functions into a single operation it may becomes less useable, as requestors may be
required to provide additional data to use the service or the service could result in
unwanted side effects. Conversely, if done well, coarse-grained services can simplify
the service interface, thus making it more reusable.

Additionally, coarse-grained services may impose redundant processing on the
server-side which could adversely impact performance. For example, it may cause
the service to make unnecessary reads to a database or make calls to additional
services across the network, each with resultant implications for overall performance.

The other consideration is that if a service is calling another service within the same
environment (for example, it is deployed on the same instance of the 11g service
infrastructure), then the call is likely to be optimized and not require a network hop.

Understanding where the service consumer lives in relation to the service is a key
design consideration. So when deciding on service granularity, it's worth bearing the
following guidelines in mind:

•	 For business services that are only going to be consumed by either business
processes or other business services (for example, entity services and
functional services), then you can afford to use finer-grained services.

•	 If a service is to be used outside the domain of control, then coarse-grained
services are more appropriate, though you should consider the downstream
performance implications of any redundant processing.

•	 When providing coarse-grained services, if there are potential impacts on
either performance or reuse then consider providing a number of redundant
fine-grained services in addition to the coarse-grained services. Effectively
by de-normalizing the service contract, it gives the consumer the ability to
choose the appropriate service.

oBay Introduction

[302]

In addition, depending on the nature of the service consumer, you may need to place
other requirements on a service, such as:

Security: As with all IT systems, security is key, but more so if you
start using SOA to expose your systems via web services to external
third-party consumers.
Management: Many third-party consumers will want to agree to some
sort of service level agreement, and you need to ensure you have sufficient
infrastructure in place to manage your services appropriately.
Support: When exposing services to third-parties, you need to consider
how they are going build systems that use them, that is, what level of
documentation are you going to provide, who do they call when something
goes wrong, and so on
Change Management: When services change, how are you going to manage
that? Depending on who the consumer is, you may be able to coordinate any
upgrades with them. However, that won't always be the case.
Validation: The less control we have over the implementation of the
consumer of a service, the less the number of assumptions we can make
about the quality of the data our service will receive, and the more
validation will be required.

Typically, service management and security is not something you build into
individual services. Rather, it tends to be provided by the underlying infrastructure
in which you host the service (something we will look at in more detail in Chapter 21,
Defining Security and Management Policies).

Support is more of an organizational issue, as is change management to a certain
extent. However, design of the service contract is the key to making change more
manageable and something we look at in detail in Chapter 11, Designing the Service
Contract. Finally, validation is an important consideration in design, and something
we look at in more detail in Chapter 13, Building Validation into Services.

Business process
As we've already mentioned, you could argue that a business process is no more
than just a specialized business service, especially when viewed through the eyes
of the service consumer. However, it has a number of key differences that make it
worth considering as a separate layer in its own right.

Before we look at why, let's take a step back. Look at the traditional application
architecture, which splits up an application into its presentation layer, business logic,
and database layer. Within that business logic, it is the business process that is more
likely to change.

•

•

•

•

•

Chapter 10

[303]

A business process is more likely to span multiple systems, which has led to the
proliferation of point-to-point integration solutions, aimed at tying those bits of
process together into an end-to-end business process. This can further obfuscate
the business process, making it more resistant to change.

Abstracting out a business process into a separate layer gives us a number of
advantages. Firstly, rather than having the process logic buried across multiple
applications, we can now define a single end-to-end process with a far higher level of
visibility and clarity than would normally be achievable. This makes it far simpler to
monitor the end–to-end process, as well as modify it in the future.

It also simplifies our underlying business services, as by extracting the business
process specific logic from them, they naturally become more generic, and therefore
more reusable.

Another byproduct is that as processes are long running in nature, whether for
minutes, hours, days, months, or even years, they are inherently stateful. Thus, the
need for other services to manage state is often removed, again simplifying them as
well as making them more reusable.

It is currently deemed the best practice to make services stateless, as
stateless architectures are typically more scalable (or at least easier to
scale) than stateful ones. In addition, stateless services tend to be simpler
to build and use, making them more reusable.
While to a certain extent this is true, you could argue that up until
recently, many of the WS-* standards and corresponding vendor tools
have not had the required completeness of functionality to support
stateful services. This is now starting to change, so going forward there is
likely to be more of a mix of stateless and stateful services within SOA.

User interface layer
As the top layer within our architecture, this is the layer that consumes the services
provided by the business processes and business services layers. We have labeled
this the user interface layer, mainly because we are using our SOA Architecture as
the blueprint for building a composite application, and this is the layer where the
GUI (either web-based or thick client) would sit.

For the purposes of this book we will not spend much time looking at this layer, as
it falls outside the boundary of what is provided by the Oracle SOA Suite. However,
for the purposes of delivering a fully-working application, we have provided a
simple web-based user interface developed using JDeveloper.

oBay Introduction

[304]

The reality, however, is that many users of the SOA Suite continue to develop the
GUI component of an application using their technology of choice, as in most cases,
it dovetails very nicely with an SOA-based approach.

Many user interfaces are based on variations of the Model-View-
Controller (MVC) design pattern. The Model represents the business
logic and data of an application and defines a set of operations that can
be performed against it.
The View is the user interface (for example, web page). It presents
information from the Model to the user, and then captures actions taken
by the user against the view. The Controller maps actions performed
on the View (for example, pressing a Submit button) to operations on
the Model (for example, placing a bid). After the Model is updated, the
View is refreshed, and the user can perform more actions.
This approach fits extremely well within the context of SOA, where
the Model is effectively provided by the business process and business
service layers. The View and Controller can then be implemented using
your GUI framework of choice (for example, Oracle ADF, Spring, or
Struts). The Controller would then provide the integration between the
two, invoking the appropriate operations on the underlying services.

One additional layer
Although we have focused on the user interface being the top layer within our
architecture, the reality is that these services could be consumed by applications
built by other parts of the organization or those of our partners or customers.

If these consumers are using the same architecture as us, then they would view
our services in the same way as we are viewing external web services within the
application services layer of our architecture.

This implies the need to have an additional virtual services layer in our model,
between the user interface and business process layer. We could rely on the
consumer of our services to build this layer, but it actually makes a lot of sense
for us to provide it.

Remember the goal of our original virtual services layer was to decouple
our composite application from the underlying services provided by the
application services layer, so that we can insulate ourselves from changes
to the underlying applications.

Here it is the opposite. We want to decouple the services we are providing from the
consumers of those services, as this gives us greater flexibility to change our services
without being constrained by the consumer of our services.

Chapter 10

[305]

This layer also provides a suitable point of control for managing access to our
services. Enabling us to define, enforce, and monitor polices for security and
service level agreements. With this additional layer, our SOA Architecture now
looks as follows:

oBay Introduction

[306]

Where the SOA Suite fits
You may have noticed that we have deliberately stayed clear of saying which parts
of the Oracle SOA Suite are used for which areas within our architecture, and there is
a good reason for this. Firstly, we wanted to produce a meaningful architecture that
clearly demonstrated the key objectives and considerations of each layer, rather than
just a piece of marketecture.

Secondly, it's not a simple one-to-one mapping, as within most layers, we have
multiple options available when it comes to implementation.

The first step is to map our architecture to the SOA Suite, which is to determine
which layers should be implemented as SOA composites and deployed to the 11g
Service Infrastructure and which layers should be implemented as proxy services on
the Oracle Service Bus.

Oracle Service Bus has the concepts of proxy service and business service.
Within our terminology, a proxy service maps to a virtual service.
However, an OSB business service maps to what we have termed an
application service.
We realized this could be confusing and did consider changing our
terminology to match. However, we have tried to base our architecture on
accepted industry practice and terminology. So, we believed it was better
to keep this terminology rather than modify it to fit with the naming of
specific products.

There are, as always, a number of ways to do this. However, we will start with
a simplistic view of what are regarded as best practices, and then layer on some
additional considerations. The following diagram depicts one way of partitioning
our services across these two components:

Chapter 10

[307]

The diagram illustrates the deployment of multiple composite applications on to
the 11g service infrastructure, with each composite application composed of
multiple composites. In other words, a composite application is a collection of
composites that have been designed and implemented as part of the same solution
(for example, oBay).

From this, we can see that each composite application is made up of a combination of
virtual services, business services, and business processes.

The diagram also depicts a number of virtual services deployed to the Oracle Service
Bus. These virtual services implement the internal and external virtual service layer.
An obvious question that this prompts is when to implement a virtual service in a
composite, and when to implement it using the OSB.

It's worth recalling that the function of the virtual services layer is NOT about
implementing a new service, but rather we are providing a layer of abstraction over
an existing service. In other words, the focus of this layer is all about decoupling the
service consumer from the service provider.

This, of course, is the primary objective of the Oracle Service Bus, so should be the
default technology for implementing this layer. The reality is that it's not that simple
and there are a number of scenarios where it makes sense to implement these (using
a Mediator) within a composite, which we will highlight over the following pages.

oBay Introduction

[308]

Composite application
As we have already mentioned, a composite application is made up of a number of
composites, with each composite providing a service that could potentially sit in any
layers of our architecture.

A composite itself is made up of one or more types of components (for example,
BPEL process, Mediator, Human Task). Each of these components has an affinity to
various layers within our architecture. The following is a guide to which components
can be used where:

Application services layer: This layer is pretty straightforward in that if
the application doesn't provide inbuilt support for web services, it is the
case of using the appropriate Service Adapter to hook into the underlying
application.
Virtual services layer: Within a composite, a Mediator should be your
default starting point for this layer, as it has been designed to address the
specific challenges tackled by this layer of our architecture.
Business services layer: BPEL is typically used for task-based services, as
it provides a rich language for building composite services, with Human
Workflow being used for manual tasks.
Business Rules provide an excellent tool for implementing functional
services, as well as the validation within task-based services.
For entity services, we can use ADF business components. While it is not part
of the SOA Suite, it is tightly integrated within the 11g service infrastructure.
Business Processes Layer: This layer, as you've no doubt already realized,
is the natural domain for BPEL. However, Business Rules also play an
important role in allowing you to externalize the logic behind decision
points within your process.

Business Activity Monitoring is then used to instrument your composite and
any other relevant services, in order to provide you with a holistic view across
your application.

Composite granularity
A key consideration when designing a composite application is the appropriate level
of granularity when partitioning it into multiple composites.

For example, it is quite feasible to build a single composite that spans all layers of our
architecture (excluding the service consumer layer). While this may work, the issue
that we have is that we would need to modify and re-deploy the whole composite
whenever a change occurs at any level within our composite.

•

•

•

•

Chapter 10

[309]

The other extreme would be to deploy every component as a standalone composite
in its own right. This is similar to what we had to do in 10gR3. However, this will
lead to an overly fragmented solution, which will be more complex to test, integrate,
deploy, and maintain. So the key question is what is the right level of granularity
of a composite?

When identifying services, we typically advocate a top-down process-driven
approach, which will help us to identify our core business processes and services,
for which we can define our service contract (as covered in the next chapter add).

We use this as our starting point for our level of granularity, with each
business process or service being implemented as a single composite
(using the appropriate components).

Once we start to design a composite, we will typically identify other business
processes or services that are required by the composite. At this point, we need
to decide whether the child service needs to be split out as a separate service, and
therefore be implemented as a composite in its own right.

Key considerations when making this decision are reusability, lifecycle, and
operational management of the composite.

Performance isn't really a consideration, assuming all composites are
deployed on the same service infrastructure, as there is no real difference
in the overhead of invoking a component within the same composite as
opposed to invoking it with a separate composite.
From an audit and tractability perspective, there is little difference, since
Enterprise Manager is sophisticated enough to join audit trails across
components that span multiple composites.

Composite reusability
The first consideration is whether the child service needs to be reused by other
composites (independently of the parent composite), either now or in the future.
If the answer is yes, then typically we want to split it out as a separate composite.

This isn't always as obvious as it may seem, as it is quite easy to take the approach
that every component could potentially be a reusable service and end up with all the
issues of an overly-fragmented solution.

The other consideration is that although it is technically simple enough to deploy a
child service as its own composite, the reality is that contextually it is coupled
to the parent service, that is, it is designed based on the requirements of the
parent composite.

oBay Introduction

[310]

To make it truly reusable, you will be required to break this coupling and design
the child service to be reusable, which takes extra time and effort. If it is a genuine
reusable service, then this investment may be justified. However, just because a
service could be reusable doesn't mean it should.

Finally, we need to consider the timing. It may be prudent for an initial
implementation not to split up the child components. But if we decided at a later
point in time that we needed to reuse a component of a composite (typically when
we understand the requirements better from a reuse perspective), then we could
always choose to split up the component then.

Composite lifecycle
Another consideration is whether the lifecycle of the child composite is likely to be
different from that of the parent composite, particularly if the composite is stateful
(for example, a long running business process).

If the child service is likely to change either more frequently or at different times
from the parent composite, then by splitting it up, we can simplify the process of
managing change.

For example, consider that we have a long running business process that invokes a
child business process. If deployed as a single composite, then whenever the child
process changes, we will need to redeploy a new version of the parent and child
process. As part of this, we need to deal with the issue of what do with the running
instances of the previous versions of the parent process.

However, if each process is deployed as a separate composite, then whenever
the child process changes, we will only need to deploy a new version of the child
process. If managed correctly, we can have the parent process automatically pick up
the new version of the child process.

Composite security and management policies
The majority of security and management policies are applied at the composite level
(refer to Chapter 21, Defining Security and Management Policies for details).

If you need to apply any of these policies to specific components, then you may need
to split that component up as a separate composite.

In addition, the Enterprise Management pack for SOA provides additional support
for runtime management with tooling for monitoring and managing areas such as
service availability, service level agreements, and key performance indicators. At the
time of writing, the Management Pack for SOA suite 11gR1 has yet to be released.
However, it is likely that much of the management capability will be provided at
the composite level.

Chapter 10

[311]

Basic composite design pattern
When implementing composites, we recommend a contract-first approach (as
detailed in Chapter 11, Designing the Service Contract). Once we have defined the
contract, we can then use that as the starting point for implementing our composite.

With this approach, the default design pattern that we recommend is to use a
Mediator as the entry point for a composite, as shown in the following diagram:

With this pattern, the Mediator implements the abstract WSDL for our services and
acts as a proxy responsible for routing requests from the service consumer to the
appropriate components within the composite. As the service contract is based on
the canonical model, then the Mediator should not be required to perform any level
of transformation. This provides a very light way to control the entry point to
our composite.

This allows us to present a single consolidated WSDL contract to the consumer
(something that we couldn't easily do in 10gR3, where each BPEL process required
its own WSDL). In addition, there are a number of other advantages, including
having a single point at which to:

Define security and management policies
Validate the XML syntax of any incoming request
Perform additional validation using schematron
Abstract the structure of the composite, allowing us to change its
implementation without changing its interface

•
•
•
•

oBay Introduction

[312]

Where to implement virtual services
We stated earlier that our default technology of choice for implementing both virtual
service layers within our architecture should be the Oracle Service Bus, but why?

From a functional perspective, you can view the Mediator as a light-weight Service
Bus. Certainly, OSB gives you a number of significant advantages, including:

Performance
Service throttling
Service pooling
Service caching
Flexibility

Given this, are there any reasons why we might choose to use the Mediator instead?

The obvious one is that we might choose not to deploy the Oracle Service Bus in
order to simplify our overall architecture. If this is your first SOA implementation, or
you only have a small scale deployment, then this approach may be perfectly valid.

But assuming that OSB is part of your architecture, are there any scenarios where
you might use the Mediator? The answer is of course yes. We will examine some of
them later.

Mediator as a proxy for a composite
In the composite design pattern that we have just outlined, we are already using the
Mediator. So it may seem strange to be asking this question.

However, in this scenario, it is not being used to implement a virtual services layer.
Instead, it's acting as a proxy within our composite. This may seem pedantic, but
recall that the composite could potentially be deployed to any layer within
our architecture.

Mediator as a proxy for an external reference
The reverse of the previous pattern is to use the Mediator as a proxy for any external
service invoked by a composite. However, unless we are implementing a virtual
service (which we will cover in a moment), there is little need for this pattern.

Firstly, if we are following our architecture, then any service we are calling from
a business process or service already implements our canonical model, thus no
transformation or enrichment of the date is required.

•
•
•
•
•

Chapter 10

[313]

If we want to route the operation based on the content of the message, then this
should also be done in the virtual layer.

If we need to modify the endpoint that a composite invokes, then this is defined in an
external reference (regardless of whether we go via a Mediator or not).

So all that we are left with is validation. When you consider that it is the composite
that is responsible for creating the data, you would hope that in most cases, we could
be confident that we were creating our own valid data (in cases where we were not,
then this, of course, is a valid pattern).

Using a composite as a virtual service
With the above in mind, the real question we should have asked is:

Are there any scenarios where we would use a composite (based on a Mediator) to
implement a virtual service?

Recall that a composite application is a collection of related composites, that is, they
have been designed and implemented as part of the same solution.

With this in mind, a scenario that we usually want to avoid is where we have a
composite calling another composite (in the same application) via the Service Bus.
This is because it will typically add an additional layer of complexity, as well as the
overhead of marshalling and un-marshalling a message between the SOA infrastructure,
which in the case of a simple synchronous call, would need to happen four times.

The first time for the hop from the calling composite in the service
infrastructure to the Service Bus, the second for the hop from the Service
Bus back to the invoked composite on the service infrastructure and then
another two hops to return the response.

A typical scenario where this could occur is where we have a composite business
service which needs to invoke some logic on an external system via a technology
adapter (such as the database, file, or FTP adapter).

One way to implement this would be to build a simple composite that references the
external system via the appropriate adapter. We could then plug this into the Oracle
Service Bus (as a business service) and then use a proxy service to expose this as a
virtual service, which could then be invoked by our composite business service.

This (in the absence of any other requirements) is clearly an overly complicated
solution and a classic example of when we would use a Mediator in the same
composite as the adapter to expose it as an internal virtual service.

oBay Introduction

[314]

An alternative would be to connect to an external system via an adapter
deployed to the Oracle Service Bus (as opposed to the Service Infrastructure
in the previous scenario).

This would be the approach when integrating with an enterprise application such
as Oracle E-Business Suite, Siebel, or SAP, since these are likely to be invoked from
composite applications and thus need to be considered as a composite apps in their
own right.

Service invocation between composite applications
The boundaries between where one composite application finishes and another
begins is not always clear. Take the previous scenario; we could be using the
database adapter to connect to a custom application that we may need to include
within multiple composite applications (say Application A and Application B).

In this scenario, we could say that the virtual services we have exposed are part of
composite Application A or composite Application B or a composite application
in its own right. With any of these outcomes, we have the issue of how we want
to handle inter-composite application communication, when deployed on the same
Service Infrastructure.

In this scenario, we have three basic approaches:

Centralized topology(that is, go via the Service Bus)
Peer–to-peer topology(that is, go direct via the service infrastructure)
Hybrid approach

Centralized approach
With this approach, whenever a composite application needs to invoke a service
provided by another composite application, it would do so via an external virtual
service implemented as a proxy service on the Service Bus.

This is essentially the model that we have advocated from the start, as it allows us to
completely de-couple our service consumer from our service provider. In addition to
the advantages we covered earlier, mandating that all external services are accessed
via the OSB gives us a number of other benefits.

From a service development lifecycle perspective, having this very clear line of
delineation between composite apps makes it simpler to communicate and enforce
our overall SOA Architecture, thus simplifying our governance requirements.

From an operational perspective, it allows us to use the Oracle Service Bus as a
centralized point of control for managing, monitoring, and securing our services.

•
•
•

Chapter 10

[315]

Peer-to-peer topology
With this topology, we are allowing composite applications deployed on the same
Service Infrastructure to communicate directly with each other, without the need to
go via the Service Bus. In this scenario, we would need to implement the external
virtual services layer using a Mediator.

With this approach, all invocations happen over the service infrastructure, which has
a number of advantages, including the following:

All invocations are optimized, resulting in improved performance
Transactions can be propagated between composite applications
Complete audit trails across composite applications

The disadvantage of this approach is that without a well-defined governance
process, you can quickly lose the overall visibility and control of your architecture.

For example, how do you stop a developer from implementing a composite in one
application that bypasses the external virtual services layer of another application,
calling a business service directly?

Note, we may still need to implement a set of external virtual services in the OSB
layer, for the purpose of controlling the invocation of the composite by consumers
that aren't deployed directly on the service infrastructure, adding additional
complexity to our solution.

Hybrid approach
With this approach, the default is to follow the centralized approach and mandate
that communication between composite applications go via the Service Bus, but
direct composite application to composite application communication is allowed
under certain circumstances.

The key to this approach is that the default is to use the centralized approach,
but provide a mechanism through your governance process for peer-to-peer
communication where there is a justified reason, for example, improved performance.

•
•
•

oBay Introduction

[316]

oBay high-level architecture
Now that we have our blueprint for SOA, let us apply it to the business requirements
of oBay. By doing this, we come up with the following high-level architecture:

We won't go into this in detail at this point (as we do that in the remainder of
this section), but it's worth looking at each layer and highlighting a few
significant features.

oBay application services
As you will see from the previous diagram, we have broken out our Application
Services into three categories, namely, oBay Developed Services, External Services,
and Workflow Services. Each of these raises some interesting points,
which we examine further later.

Workflow services
The Task, Identity, and Notification services are a subset of the services provided
out of the box by the Oracle SOA Suite. As we typically access these services via the
Human Task activity within a composite, it is easy to overlook their very existence.

Chapter 10

[317]

The workflow services have documented APIs, so they can be invoked just like any
other web service. We take advantage of these APIs to build the order management
business service and look at how to do this as part of Chapter 17, Workflow Patterns.

External web services
oBay makes use of a number of "simulated" real world web services, which are
invoked via OSB. A key consideration when using external web services is what
happens if they fail. We look at this as part of Chapter 14, Error Handling.

oBay developed services
As oBay is a start-up, it has rather limited inhouse applications, so we are going to
build most of these services from scratch. The great thing about SOA is that we can
actually build these application services using whichever technology is appropriate,
for example, Java or PL/SQL.

One option is to use Oracle ADF business components, which can be used to
implement Service Data Objects, a new feature in 11gR1. We cover this in detail
in Chapter 12, Building Entity Services using Service Data Objects (SDOs).

oBay internal virtual services
All of our oBay developed application services have a straight one-to-one mapping
with a corresponding virtual service. This is quite common when developing the
underlying application services as part of the overall implementation.

When exposing functionality from existing systems, this won't always be the case.
For example, you may have multiple systems performing the same function. In this
scenario, multiple application services would map to a single virtual service, which
would be responsible for routing requests to the appropriate system. This is the case
for our external services, where we have multiple services for address and credit
card services.

oBay business services
At first glance, this looks pretty unremarkable. However, there are a few areas worth
further scrutiny. Many of the task-based services, such as UserManagement, are built
using one or more entity services and do little more than layer validation on top. We
examine this approach in Chapter 13, Building Validation into Services.

oBay Introduction

[318]

A number of the task-based services (for example, Order) are manual in nature and
therefore, predominately built using the Workflow Service provided by the SOA
Suite. In Chapter 17, Workflow Patterns, we look at why we have split them up as
separate business services, rather than embed them directly within the core
business processes.

Finally, the auction engine is an interesting example of a functional service. One
way to implement this would be to write it using a standard programming language
such as Java or C#. However, an alternative is to use Business Rules; we look at this
in Chapter 18, Using Business Rules to Implement Services and examine some of the
advantages and disadvantages to this approach.

oBay business processes
Effectively within oBay, there are two key business processes, namely, registering a
customer and the end-to-end process of listing an item and selling it through auction,
the second of which we've split up into three subprocesses (for the purpose of
reusability and agility, should oBay change or extend its core business model at any
point in the future).

It is also worth examining the Account	Billing process. All our other processes
are initiated to handle a specific request (for example, register a user, list an item for
auction), while this is a scheduled process, which we will run nightly to settle the
account of all users with outstanding monies. We examine how we do this in
Chapter 16, Message Interaction Patterns.

oBay user interface
Here we've defined two user interfaces; one is for oBay customers, and we've built
it using JDeveloper. The other is for oBay employees who need to perform human
workflow tasks. Both sets of users will be performing human workflow tasks, one
via the out of the box worklist application, the other through our own hand-cranked
GUI. We will look at how to do this in Chapter 17, Workflow Patterns.

Chapter 10

[319]

Summary
In this chapter, we've provided you with a detailed introduction to the business
requirements of oBay—our fictional online auction site, as well as presenting you
with the architecture for our composite application.

Before we developed our solution, we took you through the process of defining our
high level SOA blueprint, outlining some of the objectives and considerations you
should take into account when developing an SOA-based architecture. Along the
way we've also thrown up a number of questions or issues that need to be addressed,
as well as highlighting particular areas of interest in our overall design.

In the remainder of this section, each chapter will focus on addressing a particular
subset of those issues raised, using various parts of the oBay application to illustrate
each answer. So that, by the end of this section, we will have tackled all the matters
that we've raised including the key question:

"What is the best way to combine/use all of these different components to
implement a real world SOA solution?"

As you are, no doubt, already gathering from this chapter, there isn't a single simple
answer, but rather you have many choices, each with their own set of advantages
and disadvantages. By the end of this section, you should at least be in a position to
understand those choices better and which ones are more applicable to you and that
of your own development.

Designing the
Service Contract

Service contracts provide the glue that enables us to assemble disparate pieces of
software or services into complete, composite applications. If we are to build a
sustainable solution, that is, one that will achieve our goals of improved agility,
reuse, and interoperability, then a careful design of the service contract is crucial.

The contract of a web service is made up of the following technical components:

WSDL Definition: Defines the various operations which constitute a service,
their input and output parameters, and the protocols (bindings) it supports.
XML Schema Definition (XSD): Either embedded within the WSDL
definition or referenced as a standalone component, this defines the XML
elements and types which constitute the input and output parameters.
WS-Policy Definition: An optional component that describes the service's
security constraints, quality of service, and so on.

Additionally, the service contract may be supported by a number of non-technical
documents, which define areas such as service-level agreements, support, and so on.

From a contract design perspective, we are primarily interested in defining the XML
Schema and the WSDL definition of the service. This chapter gives guidance on
best practices in the design of these components as well as providing strategies for
managing change, when it occurs. We leave the discussion on defining security and
management policies to Chapter 21, Defining Security and Management Policies.

•

•

•

Designing the Service Contract

[322]

Using XML Schema to define business
objects
Each business service acts upon one or more business objects. Within SOA, the data
that makes up these objects is represented as XML, with the structure of the XML
being defined by one or more XML Schemas. Thus the definition of these schemas
forms a key part in defining the overall service contract.

To better facilitate the exchange of data between services, as well as achieve better
interoperability and reusability, it is a good practice to define a common data model,
often referred to as the "canonical data model", which is used by all services.

As well as defining the structure of data exchanged between components, XML is
also used in all components of the SOA Suite. For example, it defines the structure
of variables in BPEL and provides the vocabulary for writing business rules and
transforming data via XSLT. So it is important that our XML model is well thought
out and designed.

Modeling data in XML
When designing your XML data model, a typical starting point is to base it on an
existing data model, such as a database schema, UML model, or EDI document.

While this is a perfectly legitimate way to identify your data elements, the crucial
point in this approach is how you make the transition from your existing model to
an XML model. Very often, the structure of the existing model is directly replicated
in the XML model, resulting in poor design.

Data decomposition
In order to produce an effective model for XML, it's worth taking a step back to
examine the core components that make up an XML document. Consider the
following XML fragment:

<order>
		<orderNo>123456</orderNo>
	 <shipTo>
	 	 <name>
	 	 	 <title>Mr</title>
	 	 	 <firstName>James</firstName>
	 	 	 <lastName>Elliot</lastName>
	 	 </name>
	 	 <address>

Chapter 11

[323]

	 	 	 <addressLine1>7	Pine	Drive</addressLine1>
	 	 	 <addressLine2></addressLine2>
	 	 	 <city>Eltham<city>							
	 	 	 <state>VIC</state>
	 	 	 <zip>3088</zip>			
	 	 	 <country>Australia</country>
	 	 </address>
	 </shipTo>
</order>

If we pull out the raw data from this, we would end up with:

123456	Mr,	James,	Elliot,	7	Pine	Drive,	,	Eltham,	VIC,	3088.	
Australia.	

By doing this, we have greatly reduced our understanding of the data. XML, through
the use of tags, gives meaning to the data, with each tag describing the content of
the data it contains. Now this may seem an obvious point, but too often, by failing
to sufficiently decompose our data model, we are doing exactly this, albeit within an
XML wrapper. For example, another way of modeling the previous piece of XML is
as follows:

<order>
				<orderNo>123456</orderNo>
				<shipTo>
								<name>Mr	James	Elliot</name>
								<address>7	Pine	Drive,	Eltham,	VIC,	3088,	Australia</address>
				</shipTo>
</order>

With this approach, we have again reduced our understanding of the data. So you
should always look to decompose your data to the appropriate level of granularity. If
in doubt go for the more granular model, as it's a lot simpler to convert data held in a
granular model to a less granular model than the other way round.

Data hierarchy
Another key component of our data model is the relationship between the different
elements of data, which is defined by the composition or hierarchy of the data. If
from our example fragment we take the element <city>Eltham<city>, on its own
it does not signify much, as we have provided insufficient context to the data.

However, in the context of <order><shipTo><address><city>, we have a far
clearer understanding of the data.

Designing the Service Contract

[324]

A common mistake is to use a flat structure, and then name the elements to
compensate for this, for example, changing the name to <order_shipTo_address_
city>. While this provides more context than just <city>, it introduces a whole set
of other problems, including:

It makes your XML far harder to read, as well as more bloated.
The relationships are no longer visible to your XML parser. This makes XPath
manipulation, XSLT mappings, and so on a lot more complex and onerous.
It reduces the opportunity for reuse; for example, each address element will
have to be redefined for every single context in which it is used. This is likely
to lead to inconsistent definitions as well as make changes harder to manage.

If you see elements named in this fashion, for example, <a_b_c>, <a_b_d>, it's a
pretty good clue that the schema has been poorly designed.

Data semantics
Another key to our data model is the semantics of our data. Looking at the preceding
example, it is obvious what the <state> element contains, but the exact format of
that data is not as obvious; that is, it could be Victoria, VIC, Vic, 0, and so on.

While different target systems will have different requirements, it is important that
a set of semantics are agreed upon for the canonical model, so that these differences
can be isolated in the Virtual Services layer.

While semantics can be enforced within our XML Schema through the use of facets
such as enumeration, length, pattern, and so on, this is not always the best
approach. This is an area we examine in more detail in Chapter 13, Building
Validation into Services.

Using attributes for metadata
A common debate is when to model XML data using elements and when to use
attributes, or whether attributes should be used at all.

Elements are more flexible than attributes, particularly when it comes to writing
extensible schemas, as you can always add additional elements (or attributes) to
an element. However, once an attribute has been defined, it can't be extended
any further.

One approach is to use attributes for metadata and elements for data. For
example, on some of our query-based operations (for example. getSellerItems,
getBuyerItems) we have defined two attributes, startRow and endRow, which are
used to control which portion of the result set is returned by the query.

•
•

•

Chapter 11

[325]

Schema guidelines
It's important to have a clear set of guidelines for schema design. This not only
warrants that the best practice is followed, it also ensures that schemas are created
consistently, making them more reusable, easier to combine, simpler to understand,
and easier to maintain.

Element naming
Consistent naming of elements within an XML Schema will ensure that schemas are
easier to understand, and reduce the likelihood of error due to names being spelt
differently within a different context.

Name length
While there is no theoretical limit on the length of an element or attribute name, you
should try and limit them to a manageable length. Overly long names can reduce the
readability of a document as well as make them overly bloated, which, in extreme
cases, could have performance implications.

We tend to try and limit names to a maximum of 15 characters; now this may not
always be possible, but there are a number of simple strategies.

Compound names
For element and attribute names that are made up of multiple words, we follow
the practice of capitalizing the first letter of each word (often called camel case).
For example, we would write the name 'shipping address'	as shippingAddress.

Another approach is to use a separator, that is, a hyphen or an underscore
between words. Personally, we don't find this as readable as well as resulting in
marginally longer names. Whichever approach you use, you should ensure that
you do so consistently.

For types (for example, complexType and simpleType), we follow the same
convention but prefix the name with a 't' in order to easily distinguish it from
elements and attributes.

An alternative convention is for type names to have the word Type'
at the end. However, we are not as keen on this convention as it can
lead to type names finishing in TypeType. For example we have the
element auctionType; using this convention; its type name would be
auctionTypeType.

Designing the Service Contract

[326]

Naming standards
We also recommend the use of a defined dictionary for commonly used words,
abbreviations, and so on to ensure that they are used in a consistent fashion. Areas
that should be considered include:

Synonyms: For names that have multiple potential options, for example,
Order and Purchase Order, the dictionary should define the standard term
to be used.
Abbreviations: For words that are used commonly, it makes sense to define
a standard abbreviation. For example, we may use address on its own,
but when combined with another word (for example, shipping), we use its
abbreviation to get shippingAddr.
Context Based Names: When a name is used in context, don't repeat the
context in the name itself. For example, rather than using addressLine1
inside an address element, we would use line1.

In some cases, this is not always pragmatic, particularly if it
reduces clarity in the meaning of the element. For example, if
within the context of name, you have the element family, then
this is not as clear as using familyName. So a degree of common
sense should be used.

Generic Names: As far as possible, use generic names. For example, avoid
using specific company or product names, as this will result in more reusable
models and also reduce the likelihood of change.

A sample of the oBay dictionary is shown in the following table:

Standard term Abbreviation Synonyms
address addr
amount amt cost, price, fee
description desc
end end finish, stop
id id number, identifier
item item product
max max ceiling, maximum, top
min min least, lowest, minimum
order ord purchase order
start start effective, begin
status status state
user usr client, customer

•

•

•

•

Chapter 11

[327]

Namespace considerations
Namespaces are one of the biggest areas of confusion with XML Schemas, yet
in reality, they are very straightforward. The purpose of a namespace is just to
provide a unique name for an element, type, or attribute, thus allowing us to
define components with the same name.

For example, the element Glass, will have a different definition to a company
that sells windows as opposed to one that runs a bar. The namespace allows us to
uniquely identify each definition, so that we can use both definitions within the
same instance of an XML document, as well as understand the context in which
each element is being used.

If you're familiar with Java, then a namespace is a bit like a package
name, that is, you can have multiple classes with the same name,
but each one would be defined in a separate package.

One feature of namespaces is that they have a degree of flexibility in how you
apply them, which then impacts how you construct and interpret an instance of an
XML document. This is often a cause of confusion, especially when they are used
inconsistently across multiple schemas.

So it's critical that you define a standard approach to namespaces before defining
your canonical model.

Always specify a target namespace
Unless you are defining a chameleon schema (seen later in the chapter) always
specify a target namespace.

Default namespace
When defining a schema, you have the option of defining a default namespace. If
you do, we would recommend setting the default namespace to be equal to the target
namespace. The advantage of this approach is that you only prefix elements, types,
and attributes that are defined externally to the schema (that is, anything that is not
prefixed is defined locally).

An alternative approach is not to use a default namespace, so that all
elements require a prefix. This can often be clearer when combining many
schemas from multiple namespaces, especially if you have similarly
named elements.

Designing the Service Contract

[328]

Qualified or unqualified element names
When constructing an XML instance based on an XML Schema, we have the option
as the schema designer to decide whether each element should be qualified, that is,
have a prefix that identifies the namespace of where the element is defined, or have
no prefix, that is, it is unqualified and the origin of the namespace is hidden within
the instance.

The approach you take is often a question of style. However, each has its own
advantages and disadvantages, particularly when you create XML instances that
are defined across multiple namespaces. Take the schema definition for the element
<address>, as shown in the following code snippet:

<xsd:schema	xmlns:xsd="http://www.w3.org/2001/XMLSchema"
												xmlns="http://rubiconred.com/obay/xsd/common"
												targetNamespace="http://rubiconred.com/obay/xsd/common"
												elementFormDefault="qualified or unqualified">

				<xsd:element	name="address"	type="tAddress"/>
				<xsd:complexType	name="tAddress">
								<xsd:sequence>
												<xsd:element	name="addressLine1"	type="xsd:string"/>
												<xsd:element	name="addressLine2"	type="xsd:string"/>
												<xsd:element	name="city"	type="xsd:string"/>
												<xsd:element	name="state"	type="xsd:string"/>
												<xsd:element	name="zip"	type="xsd:string"/>
												<xsd:element	name="country"	type="xsd:string"/>
								</xsd:sequence>
				</xsd:complexType>
</xsd:schema>

If we chose unqualified elements, then an instance of this schema would look as
shown in the following code snippet:

<cmn:address	xmlns:cmn="http://rubiconred.com/obay/xsd/common">
<addressLine1>7	Pine	Drive</addressLine1>
<addressLine2></addressLine2>
<city>Eltham<city>							
<state>VIC</state>
<zip>3088</zip>			
<country>Australia</country>

</cmn:address>

Chapter 11

[329]

However, if we chose to use qualified elements, our XML instance would now
appear as shown in the following code snippet:

<cmn:address	xmlns:cmn="http://rubiconred.com/obay/xsd/common">
<cmn:addressLine1>7	Pine	Drive</cmn:addressLine1>
<cmn:addressLine2></cmn:addressLine2>
<cmn:city>Eltham<cmn:city>							
<cmn:state>VIC</cmn:state>
<cmn:zip>3088</cmn:zip>			
<cmn:country>Australia</cmn:country>

</cmn:address>

With unqualified namespaces, the XML instance loses most of its namespace
declarations and prefixes, resulting in a slimmed down and simpler XML instance
that hides the complexities of how the overall schema is assembled.

The advantage of using qualified namespaces is that you can quickly see
what namespace an element belongs to. As well as removing any ambiguity,
it provides the context in which an element is defined, giving a clearer
understanding of its meaning.

Whichever approach you use, it's important to be consistent, as mixing qualified and
unqualified schemas will produce instance documents where some elements have a
namespace prefix and others don't. This makes it a lot harder to manually create or
validate an instance document, as the author needs to understand all the subtleties of
the schemas involved, making this approach more error-prone.

Another consideration over which approach to use is whether you are using local or
global element declarations, as unqualified namespaces only apply to local elements.
Having a mixture of global elements and local unqualified elements in your schema
definition will again produce instance documents where some elements have a
namespace prefix and others don't, with the same issues mentioned earlier.

A final consideration is whether you are using default namespaces. If you are
then you should use qualified names, as unqualified names and default namespaces
don't mix.

As we recommend, using both global elements (see later for the reason why) and
default namespaces, we would also recommend using qualified namespaces.

Qualified or unqualified attributes
Like elements, XML Schema allows us to choose whether an attribute is qualified or
not. Unless an attribute is global (that is, declared a child of schema and thus can be
used in multiple elements), there is no point in qualifying it.

Designing the Service Contract

[330]

The simplest way to achieve this is to not specify the form and
attributeFormDefault attributes. This will result in globally declared attributes
being prefixed with a namespace and locally declared attributes will have
unqualified names.

Namespace naming conventions
We also recommend defining a namespace naming convention, as this will provide
greater clarity as well as simplify the overall governance of assets. In the case of
oBay, our namespaces use the following convention:

http://<domain>/<sub-domain>/<namespace-type>/<subject_area>

Here, obay is a sub-domain within rubiconred.com. The <namespace-type>
defines the type of component (for example, schema, service, and so on) to which
the namespace applies.

So within our canonical model, we have defined several namespaces, including:

http://rubiconred.com/obay/xsd/account
http://rubiconred.com/obay/xsd/auction
http://rubiconred.com/obay/xsd/common

As part of your naming standards, you should also define standard namespace
prefixes for each namespace in your canonical model.

Global versus local
A component (element, simple type, or complex type) is considered global if it's
defined as a child of the schema element. If defined within another component, it's
considered local. Consider the following fragment of XML:

<shipTo>
				<name>
								<title>Mr</title>
								<firstName>James</firstName>
								<lastName>Elliot</lastName>
				</name>
				<address>
								<addressLine1>7	Pine	Drive</addressLine1>
								<addressLine2></addressLine2>
								<city>Eltham<city>
								<state>VIC</state>
								<zip>3088</zip>
								<country>Australia</country>
				</address>
</shipTo>

Chapter 11

[331]

One way of implementing its corresponding schema would be to design it to mirror
the XML, for example:

<xsd:element	name="shipTo">
<xsd:complexType>

<xsd:sequence>
<xsd:element	name="name">

<xsd:complexType>
<xsd:sequence>

<xsd:element	name="title"					type="xsd:string"/>
<xsd:element	name="firstName"	type="xsd:string"/>	
<xsd:element	name="lastName"		type="xsd:string"/>							

</xsd:sequence>
</xsd:complexType>

</xsd:element>
<xsd:element	name="address">

<xsd:complexType>
<xsd:sequence>

<xsd:element	name="line1"					type="xsd:string"/>
<xsd:element	name="line2"					type="xsd:string"/>	
<xsd:element	name="city"						type="xsd:string"/>							
<xsd:element	name="state"					type="xsd:string"/>
<xsd:element	name="zip"							type="xsd:string"/>			
<xsd:element	name="country"			type="xsd:string"/>			

</xsd:sequence>
</xsd:complexType>

</xsd:element>
</xsd:sequence>

</xsd:complexType>
</xsd:element>

Using this approach, only the shipTo element is declared globally and thus is
reusable; no other elements or types either within this schema or another schema
can make use of the elements or types declared inside the shipTo element.

Another way of defining the schema would be as shown in the following
code snippet:

<xsd:element	name="shipTo">
<xsd:complexType>

<xsd:sequence>
<xsd:element	ref="name"/>
<xsd:element	ref="address/>							

</xsd:sequence>
</xsd:complexType>

Designing the Service Contract

[332]

</xsd:element>

<xsd:element	name="name">
<xsd:complexType>

<xsd:sequence>
<xsd:element	name="title"					type="xsd:string"/>
<xsd:element	name="firstName"	type="xsd:string"/>	
<xsd:element	name="lastName"		type="xsd:string"/>							

</xsd:sequence>
</xsd:complexType>

</xsd:element>

<xsd:element	name="address">
<xsd:complexType>

<xsd:sequence>
<xsd:element	name="line1"					type="xsd:string"/>
<xsd:element	name="line2"					type="xsd:string"/>	
<xsd:element	name="city"						type="xsd:string"/>							
<xsd:element	name="state"					type="xsd:string"/>
<xsd:element	name="zip"							type="xsd:string"/>			
<xsd:element	name="country"			type="xsd:string"/>			

</xsd:sequence>
</xsd:complexType>

</xsd:element>

With this approach shipTo, name, and address are globally declared. Therefore, the
elements name and address are also reusable now.

You could always go a step further and separately define all the simple
types such as title, first name, and so on as global elements.

The temptation may be to define elements you wish to reuse within your schema
as global and have the rest as local definitions. However, you should consider the
following point:

Any element you may wish to use as a parameter for a web service operation
must be globally defined
BPEL variables can only be declared for global elements, not local elements

As at the point of schema definition, it's not always easy to determine where an
element may need to be reused. We would recommend always declaring your
components as global.

•

•

Chapter 11

[333]

Elements versus types
A common dilemma is whether to use elements or types to define global
components. Types tend to be more flexible, in that once you've defined the
type, it can be reused to define multiple elements of the same type.

Also, once you have defined a type, you can easily use it to define an element. In the
following example, we have remodeled the above schema to separately define the
types and then use them to define the elements. As a result, we have slightly fewer
lines of XML as well as a more flexible model:

<xsd:element	name="shipTo"	type="tShipTo">
<xsd:complexType	name="tShipTo">

<xsd:sequence>
<xsd:element ref="name"/>
<xsd:element ref="address/>

</xsd:sequence>
</xsd:complexType>

<xsd:element	name="name"	type="tName">

<xsd:complexType	name="tName">
<xsd:sequence>

<xsd:element	name="title"					type="xsd:string"/>
<xsd:element	name="firstName"	type="xsd:string"/>	
<xsd:element	name="lastName"		type="xsd:string"/>							

</xsd:sequence>
</xsd:complexType>

<xsd:element	name="address"	type="tAddress">

<xsd:complexType	name="tAddress">
<xsd:sequence>

<xsd:element	name="line1"					type="xsd:string"/>
<xsd:element	name="line2"					type="xsd:string"/>	
<xsd:element	name="city"						type="xsd:string"/>							
<xsd:element	name="state"					type="xsd:string"/>
<xsd:element	name="zip"							type="xsd:string"/>			
<xsd:element	name="country"			type="xsd:string"/>			

</xsd:sequence>
</xsd:complexType>

Designing the Service Contract

[334]

With BPEL 1.1, you can only create variables based on global elements,
NOT global types.

When reusing components from other namespaces, refer to the element that is
defined against the type (as highlighted previously), rather than using the type
directly. Otherwise, the namespace of the top element will take on the namespace
of the schema that is reusing the type.

Finally, we recommend that you use different names for elements and complex
types. Although the XML Schema specification allows for an element and a type to
have the same name, this can cause issues for some tools. So for our purposes, we
prefix all types with a lower case "t" to indicate that it's a type.

Partitioning the canonical model
When building your first SOA application, it's very easy to fall into the trap of
defining a single schema that meets the specific needs of your current set of services.
However, as each project develops its own schema, it will often redesign its own
version of common elements. This not only reduces the opportunity for reuse, but
makes interoperability between applications more complicated as well as increases
the maintenance burden.

The other common pitfall is to design a single, all encompassing schema that defines
all your business objects within an organization. There are two issues with this
approach. First, you could end up "boiling the ocean", that is, you set out to define
every single business object with the organization and the project never starts
because it's waiting for the model to be completed.

Even if you take a more iterative approach, only defining what's required upfront
and extending this schema as new applications come on line, you very quickly end
up with the situation where every application will become dependent on this single
schema. Change often becomes very protracted, as a simple change could potentially
impact many applications. The end result is a strict change control being required,
often resulting in protracted time frames for changes to be implemented, which is
not exactly an agile solution.

Chapter 11

[335]

The approach, of course, lies somewhere in the middle, and that is to partition your
data model into a set of reusable modules, where each module is based on a logical
domain. For example, in oBay, we have defined the following schemas:

Account.xsd: Defines every business object specific to a financial account,
that is, a record of all debit and credit activities related to a specific user
Auction.xsd: Defines all business objects specific to an auction
Order.xsd: Defines all business objects specific to order fulfillment, that is,
from the placement of an order through to its final shipment and delivery
User.xsd: Defines all business objects specific to a user
Common.xsd: This schema is used to define common objects, such as name,
address, credit card, which are used by multiple domains, but have no
obvious owner

Once we have partitioned our data model, we need to decide on our strategy for
namespaces. There are a number of potential approaches, which we cover below.

Single namespace
With this approach, we have a single target namespace which is used by all schema
definitions. We typically have a single master document which uses the xsd:
include element to combine the various schema documents into a single schema.

This approach is illustrated below, where we have a master "oBay" schema that
includes all of our other schemas:

The advantage of this approach is that it keeps it simple, as we only have a single
namespace and corresponding prefix to worry about.

•

•

•

•

•

Designing the Service Contract

[336]

The disadvantage is that we have taken a single schema and just broken it up
into multiple manageable files. But apart from this, we still have all the other
disadvantages that we outlined previously when creating a single master model.

The major disadvantage is that if we change any single document, we change the
entire model. This would result in a new version of the entire model, and thus for us,
potentially having to update every single service implemented to date.

Multiple namespaces
The other approach, of course, is to define a namespace for each individual domain;
each schema can then reference a definition in other schema's by making use of the
xsd:import element. This is the approach we have taken for oBay and is illustrated
as follows:

With this approach, we have no master schema, thus services only need to import
the parts of the canonical model which are relevant to them. Whilst with the
single namespace approach, you will typically end up being required to import
the entire schema.

Another advantage of this approach is that it allows different groups to be
responsible for each namespace, and for each namespace to evolve to a certain
extent, independent of others.

The drawback to this approach is that instance documents become more complex, as
they will need to reference multiple namespaces. To prevent this from becoming a
problem, it's important to partition your data model into sensible domains and also
resist the urge to over partition it and end up with too many namespaces.

Chapter 11

[337]

Separate common objects into their own namespaces
Common objects, which are used across multiple namespaces, should be created in
their own namespace. For example, the address element is used across all domains.
If we were to create it in the order namespace, we would be forcing all our other
schemas to import the order schema, which would unnecessarily complicate our
XML instances. The issue would become more acute if common object definitions
were sprinkled across multiple namespaces.

Using WSDL to define business services
A service, as defined by a WSDL document, is made up of two parts. Firstly, there is
the abstract part, which defines the individual operations that make up a service, the
messages that define the parameters for the operations, and the types which define
our XML data types used by our messages.

The second part of the WSDL document defines the binding, that is, how to
physically encode the messages on the wire (for example, SOAP), the transport
protocol on the wire (for example, HTTP), and also the physical location or
endpoint of the service (for example, its URL).

Ideally, we should only be concerned with designing the abstract part of the WSDL
document, as the runtime binding should be more of a deployment detail. However,
the reality is that the style of binding has implications for how we design the
abstract components if we want to ensure interoperability between service
providers and consumers.

By far, the most common binding for a web service is SOAP over HTTP. However,
this comes in a number of different varieties, as we can specify whether the
invocation method adopts a Remote Procedure Call (RPC) style or a document
style binding (that is, a more message-oriented approach). We also have a choice
as to whether the SOAP message is encoded or literal. This gives us four basic
combinations, that is, RPC/encoded, RPC/literal, Document/encoded, and
Document/literal.

It is generally accepted that for the purposes of interoperability, Document/literal is
the best practice. However, the Document/literal style has some drawbacks.

Firstly, not all Document/literal services are WS-I compliant, as WS-I recommends
that the SOAP body contains only a single child element within the SOAP body.
However, Document/literal allows you to define WSDL messages containing
multiple parts, where each part is manifested as a child element within the
SOAP body.

Designing the Service Contract

[338]

Another minor issue with document/literal is that it doesn't contain the operation
name in the SOAP message, which can make dispatching of messages difficult in
some scenarios and can also make debugging complicated when monitoring SOAP
traffic, particularly when multiple operations contain the same parameters.

Use Document (literal) wrapped
Document Wrapped is a particular style or use of Document/literal that
addresses these issues. With this approach, the request and response parameters
for an operation are 'wrapped' within a single request and response element.

The request wrapper must have the same name as the corresponding operation,
while the name of the response wrapper is derived by appending 'Response' to the
operation name.

This ensures that the SOAP body only contains a single nested element whose name
matches that of the operation.

These wrapping elements must be defined as elements, not complex types. While
WSDL allows either, the use of complexTypes is not WS-I compliant.

This approach ensures that you have WS-I compliant messages.

A document wrapped web service looks very similar to a RPC/literal
style, as they both produce a SOAP message containing a single nested
element matching the name of the operation within the soap:Body.

Building your abstract WSDL document
Once we have standardized on the document wrapped pattern, we can define the
abstract part of our WSDL contract at this stage, without having to worry about the
actual binding.

WSDL namespace
As with our schema definitions, we need to define a namespace for our business
service. Here we would recommend defining a different namespace for each
service. This should also be different from the namespaces used within your
canonical model.

Chapter 11

[339]

Defining the 'wrapper' elements
In the 10gR3 release of SOA Suite, we used to advocate defining the wrapper
elements within the WSDL document of the web service, as separating those out into
a standalone schema provided little value.

With 11gR1, we recommend a different approach—to define the wrapper elements
in a separate schema in their own namespace, which we then import into our WSDL
document. This allows us to reuse these wrapper elements within our composite.

Recall the basic composite design pattern that we introduced in the previous
chapter, where we use a Mediator as the entry point for a composite, as shown
in the following screenshot:

With this pattern, the Mediator implements the abstract WSDL for our service, and
acts as a proxy responsible for routing requests from the service consumer to the
appropriate components within the composite.

Each of these components, in turn, implements one or more of the operations defined
in our abstract WSDL. By separating out the wrapper elements into a separate
schema, we can reuse these when defining the WSDL for each of these components.

This ensures that within our composite, we have a single consistent definition of
our message types. This makes it simpler to manage change as well as ensuring
our proxy is not required to perform any transformations.

Whichever approach you follow, resist the temptation to define your wrapper
elements within your canonical model, as doing so will pollute your model as
well as make changes harder to manage.

Designing the Service Contract

[340]

Defining a schema for our wrapper elements
When defining an XML Schema for our wrapper elements, we need to import the
relevant parts of our canonical model, and for each imported schema, define its
namespace and corresponding prefix.

For example, we have defined our wrapper elements for the OrderFulfillment
service in the schema OrderFulfillmentEBM.xsd. This imports the Order.xsd
schema, defined in the namespace 'http://rubiconred.com/obay/xsd/order',
as highlighted in the following code:

<xsd:schema	xmlns:xsd="http://www.w3.org/2001/XMLSchema"	
targetNamespace="http://rubiconred.com/obay/ebm/OrderFulfillment"	
	 xmlns="http://rubiconred.com/obay/ebm/OrderFulfillment"	
 xmlns:ord="http://rubiconred.com/obay/xsd/order"
	 elementFormDefault="qualified">

 <xsd:import namespace="http://rubiconred.com/obay/xsd/order"
 schemaLocation="Order_v1_0.xsd" />

				<!--	Wrapper	Elements	Defined	Here	-->	

</xsd:schema	>

Next, we can define our wrapper elements, so for the setShippingInstruction
operation within the OrderFulfillment service, we have defined the following:

<xsd:element	name="setShippingInstruction"									
													type="tSetShippingInstruction"/>

<xsd:element	name="setShippingInstructionResponse"	
												type="tSetShippingInstructionResponse"/>

<xsd:complexType	name="tSetShippingInstruction">
			<xsd:sequence>
							<xsd:element	ref="ord:orderNo"/>
							<xsd:element	ref="ord:shippingDetail"	/>
		</xsd:sequence>
</xsd:complexType>

<xsd:complexType	name="tSetShippingInstructionResponse">
		<xsd:sequence>
							<xsd:element	ref="ord:order"/>
		</xsd:sequence>
</xsd:complexType>

Chapter 11

[341]

Importing our wrapper elements
The next step is to import the schema containing the wrapper elements into our
WSDL; we do this by using an import statement within the types section of our
WSDL, as shown in the following code snippet:

<types>
		<xsd:schema	elementFormDefault="qualified">
 <xsd:import schemaLocation="OrderFulfilmentEBM_v1_0.xsd"
 namespace="http://rubiconred.com/obay/ebm/OrderFulfilment"/>
				…	
		</xsd:schema>
<types>

Before we can refer to the wrapper elements contained within this schema, we
must also declare its namespace and corresponding prefix within the definitions
element of the WSDL, as highlighted in the following code snippet:

<definitions	name="OrderFulfillment"
				targetNamespace="http://rubiconred.com/obay/svc/OrderFulfillment"
				xmlns:tns="http://rubiconred.com/obay/svc/OrderFulfillment"
 xmlns:ebm="http://rubiconred.com/obay/ebm/OrderFulfillment"
				xmlns="http://schemas.xmlsoap.org/wsdl/"
				xmlns:xsd="http://www.w3.org/2001/XMLSchema">

Defining the 'message' elements
Once we have defined and imported our wrapper elements, it's pretty straightforward
to define our message elements. We should have one message element per wrapper
element. From a naming perspective, we use the same name for the message element
as we did for our wrapper elements. So for our setShippingInstruction operation,
we have defined the following message elements:

<message	name="setShippingInstruction">
			<part	name="payload"	element="ebm:setShippingInstruction"/>
</message>

<message	name="setShippingInstructionResponse">
		<part	name="payload"	element="ebm:setShippingInstructionResponse"/>
</message>

Designing the Service Contract

[342]

Defining the 'PortType' Element
The final component of an abstract WSDL document is to define the portType and
its corresponding operations. For our OrderFulfillment service, we have defined
the following:

<portType	name="orderFulfilment">
				<operation	name="setShippingInstruction">
								<input	message="tns:setShippingInstruction"/>
								<output	message="tns:setShippingInstructionResponse"/>
				</operation>
				<operation	name="submitInvoice">
								<input	message="tns:submitInvoice"/>
								<output	message="tns:submitInvoiceResponse"/>
				</operation>
				…
</portType>

Note that for the sake of brevity, we have only listed two operations; for the full set,
please refer to OrderFulfilment.wsdl contained within the sample application.

Using XML Schema and the WSDL within
SOA Suite
Once we have defined the abstract WSDL and corresponding XML Schemas, we are
ready to implement the services they define within the SOA Suite. These services will
typically be implemented as composites or proxy services within the Service Bus.

As we've seen in earlier chapters, the simplest way to use a predefined schema
within a composite is to import the schema from the filesystem into our SOA project.

When we do this, JDeveloper does two things. First, it will add a copy of the schema
file to our SOA project. Second, it will add an import statement into the WSDL of the
service component (for example, BPEL, Mediator) that is referring to it, for example:

<types>
				<schema	xmlns="http://www.w3.org/2001/XMLSchema">
 <import namespace="http://rubiconred.com/obay/xsd/order"
 schemaLocation="Order_v1_0.xsd" />
				</schema>
</types>

Chapter 11

[343]

Here, schemaLocation is a relative URL that refers to the imported file. In many
scenarios, this is fine. However, if you have several processes, each referring to their
own local copy of the same XML Schema, which is likely to be the case with our
canonical model. Then when you need to change the schema, you will be required
to update every copy.

One way is to just have a master copy of your XML Schema and use build scripts to
update each of the copies every time you create a build. However, this isn't ideal.
A better approach is to have a single copy of the schema that is referenced by
all composites.

Sharing XML Schemas across composites
The SOA infrastructure incorporates a Metadata Service (MDS), which allows you
to share common artifacts such as XML Schemas across SOA composites. MDS
supports two types of repository:

File-based repository: This is quicker and easier to set up, so it is typically
used as the design-time MDS by JDeveloper.
Database repository: This is installed as part of the SOA infrastructure.
This is used at runtime, but can also be used by JDeveloper as the MDS at
design-time.

By default, a file-based repository is installed with JDeveloper and sits under the
directory structure:

<JDeveloper	Home>/jdeveloper/integration/seed

This already contains the subdirectory soa, which is reserved for and contains
artifacts used by the SOA infrastructure. For artifacts that we wish to share across
our applications in JDeveloper, we should create the subdirectory apps	(under
the seed directory). This is critical as when we deploy the artifacts to the SOA
infrastructure, they will be placed in the apps namespace.

For oBay, we have created the following file structure under apps:

com/rubiconred/obay/xsd/Account_v1_0.xsd
com/rubiconred/obay/xsd/Auction_v1_0.xsd
com/rubiconred/obay/xsd/Base_v1_0.xsd
com/rubiconred/obay/xsd/Common_v1_0.xsd
com/rubiconred/obay/xsd/Item_v1_0.xsd
com/rubiconred/obay/xsd/Listing_v1_0.xsd
com/rubiconred/obay/xsd/Order_v1_0.xsd
com/rubiconred/obay/xsd/User_v1_0.xsd

•

•

Designing the Service Contract

[344]

We have defined the path based on the namespace for
each of the XML Schemas as this makes it simple to locate
the schema within the resource browser.

Defining an MDS connection
Before we can reference these from within JDeveloper, we need to define a
connection to the file-based MDS. Within JDeveloper, from the File menu, select
New to launch the Gallery. Under Categories, select General | Connections, and
then select SOA_MDS Connection from the Items list. This will launch the MDS
Connection Wizard, as shown in the following screenshot:

Create the connection in the Resource Palette, give it an appropriate name, specify a
Connection Type of MDS-File, and then click on Next.

We then need to specify the MDS root folder on our local filesystem. This will be the
directory that contains the apps directory, namely:

<JDeveloper	Home>\jdeveloper\integration\seed

Once specified, click Next, and then click Finish.

Alternatively, we could create a DB based MDS connection
against the MDS database repository installed as part of the
SOA infrastructure. In this case, we would need to specify the
database connectivity information for the SOA MDS schema
(which we defined when we installed the SOA Suite).

Chapter 11

[345]

Importing schemas from MDS
We import schemas from MDS in a similar fashion to how we import them from
the local filesystem. The key here is that when we launch the SOA Resource
Browser, we select Resource Palette from the drop-down menu (as shown in
the following screenshot).

Select the schema that you wish to import, and click OK. This will take you back to
the Import Schema File window. Make sure you deselect Copy to Project (as circled
in the following screenshot):

When we import a schema in this fashion, JDeveloper will import it as an Inline
Schema, meaning it doesn't actually make a copy of the schema; rather it just
adds an import statement into the WSDL for the service component where the
schemaLocation attribute is set to the specified URL.

Designing the Service Contract

[346]

For schemas referenced by the MDS, the schemaLocation attribute takes the
following format:

oramds:/apps/<schema	name>

While oramds indicates that it is located in the MDS, apps indicates that it is in the
application namespace and <schema	name> is the full path name of the schema in
the deployed archive. So in the preceding example, it would be:

schemaLocation="oramds:/apps/com/rubiconred/obay/xsd/Common_v1_0.xsd"

The schema location doesn't specify the physical location of the schema;
rather it is relative to the MDS (which is specific to the environment in
which the composite is deployed). This makes the WSDL more portable,
as we don't have to modify the schema location for each environment
that it's deployed to (as we did with SOA Suite 10.1.3).

Manually importing schemas
Instead of using the SOA Resource Browser to import the schema, it may seem
simpler (particularly if we have to import multiple schemas) to manually edit the
WSDL file to contain the appropriate import statements.

However, there is one nuance that we need to be aware of, that is, we need to define
in the application properties how it should resolve the location of metadata in
the apps namespace. The reason we didn't have to worry about this earlier is that
when we imported the schema via the resource browser, JDeveloper automatically
updated the application properties for us.

Within the Application Resources view for our SOA application, you will notice that
it contains the file adf:config.xml, as shown in the following screenshot:

Chapter 11

[347]

Double-click on this to open it, switch to the source view, and scroll down to the
metadata-namespaces section, as shown in the following code snippet:

<persistence-config>
		<metadata-namespaces>
				<namespace	metadata-store-usage="mstore-usage_1"
															path="/soa/shared"/>
 <namespace metadata-store-usage="mstore-usage_2"
 path="/apps/com"/>
		</metadata-namespaces>
		<metadata-store-usages>
				<metadata-store-usage	id="mstore-usage_1">
						<metadata-store	class-name	
								="oracle.mds.persistence.stores.file.FileMetadataStore">
								
								<property	value="${oracle.home}/integration"
																		name="metadata-path"/>
								<property	value="seed"	name="partition-name"/>
						</metadata-store>
				</metadata-store-usage>
 <metadata-store-usage id="mstore-usage_2">
 <metadata-store class-name
 ="oracle.mds.persistence.stores.file.FileMetadataStore">

 <property value="${oracle.home}/integration"
 name="metadata-path"/>
 <property value="seed" name="partition-name"/>
 </metadata-store>
 </metadata-store-usage>
		</metadata-store-usages>
</persistence-config>

By default, this contains a single namespace entry and a corresponding
metadata-store-usage entry. However, for those applications where we have
imported a resource from MDS, it will contain a second entry (highlighted earlier),
which defines the MDS repository to the application. If we manually edit the WSDL
files to import a schema (something we will do in a moment), then we will need to
manually edit this file.

If you examine the definition of mstore-usage_2, you will see that it's the same
as the default definition mstore-usage_1 and so is redundant. This is because we
choose to use the file-based repository installed with JDeveloper.

Designing the Service Contract

[348]

Thus the only change we need to make to the default adf:config.xml file is to add
a second namespace entry that references the default metadata store and defines the
apps path, as shown in the following code snippet:

<persistence-config>
		<metadata-namespaces>
				<namespace	metadata-store-usage="mstore-usage_1"
															path="/soa/shared"/>
 <namespace metadata-store-usage="mstore-usage_1"
 path="/apps/com"/>
		</metadata-namespaces>
		<metadata-store-usages>
				<metadata-store-usage	id="mstore-usage_1">
						<metadata-store	class-name	
								="oracle.mds.persistence.stores.file.FileMetadataStore">
								
								<property	value="${oracle.home}/integration"
																		name="metadata-path"/>
								<property	value="seed"	name="partition-name"/>
						</metadata-store>
				</metadata-store-usage>
		</metadata-store-usages>
</persistence-config>

Note that for those scenarios where we are using the DB-based MDS of the SOA
infrastructure, we would need to keep the mstore-usage_2	entry and configure it
appropriately, for example:

<metadata-store-usage	id="mstore-usage_2">
		<metadata-store	class-name=	
				"oracle.mds.persistence.stores.db.DBMetadataStore">
										
				<property	value="DEV_MDS"	name="jdbc-userid"/>
				<property	value="welcome1"	name="jdbc-password"/>
				<property	value="jdbc:oracle:thin:@localhost:1521:XE"
																				name="jdbc-url"/>	
				<property	value="soa-infra"	name="partition-name"/>
		</metadata-store>
</metadata-store-usage>

Chapter 11

[349]

Deploying schemas to the SOA infrastructure
Before we can deploy a composite that references artifacts held in MDS, we must
deploy those artifacts to the MDS on the SOA infrastructure. To do this, we need to
create a JAR file containing the shared artifacts and then deploy it as part of an
SOA Bundle.

Creating a JAR file within JDeveloper
To create this JAR file within JDeveloper, create a Generic Application (for example,
obayMetadata) and when prompted to, create a project and give it an appropriate
name (for example, mdslib). In the application navigator, right-click the mdslib
project and select Project Properties. This will launch the Project Properties
window, select Deployment from the navigational tree, as shown in the
following screenshot:

Click New…, this will launch the Create Deployment Profile dialog. Specify an
archive type of JAR File, specify an appropriate name (for example, mdslib), and
click OK. This will launch the Edit JAR Deployment Profile Properties window,
where we can specify what goes in the JAR file.

We only want to include the actual XML Schemas in the JAR file, so deselect Include
Manifest File, then select File Groups | Project Output | Contributors from the
navigational tree, and deselect Project Output Directory and Project Dependencies.

Designing the Service Contract

[350]

Now we can specify the actual schemas we wish to add to the JAR file. Click on Add.
This will launch the Add Contributor window. Click on the magnifying glass and
browse to the apps directory that we previously created and click OK. Next select
File Groups | Project Output | Filters, and check that only the files we want are
included within the JAR file.

Click OK to confirm the content of the JAR file, and then click OK one more time to
complete the deployment profile, finally, from the main menu select Save All.

Creating an SOA Bundle for a JAR file
In order to deploy our JAR file to the metadata repository, we need to place it within
an SOA Bundle (see Chapter 19, Packaging and Deployment for more details on what an
SOA Bundle is) and deploy that to our SOA infrastructure.

Chapter 11

[351]

To create an SOA Bundle, from the Application Menu select Application
Properties, which will launch the corresponding window. From the navigational
tree, select Deployment, and then click New. This will launch the Create
Deployment Profile window, as shown in the following screenshot:

Specify an archive type of SOA Bundle and an appropriate name and then click OK.
This will launch the SOA Bundle Deployment Profile Properties window; select
Dependencies from the navigational tree, and ensure that mdslib is selected.

Click OK twice and then select Save All from the toolbar. We are now ready to
deploy our XML Schemas to the metadata repository. In order to do this, from
the Application Menu, select Deploy | SOA Bundle Name. This will launch the
Deployment Action dialog. Select Deploy to Application Server and follow the
standard steps to deploy it to your target SOA infrastructure server(s).

Designing the Service Contract

[352]

The schemas will then be made available to SOA Composites deployed on the same
SOA infrastructure.

Importing the WSDL document into a
composite
As discussed in the previous chapter, when creating a composite, it is a good practice
to use a Mediator as a proxy for the composite, which implements the abstract WSDL
contract that we have designed.

Essentially, there are two approaches to this. The first is to create a Mediator in the
normal way, using the appropriate template—synchronous, asynchronous, or one-
way. When you do this, JDeveloper will create a basic WSDL file for the process. You
can then modify this WSDL (using the WSDL editor in JDeveloper) to conform to the
abstract WSDL that you have already defined.

The alternative is to import the abstract WSDL document into the Mediator itself.
With this approach, you create your Mediator using the template for an Interface
Definition from WSDL, as shown in the following screenshot:

Chapter 11

[353]

Ensure that Create Composite Service with SOAP Bindings is selected. Then click
on Find existing WSDLs (circled in the preceding screenshot) and select the WSDL
we want to import from the local filesystem. Ensure that the appropriate Port Type is
selected and click OK.

This will add an empty Mediator component to our composite and expose it as an
external service.

Note that if the WSDL references any external resources defined in the MDS, we
must first define the MDS repository to the applications; otherwise we will get an
exception when we try to create the Mediator.

The simplest way to achieve this, when we first create a new SOA application, is to
create the project using the template for an Empty Composite. We can then update
the adf:config.xml file, as described earlier. Finally, we can add a Mediator to the
composite and create it based on our predefined WSDL.

We can also create a BPEL process based on our abstract WSDL
by following the same approach.

Sharing XML Schemas in the Service Bus
As with composites, it is possible within the Service Bus to create multiple projects
each with their own local copy of the schema. However, as before, it's considered
best practice to only have a single copy of each schema.

This is easily achieved by having a single project that defines your schemas,
which is then shared across other projects. In order to be consistent with the SOA
infrastructure, we have defined the project mds, and under this, created an identical
folder structure into which we have imported our schemas.

For example, to mirror how we have deployed the order schema to MDS, we have
created the folder structure com/rubiconred/obay/xsd within the mds project, into
which we have imported the Order_v1_0.xsd schema.

Designing the Service Contract

[354]

Importing the WSDL document into the
Service Bus
Before we create a proxy service that implements our abstract WSDL, we need to
define the bindings for the service, which in our case will be Document/literal. We
can either modify the WSDL file to include the bindings before we import it, or add
in the bindings after we have imported the WSDL into the Service Bus.

Defining the SOAP bindings for our service and each of its corresponding operations
is pretty straightforward, as we have already settled on Document/literal for this.

For example, the bindings for our orderFulfillment service are as follows:

<binding	xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
									name="orderFulfillmentBinding"	
									type="tns:orderFulfillment">
				<soap:binding	style="document"	
																		transport="http://schemas.xmlsoap.org/soap/http"/>
				<operation	name="	setShippingInstruction">
								<soap:operation	style="document"	
																								soapAction="setShippingInstruction"/>
								<input>

											<soap:body use="literal"/>
								</input>
								<output>

												<soap:body use="literal"/>
								</output>
				</operation>
				<operation	name="submitInvoice">
								<soap:operation	style="document"	soapAction="submitInvoice"/>
								<input>

											<soap:body use="literal"/>
								</input>
								<output>

												<soap:body use="literal"/>
								</output>
				</operation>
				…
</binding>

Chapter 11

[355]

When we import our WSDL, if it imports any schemas, then the Service Bus will
present us with a warning message, similar to the one shown in the following
screenshot, indicating that there were validation errors with the WSDL:

If you look at the list of resources in the browser, it will also have an X next to the
WSDL we just imported.

If you click on the WSDL name to edit it, the Service Bus will display the WSDL
details with the error One of the WSDL dependencies is invalid.

This is because if a WSDL references any external resources (that is, the order schema
in this case), we must first import that resource into the Service Bus and then update
the WSDL reference to point to the imported resource.

To do this, click on the button Edit References. The Service Bus will display a
window listing all the references included in the WSDL, with a section listing
all the schema references, as shown in the following screenshot:

Designing the Service Contract

[356]

Clicking on the Browse… button will launch a window from where you can select
the corresponding XML Schema that the WSDL is referring to, as shown in the
following screenshot:

By default, the window will list all the schemas defined to the Service Bus, though you
can restrict the list by defining the search criteria. In the case of our orderFulfilment
service, just select the schema Order_v1_0.xsd, and click on Submit.

This will take you back to the Edit References screen and click Save. This will take
you back to the View/Edit WSDL screen, which should display the confirmation The
References for the WSDL "orderFulfillment" were successfully updated.

Your WSDL can now be used to define a proxy service in the normal way.

If you import a schema into the Service Bus, which references
other schemas, then you will need to go through a similar
process to define all its dependencies.

Strategies for managing change
One of the key design principles behind SOA is that systems should be designed
and built to accommodate future changes in response to ever-changing
business requirements.

So far, we have looked at how to design and build the initial system, so that when
change does occur, it can be isolated through the use of service contracts to particular
parts of the overall system.

While allowing us to restrict the impact of change, it doesn't completely mitigate all
the complexities, especially when you consider that the consumer and provider of a
service may be in completely separate organizations.

Chapter 11

[357]

Major and minor versions
When we upgrade the version of a service, for example, from version 1 to version 2,
then from the consumer's perspective, there are two possible outcomes. Either the
version 1 consumer can continue to successfully use version 2 of the service, in
which case the service is said to be backward compatible or the change will break
the existing contract.

To be explicit, a service is said to be backward compatible if ALL messages
that would have been successfully processed by version 1 of the service, will
be successfully processed by version 2 of the service.

It is a good practice to assign a version number to each service, which indicates the
level of backward compatibility. A typical approach is to assign a major and minor
version of the format <major>, <minor> (for example, 1.0, 1.1, 2.0, and so on), where:

A minor change signifies a change that is backward compatible with
previous versions of the service that share the same major number. These
types of changes typically contain small new features, bug fixes, and so on.
A major change signifies a change that is incompatible with a previous
deployment of the service. Major changes typically indicate significant
new features or major revisions to the existing services.

You also have the concept of forward compatibility, whereby the
consumer is upgraded to use a future version of the service, before
the actual provider of the service is upgraded.

If we examine the anatomy of a web service, it is essentially made up of three
components, namely, its WSDL contract, referenced data types from our canonical
model, and the actual implementation of the service.

From a versioning standpoint, we need to consider how a change to any of these
components is reflected in the version of the overall service.

Service implementation versioning
This may seem a strange topic to cover. After all, surely one of the key concepts of
SOA is to isolate change. For example, if I change the implementation of a service,
but the consumer sees no change to the contract, then has it really changed at all?

•

•

Designing the Service Contract

[358]

Initially, the answer may seem obvious. However, if we revisit our earlier definition
of backward compatible, we can see some issues:

A service is said to be backwards compatible if ALL messages that would have been
successfully processed by version 1 of the service, will be successfully processed by
version 2 of the service.

Under this definition, if we add some extra validation to version 2 of the service
(for example, we check that a date is in the future). This would mean some messages
valid under the original version are no longer valid. The same sort of scenario could
again occur if we were to fix a bug (or even introduce one).

Another more surreptitious change is one whereby we change the processing of the
data, so that ALL messages are still processed successfully, but the result is different.
For example, if we had a service which returned the price of an item, but instead of
returning the price in dollars and cents, it now returned the price in cents.

With each of these scenarios, there is no hard and fast rule. However, when you
implement these types of changes, you need to consider whether it requires the
release of a new version of a service and whether that should be a minor or
major version.

Another way of handling this type of change is not to modify the
version of the service, but rather provide a means of notifying the
consumer that there has been a change to the service. One mechanism
for managing this is through the Oracle Enterprise Repository.

Schema versioning
When we modify a schema, we follow the same core principles for major and minor
versions that we outlined earlier: a minor change to a schema indicates that an
instance document, which was created against a previous version of the schema, is
still valid against the new version of the schema, as long as the schemas share the
same major version number. Minor changes include:

The definition of new elements, attributes, and types
Adding optional attributes and elements to existing elements and types
Making existing mandatory attributes and elements optional
Convert an element into a choice group
Making simple types less restrictive

•
•
•
•
•

Chapter 11

[359]

Changing schema location
Encode the schema version in the filename of the schema; for example, we have
named our auction schema Auction_v1_0.xsd. Whenever we import a schema,
either in another schema or within a WSDL document, the schemaLocation attribute
will contain the version of the schema being used.

This has two advantages, we can immediately see what version of a schema
a web service is based on, simply by looking at what files we are importing
within the WSDL. Additionally, it allows us to have multiple versions of a
schema deployed side-by-side allowing each service to upgrade to a newer
version of a schema as it suits them.
When we upgrade a service to use the new version of a schema, then of
course we will have a corresponding new version of the service.

Updating schema version attribute
Use the schema version attribute to document the version of the schema. Note that
this is purely for documentation, as there is no processing of this attribute by the
parser. This ensures that if the schema is renamed so as to remove the encoding of
the schema version from the filename, we still know the version of that schema.

Resisting changing the schema namespace
One common practice is to embed the version of the schema within its namespace,
and update the namespace for new versions of the schema. However, this has the
potential to cause major change to both consumers and providers of a service, so I
would strongly recommend that you use this approach with care, if at all.

Firstly, when you change the namespace of a schema, it is no longer backward
compatible with previous versions of the schema. So by definition, changing
the namespace is a major change in its own right. Therefore, never change the
namespace for a minor change.

For major changes, changing the namespace would seem a very valid approach, as
apart from being a clear indication to the client that we have introduced a service
that is not backward compatible, it will prevent you from successfully calling any of
the operations provided by the new version of the service.

However, it is important to understand the magnitude of this change, as it will
typically break a number of components on both the client and service provider.
For example, all your XPath assignments and XSLT transformations will have to
be updated to use the new namespace. Therefore, implementing the change will be
more time-consuming.

•

•

Designing the Service Contract

[360]

In some ways, you may want to consider how significant a major change is. For
example, the change might impact one operation out of ten. Do you really want
your clients to have to reimplement every call to every single operation because
one operation (which they might not be using) has changed?

WSDL versioning
When we modify our WSDL contract, we again follow the same core principles for
major and minor versions that we outlined previously. From a service perspective, a
minor change includes:

Addition of an operation: This merely extends the WSDL and thus on its own
is backwards compatible
Addition of a new optional parameter within the element wrapper used by
an input message
Making existing mandatory parameters within the element wrapper optional
for input messages

While major changes would include:

Deletion or renaming of an operation
Changes to the input and output parameters of an operation that don't
fall under the category of a minor change, that is, adding a new parameter
whether optional or mandatory to the response wrapper

Incorporating changes to the canonical model
If we upgrade our service to use a new minor version of the canonical model, then
our initial reaction might be that this only results in a minor change to the service,
as our new version will still be able to process all requests from consumers using a
service definition, based on an earlier version of the schema.

While this is true, the response generated by our service may no longer be
compatible with an earlier version of the schema. So, the consumer may not be able
to successfully process the response. In this scenario, you need to create a new major
version of the service.

Changes to the physical contract
From a versioning perspective, we don't generally consider changes to either the
<binding> or <service> element. With regards to the <binding> element, we find it
helpful to consider it as part of the service implementation and thus follow the same
guidelines discussed earlier to decide whether it warrants a new version of a service.

•

•

•

•
•

Chapter 11

[361]

While changes to the service end point presented by a composite merely indicates
the relocation of a service, as is typically required when moving a composite
from development into test and finally into production. As such, this is more
of a deployment consideration and is covered in detail in Chapter 19, Packaging
and Deployment.

Updating the service endpoint
A simple way to record the version of a service is to encode it within its endpoint.
The SOA Composite infrastructure does this for you already; for example, whenever
you deploy a composite, you specify its version.

For example, when deploying version 1.0 of the Auction composite to the SOA
infrastructure, its end point will be:

http://host:port/soa-infra/services/default/Auction!1.0/proxy_ep

With the WSDL for the service being available at the following URL:

http://host:port/soa-infra/services/default/Auction!1.0/proxy_
ep?WSDL

With the Service Bus, you have even more flexibility over the endpoint of a proxy
service, as you can specify this as part of the transport configuration. We recommend
following a similar naming strategy to that used by SOA composites in order to
maintain consistency.

This has two advantages; first we can immediately see from the URI what version of
a service we are looking at. Additionally, it provides a simple mechanism for us to
have multiple versions of a service deployed side-by-side, which is important when
we consider the lifecycle of a service.

Including version identifiers in the WSDL definition
While the WSDL definition element doesn't provide an explicit version attribute, we
can still make use of the WSDL documentation element to hold the version number.
For example, to add a version number to the Order Fulfilment WSDL, we can add
the <documentation> element, as highlighted in the following code snippet:

<definitions	name="OrderFulfillment"
				targetNamespace="http://rubiconred.com/obay/svc/OrderFulfillment"
				xmlns:tns="http://rubiconred.com/obay/svc/OrderFulfillment
				xmlns="http://schemas.xmlsoap.org/wsdl/"
				xmlns:xsd="http://www.w3.org/2001/XMLSchema"
				xmlns:ord="http://rubiconred.com/obay/xsd/order"
				xmlns:plnk="http://schemas.xmlsoap.org/ws/2003/05/partner-link/">

Designing the Service Contract

[362]

 <documentation>Version 1.0</documentation>
…
</definitions>

Managing the service lifecycle
When we release a new version of a service, we need to consider how we wish to
manage previous releases of that service.

A typical first step is to set the status of the previous version to be deprecated. This
indicates to existing users that the service has been updated with a newer version
and therefore will be retired at some point in the future.

This tells the existing users that they need to start the process of migrating to the
newer version of the service as well as indicating to new users that there is a newer
version of the service they should use. The final step is to retire the service. At this
point, the service is removed from production, so that it is no longer available for use.

When we make a minor release of the service, as it is backward compatible with the
previous version it should be straightforward to migrate to the newer version, as the
only change that the consumer will be required to make is to call the service at a new
endpoint (and even this may not have changed). In this case, the previous version of
the service can be retired relatively quickly.

However, with a major release, changes will have to be made to the consumer before
they can move to the new version; in this case, the deprecated service will need to
be maintained for a longer period of time and may require even minor releases of its
own to fix bugs and so on.

With both of these scenarios, a lot will depend on the number of consumers, and
how easy or difficult they are to identify and coordinate changes across, as well as
the nature of the change.

One way to handle change is to create a façade that would map the
old interface to the new service interface. This maintains support
for existing consumers (without modification), but means that
there is only a single instance of the implementation of the service.

A key to simplify this is to also keep service consumers informed of planned
future versions of services, as well as those under development, as this will allow
them to plan for future releases and thus shorten the required life span of
deprecated services.

Chapter 11

[363]

Summary
Design of the service contract and the underpinning canonical model are
fundamental steps in the overall implementation of an SOA-based solution. The
keyword here is design, as it's all too easy with the tools we have at our disposal to
knock out a model in order that the "real work" of implementation can begin.

In this chapter, we have given you an overview of how to go about structuring your
XML canonical model, both in terms of modeling your data in a tree-like structure as
well as how to partition it across multiple namespaces.

We've also given some guidance on best practice for the implementation of those
schemas, whether you follow ours or define your own. The key is to put in place
some standard guidelines in order to ensure consistency, as this will result in
schemas which interoperate better and are easier to reuse and maintain.

The canonical model provides the foundation for our service contracts, and with
this in place, we have defined the best practice regarding how we define our service
contract, paying particular attention to using the Document/literal wrapped pattern
in order to conform to WS-Interoperability guidelines.

As stated earlier, a core tenet of SOA is that systems should be designed to
accommodate change. With this in mind, we have also examined how we can
manage change, both in our schemas and in our actual service contract, and have
outlined a versioning approach to support this.

Lastly, we looked at how the SOA Suite supports the running of deprecated services
alongside the most recent release in order to enable consumers to upgrade to the
newer version of a service in their own time.

Building Entity Services
Using Service Data Objects

(SDOs)
In Chapter 10, oBay Introduction, we went through the process of defining our high
level SOA blueprint. One of the key layers within this blueprint is the business
services layer, which we further categorized into Entity, Functional, and
Task-based services.

When it comes to implementing Task-based or Functional services, the SOA Suite
provides a number of ways of implementing these (many of which are covered
within the pages of this book), depending on the nature of the requirements. In
addition, with SOA we have the flexibility of implementing these services pretty
much in a language of our choice, a key driver often being the existing skill sets
within our organization.

However, when it comes to Entity services, which typically represent data entities
held in a relational database, apart from the database adapter, the SOA Suite
provides limited functionality for implementing these types of services. Certainly,
prior to 11gR1, most SOA Suite implementations would typically build these services
in either Java, often as Enterprise Java Beans (EJBs), or in PL/SQL, which would
then be service-enabled.

In this chapter, we are going to look at how we can leverage the Oracle Application
Development Framework (or Oracle ADF) to build entity-based business services.
Oracle ADF, as the name suggests, is Oracle's Java development framework
for building enterprise applications, including the next generation of Oracle
Fusion Applications.

Building Entity Services Using Service Data Objects (SDOs)

[366]

For our purposes, we are only going to use one piece of the overall framework,
namely, ADF Business Components. This provides a declarative framework
for implementing business services, including Service Data Objects (that is,
standards-based Entity services).

For those readers familiar with the SOA Suite 10gR3, this may seem a strange
choice, and certainly prior to the 11gR1 release of Oracle Fusion Middleware, there
was little synergy between Oracle ADF and the Oracle SOA Suite, with earlier
versions of ADF more targeted at providing a Java development framework for
Oracle Forms developers.

However, with 11gR1 that has changed, with a number of significant integrations
between the respective product stacks, including:

ADF Business Components are used to implement Service Data Objects
Service Data Objects can be referenced as entity variables in BPEL
The Human Worklist application is implemented in ADF
JDeveloper automatically generates Worklist Task Forms in ADF
BAM objects can be embedded in ADF user interfaces
ADF Business Components can publish events to the Event Delivery
Network

In this chapter, we will provide a brief introduction to ADF Business Components
and how we can use them to implement Service Data Objects. We will then examine
how we can reference SDOs within an SOA composite, and in particular how we
can use entity variables in a BPEL process to reference an SDO as if it were a local
BPEL variable.

Note that there is nothing to stop you from developing your services in Java, EJBs,
and PL/SQL, and then exposing them as web services. Indeed, JDeveloper provides
excellent tooling for this very purpose.

•
•
•
•
•
•

Chapter 12

[367]

Service Data Objects
Service Data Objects (SDO) originated in 2004 as a joint development between
IBM and BEA; since then it has been adopted as a key component of the Service
Component Architecture (SCA) specifications being developed by the Open Service
Oriented Architecture (OSOA) group, of which Oracle is one of the contributors.
While this is not an official standards body, the group is working towards formal
standardization within OASIS.

The goal of SDO is to provide a standardized and simplified layer through which
applications handle data, regardless of the data source (for example, relational
databases, XML data sources, web services, and so on).

The architecture of SDO is based on the concept of disconnected data graphs, where
a data graph is a collection of Service Data Objects linked together in a tree-like
structure. Under this model, a client can retrieve a data graph, make changes to it,
and then apply those changes back to the data source.

Rather than connecting directly to the data source, the client goes via a data access
service (or entity service), which is responsible for querying the data source(s),
building the corresponding data graphs, and synchronizing changes to the data
graph with the underlying data source(s).

Oracle 11g R1 support for SDO
The 11g R1 release of Oracle Fusion Middleware introduces support for the Service
Data Objects within a number of areas of the stack. Most notably, within the Oracle
Application Development Framework, which provides tooling for the creation of
SDOs and their corresponding data access service, and the Oracle SOA Suite which
provides out of the box support for integrating with SDOs.

Oracle SOA Suite 11g SDO support
Oracle SOA Suite 11g provides support for integrating with SDOs in a couple of
ways. Firstly, it enables you to define an SDO as an external reference within a
composite, just as you would access any other external service. While not that
interesting, it does provide you with the advantage that you are invoking the SDO
over RMI, with the associated improvements in performance as well as the ability to
propagate transactions.

What's more interesting is BPEL's support for direct integration with SDOs, which is
provided by a new feature called an entity variable.

Building Entity Services Using Service Data Objects (SDOs)

[368]

Entity variables within a BPEL process appear almost like any other variable defined
within the process. The key difference is that the variable is actually bound to a
remote SDO. This allows you to work with a remote data as if it were local.
This has a number of advantages, including:

If you update an entity variable within a BPEL process, then the remote data
is automatically updated.
If the remote data is updated outside the scope of the BPEL process
(for example, while the process is paused waiting for a callback), then the
next time the BPEL process references any values within that variable,
it will receive the updated version.
Remote data is accessed within the same transactional context as the BPEL
process, allowing you to modify data within the BPEL transaction. This can
simplify error handling, because if a BPEL process is rolled back, any changes
to the remote data will also be rolled back.

Implementing a Service Data Object
For our purposes, we are going to create a ListingSDO based on the following two
database tables in the oBay schema:

Listing: Holds details of an item put up for auction on oBay
Bid: Holds details of all bids placed against an item

These tables are installed as part of the oBay schema created
during the process of installing the sample oBay application.
Please see the oBay installation guide for details.

We will first look at how we can use Oracle ADF to create and deploy our ListingSDO,
and then look at how we can use the SDO within our composite application.

Overview of ADF Business Components
Oracle ADF provides a standard-based Java framework for building enterprise
applications, and is architected around the Model-View-Controller pattern
(discussed in Chapter 10, oBay Introduction).

Within this framework, the ADF model layer is used to bind to the underlying
components, which implement the business services so that they can be implemented
using a variety of technologies, including SOA composites, web services, and
Enterprise Java Beans (EJBs). One of the core technologies ADF provides for
implementing these business services is ADF Business Components (or ADF-BC).

•

•

•

•
•

Chapter 12

[369]

ADF-BC provides a database-centric approach to implementing business logic. It
is built on a rich, powerful, and extensible framework that handles the mapping
of database objects to Java. Within ADF, each Service Data Object is implemented
as an ADF Business Component. Each ADF-BC is itself made up of a number of
components, the key ones being:

Entity object: An Entity object definition typically corresponds to a single
database table, with an instance of an Entity object representing a single row
in that database table.
Association: It defines a relationship between two Entity object definitions,
which typically corresponds to the relationship between the underlying
database tables (for example, Master-Detail).
View object: A View object definition typically defines a SQL query over 1
or more Entity object definitions. With an instance of a View object holding
the result set of the query, which is a set of Entity object instances, each one
corresponding to a row in the database that makes up the result of the query.
View link: It defines a relationship (such as master-detail) between the query
result sets of two View object definitions. A View link definition is often based
on an association.
Application module: Encapsulates the business logic for an ADF-BC
Component. It defines the operations that can be performed on the
underlying data model, which it performs against the corresponding
View objects and View links.

While ADF BC is a Java framework, it's quite easy to write an ADF
Business Component without having to write a single line of Java. This
is because the core components listed earlier are implemented by a set
of Java class libraries, which are then configured using XML metadata.
However, it's quite straightforward to extend the business components
to use custom classes in order to implement application-specific
behavior, though how to do that is beyond the scope of this book.

•

•

•

•

•

Building Entity Services Using Service Data Objects (SDOs)

[370]

Creating our ListingSDO application
We are now ready to implement our Listing Business Component, which will
form the basis of our ListingSDO. The first step is to create a new application in
JDeveloper. JDeveloper provides a number of application templates (for example,
Fusion Web Application), which are preconfigured with a project containing the
ADF-BC component. However, all of these contain a variety of other projects that
we don't need.

We will create our application using the Generic Application template, which,
in our example, we have named ListingSDO. We have created a single project to
contain our business component. In step two of the Create Generic Application
wizard, we will be prompted to define our project. Give the project an appropriate
name (for example, ListingBC) and select ADF Business Components from the list
of available technologies, as shown in the following screenshot:

Click Finish. This will create our application with an empty project preconfigured
for us to create our Listing ADF-BC Component.

Chapter 12

[371]

Creating our Listing Business Components
We can now create the ADF Business Components for our ListingSDO. For our
purposes, we are going to create them based on the LISTING and BID database
tables that are defined as part of the OBAY schema.

To do this, right-click on the ListingBC project and select New. This will launch the
New Gallery. From here, select the category ADF Business Components under
the Business Tier and select Business Components from Tables, as shown in the
following screenshot:

As this is the first ADF Business Component that we have defined for this project,
JDeveloper will launch the Initialize Business Components Project window (shown
below). Here we need to select the database connection for the database schema that
we want to base our business components on.

Building Entity Services Using Service Data Objects (SDOs)

[372]

To do this, click on the green plus sign to launch the Create Database Connection
wizard, and specify the appropriate connection details to connect to the oBAY schema.

Later in this chapter, when we deploy our ADF-BC application, we will configure
it to use a global data source defined at the application server level. By default, this
application will expect the data source to be named as follows:

jdbc/<connection	name>DS

<connection	name> is the name we specify for our database connection. Once we
have specified the database connection, accept the remaining default values and
click OK.

Defining Entity objects
JDeveloper will now launch the Create Business Components from Tables wizard.
The first step allows us to specify the database tables we wish to base our Entity
objects on.

Click on the Query button; this will retrieve a list of all the database tables defined
in the oBAY schema. From here, select LISTING and BID, as shown in the following
screenshot, and click Next >.

Chapter 12

[373]

Defining updatable View objects
In the second step, we specify the Entity objects for which we want to create an
Updatable View Object. As we want to be able to create and update both LISTING
and BID entities through our ListingSDO, we need to create a corresponding View
object for each of them. So select both BidView (Bid) and ListingView (Listing), as
shown in the following screenshot:

Click on Next; this will take us to the Read-Only View Objects window. At this
point, we do not want to create any read-only views, so click Next.

Defining the application module
In the fourth step, we can specify an appropriate name for the Application Module.
Remember that this will provide the Entity service for our updatable views, so we
should name it appropriately, for example, ListingSDO.

Building Entity Services Using Service Data Objects (SDOs)

[374]

Click on Finish. JDeveloper will now create the various resources that make up our
ADF Business Component. If we look at the content of our project, we can see that it
now contains a number of components, as shown in the following screenshot:

These have all been created in the Java package com.rubiconred.com.sdo.
listingbc, the default package we specified in Steps 1 and 2 of the wizard.
It's worth taking a moment to understand what all these are:

Bid and Listing: These are the Entity objects for the corresponding database
tables, with each instance of an Entity object representing a row of data in the
underlying database.
BidView and ListingView: These are the corresponding updatable View
objects, which provide a queryable view over the Bid and Listing
Entity objects.
BidAuctionFk1Assoc: This is an association that defines the master detail
relationship between Bid and Listing.
BidAuctionFK1Link: This is a View link which, in this case, defines the
master detail relationship between the query result set of ListingView
and BidView. The View link itself is based on the association
BidAuctionFk1Assoc.
ListingSDO: This is our application module, which represents our Business
Component. This encapsulates all the operations that we can perform on the
underlying objects.

•

•

•

•

•

Chapter 12

[375]

Testing the listing ADF-BC in JDeveloper
At this point, we have a working ADF Business Component, which we can run and
test in JDeveloper. To do this, right-click on the ListingSDO application module and
select Run.

This will launch the Oracle Business Component Browser, a Java application which
allows us to run ADF-BC components within JDeveloper. Double-click on any of the
views to open a tab giving access to the view. From here, we can create, read, update,
and delete data accessed via the view.

As our Business Components become more sophisticated (for example, adding in
additional business logic, validation, and so on), this provides a very simple, yet
powerful, way to test them.

Generating the primary key using an Oracle
Sequence
As part of the process of creating a new listing, we want to automatically generate
the primary key using an Oracle Sequence. Out of the box, ADF doesn't provide a
simple way to achieve this. However, it's relatively straightforward to extend the
Oracle ADF Framework to provide the required functionality.

Building Entity Services Using Service Data Objects (SDOs)

[376]

An alternative way to do this is to define a BEFORE	INSERT	FOR	
EACH	ROW trigger on the database table, which can assign the value
of the primary key, based on an Oracle Sequence.

Creating the ADF extension class for EntityImpl
The first step is to define an extension class to the ADF Framework for EntityImpl,
the class on which Entity objects are based. For our purposes, we just need to
override the create() method. Our version (shown as follows) just checks for the
presence of the custom property SequenceId, which contains the ID of the Oracle
Sequence to use. If the property is defined, then we set the value of the attribute to
the next value in the specified sequence.

package	com.rubiconred.obay.adfx;

import	oracle.jbo.AttributeDef;
import	oracle.jbo.AttributeList;
import	oracle.jbo.server.EntityImpl;
import	oracle.jbo.server.SequenceImpl;

public	class	CustomEntityImpl	extends	EntityImpl	
{
		protected	void	create(AttributeList	attributeList)	
		{
				super.create(attributeList);
								
				for	(AttributeDef	def	:	getEntityDef().getAttributeDefs())	
				{
						String	seqId	=	(String)def.getProperty("SequenceId");
						if	(seqId	!=	null)	
						{
								SequenceImpl	s	=	new	SequenceImpl(seqId,	getDBTransaction());
								setAttribute(def.getIndex(),	s.getSequenceNumber());
						}
				}
		}
}

Chapter 12

[377]

Updating default ADF base classes
Once we have implemented our class, we have to configure our project to use the
extension class. To do this within the Application Navigator, right-click on the
ListingBC project, and select Project Properties to launch the corresponding dialog.

Select Base Classes under Business Components from the navigational tree. Then
update the Entity Object Row base class to point at our custom class, as shown in
the following screenshot:

It's recommended as the best practice that before you define any
Business Components, you should create a layer of extension
classes for all the business components base classes. While initially
these might not contain any custom code, it provides a convenient
place to insert such code, if required, at a later stage.

Building Entity Services Using Service Data Objects (SDOs)

[378]

Configuring Listing entity to use Oracle Sequence
With our customized extension class in place, the final step is to add a custom
property on the ListingId attribute of the Listing entity to use the Oracle Sequence
LST_ID_SEQ to generate the primary key.

In the Application Navigator, double-click the Listing entity. This will open the
Entity editor, select the Attributes tab, and select ListingId attribute; next click on
the edit icon, which is circled in the following screenshot:

This will launch the Edit Attribute window. Select the Custom Properties tab. Enter
a value of SequenceName for the property Name (this is the property name we
check for in our extension class) and a value of LST_ID_SEQ for the property
Value and click Add. This will add a corresponding property, as shown in the
following screenshot:

Click OK and make sure you save the updates to the project. You can now run and
test the ListingSDO application with JDeveloper (as described earlier). Within the
Oracle Business Component Browser, if you open the ListingView and click on the
plus sign to create a new row, you should see the ListingId automatically populated
with a unique ID.

Chapter 12

[379]

Creating the ListingSDO service interface
Now that we have implemented our Business Component, we are ready to
service-enable it. In the Application Navigator, double-click the ListingSDO
application module. This will open the Application Module editor.

Select the Service Interface navigation tab (which, at this stage, isn't populated).
Click on the green plus sign in the top-right-hand corner. This will launch the Create
Service Interface wizard. In step 1 of the wizard, we need to specify the name of the
web service (for example, ListingSDO) and its Target Namespace.

Make a note of the Web Service Name, as this will form a part
of the URL for the ListingSDO WSDL and endpoint.

Click on Next. This will take us to step 2 of the wizard, where we can choose to
service-enable any custom methods that we have defined against the Business
Component. As we haven't defined any, click Next to move on to step 3.

Here, we can specify which View objects we wish to service-enable. Add BidView1
and ListingView1 to the Selected list. Next, we need to specify which operations we
want to make available for each view.

Building Entity Services Using Service Data Objects (SDOs)

[380]

Highlight BidView1. This will populate the Basic Operations tab, which lists all the
operations that we can enable for the selected view. Select all of them.

Repeat this step for the ListingView1 instance. Then click Finish. JDeveloper will
now generate the required metadata and code to service-enable the
Application module.

Enabling master detail updates
By default, if we have a master detail relationship between Entity objects, as is the
case between the Listing and Bid entities, then any service operations that we enable
for the master view SDO will not process any information contained in the detail
view SDO(s).

The WSDL interface for any operation, which modifies the entity
contained in the master view, still allows us to pass the corresponding
detail views. It's just that the operation will quietly ignore them.
For example, if we call the updateListingView operation passing
in details of the updated ListingViewSDO, which, in turn, contains
multiple BidViewSDOs containing details of updated or new bids,
then the operation will just ignore the BidViewSDOs and update the
Listing row in the database.

Chapter 12

[381]

To enable service operations on the master SDO (for example, ListingViewSDO) to
also process detail SDOs (for example, BidViewSDO), we need to set the property
SERVICE_PROCESS_CHILDREN to true on the Association that links the Master
and Detail Entity objects, which is the BidAuctionFk1Assoc in the case of
the ListingSDO.

To do this, in the Application Navigator double-click on the BidAuctionFk1Assoc
Association. This will open the Association editor. Ensure that the General tab is
selected, and then click on the green plus icon to add a custom property (circled in
the following screenshot).

Create the property SERVICE_PROCESS_CHILDREN and set its value to true.

Deploying the Service Data Object
As we are planning on accessing our SDO directly from our composites, it
makes sense to deploy it on the same WebLogic server that is running our SOA
Infrastructure (for example, soa_server1). Before we can do this, we need to carry
out the following configuration tasks:

Create a service deployment profile
Configure the web context root of the SDO

•
•

Building Entity Services Using Service Data Objects (SDOs)

[382]

Creating a service deployment profile
Right-click the ListingBC project and select Project Properties. This will launch the
Project Properties window. Select Deployment from the navigational tree, as shown
in the following screenshot:

Click New, this will launch the Create Deployment Profile dialog. Specify an
Archive Type of Business Components Service Interface and specify an appropriate
name (for example, ListingBCProfile) and click OK.

Setting Web Context Root
The Web Context Root forms part of the URL for the endpoint of our deployed
Service Data Object. Rather than accepting the default value generated by
JDeveloper, it's a good idea to specify a more succinct and meaningful name.

Within the Project Properties window, select Java EE Application from the
navigational tree. Here we can specify an appropriate value for the Java EE
Web Context Root (for example, ListingBC)

Chapter 12

[383]

It's also a good practice to specify a corresponding value for the Java EE Web
Application Name (for example, ListingBC-webapp).

Once deployed, the WSDL for the Service Data Object is located at:
http://<hostname>:<port>/<web	context	root>/<web	service	name>?wsdl

Here, hostname represents the name of the machine on which the SOA server is
running and port represents the port number. The web	context	root is the value
we have just configured, and the web	service	name is the value we specified when
creating the service interface.

Registering SDO with SOA infrastructure
At this point we can deploy the SDO and invoke it from a composite via SOAP over
HTTP, just as we would for any other web service. However, we also want to bind
the SDO to a BPEL entity variable so that we can access it as if it were a local variable
within the transactional context of the BPEL process.

When invoking an SDO via a BPEL Entity variable, the BPEL process will require
the SDO to participate in its transaction. To do that, we need to invoke the SDO via a
protocol such as RMI, which will allow the propagation of the transactional context
between the two components.

To enable the SDO to be invoked via RMI, we need to configure an appropriate ADF
Application Lifecycle Listener to register the SDO as an RMI service. Additionally,
we must also configure the SDO to use a JDBC data source, which can participate in
a distributed transaction.

Registering the ListingSDO as an RMI service
Within the Application Resources section of the Application Navigator,
expand the Descriptors | META-INF folder structure and open the
weblogic-application.xml file.

Select the Listeners tab, and click the green plus sign to add a new listener circled;
set the Class to oracle.jbo.client.svc.ADFApplicationLifecycleListener, but don't
specify any value for JAR Path and Run-As Principle.

Building Entity Services Using Service Data Objects (SDOs)

[384]

Configuring global JDBC data source
When an ADF application connects to a database, it does this via a JDBC URL or
JDBC data source, which can be defined either globally or at the application level.

To enable the SDO to participate as part of the BPEL transaction, we need to deploy
the corresponding ADF-BC component configured to use a global JDBC data source,
which, in turn, is configured to support distributed transactions.

When we create our ADF-BC project, JDeveloper automatically defines a number
of application-level database connections: a couple of JDBC URL connections and
an application level JDBC data source. By default, these application-level data
connections will be packaged and deployed along with the ADF-BC component,
meaning that, at runtime, the ADF application will connect directly to the database
using the JDBC URL (ignoring any global JDBC data source defined to the
WebLogic server).

To prevent this, right-click on the ListingSDO application, select Application
Properties to open the corresponding window, and select Deployment from the
navigation tree. Then deselect the option Auto Generate and Synchronize
weblogic-jdbc.xml Descriptors During Deployment, which is circled in the
following screenshot:

Chapter 12

[385]

When this option is disabled, the application-specific data sources are no longer
packaged and deployed with the application. Instead, the application is configured
to use a global data source named as follows:

jdbc/<connection	name>DS	

Using the JNDI, look for the following:

java:comp/env/jdbc/<connection	name>DS

Here, <connection	name> is the name of the database connection we specified when
we created our ADF-Business Component.

In our case, we specified a name of obay, so all we need to do now is to configure a
data source on WebLogic with the name jdbc/obayDS. We actually do this as part
of the installation process of the oBay application, so please refer to the installation
guide for details on how to do this.

You may find that when you disable this option, you are no longer able
to run the ListingSDO Application Module in JDeveloper, in which
case, you need to re-enable it for the purpose of testing.

Determining the SDO registry key
At runtime, before the SOA infrastructure can invoke the SDO via RMI, it must first
look for it using a registry key. The registry key is generated automatically and has
the following structure:

<ApplicationName>_JBOServiceRegistry

Here, <ApplicationName> is specified in the EAR deployment profile of the
ADF-BC application.

To set the application name, reopen the Application Properties window
and select Deployment from the Navigation Tree (as we did in the previous
section). From the deployment profiles, select the EAR File deployment profile
(ListingBC_ListingBCProfile in the preceding screenshot) and click Edit.

Building Entity Services Using Service Data Objects (SDOs)

[386]

This will open the Edit EAR Deployment Profile Properties window. Specify an
appropriate Application Name, for example ListingSDO, as circled in the
following screenshot:

Our Listing Service Data Object is now ready to deploy. Right-click on the
ListingSDO application and select Deploy. Specify soa_server1 as the
application server to deploy it to.

Using the ListingSDO in an SOA
composite
We need to use our ListingSDO in a number of composites. Firstly, within the
ListItem composite, we need to create a listing when a new item is submitted, and
then as it progresses through the listing process (for example, it is approved), we
also need to update the listing status accordingly.

Secondly, within the AuctionItem composite we need to record details of bids
against the listing as well as update the listing appropriately. For example, we
would need to update the value of the current winning bid.

Creating an ADF-BC Service Reference
Before we can reference an SDO within our composite, we must first create an
ADF-BC Service Reference.

Chapter 12

[387]

Open up the composite.xml file for the ListItem composite, and then from the
Component Palette, drag-and-drop an ADF-BC Service onto the composite. This
will launch the Create ADF-BC Service window.

We need to specify the following values:

Name: Specify an appropriate name such as ListingSDO.
WSDL URL: This is the URL of the WSDL for the Service Data Object. See the
earlier section Setting Web Context Root for details on how this is determined.
Port Type: This will default to the appropriate Port Type based on the
specified WSDL.
Callback Port Type: This will default to the appropriate Port Type based on
the specified WSDL.
Registry: This is the registry key for the Service Data Object. See the
earlier section Determining the SDO Registry Key for details on how this
is determined.

Once created, use the Composite Editor to wire the ListingSDO reference up to
our List Item Process. This will create a corresponding partner link within our
BPEL process.

Invoking the SDO from BPEL
Within a BPEL process, we interact with a Service Data Object via an entity variable,
a feature which is new to the 11gR1 release of SOA Suite.

•
•

•

•

•

Building Entity Services Using Service Data Objects (SDOs)

[388]

Within a BPEL process, an entity variable appears to be almost like any other variable
defined to the process in that we can assign values to and from this variable as
we would do with any standard variable. The key difference is that the variable
is actually bound to a remote SDO, which itself provides an abstraction over the
underlying data source.

Thus, when a BPEL process reads data from an entity variable, it is actually reading
data from the underlying database. Conversely, when it updates the content of an
entity variable, it is actually updating the corresponding content in the database.

Before we can perform operations on an entity variable (for example, assigning
values to or from it), we must first bind our entity variable to an SDO. We can either
do this using a Bind Entity activity, where we specify the primary key of the SDO
we wish to bind to, or using the Create Entity activity, which is used to insert a new
entity (row) into a database table. In this process our entity variable is bound to the
newly created SDO.

Creating an entity variable
For our List Item Process, we need to define an entity variable for the new listing
we wish to create and manage. We create an entity variable in a similar way to a
standard variable, but with a couple of key differences.

First, the variable must be of type Element, where the element is defined on the
corresponding SDO type (listingViewSDO in our example). To do this, launch the
Type Chooser and expand the structure underneath the SDO partner link, as shown
in the following screenshot, and select the corresponding SDO element:

Chapter 12

[389]

Secondly, we need to select the checkbox Entity Variable and connect it to the
Partner Link of the ADF-BC Service, as shown in the following screenshot:

Finally, you may have noticed that when naming our variable, we have
appended EV to the name (for example, listingViewEV) to indicate that
this is an entity variable.

The entity variable that we have just created is an SDO-based variable,
which is different from a standard BPEL variable, that is, XML DOM-
based. SDO-based variables are similar to DOM-based variables, but
only support a subset of XPath expressions (for example, there is no
support for AND, OR, and NOT). Additionally, the BPELX extension
functions exhibit slightly modified behavior when working with SDO-
based variables.
SDO and DOM-based variables can be interchanged with Oracle BPEL
Process Manager taking care of automatically converting back and
forth between DOM and SDO forms as required.

Creating a Listing entity
One of the first steps we want to perform in our List Item Process is to insert details
of the new item into the Listing table. The traditional way to do this would be to use
an Invoke activity to call an external service (or the database adapter) to insert a new
row into our database table.

Building Entity Services Using Service Data Objects (SDOs)

[390]

But in our case, we are going to use the entity variable that we just defined. To do
this, drag a Create Entity activity from the component palette on to your BPEL
process. This will typically be where we would have previously put the Invoke
activity. Double-click on it; this will open the Create Entity activity window, as
shown in the following screenshot:

We need to specify a number of values to configure the Create Entity activity, namely:

Name: This is the name we want to assign to the Create Entity activity, and
can be any value. So, just assign a meaningful value such as CreateListing.
Entity Variable: This is the entity variable that we want to create, which is
the one that we just defined.
From: Here, we must specify the variable which contains the data to be used
to initialize the entity variable. For this purpose, we have created a standard
variable listingView, which is the same type as our entity variable and uses
an Assign (or Transform) activity to populate it.

At this point, you may be asking:

"What is the advantage of using an entity variable?"

After all, if we had used the database adapter to insert a row into the LISTING
database we would have had very similar activities within our BPEL process, with
the only real difference being that we would have used an Invoke activity instead of
the Create Entity activity.

The answer is that the real difference comes after we have created the entity variable.
As we mentioned earlier, in the process of creating our Listing entity, we have bound
it to the entity variable within our BPEL process. This means that whenever we
update the entity variable, as we do at several points in our Item Listing process,
the corresponding record in the underlying database will be updated.

•

•

•

Chapter 12

[391]

Conversely, if the underlying database record is updated outside our process
(for example, by the AuctionItem process), then the next time we reference the
content of the entity variable, we will receive the updated variable.

Binding to the Listing entity
The Auction Process is another example of how we typically want to interact with an
SDO via an entity variable.

In this scenario, we want to retrieve details of the Listing against which the auction is
being held. As bids are placed, we record details of them against the listing as well as
update the listing itself with details of the winning bid.

As with the ListItem composite, we need to define an ADF-BC External Service
in the AuctionItem composite for the ListingSDO, and within the AuctionItem
process, define a corresponding entity variable.

Again, as with the ListItem, before we can perform any operations on the entity
variable, we must first bind it to an SDO. Previously, we did this using the Create
Entity activity, but as the SDO in question already exists, we need to use the Bind
Entity activity.

To do this, drag a Bind Entity activity from the Component Palette on to your BPEL
process. Double-click on it; this will open the Bind Entity activity window, as shown
in the following screenshot:

We specify the Name and Entity Variable as we did for the Create Entity activity.
The final value we need to specify is the unique key for the Entity object that we wish
to bind to.

Building Entity Services Using Service Data Objects (SDOs)

[392]

To specify a key, click on the green plus icon (circled in the previous screenshot).
This will launch the Specify Key window, as shown in the following screenshot:

Here we need to specify the actual Key QName and its Key Value. To specify the
key, click on the Browse Entity Variable icon (circled in the preceding screenshot) to
launch the corresponding window.

Expand the appropriate entity variable, which is listingViewEV, and select the
element that holds the primary key, that is, ListingId.

If you look at the preceding screenshot, you will see that the
listingViewSDO contains two ListingId entries, the first with
an orange icon next to it. This is an annotation, which indicates
that ListingId is the key for the SDO. However, when selecting
the key you still need to select the actual element itself.

Chapter 12

[393]

Once we have specified the key, we need to specify the Key Value, which in our
case is the auction ID (as this is the same as the ListingID). To do this, click on the
calculator icon to launch the expression builder and specify the appropriate value in
the normal way.

Inserting a detail SDO into a master SDO
Once we have bound our entity variable to the underlying SDO, our Auction Process
can access its content as if it were a local variable and also update it (with those
changes being reflected in the underlying database).

However, the interesting part of our scenario is that when the Auction Process
evaluates a new bid, we want it to insert that bid into the BID table in the underlying
database. One way to do this would be to create a bidViewSDO entity variable and
use the Create Entity activity to insert it into the database, just as we did with
our listing.

However, you may recall that when we service-enabled our Listing Business
Component, we enabled master detail updates. This means that if we add a
bidViewSDO to our listingViewEV entity variable, then it will also insert a
bid into our database table.

First, create a standard variable bidView. This should be a variable of type
Element, where the element is the definition of a bidViewSDO (as circled
in the following screenshot). Then use either an Assign or Transform
activity to populate it appropriately.

Building Entity Services Using Service Data Objects (SDOs)

[394]

The next stage requires us to insert the bidView variable into our listingViewEV
entity variable. Typically, we would do this using an Assign with an Append
Operation. However, Append Operation is not supported by SDO-based variables.

Instead, we are going to use the Insert-After Operation. However, again we need
to be aware that the behavior of this operation is slightly different for SDO-based
variables. As we will see in a moment, this actually simplifies things.

To do this within the Assign activity, insert an Insert-After Operation, as shown in
the following screenshot:

When using Insert-After Operation to insert data into an SDO variable, the target
must be the variable element into which the source data should be inserted. In
our example, this is the bidView element of our listingViewEV, as shown in the
following screenshot:

Chapter 12

[395]

If the target was a DOM-based variable, then the target XPath would be expected
to return a reference to one or more nodes, after which the contents of the source
variable are inserted. In the event that no nodes are returned, as would be the case
if we had no bids recorded against the listing, then a selection exception would
be generated.

However, as the target is an SDO-based variable, the behavior is different. In this
case, the operation will create a new bidView element, copy into it the contents of
bidView, and insert it into the listingViewEV variable at the place specified.

Updating a detail SDO
In addition to inserting new bids into our listing, we need to be able to update
existing bids. For example, if the current winning bid is outbid, then we need to
update its status accordingly.

For this scenario, we can use a standard Copy Operation to update the status of
the bid within the entity variable. The trick here is to restrict the target of the Copy
Operation to the appropriate bid.

The simplest way to achieve this is to create a standard Copy Operation, and then
modify the To XPath expression to contain a predicate to select the required bid,
based on its bidId. To do this, we would need to create an expression that looks
similar to the following:

/listingViewSDO/BidView[BidId=bpws:getVariableData('bidId')]/
Status

Here, bidId is just an integer-based variable containing the ID of the bid that we
want to modify.

Deleting a detail SDO
There may also be scenarios where we need to delete a bid from the entity variable.
In such a case, we can do this using an Assign with a Remove Operation to remove
the bidView SDO from the listingViewEV entity variable.

As is the case when updating a detail SDO, we need to modify the XPath predicate to
remove only the required bidView SDO.

Deleting a Service Data Object
The Remove Entity activity allows us to delete an SDO that is bound to an entity
variable, as well as any detail SDOs that are associated with it, a bit like a cascade
delete within SQL.

Building Entity Services Using Service Data Objects (SDOs)

[396]

To do this, drag a Remove Entity activity from the component pallet on to your
BPEL process. Double-click on it; this will open the Remove Entity activity window,
as shown in the following screenshot:

Here, we just need to specify the name of the entity variable that we want to remove.
Note that this should be an entity variable that we have already bound to an SDO,
either through a Create Entity or Bind Entity activity.

Exposing the SDO as a business service
The one issue which we have avoided so far is that if we look at the interfaces of
our SDO objects, then they are very much driven by the underlying structure of the
database tables on which they are based.

If we were to follow the strict interpretation of our SOA blueprint, as laid out in
Chapter 10, oBay Introduction, you could argue that they belong in the application
services layer, and therefore should always be called via a virtual services layer.
This, in the preceding examples, is clearly not the case.

There are a couple of ways to counter this point. The first is to simply accept that
the ListingSDO, while an entity service, is not intended to be a reusable service in its
own right. It is just a component of our Auction and ListItem composite, and thus all
components, while not necessarily packaged as part of the same JDeveloper project,
will always be deployed together.

However, in other cases it may make sense that the SDO is a reusable service in its
own right. In this scenario, it's quite straightforward to use a Mediator to invoke
the ADF-BC service, which can then perform the transformation from our canonical
model to that of the SDO and vice versa. Then, we can expose it as a completely
abstracted Business Service.

Chapter 12

[397]

The question that then arises is how to invoke the SDO from a BPEL process. Do I
invoke the SDO directly via an entity variable or do I invoke the virtual service? Each
approach has it merits. We could take a purist approach and mandate that we always
go via the virtual services layer as this will provide (or at least initially seems to
provide) better interoperability and agility. However, we also need to ensure that we
balance this requirement with other non-functional requirements, such as reliability
and scalability.

By using entity variables, we are able to take advantage of the "out of the box" design
and runtime integration between BPEL and ADF BC services.

From a runtime perspective, this can provide improved performance due to
optimized invocation of ADF BC components and the BPEL process having a
smaller dehydration store footprint (since entity variables aren't stored in the
dehydration store).

In addition, the ability to manage database updates directly within the BPEL
transaction can help improve the overall reliability of the solution due to the integrity
provided by ACID transactions.

From a design-time perspective, the use of distributed transactions has the added
benefit of simplifying error handling within the application. In addition, by using
entity variables, we have fewer activities within our BPEL process (as we no longer
have to explicitly invoke an external service every time we need to update the
database). Each of these can reduce the overall complexity of the BPEL process,
making it easier to implement and maintain and thus improving its overall agility.

The drawback of this approach is that we reduce the level of interoperability
between components (as we have the coding overhead of having to translate
between our canonical model and the SDO model). Also, the BPEL process is
tightly coupled to the SDO.

As always there is no single answer; rather it will depend on the nature of the
requirements and the constraints that we are working under. As a result, we are
likely to end up having a blended approach.

Building Entity Services Using Service Data Objects (SDOs)

[398]

Summary
In this chapter, we have introduced you to Service Data Objects, one of the key new
features in the 11gR1 release of SOA Suite, and looked at how we can leverage these
as entity variables within a BPEL process.

We have also discovered that SDOs are actually implemented outside of the Oracle
SOA Suite, using the Oracle Application Development Framework. For many
readers, this will be their first exposure to Oracle ADF, so we have also covered how
we can build an ADF Business Component from scratch.

Here of course, we have only scratched the surface, so we would recommend further
reading in this area in order to fully utilize the power of ADF.

Building Validation into
Services

Once we have divided our solution into a number of composite components, one of
the next questions we are typically faced with is:

"Where should I put my validation and how should I implement it?"

At first glance, this may seem like an obvious question, but once you consider
that a composite may be made up of other services, which in turn could be made
up of other services and so on; it becomes clear that you could potentially end up
implementing the same validation in every level.

Apart from the obvious performance implications, you also have the issue of
having to implement and maintain the same validation at multiple points
within the solution.

When you get down to an individual composite, you still have to consider, where
in the service to place the validation and how best to implement it. Particularly, if
you want the flexibility to be able to change the validation within a service without
having to re-deploy it.

This chapter guides us on how best to address this question. It examines how we
can implement validation within a service using XSD validation, Schematron,
and Business Rules as well as within the service itself. With each of these options,
it looks at the pros and cons and how they can be combined to provide a flexible
validation strategy.

Finally, we look at validation within the context of the overall solution and provide
guidelines for deciding which layer within the architecture to place our validation.

Building Validation into Services

[400]

Validation within a composite
A composite service exposes one or more operations. These operations provide
the entry point for the outside world, so it provides the obvious starting point for
implementing validation in our composite. However, we also need to consider the
validation requirements of other messages exchanged within our composite as
well as messages exchanged with external services, as illustrated in the
following diagram:

If we look at the preceding diagram, we can see that there are up to eight messages
exchanged, each of which imposes its own requirements in terms of validation.

The first message is the one the composite receives through an Exposed Service.
From a data quality perspective, we are likely to have little or no knowledge of the
client invoking the composite, thus we need to validate the content of the incoming
message before we process it any further.

The second message (as well as the fifth) represents an internal exchange of messages
between components within the same composite. In this case, we should have
absolute confidence in the quality of the messages exchanged, so no validation is
required here.

The third and fourth messages are exchanged between our composite and what we
have labeled as Internal Service. What we mean here is that this is another service,
which is part of our overall solution (for example, another composite) or at least
part of a portfolio of services under our control, and thus, again we should have
confidence in the quality of the messages exchanged, so typically validation is not
required here.

However, the reality is that the Internal Service may be called by a variety of
consumers, if not now, then possibly in the future. So the Internal Service would
typically implement validation against the incoming message in much the same way
that our composite would validate message number one.

Chapter 13

[401]

In cases where the internal service is a human interface (for example, Workflow),
then it is quite possible for an error to be introduced in the fourth message, in these
cases validation should be applied.

You could argue that whilst we should have confidence in the quality
of messages exchanged between components that we control, that this
is somewhat idealistic. At the very least it assumes that adequate care
is taken during the implementation and testing of our composites to
ensure that they don't actually create invalid messages.
Another factor we need to consider when making the decision about
where to apply validation is nothing other than basic risk analysis;
in other words what is the probability of an error being introduced
at any of these points, and if such an error were to occur what would
be the consequence. Again, we need to balance these requirements
against our other objectives, such as the performance and agility of
the overall solution.
One approach is to initially implement validation for these
message exchanges, but only to apply this whilst developing and
testing a service, and then disable it once we move the service into
production. Assuming we have a rigorous test process, this allows
us to have far greater confidence in the quality of the message that
we are exchanging and thus reduce the likelihood of an error being
introduced.
To assist in this, Enterprise Manager allows you set Payload
Validation on a composite, doing this will validate all inbound and
out messages (that is, one through eight in the preceding diagram)
against their XML Schema(s).

The sixth and seventh messages are exchanged between our composite and what we
have labeled as External Service. What we mean here is a service which is outside
our domain of control. Again, this is from the perspective of (not) being able to
guarantee the quality of the data returned, and thus we should validate the data
returned in message number seven is validated.

However, best practice dictates that we call an External Service via a proxy service
implemented on the Oracle Service Bus, in which case, it makes sense to place
the validation in the proxy service and only implement it once (as opposed to
implementing it in every composite that calls the same external service). As the
proxy service may have little knowledge of either the external service or consumer
of it, the proxy would typically perform validation against both the request and
response message.

Building Validation into Services

[402]

The eighth message is the response returned by our composite. Again, we should be
confident in the quality of the data returned.

With these assumptions in mind, the key point of validation is any message received
through the service interface exposed by the composite (that is, message number
one). Assuming we are following the best practice (as covered in Chapter 10, oBay
Introduction), our composite will contain a Mediator that acts as the entry point to
our composite.

The Mediator component provides support for XSD and Schematron validation.
Thus this provides the ideal point to implement validation, as it allows us to provide
a centralized point within our composite for implementing all validation as well as
ensuring that we perform the validation early on within the flow.

We also need to ensure that adequate validation is provided for messages exchanged
with the External Service, so we will cover how we can implement this using OSB.

Using XML Schema validation
The interface for each service is defined by its WSDL contract, with the core
structure of the data being exchanged defined by one or more XML Schemas. So XSD
validation provides an excellent way to implement the initial level of validation.

When implementing schema-based validation, we have two basic approaches, that
is, to either implement strongly-typed web services or loosely-typed services.

Strongly-typed services
With strongly-typed services, we use XML Schema to very precisely specify the exact
structure of each element within our XML instance. For example, if we look at the
definition of a credit card within the oBay canonical model, a strongly-typed version
may be defined as the following code snippet:

<xsd:complexType	name="tCreditCard">
				<xsd:sequence>
								<xsd:element	name="cardType"										type="tCardType"/>			
								<xsd:element	name="cardHolderName"				type="tCardHolderName"/>
								<xsd:element	name="cardNumber"								type="tCardNumber"	/>	
								<xsd:element	name="expiryMonth"							type="tExpiryMonth"/>
								<xsd:element	name="expiryYear"								type="tExpiryYear"/>
								<xsd:element	name="securityNo"								type="tSecurityNo"	/>								
				</xsd:sequence>
</xsd:complexType>

Chapter 13

[403]

<xsd:simpleType	name="tCardType">
				<xsd:restriction	base="xsd:string">
								<xsd:enumeration	value="MasterCard"/>
								<xsd:enumeration	value="Visa"/>
				</xsd:restriction>
</xsd:simpleType>

<xsd:simpleType	name="tCardHolderName">
				<xsd:restriction	base="xsd:string">
								<xsd:maxLength	value="32"/>
				</xsd:restriction>
</xsd:simpleType>

<xsd:simpleType	name="tCardNumber">
				<xsd:restriction	base="xsd:integer">
								<xsd:pattern	value="[0-9]{16}"/>
				</xsd:restriction>
</xsd:simpleType>

<xsd:simpleType	name="tExpiryMonth">
				<xsd:restriction	base="xsd:integer">
								<xsd:minInclusive	value="1"/>
								<xsd:maxInclusive	value="12"/>
				</xsd:restriction>
</xsd:simpleType>

<xsd:simpleType	name="tExpiryYear">
				<xsd:restriction	base="xsd:integer">
								<xsd:minInclusive	value="2010"/>
								<xsd:maxInclusive	value="9999"/>
				</xsd:restriction>
</xsd:simpleType>

<xsd:simpleType	name="tSecurityNo">
				<xsd:restriction	base="xsd:integer">
								<xsd:pattern	value="[0-9]{3}"/>
				</xsd:restriction>
</xsd:simpleType>

Building Validation into Services

[404]

With this approach, we have very precisely defined the following restrictions:

Valid card types are either 'MasterCard' or 'Visa'
Credit card number is a 16 digit integer
The expiry month must be between 1 and 12
The expiry year must be a four digit integer with a minimum value of 2010
The security code is a three digit integer

The advantage with this approach is that we have a far more explicit definition of
the interface, thus providing a far more robust and tightly-controlled entry point for
our service. From a client perspective, it provides a far clearer understanding of what
does or doesn't constitute a valid data structure.

From an implementation perspective, by placing the majority of the validation in the
service contract we have removed the need for the underlying service to build in this
validation, simplifying the construction of the actual service.

However, the major disadvantage with this approach is that the tighter the
constraints, the more resistant to change a service becomes.

For example, if oBay decided to accept American Express as payment, then CardType
would need to be updated to contain an additional enumeration, CardNumber would
need to be amended to accept 15-digit numbers, and SecurityCode amended to
accept 4-digit numbers.

This would require oBay to release a new version of their XML Schema and a
corresponding new version of any service that relies on CreditCard in any
of its operations.

In addition, every year a new version of the canonical model would be required to
update ExpiryYear as appropriate.

You could also argue that it's perfectly valid to have details of
an expired credit card, in which case, you would not want to put
this constraint in the canonical data model.

•
•
•
•
•

Chapter 13

[405]

Loosely-typed services
With a loosely-typed approach, we use XML Schema to define the overall structure
of the XML instance, that is, which elements may appear in the document, whether
they are optional or mandatory, and how often they may occur. But define minimal
constraints around the content of each element. Using this approach, our definition
of a credit card could be as shown in the following code snippet:

<xsd:complexType	name="CreditCard">
	 <xsd:sequence>
	 	 <xsd:element	name="cardType"										type="xsd:string"/>			
	 	 <xsd:element	name="cardHolderName"				type="xsd:string"/>
	 	 <xsd:element	name="cardNumber"								type="xsd:integer"/>	
	 	 <xsd:element	name="expiryMonth"							type="xsd:integer"/>
	 	 <xsd:element	name="expiryYear"								type="xsd:integer"/>
	 	 <xsd:element	name="securityNo"								type="xsd:integer"/>
	 </xsd:sequence>
</xsd:complexType>

This is about as loose a definition as we could provide, though we could have gone
one step further and made every element a string.

The major advantage of this approach is that the service is far more conducive
to change; following on from our previous example, if oBay decided to accept
American Express as payment, then no changes would be required to the schema or
service contract.

However, the key disadvantage with this approach is that we have far less control
over the data that comes into our service and thus need to rely on the required
validation being implemented elsewhere within our service.

What we want to avoid is coding the majority of this validation into the service itself,
as this can overcomplicate the implementation of the service, result in the same
validation being implemented in multiple services (possibly inconsistently), as well
as make change harder to manage, as we would have to update the service code
every time the validation rules changed.

Another disadvantage with this approach is that the service contract provides far
less guidance to the consumer of the service as to what constitutes valid data, thus
additional documentation would be required along with the service to define this.

Building Validation into Services

[406]

Combined approach
Rather than using one approach exclusively, the key here is to strike the right balance
and use schema validation to provide at least an initial sanity check of the data, that
is, that the data is of the correct type (for example, integer, date, and so on) and that
the size of the data is within reasonable limits.

For example, with the loosely-coupled schema definition, all our fields could be of
any length. Often, this data will, at some point, be persisted in a database. If a service
consumer issued a request with elements containing data larger than the underlying
data stored, then this could cause the service to fail.

These types of validations can easily be overlooked by developers, yet cause problems
which are hard to diagnose at runtime. By ensuring that we perform some level of
sanity checking at the service entry point we can prevent these issues from occurring.

This also prevents services being called with significantly oversized payloads, which
could have performance implications for the system if allowed to permeate through
the application.

For elements which are far less prone to change, we can define tighter constraints
around the content of those elements, to remove as much validation as possible from
the underlying service implementation.

However, we would still like to extract as much of the validation logic from the
underlying service as possible. This not only makes the service simpler to implement,
it also makes the service more reusable, as we could potentially provide different
validation depending on the context in which it is used. Fortunately, this is where
Schematron comes in.

Schema validation within the Mediator
Schema validation of incoming messages is configured for each operation
implemented by the Mediator. To enable schema validation for an operation, in
the Mediator Editor select the option Validate Syntax (XSD) as we have for the
activateUser operation.

Chapter 13

[407]

This will cause the Mediator to validate the payload of inbound messages prior to
executing the routing rules of the operation. If the payload is invalid, the Mediator
will return a fault containing details of the error to the initial caller of the Mediator.

Setting Validate Syntax(XSD) will only validate the incoming request messages;
response messages from synchronous services or callbacks from asynchronous
services that have been invoked by the Mediator are NOT validated.

If we refer to our earlier examination of messages exchanged, then this is the
required behavior. Since, if validation of these messages is required, we would
typically classify it as an external service and implement the required validation
within the Service Bus. If this is not an option, another approach is to perform the
validation within BPEL PM.

Using schema validation within BPEL PM
We have two ways of performing schema validation in BPEL PM. The first is to
create an activity within your BPEL process to validate the required XML, and the
second is to configure your process to perform schema validation of incoming and
outgoing XML documents.

Building Validation into Services

[408]

Validation of BPEL variables
BPEL PM provides the extension activity <bpelx:validate/> that allows you to
specify one or more variables that you wish to validate. To use this, drag a Validate
activity from the BPEL Activities and Component Palette into your BPEL process, as
shown in the following screenshot:

Double-click on this to open the Validate configuration window.

Chapter 13

[409]

Here, we can specify a name for the activity, for example, validateResponse. To
specify which variables to validate, click on the plus sign (circled in the preceding
screenshot). This will launch the Variable Chooser from where we can select the
variable we want to validate.

At runtime, in the event of a validation failure, the validate activity throws an
env:Server fault, containing details of the validation error in the faultstring.
We can then use a fault handler to catch the fault and handle it appropriately.

We can also embed the Validate activity within an Assign activity, to do this select
the Validate checkbox on the General tab of the Assign activity, as shown in the
screenshot below:

Validation of inbound and outbound documents
An alternative approach is to configure schema validation of incoming and outgoing
XML documents for a partner link by setting the validateXML property on a
partner link to true	(or false to disable it). If the document fails validation, then
the corresponding activity (that is, receive, invoke, or reply) will throw an env:
Server fault.

Within an Invoke activity, validation is only performed against
the outbound document.

Building Validation into Services

[410]

Setting validateXML for a partner link
To specify the validateXML property for a partner link, open the partner link within
the BPEL process, and select the Property tab, as shown in the following screenshot:

Next click the plus sign. This will pop-up a window with a drop-down list
containing properties you can set on the partner link. Select validateXML,
and then for the Property Value, specify true.

In Enterprise Manager, you can also set this property to true for the
BPEL Service engine. This will enable schema validation of incoming and
outgoing XML documents for all partner links in all composites (unless
specifically disabled on a partner link by setting validateXML to false).
This is usually an unnecessary overhead, but it can be useful for the
purpose of testing.

Using schema validation within the
Service Bus
Within the Service Bus, schema validation is carried out using a Validate action,
which is typically invoked during a pipeline stage or route node.

The Validate action provides an additional degree of flexibility when compared to
the Mediator, in that, rather than validating the entire payload of a document, you
can choose to validate just a fragment of the XML document, which you specify
using XPath.

Upon completing validation, you can specify that the Validate action records the
result of the validation, either true or false in a variable, or that it should throw
an exception if the validation fails.

Chapter 13

[411]

Validation of inbound documents
When processing an inbound document, it is best practice to perform validation as
early as practically possible within the flow, as this prevents unnecessary processing
of an invalid document.

This typically means creating a validation stage as the first stage within the request
pipeline of a pipeline pair.

If we look at the operation updateCreditCard, which forms part of the
userManagement service, a typical XML instance for this operation would appear, as
shown in the following code snippet:

<soap:Envelope	xmlns:soap="http://schemas.xmlsoap.org/soap/envelope">
	<soap:Body	xmlns:ebm="http://rubiconred.com/obay/ebm/UserAccount"
												xmlns:usr="http://rubiconred.com/obay/xsd/user"
												xmlns:cmn="http://rubiconred.com/obay/xsd/common">
				<ebm:updateCreditCard>
						<usr:userId>jsmith</usr:userId>
						<cmn:creditCard>
								<cmn:cardType>MasterCard</cmn:cardType>
								<cmn:cardHolderName>John	Smith</cmn:cardHolderName>
								<cmn:cardNumber>4570126723982904</cmn:cardNumber>
								<cmn:expiryMonth>10</cmn:expiryMonth>
								<cmn:expiryYear>2010</cmn:expiryYear>
								<cmn:securityNo>528</cmn:securityNo>
						</cmn:creditCard>
				</ebm:updateCreditCard>
		</soap:Body>
</soap:Envelope>

If we wanted to add a validation step to check the creditCard details, then we
would add a validation stage (for example, Validate Credit Card) at the start of the
request pipeline.

To add a validation action, click on the validate stage within the request pipeline and
select Edit Stage. This will bring up the Edit Stage Configuration window. Click
on Add an Action | Message Processing | Validate. This will insert the following
validate action into our stage:

Building Validation into Services

[412]

In the variable text field, enter the name of the variable that contains the XML
fragment we wish to validate, for example, body in our example. Next, we need to
specify which part of the body variable we want to validate. To do this, click the
<XPath> link to bring up the XPath Expression Editor and define the appropriate
XPath expression.

In our case, we want to validate the creditCard fragment from our body variable, so
our expression is defined as follows:

./tns:updateCreditCardProcessRequest/cmn:creditCard

Next, we need to specify which schema element or type we wish to validate against;
click on the <Resource> link and select Schema from the drop-down list. This will
display the Select an XML Schema window, as shown in the following screenshot:

Select the required schema, that is, common_v1 in our case, and this will launch the
Select a Schema definition window, as shown in the following screenshot:

Chapter 13

[413]

This lists all the types and global elements defined in the XML Schema. From here,
we select the element or type we wish to validate our XML fragment against. So for
our example, select tCreditCard and click on Submit.

Our completed validate action will look as shown in the following screenshot:

At runtime, if the validation fails, then the validate action will throw an exception.
Typically, we would define a Stage Error Handler for our validation stage to catch
the exception and handle it appropriately; we look at how to do this in Chapter 14,
Error Handling. If we don't define an error handler, then the Service Bus will return
the default validation fault to the caller of the service.

Validation of outbound documents
Within the Service Bus, we can also use the validate action to check any outbound
documents. Typically, we would do this just prior to invoking any external service,
and we would do this in a similar fashion for inbound documents.

However, strictly speaking, if we have received a valid inbound document and our
service has been correctly implemented, it shouldn't be generating any invalid XML.

In reality, this is not always the case, so in many scenarios it still makes sense to
include this level of validation. Even if we follow this approach strictly, we run the
risk of over-validating, something we cover in more detail later.

Using Schematron for validation
Schematron provides another means of validating the message payload of a web
service. It takes a markedly different approach from Schema validation in that rather
than checking the overall structure of the XML instance, it enables you to specify
one or more assertions that we wish to enforce. If all these assertions are met, the
document is deemed to be valid.

Building Validation into Services

[414]

These assertions are specified using XPath, so it allows us to specify constraints that
can't be expressed using XML Schema. For example, following on from the preceding
example, we can define the following validations on a credit card.

If the card type is American Express, then the card number should be
15 digits in length, otherwise it should be 16 digits
If the card type is American Express, then the security code should be four
digits in length, otherwise it should be three digits
The expiry date, which consists of the expiryMonth and expiryYear
elements, should be in the future

For each assertion, we can also specify meaningful diagnostic messages, which
indicate why an assertion hasn't been met (as opposed to schema validation
messages, which aren't always so enlightening).

The other advantage of using Schematron is that it enables us to modify the
assertions for a document without the need to change the schema.

However, rather than considering Schematron as an alternative approach to XML
Schema validation, we see it very much as complementary. Thus, we would use
XML Schema to validate the core structure of the XML, but not make those checks
too granular. Rather, we will place those checks along with ones that can't be
expressed in XML Schema in Schematron.

Overview of Schematron
One of the advantages of Schematron is that being based on XSLT makes it extremely
easy to learn. Effectively, it has several key constructs. Once these are understood,
you are ready to unleash the full power of the tool.

So before we look at how to use Schematron within the SOA Suite, we will give a
quick introduction to Schematron itself. Readers who are familiar with Schematron
may still want to skim this section, just to understand some of the idiosyncrasies of
how Schematron behaves within the Oracle SOA Suite.

If we look at the operation updateCreditCard, which forms part of the
userManagement service, a typical XML instance for this operation would appear as
shown in the following code snippet:

<soap:Envelope	xmlns:soap="http://schemas.xmlsoap.org/soap/envelope">
	<soap:Body	xmlns:ebm="http://rubiconred.com/obay/ebm/UserAccount"
												xmlns:usr="http://rubiconred.com/obay/xsd/user"
												xmlns:cmn="http://rubiconred.com/obay/xsd/common">
				<ebm:updateCreditCard>
						<usr:userId>jsmith</usr:userId>

•

•

•

Chapter 13

[415]

						<cmn:creditCard>
								<cmn:cardType>MasterCard</cmn:cardType>
								<cmn:cardHolderName>John	Smith</cmn:cardHolderName>
								<cmn:cardNumber>4570126723982904</cmn:cardNumber>
								<cmn:expiryMonth>10</cmn:expiryMonth>
								<cmn:expiryYear>2010</cmn:expiryYear>
								<cmn:securityNo>5285</cmn:securityNo>
						</cmn:creditCard>
				</ebm:updateCreditCard>
		</soap:Body>
</soap:Envelope>

A Schematron that checks that the credit card type is MasterCard or Visa could be
written as the following code snippet:

<?xml	version="1.0"	encoding="UTF-8"?>
<schema	xmlns="http://www.ascc.net/xml/schematron">
		<ns	uri="http://rubiconred.com/obay/ebm/UserAccount"	prefix="ebm"/>
		<ns	uri="http://rubiconred.com/obay/xsd/cmn"	prefix="cmn"/>
		<pattern	name="Check	Credit	Card	Type">	
				<rule	context="/ebm:updateCreditCard/cmn:creditCard">
						<assert	test="cmn:cardType=’MasterCard’	or	
																				cmn:cardType=’Visa’">
								Credit	Card	must	be	MasterCard	or	Visa
 </assert>
 </rule>
 </pattern>
</schema>

From this, we can see that a Schematron is made of four key components: pattern,
rule, assert, and ns contained within the schema element. We'll examine these
elements one-by-one, starting with the inner most element and working outwards.

Assertions
The assert element, as its name suggests, is used to define the constraints to be
enforced within an XML document. In the previous Schematron, we have defined the
following assert element:

<assert	test="cmn:cardType = 'MasterCard' or cmn:cardType = 'Visa'">
			Credit	Card	must	be	MasterCard	or	Visa
</assert>

Building Validation into Services

[416]

We can see that it contains the test attribute, which specifies an XPath expression,
and it should return a boolean value. If the test expression evaluates to true, then the
assertion has been met.

If the test evaluates to false, then the assertion has failed and the document is invalid.
When this happens, Schematron will raise an error and the content of the assert
element (for example, 'Credit	Card	must	be	MasterCard	or	Visa') is returned as
an error message.

Rules
Asserts are defined within a rule element; each rule has a context attribute, which
contains an XPath expression used to specify the nodes within an XML instance to
which the rule should be applied.

In effect, it will perform a select on the root node of the service payload, which may
result in a node set containing zero, one, or more nodes. Each node returned will
then be validated against all asserts defined within the rule.

In the case of the valCreditCard.sch Schematron, we have defined the
following rule:

<rule	context="/emb:updateCreditCard/cmn:creditCard">
			…
</rule>

Here we have specified a context of "/emb:updateCreditCard/cmn:creditCard".
When applied to the payload of our updateCreditCard operation, the rule will
return just a single node, cmn:CreditCard, as shown in the following code snippet
to which our single assertion will be applied:

<cmn:creditCard>
			<cmn:cardType>MasterCard</cmn:cardType>
			<cmn:cardHolderName>John	Smith</cmn:cardHolderName>
			<cmn:expiryMonth>10</cmn:expiryMonth>
			<cmn:expiryYear>2010</cmn:expiryYear>
			<cmn:securityNo>5285</cmn:securityNo>
</cmn:creditCard>

In the case where we have multiple assertions defined for a rule, if more than
one assertion fails for a particular node, then Schematron will return a diagnostic
message for each failed assertion.

Chapter 13

[417]

Using a relative context
As we have defined an absolute path name for the rule context, it can only be
applied to the updateCreditCard operation. Ideally, we would like to write a
Schematron that can be used to validate all occurrences of creditCard, regardless
of which operation it appears in.

To do this, we need to specify a rule context that will match any occurrence of
creditCard, regardless of where it appears in the XML payload. We can achieve this
by using a relative context, such as "//cmn:CreditCard", as shown in the following
code snippet:

<rule	context="//cmn:creditCard">
			…
</rule>

The key here is the //, as this tells Schematron to match a pattern which may occur
anywhere within the XML instance.

Patterns
Rules are defined with a pattern element. Each pattern can hold a collection of one
or more associated rules. Pattern contains a single attribute name, which contains
free format text used to describe the rules contained within it.

In our valCreditCard.sch Schematron, we have defined the following pattern:

<pattern	name="Check	Credit	Card	Type">	
	 …
</pattern>	

When processing an XML instance, Schematron will apply each pattern against the
XML instance in pattern order. When checking against a pattern, Schematron will
check the XML instance against each rule contained within the pattern in rule order.

Namespaces
Namespaces are declared using the ns element. This has two attributes; one is uri,
which is used to define the namespace URI, and the other is prefix, which is used to
define the namespace prefix.

For example, in our credit card validation Schematron, we define the namespace
http://rubiconred.com/obay/xsd/cmn with the following:

<ns	uri="http://	rubiconred.com/obay/xsd/cmn"	prefix="cmn"/>

Building Validation into Services

[418]

Schema
The root element of a Schematron document is the schema element defined within
the namespace http://www.ascc.net/xml/schematron. In our example, we've
made this the default namespace, so we don't have to prefix any of the
Schematron elements.

<?xml	version="1.0"	encoding="UTF-8"?>
<schema	xmlns="http://www.ascc.net/xml/schematron">
			…
</schema>

Intermediate validation
So far, we have just implemented some basic validation that we could have quite
easily performed using XML Schema. However, to give you a feel for the real
capability of Schematron, we will also look at some validation requirements that
can't be implemented using XSD.

Cross field validation
An area where Schematron excels is cross field validation. For example, if we wanted
to check if cardNumber is 16 digits long for MasterCard and Visa and 15 digits long
for American Express, we could write the following assertion:

<rule	context="cmn:CreditCard">
		<assert	test="((cmn:cardType='MasterCard'	or	
																		cmn:cardType='Visa')	and
																		string-length(cmn:cardNumber)	=	'16')	or
																	(cmn:cardType='American	Express'	and
																		string-length(cmn:cardNumber)	=	'15')">
							Invalid	Card	Number.
		</assert>
</rule>

Using XPath predicates in rules
The previous approach, while perfectly valid, could become quite verbose, especially
once we start to add additional checks for specific card types, for example, if wanted
to check the length of securityCode based on cardType.

Chapter 13

[419]

Another approach is to use an XPath predicate within the rules context attribute to
narrow down the context to a specific card type. For example, we can specify a set of
assertions for credit cards of type MasterCard as follows:

<rule	context="cmn:creditCard[cmn:cardType=’MasterCard’]">
				<assert	test="string-length(cmn:cardNumber)	=	‘16’">
								Mastercard	card	number	must	be	16	digits.
				</assert>
				<assert	test="string-length(cmn:securityNo)	=	‘3’">
								Security	code	for	Mastercard	must	be	3	digits.
				</assert>
</rule>

Using this approach, we can specify a different rule for each card type, allowing us
to maintain assertions for each card type independently from one another as well as
simplifying the process of adding new card types.

Using XPath 2.0 functions
In the previous assertion, we are just testing that cardNumber is 16 characters in
length, but we are not checking that it's an actual integer. We are relying on schema
validation for this.

There is nothing wrong with this approach, but what if some cards allowed
alphanumeric numbers? In this scenario, we would need to declare cardNumber as a
string and then carry out specific validation in Schematron to check the format of the
element based on cardType.

For this, we can use the matches function to test whether the content of the element
conforms to a particular regular expression. However, this is an XPath 2.0 function,
so in order to use this within Schematron, we need to define its namespace. We do
this in exactly the same way as we would for any other namespace, that is:

<ns	uri="http://www.oracle.com/XSL/Transform/java/oracle.tip.pc.
services.functions.Xpath20"	prefix="xp20"/>

We can then create an assertion that matches the cardNumber, like this:

<assert	test="xp20:matches(cmn:cardNumber,	'[0-9]{16}')">
			Mastercard	number	must	be	16	digits.
</assert>

Building Validation into Services

[420]

Date validation
Using Schematron is also an excellent method of validating dates based on the
current time. For example, we need to check that the expiry date for the credit
card is not in the past.

To do this, we need to check that the expiry year of the CreditCard is greater than the
current year, or that the expiry year of the CreditCard equals the current year, and
the current month is less than or equal to the expiry month of the card.

To do this, we could write the following test:

cmn:expiryYear	>	xp20:year-from-dateTime(xp20:current-dateTime())	or	
(cmn:expiryYear=	xp20:year-from-dateTime(xp20:current-dateTime())	and		
	cmn:expiryMonth>=xp20:month-from-dateTime(xp20:current-dateTime()))

Element present
Another requirement is to check whether an element is present or not. We can do this
with XML Schema by defining an element as being mandatory. However, whether
an element is optional or mandatory may well be based on values in other fields.

For example, if we had made securityNo optional within our schema definition,
but we wanted to make it mandatory for American Express, we could write the
following rule:

<rule	context="//cmn:creditCard[cmn:cardType='American	Express']">
	 <assert	test="cmn:securityNo">
	 	 Security	No	must	be	specified
	 </assert>
</rule>

Note that this will only check to see if the element is present in the XML instance. It
doesn't actually check if it actually contains a value. The simplest way to check this is
to use the string-length function, as shown in the following code snippet:

<rule	context="//cmn:creditCard[cmn:cardType='American	Express']">
	 <assert	test="cmn:securityNo	and	string-length(cmn:securityNo)>0">
	 	 Security	No	must	be	specified
	 </assert>
</rule>

Chapter 13

[421]

Using Schematron within the Mediator
Schematron validation of incoming messages is specified at the routing rule level
for an operation. This gives us the flexibility to specify a different Schematron for an
operation based on where we are routing the request to.

You assign a Schematron to a routing rule by clicking on the Schematron icon, circled
in the following screenshot:

This will bring up the Validations window, where you can specify one or more
Schematron files for the routing rule, as shown in the following screenshot:

Building Validation into Services

[422]

To add a Schematron, click on the plus sign. This will bring up the Add Validation
window, as shown in the following screenshot:

Here you specify the part of the SOAP message to which you want to apply
the Schematron.

If you are following the document-wrapped pattern laid out in Chapter 11,
Designing the Service Contract, you will only ever have a single part.

Next, click the search icon. This will launch the standard SOA Resource Browser
Window, from where you can browse your filesystem for a local Schematron file
and import it into your project. Alternatively, you can specify a Schematron already
held in MDS.

You can specify multiple Schematrons for a routing rule. In this case, the Schematrons
are compared in the order specified. As soon as a Schematron returns any failed
assertions, no more Schematrons are executed.

Using the Metadata Service to hold Schematron files
Rather than importing Schematron files directly into your composite project, which
then get deployed with the composite into the runtime environment, you can
actually reference a Schematron already deployed to the Metadata Service (MDS)
that we introduced in Chapter 11, Designing the Service Contract.

This has a number of distinct advantages. Firstly, you can ensure that all your
composites use the same version of a particular Schematron. Secondly, if you need
to modify your validation rules, you simply need to update a single copy of your
Schematron and redeploy it to the MDS. In addition, any composite which references
that Schematron will automatically pick up the modified version, without the need to
be redeployed.

Chapter 13

[423]

Schematron files are deployed to MDS in an identical way to XML
Schemas, as covered in Chapter 11, Designing the Service Contract.

Returning Schematron errors
In the event that one or more assertions are violated within a Schematron, then an
error will be raised by the Mediator and a Fault, similar to the one shown in the
following code snippet, will be returned to the service consumer.

<env:Fault>
		<faultcode>env:Server</faultcode>
		<faultstring>…	Schematron	validation	fails	with	error	
				<ns1:ValidationErrors>
						<error>Security	code	for	Mastercard	must	be	3	digits.</error>
						<error>Credit	Card	has	expired.</error>
				</ns1:ValidationErrors>
		</faultstring>
		<faultactor/>
		<detail>
				<exception/>
		</detail>
</env:Fault>

Using Schematron with the Service Bus
The Service Bus does not support Schematron validation. However, it does provide a
Java Callout Action that allows you to invoke a Java method within a message flow.

One approach would be to implement a lightweight Java class that wraps the
Schematron classes and exposes a single method, which can then be invoked
using a Java Action in the Service Bus.

Putting validation in the underlying
service
So far we have looked at using XML Schema and Schematron to put validation either
in the service contract or the Mediator layer in order to provide initial validation of a
service invocation, before we actually invoke the underlying service. This provides a
number of benefits, including:

Building Validation into Services

[424]

Simplifies the development of validation within the actual service, as it can
now rely on the fact that it is receiving relatively sensible data.
Allows us to implement a more generic service, as business-specific
validation can be provided at a higher level within the service. This makes
the service more reusable, as it can be used in multiple scenarios, each with
different validation requirements.
Makes changes easier to manage, as changes to business rules which
impact the overall validation of the service can happen at either the
schema or Schematron level, and thus may require no changes to the
actual underlying service.
By placing the validation in a centralized place, which can be reused across
multiple services, it enables us to implement the same validation across
multiple services in a consistent fashion. This also makes change simpler
to manage, as we only have to make the changes once, as opposed to
everywhere the validation is required.

However, at some point, we will still be required to put some level of validation in
the underlying service itself. For example, take our updateCreditCard operation;
despite all our checks, we can't be completely sure that the credit card itself is
actually a valid card and that the card name, security no, and so on, correspond to
the given card number. To validate this, we will still need to call out to an external
validation service.

Additionally, we still need to validate that the user ID provided as part of the
operation is a valid user within our system.

Using Business Rules for validation
One option for implementing validation checks within your service is to separate
them as a Business Rule. This allows us to implement the validation just once and
then share it across multiple services; this shares a number of advantages with the
approaches already discussed, including:

Simplifies development of rules, as we only need to implement it once
Rules are implemented consistently across multiple services
Easier to maintain as rules only need to be modified once, should a change
be required

When implementing a service using BPEL, the use of rules for validation is a pretty
natural fit. But natively, rules are implemented in Java, so come with a Java API,
making it relatively straightforward to call from any services implemented in Java.

•

•

•

•

•
•
•

Chapter 13

[425]

Additionally, you can also expose a ruleset as a web service, either in the standard
way you would expose a Java code as a web service or just by wrapping the rule in a
decision service embedded within a synchronous BPEL process.

Coding in validation
While providing an extra option for validation, using Business Rules will not
be appropriate in every case. In these scenarios, the only remaining option is to
implement the validation in code.

However, even when we take this approach, we can still follow the same pattern that
we used for Business Rules, namely, to separate the validation from the core service
so that it can be used in multiple services. Also consider the option of providing a
means to maintain the validation rules without the need to modify the actual code.

Returning validation failures in synchronous
services
When putting the validation in the underlying service, apart from carrying out the
validation, we also need a mechanism for returning any validation failures to the
client, ideally with some meaningful information about why the error occurred.

For synchronous services, the mechanism for achieving this is to return a SOAP Fault
to the service caller. A SOAP Fault contains four pieces of information, namely:

1. faultcode: This provides a high level indication as to the cause of the
fault. SOAP 1.1 defines the following fault codes: VersionMismatch,
MustUnderstand, Client, or Server. As the fault is because of an error in
the message payload, which the client needs to fix, we should return a fault
code of type Client, unless we are returning a custom fault code.

2. faultstring: This should contain a human-readable description of why the
fault occurred, that is, the reason for the validation failure.

3. faultactor: This provides details of where in the message path the fault
occurred. If the failure occurred somewhere other than the final destination
of the SOAP message, then this must be present to indicate where. For our
purposes, we can leave this blank.

4. detail: This is an optional element that can be used to provide further
details about why the fault occurred. We only need to provide this if the
faultstring does not provide sufficient information for the client to handle
the error.

Building Validation into Services

[426]

Defining faults
Unless returning a basic fault, that is, using a predefined fault code and no structured
content within the soap:detail, it is a good practice to define the fault as part of the
WSDL contract defining your service.

Faults are defined by adding the appropriate fault elements to the operation
declarations. A fault has two attributes: name, which corresponds to the fault code
returned in the SOAP fault and message, which will contain additional information
about the fault and is returned within the soap:detail element.

For example, to define a fault for the updateCreditCard operation, we would just
add the following fault element to our definition, as shown in the following
code snippet:

<operation	name="updateCreditCard">
	 <input	message="tns:updateCreditCard	"/>
	 <output	message="tns:updateCreditCardResponse	"/>
 <fault name="tns:invalidCreditCard"
 message="tns:invalidCreditCardFault "/>
</operation>

There is nothing to stop a service returning a fault which is undeclared in its service
contract. However, by declaring the fault, the service consumer has the opportunity
to handle the fault in an appropriate manner and by knowing the structure of the
fault detail, is able to process it in a more meaningful way.

Custom fault codes
Often it is desirable to define a custom fault, particularly for services which
may return a number of faults, as this can simplify fault handling for the service
consumer (as they can implement targeted fault handling mechanisms for each
type of fault).

SOAP 1.1 allows custom fault codes to be implemented through the use of the dot
notation, for example we could define a fault code of client.invalidCreditCard in
the SOAP namespace (http://schemas.xmlsoap.org/soap/envelope/). However,
this can result in namespace collision and interoperability issues so is not WS-I Basic
Profile-compliant and should be avoided.

Instead, custom fault codes should be defined within their own namespace. For
example, we have defined our invalidCreditCard fault code to be in the same
namespace as the actual userManagement service.

Chapter 13

[427]

While defining custom faults within their own namespace is
WS-I Basic Profile-compliant, WS-I Basic Profile still encourages
you to use the standard SOAP 1.1 fault codes and use the detail
element to provide any extra information.

Validation failures in asynchronous services
If an asynchronous service needs to return a fault to a client, it can't do this in the
reply message in the same way that a synchronous service can. This is because an
asynchronous service consists of two one-way operations; the first contains the
original request the second contains a callback from the service containing the result.

To return a fault, we need to do this within the callback. We have two basic options
to choose from. The first is to return the success or otherwise with the content of the
standard callback and allow the client to inspect the content to determine whether
the service was successfully invoked or not.

The other is to define additional operations on the callback port specifically for the
purpose of returning an error message. The latter of these is the preferred approach
as it allows the client to implement separate handlers for callbacks indicating errors
(in much the same way, we can implement separate fault handlers for each type of
fault returned with synchronous services).

In many ways, it's helpful to think of the operation name as being the equivalent
of the fault code, and the message payload of the operation can be used to hold the
equivalent of the remainder of the fault information (for example, fault string
and detail).

For example, one way to define an asynchronous version of our updateCreditCard
operation is shown in the following code snippet:

<portType	name="UserAccount">
				<operation	name="updateCreditCard">
								<input	message="tns:updateCreditCard	“/>
				</operation>
</portType>

<portType	name="UserAccountCallback">
				<operation	name="updateCreditCardCallback">
								<input	message="	tns:updateCreditCardCallback	“/>
				</operation>

 <operation name="invalidCreditCard">
 <input message="tns:invalidCreditCard"/>
 </operation>
</portType>

Building Validation into Services

[428]

The final callback operation (highlighted in the preceding code), is the equivalent of
the fault defined within our synchronous service.

Layered validation considerations
Within a single composite application, we have a certain amount of control over
what validation to put in the schema, Schematron, and the underlying services. This
allows us to design and implement these in a coordinated fashion, so that they can
work in synergy with one another.

However, once we start assembling services from other composite applications, then
the lines of demarcation, and thus which service is responsible for which validation,
becomes less clear.

There are a number of potential strategies which can be adopted, but each has its
own strengths and weaknesses. We examine some of these below, but in reality,
there is not always a simple answer and it really comes down to good design and
being aware of the issues.

Dangers of over validation
Probably the "safest" approach is to make each service fully responsible for its own
validation, and thus perform whatever validation is required, regardless of what
validation is performed by any other service in the chain.

However, this could have potential performance implications. Apart from the
obvious overhead of performing the same work several times, it could introduce
potential points of contention within the system.

If we take the updateCreditCard operation, at some point our application will
need to fully validate the card. To do this, it will need to call out to an external web
service. If we follow the approach of performing this validation in every service
involved in the operation, and the request has to go through N layers of services,
then that would require N callouts to the external service with the implied latency of
making N callouts. Not to mention that the card company might wonder why this
card is being validated so many times!

Another issue with this approach is that the validation may be implemented several
times, not always identically, resulting in inconsistent validation that is hard to
change. This can be addressed by using shared XML Schema, Schematron, and
Business Rules validation.

Chapter 13

[429]

Dangers of under validation
An alternate approach is to push the responsibility of validation down to the lowest
service in the chain on the basis that if an error occurs, it will catch the error which
will then be propagated up the chain and returned to the original consumer of
the service.

Again, on the surface, this approach seems fine. However, the main issue here is
whether we have to undo any work as a result of the error, which we could have
avoided if we had caught it earlier. For example, if we have a service A, which is a
composite of service B and service C, the call to service B may succeed but if just the
call to C fails, we may need to undo any work carried out by service B.

Negative coupling of validation
Another issue that arises with service composition is that a high level component,
which calls other components effectively "inherits" the validation of the lower
level components.

The strategy we recommend here is that we put the minimal amount of validation in
the lower level component and put the more restrictive constraints in the higher
level components.

Assuming the service is only designed for internal use, that is, via other components
within our control, this approach works well. As we can mandate that any additional
validation that is required is applied in a higher level component.

For those components that we need to expose directly to external consumers, we can
still follow this approach by implementing a wrapper component with the required
validation and then expose this externally.

This approach allows us to develop more generic lower level components, which are
easier to reuse while at the same time minimizing over and under validation.

Building Validation into Services

[430]

Summary
In this chapter, we've looked at how we can implement validation within an
individual service through a combination of XSD validation, Schematron, and
Business Rules.

Ideally we should use XSD validation to check the overall sanity of the data, but in
order to provide a greater level of flexibility, we then extract the business-specific
validation into a separate component such as Schematron. This gives us more
flexibility to change the validation for a component without the need to redeploy
a new version of it.

In situations where Schematron can't provide the required validation, we've
looked at how we can use Business Rules to build this into the underlying service
implementation, again giving us the flexibility to change the validation without
having to redeploy the service.

Finally, we've looked at some of the issues and potential strategies for validation
when combing multiple services, while there are no simple solutions. By at least
having an idea of the issues, we are able to take these into account in the design of
our overall solution.

Error Handling
Handling errors or faults is an important consideration for service-oriented
architecture (SOA) based applications, especially if you consider that a solution is
likely to be a loose assembly of independent components, each with varying levels of
resilience, throughput, and availability.

How faults are handled depends on a number of factors: whether it's a business or
system fault, was the service where the fault originated called synchronously or
asynchronously, and whether the interaction between the client and the component
detecting the fault is synchronous or asynchronous.

A business fault is loosely defined as one we know about in advance. It is defined
as part of the service contract, and thus represents a legitimate state within the
business process. How we handle a fault of this type is largely driven by business
requirements, and so it makes sense to handle these within the context of the process.

A system fault conversely is one that is unexpected in nature and could
typically occur to any component in the solution. Such faults are often caused by
infrastructure problems, such as a network outage or a service being unavailable.
Often these are temporary and can be handled by retrying the service at a later time.

The interaction between the client and the component detecting the fault also
influences how we handle it. If asynchronous, the component has the time to resolve
the problem. For example, if the fault occurred due to a service being unavailable, it
can retry it later.

With synchronous interactions, we only have a small window in which to resolve the
fault before the client times out waiting for our component, and raises its own fault.
With this style of interaction, often all we can do is catch the fault, undo any partially
completed activities so we leave the system in a consistent state, and then return a
fault to the client.

Error Handling

[432]

In this chapter, we examine how to handle faults within our composite applications.
We first examine the catch and compensate activities that BPEL provides, and
how we can use them to handle business faults. Next, we examine the role of the
Mediator in handling business faults, before looking at how to leverage the SOA
composite fault management framework to simplify the handling of system faults
within composites.

In the final section of this chapter, we look at the mechanisms the Service Bus
provides for handling faults and how we can use these in our overall fault
management strategy.

Business faults
A business fault is one that is defined in the Web Service Definition Language
(WSDL) of the service. How we define the fault depends on whether a service is
synchronous or asynchronous.

Defining faults in synchronous services
Synchronous services signal faults by returning a fault element in place of the
defined output message for the service. These faults are defined in the WSDL of the
service and are denoted by the <fault> element.

For example, the oBay application implements a dummy CreditCard service,
which includes the operation verifyCreditCard. The definition of the
operation is as follows:

<portType	name="CardServices">
<operation	name="verifyCreditCard">
<input			 message="tns:verifyCreditCard"	/>
<output		 message="tns:verifyCreditCardResponse"/>
<fault name="invalidCreditCard"
 message="tns:invalidCreditCardFault"/>
	 </operation>
</portType>

As well as defining the standard input and output messages for the operation, it
displays a fault message (highlighted in the previous code) that could be returned in
place of the defined output operation. An operation can define zero, one, or many
faults for an individual operation. It is similar in construct to an output message,
except that it must also be named so that the client can distinguish which fault has
been returned.

Chapter 14

[433]

When a soap:Fault is generated, the faultcode will contain the fault
name (tns:invalidCreditCard in the previous example), and the
detail element will contain the content of the fault message.

Defining faults in asynchronous services
Asynchronous services don't explicitly support the concept of faults. This is because
the result of an asynchronous service is returned in a separate callback operation.
So to signal a fault, the service will need to define additional callbacks, typically
one extra callback per fault. If we take our credit card example and rewrite is
as an asynchronous service, we get the corresponding WSDL:

<portType	name="CardServices"
<operation	name="verifyCreditCard">
	 	 <input	message="tns:verifyCreditCard"/>
</operation>
</portType>
<portType	name="CardServicesCallback"
<operation	name="creditCardVerified">
	 	 <input	message="tns:creditCardVerified"	/>
</operation>
<operation name="invalidCreditCard">
 <input message="tns:invalidCreditCard" />
</operation>
</portType>

Here we can see that we've defined a second callback operation (highlighted in
the previous code). This corresponds to the fault we defined in the synchronous
operation. If we examine this, we can see that we've used the fault name as the
operation name in the callback. Although we have two different messages, in reality
they are identical, we have just used different names as we want to stick to our
naming conventions.

It is still possible for the invocation of an asynchronous service to return a fault. This
can occur when the system is unable to successfully deliver the invocation message
to the asynchronous service, for example, when the network connection is down.
We would treat this type of fault as a system fault as opposed to a business fault.

Error Handling

[434]

Handling business faults in BPEL
Within a BPEL process, any call to a partner link could result in a fault being raised.
Other activities within a process can also result in a fault being thrown (for example,
due to a selection failure within an assign activity), and in addition, the process
itself may need to signal a fault.

When a fault occurs in a BPEL process, the process must first catch the fault, or else
the process will terminate with a state of Faulted. Once caught, the next step is to
decide whether the fault can be handled locally within the process or needs to be
returned to the client.

If the interaction between the client and the process is synchronous, it provides
a limited opportunity to correct the cause of the fault and retry the activity. For
example, if the fault occurred due to a service not being available, we can retry the
service in the hope that its outage was very temporary. But, if we wait for the service
to come back up, then the client of our BPEL process is likely to timeout and raise its
own fault.

With synchronous interactions, all we can really do is catch the fault, undo any
partially completed activities so that we leave the system in a consistent state, and
then return a fault to the client.

The client itself may be a BPEL process or another SOA component. Again, if
the interaction between this component and its client is also synchronous, it will
typically need to return its own fault, and so on up the chain until the interaction
between a client and a component is asynchronous in nature.

With asynchronous interactions, we have a lot more flexibility to handle the fault
within the context of the process, as the client is unlikely to timeout (however, we
still need to take into account the fact that the client may not wait forever).

If the fault is temporary in nature, such as a service not being available, we can wait
for the issue to be resolved and retry the activity later. However, this type of fault
should be handled using the fault management framework (which we will cover
later in this chapter). This allows us to focus on handling business faults within our
BPEL process, which keeps our process simpler and easier to maintain.

Handling business faults is just a natural extension to the process, in that we need to
model the process to cater to these types of scenarios. For example, if a fault occurred
due to invalid data, then in a synchronous interaction, we would just return details
of the fault to the client. However, in an asynchronous interaction, we could create a
human workflow task for someone to capture the correct data so that the process
can resume.

Chapter 14

[435]

Catching faults
The first step in handling a fault is to catch it. Within BPEL, we do this using a
<catch> branch, which can either be attached to a scope or the process. With a
<catch> branch, we specify the name of the fault to be caught and the series of
activities to be carried out in that event.

Once the <catch> branch has completed, processing will continue with the next
activity following the scope in which the fault was caught, assuming of course
another fault hasn't been thrown.

We can define as many <catch> branches as we want for a scope. In addition, we can
also attach a <catchAll> branch, which will catch any fault that is not caught by any
of the specific <catch> activities.

When a fault is raised, the BPEL engine will first check the current scope to
determine a suitable <catch> or <catchAll> all branch. If the fault is not caught, the
BPEL engine will then check the containing scope for an appropriate fault handler,
and so on, up to the process level.

If the fault is not caught at this level, then the process will terminate with a status of
Faulted. If the interaction between the client and the process is synchronous, then
the fault will be automatically returned to the client. However, if the interaction is
asynchronous, then the fault will not be returned, with the potential result being
that the client may hang waiting for a response that is never sent.

Adding a catch branch
To demonstrate this, we will look at the UserRegistration process that needs to
carry out a number of checks: for example, that the requested userId isn't already in
use, that the supplied credit card is valid, and so on. Should one of these checks fail,
we need to catch the fault and then return a reply to the client to indicate that
an error has occurred.

Error Handling

[436]

To achieve this, we will place each validation step in its own scope and define a fault
handler for each one. To add a <catch> branch to a scope, click on the Add Catch
Branch icon for the scope; this will add an empty <catch> branch to the scope, as
shown in the following screenshot:

The next step is to specify the type of fault that you want to catch. To do this,
double-click on the catch branch icon (circled in the previous screenshot).
This will bring up the Catch dialog, as shown in the next screenshot:

Chapter 14

[437]

Click on the search icon for the Fault QName (circled in the previous screenshot),
and this will launch the Fault Chooser dialog box. From here, you can browse to the
fault that we want to catch, which, in our case, is the invalidCreditCard fault defined
in the WSDL file of the CreditCard Partner Links.

There is also the option to specify a fault variable to hold details of the fault
returned. This should be of the type Message and match the message type defined
for the fault, that is, invalidCreditCardFault for the case where the fault is
invalidCreditCard (as defined in the WSDL file for this service).

Once we have caught the fault, we need to specify the activities to perform in
order to handle the fault. In our case, we need to undo any activity completed
in previous scopes using the compensate activity before we return the fault
invalidUserDetails to the caller of this process.

However, the current scope is not the correct context for triggering the required
compensation (we will see why in a moment), so our fault handler needs to capture
the reason for the fault and throw a new fault that can be handled at the appropriate
place within our process.

Error Handling

[438]

Throwing faults
To do this, expand the <catch> branch for the Fault Handler by clicking on the '+'
symbol and drag a Throw activity into it.

To specify the fault we wish to throw, double-click the Throw activity to bring up
the dialog to configure it, as shown in the next screenshot:

Next, click the search icon (circled in the previous screenshot) to bring up the
Fault Chooser. This time we want to browse to the fault we wish to throw,
which is the invalidUserDetails fault and is defined in the wsdl file for the
UserRegistration process.

We also want to record the reason for the invalidUserDetails, so we need to define
a fault variable to hold this. The simplest way to do this is by clicking on the magic
wand icon to create a variable of the right type, though you should specify that the
variable is local to the scope, as opposed to global.

Chapter 14

[439]

Finally, we've added a simple assign activity before our Throw activity to populate
our fault variable. So our final <catch> branch looks as follows:

Compensation
As part of the user registration process, we need to check that the requested user ID
is not already in use. We do this by attempting to insert a record into the obay_user
table (where userId is the Primary Key).

If this succeeds, we know the userId is unique, and at the same time, we can prevent
anyone else from acquiring it (on the off chance that two requests with the same user
ID are submitted at the same time).

We do this before verifying the credit card, the result being that if the credit card fails
verification, we end up with a user record for the specified user ID in the obay_user
table. This will cause the next request to fail when the user resubmits their request
with corrected credit card details.

An alternative approach would be to verify the credit card first before
validating the user ID. However, with this approach, if the user chooses
multiple user IDs that are already taken, their credit card would be
validated several times, which could cause issues with the card company.

To prevent resubmission of user registrations from failing, we need to undo the
creation of the user record. One way of achieving this is by using the compensation
model provided by BPEL.

Error Handling

[440]

This allows us to break a BPEL process up into logical components using scopes. For
each scope, we can define a compensation handler that will contain a sequence of one
or more activities to reverse the effects of the activities contained within that scope.

In our case, we need to define a compensate handler on the CreateUser scope,
which deletes the user record created by the scope.

Defining compensation
To define the compensation activities for a scope, click on the Add Compensation
Handler icon for the scope, and this will add an empty compensation branch on the
scope, as shown in the following screenshot:

Once you've created your compensation handler, simply add the activities that need
to be carried out to undo the effect of the scope. In our case, we just need to call the
deleteUser operation on the UserManagement service.

Triggering a Compensation handler
Compensation handlers aren't triggered automatically, rather they need to be
explicitly invoked using the Compensate activity, which can only be invoked
from within a fault handler or another compensation handler.

When the Compensate activity is executed, it will only invoke the compensation
handlers for those scopes directly contained within the scope for which the fault
handler is defined. If invoked in a fault handler at the process level (as in our
example), it will only execute the compensation handlers for the top-level scopes.

Chapter 14

[441]

The compensation handlers will only be invoked for those scopes which have
completed successfully and will be invoked in reverse order of completion. That is,
the compensation handler for the most recently completed scope will be invoked
first, and then the next most recent and so on.

If a scope whose compensation handler has been invoked contains scopes for which
compensation needs to be performed, then it will need to call the Compensate
activity within its own compensation handler.

Note:
If a scope doesn't have an explicit compensation handler defined for it,
then it will have a default compensation handler that just invokes the
compensate activity.

Adding a Compensate activity
For our purposes, we need to trigger the Compensate activity at the process
level, so to do this, we have defined a fault handler on the process to catch the
invalidUserDetails fault thrown by our previous fault handler.

Once done, we added a Compensate activity as the first activity within our fault
handler. To configure it, double-click the Compensate activity to bring up the dialog
box, as shown in the next screenshot:

Here we have the option of specifying a scope Name to restrict it to invoking the
compensation handler for that scope. For our purposes, we want to invoke the
compensation handler for all top-level scopes, so we have left it blank.

Error Handling

[442]

Returning faults
If at runtime the verifyCreditCard operation returns a fault of type
invalidCreditCard, then this will be caught by the <catch> branch we
defined on the VerifyCreditCard scope.

This fault handler will throw an invalidUserDetails fault, which will get
caught by the <catch> branch defined against our process. This will execute the
Compensate activity triggering the compensation handler on the CreateUser scope,
which will delete the previously inserted user record.

The final step is to return an invalidUserDetails fault to the caller of the BPEL
process. To return a fault within BPEL, we use the Reply activity. The difference is to
configure it to return a fault as opposed to a standard output message, as shown in
the following screenshot:

Here we have configured the Partner Link and Operation as you would for a
standard reply. However, for the Variable we need to specify a variable that contains
the content of the fault to be returned. In our case, this is the content of the fault
caught by our process level fault handler (and populated by the fault handler for
the ValidateCreditCard scope).

Finally, we need to specify that an invalidUserDetails fault should be returned.
Specify this by clicking on the search icon in the Fault QName panel to launch the
now familiar Fault Chooser. After returning the fault, the process will be completed.

Chapter 14

[443]

If a fault had been triggered during the step of creating the user record (for example,
because the userId was already in use), then an invalidUserDetails fault would
have been thrown in the fault handler for this scope. The process would follow the
same flow, as outlined previously, except that the compensation handler for the
CreateUser scope would not have been triggered, as the scope never completed.

Asynchronous Considerations
As we pointed out earlier, asynchronous services don't explicitly support the concept
of faults, so it's worth examining how we would manage the previous scenario if all
the messaging interactions were asynchronous.

An asynchronous version of the CreditCard service would require two callbacks,
namely, creditCardVerified and invalidCreditCard, which would be the
equivalent of our fault in the synchronous example.

Within our VerifyCreditCard scope after our invoke activity, instead of having
a receive activity to receive the callback, we would need a pick activity with two
onMessage branches (one for each callback). The branch for invalidCreditCard
would be the equivalent of our synchronous fault handler described previously
and would contain the same activities as its synchronous equivalent (please take
a look at Chapter 16, Message Interaction Patterns for more details on how to use the
pick activity).

We would still have the fault handler defined for our process, which would catch the
fault thrown by our onMessage branch for invalidCreditCard.

The activities of this fault handler would be similar to the fault handler in our
synchronous version. We would still call the Compensate activity, but rather than
use the reply activity to return a fault, we would now use the invoke activity to
invoke the appropriate callback to signal invalid user details.

Handling business faults in Mediators
Handling business faults within Mediators is a lot simpler than in BPEL. This is
due to the role it plays within a composite. It's primary role (as covered in Chapter
10, oBay Introduction) is to act as a proxy to the composite, which means that it is
responsible for receiving all incoming messages for a composite, validating and
optionally transforming them before routing them to the appropriate component
within the composite, and then routing any response back to the initial caller.

Error Handling

[444]

A business fault, by our definition, is just another valid response that can be returned
by a component. Therefore, the role of the Mediator is to transform that fault from a
component-specific one to one defined in the WSDL of the composite service, which
it can then return to its client.

Its secondary role is to act as a proxy for the composite to any external service called
by a component within the composite. Here it is responsible for transforming the
outbound message into one expected by the external service and vice versa for the
response, which includes any business fault which might be returned.

The exact nature of how we handle a fault comes down to whether the Mediator
provides a synchronous or asynchronous service. We will examine each of
these cases.

Synchronous Mediators
With a synchronous Mediator, if we call a synchronous service that returns one or
more business faults, then the routing rule will contain a Fault section (circled in the
next screenshot), which allows us to map each business fault returned by the service
to one defined in the WSDL of the Mediator.

To define a fault routing, from the first drop-down list simply select from the
list of faults returned by the invoked operation, and then in the second drop-down
list select the fault that you want to map it to from the list of faults returned
by the Mediator.

Chapter 14

[445]

For example, in the previous screenshot, we've mapped the fault invalidUserDetails
returned by the UserRegistration BPEL process to the equivalent fault that will
be returned by the Mediator. Once we have defined our fault routing, we use the
standard transformation tool to map the content of the service's fault to that returned
by the Mediator.

If the invoked operation defines multiple faults, we should define a fault routing for
each of them. To do this, just click on Add another fault routing (the green plus sign
in the Faults section) and define as appropriate.

System faults
In the case of a system fault, the Mediator service will return the fault without
modification directly to the client, and let it work out how to handle it. This is
typically the desired behavior. The only potential problem with this is it doesn't
provide us with the opportunity to transform the system fault.

The reason this can be an issue is that it often makes sense to define a standard
set of system faults within our architecture that we map all other system faults to,
as this can simplify the implementation of standardized error handling across
our applications.

As faults originating from within the SOA infrastructure already conform to a
standardized set of faults, the issue is more significant for system faults returned by
external services. One solution to this is to invoke all such external services via the
Oracle Service Bus and use this to map a nonstandardized system fault to one of our
standardized faults (we look at how to do that later in this chapter).

Asynchronous Mediators
With asynchronous services, as we have already discussed, we don't have the
concepts of business faults; rather the approach is to define additional callbacks, with
each callback being the equivalent to a corresponding business fault returned by a
synchronous service.

However, the Mediator component doesn't support multiple callbacks for a single
operation. For scenarios where this functionality is required, an alternative approach
is to use a BPEL process in place of the Mediator (see the section Creating a proxy
process in Chapter 16, Message Interaction Patterns for details on how to do this).

Error Handling

[446]

Using timeouts
The only additional scenario we need to consider with an asynchronous Mediator is
when we don't get a response back from the asynchronous service.

The default behavior of the Mediator is to wait forever, though we have the option of
specifying a timeout period in which to receive a response, after which, the Mediator
will send a response back to the initial caller (or to another service or event).

To specify a timeout period, click the Browse for target service operations icon, as
shown in the next screenshot. This will bring up the Target Type window, where
you can specify that the timeout should be routed back to the Initial Caller.

You will then be able to select from the <<Target Operation>> drop-down box, the
asynchronous callback you want the Mediator to route the timeout to (exactly as you
would for a standard callback).

You will also need to specify the time period, which can be specified in seconds,
minutes, hours, days, months, or years. Finally, you need to specify the mapping file
to generate the content of the callback.

The only other difference between this and standard callback mappings is that you
don't have a response to map. In this case, the transformation will be based on the
original payload used to invoke the Mediator.

Using the fault management framework
One of the advantages of the 11gR1 release of the Oracle SOA Suite is that it
provides a unified framework for handling faults within BPEL processes and
Mediator components.

The fault management framework allows us to define policies for handling faults.
A policy consists of two basic components, namely, the faults that you wish to catch
and the actions you wish to take once the faults are caught, such as retrying the
service or performing manual recovery.

Chapter 14

[447]

Once we have defined a policy, we can then attach (or bind) it to an SOA composite,
a BPEL, a Mediator service component, or an external reference. This provides a
flexible mechanism for attaching different polices to different components within a
composite. For example, we could define a generic fault policy for a composite, but
then override it for a specific component or external reference within that composite.

Although BPEL processes and Mediators leverage the same fault management
framework, the application of the framework is slightly different for each.

Using the fault management framework in
BPEL
Within BPEL, the fault management framework allows us to define policies for
handling faults which occur when a BPEL process executes an Invoke activity.

When a fault occurs, the framework intercepts the fault before it is returned to the
BPEL process. It then attempts to identify an appropriate fault policy to handle the
fault. If it finds one, the policy is executed, and assuming the fault is resolved, the
BPEL process continues as if nothing happened.

In the case where the framework is unable to identify an appropriate fault policy to
handle the fault, the fault is returned to the BPEL process to handle.

This is fine for a business fault as we need to handle it in a way that is appropriate to
the business process, as covered previously.

But for system faults, such as network problems resulting in a service becoming
temporarily unavailable, implementing the handling of this at the process level can
be protracted, often requiring the same fragments of BPEL to be implemented in
every process.

For these scenarios, the fault management framework can greatly simplify the effort
required to implement the appropriate error handling within BPEL.

Using the fault management framework in
Mediator
The behavior of the fault management framework is slightly different for the
Mediator. Firstly, we can only use it for operations which implement parallel
routing rules. This means that we can only use it for asynchronous services.

Error Handling

[448]

Although at first this may seem like a strange restriction, it actually fits well with the
strategy we laid out earlier for handling faults within a synchronous Mediator. That
is not to handle the fault, but rather just propagate it to the client.

However, for an asynchronous operation that implements multiple routing rules in
parallel, each of these routing rules has the potential to fail. In such scenarios, the
fault management framework will attempt to identify an appropriate fault policy
to handle the fault. If it finds one, the policy is executed, and assuming the fault is
resolved, the routing rule will continue as if nothing happened.

Another difference with BPEL is that if the framework is unable to identify an
appropriate fault policy, then the default behavior of the fault management
framework is to invoke the human intervention action rather than return it to
the Mediator.

The final difference is that unlike BPEL, it will also handle faults thrown by the
Mediator itself in addition to handling faults returned by invoked services. These
could be faults due to validation failures, transformation errors, and so on.

Defining a fault policies file
Fault policies for a composite are defined in the fault-policies.xml file, which
should be placed in the same folder as the composite.xml file to which it applies.
An example outline of a fault policy file is shown as follows:

		<?xml	version="1.0"	encoding="UTF-8"?>
		<faultPolicies	xmlns="http://schemas.oracle.com/bpel/faultpolicy">
				<faultPolicy	version="2.0.1"	id="FaultPolicyA">
				…
				</faultPolicy>
				<faultPolicy	version="2.0.1"	id="FaultPolicyB">
				…
				</faultPolicy>
		<faultPolicies/>

From this, we can see a fault policies file consists of the top level element
faultPolicies, which contains one or more faultPolicy elements, each
of which defines a specific fault policy.

Each faultPolicy element contains the attribute id, which is used to uniquely
identify the policy (in the preceding example, we have defined two polices:
FaultPolicyA and FaultPolicyB). We refer to these IDs when we bind a fault
policy to a composite or a component using the fault-bindings.xml file
(which we will cover later in this section).

Chapter 14

[449]

Defining a fault policy
A policy consists of two basic components; the faults that you wish to catch and
once caught the actions you wish to take, such as retry the service or perform
manual recovery.

Let's re-examine the UserRegistration process at the point that it invokes the credit
card service to verify the user's card's details. Apart from the business faults that
could be returned, it could also return a system fault such as the following:

<soap:Body	xmlns:soap="http://schemas.xmlsoap.org/soap/envelope"	
											xmlns:flt="http://rubiconred.com/obay/xsd/fault">	
				<soap:Fault>	
								<faultcode>soap:Server</faultcode>	
								<faultstring>Transport	Run	Time	Error</faultstring>	
								<detail>	
												<flt:fault>	
																<flt:code>380002</flt:code>	
																<flt:summary>Connection	Error</flt:summary>	
																<flt:detail>	
																				…	
																</flt:detail>	
												</flt:fault>	
								</detail>	
				</soap:Fault>	
</soap:Body>

Indicating that it's unable to call the service because of a transport problem, the code
of 380002 indicating that this is probably due to a temporary problem. For this kind
of scenario, we can define a fault policy to catch this error and retry the service.

The outline of the fault policy for our CreditCard service is shown as follows:

		<faultPolicy	version="2.0.1"	id="CreditCardPolicy">
 <Conditions>
				…
 </Conditions>
 <Actions>
				…
 </Actions>
		</faultPolicy>

From this, we can see that the fault policy is divided into two sections: the
Conditions section, which defines the faults we wish to handle, and the Actions
section, which defines the actions to take in order to recover from the fault.

Error Handling

[450]

Defining fault policy conditions
The first section of a fault policy defines the conditions that we wish to handle and
contains a list of one or more faultName elements that we want our policy to handle.
For the preceding example, we could define these as follows:

<Conditions>	
				<faultName	xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/"	
															xmlns:flt="http://rubiconred.com/obay/xsd/fault"	
															name="soap:Server">	
								<condition>	
												<test>$fault.payload/flt:code="380002"</test>	
												<action	ref="ora-retry"/>	
								</condition>	
								<condition>	
											<action	ref="ora-human-intervention"/>	
								</condition>	
				</faultName>	
				<faultName>	
								<condition>	
												<action	ref="ora-human-intervention"/>	
								</condition>	
				</faultName>	
				…	
</Conditions>	

Specifying the <faultName>
A faultName element is used to define a specific fault which we wish to handle. It
contains a single attribute name, which specifies the fault code (that is, soap:Server
in the preceding example) of the fault to handle.

Note that a faultcode is defined as a QName type, which has a format
as follows:
prefix:faultName

Here prefix maps to a namespace, so within the faultName element,
we need to define the namespace to which the prefix is mapped,
otherwise we won't get a match.

We can also specify a faultName element without a name attribute, which will match
all faults. This allows us to define a generic catch all policy for any fault not handled
by a more specific policy.

Chapter 14

[451]

Specifying the <condition>
The faultName element defines one or more conditions; each condition consists of
an optional test element and an action reference.

The test element allows us to specify an XPath expression, which is evaluated
against the content of the fault. If the XPath expression evaluates to true, then the
condition is considered a match and the action referenced within the action element
will be executed.

Otherwise, the fault management framework will look to evaluate the next condition,
and so on, until it finds a match. A condition without a test element will always
return a match.

When selecting data from the content of a fault, the XPath expression should follow
the format:

$fault.<PartName>/<LocationPath>

Here, <PartName> is the name of the <part>, as defined in the <message> element of
the fault (as specified in the WSDL for the service).

The expression $fault.<PartName> will evaluate to root node of the content of the
message element. So <LocationPath> should be specified relative to this.

For example, the operation verifyCreditCard is defined as follows:

		<wsdl:operation	name="verifyCreditCard">
				<wsdl:input	message="tns:verifyCreditCard"/>
				<wsdl:output	message="tns:verifyCreditCardResponse"/>
				<wsdl:fault	name="CreditCardFault"	message="tns:CreditCardFault"/>
		</wsdl:operation>

Here, the message tns:CreditCardFault is defined as follows:

		<wsdl:message	name="CreditCardFault">
				<wsdl:part	name="payload"	element="flt:fault"/>
		</wsdl:message>

In order to refer to the content of this fault, we would specify $fault.payload,
which would map to the root node within the payload part of our SOAP Fault, that
is, flt:fault.

We can refer to the content of flt:fault by specifying the appropriate XPath
relative to this location. In the previously mentioned policy, we have defined the
following test for our first condition:

<test>$fault.payload/flt:code="380002"</test>

Error Handling

[452]

For the fault in our example, we will evaluate this to true, so the fault management
framework would execute the action ora-retry; if flt:code contained some other
value, then it would move to the next condition. As this doesn't include a test
element, it will result in a match and execute the ora-human-intervention action.

The message element for some faults, including the extension faults
defined by BPEL PM, contains multiple parts. For example, code,
summary, and detail. To evaluate the content of any of these parts, just
append the part name to $fault.. Therefore, to check the content of the
code part, you would specify $fault.code.

Defining fault policy actions
The second part of our fault policy defines the actions referenced in the Conditions
section. This consists of an Actions element, which contains one or more
Action elements.

Each Action element contains an id attribute, which is the value referenced by the
action ref attribute within a condition. For the conditions defined in the preceding
policy, we have defined two actions: ora-retry and ora-human-intervention, as
shown here:

<Actions>	
				<Action	id="ora-retry">	
								<retry>	
												<retryCount>5</retryCount>	
												<retryInterval>15</retryInterval>	
												<exponentialBackoff/>	
												<retryFailureAction	ref="ora-human-intervention"/>	
								</retry>	
				</Action>	
				<Action	id="ora-human-intervention">	
								<humanIntervention/>	
				</Action>	
</Actions>

The content of the action element is used to specify and configure the actual action
to be executed by the fault management framework, which can be one of retry,
humanIntervention, rethrow, abort, replayScope, or javaAction.

The actions rethrow and replayScope cannot be used
for the Mediator component.

Chapter 14

[453]

Retry action
The Retry action instructs the fault management framework to retry a failed service
invocation until it is successful or it reaches a specified limit. In the previous
example, we have specified that we will retry the service five times, and if the
invocation still fails after this, we have specified that we want to invoke the
ora-human-intervention action.

The Retry action takes a number of parameters that allow us to configure how it
behaves, and they are defined as follows:

retryCount – This specifies the maximum number of retries before this
action completes with a failure status.
retryInterval – This specifies the period in seconds between retries.
exponentialBackoff – This is an optional element, which takes no
parameters. When specified, if a retry fails, the interval between this retry
and the next retry is twice that of the previous interval. In the previous
example, the first retry would occur after 15 seconds, the second after 30
seconds, the third after 60 seconds, and so on.
retrySuccessAction – This is an optional element with a single attribute
ref. This references another action to be taken upon successful retry of a
service. This should only be used to reference a java action (see below),
which we can use to generate an alert.
retryFailureAction – This is an optional element with a single attribute ref
that allows you to define the action to be carried out, should all retries fail.

For scenarios where the interaction between a BPEL process and its client are
synchronous, we should only use small retry periods. This is because we are
suspending the BPEL process between retries; thus if the retry period is too long, the
client which invoked the BPEL process could timeout while waiting for a response.

Human intervention action
For errors which are more permanent, the humanIntervention action gives us the
ability to suspend the routing rule or process where the fault is occurring. Once
suspended, we can log into the Fusion Middleware Control Console in Enterprise
Manager to manually handle the fault.

•

•

•

•

•

Error Handling

[454]

From within the console, we can perform a number of actions. These include
manually retrying the service, with the option of modifying the input payload in case
this is causing the error. Or, in the event that the service can't be called, we can get
the process to skip the invoke activity and manually create the output that should
have been returned by the service.

When using this action for a BPEL process, because we are suspending the process,
we should only use this action if the interaction between the BPEL process and
its client is asynchronous. Otherwise, the client will timeout while waiting for the
problem to be resolved.

Abort action
This action causes the Mediator to abort the routing rule or the BPEL process to
terminate. For BPEL, it's the equivalent of executing a terminate activity directly
within the BPEL process.

An abort action takes no parameters and is defined as follows:

<Action	id="ora-terminate">
		<abort/>
</Action>

Rethrow action
For errors that we don't want handled by the fault management framework, we can
use the rethrowFault action to re-throw the fault to our BPEL process.

This is often useful when we have defined a generic fault handler to catch all faults,
but want to exclude certain faults. For example, if we look at the fault policy defined
previously, the final handler within our conditions section is defined as follows:

<faultName>
		<condition>
				<action	ref="ora-human-intervention"/>
		</condition>
</faultName>

This will catch all faults that have not yet been handled. This is exactly what we want
for any unknown system faults. However, we want business faults to be explicitly
handled by our BPEL process.

Chapter 14

[455]

The re-throw action allows us to do just this. We can define a fault handler that
catches our business faults such as the following:

<faultName	xmlns:tns="http://rubiconred.com/obay/svc/CreditCard"
											name="invalidCreditCard"
		<condition>
				<action	ref="ora-rethrow-fault"/>
		</condition>
</faultName>

This will then invoke the following action:

<Action	id="ora-rethrow-fault">
		<rethrowFault/>
</Action>

This will re-throw the fault to our BPEL process.

This action can't be used to handle faults within a
Mediator component.

Replay scope action
This action causes the fault management framework to return a replay fault to the
BPEL process. This fault will be automatically caught by the scope in which the fault
is thrown and trigger the BPEL engine to re-execute the scope from the beginning.

A replay scope action takes no parameters and is defined as follows:

<Action	id="ora-replay-scope">
		<replayScope/>
</Action>

This action can't be used to handle faults within a
Mediator component.

Error Handling

[456]

Java action
This enables us to call out to a custom java class as part of the process of handling
the fault. This class must implement the interface IFaultRecoveryJavaClass, which
defines two methods:

public	void	handleRetrySuccess(IFaultRecoveryContext	ctx);
public	String	handleFault(IFaultRecoveryContext	ctx);

The first method handleRetrySuccess is called after a successful retry of an
invocation, otherwise handleFault is called.

This class is not intended to handle a fault, but is more for generating alerts and so
on. For example, you could use invocation of the method handleFault to generate a
notification that there is a problem with a particular endpoint, and likewise, use the
invocation of the method handleRetrySuccess to generate a notification that the
problem with the endpoint has now been resolved.

The method handleFault returns a string value, which can be mapped to the next
action to be invoked by the framework, for example, if we defined the following
javaAction:

<Action	id="ora-java">
	 <javaAction		 className="mypackage.myClass"	
	 	 	 defaultAction="ora-human-intervention">
	 	 <returnValue	value="RETRY"	ref="ora-retry"/>
	 	 <returnValue	value="MANUAL"	ref="ora-human-intervention"/>
	 </javaAction>
</Action>

The javaAction element takes two attributes: className, which specifies the java
class to be invoked, and defaultAction, which specifies the default action to be
executed upon completion of the java action.

Within the javaAction element, we can specify zero, one, or more returnValue
elements, each of which maps a value returned by handleFault to a corresponding
follow-up action to be executed by the fault management framework.

In the previous example, we have specified for a return value of 'RETRY'. The
framework should execute the ora-retry action, and if a value of MANUAL is
returned, then it should execute the ora-human-intervention action.

If no mapping is found for the return value, then the defaultAction specified as
part of the javaAction is executed. This gives us the flexibility to calculate how we
wish to handle a particular fault at runtime.

Chapter 14

[457]

Binding fault policies
To put a fault policy into operation, we need to specify to what components within a
composite that the fault policy is to be applied. This is known as binding.

Fault bindings for a composite are defined in the fault-bindings.xml file, which
should be placed in the same folder as the composite.xml file to which it applies. An
example outline of a fault binding file is shown as follows:

<?xml	version="1.0"	encoding="UTF-8"?>	
<faultPolicyBindings	version="2.0.1"	
				xmlns="http://schemas.oracle.com/bpel/faultpolicy">	

				<composite	faultPolicy="UserAccountPolicy"/>	
				<component	faultPolicy="	UserRegistrationPolicy">	
								<name>UserRegistration</name>	
				</component>	
				<reference	faultPolicy="CreditCardPolicy">	
								<name>CreditCard</name>	
				</reference>	
</faultPolicyBindings>

From this, we can see that we can bind fault policies to composites, components, or
external references.

Defining bindings on the composite
The composite element is an optional element, which allows us to specify the
default fault policy for a composite. It contains a single attribute faultPolicy, which
contains the id of the fault policy to be used for the composite.

In the previous example, we had specified that the UserAccount composite should
use UserAccountPolicy as its default fault policy.

Defining bindings on a component
After the composite binding, we can specify zero or more component bindings,
each of which allows us to bind a fault policy to one or more Mediator or BPEL
components. It contains a single attribute named faultPolicy, which contains the
id of the fault policy to be used for this binding.

Within the component elements, we specify one or more name elements. The name
element should contain the name of a component within the composite that we wish
to bind the fault policy to.

Error Handling

[458]

Defining bindings on an external reference
After the component bindings, we can specify zero or more reference bindings,
each of which allows us to bind a fault policy to one or more external references
invoked by the composite. It contains a single attribute faultPolicy, which
contains the id of the fault policy to be used for this binding.

Within the reference elements, we specify one or more name elements. The name
element should contain the name of a reference within the composite that we wish to
bind the fault policy to.

Binding resolution
At runtime, when a fault occurs, the fault management framework will attempt to
find a condition with a corresponding action that matches the fault.

It does this by first attempting to locate an appropriate fault policy binding by
looking for a binding in the following order:

Reference binding
Component binding
Composite binding

Once it finds a binding, it will check the fault policy to find a matching condition and
then execute its corresponding action. If no matching condition is found, it will then
move to the next binding level. It will continue this process until either a matching
condition is found or all binding levels have been checked.

Using MDS to hold fault policy files
Rather than create the fault-policies.xml and fault-binding.xml files in your
composite project, which then get deployed with the composite into the runtime
environment, you can actually reference files already deployed to MDS.

To reference policies deployed on MDS, we need to add the properties oracle.
composite.faultPolicyFile and oracle.composite.faultBindingFile to
the composite.xml file. These should be added directly after the service element
and reference the location of your policy and binding files in MDS, as shown in the
following code fragment:

<service	name="proxy_ep"	ui:wsdlLocation="UserAccount.wsdl">
		…
</service>
<property	name="oracle.composite.faultPolicyFile">
		oramds:/apps/com/rubiconred/obay/fltmgmt/fault-policies.xml

•
•
•

Chapter 14

[459]

</property>
<property	name="oracle.composite.faultBindingFile">
		oramds:/apps/com/rubiconred/obay/fltmgmt/fault-bindings.xml
</property>

This has a number of distinct advantages. Firstly, you can share fault polices across
multiple composites. Secondly, if you need to modify your fault policies, you simply
need to update a single copy of your fault policy and redeploy it to MDS.

When deploying an updated version of the fault policy it will NOT
be able to automatically pick up by any composite that uses it. Rather,
you need to either re-deploy the composite or restart the server.

Fault policy and binding files are deployed to MDS in an identical way to XML
Schemas, as covered in Chapter 11, Designing the Service Contract.

Human intervention in Fusion Middleware
Control Console
To manage composites suspended pending human intervention, we need to log
into the Fusion Middleware Control Console in Enterprise Manager. Once logged
on, browse to the Faults and Rejected Messages tab. This, by default, will list all
faults, if you select the checkbox Show only recoverable faults (shown in the next
screenshot). This will list all recoverable faults, as shown in the following screenshot:

Error Handling

[460]

If you click on Recover for an individual fault, then the console will bring up the
recovery screen for that instance of the composite, as shown in the next screenshot:

This will list all the faults that have occurred in that particular instance of the
composite. If you select a recoverable fault (as shown in the previous screenshot),
it will provide details of the fault and allow you to carry out any of the standard
recovery actions available in the fault management framework, such as retrying the
service, re-throwing the exception, aborting the component, or replaying the scope. It
also provides the ability to skip the failed invoke by selecting the continue activity.

In addition, we can get the value of the payload or any BPEL process variable, like in
the preceding screenshot, where we've fetched the variable verifyCreditCardInput
that contains the message submitted to the failed invoke activity. From here, we can
also update the content of this or any other variable.

This gives us a number of options for managing the fault, including changing the
input variable and retrying the service or setting the output variable from a service
and skipping the invoke activity.

Chapter 14

[461]

Handling faults within the Service Bus
Before we look at how to handle faults inside a proxy service, it's worth taking a step
back to revisit our SOA Architecture and the purpose of the virtual service layer.

Essentially, this layer provides a proxy service based on our canonical model, which
is responsible for routing requests to the appropriate application service. In this
process, it will validate and transform the input message into the one expected by
the application service and vice versa for the response.

Within our proxy service, an error can occur at the validate stage (as discussed in the
previous chapter, Chapter 13, Building Validation into Services), in which case the proxy
service needs to generate and return an appropriate fault to the client.

In addition, when we call out to an external service, either to enrich the input
message as part of the transformation or at the route stage, a fault could occur. This
could either be a business or system fault.

A business fault, by our definition, is just another valid response that can be returned
by our application service, so the role of the proxy service is to transform that fault
from an application specific one, to one defined in the WSDL of the proxy service,
which it can then return to its client.

In the case of a system fault, one option for the proxy service is to return the fault
without modification directly to the client, and let it work out how to handle it.

However, it makes sense to define a standard set of system faults within our
architecture that we map all other system faults to. This will simplify the
implementation of standardized error handling for such faults across
our applications.

With system faults that are temporary in nature, it may be tempting to build in the
functionality to retry them. However, as we've already established, we only have a
small window in which to resolve the fault before the client times out.

So we need to follow a strategy that avoids multiple layers in our composite
application, retrying temporary errors as the role of the virtual service layer is to
provide a standardized representation of the underlying service, including faults.
As a guideline, we will not attempt to retry transient faults within this layer.

One scenario, where it makes sense to retry a business service,
is where it has multiple end points. In this scenario, if a call to
one endpoint fails, the Service Bus can be configured to retry an
alternate end point for the same business service.

Error Handling

[462]

Handling faults in synchronous proxy services
The basic strategy for handling faults within the Service Bus is essentially the same
regardless of whether it is a business or system fault. That is to catch the fault, undo
any partially completed activities so that we leave the system in a consistent state,
and map the underlying fault to a standard fault, which is then returned to the client.

If we examine the CreditCard service used by the previous BPEL process, this is
actually a proxy service implemented on the Service Bus. OBay accepts MasterCard
and Visa, and in our scenario, each of these card providers offers its own service for
card verification and payment processing.

The role of the CreditCard proxy is to provide a standardized service, independent
of card type. It will then route requests to the appropriate service, based on the card
being used.

As part of this process, the proxy service will transform the request from the oBay
canonical form into the specific format required by the card provider and vice versa
for the response.

If, during execution of the proxy service, an error occurs, the role of the proxy service
is to intercept the fault and then map it to a specific type of fault, either a business
fault defined by the proxy service or a standard system fault.

Raising an error
When an error occurs, the Service Bus performs a number of steps. First, it will
populate the $fault variable with details of the error. Next, if the error was caused
by the external service returning a fault, it will update the $body variable to hold the
actual fault returned.

For example, if the verifyMasterCard operation returned the following fault:

<env:Body	xmlns:env="http://schemas.xmlsoap.org/soap/envelope/">	
		<env:Fault	xmlns:mcd="http://xmlns.packtpub.com/MasterCard">	
					<faultcode>mcd:invalidMasterCard</faultcode>	
					<faultstring>business	exception</faultstring>	
					<faultactor>cx-fault-actor</faultactor>	
					<detail>	
						<declined	xmlns="http://xmlns.packtpub.com/MasterCard	">	
								<code>STOLEN</code>	
								<desc>Card	reported	stolen.</desc>	
						</declined>	
				</detail>	
		</env:Fault>	
</env:Body>

Chapter 14

[463]

This would be intercepted by the Service Bus, which would then populate $fault
with the following:

<con:fault		xmlns:con="http://www.bea.com/wli/sb/context">	
		<con:errorCode>BEA-380001</con:errorCode>	
		<con:reason>Internal	Server	Error</con:reason>	
		<con:location>	
				<con:node>RouteToVerifyMasterCard</con:node>	
				<con:path>response-pipeline</con:path>	
		</con:location>	
</con:fault>

Here, errorCode and its corresponding reason provide an indication of the type of
error that occurred; common error codes include:

BEA-380001 – Indicates an internal server error, including the return of a
fault by a SOAP Service
BEA-380002 - Indicates a connection error, such as the SOAP Service not
being reachable or available
BEA-382500 – Indicates that a service callout returned a SOAP Fault

We can also see from the content of the location element that the error occurred in
the response pipeline of the RouteToVerifyMasterCard node. This information can
be useful if we are implementing a more generic error handler at either the pipeline
or service level.

In addition to populating the $fault variable, the $body variable will now contain
the actual SOAP fault returned by the external service.

Finally, the Service Bus will raise an error, which, if not handled by the proxy
service, will result in the Service Bus returning its own fault to the client of the
proxy service.

Defining an error handler
The first step in handling an error is to catch it. Within a proxy service we do this
by using an error handler, which can be defined at the route, stage, pipeline,
or service level.

When the Service Bus raises an error, it will first look to invoke the error handler on
the route node or stage in which the error occurred.

•

•

•

Error Handling

[464]

If one isn't defined or the error handler does not handle the error, then the Service
Bus will invoke the error handler for the corresponding pipeline. Again, if the error
isn't handled at the pipeline level, it will invoke the service level error handler, and
if not handled at this level, then the Service Bus will return a soapenv:Server fault
with the detail element containing the content of $fault.

A fault is only considered handled if the error handler invokes either a reply or
resume action. The reply action will immediately send the content of $body as a
response to the client of the proxy service and completes the processing of the proxy.
A resume action will cause the proxy service to continue, with processing resuming
on the next node following the node on which the error handler is defined.

For faults returned by external services, it makes sense to define our error handler as
close to the error as possible, that is, on the route node, as we can handle the error in
the context it occurred, thus simplifying the logic of our error handler.

For more generic errors, such as a connection error (for example, BEA-380002), we
can define a higher level error handler at either the pipeline or service level.

In the case of our CreditCard service, this means defining an error handler on the
route nodes for each endpoint to handle errors specific to each service callout and
defining a generic error handler on the service itself.

Adding a route error handler
To define an error handler on a route node, click on it, and select the option Add
Route Error Handler, as shown in the following screenshot:

Chapter 14

[465]

This will open the Edit ErrorHandler; Route Node window, where we can configure
the error handler. An error handler consists of one or more stages, so the first
we thing we need to do is to add a stage and name it accordingly (for example,
HandleVerfifyMasterCardFault), as shown in the next screenshot:

The first step within our error handler is to check whether we have received a SOAP
Fault or something more generic. To do this, we just need to add an If…	Then…
action, which checks if the value of $fault/ctx:errorCode is either BEA-382500
or BEA-380001.

Although the Service Bus reserves the error BEA-382500 for
SOAP Faults, we find that when we return a custom SOAP Fault,
the Service Bus raises an error of type BEA-380001. So we have to
check for both error codes to be safe.

Checking the type of SOAP Faults
Next, we need to check the SOAP Fault returned (which will be in $body), so that we
can handle it appropriately.

If we examine the WSDL for our verifyMasterCard operation, we can see that it
could potentially return one of two faults: mcd:declined and mcd:invalid, each of
which needs to be mapped to a fault returned by our proxy service.

At first glance, this all looks pretty straightforward. We just need to define an 'If…
Then…' action, with a branch to test for each type of fault returned and generate the
appropriate fault to return.

For example, to test for a fault of type mcd:declined, we could define a branch with
a condition such as the following:

$body/soap-env:Fault/faultcode	=	'mcd:declined'

However, if we look at faultcode more closely, we can see its type is QName, with
a format of prefix:faultName (for example, mcd:declined), where prefix is mapped
to a namespace in the soap:Fault element (for example, http://xmlns.packtpub.
com/MasterCard).

Error Handling

[466]

The issue here is that there is no guarantee that the same prefix will always be used,
which could cause our condition to be incorrectly evaluated.

Getting the qualified fault name
To ensure that our test condition is correctly evaluated, we need to fully resolve the
QName. We can do this by using the XQuery function resolve-QName. This takes two
parameters. The first contains the QName that we wish to resolve (that is faultcode),
the second contains an element in which the namespace prefix is defined (that is
soap:Fault). This gives us a function call that looks likes the following:

fn:resolve-QName($body/soap:Fault/faultcode,	$body/soap:Fault)

As we will need to test this value multiple times, rather than embed this within
our if condition, we can use an Assign action to assign it to a variable (for example,
$faultcode).

Our modified condition to test for a fault of type mcd:declined would now look like
the following:

$faultcode	=	'{http://xmlns.packtpub.com/MasterCard}declined'

We can now define an 'If… Then…' action, with one branch for each fault we want
to test for, plus an else branch to cover any unexpected faults.

Creating a SOAP Fault
Once we know the fault returned by the external service, we can generate the
appropriate fault to be returned by the proxy service and assign this to the
$body variable.

The simplest way to do this is by creating an Assign action, and for the XQuery Text,
we directly specify the actual SOAP Fault to be returned, as shown in the
next screenshot:

Chapter 14

[467]

Handling unexpected faults
In the case of unexpected faults, we have two choices: one is to return the fault as it
is and let the client figure out how to handle it, the other is to return a generic fault
indicating that an unexpected error occurred. Typically, we would recommend the
latter approach as this will simplify error handling for the client.

It is often prudent to record details of the fault that occurred. For example, if it's
occurring frequently, we may wish to add a specific branch to our error handler to
manage a fault of this type, especially if it allows our client to make a more informed
choice on how to handle the error.

One way of achieving this is to use the Report action. This takes two parameters: the
first is the message we want to report, the second is zero, one, or more name value
pairs that we can use to search for specific reports.

In the case of error handler, we have configured it to capture details of the actual
fault message, with a single key of the format BusinessService=$outbound/@name
(which will evaluate to BusinessService=VerifyMasterCard), as shown in the
next screenshot:

At runtime this will cause a record containing the specified information as well as
additional metadata to be written to the Service Bus Reporting Data Stream. The
metadata includes information such as the error code, inbound service name, URI,
and operation and the outbound service, URI, and operation.

By default, the Service Bus is configured to write this data to a reporting data store,
which can then be queried from the Service Bus console. To view the report data,
click on the Operations tab, and then click on Message Reports (under Reporting).

This will bring up the Summary of Message Reports, where you can search for
report entries against a number of criteria, including data range, inbound service
name, error code, and the report key (defined in the Report action). From here, you
can click on a report entry to view its metadata and the actual message.

The Reporting Stream can be configured to write data to a number
of targets including JMS Queues, databases, files, and so on.

Error Handling

[468]

Returning a SOAP Fault
Once we have populated our $body variable with the appropriate SOAP Fault, the
final step is for our proxy service to return it.

We do this to using a Reply action. The key here is to configure it to Reply With
Failure, as shown in the next screenshot. This will cause the Service Bus to generate
an HTTP 500 status, indicating a fault.

Once the reply has been sent, the processing of the request is completed and no
further processing will be done.

This completes the definition of our error handler for our RouteToVerifyMasterCard
node, which looks as follows:

If an error other than a SOAP Fault occurs, then this handler will still be invoked, but
because we don't handle it (that is, execute a Reply or Resume activity), the Service
Bus will look to invoke an error handler on a higher level stage.

Chapter 14

[469]

Adding a service error handler
For handling errors other than those caused by SOAP Faults, we typically want to
define a generic error handler at the service level. To do this, click the proxy service
icon and select Add Service Error Handler, as shown in the following screenshot:

Here, we need to create a stage in which we define our error handling logic as we did
for our route node error handler.

For errors which have been raised for a reason other than a SOAP Fault being
returned by the external client, we just need to check the error code in $fault so that
we can map it to an appropriate system fault.

When generating a system fault, rather than try and map a specific Service Bus error
to a corresponding SOAP Fault, we need to think about how the client may handle
the fault. This will be typically driven by whether it is a permanent or transient fault.

Handling permanent faults
Permanent faults are ones where the same submission will continue to cause
an error. This could be due to a number of reasons, including invalid security
credentials, erroneous data contained within the message payload, or an error
within the actual service itself (that is, the request is valid, but for whatever reason
the service is unable to process it).

For each type of error, a corresponding error code is defined by the Service Bus,
which can be accessed in the $fault variable at runtime. These error codes are
categorized into the following subsystems: Transport, Message Flow, Action,
Security, and UDDI.

Within our generic service level error handler, we typically want to use an If…
Then… action to check which error category the error code falls into and then map it
to a corresponding SOAP fault. This follows a similar approach to the one we used for
mapping business service faults to corresponding faults defined by the proxy service.

Error Handling

[470]

Once we have populated our $body variable with the appropriate SOAP Fault, we
would then use a Reply action as before to return it to the client.

This ensures that any client of the proxy service will only have to deal with the
business faults defined in the WSDL of the service and a handful of pre-defined
system faults that any of the proxy services could return.

If we look at a BPEL process, this approach makes it very simple
to write a fault policy for managing a small, well defined set of
system faults, and within the BPEL process define fault handlers
for the known business faults.

Generating alerts
When a permanent fault occurs, it may indicate that we have an underlying problem
in the system. Therefore, in addition to returning a SOAP Fault to the client, we may
wish to notify someone of the problem.

One way to do this would be through the report action we looked at earlier, but
in some cases, we may have an issue that requires more immediate attention. For
example, if we have an attempted security violation or if there is an error in the
actual logic of a recently deployed proxy service.

For these situations, we can use the Alert action to publish an alert to an
appropriate destination, which could be a JMS Queue, E-mail, SNMP Trap, or
Reporting Data Stream.

To add an alert, click Add an Action | Reporting | Alert. This will insert an Alert
action into our error handler, like the one shown in the following screenshot:

To specify the content of the alert, click on <Expression>. This will launch the
XQuery expression editor, where we can define the alert body as required. We
can also specify an optional alert-summary, which is presented according to the
destination. For example, it will form the subject line for an e-mail notification.
If this is left blank, then it defaults to Oracle Service Bus Alert.

The severity level can take a value of Normal, Warning, Minor, Major, Critical, or
Fatal. These don't have specific meanings, so you can attach your definitions to each
of these values. When we configure alerting for the proxy service (see below), we can
opt to filter out alerts based on their severity level.

Chapter 14

[471]

To specify the recipient of the alert, click on <Destination>. This will launch
the 'Select Alert Destination' window, where we can search for and select any
previously defined destination.

Destinations are created and configured in the Service Bus console. This gives us the
flexibility to change the actual recipient of the alert at a later point in time, just by re-
configuring the destination appropriately.

Enabling alerts
In order for pipeline alerts to be generated, you must first enable them. Otherwise,
Alert actions will just be skipped during the execution of the proxy service. Alerts
need to be enabled in two places, first at the server level and then at the proxy
service level.

To enable them globally, click on the Operations tab with the Service Bus console
and then select Global Settings. This will display the Global Settings window.
From here, ensure the option Enable Pipeline Alerting is checked.

Once enabled globally, we can then specify settings for a proxy service. Select the
proxy service, and then click on the Operational Settings tab, as shown in the
following screenshot:

Select the checkbox for Pipeline Alerting and then from the Enabling Alerting at
drop-down list select the level of alerting required. This will suppress the generation
of any alerts with a lower severity. So in the preceding example, we have enabled
alerting at the Warning level or above, so any alert actions in the proxy service with
a severity level of Normal will be skipped.

Handling transient faults
Transient faults typically manifest themselves as non-responsive URIs (that is, no
response is being received for a particular service endpoint), which the Service Bus
indicates with the error code BEA-380002.

Error Handling

[472]

In this scenario, we have already established that for a synchronous proxy service,
there is limited scope to take any corrective action. However, for services that
provide multiple endpoints, one option is to retry an alternate endpoint.

Retrying a non-responsive business service
A business service allows you to configure multiple endpoints for a service, which
it can load balance requests across (using a variety of algorithms). This can be
useful when a particular endpoint becomes nonresponsive, as we can configure
the business service to automatically retry an alternative endpoint.

When we have multiple URIs specified for an endpoint, if the initial call to an
endpoint fails, the business service will immediately attempt to invoke an alternate
URI, and it will continue to do this until it is either successful, the Retry Count is
reached, or all online URIs have been tried.

If, at this point, the retry count has not been reached, the business service will wait
for the duration specified by the Retry Iteration Interval before iterating over the
endpoints again.

Finally, you need to ensure that we set Retry Application Errors to No. Otherwise,
any SOAP Fault returned by the business service will be treated as a failure and
prompt the Service Bus to retry.

In the previous example, where we have defined two URIs, if the first call fails then
the Service Bus will immediately call the second URI. If this fails, then it will have
reached the retry limit and the underlying error will be returned to the proxy service.
If the retry count was two, then it would wait for 30 seconds before attempting one
final retry.

Chapter 14

[473]

Handling faults in one-way proxy services
The Service Bus also allows you to define one-way proxy services, where the client
issues a request to the Service Bus and then continues processing without ever
receiving a response. This is often referred to as fire and forget.

The approach for handling errors for one way proxy services is quite different from
that of synchronous services. For transient errors, it makes absolute sense to retry
the business service until we are successful, as no one is going to timeout waiting
for a response.

For permanent errors, we can't return a fault to the client and let them resolve it.
Rather we need to alert a third party so that they can take some corrective steps to
resolve the error, and then re-run the request.

One way to do this is to publish an alert notification to a JMS Queue. We could do
this directly or go via the alerting mechanism, as described earlier. The content of the
alert will typically need to contain details of the actual error so that we know what
corrective action to perform, the proxy service invoked and its payload, so that we
can re-invoke the proxy with the original payload once the issue has been resolved.

Once we've published the alert, we also need to implement something on the other
end of the JMS Queue to process it. One approach would be to implement this
as a BPEL process, containing a human workflow task to correct the error. Once
corrected, the BPEL process could re-invoke the proxy service.

Summary
In this chapter, we've taken a detailed look at some of the key considerations we
need to take into account when handling errors within an SOA-based application.

This includes whether the interaction between the components involved is
synchronous or asynchronous, the error is a business or system error, and whether
it's permanent or transient in nature. In addition, we've examined how the error and
the handling of it are likely to impact other components at different layers within
our composite.

With this is mind, we have outlined an overall approach for handling errors within
our composite applications and how to implement this in composites and the
Service Bus.

Advanced SOA Suite
Architecture

In this chapter, we will examine some of the architectural features of the SOA Suite.
We refer to them as advanced features because they are often ignored by developers,
yet an understanding of how they work can give additional capabilities to our
composite applications. We will begin by looking at how the BPEL component
stores instance states during long running composite execution and then how it uses
threads before moving on to examine where transaction boundaries occur. Finally,
we will review how a cluster works, and how it may impact the way we design and
build our composites. Clemens Utschig has been a great source of help in providing
the information for this chapter.

Relationship of infrastructure to service
engines
The Software Component Architecture (SCA) Assembly is understood by the core
SOA Suite infrastructure, also known as Fabric. Fabric is responsible for routing
messages to appropriate service components within a composite, for example, to a
BPEL component or a Mediator component. How the message is processed is the
responsibility of the service component and not Fabric. Fabric maps the incoming
messages to the correct deployed composite and then within the composite to the
correct service engine. It also routes messages between components in a composite.
All the interesting work is done within the service engines themselves.

Fabric routes messages based on their incoming port type and endpoint to the
correct composite. It does not route based on message content and it does not do
any message transformation; these are features of the Mediator component.

Advanced SOA Suite Architecture

[476]

Composite execution and suspension
Many composites will be long running, taking minutes, hours, or days to complete.
To avoid unnecessary memory usage and to provide resilience in case of machine
failure these composites will be persisted to the SOA Suite repository database. This
process is known as dehydration and it involves storing the current execution state
of the composite in the database. Usually this state is stored and managed by the
BPEL component. When an event occurs that requires the composite to take some
action, such as a timer expiring or a message arriving, then the SOA Suite retrieves
the composite state from the database and schedules it for execution. A composite
may be dehydrated multiple times during its life.

BPEL dehydration events
A BPEL process may be dehydrated at a number of different points. It is important
to be aware of these when developing an application because, as we will see later,
dehydration points affect the transaction boundaries of our composite.

Some of the key events that cause dehydration to occur are as follows:

Waiting for an incoming message using a BPEL receive or pick activity
Waiting for a specific time or a delay using a BPEL wait	element
After a non-idempotent call to another service
Before a wait

For example, a BPEL process may be waiting for the response from an asynchronous
interaction or a new inbound message as a result of a pick or receive activity. This
will cause the process state to be written to the dehydration database.

When a composite is running on a server instance, in the event of server instance
failure, a BPEL process will resume execution from the last dehydration point. A
corollary to this is that if the composite is a request/response interaction with no
dehydration points, then the composite instance will be lost.

Threading and message delivery in SOA
Suite
There are a number of different thread pools used by the SOA Suite runtime. Some
of them are used to run background tasks such as keeping track of which processes
need to be woken after a BPEL wait activity or waiting for messages to arrive. Other
threads are used to execute composites. In this section, we will focus on threads as

•
•
•
•

Chapter 15

[477]

they apply to the execution of our composite application. The SOA infrastructure
obtains its threads from the underlying applications server but manages those
threads itself.

Messages arrive in two distinct interaction patterns. They are either one-way
messages, which are not part of an operation requiring a reply, or they are
synchronous request/reply messages with a response message expected as
part of the operation.

One-way message delivery
One-way interactions (messages that don't expect an immediate reply) are normally
stored by the service layer prior to delivery, allowing them to be quickly accepted
and then processed later. Effectively, they are enqueued by the incoming thread
while a separate thread dequeues them and executes the associated composite.
The messages themselves are not placed in a queue but stored in the database and
only a notification that the message is available is placed on a queue. Synchronous
request/reply messages are executed as part of the thread that made the request.
For a web service request across HTTP, this will mean that they are executed as part
of the servlet thread of the underlying application server. If the two-way request is
from an adapter, then it will execute on the activation agent thread (note that normal
operation is for activation agents to have a one-way interface).

Advanced SOA Suite Architecture

[478]

The previous diagram shows how a one-way message is processed. The example
uses a SOAP binding example, but the request could be from another service engine
in the same or a different composite, or from an adapter. The Requestor Thread
places the message in the database and places a short notification message on a
queue and then continues to do whatever it was doing before the request. Invoker
threads (thread pools are explained later) in the BPEL engine will receive the
notification message and retrieve the message from the database and execute the
appropriate BPEL activities in the BPEL process.

Immediate execution of one-way messages in
BPEL
As previously explained, the normal behavior of the BPEL and Mediator engines
is to process a one-way message in a separate thread to the one on which it is
received. This allows the engine more control over the scheduling of the request.
However, sometimes we want our one-way message to be executed immediately
using the incoming requestor thread. In that case, we can set a property on the BPEL
component called bpel.config.oneWayDeliveryPolicy. This property has the
following values:

bpel.config.oneWayDeliveryPolicy Behavior
async.persist Default behavior of storing message in

database.
async.cache Stores message in memory rather than

database.
sync Message not stored as it is processed directly

on receiving thread.

Modifying the oneWayDeliveryPolicy allows us to trade-off reliability of delivery
and coupling with the client for speed of delivery. Using the sync option offers
the best performance, but the requestor will perceive that it took longer to post
the message due to the increased coupling between the requestor and the target.
Similarly, using the async.cache option reduces the performance overhead of
storing the message in memory. However, if the server fails before the message is
processed, it will be lost as it is stored in memory. The following sections outline the
different types of threads used to process messages in the BPEL engine.

Chapter 15

[479]

Activation agent threads
JCA adapters that support inbound messages (incoming messages to BPEL) have
their own thread pools that are used to wait for incoming messages, often by polling,
as in the case of the database adapter. When a message arrives, unless it is a two-way
interaction, it will be enqueued for execution by a separate thread. It is possible to
use the activation agent thread to process the request by changing the async interface
into a synchronous (two-way) interaction by providing a dummy response in the
WSDL. This is useful if we want any transaction associated with the adapter, such as
JMS message removal or database update, to be included with the transaction used
by a Mediator or BPEL component.

Dispatcher threads
There are a number of different dispatcher threads that manage execution of
messages from the internal queue of messages to be processed. A number of these
threads can be configured from the BPEL Service Engine Properties screen, accessed
from the soa_infra | SOA Administration | BPEL Properties pop-up menu.

Advanced SOA Suite Architecture

[480]

The previous screenshot displays BPEL properties. The BPEL Service Engine
Properties screen also allows us to configure other BPEL engine properties besides
the thread properties, outlined as follows:

Dispatcher System Threads: These threads are used for cleanup activities by
the engine.
Dispatcher Invoke Threads: These threads are used to instantiate (create)
new BPEL process instances as a result of messages arriving through one-
way interactions. These are the invoker threads discussed earlier.
Dispatcher Engine Threads: These threads are responsible for continuing
processing of already created processes that have been suspended due to a
wait or a receive. For example, when a BPEL process that has already been
created receives a message, it will be processed using this thread pool.
Synchronous Invoke Threads: Synchronous (request/reply) messages are
processed on the thread on which they arrive, which may be a servlet thread
for bindings that come through servlets, an Enterprise Java Beans (EJB)
thread if the EJB invokes the service engine, and so on. These threads are
managed at the application server level.

•

•

•

•

Chapter 15

[481]

The next example shows how the requesting thread of a request/reply interaction
is also used to process the BPEL activities associated with the process. The next
example uses a SOAP binding but again it could be any client, including another
service engine or an adapter. The example assumes that there are no dehydration
points within the process and that it terminates after the reply activity.

Transactions
Transactions are tightly coupled to dehydration points within a process. Composite
interactions take place within a transaction context. That transaction context is
committed when a dehydration point is reached in a composite. Any updates to
the dehydration store are done in the context of the current transaction.

BPEL transactions
There are a number of ways to control the transaction within a BPEL process. Specific
activities affect the transaction management as well as properties on partner links
and composite components.

BPEL component properties
The transaction property of a BPEL component in composite.xml can be used to
control the participation of the BPEL process in the calling entities transaction. This
is similar to the way in which the author of an EJB can control the transactional
behavior of the EJB. This allows the creator of the composite to control the
transaction properties of their components.

Advanced SOA Suite Architecture

[482]

The default setting is to have transaction=requiresNew, which causes the BPEL
process to execute within its own transaction.

Component property Target composite Source process
transaction=required Executes in the same thread

and transaction. If no
transaction exists one will be
created that commits when
the invocation completes.

Keeps the same thread
and transaction.

transaction=requiresNew

(default	value)

Executes in the same thread
but a separate transaction
that commits when the
invocation completes.

Keeps the same thread
and transaction.

The following example shows how a component may be made to participate in the
caller's transaction by editing the composite.xml file:

<?xml	version="1.0"	encoding="UTF-8"	?>
<!--	Generated	by	Oracle	SOA	Modeler	version	1.0	at	[3/6/10	11:16	AM].	
-->
<composite	name="TransactionThreadTest"…>
			…
		<component	name="GetThreadTxProcess">
				<implementation.bpel	src="GetThreadTxProcess.bpel"/>
 <property name="bpel.config.transaction">required</property>
		</component>
		…
</composite>

BPEL partner link properties
The following table identifies some ways in which the transaction behavior may be
controlled in a BPEL process through the use of following partner link properties for
synchronous interactions:

Chapter 15

[483]

Partner link property Target service Source process
nonBlockingInvoke=true

(default value is false)

Executes in a separate
thread and transaction.

Under the covers, a receive
is created to await the result
from the invoke. This causes
the current transaction to
be committed and a new
transaction to be started. It
also results in suspension
of the current thread and
resumption of processing
will occur on a different
thread.

idempotent=false

(default value is true)

Executes in the same
thread and transaction.

After completion of the
invocation, the transaction
is committed and a new
transaction is started. The
same thread is kept.

When a transaction is committed and a new one has started, we refer to it as a
dehydration point because the state of the process is committed to the database.

Partner link properties can be created and modified in JDeveloper by editing a
partner link and selecting the property tab.

BPEL activities
The following table identifies some ways in which the transaction behavior in a BPEL
process is influenced by certain activities:

Activity Source process
Receive

Wait

Pick

After the activity is set up, the transaction is committed and the thread
is released to the pool. When the activity completes, the process will
resume with a new thread and a new transaction. Note that a pick may
be thought of as scheduling multiple receives and a wait, only one of
which will complete.

Flow

FlowN

The flow will execute in the same thread and transaction. It does not
execute in parallel, but each branch may execute independently if
there are activities to process. The use of other activities may cause the
committing of the transaction and/or the scheduling of different threads,
but the flow itself does not do so.

Advanced SOA Suite Architecture

[484]

Parallel execution in a flow or flowN
Often, we may want to use a flow to fire off several request/
reply invokes in parallel. We can achieve this by setting the
nonBlockingInvoke partner link property on the target of the invokes
to be true. This will cause the invoke to execute in parallel, rather than
the default behavior of sequential execution. If each invoke may take 100s
of milliseconds or more, then this can be a significant performance boost
to our composites. In this case, the flow will stop processing the current
branch after initiating the nonBlockingInvoke and look for another
branch with activities to process.

Transactions and thread wrinkles in BPEL
Normally we think of async interactions as consisting of two one-way messages.
However, we may have an async interaction that consists of a two-way message
with a one-way callback. This would appear as a WSDL with two partner roles and
an operation with <input> and <output> elements. In Chapter 3, Service-enabling
Existing Systems, we used this same approach for a different purpose, to assist in
throttling a file or FTP adapter. We may also have a BPEL process that continues
after a reply.

Reply handling
We normally think of reply as causing the response to be sent back to the client,
and if the transaction was initiated by the BPEL service engine, then it would be
committed as part of the reply. In most cases, this is an accurate description of
the end result, but this is not actually what happens. When a reply is reached, the
response message is marked as available for returning to the requestor, but it is not
returned to the requestor. Instead the BPEL engine will continue to process activities
until it reaches a dehydration point. On reaching the dehydration point, the current
thread (which was also the requesting thread) will return the reply message to
the requestor. Note that this results in a delay in the returning of the result to the
requestor, and it also causes the transaction scope to extend past the reply activity.

Chapter 15

[485]

In SOA Suite 10.1.3, there was a partner link property idempotentReply
that when set to true caused the transaction to be committed and the
response returned to the requestor immediately after the reply activity.
In 11g, this became a component property. The problem with this
approach is that it applies to all operations of a partner link (and in the
11g patch, set 1 to all partner links in the component). Patch set 3 of SOA
Suite 11g is expected to have a checkpoint activity which can be placed
after the reply to force the thread to return the result immediately. The
same effect can be achieved in patch set 1 and base 11g by using a Java
exec activity with the breakpoint() call.

Oracle Service Bus (OSB) transactions
The OSB has a simpler transaction model than that of the BPEL engine. The way
transactions are handled depends on the nature of the incoming request and the
transaction characteristics of the partner service.

Transactional binding
If the incoming binding for the request to the Service Bus is transactional, then the
proxy service will participate in that transaction, and any proxy services, or business
services invoked by the proxy, will participate in the same transaction. Control of the
transaction, in this case, rests with the client. An example of this is the EJB binding or
the Java Message Service (JMS) binding.

In the case that a flow within a proxy invokes several transactional proxies and
business services, they will all be enrolled in the initial inbound transaction and
committed or rolled back as part of that transaction. Hence any transactional
services invoked will all commit together or all roll back together.

Non-transactional binding
If the incoming binding for the request is not transactional, such as a SOAP request
or a file transport, then the transactional behavior of the proxy depends on the type
of proxy.

Advanced SOA Suite Architecture

[486]

Non-transactional proxy
This is the default type of proxy and the only type of proxy that existed prior to 11g.
In this case, if there is no incoming transaction then the proxy will not execute as part
of a transaction. Any transactional proxies or business services that it invokes will
each execute in their own transaction. This means that the invoked services will not
necessarily be all complete or all roll back together. Some services may succeed and
commit, others may throw an error and rollback.

Transactional proxy
A new feature in OSB 11g is the transactional proxy. A transactional proxy will start
a new transaction if one does not exist in the request received. From this point on,
the behavior is the same as the transactional binding case, with all transactional calls
in a flow being part of the same transaction. In this case, the transaction is committed
when the proxy flows have completed.

Comparison to EJB
Although OSB is not built using EJBs, the non-transactional proxy behaves
transactionally in a similar way to EJBs with the transaction semantics of participates.
If a transaction exists, they will participate in it, but they will not create a new
transaction themselves.

The transactional proxy and BPEL processes with the transaction partner link
property of Required behave in a similar way to EJBs with the transaction
semantics of Required. If a transaction already exists, they will participate
in it; if no transaction exists, they will start a new one.

BPEL processes with a transaction partner link property of requiresNew behave in a
similar fashion to EJBs with transaction semantics of requiresNew. They will always
start a new transaction rather than participate in any calling transaction.

Clustering
The SOA Suite and OSB both take advantage of the underlying clustering capabilities
of the application server. A cluster can consist of one or more server instances
running either the OSB, the SOA Suite, or Business Activity Monitoring (BAM).
When running on WebLogic, a domain may have no more than one OSB cluster,
one SOA Suite cluster, and/or one BAM cluster.

Chapter 15

[487]

A domain is a set of WebLogic servers with a central administration point (the
Admin Server) and a central configuration repository (config.xml). A managed
server is a WebLogic server instance running in a single JVM on a single machine
with a targeted set of applications. A cluster has a number of managed servers
that may be targeted at multiple physical machines and can be managed as a
single entity.

In SOA Suite 10g, domain was used to describe a logical collection
of BPEL processes in a BPEL server. This could be used to give each
developer their own environment (domain) in a single BPEL server
instance on a single JVM. This facility is not available in 11g up to patch
set 1. In patch set 2, this facility will be brought back under the new name
of partitions. The name had to change because of the existing use of
domains by the WebLogic server.

The best source of information on creating a cluster is the Enterprise Deployment
Guide (EDG) in the SOA Suite documentation.

There are some key considerations to take into account when creating a cluster.

Load balancing
A cluster will require a load balancer to distribute inbound requests across machines
in the cluster. A hardware load balancer such as an F5 Big IP machine will provide
much better performance and resilience than a software load balancer. The address
of the load balancer must be provided to the cluster to enable the correct creation of
callback addresses and service endpoint references, as detailed in the EDG.

JMS considerations
Most components can be easily replicated in a cluster. However, JMS poses some
challenges. JMS is used heavily by both the OSB and SOA Suite. WebLogic has the
concept of distributed JMS, which allows for multiple servers to host a single logical
queue. In this configuration, however, it is necessary for each server hosting part of
the distributed queue to be set up for whole server migration. This WebLogic facility
enables a server to be restarted on a different machine in the case of machine failure.
This is important because without this, any messages in the portion of the distributed
queue on the failed machine will not be available until that machine is brought back
into operation.

Advanced SOA Suite Architecture

[488]

When using a distributed queue, a shared filesystem such as a Storage
Area Network (SAN) should be used to hold the distributed queue files
so that they are available to the managed server when it is restarted on
another physical machine.

WebLogic JMS also supports database queues. If stored in an Oracle Real
Application Clusters (RAC) database these can provide a high degree of availability,
but there may be contention issues for the queue tables when large numbers
of managed servers are all accessing the same shared queue. Hence the Oracle
recommendation is to use distributed queues with a resilient file-based backing
store, ideally on a SAN, so that it can easily be shared between multiple machines.

Testing considerations
When testing a cluster, it is important to ensure that requests are distributed
across the cluster in a fair manner. This is important to make sure that there are no
unexpected behaviors when requests for the same composite instance are distributed
across several nodes in the cluster.

Avoid IP stickiness
When using a load balancer during testing, it is important to avoid the
use of a load balancer set up to use IP stickiness. IP stickiness is used to
route requests to servers based on the IP address of the client. This is
bad when testing, in particular, because the request will tend to come
from a small number of load injectors, and this will cause all requests
from a single injector to hit a single server. This can mask problems that
only show themselves when the same composite is executed on multiple
servers. Note that HTTP cookie stickiness is a good idea, however, as
it allows correct operation of several components including the human
workflow engine and the consoles.

Often, we will use a composite to test other composites. In this case, we need to
make sure that the test harness composite makes external calls through the load
balancer to all the services it invokes. We can do this by setting the endpoint address
to be different from the configured property on a reference. This ensures that the
test mimics the real world more closely. Failure to do this will mean that the test
will be using the optimized internal transports and hence show better performance
characteristics than might be expected in production.

Chapter 15

[489]

Adapter considerations
Some of the adapters need to synchronize their access to shared inbound resources
such as files, database tables, and message queues. The JCA adapters that require
this communicate using cluster software called Coherence to run in active-active
mode, meaning that all adapters are active at the same time but they co-ordinate
their activities to avoid conflicts. This is configured by default and is a significant
improvement over the active-passive adapter configurations that were required in
SOA Suite 10g.

Metadata repository considerations
The repository is used not just to hold metadata, but also to persist runtime
information such as BPEL process instance state. Hence it is important that this
component is highly available to avoid outages due to database failure. Oracle
Real Application Clusters can be used to provide a highly available database for
the repository. Without the repository, the SOA Suite will not be able to operate so
thought must be given to the availability characteristics of the database it uses.

Database connections
Although of a particular concern to the metadata repository, the number of
database connections needed in a cluster is also relevant to application data sources.
When sizing the database connection pools in the application server, it should be
remembered that every dispatcher thread (invoker, engine, and system) will need
at least one connection to the metadata repository. In addition, each concurrent
request/reply message will require another connection.

When sizing the number of sessions and processes in the database, it is important
to remember to size them based on the sum of the number of connections in the
managed server pools multiplied by the number of managed servers, plus the
number of connections in the connection pools of the Admin server.

Advanced SOA Suite Architecture

[490]

Summary
In this section, we have examined how we can control the scope of transactions
used in the SOA Suite. We have also looked at how these transactions interact with
threads to provide different execution models for our composites. We concluded
with a brief discussion of issues to consider when clustering SOA Suite. Oracle
has produced a large document in the SOA Suite documentation, the Enterprise
Deployment Guide, that explains in detail all the steps that are required to create a
resilient cluster, and this document is worth a careful study before setting up
any cluster.

Message Interaction Patterns
In every composite, messages are exchanged between participants. So far, we have
only looked at simple interactions, that is, a single request followed by a reply,
whether synchronous or asynchronous.

Asynchronous messaging adds additional complexities around the routing and
correlation of replies. In this chapter, we look at how the SOA Service Infrastructure
uses WS-Addressing to manage this, and in situations where this can't be used,
examine how we can use correlation sets in BPEL to achieve the same result.

As a part of this, we look at some common, but more complex, messaging patterns
and requirements such as:

How we can handle multiple exchanges of messages, either synchronous or
asynchronous between two participants
How BPEL can be used to aggregate messages from multiple sources
Although it is not strictly a message interaction pattern, examine one
technique for process scheduling

Finally, as we explore these patterns, we take the opportunity to cover some
of BPEL's more advanced features, including FlowN, Pick, and Dynamic
Partner Links.

Messaging within a composite
Before looking at messaging patterns in detail, it's worth taking a moment to provide
a high-level overview of how messaging is handled within a composite.

•

•
•

Message Interaction Patterns

[492]

Within the SOA Suite, the messaging infrastructure consists of three distinct parts:

Service Engines: They are responsible for executing the business logic
within a composite (for example, BPEL PM, Mediator, Workflow, and
Business Rules).
Binding Components: They handle connectivity between composites and the
outside world (for example, HTTP, JCA, B2B, ADF BC).
Service Infrastructure: This is responsible for the internal routing of
messages between service engines and binding components.

For example, the following diagram shows an external client invoking the submitBid
operation against our Auction Composite.

Here we can see the invocation is made using SOAP over HTTP via the
corresponding binding component. The binding component handles receipt of
the message over its corresponding transport protocol and then translates into a
normalized form before forwarding it onto the Service Infrastructure.

The normalized form is an internal representation of the XML
message, as defined by the service's WSDL contract.

The Service Infrastructure will apply the appropriate policies such as management
and security (see Chapter 21, Defining Security and Management Policies for further
details) against the normalized message before routing it to the appropriate service
engine, as defined in the composite.

•

•

•

Chapter 16

[493]

In the previous example, the Service Infrastructure will forward the request to the
Mediator proxy, which will then route the request through to the Auction BPEL
process. The BPEL process then invokes the rules engine to evaluate the bid. Each of
these invocations between Service Engines goes via the Service Infrastructure (again
applying any polices that we have defined).

After the bid has been successfully evaluated, the response is returned from the rules
engine to BPEL to the Mediator to the Binding Component again via the Service
Infrastructure, before the binding component returns the result to the consumer
that sent the original request.

Processing of messages within the Mediator
The Mediator service engine on receipt of a new request message will instantiate
a new instance of a Mediator to process the message. In the case of a synchronous
operation, the request and response messages are evaluated in the same thread
and transaction as the caller (that is, the binding component or service engine).

In the case of an asynchronous operation, the state of the instance will be persisted to
the dehydration store awaiting the appropriate callback. On receipt of the callback,
the Mediator will rehydrate the appropriate instance to handle the callback and send
a response to the client.

Processing of messages within BPEL PM
In the case of a BPEL process, it is possible, as in the case of the auction process,
to make multiple invocations against a single instance of a BPEL process (unlike
the Mediator).

Thus, on receipt of a message, the BPEL engine will either instantiate a new instance
of the process to handle it or route it through to the appropriate instance of an
already running process.

Whenever a BPEL process reaches a point where it needs to wait for a message, for
example, for an asynchronous callback or an incoming synchronous request, the state
of the process instance is written to the dehydration store. On receipt of the message,
the BPEL engine will rehydrate the appropriate instance to handle the message.

Thus, in the preceding example, each time a client invokes submitBid against the
same auction item, the Mediator will create a new instance of the proxy Mediator to
process the request, yet we will only have a single instance of the auction process.

The reason why this is important is because it places a number of requirements on
the Service Infrastructure on how it handles the routing or addressing of messages
between composites and the outside world, as well as internally within a composite.

Message Interaction Patterns

[494]

Message addressing
As we have just covered, a key requirement in any message exchange is to ensure
that messages are routed to the appropriate service endpoint. Initial web service
implementations were built using SOAP over HTTP, primarily since HTTP is well
understood and is able to leverage the existing Internet infrastructure.

Using this approach, a URI is used to identify a service endpoint, which can then
be used to route a message using the HTTP protocol from the client to the provider.
Additional information, such as the action to be performed at the endpoint is
encoded in HTTP headers. While this is a simple yet powerful approach, it
has a number of limitations.

Multi-protocol support
If we look at the following SOAP message sent over HTTP, we can see that the URI
for the service endpoint is specified as part of the HTTP Request-Line, and the action
to be performed at the service endpoint is specified in the HTTP header, SOAPAction.

POST /soa-infra/services/default/AysncB/client_ep HTTP/1.1
Host:	www.rubiconred.com:80
SOAPAction: "process"
Content-type:	text/xml;	charset=UTF-8
Content-length:	356

<?xml	version="1.0"	encoding="UTF-8"?>
<env:Envelope	xmlns:env="http://schemas.xmlsoap.org/soap/envelope/"	
														xmlns:xsd="http://www.w3.org/2001/XMLSchema"	
														xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
		<env:Body>
				<HelloWorldRequest	xmlns="http://rubiconred.com/HelloWorld">
						<input>Rubicon	Red</input>
				</HelloWorldRequest>
		</env:Body>
</env:Envelope>

Now while this may seem trivial, it's important to recall that SOAP was never
intended to be tied to a single transport protocol, rather SOAP messages could
be transported via multiple transport protocols, such as JMS and RMI via the
appropriate binding. Indeed, a single SOAP message may potentially travel
over a number of protocols before reaching its final endpoint.

The impact of externalizing some of the message routing instructions within the
HTTP header means that the job of dispatching the message is split between the
HTTP layer and the SOAP layer.

Chapter 16

[495]

This makes it difficult to switch from one transport protocol to another as this
external information must be mapped to an equivalent property in the alternative
transport layer, external to the SOAP message.

This hampers not only the adoption of alternative SOAP bindings, but historically
has caused issues around interoperability, due to different vendors defining this
header information in subtle different ways.

Message correlation
HTTP's other limitation is that it is stateless in nature, and thus provides no support
for conversations requiring the exchange of multiple messages. With synchronous
interactions, this is not an issue, as the response message for a particular request can
be returned in the HTTP response.

However, with asynchronous interactions, this is a more serious limitation. To
understand why, look at the following diagram, which shows a simple asynchronous
interaction between two processes, A and B. In this case, the interaction is started
by Process A initiating Process B, which does some work before sending a response
back to Process A.

All of this looks pretty straightforward, until you consider how it actually works.
The first thing to note is that this consists of two operations, one for the initial
invocation and the other for the response. Each operation (or message) is sent
as separate HTTP POSTs (with the HTTP response being empty).

This is where the complexity comes in. While this example shows Process A
invoking Process B, it could potentially be invoked from multiple clients, for
example, another process or an external client. So how does Process B know the
service endpoint it needs to invoke for the callback?

Secondly, assuming that we have multiple instances of process A and B running at
the same time, once we have routed the message to the correct service endpoint, how
does the service engine at that endpoint know which instance of Process A to route
the response from Process B to?

Message Interaction Patterns

[496]

WS-Addressing
To solve these issues, the SOA Suite makes use of WS-Addressing, which provides a
standardized way of including all the address-specific information as SOAP headers
within a SOAP message.

With this approach, the transport protocol is just responsible for delivering the
message to the appropriate binding component, which will then deliver the message
to the Service Infrastructure. This will then route the message to the appropriate
endpoint/service engine.

To demonstrate how WS-Addressing achieves this, let us look at the WS-Addressing
headers the Service Infrastructure inserts into our request and response messages in
the previous example.

Request message with WS-Addressing
The initial request sent by composite A, with WS-Addressing headers inserted, looks
something like the following:

<env:Envelope	xmlns:env="http://schemas.xmlsoap.org/soap/envelope/"
														xmlns:wsa="http://www.w3.org/2005/08/addressing"
														xmlns:ins="http://xmlns.oracle.com/sca/tracking/1.0">
		<env:Header>
 <wsa:To>http://hostname:8001/soa-infra/services/default/AysncB/
 client_ep</wsa:To>
 <wsa:Action>http://xmlns.oracle.com/AsyncA/AsyncB/BPELProcessB/
 BPELProcessB/process</wsa:Action>
 <wsa:MessageID>urn:62772860C2DE8F6A0634D09B</wsa:MessageID>
 <wsa:RelatesTo>urn:62772860C2DE8F6A0634D09B</wsa:RelatesTo>
 <wsa:ReplyTo>
 <wsa:Address>
 http://hostname:8001/soa-infra/services/default/AsyncA!1.0*
 2fc449a6-fa51-440a-afae-b143d9c26d88/BPELProcessB%23BPEL
 ProcessA/BPELProcessB
 </wsa:Address>
						<wsa:ReferenceParameters>
								<ins:tracking.ecid>…</ins:tracking.ecid>
								<ins:tracking.conversationId>…</ins:tracking.conversationId>
								<ins:tracking.parentComponentInstanceId>…
								</ins:tracking.parentComponentInstanceId>
						</wsa:ReferenceParameters>
 </wsa:ReplyTo>
		</env:Header>
		<env:Body>
				…
		</env:Body>
</env:Envelope>

Chapter 16

[497]

The first header that has been added is wsa:To, which defines the URI address of the
endpoint that the SOAP message should be delivered to. The other header related
to this is wsa:Action, which specifies how the message should be processed, once
delivered to the endpoint. In this respect, it is equivalent to the SOAPAction HTTP
header we saw earlier.

The next header is wsa:MessageId, which is used to uniquely identify the
message. The other header connected to this is wsa:RelatesTo, which contains
the message ID of the first message exchanged in this interaction. As this is the first
message in the exchange, it contains the same value as wsa:MessageId. As we will
see in a moment, these headers are used to correlate the response message back to
the original requestor.

The final header is wsa:ReplyTo, which contains the wsa:Address element. In the
case of an asynchronous request, this will contain the URI address of the endpoint
for the callback.

You may have noticed that wsa:ReplyTo contains the additional
element wsa:ReferenceParameters, which in turn contains a number
of additional elements such as ins:tracking.conversationId.
These are not part of the WS-Addressing specification, but rather an
extension specific to the Oracle Service Infrastructure, which is used
to maintain the invocation trace between all the different components
involved in an end-to-end invocation of a service.

Response message with WS-Addressing
When sending an asynchronous response message, it will contain the same set of
WS-Addressing headers as our request. What's of interest is the values in some of
those headers and how they relate to the original request message.

<env:Envelope	xmlns:env="http://schemas.xmlsoap.org/soap/envelope/"								
														xmlns:wsa="http://www.w3.org/2005/08/addressing"
														xmlns:ins="http://xmlns.oracle.com/sca/tracking/1.0">
		<env:Header>
 <wsa:To>

 http://hostname:8001/soa-infra/services/default/AsyncA!1.0*

 2fc449a6-fa51-440a-afae-b143d9c26d88/BPELProcessB%23BPEL

 ProcessA/BPELProcessB

 </wsa:To>

							<wsa:Action>processResponse</wsa:Action>
				<wsa:MessageID>urn:62772860C2EBFB26F9ED8D4E</wsa:MessageID>

Message Interaction Patterns

[498]

 <wsa:RelatesTo>urn:62772860C2DE8F6A0634D09B</wsa:RelatesTo>

				<wsa:ReplyTo>
						<wsa:Address>	
								http://www.w3.org/2005/08/addressing/anonymous
						</wsa:Address>
						<wsa:ReferenceParameters>
								<ins:tracking.conversationId>…</ins:tracking.conversationId>
								<ins:tracking.parentComponentInstanceId>…	
								</ins:tracking.parentComponentInstanceId>
						</wsa:ReferenceParameters>
				</wsa:ReplyTo>
		</env:Header>
		<env:Body>
				…
		</env:Body>
</env:Envelope>

The first one of interest is wsa:To. This will contain the address specified in the
wsa:ReplyTo endpoint reference of our request reference, which allows the Service
Infrastructure to route the response to the appropriate endpoint.

In addition, if we look at the message above, we can see that the property
<wsa:RelatesTo> contains the value of wsa:MessageId specified in the original
request. It's this value that enables the endpoint to correlate the response back to the
original request. In our case, this enables the BPEL engine to route the response from
Process B back to the instance of Process A, which sent the original request.

In the preceding example, it's quite feasible for Process A and Process
B to send multiple messages to each other. Any further exchange of
messages between the two process instances will just contain the same
<wsa:RelatesTo> property within the SOAP header.

Using BPEL correlation sets
For situations where WS-Addressing isn't appropriate or available, BPEL provides
the concept of correlation sets. Essentially, correlation sets allow you to use one or
more fields present in the body of all correlated messages (for example, orderId)
to act as a pseudo conversation ID (equivalent to the <wsa:MessageID> and
<wsa:RelatesTo> properties in WS-Addressing).

Chapter 16

[499]

A correlation set consists of one more properties; these properties are then mapped
using property aliases to the corresponding fields in each of the messages that are
being exchanged. The combined value of these properties at runtime should result
in a unique value (at least unique across all instances of the same process), which
allows the BPEL engine to route the message to the appropriate instance of a process.

Using correlation sets for multiple process
interactions
A common requirement is for a client to make multiple synchronous invocations
against the same instance of a process. The first request is pretty much the same as a
standard synchronous request, but all subsequent requests are subtly different as we
now need to route these requests through to the appropriate instance of an already
running process rather than initiate a new instance.

Take the UserRegistration process; this is a long running process which needs
to handle multiple synchronous requests during its lifecycle. The first operation
submitUserRegistration is called by the client to initiate the process, which
validates all the provided user information and returns a confirmation of success
or otherwise.

The only information that is not validated at this stage is the e-mail address. For this,
the process sends an e-mail to the provided address containing a unique token which
the user can use to confirm their address.

Once they have received the e-mail, they can launch their browser and submit the
token. The web client will then invoke the confirmEmailAddress operation. It's at
this point we need to use a correlation set to route this request to the appropriate
instance of the UserRegistration process.

Defining a correlation set property
The first step is to choose a unique field that could act as a property. One approach
would be to use the user ID specified by the user. However, for our purposes, we
want to use a value that the user will only have access to once they have received
their confirmation e-mail, so will use the token contained in the e-mail.

Message Interaction Patterns

[500]

To create a property within the Structure view for the BPEL process, right-click
on the Properties folder and select Create Property…, as shown in the
following screenshot:

This will launch the Create Correlation Set Property window. Give the property
a meaningful name, EmailToken for example, and then click the search icon to
launch the Type Chooser, and select the appropriate schema type (for example,
xsd:string), as shown in the following screenshot:

Defining correlation set
Once we've defined our correlation set property(s), the next step is to define the
correlation set itself.

Correlation sets can be defined either at the process level or for a particular scope. In
most cases, the process level will suffice, but if you need to have multiple correlated
conversations within the same process instance, for example, iterations through a
while loop, then we define the correlation set at the scope level.

Chapter 16

[501]

Within the BPEL Structure view, expand the Correlation Sets folder, and then the
Process folder, and right-click on the Correlation Sets folder. From the menu, select
Create Correlation Set…, as shown in the following screenshot:

This will launch the Create Correlation Set window, displayed on the following
page. Give the correlation set a meaningful name, EmailTokenCS in our case, and
then select the + symbol to add one or more properties to the correlation set.
This will bring up the Property Chooser, where you can select any previously
defined properties.

Using correlation sets
Next, we need to specify which messages we wish to route with our correlation set.
For our purposes, we want to use the correlation set to route the inbound message
for the operation confirmEmailAddress to the appropriate process instance.

Message Interaction Patterns

[502]

To configure this, double-click the Receive activity for this operation to open
the Receive activity window, and select the Correlations tab, as shown in the
following screenshot:

Next, select the + symbol; this will launch the Correlation Set Chooser, as shown in
the following screenshot:

Chapter 16

[503]

From here we can select the EmailTokenCS we defined previously. Click OK, and
this will return us to the Correlations tab, showing the newly added correlation.

We can see here that we have to specify one additional property Initiate. This is used
to specify which message should be used to initialize the correlation set.

Initializing the correlation set
As you would expect, the value of the property(s) contained in the first message
exchanged in any sequence of correlated messages must be used to initiate the value
of each property contained within the correlation set.

However, rather than implicitly initializing the correlation set based on the first
message exchanged, BPEL expects you to explicitly define which message activity
should be the first in the sequence by setting the Initiate property to Yes.

If we try and initialize an already initialized correlation set or try to
use a correlation set that isn't initialized, then a runtime exception will
be thrown by the BPEL engine. Likewise, once initialized, the value of
these properties must be identical in all subsequent messages sent as
part of the sequence of correlated messages, or again the BPEL engine
will throw an exception.

When initializing a correlation set, any outbound message can be used to achieve
this. However, there are practical restrictions on which inbound messages can
be used to initiate a correlation set, as the process must first receive the inbound
message before it can use it to initialize a correlation set.

Message Interaction Patterns

[504]

Essentially, if an inbound message is used to create a new instance of a process or
is routed through to the process by another mechanism (for example, a different
correlation set), then it can be used for the purpose of initiating our correlation set.

In our case, we are using the correlation set to route the inbound message for the
confirmEmailAddress operation through to an already running process instance,
so we need to initialize the correlation set in an earlier message. We can do this
within the Invoke activity for the subprocess validateEmailAddress.

We define a correlation set for an Invoke activity as we would for any
message-based activity, that is, we open its properties window, and select
the Correlations tab, as shown in the following screenshot:

However, you may notice that when creating a correlation for an Invoke activity, we
are required to set the additional attribute Pattern. This is because unlike any other
message activity, Invoke can consist of two messages: the initial outbound request,
and an optional corresponding inbound response. The pattern attribute is used to
specify to which message the correlation set should be applied, that is, out for the
outbound request, in for the inbound response, and out-in for both.

Since validateEmailAddress is a one way operation, we need to set the Pattern
attribute to out.

Note that if you choose to initiate the correlation with an out-in pattern, then the
outbound request is used to initiate the correlation set.

Chapter 16

[505]

Defining property aliases
Once the messages to be exchanged as part of our correlation set have been
defined, the final step is to map the properties used by the correlation set to the
corresponding fields in each of the messages exchanged.

To do this, we need to create a property alias for every message type exchanged,
that is, validateEmailAddress	and confirmEmailAddress, in our user
registration example.

To create an alias, within the Structure view for the BPEL process, right-click on the
Property Aliases… folder, and select Create Property…. This will launch the Create
Property Alias window, as shown in the following screenshot:

Message Interaction Patterns

[506]

In the Property drop-down, select the property that you wish to define the alias for
and then using the Type Explorer, navigate through the Message Types, Partner
Links, down to the relevant Message Types and Part that you want to map the
property to.

This will activate the Query field, where we specify the XPath for the field containing
the property in the specified message type. Rather than type it all by hand, press
Ctrl + Space to use the XPath Building Assistant.

Once we have defined an alias for each of the messages exchanged within our
correlation set, we can view them within the Structure view of the BPEL process,
as shown in the following screenshot:

This completes the definition of our correlation set.

Chapter 16

[507]

A BPEL process can define multiple correlation sets, and messages
exchanged within a BPEL process can be exchanged in zero, one, or more
correlation sets. When a message is involved in multiple correlations sets,
it can be the same or different fields that are mapped to a corresponding
property. You will of course require a separate property alias for each
correlation set.

Message aggregation
A typical messaging requirement is to aggregate multiple related messages for
processing within a single BPEL process instance. Messages are aggregated using a
common correlation ID, in much the same way as we covered previously.

The other challenge is to determine when we have all the messages that belong to the
aggregation. Typically, most use cases fall into two broad patterns:

Fixed Duration: In this scenario, we don't know how many messages we
expect to receive, so we will process all those received within a specified
period of time.
Wait For All: In this scenario, we know how many messages we expect
to receive. Once they have been received, we can then process them as an
aggregated message. It's usual to combine this with a timeout in case some
messages aren't received, so that the process doesn't wait forever.

An example of the first pattern is the oBay auction process. Here, during the period
for which the auction is in progress, we need to route zero or more bids from various
sources to the appropriate instance of the auction, and then once the auction has
finished, select the highest bid as the winner. The outline of the process is shown on
the next page.

•

•

Message Interaction Patterns

[508]

From this, we can see that the process supports two asynchronous operations, each
with a corresponding callback. They are:

initateAuction: This operation is used to instantiate the auction process.
Once started, the auction will run for a preset period until it gets completed
and then invoke the callback returnAuctionResult to return the result of the
auction to the client which initiated the auction.
submitBid: This operation is used to submit a bid to the auction. The
operation is responsible for checking each bid to see if we have a new highest
bid, and if so, it will update the current bid price appropriately, before
returning the result of the bid to the client. The process then loops back
round to process the next bid.

•

•

Chapter 16

[509]

Message routing
The first task for the aggregator is to route bids through to the appropriate instance
of the auction process. As with our earlier UserRegistration example, we can use
a correlation set to route messages to the appropriate instance. In this example, we
will create a correlation set based on the element auctionId, which is included in the
message payload for initateAuction and submitBid.

At first glance, this looks pretty straightforward, as we can use correlation sets for
aggregation in much the same way as we have already covered. However, this
scenario presents us with an additional complexity; which is that a single instance
of a BPEL process may receive multiple messages of the same type at approximately
the same time.

To manage this, we need to implement a queuing mechanism, so that we can
process each bid in turn before moving onto the next. This is achieved by
implementing the interaction between the client submitting the bid and the
auction process as asynchronous.

With asynchronous operations, BPEL saves received messages to the
BPEL delivery queue. The delivery service then handles the processing
of these messages; either instantiating a new process or correlating the
message to a waiting receive or onMessage activity in an already
running process instance.
If a process is not ready to receive a message, then the message will
remain in the queue until the process is ready.

This introduces a number of complexities over our previous correlation example.
This is because a BPEL process can only support one inbound Partner Link (for
example, client), for which the BPEL engine generates a corresponding concrete
WSDL. This defines all operations that can be invoked against that BPEL process
(as well as any corresponding callbacks).

However, for any single instance of a BPEL process, the BPEL engine expects that
any requests received via that partner link will always be from the same client, so
upon receipt of the initial request, initiateAuction in the case of the auction process,
it sets the conversation ID and the reply to address based on that request. These
values are then fixed for the duration of that process.

Message Interaction Patterns

[510]

Correlating the callback
The first complexity this causes is that whenever a client submits a request to the
process via the submitBid operation, the BPEL engine, when sending a response,
will set the value of <wsa:RelatesTo> based on the header contained in the
initiateAuction request (not the value in the submitBid request). So we can't use
WS-Addressing to correlate the response of the auction process back to the client.

Initially, the obvious answer might appear to be just to use the auctionId to correlate
the result of the bid back to the client. However, while the auctionId allows us to
uniquely identify a single instance of an auction, it doesn't allow us to uniquely
identify a bidder. This, may seem strange at first, but recall we may have several
clients calling the auction process at the same time, all waiting for a response. We
need to ensure that each response is returned to the appropriate instance.

Thus the calling client will need to pass a unique key in the submitBid request
message (for example, bidId) that the auction process can include in the response.
Assuming we are using BPEL to implement the client, we then need to implement a
correlation set based on this property in the calling process, so that the BPEL engine
can route the response to the appropriate instance of the client process.

Specifying the reply to address
The second complexity is that whenever a client submits a request to the auction
process, via the submitBid operation, the BPEL engine will ignore the <wsa:replyTo>
and will attempt to send the reply to the client which initiated the auction.

This highlights the other issue, that our auction process supports two callbacks—one
to return the auction result, the other to return the bid result. Yet the reply to address
on the partner link is being fixed with the initial invocation of the process, forcing
both callbacks to be routed to the same endpoint, which is not what we want.

Chapter 16

[511]

Creating a proxy process
At this point, you may be thinking that all of this may be too complex. However, the
solution is rather straightforward and that is to use a proxy process, which supports
the same operations as the Auction process, as illustrated in the following diagram:

With this approach, the client invokes either the initateAuction or	submitBid	
operation on the AuctionProxy process, which forwards the request to the Auction
process. The Auction process then returns the result to the AuctionProxy, which
then returns it to the original client.

This not only solves the problem of having a fixed reply to address, but has the
additional benefit of shielding the client from having to use correlation sets, as
it can use WS-Addressing to communicate with the proxy.

At this point, you may be thinking, why not use a Mediator as a proxy?
While using a Mediator would allow us to address the issue of having
a fixed reply to address, it doesn't address the correlation issue, as
Mediators don't support the concept of correlation sets.

Using the pick activity
Our proxy process needs to support both operations, initateAuction and	
submitBid, as either operation can be used to initiate an instance of the proxy
process. To achieve this we will use the <pick> activity at the start of our process
in place of a <receive> activity.

A <pick> activity is similar to a <receive> activity. The difference is that with a
<pick> activity, you can specify that the process waits for one of a set of events.
Events can either be the receipt of a message or an alarm event (which we look at
later in this chapter).

Each message is specified in a separate <onMessage> branch, with each branch
containing one or more activities to be executed on receipt of the corresponding
message. To use a Pick activity, drag a <pick> activity from the Process Activities
list of the Component Palette on to your process.

Message Interaction Patterns

[512]

As the <pick> activity is used to receive the initial message that starts the process,
we need to set the createInstance attribute on the activity. In order to do this,
double-click the <pick> activity to open the Pick activity window, as shown in
the following screenshot, and select the Create Instance checkbox.

Next, within the process diagram, click on the + symbol to expand the
<pick> activity. By default, it will have two branches, as illustrated in the
following diagram:

The first branch contains an <onMessage> component with a corresponding area
where you can drop a sequence of one or more activities that will be executed if the
corresponding message is received.

The second branch contains an <onAlarm> subactivity with a corresponding area for
activities. It doesn't make sense to have this as part of the initial activity in a process,
so right-click on the <onAlarm> subactivity and select delete to remove it

We require two OnMessage branches, one for each operation that the process
supports, so click on the Add OnMessage Branch icon (highlighted in the
preceding diagram) to add another <onMessage> branch.

Chapter 16

[513]

The next step is to configure the <onMessage> branch. Double-click on the
first branch to open the OnMessage Branch activity window, as shown in the
following screenshot:

As we can see, an OnMessage Branch is configured in a similar fashion to a Receive
activity. For the purposes of our proxy, we will configure the first onMessage branch
to support the initateAuction operation (as shown in the preceding screesnhot) and
the second onMessage branch to support the submitBid operation.

Each branch will just contain an Invoke and Receive activity to call the
corresponding operation provided by the auction process, and a final invoke
activity to return the result of the operation to the caller of the process.

Defining the correlation sets
For our proxy process, we need to define a correlation set for the submitBid
operation to ensure that replies from the Auction process are routed through to the
correct instance of the AuctionProxy process.

As mentioned earlier, this requires us to include a unique bidId within the
submitBid message. To generate this, we can use the XPath function generateGUID,
which is available under the category BPEL XPath Extension Function within the
expression builder.

We do not need to define a correlation set for the initateAuction
operation, as the corresponding operation on the auction process
is still using WS-Addressing.

Message Interaction Patterns

[514]

Completing the aggregation
All that remains is to add in the logic that enables the process to determine when
the aggregation is complete. For a scenario where we know how many messages we
expect, every time we receive a message, we just need to check whether there are any
outstanding messages and proceed accordingly.

However, for scenarios where we are waiting for a fixed duration, as is the case with
our auction process, it's slightly trickier. The challenge is that for the period over
which the auction is running, the process will spend most of its time in a paused
state, waiting for the <receive> activity to return details of the next bid.

So the only opportunity we have within the logic of our process to check whether
the duration has expired is after the receipt of a bid, which may arrive long after the
auction is completed or not at all (as the auction has theoretically finished).

Ideally, what we want to do is place a timeout on the <receive> activity, so that
it either receives the next bid or times out on completion of the auction, whichever
occurs first.

Fortunately, this can be easily accomplished by replacing the <receive> activity
for the submitBid operation with a <pick> activity. The <pick> would contain two
branches: an onMessage branch configured in an identical fashion to the <receive>
activity and an onAlarm branch configured to trigger once the finish time for the
auction has been reached.

To configure the onAlarm Branch, double-click on it to open the OnAlarm Branch
activity window, as shown in the following screenshot:

Chapter 16

[515]

We can see that an OnAlarm branch is configured in a similar fashion to a <wait>
activity, in that we can specify that the <pick> waits for a specified duration of time
or until a specified deadline. In either case, we can specify a fixed value or specify an
XPath expression to calculate the value at runtime.

For our purposes, we have pre-calculated the finish time for the auction, based
on its start time and duration, and have configured the <pick> activity to wait
until this time.

When triggered, the process will execute the activities contained in the OnAlarm
branch and then move onto the activity following the <pick>. In the case of our
auction process the branch contains just a single activity, which sets the flag
auctionComplete to true, causing the process to exit the while loop containing
the <pick> activity. Upon exiting the loop, the process calculates and returns the
auction result before completing.

Scheduling services
A common requirement is to schedule a process or service to run at regular intervals.
For example, the oBay Billing composite is required to be run once every night.
One approach would be to use a scheduling tool. There are a number of tools
available for this, including:

Quartz: This is an open source Java-based scheduler; the advantage of Quartz
is that it's already used internally by the BPEL engine for scheduling, so it's
available for use as part of the SOA Suite platform. However, this approach
requires knowledge of the API as well as Java.
Oracle Database Job Scheduler: This is provided as part of the Oracle
Database, and like Quartz it's available regardless of which platform you are
running the SOA Suite on (assuming you are using Oracle as the backend
database). However, it requires knowledge of PL/SQL.

While these are all perfectly valid approaches, they all require knowledge of
components outside the SOA Suite. An alternate approach is to use BPEL to
implement the scheduler.

One approach is to implement a BPEL process that continuously loops with the sole
purpose of launching other scheduled BPEL process. However, as the process never
dies, this will result in an ever-increasing audit trail, causing the objects persisted in
the database as well as the in-memory size of the process to grow over time, which
eventually will have a negative impact on the performance of the engine.

•

•

Message Interaction Patterns

[516]

A better approach is to have an XML file that specifies a series of one or more
services (or jobs) to be scheduled. We can then use the file adapter to read this file
and trigger a scheduling process, which can invoke each of the scheduled jobs. Once
all the jobs have been triggered, the scheduling process can be allowed to complete.

The trick to this approach is to recycle the scheduling file; that is, in the process of
reading the file, the file adapter will move it to an 'archive' directory. To ensure that
the scheduling process is rerun every day, we need to move the file back into the
directory being polled by the adapter. We can do this using the scheduling process.

Defining the schedule file
For our oBay example, we are simply going to create a scheduling process that is
run once at the start of the day. The schedule file will then contain details of each
job to be run and at what time during the day. The schema for our scheduling file
is as follows:

<?xml	version="1.0"	encoding="utf-8"?>
<xsd:schema	xmlns:xsd="http://www.w3.org/2001/XMLSchema"
												xmlns="http://rubiconred.com/obay/xsd/schedule"
												targetNamespace="http://rubiconred.com/obay/xsd/schedule"
												elementFormDefault="qualified"	>

				<xsd:element	name="schedule"												type="Schedule"/>
				<xsd:element	name="job"																	type="Job"/>
				
				<xsd:complexType	name="Schedule">
								<xsd:sequence>
												<xsd:element	name="startTime"	type="xsd:time"/>
												<xsd:element	ref="job"	minOccurs="1"	
																																			maxOccurs="unbounded"/>
								</xsd:sequence>
				</xsd:complexType>
				
 <xsd:complexType name="Job">
 <xsd:sequence>
 <xsd:element name="endpoint" type="xsd:string" />
 <xsd:element name="startTime" type="xsd:time"/>
 <xsd:element name="jobDetail" type="xsd:anyType"/>
 </xsd:sequence>
 </xsd:complexType>
					
</xsd:schema>

Chapter 16

[517]

The bulk of the schedule file is made up of the Job element, with each schedule file
containing one or more jobs. The job elements contains three elements:

Endpoint: Defines the endpoint of the service to invoke.
startTime: Defines the time that the service should be invoked.
jobDetail: Defined as xsd:anyType. It is used to hold details specific to the
service being invoked.

For the purpose of our Billing composite, our schedule file looks as follows:

<?xml	version="1.0"	encoding="UTF-8"	?>
<schedule	xmlns="http://rubiconred.com/obay/xsd/schedule">
		<startTime>0:2:55.125</startTime>
		<job>
				<endpoint>
						http://localhost:7001/soa-infra/services/default/Billing/proxy
				</endpoint>
				<startTime>T02:00:00</startTime>
				<jobDetail>
				</jobDetail>
		</job>
</schedule>

Using FlowN
To ensure that our schedule process supports the concurrent execution of jobs, we
need to process them in parallel. If the number of branches/jobs was fixed at design
time, we could use the <flow> activity to achieve this.

For our scenario, the number of branches will be determined by the number of jobs
defined in our scheduling file. For use cases such as these, we can use the <flowN>
activity. This will create N branches, where N is calculated at runtime.

Each branch performs the same activities and has access to the same global data, but
is assigned an index number from 1 to N to allow it to look up the data, specific to
that branch.

•

•

•

Message Interaction Patterns

[518]

To use a FlowN activity, drag a <flowN> activity from the Process Activities list of
the Component Palette on to your process. Double-click on it to open the FlowN
activity window, as shown in the following screenshot:

In addition to the activity Name, it takes two parameters. The first is N, which
contains an XPath expression used at runtime to calculate the number of parallel
branches required. This typically uses the count function to count the number of
nodes in a variable. In our case, we need to calculate the number of job elements,
so our expression is defined as follows:

count(bpws:getVariableData('InputVariable','schedule','/ns2:schedule/
ns2:job'))

The final parameter, Index Variable, is used to specify the variable into which
the index value will be placed at runtime. While we have defined this as a global
variable, each branch will be given its own local copy of the variable containing its
assigned index number.

Accessing branch-specific data in FlowN
The first step within the FlowN branch is to get a local copy of the data that is to be
processed by that specific branch, the Job in our case.

Before we do this, we need to ensure that we are working with local variables,
otherwise each branch in the FlowN will update the same process variables. The
simplest way to achieve this is by dropping a scope (which we've named ProcessJob)
as the activity within the FlowN branch. Then define any branch-specific variables at
the scope level and perform all branch-specific activities within the scope.

In this case, we have created a single variable JobInputVariable of type Job, which
we need to populate with the job element to be processed by the flowN branch. To
do this, we need to create an XPath expression that contains a predicate to select the
required job based on its position with the node set, in effect, doing the equivalent of
an array lookup in a language such as Java.

Chapter 16

[519]

The simplest way to achieve this is by creating a standard Copy operation, as shown
in the following screenshot:

Next we need to modify the From XPath expression (circled in the preceding
screenshot), so that we only select the required job based on the value of the index.
To do this, modify the XPath to add a position-based predicate based on the index,
to obtain an expression that looks something like the following:

/ns2:schedule/ns2:job[bpws:getVariableData('index')]

The next step within our branch is to use a <wait> activity to pause the branch until
the startTime for the specified job.

Dynamic partner links
The final step within our branch is to call the service as defined by the endpoint in
the job element. Up to now, we've only dealt in BPEL with static partner links, where
the endpoint of a service is defined at design time.

However, BPEL also provides support for dynamic partner links, where we can
override the endpoint specified at design time with a value specified at runtime.

Message Interaction Patterns

[520]

Defining a common interface
While we can override the endpoint for a partner link, all other attributes of our
service definition remain fixed. So to use this approach, we must define a common
interface that all of our Job services will implement. For our purposes, we've defined
the following abstract WDSL:

<?xml	version="1.0"	encoding="UTF-8"?>
<definitions	name="Job">
		<types>
				<schema>
						<import	namespace="http://rubiconred.com/obay/xsd/schedule"
														schemaLocation="../schedule.xsd"/>
								<element	name="executeJob"	type="client:ExecuteJob"/>
 <complexType name="ExecuteJob">
 <sequence>
 <element name="job" type="sch:Job"/>
 </sequence>
 </complexType>
						</schema>
				</types>

				<message	name="executeJob">
						<part	name="payload"	element="tns:executeJob"/>
				</message>

				<portType	name="Job">
						<operation	name="executeJob">
								<input	message="tns:executeJob"/>
						</operation>
				</portType>

				<plnk:partnerLinkType	name="Job_PL">
						<plnk:role	name="Job_Role">
						<plnk:portType	name="tns:Job"/>
				</plnk:role>
		</plnk:partnerLinkType>
</definitions>

Chapter 16

[521]

Examining this, we can see that we've defined a simple one-way operation
(executeJob) that our scheduling process will invoke to initiate our job. For
simplicity, we have defined the content of the input message to be that of the job
element that we used in our scheduling file.

Defining a job partner link
Before we can define a job partner link within our schedule process, we need a
WSDL file complete with bindings. The simplest way to do this is to deploy a default
process that implements our abstract WSDL. To do this, create a composite process
(for example, JobService) based on our predefined WSDL contract (as described in
Chapter 10, oBay Introduction) containing just a single BPEL process. The process just
needs to contain a simple <receive> activity, as it should never be called.

Note that for any other service that we wish to invoke as a job, we will need to create
a composite based on our abstract WSDL, and then once created, implement the
composite as required to carry out the job.

Once we've deployed our default JobService process, we can create a partner link
and invoke it within our scheduler process, just as we would with any other service.

Creating an endpoint reference
To dynamically invoke the appropriate endpoint at runtime, we need to update
the endpoint reference before invoking the service. To do this, we need to create a
variable of type EndPointReference (as defined by WS-Addressing) containing just
the <Address> element and populate this with the endpoint of the job service that
we want to invoke.

This is important, as if we create an EndpointReference containing any of the other
optional elements, then when we try and invoke the partner link, the BPEL engine
will throw a fault.

To create a variable of type EndpointReference, you will need to
import the WS-Addressing schema (located in MDS at:
		oramds:/soa/shared/common/ws-addressing.xsd).

Message Interaction Patterns

[522]

To populate the address element, use a Transformation activity rather than an
Assign activity, as shown in the following screenshot:

If we use an assign to directly populate the <Address> element, then BPEL, by
default, creates an initialized <EndpointReference> element containing all the
other optional elements (each with an empty value).

Updating the endpoint
Finally, we use another copy rule to dynamically set the partner link. The key
difference here is that the target of the copy rule is the JobService PartnerLink,
as shown in the following screenshot:

Now, when we invoke the JobService, via the PartnerLink, it will dynamically route
the request to the updated endpoint.

Chapter 16

[523]

Recycling the scheduling file
As we've already covered, the scheduling process is triggered by the file adapter
reading in the schedule.xml file. As part of this activity, the file adapter will move
it to an archive directory to ensure that the file is processed just once.

However, in our case, we actually want the file adapter to process the scheduling file
on a daily basis, and to do this, we need to move the file back into the directory being
polled by the adapter.

For this purpose, we have defined the following two directories:

<SOA_HOME>/scheduler/config
<SOA_HOME>/scheduler/execute

When creating our scheduling process, we have configured the file adapter to poll
the execute directory on a regular basis (for example, every five minutes), and
archive processed files to the config directory.

When the schedule.xml file is placed into the execute directory for the first time,
this will trigger file adapter to pick up the file and launch the scheduler process, and
at the same time, move the schedule file into the config directory.

Within the scheduler process, we then invoke the file adapter to move the schedule.
xml file from the config directory back to the execute directory (see Chapter 3,
Service-enabling Existing Systems for details on how to do this). However, rather than
invoking the moveFile operation immediately, we have placed a <wait> activity in
front of it that waits until the startTime defined at the head of the schedule file, as
shown in the following code snippet:

<?xml	version="1.0"	encoding="UTF-8"	?>
<schedule	xmlns="http://rubiconred.com/obay/xsd/schedule">
 <startTime>0:2:55.125</startTime>

				<job>
						…
				</job>
</schedule>

This has a couple of advantages. The first is we use the schedule.xml file to control
when the scheduling process is run, as opposed to configuring the file adapter to poll
the execute directory once every 24 hours and then deploy the process at the right
time to start the clock counting.

Message Interaction Patterns

[524]

The other advantage is that most of the time the schedule.xml file resides in the
config directory. Thus while the file is in this directory, we can go in and modify
the schedule to add new jobs or update and delete existing jobs, which will then be
picked up the next time the scheduler is executed.

Summary
In this chapter, we have looked at the more advanced messaging constructs
supported by the Oracle SOA Suite, and how we can use this to support some of the
more complex but relatively common message interaction patterns used in a typical
SOA deployment.

We have also used this as an opportunity to introduce some of the more advanced
BPEL activities and features such as the Pick and FlowN activity, as well as dynamic
partner links.

While we have not covered every possible pattern, hopefully you should now have
a good understanding of how the SOA Suite utilizes WS-Addressing, as well as how
we can leverage correlation sets in BPEL to support message interactions that go
beyond a single synchronous or asynchronous request and reply. You should now
be able to apply this understanding to support your particular requirements.

Workflow Patterns
So far we've used workflow for simple task approval in conjunction with the worklist
application. However, human workflows are often more complex, often involving
multiple participants as well as requiring the task list to be integrated into the
user's existing user interface rather than accessing it through a standalone
worklist application.

In this chapter, we look at these common requirements. First, we examine how
to manage workflows involving complex chains of approval, including parallel
approvers and the different options that are available. Next, we look at the Workflow
Service API, and how we can use that to completely transform the look and feel of
the workflow service.

Managing multiple participants in a
workflow
The process for validating items that have been flagged as suspicious, is a classic
workflow scenario that may potentially involve multiple participants.

The first step in the workflow requires an oBay administrator to check whether the
item is suspect. Assuming the case is straightforward, they can either approve or
reject the item and complete the workflow.

This is pretty straightforward. However, for gray areas, the oBay administrator
needs to defer making a decision. In this scenario, we have a second step in which
the item is submitted to a panel who can vote on whether to approve or reject
the item.

Workflow Patterns

[526]

There are two approaches to modeling this workflow; one is to model each step as a
separate human task and the other is to model it as a single human task containing
multiple assignments and routing policies. Each approach has its own advantages
and disadvantages, so we will look at each in turn to understand the differences.

Using multiple assignment and routing
policies
For our checkSuspectItem process, we are first going to take the approach of
combining the two workflow steps into a single human task. The first step in the
workflow is the familiar single approval step, where we assign the task to the
oBayAdministrator group.

The task takes a single non-editable parameter of type suspectItem, which contains
the details of the item in question as well as why it has been flagged as suspect. The
definition of this is shown as follows:

<xsd:element	name="suspectItem"								type="act:tSuspectItem"/>

<xsd:complexType	name="tSuspectItem">
		<xsd:sequence>
				<xsd:element	name="item"									type="act:ItemType"/>
				<xsd:element	name="reasonCode"			type="xsd:string"	/>	
				<xsd:element	name="reasonDesc"			type="xsd:string"/>
		</xsd:sequence>
</xsd:complexType>

Determining the outcome by a group vote
For the second step in the workflow, we are going to define a participant type
of Parallel; this participant type allows us to allocate the same task to multiple
participants in parallel with the final outcome being determined by how each
participant within the group votes. The task definition form for the Parallel
participant type is shown in the following screenshot:

Chapter 17

[527]

Workflow Patterns

[528]

Voting on the outcome
The first section, Vote Outcome, is where we specify the percentage of votes
required for an outcome to take effect, such as a majority or a unanimous decision,
as well as a default outcome in case no agreement is reached.

The size of the majority can be a fixed amount (for example, 60 percent as in our
case), or can be based on an XPath expression, which could calculate this value
dynamically at runtime (for example, if we wanted to calculate the percentage
based on the number of voters).

We can specify the same value regardless of the outcome, as in our case, where we
have specified Any (circled previously). Or, we can specify different thresholds for
each outcome. When specifying different values for each outcome, the outcomes are
evaluated in the order listed in the table.

In addition, we need to specify what the default outcome is if there isn't an
agreement. In our case, we want to 'REJECT' the item.

The final option we have is to specify whether all votes should be counted or if
once we have sufficient votes on which to make a decision, the outcome should be
triggered. In this scenario, any outstanding subtasks will be withdrawn.

In our case, the panel consists of three members, so as soon as two have approved
the task, the required consensus will have been achieved and the third member will
have their task withdrawn.

Sharing attachments and comments
When panel members are considering their decision, they may want to confer with
one another. By default, anyone assigned a task will be able to see comments and
attachments made by participants in previous steps of the task (that is, the oBay
administrator). However, they won't be able to see comments made by other
panel members.

To enable the sharing of attachments and comments between panel members, we've
selected the Share attachments and comments checkbox.

Assigning participants
In the next section, Participant List, we need to specify the participants who are
going to vote on the task. Our requirement is to assign the task to all users in the
voting panel. To enable this, we've defined the group SuspectItemPanel in our
user repository.

Chapter 17

[529]

We don't want to allocate the task to the group, as this would only allow one user
from the group to acquire and process the task. Rather, we want to allocate it to all
members of the group. To do that, we can use the Identity Service XPath function
ids:getUsersInGroup, illustrated as follows:

			ids:getUsersInGroup	('SuspectItemPanel',	true())

Doing this will effectively create and assign a separate subtask to every member of
the group.

Skipping the second step
There is an issue with this approach so far, in that the second step of the workflow
(that is, the Suspect Item Panel Vote) will always be executed regardless of what
happens in the first step. To prevent this, we've specified the following skip rule:

/task:task/task:systemAttributes/task:outcome	!=	'DEFER'

The skip rule lets you specify an XPath expression, which evaluates to a boolean
value. If it evaluates to true, then the corresponding participant will be skipped in
the task.

In our case, we are testing the outcome taken by the oBay administrator in the
previous step. If they didn't defer it, but chose to either accept or reject the item,
then this step is skipped.

Using multiple human tasks
The other approach to this workflow is to model each step as a separate human task
in its own right, each with a single assignment and routing policy.

With this approach, you get a lot more control over how you want to handle each
step, since most of the runtime behavior of the human task is defined at the task
level, allowing you to specify different parameters, expiration policies, notification
settings, and task forms for each step in the workflow. In addition, on completion of
every step, control is returned to the BPEL process, allowing you to carry out some
additional processing before executing the next step in the workflow.

One of the drawbacks to this approach is that you need to specify a lot more
information (roughly n times as much, where n is the number of tasks that you
have), and often you may be replicating the same information across multiple task
definitions as well as having to specify the handling of outcomes for multiple tasks
within your BPEL process.

This not only requires more work upfront, but results in a larger, more complicated
BPEL process that is not so intuitive to understand and often harder to maintain.

Workflow Patterns

[530]

Linking individual human tasks
The other potential issue is that the second task doesn't include the comments, task
history, and attachments from the previous task. In our case, this is important as we
want the members of the panel to see any comments made by the oBay administrator
before they deferred the task.

BPEL allows us to link tasks within the same BPEL process together. To do this
double-click on the task in the BPEL process that you wish to link to a preceding
task. This will open the BPEL Human Task Configuration window. From here,
select the Advanced tab, and you will be presented with a variety of options.

If you select the checkbox Include task history from:, then you will be presented
with a drop-down list of all the preceding human tasks defined in the BPEL process,
as illustrated in the following screenshot.

By selecting one of these, your task is automatically linked to that task and will
inherit its task history, comments, and attachments.

The final choice is whether you wish to use the payload from the previous task or
create a new payload. This is decided by selecting the appropriate option.

Chapter 17

[531]

Using the workflow API
If we look at the Order Fulfillment process, which is used to complete the sale for
items won at an auction, it is a prime candidate for Human Workflow, as it will need
to proceed through the following steps in order to complete the sale:

1. Buyer specifies shipping details (for example, address and method of postage)
2. Seller confirms shipping cost
3. Buyer notifies the seller that a payment for the item has been made
4. Seller confirms receipt of payment
5. Seller notifies the buyer that the item has been shipped
6. Buyer confirms receipt of item

You may recall from Chapter 10, oBay Introduction that we've decided to build a
custom user interface for oBay's customers. As part of the UI, we need to enable
users to perform each task required to complete the Order Fulfillment process.

One way to achieve this would be to use the worklist portlets and embed them
directly within the oBay UI. However, oBay wants to make the user's experience a
lot more seamless, so that users are not even aware that they are interacting with any
kind of workflow system.

The workflow service provides a set of APIs just for this kind of scenario. These APIs
are exposed as a set of SOAP-based web services, and there is an equivalent set of
APIs for local and remote Enterprise Java Beans.

Indeed, the worklist application uses the same APIs. However, rather than invoking
these APIs directly from our oBay UI, we are going to build our own Task Based
Business Service, which acts as a façade around these underlying services. This will
give us the architecture depicted in the following diagram:

Workflow Patterns

[532]

As we will be using BPEL to implement our Task Based Business Services, it makes
sense to use the Web Service API (in the same way that any BPEL process containing
a human task does).

If you compare this to our architecture outlined in Chapter 10, oBay
Introduction, you will notice that we've decided not to wrap a virtual
service layer around the workflow service; there are two key reasons
for this.
First, if you look at the service description for the workflow services,
they already provide a very well defined abstract definition of the
service. Hence if you were to redesign the interface, they probably
wouldn't look very different.
Secondly, whenever we include a human workflow task within our
composite, JDeveloper automatically generates a lot of code which
directly uses these services. Thus, if we wanted to put a virtual layer
over these services, we would need to ensure that all our human
workflow tasks also went via this layer, which is not a trivial activity.
So the reality is that adding a virtual services layer would gain us
very little, but would take a lot of effort and we would lose a lot of
the advantages provided by the development environment.

Defining the order fulfillment human task
For our OrderFulfillment process, we are taking the approach of combining all six
workflow steps into a single human task (the OrderFulfillmentTask.task). Now
this isn't a perfect fit for some of the reasons we've already touched on, so we will
look at how we address each of these issues as we encounter them.

Within our task definition, we've defined two possible Outcomes for the task, either
COMPLETED or ABORTED (where for some reason, the sale fails to proceed). In addition,
in the BPEL Human Task Configuration window, we have configured the Task
Title to be set to the item title and set the Initiator to be the seller of the item.

Specifying task parameters
A key design consideration is to decide on what parameter(s) we are going to pass
to the task, taking into account that we need to pass in the superset of parameters
required by each step in the workflow.

For our task, we will have a single parameter of type order, which contains all the
data required for our task. The definition for this is shown as follows:

<xsd:element	name="order"				type="act:tOrder"/>

Chapter 17

[533]

<xsd:complexType	name="tOrder">
		<xsd:sequence>
				<xsd:element	name="orderNo"						type="xsd:string"/>
				<xsd:element	name="orderDesc"				type="xsd:string"	/>													
				<xsd:element	name="itemId"							type="act:tItemId"/>
				<xsd:element	name="sellerId"					type="act:tUserId"/>
				<xsd:element	name="buyerId"						type="act:tUserId"/>
				<xsd:element	name="orderDetail"		type="act:tOrderDetail"	/>					
				<xsd:element	name="shipTo"							type="act:tShipTo"	/>
		</xsd:sequence>
</xsd:complexType>

<xsd:complexType	name="tOrderDetail">
		<xsd:sequence>	
				<xsd:element	name="orderDate"						type="xsd:date"/>
				<xsd:element	name="orderStatus"				type="xsd:string"/>
				<xsd:element	name="quantity"							type="xsd:int"/>
				<xsd:element	name="itemPrice"						type="xsd:decimal"/>	
				<xsd:element	name="subTotal"							type="xsd:decimal"/>							
				<xsd:element	name="shippingPrice"		type="xsd:decimal"/>
				<xsd:element	name="totalPrice"					type="xsd:decimal"/>		
				<xsd:element	name="lastUpdateDate"	type="xsd:dateTime"/>		
				<xsd:element	name="nextAction"					type="xsd:string	"/>		
		</xsd:sequence>
</xsd:complexType>

<xsd:complexType	name="tShipTo">
		<xsd:sequence>
				<xsd:element	name="shippingName"											type="xsd:string"/>
				<xsd:element	name="shippingAddress"								type="act:tAddress"/>
				<xsd:element	name="additionalInstructions"	type="xsd:string"/>	
		</xsd:sequence>
</xsd:complexType>

Before we go any further, it's worth spending a moment to highlight some of the key
components of this:

OrderNo: Potentially we could have multiple orders per auction
(for example, if oBay were to support a Dutch auction format at some
point in the future), so every order will need its own unique identifier.
As we have made the decision to have a single human task, we have a
one-to-one mapping between an order and an OrderFulfillment human
task, so will use the task number as our order number.

•

Workflow Patterns

[534]

ShipTo: This contains the details provided of where the item is to be sent to
as well as the preferred delivery method. This needs to be specified by the
buyer in the first step of the workflow.
ShippingPrice: Once the buyer has specified the shipping details, the seller
can confirm the cost of shipping. This needs to be added to the subTotal to
calculate the total amount payable.
OrderStatus: This field is updated after every step to track where we are in
the order fulfillment process.

The most obvious problem from our requirement is that at each step in the process,
we will need to update different fields in the order parameter and that some of these
fields are calculated.

If we were using the default simple task forms generated by JDeveloper for the
worklist application, then this poses a problem, since you can only specify at the
parameter level whether the content of the payload is read-only or editable.

By default, whether the content of the payload is read-only or editable is
the same at every step in the task. However, a new feature in 11gR1 allows
us to configure different access levels for each participant in the task.
To configure this, select the Access tab in the Task Definition form and set
content-level access to Fine grained. This will allow us to define different
access rights (that is, Read or Write) for each type of content (for example,
Payload, Comments, Attachments), for each participant in the task.

One workaround is to customize the generated form, which is definitely possible, if
not entirely straightforward. However, in our scenario, we are developing our own
custom built user interface, so this is not an issue.

Specifying the routing policy
For the OrderFulfillment task, we have specified six Assignment and Routing
Policies, one for each step of the workflow. Each one is of type SingleApprover and
is assigned dynamically to either the seller or buyer as appropriate, as illustrated in
the following image:

•

•

•

Chapter 17

[535]

Notification settings
The only other potential issue for us is that we need to share generic notification
settings for each step in the workflow. For our purposes, this is fine as we just want to
send a generic notification to our seller or buyer every time a task is assigned to them
to notify them that they now need to perform an action in order to complete the sale.

However, if we wanted to send more specific notifications, then we have two
options. The first is to configure the task to publish a Business Event onto the Event
Delivery Network whenever the task is assigned. To do this, select the Events tab on
the task definition and select the Trigger Workflow Event checkbox, as shown in the
following screenshot:

Workflow Patterns

[536]

This will cause a business event to be sent whenever the task is assigned to another
participant. The business event contains details of the task object, as well as a set of
properties that are populated, based on the context of the fired event.

We can now write a simple BPEL process to subscribe to this event, which, on
receipt of the event, can generate the required notification and send it using the
User Notification service.

The other approach is to use the OrderFulfillment process to generate the
notification. By default, the BPEL process will only receive a callback from the
workflow service upon completion of the task.

However, if we go back to the Events tab and select the checkbox Allow task and
routing customizations in BPEL callbacks (circled in the preceding screenshot), this
will modify our BPEL process to receive callbacks when either a task is assigned,
updated, or completed, as well as when a subtask is updated.

It does this by replacing the Receive activity, which receives the completed task
callback with a Pick activity embedded within a While activity that essentially
loops until the task is completed, as illustrated in the following diagram:

As you can see, the Pick activity contains an onMessage branch for each potential
callback. You then just add any additional processing that is required to the
appropriate onMessage branch.

In our case, we might add a switch to the Task is assigned branch to check where we
are in the workflow and then based on that generate the appropriate notification.

Chapter 17

[537]

Now that we have defined our Order Fulfillment task, the next step is to implement
our task-based business services that will act upon it. If we look at the type of
interactions that the user will have with our Order Fulfillment task, we can see that
they are split into two categories. The first are query-based tasks, and the second
are tasks that change the state of the workflow task. We will look at the query-based
tasks first.

Querying task instances
By analyzing our requirements, we can see that we need to support the following
query-based operations:

getSoldItems: Returns a list of all items sold by the specified seller and
provides details to those items which have an outstanding task assigned to
the seller
getPurchasedItems: Similar to the previous operation, but returns a list of
all items bought by the specified buyer
getOrderDetails: Returns detailed information about a specific order

It's worth noting that the first two operations are not just returning the current task
list for either the buyer or seller, but a complete list of all applicable items, regardless
of whether the task is currently assigned to the buyer or seller.

We are going to implement each of these operations as a separate BPEL process
within our OrderFulfillment composite. To do so, we will make use of the Task
Query Service provided by the Workflow Service. This provides a number of
methods for querying tasks based on a variety of search criteria including status,
keywords, attribute values, and so on.

Instead of implementing each of the operations as a BPEL process,
an alternative approach would be to perform the required
transformation in the proxy Mediator and route the request directly
to the Task Query Service.
The advantage of this approach is that it's more lightweight and
thus will be slightly more performant. However, the nature of the
XSLT that we would need for the transformation isn't supported by
the graphical mapping tool and thus would need to be handcoded.
So in the interests of maintainability, we have decided to use BPEL
and leverage the appropriate XPath within BPEL to perform the
transformation.

•

•

•

Workflow Patterns

[538]

Defining an external reference for the Task Query
Service
The WSDL for the Task Query Service is located at:

http://<hostname>:<port>/integration/services/TaskQueryService/
TaskQueryService?WSDL

Here, hostname represents the name of the machine on which the SOA server is
running and port represents the port number. If you inspect the WSDL, you will see
that it defines two ports: TaskQueryServicePortSAML and TaskQueryServicePort
each with its own corresponding endpoint, shown as follows:

<service	name="TaskQueryService">
		<port	name="TaskQueryServicePortSAML"	
								binding="tns:TaskQueryServiceSOAPBinding">
				<soap:address	location="http://localhost:8001/integration/service
																												s/TaskQueryService/TaskQueryService2/*"/>
		</port>
		<port	name="TaskQueryServicePort"	
														binding="tns:TaskQueryServiceSOAPBinding">
				<soap:address	location="http://localhost:8001/integration/service
																												s/TaskQueryService/TaskQueryService"/>
		</port>
</service>

By default, the composite will always invoke the TaskQueryServicePortSAML
endpoint, which, as the name suggests, expects a SAML token to authenticate the
client invoking the service.

If you have configured your composite to require authentication and propagate
identity (See Chapter 20, Defining Security and Management Policies for further details),
then this should work as expected. However, if you are using the authenticate
operation provided by the Task Query Service, then this will always result in a
security exception.

For these scenarios, you need to invoke the TaskQueryServicePort
endpoint. To do this, you either take a local copy of the WSDL and remove the
TaskQueryServicePortSAML port definition, or update your composite.xml
(using the source view) to remove the appropriate binding.ws entry, highlighted
following code sample:

<reference	name="TaskQueryService"																							
											ui:wsdlLocation="http://localhost:8001/integration/
											services/TaskQueryService/TaskQueryService?WSDL">

					<interface.wsdl	interface="http://xmlns.oracle.com/bpel/workflow/

Chapter 17

[539]

																					taskQueryService#wsdl.interface(TaskQueryService)"/>
 <binding.ws port="http://xmlns.oracle.com/bpel/workflow/taskQuery
 Service#wsdl.endpoint(TaskQueryService/TaskQuer
 yServicePortSAML)"
 location="http://localhost:8001/integration/services/
 TaskQueryService/TaskQueryService?WSDL">
 </binding.ws>
				<binding.ws	port="http://xmlns.oracle.com/bpel/workflow/taskQuery
																						Service#wsdl.endpoint(TaskQueryService/TaskQuer		
																						yServicePort)"
																location="http://localhost:8001/integration/services/
																										TaskQueryService/TaskQueryService?WSDL"/>
</reference>

User authentication
As with the worklist application, the Task Query Service will only return details of
tasks for which you have access, such as if the task is assigned to you or you are the
task owner or initiator (see Chapter 6, Adding in Human Workflow for details).

For authentication purposes (unless SAML is being used), the authenticate
operation is provided. This takes an element of type credential, which consists
of the following parameters:

login: User ID, as defined to the underlying Identity Service.
Password: Corresponding password for the specified user.
identityContext: The identity service enables you to configure multiple
identity repositories, each containing its own set of users. Each repository is
identified by its realm name.
The identityContext should be set to the name of the realm in which the
user is defined. jazn.com is the realm of the sample user community.
onBehalfOfUser: An optional element, which allows a user with
administrative privileges to create a workflow context on behalf of
another user by specifying their user ID here.

Upon successful authentication, a workflowContext is returned, which is then used
in any subsequent calls to the workflow service.

•

•

•

•

Workflow Patterns

[540]

If you are calling a single workflow service, you can provide the
authentication details as part of that service invocation, instead of a
separate call to the authentication service. This removes the overhead
of having to make two calls to the query service.

Creating the credential element
When creating the credential element, we need to ensure that it doesn't include
an empty onBehalfOfUser element, as the service will try and create a workflow
context for this "empty" user, which of course will fail and return an error.

This is an easy error to make, since the first time we use an assign statement to
populate any subelement of credential (for example, doing a copy to populate
the login element), BPEL PM, by default, will create an initialized credential
element containing all its subelements, including onBehalfOfUser (each with an
empty value).

A simple way round this is to assign a fragment of XML, such as the following:

<credential	xmlns="http://xmlns.oracle.com/bpel/workflow/common">
		<login/>
		<password/>
		<identityContext>jazn.com</identityContext>
</credential>

Directly to credential, this acts as a template into which we can copy the required
values for login and password. We do this using a copy operation within an assign
statement. The key difference is that we specify an XML Fragment as the From Type,
as shown in the following screenshot:

Chapter 17

[541]

Note that we have specified the default namespace in the credential element so
that all elements are created in the appropriate namespace.

Querying tasks
The queryTask operation returns a list of tasks for a user, which you can filter
based on criteria similar to that provided by the worklist application. The following
screenshot shows the structure of the input it expects:

We can see that the taskListRequest consists of two elements: the
workflowContext, which should contain the value returned by our authentication
request and the taskPredicateQuery, which defines the actual query that we wish
to make.

The taskPredicateQuery consists of the following core elements:

presentationId: ID of a pre-defined presentation that specifies the
columns, optional info, and ordering for the query. If specified, then the
displayColumnList, optionalInfoList, and ordering elements should
not be specified.
displayColumnList: Allows us to specify which attributes of the task
(for example, title, created by, created date, and so on) we want to be
included in the resultset.

•

•

Workflow Patterns

[542]

optionalInfoList: Allows us to specify any additional information we
want returned with each task, such as comments, task history, and so on.
predicate: Used to specify the filter conditions for which tasks we
want returned.
ordering: Allows us to specify one or more columns on which we want to
sort the result set.

Pre-defined presentations can be created and maintained via the User
Metadata Service. When creating a presentation, we specify essentially
the same information as defined by the displayColumnList,
optionalInfoList, and ordering elements.

The two attributes startRow and endRow are used to control whether the entire
result set is returned by the query or just a subset. To return the entire result set,
set both attributes to zero. To return just a subset of the result set, set the attributes
appropriately. For example, to return the first ten tasks in the result set, you would
set the startRow to be equal to 1 and the endRow to be equal to 10.

Specifying the display column list
The displayColumnList element list contained within the taskPredicateQuery
allows us to define which task attributes (or columns) we want returned by
our query.

Simply include in here one displayColumn entry per task attribute that we
want returned. Valid values include TaskNumber, Title, Priority, Creator,
CreatedDate, and State.

Display column names map directly to the columns names in the
WFTASK table in the SOAINFRA database schema.

If we look at the WSDL definition for the getSoldItems operation, we can see that it
returns the values orderNo, itemId, orderDesc, buyerId, itemPrice, totalPrice,
saleDate, orderStatus, lastUpdateDate, and nextAction.

At first glance, only a couple of these match actual task attributes; when we
created the task, we set the task title to hold orderDesc and the task attribute
updatedDate maps to lastUpdateDate.

In addition, we have decided to use taskNumber for the orderNo, as this makes it a
lot simpler to tie the two together.

•

•

•

Chapter 17

[543]

However, the remaining fields are all held in the task payload, which we can't
access through the queryTask operation. One solution would be to call the
getTaskDetails operation for every row returned, but this would hardly be
efficient. Fortunately, we have an alternative approach and that is to use flex fields.

Flex fields
Flex fields are a set of generic attributes attached to a task, which can be populated
with information from the task payload. This information can be displayed in
the task listing as well as used for querying and defining workflow rules in the
worklist application.

Populating flex fields
The simplest way to initialize the flex fields is in the BPEL process, which creates the
task. If you click on the plus sign next to a Human Task activity, this will expand
the task, showing you the individual BPEL activities that are used to invoke it, as
illustrated in the following screenshot:

You will see that this starts with an Assign activity (circled), which is used to set the
task attributes. To set the flex fields, simply open the Assign activity, and add an
extra copy statement for each flex field required.

Workflow Patterns

[544]

For our purposes, we will set the following flex fields in our OrderFulfillmentTask:

Flex field Attribute
textAttribute1 itemId

textAttribute2 buyerId

numberAttribute1 salePrice

numberAttribute2 totalPrice

dateAttribute1 saleDate

textAttribute3 orderStatus

textAttribute4 nextAction

You will need to update the local variable initiateTaskInput, which
will be defined in the scope with the same name as the Human Task
(OrderFulfillmentTask in our case). The flex fields are located in the
systemMessageAttributes element of the task element, as illustrated in
the following screenshot:

Accessing flex fields
Once we have populated the flex fields, we can access them in our query just like any
other task attribute. This will give us a displayColumnList that looks as follows:

<displayColumnList	
				xmlns="http://xmlns.oracle.com/bpel/workflow.taskQuery">
		<displayColumn>TaskNumber</displayColumn>
		<displayColumn>Title</displayColumn>
		<displayColumn>UpdatedDate</displayColumn>
		<displayColumn>TextAttribute1</displayColumn>
		<displayColumn>TextAttribute2</displayColumn>
		<displayColumn>NumberAttribute1</displayColumn>

Chapter 17

[545]

		<displayColumn>NumberAttribute2</displayColumn>
		<displayColumn>DateAttribute1</displayColumn>
		<displayColumn>TextAttribute3</displayColumn>
		<displayColumn>TextAttribute4</displayColumn>
</displayColumnList>

Specifying the query predicate
The next step is to specify the query predicate so that it only returns those tasks
that we are interested in. We will first look at the query we need to construct to
return all sold items for a particular seller.

The next screenshot shows the structure of the query predicate. The
assignmentFilter allows us to specify a filter based on who the task is currently
assigned to. Valid values are Admin, All, Creator, My, Group, My+Group, Reportees,
Owner, Previous, or Reviewer.

For our purposes, we need to list all tasks related to items sold by the specified
seller, so we will need to include those items which have tasks currently assigned
to the buyer.

You may recall that when we defined our workflow, we assigned the initiator (or
creator) of the task to be the seller, so we can use Creator as the assignmentFilter.

So far, our query will return all tasks created by the specified user, which could
potentially include tasks created in other workflows, so we need to add an additional
filter to further restrict our query.

One approach would be to use the keywords filter, which is an optional search string
and if specified, will only return tasks where the string is contained in the task title,
task identification key, or one of the task text flex fields. However, this probably
won't result in the most efficient query. A better alternative is to implement a filter
against the task definition name.

Workflow Patterns

[546]

If we examine the structure of the query predicate, we can see that we have a
choice between specifying a clause element (highlighted in the previous screenshot)
or a predicate element. Either of these will allow us to achieve the same result.

However, the clause element (only the highlighted one) is deprecated in 11gR1 and
is only there to provide backwards compatibility with SOA Suite 10.1.3.x. So, we will
examine how we can use the predicate element to define our query.

Looking at the previous screenshot, we can see there are two
elements with the name predicate: the outermost one is of type
taskPredicateType and the inner one is of type predicateType.
This can be confusing as they have the same name, but a different
structure. For the purposes of defining our query, we are using the
innermost predicate element of type predicateType.

If we look at the structure of a predicate, we can see that we have a choice over its
content. With the first option, the predicate is made up of the following sequence
of elements:

In this content model, both lhs and rhs are of type predicateType, with
logicalOperator being able to take the value AND or OR. In other words, a predicate
can be made up of two other predicates (and so on), each of which is evaluated
separately with the results combined according to the logical operator.

Chapter 17

[547]

Eventually, each of the leave predicates in the overall predicate tree must contain one
or more clause elements, the structure of which is shown in the following screenshot:

The clause element is made up of three core parts: the column element where we
define the task attribute that we wish to query, the operator (for example, equal,
not equal, and so on), and the value we want to compare it against.

The column consists of two parts:

The attribute tableName: This should contain the name of the database table
in the SOAINFRA schema that we wish to query. This will typically be the
table WFTASK.
The element columnName: This should contain the name of the column
on the specified tablename that we wish to query (which, in our case, is
TaskDefinitionName).

The operator specifies the type of comparison that we wish to carry out. The valid
operators are as follows:

Standard operators: EQ (Equal), NEQ (Not Equal), GT (Greater Than), GTE
(Greater Than or Equal), LT (Less Than), and LTE (Less Than or Equal)
String operators: LIKE, NOT_LIKE, CONTAINS, NOT_CONTAINS, BEGINS, NOT_
BEGINS, ENDS, and NOT_ENDS
Date operators: BEFORE, AFTER, ON, NEXT_N_DAYS, and LAST_N_DAYS
Value list operators: IN and NOT_IN
Null operators: IS_NULL and IS_NOT_NULL

•

•

•

•

•

•

•

Workflow Patterns

[548]

The final part of the clause contains the value that we want to compare our task
attribute against; here we have a choice of content, based on what we want to carry
out. The valid options are as follows:

value: Use this when we just want to compare the value of our task attribute
against a single value.
dateValue: This should be used in place of value, when the value we want
to compare is a date.
valueList: This can contain a list of one or more values, which we would
use with either the IN or NOT_IN operator.
columnValue: We would use this when we want to compare our task
attribute against another task attribute. This has the same structure as the
column element.
identityTypeValue: We can use this to compare the value against an
identity type (that is, user, group, or application role).
identityTypeValue: This can contain a list of identityTypeValue	
elements, which we would use with either the IN or NOT_IN operator.

In addition, the clause element contains two attributes:

joinOperator: This is only required when we have two or more clauses in
the same predicate, and specifies how we want to chain additional clauses
together. Valid values are AND or OR.
ignoreCase: This takes a boolean value and allows us to specify whether
string-based comparisons should be case sensitive.

In the case of our query, we want to restrict it to just return Order Fulfillment
tasks. We can do that by querying on the column TaskDefinitionName in the table
WFTask. Adding a clause to filter on this would give us the following predicate:

<predicate	xmlns="http://xmlns.oracle.com/bpel/workflow/taskQuery">
				<assignmentFilter>Creator</assignmentFilter>
				<predicate>
								<clause>
												<column	tableName="WFTask">

																	<columnName>TaskDefinitionName</columnName>
												</column>
												<operator>EQ</operator>
												<value>OrderFulfillmentTask</value>
								</clause>
				</predicate>
</predicate>

•

•

•

•

•

•

•

•

Chapter 17

[549]

Using flex fields in the query predicate
Specifying the query predicate for the buyer isn't quite so simple, as we want to list
all tasks related to items bought by the specified buyer. So we will need to include
those items which have tasks currently assigned to various sellers.

Unlike the seller's query, we can't use the Creator value as our assignment filter,
and we can't use My either as this only returns tasks currently assigned to us. So the
only option we have is to use All as our assignment filter. However, this will return
all tasks currently in the system, so we need to find a way of restricting the list to just
those tasks required by the buyer.

As you may recall, we have already defined the flex field textAttribute1 to hold
the buyerId, so we just need to add an extra clause to our predicate to test for this
condition. This will give us a predicate, which looks as follows:

<predicate	xmlns="http://xmlns.oracle.com/bpel/workflow/taskQuery">
				<assignmentFilter>All</assignmentFilter>
				<predicate>
								<clause>
												<column	tableName="WFTask">

																			<columnName>TaskDefinitionName</columnName>
												</column>
												<operator>EQ</operator>
												<value>OrderFulfillmentTask</value>
								</clause>
								<clause	joinOperator="AND">
												<column	tableName="WFTask">

																			<columnName>TextAttribute1</columnName>
												</column>
												<operator>EQ</operator>
												<value>$buyerId	</value>
								</clause>
				</predicate>
</predicate>

Here, $buyerId needs to be substituted with the actual userId of the buyer.

Workflow Patterns

[550]

Ordering the data
The ordering element list contained within the taskPredicateQuery allows us
to define which task attributes we want to order our result set by, the structure of
which is shown in the following screenshot:

The	ordering	element can contain zero or more clause elements. When
specifying multiple clause elements, the result set is sorted first on the first clause,
then within that, on the second clause, and so on. The	clause	element contains
the following elements:

column: The column that we wish to sort on. It should be the name of one of
the columns specified in the DisplayColumnList.
table: The name of the table to which the ordering clause column belongs
(this is nearly always WFTASK).
sortOrder: Should be set to ASCENDING	or	DESCENDING.
nullFirst: Takes a boolean value.

For our purposes, we want to order by sale date, which is held in	dateAttribute1.
This gives us an	ordering	element, which looks as follows:

			<ordering	xmlns="xmlns.oracle.com/bpel/workflow/taskQuery">
						<clause>
									<column>DateAttribute1</column>
									<table>WFTASK</table>
									<sortOrder>ASCENDING</sortOrder>
									<nullFirst>true</nullFirst>		 	
						</clause>
			</ordering>

The simplest way to create the taskPredicateQuery is to create an
XML Fragment, which can act as a template for the query and assign
this with a single copy statement. Then just add any additional copy
statements for those values which need to be specified at runtime in order
to modify the template-generated value appropriately.

•

•

•

•

Chapter 17

[551]

Getting task details
The final query-based operation we need to implement is getOrderDetails, which
returns the order details for the specified orderNo. The Task Query Service provides
two similar operations: getTaskDetailsByNumber and getTaskDetailsById.

As the orderNo corresponds to the taskNumber, it makes sense to call the
getTaskDetailsByNumber operation. This just takes the standard workflowContext
and the taskNumber as its input.

The only slight area of complexity is extracting the order from the task payload. This
is because payload is defined as xsd:any, which means it can contain any value.
Because of this, the XPath mapping tool can't determine the structure of the payload
and thus can't visually map the From part of the operation.

Thus, you have to create the XPath manually. The simplest way to do this is to create
a mapping from the task to your target variable using the visual editor and then
modify the XPath manually, as shown in the following screenshot:

Workflow Patterns

[552]

Updating a task instance
Our second category of task-based Business Service is one that allows the
buyer or seller to perform actions against the workflow task.	For the purpose
of this section, we will look at the implementation of the setShippingDetails
operation, though the other operations submitInvoice, notifyPaymentMade,
confirmPaymentReceived, notifyItemShipped, and confirmItemReceived all
follow the same basic pattern.

setShippingDetails is used to complete the first step in the workflow, namely,
updating the task payload to contain the shipping name and address of the buyer
as well as providing any additional shipping instructions. Finally, it needs to set the
outcome of the current step to COMPLETED so that the task moves on to the next step
in the workflow. The following screenshot shows the input fields for this operation:

From this, we can see that it contains the buyer's workflowContext, which is
required to authenticate with the Workflow Services, the orderNo that we will use to
locate the appropriate Order Fulfillment task, and the actual shipTo details that we
will use to update the task.

To implement this operation, we are going to make use of the Task	Service
provided by the Workflow Service. This provides a number of operations which
act on a task.

The WSDL for the Task Service is located at:

http://<hostname>:<port>/integration/services/TaskService/
TaskServicePort?WSDL

Using the updateTask operation
Most of the tasks provided by this service are granular in nature and only update a
specific part of a task. Thus they only require the taskId and the corresponding part
of the task being updated as input.

Chapter 17

[553]

However, our operation needs to update multiple parts of a task, that is, the order
held in the task payload, the corresponding flex fields, and the task outcome. For
this, we will use the updateTask operation. The following screenshot shows its
expected input:

From this, we can see that it expects the standard workflowContext as well as the
complete, updated task element.

The simplest way to achieve this is to use the Task Query Service to get an
up-to-date copy of our task. We do this in exactly the same way we did for
our getOrderDetails operation. Then, modify it as appropriate and call the
updateTask operation to make the changes.

Updating the task payload
The only area of complexity is updating the order directly within the task
payload. This is for the same reason we mentioned earlier when implementing the
getOrderDetails operation; as the payload is defined as xsd:any, we can't use the
XPath mapping tool to visually map the updates.

The simplest way to work around this is to first extract the order from the task
payload into a local variable (which we do in exactly the same way that we did for
our getOrderDetails operation).

Once we've done this, we can update the shipTo element of the order to hold the
shipping details as well as update nextAction to Enter Shipping Costs to reflect the
next step in the workflow.

Once we have updated the order, we must insert it into the task payload. This is
essentially the reverse of the copy operation we used to extract it.

Workflow Patterns

[554]

Updating the task flex fields
Once we have updated the task payload, we then need to update the corresponding
flex fields so that they remain synchronized with the order. We do this using an
Assign activity in a similar way that we used to set the flex fields when creating the
task in our OrderFulfillment process.

Updating the task outcome
Finally we need to set the task outcome for the current step (this is effectively the
same as specifying a task action through the worklist application). In our case, we
have defined two potential outcomes: COMPLETED or ABORTED.

For setShippingDetails (as with all of our operations), we want to set the task
outcome to COMPLETED, note this won't actually complete the task, rather it completes
the current assignment, and in our case, as all our routing policies are single
approver, it will complete the current step in the workflow and move the task
on to the next step. Only once the final step is completed will the task complete
and control be returned to the OrderFulfillment BPEL process.

To set the task outcome, we only need to set the outcome element (located
in the task systemAttributes element) to COMPLETED. However, it isn't
quite that straightforward; if you look at the actual task data returned by the
getTaskDetailsByNumber operation, the outcome element isn't present.

Thus if we use a standard copy operation to try and assign a value to this element,
we will get an XPath exception.

Instead, what we need to do is create the outcome element and its associated value
and append it to the systemAttributes element. To do this within the Assign
activity, use an Append Operation, as shown in the following screenshot:

Chapter 17

[555]

The simplest way to create the outcome element is to use an XML Fragment and
append it to the systemAttributes element, as shown in the following screenshot:

Once we've done this, we will have a completed task, so all that remains is to call
updateTask to complete the operation.

Workflow Patterns

[556]

Summary
Human workflow is a key requirement for many projects. Quite often, these are a lot
more demanding than just a simple approval. In this chapter, we've looked at some
of the more complex, yet common use, cases and shown how these can be addressed
in a quite straightforward fashion by the workflow service.

In addition, we've demonstrated how we can use the Workflow API to completely
abstract out the underlying Workflow Service and present a completely different
appearance to the consumer of the service.

Although we have not covered every detail of the Workflow Service, you should
now have a good appreciation of some of its more advanced features, the versatility
this gives you, and more importantly, how you can apply them to solve some of the
more common workflow requirements.

Using Business Rules to
Implement Services

We have looked at how we can use the rules engine to define business rules that
can then be invoked as a decision component within a composite. The examples
we have used so far have been pretty trivial. However, the rules engine uses the
Rete algorithm, which was developed by researchers into artificial intelligence in
the 1970s.

Rete has some unique qualities, when compared to more procedural-based
languages such as PL/SQL, C, C++, or Java, making it ideal for evaluating a
large number of interdependent rules and facts. This not only makes it simpler
to implement highly complex rules than would typically be the case with more
procedural-based languages, but also makes it suitable for implementing particular
categories of first-class business services.

In this chapter, we look in more detail at how the rule engine works, and armed
with this knowledge, we write a set of rules to implement the auction algorithm
responsible for determining the winning bid according to the rules set out in
Chapter 10, oBay Introduction.

How the rule engine works
So far, we have only dealt with very simple rules that deal with a single fact. Before
we look at a more complicated ruleset that deals with multiple facts it's worth taking
some time to gain a better understanding of the inner workings of the rule engine.

The first thing to take into account is that when we invoke a ruleset, we do it through
a rules session managed by the decision function (or service). When invoking the
decision function, it first asserts the facts passed in by the caller. It then executes the
ruleset against those facts, before finally retrieving the result from the rule sessions.

Using Business Rules to Implement Services

[558]

Within the context of this text, a Decision Service and a Decision
Function is essentially the same thing. Within the rule editor, we define
a Decision Function; we then expose that function as a web service,
which can then be invoked within a composite as a Decision Service.

Asserting facts
The first step is for the decision function to assert all the facts passed by the client
into the working memory of the rules sessions, ready for evaluation by the rule
engine. Once the facts have been asserted into working memory, the next step is
to execute the ruleset.

Executing the ruleset
Recall that a ruleset consists of one or more rules and that each rule consists of two
parts; a rule condition, which is composed of a series of one or more tests, and an
action block or list of actions to be carried out when the rule condition evaluates to
true for a particular fact or combination of facts.

It's important to understand that the execution of the rule condition and its
corresponding action block are carried out at two very distinct phases within
the execution of the ruleset.

Rule activation
During the first phase, the rule engine will test the rule condition of all rules to
determine for which facts or combination of facts the rule conditions evaluate to
true. A group of facts that together cause a given rule condition to evaluate to true is
known as a fact set row. A fact set is a collection of all fact set rows that evaluate to true
for a given rule.

In many ways it's similar in concept to executing the rule condition as a query over
the facts in working memory; with every row returned by the query equivalent to a
fact set row, and the entire resultset being equivalent to the fact set.

For each fact set row, the rules engine will activate the rule. This involves adding each
fact set row with a reference to the corresponding rule to the agenda of rules which
need to be fired. At this point, the action block of any rule has not been executed.

When rule activations are placed on the rule agenda, they are ordered based on
the priority of the rule, with those rules with a higher priority placed at the top
of the agenda.

Chapter 18

[559]

When there are multiple activations with the same priority, the most recently added
activation is the next rule to fire. However, it's quite common for multiple activations
to be added to the ruleset at the same time. The ordering of these activations is
not specified.

Rule firing
Once all rule conditions have been evaluated, the rule engine will start processing
the agenda. It will take the rule activation at the top of the agenda and execute the
action block for the fact set row and the corresponding rule.

During the execution of the action block, the rule may assert new facts, assert
updated facts, or retract existing facts from the working memory. As the rule engine
does this, it may cause existing activations to be removed from the agenda or add
new activations to the agenda.

When an activation is added to the agenda, it will be inserted into the agenda based
on the priority of the rule. If there are already previous activations on the agenda with
the same priority, the new activation will be inserted in front of these activations, that
is, the set of new activations will be processed before any of the older activations with
the same priority, but after any activation with a higher priority.

If a rule asserts a fact that is mentioned in its rule condition,
and the rule condition is still true, then a new activation for
the same fact set row will be added back to the agenda. So the
rule will be fired again. This can result in a rule continually
firing itself and thus the ruleset never completing.

Once the rule engine has completed the execution of the action block for an
activation, it will take the next activation from the agenda and process that. Once
all activations on the agenda have been processed, the rule engine has completed
execution of the ruleset.

Retrieving result
Once the ruleset has completed, the decision function will query the working
memory of the rule session for the result, specifically, the facts that we configured
as outputs of the decision service, which the decision function will then return to
the caller.

Using Business Rules to Implement Services

[560]

Note that for each fact that we have configured as an output of the decision function,
we should ensure that just a single fact of that type will reside within the working
memory of the decision service upon completion of execution of the ruleset. If zero
or multiple facts exist, then the decision service will return an exception.

Session management
Before executing a ruleset, the decision service must first obtain a rule session.
Creating a rule session involves creating a RuleSession object and loading the
required repository that has significant overhead. Instead of creating a new
RuleSession to handle each request, the decision service maintains a pool
of shared objects that it uses to service requests.

When we invoke a decision function within a composite, the decision service will
allocate a RuleSession object from this pool to handle the request.

In most scenarios, once the decision service has returned a result to the caller,
the final step is to reset the session, so that it can be returned to the pool of
RuleSession objects and be reused to handle future requests. This pattern
of invocation is known as a stateless request, as the state of the session is not
maintained between operations.

However, for invocations within a BPEL process, the decision service also supports a
stateful invocation pattern, which enables you to invoke multiple operations within
the same session when more flexibility is required.

For example, within the first invocation, you could assert some facts, execute the
ruleset, and retrieve the results (without resetting the session). Based on the result,
you may then take one of multiple paths within your BPEL process, at which point,
you may re-invoke the decision service asserting some additional facts, re-execute
the ruleset and retrieve an updated result, and then reset the rule session.

However, stateful sessions should be used with care as the state of the rule session
is not persisted as part of the dehydration of a BPEL process, so it won't survive a
server shutdown.

By default, when a decision function is created within the rules
editor, it has the Stateless checkbox selected. You will need to
deselect this if you want the function to support stateful invocations.

Chapter 18

[561]

Debugging a ruleset
As the order in which rules and facts are evaluated are not specified for rules with
equal priority, it can potentially be quite hard to debug when you don't get the result
you are expecting. In these situations, it can be extremely useful to see what facts
are being asserted, the activations that are being generated, and the rules as they are
being fired.

Debugging a decision service with a test function
As we discussed in Chapter 7, Using Business Rules to Define Decision Points, it's a
good idea to define one or more test functions to test your decision services. With
this approach each test function will construct the input facts, submit them to the
decision service, and then output the resultset.

In order to understand how the rules are being evaluated, the test function can
instruct the rule engine to output details of these events by making the following
function calls:

RL.watch.facts(): Outputs information about each fact that it asserted,
retracted, or modified within the working memory of a ruleset. As each fact
is asserted it gives a numeric identifier prefixed with f-, which uniquely
identifies that fact within the rule session.
RL.watch.activations(): Outputs information about each rule activation
as it's placed on the agenda (or removed from the agenda), including details
of the facts in the row fact set for the activation.
RL.watch.rules(): Outputs information about each rule as it fires, detailing
the rule fired as well as the facts in the row fact set causing the rule to fire.
RL.watch.all(): Outputs all of the mentioned information.

Debugging a decision service within a composite
To enable logging off the above mentioned events during execution of a ruleset
within a composite, you need to set the logging level to TRACE for the rules logger
as follows:

oracle.soa.services.rules.obrtrace

This will cause the output of RL.watch.all() to be logged to the SOA server
diagnostic log, located in the following directory:

<WL_HOME>/user_projects/domains/<domain>/servers/<soa	server>/logs

•

•

•

•

Using Business Rules to Implement Services

[562]

Here <domain> is the WebLogic Server domain in which you configured the SOA
components, and <soa	server> is the managed server on which you are running
soa-infra (for example, soa_server1).

See the Administrator's Guide for the SOA Suite for details on how
to set logging levels via the Fusion Middleware Control Console.
When set using the console, the settings take immediate effect, that
is, you do not need to redeploy the composite.

Using the print function to add additional logging
Even with the available logging information, it can be useful to produce more fine
grain logging within your ruleset. You can do this by calling the print function
within your ruleset. This function can be used either within your own functions or
called as part of the action block for a rule. Again, to enable these statements to be
written to the SOA server diagnostic log, you need to set TRACE level logging for
the rules logger.

Using business rules to implement
auction
A good candidate for a service to implement as a ruleset is the oBay auction service.
You may recall that we looked at the oBay auction process in Chapter 16, Message
Interaction Patterns. What we didn't cover in this chapter is the actual implementation
of how we calculate the winning bid.

In this scenario, our facts consist of the item up for auction and a list of bids that have
been submitted against the item. So we need to implement a set of rules to be applied
against these bids in order to determine the winning bid.

Defining our XML facts
The first step in implementing our business rules set is to define our input and
output facts. We can create these using the auction.xsd that we defined as part of
our canonical model for oBay, as shown in the following code snippet:

<xsd:element name="auctionItem" type="tAuctionItem"/>
<xsd:element name="bids" type="tBids"/>
<xsd:element	name="bid"																			type="tBid"/>
<xsd:complexType	name="tAuctionItem">

Chapter 18

[563]

		<xsd:sequence>
				<xsd:element	name="auctionType"			type="tAuctionType"/>
				<xsd:element	name="startTime"					type="xsd:dateTime"	/>
				<xsd:element	name="endTime"							type="xsd:dateTime"	/>
				<xsd:element	name="startingPrice"	type="xsd:double"	/>
				<xsd:element	name="reservePrice"		type="xsd:double"/>
				<xsd:element	name="winningPrice"		type="xsd:double"/>
				<xsd:element	name="winningBid"				minOccurs="0"	type="tBid"/>
				<xsd:element	name="bidHistory"				type="tBids"/>
		</xsd:sequence>
</xsd:complexType>
<xsd:complexType	name="tBids">
		<xsd:sequence>
				<xsd:element	name="bid"	type="tBid"	minOccurs="0"		
																																								maxOccurs="unbounded"	/>
		</xsd:sequence>
</xsd:complexType>
<xsd:complexType	name="tBid">
		<xsd:sequence>
				<xsd:element	name="bidId"							type="xsd:string"	/>
				<xsd:element	name="bidderId"				type="xsd:string"	/>
				<xsd:element	name="bidtime"					type="xsd:dateTime"/>
				<xsd:element	name="maxAmount"			type="xsd:double"/>
				<xsd:element	name="bidAmount"			type="xsd:double"/>
				<xsd:element	name="status"						type="xsd:string"/>	
		</xsd:sequence>
</xsd:complexType>

By examining this, we can see that this maps nicely to the facts that we have already
identified; we have the element auctionItem, which maps to our auction fact. This has
a start and end time during which bids can be received, a starting price and a reserve
price (which defaults to the starting price if not specified), and an optional winning bid
element, which holds details of the current winning bid for the auction, if there is one,
as well as the bid history element, which contains details of all failed bids.

When we first create an auction, we won't receive any bids, so initially our
auctionItem will not contain a winning bid and the bid history will be empty,
as shown in the following code snippet:

<auctionItem>
<auctionType>STD</auctionType>
		<startTime>2010-04-01T15:45:48	</startTime>
		<endTime>2010-04-08T15:45:48</endTime>
		<startingPrice>1.00</startingPrice>
		<reservePrice>5.00</reservePrice>
		<winningPrice>0.00</winningPrice>
		<bidHistory/>
</auctionItem>

Using Business Rules to Implement Services

[564]

Against this, we need to apply one or more bids. This is contained within the fact
bids, which contains one or more bid elements of type tBid.

As part of the auction process, as each bid is submitted to the BPEL
process, it will assign a unique id to the bid (within the context of
the auction), set the bidtime to the current time, and set the status
of the bid to NEW, before submitting it to the auction ruleset.

So for example, if we submitted the following set of bids against the last item:

<bids>
		<bid>
				<bidId>1</bidId>
				<bidderId>jcooper</bidderId>
				<bidtime>2010-04-06T12:27:14</bidtime>
				<maxAmount>12.00</maxAmount>
				<bidAmount>0.00</bidAmount>
				<status>NEW</status>
		</bid>
		<bid>
				<bidId>2</bidId>
				<bidderId>istone</bidderId>
				<bidtime>2010-04-07T10:15:33</bidtime>
				<maxAmount>10.00</maxAmount>
				<bidAmount>0.00</bidAmount>
				<status>NEW</status>
		</bid>
</bids>

We would want the rule engine to return as an updated auctionItem fact that
looked like the following code snippet:

<auctionItem>
		<auctionType>STD</auctionType>
		<startTime>2010-04-01T15:45:48	</startTime>
		<endTime>2010-04-08T15:45:48</endTime>
		<startingPrice>1.00</startingPrice>
		<reservePrice>5.00</reservePrice>
		<winningPrice>10.50</winningPrice>
		<winningbid>
				<bidId>1</bidId>
				<bidderId>jcooper</bidderId>
				<bidtime>2010-04-06T12:27:14</bidtime>
				<maxAmount>12.00</maxAmount>

Chapter 18

[565]

				<bidAmount>10.50</bidAmount>
				<status>WINNING</status>
		</winningbid>
		<bidHistory>
				<bid>
						<bidId>2</bidId>
						<bidderId>istone</bidderId>
						<bidtime>2010-04-07T10:15:33</bidtime>
						<maxAmount>10.00</maxAmount>
						<bidAmount>10.00</bidAmount>
						<status>OUTBID</status>
			</bid>
		</bidHistory>
</auctionItem>

Defining the business rule
Now that we have established our input and output facts, we are ready to create our
auction rules. Open the composite.xml file for the auction composite, and then from
the Component Palette, drag-and-drop a Business Rule onto the composite. This
will launch the Create Business Rules dialog.

For the AuctionRules decision service, we need to pass in two facts, auctionItem and
bids, and return the single fact auctionItem, as shown in the following screenshot:

Using Business Rules to Implement Services

[566]

Configuring the decision function
Before we write our rules, we need to make some changes to the default
configuration of our decision function. Within the rules editor, select the
Decision Functions tab, next select AuctionRulesDecisionService, and click
Edit (the pencil icon). This will open up the Edit Decision Function window,
as shown in the following screenshot:

Deselect Check Rule Flow
First uncheck the option Check Rule Flow (circled in the preceding screenshot).
By default, this is checked, which causes the rules author to check that all the input
and output facts are used in the ruleset. By used it means that each fact is directly
referenced by at least one rule in the ruleset and if not, the rule editor will flag an
error that will prevent you from deploying the ruleset.

Within our ruleset, we are not going to make any direct reference to the TBids fact;
rather our rules reference the TBid facts contained within the TBids fact.

Asserting the XML tree
The other subtlety we need to be aware of is that, by default, when you pass in an
XML fact based on a complex type, and if that complex type contains other complex
types, then it will only assert the top level XML element.

Chapter 18

[567]

In our example, TAuctionItem contains winningBid and bidHistory (which
contains bid), while TBids contains bid. As mentioned previously, we need to assert
all the bid elements contained in TBids; we also need to assert the winningBid
element contained in TAuctionItem. To do this, select the checkbox Tree (circled in
the last screenshot) for each of these parameters. This will cause the decision function
to parse the top-level element and assert all descendent facts.

At this point, we can actually save and run the ruleset from our auction process.
Assuming everything works as expected, it will return a result containing details of
the actual auction item that we passed in. All that remains now is for us to write the
rules to evaluate our list of bids.

Using a global variable to reference the
resultset
When we configure a decision service, we specify one or more facts that we want the
decision service to watch (that is, AuctionItem in the previous example); these are
often referred to as the resultset.

Many of our rules within the ruleset will require us to update the resultset. For
example, every time we evaluate a bid, we will need to update the AuctionItem fact
accordingly, either to record a bid as the new winning bid or add it to the bid history
as a failed bid.

When a rule is fired, the action block is only able to operate on those facts contained
within its local scope, which are those facts contained in the fact set row for that
activation. Or put more simply, the rule can only execute actions against those facts
that triggered the rule.

This means that for any rule that needs to operate on the resultset, we would need
to include the appropriate test within the rule condition in order to pull that fact into
the fact set row for the activation. So in the case of our Auction ruleset, we would
need to add the following statement to every rule that needed to operate on the
AuctionItem fact:

AuctionItem	is	a	AuctionItem

This just adds an extra level of complexity to all our rules, particularly if you have
multiple facts contained within the resultset. It's considered a better practice to
define a global variable that references the resultset, which we can access within
the action block of any rule and within any function we define.

Using Business Rules to Implement Services

[568]

Defining a global variable
To create a global variable from within the rule editor, select the Globals tab. This
will present a list of the global variables currently defined to our ruleset (which at
this point is empty). Click Create to bring up the Edit Global window, as shown in
the next screenshot.

Here we have defined a variable of type TAuctionItem and given it a corresponding
name. For the purpose of clarity, we tend to prefix all variables with var to indicate
that it's a global variable.

If we check the box Final, the variable is fixed based on the value that we specify,
allowing us to use it within the test part of a rule. However, as we want to be able
to update the variable, we have left this unchecked.

Finally, we can define an expression to initialize the variable. With XML facts
you would often call a function to create the fact and initialize the variable. In our
case, we want to initialize it to reference the AuctionItem fact passed in by the
decision service.

As variables are created and initialized prior to asserting any facts, we will need to
define a rule to do this once AuctionItem has been asserted. So, here we are just
setting our variable to null.

Defining a rule to initialize a global variable
For this rule, we just need to test for the existence of a fact of type TAuctionItem
(regardless of its content) and then assign it to our global variable. To do this, we
need to use the rule editor in Advanced Mode.

Chapter 18

[569]

Create your rule in the normal way, and then click on the Show Advanced Settings
icon; the double chevron next to the rule name circled in the following screenshot:

Next select Advanced Mode. This will expand the IF part of the rule, as we can see
in the following screenshot:

The circled part is called a Pattern and consists of two parts: the first is the type of
pattern that we wish to test for, and the second is the tests we want to apply to the
pattern. The rules engine supports the following patterns:

For each case where: This is the default pattern, and is used to specify that the
rule should be applied to each fact where the test evaluates to true
There is a case where: With this option, the rules will only be triggered once,
as long as there is at least one match
There is no case where: With this option, the rule will be fired once if there
are no matches
Aggregate: This option allows you to write rule conditions based on the
aggregate of more than one fact

When specifying the pattern, in addition to the pattern type, we need to specify
the fact type that we wish to apply the pattern to as well as a variable name that we
will use to reference the fact within the context of the rule (that is, within a test
and/or an action).

•

•

•

•

Using Business Rules to Implement Services

[570]

Up to this point, whenever we have defined a rule, we have just
been specifying the test part of the pattern. Behind the scenes, the
rule editor has defaulted the pattern values, with the pattern type set
to for each case where, the fact type set to the fact specified in the
test, and the variable name set to the same name as the fact type.

For our rule, we just want to test for the existence of a fact of type TAuctionItem, so
we will keep the default pattern (we will look at how to use a different pattern type
in a moment).

To do this, click on <variable> and specify an appropriate name, next click on
<fact type> and select TAuctionItem from the drop-down list, as shown in the
following screenshot:

We don't need to specify a test as all we are doing is checking for the existence of
the fact. The action part of the rule contains an assign statement to initialize our
global variable. As you can see from the following screenshot, despite having to use
Advanced Mode, the rule to initialize our global variable is pretty straightforward:

The other point worth noting is that we have specified a priority of highest
(the default is medium) for the rule. This is to ensure that this rule is fired
before any of the other rules which reference this variable.

Chapter 18

[571]

Writing our auction rules
The next step is to write the rules to determine the winning bid. We could write a
very simple rule to find the highest bid by writing a rule condition statement such
as the following:

winningBid	is	a	TBid
and
there	is	no	case	where	otherBid	is	a	TBid	and
				otherBid.maxAmount	>	winningBid.maxAmount

This will match the bid which has no other bids with a greater bid amount. However,
if we examine the bidding rules of an auction, we can see that the highest bid doesn't
always win.

The reason being that once a successful bid has been placed, the next bid has to be
equal to the winning amount plus a full bid increment, otherwise it's not a valid
bid. In addition, if two maximum bids are equal, then the bid that was placed first
is deemed the wining bid.

Evaluating facts in date order
In other words, we need to evaluate our bids in date order, the earliest first, and then
the next, and so on. Once a bid has been processed, its status will be set to WINNING,
OUTBID, or INVALID as appropriate.

So, we need to write a rule to select a bid with a status of NEW, which has an earlier
bidtime than any other bid with a status of NEW, which we can then evaluate against
our auction rules to determine its success or otherwise.

The first part of the rule condition is straightforward; we just need to implement a
pattern such as:

nextBid	is	a	TBid	and
				nextBid.status	==	"NEW"

This will of course match all bids with a status of NEW.

Checking for non-existent fact
We need to define a second pattern, that checks to see if no other bids exist (with a
status of NEW) with an earlier bidtime, in other words, we have to check for the non
existence of a fact.

We do this by defining a pattern of type there is no case where, which will fire once
if there are no matches, that is, no earlier bids.

Using Business Rules to Implement Services

[572]

To do this, click on <insert pattern> to insert the template for the second pattern
into our IF clause. Then select the pattern and right-click on it. From the drop-down
menu, select Surround With, as shown in the following screenshot:

This will launch the Surround With dialog, from here, select Pattern Block. This will
place our pattern within a pattern block, which allows us to specify which type of
pattern we want to apply. This is shown in the following screenshot:

The final step is to click on the pattern type, and from the drop-down menu, select
the type there is no case where, as shown in the following screenshot:

Chapter 18

[573]

We can now implement the test within our second pattern to test for an earlier bid
with a status of NEW. So our extended rule condition is implemented as shown in the
following screenshot:

This condition works as follows: the first test will select all the bids with a status of
NEW. For each bid selected, it will execute the second test where it will select all other
bids with a status of NEW and an earlier bidtime (using the function Duration). If no
bids are selected then this test will evaluate to true and the rule will be activated and
placed on the agenda.

When the activation is placed on the agenda, only the fact referenced by nextBid is
included in the fact row set, as for the rule condition to be true, anotherBid won't
actually reference any other bid.

Updating the bid status
Once we have located the next bid, we need to set its status to NEXT and reassert it.
We do this with the following statements in our action block, shown as follows:

Assign	nextBid.status	=	"NEXT"
Assert	nextBid

An interesting side effect is that as soon as we assert our modified bid, the rule
engine will reapply the test condition and potentially find another bid with a status
of NEW, that is, the next bid to be processed after this one.

On finding this bid, it will place a new activation on the agenda for this rule
referencing this new bid. To prevent this rule from firing before any of the rules
which process bids with a status of NEXT, we have set the priority of this rule
to lowest.

Using Business Rules to Implement Services

[574]

So, the complete rule to get the next bid is defined as follows:

Using inference
Once we have identified the next bid, we could then include the logic to determine
the success or otherwise of the bid within the same rule. However, when processing
a bid, we have to deal with the following three potential scenarios:

1. The next bid is higher than the current winning bid.
2. The current winning bid is higher than or equal to the next bid.
3. This is our first bid and thus by default it is our winning bid.

Before evaluating a bid, we also need to check that it's valid, specifically we
must check that:

The max bid amount is greater than or equal to the starting price of the item
The max bid amount is greater than the current winning price plus one
bidding increment

If we encompassed all these checks within a single rule, we would end up with a
very complex rule.

For example, to write a single rule for the first scenario, we would need to write a
rule condition to identify the next bid, validate it, and finally check if it is higher
than the current winning bid. So we would end up with a rule condition like this
one shown in the following code snippet:

nextBid	is	a	TBid	and
		nextBid.status	==	"NEW"
and	

•

•

Chapter 18

[575]

there	is	no	case	where	{
		anotherBid	is	a	TBid	and
				anotherBid.status	==	"NEW"	&&
				Duration.compare(anotherBid.bidtime,	nextBid.bidtime)	<	0
}
and
auctionItem	is	a	TAuctionItem	and
		nextBid.maxAmount	>=	auctionItem.startingPrice
and
winningBid	is	a	TBid	and
		winningBid.status	==	"WINNING"	&&
		nextBid.maxAmount	>=	winningBid.bidAmount	+
																							getBidIncrement	(winningBid.bidAmount)&&
		nextBid.maxAmount	>	winningBid.maxAmount

We would then need to reimplement most of this logic for the other two scenarios.

Better practice is to use inference, that is, if A implies B, and B implies C, then we
can infer from this that A implies C. In other words, we don't have to write all of this
within a single rule; the rule engine will automatically infer this for us.

In our scenario, this means that writing a rule to get the next bid (as covered), and
writing two rules to validate any bid with a status of NEXT. These rules will retract
any invalid bids and update their status to reflect this. Finally, we need to write three
rules, one for each of the scenarios identified previously to process each valid bid.

The only thing we need to take into account is that the validation rules must have
a higher priority than the rules which process the next bid, so that they retract any
invalid bids before they can be processed.

Processing the next valid bid
Using inference, we can now write our rules to process the next bid, on the basis that
we already know which bid is next and that the bid is valid. Using this approach,
the rule condition for the first scenario, where the next bid is higher than the current
winning bid, would be specified as shown in the following code snippet:

nextBid	is	a	TBid	and
			nextBid.status	==	"NEXT"
and
winningBid	is	a	TBid	and
			winningBid.status	==	"WINNING"	&&	
			winningBid.maxAmount	<	nextBid.maxAmount

This, as we can see, is considerably simpler than the previous example.

Using Business Rules to Implement Services

[576]

If this evaluates to true for our next bid, then we will have a new winning bid
and need to take the appropriate action to update the affected facts as well as
the resultset.

The first action we need to take is to calculate the actual winning amount by adding
one bidding increment to the maximum amount of the losing bid. So the first
statement in our rules action block is as follows:

Assign	nextBid.bidAmount	=	winningBid.maxAmount	+	
																											getBidIncrement	(winningBid.maxAmount)

Here, getBidIncrement is a function that calculates the next bid increment based on
the size of the current winning amount.

Next, we need to update its status to WINNING and reassert the bid in order for it to be
reevaluated as a winning bid by our ruleset.

In addition, we need to update the status of our previous winning bid to OUTBID and
retract it from the rule space, as we no longer need to evaluate it.

Using functions to manipulate XML facts
As part of the process of evaluating a new winning bid, we also need to update our
resultset. When doing this, it's important to take into account that each XML fact (for
example, TAuctionItem, TBids, and TBid) is implemented within the rules engine as
a Java class, generated by the rules editor using JAXB 2.0.

When we pass a fact (such as auctionItem) into the rules engine, the decision
function will instantiate an instance of the corresponding Java class (for example,
TAuctionItem) to hold details of the fact. In addition, for each complex type
embedded within the fact (for example, winningBid in auctionItem), it will
instantiate a class of the appropriate type (for example, TBid in the case of
winningBid), which will be referenced by auctionItem.

However, it will only do this if the complex type is actually present in the XML fact
passed to the decision function. What this means is that when we update a complex
type within an XML fact, we need to first check that this type exists, and if it doesn't,
create it and update the XML fact to reference it.

For example, at the time we place our first bid, auctionItem won't contain a
winning bid. So, we need to create a new element of type TBid and set
auctionItem.winningBid to reference it, before updating the winningBid
element with details of our new winning bid.

Chapter 18

[577]

In the case of bidHistory, this is a collection of TBids, so every time we insert a new
losing bid, we must create a new XML element of type TBid to hold the details of the
losing bid and insert this into the bidHistory element.

Rather than performing this manipulation of the XML structure directly within the
action block of our rules, it's considered best practice to implement this as a function
that can then be called from our rule. This helps to keep our rules simpler and more
intuitive to understand.

So, for this purpose, we need to define two functions: assertWinningBid and
retractLosingBid.

Asserting a winning bid
To record details of a new winning bid in the resultset, we have defined the function
assertWinningBid, which takes a single parameter bid of type TBid, used to pass in
a reference to the winning bid. The code for this function is as follows:

// Update Status of Winning Bid
Assign	bid.status	=	"WINNING"
assert	bid

// Update result set with details of Winning Bid
assign	varAuctionItem.winningPrice	=	bid.bidAmount

assign	new	TBid	winningBid	=	varAuctionItem.winningBid

//	Create	Winning	Bid	if	one	doesn't	exist
if	(winningBid	==	null)	{
				assign	winningBid	=	new	TBid()
				assign	varAuctionItem.winningBid	=	winningBid	
}

assign	winningBid.bidAmount	=	bid.bidAmount
assign	winningBid.bidNo					=	bid.bidNo
assign	winningBid.bidderId		=	bid.bidderId
assign	winningBid.bidTime			=	bid.bidTime
assign	winningBid.maxAmount	=	bid.maxAmount
assign	winningBid.status				=	bid.status
return

Looking at this, we can see that it breaks into two parts. The first part updates the
status of the winning bid to WINNING, and asserts the bid. Now, this isn't actually
updating the resultset, so rather than including these actions within the function,
we could directly define them within the rule itself.

Using Business Rules to Implement Services

[578]

But as we need to process a winning bid in multiple rules, we have chosen to include
this in the function, as it both simplifies our rules and ensures that we handle
winning bids in a consistent way. Either approach is valid; it just comes down to
personal preference.

However, to indicate to callers of the function that we are asserting the winning bid
in the function, we have prefixed the name of the function with assert.

The second part of the function is used to update the resultset with details of the
winning bid. The first line updates the element winningPrice to contain the bid
amount of the winning bid.

The next set of code is more interesting; the line returns a reference to the winning
bid element:

assign	new	TBid	winningBid	=	varAuctionItem.winningBid

This may return null, as the AuctionItem may not currently have a winning bid
(for example, if this is the first winning bid). In this scenario, we create a new TBid
element and update varAuctionItem to reference this.

Finally, we update the winning bid element in AuctionItem to point to this newly
created element as follows:

				assign	varAuctionItem.winningBid	=	winningBid	

Once we've done this, we update the details of the winningBid element with those of
the bid element.

The final thing to note is that we are not asserting varAuctionItem or any of the
elements we have added to it, so none of these changes will be visible to our ruleset,
which is exactly what we want. This is because we are using the resultset as a place
to build up the result of executing our ruleset and thus don't want it included in
the evaluation.

Retracting a losing bid
To record details of a losing bid in the resultset, we have followed a similar approach
and defined the function retractLosingBid, which takes two parameters bid of
type TBid and reason of type String, which has the reason for the retraction (for
example, OUTBID, INVALID).

The code for the function is as follows:

// Update Status of Losing Bid
assign	bid.status				=	reason
assign	bid.bidAmount	=	bid.maxAmount

Chapter 18

[579]

retract(bid);

// Record Details of Bid in Result Set
assign	new	TBid	losingBid	=	cloneTBid(bid);

Call	varAuctionItem.bidHistory.bid.add(0,	losingBid)

Looking at this, we can see that, as with the previous function, it breaks into two
parts. The first part updates the status of the bid and then retracts it. The second part
of the function is used to record details of the retracted bid within the bidHistory
element of our resultset.

The first line of this part calls the function cloneTBid to create a new element of type
TBid and initialize it with the values of the losing bid using an approach similar to
the one previously used to create a new winning bid element.

Once we've done that, we add it to the bidHistory element. The bid history itself
is a collection of bid elements. JAXB implements this as a java.util.List. The
attribute bidHistory.bid returns a reference to this list.

The final part of this function invokes the method add with an index value of 0 to
insert the losing bid at the start of this list, so that the bid history contains the most
recently processed bid at the start of the list.

Rules to process a new winning bid
With our functions defined, we can finish the implementation of the rule for a new
winning bid, which is shown in the following screenshot:

Using Business Rules to Implement Services

[580]

Due to the use of inference to simplify the rule condition and the use of functions to
manipulate the resultset, the final rule is very straightforward.

The only thing we need to take into account is the priority of the rule, which we have
set to medium. We need to ensure that the validation rules for a bid have a higher
priority to ensure that they are fired first.

Validating the next bid
For the above rule to be complete, we need to define the rules which validate the
next bid before we process it. The two conditions that we need to check are:

1. The maximum bid amount is greater than or equal to the starting price of
the item.

2. The maximum bid amount is greater than the current winning price plus one
bidding increment.

To validate that maximum bid amount is greater than or equal to the auction starting
price, we have defined the following rule:

We have also defined a similar rule, validateBidAgainstWinningPrice, to validate
that the maximum bid amount is greater than the current winning amount plus one
bidding increment.

Each of these rules has a priority of high, which is higher than the rules for
processing the next bid. This ensures that any invalid bids are retracted before
they can be processed.

Chapter 18

[581]

Rule to process a losing bid
The rules to handle other potential outcomes for the next bid, namely, where it's
our first bid and thus by default a winning bid or a losing bid, are straightforward.
However, there is an exception. The rule for the scenario where the next bid is a
losing bid is shown in the following screenshot:

If we look at the first action that sets the bid amount of the winning bid equal to the
maximum amount of the losing bid plus the next bid increment, there is a possibility
that this could cause the bid amount to exceed the maximum amount specified.

For example, if the maximum bid was $10, with the current winning amount being
$5, then, it would be valid for the next bid to be $10. This bid would fail but the new
winning amount according to the above would be $10.50.

Capping the winning bid amount
To prevent this from happening, we need to write another rule to test if the winning
amount of the bid is greater than its maximum amount, and if it is, then set the
winning amount equal to the maximum amount. The rule for this is as shown in
the following screenshot:

Using Business Rules to Implement Services

[582]

The rule itself is straightforward. But, as this rule is being used to correct an
inconsistent state, we have given it a priority of higher so that it is fired even
before the validation rules.

Complete ruleset
In total, we have eight rules within our auction ruleset. These rules are listed in the
following table in order of priority:

Rule Priority
Initialise VarAuctionItem highest
Cap	Winning	Bid higher
Validate	Bid	Against	Start	Price high
Validate	Bid	Against	Winning	Price high
First	Bid medium
New	Winning	Bid medium
Losing	Bid medium
Get	Next	Bid lowest

The first rule is just used to initialize the global variable that references the resultset.
The next rule, Cap	Winning	Bid, ensures that we don't breach the maximum
amount for a bid. The next two rules, Validate Bid Against Start Price and
Validate Bid Against Winning Price, are just simple validation rules.

The majority of the work is done in the next three rules—First Bid, New Winning
Bid, and Losing Bid—each of which deals with one of the three possible outcomes
each time we have to process a new bid. With the final rule, Get Next Bid is used to
ensure that we process each bid in date order.

An alternative approach to using priorities is to split the rules across
multiple rulesets. As part of specifying multiple rulesets in a decision
function, we also define their order on the stack, with the ruleset at the
top taking priority and so on.
When activations for a decision function are processed, the activations
for the ruleset at the top of the stack are processed first, followed
by the activations for the next ruleset, and so on. If any of these
activations result in new items being added to the agenda for higher
priority rulesets, then those activations will be processed before those
of the lower priority rulesets.

Chapter 18

[583]

Performance considerations
In the previous example, we've been working on the basis that every time we receive
a new bid, we add it to our list of bids received and then submit the auction and the
entire list of bids to the ruleset for evaluation.

The obvious issue with this technique is that we are reevaluating all the bids that we
have received from scratch every time we receive a new bid.

One possible solution would be to have a stateful rule session. With this approach,
we would first submit the auction item to the decision service but with no bids. Then
as we receive a bid, we could assert that against the ruleset and get the updated
result back from the decision service.

The issue with this (as we discussed at the start of this chapter) is that when the
BPEL process dehydrates, which in the case of our auction process will happen
each time we wait for the next bid, the rule session is not persisted. Consequently,
whenever the server is restarted we will lose the rules session of any auction in
progress, which is clearly not desirable.

Managing state within the BPEL process
One alternative is to use the BPEL process to hold the state of the rule session. With
this technique, we need to ensure that all relevant facts contained within the rule
session are returned within the facts that the decision service is watching. The next
time we invoke the decision service, we can resubmit these facts (along with any new
facts to be evaluated) and reassert them back into a new rule session.

In the case of our auction ruleset, the relevant facts that need to be maintained
between invocations are auctionItem and winningBid, which is contained within
auctionItem.

With this approach, each time we receive a new bid, we just need to assert the
auctionItem element as returned by the previous invocation of the ruleset and
the new bid (within the bids element). As a result, each time we submit a new bid,
rather than reevaluate all bids to determine the winning bid, we just need to evaluate
the new bid against the winning bid, which is clearly more efficient.

To support this, we do not have to make any modifications to our ruleset, as we have
implemented it in such a way that it supports either asserting all bids in one go or
submitting them incrementally.

Using Business Rules to Implement Services

[584]

The only remaining drawback with this approach is that the ruleset will still assert all
bid objects contained within the bidHistory element of auctionItem into working
memory. While this won't change the outcome, it still means all these bids will
be evaluated in the process of firing the rules, though none of them will cause an
activation to happen.

When we have only a relatively small number of facts this doesn't really cause a
problem, but if the number of facts is in the high 100s or order of 1000s, then this
may make a noticeable difference.

Using functions to control the assertion of facts
The reason that all facts are asserted into the working memory of the rule session is
that we specified (by checking the Tree checkbox) that the decision function should
assert all descendants from the top-level element for each of our input facts.

This causes the function assertTree to be called for each fact passed in by the
decision service (as opposed to assert), which causes all the descendants of the
fact elements to be asserted at runtime.

An alternative is to leave this unchecked and write a function for each fact passed in
that asserts just the desired facts. So, in our case, we would write a function to assert
the winningBid element in auctionItem and all the bid elements contained in bids.

Summary
The business rules engine is built on a powerful inference engine, which it inherits
from its roots in the Rete algorithm. We spent the first part of this chapter explaining
how the rule engine evaluates facts against rules. The operation of the Rete algorithm
can be a challenge to completely understand, so re-reading this section may
be beneficial.

However, once you have an appreciation for how the rule engine works and can start
"thinking in Rete", you will have a powerful tool not just for implementing complex
business rules but also a certain type of service.

We demonstrated this by developing a complete ruleset to determine the winning bid
for an auction. Looking at the final list of rules, we can see that we needed relatively
few to achieve the end result and that none of these were particularly complex.

As is the case when implementing more typical decision services, we have the
added advantage that we can easily modify the rules that implement a service
without having to modify the overall application, giving us an even greater
degree of flexibility.

Part 3
Other Considerations

Packaging and Deployment

Testing Composite Applications

Defining Security and Management
Policies

Packaging and Deployment
In this section, we will look at how to package a set of SOA Suite components
for deployment in different environments. We will also look at some of the
deployment topologies that may be used at runtime to provide scalability. We
will focus primarily on the SOA composite, as this has some of the more complex
requirements for the mapping of services.

The need for packaging
When developing software, we generally use a local development environment
to create our SOA artifacts. In some cases, this may be entirely on the developer's
machine. At other times, the developer will have access to a shared development
server. In either case, there will usually be the need to move the artifacts from
the development environment into a test environment and eventually into a
production environment.

Problems with moving between environments
Within our SOA artifacts, we have references to other artifacts such as service
endpoint locations and rule repository locations. In addition, the configuration for
some components, particularly adapter services, will probably be different between
environments. For example, database locations and file locations may be different
between different locations. We need to have a means of modifying these various
environment-dependant properties.

Packaging and Deployment

[588]

Types of interface
Within the development environment, we will build many of the artifacts in a thick
client design tool such as JDeveloper or Workshop and then deploy directly into the
development runtime environment. As we move into test and/or production, we
do not want our operators to have JDeveloper or other design-time environments;
we would prefer that they had a set of command-line tools and/or web interfaces to
deploy components. Often they will be unable to use JDeveloper to deploy because
of firewall restrictions.

Web interfaces
Web interfaces are handy for rapid deployment of components into a new
environment, and they generally make it easy to configure any changes that are
required. However, web interfaces are not easy to automate and so are not ideal
for deployment that has to be repeated across multiple stages, such as test,
pre-production, and production environments.

Command-line interfaces
Command-line interfaces are often a little harder to work with, but have the huge
advantage that they are easy to script, making it possible to have a repeatable
deployment process. This is important enough for the move from test to production,
but becomes even more important when we consider that we may wish to set up a
data recovery environment or other multiple environments.

In a well-managed environment, the use of deployment scripts is essential to ensure
a consistent way of deploying SOA Suite artifacts across different environments.

SOA Suite packaging
Unfortunately, the current release of SOA Suite is not consistent in the way in
which it packages the different components. Each SOA Suite component, such
as composites or the Service Bus, has a different way of packaging its artifacts
for deployment. In this section, we will examine each component to see how it is
packaged and how to manage deployment across multiple environments in the
best way possible.

Chapter 19

[589]

Oracle Service Bus
An Oracle Service Bus (OSB) project may be deployed from the Workshop IDE or
imported from the Service Bus console by selecting the System Administration tab
and then selecting the Import Resources link. In a similar fashion, it is possible to
export resources from the Service Bus console by selecting the Export Resources link.

When exporting a project or group of projects from the Service Bus by clicking on the
Export button, the project is exported in a .jar file package called sbconfig.jar by
default, which may be saved from the browser.

The .jar file generated may be deployed to another Service Bus domain by
importing it and then editing the project settings to have the correct configuration.

Unlike SOA composites, there is no concept of versioning in the Service Bus, and so
once deployed, it is generally easier to maintain the existing deployment rather than
replace it completely. However, complete projects may be replaced, if necessary.
Chapter 11, Designing the Service Contract discusses how versioning may be applied
in the Service Bus.

Individual service endpoint locations can be edited directly from within the
Service Bus console. Potentially every business service may need modification
for the correct environment.

It is also possible to use the WebLogic Scripting Tool (WLST) to migrate
projects between environments. This provides the benefits of allowing
automatic configuration of the settings for different environments.

Packaging and Deployment

[590]

Oracle SOA composites
The deployment unit of an SOA composite is the SCA archive file or a .sar file. The
SCA archive may be deployed to an SOA Suite installation using the web interface
accessed from the soa-infra home page of the EM Console. An SCA archive is
generated when an SCA composite is deployed, either in JDeveloper or using an Ant
task generated by JDeveloper. The location of the SCA archive is displayed in the
deployment log during compilation. It is usually generated in the $PROJECT_HOME/
deploy directory. When deploying from JDeveloper into SOA Suite, the SCA archive
is used to transfer all the information required by the composite. The same is true
whether we deploy the suitcase manually through the web interface or through
an Ant task.

Deploying a SCA composite via the EM Console
Clicking the Deploy link accessed from the SOA Infrastructure menu in
the EM Console provides access to the EM deployer screen, as shown in the
following screenshot:

Chapter 19

[591]

Here, we can browse for the SCA archive and then deploy it. We may also attach a
configuration plan to the deployment, which will modify settings within the archive
to adapt it to the target environment. We will discuss configuration plans later in
this chapter.

Packaging and Deployment

[592]

During the deployment process, we will be prompted for the target servers on which
to deploy our composite. We will also be given the opportunity to set the revision
being deployed as the default revision.

During deployment, we get a status screen informing us that the deployment is in
process. After deploying the process, we are taken to the Dashboard tab of the newly
deployed composite with a message at the top of the screen informing us that the
composite was successfully deployed.

Deploying a SCA composite using Ant
JDeveloper and SOA Suite provide Ant scripts that may be used to deploy SCA
composites and perform other lifecycle operations from the command line. This
enables the scripting of tasks such as application deployment, making it easier for
administrators to deploy applications across different environments and ensuring
that composites are deployed in a consistent fashion.

Chapter 19

[593]

The following key scripts are provided in the $JDEVELOPER_HOME/jdeveloper/bin
directory for JDeveloper or the $MIDDLEWARE_HOME/$SOA_HOME/bin	directory for
SOA Suite.

ant-sca-compile.xml compiles an SOA composite.ant-sca-
package.xml generates an SAR file.ant-sca-deploy.xml
deploys an SAR file to an SOA server. This may also be used to
undeploy a composite or export a deployed SAR file and/or its
post-deployment configuration changes.
ant-sca-mgmt.xml controls the status of deployed composites,
allowing them to be started, stopped, activated, and retired. These
functions will be discussed later in this chapter.
ant-sca-test.xml executes the test suites associated with a
composite and writes the results to a directory.

Before executing these scripts, it is necessary to ensure that the environment is
correctly set up. The PATH variable must have the Apache Ant bin directory
($JDEVELOPER_HOME/modules/org.apache.ant_1.7.0 or $MIDDLEWARE_HOME/
modules/org.apache.ant_1.7.0) prepended to it and the JAVA_HOME variable
must point to a JDK such as $MIDDLEWARE_HOME/jdk160_14_R27.6.5-32.

Note that these scripts can be run with either a JDeveloper installation or an SOA
Suite installation. JDeveloper is not required to run these scripts, meaning that test,
production, and other environments only need to have SOA Suite installed in order
to execute these scripts.

Execute these scripts from the directory where they are found. The scripts are
executed using ant, as shown in the following command line:

ant –f <build-script> -D<parameter1>=<value1> -D<parameter2>=<value2> …
-D<parameterN>=<valueN>

build-script is one of the scripts listed here. Parameters are the inputs to the script.
The following parameters are commonly used.

°

°

°

Packaging and Deployment

[594]

Compile parameters (ant-sca-compile.xml)
scac.input: Name and location of the composite.xml file to
validate/compile
scac.output: File with results of compile
scac.error: File with error messages, if any

 D:\JDev\jdeveloper\bin>ant -f ant-sca-compile.xml
 -Dscac.input=%PROJ_DIR%\composite.xml
	 Buildfile:	ant-sca-compile.xml
	
	 scac:
	 			[scac]	Validating	composite	:
	 																		'D:\Chapter19\Calculator\composite.xml'
	 			[scac]	>>
	 			[scac]	>>	modified	xmlbean	locale	class	in	use
	 			[scac]	>>
	
	 BUILD	SUCCESSFUL
	 Total	time:	4	seconds

Package parameters (ant-sca-package.xml)
compositeName: Name of the composite
compositeDir: Directory of the project to be packaged
revision: Revision/version of the composite

See the section on revisions and milestones later in this chapter for an
explanation of versioning of composites. Default output will be a .sar file called
<compositeName>_rev<revision>.jar in the deploy directory of the project.

D:\JDev\jdeveloper\bin>ant -f ant-sca-package.xml
 -DcompositeName=Calculator -DcompositeDir=%PROJ_DIR%
 -Drevision=1.2

Buildfile:	ant-sca-package.xml
					[echo]	oracle.home	=	D:\JDev\jdeveloper\bin/..

clean:
		[echo]	deleting
									D:\Chapter19\Calculator/deploy/sca_Calculator_rev1.2.jar
		[delete]	Deleting:
											D:\Chapter19\Calculator\deploy\sca_Calculator_rev1.2.jar

•

•

•

•

•

•

Chapter 19

[595]

init:

scac-validate:
					[echo]	Running	scac-validate	in	D:\Chapter19\Calculator/
composite.xml
					[echo]	oracle.home	=	D:\JDev\jdeveloper\bin/..

scac:
					[scac]	Validating	composite	:	'D:\Chapter19\Calculator/composite.
xml'
					[scac]	>>
					[scac]	>>	modified	xmlbean	locale	class	in	use
					[scac]	>>

package:
				[input]	skipping	input	as	property	compositeDir	has	already
												been	set.
				[input]	skipping	input	as	property	compositeName	has	already
												been	set.
				[input]	skipping	input	as	property	revision	has	already	been	set.
					[echo]	oracle.home	=	D:\Oracle\JDev11gPS1\jdeveloper\bin/..

compile-source:
				[mkdir]	Created	dir:	D:\	Chapter19\Calculator\dist
					[copy]	Copying	41	files	to	D:\	Chapter19\Calculator\dist
					[copy]	Warning:	D:\Chapter19\src	not	found.
						[jar]	Building	jar:	D:\Chapter19\Calculator\deploy\sca_
Calculator_rev1.2.jar
			[delete]	Deleting	directory	D:\	Chapter19\Calculator\dist

BUILD	SUCCESSFUL
Total	time:	12	seconds

Deploy parameters (ant-sca-deploy.xml)
serverURL: Server on which to deploy the SAR file in the format
http://target-server:8001

sarLocation: Path to either a single SAR file or a ZIP file containing multiple
SAR files
overwrite: Replace an existing composite with the same name and
revision/version (values are true or false, the default value)
user: Username on SOA server, usually weblogic
password: Credentials of the user on the SOA server

•

•

•

•

•

Packaging and Deployment

[596]

forceDefault: Indicates if this revision is to be the default revision (values
are true, the default, or false)
configPlan: Configuration plan to be applied to this deployment

 D:\JDev\jdeveloper\bin>ant -f ant-sca-deploy.xml
 -DserverURL=http://localhost:8001
 -DsarLocation=%PROJ_DIR%\deploy\sca_Calculator_rev1.2.jar
 -Duser=weblogic -Dpassword=welcome1
	 Buildfile:	ant-sca-deploy.xml
	 					[echo]	oracle.home	=	D:\Oracle\JDev11gPS1\jdeveloper\bin/..
	
	 deploy:
	 				[input]	skipping	input	as	property	serverURL	has	already	been	
set.
	 				[input]	skipping	input	as	property	sarLocation	has	already	
been	set.
	 [deployComposite]	setting	user/password...,	user=weblogic
	 [deployComposite]	Processing	sar=D:\Chapter19\Calculator\deploy\
sca_Calculator_rev1.2.jar
	 [deployComposite]	Adding	sar	file	-	D:\Chapter19\Calculator\
deploy\sca_Calculator_rev1.2.jar
	 [deployComposite]	Creating	HTTP	connection	to	host:localhost,	
port:8001
	 [deployComposite]	Received	HTTP	response	from	the	server,
	 																		Response	code=200
	 [deployComposite]	---->Deploying	composite	success.
	
	 BUILD	SUCCESSFUL
	 Total	time:	10	seconds

See the section on revisions and milestones later in this chapter for an explanation of
default revisions/versions. See the section on deployment plans later in this chapter
for an explanation on how deployment plans allow the customization of SAR files for
different environments.

Note that the deploy command takes a .sar file as input and so usually
the deploy command is preceded by the package command.

•

•

Chapter 19

[597]

The deploy command has the following sub-commands available:

undeploy to remove a deployed composite. This command has the
following parameters:

serverURL

compositeName

revision

user

password

exportComposite to retrieve a deployed SAR file from a server, either
with or without post-deployment configuration changes. This is useful for
providing exact deployed configurations to Oracle support or for verifying
changes needed in a particular environment. It has the following parameters:

serverURL

compositeName

revision

updateType: None includes no changes, all includes all
changes, property includes only changes to properties and
policies, and runtime includes only changes to items such as
rules dictionaries and domain value maps.
sarFile: Location of the SAR file to be written containing
export data
user

password

exportUpdates allows configuration changes to the composite to be
exported. This is useful for verifying changes needed in a particular
environment or for creating a configuration file to be applied to the same
composite in a different environment. It has the following parameters:

serverURL

compositeName

revision

updateType: Same as the exportComposite parameter
jarFile: Location of configuration .jar file to be written
user

password

•

°

°

°

°

°

•

°

°

°

°

°

°

°

•

°

°

°

°

°

°

°

Packaging and Deployment

[598]

importUpdates is used in conjunction with the exportUpdates command
and allows the import of composite configuration information. It has the
following parameters:

serverURL

compositeName

revision

jarFile: Location of the .jar file containing configuration
to import
user

password

Test parameters (ant-sca-test.xml)
scatest.input: Name of the composite to test (test)
scatest.result: Directory for test results (test)
jndi.properties.input: JNDI properties file to use for server
connection (test)

Tests are executed on the SOA server and the JNDI file contains the properties
needed to connect to the server. A sample JNDI property file is as shown:

java.naming.factory.initial=weblogic.jndi.WLInitialContextFactory
java.naming.provider.url=t3://target-server:8001/soa-infra
java.naming.security.principal=weblogic
java.naming.security.credentials=welcome1
dedicated.connection=true
dedicated.rmicontext=true

The test command can be used to automate the initiation of test scripts. For example,
allow test scripts to be run every evening against the latest build in the source
repository and the test results will be available for the developers in the morning.

Revisions and milestones
When deploying a composite, we are required to provide a revision or a version
number. The revision number is a sequence of numeric digits with '.' as separators.
For example, the default revision in JDeveloper for a composite is '1.0'. Each revision
number represents a different composite on the SOA server. For example, Calculator
revision 1.0 and Calculator 1.1 are different composites. All the artifacts in a
composite, including the rules, Mediator configuration, BPEL processes, and human
workflow, are part of the versioning of the composite. The only exception is the
custom UI components of the human workflow, which are not deployed as

•

°

°

°

°

°

°

•

•

•

Chapter 19

[599]

part of the composite and hence are not versioned with it. Redeployment of the UI
portion of a human workflow will overwrite the previous version and therefore may
break deployed versions of composites using them, unless the name of the human
workflow UI artifacts are changed when they are redeployed.

Revisions may be thought of as major versions. It is also possible to specify
milestones, which are sub-versions. This is done by appending a '-' to the
version, as in Calculator 1.1-test6. The name of the milestone must start with
an alphabetic character.

Version numbers can be used to keep distinct versions of the code separate in the
server. Deployment of a new revision of a composite does not impact the execution
of existing composite instances. Composite instances started with a particular
revision of a composite will continue to execute on that revision.

If a revision is undeployed, then any instances associated with that revision will stop
executing and will be marked as stale. This means that the data cannot be accessed
because the metadata of the composite definition is no longer available to help
interpret the composite instance data.

The default revision
There is a default revision associated with each composite name. When invoking
a composite, it is possible to specify a revision number, in which case, that exact
revision will be invoked. If no revision number is specified, then the default
revision, which is in force at the time of invocation, will be used.

The default revision can be used to help manage migration between revisions.
Imagine that we wish to deploy Calculator 1.1 alongside the currently deployed
Calculator 1.0. We are concerned that we haven't tested Calculator 1.1 with real
customers, so we would like to make it available as part of a beta program before
making it our default composite revision. In this case, we can deploy Calculator
1.1, but leave Calculator 1.0 as the default revision. Users invoking the composite
without a specific revision number will continue to invoke Calculator 1.0, but
beta customers can be pointed at the specific 1.1 revision. When we are satisfied
that Calculator 1.1 is a good revision, we can make it the default revision.
Now all customers who do not specify a revision number will create instances
of Calculator 1.1. Existing composite instances of Calculator 1.0 will continue to
execute to completion.

Packaging and Deployment

[600]

Enabling web service endpoint and WSDL location
alteration
If we are a using a UDDI repository to store the location of our WSDL and XSD
artifacts, then when we deploy our composites to different environments, they will
automatically pick up the appropriate endpoints by retrieving them from the UDDI
server configured in the target container. However, some components may need
additional modification such as JCA configuration files.

When deploying between environments, we typically want to modify the endpoint
details to reflect the new environment, which will have different hostnames for its
services. This can be done by editing the reference in JDeveloper by changing the
WSDL URL to the new environment.

It is also possible to alter endpoint locations at runtime in Enterprise Manager. Select
the composite to modify in EM and scroll down to the bottom of the Dashboard tab.
In the Services and References section (see the following screenshot), click on the
reference that you wish to modify.

Chapter 19

[601]

On the reference page, choose the Properties tab and set the endpoint location to be
the correct value for the environment. Note that this is the target endpoint, not the
WSDL location.

In the summary endpoint, the WSDL location changes can be handled by editing the
reference in JDeveloper while the endpoint location changes can be handled in the
Enterprise Manager.

Packaging and Deployment

[602]

Enabling adapter configuration
In addition to web service endpoints changing in different environments, we often
want to modify the configuration of adapters. Many adapters make use of JEE
resources, so the JEE container just needs to be correctly configured with the resource
names. For example, the database adapter uses a JNDI lookup to find its data source.
Similarly, the JMS adapter uses a JNDI lookup to find its queues. However, some
adapters, such as the file adapter, do not have a JNDI lookup and have several
properties that may require changing.

The adapter settings can be modified at runtime by editing the Properties tab in
the reference screen. For example, the file adapter allows us to modify a number of
settings to adjust the adapter to its environment.

XML schema locations
XML schemas are often referenced via relative links from a WSDL file, in which case,
updating the WSDL location will make the XML schema files available. However,
sometimes the XML schema files are stored separately with their own URLs. In this
case, the URLs will usually be embedded in the WSDL file referencing them, and
each reference will need to be updated before redeploying the process to the
correct environment.

XSL imports
Any XSL files that reference external schema will also need to be updated
before deployment.

Chapter 19

[603]

Composite configuration plan framework
Modifying the composite.xml file or altering locations through the console provides
a degree of customization for different environments, but it is all done as a single
property at a time and requires a lot of work for each environment, especially when
it is considered that individual WSDL files may also need to be updated.

The configuration plan framework combines the SCA archive with a configuration
plan that updates multiple files in the SCA archive with the correct values for
the deployment environment. Different configuration plans can be created and
maintained for each deployment plan.

It is possible to generate a template configuration plan from a JDeveloper project,
which can be customized and used with the base SCA archive at deployment time
to update the various URLs and properties.

The steps to customize the SCA archive for each environment are as follows:

Create a configuration plan template from within JDeveloper that will be
used as the basis for the configuration plans
Create a configuration plan based on the template for each
target environment
Attach the appropriate configuration plan to the SCA archive when
deploying in the target environment

•

•

•

Packaging and Deployment

[604]

Creating a configuration plan template
There is no difference between a configuration template and a configuration plan,
but the template is a useful concept as it forms the base configuration plan that must
be modified for each environment.

To create a configuration plan, we can right-click on the composite.xml file in
JDeveloper and select the Generate Config Plan option.

This takes us to the Composite Configuration Plan Generator dialog, where we can
specify the name of the configuration plan to be generated.

Chapter 19

[605]

Clicking OK will create a new configuration plan and open it within JDeveloper.
A sample configuration plan is shown in the code that follows. Note the use of
two elements:

<replace> is used to replace the value of a property
<searchReplace> is used to <search> for a string and <replace> it with
another string

The scope of the substitution is determined by the different elements within the
configuration plan. The <composite> element controls changes within composite.
xml. Individual elements within the composite can all be adapted for the target
environment, including <service>, <component>, and <reference>.

<?xml	version="1.0"	encoding="UTF-8"?>
<SOAConfigPlan	>
		<composite	name="FileAdapter2">
				<searchReplace>
						<search>http://my-dev-server</search>
						<replace>http://my-test-server</replace>
				<searchReplace>
				…
				<service	name="filemoveprocess_client_ep">
						<binding	type="ws">
								<attribute	name="port">
										<replace>http://xmlns.oracle.com	/…</replace>
								</attribute>
									</binding>
				</service>
				<component	name="*">
						<wsp:PolicyReference	orawsp:category="management"	orawsp:
status="enabled"	URI="oracle/log_policy"/>
				</component>
				…
				<reference	name="MoveFileService">
						<binding	type="jca"/>
				</reference>
		</composite>
		…
		<wsdlAndSchema	name="FileMove.wsdl|MoveFile.jca|xsd/FileMove.xsd">
				…
				<jca:property	name="PollingInterval">
						<replace>10</replace>
				</jca:property>
				…

•

•

Packaging and Deployment

[606]

				<searchReplace>
						<search>http://my-dev-server</search>
						<replace>http://my-test-server</replace>
				<searchReplace>
		</wsdlAndSchema>
</SOAConfigPlan>

Creating a configuration plan
Having created a configuration plan to use a template, we can use this to create
configuration plans for each specific environment. We do this by creating a copy
of the configuration plan by selecting Save As from the file menu in JDeveloper
and then editing the <replace> and <searchReplace> tags to match our
target environment.

For example, we could search and replace all instances of our local development
machine hostname, w2k3, with the name of our test server, testserver, across
WSDL and XSD files. To do this, we modify the search and replace elements, as
shown in the following snippet of code:

<wsdlAndSchema	name="*">
		<searchReplace>
 <search>w2k3</search>

 <replace>testserver</replace>

		</searchReplace>
</wsdlAndSchema>

This will cause the SOA server to search all WSDL and schema files "*" in the
suitcase at deployment time and replace the string w2k3 with the string testserver.
Note that it is possible to have multiple <searchReplace> elements.

Attaching a configuration plan to an SCA archive
Having created and saved a deployment plan specific to one or more environments,
we will want to deploy our process into an environment. When deploying the
composite, either through the command line, JDeveloper, or the EM Console, we
have the option of attaching a configuration plan. When using JDeveloper, the
configuration file is attached to the Deploy Configuration step of the deployment
wizard. When using the command line, the configuration file is specified using the
configPlan parameter.

Chapter 19

[607]

Web services security
We can export the policies from an SOA installation by going to the Web Services
Policies screen. See Chapter 21, Defining Security and Management Policies for more
information about creating and applying security policies. From the Web Services
Policies screen, we can select the policy we wish to export and then click the Export
to File link. This will give us the ability to save the policy to a local file, which can
then be moved to another environment and imported using the Import From
File link.

Packaging and Deployment

[608]

Oracle rules
Rules will generally not change between environments and can be deployed as part
of the SAR file.

Business activity monitoring
Business activity monitoring (BAM) provides a command-line tool called
iCommand to assist in exporting and importing BAM components such as data
object definitions, reports, and data objects themselves. It is possible to select
subsets of components, making it easy to move just the updated components
from a development to a test and/or production environment.

Commands
ICommand allows a number of different operations through the -cmd parameter,
which can take the following values:

export: Exports the selected components and/or values
import: Imports the selected components and/or values
delete: Deletes the selected components
rename: Renames components
clear: Clears data from a given object

Selecting items
Items are identified using a file-like syntax such as /Samples/Employees. There are
a number of parameters that may be used to select items in different ways, which are
as follows:

-name: Selects items explicitly by name, for example,-name	"/Samples/
Employees"

-match: Selects items by using a DOS style pattern, for example,-match	"/
Samples/*"

-regex: Selects items by using a regular expression, for example, –regex	"/
Samples/[A-Za-z]*	Sales"

-all: Selects all components

•

•

•

•

•

•

•

•

•

Chapter 19

[609]

These queries may be combined with the following parameters to further restrict the
items selected:

-type: Restricts the items exported by type, for example, –type	Folder or
–type	DataObject

-dependencies: Includes dependent objects in the selection
-contents: Includes (value 1 or unspecified) or excludes (value 0) the
contents of a data object, for example, -contents	0
-layout: Includes (value 1 or unspecified) or excludes (value 0) the data
object type definition, for example, -layout	0

Using iCommand
Before using iCommand, we need to set the JAVA_HOME environment variable. If the
BAM server is not running on port 9001, we need to edit the BAMICommandConfig.
xml file found in the $SOA_HOME/bam/config directory and change the port number
element <ADCServerPort>. We can also set the username and password in this file
by adding the following elements:

<ICommand_Default_User_Name>weblogic</ICommand_Default_User_Name>
<ICommand_Default_Password>welcome1</ICommand_Default_Password>

Providing these elements in the configuration file avoids the need to provide
the username and password when iCommand is run, which is useful if we are to
script iCommand.

When migrating items between environments, we will generally not want to
move the actual contents of the data, but only the layouts. For example, to
export the layouts but not the contents for all the sales data objects, we issue
the following command:

D:\ FMW11gPS1\SOA\bam\bin>icommand -cmd export -file SalesDataObjects.
xml -regex "[a-zA-Z]* Sales" -contents 0

Oracle	BAM	Command	Utility	[Build	7562,	BAM	Repository	Version	2025]	
Copyright	2002,	2009,	Oracle	and/or	its	affiliates.	All	rights	
reserved.
Exporting	of	Data	Object	"/Samples/Film	Sales"	started
Data	Object	"/Samples/Film	Sales"	with	"0"	rows	exported
Exporting	of	Data	Object	"/Samples/Media	Sales"	started
Data	Object	"/Samples/Media	Sales"	with	"0"	rows	exported
Exporting	of	Data	Object	"/Samples/Product	Sales"	started
Data	Object	"/Samples/Product	Sales"	with	"0"	rows	exported
"3"	items	exported	successfully.
Items	were	exported	to	"1"	files.

•

•

•

•

Packaging and Deployment

[610]

This generates a file that can be used to import the definitions into another BAM
instance. The generated file SalesDataObjects.xml is in the following format:

<?xml	version="1.0"?>
<OracleBAMExport	Version="2025">
		<DataObject	Version="14"	Name="Film	Sales"	ID="_Film_Sales"
														Path="/Samples"	External="0">
				<Layout>
						<Column	Name="Region"	ID="_Region"	Type="string"	MaxSize="100"
														Nullable="1"	Public="1"/>
						…
						<Indexes/>
				</Layout>
		</DataObject>
		<DataObject	Version="14"	Name="Media	Sales"	ID="_Media_Sales"
														Path="/Samples"	External="0">
				…
		</DataObject>
</OracleBAMExport>

Note that it is possible to edit the contents of the exported data files, and this can
provide a means to batch load reference data from another system into BAM.

To import from a file employees.xml, we issue the following command:

D:\ FMW11gPS1\SOA\bam\bin>icommand -cmd import -file Employees.xml

Oracle	BAM	Command	Utility	[Build	7562,	BAM	Repository	Version	2025]	
Copyright	2002,	2009,	Oracle	and/or	its	affiliates.	All	rights	
reserved.
Importing	from	file	"D:\Oracle\FMW11gPS1\SOA\bam\bin\Employees.xml".
Data	Object	already	exists,	ID	ignored.
Data	Object	already	exists,	Layout	section	ignored.
The	contents	of	Data	Object	"/Samples/Employees"	updated
Data	Object	imported	successfully	(3	rows).
"1"	items	imported	successfully.Oracle	BAM	Command	Utility

The import command will always import the full contents of the file into the target
BAM instance.

Summary
The SOA Suite provides facilities for moving configurations between different
environments, using either web-based tools or command-line tools. Generally,
the use of command-line tools allows deployment to be more repeatable through
scripting. Some properties must be modified during the move from one environment
to another and configuration plan files make this easier.

Testing Composite
Applications

In this chapter, we will focus on the tools in JDeveloper and the SOA Suite that will
assist you in testing the components of your SOA application. The basic principles
of testing are the same in SOA as in other software development approaches. You
start by testing the lowest level components and gradually build up to a complete
system test before moving into user acceptance testing. You may also be required to
undertake some form of performance testing.

We will begin our discussion by looking at the manual testing of individual
components and services in the SOA Suite. We will then investigate the importance
of repeatable testing before moving on to discuss automated testing and the testing
framework available in the Oracle SOA Suite. Finally, we will discuss how a system
may be performance tested.

Tests can be run in either of the two fashions. They can be run manually by a
dedicated testing team or there can be automated tests. Manual testing tends to
run only when the software is deemed almost ready for release due to the cost of
hiring people to run the tests. Automated tests are preferred as they potentially
allow the test suites to be run on all the intermediate builds of software, providing
management with a heartbeat of the robustness of the release under development.
We will take a look at the support provided for both models of testing within the
SOA Suite.

SOA Suite testing model
The SOA Suite has two distinct methods of testing SOA artifacts. They may be
tested via a test service client or in a repeatable fashion through the SOA Suite
test framework. In either case, it is necessary, at the very least, to generate the
appropriate input data to the artifact being tested.

Testing Composite Applications

[612]

The following diagram shows a simple Composite service that is invoked by a
Client, which in turn invokes two services before the Composite completes:

The details of the composite service are not relevant at this point, and the composite
could consist of a Service Bus pipeline, a Mediator, a BPEL process, or all three. Note
that the nature of the composite defines several interfaces; the composite exposes a
client interface, and in turn makes use of interfaces exposed by the two services. We
will use this simple example (previously shown) to explore how to perform different
levels of the test.

One-off testing
Within a development environment, it is very useful to run a quick test of a
composite or interaction to ensure that it behaves as expected. These one-off tests can
be run from the Enterprise Manager (EM) Console and the Service Bus Console, as
explained in the next section, Testing composites.

Testing composites
All deployed composites have a test client created for them. This is accessed by
clicking on the composite in the EM Console and selecting the Test tab. The test
client in the EM Console is very good when you want to quickly test whether the
composite you have deployed is behaving as expected. It allows you to specify the
input parameters through the web interface, including a choice of Tree or XML input
formats. When switching between views, the data entered will be preserved. The
next example from the EM console shows how the Tree format makes it very easy to
focus on just the input fields required, rather than having to be concerned with the
exact XML format required by the composite.

Chapter 20

[613]

Posting the XML message will cause the composite to be invoked and any results
will then be available through the console. Verification of the accuracy of the results
must be done manually by the developer. Later in this chapter, we will examine how
testing of results may also be automated.

If you have a very complicated interface, you may not want to have to enter the
parameter values every time you test the composite. In 10g, there was a facility to
set a default input to a BPEL process. Unfortunately, there is no such facility for 11g
composites. In order to avoid retyping complex inputs, the input can be saved to a
file and then pasted into the test dialog every time, as explained in the tip.

Testing Composite Applications

[614]

Providing Default Input
Enter the desired parameters in the Tree View. Switch to the XML View
by selecting it from the drop-down list. You will now see a SOAP message
constructed to contain the input to the composite that you entered in the
Tree View. Copy the XML to the clipboard and then save it in a file. The
contents of the file can then be pasted into the XML View to provide a
default input.

Chapter 20

[615]

Use of the test client
The test client should not be part of the formal testing strategy. It should
be used by developers to get immediate feedback on the correctness of
their composite and not as part of a formal validation process.

Testing the Service Bus
The Service Bus also provides a simple client-testing interface. In EM, the only
option is to test the entire composite, but in the Service Bus, we can test either the
business service (the backend service) or the proxy service (the Service Bus Interface).
After navigating to the folder containing the proxy or business service, the tester is
invoked by clicking on the bug icon.

This brings up the test client. For a SOAP service, the test client allows the
specification of the message parameters in the SOAP body through the payload
textbox as well as the addition of any SOAP headers that may be required. When
testing a proxy service, there are two options that control how the call is submitted
and what additional information is collected. The Direct Call is normally used with
the proxy service and allows additional information about the processing of the
message to be collected through the use of the trace option. This can be invaluable
in tracing problems in the Service Bus pipelines or routing services.

Testing Composite Applications

[616]

The output from the test client can be checked manually for correctness.

Automated testing
Up to this point, the testing we have investigated is manual-based and requires
human intervention. For more extensive testing, we require an automated test
framework, which is just what is included in the SOA Suite EM Console.

The composite test framework
The SOA Suite includes a test framework for composites that supports the following:

Aggregation of multiple tests (called test cases) into a test suite
Generation of initial messages
Validation of input into and output from composites, references, and
components
Simulation of reference interactions
Reporting of test results

The composite test framework may be thought of as similar to the Java unit test
framework JUnit.

Composite test suites
Individual test cases are grouped into a test suite at the level of an individual
JDeveloper project. Note that in the current release, this is only supported for a single
composite. Multiple composites would require multiple test suites. Multiple test
cases in a single test suite can be executed with a single request, automating a large
part of the testing.

•

•

•

•

•

Chapter 20

[617]

Individual test cases will be used to test different conditions. Each individual Test
Case will result in a single instance of the composite being created. So a Test Suite
with 100 test cases would have 100 composite instances created as a result of a single
user request from the EM console.

To create a new Test Suite in JDeveloper, just right-click on the Test Suites folder in
an SOA project and select Create Test Suite.

Name the Test Suite, and you will be prompted to create your composite test case.
This is shown in the following screenshot:

Testing Composite Applications

[618]

This gives us an empty composite test case to which we need to add an input
message and some verification tests, as shown in the following screenshot:

Injecting data into the test case
Firstly, we need to inject an initial message into our test case. We do this by
right-clicking on the service in our test case diagram and selecting Create
Initiate Messages, as shown in the following screenshot:

After selecting the operation we wish to test, we can have JDeveloper create a sample
input message for us by clicking the Generate Sample button. This generates the
XML input message, which we are then free to edit to drive the test down the paths
that we want. Often, we will want to reuse an input message for different tests. For
example, we may wish to have a test that completes successfully, another test that
experiences an error in one of its references, and another test that experiences an
error in a different reference. To reuse the input message for all these tests, we can
click Save As to save the input as a file. We are prompted for a filename and the file
is saved in the project, as shown in the following screenshot:

Chapter 20

[619]

We can use an existing input file by clicking the Load From File radio button and
using the Browse button to locate the input file we want to use, as shown in the
following screenshot:

Testing Composite Applications

[620]

The Delay at the bottom of the screen does not make sense for an initiate message,
but it is used for callback messages to specify the delay before the callback is
invoked. Selecting OK will finish creating our initiate message, which is identified
on the test diagram by an arrow on the service.

Note that in Release 1 of the 11g SOA Suite, it is not possible to test inner
components. It is only possible to test at the composite level.

Data validation
The testing framework allows validation to be applied to the inputs and outputs of
either the composite as a whole, or individual components, services, and references.
Validation is performed through an assertion. An assertion is a statement about
the expected behavior of the composite at this point. For example, an assertion may
identify that the value of the output of a composite should be a particular value.
When the test case is run, the actual value of the output will be compared with the
expected value and if they do not match, the test case will fail.

We can add assertions to a test case to ensure that we get the expected result.
We do this by right-clicking on a wire and selecting Create Wire Actions or by
double-clicking the wire. This brings up the Wire Actions dialog, where we can
specify assertions to be executed against input and/or output messages, or we can
emulate the reply message from a component or reference. To validate the output
from a component, we select the Asserts tab and ensure that we have selected the
correct operation from the Operations list on the left of the dialog box.

Chapter 20

[621]

We can then add assertions to this wire by clicking on the green plus sign. This
will bring up the Create Assert dialog box. Across the top, we can choose the type
of assertion:

Assert Input allows us to test the value of the input to the component or
reference
Assert Output lets us verify the response from a component or reference
Assert Callback is used to check the value of an asynchronous callback
Assert Fault tests the values of a fault thrown by a component or reference

When asserting faults, we can select the fault from a list of faults declared in the
reference that the wire is connected to.

The Assert Target can be any XPath expression created by using the Browse button.
Note that you cannot enter free form XPath expressions. This allows you to select
either the entire message or a subset. Note that the XPath browser does not support
repeating elements due to a maxOccurs property greater than 1, so you cannot select
individual elements in an array. If the subset is a single element, then the comparison
is done on a single value. If the Assert Target is the whole message, then a sample
response can be generated using the Generate Sample button. If the Assert Target is
a document fragment, then the Generate Sample button will be grayed out. Similar
to the initialization message, it is possible to save the Assert Value to a file for
reuse in other tests. When comparing documents and document fragments, it will
generally be better to use the Compare By value of xml-similar, as this allows for
different namespace prefixes to the same namespace and also allows attributes to be
in different orders.

•

•

•

•

Testing Composite Applications

[622]

Emulating components and references
In addition to placing assertions through the Wire Actions dialog box, we can also
emulate the behavior of a reference or component. This allows us to test different
paths through our composite by emulating specific responses or faults instead of
actually calling the component or reference. This is particularly useful for emulating
external references and also for raising faults and error conditions.

We access the emulation capabilities through the Emulates tab of the Wire Actions
dialog box. Clicking the green plus sign brings up the Create Emulate dialog box,
which allows us to specify the output from our target component or reference. We
can choose to emulate an out response, a callback message, or a fault. Similar to our
initiate message, we can generate a sample response—enter one directly or load it
from a file.

At the bottom of the screen, we can simulate the time taken in the reference or
composite by specifying the Duration of the call. This is particularly useful if we
want to test timeout logic in a callback. For example, there may be a pick statement
in the BPEL process that calls our emulated component or reference, and we may
wish to test the onTimeout branch.

Chapter 20

[623]

When looking at our test case in JDeveloper, we can identify which
wires have assertions and/or emulations associated with them by
the green arrow pointing into a box that is overlaid on the wires
with assertions and emulations.

Deploying and running test suites
The test suites and their included test cases are all automatically deployed with the
composite. The deployed test suites will appear in the EM console in the composite
Unit Tests tab, as shown in the following screenshot:

Testing Composite Applications

[624]

This interface allows all or a subset of tests to be selected and then executed by
pressing the Execute button. This brings up the Details of test run dialog box, which
allows us to specify this Test Run Name. The Number of Concurrent Test Instances
field allows for concurrent execution of tests, as shown in the following screenshot:

The results of the tests are displayed in the Test Runs tab. This provides details of
the test runs and individual test results. It is possible to drill down into individual
tests by selecting them in the Results of Test Run area of the screen and then
clicking on the appropriate test instance in the Assertion details part of the screen to
access the assertion values and also the execution history of the composite instance
created during the test.

Note that it is possible to search for test runs by time, making it easy to pull up tests
from a particular time period.

Non-executed Paths
If the composite does not generate a particular message across a wire,
then the assertion will never fire for that message. For example, if a
fault is expected and an assertion is created to test the fault but no fault
is thrown, then the test will not fail because the assertion will never be
executed. This can be guarded against on a single wire by ensuring that
there are assertions for all possible outcomes. For example, in addition
to the assertion for the expected fault, we can also create an assertion
for a normal response with a value that will always fail if the fault is not
thrown and a normal response is received instead.

Chapter 20

[625]

Regression testing
One of the hallmarks of an ongoing successful software system is regression testing.
Regression testing is the process of creating a series of tests for a software system
and then repeating those tests every time a new release of the software is produced.
As defects are discovered in the field and fixed, test cases are produced, and these
test cases are then added to the set of regression tests. This process helps to ensure
that once fixed, the same defect does not reappear in future releases of the software.
In this fashion, the number of tests to which a software system is subjected to
increases over time. Note that regression tests should be performed at all levels
of testing from unit testing up to system testing.

Testing Composite Applications

[626]

Use of Test Suites
Test suites should always be used to collect related tests on
a BPEL composite. They can then be used to run multiple
tests with minimal user intervention and so provide a useful
regression testing environment.

System testing
Although the EM Console refers to Unit Tests, it is possible to test large portions
of the system through the composite test framework. By creating a composite that
exercises all external interfaces to the system, a large amount of system testing can be
performed through the testing framework.

In the next example, the client injects a number of messages into the system, but
then either no emulations, or minimal emulations that are performed to allow for
the entire system to be exercised. This is because when no emulation is specified, the
actual partner link will be invoked. This effectively tests both the individual services,
which may be composites themselves, as well as the composite assembly itself. This
type of testing only delivers high level success or fail information around individual
use cases. Because many of the services will themselves be complex assemblies,
it is not possible in this type of testing to drill down into the exact reason why an
individual test case may fail. However, this type of testing does provide a high level
of confidence that the whole system interacts correctly, because there is a minimum
of emulation.

This type of configuration, as shown in the previous diagram, may also be used to
test individual composites in the context of the actual services that they will use.

Chapter 20

[627]

Composite testing
The problem with the system test is that it may fail for many reasons and often
those reasons are unclear. Composite level testing allows us to isolate the individual
composites and test them against their specifications. To do this, we inject requests
from the client and emulate the references used by the composite, so that we have
complete control over all interactions between the composite and the references it
interfaces with.

This type of testing is good for identifying defects in the composite, but must be treated
with care, as individual services may behave differently from the emulated versions of
those services. Testing of a composite is shown in the following diagram:

Component testing
The framework was designed for testing composites, but it may also be used to
provide a test harness for individual services, as shown in the following diagram. In
this case, a pass-through assembly is provided that allows injection of messages into
the service. The BPEL Composite and the Service are then configured with suitable
assertions to ensure that the service is behaving as expected.

Testing Composite Applications

[628]

Unit testing
Unfortunately, the SOA Suite doesn't provide any specific low-level unit testing of
individual components with the exception of XSL, although it may be emulated to an
extent, as described in the previous section, Component testing. JDeveloper may also
be used to run JUnit test cases, which can interact with low-level services. However,
this is done outside the scope of the SOA Suite.

JDeveloper does have an XSL test tool that may be used to validate XSL
transformations before deploying them as part of a Service Bus or BPEL deployment.
This is invoked by right-clicking on the xsl file in the application navigator and
selecting the Test option. This brings up the Test XSL Map dialog box that can be
used to specify or generate a source XML file and then generate the output XML file,
as shown in the following screenshot:

The default layout is to have two windows side-by-side with the input document on
the left and the output document on the right, with the stylesheet being displayed in
a separate window. The output document must be manually inspected to ensure that
it is correct.

Chapter 20

[629]

Performance testing
Although the SOA Suite, as part of the test client, provides the facility to run
multiple queries concurrently against an interface, this should not be substituted
for proper performance testing. The test client multiple thread interface has the
following limitations:

Single message input.
All inputs to the service have the same input message. Depending on how
the service is written, this may improve performance. For example, after the
first request, all the data pulled from the database is available in memory
rather than having to be fetched from disk.
Limited scalability.
The clients and servers are all part of the same system and run on a single
machine. This is not a realistic scenario and precludes testing how well the
system scales.
Doesn't use test framework.
The test framework provides detailed feedback on multiple types of tests,
and this is missing from the simple client interface.

The test client interface is good for quick basic performance testing, but any
real-world performance testing should use a more complete testing framework
provided by Oracle Enterprise Manager testing tools or third parties such as HP
LoadRunner. SoapUI is a popular test tool that can also be used to inject load into
the SOA server and validate results.

User interface testing
The SOA Suite is focused on services rather than user interfaces and therefore any
user interface interaction with the services must be driven from another test tool.
Like performance testing, this is something for which other products should be
used. Although there is a certain amount that can be tested by performing a system
test, as described earlier, this does not fully test all the ways in which a web or
thick client application may interact with the services exposed. There is no substitute
for a proper end user interface testing tool to be used alongside the SOA Suite
testing framework.

•

•

•

•

•

•

Testing Composite Applications

[630]

Summary
In this chapter, we have examined testing in SOA Suite, starting with simple
one-off tests and then moving on to examine the composite test framework, which
provides a repeatable testing framework for composites and any references called
from a composite.

The SOA Suite testing framework can be used to provide a rigorous environment to
support regression tests. In order to get the best out of this framework, it is necessary
to invest effort in building test cases alongside the composites themselves. The
following checklist may be useful:

Always develop test cases alongside the composites
Always develop test cases for standalone services by creating appropriate
composites as test harnesses
Add new test cases for defects discovered in the fields that were not caught
by existing test cases
Emulate references to allow test cases to focus on composites
Directly call services (don't emulate) to allow test cases to interact with
real endpoints

It is best to build tests when the components themselves are being built, as this
allows us to validate our components incrementally and immediately.

Test early, test often!

•

•

•

•

•

Defining Security and
Management Policies

In this chapter, we will investigate how service-oriented computing makes security
and monitoring more complicated before exploring how to secure our service
infrastructure and monitor it.

Security and management challenges in
the SOA environment
Moving to service-oriented architecture brings with it a number of benefits that we
have explored throughout this book, such as improved reuse, strong encapsulation
of business services, and the ability to rapidly construct new composite services and
applications. However, there is one area in which SOA makes life much harder,
and that is in the area of security and management. By security, we mean the
process of ensuring that individuals and applications can only access the information
and invoke the processing which is allowed to them. By management, we mean
the task of ensuring that a system is capable of delivering the required services
when requested.

Defining Security and Management Policies

[632]

Evolution of security and management
The challenges that SOA brings to the security and monitoring space are made
clearer when we look at the evolution of computing. The original computer systems
provided a single centralized system with a single access mechanism via a terminal.
These mainframe systems provided their own security and required external parties
(users) to authenticate, at which point they were restricted in their access by the
internal security protocols of the system. In a similar fashion, monitoring was a case
of tracking the status of individual components within the central system. This made
it very easy to provide strong centralized control of who could access resources,
while also retaining a strong ability to monitor individual users as well as the
health of the system.

The move to client-server systems complicated things because now the actual
processing was spread across two machines, the server, generally a database server,
and a client, generally a personal computer. The central server was now required to
provide external access at a more granular level, potentially protecting individual
tables in the database rather than the broader brush application level that was
required in the previous generation of centralized systems. This now introduced
the problem of coordinating identity across two tiers. The client application would
generally authenticate the end user against the server, providing a pass-through level
of security. Hence the security model was more complex due to more demanding
access control requirements, but the authentication model was not greatly different.

Chapter 21

[633]

However, the move to a client server greatly increased the complexity of monitoring
the solution. Moving processing off the central system and into the client meant
that it was now necessary to monitor the health of components in the client and that
the client was more complex than the terminals used in the previous generation.
A particular problem in this environment was the unexpected interactions that
different applications in the client could have with each other.

The problems of monitoring and managing the distributed client applications led
to pressure to move the processing back into the data centre, which led to a third
generation of solution architectures based around web/application servers and
web browsers.

This led to a further complication of the security infrastructure, as applications now
had to maintain links from many different clients and ensure that they enforced
appropriate access controls on each individual client. It did, however, simplify the
management environment by bringing the application back into the managed data
centre environment. However, the end-to-end environment was now more complex
to manage due to there being multiple tiers rather than a single tier, and problems in
any one tier would impact the entire service offered by an application.

The move to service-oriented architectures can be thought of as a natural progression
from the web deployment model, but with the additional complication that
applications are now composed from services provided by many individual service
providers, potentially on different machines. In some circumstances, the service may
be provided outside the company by another company. In the next section, we will
examine the management and security challenges that SOA brings.

Added complications of SOA environment
The SOA environment makes it harder to enforce a consistent security policy. It also
has a number of moving parts that must be managed. Let us consider each of these
challenges in turn.

Defining Security and Management Policies

[634]

Security Impacts of SOA
Consider a service that is invoked. In order to decide whether to service the request,
it must determine if the requestor is allowed to access this service. Access may be
controlled or restricted, based on the invoking code and also based on the originator
of the request. Consider a composite application in which User A makes a request for
Application X, which satisfies the request by making another request to Service Y,
which in turn calls Service Z.

Application X has no more a difficult job in accepting the request in this
environment than in a web application. It can require the user to authenticate,
potentially via some form of secure certificate or biometric-based authentication.
The challenges come when X starts to invoke services. Service Y must decide if it
will honor the request. It has three basic ways it can do this:

Accept requests: Effectively apply no security
Accept requests from Application X: Effectively require the client application
or service to be identified and authenticated
Accept requests from User A: Effectively require some way of propagating
the identity of User A through Application X into the service

Service Z has the same set of options, but instead of application A being the
client in this case, it is Service Y. This potential chaining of services and potential
requirements for propagation of identity makes it harder to effectively secure the
environment. Later on, we will look at tools in the SOA Suite that can simplify this.

Management and monitoring impacts of SOA
In the same way that we have a more complicated set of security demands in the
SOA environment, we also have a more complicated set of monitoring requirements.
Have a look at the following diagram; it shows how a composite application makes
use of services to satisfy users' demands:

•

•

•

Chapter 21

[635]

In this case, Application X makes use of five services either directly or indirectly to
satisfy user requests. We need to monitor the individual services to get any idea as to
why an application may be unavailable to an end user. However, this is not sufficient
as some of the services may be required for execution and others may be optional.

For example, consider a shopping site. The catalog and order entry services must
be available to provide a service to the end user, but the fulfillment and payment
services need not be available, as they can do their work without the user being
online at the time. In this case, if the fulfillment service is unavailable, then the
application can still work, but it may have reduced functionality, such as being
unable to provide an immediate delivery date.

Another aspect of service monitoring that must be considered is the throughput on
individual services. This is important because individual services may be used by
multiple applications. Therefore, it is possible that an application that previously
gave excellent end-user response times may degrade its performance, because one of
the services it depends on is under heavy load from other applications. Monitoring
will allow this risk to be identified early on and corrective action can be taken.

Defining Security and Management Policies

[636]

Securing services
Having looked at the additional complications that SOA brings to the security
infrastructure, let us examine how SOA Suite enables us to secure our services. We
will look at securing services based on what application is calling them as well as
securing services based on the end user for whom the request is being made.
We will also look at the best places to apply security to our services.

Security outside the SOA Suite
There are several things we can do to secure our services without using the facilities
available in the SOA Suite. The following are some of the ways in which we may
provide security by configuration of the network and server environment in which
our services execute.

Network security
An integral part of an SOA solution will usually be firewalls, which restrict access
to different networks within the enterprise. A common model is to have a front-side
network that receives requests from external clients and a back-side network that
can receive requests from other services but cannot be accessed directly by external
clients. Machines that need to be accessed externally will have access to both the
front-side and the back-side networks and will act as application bridges between
the two, as there is no network-level connection between them.

Preventing message interception
We can improve security by encrypting all messages between services by using
SSL (Secure Socket Layer). This requires the web servers hosting our services to
be configured with certificates and only to accept requests across SSL connections.
Basically, this means disabling HTTP access and only allowing HTTPS access to our
servers. This has a performance overhead, as all messages must be encrypted before
leaving the client machine and decrypted on arriving at the server machine. The
server-side encryption may be reduced by the use of hardware accelerators, either
embedded in the network card or in the network.

If all the machines are on the same physical switch, then messages between services
are effectively secure because they can only be seen by the client and server
machines. This allows us to configure our servers to accept HTTP requests from
machines on the same switch, but only accept HTTPS requests from machines that
are not on the same switch.

Chapter 21

[637]

Restricting access to services
We may restrict access to machines based on the IP address of the caller. This is
a quick, easy way to provide a layer of protection to our services. Configuring
our HTTP servers to only accept requests from well known clients works well for
internal networks, but doesn't work for external services. It also leaves us with the
problem of reconfiguring our list of acceptable clients when a new client service
is added.

Declarative security versus explicit security
A central tenet of service-oriented architecture is to abstract functionality into
services that hide implementation details. When we come to security and
monitoring, these are actually facets of a service and can also be provided in a
service-oriented fashion. These two key concepts are worth exploring because
they are central to making the best use of SOA Suite security and monitoring.

Security as a facet
We generally define our services in terms of the functionality (service) that they
provide. These services also have attributes that may not be explicitly mentioned in
their service data model but are nevertheless an important part of the service. These
attributes include availability, response time, and security. Security is an attribute of
a service that can be applied without altering the core functionality of the service. For
example, a service may require that it is only invoked across SSL connections or that
it may only be invoked by an authorized user.

Security as a service
Security is itself a service, which controls the following:

Access control: Who may make requests of a service
Authorization: Who is requesting the service
Integrity: Can the data be read or altered to or from the service

We can think of security as a service that is applied as a facet to other services. This
is the model that is applied within the SOA Suite. The Web Services Manager is
the component embedded into the SOA Suite to provide security. Although it is a
service, the developer always interacts with it as a property or facet of a service.

•

•

•

Defining Security and Management Policies

[638]

Security model
The web services manager allows security to be applied to services and operators to
monitor services, without a need to modify the service. The model for this is shown
as follows.

Access to services (access control) is always through a gateway or agent component
supplied by the web services manager. The endpoint of the service is exposed as the
gateway or agent endpoint. The agents embedded within SOA Suite are known as
interceptors. Gateways and agents are explained later in this chapter.

Rules for who can access the service (authorization), how they are authenticated, and
the access they are allowed (access control) are determined by the policies provided
by the policy manager component of the web services manager. These policies are
pushed to individual agents and gateways.

Policies may also specify specific logging requirements or encryption requirements
(message integrity) for the data.

Policies are determined by an administrator using the Enterprise Manager Console
and enforced using policy enforcement points (interceptors). Policy enforcement
points are provided by agents known as interceptors or by a gateway.

Chapter 21

[639]

Policy enforcement points
Policies can be enforced at three distinct points:

An external endpoint such as the entry point to a web service or an
SOA Composite.
An SOA Composite
A client

The former two control policies for access to a service; the latter allows the policies to
be applied as a message leaves the requestor.

Policies
A policy consists of one or more constraints applied to a service such as:

Validate certificate of requestor
Decrypt message
Log portion of message

These constraints are known as assertions. A policy may consist of several assertions.

Multiple policies may be attached to an endpoint. Each request for a service must
pass through the policies associated with that service. By defining a policy, we can
have a consistent way of protecting a number of different services. For example, we
may have the following distinct policies:

Policy for Externally Accessible Services
Policy for Services Making Financial Transactions
Policy for Non Critical Services

•

•

•

•

•

•

•

•

•

Defining Security and Management Policies

[640]

The first policy may specify a need for encryption of data as well as authentication
of clients. The second policy may require strong authentication of clients and special
logging steps. The third policy may just perform some simple logging. An internally
accessible payments gateway may make use of the second policy, while the same
gateway configured for external access may be configured with the first and
second policies.

Policies are applied to individual service endpoints.

Agents and gateways
From the preceding discussion, it is clear that gateways and agents are the key
Policy Enforcement Points (PEPs) where the security facet is added to a service.
Let's explore how these components differ.

Both gateways and agents are responsible for enforcing policies. The difference is
in their physical location. Agents are physically co-located in the same container
as the service they are protecting. This has the benefit that agents do not require an
additional network hop or inter-process communication to deliver messages to the
service. Because of this, the physical and logical layout of the agent is essentially the
same, as shown in the following diagram. There is one agent per container that is
hosting services.

Chapter 21

[641]

The gateway, on the other hand, is a centralized policy enforcement point. The
service endpoint exposed is that of the gateway, not of the machine on which the
service resides. All requests potentially incur an additional network hop as they
must go through the machine on which the gateway resides. Although physically,
the gateway is just another machine on the network, logically it sits in front of the
services for which it enforces policies.

Note that in a production deployment, it is possible to have multiple gateways
deployed so that a single gateway does not become a single point of failure in the
service infrastructure.

Distinctive benefits of gateways and agents
Gateways and agents both achieve the same result of securing and monitoring
services, but the different approaches they have provide different benefits. Both
gateways and agents can be used together, with some endpoints protected by agents
and others protected by gateways.

Benefits of gateways
Can protect services running on platforms for which no agent is available, for
example, a service implemented in Perl
Does not require modification of service endpoints
Less intrusive in an endpoint platform
Supports message routing
Supports failover

•

•
•
•
•

Defining Security and Management Policies

[642]

Drawbacks of gateways
Clients must explicitly target gateway
Services must be configured to only accept requests from gateways to avoid
bypassing of gateway
Service endpoints must be explicitly registered with gateway

Benefits of agents
Provide true end-to-end security
Cannot be bypassed by targeting the service directly
Do not require changes to clients stored in service endpoint
Potentially faster due to less latency

Drawbacks of agents
Intrusive into services to be monitored / secured
Cannot convert between transport protocols

The gateway dilemma
Note that the Service Bus can act in the role of a web services gateway, and it
supports the same policy framework as OWSM. The 11g OWSM gateway is not
yet available at the time of writing and the 10.1.3 gateway uses different policy
descriptions that are not compatible with 11g. If a gateway is to be used, then a
choice must be made between the 10.1.3 OWSM gateway and using the Service
Bus in that role. The authors feel that the best solution for a gateway currently is
to use the Service Bus in that role, as it will often be used for mediating access to/
from external services. Therefore, this is a logical place to combine security policy
enforcement with access to/from external services. In addition, the Service Bus
supports the same policy model as the rest of the SOA Suite.

Service Bus model
The Service Bus model for securing and monitoring services is a gateway model in
that the Service Bus sits between the client and the service and can apply policies and
monitor performance of services. In the Service Bus model, the policy management
server and the policy enforcement point are both parts of the Service Bus. In 11g,
these policies can be set up using the Web Services Manager and thus provide
consistency between the Service Bus and SCA environments, allowing the Service
Bus to operate as a gateway.

•

•

•

•

•

•

•

•

•

Chapter 21

[643]

Defining policies
Policies are defined using the Fusion Middleware Control Console. A policy
(described in the standard WS-Policy) can be thought of as a pipeline of steps
(assertions, some of which may be described using standard WS-Security) to be
performed on a request response. There may be multiple policies in the pipeline,
each with its own steps. The message passes through the steps of the pipeline on
its way to the service, and in a synchronous interaction, the policies are applied
in reverse order to the response message. Multiple policies may be concatenated
together and applied in sequence to a given service. Some policies will only affect the
pipeline in one direction. For example, authentication and authorization will only
be part of a request pipeline but encryption and decryption may be part of a request
and a response pipeline.

Policies may be used to partially or fully encrypt payloads, provide logging
information, transform data, authenticate users, and authorize access or any number
of other functions. It is worth noting that certain policies rely on information being
made available by earlier policies. For example, an authorize assertion generally
requires there to be an authenticate assertion to have been executed previously to
identify the requestors identity.

Defining Security and Management Policies

[644]

This common pattern of authenticate and authorize reduces the number of valid
users at each step. Up to the point that we extract credentials from a request, all users
are authorized. The act of authentication restricts access to only authenticated users,
while applying specific authorization policies restricts the user base further to only
authorized users.

Creating a new policy to perform
authentication and authorization
The easiest way to manage policies is to have specific policies that combine the
various assertions into a single policy to be applied to multiple components. A policy
is a centralized definition of the security and other steps to be applied to a service.
As an example, we will create a policy that restricts access to users with a particular
role, and a separate policy performs basic authentication with the username and
password passed in a Web Service Security (WSS) header. The user credentials and
roles are stored in the identity store provided by the SOA infrastructure, which in
turn relies on the underlying WebLogic configured security. This policy could then
be applied to provide protection for multiple service policies. The beauty of policy
management is that if we need to change the policy, we can do it once and it will take
effect on all the endpoints that have had the policy applied to them.

Chapter 21

[645]

Creating the authorization policy
To create a new policy, we log on to Fusion Middleware Control, (whose security
policy screens control the behavior of WSM), expand the Farm and WebLogic
Domain folders, and right-click on the domain that has our SOA infrastructure. In
the menu that appears, we select the Web Services item and choose the Policies item
from the submenu.

Defining Security and Management Policies

[646]

This takes us to the Web Service Policies screen, which allows us to list all the
available policies in different categories and to create new policies.

The Category drop-down list allows us to view only policies related to a particular
category of policy, for example, Security, Management, or Reliable Messaging. The
Applies To drop-down list filters the policies by the type of entity that they can be
applied to, for example, Service Endpoints or SOA Components.

Chapter 21

[647]

Some policies can only be applied to certain entities. For example, the authentication
policies generally require access to the original message, including transport data,
and so only apply to Service Endpoints.

Oracle-recommended naming conventions for polices
Oracle recommends the following naming convention for policies:

{Path Location}/{Web Services Standard}_{Authentication Token}_{Message
Protection}_{Policy Type}

Path Location is the directory to store the policy. It is recommended by
Oracle that this be separate from the Oracle directory used by Oracle
pre-configured policies.
Web Services Standard is the appropriate standard being used, such as Web
Services Security (WSS).
Authentication Token is the means of identifying the requestor, for example,
a SAML token or a username/password.
Message Protection is the message integrity and encryption being applied.
Policy Type is used to indicate if this is a policy or a template to be used in
creating policies.

When looking at predefined policies and templates, this naming convention helps to
identify what the policies do.

•

•

•

•

•

Defining Security and Management Policies

[648]

Creating the policy
To create a new policy that defines the security we wish to apply to several
components, we can click the Create link to take us to the Create Policy screen.
However, this screen requires us to create a policy from scratch by providing a
series of assertions or policy steps. Generally, it will be better to select a policy that is
similar to what we want and use the Create Like link to take us to the Create Policy
screen, which is now populated with some initial assertions based on our earlier
policy selection. In our case, we want to restrict access to an entity to only a specified
individual, so we will select the oracle/binding_authorization_permitall_policy as
our basis. We can then further restrict the individuals allowed to access our entity.

Chapter 21

[649]

We need to edit the policy to reflect our changes. We begin by altering the name,
setting it to a directory other than Oracle, and altering the security permission from
permitAll to permitWesternRegion to make it clear what this policy does. Having
changed the name, we will also want to alter the description to reflect what the
policy will now be doing. We will then change the policy authorization restriction by
choosing the J2EE services Authorization assertion and changing its Authorization
Setting from Permit All to Selected Roles.

We want to restrict the authorized users to those who are part of the Western
Region. This is using the SOA sample's user base that has been loaded into the
WebLogic server. We do this by clicking the Add button and selecting and moving
the Western Region role to the Roles Selected to Add List. After clicking OK, we
can then check that our role now appears in the list of authorized roles for the J2EE
services Authorization assertion.

This assertion means that only roles in the Roles list will be allowed access to the
service the policy is applied to.

Defining Security and Management Policies

[650]

We can now save our policy by selecting Save, and the policy will be available to
us for use.

Applying a policy
Having created our policy, we can now use it to restrict access to services. To do this,
we first choose the service we want to protect by navigating to it under the soa-infra
section of the SOA folder in Fusion Middleware Control. Selecting the Policies tab
for the service will show the current policies applied. In this case, we need to apply
an authentication policy to identify the source of the user credentials and then our
newly created authorization policy.

We select a policy to apply by clicking on the Attach To/Detach From menu, which
presents us with a list of operations to which we wish to apply the policy. After
selecting an operation, we are presented with the Attach To/Detach From policies
dialog, which allows us to choose which policies to attach to the operation.

Chapter 21

[651]

We can filter the available policies by editing the search settings and pressing the
green arrow to the right of the search criteria to apply the filter.

We need to add an authentication policy to extract credentials from the inbound
message. We choose the oracle/wss_username_token_service_policy, which
extracts a username and a password from a Web Services Security (WSS) standard
header. This policy will reject any requests to the operation that do not have a valid
username and password in a WSS header. The username and password will be
verified against the WebLogic user base, which will normally point to an LDAP
server. The policy is attached by selecting it and pressing the Attach button.

Having added the authentication policy, we have restricted access to only
authenticated users. The next step is to apply our newly created authentication
policy to restrict access only to users in the Western Region group. Having added
the policies that we want to the list, we can apply them by clicking OK. This will take
effect immediately.

Defining Security and Management Policies

[652]

Applying a policy through the Service Bus
Console
The Service Bus can use Web Services Manager policies. In this section, we will
briefly mention how the Service Bus may use OWSM policies. Policies are managed
using the OWSM policy manager found in Enterprise Manager. Policies may be
created and modified in the same way in Enterprise Manager for the Service Bus and
the SCA container. We will look at importing a policy into Enterprise Manager and
then see how a policy may be applied in the Oracle Service Bus. Remember that only
the attachment of policies differs between the two environments.

Importing a policy
We can import a policy by going to the Enterprise Manager Console associated
with the Oracle Service Bus installation. By right-clicking on the OSB domain
under WebLogic Domain in the tree view, we can select the Web Services | Policies
menu item.

This brings up the Web Services Policies screen, where we can select Import
From File to bring in policies that have been exported from another Service Bus
installation or from the SCA container. After browsing to select a previously
exported policy file and clicking OK, the policies in the file will be added to
the existing Web Services Policies.

Chapter 21

[653]

Once imported, the policies can be used in the same way as other OWSM policies,
detailed as follows.

Applying OWSM policies in Service Bus
Policies are applied in the Service Bus console. Policies may be applied to a proxy
service (inbound) or to a business service (outbound). Generally, in the proxy service
we will apply policies that restrict access to the service, while in the business service
we will apply policies that encrypt data or provide authentication tokens to the
target service. To apply a policy to a service in OSB, we navigate to the proxy or
business service we wish to apply the policy to and select the Policies tab. We can
then press the Add button to bring up the list of available policies.

Defining Security and Management Policies

[654]

From the list of available policies, which may be filtered by Category, we can
choose and apply the appropriate policy. For example, oracle/wss_username_token_
service_policy expects a username and a password to be provided in a WS-Security
SOAP header. After clicking on Submit, the policy will be attached to the service.

Because policies can be shared between OSB and the SCA-based service engines, it is
possible to create a customized policy and apply it to services in both containers.

Final thoughts on security
The examples used in this chapter have been based on HTTP basic authentication or
a simple username/password that does not require configuration of certificate stores.
To properly secure services, it is recommended that a public key infrastructure is
used in conjunction with an LDAP server to provide secure message delivery
and centralized user management. The preceding steps are appropriate for use
in development and test environments without access to an LDAP store or a
PKI infrastructure.

Monitoring services
In addition to defining policies to be applied to requests, the Fusion Middleware
Control Console can also monitor the performance of services.

Chapter 21

[655]

Both Fusion Middleware Control and Service Bus can monitor services.
Enterprise Manager is unique in being able to monitor the service directly
by using an agent that resides in the same container as the target service.
EM is also able to provide out of the box reports on the security aspects
of service invocation, tracking the number of failed authentications
or authorizations. The Service Bus provides an extremely capable
monitoring and reporting framework for services that can be used
alongside the EM reporting framework.

Monitoring service health in SOA Suite
There are several places in Fusion Middleware Control, apart from the home page,
which show the overall health of the SOA system.

System up-down status
The general status of servers and individual SOA composites is indicated by the
green up arrows on the initial Fusion Middleware Control page. This page is useful
for checking that all expected composites and adapters are up and running. It also
gives a snapshot of the status of individual servers in the cluster.

System throughput view
It is also possible to get more detail on overall system throughput by right-clicking
the soa_infra menu and choosing the Monitoring | Performance Summary menu
item. This displays a report showing throughput for the SOA system.

Defining Security and Management Policies

[656]

The report may be customized by pressing the Show Metric Palette button to add
additional metrics to the report.

Monitoring SOA Composite performance
To get additional detail on which SOA composites are being used most or are
performing the worst, we can use the tree view to navigate to a specific SOA server.
Right-click on the server and choose the Web Services menu item. This takes us to
the Web Services monitoring screen, where we may select the SOA tab to see a list
of deployed SOA composites and the number of messages they have processed, the
number of faults they have raised, and their average processing time.

Chapter 21

[657]

Note that the Attach Policies link provides an alternate way to attach policies
to composites.

The SOA tab of the Web Services monitoring is a good place to look for composites
that are being heavily used or taking a long time to respond.

Clicking on a Service will take us to the Web Service monitoring page, where we can
not only see the overall throughput for this service, but also look at the number of
faults that it has encountered.

Monitoring in the Service Bus
The Service Bus is also able to monitor services. Like security policies, the Service Bus
is not currently consistent with the rest of the SOA Suite in its service monitoring.
Service Level Agreements can also be specified in the Service Bus.

Defining Security and Management Policies

[658]

Creating an alert destination
Any breaches of a service level in the Service Bus will cause an alert to be raised. An
alert must be associated with a destination, so before we begin, we need to define an
alert destination. This is done by adding an Alert Destination resource to our project
in the Service Bus. Selecting Alert Destination from the Create Resource list takes us
to the Create Alert Destination dialog.

In this dialog, we need to provide a name for the alert destination and specify the
targets for this destination. The console is always included as a destination, but we
may also send alerts to SNMP for integration with system managements systems
such as Oracle Enterprise Manager or HP OpenView. Other destinations include
E-mail, JMS queues, alert logs, and internal reporting. Once we click Save, we have
an alerting destination that can be used by many alerts.

Chapter 21

[659]

Enabling service monitoring
To improve performance, by default, service monitoring is disabled for proxy
services. To enable service monitoring, we need to go to the proxy service edit
screen and select the Operational Settings tab.

After selecting the Monitoring checkbox to enable monitoring for this service, we
can select the level of monitoring to perform (Service level, Pipeline level, or Action
level) and then review the other potential properties. The Aggregation Interval is
the rolling time period over which SLAs for this proxy will be monitored. Alerting
and Logging specify the monitoring level at which events will be tracked. Reporting
allows inclusion of this proxy service in reports on the console. Finally, Tracing
can be enabled to help debugging the service. Selecting Update will save the
new configuration.

Defining Security and Management Policies

[660]

Creating an alert rule
Having enabled monitoring for our service, we can now create an alert rule by
selecting the SLA Alert Rules tab. Selecting Add New takes us to the New Alert
Rule dialog, where we can start configuring our rule.

After providing a name for the alert rule, we need to specify the destination. It is
possible to limit applicability of the rule by restricting the time window in which the
rule applies by setting an expiry date or by explicitly suspending the rule by setting
Rule Enabled to false. The Alert Severity indicates the importance of this alert. The
Alert Frequency is used to control whether the alert works as an edge trigger, firing
only when the threshold is first exceeded, or as a level trigger, firing whenever the
metric is above the threshold.

Chapter 21

[661]

We also need to specify a destination for any alerts resulting from this rule. This
is done by clicking the Browse… button next to the Alert Destination field and
selecting an appropriate destination from the list presented in the Select Alert
Destination dialog.

Defining Security and Management Policies

[662]

Having selected Next>>, we can now construct our rule by defining the expression
or expressions that we wish to use as an SLA. Expressions are created by first
selecting the type of expression and then selecting the actual measurement. The
expression type may be a count, a minimum, a maximum, or an average. Actual
metrics for count may be error or message counts and success or failure ratios.
Metrics for minimum, average, and maximum may be response times. Multiple
expressions may be combined with boolean operators. Expressions are added to
the SLA rule by clicking Add.

Clicking Last>> takes us to the summary screen where we can use the Save button to
confirm our selections.

Chapter 21

[663]

We can then do a final review of our modifications before selecting Update on the
SLA Alert Rules tab. Remember to activate changes from the change center. Our
SLA is now established and any violations will be reported.

Monitoring the service
We can monitor the health of our services by using the Dashboard tab found under
the Operations Monitoring tab. This gives us an immediate overview of alerts
generated within the last 30 minutes.

In addition to the dashboard, further information about the services can be obtained
by examining the Service Health tab, which gives an overview of service behavior,
throughput, error rates, and response times.

What makes a good SLA
SLAs should not be restricted just to report violations that are unacceptable. It can be
good practice for a given metric to set two or even three SLAs. The worst SLA should
be the one that is unacceptable and is the real SLA. The other SLAs should be used
to warn that the metric has gone outside of normal operating bounds or to warn that
it is approaching the worst SLA. These latter SLAs can be used to help operators
diagnose problems and take corrective action before they become critical.

Defining Security and Management Policies

[664]

Summary
The Web Services manager and the Service Bus allow security and monitoring to
be applied to services without modifying their core functionality. These policies
may be applied consistently through the policy manager and enforced through the
Service Bus, gateways, and agents. This model of security, as a service and as a facet
that is applied to existing services, allows for new security standards to be easily
incorporated into the SOA infrastructure. In addition, it is possible to monitor the
health and performance of groups of services and of individual services, including
monitoring for compliance with service-level agreements.

Index
Symbols
-all parameter 608
-cmd parameter 608
-contents parameter 609
-dependencies parameter 609
-layout parameter 609
-match parameter 608
-name parameter 608
-regex parameter 608
-type parameter 609
<Address> element 521
<any> element 115
<assign> activity 141
<composite> element 605
<definitions> element

about 238
targetNamespace attribute 238

<EndpointReference> element 522
<flowN> activity 518
<invoke> activity 142
<name> element 255
<operation> element 98
<output> element 98
<pick> activity 511
<portType> 98
<receive> activity 142, 511
<replace> element 605
<reply> activity 142
<searchReplace> element 605
<state> element 324
<switch> activity

using 167-169
<wait> activity

using 163, 164

A
abort action 454
abstract WSDL document, building

about 338
message elements, defining 341
portType element, defining 342
wrapper elements, defining 339
wrapper elements, importing 341
WSDL namespace, defining 338

action types, business rule
assert new 209
call 209
modify 209
retract 209

activation agent threads 479
Active Directory 172
adapters, SOA Suite

AQ adapter 19
BAM adapter 19
database adapter 19
file adapter 19
FTP adapter 19
JMS adapter 19
MQ adapter 19
socket adapter 19

additional layer, SOA architecture 304
ADF-BC service reference

creating 386, 387
ADF Business Components (ADF-BC) 368

about 368
application module 369
association 369
database-centric approach 369
entity object 369

[666]

view link 369
view object 369

ADF facts 200
agents

about 640
benefits 642
drawbacks 642

ant-sca-compile.xml 593
ant-sca-mgmt.xml 593
ant-sca-test.xml 593
application interfaces 80
Application Lifecycle Listener (ADF) 383
application services layer, SOA architecture

297
architecture

about 13
principles 13

architecture, principles
consistency 13
extensibility 13
reliability 13
scalability 13

architecture goals, SOA 294
archive processed files attribute 86
assert element

bout 415
test attribute 416

assertTree function 584
assertWinningBid function 577
asynchronous Mediators

about 445
timeouts, using 446

asynchronous messaging 143
asynchronous service

about 160-162, 433
wait activity, using 163

auction
implementing, business rules used 562

auction implementation, business rules
used

business rule, defining 565
check rule flow option, deselecting 566
decision function, configuring 566
XML facts, defining 562-564
XML tree, asserting 566, 567

auctionItem element 563

auction process
creating 264
data, required 265
reports, defining 265

auction rules
facts, evaluating in date order 571
inference, using 574, 575
next valid bid, processing 575, 576
ruleset 582
writing 571
XML facts manipulating with functions 576

AuctionRulesDecisionService 566
authenticate operation 539
authorization policy

applying 650, 651
creating 645-649
naming convention 647

automated testing 616

B
B2B, SOA Suite 24
BAM

about 23, 608
architecture 259
commands 608
differing from traditional BI 257
features 258
iCommand, using 609
items, selecting 608
KPIs, monitoring 282
process state, monitoring 264
process status, monitoring 279
simple dashboards, creating 264
using 257

BAM adapter
creating 269, 270
invoking 272

BAM architecture
about 259
logical view 259
physical view 260
steps, for creating BAM reports 263
user interface 263, 264

bid elements 564
bids, evaluating in date order

about 571

[667]

bid status, updating 573
non-existent fact, checking 571-573

bidtime 564
binding resolution 458
BPA Suite 28
BPEL

about 139
Fault Management Framework 447
simple composite service 144

BPEL activities
about 483
flow 483
flowN 483
pick 483
receive 483
wait 483

BPEL and SCA, instrumenting
BAM adapter, invoking as regular service

269
BAM adapter, invoking through BPEL

sensors 273-277
BPEL component properties

about 481
transaction=required 482
transaction=requiresNew 482

BPEL correlation sets
about 498
correlation set, defining 500
correlation set, initializing 503, 504
correlation set property, defining 499, 500
property aliases, defining 505, 506
using 501, 503
using, for multiple process interactions 499

BPEL dehydration events 476
BPEL engine properties 480
BPEL partner link properties

about 482
idempotent=false 483
nonBlockingInvoke=true 483

BPEL PM 31
BPEL process

application, creating in JDeveloper 34, 35
creating 38, 39
deploying 42-44
JDeveloper, starting 32-34
Mediator, adding 51-54
service bus, using 54

SOA project, creating 36, 37
SOA project composite templates 37
structure 140
testing 45-51
values, assigning to variables 40-42
writing 32

BPEL process, structure. See structure, BPEL
process

BPEL process manager, SOA Suite 21
BPEL thread properties 480
BPEL transactions

about 481
BPEL activities 483
BPEL component properties 481, 482
BPEL partner link properties 482, 483
reply handling 484

BPM Suite 28
BPM Worklist Application 172
bucketset

defining 222, 223
build-script 593
Business activity monitoring. See BAM
BusinessEventBuilder class 244
BusinessEventConnectionFactory 244
business fault

about 431, 432
faults, defining in asynchronous services

433
faults, defining in synchronous services 432
handling, in BPEL 434
handling, in Mediators 443

business fault handling, in BPEL
about 434
asynchronous considerations 443
catch branch, adding 435, 437
compensate activity, adding 441
compensate handler, defining 440
compensate handler, triggering 440, 441
compensation 439
faults, catching 435
faults, returning 442
faults, throwing 438

business fault handling, in Mediators
about 443
with asynchronous Mediator 445
with synchronous Mediator 444, 445

[668]

business objects
defining, XML Schema used 322

business process, SOA architecture 302, 303
business rule

calling, from BPEL 211, 212
facts, assigning 212, 213

business rule concepts
about 200
ADF facts 200
decision services 201
dictionary 200
facts 200
Java facts 200
RL facts 200
rules 200
ruleset 200
XML facts 200

business services
creating 64
defining, WSDL used 337
document (literal) wrapped, using 338

business services layer, SOA architecture
about 299
functional type 299
service consumer 300, 302

C
canonical form

about 128
applying, in OSB 135
benefits 129, 130
implementing, in OSB 130

canonical model, XML
common objects, separating into own

namespace 337
multiple namespace 336
partitioning 334
single namespace 335

centralized approach, service invocation 314
CEP, SOA Suite 24
change session 57
clause element 546

ignoreCase attribute 548
joinOperator attribute 548

cloneTBid function 579

cluster
about 486
adapter considerations 489
considerations 487
JMS considerations 487
load balancing 487
metadata repository considerations 489
testing considerations 488

clustering 486
coherence 489
column element

about 547
columnName element 547
tableName attribute 547

command-line interfaces 588
compile parameters

scac.error 594
scac.input 594
scac.output 594

Complex Event Processing Engine (CEP)
260

component, SCA 17
component binding

defining 457
component testing 627
component view, SOA Suite architecture

25, 26
composite.xml, SCA 17
composite application

about 307
basic composite design pattern 311
components 308
composite granularity 308
using, as virtual service 313

composite configuration plan framework
about 603
configuration plan, attaching to SCA

archive 606
configuration plan, creating 606
configuration plan template, creating 604,

605
SCA archive, customizing 603

composite design pattern 311
composite granularity

about 308
composite lifecycle 310
composite re-usability 309

[669]

composite security and management
policies 310

composite test framework 616
composite testing 627
composite test suites

about 616
data, injecting into test case 618-620
data validation 620, 621
deploying 623, 624
reference or component, emulating 622
running 624
test suite, creating 617

configPlan parameter 607
conflict resolution, decision table 229, 230
continueSearchItemsRequest element 116
core BPEL process

about 140
messaging activities 141
simple activities 140
structured activities 141

coupling
about 111
dependencies of other services on this

service 113
dependencies on other services 113
number of input data items 112
number of output data items 112
reducing, in stateful services 115-119
shared global data 114
temporal dependencies 114

create() method 376
createEvent 244
credential element

creating 540, 541
identityContext parameter 539
login parameter 539
onBehalfOfUser parameter 539
password parameter 539

cross field validation, Schematron
about 418
XPath 2.0 functions, using 419
XPath predicates, using in rules 418

D
database, writing

about 106
database schema, selecting 106, 107

operation type, identifying 107, 108
table relationship, identifying 109
tables, identifying 108

Database Adapter Wizard 106
date validation, Schematron 420
debugging, ruleset 561
decision service functions

testing 220
decision tables

about 199
bucketset, defining 222, 223
conflict resolution 229, 230
creating 224-229
using 222

definitions element 341
dehydration 476
deploy command

exportComposite command 597
exportUpdates command 597
importUpdates command 598
undeploy command 597

deploy parameters
configPlan 596
forceDefault 596
overwrite 595
password 595
sarLocation 595
serverURL 595
user 595

dispatcher engine threads 480
dispatcher invoke threads 480
dispatcher system threads 480
dispatcher threads 479, 480
displayColumnList element 541
document wrapped 338
domain 487
dynamic partner links

about 519
common interface, defining 520, 521
endpoint, updating 522
endpoint reference, creating 521, 522
job partner link, defining 521

dynamic task assignment, human workflow
about 186, 187
task, assigning to multiple users or groups

188

[670]

E
E-Business Suite applications 78
echo proxy service

activating 70, 71
business service, creating 64-66
change session, creating 57
creating 67, 68
echo WSDL, importing 61-63
message flow, creating 69, 70
project, creating 58
project folders, creating 58-60
service WSDL, creating 60
testing 72-75
writing 55-57

EDN
about 24, 233
basic principles 235
features 235
MOM, differences 234
use case 235

EDN principles
event publishers 238
events 235
event subscribers 245

EDN publishing patterns
about 250
event, publishing on an event 253
event, publishing on asynchronous message

request and reply 253
event, publishing on asynchronous

response 252
event, publishing on receipt of a message

251
event, publishing on synchronous message

request and reply 252
event, publishing on synchronous message

response 251
element naming, XML Schema

about 325
compound names 325
name length 325
naming standards 326

endRow attribute 324, 542
Enterprise Deployment Guide (EDG) 487
Enterprise Manager

event processing, monitoring 254-256

Enterprise Service Bus (ESB) 19
EntityImpl 376
entity variable

creating 388
error handling

about 431
asynchronous interactions 431
error handlingbusiness fault 431, 432
error handlingsynchronous interactions

431
error handlingsystem fault 431

ESB, SOA Suite
about 19
Oracle Mediator 20
OSB 20

Event-driven architecture (EDA) 258
Event Delivery Network. See EDN
event delivery network, SOA Suite 24
Event Description Language (EDL) 236
event processing

monitoring, in Enterprise Manager 254-256
event publishers, EDN

about 238
event publishing, BPEL used 240-243
event publishing, Java used 243
event publishing, mediator component

used 238-240
event publishing, Java used

event, creating 244
event, publishing 245
event connection, creating 244

events, EDN
about 235
data type 236
event definition file, creating 236-238
name 236
namespace 236

event subscribers, EDN
about 245
event consuming, BPEL used 248, 249
event consuming, mediator used 245-248

exchange rate web service
calling 154

exponentialBackoff parameter 453
expression builder

about 157, 217

[671]

BPEL Variables 157
content preview 158
description 158
expression 157
functions 158

external web services
calling 148-152
constant values, assigning to variables 155
exchange rate web service, calling 154
expression builder, using 156-159
partner link, defining 149, 150
process, testing 154
values, assigning to variables 153
values, specifying 152
WSDL file, specifying 149

external web services, oBay application
services 317

F
Fabric 475
fault handling. See error handling
fault handling, in synchronous proxy serv-

ices
about 462
error, raising 462, 463
error handler, defining 463
permanent faults, handling 469
qualified fault name, getting 466
route error handler, adding 464, 465
Service Error Handler, adding 469
SOAP fault, creating 466
SOAP fault, returning 468
SOAP faults, checking 465
transient faults, handling 471
unexpected faults, handling 467

fault handling, OSB
in one-way proxy services 473
in synchronous proxy services 462

Fault Management Framework
about 446
fault policies, binding 457
fault policies file, defining 448
fault policy, defining 449
fault policy actions, defining 452
fault policy conditions, defining 450
using, in BPEL 447

using, in Mediator 447
fault policies

binding 457
defining 449

fault policies file
defining 448

fault policy actions
abort action 454
defining 452
human intervention action 453
Java action 456
ora-human-intervention action 452
ora-retry action 452
re-throw action 454, 455
replace scope action 455
retry action 453

fault policy conditions
<condition>, specifying 451
<faultName>, specifying 450
defining 450

fault policy files
holding, MDS used 458, 459

file and FTP adapter
dummy message type, creating 98
modified interface, using 98
output message, adding to read operation

98
throttling 98

flex fields
about 543
accessing 544
attributes 544
data, ordering 550
populating 543, 544
query predicate, specifying 545-548
setting 543
using, in query predicate 549

flowN
about 517
branch-specific data, accessing 518, 519
using 518

function
about 213
creating 214
invoking, within rule 221, 222
testing 219

[672]

functional type, service
about 299
entity services 299
functional services 300
task-based services 300

Fusion Middleware Control Console 643
about 459
human intervention 459, 460

G
gateway dilemma 642
gateways

about 641
benefits 641
drawbacks 642

getOrderDetails
implementing 551

getTaskDetailsById operation 551
getTaskDetailsByNumber operation 551
global JDBC data source

configuring 384

H
handleFault method 456
handleRetrySuccess method 456
Harte-Hanks WSDL 130
health warning 295
human intervention

in, Fusion Middleware Control Console
459, 460

human intervention action 453
human task, leave approval workflow

defining 173-175
invoking, from BPEL 180, 181
routing policy, specifying 176-179
task assignment, specifying 176-179
task parameters, specifying 175, 176

human workflow
about 171
additional information about task 190
dynamic task assignment 186
improving 186
leave approval workflow 172
overview 171
task, cancelling/modifying 189
task assignment, managing 191

worklist application 184
hybrid approach, service invocation 315

I
IBM MQ Series 233
iCommand

about 608
using 609, 610

id attribute 452
IFaultRecoveryJavaClass 456
implementation view, SOA Suite

architecture
about 26
portability layer 26
service layer 26

InteractionSpec property 103
interfaces, types

about 588
command-line interfaces 588
web interfaces 588

intermediate validation, Schematron
about 418
cross field validation 418
date validation 420
element present, checking 420

items buying, oBay
items, bidding 292, 293
items, searching 292

items selling, oBay
about 288
account, viewing 291
new item, listing 289
sale, completing 290

J
Java action 456
javaAction element 456
Java Connector Architecture. See JCA
Java Enterprise Edition (Java EE)

infrastructure 25
Java facts 200
Java Message Service (JMS) binding 485
Java Messaging Service (JMS) 233
JCA 80
JDeveloper

about 27, 31, 33, 149, 150

[673]

starting 32
JNDI location 99
Job element

about 517
Endpoint element 517
jobDetail element 517
startTime element 517

JUnit 616

K
key components, order fulfillment human

task
orderno 533
orderstatus 534
shippingprice 534
shipto 534

KPIs
monitoring 282, 283

L
layered validation considerations

about 428
negative coupling, of validation 429
over validation, risks 428
under validation, risks 429

leave approval business rule
action types, selecting 209
building 201
business rules, implementing 204, 205
decision service, creating 202-204
IF clause, creating 207, 208
rule, adding to ruleset 206
Then clause, creating 208-210

leave approval workflow
about 172, 173
human task, defining 173-175
human task, invoking from BPEL 180, 181
user interface, creating 181, 182
workflow process, running 183

leaveDuration function
creating 219

leave request example
about 201
building 201

Listing ADF-BC
testing, in JDeveloper 375

Listing entity
binding 391
creating 389

ListingSDO
creating 368

ListingSDO, using in SOA composite
about 386
ADF-BC service reference, creating 386, 387
SDO, exposing as business service 396, 397
SDO, invoking from BPEL 387, 388

ListingSDO application
application module, defining 373, 374
creating 370
entity objects, defining 372
listing ADF-BC, testing in JDeveloper 375
Listing business components, creating 371
updatable view objects, defining 373

ListingSDO service interface
creating 379, 380
master detail updates, enabling 380, 381

logical view, BAM architecture 259
loose coupling 111

M
management and monitoring impacts 634,

635
MDS

using, to hold fault policy files 458, 459
Mediator

about 31, 119
adding 51-54
as proxy, for composite 312
as proxy, for external reference 312
Fault Management Framework 447
uses 120
using 120
using, for virtualization 136-138
XSL transforms, using 136

message addressing
about 494
message correlation 495
multi-protocol support 494
WS-Addressing 496

message aggregation
about 507
completing 514, 515

[674]

example 507
fixed duration scenario 507
message routing 509
proxy process, creating 511
wait for all scenario 507

message correlation 495
message delimiters

specifying 93
message flow, echo proxy service

creating 69, 70
message format, file adapter

about 89
field properties 95
message delimiters 93
Native Format Schema, defining 90, 91
record structure 92
record type names 94, 95
result, verifying 96, 97
root element, selecting 93
sample file, using 91

Message Oriented Middleware (MOM)
about 233
EDN, differences 234

message routing
about 509
calback, correlating 510
queuing mechanism, implementing 509
reply, specifying to address 510

messaging, within composite
about 491
messages, processing within BPEL PM 493
messages, processing within mediators 493
messaging, handling 491-493

messaging activities, BPEL process
about 142
asynchronous messaging 143
one way messaging 144
synchronous messaging 142

messaging activities, core BPEL process
about 141
invoke 141
pick 141
receive 141
reply 141

messaging infrastructure, SOA Suite
about 492
binding components 492

Service Engines 492
Service Infrastructure 492

metadata repository considerations, cluster
about 489
database connections 489

Metadata Service (MDS) 343
file-based repository 343

minimum file age parameter 88
multi-protocol support, message addressing

494
multiple participants, workflow

individual human tasks, linking 530
managing 525
multiple assignment, using 526
multiple human tasks, using 529
outcome, determining by group vote 526
outcome, voting on 528
participants, assigning 528
sharing of attachments and comments,

enabling 528
skip rule 529

N
naming considerations, XML Schema

about 327
default namespace 327
element versus types 333, 334
global versus local 330-332
namespace naming conventions 330
qualified or unqualified attributes 329
qualified or unqualified element names

328, 329
target namespace, specifying 327

naming standards, XML Schema
abbreviations 326
about 326
context based names 326
generic names 326
oBay dictionary, sample 326
synonyms 326

Native Format Builder wizard
about 90
options 90

Native Format Schema
defining 90

negative coupling, validation 429

[675]

newInstance method 244
NewOrder 236
ns element 417

O
oBay

about 287
requisites 288

oBay, requisites
about 288
items, buying 291
items, selling 288
logging in 288
user registration 288

oBay application services
about 316
external web services 317
oBay developed services 317
workflow services 316

oBay business processes 318
oBay business services 317
oBay developed services 317
oBay high level architecture

about 316
oBay application services 316
oBay business services 317
oBay internal virtual services 317
oBay user interface 318

oBay internal virtual services 317
oBay user interface 318
onBehalfOfUser element 540
One-off testing

about 612
composites, testing 612, 613
Service Bus, testing 615, 616

one-way message delivery 477
one-way messages

executing immediately in BPEL 478
one way messaging 144
Open Service Oriented Architecture

(OSOA) 367
operators

about 547
date operators 547
null operators 547
standard operators 547

string operators 547
value list operators 547

optionalInfoList element 542
Oracle 11gR1 support, SDO 367
Oracle ADF 365
Oracle AQ 233
Oracle BAM scenarios 258
Oracle BPA Suite. See BPA Suite
Oracle BPEL Process Manager. See BPEL

Process Manager
Oracle BPM Suite. See BPM Suite
Oracle Business Rules engine 199
Oracle Database Job Scheduler 515
Oracle Data Integrator (ODI) 260
Oracle Internet Directory 172
Oracle Mediator 20
Oracle Portal. See Portals
Oracle Service Bus. See OSB
Oracle SOA composites

about 590
adapter configuration, enabling 602
composite configuration plan framework

603
default revision 599
revision number 598
SCA composite, deploying via EM console

590, 592
SCA composite, deploying with Ant 592,

593
web service endpoint, enabling 600, 601
WSDL location, altering 601
XML Schema locations 602
XSL imports 602

Oracle SOA Suite 11
Oracle SOA Suite 11g SDO support 367
Oracle TopLink 110
Oracle WebCenter. See WebCenter
Oracle WebLogic Server (WLS) 25
Oracle Workshop for WebLogic 121
order fulfillment human task

defining 532
key components 533
notification settings 535, 536
routing policy, specifying 534
task parameters, specifying 532, 533

ordering element 542
about 550

[676]

column element 550
nullFirst element 550
sortOrder element 550
table element 550

orientation
about 12
collaboration 12
features 12
granularity 12
universality 13

OSB
about 20, 31, 118, 119
deploying 589
faults, handling 461
faults, handling in one-way proxy services

473
faults, handling in synchronous proxy

services 462
overview 121
Service Bus message flow 122
using 120

OSB console 121
OSB design tools

about 121
Oracle Workshop for WebLogic 121
OSB console 121

OSB transactions
about 485
comparing with EJB 486
non-transactional binding 485
non-transactional proxy 486
transactional binding 485
transactional proxy 486

outbound file, configuring
adapter, generating 102
binding, modifying 103
file locations, configuring 104, 105
port type, modifying 102

OWSM policies
applying, in Service Bus 653, 654

P
package parameters

compositeDir 594
compositeName 594
revision 594

partner links, BPEL process 142
pattern element 417
payroll file, reading

file availability, confirming 88, 89
file location, defining 85, 86
message format 89
operation, identifying 83, 84
service, naming 82
specific files, selecting 86
wizard, finishing 97
wizard, starting 82

payroll file, writing
file destination, selecting 100, 101
FTP connection, selecting 99
FTP file writer service, completing 102
operation, selecting 100

peer-to-peer topology, service invocation
315

Peoplesoft 78
performance considerations

about 583
facts assertions, controlling 584
state, managing in BPEL process 583

performance testing 629
permanent faults

about 469
alerts, enabling 471
alerts, generating 470
handling 469

physical view, BAM architecture
about 260
acquire 260
deliver 262, 263
process 261
store 261

pick activity
about 511
using 511

policies
about 639
applying, through Service Bus console 652
creating, for authentication and

authorization 644
defining 643, 644

policy, applying through Service Bus
console

policy, importing 652

[677]

policy enforcement points 639
Policy Enforcement Points (PEPs) 640
polling frequency parameter 88
Portals 28
portType element 342
predicate element 542, 546
presentationId element 541
primary key generation, Oracle Sequence

used
about 375
ADF extension class, creating for

EntityImpl 376
default ADF base classes, updating 377
Listing entity, configuring 378

print function 562
processResponse 161
process state, monitoring

about 264
BPEL and SCA, instrumenting 269
data objects, defining 265-267
events, testing 278
simple dashboard, creating 278

process status
monitoring 279-282

properties, SCA 18
proxy process

correlation sets, defining 513
creating 511
pick activity, using 511-513

publishEvent 245

Q
qualified elements 329
Quartz 515
query-based operations

getOrderDetails 537
getPurchasedItems 537
getSoldItems 537

queryTask operation
about 541
displayColumnList element, specifying 542

R
re-throw action 454
Real Application Clusters (RAC) database

488

recursive example, SOA Suite architecture
27

ref attribute 452
reference, SCA 17
reference binding 458
regression testing 625
replay scope action 455
result set, referencing

global variable, defining 568
global variable, used 567
rule, defining to initialize global variable

568-570
retractLosingBid function 577
retry action

about 453
parameters 453

retryCount parameter 453
retryFailureAction parameter 453
retryInterval parameter 453
retrySuccessAction parameter 453
risks, over validation 428
risks, under validation 429
RL facts 200
rule element

about 416
relative context, using 417

rule engine
about 22
facts, asserting 558
result, retrieving 559
ruleset, debugging 561
ruleset, executing 558
session management 560
working 557

rules, auction ruleset 582
RuleSession object 560
ruleset

additional logging, adding using print
function 562

decision service, debugging with composite
561

decision service, debugging with test
function 561

ruleset execution
about 558
rule activation 558
rule firing 559

[678]

S
SAP 78
SCA

about 16, 367, 475
component 17
composite.xml 17
properties 18
reference 17
service 17
wire 17

SCA composite
deploying, Ant used 592
deploying, via EM console 590, 592

SCA composite deployment, Ant used
about 592, 593
compile parameters 594
deploy parameters 595
package parameters 594
test parameters 598

scheduling process
about 515
dynamic partner links 519
flowN, using 517
schedule file, defining 516, 517
schedule file, recycling 523

scheduling tool
Oracle Database Job Scheduler 515
Quartz 515

schema element 418
schemaLocation attribute 345
schemas, deploying to SOA infrastructure

JAR file, creating in JDeveloper 349
SOA bundle, creating for JAR file 350, 351

schemas, oBay
account.xsd 335
auction.xsd 335
common.xsd 335
order.xsd 335
user.xsd 335

Schematron
about 413
advantages 414
assert element 415
components 415
intermediate validation 418
ns element 417

overview 414
pattern element 417
rule element 416
schema element 418
using, in mediator 421
using, with Service Bus 423

Schematron, in mediator
about 421, 422
MDS, using to hold Schematron files 422
Schematron errors, returning 423

schema validation, in BPEL PM
BPEL variables, validating 408, 409
incoming and outgoing XML documents,

validating 409
schema validation, in Service Bus

about 410
inbound documents, validating 411-413
outbound documents, validating 413

schema version attribute
updating 359

schema versioning
about 358
location, changing 359
schema namespace change, resisting 359
schema version attribute, updating 359

SDO
about 367
architecture 367
exposing, as business service 396, 397
goal 367
implementing 368
ListingSDO, using in SOA composite 386
Oracle 11gR1 support 367
Oracle SOA Suite 11g SDO support 367

SDO, invoking from BPEL
about 387
detail SDO, deleting 395
detail SDO, inserting in master SDO 393,

394
detail SDO, updating 395
entity variable, creating 388, 389
Listing entity, binding 391-393
Listing entity, creating 389, 390
SDO, deleting 395, 396

SDO deployment
about 381
service deployment profile, creating 382

[679]

Web Context Root, setting 382, 383
SDO implementation

about 368
ADF business components, overview 368
ListingSDO application, creating 370
ListingSDO service interface, creating 379
primary key, generating using Oracle

Sequence 375
SDO, deploying 381
SDO, registering with SOA infrastructure

383
SDO registration, with SOA infrastructure

about 383
global JDBC data source, configuring 384,

385
ListingSDO, registering as RMI service 383
registry key, determining 385, 386

SearchAddress method 131
searchItems operation 116
searchItemsRequest element 116
searchItemsResponse element 116
searchState element 116
security, outside SOA Suite

about 636
access, restricting to services 637
message interception, preventing 636
network security 636

security, SOA Suite 22
security and management

about 631
development 632, 633

security and monitoring
security, as facet 637
security, as service 637

security impacts 634
security model 638
security policy, SOA Suite 22
SequenceId property 376
service

about 11
contract or service level agreements 12
encapsulation 11
features 11
interface 11
scheduling 515

service, SCA 17
Service-oriented Architecture. See SOA

service abstraction tools
about 119
Mediator 119
OSB 119

Service Bus message flow 122
Service Component Architecture. See SCA
service consumer, SOA architecture

about 300
change management 302
granularity 300
management 302
security 302
support 302
validation 302

service contract
components 321
designing 321
WS-Policy definition 321
WSDL definition 321
XSD 321

Service Data Objects. See SDO
service enabling existing systems

about 77
application interfaces 80
technology interfaces 78
types 77
web service interfaces 78

service endpoints
virtualizing 122

service endpoints virtualization
about 122
different requests, routing to different

services 126-128
service location, moving 123-125

service granularity 301
service health, SOA Suite

monitoring 655
system throughput view 655
system up-down status 655

service implementation versioning 357
service interfaces virtualization

about 128
canonical interface, mapping 131
local transport mechanism 136
physical, versus logical interfaces 128
service interfaces, mapping 130-135

[680]

service invocation, composite application
about 314
centralized approach 314
hybrid approach 315
peer-to-peer topology 315

ServiceMediator 240
service monitoring, Service Bus

about 657
alert destination, creating 658
alert rule, creating 660-662
dashboard used 663
enabling 659

service orchestration 21
service repository 28
services

creating, from database 106
creating, from files 80
monitoring 654

services, creating from files
adapter headers 105
file adapters, testing 105
file and FTP adapter, throttling 98
files, copying 102
files, deleting 102
files, moving 102
payroll file, reading 81
payroll file, writing 99
payroll use case 81

services, securing
about 636
declarative security, versus explicit security

637
gateways and agents 640
policies 639
policy enforcement points 639
security, outside SOA Suite 636
security model 638
Service Bus model 642

services, SOA Suite 18
service WSDL

creating 60
session management, rule engine 560
setShippingDetails operation 552
shipTo element 331
Siebel 78
simple activities, core BPEL process

about 140

assign 140
empty 141
transform 140
wait 141

simple composite service
asynchronous service 160-162
external web services, calling 148
stock quote service, creating 145
stock trade service, improving 164

simple dashboards
creating, BAM used 264

SLAs 663
SOA

about 11
architecture 13
architecture goals 294
blueprint, defining 294
evolution 15
extension 15
features 14
interoperability 15
management and monitoring impacts 634,

635
orientation 12
reuse in place concept 16
security and management challenges 631
security impacts 634
service 11
SOAerror handling 431
strategies, for managing change 356
terminology 15

soa-infra 562
SOA architecture

about 295, 297
additional layer 304
application services layer 297
business process 302
business services layer 299
user interface layer 303
virtual services layer 297, 298

SOA composite performance
monitoring 656, 657

SOA management pack 29
SOA Suite

activation agent threads 479
architecture, mapping 306
composite application, deploying 307

[681]

composite test framework 616
dispatcher threads 479, 480
EDN publishing patterns 250
installing 31, 32
issues, with moving between environments,

587
message delivery 476
one-way message delivery 477
one-way messages, executing immediately

in BPEL 478
packaging, need for 587
service abstraction tools 119
services, partitioning 307
threading 476
types, interfaces 588
WSDL, using 342
XML Schema, using 342

SOA Suite architecture
about 24
component view 25
implementation view 26
recursive example 27
top level 25

SOA Suite components
about 18
adapters 19
B2B 24
BAM 23
BPA Suite 28
BPEL process manager 21
BPM Suite 28
CEP 24
ESB 19
event delivery network 24
monitoring 22
Portals 28
registry 28
rules engine 22
security 22
service orchestration 21
service repository 28
services 18
SOA management pack 29
WebCenter 28

SOA Suite packaging
about 588
BAM 608

Oracle rules 608
Oracle SOA composites 590
OSB, deploying 589
web services security 607

SOA Suite testing model 611, 612
Software as a Service (SaaS) 297
startRow attribute 324, 542
startsIn function

creating 214-218
stateful services

about 115
coupling, reducing 115-119

stock quote service
creating 145, 146
StockService schema, importing 146-148

StockService schema
importing 146, 147

stock trade service
improving 164
price, checking 166, 167
switch activity, using 167-169
while loop, creating 164-166

Storage Area Network (SAN) 488
strategies, for managing change

major and minor versions 357
schema versioning 358
service implementation versioning 357, 358

structure, BPEL process
about 140
core BPEL process 140
diagrammatic representation 140
messaging activities 142
partner links 142
variables 141

structured activities, core BPEL process
about 141
flow 141
flowN 141
switch 141
while 141

synchronous invoke threads 480
synchronous Mediators

about 444
system faults 445

synchronous messaging 142
synchronous services 432
systemAttributes element 555

[682]

system fault 431
systemMessageAttributes element 544
system testing 626

T
targetNamespace attribute 238
task, human workflow

cancelling 189
modifying 189
withdrawing 189

task details
getting 551

task flex fields
updating 554

task initiator 190
task instance

updating 552
task instances

querying 537
taskListRequest 541
task management

about 191
own tasks, reassigning 193
reportee tasks, reassigning 191, 192
rules using to automatically manage tasks

194
sample rule, setting up 195-197
tasks, delegating 193
tasks, escalating 193

task outcome
updating 554, 555

task owner 190
task payload

updating 553
taskPredicateQuery element 541
taskPredicateQuery element, core elements

displayColumnList 541
optionalInfoList 542
ordering 542
predicate 542
presentationId 541

Task Query Service
about 537
external reference, defining 538
user authentication 539

TAuctionItem 568

bidHistory 567
winningBid 567

tBid 564
TBids

bid 567
technology interfaces

about 78
database tables and stored procedures 78
files 78
message queues 78
technology adapters 78, 79

test client multiple thread interface
about 629
limitations 629

test function
about 561
RL.watch.activations() event 561
RL.watch.all() event 561
RL.watch.facts() event 561
RL.watch.rules() event 561

test parameters
jndi.properties.input 598
scatest.input 598
scatest.result 598

Tibco Rendezvous 233
top level, SOA Suite architecture 25
traditional BI 257
traditional reporting tools

Business Intelligence Suite 258
Oracle Discoverer 258
Oracle Reports 258

transactions
about 481
BPEL transactions 481
OSB transactions 485

transient faults
about 471
handling 471
nonresponsive business service, retrying

472

U
unit testing 628
unqualified elements 328
updateTask operation

using 552, 553

[683]

user interface, BAM architecture 263, 264
user interface layer, SOA architecture 303
user interface testing 629

V
validateXML

setting, for Partner Link 410
validation, in composite 400, 402
validation, in underlying service

about 423, 424
benefits 423, 424
business rules, using 424
coding 425
validation failures, in asynchronous

services 427
validation failures, returning in

synchronous services 425
validation failures, returning in

synchronous services
custom fault codes 426
faults, defining 426

varAuctionItem 578
variables, BPEL process

about 141
element 141
simple type 141
types 141
WSDL message type 141

verifyCreditCard operation 432
virtual services

implementing 312
virtual services layer, SOA architecture

297, 298

W
WebCenter 28
Web Context Root 382
web interfaces 588
WebLogic Application Server 99
WebLogic Console 99
WebLogic Scripting Tool (WLST) 589
web service interfaces 78
Web Service Security (WSS) header 644
web services security 607
webserviceX.NET 154
winningPrice element 578

wire, SCA 17
workflow

multiple participants, managing 525
workflow API

about 531
order fulfillment human task, defining 532
task instances, querying 537
using 531, 532

workflowContext element 541
workflow services, oBay application serv-

ices 316
worklist application

launching 184-186
tasks, processing 184-186

wrapper elements
defining 339
schema, defining 340

WS-Addressing
about 496
request message 496, 497
response message 497

wsa-Address element 497
WSDL

using, for defining business services 337
WSDL file 18
WSDL file, specifying ways

service, defining 149
SOA Resource Lookup 149
SOA Service Explorer 149
WSDL URL 149

WSDL versioning
about 360
changes, incorporating to canonical model

360
physical contract, changing 360
service endpoint, updating 361
service lifecycle, managing 362
version identifiers, including 361

X
Xignite 148
XigniteQuotes 149
XML

canonical model 334
data modeling 322
schema guidelines 325

[684]

XML data model
attributes, using for metadata 324
data decomposition 322, 323
data hierarchy 323, 324
data semantics 324
designing 322

XML facts 200
XML facts, manipulating

functions used 576
losing bid, retracting 578, 579
next bid, validating 580
rules, implementing for losing bid 581
rules, implementing for new winning bid

579
winning bid, asserting 577, 578
winning bid amount, capping 581

XML Schema 147
using, for defining business objects 322

XML Schema and the WSDL, using in SOA
Suite

about 342
WSDL document, importing into composite

352, 353
WSDL document, importing into Service

Bus 354-356
XML Schemas, sharing across cmoposites

343
XML Schemas, sharing in Service Bus 353

XML Schema guidelines
about 325

element naming 325
namespace considerations 327

XML Schema locations 602
XML Schemas, sharing across composites

about 343
MDS connection, defining 344
schemas, deploying 349
schemas, importing from MDS 345, 346
schemas, importing manually 346-348

XML Schema validation
about 402
combined approach, implementing 406
loosely-typed services, implementing 405
strongly-typed services, implementing

402-404
using 402

XML Schema validation, within mediator
about 406, 407
schema validation, using in BPEL PM 407

XPath expression
building, expression builder 159
building, expression builder used 158

XPath string functions 135
xsd-import element 336
xsd-include element 335
XSD validation 402
XSL editor 138
XSL imports 602
XSLT 134

Thank you for buying
Oracle SOA Suite 11g R1 Developer's Guide

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective
MySQL Management" in April 2004 and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike. For
more information, please visit our website: www.packtpub.com.

About Packt Enterprise
In 2010, Packt launched two new brands, Packt Enterprise and Packt Open Source, in order
to continue its focus on specialization. This book is part of the Packt Enterprise brand, home
to books published on enterprise software – software created by major vendors, including
(but not limited to) IBM, Microsoft and Oracle, often for use in other corporations. Its titles
will offer information relevant to a range of users of this software, including administrators,
developers, architects, and end users.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals
should be sent to author@packtpub.com. If your book idea is still at an early stage and you
would like to discuss it first before writing a formal book proposal, contact us; one of our
commissioning editors will get in touch with you.

We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

Oracle Warehouse Builder
11g: Getting Started
ISBN: 978-1-847195-74-6 Paperback: 368 pages

Extract, Transform, and Load data to build a
dynamic, operational data warehouse

1. Build a working data warehouse from scratch
with Oracle Warehouse Builder.

2. Cover techniques in Extracting, Transforming,
and Loading data into your data warehouse.

3. Learn about the design of a data warehouse
by using a multi-dimensional design with an
underlying relational star schema.

4. Written in an accessible and informative style,
this book helps you achieve your warehousing
goals, and is loaded with screenshots,
numerous tips, and strategies not found in the
official user guide.

Oracle Web Services Manager
ISBN: 978-1-847193-83-4 Paperback: 236 pages

Securing your Web Services

1. Secure your web services using Oracle WSM

2. Authenticate, Authorize, Encrypt, and Decrypt
messages

3. Create Custom Policy to address any new
Security implementation

4. Deal with the issue of propagating identities
across your web applications and web services

5. Detailed examples for various security use
cases with step-by-step configurations

Please check www.PacktPub.com for information on our titles

Getting Started With Oracle
SOA Suite 11g R1 – A Hands-On
Tutorial
ISBN: 978-1-847199-78-2 Paperback: 482 pages

Fast track your SOA adoption – Build a
service-oriented composite application in just hours!

1. Offers an accelerated learning path for the much
anticipated Oracle SOA Suite 11g release

2. Beginning with a discussion of the evolution
of SOA, this book sets the stage for your SOA
learning experience

3. Includes a comprehensive overview of the
Oracle SOA Suite 11g Product Architecture

4. Explains how Oracle uses standards like Services
Component Architecture (SCA) and Services
Data Object (SDO) to simplify application
development

Oracle 10g/11g Data and
Database Management Utilities
ISBN: 978-1-847196-28-6 Paperback: 432 pages

Master twelve must-use utilities to optimize the
efficiency, management, and performance of your
daily database tasks

1. Optimize time-consuming tasks efficiently
using the Oracle database utilities

2. Perform data loads on the fly and replace the
functionality of the old export and import
utilities using Data Pump or SQL*Loader

3. Boost database defenses with Oracle Wallet
Manager and Security

Please check www.PacktPub.com for information on our titles

SOA Cookbook
ISBN: 978-1-847195-48-7 Paperback: 268 pages

Master SOA process architecture, modeling, and
simulation in BPEL, TIBCO's BusinessWorks, and
BEA's Weblogic Integration

1. Lessons include how to model orchestration,
how to build dynamic processes, how to
manage state in a long-running process, and
numerous others

2. BPEL tools discussed include BPEL simulator,
BPEL compiler, and BPEL complexity analyzer

3. Examples in BPEL, TIBCO's BusinessWorks,
BEA's Weblogic Integration

Oracle Database 11g –
Underground Advice for Database
Administrators
ISBN: 978-1-849680-00-4 Paperback: 348 pages

A real-world DBA survival guide for Oracle 11g
database implementations

1. A comprehensive handbook aimed at reducing
the day-to-day struggle of Oracle 11g Database
newcomers

2. Real-world reflections from an experienced
DBA—what novice DBAs should really know

3. Implement Oracle's Maximum Availability
Architecture with expert guidance

4. Implement Oracle's Maximum Availability
Architecture with expert guidance

Please check www.PacktPub.com for information on our titles

Oracle Modernization Solutions
ISBN: 978-1-847194-64-0 Paperback: 442 pages

A practical guide to planning and implementing SOA
Integration and Re-architecting to an Oracle platform

1. Complete, practical guide to legacy
modernization using SOA Integration and
Re-architecture

2. Understand when and why to choose the non-
invasive SOA Integration approach to reuse and
integrate legacy components quickly and safely

3. Understand when and why to choose Re-
architecture to reverse engineer legacy
components and preserve business knowledge
in a modern open and extensible architecture

Oracle Application Express
Forms Converter
ISBN: 978-1-847197-76-4 Paperback: 172 pages

Convert your Oracle Forms applications to Oracle
APEX successfully

1. Convert your Oracle Forms Applications to
Oracle APEX

2. Master the different stages of a successful
Oracle Forms to APEX conversion project

3. Packed with screenshots and clear explanations
to facilitate learning

4. A step-by-step tutorial providing a proper
understanding of Oracle conversion concepts

Please check www.PacktPub.com for information on our titles

