
Oracle SQL

A Beginner’s Tutorial

Djoni Darmawikarta

Oracle SQL: A Beginner’s Tutorial
Copyright © 2014 Brainy Software Inc.
First Edition: April 2014

All rights reserved. No part of this book may be reproduced or transmitted in any form or
by any means, electronic or mechanical, including photocopying, recording, or by any
information storage and retrieval system, without written permission from the publisher,
except for the inclusion of brief quotations in a review.

ISBN: 978-0-9808396-4-7

Book and Cover Designer: Mona Setiadi

Technical Reviewer: Budi Kurniawan
Indexer: Chris Mayle

Trademarks
Oracle and Java are registered trademarks of Oracle and/or its affiliates.
UNIX is a registered trademark of The Open Group.
Microsoft Internet Explorer is either a registered trademark or a trademark of Microsoft
Corporation in The United States and/or other countries.
Apache is a trademark of The Apache Software Foundation.
Firefox is a registered trademark of the Mozilla Foundation.
Google is a trademark of Google, Inc.

Throughout this book the printing of trademarked names without the trademark symbol is
for editorial purpose only. We have no intention of infringement of the trademark.

Warning and Disclaimer
Every effort has been made to make this book as accurate as possible. The author and the
publisher shall have neither liability nor responsibility to any person or entity with respect
to any loss or damages arising from the information in this book.

Table of Contents

Introduction..1
SQL Overview...1
About This Book...2
Code Download...3

Chapter 1: Storing and Maintaining Data...5
Selecting A Database to Use...5
Creating a Table...6
Adding Data...7
Updating Data..9
Deleting Data...10
Summary..12

Chapter 2: Basic Queries...13
The SELECT statement...13
Querying All Data...13
Selecting Specific Columns...14
Selecting Rows with WHERE...15
Compound Conditions...16
Evaluation Precedence and the Use of Parentheses.................................18
The NOT logical operator..19
The BETWEEN Operator..20
The IN Operator...20
The LIKE Operator..21
Escaping the Wildcard Character..22
Combining the NOT operator..23
Summary..24

Chapter 3: Query Output..25

Oracle SQL: A Beginner's Tutorialiv

Column Aliases..25
Expressions..26
Limiting the Number of Rows...27
The DISTINCT Keyword..28
Aggregate Functions..29
Ordering Output Rows...33
Storing Query Output..37
Summary..39

Chapter 4: Grouping..41
The GROUP BY Clause..41
The HAVING Keyword..43
Summary..45

Chapter 5: Joins...47
Primary Keys and Foreign Keys..47
Querying Multiple Tables..48
Using Table Aliases...50
Joining More than Two Tables..50
Outer Joins...53
Self-Joins...56
Multiple Uses of A Table..58
Natural Joins..59
Summary..61

Chapter 6: Subqueries...63
Single-Row Subqueries...63
Multiple-Row Subqueries..65
Multiple Nested Subqueries...69
Correlated Subqueries..70
Summary..71

Chapter 7: Compound Queries...73
UNION ALL..73
UNION..75
INTERSECT..76
MINUS..77
Summary..78

Chapter 8: Views..79
Creating and Using Views...79
Nested Views...83
Managing Views..83

Table of Contents v

Summary..84
Chapter 9: Built-in Functions...85

Numeric Functions..85
Character Functions...88
Datetime Functions..91
NULL-related functions..92
Summary..96

Chapter 10: PL/SQL..97
Row-by-row Processing..97
If-Then-Else Decision Logic...101
User-defined Functions..105
Summary..106

Chapter 11: The Data Dictionary...107
The Dictionary View...107
The User_Catalog View..108
The User_Tab_Cols View...109
The User_Procedures View...110
The User_Source View..110
Summary..111

Appendix A: Installing Oracle Database XE...113
Downloading Oracle Database XE..113
Installing Oracle Database XE..114
Creating a User with SQL*Plus...117

Appendix B: Oracle Built-in Data Types...121
Appendix C: Indexes..123

Creating an Index...123
Multi-Column Indexes...124
Bitmap Indexes..124
Bitmap Join Indexes..125
Function-based Indexes...125
Deleting An Index...126

Index..127

Oracle SQL: A Beginner's Tutorialvi

Introduction

Welcome to Oracle SQL: A Beginner’s Tutorial. This book is for you if you
want to learn SQL the easy way. SQL, which stands for Structured Query
Language and is pronounced es-cue-el, is the standard language you use to
interact with a relational database management system (RDBMS). This
book uses the free edition of the Oracle database to show how SQL works.

SQL Overview

Initially developed at IBM in the early 1970s, SQL was formalized by the
American National Standards Institute (ANSI) in 1986. Since then the SQL
standard has been revised seven times. The examples in this book were
tested using Oracle database 11g Release 2, which conforms to the
SQL:2008 standard. This standard is one revision earlier than SQL:2011,
the latest standard.

SQL consists of a data definition language (DDL) and a data
manipulation language (DML). The DDL is used to create, delete, and alter
the structure of a table and other database objects. The DML is used to
insert, retrieve, and update data in a table or tables.

Many database vendors implement a version of SQL that is not 100%
compliant with the standard. They often add unique features to their SQL,
resulting in an SQL dialect. For example, the following are some of the
differences between Oracle and MySQL.

▪ The AS reserved word in the CREATE TABLE AS INSERT
statement is mandatory in Oracle but optional in MySQL

▪ An Oracle INSERT statement can only insert one row; a MySQL
INSERT statement can insert multiple rows.

Oracle SQL: A Beginner's Tutorial2

▪ Oracle supports UNION, INTERSECT and MINUS set operators
whereas MySQL only supports UNION.

▪ Oracle’s PL/SQL equivalent in MySQL is the stored routine (MySQL
did not give a name to its procedural language extension). PL/SQL
has much more functions than the stored routine.

Because of these dialects, SQL statements written for one RDBMS may not
necessarily work in other RDBMS’s.

About This Book

 This book consists of eleven chapters and three appendixes. This section
gives you an overview of each chapter and appendix.

Chapter 1, “Storing and Maintaining Data” starts the book by discussing
how data is stored and maintained in a relational database. In this chapter
you learn how to use SQL INSERT, UPDATE, and DELETE statements.

Chapter 2, “Basic Queries” explains how to construct queries using the
SELECT statement.

Chapter 3, “Query Output” shows how you can format query outputs
beyond simply displaying columns of data from a database.

Chapter 4, “Grouping” explains what a group is, how to create a group,
and how to apply aggregate functions to a group.

Chapter 5, “Joins” talks about the JOIN clause for querying data from
multiple tables.

Chapter 6, “Subqueries” discusses the subquery. A subquery is a query
that can be nested in another query.

Chapter 7, “Compound Queries” talks about set operators for combining
the outputs of multiple queries.

Chapter 8, “Views” discusses views, which are predefined queries that
you create and store in a database.

Introduction 3

Chapter 9, “Built-in Functions” discusses some of the most commonly
used built-in functions in the Oracle database.

Chapter 10, “PL/SQL” introduces Oracle’s PL/SQL programming
language. PL/SQL extends SQL.

Chapter 11, “The Data Dictionary” shows how to use the data
dictionary, the metadata of a database, to find information about the
database.

Appendix A, “Installing Oracle Database XE” is a guide to installing
Oracle Database Express Edition and making preparations for trying out the
book examples.

Appendix B, “Oracle Built-in Data Types” provides a list of Oracle
built-in data types.

Finally, Appendix C, “Indexing” covers the various indexing techniques
available in the Oracle database.

Coding ConventionSQL is not case sensitive. In this book, however, SQL
reserved words such as CREATE and SELECT and keywords such as
COUNT and MAX are written in upper case. To find the complete SQL
reserved words, please refer to the Oracle SQL manuals. Non-reserved
words, such as table and column names, are written in lower case.

In the book examples a single space is used between words or
expressions. Extra spaces are allowed and have no effect.

Code Download

The examples accompanying this book can be downloaded from this site:

http://books.brainysoftware.com/download

Oracle SQL: A Beginner's Tutorial4

Chapter 1
Storing and Maintaining Data

Data in a relational database (such as the Oracle database) is stored in
tables. A very simple sales database, for example, might have four tables
that store data on products, customers, suppliers, and customer orders.

When you add a record of data into a table, the record is stored as a row
of the table. A record has fields. A product record, for example, might have
four fields: product code, name, price, and launch date. All records you
store in the product table must have the same fields. Each of the fields is a
column of the table.

This chapter shows you how to use SQL statements to store and
maintain data. The main objective of this chapter is to give you a taste of
working with SQL.

To test the book examples you need a working Oracle database.
Appendix A, “Installing Oracle Database XE” shows how you can install
Oracle Database Express Edition (XE) and make it ready for use with the
examples. This appendix also shows you how to use SQL*Plus to execute
your SQL statements. If you do not have a working Oracle database, you
should read this appendix first.

Selecting A Database to Use

You need a database to store your data. When you install Oracle Database
XE, a database named “XE” is created as part of the installation. To use this
database, run SQL*Plus and issue a CONNECT command as described in
Appendix A, “Installing Oracle Database XE.”

Oracle SQL: A Beginner's Tutorial6

Creating a Table

Before you can store data in a database, you must first create a table for
your data. You do this by using the SQL CREATE TABLE statement.
Tables that you create will reside in the database that you are currently
connected to, which in this case is the XE database.

The syntax for the CREATE TABLE statement is as follows.

CREATE TABLE table
 (column_1 data_type_1,
 column_2 data_type_2,
 ...
 PRIMARY KEY (columns)
);

Listing 1.1 shows a CREATE TABLE statement for creating a product table
with four columns.

Listing 1.1: Creating a product table with four columns

CREATE TABLE product
 (
 p_code VARCHAR2(6),
 p_name VARCHAR2(15),
 price NUMBER(4,2),
 launch_dt DATE,
 PRIMARY KEY (p_code)
);

The four columns have three different data types. They are as follows.

▪ VARCHAR2(n) – variable length string up to n characters.
▪ NUMBER(p, s) – numeric with precision p and scale s. The price

column, whose type is NUMBER(4,2), can store numbers between
-99.99 and +99.99.

▪ DATE – date

Chapter 1: Storing and Maintaining Data 7

Note
Appendix B, “Oracle Built-in Data Types” provides a complete list
of Oracle data types.

When creating a table, you should always add a primary key, even though a
primary key is optional. A primary key is a column or a set of columns that
uniquely identify every row in the table. In the CREATE TABLE statement
in Listing 1.1, the p_code field will be made the primary key for the product
table.

Also note that an SQL statement must be terminated with a semicolon
(;)

Adding Data

Once you have a table, you can add data to it using the INSERT statement.
The syntax for the INSERT statement is as follows

INSERT INTO table
 (column_1,
 column_2,
 ...)
VALUES (value_1,
 value_2,
 ...)
);

For example, Listing 1.2 shows an SQL statement that inserts a row into the
product table.

Listing 1.2: Inserting a row into the product table

INSERT INTO product
 (p_code, p_name, price, launch_dt)
 VALUES (1, 'Nail', 10.0, '31-MAR-2013');

After you execute the statement in Listing 1.2, your product table will have
one row. You can query your table using this statement.

Oracle SQL: A Beginner's Tutorial8

SELECT * FROM product;

The query result will be as follows.

P_CODE P_NAME PRICE LAUNCH_DT
------ --------- ------ ---------
1 Nail 10.00 31-MAR-13

You can only add one row in an INSERT statement. The five INSERT
statements in Listing 1.3 add five more rows to the product table.

Listing 1.3: Adding five more rows to the product table

INSERT INTO product (p_code, p_name, price, launch_dt)
 VALUES (2, 'Washer', 15.00, '29-MAR-13');
INSERT INTO product (p_code, p_name, price, launch_dt)
 VALUES (3, 'Nut', 15.00, '29-MAR-13');
INSERT INTO product (p_code, p_name, price, launch_dt)
 VALUES (4, 'Screw', 25.00, '30-MAR-13');
INSERT INTO product (p_code, p_name, price, launch_dt)
 VALUES (5, 'Super_Nut', 30.00, '30-MAR-13');
INSERT INTO product (p_code, p_name, price, launch_dt)
 VALUES (6, 'New Nut', NULL, NULL);

After executing the statements in Listing 1.3, your product table will
contain these rows.

P_CODE P_NAME PRICE LAUNCH_DT
------ ---------- ------ ---------
1 Nail 10.00 31-MAR-13
2 Washer 15.00 29-MAR-13
3 Nut 15.00 29-MAR-13
4 Screw 25.00 30-MAR-13
5 Super_Nut 30.00 30-MAR-13
6 New Nut NULL NULL

Now issue a COMMIT command to persist (confirm the storage of) the
additional five rows.

COMMIT;

Chapter 1: Storing and Maintaining Data 9

Updating Data

You use the UPDATE statement to update one or more columns of existing
data. You can update all rows in a table or certain rows in the table.

The syntax for the UPDATE statement is as follows

UPDATE table_name
SET column_1 = new_value_1 [,
 column_2 = new_value_2,
 ...]
[WHERE condition];

You specify which rows to update in the WHERE clause. Without a
WHERE clause, all rows will be updated. With a WHERE clause, only
rows that meet the condition will be updated. If no row meets the condition
in the WHERE clause, nothing will be updated.

As an example, the SQL statement in Listing 1.4 will cut the price by
5%. As the UPDATE statement does not have a WHERE clause, the prices
of all the products will be updated.

Listing 1.4: Updating the price column

UPDATE product
SET price = price - (price * 0.05);

If you query the product table using this statement, you will learn that the
values in the price column have changed.

SELECT * FROM product;

Here is the result of the query.

P_CODE P_NAME PRICE LAUNCH_DT
------ ---------- ------ ---------
1 Nail 9.50 31-MAR-13
2 Washer 14.25 29-MAR-13
3 Nut 14.25 29-MAR-13
4 Screw 23.75 30-MAR-13
5 Super_Nut 28.50 30-MAR-13

Oracle SQL: A Beginner's Tutorial10

6 New Nut NULL NULL

Now, issue a ROLLBACK command to return the data values back to
before the update:

ROLLBACK;

As another example, the statement in Listing 1.5 will update the price of
product with p_code = 9, but the product table does not have such a p_code.
Therefore, no row will be updated.

Listing 1.5: Updating the price column with a WHERE clause

UPDATE product
SET price = price - (price * 0.05)
WHERE p_code = 9;

Deleting Data

To delete a row or multiple rows in a table, use the DELETE statement.
You can specify which rows to be deleted by using the WHERE clause.

The syntax for the DELETE statement is as follows

DELETE FROM table
[WHERE condition];

You specify which rows to delete in the WHERE clause.

For example, the statement in Listing 1.6 deletes from the product table
all rows whose p_name field value is ‘Nut’.

Listing 1.6: Deleting rows

DELETE FROM product
WHERE p_name = 'Nut';

After you run the statement in Listing 1. 6, please issue a ROLLBACK
command to return the data values back to before the deletion:

ROLLBACK;

Chapter 1: Storing and Maintaining Data 11

If none of the rows meets the condition, nothing will be deleted. Without
the WHERE condition, all rows will be deleted and the product table will be
empty.

As another example, the SQL statement in Listing 1.7 deletes all the
rows in the product table.

Listing 1.7: Deleting all rows

DELETE FROM product;

Note that you cannot delete some of the columns in a row; the DELETE
statement deletes the whole row. If you need to change the content of a
specific column, use the UPDATE statement. For instance, the statement in
Listing 1.8 changes the content of the price column to NULL. NULL is the
absence of a value; it is neither 0 (zero) or empty. Chapter 2, “Basic
Queries” has a section (“Handling NULL”) that explains NULL in detail.

Listing 1.8: Updating to NULL

UPDATE product SET price = NULL WHERE p_name = 'Nut';

When you query the Nut product, the result will show NULL on the price
column.

SELECT * FROM product WHERE p_name = 'Nut';

The output is as follows.

P_CODE P_NAME PRICE LAUNCH_DT
------ ------ ------ ---------
1 Nut NULL 13-DEC-01

Please issue a ROLLBACK command to return the data values back to
before the update:

ROLLBACK;

NULL display
In SQL* Plus, the default display of NULL is blank. Throughout this
book, NULL is displayed as NULL. You can change the setting by
executing the SET null NULL command in your SQL*Plus console.

Oracle SQL: A Beginner's Tutorial12

Summary

In this chapter you got the first taste of working with SQL. You learned
how to create a table and store data. In Chapter 2, “Basic Queries” you will
learn to use the SELECT statement to query data.

Chapter 2
Basic Queries

A query is a request for data from one or more tables. When you execute a
query, rows that satisfy the condition of the query will be returned as a
table. Similarly, when a query embedded in another query or a program gets
executed, the data returned to the other query or the program is a table.

In this chapter you learn how to write basic queries using the SELECT
statement. Once you master the basic queries, you can start learning about
queries within other queries in Chapter 6, “Subqueries” and within PL/SQL
programs in Chapter 10, “PL/SQL.”

The SELECT statement

All queries regardless of their complexity use the SELECT statement. The
SELECT statement has the following general syntax.

SELECT column_names FROM table_name [WHERE condition];

Only the SELECT and FROM clauses are mandatory. If your query does
not have a WHERE clause, the result will include all rows in the table. If
your query has a WHERE clause then only the rows satisfying the WHERE
condition will be returned.

Querying All Data

The simplest query, which reads all data (all rows and all columns) from a
table, has the following syntax.

Oracle SQL: A Beginner's Tutorial14

SELECT * FROM table;

The asterisk (*) means all columns in the table. For instance, Listing 2.1
shows an SQL statement that queries all data from the product table.

Listing 2.1: Querying all product data

SELECT * FROM product;

Executing the query will give you the following result.

P_CODE P_NAME PRICE LAUNCH_DT
------ ---------- ------ ---------
1 Nail 10.00 31-MAR-13
2 Washer 15.00 29-MAR-13
3 Nut 15.00 29-MAR-13
4 Screw 25.00 30-MAR-13
5 Super_Nut 30.00 30-MAR-13
6 New Nut NULL NULL

Selecting Specific Columns

To query specific columns, list the columns in the SELECT clause. You
write the columns in the order you want to see them in the output table. For
example, the SELECT statement in Listing 2.2 queries the p_name and the
price columns from the product table.

Listing 2.2: Querying specific columns

SELECT p_name, price FROM product;

All rows containing p_name and price columns will be returned by the
query. Here is the query output.

P_NAME PRICE
---------- ------
Nail 10.00
Washer 15.00
Nut 15.00
Screw 25.00
Super_Nut 30.00

Chapter 2: Basic Queries 15

New Nut NULL

Selecting Rows with WHERE

To query specific rows, use the WHERE clause. Recall that the SQL
SELECT statement has the following syntax.

SELECT column_names FROM table_name [WHERE condition];

For example, the SQL statement in Listing 2.3 queries the p_name and price
data from the product table with price = 15.

Listing 2.3: Querying specific rows

SELECT p_name, price FROM product WHERE price = 15;

Only rows whose price is 15 will be returned by the query, in this case the
Washer and Nut. The query output is as follows.

P_NAME PRICE
--------- ------
Washer 15.00
Nut 15.00

The equal sign (=) in the WHERE condition in Listing 2.3 is one of the
comparison operators. Table 2.1 shows all comparison operators.

Operator Description
= Equal to
< Less than
> Greater than
<= Less than or equal to
>= Greater than or equal to
!= Not equal to

Table 2.1: Comparison operators

As another example, Listing 2.4 shows a WHERE clause that uses the not
equal to (!=) operator.

Oracle SQL: A Beginner's Tutorial16

Listing 2.4: Using the != comparison operator

SELECT p_name, price FROM product WHERE p_name != 'Nut';

Only rows whose p_name is not Nut will be returned by the query. In this
case, the query output will be as follows.

P_NAME PRICE
---------- ------
Nail 10.00
Washer 15.00
Screw 25.00
Super_Nut 30.00
New Nut NULL

Compound Conditions

The condition p_name != 'Nut' in Listing 2.4 is called a predicate. Using the
AND and OR logical operator you can combine predicates to form a
compound condition. Only rows that satisfy the compound condition will be
returned by the query.

The rules for the OR logical operator are given in Table 2.2.

Left
condition

Logical
operator

Right
condition

Compound
condition

True OR True True
True OR False True
False OR True True
False OR False False

Table 2.2: The OR rules

In principle, the result of the OR compound condition is true (satisfying the
condition) if any one of the two conditions being OR-ed is true; otherwise,
if none of the conditions is true, the compound condition is false (not
satisfying the condition).

The rules for the AND logical operator are presented in Table 2.3.

Chapter 2: Basic Queries 17

Left
condition

Logical
operator

Right
condition

Compound
condition

True AND True True
True AND False FALSE
False AND True FALSE
False AND False FALSE

Table 2.3: The AND rules

Basically, the result of the AND compound condition is true only if the two
conditions being AND-ed are true; otherwise, the result is false.

For example, the statement in Listing 2.5 contains three predicates in its
WHERE clause.

Listing 2.5: A query with three predicates

SELECT *
FROM product
WHERE (launch_dt >= '30-MAR-13'
OR price > 15)
AND (p_name != 'Nail');

The result of the first compound condition (launch_dt >= '30-MAR-13' OR
price > 15) is true for Nail, Screw and Super_Nut rows in the product table;
AND-ing this result with the (p_name != 'Nail') predicate results in two
products, the Screw and Super_Nut.

Here is the output of the query in Listing 2.5:

P_CODE P_NAME PRICE LAUNCH_DT
------ ---------- ------ ---------
4 Screw 25.00 30-MAR-13
5 Super_Nut 30.00 30-MAR-13

Note that New Nut does not satisfy the condition because applying any of
the comparison operators to NULL results in false (the price and launch_dt
of the New Nut are NULL). The section “Handling NULL” later in this
chapter explains more about NULL.

Oracle SQL: A Beginner's Tutorial18

Evaluation Precedence and the Use of Parentheses

If a compound condition contains both the OR condition and the AND
condition, the AND condition will be evaluated first because AND has a
higher precedence than OR. However, anything in parentheses will have an
even higher precedence than AND. For example, the SELECT statement in
Listing 2.5 has an OR and an AND, but the OR condition is in parentheses
so the OR condition is evaluated first. If you remove the parentheses in the
SELECT statement in Listing 2.5, the query will return a different result.
Consider the statement in Listing 2.6, which is similar to that in Listing 2.5
except that the parentheses have been removed.

Listing 2.6: Evaluation precedence

SELECT *
FROM product
WHERE launch_dt >= '30-MAR-13'
OR price > 15
AND p_name != 'Nail';

For your reading convenience, the product table is reprinted here.

P_CODE P_NAME PRICE LAUNCH_DT
------ ---------- ------ ---------
1 Nail 10.00 31-MAR-13
2 Washer 15.00 29-MAR-13
3 Nut 15.00 29-MAR-13
4 Screw 25.00 30-MAR-13
5 Super_Nut 30.00 30-MAR-13
6 New Nut NULL NULL

Without the parentheses, the compound condition price > 15 AND
p_name != 'Nail' will be evaluated first, resulting in the Screw and
Super_Nut. The result is then OR-ed with the launch_dt >= 30-MAR-13'
condition, resulting in these three rows.

P_CODE P_NAME PRICE LAUNCH_DT
------ ---------- ------ ---------
1 Nail 10.00 31-MAR-13

Chapter 2: Basic Queries 19

4 Screw 25.00 30-MAR-13
5 Super_Nut 30.00 30-MAR-13

The NOT logical operator

You can use NOT to negate a condition and return rows that do not satisfy
the condition. Consider the query in Listing 2.7.

Listing 2.7: Using the NOT operator

SELECT *
FROM product
WHERE NOT (launch_dt >= '30-MAR-13'
OR price > 15
AND p_name != 'Nail');

Thanks to the NOT operator in the query in Listing 2.7, the two rows not
satisfying the condition in Listing 2.6 will now be returned.

P_CODE P_NAME PRICE LAUNCH_DT
------ --------- ------ ---------
2 Washer 15.00 29-MAR-13
3 Nut 15.00 29-MAR-13

As another example, the query in Listing 2.8 negates the last predicate only
(as opposed to the previous query that negated the overall WHERE
condition).

Listing 2.8: Using NOT on one predicate

SELECT *
FROM product
WHERE (launch_dt >= '30-MAR-13'
OR price > 15)
AND NOT (p_name != 'Nail');

The output of the query in Listing 2.8 is as follows.

P_CODE P_NAME PRICE LAUNCH_DT
------ --------- ------ ---------
1 Nail 10.00 31-MAR-13

Oracle SQL: A Beginner's Tutorial20

The BETWEEN Operator

The BETWEEN operator evaluates equality to any value within a range.
The range is specified by a boundary, which specifies the lowest and the
highest values.

Here is the syntax for BETWEEN.

SELECT columns FROM table
WHERE column BETWEEN(lowest_value, highest_value);

The boundary values are inclusive, meaning lowest_value and
highest_value will be included in the equality evaluation.

For example, the query in Listing 2.9 uses the BETWEEN operator to
specify the lowest and highest prices that need to be returned from the
product table.

Listing 2.9: Using the BETWEEN operator

SELECT * FROM product WHERE price BETWEEN 15 AND 25;

Here is the output of the query in Listing 2.9.

P_CODE P_NAME PRICE LAUNCH_DT
------ --------- ------ ---------
2 Washer 15.00 29-MAR-13
3 Nut 15.00 29-MAR-13
4 Screw 25.00 30-MAR-13

The IN Operator

The IN operator compares a column with a list of values. The syntax for a
query that uses IN is as follows.

SELECT columns FROM table
WHERE column IN(value1, value2, ...);

Chapter 2: Basic Queries 21

For example, the query in Listing 2.10 uses the IN operator to select all
columns whose price is in the list (10, 25, 50).

Listing 2.10: Using the IN operator

SELECT * FROM product WHERE price IN (10, 25, 50);

The output of the query in Listing 2.10 is as follows.

P_CODE P_NAME PRICE LAUNCH_DT
------ --------- ------ ---------
1 Nail 10.00 31-MAR-13
4 Screw 25.00 30-MAR-13

The LIKE Operator

The LIKE operator allows you to specify an imprecise equality condition.
The syntax is as follows.

SELECT columns FROM table
WHERE column LIKE ' ... wildcard_character ... ';

The wildcard character can be a percentage sign (%) to represent any
number of characters or an underscore (_) to represent a single occurrence
of any character.

As an example, the query in Listing 2.11 uses the LIKE operator to find
products whose name starts with N and is followed by two other characters
plus products whose name starts with Sc and can be of any length.

Listing 2.11: Using the LIKE operator

SELECT * FROM product WHERE p_name LIKE 'N__' OR p_name LIKE 'Sc%';

The output of the query in Listing 2.11 is this.

P_CODE P_NAME PRICE LAUNCH_DT
------ --------- ------ ---------
3 Nut 15.00 29-MAR-13
4 Screw 25.00 30-MAR-13

Oracle SQL: A Beginner's Tutorial22

Even though you can use LIKE for numeric columns, it is primarily used
with columns of type string.

Escaping the Wildcard Character

If the string you specify in the LIKE operator contains an underscore or a
percentage sign, SQL will regard it as a wild character. For example, if you
want to query products that have an underscore in their names, your SQL
statement would look like that in Listing 2.12.

Listing 2.12: A wildcard character _ in the LIKE string

SELECT * FROM product WHERE p_name LIKE '%_%';

If you execute the query in Listing 2.12, the query will return all rows
instead of just the Super_Nut, because the underscore in the LIKE operator
is regarded as a wild card character, i.e. any one character. Listing 2.13
resolves this problem by prefixing the wild card character with an ESCAPE
character. In the statement the ESCAPE clause defines \ (backslash) as an
escape character, meaning any character in the LIKE operator after a
backslash will be considered a character, not as a wildcard character. Now
only rows whose p_name contains an underscore will be returned.

Listing 2.13: Escaping the wildcard character _

SELECT * FROM product WHERE p_name LIKE '%_%' ESCAPE '\';

The query in Listing 2.13 will produce the following output.

P_CODE P_NAME PRICE LAUNCH_DT
------ --------- ------ ---------
5 Super_Nut 30.00 30-MAR-13

Chapter 2: Basic Queries 23

Combining the NOT operator

You can combine NOT with BETWEEN, IN, or LIKE to negate their
conditions. For example, the query in Listing 2.14 uses NOT with
BETWEEN.

Listing 2.14: Using NOT with BETWEEN

SELECT * FROM product WHERE price NOT BETWEEN 15 AND 25;

Executing the query in Listing 2.14 will give you this result.

P_CODE P_NAME PRICE LAUNCH_DT
------ --------- ------ ---------
1 Nail 10.00 31-MAR-13
5 Super_Nut 30.00 30-MAR-13

Handling NULLNULL, an SQL reserved word, represents the absence of
data. NULL is applicable to any data type. It is not the same as a numeric
zero or an empty string or a 0000/00/00 date. You can specify whether or
not a column can be null in the CREATE TABLE statement for creating the
table.

The result of applying any of the comparison operators on NULL is
always NULL. You can only test whether or not a column is NULL by
using the IS NULL or IS NOT NULL operator.

Consider the query in Listing 2.15.

Listing 2.15: Invalid usage of the equal operator on NULL

SELECT * FROM product WHERE price = NULL;

Executing the query in Listing 2.15 produces no output. In fact, you will get
the following message.

no rows selected

As another example, consider the query in Listing 2.16 that uses IS NULL.

Oracle SQL: A Beginner's Tutorial24

Listing 2.16: Using IS NULL

SELECT * FROM product WHERE price IS NULL;

The query output is as follows.

P_NO P_NAME PRICE LAUNCH_DT
---- --------- ------ ---------
6 New Nut NULL NULL

Note
Chapter 6, “Built-in Functions,” discusses functions that you can use
to test column nullity.

Summary

In this chapter you learned the basics queries using the SELECT statement.
In the next chapter you will learn how to format query outputs.

Chapter 3
Query Output

All the queries in Chapter 2, “Basic Queries” returned rows that contained
columns from the source table. However, output rows can also contain
string or numeric expressions that include string or numeric literals,
operators, and functions.

In this chapter you learn how to manipulate query output using
expressions and how to order and store output rows into a table.

Column Aliases

By default the names of the output columns in the query output are the
names of the columns of the queried table. However, you don’t have to be
stuck with the original column names. You can give them different names
or aliases if you wish.

The syntax for the SELECT clause that uses aliases is as follows.

SELECT column_1 AS alias1, column_2 AS alias2, ...
FROM table;

An alias can consist of one or multiple words. You must enclose a
multiword alias with quotes, e.g. “PRODUCT NAME”. For example, the
query in Listing 3.1 uses an alias for the p_name column.

Listing 3.1: Using an alias in a query

SELECT p_code,
 p_name AS "PRODUCT NAME"
FROM product;

Oracle SQL: A Beginner's Tutorial26

Expressions

An output column can also be an expression. An expression in the SELECT
clause can include columns, literal values, arithmetic or string operators,
and functions. For instance, the SELECT clause in the query in Listing 3.2
employs several expressions.

Listing 3.2: Various types of output columns

SELECT p_code,
 'p_name in Uppercase: '
 || UPPER(p_name) AS "PRODUCT NAME",
 (price * 100) AS "NORMALIZED_PRICE",
 TO_CHAR(launch_dt, 'DD/MM/YYYY') AS "LAUNCH_DATE"
FROM product;

The output of the query in Listing 3.2 will have four columns.

The first output column, p_code, is a column from the product table.

The second output column (aliased "PRODUCT NAME") is an
expression that contains three parts, a literal 'p_name in Uppercase: ', a
concatenation string operator (||), and UPPER(p_name). The latter,
UPPER, is a function applied to the p_name column from the product table.
The UPPER function changes the case of the product names to uppercase.

The third output column ("NORMALIZED_PRICE") is an arithmetic
expression (price*100).

The last output column ("LAUNCH_DATE") is the launch_date column
formatted as DD/MM/YYYY.

Applied against the following product table

P_CODE P_NAME PRICE LAUNCH_DT
------ --------------- ----- ---- ----
1 Nail 10.00 31-MAR-13
2 Washer 15.00 29-MAR-13
3 Nut 15.00 29-MAR-13
4 Screw 25.00 30-MAR-13

Chapter 3: Query Output 27

5 Super_Nut 30.00 30-MAR-13
6 New Nut NULL NULL

the query in Listing 3.2 returns the following rows.

P_CODE PRODUCT NAME NORMALIZED_PRICE LAUNCH_DATE
------ ------------------------------ ---------------- -----------
1 p_name in Uppercase: NAIL 1000 31/03/2013
2 p_name in Uppercase: WASHER 1500 29/03/2013
3 p_name in Uppercase: NUT 1500 29/03/2013
4 p_name in Uppercase: SCREW 2500 30/03/2013
5 p_name in Uppercase: SUPER_NUT 3000 30/03/2013
6 p_name in Uppercase: NEW NUT NULL NULL

You can use other arithmetic operators in addition to the multiplication (*)
operator in your column. These include addition (+), subtraction (-), and
division (/)

Note
Chapter 9, “Built-in Functions” explains functions in more detail.

Limiting the Number of Rows

You can limit the number of output row by using the ROWNUM pseudo
column. Its syntax is as follows.

SELECT columns FROM table(s)
WHERE conditions AND ROWNUM < count;

The maximum number of output rows of a query that employs ROWNUM
will be count – 1.

As an example, take a look at the query in Listing 3.3.

Listing 3.3: Using ROWNUM

SELECT * FROM product WHERE price > 10 AND ROWNUM < 4;

Without the expression ROWNUM < 4, the number of output rows would
be 4. The query in Listing 3.3, however, returns these three rows.

Oracle SQL: A Beginner's Tutorial28

P_CODE P_NAME PRICE LAUNCH_DT
------ --------------- ----- ---- ---------
2 Washer 15.00 29-MAR-13
3 Nut 15.00 29-MAR-13
4 Screw 25.00 30-MAR-13

The DISTINCT Keyword

A query may return duplicate rows. Two rows are duplicates if each of their
columns contains exactly the same data. If you don’t want to see duplicate
output rows, use DISTINCT in your SELECT clause. You can use
DISTINCT on one column or multiple columns.

Using DISTINCT on A Single Column

The query in Listing 3.4 uses DISTINCT on the price column.

Listing 3.4: Using DISTINCT on a single column

SELECT DISTINCT price FROM product ORDER BY price;

Without DISTINCT, the query in Listing 3.4 will return six rows that
include two duplicate prices for row 2 and row 3. Instead, the query in
Listing 3.4 returns the following output.

PRICE

 10
 15
 25
 30
NULL

Chapter 3: Query Output 29

Using DISTINCT on Multiple Columns

If a query returns multiple columns, two rows are considered duplicates if
all their columns have the same values. They are not duplicates if only one
column has the same value.

The DISTINCT keyword can be applied on multiple columns too. For
example, the query in Listing 3.5 uses DISTINCT on multiple columns.

Listing 3.5: Using DISTINCT on multiple columns

SELECT DISTINCT price, launch_dt FROM product ORDER BY price;

Here is the output. Note that output rows with the same price and launch_dt
will only be shown once.

PRICE LAUNCH_DT
----- ---------
 10 31-MAR-13
 15 29-MAR-13
 25 30-MAR-13
 30 30-MAR-13
NULL NULL

Aggregate Functions

You can manipulate your query output further by using aggregate functions.
The aggregate functions are listed in Table 3.1.

Function Description
MAX(column) The maximum column value
MIN(column) The minimum column value
SUM(column) The sum of column values
AVG(column) The average column value
COUNT(column) The count of rows
COUNT(*) The count of all rows including NULL.

Table 3.1: Built-in aggregate functions

Oracle SQL: A Beginner's Tutorial30

As an example, the query in Listing 3.6 uses the aggregate functions in
Table 3.1.

Listing 3.6: Using aggregate functions

SELECT MAX(price),
 MIN(price),
 SUM(price),
 AVG(price),
 COUNT(price),
 COUNT(*)
FROM product;

Note that only COUNT(*) takes into account the New Nut product because
its price is NULL.

The output of the query in Listing 3.6 is this.

MAX(PRICE) MIN(PRICE) SUM(PRICE) AVG(PRICE) COUNT(PRICE) COUNT(*)
---------- ---------- ---------- ---------- ------------ ----------
 30 10 95 19 5 6

The CASE expressionCASE allows you to have dynamic query output in
which a column value may vary depending on the value of the column.
CASE comes in two flavors: Simple and Searched. Both will be explained
in the following subsections.

The Simple CASE

The general syntax for the Simple CASE is as follows.

SELECT columns,
 CASE column
 WHEN equal_value1
 THEN output_value1
 WHEN equal_value2
 THEN output_value2
 WHEN ...
 [ELSE else_value]
 END AS output_column
FROM table
WHERE ... ;

Chapter 3: Query Output 31

In the Simple CASE, column_name is compared to equal_values in the
WHEN clause, starting from the first WHEN and down to the last WHEN.
If column_name matches a WHEN value, the value right after the THEN
clause is returned and the CASE process stops. If column_name matches
none of the WHEN values, else_value is returned if there exists an ELSE
clause. If column_name matches none of the WHEN values but no ELSE
clause exists, NULL will be returned.

As an example, the query in Listing 3.7 uses a Simple CASE expression
for the price column to produce a price_cat (price category) output column.

Listing 3.7: An example of the Simple CASE

SELECT p_code,
 p_name,
 CASE price
 WHEN 10
 THEN 'Cheap'
 WHEN 15
 THEN 'Medium'
 WHEN 25
 THEN 'Expensive'
 ELSE 'Others'
 END AS price_cat
FROM product;

Assuming the product table has the following data

P_CODE P_NAME PRICE LAUNCH_DT
------ --------------- ----- ---- ----
1 Nail 10.00 31-MAR-13
2 Washer 15.00 29-MAR-13
3 Nut 15.00 29-MAR-13
4 Screw 25.00 30-MAR-13
5 Super_Nut 30.00 30-MAR-13
6 New Nut NULL NULL

the query will return these rows.

P_CODE P_NAME PRICE_CAT
------ --------------- ---------
1 Nail Cheap
2 Washer Medium

Oracle SQL: A Beginner's Tutorial32

3 Nut Medium
4 Screw Expensive
6 New Nut Others
5 Super_Nut Others

The Searched CASE

The case in the Simple CASE compares a column with various values. On
the hand, the case in the Searched CASE can be any condition. Here is the
syntax for the Searched CASE.

SELECT columns,
 CASE
 WHEN condition1
 THEN output_value1
 WHEN condition2
 THEN output_value2
 WHEN ...
 ELSE else_value
 END AS output_column
FROM table
WHERE ... ;

The conditions are evaluated starting from the first WHEN and down to the
last WHEN. If a WHEN condition is met, its THEN output_value is
returned to the output_column and the CASE process stops. If none of the
WHEN conditions is met, else_value is returned if there exists an ELSE
clause. If no condition is met and no ELSE clause exists, NULL will be
returned.

For instance, the query in Listing 3.8 uses a Searched CASE. While the
Simple CASE in Listing 3.7 categorized the products based on only their
prices, this Searched CASE categorizes the products based on the various
conditions which can involve more than just the price. Note that in the
Search CASE, NULL equality can be a condition, something that is not
allowed in the Simple CASE.

Listing 3.8: An example of the Searched CASE

SELECT p_code,
 p_name,

Chapter 3: Query Output 33

 CASE
 WHEN (price <= 10
 AND p_name NOT LIKE 'Nut%')
 THEN 'Cheap'
 WHEN price BETWEEN 11 AND 25
 THEN 'Medium'
 WHEN price > 25 and TO_CHAR(launch_dt, 'YYYYMMDD') > '20130329'
 THEN 'Expensive'
 WHEN price IS NULL
 THEN 'Not valid'
 ELSE 'Others'
 END AS product_cat
FROM product;

Applying the query against the following product table

P_CODE P_NAME PRICE LAUNCH_DT
------ --------------- ----- ---- ----
1 Nail 10.00 31-MAR-13
2 Washer 15.00 29-MAR-13
3 Nut 15.00 29-MAR-13
4 Screw 25.00 30-MAR-13
5 Super_Nut 30.00 30-MAR-13
6 New Nut NULL NULL

will return the following rows.

P_CODE P_NAME PRODUCT_CAT
------ --------------- -----------
1 Nail Cheap
2 Washer Medium
3 Nut Medium
4 Screw Medium
5 Super_Nut Expensive
6 New Nut Not valid

Ordering Output Rows

To provide better visualization of the output, you can order output rows
based on certain criteria. To order the output, use the ORDER BY clause.
The ORDER BY clause must appear last in a SELECT statement.

Oracle SQL: A Beginner's Tutorial34

Here is the syntax for a query having the ORDER BY clause.

SELECT columns FROM
table
WHERE condition ORDER BY column(s)

You can order output rows in one of the following methods.

▪ by one or more columns
▪ in ascending or descending direction
▪ by using the GROUP BY clause
▪ by using UNION and other set operators

Each of the methods is explained in the subsections below.

Ordering by One Column

To order your query output rows, use the ORDER BY clause with one
column. For instance, have a look at the query in Listing 3.9.

Listing 3.9: Ordering by one column

SELECT * FROM product ORDER BY p_name;

When you apply the query against the following product table

P_CODE P_NAME PRICE LAUNCH_DT
------ --------------- ----- ---- ----
1 Nail 10.00 31-MAR-13
2 Washer 15.00 29-MAR-13
3 Nut 15.00 29-MAR-13
4 Screw 25.00 30-MAR-13
5 Super_Nut 30.00 30-MAR-13
6 New Nut NULL NULL

you will see the following output.

P_CODE P_NAME PRICE LAUNCH_DT
------ --------------- ---------- ---------
1 Nail 10 31-MAR-13
6 New Nut NULL NULL
3 Nut 15 29-MAR-13

Chapter 3: Query Output 35

4 Screw 25 30-MAR-13
5 Super_Nut 30 30-MAR-13
2 Washer 15 29-MAR-13

Direction of Order

The default direction is ascending. To order a column in descending
direction, use the DESC reserved word. For example, the query in Listing
3.10 is similar to that in Listing 3.9 except that the output is presented in
descending order.

Listing 3.10: Changing the order direction

SELECT * FROM product ORDER BY p_name DESC;

The output rows will be returned with p_name sorted in descending order.

P_CODE P_NAME PRICE LAUNCH_DT
------ --------------- ---------- ---------
2 Washer 15 29-MAR-13
5 Super_Nut 30 30-MAR-13
4 Screw 25 30-MAR-13
3 Nut 15 29-MAR-13
6 New Nut NULL NULL
1 Nail 10 31-MAR-13

Multiple Columns

To order by more than one column, list the columns in the ORDER BY
clause. The sequence of columns listed is significant. The order will be
conducted by the first column in the list, followed by the second column,
and so on. For example, if the ORDER BY clause has two columns, the
query output will first be ordered by the first column. Any rows with
identical values in the first column will be further ordered by the second
column.

For example, the query in Listing 3.11 uses an ORDER BY clause with
two columns.

Oracle SQL: A Beginner's Tutorial36

Listing 3.11: Multiple column ordering

SELECT * FROM product ORDER BY launch_dt, price;

Applying the query against the product table.

P_CODE P_NAME PRICE LAUNCH_DT
------ --------------- ----- ---- ----
1 Nail 10.00 31-MAR-13
2 Washer 15.00 29-MAR-13
3 Nut 15.00 29-MAR-13
4 Screw 25.00 30-MAR-13
5 Nut 30.00 30-MAR-13
6 Nut NULL NULL

The output rows will first be ordered by launch_dt and then by price, both
in ascending order. The secondary ordering by price is seen on the Screw
and Super_Nut rows. Their launch_dt’s are the same, 30-MAR-13. Their
prices are different, Screw’s lower than Super_Nut’s, hence Screw row
comes before the Super_Nut.

P_CODE P_NAME PRICE LAUNCH_DT
------ ---------- ------ ---------
3 Nut 15.00 29-MAR-13
2 Washer 15.00 29-MAR-13
4 Screw 25.00 30-MAR-13
5 Super_Nut 30.00 30-MAR-13
1 Nail 10.00 31-MAR-13
6 New Nut NULL NULL

Different Directions on Different Columns

You can apply different order directions on ordered columns too. For
example, the query in Listing 3.12 uses different directions on different
columns in its ORDER BY clause.

Listing 3.12: Using multiple directions of ORDER

SELECT * FROM product ORDER BY launch_dt, price DESC;

Chapter 3: Query Output 37

Applying the query against the product table, the output rows will be
ordered by launch_dt in ascending order and then by price in descending
order. Now, the Super_Nut comes before the Screw.

P_CODE P_NAME PRICE LAUNCH_DT
------ ---------- ------ ---------
3 Nut 15.00 29-MAR-13
2 Washer 15.00 29-MAR-13
5 Super_Nut 30.00 30-MAR-13
4 Screw 25.00 30-MAR-13
1 Nail 10.00 31-MAR-13
6 New Nut NULL NULL

Ordering with a WHERE clause

If your SELECT statement has both the WHERE clause and the ORDER
BY clause, ORDER BY must appear after the WHERE clause.

For example, the query in Listing 3.13 has both WHERE and ORDER
BY. This query will return only Nut products.

Listing 3.13: Using both WHERE and ORDER BY

SELECT * FROM product WHERE p_name = 'Nut'
ORDER BY p_name, p_code DESC;

If you execute the query, you will see one row only, the Nut, in the output
window.

P_CODE P_NAME PRICE LAUNCH_DT
------ ---------- ------ ---------
3 Nut 15.00 29-MAR-13

Storing Query Output

You can store a query output into a new or existing table. To store a query
output in a new table, use the following statement:

CREATE TABLE new_table AS SELECT ... ;

Oracle SQL: A Beginner's Tutorial38

For instance, the query in Listing 3.14 executes a SELECT statement and
stores its result in a new table called nut_product.

Listing 3.14: Storing output into a new table

CREATE TABLE nut_product AS
SELECT * FROM product WHERE p_name LIKE '%Nut%';

Applied against the product table, the query in Listing 3.14 will create a
nut_product table with the following content.
P_CODE P_NAME PRICE LAUNCH_DT
------ --------------- ------ ---------
3 Nut 15 29-MAR-13
6 New Nut NULL NULL
5 Super_Nut 30 30-MAR-13

To store a query output into an existing table, use this syntax.

INSERT INTO existing_table AS SELECT ... ;

For example, the query in Listing 3.15 stores the query result in an existing
table.

Listing 3.15: Storing output into an existing table

INSERT INTO non_nut
SELECT * FROM product WHERE p_name NOT LIKE '%Nut%';

Before executing INSERT statement of Listing 3.15, first you have to create
a non_nut table by executing the following statement.

CREATE TABLE non_nut
 (
 p_code VARCHAR2(6),
 p_name VARCHAR2(15),
 price NUMBER(4,2),
 launch_dt DATE,
 PRIMARY KEY (p_code)
);

Applying the query in Listing 3.15 against this product table

Chapter 3: Query Output 39

P_CODE P_NAME PRICE LAUNCH_DT
------ --------------- ------ ---------
1 Nail 10 31-MAR-13
2 Washer 15 29-MAR-13
3 Nut 15 29-MAR-13
4 Screw 25 30-MAR-13
6 New Nut NULL NULL
5 Super_Nut 30 30-MAR-13

you will get a non_nut table with the following rows.

P_CODE P_NAME PRICE LAUNCH_DT
------ --------------- ------ ---------
1 Nail 10 31-MAR-13
2 Washer 15 29-MAR-13
4 Screw 25 30-MAR-13

Summary

SQL allows you to retrieve rows from a table and manipulate the output.
You learned in this chapter that you can create aliases, use aggregate
functions, and order rows.

Oracle SQL: A Beginner's Tutorial40

Chapter 4
Grouping

A group is a set of rows having the same value on specific columns. In
Chapter 3, “Query Output” you learned how to apply aggregate functions on
all output rows. In this chapter you learn how to create groups and apply
aggregate functions on those groups.

The GROUP BY Clause

In a query the GROUP BY clause appears after the WHERE clause and
before the ORDER clause, if any. Here is the syntax for a SELECT
statement with the WHERE, GROUP BY, and ORDER BY clauses.

SELECT columns,
 aggregate_function(group_columns)
FROM table(s)
WHERE condition
GROUP BY group_columns
ORDER BY column(s);

As an example, the query in Listing 4.1 groups the output from the product
table by their launch date.

Listing 4.1: Grouping on one column

SELECT launch_dt,
 MAX(price) MAX,
 MIN(price) MIN,
 SUM(price) SUM,
 AVG(price) AVG,
 COUNT(price) COUNT,
 COUNT(*) AS "COUNT(*)"

Oracle SQL: A Beginner's Tutorial42

FROM product
GROUP BY launch_dt
ORDER BY launch_dt;

Applied against a product table with the following rows, aggregations will
be done by the four grouped launch dates: 29, 30 and 31 of March 2013,
and NULL.

P_CODE P_NAME PRICE LAUNCH_DT
------ --------------- ----- ---- ----
1 Nail 10.00 31-MAR-13
2 Washer 15.00 29-MAR-13
3 Nut 15.00 29-MAR-13
4 Screw 25.00 30-MAR-13
5 Super_Nut 30.00 30-MAR-13
6 New Nut NULL NULL

The query output will have four rows, one for each of the four grouped
launch dates. Note that the COUNT(price) element, which counts the rows
with a value on their price column, produces 0. On the other hand, the
COUNT(*) element, which counts the NULL launch dates, produces 1.

LAUNCH_DT MAX MIN SUM AVG COUNT COUNT(*)
--------- ---- ---- ---- ---- ------ --------
29-MAR-13 15 15 30 15 2 2
30-MAR-13 30 25 55 27.5 2 2
31-MAR-13 10 10 10 10 1 1
NULL NULL NULL NULL NULL 0 1

You can group by more than one column. If you do that, rows having the
same value on all the columns will form a group. As an example, the query
in Listing 4.2 groups rows by price and launch date.

Listing 4.2: Grouping on two columns

SELECT price,
 launch_dt,
 MAX(price) MAX,
 MIN(price) MIN,
 SUM(price) SUM,
 AVG(price) AVG,
 COUNT(price) COUNT,
 COUNT(*) "COUNT(*)"

Chapter 4: Grouping 43

FROM product
GROUP BY price,
 launch_dt
ORDER BY price,
 launch_dt;

Applied to the same product table, the output will have five rows. Even
though the Screw and Super_Nut have the same price, they have different
launch dates, and therefore form different groups.

PRICE LAUNCH_DT MAX MIN SUM AVG COUNT COUNT(*)
----- --------- ----- ----- ----- ----- ------ ---------
 10 31-MAR-13 10 10 10 10 1 1
 15 29-MAR-13 15 15 30 15 2 2
 25 30-MAR-13 25 25 25 25 1 1
 30 30-MAR-13 30 30 30 30 1 1
NULL NULL NULL NULL NULL NULL 0 1

The HAVING Keyword

The WHERE condition can be used to select individual rows. On the other
hand, the HAVING condition is used for selecting individual groups. Only
groups that satisfy the condition in the HAVING clause will be returned by
the query. In other words, the HAVING condition is on the aggregate, not
on a column.

If present, the HAVING clause must appear after the GROUP BY, as in
the following syntax.

SELECT columns,
 aggregate_function(group_columns)
FROM table(s)
WHERE condition
GROUP BY group_columns
HAVING aggregate_condition
ORDER BY columns;

As an example, the query in Listing 4.3 uses the HAVING condition.

Oracle SQL: A Beginner's Tutorial44

Listing 4.3: Using the HAVING condition

SELECT price,
 launch_dt,
 MAX(price) MAX,
 MIN(price) MIN,
 SUM(price) SUM,
 AVG(price) AVG,
 COUNT(price) COUNT,
 COUNT(*) "COUNT(*)"
FROM product
GROUP BY price,
 launch_dt
HAVING COUNT(price) > 1
ORDER BY price,
 launch_dt;

Only groups having more than one row (satisfying the COUNT(price) > 1
condition) will be returned. Only one row will be returned, the one with
price = 15 and launch date = 29-MAR-13.

PRICE LAUNCH_DT MAX MIN SUM AVG COUNT COUNT(*)
------ --------- ----- ----- ----- ----- ------ ---------
 15 29-MAR-13 15 15 30 15 2 2

If a WHERE clause is present, it must appear after the GROUP BY clause.
Individual rows will be selected by the WHERE condition first before
grouping occurs. For instance, the query in Listing 4.4 uses both WHERE
and GROUP BY.

Listing 4.4: Grouping with WHERE

SELECT launch_dt,
 MAX(price) MAX,
 MIN(price) MIN,
 SUM(price) SUM,
 AVG(price) AVG,
 COUNT(price) COUNT,
 COUNT(*) "COUNT(*)"
FROM product
WHERE p_name NOT LIKE 'Super%'
GROUP BY launch_dt
HAVING launch_dt > '29-MAR-13’

Chapter 4: Grouping 45

ORDER BY launch_dt;

Here is the query output.

LAUNCH_DT MAX MIN SUM AVG COUNT COUNT(*)
--------- ----- ----- ----- ----- ------ ---------
30-MAR-13 25.0 25.0 25.0 25.0 1 1
31-MAR-13 10.0 10.0 10.0 10.0 1 1

In this case, Super_Nut does not satisfy the WHERE condition. As such, it
is not included in the aggregation.

Applying aggregate as a WHERE condition clause is not allowed. This
is shown in Listing 4.5, which contains a query that throws an error if
executed.

Listing 4.5: Error with WHERE on the aggregate

SELECT price,
 launch_dt,
 MAX(price) MAX,
 MIN(price) MIN,
 SUM(price) SUM,
 AVG(price) AVG,
 COUNT(price) COUNT,
 COUNT(*) "COUNT(*)"
FROM product
WHERE COUNT(price) > 1;

Executing this query will give you this error message.

ORA-00934: group function is not allowed here

Summary

In this chapter you learned how to aggregate values from rows. You also
learned to use the HAVING condition applied on aggregates. In the next
chapter you will learn about the JOIN clause used to “aggregate” rows from
more than one table.

Oracle SQL: A Beginner's Tutorial46

Chapter 5
Joins

A real-world database typically stores data in dozens or even hundreds of
tables. In these multi-table databases, a table often relates to one or some
other tables. In this environment, you should be able to relate rows from
two or more tables by using the JOIN clause. This chapter shows you how.

Primary Keys and Foreign Keys

In Chapter 1, “Storing and Maintaining Data” you learned about primary
keys. A primary key is a column, or a set of columns, which uniquely
identifies every row in a table. A foreign key is a column, or a set of
columns, which is used to relate to the primary key of another table. The
process of using the foreign key/primary key to relate rows from two tables
is called joining.

While a primary key must be unique, a foreign key does not have to be
unique. You can have a foreign key in more than one row. For example, in a
customer order table you can have many orders for the same product. In this
customer order table, a product is represented by its foreign key, e.g.
product code, which is the primary key of the product table.

Even though the use of primary and foreign keys is not an absolute
requirement for joining tables, their absence may cause you to incorrectly
join tables.

Oracle SQL: A Beginner's Tutorial48

Querying Multiple Tables

To query data from multiple tables, use the JOIN keyword to specify the
related columns from two tables. The JOIN clause of a SELECT statement
joins related rows from two or more tables, based on their primary
key/foreign key relationship.

For example, a customer order (c_order) table may need a foreign key
column to relate to the primary key of the product table. Additionally, the
customer order table may also need a foreign key to relate to the primary
key of the customer table.

The syntax for the JOIN is as follows.

SELECT columns FROM table_1, table_2, ... table_n
WHERE table_1.primary_key = table_2.foreign_key
AND table_2.primary_key = table_n.foregin_key;

To illustrate the use of joins, I will use the c_order table, customer table,
and product table in Table 5.1, Table 5.2, and Table 5.3, respectively. The
C_NO and P_CODE of the c_order table are foreign keys; their related
primary keys are in the customer and product tables, respectively.

C_NO P_CODE QTY ORDER_DT
---- ------ ---- ---------
10 1 100 01-APR-13
10 2 100 01-APR-13
20 1 200 01-APR-13
30 3 300 02-APR-13
40 4 400 02-APR-13
40 5 400 03-APR-13

Table 5.1: The customer order (c_order) table

 C_NO C_NAME
 ---- --------------
 10 Standard Store
 20 Quality Store
 30 Head Office
 40 Super Agent

Table 5.2: The customer table

Chapter 5: Joins 49

P_CODE P_NAME PRICE LAUNCH_DT
------ --------------- ----- ---- ----
1 Nail 10.00 31-MAR-13
2 Washer 15.00 29-MAR-13
3 Nut 15.00 29-MAR-13
4 Screw 25.00 30-MAR-13
5 Super_Nut 30.00 30-MAR-13

 6 New Nut NULL NULL

Table 5.3: The product table

Listing 5.1 is an example of a JOIN query. It joins the rows from the
c_order table to the rows from the customer table based on the c_no foreign
key column of the c_order table and the c_no primary key column of the
customer table. The query returns the name of every customer who has
placed one or more orders.

Listing 5.1: A two table join

SELECT c_name,
 p_code,
 c_order.qty,
 c_order.order_dt
FROM c_order
JOIN customer
ON c_order.c_no = customer.c_no;

Applied against the example c_order and customer tables, the query result is
as follows.

C_NAME P_CO QTY ORDER_DT
------------------------- ---- ---------- ---------
Standard Store 2 100 01-APR-13
Standard Store 1 100 01-APR-13
Quality Store 1 200 01-APR-13
Head Office 3 300 02-APR-13
Super Agent 5 400 03-APR-13
Super Agent 4 400 02-APR-13

Oracle SQL: A Beginner's Tutorial50

Using Table Aliases

In a join query, different tables can have columns with identical names. To
make sure you refer to the correct column of a table, you need to qualify it
with its table. In the previous example, c_order.c_no (the c_no column of
the c_order table) and customer.c_no (the c_no column of the
customer_table) were how the c_no columns were qualified. A table alias
can be a more convenient (and shorter) way to qualify a column.

For example, in the query in Listing 5.2, o is an alias for the c_order
table and c is an alias for the customer table. These aliases are then used in
the ON clause to qualify the c_no columns with their respective tables.

Listing 5.2: Using table aliases

SELECT c_name,
 p_code,
 o.qty,
 o.order_dt
FROM c_order o
JOIN customer c
ON o.c_no = c.c_no;

Column Aliases vs. Table Aliases
In Chapter 3, “Query Output”, I explained the use of aliases for
columns using the AS keyword. Although a column alias can be
created without using the AS keyword, its presence improves
readability (“p_name AS product_name” instead of “p_name
product_name”). On the other hand, table aliases cannot use the AS
keyword.

Joining More than Two Tables

From the JOIN syntax presented earlier, you can join more than two tables.
To do this, in the SELECT statement, join two tables at a time.

For example, the query in Listing 5.3 joins the c_order table to the
customer table, and then joins the customer table to the product table. The

Chapter 5: Joins 51

rows in the c_order table are joined to the rows of the same c_no column
from the customer table, and these rows are then joined to the rows with the
same p_code from the product table. This query returns the customer names
and their orders.

Listing 5.3: A three table join

SELECT c_name,
 p_name,
 o.qty,
 o.order_dt
FROM c_order o
JOIN customer c
ON o.c_no = c.c_no
JOIN product p
ON o.p_code = p.p_code;

Applied against the c_order, customer and product sample tables, you will
see the following result.

C_NAME P_NAME QTY ORDER_DT
-------------- --------- ---- ---------
Standard Store Washer 100 01-APR-13
Standard Store Nail 100 01-APR-13
Quality Store Nail 200 01-APR-13
Head Office Nut 300 02-APR-13
Super Agent Super_nut 400 03-APR-13
Super Agent Screw 400 02-APR-13

You can also apply WHERE conditions for selecting rows on a join query.
For example, in Listing 5.4, thanks to the WHERE condition, only products
with names that do not start with “Super” will be in the query output.

Listing 5.4: JOIN and WHERE

SELECT c_name,
 p_name,
 o.qty,
 o.order_dt
FROM c_order o
JOIN customer c
ON o.c_no = c.c_no
JOIN product p
ON o.p_code = p.p_code
WHERE p_name NOT LIKE 'Super%';

Oracle SQL: A Beginner's Tutorial52

Executing the query in Listing 5.4 against the sample tables will produce
the following output rows.

C_NAME P_NAME QTY ORDER_DT
-------------- --------- ---- ---------
Standard Store Washer 100 01-APR-13
Standard Store Nail 100 01-APR-13
Quality Store Nail 200 01-APR-13
Branch Office Nut 300 02-APR-13
Super Agent Screw 400 02-APR-13

Joining on More than One Column

The preceding joins were on one column. Tables can also be joined on more
than one column.

The syntax for a multicolumn join for two tables is as follows.

SELECT columns FROM table_1, table_2
WHERE table_1.column_1 = table_2.column_1
AND table_1.column_2 = table_2.column_2
...
AND table_1.column_n = table_2.column_n;

As an example, suppose you track order shipments in the following
shipment table

C_NO P_CODE ORDER_DT SHIP_QTY SHIP_DT
---- ------ --------- ---------- ---------
10 1 01-APR-13 50 02-APR-13
10 2 01-APR-13 100 02-APR-13
20 1 01-APR-13 100 02-APR-13
30 3 02-APR-13 300 03-APR-13
10 1 01-APR-13 50 10-APR-13

To retrieve the order quantity (the qty column of the c_order table) of each
shipment, you need to have a query that joins the shipment table to the order
table on three columns, c_no, p_no, and order_dt, as shown in the query in
Listing 5.5.

Listing 5.5: A multiple columns join

SELECT o.c_no,
 o.p_code,
 o.order_dt,

Chapter 5: Joins 53

 ship_qty,
 ship_dt,
 qty
FROM shipment s
JOIN c_order o
ON s.c_no = o.c_no
AND s.p_code = o.p_code
AND s.order_dt = o.order_dt;

Executing this query against the c_order and shipment tables will give you
the following output rows.

C_NO P_CODE ORDER_DT SHIP_QTY SHIP_DT QTY
---- ------ --------- ---------- --------- ----------
10 1 01-APR-13 50 10-APR-13 100
10 1 01-APR-13 50 02-APR-13 100
10 2 01-APR-13 100 02-APR-13 100
20 1 01-APR-13 100 02-APR-13 200
30 3 02-APR-13 300 03-APR-13 300

Outer Joins

All the joins I explained so far were inner joins. There is another type of
join, the outer join. While an inner join query produces only related rows
from the joined tables, an outer join query produces all rows from one table
even when some of the rows do not have matching rows from the other
table.

There are three subtypes of outer joins, LEFT, RIGHT, and FULL. The
following points described each of these three types.

All rows from the table on the left of the left outer join will be in the
output whether or not there are matching rows from the table on its right.
The syntax for the left outer join is as follows.

SELECT columns
FROM table_1 LEFT OUTER JOIN table_2
ON table_1.column = table_2.column ... ;

All rows form the table on the right of the right outer join will be in the
output whether or not there are matching rows from the table on its left. The
syntax for the right outer join is as follows.

Oracle SQL: A Beginner's Tutorial54

SELECT columns FROM table_1 RIGHT OUTER JOIN table_2 ON
table_1.column = table_2.column ... ;

The full outer join returns all rows from both tables whether or not there are
matching rows from the opposite table. The syntax for the full outer join is
as follows.

SELECT columns
FROM table_1 FULL OUTER JOIN table_2
ON table_1.column = table_2.column … ;

Listing 5.6 is an example left outer join query. This query returns all rows
from the c_order table.

Listing 5.6: Left outer join

SELECT o.*,
 ship_dt
FROM c_order o
LEFT OUTER JOIN shipment s
ON o.p_code = s.p_code
AND o.c_no = s.c_no;

If you run this query against our example c_order and shipment tables, you
will see the following output rows.

C_NO P_CODE QTY ORDER_DT SHIP_DT
---- ------ ---------- --------- ---------
10 1 100 01-APR-13 02-APR-13
10 2 100 01-APR-13 02-APR-13
20 1 200 01-APR-13 02-APR-13
30 3 300 02-APR-13 03-APR-13
10 1 100 01-APR-13 10-APR-13
40 4 400 02-APR-13 NULL
40 5 400 03-APR-13 NULL

Note that the last two rows have no matching rows from the shipment table
and therefore their ship_dt column has NULL values.

Chapter 5: Joins 55

Rows with NULL only

If you want to query only orders that have not been shipped at all, you have
to put this “only” condition in the WHERE clause of your query (ship_dt IS
NULL) as in the query in Listing 5.7.

Listing 5.7: NULL only rows

SELECT o.*,
 ship_dt
FROM c_order o
LEFT OUTER JOIN shipment s
ON o.p_code = s.p_code
AND o.c_no = s.c_no
WHERE s.ship_dt IS NULL;

The following output rows from the query in Listing 5.7 are customer
orders that have not been shipped.

C_NO P_CODE QTY ORDER_DT SHIP_DT
---- ------ ---------- --------- ---------
40 4 400 02-APR-13 NULL
40 5 400 03-APR-13 NULL

Full Outer Joins

Suppose any order that was canceled was deleted from the c_order table (In
a real-life application, canceled orders might be moved to a different table,
rather than deleted). This means, some rows of the shipment table now may
not have matching rows in the order table. To return orders that do not have
shipments as well shipments that do not have orders, we need to write a
query with the full outer join, like the one shown in Listing 5.8.

Listing 5.8: Full outer join

SELECT o.*, s.*
 FROM c_order o
FULL OUTER JOIN shipment s
ON o.p_code = s.p_code
AND o.c_no = s.c_no ;

Oracle SQL: A Beginner's Tutorial56

To test the query, you need delete an order, such as the order(s) placed by
customer 30. Our c_order table now has the following rows only. After the
deletion, the c_order table has the following rows.

C_NO P_CODE QTY ORDER_DT
---- ------ ---------- ---------
10 1 100 01-APR-13
10 2 100 01-APR-13
20 1 200 01-APR-13
40 4 400 02-APR-13
40 5 400 03-APR-13

If you run the query in Listing 5.8, you will get the following output rows.
Note that we have NULL on the rows on both sides. The NULLs on the
right side are from the shipment table, the NULL on the left side (in our
example here we only have one row) is coming from the c_order table.

C_NO P_CO QTY ORDER_DT C_NO P_CO ORDER_DT SHIP_QTY SHIP_DT
---- ---- ----- --------- ---- ---- --------- ---------- ---------
10 1 100 01-APR-13 10 1 01-APR-13 50 02-APR-13
10 2 100 01-APR-13 10 2 01-APR-13 100 02-APR-13
20 1 200 01-APR-13 20 1 01-APR-13 100 02-APR-13
10 1 100 01-APR-13 10 1 01-APR-13 50 10-APR-13
40 4 400 02-APR-13 NULL NULL NULL NULL NULL
40 5 400 03-APR-13 NULL NULL NULL NULL NULL
NULL NULL NULL NULL 30 3 02-APR-13 300 03-APR-13

Self-Joins

Assuming some of your products have substitutes and you want to record
the substitutes in the product table, you then need to add a column. The new
column, which is called s_code in the product table, contains the product
code of the substitute.

The new product table, with a row having s_code 5, now looks like the
following.

P_CODE P_NAME PRICE LAUNCH_DT S_CODE
------ -------------- ---------- --------- ------
1 Nail 10 31-MAR-13 NULL
2 Washer 15 29-MAR-13 NULL
3 Nut 15 29-MAR-13 5
4 Screw 25 30-MAR-13 NULL

Chapter 5: Joins 57

5 Super_Nut 30 30-MAR-13 NULL
6 New Nut NULL NULL NULL

To add the s_code column, execute the following statement:

ALTER TABLE product ADD (s_code VARCHAR2(6));

Then, to update the p_code = 3 row, execute the following statement:

UPDATE product SET s_code = 5 WHERE p_code = 3;

If you need to know the product name of a substitute, you need the query
shown in Listing 5.9. This query joins the product table to itself. This kind
of join is called a self-join.

The syntax for the self join is as follows.

SELECT columns
FROM table alias_1
JOIN table alias_2
ON alias_1.column_x = alias_2.column_y;

Note that column_x and column_y are columns in the same table.

Listing 5.9: A self-join

SELECT prod.p_code,
 prod.p_name,
 subst.p_code subst_p_code,
 subst.p_name subst_name
FROM product prod
LEFT OUTER JOIN product subst
ON prod.s_code = subst.p_code
ORDER BY prod.p_code;

Here are the output rows of the query, showing “Newer Nut” in the
subst_name column of the third row.

P_CODE P_NAME SUBST_ SUBST_NAME
------ ---------- ------ ----------
1 Nail NULL NULL
2 Washer NULL NULL
3 Nut 5 Super_Nut
4 Screw NULL NULL
5 Super_Nut NULL NULL
6 New Nut NULL NULL

Oracle SQL: A Beginner's Tutorial58

Multiple Uses of A Table

If a product can have more than one substitute, you need to store the
product-substitute relationships in a separate table. A substitute cannot be
recorded in the product table.

To create the table that stores the product-substitute relationships named
prod_subst, execute the following statement.

CREATE TABLE prod_subst (p_code VARCHAR2(6), s_code VARCHAR2(6));

To remove the s_code column, execute the following statement:

ALTER TABLE product DROP (s_code);

Your product table will now contain the following rows.

P_CODE P_NAME PRICE LAUNCH_DT
------ -------------- ---------- ---------
1 Nail 10 31-MAR-13
2 Washer 15 29-MAR-13
3 Nut 15 29-MAR-13
4 Screw 25 30-MAR-13
5 Super_Nut 30 30-MAR-13
6 New Nut NULL NULL

Assuming that the only product with substitutes is product number 3 and its
substitutes are the products number 5 and 6, the prod_subst table will have
two rows as follows. (You need to insert these two rows using the INSERT
statements)

P_NO SUBS_CODE
---- ---------
3 5
3 6

To get the name of a product and the names of its substitutes, you need to
use the product table twice, as shown in the query in Listing 5.10.

Listing 5.10: Multiple uses of a table

SELECT prod.p_code,
 prod.p_name,
 ps.s_code,
 subst.p_name AS s_name

Chapter 5: Joins 59

FROM product prod
INNER JOIN prod_subst ps
ON prod.p_code = ps.p_code
INNER JOIN product subst
ON ps.s_code = subst.p_code
ORDER BY prod.p_code;

Here are the output rows from the query in Listing 5.10.

P_CODE P_NAME S_CODE S_NAME
------ --------- ------ ---------
3 Nut 6 Newer Nut
3 Nut 5 Super_Nut

Natural Joins

If two tables have columns that share a name, you can naturally join the two
tables on these columns. In a natural join, you do not need to specify the
columns that the join should use.

The syntax for the natural join is this.

SELECT columns FROM table_1 NATURAL JOIN table_2 ... ;

Listing 5.11 shows an example of a natural join on the c_order and
customer tables. This natural join implicitly joins the tables on their c_no
columns.

Listing 5.11: A natural join

SELECT * FROM c_order NATURAL JOIN customer;

Running the query in Listing 5.11 gives you the following output rows.

C_NO P_CO QTY ORDER_DT C_NAME
---- ---- ---- --------- --------------
10 1 100 01-APR-13 Standard Store
10 2 100 01-APR-13 Standard Store
20 1 200 01-APR-13 Quality Store
40 4 400 02-APR-13 Super Agent
40 5 400 03-APR-13 Super Agent

Oracle SQL: A Beginner's Tutorial60

Natural Outer Joins

The natural join is also applicable to the outer join. Consider the query in
Listing 5.12.

Listing 5.12: A natural outer join

SELECT * FROM c_order NATURAL RIGHT JOIN customer;

Applying the query against the c_order and customer tables will give you
the following output rows.

C_NO P_CODE QTY ORDER_DT C_NAME
---- ------ ---------- --------- --------------
 10 1 100 01-APR-13 Standard Store
 10 2 100 01-APR-13 Standard Store
 20 1 200 01-APR-13 Quality Store
 40 4 400 02-APR-13 Super Agent
 40 5 400 03-APR-13 Super Agent
 30 NULL NULL NULL Head Office

Mixing Natural Joins with Different Column Names

If you need to join on more than one column, and the second column pair
does not share a name, you can specify the different column names in the
WHERE clause. Listing 5.13 shows an example of such a case.

Listing 5.13: Mixing natural join with different column names

SELECT * FROM c_order o NATURAL RIGHT JOIN product p WHERE
o.order_dt = p.launch_dt;

In the query in Listing 5.13, in addition to the natural join on the same c_no
column, the rows from the two tables have to be joined on the two dates.

The query does not return any row as we don’t have any order of a
product with the same order date as the product’s launch date.

Chapter 5: Joins 61

The USING Keyword

A natural join will use all columns with the same names from the joined
tables. If you want your query to join only on some of these identically
named columns, instead of using the NATURAL keyword, use the USING
keyword.

The syntax for joining two tables with USING is as follows.

SELECT columns
FROM table_1
JOIN table_2 USING (column);

Listing 5.14, for example, joins the c_order table to the shipment table on
only their p_code columns. It does not join the tables on their c_no
columns. This query gives you the total quantity shipped by product code.

Listing 5.14: USING

SELECT p_code,
 SUM(s.ship_qty)
FROM c_order o
JOIN shipment s USING (p_code)
GROUP BY p_code;

Executing this query against our example c_order and shipment tables will
produce the following output rows.

P_CODE SUM(S.SHIP_QTY)
------ ---------------
1 400
2 100

Summary

In this chapter you learned about getting data from multiple tables. You
learned how to use the various types of joins for this purpose.

Oracle SQL: A Beginner's Tutorial62

Chapter 6
Subqueries

A subquery is a query nested within another query. The containing query is
called an outer query. A subquery in turn can have a nested query, making it
a multiple nested query.

This chapter disucsses subqueries in detail.

Single-Row Subqueries

A single-row subquery is a subquery that returns a single value. A single-
row subquery can be placed in the WHERE clause of an outer query. The
return value of the subquery is compared with a column of the outer query
using one of the comparison operators. (Comparison operators were
discussed in Chapter 2, “Basic Queries”)

For example, the query in Listing 6.1 contains a single-row subquery
that returns the highest sale price recorded for a product. The outer query
returns all products from the product table that have that highest price
(30.00), the Super_Nut and Newer Nut products.

Listing 6.1: A subquery that returns a single value

SELECT *
FROM product
WHERE price =
 (SELECT MAX(price)
 FROM product p
 INNER JOIN c_order o
 ON p.p_code = o.p_code
);

Oracle SQL: A Beginner's Tutorial64

Note that the subquery in Listing 6.1 is printed in bold.

Executing the query in Listing 6.1 against this product table

P_CODE P_NAME PRICE LAUNCH_DT
------ ---------- ------ ---------
1 Nail 10.00 31-MAR-13
2 Washer 15.00 29-MAR-13
3 Nut 15.00 29-MAR-13
4 Screw 25.00 30-MAR-13
5 Super_Nut 30.00 30-MAR-13
6 Newer Nut 30.00 01-MAY-13

and the following c_order (customer order) table

C_NO P_CODE QTY ORDER_DT
---- ------ ---- ---------
10 1 100 01-APR-13
10 2 100 01-APR-13
20 1 200 01-APR-13
30 3 300 02-APR-13
40 4 400 02-APR-13
40 5 400 03-APR-13

will give you the following result.

P_CODE P_NAME PRICE LAUNCH_DT
------ ---------- ------ ---------
5 Super_Nut 30.00 30-MAR-13
6 Newer Nut 30.00 01-MAY-13

The column and subquery result do not have to be the same column, but
they must have compatible data types. In the query in Listing 6.1, the price
column of the product table is a numeric type and the subquery also returns
a numeric type.

If the subquery returns more than one value, you will get an error
message. For example, the query in Listing 6.2 throws an error because the
subquery returns more than one value.

Listing 6.2: Single-row subquery error

SELECT *
FROM product

Chapter 6: Subqueries 65

WHERE price =
 (SELECT MAX(price)
 FROM product p
 INNER JOIN c_order s
 ON p.p_code = s.p_code
 GROUP BY p.launch_dt
);

Here is the error that you will see if you run the query in Listing 6.2.

ERROR at line 4:
ORA-01427: single-row subquery returns more than one row

Multiple-Row Subqueries

A subquery that returns more than one value is called a multiple-row
subquery. This type of subquery also occurs in the WHERE clause of an
outer query, however instead of using a comparison operator, you use IN or
NOT IN in the WHERE clause.

For example, the query in Listing 6.3 contains a multiple-row subquery.

Listing 6.3: Using a multiple-row subquery

SELECT *
FROM product
WHERE price IN
 (SELECT MAX(price)
 FROM product p
 INNER JOIN c_order s
 ON p.p_code = s.p_code
 GROUP BY p.launch_dt
);

Run against the same product and order tables, the subquery will return
these three values:

MAX(PRICE)

 15
 30
 10

Oracle SQL: A Beginner's Tutorial66

The overall query output will be as follows.

P_CODE P_NAME PRICE LAUNCH_DT
------ ---------- ------ ---------
1 Nail 10.00 31-MAR-13
2 Washer 15.00 29-MAR-13
3 Nut 15.00 29-MAR-13
5 Super_Nut 30.00 30-MAR-13
6 Newer Nut 30.00 01-MAY-13

The ALL and ANY Operators

In addition to IN and NOT IN, you can also use the ALL and ANY
operators in a multiple-row subquery. With ALL or ANY you use a
comparison operator. For instance, the query in Listing 6.4 uses the ALL
operator to compare the price column with the subquery result.

Listing 6.4: Using ALL

SELECT *
FROM product
WHERE price >= ALL
 (SELECT MAX(price)
 FROM product p
 INNER JOIN c_order o
 ON o.p_code = o.p_code
 GROUP BY p.launch_dt
)
ORDER BY p_code;

Run against the same product and order tables, the subquery in Listing 6.4
(printed in bold) returns these results:

MAX(PRICE)

 15
 30
 10

The query output will consist of only rows whose price is greater or equal to
all the values returned by the subquery.

Chapter 6: Subqueries 67

Here is the query output.

P_CODE P_NAME PRICE LAUNCH_DT
------ ---------- ------ ---------
5 Super_Nut 30.00 30-MAR-13
6 Newer Nut 30.00 01-MAY-13

As another example, the query in Listing 6.5 is similar to the one in Listing
6.4 except that the equal operator is used to compare the price with the
subquery result.

Listing 6.5: Using ALL for equal comparison

SELECT *
FROM product
WHERE price = ALL
 (SELECT MAX(price)
 FROM product p
 INNER JOIN c_order o
 ON o.p_code = o.p_code
 GROUP BY p.launch_dt
)
ORDER BY p_code;

As in the previous example, the subquery will return these values.

MAX(PRICE)

 15
 30
 10

The query output then consists of only rows whose price equals to all these
values, which is not possible as each product has only one price. As a result,
the query returns no rows. Here is a message you will see if you run the
query.

no rows selected

Oracle SQL: A Beginner's Tutorial68

Subqueries Returning Rows Having the Same Value

If you use = ALL and the subquery returns one row or multiple rows with
the same value you will not get a “no rows selected” message.

You can also use the ANY operator to compare a column with the
values returned by a subquery. If you use ALL, the query compares a
column to all values (every one of the values) returned by the subquery. If
you use ANY, the query compares a column to any one of the values
returned by the subquery.

For example, the query in Listing 6.6 compares the price column for
equality to any of the maximum prices returned by the subquery, in other
words, the WHERE condition is true if the price equals to any of maximum
prices.

Listing 6.6: Using the equal comparison to ANY value

SELECT *
FROM product
WHERE price = ANY
 (SELECT MAX(price)
 FROM product p
 INNER JOIN c_order o
 ON p.P_code = o.p_code
 GROUP BY p.launch_dt
)
ORDER BY p_code;

The subquery will return these rows.

MAX(PRICE)

 15
 30
 10

The outer query output will consist of any product that has a price equal to
any of these (maximum price) values. Here is the query output.

P_CODE P_NAME PRICE LAUNCH_DT

Chapter 6: Subqueries 69

------ ---------- ------ ---------
1 Nail 10.00 31-MAR-13
2 Washer 15.00 29-MAR-13
3 Nut 15.00 29-MAR-13
5 Super_Nut 30.00 30-MAR-13
6 Newer Nut 30.00 01-MAY-13

Multiple Nested Subqueries

A subquery can contain another query, making it a query with multiple
nested subqueries. The query in Listing 6.7, for example, has multiple
nested subqueries. Notice the two IN’s, one for each of the two nested
queries? The query returns only customers who have not ordered any
product having name that contains ‘Nut’.

Listing 6.7: Query with multiple nested subqueries

SELECT customer.*
FROM customer
WHERE c_no IN
 (SELECT c_no
 FROM c_order
 WHERE p_code IN
 (SELECT p_code FROM product WHERE p_name NOT LIKE '%Nut%'
)
);

Here is the query result.

C_NO C_NAME
---- --------------
40 Super Agent
10 Standard Store
20 Quality Store

Oracle SQL: A Beginner's Tutorial70

Correlated Subqueries

All the preceding subqueries are independent of their outer queries. A
subquery can also be related to its outer query, where one or more column
from the outer query table is (are) related to the column(s) of the subquery
table in the WHERE clause of the subquery. This type of subquery is called
the correlated subquery.

As an example, the query in Listing 6.8 contains a correlated subquery
that returns only customers who have not ordered any product whose name
contains ‘Nut’. Note that the c_no column of the outer query table,
customer, is related to the c_no column of the c_order table of the subquery.

Listing 6.8: Using a correlated subquery

SELECT customer.*
FROM customer
WHERE c_no IN
 (SELECT c_no
 FROM c_order o
 JOIN product p
 ON o.p_code = p.p_code
 WHERE p_name NOT LIKE '%Nut%'
 AND customer.c_no = o.c_no
);

The following are the query result.

C_NO C_NAME
---- --------------
40 Super Agent
10 Standard Store
20 Quality Store

Chapter 6: Subqueries 71

Summary

In this chapter you learned the various types of subqueries, such as nested
and correlated subqueries. In the next chapters you will apply the lesson you
learned in this chapter to combine the results of two or more queries.

Oracle SQL: A Beginner's Tutorial72

Chapter 7
Compound Queries

You can combine the results of two or more SELECT statements using the
UNION ALL, UNION, INTERSECT, or MINUS operators. The number of
output columns from every statement must be the same and the
corresponding columns must have identical or compatible data types.

This chapter shows you how to combine query results.

UNION ALL

When you combine two or more queries with the UNION ALL operator, the
overall output will be the total rows from all the queries. For example, take
a look at the query in Listing 7.1. This query consists of two SELECT
statements.

Listing 7.1: Using UNION ALL

SELECT p_code, p_name, 'FIRST QUERY' query
FROM product p WHERE p_name LIKE '%Nut%'
UNION ALL
SELECT p.p_code,
 p_name,
 'SECOND_QUERY' query
FROM c_order o
INNER JOIN product p
ON o.p_code = p.p_code;

Note that the 'FIRST QUERY' and 'SECOND_QUERY' literals in the first
and second SELECT statements, respectively, are just labels to identify
where a row is coming from.

Oracle SQL: A Beginner's Tutorial74

Assuming that the product table has the following rows

P_CODE P_NAME PRICE LAUNCH_DT
------ --------------- ---------- ---------
1 Nail 10 31-MAR-13
2 Washer 15 29-MAR-13
3 Nut 15 29-MAR-13
4 Screw 25 30-MAR-13
5 Super_Nut 30 30-MAR-13
6 New Nut 30 01-MAY-13

and the c_order table contains the following records

C_NO P_CODE QTY ORDER_DT
---- ------ ---- ---------
10 1 100 01-APR-13
10 2 100 01-APR-13
20 1 200 01-APR-13
40 4 400 02-APR-13
40 5 400 03-APR-13
30 3 300 02-APR-13

the query in Listing 7.1 will return the following output.

P_CODE P_NAME QUERY
------ ---------- ------------
3 Nut FIRST QUERY
5 Super_Nut FIRST QUERY
6 New Nut FIRST QUERY
1 Nail SECOND_QUERY
1 Nail SECOND_QUERY
2 Washer SECOND_QUERY
3 Nut SECOND_QUERY
4 Screw SECOND_QUERY
5 Super_Nut SECOND_QUERY

Note that the output of the query in Listing 7.1 comprises all the records
form the first SELECT statement followed by the rows from the second
SELECT statement. You can of course use the ORDER BY clause to re-
order this. For instance, the query in Listing 7.2 modifies the query in
Listing 7.1 by ordering the results on the p_code column using the ORDER
BY clause.

Chapter 7: Compound Queries 75

Listing 7.2: Ordering output rows of a compound query

SELECT p_code, p_name, 'FIRST QUERY' query
FROM product p WHERE p_name LIKE '%Nut%'
UNION ALL
SELECT p.p_code,
 p_name,
 'SECOND_QUERY' query
FROM c_order o
INNER JOIN product p
ON o.p_code = p.p_code
ORDER BY p_code;

The result of the query in Listing 7.2 is as follows.

P_CODE P_NAME QUERY
------ ---------- ------------
1 Nail SECOND_QUERY
1 Nail SECOND_QUERY
2 Washer SECOND_QUERY
3 Nut SECOND_QUERY
3 Nut FIRST QUERY
4 Screw SECOND_QUERY
5 Super_Nut SECOND_QUERY
5 Super_Nut FIRST QUERY
6 New Nut FIRST QUERY

UNION

UNION is similar to UNION ALL. However, with UNION duplicate rows
will be returned once only. For example, consider the query in Listing 7.3
that consists of two SELECT elements.

Listing 7.3: Using UNION

SELECT p_code,
 p_name
FROM product p
WHERE p_name LIKE '%Nut%'
UNION
SELECT p.p_code,
 p_name

Oracle SQL: A Beginner's Tutorial76

FROM c_order o
INNER JOIN product p
ON o.p_code = p.p_code
ORDER BY p_code;

Here is the output of the query.

P_CODE P_NAME
------ ---------
1 Nail
2 Washer
3 Nut
4 Screw
5 Super_Nut
6 New Nut

INTERSECT

When you combine two or more queries with the INTERSECT operator, the
output will consist of rows common to all the participating SELECT
statements. In other words, only if a row is returned by all the SELECT
statements will the row be included in the final result.

Let’s take a look at the example in Listing 7.4.

Listing 7.4: Using INTERSECT

SELECT p_code,
 p_name
FROM product p
WHERE p_name LIKE '%Nut%'
INTERSECT
SELECT p.p_code,
 p_name
FROM c_order o
INNER JOIN product p
ON o.p_code = p.p_code
ORDER BY p_code;

Running the query against the same product and c_order tables will return
the following result.

Chapter 7: Compound Queries 77

P_CODE P_NAME
------ ---------
3 Nut
5 Super_Nut

MINUS

When you combine two SELECT statements using the MINUS operator,
the final output will be rows from the first query that are not returned by the
second query. Take a look at the example in Listing 7.5.

Listing 7.5: Using MINUS

SELECT p_code,
 p_name
FROM product p
WHERE p_name LIKE '%Nut%'
MINUS
SELECT p.p_code,
 p_name
FROM c_order o
INNER JOIN product p
ON o.p_code = p.p_code
ORDER BY p_code;

Running this query against the same product and c_order tables produces
the following output.

P_CODE P_NAME
------ ---------
6 New Nut

With MINUS, the order of constituting SELECT statements is important. If
you swap the two SELECT statements in the query in Listing 7.5, the output
will be totally different. Take a look at the query in Listing 7.6, which is
identical to that in Listing 7.5 except for the fact that the two SELECT
statements have been swapped.

Listing 7.6: Swapping the participating SELECT statements in a query
combined with MINUS

Oracle SQL: A Beginner's Tutorial78

SELECT p.p_code,
 p_name
FROM c_order o
INNER JOIN product p
ON o.p_code = p.p_code
MINUS
SELECT p_code,
 p_name
FROM product p
WHERE p_name LIKE '%Nut%'
ORDER BY p_code;

The output of the query in Listing 7.6 is this:

P_CODE P_NAME
------ ------
1 Nail
2 Washer
4 Screw

Summary

In this chapter you learned that you can combine the output of two or more
SELECT statements. There are five operators you can use for this purpose,
UNION ALL, UNION, INTERSECT, and MINUS.

Chapter 8
Views

A view is effectively a predefined query. You create and use views most
frequently for the following purposes:

▪ Hiding table columns (for security protection)
▪ Presenting pre-computed columns (in lieu of table columns)
▪ Hiding queries (so that the query outputs are available without

running the queries)

This chapter discusses view and presents examples of views.

Creating and Using Views

You create a view using the CREATE VIEW statement. Here is its syntax.

CREATE VIEW view_name (columns) AS SELECT ... ;

The SELECT statement at the end of the CREATE VIEW statement is the
predefined query. When you use a view its predefined query is executed.
Since a query result is a table that is not persisted (stored) in the database, a
view is also known as a virtual table. The table in the SELECT statement of
a view is known as a base table.

One of the reasons you use a view is when you have a table you need to
share with other people. If you don’t want some of the table columns
viewable by others, you can use a view to hide those columns. You would
then share the view and restrict access to the base table.

Oracle SQL: A Beginner's Tutorial80

For example, Listing 8.1 shows an SQL statement for creating a view
called product_v that is based on the product table. The view hides the price
column of the base table.

Listing 8.1: Using a view to hide columns

CREATE VIEW product_v
 (p_code , p_name
) AS
SELECT p_code, p_name FROM product;

The product_v view can now be used just as you would any database table.
For example, the following statement displays all columns in the product_v
view.

SELECT * FROM product_v WHERE p_name NOT LIKE '%Nut%';

Assuming the product table contains these rows

P_CODE P_NAME PRICE LAUNCH_DT
------ ---------- ------ ---------
1 Nail 10.00 31-MAR-13
2 Washer 15.00 29-MAR-13
3 Nut 15.00 29-MAR-13
4 Screw 25.00 30-MAR-13
5 Super_Nut 30.00 30-MAR-13
6 New Nut 30.00 01-MAY-13

selecting all columns from the product_v view will return these rows.

P_CODE P_NAME
------ ------
1 Nail
2 Washer
4 Screw

Note that within a database a view name must be unique among all the
views and tables in the database.

Another use of the view is to derive computed columns not available in
the base table(s). Here is an example.

Suppose the product table stores profit margins for each product as
follows.

Chapter 8: Views 81

P_CODE P_NAME PRICE LAUNCH_DT MARGIN
------ ---------- ------ --------- ------
1 Nail 10.00 31-MAR-13 1
2 Washer 15.00 29-MAR-13 2
3 Nut 15.00 29-MAR-13 2
4 Screw 25.00 30-MAR-13 5
5 Super_Nut 30.00 30-MAR-13 5
6 New Nut 30.00 01-MAY-13 5

If you want other users to see the selling price (price + margin) but not the
supplier price (price) or the margins in the product table, you can create a
view that computes the selling price from the product price and margin, as
demonstrated by the query in Listing 8.2. This query creates a view called
product_sell_v that includes a computed column sell_price. The value for
sell_price comes from the price and margin columns in the product table.

Listing 8.2: A view with a computed column

CREATE VIEW product_sell_v
 (p_no , p_name, sell_price
) AS
SELECT p_code, p_name, (price + margin) FROM product;

Selecting all data from product_sell_v (using “SELECT * FROM
product_sell_v”) returns these rows.

P_NO P_NAME SELL_PRICE
------ ---------- ----------
1 Nail 11
2 Washer 17
3 Nut 17
4 Screw 30
5 Super_Nut 35
6 New Nut 35

Users of a view don’t need to know the details of its predefined query. They
only need to know what data is available from the view. Referring back to
the self-join example in Chapter 5, “Joins”, you can create the view defined
in Listing 8.3 to hide the self-join query. While the rows from the product
table only have the product code of the substitutes, this view will give you
the names of their substitutes as well.

Oracle SQL: A Beginner's Tutorial82

Listing 8.3: Hiding Query

CREATE VIEW prod_subs_v AS
SELECT prod.p_code,
 prod.p_name,
 subst.p_code subst_p_code,
 subst.p_name subst_name
FROM product prod
LEFT OUTER JOIN product subst
ON prod.s_code = subst.p_code
ORDER BY prod.p_code;

Recall that the product table has the following rows.

P_CODE P_NAME PRICE LAUNCH_DT MARGIN S_CODE
------ ---------- ------ --------- ------ ------
1 Nail 10.00 31-MAR-13 1 6
2 Washer 15.00 29-MAR-13 2 7
3 Nut 15.00 29-MAR-13 2 5
4 Screw 25.00 30-MAR-13 5 NULL
5 Super_Nut 30.00 30-MAR-13 5 NULL
6 New Nut 30.00 01-MAY-13 5 NULL

Executing the following query that uses the view created with the statement
in Listing 8.3,

SELECT * FROM prod_subs_v;

produces the following rows.

P_CODE P_NAME SUBST_ SUBST_NAME
------ ---------- ------ ----------
1 Nail 6 New Nut
2 Washer NULL NULL
3 Nut 5 Super_Nut
4 Screw NULL NULL
5 Super_Nut NULL NULL
6 New Nut NULL NULL

Chapter 8: Views 83

Nested Views

A view can be based on another view. Such a view is called a nested view.

As an example, the ps_noname_v view in Listing 8.4 hides the p_name
column and is based on the product_sell_v view created earlier.

Listing 8.4: A nested view

CREATE VIEW ps_noname_v
 (p_no , sell_price
) AS
SELECT p_no, sell_price FROM product_sell_v;

Running this statement

SELECT * FROM ps_noname_v;

will give you the following output rows

P_NO SELL_PRICE
------ ----------
1 11
2 17
3 17
4 30
5 35
6 35

Managing Views

You can easily manage your views in Oracle. To see all views in the current
database, execute the following statement.

SELECT VIEW_NAME FROM USER_VIEWS;

This will return the following output, which may differ for other databases.

VIEW_NAME

Oracle SQL: A Beginner's Tutorial84

PRODUCT_SELL_V
PRODUCT_V
PROD_SUBS_V
PS_NONAME_V

To delete a view, use the DROP VIEW statement. The syntax for the DROP
VIEW statement is as follows.

DROP VIEW view_name;

For example, the statement in Listing 8.5 will delete the ps_noname_v view.

Listing 8.5: Deleting the ps_noname_v view

DROP VIEW ps_nomane_v;

After running the statement in Listing 8.5, listing the views in the database
again will give you these results.

VIEW_NAME

PRODUCT_SELL_V
PRODUCT_V
PROD_SUBS_V

Summary

A view is a predefined query that you can use to hide columns, include pre-
computed columns, and so on. In this chapter you learned how to create and
manage views.

Chapter 9
Built-in Functions

The Oracle database provides functions that you can use in your queries.
These built-in functions can be grouped into numeric functions, character
functions, datetime functions, and functions for handling null values. The
objective of this chapter is to introduce you to some of these functions.

Numeric Functions

The following are some of the more important numeric functions.

ABS

ABS(n) returns the absolute value of n. For example, the following query
returns the absolute value of (price - 20.00) as the third column.

SELECT p_code, price, (price – 20), ABS(price – 20.00) FROM product;

Applying the query to this product table

P_CODE P_NAME PRICE LAUNCH_DT
------ --------- ---------- ---------
1 Nail 10 31-MAR-13
2 Washer 15 29-MAR-13
3 Nut 15 29-MAR-13
4 Screw 25 30-MAR-13
5 Super_Nut 30 30-MAR-13
6 Newer Nut 15 01-MAY-13

you will get this result.

Oracle SQL: A Beginner's Tutorial86

P_CODE PRICE PRICE-20.00 ABS(PRICE-20.00)
------ ----- ----------- ----------------
1 10 -10 10
2 15 -5 5
3 15 -5 5
4 25 5 5
5 30 10 10
6 15 -5 5

ROUND

ROUND(n, d) returns a number rounded to a certain number of decimal
places. The argument n is the number to be rounded and d the number of
decimal places. For example, the following query uses ROUND to round
price to one decimal place.

SELECT p_code, price, ROUND (price, 1) FROM product;

Assuming the product table contains these rows

P_CODE P_NAME PRICE LAUNCH_DT S_CODE
------ --------- ---------- --------- ------
1 Nail 10.15 31-MAR-13 NULL
2 Washer 15.99 29-MAR-13 NULL
3 Nut 15.5 29-MAR-13 6
4 Screw 25.25 30-MAR-13 NULL
5 Super_Nut 30.33 30-MAR-13 NULL
6 Newer Nut 15.55 01-MAY-13 NULL

the output of the query is this.

P_CODE PRICE ROUND(PRICE,1)
------ ---------- --------------
1 10.15 10.2
2 15.99 16
3 15.5 15.5
4 25.25 25.3
5 30.33 30.3
6 15.55 15.6

Chapter 9: Built-in Functions 87

SIGN

SIGN(n) returns a value indicating the sign of n. This function returns -1 for
n < 0, 0 for n = 0, and 1 for n > 0. As an example, the following query uses
SIGN to return the sign of (price – 15).

SELECT p_code, price, SIGN(price – 15) FROM product;

Assuming the product table has the following records

P_CODE P_NAME PRICE LAUNCH_DT
------ ---------- ------ ---------
1 Nail 10.00 31-MAR-13
2 Washer 15.00 29-MAR-13
3 Nut 15.00 29-MAR-13
4 Screw 25.00 30-MAR-13
5 Super_Nut 30.00 30-MAR-13
6 Newer Nut 15.00 01-MAY-13

the query output will be as follows.

P_CODE PRICE SIGN(PRICE-15)
------ ------ --------------
1 10.00 -1
2 15.00 0
3 15.00 0
4 25.00 1
5 30.00 1
6 15.00 0

TRUNC

TRUNC(n, d) returns a number truncated to a certain number of decimal
places. The argument n is the number to truncate and d the number of
decimal places. For example, the following query truncates price to one
decimal place.

SELECT p_code, price, TRUNC(price, 1) FROM product;

Assuming the product table contains these rows

Oracle SQL: A Beginner's Tutorial88

P_CODE P_NAME PRICE LAUNCH_DT S_CODE
------ --------- ---------- --------- ------
1 Nail 10.15 31-MAR-13 NULL
2 Washer 15.99 29-MAR-13 NULL
3 Nut 15.5 29-MAR-13 6
4 Screw 25.25 30-MAR-13 NULL
5 Super_Nut 30.33 30-MAR-13 NULL
6 Newer Nut 15.55 01-MAY-13 NULL

the query result will be as follows.

P_CODE PRICE TRUNC(PRICE,1)
------ ------ --------------
1 10.15 10.1
2 15.99 15.9
3 15.50 15.5
4 25.25 25.2
5 30.33 30.3
6 15.55 15.5

Character Functions

The following are some of the more important string functions.

CONCAT

CONCAT(string1, string2) concatenates string1 and string2 and returns the
result. If you pass a number as an argument, the number will first be
converted to a string. In the following example three strings, p_name, a
dash, and description, are concatenated.

SELECT p_code, CONCAT(CONCAT(p_name, ' -- ') , price) FROM product;

The price column value will be converted automatically to a string.

With the product table containing these rows

P_CODE P_NAME PRICE LAUNCH_DT S_CODE
------ --------- ---------- --------- ------
1 Nail 10.15 31-MAR-13 NULL

Chapter 9: Built-in Functions 89

2 Washer 15.99 29-MAR-13 NULL
3 Nut 15.5 29-MAR-13 6
4 Screw 25.25 30-MAR-13 NULL
5 Super_Nut 30.33 30-MAR-13 NULL
6 Newer Nut 15.55 01-MAY-13 NULL

executing the query against the product table will return this result.

P_CODE CONCAT(CONCAT(P_NAME,'--'),PRICE)
------ ---------------------------------
1 Nail -- 10.15
2 Washer -- 15.99
3 Nut -- 15.5
4 Screw -- 25.25
5 Super_Nut -- 30.33
6 Newer Nut -- 15.55

You can also use the || operator to concatenate strings. The following query
produces the same output as the one above.

SELECT p_code, p_name || ' -- ' || price FROM product;

LOWER and UPPERLOWER(str) converts str to lowercase and
UPPER(str) converts str to uppercase. For example, the following query
uses LOWER and UPPER.

SELECT p_name, LOWER(p_name), UPPER(p_name) FROM product;

Executing the query against the product table gives you this result.

P_NAME LOWER(P_NAME) UPPER(P_NAME)
---------- -------------- -------------
Nail nail NAIL
Washer washer WASHER
Nut nut NUT
Screw screw SCREW
Super_Nut super_nut SUPER_NUT
Newer Nut newer nut NEWER NUT

Oracle SQL: A Beginner's Tutorial90

LENGTH

LENGTH(str) returns the length of string str. The length of a string is the
number of characters in it. For example, the following query returns the
length of p_name as the second column.

SELECT p_name, LENGTH(p_name) FROM product;

The result would look like this.

P_NAME LENGTH(P_NAME)
---------- --------------
Nail 4
Washer 6
Nut 3
Screw 5
Super_Nut 9
Newer Nut 9

SUBSTR

SUBSTR(str, start_position, [length]) returns a substring of str starting
from the position indicated by start_position. If length is not specified, the
function returns a substring from start_position to the last character in str. If
length is present, the function returns a substring which is length characters
long starting from start_position. If length is less than 1, the function
returns an empty string.

Suppose you have a customer table with the following rows.

C_NO C_NAME PHONE
---- -------------- --------------
10 Standard Store 1-416-223-4455
20 Quality Store 1-647-333-5566
30 Branch Office 1-416-111-2222
40 Super Agent 1-226-777-8888

The following query

SELECT SUBSTR(phone, 3) FROM customer;

Chapter 9: Built-in Functions 91

will return the following result

SUBSTR(PHONE,3)

416-223-4455
647-333-5566
416-111-2222
226-777-8888

And the following query

SELECT CONCAT(SUBSTR(phone, 7, 3) , SUBSTR(phone, 11, 3)) phone
FROM customer;

will return this result.

PHONE

416-223
647-333
416-111
226-777

Datetime Functions

The following are some of the more important datetime functions.

CURRENT_DATE

CURRENT_DATE() returns the current date (the current date of the Oracle
server at the time you run the query). For instance, the following query

SELECT p_code, launch_dt, CURRENT_DATE FROM product;

will return a result that looks like this. The actual value of the third column
will depend on when you run the query.

P_NO LAUNCH_DT CURRENT_DATE
---- --------- ------------
1 31-MAR-13 29-APR-13
2 29-MAR-13 29-APR-13

Oracle SQL: A Beginner's Tutorial92

3 29-MAR-13 29-APR-13
4 30-MAR-13 29-APR-13
5 30-MAR-13 29-APR-13
6 01-MAY-13 29-APR-13

TO_CHAR

TO_CHAR(dt, fmt_specifier) converts a date (dt) to a string in the format
specified by fmt_specifier. In the following example, the launch_dt column
is formatted with a format specifier that has three components:

▪ DD - the day of the month
▪ MONTH - the long name of the month in uppercase
▪ YYYY - the year

SELECT p_code, TO_CHAR(launch_dt, 'DD MONTH YYYY') reformatted_dt
FROM product;

Running the query will give you something like this.
P_CODE REFORMATTED_DT
------ -----------------
1 31 MARCH 2013
2 29 MARCH 2013
3 29 MARCH 2013
4 30 MARCH 2013
5 30 MARCH 2013
6 01 MAY 2013

NULL-related functions

The following are some of the functions that can be used to handle null
values.

Chapter 9: Built-in Functions 93

COALESCE

COALESCE(expr-1, expr-2, ..., expr-n) returns the first expression from the
list that is not NULL. For example, suppose your product table contains the
following rows

P_CODE P_NAME PRICE LAUNCH_DT MIN_PRICE
------ --------- ------ --------- ---------
1 Nail 10.00 31-MAR-13 NULL
2 Washer 15.00 29-MAR-13 NULL
3 Nut 15.00 29-MAR-13 12.00
4 Screw 20.00 30-MAR-13 17.00
5 New Nut NULL 01-APR-13 10.00
6 Newer Nut NULL 01-MAY-13 NULL

and you want to view the sale_price column of the products using this
formula:

▪ If price is available (not NULL) then discount it by 10%
▪ If price is not available then return min_price
▪ If both price and min_price are not available, return 5.0

You can use COALESCE to produce the correct sale_price values:

SELECT p_name, price, min_price,
COALESCE((price * 0.9), min_price, 5.0) sale_price
FROM product;

Here is the query result.

P_NAME PRICE MIN_PRICE SALE_PRICE
--------- ------ --------- ----------
Nail 10.00 NULL 9
Washer 15.00 NULL 13.5
Nut 15.00 12.00 13.5
Screw 20.00 17.00 18
New Nut NULL 10.00 10
Newer Nut NULL NULL 5

Oracle SQL: A Beginner's Tutorial94

NULLIF

NULLIF (expr1, expr2) compares expr1 and expr2. If they are equal, the
function returns null. If they are not equal, the function returns expr1.

Suppose you store product old prices in a table named old_price. The
following old_price table, for example, shows two old prices of the Nut
product, the products with p_code = 3.

P_CODE P_NAME PRICE LAUNCH_DT
------ --------- ------ ---------
3 Nut 15.00 01-MAR-10
3 Newer Nut 12.00 01-APR-12

Just say you want to show the old products with their current price. The
following query that employs the NULLIF function can solve your problem.

SELECT p_code,
 p_name,
 NULLIF(p.price, op.price) current_price
FROM product p
JOIN old_product op USING (p_code);

Applying the query against the following product table and the old_price
table

P_CODE P_NAME PRICE LAUNCH_DT
------ --------- ------ ---------
1 Nail 10.00 31-MAR-13
2 Washer 15.00 29-MAR-13
3 Better Nut 10.00 01-MAY-13
4 Screw 15.00 01-MAY-13

returns the two old nuts as follows

P_CODE P_NAME CURRENT_PRICE
------ --------- -------------
3 Nut 10
3 Newer Nut 10

Chapter 9: Built-in Functions 95

NVL

NVL (expr1, expr2) returns exprs1 if expr1 is not NULL; otherwise, it
returns expr2.

For example, suppose you want to compare old and current prices.
Applying NVL in the following query gives you the old price from the
product table if the product has never been superseded; otherwise, if a
product has been superseded, its old price will come from the old_product
table.

SELECT p_code,
 p.p_name,
 p.price current_price,
 NVL(op.price,p.price) old_price
FROM product p
LEFT OUTER JOIN old_product op USING (p_code);

Here is the result.

P_CODE P_NAME CURRENT_PRICE OLD_PRICE
------ --------- ------------- ----------
1 Nail 10 10
2 Washer 15 15
3 Nut 10 12
3 Nut 10 15
4 Screw 15 15

The query result shows that the only product that has been superseded is
Nut, and it has been superseded twice. Therefore, its old prices are shown
from the old_product table. The other products have never been superseded
so their current and old prices are the same. Their old_price is coming from
the product table because its op.price column, the first parameter of the
NVL function, is NULL.

Oracle SQL: A Beginner's Tutorial96

Summary

You learned some of the built-in functions that you can use in the Oracle
database. If you are interested in learning more about built-in functions,
consult the Oracle manual, available at Oracle website.

Chapter 10
PL/SQL

PL/SQL, short for Procedural Language extension to SQL, complements
SQL with a procedural programming language. PL/SQL is a feature of the
Oracle database.

The objective of this chapter is to introduce some of the most commonly
used PL/SQL features such as

▪ row-by-row processing of query output
▪ if-then-else decision logic
▪ exception handling
▪ user-defined functions

Row-by-row Processing

You learned in the previous chapters that the output of a query can be more
than one row. You can write a PL/SQL program to process query output
row-by-row sequentially.

The structure of the PL/SQL program for row-by-row processing is as
follows.

BEGIN
 FOR output_row_variable IN (
 SELECT ...)
 LOOP
 row processing statements;
 END LOOP;
END;

Oracle SQL: A Beginner's Tutorial98

For example, the program in Listing 10.1 makes use of a join query and its
output rows are stored in a variable named invc. In the processing loop,
every row from invc is inserted into the invoice table.

Listing 10.1: Row-by-row processing

BEGIN
 FOR invc IN
 (SELECT c_no,
 c_name,
 p_name,
 qty,
 price unit_prc,
 (qty * price) total_prc,
 sysdate invoice_dt,
 launch_dt
 FROM c_order NATURAL
 JOIN product NATURAL
 JOIN customer
)
 LOOP
 INSERT
 INTO invoice VALUES
 (
 invc.c_no,
 invc.c_name,
 invc.p_name,
 invc.qty,
 invc.unit_prc,
 invc.total_prc,
 invc.invoice_dt
);
 END LOOP;
END;

Suppose you have c_order, customer, and product tables like the ones
shown in Tables 10.1, 10.2, and 10.3, respectively, and suppose you also
have an invoice table that is empty.

Chapter 10: PL/SQL 99

C_NO P_CO QTY ORDER_DT
---- ---- ---- ---------
10 1 100 01-APR-13
10 2 100 01-APR-13
20 1 200 01-APR-13
40 4 400 02-APR-13
40 5 400 03-APR-13

Table 10.1: The c_order table

C_NO C_NAME C C_DATE
---- --------------- - ---------
10 Standard Store 1 25-JUL-13
20 Quality Store 2 27-JUL-13
30 Head Office 3 19-JUL-13
40 Super Agent 4 14-JUL-13

Table 10.2: The customer table

P_CODE P_NAME PRICE LAUNCH_DT
------ ---------- ------ ---------
1 Nail 10.00 31-MAR-13
2 Washer 15.00 29-MAR-13
3 Nut 15.00 29-MAR-13
4 Screw 25.00 30-MAR-13
5 Super_Nut 30.00 30-MAR-13
6 New Nut NULL NULL

Table 10.3: The product table

If you enter and execute the PL/SQL program in Listing 10.1 in SQL*Plus,
your SQL*Plus screen will look like that in Figure 10.1. Note that to
execute a PL/SQL program you need to enter the forward slash / after the
last END;.

Oracle SQL: A Beginner's Tutorial100

Figure 10.1: Executing PL/SQL program in SQL*Plus

After the program is executed, the invoice table will be populated with the
following rows.

C_NO C_NAME P_NAME QTY UNIT_PRC TOTAL_PRC INVOICE_DT
---- -------------- ---------- ---- -------- --------- ----------
10 Standard Store Washer 100 15 1500 12-SEP-13
10 Standard Store Nail 100 10 1000 12-SEP-13
20 Quality Store Nail 200 10 2000 12-SEP-13

Chapter 10: PL/SQL 101

40 Super Agent Screw 400 25 10000 12-SEP-13
40 Super Agent Super_Nut 400 30 12000 12-SEP-13

If-Then-Else Decision Logic

You can use an if statement to branch in a program. For instance, the if-
then-else decision logic in Listing 10.2 treats the output rows differently
based on the product launch_dt.

Listing 10.2: If-then-else decision logic

BEGIN
 FOR invc IN
 (SELECT c_no,
 c_name,
 p_name,
 qty,
 price unit_prc,
 (qty * price) total_prc,
 sysdate invoice_dt,
 launch_dt
 FROM c_order NATURAL
 JOIN product NATURAL
 JOIN customer
)
 LOOP
 IF invc.launch_dt IS NOT NULL THEN
 INSERT
 INTO invoice VALUES
 (
 invc.c_no,
 invc.c_name,
 invc.p_name,
 invc.qty,
 invc.unit_prc,
 invc.total_prc,
 invc.invoice_dt
);
 ELSE
 NULL;
 END IF;

Oracle SQL: A Beginner's Tutorial102

 END LOOP;
END;

For this example, I’m using a c_order table with the following rows. The
difference between this c_order table and the one used in the previous
example is this table has a sixth row that records the sale of a product (p_co
= 6) with a null launch_dt.

C_NO P_CO QTY ORDER_DT
---- ---- ---- ---------
10 1 100 01-APR-13
10 2 100 01-APR-13
20 1 200 01-APR-13
40 4 400 02-APR-13
40 5 400 03-APR-13
40 6 600 01-MAY-13

Because the product’s launch_dt is NULL, the process does not insert an
invoice row for this additional order. If you execute the program in Listing
10.2, the same rows as in the previous example will be inserted into the
invoice table.Exception HandlingPL/SQL allows you to handle errors (or
exceptions) in your program using the EXCEPTION statement. Its syntax is
as follows.

EXCEPTION
WHEN exception_name
THEN exception_handling_statement;

For example, suppose you want to query a specific invoice from an invoice
table using the PL/SQL program in Listing 10.3. The SELECT INTO query
in Listing 10.3 stores its output rows into an invc variable, which is declared
to have a ROWTYPE data type.

Listing 10.3: PL/SQL program without exception handling

DECLARE
 invc invoice%ROWTYPE;
BEGIN
 SELECT *
 INTO invc
 FROM invoice
 WHERE c_no = '&c_no_prompt'

Chapter 10: PL/SQL 103

 AND p_name = '&p_name_prompt'
 AND TO_CHAR(invoice_dt, 'DD-MON-YY') = '&invoice_dt_prompt';
 dbms_output.put_line(invc.c_name || ' - ' || invc.p_name || ' - '

|| invc.total_prc);
END;

Assume the invoice table has the following rows.

C_NO C_NAME P_NAME QTY UNIT_PRC TOTAL_PRC INVOICE_DT
---- -------------- ---------- ---- -------- --------- ----------
10 Standard Store Washer 100 15 1500 12-SEP-13
10 Standard Store Nail 100 10 1000 12-SEP-13
20 Quality Store Nail 200 10 2000 12-SEP-13
40 Super Agent Screw 400 25 10000 12-SEP-13
40 Super Agent Super_Nut 400 30 12000 12-SEP-13

If you execute the program in Listing 10.3, you will be prompted three
times to enter the invoice’s c_no, p_name, and invoice_dt you are querying.
If the invoice is not available in the invoice table, the program will abort,
and you will see a “no data found” error message. Your SQL*Plus will look
like this.

SQL> DECLARE
 2 invc invoice%ROWTYPE;
 3 BEGIN
 4 SELECT *
 5 INTO invc
 6 FROM invoice
 7 WHERE c_no = '&c_no_prompt'
 8 AND p_name = '&p_name_prompt'
 9 AND TO_CHAR(invoice_dt, 'DD-MON-YY') = '&invoice_dt_prompt';
 10 dbms_output.put_line(invc.c_name || ' - ' || invc.p_name || '

- ' || invc.total_prc);
 11 END;
 12 /
Enter value for c_no_prompt: 10
old 7: WHERE c_no = '&c_no_prompt'
new 7: WHERE c_no = '10'
Enter value for p_name_prompt: Nail
old 8: AND p_name = '&p_name_prompt'
new 8: AND p_name = 'Nail'
Enter value for invoice_dt_prompt: 11-SEP-13

Oracle SQL: A Beginner's Tutorial104

old 9: AND TO_CHAR(invoice_dt, 'DD-MON-YY') =
'&invoice_dt_prompt';

new 9: AND TO_CHAR(invoice_dt, 'DD-MON-YY') = '11-SEP-13';
DECLARE
*
ERROR at line 1:
ORA-01403: no data found
ORA-06512: at line 4
SQL>

To handle the error (exception), you can add an exception-handling
statement to the program in Listing 10.3. Listing 10.4 shows a modified
version of the program in Listing 10.3. There is an exception handler in the
program in Listing 10.4.

Listing 10.4: With Exception Handling

DECLARE
 invc invoice%ROWTYPE;
BEGIN
 SELECT *
 INTO invc
 FROM invoice
 WHERE c_no = '&c_no_prompt'
 AND p_name = '&p_name_prompt'
 AND TO_CHAR(invoice_dt, 'DD-MON-YY') = '&invoice_dt_prompt';
 dbms_output.put_line(invc.c_name || ' - ' || invc.p_name || ' - '

|| invc.total_prc);
EXCEPTION
WHEN no_data_found THEN
 dbms_output.put_line('Error: The invoice does not exist!');
END;

If the invoice you are querying is not in the invoice table, the WHEN
no_data_found will trap and handle the error, and displays its message. In
other words, the program will not abort. To see the exception-handler’s
message, issue a set serveroutput on command before you execute the
program. The SQL*Plus console will look like this.

SQL> set serveroutput on;
SQL> DECLARE
 2 invc invoice%ROWTYPE;
 3 BEGIN

Chapter 10: PL/SQL 105

 4 SELECT *
 5 INTO invc
 6 FROM invoice
 7 WHERE c_no = '&c_no_prompt'
 8 AND p_name = '&p_name_prompt'
 9 AND TO_CHAR(invoice_dt, 'DD-MON-YY') = '&invoice_dt_prompt';
 10 dbms_output.put_line(invc.c_name || ' - ' || invc.p_name || '

- ' || invc.total_prc);
 11 EXCEPTION
 12 WHEN no_data_found THEN
 13 dbms_output.put_line('Error: The invoice does not exist!');
 14 END;
 15 /
Enter value for c_no_prompt: 10
old 7: WHERE c_no = '&c_no_prompt'
new 7: WHERE c_no = '10'
Enter value for p_name_prompt: Nails
old 8: AND p_name = '&p_name_prompt'
new 8: AND p_name = 'Nails'
Enter value for invoice_dt_prompt: 12-SEP-13
old 9: AND TO_CHAR(invoice_dt, 'DD-MON-YY') =

'&invoice_dt_prompt';
new 9: AND TO_CHAR(invoice_dt, 'DD-MON-YY') = '12-SEP-13';
Error: The invoice does not exist!

PL/SQL procedure successfully completed.
SQL>

User-defined Functions

You learned Oracle built-in functions in Chapter 9, “Built-in Functions.”
Using PL/SQL you can write your own functions. The syntax for a user-
defined function is as follows.

CREATE FUNCTION FUNCTION name(parameters)
 RETURN data_type
 IS
 Variable_declarations
 BEGIN
 Processing_statements
 EXCEPTION

Oracle SQL: A Beginner's Tutorial106

 Exception_handling statements
 END;

For example, Listing 10.5 shows a user-defined function named
calc_new_price. The function takes two parameters and uses the values of
the parameters to calculate a new price and returns the result. If you execute
the statement in Listing 10.5, a stored function named calc_new_price will
be created and stored in your database.

Listing 10.5: Creating function calc_new_price

CREATE FUNCTION calc_new_price(
 exist_price NUMBER,
 change_percentage NUMBER)
 RETURN NUMBER
 IS
 BEGIN
 RETURN exist_price + (exist_price * change_percentage);
 END;

Now you can use the function just like you would any Oracle built-in
function. The update statement in Listing 10.6, for example, uses the
calc_new_price function to calculate new prices and update the product
prices.

Listing 10.6: Using the calc_new_price function

UPDATE product SET price = calc_new_price(price, 0.1) ;

Summary

In this chapter you learned several PL/SQL features. However, what’s
presented here is just the tip of the iceberg. PL/SQL has many other features
that you will need in real-world application development. These other
features are unfortunately beyond the scope of this book.

Chapter 11
The Data Dictionary

The data dictionary of a database contains data about the data in the
database. This data about data is also known as metadata. The data in the
data dictionary is stored as tables. As such, you can use your SQL skills
gained so far to query the data dictionary of your database. The tables and
their data are maintained by the Oracle database system. You should not
access the dictionary tables directly. Instead, use the Oracle-supplied views
of the dictionary.

In this chapter you explore the views in the data dictionary.

The Dictionary View

The dictionary view is one of the views in the data dictionary. It returns all
the views available in your dictionary. The view has two columns and can
have over 650 rows.

The query in Listing 11.1 can be used to list all the views in the data
dictionary.

Listing 11.1: Exploring the data dictionary

SELECT * FROM dictionary;

Here is partial output of the query in Listing 11.1. Remember, the actual
output has many more rows.

Oracle SQL: A Beginner's Tutorial108

TABLE_NAME COMMENTS
-------------------- --
ALL_XML_SCHEMAS Description of all XML Schemas that user has
 privilege to reference
ALL_XML_SCHEMAS2 Dummy version of ALL_XML_SCHEMAS that does not
 have an XMLTYPE column
USER_RESOURCE_LIMITS Display resource limit of the user
USER_PASSWORD_LIMITS Display password limits of the user
USER_CATALOG Tables, Views, Synonyms and Sequences owned by
 the user
ALL_CATALOG All tables, views, synonyms, sequences
 accessible to the user
USER_CLUSTERS Descriptions of user's own clusters
ALL_CLUSTERS Description of clusters accessible to the user
USER_CLU_COLUMNS Mapping of table columns to cluster columns
USER_COL_COMMENTS Comments on columns of user's tables and views

Some of the views listed above will be explained in the next sections.

The User_Catalog View

The user_catalog view stores the names of your tables and views. Use the
query in Listing 11.2 to see the tables and views that you have in your
database. These tables and views are known as user tables and views (as
opposed to system tables and views).

Listing 11.2: Using the user_catalog view

SELECT * FROM user_catalog;

The query output from running the query in Listing 11.2 in your database
may not be exactly the same as what I have got here. Here is mine.

TABLE_NAME TABLE_TYPE
-------------- ----------
CUSTOMER TABLE
C_ORDER TABLE
PRODUCT TABLE
C_SHIP TABLE
OLD_PRODUCT TABLE
PRICE_LOG TABLE

Chapter 11: The Data Dictionary 109

PROD_SUBST TABLE
SHIPMENT TABLE
PRODUCT_SELL_V VIEW
PRODUCT_V VIEW
PROD_SUBS_V VIEW
PS_NONAME_V VIEW

The User_Tab_Cols View

You can get table and view names from the User_Catalog view. To see the
details of each table and view, can you query the user_tab_cols view. For
example, the query in Listing 11.3 shows you the column names, and their
data type, length, precision and scale, of the product table.

Listing 11.4: Finding out the columns metadata of the product table

SELECT column_name,
 data_type,
 data_length,
 data_precision,
 data_scale
FROM user_tab_cols
WHERE table_name = 'PRODUCT';

Here is the query output.

COLUMN_NAME DATA_TYPE DATA_LENGTH DATA_PRECISION DATA_SCALE
----------- --------- ----------- -------------- ----------
P_CODE VARCHAR2 6
P_NAME VARCHAR2 14
PRICE NUMBER 22 4 2
LAUNCH_DT DATE 7

In addition to these five columns, the USER_TAB_COLS view has many
other columns, such as those for showing the owner and the default value.

Oracle SQL: A Beginner's Tutorial110

The User_Procedures View

The user_procedures view contains information about your stored
programs, including functions, procedures and triggers. Use the query in
Listing 11.5 to show your stored programs. Note that this view has some
other columns that provide more information about the stored programs.

Listing 11.5: Revealing the metadata of stored procedures and
functions

SELECT object_name, object_type FROM user_procedures;

Executing the query against your database will give you something like the
following output rows.

OBJECT_NAME OBJECT_TYPE
----------------- -----------
CALC_NEW_PRICE FUNCTION
UPD_PRICE PROCEDURE
PRICE_UPD_LOGGING TRIGGER

The User_Source View

The last view I will explain is the user_source view. This view contains the
source code of your stored functions. For example, the query in Listing 11.6
returns the source of the CALC_NEW_PRICE function.

Listing 11.6: Reading the source code of a function

SELECT line, text FROM user_source WHERE name = 'CALC_NEW_PRICE';

Executing the query will show you the lines of codes of the function as
shown here.

Chapter 11: The Data Dictionary 111

NAME TYPE LINE TEXT
-------------- -------- --
CALC_NEW_PRICE FUNCTION 1 FUNCTION calc_new_price(
CALC_NEW_PRICE FUNCTION 2 exist_price NUMBER,
CALC_NEW_PRICE FUNCTION 3 inc NUMBER)
CALC_NEW_PRICE FUNCTION 4 RETURN NUMBER
CALC_NEW_PRICE FUNCTION 5 IS
CALC_NEW_PRICE FUNCTION 6 BEGIN
CALC_NEW_PRICE FUNCTION 7 RETURN exist_price + (exist_price *
 inc);
CALC_NEW_PRICE FUNCTION 8 END;

Summary

The data dictionary contains the metadata of your database. In this chapter
you learned to use some of the views in the data dictionary.

Oracle SQL: A Beginner's Tutorial112

Appendix A
Installing Oracle Database XE

To try out the examples in this book, you need an Oracle database. Because
you need to create tables and other objects, as well as store and update data,
it is best if you have your own database. Fortunately, you can download
Oracle Database Express Edition (a.k.a. XE) for free from Oracle’s website.
As you will learn in this appendix, Oracle Database XE comes with a tool
called SQL*Plus that you can use to run SQL statements.

Downloading Oracle Database XE

This database software can be downloaded from this web page.

http://www.oracle.com/technetwork/indexes/downloads/index.html

Scroll down until you see Database 11g Express Edition on the list and click
the link. Then, select the version for your platform (Windows or Unix) and
follow the download instructions. You will be requested to accept the
license agreement and, if you don’t have one already, create an account.
Don’t worry, creating an account is free.

Note
The book examples are tested on Windows. They should work
equally well on Unix. The following installation guide is for
Windows only.

Oracle SQL: A Beginner's Tutorial114

Installing Oracle Database XE

Unzip the downloaded file to a folder in your local drive, then double-click
the setup.exe file. You will see the Install Wizard welcome window like that
in Figure A.1.

Figure A.1: The Welcome page of the Install Wizard

Click the Next button, accept the agreement on the License Agreement
window, and click the Next button. The next window that will appear is the
“Choose Destination Location” window like the one in Figure A.2.

Appendix A: Installing Oracle Database XE 115

Figure A.2: Choosing the installation destination

Click the Browse button and navigate to a directory of your choice, then
click the Next button. If you are prompted to enter port numbers, just accept
the defaults (you might need to change, if for example the suggested default
port numbers are already used). After that, click the Next button. You will
be presented with the Passwords window (See Figure A.3)

Oracle SQL: A Beginner's Tutorial116

Figure A.3: Entering and confirming the password

Enter your password and confirm it. Make a note of this password as you
will need it. Note that this password is for both the SYS and SYSTEM
accounts. Then, click the Next button and you will see the Summary
window (See Figure A.4)

Appendix A: Installing Oracle Database XE 117

Figure A.4: The Summary window

Click the Install button, and on the window that appears next (the
Installation Completion window), click the Finish button.

The next section shows you how to create a database user that you will
use to test the book examples.

Creating a User with SQL*Plus

To create a database user and to run an SQL statement, use SQL*Plus, a
tool that comes with the Oracle database. To run SQL*Plus, select “Run
SQL…” from your Windows Start menu, as shown in Figure A.5.

Oracle SQL: A Beginner's Tutorial118

Figure A.5: Selecting the Run SQL Command Line

SQL*Plus will open, as shown in Figure A.6. SQL*Plus is the command-
line console client of the Oracle database. You use it, among other things, to
enter and execute SQL statements and PL/SQL programs.

Appendix A: Installing Oracle Database XE 119

Figure A.6: The SQL*Plus console

Connect as SYSTEM by typing the following command and pressing Enter

CONNECT SYSTEM/password AS SYSDBA;

Here, password is the password of the SYSTEM user you entered during
installation. To create a user, enter and execute the following command.

CREATE USER name IDENTIFIED BY password;

Replace name with the actual user name you want to create and password
with a password. For example, the following command creates a user
named john with password secret.

CREATE USER john IDENTIFIED BY secret;

Next, enter and execute the following command, replacing name with the
user name used in the previous command:

GRANT ALL PRIVILEGES TO name;

The GRANT ALL command gives the specified users all available
permissions. Giving a user all privileges may not be a wise thing to do in a
real life system.

The user now has permissions to test the book examples. To log on,
enter this command to SQL*Plus.

CONNECT name/password;

For example

CONNECT john/secret;

Oracle SQL: A Beginner's Tutorial120

A database named “XE” was created during installation. The CONNECT
command above connects you to this database.

You are now set to test the book examples.

Appendix B
Oracle Built-in Data Types

The Oracle database has 18 built-in data types, shown in Table B.1.
Data Type Description

VARCHAR2(ml) Variable-length character string having a maximum
length of ml

NVARCHAR2(ml) The Unicode version of VARCHAR2
NUMBER(p, s) Number having precision p and scale s
DATE Valid date ranging from January 1, 4712 BC, to

December 31, 9999 AD
BINARY_FLOAT 32-bit floating point number
BINARY_DOUBLE 64-bit floating point number
TIMESTAMP The year, month, and day values of the date, plus the

hour, minute, and second values of the time
INTERVAL YEAR Stores a period of time in years and months
INTERVAL DAY Stores a period of time in days, hours, minutes, and

seconds
RAW(size) Raw binary data of the length of size bytes
LONG RAW The larger version of RAW
ROWID Base-64 string representing the unique address of a row

in its table
CHAR(l) Fixed-length character string having length l
NCHAR(l) Unicode version of CHAR
CLOB A character large object containing single-bytes or

multi-byte characters
NCLOB Unicode version of CLOB
BLOB A binary large object
BFILE Contains the locator to a large binary file stored outside

the database

Table B.1: Oracle Built-in Data Types

Oracle SQL: A Beginner's Tutorial122

Appendix C
Indexes

An index entry of the Index section of a book points to the location of the
word/phrase indicated by the entry. The index entry helps you find the
pages containing the word/phrase. Similarly, a column index of a table can
speed up your finding data in a database. If your query has a condition on a
column (or columns) that is (are) not indexed, the table will be fully
scanned and the query will be slower than if an index was available.

This appendix shows you how to create various indexes. The topics
covered are as follows.

▪ Creating an index
▪ Multi-column indexes
▪ Bit map and join bit map indexes
▪ Function-based indexes
▪ Deleting an index

Creating an Index

To create an index on a column or columns of a table, use this statement.

CREATE INDEX index ON table (columns);

For example, the statement in Listing C.1 creates an index named
p_name_ix on the p_name column of the product table.

Listing C.1: Creating an index on the p_name in the product table

CREATE INDEX p_name_ix ON product (p_name);

Oracle SQL: A Beginner's Tutorial124

Unique Index Names and Columns
You cannot have duplicate index names. In addition, you cannot
have the same column(s) indexed more than once.

Multi-Column Indexes

An index can be based on multiple columns. A multi-column index is useful
when you need to search on rows having the same value on an indexed
column. For instance, if your query has to search on the p_name column of
the product table and there can be more than one row with the same p_name
but with different launch dates, it would help if you create an index on both
p_name and launch_dt.

As an example, the statement in Listing C.2 creates a multi-column
index on the p_name and launch_dt columns of the product table.

Listing C.2: Creating an index on multiple columns

CREATE INDEX p_name_launch_ix ON product (p_name, launch_dt);

Bitmap Indexes

The indexes created in Listings C.1 and C.2 are ordinary indexes, which are
technically called B-tree indexes. Another type of index, the bitmap index,
can be a better choice for tables whose rows will not be changed
concurrently, such as in a low-volume data entry environment. A product
table is an example of such low data maintenance and therefore is suitable
for bitmap indexes. By contrast, the customer order table gets rows inserted
more frequently and is not a good candidate for bitmap indexes.

For example, the statement in Listing C.3 creates a bitmap index named
order_ibx on the c_order table.

Listing C.3: Creating a bitmap index

CREATE BITMAP INDEX order_bix ON c_order (p_code, c_no);

Appendix C: Indexes 125

Bitmap Join Indexes

The bitmap join index is a variant of the bitmap index. The bitmap join
index is specifically created to expedite column retrieval from a joined table
in a join query.

For example, the statement in Listing C.4 creates a bitmap join index on
the c_name column. Note that the syntax for creating a bitmap join index
has additional clauses, FROM and WHERE. These clauses define the join
of the tables.

Listing C.4: Creating a bitmap join index on the c_name column

CREATE BITMAP INDEX c_name_bji ON c_order(c.c_name)
FROM c_order o, customer c
WHERE o.c_no = c.c_no;

c_name can now be retrieved faster using the index than if it has to be
scanned from the c_order table.

While the aim of having a bitmap join index is to expedite a specific
column retrieval (c_name in the statement in Listing C.4), joining tables
generally make use of the primary key indexes of the tables as they are
mostly joined on these keys. If you often need to join on other columns, you
may want to create indexes on these columns as well.

Function-based Indexes

There are often cases where capitalization is used inconsistently when
entering data into a table. Sometimes, a column value is entered in all
capitals, sometimes in lowercase, and sometimes in mixed cases.

For example, the following customer table shows inconsistent
capitalization has been used for the c_name column.

C_NO C_NAME PHONE
---- -------------- --------------
10 Standard Store 1-416-223-4455

Oracle SQL: A Beginner's Tutorial126

20 Quality store 1-647-333-5566
30 Branch Office 1-416-111-2222
40 Super Agent 1-226-777-8888
50 New Brand 1-905-777-9999
60 NEW STORE 1-905-000-9999

This poses a problem because a query may not return all the data intended.
For example, in the case of the customer table above, searching on “new
store” will not find “NEW STORE.” To get around this problem, you can
use the UPPER function in your query, as shown in Listing C.5.

Listing C.5: Using the UPPER function in a query

SELECT * FROM customer WHERE UPPER(c_name) LIKE '%STORE';

For this query to run faster, you should also create an index that is based on
the UPPER-ed version of the c_name column. Listing C.6 shows how to do
it.

Listing C.6: A function-based index

CREATE INDEX func_name_ix ON customer
 (UPPER(c_name)
) ;

Deleting An Index

To delete an index of any type, use the DROP INDEX statement. For
example, the statement in Listing C.7 deletes the s_name_bji index.

Listing C.7: Deleting a bitmap join index

DROP INDEX s_name_bji;

Index

ABS function..85
aggregate function..29
alias..25
ALL operator..66
American National Standards Institute...1
ANSI..1
ANY operator...66
AS keyword..50
asterisk...14
B-tree index..124
BETWEEN Operator..20
BFILE data type...121
BINARY_DOUBLE data type...121
BINARY_FLOAT data type...121
bitmap join index..125
BLOB data type..121
built-in function..85, 105
CHAR data type...121
CLOB data type..121
COALESCE function...93
column alias...50
comparison operator...23
compound condition...16
CONCAT function...88
CONNECT command..5
CREATE TABLE statement...6, 7, 23
CREATE VIEW statement...79
CURRENT_DATE function...91
data definition language...1
data dictionary..107
data manipulation language..1
data type...121
DATE data type..121
datetime function..91
DELETE statement...10, 11

Oracle SQL: A Beginner's Tutorial128

dictionary view...107
DISTINCT keyword...28
expression...26
foreign key...47
FROM clause...13
FULL outer join...53
GRANT ALL command...119
group..41
GROUP BY clause...41, 44
HAVING clause...43
HAVING condition..43
IBM..1
if-then-else...101
IN operator...20, 65
index entry..123
inner join..53
INSERT statement..7
INTERSECT operator..76
INTERVAL DAY data type...121
INTERVAL YEAR data type...121
IS NOT NULL operator...23
IS NULL operator..23
join...47
JOIN clause..47, 48
JOIN keyword..48
LEFT outer join..53
LENGTH function..90
LIKE operator..21, 22
LONG RAW data type...121
metadata...107
MINUS operator...77
MySQL..1
NATURAL keyword..61
NCHAR data type..121
NCLOB data type...121
NOT IN operator..65
NOT operator...19, 23
NULL...11, 42, 55
NULLIF function...94
NUMBER data type...121
NVARCHAR2 data type..121
NVL function...95
operator..16
Oracle database..1, 5
Oracle Database XE...5

downloading...113
installation..114

ORDER BY clause...74

Index 129

ORDER clause...41
outer join..53
PL/SQL..2, 97
predicate...16
primary key..7, 47
query..13
query output...37
RAW data type...121
RDBMS..1
relational database..5
RIGHT outer join...53
ROLLBACK command..10, 11
ROUND function...86
ROWID data type...121
ROWNUM...27
SELECT clause..13, 14, 26
SELECT statement..13, 15, 18, 41, 48, 74, 79
SIGN function..87
SQL..

2008 standard...1
2011 standard...1

SQL reserved words...3
SQL*Plus...5
Structured Query Language..1
subquery...63, 66

comparison operator...65
multiple-row...65
nested...69
single-row..63

SUBSTR function..90
table alias..50
TIMESTAMP data type...121
TO_CHAR function...92
TRUNC function..87
UNION ALL operator..73
UPDATE statement..9, 11
UPPER function...89
user_catalog view...108
user_procedures view...110
user_source view..110
user_tab_cols view...109
USING keyword...61
VARCHAR2 data type...121
view..79

nested...83
view management...83
WHERE clause...9, 10, 13, 44, 65
WHERE condition..11, 43, 68

Oracle SQL: A Beginner's Tutorial130

wildcard character..22

	Table of Contents
	Introduction
	Chapter 1 Storing and Maintaining Data
	Chapter 2 Basic Queries
	Chapter 3 Query Output
	Chapter 4 Grouping
	Chapter 5 Joins
	Chapter 6 Subqueries
	Chapter 7 Compound Queries
	Chapter 8 Views
	Chapter 9 Built-in Functions
	Chapter 10 PL/SQL
	Chapter 11 The Data Dictionary
	Appendix A Installing Oracle Database XE
	Appendix B Oracle Built-in Data Types
	Appendix C Indexes
	Index

Oracle SQL

A Beginner’s Tutorial

Djoni Darmawikarta

Oracle SQL: A Beginner’s Tutorial
Copyright © 2014 Brainy Software Inc.
First Edition: April 2014

All rights reserved. No part of this book may be reproduced or transmitted in any form or
by any means, electronic or mechanical, including photocopying, recording, or by any
information storage and retrieval system, without written permission from the publisher,
except for the inclusion of brief quotations in a review.

ISBN: 978-0-9808396-4-7

Book and Cover Designer: Mona Setiadi

Technical Reviewer: Budi Kurniawan
Indexer: Chris Mayle

Trademarks
Oracle and Java are registered trademarks of Oracle and/or its affiliates.
UNIX is a registered trademark of The Open Group.
Microsoft Internet Explorer is either a registered trademark or a trademark of Microsoft
Corporation in The United States and/or other countries.
Apache is a trademark of The Apache Software Foundation.
Firefox is a registered trademark of the Mozilla Foundation.
Google is a trademark of Google, Inc.

Throughout this book the printing of trademarked names without the trademark symbol is
for editorial purpose only. We have no intention of infringement of the trademark.

Warning and Disclaimer
Every effort has been made to make this book as accurate as possible. The author and the
publisher shall have neither liability nor responsibility to any person or entity with respect
to any loss or damages arising from the information in this book.

Table of Contents

Introduction..1
SQL Overview...1
About This Book...2
Code Download...3

Chapter 1: Storing and Maintaining Data...5
Selecting A Database to Use...5
Creating a Table...6
Adding Data...7
Updating Data..9
Deleting Data...10
Summary..12

Chapter 2: Basic Queries...13
The SELECT statement...13
Querying All Data...13
Selecting Specific Columns...14
Selecting Rows with WHERE...15
Compound Conditions...16
Evaluation Precedence and the Use of Parentheses.................................18
The NOT logical operator..19
The BETWEEN Operator..20
The IN Operator...20
The LIKE Operator..21
Escaping the Wildcard Character..22
Combining the NOT operator..23
Summary..24

Chapter 3: Query Output..25

Oracle SQL: A Beginner's Tutorialiv

Column Aliases..25
Expressions..26
Limiting the Number of Rows...27
The DISTINCT Keyword..28
Aggregate Functions..29
Ordering Output Rows...33
Storing Query Output..37
Summary..39

Chapter 4: Grouping..41
The GROUP BY Clause..41
The HAVING Keyword..43
Summary..45

Chapter 5: Joins...47
Primary Keys and Foreign Keys..47
Querying Multiple Tables..48
Using Table Aliases...50
Joining More than Two Tables..50
Outer Joins...53
Self-Joins...56
Multiple Uses of A Table..58
Natural Joins..59
Summary..61

Chapter 6: Subqueries...63
Single-Row Subqueries...63
Multiple-Row Subqueries..65
Multiple Nested Subqueries...69
Correlated Subqueries..70
Summary..71

Chapter 7: Compound Queries...73
UNION ALL..73
UNION..75
INTERSECT..76
MINUS..77
Summary..78

Chapter 8: Views..79
Creating and Using Views...79
Nested Views...83
Managing Views..83

Table of Contents v

Summary..84
Chapter 9: Built-in Functions...85

Numeric Functions..85
Character Functions...88
Datetime Functions..91
NULL-related functions..92
Summary..96

Chapter 10: PL/SQL..97
Row-by-row Processing..97
If-Then-Else Decision Logic...101
User-defined Functions..105
Summary..106

Chapter 11: The Data Dictionary...107
The Dictionary View...107
The User_Catalog View..108
The User_Tab_Cols View...109
The User_Procedures View...110
The User_Source View..110
Summary..111

Appendix A: Installing Oracle Database XE...113
Downloading Oracle Database XE..113
Installing Oracle Database XE..114
Creating a User with SQL*Plus...117

Appendix B: Oracle Built-in Data Types...121
Appendix C: Indexes..123

Creating an Index...123
Multi-Column Indexes...124
Bitmap Indexes..124
Bitmap Join Indexes..125
Function-based Indexes...125
Deleting An Index...126

Index..127

Oracle SQL: A Beginner's Tutorialvi

Introduction

Welcome to Oracle SQL: A Beginner’s Tutorial. This book is for you if you
want to learn SQL the easy way. SQL, which stands for Structured Query
Language and is pronounced es-cue-el, is the standard language you use to
interact with a relational database management system (RDBMS). This
book uses the free edition of the Oracle database to show how SQL works.

SQL Overview

Initially developed at IBM in the early 1970s, SQL was formalized by the
American National Standards Institute (ANSI) in 1986. Since then the SQL
standard has been revised seven times. The examples in this book were
tested using Oracle database 11g Release 2, which conforms to the
SQL:2008 standard. This standard is one revision earlier than SQL:2011,
the latest standard.

SQL consists of a data definition language (DDL) and a data
manipulation language (DML). The DDL is used to create, delete, and alter
the structure of a table and other database objects. The DML is used to
insert, retrieve, and update data in a table or tables.

Many database vendors implement a version of SQL that is not 100%
compliant with the standard. They often add unique features to their SQL,
resulting in an SQL dialect. For example, the following are some of the
differences between Oracle and MySQL.

▪ The AS reserved word in the CREATE TABLE AS INSERT
statement is mandatory in Oracle but optional in MySQL

▪ An Oracle INSERT statement can only insert one row; a MySQL
INSERT statement can insert multiple rows.

Oracle SQL: A Beginner's Tutorial2

▪ Oracle supports UNION, INTERSECT and MINUS set operators
whereas MySQL only supports UNION.

▪ Oracle’s PL/SQL equivalent in MySQL is the stored routine (MySQL
did not give a name to its procedural language extension). PL/SQL
has much more functions than the stored routine.

Because of these dialects, SQL statements written for one RDBMS may not
necessarily work in other RDBMS’s.

About This Book

 This book consists of eleven chapters and three appendixes. This section
gives you an overview of each chapter and appendix.

Chapter 1, “Storing and Maintaining Data” starts the book by discussing
how data is stored and maintained in a relational database. In this chapter
you learn how to use SQL INSERT, UPDATE, and DELETE statements.

Chapter 2, “Basic Queries” explains how to construct queries using the
SELECT statement.

Chapter 3, “Query Output” shows how you can format query outputs
beyond simply displaying columns of data from a database.

Chapter 4, “Grouping” explains what a group is, how to create a group,
and how to apply aggregate functions to a group.

Chapter 5, “Joins” talks about the JOIN clause for querying data from
multiple tables.

Chapter 6, “Subqueries” discusses the subquery. A subquery is a query
that can be nested in another query.

Chapter 7, “Compound Queries” talks about set operators for combining
the outputs of multiple queries.

Chapter 8, “Views” discusses views, which are predefined queries that
you create and store in a database.

Introduction 3

Chapter 9, “Built-in Functions” discusses some of the most commonly
used built-in functions in the Oracle database.

Chapter 10, “PL/SQL” introduces Oracle’s PL/SQL programming
language. PL/SQL extends SQL.

Chapter 11, “The Data Dictionary” shows how to use the data
dictionary, the metadata of a database, to find information about the
database.

Appendix A, “Installing Oracle Database XE” is a guide to installing
Oracle Database Express Edition and making preparations for trying out the
book examples.

Appendix B, “Oracle Built-in Data Types” provides a list of Oracle
built-in data types.

Finally, Appendix C, “Indexing” covers the various indexing techniques
available in the Oracle database.

Coding ConventionSQL is not case sensitive. In this book, however, SQL
reserved words such as CREATE and SELECT and keywords such as
COUNT and MAX are written in upper case. To find the complete SQL
reserved words, please refer to the Oracle SQL manuals. Non-reserved
words, such as table and column names, are written in lower case.

In the book examples a single space is used between words or
expressions. Extra spaces are allowed and have no effect.

Code Download

The examples accompanying this book can be downloaded from this site:

http://books.brainysoftware.com/download

Oracle SQL: A Beginner's Tutorial4

Chapter 1
Storing and Maintaining Data

Data in a relational database (such as the Oracle database) is stored in
tables. A very simple sales database, for example, might have four tables
that store data on products, customers, suppliers, and customer orders.

When you add a record of data into a table, the record is stored as a row
of the table. A record has fields. A product record, for example, might have
four fields: product code, name, price, and launch date. All records you
store in the product table must have the same fields. Each of the fields is a
column of the table.

This chapter shows you how to use SQL statements to store and
maintain data. The main objective of this chapter is to give you a taste of
working with SQL.

To test the book examples you need a working Oracle database.
Appendix A, “Installing Oracle Database XE” shows how you can install
Oracle Database Express Edition (XE) and make it ready for use with the
examples. This appendix also shows you how to use SQL*Plus to execute
your SQL statements. If you do not have a working Oracle database, you
should read this appendix first.

Selecting A Database to Use

You need a database to store your data. When you install Oracle Database
XE, a database named “XE” is created as part of the installation. To use this
database, run SQL*Plus and issue a CONNECT command as described in
Appendix A, “Installing Oracle Database XE.”

Oracle SQL: A Beginner's Tutorial6

Creating a Table

Before you can store data in a database, you must first create a table for
your data. You do this by using the SQL CREATE TABLE statement.
Tables that you create will reside in the database that you are currently
connected to, which in this case is the XE database.

The syntax for the CREATE TABLE statement is as follows.

CREATE TABLE table
 (column_1 data_type_1,
 column_2 data_type_2,
 ...
 PRIMARY KEY (columns)
);

Listing 1.1 shows a CREATE TABLE statement for creating a product table
with four columns.

Listing 1.1: Creating a product table with four columns

CREATE TABLE product
 (
 p_code VARCHAR2(6),
 p_name VARCHAR2(15),
 price NUMBER(4,2),
 launch_dt DATE,
 PRIMARY KEY (p_code)
);

The four columns have three different data types. They are as follows.

▪ VARCHAR2(n) – variable length string up to n characters.
▪ NUMBER(p, s) – numeric with precision p and scale s. The price

column, whose type is NUMBER(4,2), can store numbers between
-99.99 and +99.99.

▪ DATE – date

Chapter 1: Storing and Maintaining Data 7

Note
Appendix B, “Oracle Built-in Data Types” provides a complete list
of Oracle data types.

When creating a table, you should always add a primary key, even though a
primary key is optional. A primary key is a column or a set of columns that
uniquely identify every row in the table. In the CREATE TABLE statement
in Listing 1.1, the p_code field will be made the primary key for the product
table.

Also note that an SQL statement must be terminated with a semicolon
(;)

Adding Data

Once you have a table, you can add data to it using the INSERT statement.
The syntax for the INSERT statement is as follows

INSERT INTO table
 (column_1,
 column_2,
 ...)
VALUES (value_1,
 value_2,
 ...)
);

For example, Listing 1.2 shows an SQL statement that inserts a row into the
product table.

Listing 1.2: Inserting a row into the product table

INSERT INTO product
 (p_code, p_name, price, launch_dt)
 VALUES (1, 'Nail', 10.0, '31-MAR-2013');

After you execute the statement in Listing 1.2, your product table will have
one row. You can query your table using this statement.

Oracle SQL: A Beginner's Tutorial8

SELECT * FROM product;

The query result will be as follows.

P_CODE P_NAME PRICE LAUNCH_DT
------ --------- ------ ---------
1 Nail 10.00 31-MAR-13

You can only add one row in an INSERT statement. The five INSERT
statements in Listing 1.3 add five more rows to the product table.

Listing 1.3: Adding five more rows to the product table

INSERT INTO product (p_code, p_name, price, launch_dt)
 VALUES (2, 'Washer', 15.00, '29-MAR-13');
INSERT INTO product (p_code, p_name, price, launch_dt)
 VALUES (3, 'Nut', 15.00, '29-MAR-13');
INSERT INTO product (p_code, p_name, price, launch_dt)
 VALUES (4, 'Screw', 25.00, '30-MAR-13');
INSERT INTO product (p_code, p_name, price, launch_dt)
 VALUES (5, 'Super_Nut', 30.00, '30-MAR-13');
INSERT INTO product (p_code, p_name, price, launch_dt)
 VALUES (6, 'New Nut', NULL, NULL);

After executing the statements in Listing 1.3, your product table will
contain these rows.

P_CODE P_NAME PRICE LAUNCH_DT
------ ---------- ------ ---------
1 Nail 10.00 31-MAR-13
2 Washer 15.00 29-MAR-13
3 Nut 15.00 29-MAR-13
4 Screw 25.00 30-MAR-13
5 Super_Nut 30.00 30-MAR-13
6 New Nut NULL NULL

Now issue a COMMIT command to persist (confirm the storage of) the
additional five rows.

COMMIT;

Chapter 1: Storing and Maintaining Data 9

Updating Data

You use the UPDATE statement to update one or more columns of existing
data. You can update all rows in a table or certain rows in the table.

The syntax for the UPDATE statement is as follows

UPDATE table_name
SET column_1 = new_value_1 [,
 column_2 = new_value_2,
 ...]
[WHERE condition];

You specify which rows to update in the WHERE clause. Without a
WHERE clause, all rows will be updated. With a WHERE clause, only
rows that meet the condition will be updated. If no row meets the condition
in the WHERE clause, nothing will be updated.

As an example, the SQL statement in Listing 1.4 will cut the price by
5%. As the UPDATE statement does not have a WHERE clause, the prices
of all the products will be updated.

Listing 1.4: Updating the price column

UPDATE product
SET price = price - (price * 0.05);

If you query the product table using this statement, you will learn that the
values in the price column have changed.

SELECT * FROM product;

Here is the result of the query.

P_CODE P_NAME PRICE LAUNCH_DT
------ ---------- ------ ---------
1 Nail 9.50 31-MAR-13
2 Washer 14.25 29-MAR-13
3 Nut 14.25 29-MAR-13
4 Screw 23.75 30-MAR-13
5 Super_Nut 28.50 30-MAR-13

Oracle SQL: A Beginner's Tutorial10

6 New Nut NULL NULL

Now, issue a ROLLBACK command to return the data values back to
before the update:

ROLLBACK;

As another example, the statement in Listing 1.5 will update the price of
product with p_code = 9, but the product table does not have such a p_code.
Therefore, no row will be updated.

Listing 1.5: Updating the price column with a WHERE clause

UPDATE product
SET price = price - (price * 0.05)
WHERE p_code = 9;

Deleting Data

To delete a row or multiple rows in a table, use the DELETE statement.
You can specify which rows to be deleted by using the WHERE clause.

The syntax for the DELETE statement is as follows

DELETE FROM table
[WHERE condition];

You specify which rows to delete in the WHERE clause.

For example, the statement in Listing 1.6 deletes from the product table
all rows whose p_name field value is ‘Nut’.

Listing 1.6: Deleting rows

DELETE FROM product
WHERE p_name = 'Nut';

After you run the statement in Listing 1. 6, please issue a ROLLBACK
command to return the data values back to before the deletion:

ROLLBACK;

Chapter 1: Storing and Maintaining Data 11

If none of the rows meets the condition, nothing will be deleted. Without
the WHERE condition, all rows will be deleted and the product table will be
empty.

As another example, the SQL statement in Listing 1.7 deletes all the
rows in the product table.

Listing 1.7: Deleting all rows

DELETE FROM product;

Note that you cannot delete some of the columns in a row; the DELETE
statement deletes the whole row. If you need to change the content of a
specific column, use the UPDATE statement. For instance, the statement in
Listing 1.8 changes the content of the price column to NULL. NULL is the
absence of a value; it is neither 0 (zero) or empty. Chapter 2, “Basic
Queries” has a section (“Handling NULL”) that explains NULL in detail.

Listing 1.8: Updating to NULL

UPDATE product SET price = NULL WHERE p_name = 'Nut';

When you query the Nut product, the result will show NULL on the price
column.

SELECT * FROM product WHERE p_name = 'Nut';

The output is as follows.

P_CODE P_NAME PRICE LAUNCH_DT
------ ------ ------ ---------
1 Nut NULL 13-DEC-01

Please issue a ROLLBACK command to return the data values back to
before the update:

ROLLBACK;

NULL display
In SQL* Plus, the default display of NULL is blank. Throughout this
book, NULL is displayed as NULL. You can change the setting by
executing the SET null NULL command in your SQL*Plus console.

Oracle SQL: A Beginner's Tutorial12

Summary

In this chapter you got the first taste of working with SQL. You learned
how to create a table and store data. In Chapter 2, “Basic Queries” you will
learn to use the SELECT statement to query data.

Chapter 2
Basic Queries

A query is a request for data from one or more tables. When you execute a
query, rows that satisfy the condition of the query will be returned as a
table. Similarly, when a query embedded in another query or a program gets
executed, the data returned to the other query or the program is a table.

In this chapter you learn how to write basic queries using the SELECT
statement. Once you master the basic queries, you can start learning about
queries within other queries in Chapter 6, “Subqueries” and within PL/SQL
programs in Chapter 10, “PL/SQL.”

The SELECT statement

All queries regardless of their complexity use the SELECT statement. The
SELECT statement has the following general syntax.

SELECT column_names FROM table_name [WHERE condition];

Only the SELECT and FROM clauses are mandatory. If your query does
not have a WHERE clause, the result will include all rows in the table. If
your query has a WHERE clause then only the rows satisfying the WHERE
condition will be returned.

Querying All Data

The simplest query, which reads all data (all rows and all columns) from a
table, has the following syntax.

Oracle SQL: A Beginner's Tutorial14

SELECT * FROM table;

The asterisk (*) means all columns in the table. For instance, Listing 2.1
shows an SQL statement that queries all data from the product table.

Listing 2.1: Querying all product data

SELECT * FROM product;

Executing the query will give you the following result.

P_CODE P_NAME PRICE LAUNCH_DT
------ ---------- ------ ---------
1 Nail 10.00 31-MAR-13
2 Washer 15.00 29-MAR-13
3 Nut 15.00 29-MAR-13
4 Screw 25.00 30-MAR-13
5 Super_Nut 30.00 30-MAR-13
6 New Nut NULL NULL

Selecting Specific Columns

To query specific columns, list the columns in the SELECT clause. You
write the columns in the order you want to see them in the output table. For
example, the SELECT statement in Listing 2.2 queries the p_name and the
price columns from the product table.

Listing 2.2: Querying specific columns

SELECT p_name, price FROM product;

All rows containing p_name and price columns will be returned by the
query. Here is the query output.

P_NAME PRICE
---------- ------
Nail 10.00
Washer 15.00
Nut 15.00
Screw 25.00
Super_Nut 30.00

Chapter 2: Basic Queries 15

New Nut NULL

Selecting Rows with WHERE

To query specific rows, use the WHERE clause. Recall that the SQL
SELECT statement has the following syntax.

SELECT column_names FROM table_name [WHERE condition];

For example, the SQL statement in Listing 2.3 queries the p_name and price
data from the product table with price = 15.

Listing 2.3: Querying specific rows

SELECT p_name, price FROM product WHERE price = 15;

Only rows whose price is 15 will be returned by the query, in this case the
Washer and Nut. The query output is as follows.

P_NAME PRICE
--------- ------
Washer 15.00
Nut 15.00

The equal sign (=) in the WHERE condition in Listing 2.3 is one of the
comparison operators. Table 2.1 shows all comparison operators.

Operator Description
= Equal to
< Less than
> Greater than
<= Less than or equal to
>= Greater than or equal to
!= Not equal to

Table 2.1: Comparison operators

As another example, Listing 2.4 shows a WHERE clause that uses the not
equal to (!=) operator.

Oracle SQL: A Beginner's Tutorial16

Listing 2.4: Using the != comparison operator

SELECT p_name, price FROM product WHERE p_name != 'Nut';

Only rows whose p_name is not Nut will be returned by the query. In this
case, the query output will be as follows.

P_NAME PRICE
---------- ------
Nail 10.00
Washer 15.00
Screw 25.00
Super_Nut 30.00
New Nut NULL

Compound Conditions

The condition p_name != 'Nut' in Listing 2.4 is called a predicate. Using the
AND and OR logical operator you can combine predicates to form a
compound condition. Only rows that satisfy the compound condition will be
returned by the query.

The rules for the OR logical operator are given in Table 2.2.

Left
condition

Logical
operator

Right
condition

Compound
condition

True OR True True
True OR False True
False OR True True
False OR False False

Table 2.2: The OR rules

In principle, the result of the OR compound condition is true (satisfying the
condition) if any one of the two conditions being OR-ed is true; otherwise,
if none of the conditions is true, the compound condition is false (not
satisfying the condition).

The rules for the AND logical operator are presented in Table 2.3.

Chapter 2: Basic Queries 17

Left
condition

Logical
operator

Right
condition

Compound
condition

True AND True True
True AND False FALSE
False AND True FALSE
False AND False FALSE

Table 2.3: The AND rules

Basically, the result of the AND compound condition is true only if the two
conditions being AND-ed are true; otherwise, the result is false.

For example, the statement in Listing 2.5 contains three predicates in its
WHERE clause.

Listing 2.5: A query with three predicates

SELECT *
FROM product
WHERE (launch_dt >= '30-MAR-13'
OR price > 15)
AND (p_name != 'Nail');

The result of the first compound condition (launch_dt >= '30-MAR-13' OR
price > 15) is true for Nail, Screw and Super_Nut rows in the product table;
AND-ing this result with the (p_name != 'Nail') predicate results in two
products, the Screw and Super_Nut.

Here is the output of the query in Listing 2.5:

P_CODE P_NAME PRICE LAUNCH_DT
------ ---------- ------ ---------
4 Screw 25.00 30-MAR-13
5 Super_Nut 30.00 30-MAR-13

Note that New Nut does not satisfy the condition because applying any of
the comparison operators to NULL results in false (the price and launch_dt
of the New Nut are NULL). The section “Handling NULL” later in this
chapter explains more about NULL.

Oracle SQL: A Beginner's Tutorial18

Evaluation Precedence and the Use of Parentheses

If a compound condition contains both the OR condition and the AND
condition, the AND condition will be evaluated first because AND has a
higher precedence than OR. However, anything in parentheses will have an
even higher precedence than AND. For example, the SELECT statement in
Listing 2.5 has an OR and an AND, but the OR condition is in parentheses
so the OR condition is evaluated first. If you remove the parentheses in the
SELECT statement in Listing 2.5, the query will return a different result.
Consider the statement in Listing 2.6, which is similar to that in Listing 2.5
except that the parentheses have been removed.

Listing 2.6: Evaluation precedence

SELECT *
FROM product
WHERE launch_dt >= '30-MAR-13'
OR price > 15
AND p_name != 'Nail';

For your reading convenience, the product table is reprinted here.

P_CODE P_NAME PRICE LAUNCH_DT
------ ---------- ------ ---------
1 Nail 10.00 31-MAR-13
2 Washer 15.00 29-MAR-13
3 Nut 15.00 29-MAR-13
4 Screw 25.00 30-MAR-13
5 Super_Nut 30.00 30-MAR-13
6 New Nut NULL NULL

Without the parentheses, the compound condition price > 15 AND
p_name != 'Nail' will be evaluated first, resulting in the Screw and
Super_Nut. The result is then OR-ed with the launch_dt >= 30-MAR-13'
condition, resulting in these three rows.

P_CODE P_NAME PRICE LAUNCH_DT
------ ---------- ------ ---------
1 Nail 10.00 31-MAR-13

Chapter 2: Basic Queries 19

4 Screw 25.00 30-MAR-13
5 Super_Nut 30.00 30-MAR-13

The NOT logical operator

You can use NOT to negate a condition and return rows that do not satisfy
the condition. Consider the query in Listing 2.7.

Listing 2.7: Using the NOT operator

SELECT *
FROM product
WHERE NOT (launch_dt >= '30-MAR-13'
OR price > 15
AND p_name != 'Nail');

Thanks to the NOT operator in the query in Listing 2.7, the two rows not
satisfying the condition in Listing 2.6 will now be returned.

P_CODE P_NAME PRICE LAUNCH_DT
------ --------- ------ ---------
2 Washer 15.00 29-MAR-13
3 Nut 15.00 29-MAR-13

As another example, the query in Listing 2.8 negates the last predicate only
(as opposed to the previous query that negated the overall WHERE
condition).

Listing 2.8: Using NOT on one predicate

SELECT *
FROM product
WHERE (launch_dt >= '30-MAR-13'
OR price > 15)
AND NOT (p_name != 'Nail');

The output of the query in Listing 2.8 is as follows.

P_CODE P_NAME PRICE LAUNCH_DT
------ --------- ------ ---------
1 Nail 10.00 31-MAR-13

Oracle SQL: A Beginner's Tutorial20

The BETWEEN Operator

The BETWEEN operator evaluates equality to any value within a range.
The range is specified by a boundary, which specifies the lowest and the
highest values.

Here is the syntax for BETWEEN.

SELECT columns FROM table
WHERE column BETWEEN(lowest_value, highest_value);

The boundary values are inclusive, meaning lowest_value and
highest_value will be included in the equality evaluation.

For example, the query in Listing 2.9 uses the BETWEEN operator to
specify the lowest and highest prices that need to be returned from the
product table.

Listing 2.9: Using the BETWEEN operator

SELECT * FROM product WHERE price BETWEEN 15 AND 25;

Here is the output of the query in Listing 2.9.

P_CODE P_NAME PRICE LAUNCH_DT
------ --------- ------ ---------
2 Washer 15.00 29-MAR-13
3 Nut 15.00 29-MAR-13
4 Screw 25.00 30-MAR-13

The IN Operator

The IN operator compares a column with a list of values. The syntax for a
query that uses IN is as follows.

SELECT columns FROM table
WHERE column IN(value1, value2, ...);

Chapter 2: Basic Queries 21

For example, the query in Listing 2.10 uses the IN operator to select all
columns whose price is in the list (10, 25, 50).

Listing 2.10: Using the IN operator

SELECT * FROM product WHERE price IN (10, 25, 50);

The output of the query in Listing 2.10 is as follows.

P_CODE P_NAME PRICE LAUNCH_DT
------ --------- ------ ---------
1 Nail 10.00 31-MAR-13
4 Screw 25.00 30-MAR-13

The LIKE Operator

The LIKE operator allows you to specify an imprecise equality condition.
The syntax is as follows.

SELECT columns FROM table
WHERE column LIKE ' ... wildcard_character ... ';

The wildcard character can be a percentage sign (%) to represent any
number of characters or an underscore (_) to represent a single occurrence
of any character.

As an example, the query in Listing 2.11 uses the LIKE operator to find
products whose name starts with N and is followed by two other characters
plus products whose name starts with Sc and can be of any length.

Listing 2.11: Using the LIKE operator

SELECT * FROM product WHERE p_name LIKE 'N__' OR p_name LIKE 'Sc%';

The output of the query in Listing 2.11 is this.

P_CODE P_NAME PRICE LAUNCH_DT
------ --------- ------ ---------
3 Nut 15.00 29-MAR-13
4 Screw 25.00 30-MAR-13

Oracle SQL: A Beginner's Tutorial22

Even though you can use LIKE for numeric columns, it is primarily used
with columns of type string.

Escaping the Wildcard Character

If the string you specify in the LIKE operator contains an underscore or a
percentage sign, SQL will regard it as a wild character. For example, if you
want to query products that have an underscore in their names, your SQL
statement would look like that in Listing 2.12.

Listing 2.12: A wildcard character _ in the LIKE string

SELECT * FROM product WHERE p_name LIKE '%_%';

If you execute the query in Listing 2.12, the query will return all rows
instead of just the Super_Nut, because the underscore in the LIKE operator
is regarded as a wild card character, i.e. any one character. Listing 2.13
resolves this problem by prefixing the wild card character with an ESCAPE
character. In the statement the ESCAPE clause defines \ (backslash) as an
escape character, meaning any character in the LIKE operator after a
backslash will be considered a character, not as a wildcard character. Now
only rows whose p_name contains an underscore will be returned.

Listing 2.13: Escaping the wildcard character _

SELECT * FROM product WHERE p_name LIKE '%_%' ESCAPE '\';

The query in Listing 2.13 will produce the following output.

P_CODE P_NAME PRICE LAUNCH_DT
------ --------- ------ ---------
5 Super_Nut 30.00 30-MAR-13

Chapter 2: Basic Queries 23

Combining the NOT operator

You can combine NOT with BETWEEN, IN, or LIKE to negate their
conditions. For example, the query in Listing 2.14 uses NOT with
BETWEEN.

Listing 2.14: Using NOT with BETWEEN

SELECT * FROM product WHERE price NOT BETWEEN 15 AND 25;

Executing the query in Listing 2.14 will give you this result.

P_CODE P_NAME PRICE LAUNCH_DT
------ --------- ------ ---------
1 Nail 10.00 31-MAR-13
5 Super_Nut 30.00 30-MAR-13

Handling NULLNULL, an SQL reserved word, represents the absence of
data. NULL is applicable to any data type. It is not the same as a numeric
zero or an empty string or a 0000/00/00 date. You can specify whether or
not a column can be null in the CREATE TABLE statement for creating the
table.

The result of applying any of the comparison operators on NULL is
always NULL. You can only test whether or not a column is NULL by
using the IS NULL or IS NOT NULL operator.

Consider the query in Listing 2.15.

Listing 2.15: Invalid usage of the equal operator on NULL

SELECT * FROM product WHERE price = NULL;

Executing the query in Listing 2.15 produces no output. In fact, you will get
the following message.

no rows selected

As another example, consider the query in Listing 2.16 that uses IS NULL.

Oracle SQL: A Beginner's Tutorial24

Listing 2.16: Using IS NULL

SELECT * FROM product WHERE price IS NULL;

The query output is as follows.

P_NO P_NAME PRICE LAUNCH_DT
---- --------- ------ ---------
6 New Nut NULL NULL

Note
Chapter 6, “Built-in Functions,” discusses functions that you can use
to test column nullity.

Summary

In this chapter you learned the basics queries using the SELECT statement.
In the next chapter you will learn how to format query outputs.

Chapter 3
Query Output

All the queries in Chapter 2, “Basic Queries” returned rows that contained
columns from the source table. However, output rows can also contain
string or numeric expressions that include string or numeric literals,
operators, and functions.

In this chapter you learn how to manipulate query output using
expressions and how to order and store output rows into a table.

Column Aliases

By default the names of the output columns in the query output are the
names of the columns of the queried table. However, you don’t have to be
stuck with the original column names. You can give them different names
or aliases if you wish.

The syntax for the SELECT clause that uses aliases is as follows.

SELECT column_1 AS alias1, column_2 AS alias2, ...
FROM table;

An alias can consist of one or multiple words. You must enclose a
multiword alias with quotes, e.g. “PRODUCT NAME”. For example, the
query in Listing 3.1 uses an alias for the p_name column.

Listing 3.1: Using an alias in a query

SELECT p_code,
 p_name AS "PRODUCT NAME"
FROM product;

Oracle SQL: A Beginner's Tutorial26

Expressions

An output column can also be an expression. An expression in the SELECT
clause can include columns, literal values, arithmetic or string operators,
and functions. For instance, the SELECT clause in the query in Listing 3.2
employs several expressions.

Listing 3.2: Various types of output columns

SELECT p_code,
 'p_name in Uppercase: '
 || UPPER(p_name) AS "PRODUCT NAME",
 (price * 100) AS "NORMALIZED_PRICE",
 TO_CHAR(launch_dt, 'DD/MM/YYYY') AS "LAUNCH_DATE"
FROM product;

The output of the query in Listing 3.2 will have four columns.

The first output column, p_code, is a column from the product table.

The second output column (aliased "PRODUCT NAME") is an
expression that contains three parts, a literal 'p_name in Uppercase: ', a
concatenation string operator (||), and UPPER(p_name). The latter,
UPPER, is a function applied to the p_name column from the product table.
The UPPER function changes the case of the product names to uppercase.

The third output column ("NORMALIZED_PRICE") is an arithmetic
expression (price*100).

The last output column ("LAUNCH_DATE") is the launch_date column
formatted as DD/MM/YYYY.

Applied against the following product table

P_CODE P_NAME PRICE LAUNCH_DT
------ --------------- ----- ---- ----
1 Nail 10.00 31-MAR-13
2 Washer 15.00 29-MAR-13
3 Nut 15.00 29-MAR-13
4 Screw 25.00 30-MAR-13

Chapter 3: Query Output 27

5 Super_Nut 30.00 30-MAR-13
6 New Nut NULL NULL

the query in Listing 3.2 returns the following rows.

P_CODE PRODUCT NAME NORMALIZED_PRICE LAUNCH_DATE
------ ------------------------------ ---------------- -----------
1 p_name in Uppercase: NAIL 1000 31/03/2013
2 p_name in Uppercase: WASHER 1500 29/03/2013
3 p_name in Uppercase: NUT 1500 29/03/2013
4 p_name in Uppercase: SCREW 2500 30/03/2013
5 p_name in Uppercase: SUPER_NUT 3000 30/03/2013
6 p_name in Uppercase: NEW NUT NULL NULL

You can use other arithmetic operators in addition to the multiplication (*)
operator in your column. These include addition (+), subtraction (-), and
division (/)

Note
Chapter 9, “Built-in Functions” explains functions in more detail.

Limiting the Number of Rows

You can limit the number of output row by using the ROWNUM pseudo
column. Its syntax is as follows.

SELECT columns FROM table(s)
WHERE conditions AND ROWNUM < count;

The maximum number of output rows of a query that employs ROWNUM
will be count – 1.

As an example, take a look at the query in Listing 3.3.

Listing 3.3: Using ROWNUM

SELECT * FROM product WHERE price > 10 AND ROWNUM < 4;

Without the expression ROWNUM < 4, the number of output rows would
be 4. The query in Listing 3.3, however, returns these three rows.

Oracle SQL: A Beginner's Tutorial28

P_CODE P_NAME PRICE LAUNCH_DT
------ --------------- ----- ---- ---------
2 Washer 15.00 29-MAR-13
3 Nut 15.00 29-MAR-13
4 Screw 25.00 30-MAR-13

The DISTINCT Keyword

A query may return duplicate rows. Two rows are duplicates if each of their
columns contains exactly the same data. If you don’t want to see duplicate
output rows, use DISTINCT in your SELECT clause. You can use
DISTINCT on one column or multiple columns.

Using DISTINCT on A Single Column

The query in Listing 3.4 uses DISTINCT on the price column.

Listing 3.4: Using DISTINCT on a single column

SELECT DISTINCT price FROM product ORDER BY price;

Without DISTINCT, the query in Listing 3.4 will return six rows that
include two duplicate prices for row 2 and row 3. Instead, the query in
Listing 3.4 returns the following output.

PRICE

 10
 15
 25
 30
NULL

Chapter 3: Query Output 29

Using DISTINCT on Multiple Columns

If a query returns multiple columns, two rows are considered duplicates if
all their columns have the same values. They are not duplicates if only one
column has the same value.

The DISTINCT keyword can be applied on multiple columns too. For
example, the query in Listing 3.5 uses DISTINCT on multiple columns.

Listing 3.5: Using DISTINCT on multiple columns

SELECT DISTINCT price, launch_dt FROM product ORDER BY price;

Here is the output. Note that output rows with the same price and launch_dt
will only be shown once.

PRICE LAUNCH_DT
----- ---------
 10 31-MAR-13
 15 29-MAR-13
 25 30-MAR-13
 30 30-MAR-13
NULL NULL

Aggregate Functions

You can manipulate your query output further by using aggregate functions.
The aggregate functions are listed in Table 3.1.

Function Description
MAX(column) The maximum column value
MIN(column) The minimum column value
SUM(column) The sum of column values
AVG(column) The average column value
COUNT(column) The count of rows
COUNT(*) The count of all rows including NULL.

Table 3.1: Built-in aggregate functions

Oracle SQL: A Beginner's Tutorial30

As an example, the query in Listing 3.6 uses the aggregate functions in
Table 3.1.

Listing 3.6: Using aggregate functions

SELECT MAX(price),
 MIN(price),
 SUM(price),
 AVG(price),
 COUNT(price),
 COUNT(*)
FROM product;

Note that only COUNT(*) takes into account the New Nut product because
its price is NULL.

The output of the query in Listing 3.6 is this.

MAX(PRICE) MIN(PRICE) SUM(PRICE) AVG(PRICE) COUNT(PRICE) COUNT(*)
---------- ---------- ---------- ---------- ------------ ----------
 30 10 95 19 5 6

The CASE expressionCASE allows you to have dynamic query output in
which a column value may vary depending on the value of the column.
CASE comes in two flavors: Simple and Searched. Both will be explained
in the following subsections.

The Simple CASE

The general syntax for the Simple CASE is as follows.

SELECT columns,
 CASE column
 WHEN equal_value1
 THEN output_value1
 WHEN equal_value2
 THEN output_value2
 WHEN ...
 [ELSE else_value]
 END AS output_column
FROM table
WHERE ... ;

Chapter 3: Query Output 31

In the Simple CASE, column_name is compared to equal_values in the
WHEN clause, starting from the first WHEN and down to the last WHEN.
If column_name matches a WHEN value, the value right after the THEN
clause is returned and the CASE process stops. If column_name matches
none of the WHEN values, else_value is returned if there exists an ELSE
clause. If column_name matches none of the WHEN values but no ELSE
clause exists, NULL will be returned.

As an example, the query in Listing 3.7 uses a Simple CASE expression
for the price column to produce a price_cat (price category) output column.

Listing 3.7: An example of the Simple CASE

SELECT p_code,
 p_name,
 CASE price
 WHEN 10
 THEN 'Cheap'
 WHEN 15
 THEN 'Medium'
 WHEN 25
 THEN 'Expensive'
 ELSE 'Others'
 END AS price_cat
FROM product;

Assuming the product table has the following data

P_CODE P_NAME PRICE LAUNCH_DT
------ --------------- ----- ---- ----
1 Nail 10.00 31-MAR-13
2 Washer 15.00 29-MAR-13
3 Nut 15.00 29-MAR-13
4 Screw 25.00 30-MAR-13
5 Super_Nut 30.00 30-MAR-13
6 New Nut NULL NULL

the query will return these rows.

P_CODE P_NAME PRICE_CAT
------ --------------- ---------
1 Nail Cheap
2 Washer Medium

Oracle SQL: A Beginner's Tutorial32

3 Nut Medium
4 Screw Expensive
6 New Nut Others
5 Super_Nut Others

The Searched CASE

The case in the Simple CASE compares a column with various values. On
the hand, the case in the Searched CASE can be any condition. Here is the
syntax for the Searched CASE.

SELECT columns,
 CASE
 WHEN condition1
 THEN output_value1
 WHEN condition2
 THEN output_value2
 WHEN ...
 ELSE else_value
 END AS output_column
FROM table
WHERE ... ;

The conditions are evaluated starting from the first WHEN and down to the
last WHEN. If a WHEN condition is met, its THEN output_value is
returned to the output_column and the CASE process stops. If none of the
WHEN conditions is met, else_value is returned if there exists an ELSE
clause. If no condition is met and no ELSE clause exists, NULL will be
returned.

For instance, the query in Listing 3.8 uses a Searched CASE. While the
Simple CASE in Listing 3.7 categorized the products based on only their
prices, this Searched CASE categorizes the products based on the various
conditions which can involve more than just the price. Note that in the
Search CASE, NULL equality can be a condition, something that is not
allowed in the Simple CASE.

Listing 3.8: An example of the Searched CASE

SELECT p_code,
 p_name,

Chapter 3: Query Output 33

 CASE
 WHEN (price <= 10
 AND p_name NOT LIKE 'Nut%')
 THEN 'Cheap'
 WHEN price BETWEEN 11 AND 25
 THEN 'Medium'
 WHEN price > 25 and TO_CHAR(launch_dt, 'YYYYMMDD') > '20130329'
 THEN 'Expensive'
 WHEN price IS NULL
 THEN 'Not valid'
 ELSE 'Others'
 END AS product_cat
FROM product;

Applying the query against the following product table

P_CODE P_NAME PRICE LAUNCH_DT
------ --------------- ----- ---- ----
1 Nail 10.00 31-MAR-13
2 Washer 15.00 29-MAR-13
3 Nut 15.00 29-MAR-13
4 Screw 25.00 30-MAR-13
5 Super_Nut 30.00 30-MAR-13
6 New Nut NULL NULL

will return the following rows.

P_CODE P_NAME PRODUCT_CAT
------ --------------- -----------
1 Nail Cheap
2 Washer Medium
3 Nut Medium
4 Screw Medium
5 Super_Nut Expensive
6 New Nut Not valid

Ordering Output Rows

To provide better visualization of the output, you can order output rows
based on certain criteria. To order the output, use the ORDER BY clause.
The ORDER BY clause must appear last in a SELECT statement.

Oracle SQL: A Beginner's Tutorial34

Here is the syntax for a query having the ORDER BY clause.

SELECT columns FROM
table
WHERE condition ORDER BY column(s)

You can order output rows in one of the following methods.

▪ by one or more columns
▪ in ascending or descending direction
▪ by using the GROUP BY clause
▪ by using UNION and other set operators

Each of the methods is explained in the subsections below.

Ordering by One Column

To order your query output rows, use the ORDER BY clause with one
column. For instance, have a look at the query in Listing 3.9.

Listing 3.9: Ordering by one column

SELECT * FROM product ORDER BY p_name;

When you apply the query against the following product table

P_CODE P_NAME PRICE LAUNCH_DT
------ --------------- ----- ---- ----
1 Nail 10.00 31-MAR-13
2 Washer 15.00 29-MAR-13
3 Nut 15.00 29-MAR-13
4 Screw 25.00 30-MAR-13
5 Super_Nut 30.00 30-MAR-13
6 New Nut NULL NULL

you will see the following output.

P_CODE P_NAME PRICE LAUNCH_DT
------ --------------- ---------- ---------
1 Nail 10 31-MAR-13
6 New Nut NULL NULL
3 Nut 15 29-MAR-13

Chapter 3: Query Output 35

4 Screw 25 30-MAR-13
5 Super_Nut 30 30-MAR-13
2 Washer 15 29-MAR-13

Direction of Order

The default direction is ascending. To order a column in descending
direction, use the DESC reserved word. For example, the query in Listing
3.10 is similar to that in Listing 3.9 except that the output is presented in
descending order.

Listing 3.10: Changing the order direction

SELECT * FROM product ORDER BY p_name DESC;

The output rows will be returned with p_name sorted in descending order.

P_CODE P_NAME PRICE LAUNCH_DT
------ --------------- ---------- ---------
2 Washer 15 29-MAR-13
5 Super_Nut 30 30-MAR-13
4 Screw 25 30-MAR-13
3 Nut 15 29-MAR-13
6 New Nut NULL NULL
1 Nail 10 31-MAR-13

Multiple Columns

To order by more than one column, list the columns in the ORDER BY
clause. The sequence of columns listed is significant. The order will be
conducted by the first column in the list, followed by the second column,
and so on. For example, if the ORDER BY clause has two columns, the
query output will first be ordered by the first column. Any rows with
identical values in the first column will be further ordered by the second
column.

For example, the query in Listing 3.11 uses an ORDER BY clause with
two columns.

Oracle SQL: A Beginner's Tutorial36

Listing 3.11: Multiple column ordering

SELECT * FROM product ORDER BY launch_dt, price;

Applying the query against the product table.

P_CODE P_NAME PRICE LAUNCH_DT
------ --------------- ----- ---- ----
1 Nail 10.00 31-MAR-13
2 Washer 15.00 29-MAR-13
3 Nut 15.00 29-MAR-13
4 Screw 25.00 30-MAR-13
5 Nut 30.00 30-MAR-13
6 Nut NULL NULL

The output rows will first be ordered by launch_dt and then by price, both
in ascending order. The secondary ordering by price is seen on the Screw
and Super_Nut rows. Their launch_dt’s are the same, 30-MAR-13. Their
prices are different, Screw’s lower than Super_Nut’s, hence Screw row
comes before the Super_Nut.

P_CODE P_NAME PRICE LAUNCH_DT
------ ---------- ------ ---------
3 Nut 15.00 29-MAR-13
2 Washer 15.00 29-MAR-13
4 Screw 25.00 30-MAR-13
5 Super_Nut 30.00 30-MAR-13
1 Nail 10.00 31-MAR-13
6 New Nut NULL NULL

Different Directions on Different Columns

You can apply different order directions on ordered columns too. For
example, the query in Listing 3.12 uses different directions on different
columns in its ORDER BY clause.

Listing 3.12: Using multiple directions of ORDER

SELECT * FROM product ORDER BY launch_dt, price DESC;

Chapter 3: Query Output 37

Applying the query against the product table, the output rows will be
ordered by launch_dt in ascending order and then by price in descending
order. Now, the Super_Nut comes before the Screw.

P_CODE P_NAME PRICE LAUNCH_DT
------ ---------- ------ ---------
3 Nut 15.00 29-MAR-13
2 Washer 15.00 29-MAR-13
5 Super_Nut 30.00 30-MAR-13
4 Screw 25.00 30-MAR-13
1 Nail 10.00 31-MAR-13
6 New Nut NULL NULL

Ordering with a WHERE clause

If your SELECT statement has both the WHERE clause and the ORDER
BY clause, ORDER BY must appear after the WHERE clause.

For example, the query in Listing 3.13 has both WHERE and ORDER
BY. This query will return only Nut products.

Listing 3.13: Using both WHERE and ORDER BY

SELECT * FROM product WHERE p_name = 'Nut'
ORDER BY p_name, p_code DESC;

If you execute the query, you will see one row only, the Nut, in the output
window.

P_CODE P_NAME PRICE LAUNCH_DT
------ ---------- ------ ---------
3 Nut 15.00 29-MAR-13

Storing Query Output

You can store a query output into a new or existing table. To store a query
output in a new table, use the following statement:

CREATE TABLE new_table AS SELECT ... ;

Oracle SQL: A Beginner's Tutorial38

For instance, the query in Listing 3.14 executes a SELECT statement and
stores its result in a new table called nut_product.

Listing 3.14: Storing output into a new table

CREATE TABLE nut_product AS
SELECT * FROM product WHERE p_name LIKE '%Nut%';

Applied against the product table, the query in Listing 3.14 will create a
nut_product table with the following content.
P_CODE P_NAME PRICE LAUNCH_DT
------ --------------- ------ ---------
3 Nut 15 29-MAR-13
6 New Nut NULL NULL
5 Super_Nut 30 30-MAR-13

To store a query output into an existing table, use this syntax.

INSERT INTO existing_table AS SELECT ... ;

For example, the query in Listing 3.15 stores the query result in an existing
table.

Listing 3.15: Storing output into an existing table

INSERT INTO non_nut
SELECT * FROM product WHERE p_name NOT LIKE '%Nut%';

Before executing INSERT statement of Listing 3.15, first you have to create
a non_nut table by executing the following statement.

CREATE TABLE non_nut
 (
 p_code VARCHAR2(6),
 p_name VARCHAR2(15),
 price NUMBER(4,2),
 launch_dt DATE,
 PRIMARY KEY (p_code)
);

Applying the query in Listing 3.15 against this product table

Chapter 3: Query Output 39

P_CODE P_NAME PRICE LAUNCH_DT
------ --------------- ------ ---------
1 Nail 10 31-MAR-13
2 Washer 15 29-MAR-13
3 Nut 15 29-MAR-13
4 Screw 25 30-MAR-13
6 New Nut NULL NULL
5 Super_Nut 30 30-MAR-13

you will get a non_nut table with the following rows.

P_CODE P_NAME PRICE LAUNCH_DT
------ --------------- ------ ---------
1 Nail 10 31-MAR-13
2 Washer 15 29-MAR-13
4 Screw 25 30-MAR-13

Summary

SQL allows you to retrieve rows from a table and manipulate the output.
You learned in this chapter that you can create aliases, use aggregate
functions, and order rows.

Oracle SQL: A Beginner's Tutorial40

Chapter 4
Grouping

A group is a set of rows having the same value on specific columns. In
Chapter 3, “Query Output” you learned how to apply aggregate functions on
all output rows. In this chapter you learn how to create groups and apply
aggregate functions on those groups.

The GROUP BY Clause

In a query the GROUP BY clause appears after the WHERE clause and
before the ORDER clause, if any. Here is the syntax for a SELECT
statement with the WHERE, GROUP BY, and ORDER BY clauses.

SELECT columns,
 aggregate_function(group_columns)
FROM table(s)
WHERE condition
GROUP BY group_columns
ORDER BY column(s);

As an example, the query in Listing 4.1 groups the output from the product
table by their launch date.

Listing 4.1: Grouping on one column

SELECT launch_dt,
 MAX(price) MAX,
 MIN(price) MIN,
 SUM(price) SUM,
 AVG(price) AVG,
 COUNT(price) COUNT,
 COUNT(*) AS "COUNT(*)"

Oracle SQL: A Beginner's Tutorial42

FROM product
GROUP BY launch_dt
ORDER BY launch_dt;

Applied against a product table with the following rows, aggregations will
be done by the four grouped launch dates: 29, 30 and 31 of March 2013,
and NULL.

P_CODE P_NAME PRICE LAUNCH_DT
------ --------------- ----- ---- ----
1 Nail 10.00 31-MAR-13
2 Washer 15.00 29-MAR-13
3 Nut 15.00 29-MAR-13
4 Screw 25.00 30-MAR-13
5 Super_Nut 30.00 30-MAR-13
6 New Nut NULL NULL

The query output will have four rows, one for each of the four grouped
launch dates. Note that the COUNT(price) element, which counts the rows
with a value on their price column, produces 0. On the other hand, the
COUNT(*) element, which counts the NULL launch dates, produces 1.

LAUNCH_DT MAX MIN SUM AVG COUNT COUNT(*)
--------- ---- ---- ---- ---- ------ --------
29-MAR-13 15 15 30 15 2 2
30-MAR-13 30 25 55 27.5 2 2
31-MAR-13 10 10 10 10 1 1
NULL NULL NULL NULL NULL 0 1

You can group by more than one column. If you do that, rows having the
same value on all the columns will form a group. As an example, the query
in Listing 4.2 groups rows by price and launch date.

Listing 4.2: Grouping on two columns

SELECT price,
 launch_dt,
 MAX(price) MAX,
 MIN(price) MIN,
 SUM(price) SUM,
 AVG(price) AVG,
 COUNT(price) COUNT,
 COUNT(*) "COUNT(*)"

Chapter 4: Grouping 43

FROM product
GROUP BY price,
 launch_dt
ORDER BY price,
 launch_dt;

Applied to the same product table, the output will have five rows. Even
though the Screw and Super_Nut have the same price, they have different
launch dates, and therefore form different groups.

PRICE LAUNCH_DT MAX MIN SUM AVG COUNT COUNT(*)
----- --------- ----- ----- ----- ----- ------ ---------
 10 31-MAR-13 10 10 10 10 1 1
 15 29-MAR-13 15 15 30 15 2 2
 25 30-MAR-13 25 25 25 25 1 1
 30 30-MAR-13 30 30 30 30 1 1
NULL NULL NULL NULL NULL NULL 0 1

The HAVING Keyword

The WHERE condition can be used to select individual rows. On the other
hand, the HAVING condition is used for selecting individual groups. Only
groups that satisfy the condition in the HAVING clause will be returned by
the query. In other words, the HAVING condition is on the aggregate, not
on a column.

If present, the HAVING clause must appear after the GROUP BY, as in
the following syntax.

SELECT columns,
 aggregate_function(group_columns)
FROM table(s)
WHERE condition
GROUP BY group_columns
HAVING aggregate_condition
ORDER BY columns;

As an example, the query in Listing 4.3 uses the HAVING condition.

Oracle SQL: A Beginner's Tutorial44

Listing 4.3: Using the HAVING condition

SELECT price,
 launch_dt,
 MAX(price) MAX,
 MIN(price) MIN,
 SUM(price) SUM,
 AVG(price) AVG,
 COUNT(price) COUNT,
 COUNT(*) "COUNT(*)"
FROM product
GROUP BY price,
 launch_dt
HAVING COUNT(price) > 1
ORDER BY price,
 launch_dt;

Only groups having more than one row (satisfying the COUNT(price) > 1
condition) will be returned. Only one row will be returned, the one with
price = 15 and launch date = 29-MAR-13.

PRICE LAUNCH_DT MAX MIN SUM AVG COUNT COUNT(*)
------ --------- ----- ----- ----- ----- ------ ---------
 15 29-MAR-13 15 15 30 15 2 2

If a WHERE clause is present, it must appear after the GROUP BY clause.
Individual rows will be selected by the WHERE condition first before
grouping occurs. For instance, the query in Listing 4.4 uses both WHERE
and GROUP BY.

Listing 4.4: Grouping with WHERE

SELECT launch_dt,
 MAX(price) MAX,
 MIN(price) MIN,
 SUM(price) SUM,
 AVG(price) AVG,
 COUNT(price) COUNT,
 COUNT(*) "COUNT(*)"
FROM product
WHERE p_name NOT LIKE 'Super%'
GROUP BY launch_dt
HAVING launch_dt > '29-MAR-13’

Chapter 4: Grouping 45

ORDER BY launch_dt;

Here is the query output.

LAUNCH_DT MAX MIN SUM AVG COUNT COUNT(*)
--------- ----- ----- ----- ----- ------ ---------
30-MAR-13 25.0 25.0 25.0 25.0 1 1
31-MAR-13 10.0 10.0 10.0 10.0 1 1

In this case, Super_Nut does not satisfy the WHERE condition. As such, it
is not included in the aggregation.

Applying aggregate as a WHERE condition clause is not allowed. This
is shown in Listing 4.5, which contains a query that throws an error if
executed.

Listing 4.5: Error with WHERE on the aggregate

SELECT price,
 launch_dt,
 MAX(price) MAX,
 MIN(price) MIN,
 SUM(price) SUM,
 AVG(price) AVG,
 COUNT(price) COUNT,
 COUNT(*) "COUNT(*)"
FROM product
WHERE COUNT(price) > 1;

Executing this query will give you this error message.

ORA-00934: group function is not allowed here

Summary

In this chapter you learned how to aggregate values from rows. You also
learned to use the HAVING condition applied on aggregates. In the next
chapter you will learn about the JOIN clause used to “aggregate” rows from
more than one table.

Oracle SQL: A Beginner's Tutorial46

Chapter 5
Joins

A real-world database typically stores data in dozens or even hundreds of
tables. In these multi-table databases, a table often relates to one or some
other tables. In this environment, you should be able to relate rows from
two or more tables by using the JOIN clause. This chapter shows you how.

Primary Keys and Foreign Keys

In Chapter 1, “Storing and Maintaining Data” you learned about primary
keys. A primary key is a column, or a set of columns, which uniquely
identifies every row in a table. A foreign key is a column, or a set of
columns, which is used to relate to the primary key of another table. The
process of using the foreign key/primary key to relate rows from two tables
is called joining.

While a primary key must be unique, a foreign key does not have to be
unique. You can have a foreign key in more than one row. For example, in a
customer order table you can have many orders for the same product. In this
customer order table, a product is represented by its foreign key, e.g.
product code, which is the primary key of the product table.

Even though the use of primary and foreign keys is not an absolute
requirement for joining tables, their absence may cause you to incorrectly
join tables.

Oracle SQL: A Beginner's Tutorial48

Querying Multiple Tables

To query data from multiple tables, use the JOIN keyword to specify the
related columns from two tables. The JOIN clause of a SELECT statement
joins related rows from two or more tables, based on their primary
key/foreign key relationship.

For example, a customer order (c_order) table may need a foreign key
column to relate to the primary key of the product table. Additionally, the
customer order table may also need a foreign key to relate to the primary
key of the customer table.

The syntax for the JOIN is as follows.

SELECT columns FROM table_1, table_2, ... table_n
WHERE table_1.primary_key = table_2.foreign_key
AND table_2.primary_key = table_n.foregin_key;

To illustrate the use of joins, I will use the c_order table, customer table,
and product table in Table 5.1, Table 5.2, and Table 5.3, respectively. The
C_NO and P_CODE of the c_order table are foreign keys; their related
primary keys are in the customer and product tables, respectively.

C_NO P_CODE QTY ORDER_DT
---- ------ ---- ---------
10 1 100 01-APR-13
10 2 100 01-APR-13
20 1 200 01-APR-13
30 3 300 02-APR-13
40 4 400 02-APR-13
40 5 400 03-APR-13

Table 5.1: The customer order (c_order) table

 C_NO C_NAME
 ---- --------------
 10 Standard Store
 20 Quality Store
 30 Head Office
 40 Super Agent

Table 5.2: The customer table

Chapter 5: Joins 49

P_CODE P_NAME PRICE LAUNCH_DT
------ --------------- ----- ---- ----
1 Nail 10.00 31-MAR-13
2 Washer 15.00 29-MAR-13
3 Nut 15.00 29-MAR-13
4 Screw 25.00 30-MAR-13
5 Super_Nut 30.00 30-MAR-13

 6 New Nut NULL NULL

Table 5.3: The product table

Listing 5.1 is an example of a JOIN query. It joins the rows from the
c_order table to the rows from the customer table based on the c_no foreign
key column of the c_order table and the c_no primary key column of the
customer table. The query returns the name of every customer who has
placed one or more orders.

Listing 5.1: A two table join

SELECT c_name,
 p_code,
 c_order.qty,
 c_order.order_dt
FROM c_order
JOIN customer
ON c_order.c_no = customer.c_no;

Applied against the example c_order and customer tables, the query result is
as follows.

C_NAME P_CO QTY ORDER_DT
------------------------- ---- ---------- ---------
Standard Store 2 100 01-APR-13
Standard Store 1 100 01-APR-13
Quality Store 1 200 01-APR-13
Head Office 3 300 02-APR-13
Super Agent 5 400 03-APR-13
Super Agent 4 400 02-APR-13

Oracle SQL: A Beginner's Tutorial50

Using Table Aliases

In a join query, different tables can have columns with identical names. To
make sure you refer to the correct column of a table, you need to qualify it
with its table. In the previous example, c_order.c_no (the c_no column of
the c_order table) and customer.c_no (the c_no column of the
customer_table) were how the c_no columns were qualified. A table alias
can be a more convenient (and shorter) way to qualify a column.

For example, in the query in Listing 5.2, o is an alias for the c_order
table and c is an alias for the customer table. These aliases are then used in
the ON clause to qualify the c_no columns with their respective tables.

Listing 5.2: Using table aliases

SELECT c_name,
 p_code,
 o.qty,
 o.order_dt
FROM c_order o
JOIN customer c
ON o.c_no = c.c_no;

Column Aliases vs. Table Aliases
In Chapter 3, “Query Output”, I explained the use of aliases for
columns using the AS keyword. Although a column alias can be
created without using the AS keyword, its presence improves
readability (“p_name AS product_name” instead of “p_name
product_name”). On the other hand, table aliases cannot use the AS
keyword.

Joining More than Two Tables

From the JOIN syntax presented earlier, you can join more than two tables.
To do this, in the SELECT statement, join two tables at a time.

For example, the query in Listing 5.3 joins the c_order table to the
customer table, and then joins the customer table to the product table. The

Chapter 5: Joins 51

rows in the c_order table are joined to the rows of the same c_no column
from the customer table, and these rows are then joined to the rows with the
same p_code from the product table. This query returns the customer names
and their orders.

Listing 5.3: A three table join

SELECT c_name,
 p_name,
 o.qty,
 o.order_dt
FROM c_order o
JOIN customer c
ON o.c_no = c.c_no
JOIN product p
ON o.p_code = p.p_code;

Applied against the c_order, customer and product sample tables, you will
see the following result.

C_NAME P_NAME QTY ORDER_DT
-------------- --------- ---- ---------
Standard Store Washer 100 01-APR-13
Standard Store Nail 100 01-APR-13
Quality Store Nail 200 01-APR-13
Head Office Nut 300 02-APR-13
Super Agent Super_nut 400 03-APR-13
Super Agent Screw 400 02-APR-13

You can also apply WHERE conditions for selecting rows on a join query.
For example, in Listing 5.4, thanks to the WHERE condition, only products
with names that do not start with “Super” will be in the query output.

Listing 5.4: JOIN and WHERE

SELECT c_name,
 p_name,
 o.qty,
 o.order_dt
FROM c_order o
JOIN customer c
ON o.c_no = c.c_no
JOIN product p
ON o.p_code = p.p_code
WHERE p_name NOT LIKE 'Super%';

Oracle SQL: A Beginner's Tutorial52

Executing the query in Listing 5.4 against the sample tables will produce
the following output rows.

C_NAME P_NAME QTY ORDER_DT
-------------- --------- ---- ---------
Standard Store Washer 100 01-APR-13
Standard Store Nail 100 01-APR-13
Quality Store Nail 200 01-APR-13
Branch Office Nut 300 02-APR-13
Super Agent Screw 400 02-APR-13

Joining on More than One Column

The preceding joins were on one column. Tables can also be joined on more
than one column.

The syntax for a multicolumn join for two tables is as follows.

SELECT columns FROM table_1, table_2
WHERE table_1.column_1 = table_2.column_1
AND table_1.column_2 = table_2.column_2
...
AND table_1.column_n = table_2.column_n;

As an example, suppose you track order shipments in the following
shipment table

C_NO P_CODE ORDER_DT SHIP_QTY SHIP_DT
---- ------ --------- ---------- ---------
10 1 01-APR-13 50 02-APR-13
10 2 01-APR-13 100 02-APR-13
20 1 01-APR-13 100 02-APR-13
30 3 02-APR-13 300 03-APR-13
10 1 01-APR-13 50 10-APR-13

To retrieve the order quantity (the qty column of the c_order table) of each
shipment, you need to have a query that joins the shipment table to the order
table on three columns, c_no, p_no, and order_dt, as shown in the query in
Listing 5.5.

Listing 5.5: A multiple columns join

SELECT o.c_no,
 o.p_code,
 o.order_dt,

Chapter 5: Joins 53

 ship_qty,
 ship_dt,
 qty
FROM shipment s
JOIN c_order o
ON s.c_no = o.c_no
AND s.p_code = o.p_code
AND s.order_dt = o.order_dt;

Executing this query against the c_order and shipment tables will give you
the following output rows.

C_NO P_CODE ORDER_DT SHIP_QTY SHIP_DT QTY
---- ------ --------- ---------- --------- ----------
10 1 01-APR-13 50 10-APR-13 100
10 1 01-APR-13 50 02-APR-13 100
10 2 01-APR-13 100 02-APR-13 100
20 1 01-APR-13 100 02-APR-13 200
30 3 02-APR-13 300 03-APR-13 300

Outer Joins

All the joins I explained so far were inner joins. There is another type of
join, the outer join. While an inner join query produces only related rows
from the joined tables, an outer join query produces all rows from one table
even when some of the rows do not have matching rows from the other
table.

There are three subtypes of outer joins, LEFT, RIGHT, and FULL. The
following points described each of these three types.

All rows from the table on the left of the left outer join will be in the
output whether or not there are matching rows from the table on its right.
The syntax for the left outer join is as follows.

SELECT columns
FROM table_1 LEFT OUTER JOIN table_2
ON table_1.column = table_2.column ... ;

All rows form the table on the right of the right outer join will be in the
output whether or not there are matching rows from the table on its left. The
syntax for the right outer join is as follows.

Oracle SQL: A Beginner's Tutorial54

SELECT columns FROM table_1 RIGHT OUTER JOIN table_2 ON
table_1.column = table_2.column ... ;

The full outer join returns all rows from both tables whether or not there are
matching rows from the opposite table. The syntax for the full outer join is
as follows.

SELECT columns
FROM table_1 FULL OUTER JOIN table_2
ON table_1.column = table_2.column … ;

Listing 5.6 is an example left outer join query. This query returns all rows
from the c_order table.

Listing 5.6: Left outer join

SELECT o.*,
 ship_dt
FROM c_order o
LEFT OUTER JOIN shipment s
ON o.p_code = s.p_code
AND o.c_no = s.c_no;

If you run this query against our example c_order and shipment tables, you
will see the following output rows.

C_NO P_CODE QTY ORDER_DT SHIP_DT
---- ------ ---------- --------- ---------
10 1 100 01-APR-13 02-APR-13
10 2 100 01-APR-13 02-APR-13
20 1 200 01-APR-13 02-APR-13
30 3 300 02-APR-13 03-APR-13
10 1 100 01-APR-13 10-APR-13
40 4 400 02-APR-13 NULL
40 5 400 03-APR-13 NULL

Note that the last two rows have no matching rows from the shipment table
and therefore their ship_dt column has NULL values.

Chapter 5: Joins 55

Rows with NULL only

If you want to query only orders that have not been shipped at all, you have
to put this “only” condition in the WHERE clause of your query (ship_dt IS
NULL) as in the query in Listing 5.7.

Listing 5.7: NULL only rows

SELECT o.*,
 ship_dt
FROM c_order o
LEFT OUTER JOIN shipment s
ON o.p_code = s.p_code
AND o.c_no = s.c_no
WHERE s.ship_dt IS NULL;

The following output rows from the query in Listing 5.7 are customer
orders that have not been shipped.

C_NO P_CODE QTY ORDER_DT SHIP_DT
---- ------ ---------- --------- ---------
40 4 400 02-APR-13 NULL
40 5 400 03-APR-13 NULL

Full Outer Joins

Suppose any order that was canceled was deleted from the c_order table (In
a real-life application, canceled orders might be moved to a different table,
rather than deleted). This means, some rows of the shipment table now may
not have matching rows in the order table. To return orders that do not have
shipments as well shipments that do not have orders, we need to write a
query with the full outer join, like the one shown in Listing 5.8.

Listing 5.8: Full outer join

SELECT o.*, s.*
 FROM c_order o
FULL OUTER JOIN shipment s
ON o.p_code = s.p_code
AND o.c_no = s.c_no ;

Oracle SQL: A Beginner's Tutorial56

To test the query, you need delete an order, such as the order(s) placed by
customer 30. Our c_order table now has the following rows only. After the
deletion, the c_order table has the following rows.

C_NO P_CODE QTY ORDER_DT
---- ------ ---------- ---------
10 1 100 01-APR-13
10 2 100 01-APR-13
20 1 200 01-APR-13
40 4 400 02-APR-13
40 5 400 03-APR-13

If you run the query in Listing 5.8, you will get the following output rows.
Note that we have NULL on the rows on both sides. The NULLs on the
right side are from the shipment table, the NULL on the left side (in our
example here we only have one row) is coming from the c_order table.

C_NO P_CO QTY ORDER_DT C_NO P_CO ORDER_DT SHIP_QTY SHIP_DT
---- ---- ----- --------- ---- ---- --------- ---------- ---------
10 1 100 01-APR-13 10 1 01-APR-13 50 02-APR-13
10 2 100 01-APR-13 10 2 01-APR-13 100 02-APR-13
20 1 200 01-APR-13 20 1 01-APR-13 100 02-APR-13
10 1 100 01-APR-13 10 1 01-APR-13 50 10-APR-13
40 4 400 02-APR-13 NULL NULL NULL NULL NULL
40 5 400 03-APR-13 NULL NULL NULL NULL NULL
NULL NULL NULL NULL 30 3 02-APR-13 300 03-APR-13

Self-Joins

Assuming some of your products have substitutes and you want to record
the substitutes in the product table, you then need to add a column. The new
column, which is called s_code in the product table, contains the product
code of the substitute.

The new product table, with a row having s_code 5, now looks like the
following.

P_CODE P_NAME PRICE LAUNCH_DT S_CODE
------ -------------- ---------- --------- ------
1 Nail 10 31-MAR-13 NULL
2 Washer 15 29-MAR-13 NULL
3 Nut 15 29-MAR-13 5
4 Screw 25 30-MAR-13 NULL

Chapter 5: Joins 57

5 Super_Nut 30 30-MAR-13 NULL
6 New Nut NULL NULL NULL

To add the s_code column, execute the following statement:

ALTER TABLE product ADD (s_code VARCHAR2(6));

Then, to update the p_code = 3 row, execute the following statement:

UPDATE product SET s_code = 5 WHERE p_code = 3;

If you need to know the product name of a substitute, you need the query
shown in Listing 5.9. This query joins the product table to itself. This kind
of join is called a self-join.

The syntax for the self join is as follows.

SELECT columns
FROM table alias_1
JOIN table alias_2
ON alias_1.column_x = alias_2.column_y;

Note that column_x and column_y are columns in the same table.

Listing 5.9: A self-join

SELECT prod.p_code,
 prod.p_name,
 subst.p_code subst_p_code,
 subst.p_name subst_name
FROM product prod
LEFT OUTER JOIN product subst
ON prod.s_code = subst.p_code
ORDER BY prod.p_code;

Here are the output rows of the query, showing “Newer Nut” in the
subst_name column of the third row.

P_CODE P_NAME SUBST_ SUBST_NAME
------ ---------- ------ ----------
1 Nail NULL NULL
2 Washer NULL NULL
3 Nut 5 Super_Nut
4 Screw NULL NULL
5 Super_Nut NULL NULL
6 New Nut NULL NULL

Oracle SQL: A Beginner's Tutorial58

Multiple Uses of A Table

If a product can have more than one substitute, you need to store the
product-substitute relationships in a separate table. A substitute cannot be
recorded in the product table.

To create the table that stores the product-substitute relationships named
prod_subst, execute the following statement.

CREATE TABLE prod_subst (p_code VARCHAR2(6), s_code VARCHAR2(6));

To remove the s_code column, execute the following statement:

ALTER TABLE product DROP (s_code);

Your product table will now contain the following rows.

P_CODE P_NAME PRICE LAUNCH_DT
------ -------------- ---------- ---------
1 Nail 10 31-MAR-13
2 Washer 15 29-MAR-13
3 Nut 15 29-MAR-13
4 Screw 25 30-MAR-13
5 Super_Nut 30 30-MAR-13
6 New Nut NULL NULL

Assuming that the only product with substitutes is product number 3 and its
substitutes are the products number 5 and 6, the prod_subst table will have
two rows as follows. (You need to insert these two rows using the INSERT
statements)

P_NO SUBS_CODE
---- ---------
3 5
3 6

To get the name of a product and the names of its substitutes, you need to
use the product table twice, as shown in the query in Listing 5.10.

Listing 5.10: Multiple uses of a table

SELECT prod.p_code,
 prod.p_name,
 ps.s_code,
 subst.p_name AS s_name

Chapter 5: Joins 59

FROM product prod
INNER JOIN prod_subst ps
ON prod.p_code = ps.p_code
INNER JOIN product subst
ON ps.s_code = subst.p_code
ORDER BY prod.p_code;

Here are the output rows from the query in Listing 5.10.

P_CODE P_NAME S_CODE S_NAME
------ --------- ------ ---------
3 Nut 6 Newer Nut
3 Nut 5 Super_Nut

Natural Joins

If two tables have columns that share a name, you can naturally join the two
tables on these columns. In a natural join, you do not need to specify the
columns that the join should use.

The syntax for the natural join is this.

SELECT columns FROM table_1 NATURAL JOIN table_2 ... ;

Listing 5.11 shows an example of a natural join on the c_order and
customer tables. This natural join implicitly joins the tables on their c_no
columns.

Listing 5.11: A natural join

SELECT * FROM c_order NATURAL JOIN customer;

Running the query in Listing 5.11 gives you the following output rows.

C_NO P_CO QTY ORDER_DT C_NAME
---- ---- ---- --------- --------------
10 1 100 01-APR-13 Standard Store
10 2 100 01-APR-13 Standard Store
20 1 200 01-APR-13 Quality Store
40 4 400 02-APR-13 Super Agent
40 5 400 03-APR-13 Super Agent

Oracle SQL: A Beginner's Tutorial60

Natural Outer Joins

The natural join is also applicable to the outer join. Consider the query in
Listing 5.12.

Listing 5.12: A natural outer join

SELECT * FROM c_order NATURAL RIGHT JOIN customer;

Applying the query against the c_order and customer tables will give you
the following output rows.

C_NO P_CODE QTY ORDER_DT C_NAME
---- ------ ---------- --------- --------------
 10 1 100 01-APR-13 Standard Store
 10 2 100 01-APR-13 Standard Store
 20 1 200 01-APR-13 Quality Store
 40 4 400 02-APR-13 Super Agent
 40 5 400 03-APR-13 Super Agent
 30 NULL NULL NULL Head Office

Mixing Natural Joins with Different Column Names

If you need to join on more than one column, and the second column pair
does not share a name, you can specify the different column names in the
WHERE clause. Listing 5.13 shows an example of such a case.

Listing 5.13: Mixing natural join with different column names

SELECT * FROM c_order o NATURAL RIGHT JOIN product p WHERE
o.order_dt = p.launch_dt;

In the query in Listing 5.13, in addition to the natural join on the same c_no
column, the rows from the two tables have to be joined on the two dates.

The query does not return any row as we don’t have any order of a
product with the same order date as the product’s launch date.

Chapter 5: Joins 61

The USING Keyword

A natural join will use all columns with the same names from the joined
tables. If you want your query to join only on some of these identically
named columns, instead of using the NATURAL keyword, use the USING
keyword.

The syntax for joining two tables with USING is as follows.

SELECT columns
FROM table_1
JOIN table_2 USING (column);

Listing 5.14, for example, joins the c_order table to the shipment table on
only their p_code columns. It does not join the tables on their c_no
columns. This query gives you the total quantity shipped by product code.

Listing 5.14: USING

SELECT p_code,
 SUM(s.ship_qty)
FROM c_order o
JOIN shipment s USING (p_code)
GROUP BY p_code;

Executing this query against our example c_order and shipment tables will
produce the following output rows.

P_CODE SUM(S.SHIP_QTY)
------ ---------------
1 400
2 100

Summary

In this chapter you learned about getting data from multiple tables. You
learned how to use the various types of joins for this purpose.

Oracle SQL: A Beginner's Tutorial62

Chapter 6
Subqueries

A subquery is a query nested within another query. The containing query is
called an outer query. A subquery in turn can have a nested query, making it
a multiple nested query.

This chapter disucsses subqueries in detail.

Single-Row Subqueries

A single-row subquery is a subquery that returns a single value. A single-
row subquery can be placed in the WHERE clause of an outer query. The
return value of the subquery is compared with a column of the outer query
using one of the comparison operators. (Comparison operators were
discussed in Chapter 2, “Basic Queries”)

For example, the query in Listing 6.1 contains a single-row subquery
that returns the highest sale price recorded for a product. The outer query
returns all products from the product table that have that highest price
(30.00), the Super_Nut and Newer Nut products.

Listing 6.1: A subquery that returns a single value

SELECT *
FROM product
WHERE price =
 (SELECT MAX(price)
 FROM product p
 INNER JOIN c_order o
 ON p.p_code = o.p_code
);

Oracle SQL: A Beginner's Tutorial64

Note that the subquery in Listing 6.1 is printed in bold.

Executing the query in Listing 6.1 against this product table

P_CODE P_NAME PRICE LAUNCH_DT
------ ---------- ------ ---------
1 Nail 10.00 31-MAR-13
2 Washer 15.00 29-MAR-13
3 Nut 15.00 29-MAR-13
4 Screw 25.00 30-MAR-13
5 Super_Nut 30.00 30-MAR-13
6 Newer Nut 30.00 01-MAY-13

and the following c_order (customer order) table

C_NO P_CODE QTY ORDER_DT
---- ------ ---- ---------
10 1 100 01-APR-13
10 2 100 01-APR-13
20 1 200 01-APR-13
30 3 300 02-APR-13
40 4 400 02-APR-13
40 5 400 03-APR-13

will give you the following result.

P_CODE P_NAME PRICE LAUNCH_DT
------ ---------- ------ ---------
5 Super_Nut 30.00 30-MAR-13
6 Newer Nut 30.00 01-MAY-13

The column and subquery result do not have to be the same column, but
they must have compatible data types. In the query in Listing 6.1, the price
column of the product table is a numeric type and the subquery also returns
a numeric type.

If the subquery returns more than one value, you will get an error
message. For example, the query in Listing 6.2 throws an error because the
subquery returns more than one value.

Listing 6.2: Single-row subquery error

SELECT *
FROM product

Chapter 6: Subqueries 65

WHERE price =
 (SELECT MAX(price)
 FROM product p
 INNER JOIN c_order s
 ON p.p_code = s.p_code
 GROUP BY p.launch_dt
);

Here is the error that you will see if you run the query in Listing 6.2.

ERROR at line 4:
ORA-01427: single-row subquery returns more than one row

Multiple-Row Subqueries

A subquery that returns more than one value is called a multiple-row
subquery. This type of subquery also occurs in the WHERE clause of an
outer query, however instead of using a comparison operator, you use IN or
NOT IN in the WHERE clause.

For example, the query in Listing 6.3 contains a multiple-row subquery.

Listing 6.3: Using a multiple-row subquery

SELECT *
FROM product
WHERE price IN
 (SELECT MAX(price)
 FROM product p
 INNER JOIN c_order s
 ON p.p_code = s.p_code
 GROUP BY p.launch_dt
);

Run against the same product and order tables, the subquery will return
these three values:

MAX(PRICE)

 15
 30
 10

Oracle SQL: A Beginner's Tutorial66

The overall query output will be as follows.

P_CODE P_NAME PRICE LAUNCH_DT
------ ---------- ------ ---------
1 Nail 10.00 31-MAR-13
2 Washer 15.00 29-MAR-13
3 Nut 15.00 29-MAR-13
5 Super_Nut 30.00 30-MAR-13
6 Newer Nut 30.00 01-MAY-13

The ALL and ANY Operators

In addition to IN and NOT IN, you can also use the ALL and ANY
operators in a multiple-row subquery. With ALL or ANY you use a
comparison operator. For instance, the query in Listing 6.4 uses the ALL
operator to compare the price column with the subquery result.

Listing 6.4: Using ALL

SELECT *
FROM product
WHERE price >= ALL
 (SELECT MAX(price)
 FROM product p
 INNER JOIN c_order o
 ON o.p_code = o.p_code
 GROUP BY p.launch_dt
)
ORDER BY p_code;

Run against the same product and order tables, the subquery in Listing 6.4
(printed in bold) returns these results:

MAX(PRICE)

 15
 30
 10

The query output will consist of only rows whose price is greater or equal to
all the values returned by the subquery.

Chapter 6: Subqueries 67

Here is the query output.

P_CODE P_NAME PRICE LAUNCH_DT
------ ---------- ------ ---------
5 Super_Nut 30.00 30-MAR-13
6 Newer Nut 30.00 01-MAY-13

As another example, the query in Listing 6.5 is similar to the one in Listing
6.4 except that the equal operator is used to compare the price with the
subquery result.

Listing 6.5: Using ALL for equal comparison

SELECT *
FROM product
WHERE price = ALL
 (SELECT MAX(price)
 FROM product p
 INNER JOIN c_order o
 ON o.p_code = o.p_code
 GROUP BY p.launch_dt
)
ORDER BY p_code;

As in the previous example, the subquery will return these values.

MAX(PRICE)

 15
 30
 10

The query output then consists of only rows whose price equals to all these
values, which is not possible as each product has only one price. As a result,
the query returns no rows. Here is a message you will see if you run the
query.

no rows selected

Oracle SQL: A Beginner's Tutorial68

Subqueries Returning Rows Having the Same Value

If you use = ALL and the subquery returns one row or multiple rows with
the same value you will not get a “no rows selected” message.

You can also use the ANY operator to compare a column with the
values returned by a subquery. If you use ALL, the query compares a
column to all values (every one of the values) returned by the subquery. If
you use ANY, the query compares a column to any one of the values
returned by the subquery.

For example, the query in Listing 6.6 compares the price column for
equality to any of the maximum prices returned by the subquery, in other
words, the WHERE condition is true if the price equals to any of maximum
prices.

Listing 6.6: Using the equal comparison to ANY value

SELECT *
FROM product
WHERE price = ANY
 (SELECT MAX(price)
 FROM product p
 INNER JOIN c_order o
 ON p.P_code = o.p_code
 GROUP BY p.launch_dt
)
ORDER BY p_code;

The subquery will return these rows.

MAX(PRICE)

 15
 30
 10

The outer query output will consist of any product that has a price equal to
any of these (maximum price) values. Here is the query output.

P_CODE P_NAME PRICE LAUNCH_DT

Chapter 6: Subqueries 69

------ ---------- ------ ---------
1 Nail 10.00 31-MAR-13
2 Washer 15.00 29-MAR-13
3 Nut 15.00 29-MAR-13
5 Super_Nut 30.00 30-MAR-13
6 Newer Nut 30.00 01-MAY-13

Multiple Nested Subqueries

A subquery can contain another query, making it a query with multiple
nested subqueries. The query in Listing 6.7, for example, has multiple
nested subqueries. Notice the two IN’s, one for each of the two nested
queries? The query returns only customers who have not ordered any
product having name that contains ‘Nut’.

Listing 6.7: Query with multiple nested subqueries

SELECT customer.*
FROM customer
WHERE c_no IN
 (SELECT c_no
 FROM c_order
 WHERE p_code IN
 (SELECT p_code FROM product WHERE p_name NOT LIKE '%Nut%'
)
);

Here is the query result.

C_NO C_NAME
---- --------------
40 Super Agent
10 Standard Store
20 Quality Store

Oracle SQL: A Beginner's Tutorial70

Correlated Subqueries

All the preceding subqueries are independent of their outer queries. A
subquery can also be related to its outer query, where one or more column
from the outer query table is (are) related to the column(s) of the subquery
table in the WHERE clause of the subquery. This type of subquery is called
the correlated subquery.

As an example, the query in Listing 6.8 contains a correlated subquery
that returns only customers who have not ordered any product whose name
contains ‘Nut’. Note that the c_no column of the outer query table,
customer, is related to the c_no column of the c_order table of the subquery.

Listing 6.8: Using a correlated subquery

SELECT customer.*
FROM customer
WHERE c_no IN
 (SELECT c_no
 FROM c_order o
 JOIN product p
 ON o.p_code = p.p_code
 WHERE p_name NOT LIKE '%Nut%'
 AND customer.c_no = o.c_no
);

The following are the query result.

C_NO C_NAME
---- --------------
40 Super Agent
10 Standard Store
20 Quality Store

Chapter 6: Subqueries 71

Summary

In this chapter you learned the various types of subqueries, such as nested
and correlated subqueries. In the next chapters you will apply the lesson you
learned in this chapter to combine the results of two or more queries.

Oracle SQL: A Beginner's Tutorial72

Chapter 7
Compound Queries

You can combine the results of two or more SELECT statements using the
UNION ALL, UNION, INTERSECT, or MINUS operators. The number of
output columns from every statement must be the same and the
corresponding columns must have identical or compatible data types.

This chapter shows you how to combine query results.

UNION ALL

When you combine two or more queries with the UNION ALL operator, the
overall output will be the total rows from all the queries. For example, take
a look at the query in Listing 7.1. This query consists of two SELECT
statements.

Listing 7.1: Using UNION ALL

SELECT p_code, p_name, 'FIRST QUERY' query
FROM product p WHERE p_name LIKE '%Nut%'
UNION ALL
SELECT p.p_code,
 p_name,
 'SECOND_QUERY' query
FROM c_order o
INNER JOIN product p
ON o.p_code = p.p_code;

Note that the 'FIRST QUERY' and 'SECOND_QUERY' literals in the first
and second SELECT statements, respectively, are just labels to identify
where a row is coming from.

Oracle SQL: A Beginner's Tutorial74

Assuming that the product table has the following rows

P_CODE P_NAME PRICE LAUNCH_DT
------ --------------- ---------- ---------
1 Nail 10 31-MAR-13
2 Washer 15 29-MAR-13
3 Nut 15 29-MAR-13
4 Screw 25 30-MAR-13
5 Super_Nut 30 30-MAR-13
6 New Nut 30 01-MAY-13

and the c_order table contains the following records

C_NO P_CODE QTY ORDER_DT
---- ------ ---- ---------
10 1 100 01-APR-13
10 2 100 01-APR-13
20 1 200 01-APR-13
40 4 400 02-APR-13
40 5 400 03-APR-13
30 3 300 02-APR-13

the query in Listing 7.1 will return the following output.

P_CODE P_NAME QUERY
------ ---------- ------------
3 Nut FIRST QUERY
5 Super_Nut FIRST QUERY
6 New Nut FIRST QUERY
1 Nail SECOND_QUERY
1 Nail SECOND_QUERY
2 Washer SECOND_QUERY
3 Nut SECOND_QUERY
4 Screw SECOND_QUERY
5 Super_Nut SECOND_QUERY

Note that the output of the query in Listing 7.1 comprises all the records
form the first SELECT statement followed by the rows from the second
SELECT statement. You can of course use the ORDER BY clause to re-
order this. For instance, the query in Listing 7.2 modifies the query in
Listing 7.1 by ordering the results on the p_code column using the ORDER
BY clause.

Chapter 7: Compound Queries 75

Listing 7.2: Ordering output rows of a compound query

SELECT p_code, p_name, 'FIRST QUERY' query
FROM product p WHERE p_name LIKE '%Nut%'
UNION ALL
SELECT p.p_code,
 p_name,
 'SECOND_QUERY' query
FROM c_order o
INNER JOIN product p
ON o.p_code = p.p_code
ORDER BY p_code;

The result of the query in Listing 7.2 is as follows.

P_CODE P_NAME QUERY
------ ---------- ------------
1 Nail SECOND_QUERY
1 Nail SECOND_QUERY
2 Washer SECOND_QUERY
3 Nut SECOND_QUERY
3 Nut FIRST QUERY
4 Screw SECOND_QUERY
5 Super_Nut SECOND_QUERY
5 Super_Nut FIRST QUERY
6 New Nut FIRST QUERY

UNION

UNION is similar to UNION ALL. However, with UNION duplicate rows
will be returned once only. For example, consider the query in Listing 7.3
that consists of two SELECT elements.

Listing 7.3: Using UNION

SELECT p_code,
 p_name
FROM product p
WHERE p_name LIKE '%Nut%'
UNION
SELECT p.p_code,
 p_name

Oracle SQL: A Beginner's Tutorial76

FROM c_order o
INNER JOIN product p
ON o.p_code = p.p_code
ORDER BY p_code;

Here is the output of the query.

P_CODE P_NAME
------ ---------
1 Nail
2 Washer
3 Nut
4 Screw
5 Super_Nut
6 New Nut

INTERSECT

When you combine two or more queries with the INTERSECT operator, the
output will consist of rows common to all the participating SELECT
statements. In other words, only if a row is returned by all the SELECT
statements will the row be included in the final result.

Let’s take a look at the example in Listing 7.4.

Listing 7.4: Using INTERSECT

SELECT p_code,
 p_name
FROM product p
WHERE p_name LIKE '%Nut%'
INTERSECT
SELECT p.p_code,
 p_name
FROM c_order o
INNER JOIN product p
ON o.p_code = p.p_code
ORDER BY p_code;

Running the query against the same product and c_order tables will return
the following result.

Chapter 7: Compound Queries 77

P_CODE P_NAME
------ ---------
3 Nut
5 Super_Nut

MINUS

When you combine two SELECT statements using the MINUS operator,
the final output will be rows from the first query that are not returned by the
second query. Take a look at the example in Listing 7.5.

Listing 7.5: Using MINUS

SELECT p_code,
 p_name
FROM product p
WHERE p_name LIKE '%Nut%'
MINUS
SELECT p.p_code,
 p_name
FROM c_order o
INNER JOIN product p
ON o.p_code = p.p_code
ORDER BY p_code;

Running this query against the same product and c_order tables produces
the following output.

P_CODE P_NAME
------ ---------
6 New Nut

With MINUS, the order of constituting SELECT statements is important. If
you swap the two SELECT statements in the query in Listing 7.5, the output
will be totally different. Take a look at the query in Listing 7.6, which is
identical to that in Listing 7.5 except for the fact that the two SELECT
statements have been swapped.

Listing 7.6: Swapping the participating SELECT statements in a query
combined with MINUS

Oracle SQL: A Beginner's Tutorial78

SELECT p.p_code,
 p_name
FROM c_order o
INNER JOIN product p
ON o.p_code = p.p_code
MINUS
SELECT p_code,
 p_name
FROM product p
WHERE p_name LIKE '%Nut%'
ORDER BY p_code;

The output of the query in Listing 7.6 is this:

P_CODE P_NAME
------ ------
1 Nail
2 Washer
4 Screw

Summary

In this chapter you learned that you can combine the output of two or more
SELECT statements. There are five operators you can use for this purpose,
UNION ALL, UNION, INTERSECT, and MINUS.

Chapter 8
Views

A view is effectively a predefined query. You create and use views most
frequently for the following purposes:

▪ Hiding table columns (for security protection)
▪ Presenting pre-computed columns (in lieu of table columns)
▪ Hiding queries (so that the query outputs are available without

running the queries)

This chapter discusses view and presents examples of views.

Creating and Using Views

You create a view using the CREATE VIEW statement. Here is its syntax.

CREATE VIEW view_name (columns) AS SELECT ... ;

The SELECT statement at the end of the CREATE VIEW statement is the
predefined query. When you use a view its predefined query is executed.
Since a query result is a table that is not persisted (stored) in the database, a
view is also known as a virtual table. The table in the SELECT statement of
a view is known as a base table.

One of the reasons you use a view is when you have a table you need to
share with other people. If you don’t want some of the table columns
viewable by others, you can use a view to hide those columns. You would
then share the view and restrict access to the base table.

Oracle SQL: A Beginner's Tutorial80

For example, Listing 8.1 shows an SQL statement for creating a view
called product_v that is based on the product table. The view hides the price
column of the base table.

Listing 8.1: Using a view to hide columns

CREATE VIEW product_v
 (p_code , p_name
) AS
SELECT p_code, p_name FROM product;

The product_v view can now be used just as you would any database table.
For example, the following statement displays all columns in the product_v
view.

SELECT * FROM product_v WHERE p_name NOT LIKE '%Nut%';

Assuming the product table contains these rows

P_CODE P_NAME PRICE LAUNCH_DT
------ ---------- ------ ---------
1 Nail 10.00 31-MAR-13
2 Washer 15.00 29-MAR-13
3 Nut 15.00 29-MAR-13
4 Screw 25.00 30-MAR-13
5 Super_Nut 30.00 30-MAR-13
6 New Nut 30.00 01-MAY-13

selecting all columns from the product_v view will return these rows.

P_CODE P_NAME
------ ------
1 Nail
2 Washer
4 Screw

Note that within a database a view name must be unique among all the
views and tables in the database.

Another use of the view is to derive computed columns not available in
the base table(s). Here is an example.

Suppose the product table stores profit margins for each product as
follows.

Chapter 8: Views 81

P_CODE P_NAME PRICE LAUNCH_DT MARGIN
------ ---------- ------ --------- ------
1 Nail 10.00 31-MAR-13 1
2 Washer 15.00 29-MAR-13 2
3 Nut 15.00 29-MAR-13 2
4 Screw 25.00 30-MAR-13 5
5 Super_Nut 30.00 30-MAR-13 5
6 New Nut 30.00 01-MAY-13 5

If you want other users to see the selling price (price + margin) but not the
supplier price (price) or the margins in the product table, you can create a
view that computes the selling price from the product price and margin, as
demonstrated by the query in Listing 8.2. This query creates a view called
product_sell_v that includes a computed column sell_price. The value for
sell_price comes from the price and margin columns in the product table.

Listing 8.2: A view with a computed column

CREATE VIEW product_sell_v
 (p_no , p_name, sell_price
) AS
SELECT p_code, p_name, (price + margin) FROM product;

Selecting all data from product_sell_v (using “SELECT * FROM
product_sell_v”) returns these rows.

P_NO P_NAME SELL_PRICE
------ ---------- ----------
1 Nail 11
2 Washer 17
3 Nut 17
4 Screw 30
5 Super_Nut 35
6 New Nut 35

Users of a view don’t need to know the details of its predefined query. They
only need to know what data is available from the view. Referring back to
the self-join example in Chapter 5, “Joins”, you can create the view defined
in Listing 8.3 to hide the self-join query. While the rows from the product
table only have the product code of the substitutes, this view will give you
the names of their substitutes as well.

Oracle SQL: A Beginner's Tutorial82

Listing 8.3: Hiding Query

CREATE VIEW prod_subs_v AS
SELECT prod.p_code,
 prod.p_name,
 subst.p_code subst_p_code,
 subst.p_name subst_name
FROM product prod
LEFT OUTER JOIN product subst
ON prod.s_code = subst.p_code
ORDER BY prod.p_code;

Recall that the product table has the following rows.

P_CODE P_NAME PRICE LAUNCH_DT MARGIN S_CODE
------ ---------- ------ --------- ------ ------
1 Nail 10.00 31-MAR-13 1 6
2 Washer 15.00 29-MAR-13 2 7
3 Nut 15.00 29-MAR-13 2 5
4 Screw 25.00 30-MAR-13 5 NULL
5 Super_Nut 30.00 30-MAR-13 5 NULL
6 New Nut 30.00 01-MAY-13 5 NULL

Executing the following query that uses the view created with the statement
in Listing 8.3,

SELECT * FROM prod_subs_v;

produces the following rows.

P_CODE P_NAME SUBST_ SUBST_NAME
------ ---------- ------ ----------
1 Nail 6 New Nut
2 Washer NULL NULL
3 Nut 5 Super_Nut
4 Screw NULL NULL
5 Super_Nut NULL NULL
6 New Nut NULL NULL

Chapter 8: Views 83

Nested Views

A view can be based on another view. Such a view is called a nested view.

As an example, the ps_noname_v view in Listing 8.4 hides the p_name
column and is based on the product_sell_v view created earlier.

Listing 8.4: A nested view

CREATE VIEW ps_noname_v
 (p_no , sell_price
) AS
SELECT p_no, sell_price FROM product_sell_v;

Running this statement

SELECT * FROM ps_noname_v;

will give you the following output rows

P_NO SELL_PRICE
------ ----------
1 11
2 17
3 17
4 30
5 35
6 35

Managing Views

You can easily manage your views in Oracle. To see all views in the current
database, execute the following statement.

SELECT VIEW_NAME FROM USER_VIEWS;

This will return the following output, which may differ for other databases.

VIEW_NAME

Oracle SQL: A Beginner's Tutorial84

PRODUCT_SELL_V
PRODUCT_V
PROD_SUBS_V
PS_NONAME_V

To delete a view, use the DROP VIEW statement. The syntax for the DROP
VIEW statement is as follows.

DROP VIEW view_name;

For example, the statement in Listing 8.5 will delete the ps_noname_v view.

Listing 8.5: Deleting the ps_noname_v view

DROP VIEW ps_nomane_v;

After running the statement in Listing 8.5, listing the views in the database
again will give you these results.

VIEW_NAME

PRODUCT_SELL_V
PRODUCT_V
PROD_SUBS_V

Summary

A view is a predefined query that you can use to hide columns, include pre-
computed columns, and so on. In this chapter you learned how to create and
manage views.

Chapter 9
Built-in Functions

The Oracle database provides functions that you can use in your queries.
These built-in functions can be grouped into numeric functions, character
functions, datetime functions, and functions for handling null values. The
objective of this chapter is to introduce you to some of these functions.

Numeric Functions

The following are some of the more important numeric functions.

ABS

ABS(n) returns the absolute value of n. For example, the following query
returns the absolute value of (price - 20.00) as the third column.

SELECT p_code, price, (price – 20), ABS(price – 20.00) FROM product;

Applying the query to this product table

P_CODE P_NAME PRICE LAUNCH_DT
------ --------- ---------- ---------
1 Nail 10 31-MAR-13
2 Washer 15 29-MAR-13
3 Nut 15 29-MAR-13
4 Screw 25 30-MAR-13
5 Super_Nut 30 30-MAR-13
6 Newer Nut 15 01-MAY-13

you will get this result.

Oracle SQL: A Beginner's Tutorial86

P_CODE PRICE PRICE-20.00 ABS(PRICE-20.00)
------ ----- ----------- ----------------
1 10 -10 10
2 15 -5 5
3 15 -5 5
4 25 5 5
5 30 10 10
6 15 -5 5

ROUND

ROUND(n, d) returns a number rounded to a certain number of decimal
places. The argument n is the number to be rounded and d the number of
decimal places. For example, the following query uses ROUND to round
price to one decimal place.

SELECT p_code, price, ROUND (price, 1) FROM product;

Assuming the product table contains these rows

P_CODE P_NAME PRICE LAUNCH_DT S_CODE
------ --------- ---------- --------- ------
1 Nail 10.15 31-MAR-13 NULL
2 Washer 15.99 29-MAR-13 NULL
3 Nut 15.5 29-MAR-13 6
4 Screw 25.25 30-MAR-13 NULL
5 Super_Nut 30.33 30-MAR-13 NULL
6 Newer Nut 15.55 01-MAY-13 NULL

the output of the query is this.

P_CODE PRICE ROUND(PRICE,1)
------ ---------- --------------
1 10.15 10.2
2 15.99 16
3 15.5 15.5
4 25.25 25.3
5 30.33 30.3
6 15.55 15.6

Chapter 9: Built-in Functions 87

SIGN

SIGN(n) returns a value indicating the sign of n. This function returns -1 for
n < 0, 0 for n = 0, and 1 for n > 0. As an example, the following query uses
SIGN to return the sign of (price – 15).

SELECT p_code, price, SIGN(price – 15) FROM product;

Assuming the product table has the following records

P_CODE P_NAME PRICE LAUNCH_DT
------ ---------- ------ ---------
1 Nail 10.00 31-MAR-13
2 Washer 15.00 29-MAR-13
3 Nut 15.00 29-MAR-13
4 Screw 25.00 30-MAR-13
5 Super_Nut 30.00 30-MAR-13
6 Newer Nut 15.00 01-MAY-13

the query output will be as follows.

P_CODE PRICE SIGN(PRICE-15)
------ ------ --------------
1 10.00 -1
2 15.00 0
3 15.00 0
4 25.00 1
5 30.00 1
6 15.00 0

TRUNC

TRUNC(n, d) returns a number truncated to a certain number of decimal
places. The argument n is the number to truncate and d the number of
decimal places. For example, the following query truncates price to one
decimal place.

SELECT p_code, price, TRUNC(price, 1) FROM product;

Assuming the product table contains these rows

Oracle SQL: A Beginner's Tutorial88

P_CODE P_NAME PRICE LAUNCH_DT S_CODE
------ --------- ---------- --------- ------
1 Nail 10.15 31-MAR-13 NULL
2 Washer 15.99 29-MAR-13 NULL
3 Nut 15.5 29-MAR-13 6
4 Screw 25.25 30-MAR-13 NULL
5 Super_Nut 30.33 30-MAR-13 NULL
6 Newer Nut 15.55 01-MAY-13 NULL

the query result will be as follows.

P_CODE PRICE TRUNC(PRICE,1)
------ ------ --------------
1 10.15 10.1
2 15.99 15.9
3 15.50 15.5
4 25.25 25.2
5 30.33 30.3
6 15.55 15.5

Character Functions

The following are some of the more important string functions.

CONCAT

CONCAT(string1, string2) concatenates string1 and string2 and returns the
result. If you pass a number as an argument, the number will first be
converted to a string. In the following example three strings, p_name, a
dash, and description, are concatenated.

SELECT p_code, CONCAT(CONCAT(p_name, ' -- ') , price) FROM product;

The price column value will be converted automatically to a string.

With the product table containing these rows

P_CODE P_NAME PRICE LAUNCH_DT S_CODE
------ --------- ---------- --------- ------
1 Nail 10.15 31-MAR-13 NULL

Chapter 9: Built-in Functions 89

2 Washer 15.99 29-MAR-13 NULL
3 Nut 15.5 29-MAR-13 6
4 Screw 25.25 30-MAR-13 NULL
5 Super_Nut 30.33 30-MAR-13 NULL
6 Newer Nut 15.55 01-MAY-13 NULL

executing the query against the product table will return this result.

P_CODE CONCAT(CONCAT(P_NAME,'--'),PRICE)
------ ---------------------------------
1 Nail -- 10.15
2 Washer -- 15.99
3 Nut -- 15.5
4 Screw -- 25.25
5 Super_Nut -- 30.33
6 Newer Nut -- 15.55

You can also use the || operator to concatenate strings. The following query
produces the same output as the one above.

SELECT p_code, p_name || ' -- ' || price FROM product;

LOWER and UPPERLOWER(str) converts str to lowercase and
UPPER(str) converts str to uppercase. For example, the following query
uses LOWER and UPPER.

SELECT p_name, LOWER(p_name), UPPER(p_name) FROM product;

Executing the query against the product table gives you this result.

P_NAME LOWER(P_NAME) UPPER(P_NAME)
---------- -------------- -------------
Nail nail NAIL
Washer washer WASHER
Nut nut NUT
Screw screw SCREW
Super_Nut super_nut SUPER_NUT
Newer Nut newer nut NEWER NUT

Oracle SQL: A Beginner's Tutorial90

LENGTH

LENGTH(str) returns the length of string str. The length of a string is the
number of characters in it. For example, the following query returns the
length of p_name as the second column.

SELECT p_name, LENGTH(p_name) FROM product;

The result would look like this.

P_NAME LENGTH(P_NAME)
---------- --------------
Nail 4
Washer 6
Nut 3
Screw 5
Super_Nut 9
Newer Nut 9

SUBSTR

SUBSTR(str, start_position, [length]) returns a substring of str starting
from the position indicated by start_position. If length is not specified, the
function returns a substring from start_position to the last character in str. If
length is present, the function returns a substring which is length characters
long starting from start_position. If length is less than 1, the function
returns an empty string.

Suppose you have a customer table with the following rows.

C_NO C_NAME PHONE
---- -------------- --------------
10 Standard Store 1-416-223-4455
20 Quality Store 1-647-333-5566
30 Branch Office 1-416-111-2222
40 Super Agent 1-226-777-8888

The following query

SELECT SUBSTR(phone, 3) FROM customer;

Chapter 9: Built-in Functions 91

will return the following result

SUBSTR(PHONE,3)

416-223-4455
647-333-5566
416-111-2222
226-777-8888

And the following query

SELECT CONCAT(SUBSTR(phone, 7, 3) , SUBSTR(phone, 11, 3)) phone
FROM customer;

will return this result.

PHONE

416-223
647-333
416-111
226-777

Datetime Functions

The following are some of the more important datetime functions.

CURRENT_DATE

CURRENT_DATE() returns the current date (the current date of the Oracle
server at the time you run the query). For instance, the following query

SELECT p_code, launch_dt, CURRENT_DATE FROM product;

will return a result that looks like this. The actual value of the third column
will depend on when you run the query.

P_NO LAUNCH_DT CURRENT_DATE
---- --------- ------------
1 31-MAR-13 29-APR-13
2 29-MAR-13 29-APR-13

Oracle SQL: A Beginner's Tutorial92

3 29-MAR-13 29-APR-13
4 30-MAR-13 29-APR-13
5 30-MAR-13 29-APR-13
6 01-MAY-13 29-APR-13

TO_CHAR

TO_CHAR(dt, fmt_specifier) converts a date (dt) to a string in the format
specified by fmt_specifier. In the following example, the launch_dt column
is formatted with a format specifier that has three components:

▪ DD - the day of the month
▪ MONTH - the long name of the month in uppercase
▪ YYYY - the year

SELECT p_code, TO_CHAR(launch_dt, 'DD MONTH YYYY') reformatted_dt
FROM product;

Running the query will give you something like this.
P_CODE REFORMATTED_DT
------ -----------------
1 31 MARCH 2013
2 29 MARCH 2013
3 29 MARCH 2013
4 30 MARCH 2013
5 30 MARCH 2013
6 01 MAY 2013

NULL-related functions

The following are some of the functions that can be used to handle null
values.

Chapter 9: Built-in Functions 93

COALESCE

COALESCE(expr-1, expr-2, ..., expr-n) returns the first expression from the
list that is not NULL. For example, suppose your product table contains the
following rows

P_CODE P_NAME PRICE LAUNCH_DT MIN_PRICE
------ --------- ------ --------- ---------
1 Nail 10.00 31-MAR-13 NULL
2 Washer 15.00 29-MAR-13 NULL
3 Nut 15.00 29-MAR-13 12.00
4 Screw 20.00 30-MAR-13 17.00
5 New Nut NULL 01-APR-13 10.00
6 Newer Nut NULL 01-MAY-13 NULL

and you want to view the sale_price column of the products using this
formula:

▪ If price is available (not NULL) then discount it by 10%
▪ If price is not available then return min_price
▪ If both price and min_price are not available, return 5.0

You can use COALESCE to produce the correct sale_price values:

SELECT p_name, price, min_price,
COALESCE((price * 0.9), min_price, 5.0) sale_price
FROM product;

Here is the query result.

P_NAME PRICE MIN_PRICE SALE_PRICE
--------- ------ --------- ----------
Nail 10.00 NULL 9
Washer 15.00 NULL 13.5
Nut 15.00 12.00 13.5
Screw 20.00 17.00 18
New Nut NULL 10.00 10
Newer Nut NULL NULL 5

Oracle SQL: A Beginner's Tutorial94

NULLIF

NULLIF (expr1, expr2) compares expr1 and expr2. If they are equal, the
function returns null. If they are not equal, the function returns expr1.

Suppose you store product old prices in a table named old_price. The
following old_price table, for example, shows two old prices of the Nut
product, the products with p_code = 3.

P_CODE P_NAME PRICE LAUNCH_DT
------ --------- ------ ---------
3 Nut 15.00 01-MAR-10
3 Newer Nut 12.00 01-APR-12

Just say you want to show the old products with their current price. The
following query that employs the NULLIF function can solve your problem.

SELECT p_code,
 p_name,
 NULLIF(p.price, op.price) current_price
FROM product p
JOIN old_product op USING (p_code);

Applying the query against the following product table and the old_price
table

P_CODE P_NAME PRICE LAUNCH_DT
------ --------- ------ ---------
1 Nail 10.00 31-MAR-13
2 Washer 15.00 29-MAR-13
3 Better Nut 10.00 01-MAY-13
4 Screw 15.00 01-MAY-13

returns the two old nuts as follows

P_CODE P_NAME CURRENT_PRICE
------ --------- -------------
3 Nut 10
3 Newer Nut 10

Chapter 9: Built-in Functions 95

NVL

NVL (expr1, expr2) returns exprs1 if expr1 is not NULL; otherwise, it
returns expr2.

For example, suppose you want to compare old and current prices.
Applying NVL in the following query gives you the old price from the
product table if the product has never been superseded; otherwise, if a
product has been superseded, its old price will come from the old_product
table.

SELECT p_code,
 p.p_name,
 p.price current_price,
 NVL(op.price,p.price) old_price
FROM product p
LEFT OUTER JOIN old_product op USING (p_code);

Here is the result.

P_CODE P_NAME CURRENT_PRICE OLD_PRICE
------ --------- ------------- ----------
1 Nail 10 10
2 Washer 15 15
3 Nut 10 12
3 Nut 10 15
4 Screw 15 15

The query result shows that the only product that has been superseded is
Nut, and it has been superseded twice. Therefore, its old prices are shown
from the old_product table. The other products have never been superseded
so their current and old prices are the same. Their old_price is coming from
the product table because its op.price column, the first parameter of the
NVL function, is NULL.

Oracle SQL: A Beginner's Tutorial96

Summary

You learned some of the built-in functions that you can use in the Oracle
database. If you are interested in learning more about built-in functions,
consult the Oracle manual, available at Oracle website.

Chapter 10
PL/SQL

PL/SQL, short for Procedural Language extension to SQL, complements
SQL with a procedural programming language. PL/SQL is a feature of the
Oracle database.

The objective of this chapter is to introduce some of the most commonly
used PL/SQL features such as

▪ row-by-row processing of query output
▪ if-then-else decision logic
▪ exception handling
▪ user-defined functions

Row-by-row Processing

You learned in the previous chapters that the output of a query can be more
than one row. You can write a PL/SQL program to process query output
row-by-row sequentially.

The structure of the PL/SQL program for row-by-row processing is as
follows.

BEGIN
 FOR output_row_variable IN (
 SELECT ...)
 LOOP
 row processing statements;
 END LOOP;
END;

Oracle SQL: A Beginner's Tutorial98

For example, the program in Listing 10.1 makes use of a join query and its
output rows are stored in a variable named invc. In the processing loop,
every row from invc is inserted into the invoice table.

Listing 10.1: Row-by-row processing

BEGIN
 FOR invc IN
 (SELECT c_no,
 c_name,
 p_name,
 qty,
 price unit_prc,
 (qty * price) total_prc,
 sysdate invoice_dt,
 launch_dt
 FROM c_order NATURAL
 JOIN product NATURAL
 JOIN customer
)
 LOOP
 INSERT
 INTO invoice VALUES
 (
 invc.c_no,
 invc.c_name,
 invc.p_name,
 invc.qty,
 invc.unit_prc,
 invc.total_prc,
 invc.invoice_dt
);
 END LOOP;
END;

Suppose you have c_order, customer, and product tables like the ones
shown in Tables 10.1, 10.2, and 10.3, respectively, and suppose you also
have an invoice table that is empty.

Chapter 10: PL/SQL 99

C_NO P_CO QTY ORDER_DT
---- ---- ---- ---------
10 1 100 01-APR-13
10 2 100 01-APR-13
20 1 200 01-APR-13
40 4 400 02-APR-13
40 5 400 03-APR-13

Table 10.1: The c_order table

C_NO C_NAME C C_DATE
---- --------------- - ---------
10 Standard Store 1 25-JUL-13
20 Quality Store 2 27-JUL-13
30 Head Office 3 19-JUL-13
40 Super Agent 4 14-JUL-13

Table 10.2: The customer table

P_CODE P_NAME PRICE LAUNCH_DT
------ ---------- ------ ---------
1 Nail 10.00 31-MAR-13
2 Washer 15.00 29-MAR-13
3 Nut 15.00 29-MAR-13
4 Screw 25.00 30-MAR-13
5 Super_Nut 30.00 30-MAR-13
6 New Nut NULL NULL

Table 10.3: The product table

If you enter and execute the PL/SQL program in Listing 10.1 in SQL*Plus,
your SQL*Plus screen will look like that in Figure 10.1. Note that to
execute a PL/SQL program you need to enter the forward slash / after the
last END;.

Oracle SQL: A Beginner's Tutorial100

Figure 10.1: Executing PL/SQL program in SQL*Plus

After the program is executed, the invoice table will be populated with the
following rows.

C_NO C_NAME P_NAME QTY UNIT_PRC TOTAL_PRC INVOICE_DT
---- -------------- ---------- ---- -------- --------- ----------
10 Standard Store Washer 100 15 1500 12-SEP-13
10 Standard Store Nail 100 10 1000 12-SEP-13
20 Quality Store Nail 200 10 2000 12-SEP-13

Chapter 10: PL/SQL 101

40 Super Agent Screw 400 25 10000 12-SEP-13
40 Super Agent Super_Nut 400 30 12000 12-SEP-13

If-Then-Else Decision Logic

You can use an if statement to branch in a program. For instance, the if-
then-else decision logic in Listing 10.2 treats the output rows differently
based on the product launch_dt.

Listing 10.2: If-then-else decision logic

BEGIN
 FOR invc IN
 (SELECT c_no,
 c_name,
 p_name,
 qty,
 price unit_prc,
 (qty * price) total_prc,
 sysdate invoice_dt,
 launch_dt
 FROM c_order NATURAL
 JOIN product NATURAL
 JOIN customer
)
 LOOP
 IF invc.launch_dt IS NOT NULL THEN
 INSERT
 INTO invoice VALUES
 (
 invc.c_no,
 invc.c_name,
 invc.p_name,
 invc.qty,
 invc.unit_prc,
 invc.total_prc,
 invc.invoice_dt
);
 ELSE
 NULL;
 END IF;

Oracle SQL: A Beginner's Tutorial102

 END LOOP;
END;

For this example, I’m using a c_order table with the following rows. The
difference between this c_order table and the one used in the previous
example is this table has a sixth row that records the sale of a product (p_co
= 6) with a null launch_dt.

C_NO P_CO QTY ORDER_DT
---- ---- ---- ---------
10 1 100 01-APR-13
10 2 100 01-APR-13
20 1 200 01-APR-13
40 4 400 02-APR-13
40 5 400 03-APR-13
40 6 600 01-MAY-13

Because the product’s launch_dt is NULL, the process does not insert an
invoice row for this additional order. If you execute the program in Listing
10.2, the same rows as in the previous example will be inserted into the
invoice table.Exception HandlingPL/SQL allows you to handle errors (or
exceptions) in your program using the EXCEPTION statement. Its syntax is
as follows.

EXCEPTION
WHEN exception_name
THEN exception_handling_statement;

For example, suppose you want to query a specific invoice from an invoice
table using the PL/SQL program in Listing 10.3. The SELECT INTO query
in Listing 10.3 stores its output rows into an invc variable, which is declared
to have a ROWTYPE data type.

Listing 10.3: PL/SQL program without exception handling

DECLARE
 invc invoice%ROWTYPE;
BEGIN
 SELECT *
 INTO invc
 FROM invoice
 WHERE c_no = '&c_no_prompt'

Chapter 10: PL/SQL 103

 AND p_name = '&p_name_prompt'
 AND TO_CHAR(invoice_dt, 'DD-MON-YY') = '&invoice_dt_prompt';
 dbms_output.put_line(invc.c_name || ' - ' || invc.p_name || ' - '

|| invc.total_prc);
END;

Assume the invoice table has the following rows.

C_NO C_NAME P_NAME QTY UNIT_PRC TOTAL_PRC INVOICE_DT
---- -------------- ---------- ---- -------- --------- ----------
10 Standard Store Washer 100 15 1500 12-SEP-13
10 Standard Store Nail 100 10 1000 12-SEP-13
20 Quality Store Nail 200 10 2000 12-SEP-13
40 Super Agent Screw 400 25 10000 12-SEP-13
40 Super Agent Super_Nut 400 30 12000 12-SEP-13

If you execute the program in Listing 10.3, you will be prompted three
times to enter the invoice’s c_no, p_name, and invoice_dt you are querying.
If the invoice is not available in the invoice table, the program will abort,
and you will see a “no data found” error message. Your SQL*Plus will look
like this.

SQL> DECLARE
 2 invc invoice%ROWTYPE;
 3 BEGIN
 4 SELECT *
 5 INTO invc
 6 FROM invoice
 7 WHERE c_no = '&c_no_prompt'
 8 AND p_name = '&p_name_prompt'
 9 AND TO_CHAR(invoice_dt, 'DD-MON-YY') = '&invoice_dt_prompt';
 10 dbms_output.put_line(invc.c_name || ' - ' || invc.p_name || '

- ' || invc.total_prc);
 11 END;
 12 /
Enter value for c_no_prompt: 10
old 7: WHERE c_no = '&c_no_prompt'
new 7: WHERE c_no = '10'
Enter value for p_name_prompt: Nail
old 8: AND p_name = '&p_name_prompt'
new 8: AND p_name = 'Nail'
Enter value for invoice_dt_prompt: 11-SEP-13

Oracle SQL: A Beginner's Tutorial104

old 9: AND TO_CHAR(invoice_dt, 'DD-MON-YY') =
'&invoice_dt_prompt';

new 9: AND TO_CHAR(invoice_dt, 'DD-MON-YY') = '11-SEP-13';
DECLARE
*
ERROR at line 1:
ORA-01403: no data found
ORA-06512: at line 4
SQL>

To handle the error (exception), you can add an exception-handling
statement to the program in Listing 10.3. Listing 10.4 shows a modified
version of the program in Listing 10.3. There is an exception handler in the
program in Listing 10.4.

Listing 10.4: With Exception Handling

DECLARE
 invc invoice%ROWTYPE;
BEGIN
 SELECT *
 INTO invc
 FROM invoice
 WHERE c_no = '&c_no_prompt'
 AND p_name = '&p_name_prompt'
 AND TO_CHAR(invoice_dt, 'DD-MON-YY') = '&invoice_dt_prompt';
 dbms_output.put_line(invc.c_name || ' - ' || invc.p_name || ' - '

|| invc.total_prc);
EXCEPTION
WHEN no_data_found THEN
 dbms_output.put_line('Error: The invoice does not exist!');
END;

If the invoice you are querying is not in the invoice table, the WHEN
no_data_found will trap and handle the error, and displays its message. In
other words, the program will not abort. To see the exception-handler’s
message, issue a set serveroutput on command before you execute the
program. The SQL*Plus console will look like this.

SQL> set serveroutput on;
SQL> DECLARE
 2 invc invoice%ROWTYPE;
 3 BEGIN

Chapter 10: PL/SQL 105

 4 SELECT *
 5 INTO invc
 6 FROM invoice
 7 WHERE c_no = '&c_no_prompt'
 8 AND p_name = '&p_name_prompt'
 9 AND TO_CHAR(invoice_dt, 'DD-MON-YY') = '&invoice_dt_prompt';
 10 dbms_output.put_line(invc.c_name || ' - ' || invc.p_name || '

- ' || invc.total_prc);
 11 EXCEPTION
 12 WHEN no_data_found THEN
 13 dbms_output.put_line('Error: The invoice does not exist!');
 14 END;
 15 /
Enter value for c_no_prompt: 10
old 7: WHERE c_no = '&c_no_prompt'
new 7: WHERE c_no = '10'
Enter value for p_name_prompt: Nails
old 8: AND p_name = '&p_name_prompt'
new 8: AND p_name = 'Nails'
Enter value for invoice_dt_prompt: 12-SEP-13
old 9: AND TO_CHAR(invoice_dt, 'DD-MON-YY') =

'&invoice_dt_prompt';
new 9: AND TO_CHAR(invoice_dt, 'DD-MON-YY') = '12-SEP-13';
Error: The invoice does not exist!

PL/SQL procedure successfully completed.
SQL>

User-defined Functions

You learned Oracle built-in functions in Chapter 9, “Built-in Functions.”
Using PL/SQL you can write your own functions. The syntax for a user-
defined function is as follows.

CREATE FUNCTION FUNCTION name(parameters)
 RETURN data_type
 IS
 Variable_declarations
 BEGIN
 Processing_statements
 EXCEPTION

Oracle SQL: A Beginner's Tutorial106

 Exception_handling statements
 END;

For example, Listing 10.5 shows a user-defined function named
calc_new_price. The function takes two parameters and uses the values of
the parameters to calculate a new price and returns the result. If you execute
the statement in Listing 10.5, a stored function named calc_new_price will
be created and stored in your database.

Listing 10.5: Creating function calc_new_price

CREATE FUNCTION calc_new_price(
 exist_price NUMBER,
 change_percentage NUMBER)
 RETURN NUMBER
 IS
 BEGIN
 RETURN exist_price + (exist_price * change_percentage);
 END;

Now you can use the function just like you would any Oracle built-in
function. The update statement in Listing 10.6, for example, uses the
calc_new_price function to calculate new prices and update the product
prices.

Listing 10.6: Using the calc_new_price function

UPDATE product SET price = calc_new_price(price, 0.1) ;

Summary

In this chapter you learned several PL/SQL features. However, what’s
presented here is just the tip of the iceberg. PL/SQL has many other features
that you will need in real-world application development. These other
features are unfortunately beyond the scope of this book.

Chapter 11
The Data Dictionary

The data dictionary of a database contains data about the data in the
database. This data about data is also known as metadata. The data in the
data dictionary is stored as tables. As such, you can use your SQL skills
gained so far to query the data dictionary of your database. The tables and
their data are maintained by the Oracle database system. You should not
access the dictionary tables directly. Instead, use the Oracle-supplied views
of the dictionary.

In this chapter you explore the views in the data dictionary.

The Dictionary View

The dictionary view is one of the views in the data dictionary. It returns all
the views available in your dictionary. The view has two columns and can
have over 650 rows.

The query in Listing 11.1 can be used to list all the views in the data
dictionary.

Listing 11.1: Exploring the data dictionary

SELECT * FROM dictionary;

Here is partial output of the query in Listing 11.1. Remember, the actual
output has many more rows.

Oracle SQL: A Beginner's Tutorial108

TABLE_NAME COMMENTS
-------------------- --
ALL_XML_SCHEMAS Description of all XML Schemas that user has
 privilege to reference
ALL_XML_SCHEMAS2 Dummy version of ALL_XML_SCHEMAS that does not
 have an XMLTYPE column
USER_RESOURCE_LIMITS Display resource limit of the user
USER_PASSWORD_LIMITS Display password limits of the user
USER_CATALOG Tables, Views, Synonyms and Sequences owned by
 the user
ALL_CATALOG All tables, views, synonyms, sequences
 accessible to the user
USER_CLUSTERS Descriptions of user's own clusters
ALL_CLUSTERS Description of clusters accessible to the user
USER_CLU_COLUMNS Mapping of table columns to cluster columns
USER_COL_COMMENTS Comments on columns of user's tables and views

Some of the views listed above will be explained in the next sections.

The User_Catalog View

The user_catalog view stores the names of your tables and views. Use the
query in Listing 11.2 to see the tables and views that you have in your
database. These tables and views are known as user tables and views (as
opposed to system tables and views).

Listing 11.2: Using the user_catalog view

SELECT * FROM user_catalog;

The query output from running the query in Listing 11.2 in your database
may not be exactly the same as what I have got here. Here is mine.

TABLE_NAME TABLE_TYPE
-------------- ----------
CUSTOMER TABLE
C_ORDER TABLE
PRODUCT TABLE
C_SHIP TABLE
OLD_PRODUCT TABLE
PRICE_LOG TABLE

Chapter 11: The Data Dictionary 109

PROD_SUBST TABLE
SHIPMENT TABLE
PRODUCT_SELL_V VIEW
PRODUCT_V VIEW
PROD_SUBS_V VIEW
PS_NONAME_V VIEW

The User_Tab_Cols View

You can get table and view names from the User_Catalog view. To see the
details of each table and view, can you query the user_tab_cols view. For
example, the query in Listing 11.3 shows you the column names, and their
data type, length, precision and scale, of the product table.

Listing 11.4: Finding out the columns metadata of the product table

SELECT column_name,
 data_type,
 data_length,
 data_precision,
 data_scale
FROM user_tab_cols
WHERE table_name = 'PRODUCT';

Here is the query output.

COLUMN_NAME DATA_TYPE DATA_LENGTH DATA_PRECISION DATA_SCALE
----------- --------- ----------- -------------- ----------
P_CODE VARCHAR2 6
P_NAME VARCHAR2 14
PRICE NUMBER 22 4 2
LAUNCH_DT DATE 7

In addition to these five columns, the USER_TAB_COLS view has many
other columns, such as those for showing the owner and the default value.

Oracle SQL: A Beginner's Tutorial110

The User_Procedures View

The user_procedures view contains information about your stored
programs, including functions, procedures and triggers. Use the query in
Listing 11.5 to show your stored programs. Note that this view has some
other columns that provide more information about the stored programs.

Listing 11.5: Revealing the metadata of stored procedures and
functions

SELECT object_name, object_type FROM user_procedures;

Executing the query against your database will give you something like the
following output rows.

OBJECT_NAME OBJECT_TYPE
----------------- -----------
CALC_NEW_PRICE FUNCTION
UPD_PRICE PROCEDURE
PRICE_UPD_LOGGING TRIGGER

The User_Source View

The last view I will explain is the user_source view. This view contains the
source code of your stored functions. For example, the query in Listing 11.6
returns the source of the CALC_NEW_PRICE function.

Listing 11.6: Reading the source code of a function

SELECT line, text FROM user_source WHERE name = 'CALC_NEW_PRICE';

Executing the query will show you the lines of codes of the function as
shown here.

Chapter 11: The Data Dictionary 111

NAME TYPE LINE TEXT
-------------- -------- --
CALC_NEW_PRICE FUNCTION 1 FUNCTION calc_new_price(
CALC_NEW_PRICE FUNCTION 2 exist_price NUMBER,
CALC_NEW_PRICE FUNCTION 3 inc NUMBER)
CALC_NEW_PRICE FUNCTION 4 RETURN NUMBER
CALC_NEW_PRICE FUNCTION 5 IS
CALC_NEW_PRICE FUNCTION 6 BEGIN
CALC_NEW_PRICE FUNCTION 7 RETURN exist_price + (exist_price *
 inc);
CALC_NEW_PRICE FUNCTION 8 END;

Summary

The data dictionary contains the metadata of your database. In this chapter
you learned to use some of the views in the data dictionary.

Oracle SQL: A Beginner's Tutorial112

Appendix A
Installing Oracle Database XE

To try out the examples in this book, you need an Oracle database. Because
you need to create tables and other objects, as well as store and update data,
it is best if you have your own database. Fortunately, you can download
Oracle Database Express Edition (a.k.a. XE) for free from Oracle’s website.
As you will learn in this appendix, Oracle Database XE comes with a tool
called SQL*Plus that you can use to run SQL statements.

Downloading Oracle Database XE

This database software can be downloaded from this web page.

http://www.oracle.com/technetwork/indexes/downloads/index.html

Scroll down until you see Database 11g Express Edition on the list and click
the link. Then, select the version for your platform (Windows or Unix) and
follow the download instructions. You will be requested to accept the
license agreement and, if you don’t have one already, create an account.
Don’t worry, creating an account is free.

Note
The book examples are tested on Windows. They should work
equally well on Unix. The following installation guide is for
Windows only.

Oracle SQL: A Beginner's Tutorial114

Installing Oracle Database XE

Unzip the downloaded file to a folder in your local drive, then double-click
the setup.exe file. You will see the Install Wizard welcome window like that
in Figure A.1.

Figure A.1: The Welcome page of the Install Wizard

Click the Next button, accept the agreement on the License Agreement
window, and click the Next button. The next window that will appear is the
“Choose Destination Location” window like the one in Figure A.2.

Appendix A: Installing Oracle Database XE 115

Figure A.2: Choosing the installation destination

Click the Browse button and navigate to a directory of your choice, then
click the Next button. If you are prompted to enter port numbers, just accept
the defaults (you might need to change, if for example the suggested default
port numbers are already used). After that, click the Next button. You will
be presented with the Passwords window (See Figure A.3)

Oracle SQL: A Beginner's Tutorial116

Figure A.3: Entering and confirming the password

Enter your password and confirm it. Make a note of this password as you
will need it. Note that this password is for both the SYS and SYSTEM
accounts. Then, click the Next button and you will see the Summary
window (See Figure A.4)

Appendix A: Installing Oracle Database XE 117

Figure A.4: The Summary window

Click the Install button, and on the window that appears next (the
Installation Completion window), click the Finish button.

The next section shows you how to create a database user that you will
use to test the book examples.

Creating a User with SQL*Plus

To create a database user and to run an SQL statement, use SQL*Plus, a
tool that comes with the Oracle database. To run SQL*Plus, select “Run
SQL…” from your Windows Start menu, as shown in Figure A.5.

Oracle SQL: A Beginner's Tutorial118

Figure A.5: Selecting the Run SQL Command Line

SQL*Plus will open, as shown in Figure A.6. SQL*Plus is the command-
line console client of the Oracle database. You use it, among other things, to
enter and execute SQL statements and PL/SQL programs.

Appendix A: Installing Oracle Database XE 119

Figure A.6: The SQL*Plus console

Connect as SYSTEM by typing the following command and pressing Enter

CONNECT SYSTEM/password AS SYSDBA;

Here, password is the password of the SYSTEM user you entered during
installation. To create a user, enter and execute the following command.

CREATE USER name IDENTIFIED BY password;

Replace name with the actual user name you want to create and password
with a password. For example, the following command creates a user
named john with password secret.

CREATE USER john IDENTIFIED BY secret;

Next, enter and execute the following command, replacing name with the
user name used in the previous command:

GRANT ALL PRIVILEGES TO name;

The GRANT ALL command gives the specified users all available
permissions. Giving a user all privileges may not be a wise thing to do in a
real life system.

The user now has permissions to test the book examples. To log on,
enter this command to SQL*Plus.

CONNECT name/password;

For example

CONNECT john/secret;

Oracle SQL: A Beginner's Tutorial120

A database named “XE” was created during installation. The CONNECT
command above connects you to this database.

You are now set to test the book examples.

Appendix B
Oracle Built-in Data Types

The Oracle database has 18 built-in data types, shown in Table B.1.
Data Type Description

VARCHAR2(ml) Variable-length character string having a maximum
length of ml

NVARCHAR2(ml) The Unicode version of VARCHAR2
NUMBER(p, s) Number having precision p and scale s
DATE Valid date ranging from January 1, 4712 BC, to

December 31, 9999 AD
BINARY_FLOAT 32-bit floating point number
BINARY_DOUBLE 64-bit floating point number
TIMESTAMP The year, month, and day values of the date, plus the

hour, minute, and second values of the time
INTERVAL YEAR Stores a period of time in years and months
INTERVAL DAY Stores a period of time in days, hours, minutes, and

seconds
RAW(size) Raw binary data of the length of size bytes
LONG RAW The larger version of RAW
ROWID Base-64 string representing the unique address of a row

in its table
CHAR(l) Fixed-length character string having length l
NCHAR(l) Unicode version of CHAR
CLOB A character large object containing single-bytes or

multi-byte characters
NCLOB Unicode version of CLOB
BLOB A binary large object
BFILE Contains the locator to a large binary file stored outside

the database

Table B.1: Oracle Built-in Data Types

Oracle SQL: A Beginner's Tutorial122

Appendix C
Indexes

An index entry of the Index section of a book points to the location of the
word/phrase indicated by the entry. The index entry helps you find the
pages containing the word/phrase. Similarly, a column index of a table can
speed up your finding data in a database. If your query has a condition on a
column (or columns) that is (are) not indexed, the table will be fully
scanned and the query will be slower than if an index was available.

This appendix shows you how to create various indexes. The topics
covered are as follows.

▪ Creating an index
▪ Multi-column indexes
▪ Bit map and join bit map indexes
▪ Function-based indexes
▪ Deleting an index

Creating an Index

To create an index on a column or columns of a table, use this statement.

CREATE INDEX index ON table (columns);

For example, the statement in Listing C.1 creates an index named
p_name_ix on the p_name column of the product table.

Listing C.1: Creating an index on the p_name in the product table

CREATE INDEX p_name_ix ON product (p_name);

Oracle SQL: A Beginner's Tutorial124

Unique Index Names and Columns
You cannot have duplicate index names. In addition, you cannot
have the same column(s) indexed more than once.

Multi-Column Indexes

An index can be based on multiple columns. A multi-column index is useful
when you need to search on rows having the same value on an indexed
column. For instance, if your query has to search on the p_name column of
the product table and there can be more than one row with the same p_name
but with different launch dates, it would help if you create an index on both
p_name and launch_dt.

As an example, the statement in Listing C.2 creates a multi-column
index on the p_name and launch_dt columns of the product table.

Listing C.2: Creating an index on multiple columns

CREATE INDEX p_name_launch_ix ON product (p_name, launch_dt);

Bitmap Indexes

The indexes created in Listings C.1 and C.2 are ordinary indexes, which are
technically called B-tree indexes. Another type of index, the bitmap index,
can be a better choice for tables whose rows will not be changed
concurrently, such as in a low-volume data entry environment. A product
table is an example of such low data maintenance and therefore is suitable
for bitmap indexes. By contrast, the customer order table gets rows inserted
more frequently and is not a good candidate for bitmap indexes.

For example, the statement in Listing C.3 creates a bitmap index named
order_ibx on the c_order table.

Listing C.3: Creating a bitmap index

CREATE BITMAP INDEX order_bix ON c_order (p_code, c_no);

Appendix C: Indexes 125

Bitmap Join Indexes

The bitmap join index is a variant of the bitmap index. The bitmap join
index is specifically created to expedite column retrieval from a joined table
in a join query.

For example, the statement in Listing C.4 creates a bitmap join index on
the c_name column. Note that the syntax for creating a bitmap join index
has additional clauses, FROM and WHERE. These clauses define the join
of the tables.

Listing C.4: Creating a bitmap join index on the c_name column

CREATE BITMAP INDEX c_name_bji ON c_order(c.c_name)
FROM c_order o, customer c
WHERE o.c_no = c.c_no;

c_name can now be retrieved faster using the index than if it has to be
scanned from the c_order table.

While the aim of having a bitmap join index is to expedite a specific
column retrieval (c_name in the statement in Listing C.4), joining tables
generally make use of the primary key indexes of the tables as they are
mostly joined on these keys. If you often need to join on other columns, you
may want to create indexes on these columns as well.

Function-based Indexes

There are often cases where capitalization is used inconsistently when
entering data into a table. Sometimes, a column value is entered in all
capitals, sometimes in lowercase, and sometimes in mixed cases.

For example, the following customer table shows inconsistent
capitalization has been used for the c_name column.

C_NO C_NAME PHONE
---- -------------- --------------
10 Standard Store 1-416-223-4455

Oracle SQL: A Beginner's Tutorial126

20 Quality store 1-647-333-5566
30 Branch Office 1-416-111-2222
40 Super Agent 1-226-777-8888
50 New Brand 1-905-777-9999
60 NEW STORE 1-905-000-9999

This poses a problem because a query may not return all the data intended.
For example, in the case of the customer table above, searching on “new
store” will not find “NEW STORE.” To get around this problem, you can
use the UPPER function in your query, as shown in Listing C.5.

Listing C.5: Using the UPPER function in a query

SELECT * FROM customer WHERE UPPER(c_name) LIKE '%STORE';

For this query to run faster, you should also create an index that is based on
the UPPER-ed version of the c_name column. Listing C.6 shows how to do
it.

Listing C.6: A function-based index

CREATE INDEX func_name_ix ON customer
 (UPPER(c_name)
) ;

Deleting An Index

To delete an index of any type, use the DROP INDEX statement. For
example, the statement in Listing C.7 deletes the s_name_bji index.

Listing C.7: Deleting a bitmap join index

DROP INDEX s_name_bji;

Index

ABS function..85
aggregate function..29
alias..25
ALL operator..66
American National Standards Institute...1
ANSI..1
ANY operator...66
AS keyword..50
asterisk...14
B-tree index..124
BETWEEN Operator..20
BFILE data type...121
BINARY_DOUBLE data type...121
BINARY_FLOAT data type...121
bitmap join index..125
BLOB data type..121
built-in function..85, 105
CHAR data type...121
CLOB data type..121
COALESCE function...93
column alias...50
comparison operator...23
compound condition...16
CONCAT function...88
CONNECT command..5
CREATE TABLE statement...6, 7, 23
CREATE VIEW statement...79
CURRENT_DATE function...91
data definition language...1
data dictionary..107
data manipulation language..1
data type...121
DATE data type..121
datetime function..91
DELETE statement...10, 11

Oracle SQL: A Beginner's Tutorial128

dictionary view...107
DISTINCT keyword...28
expression...26
foreign key...47
FROM clause...13
FULL outer join...53
GRANT ALL command...119
group..41
GROUP BY clause...41, 44
HAVING clause...43
HAVING condition..43
IBM..1
if-then-else...101
IN operator...20, 65
index entry..123
inner join..53
INSERT statement..7
INTERSECT operator..76
INTERVAL DAY data type...121
INTERVAL YEAR data type...121
IS NOT NULL operator...23
IS NULL operator..23
join...47
JOIN clause..47, 48
JOIN keyword..48
LEFT outer join..53
LENGTH function..90
LIKE operator..21, 22
LONG RAW data type...121
metadata...107
MINUS operator...77
MySQL..1
NATURAL keyword..61
NCHAR data type..121
NCLOB data type...121
NOT IN operator..65
NOT operator...19, 23
NULL...11, 42, 55
NULLIF function...94
NUMBER data type...121
NVARCHAR2 data type..121
NVL function...95
operator..16
Oracle database..1, 5
Oracle Database XE...5

downloading...113
installation..114

ORDER BY clause...74

Index 129

ORDER clause...41
outer join..53
PL/SQL..2, 97
predicate...16
primary key..7, 47
query..13
query output...37
RAW data type...121
RDBMS..1
relational database..5
RIGHT outer join...53
ROLLBACK command..10, 11
ROUND function...86
ROWID data type...121
ROWNUM...27
SELECT clause..13, 14, 26
SELECT statement..13, 15, 18, 41, 48, 74, 79
SIGN function..87
SQL..

2008 standard...1
2011 standard...1

SQL reserved words...3
SQL*Plus...5
Structured Query Language..1
subquery...63, 66

comparison operator...65
multiple-row...65
nested...69
single-row..63

SUBSTR function..90
table alias..50
TIMESTAMP data type...121
TO_CHAR function...92
TRUNC function..87
UNION ALL operator..73
UPDATE statement..9, 11
UPPER function...89
user_catalog view...108
user_procedures view...110
user_source view..110
user_tab_cols view...109
USING keyword...61
VARCHAR2 data type...121
view..79

nested...83
view management...83
WHERE clause...9, 10, 13, 44, 65
WHERE condition..11, 43, 68

Oracle SQL: A Beginner's Tutorial130

wildcard character..22

		Table of Contents

		Introduction

		Chapter 1 Storing and Maintaining Data

		Chapter 2 Basic Queries

		Chapter 3 Query Output

		Chapter 4 Grouping

		Chapter 5 Joins

		Chapter 6 Subqueries

		Chapter 7 Compound Queries

		Chapter 8 Views

		Chapter 9 Built-in Functions

		Chapter 10 PL/SQL

		Chapter 11 The Data Dictionary

		Appendix A Installing Oracle Database XE

		Appendix B Oracle Built-in Data Types

		Appendix C Indexes

		Index

