
www.allitebooks.com

http://www.allitebooks.org

Pig Design Patterns

Simplify Hadoop programming to create complex
end-to-end Enterprise Big Data solutions with Pig

Pradeep Pasupuleti

BIRMINGHAM - MUMBAI

www.allitebooks.com

http://www.allitebooks.org

Pig Design Patterns

Copyright © 2014 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: April 2014

Production Reference: 1100414

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78328-555-6

www.packtpub.com

Cover Image by Pradeep Pasupuleti (pasupuleti.pradeepkumar@gmail.com)

www.allitebooks.com

http://www.allitebooks.org

Credits

Author
Pradeep Pasupuleti

Reviewers
Aaron Binns

Shingo Furuyama

Shashwat Shriparv

Fábio Uechi

Acquisition Editor
Owen Roberts

Content Development Editor
Priya Singh

Technical Editors
Aparna Kumar

Pooja Nair

Nikhil Potdukhe

Copy Editors
Alisha Aranha

Brandt D'Mello

Gladson Monteiro

Adithi Shetty

Project Coordinator
Wendell Palmer

Proofreaders
Ting Baker

Elinor Perry-Smith

Indexer
Hemangini Bari

Graphics
Sheetal Aute

Ronak Dhruv

Yuvraj Mannari

Abhinash Sahu

Production Coordinator
Aditi Gajjar Patel

Cover Work
Aditi Gajjar Patel

www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

Foreword

Nearly 30 years ago, when I started my career, a 10 MB upgrade on a hard-disk
drive was a big purchase and had to go through many approvals in the enterprise.
The drawing office of a medium-sized engineering enterprise stored their drawings
in this extra large storage! Over the years, storage became cheaper and bigger. The
supply side proved the Moore's law and its variations accurately.

Much more has happened on the demand side though. User organizations have
realized the potential of data and analytics. So, the amount of data generated at
each level in the enterprise has gone up much more steeply. Some of this data
comes through well-defined processes; on the other hand though, a large majority
of it comes through numerous unstructured forms, and as a result, ends up as
unstructured data. Analytics tried to keep pace and mostly succeeded. However,
the diversity of both the data and the desired analytics demands newer and smarter
methods for working with the data. The Pig platform surely is one of these methods.
Nevertheless, the power of such a platform is best tapped by extending it efficiently.
Extending requires great familiarity of the platform. More importantly, extending is
fun when the process of building such extensions is easy.

The Pig Latin platform offers great simplicity. However, a practitioner's advice is
immensely valuable in leveraging this simplicity to an enterprise's own requirement.
This is where I find this book to be very apt. It makes you productive with the
platform pretty quickly through very well-researched design patterns. This helps
simplify programming in Hadoop and create complex end-to-end enterprise-grade
Big Data solutions through a building block and best-pattern approach.

This book covers the journey of Big Data from the time it enters the enterprise to its
eventual use in analytics, either in the form of a dashboard or a predictive model.

www.allitebooks.com

http://www.allitebooks.org

I particularly liked the presentation of the content. You need not go sequentially
through the book; you can go straight to the pattern of your interest, skipping some
of the preceding content. The fact that every pattern you see in this book will be
relevant to you at some point in your journey with Big Data should be a good reason
to spend time with those patterns as well. The simplicity of the quoted examples puts
the subject in the right perspective, in case you already browsed through some pages
and felt that the examples were not exactly from your domain.

Most likely, you will find a few patterns that exactly fit your requirement. So go
ahead, adopt them, and gain productivity right away.

As of writing this foreword, the world is still struggling with analyzing
incomprehensibly large data, which is like trying to locate a passenger plane that
went missing in the sky! This is the way things seem to work. Just when we think
we have all the tools and technologies, we realize that we need much more power
beyond what we have available today. Extending this, one would realize that data
(creation, collection, and so on) and analytics will both play an extremely important
role in our future. A knowledge tool that helps us move toward this future should
always be welcomed, and what could be a better tool than a good book like this!

I had a very enriching experience while working with Pradeep earlier in my career.
I spotted talent in him that was beyond the ordinary. However, in an environment
that is driven primarily by a customer project and where technologies and platforms
are defined by the customer, I must admit that we did not give sufficient room
for him to show his creativity in designing new technologies. Even here, I fondly
recollect a very creative work of distributed processing of a huge vector map data
by Pradeep and his colleagues. This monster of a job would run overnight on
many desktop systems that were otherwise lying unused in our organization. A
consolidation engine would later stitch up the results from individual systems to
make one seamless large dataset. This might look very trivial today, but more than a
decade ago, it was a big innovation that helped greatly compress our release cycles.

Throughout the years, he continued this passion of using machine learning on
Big Data to solve complex problems and find answers that touch human lives.
Possessing a streak of hard-to-hide innovativeness, Pradeep is bold enough to
think beyond what is possible. His works on computational linguistics (NLP)
and deep-learning techniques to build expert systems are all examples of this.

www.allitebooks.com

http://www.allitebooks.org

That he made a transition from being the lead of a development-focused team
to an established technology author makes me immensely pleased. His constant
and unlimited appetite for knowledge is something to emulate for people like me,
who are in the technology space! Although not directly related to this book, it is
appropriate that I mention even his strong value system as an individual. This
quality is what makes him a successful professional, a great leader, and a guru to
learn from!

He was kind enough to ask me to review this book. However, the boss in me jumped
out and tried to grill him as I often did when he worked in my team. He responded
very positively to my critique, which at times was harsh when I look back at it! For
you see, both of us share a common belief that it is better to realize the existing errors
and potential improvements in processes ourselves, and not simply leave them to
reach our customers or you, the audience of this book.

I always felt that a good book can be authored only with a specific end user profile
in mind. A book written for beginners may not appeal to a professional at all. The
opposite of this is even truer. However, this work by Pradeep benefits both beginners
and professionals equally well. This is the biggest difference that I found in this book.

An initiation, a book, or a training program are all meant to give you the essentials
and point you to the right direction. There is no replacement to practicing what you
learn. I encourage you to practice what you learn from this book and push up your
efficiencies of Big Data development!

Srinivas Uppuluri

Founder Director, Valueware Technologies
www.valueware.co.in
srinivas.uppuluri@valueware.co.in

www.allitebooks.com

http://www.allitebooks.org

About the Author

Pradeep Pasupuleti has over 16 years of experience in architecting and
developing distributed and real-time data-driven systems. Currently, his focus is
on developing robust data platforms and data products that are fuelled by scalable
machine-learning algorithms, and delivering value to customers by addressing
business problems by juxtaposing his deep technical insights into Big Data
technologies with future data management and analytical needs. He is extremely
passionate about Big Data and believes that it will be the cradle of many innovations
that will save humans their time, money, and lives.

He has built solid data product teams with experience spanning through every aspect
of data science, thus successfully helping clients to build an end-to-end strategy
around how their current data architecture can evolve into a hybrid pattern that is
capable of supporting analytics in both batch and real time—all of this is done using
the lambda architecture. He has created COE's (Center of Excellence) to provide quick
wins with data products that analyze high-dimensional multistructured data using
scalable natural language processing and deep learning techniques.

He has performed roles in technology consulting advising Fortune 500 companies
on their Big Data strategy, product management, systems architecture, social
network analysis, negotiations, conflict resolution, chaos and nonlinear dynamics,
international policy, high-performance computing, advanced statistical techniques,
risk management, marketing, visualization of high dimensional data, human-computer
interaction, machine learning, information retrieval, and data mining. He has a strong
experience of working in ambiguity to solve complex problems using innovation by
bringing smart people together.

His other interests include writing and reading poetry, enjoying the expressive
delights of ghazals, spending time with kids discussing impossible inventions,
and searching for archeological sites.

You can reach him at http://www.linkedin.com/in/pradeeppasupuleti and
pasupuleti.pradeepkumar@gmail.com.

www.allitebooks.com

http://www.linkedin.com/in/pradeeppasupuleti
http://www.allitebooks.org

Acknowledgments

Writing a technical book takes an unpredictable amount of sacrifice every single day.
I sincerely believe that nobody could ever complete writing a book alone without
the willing sacrifices of family, friends, and coworkers. It is an honor to give credit
where credit is due. I am truly blessed to have been in the company of some of the
consistently bright people in the world while working on this book.

I owe a deep sense of gratitude to my parents, Prabhakar and Sumathy, who have
constantly guided, encouraged, and blessed me; I am sure mere words can never
express the magnitude of my gratitude to them. On the home front, I gave up
more time with my wife, Sushma, and sons, Sresht and Samvruth, than I'm proud
to admit. Thanks most of all to you for your support, love, and patience while I
researched, wrote, reviewed, and rewrote the book by stealing your valuable time.

More than anything else, this book has been a team effort right from the beginning.
Every member of my team has contributed in one way or another, whether they
realize it or not. I am grateful to Salome, Vasundhara Boga, and Pratap for their
extraordinary efforts and endless fortitude to help put together the environment,
develop the code, and test the output. Without their stellar performances, this
book would be incomplete. Their effort reinforces my faith in teamwork—the key
ingredient for the success of any endeavor.

Srinivas Uppuluri has been an inspiration right from the beginning of my career, and
I am extremely proud to be associated with him. I would like to profusely thank him
for reviewing this book at every step and allowing me to be exposed to many great
ideas, points of view, and zealous inspiration.

I would also like to thank Dr. Dakshina Murthy who eased me into the world of Big
Data analytics and is my mentor and role model in the field of data sciences.

I would like to express my appreciation to all the staff of Packt Publishing for
assisting me while editing this book. It was a marvelous effort on their part to
shape its outcome for the best. They also made writing my first book an enjoyable
experience. I thank everyone involved with Apache Pig. This includes committers,
contributors, as well as end users for documenting so much in so little time.

www.allitebooks.com

http://www.allitebooks.org

I also want to show appreciation to an e-mail by my previous manager, Sandeep
Athavale, which was sent to me a few years ago. In that e-mail, he reposed faith
in my writing abilities and encouraged me to write a book one day, thus sowing
the seed that culminated in the writing of this book—thank you Sandeep for that
action-provoking mail. Through this, I want to let you know that little words of
encouragement definitely leave an indelible impression to make improvements to
both your personal and professional life.

Thanks to the readers for giving this book a chance. I hope you will definitely find
something that can enrich your ideas and trigger new thoughts in you.

Above all, I want to thank all the folks who have helped me in some way or the other
to write this book. These are a few of them who happen to be on the top of my mind:
Pallavi P, Praveen P, Srini Mannava, Sunil Sana, Ravi Jordan, Haribabu T, Syam A,
Robin H, Roopa, Satish B and his family, and so on.

This book is dedicated to the beloved memory of my teammate:
Subramanyam Pagadala

About the Reviewers

Aaron Binns spent over five years at the Internet Archive where he designed
and built a petabyte-scale Hadoop cluster supporting full-text search and Big Data
analytics, the majority of which was implemented in Pig. He was responsible for
the construction and deployment of full-text search of domain-scale web archives
of hundreds of millions of archived web pages, as well as the over two billion web
pages indexed for full-text search in the Archive-It service. He also developed custom
software, built on Lucene, to provide special functionality required for full-text search
of archival web documents.

He currently works at TaskRabbit as a data scientist. He holds a Bachelor of Science
degree in Computer Science from Case Western Reserve University.

Shingo Furuyama is a software engineer, who has specialized in domain logic
implementation to realize the value of software in the financial industry. At weekends,
he enjoys cycling, scuba diving, wind surfing, and coding. Currently, he is studying
English in the Philippines to expand his career opportunities.

He started his career as a software engineer at Simplex Technology, taking major
responsibility in developing interest rate derivatives and a Forex option management
system for a Japanese mega bank. Before going to the Philippines, he was working
for Nautilus Technologies, a Japanese start-up that specializes in Big Data
technologies and cloud-related enterprise solutions.

You can get more information from his blog (http://marblejenka.blogspot.jp/)
or LinkedIn (http://jp.linkedin.com/in/shingofuruyama). You can also follow
him on Twitter (@marblejenka).

http://marblejenka.blogspot.jp/
http://jp.linkedin.com/in/shingofuruyama

Shashwat Shriparv holds a master's degree in Computer Application
from Cochin University of Science and Technology and currently working as Senior.
System Engineer HPC with Cognilytics. With a total IT experience of six years,
he spent three and a half years working on core Big Data technologies, such as
Hadoop, Hive, HBase, Pig, Sqoop, Flume, and Mongo in the field of development
and management, and the rest of his time in handling projects in technologies, such
as .Net, Java, web programming languages, and mobile development.

He has worked with companies, such as HCL, C-DAC, PointCross, and Genilok. He
actively participates and contributes to online Big Data forums and groups. He has
also contributed to Big Data technologies by creating and uploading several videos
for Big Data enthusiasts and practitioners on YouTube free of cost.

He likes writing articles, poems, and technology blogs, and also enjoys photography.
More information about him can be found at https://github.com/shriparv and
http://helpmetocode.blogspot.com. You can connect to him on LinkedIn at
http://www.linkedin.com/pub/shashwat-shriparv/19/214/2a9 and can mail
him at dwivedishashwat@gmail.com.

Fábio Franco Uechi has a bachelor's degree in Computer Science and is a Senior
Software Engineer at CI&T Inc. He has been the architect of enterprise-grade solutions
in the software industry for around 11 years and has been using Big Data and cloud
technologies over the past four to five years to solve complex business problems.

He is highly interested in machine learning and Big Data technologies, such as
R, Hadoop, Mahout, Pig, Hive, and related distributed processing platforms to
analyze datasets to achieve informative insights.

Other than programming, he enjoys playing pinball, slacklining, and wakeboarding.
You can learn more from his blog (http://fabiouechi.blogspot.com) and GitHub
(https://github.com/fabito).

https://github.com/shriparv
http://helpmetocode.blogspot.com
http://www.linkedin.com/pub/shashwat-shriparv/19/214/2a9
mailto:dwivedishashwat@gmail.com
http://fabiouechi.blogspot.com/
https://github.com/fabito

www.PacktPub.com

Support files, eBooks, discount offers and more
You might want to visit www.PacktPub.com for support files and downloads related to
your book.

Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at www.PacktPub.com and
as a print book customer, you are entitled to a discount on the eBook copy. Get in touch
with us at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles,
sign up for a range of free newsletters and receive exclusive discounts and offers
on Packt books and eBooks.

TM

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital book
library. Here, you can access, read and search across Packt's entire library of books.

Why Subscribe?
• Fully searchable across every book published by Packt
• Copy and paste, print and bookmark content
• On demand and accessible via web browser

Free Access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view nine entirely free books. Simply use your login credentials for
immediate access.

http://www.PacktPub.com
http://www.PacktPub.com
http://www.PacktPub.com
mailto:service@packtpub.com
http://www.PacktPub.com
http://PacktLib.PacktPub.com
http://www.packtpub.com/

Table of Contents
Preface 1
Chapter 1: Setting the Context for Design Patterns in Pig 13

Understanding design patterns 14
The scope of design patterns in Pig 15
Hadoop demystified – a quick reckoner 17

The enterprise context 17
Common challenges of distributed systems 18
The advent of Hadoop 19
Hadoop under the covers 20
Understanding the Hadoop Distributed File System 22

HDFS design goals 22
Working of HDFS 22

Understanding MapReduce 23
Understanding how MapReduce works 24
The MapReduce internals 24

Pig – a quick intro 25
Understanding the rationale of Pig 26
Understanding the relevance of Pig in the enterprise 27
Working of Pig – an overview 30

Firing up Pig 30
The use case 34
Code listing 34
The dataset 36

Understanding Pig through the code 37
Pig's extensibility 37
Operators used in code 38
The EXPLAIN operator 45
Understanding Pig's data model 50

Primitive types 50
Complex types 50

Summary 51

Table of Contents

[ii]

Chapter 2: Data Ingest and Egress Patterns 53
The context of data ingest and egress 54
Types of data in the enterprise 55
Ingest and egress patterns for multistructured data 57

Considerations for log ingestion 58
The Apache log ingestion pattern 59
Background 59
Motivation 60
Use cases 61
Pattern implementation 61
Code snippets 61
Results 63
Additional information 63

The Custom log ingestion pattern 64
Background 64
Motivation 64
Use cases 65
Pattern implementation 65
Code snippets 65
Results 67
Additional information 67

The image ingress and egress pattern 68
Background 68
Motivation 69
Use cases 70
Pattern implementation 70
Code snippets 71
Results 75
Additional information 75

The ingress and egress patterns for the NoSQL data 75
MongoDB ingress and egress patterns 76

Background 76
Motivation 76
Use cases 77
Pattern implementation 78
Code snippets 79
Results 81
Additional information 82

The HBase ingress and egress pattern 82
Background 82
Motivation 83
Use cases 84
Pattern implementation 84
Code snippets 86
Results 88
Additional information 88

Table of Contents

[iii]

The ingress and egress patterns for structured data 88
The Hive ingress and egress patterns 88

Background 89
Motivation 90
Use cases 90
Pattern implementation 91
Code snippets 92
Results 95
Additional information 95

The ingress and egress patterns for semi-structured data 95
The mainframe ingestion pattern 96

Background 96
Motivation 97
Use cases 97
Pattern implementation 97
Code snippets 99
Results 101
Additional information 101

XML ingest and egress patterns 101
Background 102
Motivation 102
Use cases 104
Pattern implementation 104

Code snippets 106
Results 110
Additional information 110

JSON ingress and egress patterns 111
Background 111

Motivation 112
Use cases 113
Pattern implementation 113
Code snippets 114
Results 117
Additional information 117

Summary 117
Chapter 3: Data Profiling Patterns 119

Data profiling for Big Data 120
Big Data profiling dimensions 122
Sampling considerations for profiling Big Data 124

Sampling support in Pig 125
Rationale for using Pig in data profiling 126
The data type inference pattern 127

Background 127
Motivation 127
Use cases 128
Pattern implementation 128

Table of Contents

[iv]

Code snippets 128
Pig script 128
Java UDF 130

Results 130
Additional information 130

The basic statistical profiling pattern 131
Background 131
Motivation 131
Use cases 132
Pattern implementation 132
Code snippets 132

Pig script 132
Macro 134

Results 135
Additional information 135

The pattern-matching pattern 136
Background 136
Motivation 136
Use cases 136
Pattern implementation 137
Code snippets 137

Pig script 137
Macro 138

Results 139
Additional information 140

The string profiling pattern 140
Background 140
Motivation 140
Use cases 140
Pattern implementation 141
Code snippets 141

Pig script 141
Macro 142

Results 144
Additional information 145

The unstructured text profiling pattern 145
Background 145
Motivation 145
Use cases 146
Pattern implementation 147
Code snippets 147

Pig script 147
Java UDF for stemming 150

Table of Contents

[v]

Java UDF for generating TF-IDF 150
Results 151
Additional information 152

Summary 152
Chapter 4: Data Validation and Cleansing Patterns 153

Data validation and cleansing for Big Data 154
Choosing Pig for validation and cleansing 156
The constraint validation and cleansing design pattern 157

Background 157
Motivation 157
Use cases 158
Pattern implementation 159
Code snippets 159
Results 163
Additional information 165

The regex validation and cleansing design pattern 165
Background 165
Motivation 165
Use cases 166
Pattern implementation 166
Code snippets 167
Results 169
Additional information 170

The corrupt data validation and cleansing design pattern 170
Background 170
Motivation 171
Use cases 172
Pattern implementation 172
Code snippets 173
Results 175
Additional information 176

The unstructured text data validation and cleansing design pattern 176
Background 176
Motivation 177
Use cases 178
Pattern implementation 178
Code snippets 179
Results 182
Additional information 182

Summary 182

www.allitebooks.com

http://www.allitebooks.org

Table of Contents

[vi]

Chapter 5: Data Transformation Patterns 183
Data transformation processes 183
The structured-to-hierarchical transformation pattern 184

Background 184
Motivation 184
Use cases 185
Pattern implementation 185
Code snippets 185
Results 187
Additional information 188

The data normalization pattern 188
Background 188
Motivation 188
Use cases 189
Pattern implementation 189
Results 192
Additional information 192

The data integration pattern 192
Background 192
Motivation 193
Use cases 196
Pattern implementation 196
Code snippets 196
Results 199
Additional information 200

The aggregation pattern 200
Background 200
Motivation 200
Use cases 201
Pattern implementation 201
Code snippets 202
Results 204
Additional information 205

The data generalization pattern 205
Background 205
Motivation 206
Use cases 206
Pattern implementation 207
Code snippets 207
Results 208

Table of Contents

[vii]

Additional information 209
Summary 209

Chapter 6: Understanding Data Reduction Patterns 211
Data reduction – a quick introduction 211
Data reduction considerations for Big Data 213
Dimensionality reduction – the Principal Component Analysis
design pattern 213

Background 214
Motivation 214
Use cases 216
Pattern implementation 216

Limitations of PCA implementation 216
Code snippets 217
Results 220
Additional information 222

Numerosity reduction – the histogram design pattern 222
Background 222
Motivation 223
Use cases 224
Pattern implementation 224
Code snippets 224
Results 226
Additional information 227

Numerosity reduction – sampling design pattern 228
Background 228
Motivation 228
Use cases 231
Pattern implementation 231
Code snippets 231
Results 233
Additional information 233

Numerosity reduction – clustering design pattern 233
Background 233
Motivation 233
Use cases 235
Pattern implementation 235
Code snippets 235
Results 238
Additional information 239

Summary 239

Table of Contents

[viii]

Chapter 7: Advanced Patterns and Future Work 241
The clustering pattern 241

Background 242
Motivation 243
Use cases 245
Pattern implementation 245
Code snippets 246
Results 250
Additional information 252

The topic discovery pattern 252
Background 252
Motivation 252
Use cases 253
Pattern implementation 254
Code snippets 254
Results 256
Additional information 257

The natural language processing pattern 257
Background 257
Motivation 258
Use cases 260
Pattern implementation 260
Code snippets 260
Results 262
Additional information 263

The classification pattern 263
Background 264
Motivation 264
Use cases 267
Pattern implementation 267
Code snippets 268
Results 270
Additional information 271

Future trends 271
Emergence of data-driven patterns 271
The emergence of solution-driven patterns 272
Patterns addressing programmability constraints 272

Summary 273
Index 275

Preface
This book is a practical guide to realizing the power of analytics in Big Data.
It walks the Big Data technologist in you through the process of getting the data
ready, applying analytics, and creating a value out of the data. All of this is done
using appropriate design patterns in Pig. We have chosen Pig to demonstrate how
useful it is, which is evident from the following:

• The inherent amenability of Pig through its simple language constructs, which
can be learned very easily, and its extensibility and applicability to structured
and unstructured Big Data makes it the preferred choice over others.

• The ease and speed with which patterns can be implemented by Pig to derive
meaning out of the apparent randomness in any Big Data is commendable.

• This book guides system architects and developers so they become
more proficient at creating complex analytics solutions using Pig. It
does so by exposing them to a variety of Pig design patterns, UDFs,
tools, and best practices.

By reading this book, you will achieve the following goals:

• Simplify the process of creating complex data pipelines by performing
data movement across platforms, data ingestion, profiling, validation,
transformations, data reduction, and egress; you'll also be able to use Pig in
these design patterns

• Create solutions that use patterns for exploratory analysis of multistructured
unmodeled data to derive structure from it and move the data to
downstream systems for further analysis

• Decipher how Pig can coexist with other tools in the Hadoop ecosystem
to create Big Data solutions using design patterns

Preface

[2]

What this book covers
Chapter 1, Setting the Context for Design Patterns in Pig, lays a basic foundation for
design patterns, Hadoop, MapReduce and its ecosystem components gradually
exposing Pig, its dataflow paradigm, and the language constructs and concepts
with a few basic examples that are required to make Pig work. It sets the context to
understand the various workloads Pig is most suitable for and how Pig scores better.
This chapter is more of a quick practical reference and points to additional references
if you are motivated enough to know more about Pig.

Chapter 2, Data Ingest and Egress Patterns, explains the data ingest and egress
design patterns that deal with a variety of data sources. The chapter includes specific
examples that illustrate the techniques to integrate with external systems that emit
multistructured and structured data and use Hadoop as a sink to ingest. This chapter
also explores patterns that output the data from Hadoop to external systems. To
explain these ingest and egress patterns, we have considered multiple filesystems,
which include, but are not limited to, logfiles, JSON, XML, MongoDB, Cassandra,
HBase, and other common structured data sources. After reading this chapter, you
will be better equipped to program patterns related to ingest and egress in your
enterprise context, and will be capable of applying this knowledge to use the right
Pig programming constructs or write your own UDFs
to accomplish these patterns.

Chapter 3, Data Profiling Patterns, focuses on the data profiling patterns applied
to a multitude of data formats and realizing these patterns in Pig. These patterns
include different approaches to using Pig and applying basic and innovative
statistical techniques to profile data and find data quality issues. You will learn
about ways to program similar patterns in your enterprise context using Pig and
write your own UDFs to extend these patterns.

Chapter 4, Data Validation and Cleansing Patterns, is about the data validation and
cleansing patterns that are applied to various data formats. The data validation
patterns deal with constraints, regex, and other statistical techniques. The data
cleansing patterns deal with simple filters, bloom filters, and other statistical
techniques to make the data ready for transformations to be applied.

Chapter 5, Data Transformation Patterns, deals with data transformation patterns
applied to a wide variety of data types ingested into Hadoop. After reading this
chapter, you will be able to choose the right pattern for basic transformations
and also learn about widely used concepts such as creating joins, summarization,
aggregates, cubes, rolling up data, generalization, and attribute construction using
Pig's programming constructs and also UDFs where necessary.

Preface

[3]

Chapter 6, Understanding Data Reduction Patterns, explains the data reduction patterns
applied to the already ingested, scrubbed, and transformed data. After reading this
chapter, you will be able to understand and use patterns for dimensionality reduction,
sampling techniques, binning, clustering, and irrelevant attribute reduction, thus
making the data ready for analytics. This chapter explores various techniques using
the Pig language and extends Pig's capability to provide sophisticated usages of
data reduction.

Chapter 7, Advanced Patterns and Future Work, deals with the advanced data analytics
patterns. These patterns cover the extensibility of the Pig language and explain with
use cases the methods of integrating with executable code, map reduce code written in
Java, UDFs from PiggyBank, and other sources. Advanced analytics cover the patterns
related to natural language processing, clustering, classification, and text indexing.

Motivation for this book
The inspiration for writing this book has its roots in the job I do for a living, that is,
heading the enterprise practice for Big Data where I am involved in the innovation
and delivery of solutions built on the Big Data technology stack.

As part of this role, I am involved in the piloting of many use cases, solution
architecture, and development of multiple Big Data solutions. In my experience,
Pig has been a revelation of sorts, and it has a tremendous appeal for users who
want to quickly pilot a use case and demonstrate value to business. I have used Pig
to prove rapid gains and solve problems that required a not-so-steep learning curve.
At the same time, I have found out that the documented knowledge of using Pig in
enterprises was nonexistent in some cases and spread out wide in cases where it was
available. I personally felt the need to have a use case pattern based reference book
of knowledge. Through this book, I wanted to share my experiences and lessons, and
communicate to you the usability and advantages of Pig for solving your common
problems from a pattern's viewpoint.

One of the other reasons I chose to write about Pig's design patterns is that I am
fascinated with the Pig language, its simplicity, versatility, and its extensibility. My
constant search for repeatable patterns for implementing Pig recipes in an enterprise
context has inspired me to document it for wider usage. I wanted to spread the best
practices that I learned while using Pig through contributing to a pattern repository
of Pig. I'm intrigued by the unseen possibilities of using Pig in various use cases,
and through this book, I plan to stretch the limit of its applicability even further and
make Pig more pleasurable to work with.

Preface

[4]

This book portrays a practical and implementational side of learning Pig. It provides
specific reusable solutions to commonly occurring challenges in Big Data enterprises.
Its goal is to guide you to quickly map the usage of Pig to your problem context and to
design end-to-end Big Data systems from a design pattern outlook.

In this book, a design pattern is a group of enterprise use cases logically tied together
so that they can be broken down into discrete solutions that are easy to follow and
addressable through Pig. These design patterns address common enterprise problems
involved in the creation of complex data pipelines, ingress, egress, transformation,
iterative processing, merging, and analysis of large quantities of data.

This book enhances your capability to make better decisions on the applicability of
a particular design pattern and use Pig to implement the solution.

Pig Latin has been the language of choice for implementing complex data pipelines,
iterative processing of data, and conducting research. All of these use cases involve
sequential steps in which data is ingested, cleansed, transformed, and made available
to upstream systems. The successful creation of an intricate pipeline, which integrates
skewed data from multiple data platforms with varying structure, forms the
cornerstone of any enterprise, which leverages Big Data and creates value out
of it through analytics.

This book enables you to use these design patterns to simplify the creation of
complex data pipelines using Pig, ingesting data from multiple data sources,
cleansing, profiling, validating, transformation and final presentation of large
volumes of data.

This book provides in-depth explanations and code examples using Pig and the
integration of UDFs written in Java. Each chapter contains a set of design patterns
that pose and then solve technical challenges that are relevant to the enterprise's use
cases. The chapters are relatively independent of each other and can be completed
in any order since they address design patterns specific to a set of common steps in
the enterprise. As an illustration, a reader who is looking forward to solving a data
transformation problem, can directly access Chapter 5, Data Transformation Patterns,
and quickly start using the code and explanations mentioned in this chapter. The
book recommends that you use these patterns for solving the same or similar
problems you encounter and create your own patterns if the design pattern is not
suitable in a particular case.

This book's intent is not to be a complete guide to Pig programming but to be more
of a reference book that brings in the design patterns' perspective of applying Pig.
It also intends to empower you to make creative use of the design patterns and build
interesting mashups with them.

Preface

[5]

What you need for this book
You will need access to a single machine (VM) or multinode Hadoop cluster to
execute the Pig scripts given in this book. It is expected that the tools needed to run
Pig are configured. We have used Pig 0.11.0 to test the examples of this book, and it
is highly recommended that you have this version installed.

The code for the UDFs in this book is written in different languages such as Java;
therefore, it is advisable for you to have access to a machine with development tools
(such as Eclipse) that you are comfortable with.

It is recommended to use Pig Pen (Eclipse plugin) on the developer's machine for
developing and debugging Pig scripts.

Pig Pen can be downloaded from https://issues.apache.org/jira/secure/
attachment/12456988/org.apache.pig.pigpen_0.7.5.jar.

Who this book is for
This book is for experienced developers who are already familiar with Pig and
are looking forward to referring to a use case standpoint that they can relate to
the problems of ingestion, profiling, cleansing, transformation, and egress of data
encountered in the enterprises. These power users of Pig will use the book as
a reference for understanding the significance of Pig design patterns to solve
their problems.

Knowledge of Hadoop and Pig is mandatory for you to grasp the intricacies of Pig
design patterns better. To address this, Chapter 1, Setting the Context for Design Patterns
in Pig, contains introductory concepts with simple examples. It is recommended that
readers be familiar with Java and Python in order to better comprehend the UDFs that
are used as examples in many chapters.

Conventions
In this book, you will find a number of styles of text that distinguish between different
kinds of information. Here are a few examples of these styles and an explanation of
their meaning.

Code words in text are shown as follows: "From this point onward, we shall call the
unpacked Hadoop directory HADOOP_HOME."

Preface

[6]

A block of code for UDFs written in Java is set as follows:

package com.pigdesignpatterns.myudfs;

public class DeIdentifyUDF extends EvalFunc<String> {

 @Override
 public String exec(Tuple input){

 try {
 String plainText = (String)input.get(0);
 String encryptKey = (String)input.get(1);
 String str="";
 str = encrypt(plainText,encryptKey.getBytes());
 return str;
 }
 catch (NullPointerException npe) {
 warn(npe.toString(), PigWarning.UDF_WARNING_2);
 return null;
 } catch (StringIndexOutOfBoundsException npe) {
 warn(npe.toString(), PigWarning.UDF_WARNING_3);
 return null;
 } catch (ClassCastException e) {
 warn(e.toString(), PigWarning.UDF_WARNING_4);
 return null;
 }

Pig Script is displayed as follows:

Users = load 'users' as (name, age);
Fltrd = filter Users by
 age >= 18 and age <= 25;
Pages = load 'pages' as (user, url);
Jnd = join Fltrd by name, Pages by user;
Grpd = group Jnd by url;
Smmd = foreach Grpd generate group,
COUNT(Jnd) as clicks;
Srtd = order Smmd by clicks desc;
Top5 = limit Srtd 5;
store Top5 into 'top5sites'

Any command-line input or output is written as follows:

>tar -zxvf hadoop-1.x.x.tar.gz

Preface

[7]

New terms and important words are shown in bold. Words that you see on the screen,
in menus or dialog boxes for example, appear in the text like this: "Clicking the Next
button moves you to the next screen."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or may have disliked. Reader feedback is important for
us to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com,
and mention the book title via the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase

Downloading the example code
You can download the example code files for all Packt books you have purchased
from your account at http://www.packtpub.com. If you purchased this book
elsewhere, you can visit http://www.packtpub.com/support and register to have
the files e-mailed directly to you. The examples in this book are tested by compiling
against Pig Version 0.11.0. Many of the Pig scripts, UDFs, and data are available from
the publisher's website or GitHub.

You can also use https://github.com/pradeep-pasupuleti/pig-design-
patterns.

www.allitebooks.com

http://www.allitebooks.org

Preface

[8]

The Pig Latin script examples are organized by chapter in their respective
directories. UDFs of Java and Python are also part of the chapter directory
organized in a separate subdirectory by the name src. All datasets are in the
datasets directory. Readme files are included to help you get the UDFs built
and to understand the contents of the data files.

Each script is written with the assumption that the input and output are in the
HDFS path.

Third-party libraries
A number of third-party libraries are used for the sake of convenience. They are
included in the Maven dependencies so there is no extra work required to work
with these libraries. The following table contains a list of the libraries that are in
prevalent use throughout the code examples:

Library name Description Link

dataFu

DataFu is a collection of
user-defined functions for
working with large-scale
data in Hadoop and Pig
especially for data mining
and statistics

http://search.maven.org/
remotecontent?filepath=com/
linkedin/datafu/
datafu/0.0.10/datafu-0.0.10.
jar

mongo-hadoop-core

This is the plugin for
Hadoop that provides the
ability to use MongoDB as
an input source and/or an
output source

http://repo1.maven.org/
maven2/org/mongodb/mongo-
hadoop-core_1.0.0/1.0.0-rc0/
mongo-hadoop-core_1.0.0-
1.0.0-rc0.jar

mongo-hadoop-pig

This is to load records
from the MongoDB
database to use them in a
Pig script and to write to
a MongoDB instance

http://repo1.maven.org/
maven2/org/mongodb/mongo-
hadoop-pig/1.0.0/mongo-
hadoop-pig-1.0.0.jar

mongo-java-driver This is a Java driver for
MongoDB

http://repo1.maven.org/
maven2/org/mongodb/mongo-
java-driver/2.9.0/mongo-java-
driver-2.9.0.jar

elephant-bird-pig
This is Twitter's open
source library of Pig
LoadFuncs

http://repo1.maven.org/
maven2/com/twitter/
elephantbird/elephant-bird-
pig/3.0.5/elephant-bird-pig-
3.0.5.jar

Preface

[9]

Library name Description Link

elephant-bird-core This is Twitter's collection
of core utilities

http://repo1.maven.org/
maven2/com/twitter/
elephantbird/elephant-bird-
pig/3.0.5/elephant-bird-pig-
3.0.5.jar

hcatalog-pig-adapter
This contains utilities
to access data from
Hcatalog-managed tables

http://search.maven.org/
remotecontent?filepath=org/
apache/hcatalog/hcatalog-pig-
adapter/0.11.0/hcatalog-pig-
adapter-0.11.0.jar

cb2java
This JAR has libraries to
dynamically parse the
COBOL copybook

http://sourceforge.net/
projects/cb2java/files/
latest/download

Avro This is the Avro core
components' library

http://repo1.maven.org/
maven2/org/apache/avro/
avro/1.7.4/avro-1.7.4.jar

json-simple
This library is a Java
toolkit for JSON to encode
or decode JSON text

http://www.java2s.com/Code/
JarDownload/json-simple/json-
simple-1.1.1.jar.zip

commons-math
This library contains
few mathematical and
statistical components

http://repo1.maven.org/
maven2/org/apache/commons/
commons-math3/3.2/commons-
math3-3.2.jar

Datasets
Throughout this book, you'll work with these datasets to provide some variety for
the examples. Copies of the exact data used are available in the GitHub repository in
the directory https://github.com/pradeep-pasupuleti/pig-design-patterns.
Wherever relevant, data that is specific to a chapter exists within chapter-specific
subdirectories under the same GitHub location.

Preface

[10]

The following are the major classifications of datasets, which are used in this book as
relevant to the use case discussed:

• The logs dataset contains a month's worth of HTTP requests to the NASA
Kennedy Space Center WWW server in Florida. These logs are in the format
of Apache access logs.

The dataset is downloaded from the links ftp://ita.
ee.lbl.gov/traces/NASA_access_log_Jul95.gz
and ftp://ita.ee.lbl.gov/traces/NASA_access_
log_Aug95.gz.
Acknowledgement: The logs were collected by Jim Dumoulin
of the Kennedy Space Center, and contributed by Martin
Arlitt (mfa126@cs.usask.ca) and Carey Williamson
(carey@cs.usask.ca) of the University of Saskatchewan.

• The custom logs dataset contains logs generated by a web application in
the custom log format. Web service request and response information is
embedded along with the event logs. This is a synthetic dataset created
specifically to illustrate the examples in this book.

• The historical NASDAQ stock data from 1970 to 2010, including daily open,
close, low, high, and trading volume figures. Data is organized alphabetically
by ticker symbol.

This dataset is downloaded from the link http://www.
infochimps.com/datasets/nasdaq-exchange-daily-
1970-2010-open-close-high-low-and-volume/
downloads/166853.

• The customer retail transactions dataset has details on category of the
product being purchased and customer demographic information. This is a
synthetic dataset created specifically to illustrate the examples in this book.

• The automobile insurance claims dataset consists of two files. The
automobile_policy_master.csv file contains the vehicle price and the
premium paid for it. The file automobile_insurance_claims.csv contains
automobile insurance claims data, specifically vehicle repair charges claims.
This is a synthetic dataset created specifically to illustrate the examples in
this book.

Preface

[11]

• The MedlinePlus health topic XML files contain records of health topics.
Each health topic record includes data elements associated with that topic.

This dataset is downloaded from the link http://www.
healthdata.gov/data/dataset/medlineplus-
health-topic-xml-files-0.

• This dataset contains a large set of e-mail messages from the Enron corpus
which has about 150 users with an average of 757 messages per user; the
dataset is in AVRO format and we have converted it to JSON format for the
purpose of this book.

This dataset is downloaded from the link https://
s3.amazonaws.com/rjurney_public_web/
hadoop/enron.avro.

• Manufacturing dataset for electrical appliances is a synthetic dataset created
for the purpose of this book. This dataset contains the following files:

 ° manufacturing_units.csv: This contains information about each
manufacturing unit

 ° products.csv: This contains details of the products that
are manufactured

 ° manufacturing_units_products.csv: This holds detailed
information of products that are manufactured in different
manufacturing units

 ° production.csv: This holds the production details

• The unstructured text dataset contains parts of articles from Wikipedia
on Computer science and Information Technology, Big Data, Medicine,
invention of telephone, stop words list, and dictionary words list.

• The Outlook contacts dataset is a synthetic dataset created by exporting the
Outlook contacts for the purpose of this book; it is a CSV file with attributes
contact names and job titles.

Preface

[12]

• The German credit dataset in CSV format classifies people as good or bad
credit risks based on a set of attributes. There are 20 attributes (7 numerical
and 13 categorical) with 1,000 instances.

This dataset is downloaded from the link http://archive.ics.
uci.edu/ml/machine-learning-databases/statlog/german/
german.data.
Acknowledgement: Data collected from UCI Machine Learning Repository
(http://archive.ics.uci.edu/ml/datasets/
Statlog+(German+Credit+Data)), source: Professor Dr. Hans
Hofmann, Institut fuer Statistik und Oekonometrie, Universitaet Hamburg.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text
or the code—we would be grateful if you would report this to us. By doing so, you
can save other readers from frustration and help us improve subsequent versions
of this book. If you find any errata, please report them by visiting http://www.
packtpub.com/support, selecting your book, clicking on the errata submission
form link, and entering the details of your errata. Once your errata are verified,
your submission will be accepted and the errata will be uploaded to our website,
or added to any list of existing errata, under the Errata section of that title.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you
come across any illegal copies of our works, in any form, on the Internet, please
provide us with the location address or website name immediately so that we
can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with
any aspect of the book, and we will do our best to address it.

Setting the Context for
Design Patterns in Pig

This chapter is aimed at providing a broad introduction to multiple technologies
and concepts addressed in this book. We start with exploring the concepts related
to design patterns by defining them and understanding how they are discovered
and applied in real life, and through this, we seek to understand how these design
patterns are applied and implemented in Pig.

Before we start looking into the intricacies of the Pig programming language, we
explore the background of why Pig came into existence, where Pig is used in an
enterprise, and understand how Hadoop fits in the distributed computing landscape
in the age of Big Data. We then perform a quick dive into the Hadoop ecosystem,
introducing you to its important features. The Pig programming language has been
covered from the language features perspective, giving you a ready-made example
that is elaborated to explain the language features, such as common operators,
extensibility, input and output operators, relational operators, schemas, nulls,
and ways to understand the intermediate MapReduce code.

Setting the Context for Design Patterns in Pig

[14]

Understanding design patterns
Design patterns provide a consistent and common solutions approach to similar
problems or requirements. A designer working with diverse systems often comes
across a similarity in the way a problem manifests itself or a requirement that needs
to be met. Eventually, he/she gains enough knowledge of the subtle variations, and
starts seeing a common thread connecting these otherwise different and recurring
problems. Such common behavior or characteristics are then abstracted into a
pattern. This pattern or solution approach is thus a generalized design that can
also be applied to a broader set of requirements and newer manifestations of the
problem. For example, the widely acclaimed software design patterns book, Design
Patterns: Elements of Reusable Object-Oriented Software by Erich Gamma, Richard Helm,
Ralph Johnson, and John Vlissides, Addison-Wesley Professional, mentions five creational
patterns. These patterns can also be understood by analyzing real-life situations that
trace their origin to a non-software field. The factory method pattern mentioned in
this book defines an interface for the creation of class objects, but it lets the subclasses
perform the decision making on which class to instantiate. This software pattern
seems to have a parallel in the non-software industry where toys are manufactured
by the injection molding process. The machine processes the plastic powder and
injects the powder into molds of the required shapes. The class of the toy (car, action
figure, and so on) is determined by its mold.

The intent of the design pattern is not to act like a perfect tailor-made solution for
a specific problem that can be converted into code. Rather, it is like a template to
solve specific and well-defined problems. Usually, design patterns are uncovered
in real life; they are not created. The following are general ways in which patterns
are discovered:

• The evolution of a new group of technologies that solve the latest problems
together; these technologies have a perceived need for a pattern catalog

• Encountering a solution that has recurring problems

Adapt the existing patterns to new situations and modify the existing pattern itself.
Discovering a pattern implies defining it, giving it a name, and documenting it in a
very clear way so that users can read, understand, and apply them when faced with
similar problems. A pattern is worth publishing after it is used by real users and they
have worked on real-world problems rather than hypothetical issues. These patterns
are not rules or laws; they are guidelines that may be modified to fit the needs of
the solution.

This book takes inspiration from other books written on design patterns on various
subject areas. It also follows the pattern documentation format as outlined by the
GoF pattern catalog Design Patterns: Elements of Reusable Object-Oriented Software, by
Gamma, Helm, Johnson & Vlissides (Addison-Wesley Professional).

Chapter 1

[15]

Every design pattern in this book follows a template and is identified by a name,
followed by a few sections that tell the user more about the patterns.

• The pattern name gives the pattern a unique identifier and can be a good
means of communication.

• The pattern details section succinctly describes the what and why of
the pattern.

• The Background section describes the motivation and in-detail applicability
of the pattern.

• The Motivation section describes a concrete scenario that describes the
problem and how the pattern fits as a solution. Applicability describes
different situations where the pattern is used.

• The Use cases section deals with various use cases in real systems where
we can see evidence of the pattern.

• The Code snippets section consists of the code through which the pattern
is implemented.

• The Results section has the consequences of the pattern that deal with the
intended and unintended effect of the output of the pattern.

• The Additional information section deals with how the patterns relate to each
other, and any other relevant information related to the pattern.

You apply a pattern when you identify a problem, which a pattern can solve,
and recognize the similarity to other problems that might be solved using known
patterns. This can happen during the initial design, coding, or maintenance phase.
In order to do this, you need to get familiar with the existing patterns and their
interrelationships first, and then look at the Background section that delves deeper
into the motivation and applicability of the pattern for the design problem.

The scope of design patterns in Pig
This book deals with patterns that were encountered while solving real-world,
recurrent Big Data problems in an enterprise setting. The need for these patterns
takes root in the evolution of Pig to solve the emerging problems of large volumes
and a variety of data, and the perceived need for a pattern catalog to document
their solutions.

Setting the Context for Design Patterns in Pig

[16]

The emerging problems of handling large volumes of data, typically deal with
getting a firm grip on understanding whether the data can be used or not to generate
analytical insights and, if possible, how to efficiently generate these insights. Imagine
yourself to be in the shoes of a data scientist who has been given a massive volume
of data that does not have a proper schema, is messy, and has not been documented
for ages. You have been asked to integrate this with other enterprise data sources
and generate spectacular analytical insights. How do you start? Would you start
integrating data and fire up your favorite analytics sandbox and begin generating
results? Would it be handy if you knew beforehand the existence of design patterns
that can be applied systematically and sequentially in this kind of scenario to reduce
the error and increase the efficiency of Big Data analytics? The design patterns
discussed in this book will definitely appeal to you in this case.

Design patterns in Pig are geared to enhance your ability to take a problem of Big
Data and quickly apply the patterns to solve it. Successful development of Big Data
solutions using Pig requires considering issues early in the lifecycle of development,
and these patterns help to uncover those issues. Reusing Pig design patterns
helps identify and address such subtleties and prevents them from growing into
major problems. The by-product of the application of the patterns is readability
and maintainability of the resultant code. These patterns provide developers a
valuable communication tool by allowing them to use a common vocabulary to
discuss problems in terms of what a pattern could solve, rather than explaining the
internals of a problem in a verbose way. Design patterns for Pig are not a cookbook
for success; they are a rule of thumb. Reading specific cases in this book about
Pig design patterns may help you recognize problems early, saving you from the
exponential cost of reworks later on.

The popularity of design patterns is very much dependent on the domain. For
example, the state patterns, proxies, and facades of the Gang of Four book are very
common with applications that communicate a lot with other systems. In the same
way, the enterprises, which consume Big Data to understand analytical insights, use
patterns related to solving problems of data pipelines since this is a very common
use case. These patterns specifically elaborate the usage of Pig in data ingest,
profiling, cleansing, transformation, reduction, analytics, and egress.

A few patterns discussed in Chapter 5, Data Transformation Patterns and Chapter 6,
Understanding Data Reduction Patterns, adapt the existing patterns to new situations,
and in the process modify the existing pattern itself. These patterns deal with the
usage of Pig in incremental data integration and creation of quick prototypes.

Chapter 1

[17]

These design patterns also go deeper and enable you to decide the applicability of
specific language constructs of Pig for a given problem. The following questions
illustrate this point better:

• What is the recommended usage of projections to solve specific patterns?
• In which pattern is the usage of scalar projections ideal to access aggregates?
• For which patterns is it not recommended to use COUNT, SUM, and

COUNT_STAR?
• How to effectively use sorting in patterns where key distributions are skewed?
• Which patterns are related to the correct usage of spill-able data types?
• When not to use multiple FLATTENS operators, which can result in CROSS

on bags?
• What patterns depict the ideal usage of the nested FOREACH method?
• Which patterns to choose for a JOIN operation when one dataset can fit

into memory?
• Which patterns to choose for a JOIN operation when one of the relations

joined has a key that dominates?
• Which patterns to choose for a JOIN operation when two datasets are

already ordered?

Hadoop demystified – a quick reckoner
We will now discuss the need to process huge multistructured data and the
challenges involved in processing such huge data using traditional distributed
applications. We will also discuss the advent of Hadoop and how it efficiently
addresses these challenges.

The enterprise context
The last decade has been a defining moment in the history of data, resulting in
enterprises adopting new business models and opportunities piggybacking on the
large-scale growth of data.

The proliferation of Internet searches, personalization of music, tablet computing,
smartphones, 3G networks, and social media contributed to the change in rules
of data management, from organizing, acquiring, storing, and retrieving data to
managing perspectives. The need for decision making for these new sources of
data and getting valuable insights has become a valuable weapon in the enterprise
arsenal, aimed to make the enterprise successful.

www.allitebooks.com

http://www.allitebooks.org

Setting the Context for Design Patterns in Pig

[18]

Traditional systems, such as RDBMS-based data warehouses, took the lead to
support the decision-making process by being able to collect, store, and manage
data by applying traditional and statistical methods of measurement to create a
reporting and analysis platform. The data collected within these traditional systems
were highly structured in nature with minimal flexibility to change with the needs
of the emerging data types, which were more unstructured.

These data warehouses are capable of supporting distributed processing
applications, but with many limitations. Such distributed processing applications are
generally oriented towards taking in structured data, transforming it, and making it
usable for analytics or reporting, and these applications were predominantly batch
jobs. In some cases, these applications are run on a cluster of machines so that the
computation and data are distributed to the nodes of the cluster. These applications
take a chunk of data, perform a computationally intense operation on it, and send it
to downstream systems for another application or system to consume.

With the competitive need to analyze both structured and unstructured data
and gain insights, the current enterprises need the processing to be done on an
unprecedentedly massive scale of data. The processing mostly involves performing
operations needed to clean, profile, and transform unstructured data in combination
with the enterprise data sources so that the results can be used to gain useful
analytical insights. Processing these large datasets requires many CPUs, sufficient
I/O bandwidth, Memory, and so on. In addition, whenever there is large-scale
processing, it implies that we have to deal with failures of all kinds. Traditional
systems such as RDBMS do not scale linearly or cost effectively under this kind
of tremendous data load or when the variety of data is unpredictable.

In order to process the exceptional influx of data, there is a palpable need for data
management technology solutions; this allows us to consume large volumes of data
in a short amount of time across many formats, with varying degrees of complexity
to create a powerful analytical platform that supports decisions.

Common challenges of distributed systems
Before the genesis of Hadoop, distributed applications were trying to cope with the
challenges of data growth and parallel processing in which processors, network,
and storage failure was common. The distributed systems often had to manage the
problems of failure of individual components in the ecosystem, arising out of low
disk space, corrupt data, performance degradations, routing issues, and network
congestion. Achieving linear scalability in traditional architectures was next to
impossible and in cases where it was possible to a limited extent, it was not without
incurring huge costs.

Chapter 1

[19]

High availability was achieved, but at a cost of scalability or compromised integrity.
The lack of good support for concurrency, fault tolerance, and data availability were
unfavorable for traditional systems to handle the complexities of Big Data. Apart
from this, if we ever want to deploy a custom application, which houses the latest
predictive algorithm, distributed code has its own problems of synchronization,
locking, resource contentions, concurrency control, and transactional recovery.

Few of the previously discussed problems of distributed computing have been
handled in multiple ways within the traditional RDBMS data warehousing systems,
but the solutions cannot be directly extrapolated to the Big Data situation where
the problem is amplified exponentially due to huge volumes of data, and its variety
and velocity. The problems of data volume are solvable to an extent. However, the
problems of data variety and data velocity are prohibitively expensive to be solved
by these attempts to rein in traditional systems to solve Big Data problems.

As the problems grew with time, the solution to handle the processing of Big Data
was embraced by the intelligent combination of various technologies, such as
distributed processing, distributed storage, artificial intelligence, multiprocessor
systems, and object-oriented concepts along with Internet data processing techniques

The advent of Hadoop
Hadoop, a framework that can tolerate machine failure, is built to outlast challenges
concerning the distributed systems discussed in the previous section. Hadoop
provides a way of using a cluster of machines to store and process, in parallel,
extremely huge amounts of data. It is a File System-based scalable and distributed
data processing architecture, designed and deployed on a high-throughput and
scalable infrastructure.

Hadoop has its roots in Google, which created a new computing model built
on a File System, Google File System (GFS), and a programming framework,
MapReduce, that scaled up the search engine and was able to process multiple
queries simultaneously. Doug Cutting and Mike Cafarella adapted this computing
model of Google to redesign their search engine called Nutch. This eventually led to
the development of Nutch as a top-level Apache project under open source, which
was adopted by Yahoo in 2006 and finally metamorphosed into Hadoop.

The following are the key features of Hadoop:

• Hadoop brings the power of embarrassingly massive parallel processing
to the masses.

• Through the usage of File System storage, Hadoop minimizes
database dependency.

Setting the Context for Design Patterns in Pig

[20]

• Hadoop uses a custom-built distributed file-based storage, which is cheaper
compared to storing on a database with expensive storages such as Storage
Area Network (SAN) or other proprietary storage solutions. As data is
distributed in files across the machines in the cluster, it provides built-in
redundancy using multinode replication.

• Hadoop's core principle is to use commodity infrastructure, which is linearly
scalable to accommodate infinite data without degradation of performance.
This implies that every piece of infrastructure, be it CPU, memory, or storage,
added will create 100 percent scalability. This makes data storage with
Hadoop less costly than traditional methods of data storage and processing.
From a different perspective, you get processing done for every TB of storage
space added to the cluster, free of cost.

• Hadoop is accessed through programmable Application Programming
Interfaces (APIs) to enable parallel processing without the limitations imposed
by concurrency. The same data can be processed across systems for different
purposes, or the same code can be processed across different systems.

• The use of high-speed synchronization to replicate data on multiple nodes
of the cluster enables a fault-tolerant operation of Hadoop.

• Hadoop is designed to incorporate critical aspects of high availability so that
the data and the infrastructure are always available and accessible by users.

• Hadoop takes the code to the data rather than the other way round; this is
called data locality optimization. This local processing of data and storage
of results on the same cluster node minimizes the network load gaining
overall efficiencies.

• To design fault tolerant applications, the effort involved to add the fault
tolerance part is sometimes more than the effort involved in solving the
actual data problem at hand. This is where Hadoop scores heavily. It
enables the application developer to worry about writing applications
by decoupling the distributed system's fault tolerance from application
logic. By using Hadoop, the developers no longer deal with the low-level
challenges of failure handling, resource management, concurrency, loading
data, allocating, and managing the jobs on the various nodes in the cluster;
they can concentrate only on creating applications that work on the cluster,
leaving the framework to deal with the challenges.

Hadoop under the covers
Hadoop consists of the Hadoop core and Hadoop subprojects. The Hadoop core is
essentially the MapReduce processing framework and the HDFS storage system.

Chapter 1

[21]

The integral parts of Hadoop are depicted in the following diagram:

Integration frameworks

Chukwa / SQOOP

High-level scripting languages

(Pig / Hive)

Processing frameworks

(MapReduce)

Data management frameworks

(HDFS)

D
a
ta

s
e
ri
a
liz

a
ti
o
n

fr
a
m

e
w

o
rk

(A
vr

o
)

D
is

tr
ib

u
te

d
c
o
o
rd

in
a
ti
o
n

fr
a
m

e
w

o
rk

(Z
o
o
k
e
e
p
e
r)

Typical Hadoop stack

The following is an explanation of the integral parts of Hadoop:

• Hadoop Common: This includes all the library components and utilities
that support the ecosystem

• Hadoop Distributed File System (HDFS): This is a filesystem that
provides highly available redundant distributed data access for processing
using MapReduce

• Hadoop MapReduce: This is a Java-based software framework to operate on
large datasets on a cluster of nodes, which store data (HDFS)

Few Hadoop-related top level Apache projects include the following systems:

• Avro: This a data serialization and deserialization system
• Chukwa: This is a system for log data collection
• SQOOP: This is a structured data collection framework that integrates

with RDBMS
• HBase: This is a column-oriented scalable, distributed database that supports

millions of rows and columns to store and query in real-time structured data
using HDFS

• Hive: This is a structured data storage and query infrastructure built on
top of HDFS, which is used mainly for data aggregation, summarization,
and querying

• Mahout: This is a library of machine-learning algorithms written specifically
for execution on the distributed clusters

Setting the Context for Design Patterns in Pig

[22]

• Pig: This is a data-flow language and is specially designed to
simplify the writing of MapReduce applications

• ZooKeeper: This is a coordination service designed for
distributed applications

Understanding the Hadoop Distributed
File System
The Hadoop Distributed File System (HDFS) is a File System that provides highly
available redundant data access to process using MapReduce. The HDFS addresses
two major issues in large-scale data storage and processing. The first problem is that
of data locality in which code is actually sent to the location of the data in the cluster,
where the data has already been divided into manageable blocks so that each block
can be independently processed and the results combined. The second problem deals
with the capability to tolerate faults at any subsystem level (it can be at the CPU,
network, storage, memory, or application level) owing to the reliance on commodity
hardware, which is assumed to be less reliant, unless proven otherwise. In order
to address these problems, the architecture of HDFS was inspired by the early lead
taken by the GFS.

HDFS design goals
The three primary goals of HDFS architecture are as follows:

• Process extremely large files ranging from multiple gigabytes to petabytes.
• Streaming data processing to read data at high-throughput rates and

process data while reading.
• Capability to execute on commodity hardware with no special

hardware requirements.

Working of HDFS
HDFS has two important subsystems. One is NameNode, which is the master of the
system that maintains and manages the blocks that are present in the other nodes.
The second one is DataNodes, which are slave nodes working under the supervision
of the NameNode and deployed on each machine to provide the actual storage.
These nodes collectively serve read and write requests for the clients, which store
and retrieve data from them. This is depicted in the following diagram:

Chapter 1

[23]

MapReduce
engine

HDFS
cluster

JobTracker

NameNode

TaskTracker

DataNode

TaskTracker

DataNode

TaskTracker

DataNode

TaskTracker

DataNode

JobTracker and NameNode

The master node is the place where the metadata of the data splits is stored in the
memory. This metadata is used at a later point in time to reconstruct the complete
data stored in the slave nodes, enabling the job to run on various nodes. The data
splits are replicated on a minimum of three machines (the default replication factor).
This helps in situations when the hardware of the slave nodes fails and the data can
be readily recoverable from the machines where the redundant copy was stored, and
the job was executed on one of those machines. Together, these two account for the
storage, replication, and management of the data in the entire cluster.

On a Hadoop cluster, the data within the filesystem nodes (data nodes) are replicated
on multiple nodes in the cluster. This replication adds redundancy to the system in
case of machine or subsystem failure; the data stored in the other machines will be
used for the continuation of the processing step. As the data and processing coexist
on the same node, linear scalability can be achieved by simply adding a new machine
and gaining the benefit of an additional hard drive and the computation capability of
the new CPU (scale out).

It is important to note that HDFS is not suitable for low-latency data access, or
storage of many small files, multiple writes, and arbitrary file modifications.

Understanding MapReduce
MapReduce is a programming model that manipulates and processes huge datasets;
its origin can be traced back to Google, which created it to solve the scalability of
search computation. Its foundations are based on principles of parallel and distributed
processing without any database dependency. The flexibility of MapReduce lies in
its ability to process distributed computations on large amounts of data in clusters of
commodity servers, with a facility provided by Hadoop and MapReduce called data
locality, and a simple task-based model for management of the processes.

Setting the Context for Design Patterns in Pig

[24]

Understanding how MapReduce works
MapReduce primarily makes use of two components; a JobTracker, which is a Master
node daemon, and the TaskTrackers, which run in all the slave nodes. It is a slave
node daemon. This is depicted in the following diagram:

Input

Map

Partition

Combine

Reducer

Output

Partition

Partition

Partition

Combine

Reducer
Map

Map

Map

MapReduce internals

The developer writes a job in Java using the MapReduce framework, and submits
it to the master node of the cluster, which is responsible for processing all the
underlying data with the job.

The master node consists of a daemon called JobTracker, which assigns the job
to the slave nodes. The JobTracker class, among other things, is responsible for
copying the JAR file containing the task on to the node containing the task tracker
so that each of the slave node spawns a new JVM to run the task. The copying of the
JAR to the slave nodes will help in situations that deal with slave node failure. A
node failure will result in the master node assigning the task to another slave node
containing the same JAR file. This enables resilience in case of node failure.

The MapReduce internals
A MapReduce job is implemented as two functions:

• The Map function: A user writes a Map function, which receives key-value
pairs as input, processes it, and emits a list of key-value pairs.

• The Reduce function: The Reduce function, written by the user, will accept
the output of the Map function, that is, the list of intermediate key-value
pairs. These values would be typically merged to form a smaller set of values
and hence the name Reduce. The output could be just zero or one output
value per each reducer invocation.

Chapter 1

[25]

The following are the other components of the MapReduce framework as depicted in
the previous diagram:

• Combiner: This is an optimization step and is invoked optionally. It is
a function specified to execute a Reduce-like processing on the Mapper
side and perform map-side aggregation of the intermediate data. This will
reduce the amount of data transferred over the network from the Mapper
to the Reducer.

• Partitioner: This is used to partition keys of the map output. The key is used
to develop a partition by grouping all values of a key together in a single
partition. Sometimes default partitions can be created by a hash function.

• Output: This collects the output of Mappers and Reducers.
• Job configuration: This is the primary user interface to manage MapReduce

jobs to specify the Map, Reduce functions, and the input files.
• Job input: This specifies the input for a MapReduce job.

Pig – a quick intro
Pig is MapReduce simplified. It is a combination of the Pig compiler and the Pig
Latin script, which is a programming language designed to ease the development
of distributed applications for analyzing large volumes of data. We will refer to the
whole entity as Pig.

The high-level language code written in the Pig Latin script gets compiled into
sequences of the MapReduce Java code and it is amenable to parallelization. Pig
Latin promotes the data to become the main concept behind any program written
in it. It is based on the dataflow paradigm, which works on a stream of data to be
processed; this data is passed through instructions, which processes the data. This
programming style is analogous to how electrical signals flow through circuits or
water flows through pipes.

This dataflow paradigm is in stark contrast to the control flow language, which
works on a stream of instructions, and operates on external data. In a traditional
program, the conditional executions, jumps, and procedure calls change the
instruction stream to be executed.

Processing statements in Pig Latin consist of operators, which take inputs and emit
outputs. The inputs and outputs are structured data expressed in bags, maps, tuples,
and scalar data. Pig resembles a dataflow graph, where the directed vertices are the
paths of data and the nodes are operators (such as FILTER, GROUP, and JOIN) that
process the data. In Pig Latin, each statement executes as soon as all data reaches
them in contrast to a traditional program that executes as soon as it encounters
the statement.

Setting the Context for Design Patterns in Pig

[26]

A programmer writes code using a set of standard data-processing Pig operators,
such as JOIN, FILTER, GROUP BY, ORDER BY, and UNION. These are then translated
into MapReduce jobs. Pig itself does not have the capability to run these jobs and
it delegates this work to Hadoop. Hadoop acts as an execution engine for these
MapReduce jobs.

It is imperative to understand that Pig is not a general purpose programming
language with all the bells and whistles that come with it. For example, it does
not have the concept of control flow or scope resolution, and has minimal variable
support, which many developers are accustomed to in traditional languages. This
limitation can be overcome by using User Defined Functions (UDFs), which is an
extensibility feature of Pig.

For a deeper understanding, you may have to refer the Apache web site at
http://pig.apache.org/docs/r0.11.0/ to understand the intricacies of the
syntax, usage, and other language features.

Understanding the rationale of Pig
Pig Latin is designed as a dataflow language to address the following limitations of
MapReduce:

• The MapReduce programming model has tightly coupled computations
that can be decomposed into map phase, shuffle phase, and a reducer phase.
This limitation is not appropriate for real-world applications that do not
fit into this pattern and tasks having a different flow like joins or n-phases.
Few other real-world data pipelines require additional coordination code to
combine separate MapReduce phases for management of the intermediate
results between pipeline phases. This takes its toll in terms of the learning
curve for new developers to understand the computation.

• Complex workarounds have to be implemented in MapReduce even for the
simplest of operations like projection, filtering, and joins.

• The MapReduce code is difficult to develop, maintain, and reuse, sometimes
taking the order of the magnitude than the corresponding code written
in Pig.

• It is difficult to perform optimizations in MapReduce because of its
implementation complexity.

Pig Latin brings the double advantage of being a SQL-like language with its
declarative style and the power of a procedural programming language such
as MapReduce using various extensibility features.

Chapter 1

[27]

Pig supports nested data and enables complex data types to be embedded as fields
of a table. The support for nested data models makes data modeling more intuitive
since this is closer to the reality of how data exists than the way a database models it
in the first normal form. The nested data model also reflects how the data is stored
on the disk and enables users to write custom UDFs more intuitively.

Pig supports creation of user-defined functions, which carry out specialized data
processing tasks; almost all aspects of programming in Pig are extensible using
UDFs. What it implies is that a programmer can customize Pig Latin functions like
grouping, filtering, and joining using the EvalFunc method. You can also customize
load/store capabilities by extending LoadFunc or StoreFunc. Chapter 2, Data Ingest
and Egress Patterns, has examples showing Pig's extensibility.

Pig has a special feature, called the ILLUSTRATE function to aid the Big Data developer
to develop code using sample data quickly. The sample data closely resembles the
real data as much as possible and fully illustrates the semantics of the program.
This example data evolves automatically as the program grows in complexity. This
systematic example data can help in detecting errors and its sources early.

One other advantage of using Pig is that there is no need to perform an elaborate
data import process prior to parsing the data into tuples as in conventional database
management systems. What it implies is, if you have a data file, the Pig Latin queries
can be run on it directly without importing it. Without importing means that the
data can be accessed and queried in any format as long as it can be read by Pig as
tuples. We don't need to import data as we do it while working with a database, for
example, importing a CSV file into a database before querying it. Still, you need to
provide a function to parse the content of the file into tuples.

Understanding the relevance of Pig in the
enterprise
In the current enterprises, the Big Data processing cycle is remarkable for its
complexity and it widely differs from a traditional data processing cycle. The
data collected from a variety of data sources is loaded to a target platform; then a
base level analysis is performed so that a discovery happens through a metadata
layer being applied to the data. This will result in the creation of a data structure
or schema for the content in order to discover the context and relevance of the
data. Once the data structure is applied, the data is then integrated, transformed,
aggregated, and prepared to be analyzed. This reduced and structured dataset is
used for reporting and ad hoc analytics. The result from the process is what provides
insights into the data and any associated context (based on the business rules
processed). Hadoop can be used as a processing and storage framework at each
of the stages.

www.allitebooks.com

http://www.allitebooks.org

Setting the Context for Design Patterns in Pig

[28]

The following diagram shows a typical Big Data processing flow:

Collect Discover Process
Manage Generate

Data from

subsystems

Transaction

data

External

systems

Metadata

Tagging

Classification

Categorization

Ontology

Context

-based

processing

Sort

Integration

Merge

Transform

Summarize

Storage

Retrieval

Archival

Governance

Advanced

compute

Visualize

Format

Present

Big Data in the enterprise

The role of Pig as per the preceding diagram is as follows:

• In the collect phase, Pig is used to interface with the acquired data from
multiple sources including real-time systems, near-real-time systems, and
batch-oriented applications. Another way to use Pig is to process the data
through a knowledge discovery platform, which could be upstream and
store the subset of the output rather than the whole dataset.

• Pig is used in the data discovery stage where Big Data is first analyzed and
then processed. It is in this stage that Big Data is prepared for integration
with the structured analytical platforms or the data warehouse. The
discovery and analysis stage consists of tagging, classification, and
categorization of data, which closely resembles the subject area and results in
the creation of data model definition or metadata. This metadata is the key to
decipher the eventual value of Big Data through analytical insights.

• Pig is used in the data processing phase, where the context of the data is
processed to explore the relevance of the data within the unstructured
environment; this relevance would facilitate the application of appropriate
metadata and master data in Big Data. The biggest advantage of this kind
of processing is the ability to process the same data for multiple contexts,
and then looking for patterns within each result set for further data mining
and data exploration. For example, consider the word "cold", the context of
the word has to be ascertained correctly based on the usage, semantics, and
other relevant information. This word can be related to the weather or to
a common disease. After getting the correct context for this word, further
master data related to either weather or common diseases can be applied
on the data.

Chapter 1

[29]

• In the processing phase, Pig can also be used to perform data integration
right after the contextualization of data, by cleansing and standardizing
Big Data with metadata, master data, and semantic libraries. This is where
the data is linked with the enterprise dataset. There are many techniques to
link the data between structured and unstructured datasets with metadata
and master data. This process is the first important step in converting
and integrating the unstructured and raw data into a structured format.
This is the stage where the power of Pig is used extensively for data
transformation, and to augment the existing enterprise data warehouse by
offloading high volume, low value data, and workloads from the expensive
enterprise data warehouse.

• As the processing phase in an enterprise is bound by tight SLAs, Pig, being
more predictable and having the capability to integrate with other systems,
makes it more suitable to regularly schedule data cleansing, transformation,
and reporting workloads.

Pig scores in situations where incoming data is not cleansed and normalized. It
gracefully handles situations where data schemas are unknown until runtime or
are inconsistent. Pig's procedural language model and schema-less approach offers
much more flexibility and efficiency in data access so that data scientists can build
research models on the raw data to quickly test a theory.

Pig is typically used in situations where the solution can be expressed as a Directed
Acyclic Graph (DAG), involving the combination of standard relational operations
of Pig (join, aggregation, and so on) and utilizing custom processing code via UDFs
written in Java or a scripting language. This implies that if you have a very complex
chain of tasks where the outputs of each job feeds as an input to the next job, Pig
makes this process of chaining the jobs easy to accomplish.

Pig is useful in Big Data workloads where there is one very large dataset, and
processing on that dataset includes constantly adding in new small pieces of data
that will change the state of the large dataset. Pig excels in combining the newly
arrived data so that the whole of the data is not processed, but only the delta of the
data along with the results of the large data is processed efficiently. Pig provides
operators that perform this incremental processing of data in a reasonable amount
of time.

Other than the previously mentioned traditional use cases where Pig is generally
useful, Pig has the inherent advantage in the form of much less development
time needed to write and optimize code than to write in Java MapReduce. Pig is a
better choice when performing optimization-by-hand is tedious. Pig's extensibility
capabilities, through which you can integrate your existing executable and UDFs
with Pig Latin scripts, enables even faster development cycles.

Setting the Context for Design Patterns in Pig

[30]

Working of Pig – an overview
This subsection is where an example Pig script gets dissected threadbare and is
explained to illustrate the language features of Pig.

Firing up Pig
This subsection helps you to get a very quick understanding of booting Pig into the
action mode by installing and configuring it.

The primary prerequisite for Pig to work in a Hadoop cluster is to maintain the
Hadoop version compatibility, which in essence means Pig 0.11.0 works with
Hadoop versions 0.20.X, 1.X, 0.23.X, and 2.X. This is done by changing the directory
for HADOOP_HOME. The following table shows version compatibility between
Apache Pig and Hadoop.

The following table summarizes the Pig versus Hadoop compatibility:

Apache Pig Version Compatible Hadoop Versions
0.12.0 0.20.x, 1.x, 0.23.x, 2.x
0.11.0 0.20.x, 1.x, 0.23.x, 2.x
0.10.1 0.20.x, 1.x, 0.23.x, 2.x
0.10.0 0.20.x, 1.0.x, 0.23.x
0.9.2 0.20, 1.0.0
0.9.1 0.2
0.9.0 0.2
0.8.1 0.2
0.8.0 0.2
0.7.0 0.2
0.6.0 0.2
0.5.0 0.2
0.4.0 0.18
0.3.0 0.18
0.2.0 0.18
0.1.1 0.18
0.1.0 0.17

Chapter 1

[31]

Pig core is written in Java and it works across operating systems. Pig's shell, which
executes the commands from the user, is a bash script and requires a UNIX system.
Pig can also be run on Windows using Cygwin and Perl packages.

Java 1.6 is also mandatory for Pig to run. Optionally, the following can be installed
on the same machine: Python 2.5, JavaScript 1.7, Ant 1.7, and JUnit 4.5. Python
and JavaScript are for writing custom UDFs. Ant and JUnit are for builds and unit
testing, respectively. Pig can be executed with different versions of Hadoop by
setting HADOOP_HOME to point to the directory where we have installed Hadoop.
If HADOOP_HOME is not set, Pig will run with the embedded version by default,
which is currently Hadoop 1.0.0.
The following table summarizes the prerequisites for installing Pig (we have
considered major versions of Pig until 0.9.1):

Apache Pig Version Prerequisites
0.12.0 Hadoop 0.20.2, 020.203, 020.204, 0.20.205, 1.0.0, 1.0.1, or

0.23.0, 0.23.1

Java 1.6
Cygwin(for windows)

Perl(for windows)
0.11.0,0.11.1 Hadoop 0.20.2, 020.203, 020.204, 0.20.205, 1.0.0, 1.0.1, or

0.23.0, 0.23.1
Java 1.6

Cygwin(for windows)

Perl(for windows)
0.10.0,0.10.1 Hadoop 0.20.2, 020.203, 020.204, 0.20.205, 1.0.0, 1.0.1, or

0.23.0, 0.23.1

Java 1.6

Cygwin(for windows)

Perl(for windows)

0.9.2 Hadoop 0.20.2, 0.20.203, 0.20.204, 0.20.205, or 1.0.0

Java 1.6

Cygwin(for windows)

Perl(for windows)

Setting the Context for Design Patterns in Pig

[32]

Apache Pig Version Prerequisites
0.9.1 Hadoop 0.20.2, 0.20.203, 0.20.204 or 0.20.205

Java 1.6

Cygwin(for windows)

Perl(for windows)

Pig is typically installed in a machine, which is not a part of the Hadoop cluster. This
can be a developer's machine, which has connectivity to the Hadoop cluster. This
machine is called a gateway or edge machine.

The installation of Pig is a straightforward process. Download Pig from your favorite
distribution site, be it Apache, Cloudera, or Hortonworks and follow the instructions
specified in the installation guide specific to the distribution. These instructions
generally involve steps to untar the tarball in a directory of your choice and setting
the only configuration required, which is the JAVA_HOME property to the location
that contains the Java distribution.

To verify if Pig was indeed installed correctly, try the command $ pig -help.

Pig can be run in two modes: local and MapReduce.

• The local mode: To run Pig in the local mode, install this mode on a machine
where Pig is run using your local File System. The -x local flag is used to
denote the local mode ($ pig -x local ...). The result of this command is
the Pig shell called Grunt where you can execute command lines and scripts.
The local mode is useful when a developer wants to prototype, debug, or use
small data to quickly perform a proof of concept locally and then apply the
same code on a Hadoop cluster (the MapReduce mode).
$ pig -x local
... - Connecting to ...
grunt>

Downloading the example code
You can download the example code files for all Packt books you have
purchased from your account at http://www.packtpub.com. If you
purchased this book elsewhere, you can visit
http://www.packtpub.com/support and register to have the files
e-mailed directly to you.

Chapter 1

[33]

• The MapReduce mode: This mode is used when you need to access a
Hadoop cluster and run the application on it. This is the default mode and
you can specify this mode using the -x flag ($ pig or $ pig -x mapreduce).
The result of this command is the Pig shell called Grunt where you can
execute commands and scripts.

$ pig -x mapreduce
... - Connecting to ...
grunt>

You can also perform the following code snippet instead of the previous one:

$ pig
... - Connecting to ...
grunt>

It is important to understand that in both the local and MapReduce modes, Pig does
the parsing, checking, compiling, and planning locally. Only the job execution is
done on the Hadoop cluster in the MapReduce mode and on the local machine in the
local mode. This implies that parallelism cannot be evidenced in the local mode.

In the local and MapReduce mode, Pig can be run interactively and also in the
batch mode. Running Pig interactively implies executing each command on the
Grunt shell, and running it in the batch mode implies executing the combination
of commands in a script file (called Pig script) on the Grunt shell.

Here is a quick example of the interactive mode:

grunt> raw_logs_Jul = LOAD 'NASA_access_logs/Jul/access_log_Jul95'
 USING ApacheCommonLogLoader AS (jaddr, jlogname, juser, jdt,
 jmethod, juri, jproto, jstatus, jbytes);

grunt> jgrpd = GROUP raw_logs_Jul BY DayExtractor(jdt);

grunt> DESCRIBE jgrpd;

Please note that in the previous example, each of the Pig expressions are specified on
the Grunt shell. Here is the example for the batch mode execution:

grunt> pigexample.pig

In the previous example, a Pig script (pigexample.pig) is created initially and it is
executed on the Grunt shell. Pig scripts can also be executed outside the grunt shell
at the command prompt. The following is the method to do it:

$>pig <filename>.pig (mapreduce mode)

Setting the Context for Design Patterns in Pig

[34]

You can also use the following code line instead of the previous one:

$>pig –x local <filename>.pig (local mode)

The use case
This section covers a quick introduction of the use case. Log data is generated by
nearly every web-based software application. The applications log all the events into
logfiles along with the timestamps at which the events occurred. These events may
include changes to system configurations, access device information, information on
user activity and access locations, alerts, transactional information, error logs, and
failure messages. The value of the data in logfiles is realized through the usage of
Big Data processing technologies and is consistently used across industry verticals to
understand and track applications or service behavior. This can be done by finding
patterns, errors, or suboptimal user experience, thereby converting invisible log data
into useful performance insights. These insights can be leveraged across the enterprise
with use cases providing both operational and business intelligence.

The Pig Latin script in the following Code listing section loads two month's logfiles,
analyses the logs, and finds out the number of unique hits for each day of the month.
The analysis results in two relations: one for July and the other for August. These
two relations are joined on the day of month that produces an output where we can
compare number of visits by day for each month (for example, the number of visits
on the first of July versus the number of visits on the first of August).

Code listing
The following is the complete code listing:

-- Register the jar file to be able to use the UDFs in it
REGISTER 'your_path_to_piggybank/piggybank.jar';

/* Assign aliases ApacheCommonLogLoader, DayMonExtractor,
 DayExtractor to the CommonLogLoader and DateExtractor UDFs
*/
DEFINE ApacheCommonLogLoader org.apache.pig.piggybank.storage.
 apachelog.CommonLogLoader();
DEFINE DayMonExtractor org.apache.pig.piggybank.evaluation.
 util.apachelogparser.DateExtractor
 ('dd/MMM/yyyy:HH:mm:ss Z','dd-MMM');
DEFINE DayExtractor org.apache.pig.piggybank.evaluation.
 util.apachelogparser.DateExtractor('dd-MMM','dd');

/* Load July and August logs using the alias ApacheCommonLogLoader
 into the relations raw_logs_Jul and raw_logs_Aug
*/

Chapter 1

[35]

raw_logs_Jul = LOAD '/user/cloudera/pdp/datasets/logs/
 NASA_access_logs/Jul/access_log_Jul95' USING
 ApacheCommonLogLoader AS (jaddr, jlogname, juser, jdt, jmethod,
 juri, jproto, jstatus, jbytes);
raw_logs_Aug = LOAD '/user/cloudera/pdp/datasets/logs/
 NASA_access_logs/Aug/access_log_Aug95' USING
 ApacheCommonLogLoader AS (aaddr, alogname, auser, adt, amethod,
 auri, aproto, astatus, abytes);

-- Group the two relations by date
jgrpd = GROUP raw_logs_Jul BY DayMonExtractor(jdt);
DESCRIBE jgrpd;
agrpd = GROUP raw_logs_Aug BY DayMonExtractor(adt);
DESCRIBE agrpd;

-- Count the number of unique visits for each day in July
jcountd = FOREACH jgrpd
{
 juserIP = raw_logs_Jul.jaddr;
 juniqIPs = DISTINCT juserIP;
 GENERATE FLATTEN(group) AS jdate,COUNT(juniqIPs) AS jcount;
}

-- Count the number of unique visits for each day in August
acountd = FOREACH agrpd
{
 auserIP = raw_logs_Aug.aaddr;
 auniqIPs = DISTINCT auserIP;
 GENERATE FLATTEN(group) AS adate,COUNT(auniqIPs) AS acount;
}

-- Display the schema of the relations jcountd and acountd
DESCRIBE jcountd;
DESCRIBE acountd;

/* Join the relations containing count of unique visits in July
 and August where a match is found for the day of the month
*/
joind = JOIN jcountd BY DayExtractor(jdate), acountd BY
 DayExtractor(adate);

/* Filter by removing the records where the count is less than
 2600
*/
filterd = FILTER joind BY jcount > 2600 and acount > 2600;

Setting the Context for Design Patterns in Pig

[36]

/* Debugging operator to understand how the data passes through
 FILTER and gets transformed
*/
ILLUSTRATE filterd;

/* Sort the relation by date, PARALLEL specifies the number of
 reducers to be 5
*/
srtd = ORDER filterd BY jdate,adate PARALLEL 5;

-- Limit the number of output records to be 5
limitd = LIMIT srtd 5;

/* Store the contents of the relation into a file in the directory
 unique_hits_by_month on HDFS
*/
STORE limitd into '/user/cloudera/pdp/output/unique_hits_by_month';

The dataset
As an illustration, we would be using logs for two month's web requests in a web
server at NASA. These logs were collected from July 1 to 31, 1995 and from August 1
to 31, 1995. The following is the description of the fields in the files:

• Hostname (or the Internet address), which initiates the request, for example,
109.172.181.143 in the next code snippet.

• Logname is empty in this dataset and is represented by – in the next code
snippet.

• The user is empty in this dataset and is represented by – in the next code
snippet.

• The timestamp is in the DD/MMM/YYYY HH:MM:SS format. In the next code
snippet, the time zone is -0400, for example, [02/Jul/1995:00:12:01
-0400].

• HTTP request is given in quotes, for example, GET /history/xxx/
HTTP/1.0 in the next code snippet.

• HTTP response reply code, which is 200 in the next code snippet.

The snippet of the logfile is as follows:

109.172.181.143 - - [02/Jul/1995:00:12:01 -0400] "GET
 /history/xxx/ HTTP/1.0" 200 6545

Chapter 1

[37]

Understanding Pig through the code
The following subsections have a brief description of the operators and their usage:

Pig's extensibility
In the use case example, the REGISTER function is one of the three ways to
incorporate external custom code in Pig scripts. Let's quickly examine the other two
Pig extensibility features in this section to get a better understanding.

• REGISTER: The UDFs provide one avenue to include the user code. To use
the UDF written in Java, Python, JRuby, or Groovy, we use the REGISTER
function in the Pig script to register the container (JAR and Python script).
To register a Python UDF, you also need to explicitly provide which compiler
the Python script will be using. This can be done using Jython.
In our example, the following line registers the Piggybank JAR:

REGISTER '/opt/cloudera/parcels/CDH-4.3.0-
 1.cdh4.3.0.p0.22/lib/pig/piggybank.jar';

• MAPREDUCE: This operator is used to embed MapReduce jobs in Pig scripts.
We need to specify the MapReduce container JAR along with the inputs
and outputs for the MapReduce program.
An example is given as follows:
input = LOAD 'input.txt';
result = MAPREDUCE 'mapreduceprg.jar' [('other.jar', ...)]
 STORE input INTO 'inputPath' USING storeFunc LOAD
 'outputPath' USING loadFunc AS schema ['params, ... '];

The previous statement stores the relation named input into inputPath
using storeFunc; native mapreduce uses storeFunc to read the data. The
data received as a result of executing mapreduceprg.jar is loaded from
outputPath into the relation named result using loadFunc as schema.

• STREAM: This allows data to be sent to an external executable for processing as
part of a Pig data processing pipeline. You can intermix relational operations,
such as grouping and filtering with custom or legacy executables. This is
especially useful in cases where the executable has all the custom code, and
you may not want to change the code and rewrite it in Pig. The external
executable receives its input from a standard input or file, and writes its
output either to a standard output or file.

www.allitebooks.com

http://www.allitebooks.org

Setting the Context for Design Patterns in Pig

[38]

The syntax for the operator is given as follows:
alias = STREAM alias [, alias …] THROUGH {'command' |
 cmd_alias } [AS schema] ;

Where alias is the name of the relation, THROUGH is the keyword, command is
the executable along with arguments, cmd_alias is the alias defined for the
command using the DEFINE operator, AS is a keyword, and schema specifies
the schema.

Operators used in code
The following is an explanation of the operators used in the code:

• DEFINE: The DEFINE statement is used to assign an alias to an external
executable or a UDF function. Use this statement if you want to have a crisp
name for a function that has a lengthy package name.
For a STREAM command, DEFINE plays an important role to transfer the
executable to the task nodes of the Hadoop cluster. This is accomplished
using the SHIP clause of the DEFINE operator. This is not a part of our
example and will be illustrated in later chapters.
In our example, we define aliases by names ApacheCommonLogLoader,
DayMonExtractor, and DayExtractor for the corresponding fully qualified
class names.

DEFINE ApacheCommonLogLoader
 org.apache.pig.piggybank.storage.
 apachelog.CommonLogLoader();

DEFINE DayMonExtractor org.apache.pig.piggybank.
 evaluation.util.apachelogparser.
 DateExtractor('dd/MMM/yyyy:HH:mm:ss Z','dd-MMM');

DEFINE DayExtractor org.apache.pig.piggybank.
 evaluation.util.apachelogparser.DateExtractor('dd-
 MMM','dd');

• LOAD: This operator loads data from the file or directory. If a directory name
is specified, it loads all the files in the directory into the relation. If Pig is
run in the local mode, it searches for the directories on the local File System;
while in the MapReduce mode, it searches for the files on HDFS. In our
example, the usage is as follows:

Chapter 1

[39]

raw_logs_Jul = LOAD 'NASA_access_logs/Jul/access_log_Jul95'
 USING ApacheCommonLogLoader AS (jaddr, jlogname, juser,
 jdt, jmethod, juri, jproto, jstatus, jbytes);

raw_logs_Aug = LOAD 'NASA_access_logs/Aug/access_log_Aug95'
 USING ApacheCommonLogLoader AS (aaddr, alogname, auser,
 adt, amethod, auri, aproto, astatus, abytes);

The content of tuple raw_logs_Jul is as follows:
(163.205.85.3,-,-,13/Jul/1995:08:51:12 -
 0400,GET,/htbin/cdt_main.pl,HTTP/1.0,200,3585)
(163.205.85.3,-,-,13/Jul/1995:08:51:12 -0400,GET,/cgi-
 bin/imagemap/countdown70?287,288,HTTP/1.0,302,85)
(109.172.181.143,-,-,02/Jul/1995:00:12:01 -
 0400,GET,/history/xxx/,HTTP/1.0,200,6245)

By using globs (such as *.txt, *.csv, and so on), you can read multiple files
(all the files or selective files) that are in the same directory. In the following
example, the files under the folders Jul and Aug will be loaded as a union.

raw_logs = LOAD 'NASA_access_logs/{Jul,Aug}' USING
ApacheCommonLogLoader AS (addr, logname, user, dt, method, uri,
proto, status, bytes);

• STORE: The STORE operator has dual purposes, one is to write the results into
the File System after completion of the data pipeline processing, and another
is to actually commence the execution of the preceding Pig Latin statements.
This happens to be an important feature of this language, where logical,
physical, and MapReduce plans are created after the script encounters the
STORE operator.
In our example, the following code demonstrates their usage:

DUMP limitd;
STORE limitd INTO 'unique_hits_by_month';

• DUMP: The DUMP operator is almost similar to the STORE operator, but it is used
specially to display results on the command prompt rather than storing it
in a File System like the STORE operator. DUMP behaves in exactly the same
way as STORE, where the Pig Latin statements actually begin execution after
encountering the DUMP operator. This operator is specifically targeted for the
interactive execution of statements and viewing the output in real time.

Setting the Context for Design Patterns in Pig

[40]

In our example, the following code demonstrates the usage of the
DUMP operator:

DUMP limitd;

• UNION: The UNION operator merges the contents of more than one relation
without preserving the order of tuples as the relations involved are treated as
unordered bags.
In our example, we will use UNION to merge the two relations raw_logs_Jul
and raw_logs_Aug into a relation called combined_raw_logs.
combined_raw_logs = UNION raw_logs_Jul, raw_logs_Aug;

The content of tuple combined_raw_logs is as follows:

(163.205.85.3,-,-,13/Jul/1995:08:51:12 -
 0400,GET,/htbin/cdt_main.pl,HTTP/1.0,200,3585)
(163.205.85.3,-,-,13/Jul/1995:08:51:12 -0400,GET,/cgi-
 bin/imagemap/countdown70?287,288,HTTP/1.0,302,85)
(198.4.83.138,-,-,08/Aug/1995:22:25:28 -
 0400,GET,/shuttle/missions/sts-69/mission-sts-
 69.html,HTTP/1.0,200,11264)

• SAMPLE: The SAMPLE operator is useful when you want to work on a very
small subset of data to quickly test if the data flow processing is giving you
correct results. This statement provides a random data sample picked from
the entire population using an arbitrary sample size. The sample size is
passed as a parameter. As the SAMPLE operator internally uses a probability-
based algorithm, it is not guaranteed to return the same number of rows or
tuples every time SAMPLE is used.
In our example, the SAMPLE operator returns, at most, 1 percent of the data as
an illustration.
sample_combined_raw_logs = SAMPLE combined_raw_logs 0.01;

The content of tuple sample_combined_raw_logs is as follows:

(163.205.2.43,-,-,17/Jul/1995:13:30:34 -
 0400,GET,/ksc.html,HTTP/1.0,200,7071)
(204.97.74.34,-,-,27/Aug/1995:12:07:37 -
 0400,GET,/shuttle/missions/sts-
 69/liftoff.html,HTTP/1.0,304,0)
(128.217.61.98,-,-,21/Aug/1995:08:59:26 -
 0400,GET,/images/ksclogo-medium.gif,HTTP/1.0,200,5866)

Chapter 1

[41]

• GROUP: The GROUP operator is used to group all records with the same value
into a bag. This operator creates a nested structure of output tuples.
The following snippet of code from our example illustrates grouping logs by
day of the month.
jgrpd = GROUP raw_logs_Jul BY DayMonExtractor(jdt);
DESCRIBE jgrpd;

Schema content of jgrpd: The following output shows the schema of the
relation jgrpd where we can see that it has created a nested structure with
two fields, the key and the bag of collected records. The key is named group,
and value is the name of the alias that was grouped with raw_logs_Jul and
raw_logs_Aug, in this case.

jgrpd: {group: chararray,raw_logs_Jul: {(jaddr:
 bytearray,jlogname: bytearray,juser: bytearray,jdt:
 bytearray,jmethod: bytearray,juri: bytearray,jproto:
 bytearray,jstatus: bytearray,jbytes: bytearray)}}

agrpd = GROUP raw_logs_Aug BY DayExtractor(adt);
DESCRIBE agrpd;

agrpd: {group: chararray,raw_logs_Aug: {(aaddr:
 bytearray,alogname: bytearray,auser: bytearray,adt:
 bytearray,amethod: bytearray,auri: bytearray,aproto:
 bytearray,astatus: bytearray,abytes: bytearray)}}

• FOREACH: The FOREACH operator is also known as a projection. It applies a set
of expressions to each record in the bag, similar to applying an expression on
every row of a table. The result of this operator is another relation.
In our example, FOREACH is used for iterating through each grouped record in
the group to get the count of distinct IP addresses.
jcountd = FOREACH jgrpd
{
 juserIP = raw_logs_Jul.jaddr;
 juniqIPs = DISTINCT juserIP;
 GENERATE FLATTEN(group) AS jdate,COUNT(juniqIPs) AS }

acountd = FOREACH agrpd
{
 auserIP = raw_logs_Aug.aaddr;
 auniqIPs = DISTINCT auserIP;
 GENERATE FLATTEN(group) AS adate,COUNT(auniqIPs) AS
 acount;
}

Setting the Context for Design Patterns in Pig

[42]

Contents of the tuples: The following output shows the tuples in the relations
jcountd and acountd. The first field is the date in the format of DD-MMM
and the second field is the count of distinct hits.

 jcountd
(01-Jul,4230)
(02-Jul,4774)
(03-Jul,7264)

 acountd
(01-Aug,2577)
(03-Aug,2588)
(04-Aug,4254)

• DISTINCT: The DISTINCT operator removes duplicate records in a relation.
DISTINCT should not be used where you need to preserve the order of
the contents.
The following example code demonstrates the usage of DISTINCT to remove
duplicate IP addresses and FLATTEN to remove the nest of jgrpd and agrpd.
jcountd = FOREACH jgrpd
{
 juserIP = raw_logs_Jul.jaddr;
 juniqIPs = DISTINCT juserIP;
 GENERATE FLATTEN(group) AS jdate,COUNT(juniqIPs) AS
 jcount;
}
acountd = FOREACH agrpd
{
 auserIP = raw_logs_Aug.aaddr;
 auniqIPs = DISTINCT auserIP;
 GENERATE FLATTEN(group) AS adate,COUNT(auniqIPs) AS
 acount;
}
DESCRIBE jcountd;
DESCRIBE acountd;

Content of the tuples: The following output shows the schema of the relation
of jcountd and acountd. We can see that the nesting created by GROUP is
now removed.

jcountd: {jdate: chararray,jcount: long}
acountd: {adate: chararray,acount: long}

Chapter 1

[43]

• JOIN: The JOIN operator joins more than one relation based on shared keys.
In our example, we join two relations by day of the month; it returns all the
records where the day of the month matches. Records for which no match is
found are dropped.
joind = JOIN jcountd BY jdate, acountd BY adate;

Content of tuples: The following output shows the resulting values after JOIN
is performed. This relation returns all the records where the day of the month
matches; records for which no match is found are dropped. For example, we
have seen in sample output of FOREACH, the section jcountd shows 4774 hits
on 2-Jul and acountd does not have any record for 2-Aug. Hence after JOIN,
the tuple having 2-Jul hits is omitted as there is no match found for 2-Aug.

(01-Jul,4230,01-Aug,2577)
(03-Jul,7264,03-Aug,2588)
(04-Jul,5806,04-Aug,4254)
(05-Jul,7144,05-Aug,2566))

• DESCRIBE: The DESCRIBE operator is a diagnostic operator in Pig and is used
to view and understand the schema of an alias or a relation. This is a kind of
command line log, which enables us to understand how preceding operators
in the data pipeline are changing the data. The output of the DESCRIBE
operator is the description of the schema.
In our example, we use DESCRIBE to understand the schema.
DESCRIBE joind;

The output is as follows:

joind: {jcountd::jdate: chararray,jcountd::jcount:
 long,acountd::adate: chararray,acountd::acount: long}

• FILTER: The FILTER operator allows you to select or filter out the records
from a relation based on a condition. This operator works on tuples or rows
of data.
The following example filters records whose count is greater than 2,600:
filterd = FILTER joind BY jcount > 2600 and acount > 2600;

Content of filtered tuple: All the records which are less than 2600 are
filtered out.

(04-Jul,5806,04-Aug,4254)
(07-Jul,6951,07-Aug,4062)
(08-Jul,3064,08-Aug,4252)

Setting the Context for Design Patterns in Pig

[44]

• ILLUSTRATE: The ILLUSTRATE operator is the debugger's best friend, and it
is used to understand how data passes through the Pig Latin statements and
gets transformed. This operator enables us to create good test data in order to
test our programs on datasets, which are a sample representing the flow
of statements.
ILLUSTRATE internally uses an algorithm, which uses a small sample of
the entire input data and propagates this data through all the statements
in the Pig Latin scripts. This algorithm intelligently generates sample data
when it encounters operators such as FILTER, which have the ability to
remove the rows from the data, resulting in no data following through
the Pig statements.
In our example, the ILLUSTRATE operator is used as shown in the following
code snippet:
filterd = FILTER joind BY jcount > 2600 and acount > 2600;
ILLUSTRATE filterd;

The dataset used by us does not have records where the count is less than
2,600. ILLUSTRATE has manufactured a record with two counts to ensure
that values below 2,600 get filtered out. This record passes through the
FILTER condition and gets filtered out and hence, no values are shown
in the relation filtered.
The following screenshot shows the output:

Output of illustrate

• ORDER BY: The ORDERBY operator is used to sort a relation using the sort key
specified. As of today, Pig supports sorting on fields with simple types rather
than complex types or expressions. In the following example, we are sorting
based on two fields (July date and August date).
srtd = ORDER filterd BY jdate,adate PARALLEL 5;

Chapter 1

[45]

• PARALLEL: The PARALLEL operator controls reduce-side parallelism by
specifying the number of reducers. It is defaulted to one while running in a
local mode. This clause can be used with operators, such as ORDER, DISTINCT,
LIMIT, JOIN, GROUP, COGROUP, and CROSS that force a reduce phase.

• LIMIT: The LIMIT operator is used to set an upper limit on the number of
output records generated. The output is determined randomly and there is
no guarantee if the output will be the same if the LIMIT operator is executed
consequently. To request a particular group of rows, you may consider using
the ORDER operator, immediately followed by the LIMIT operator.
In our example, this operator returns five records as an illustration:
limitd = LIMIT srtd 5;

The content of the limitd tuple is given as follows:

(04-Jul,5806,04-Aug,4254)
(07-Jul,6951,07-Aug,4062)
(08-Jul,3064,08-Aug,4252)
(10-Jul,4383,10-Aug,4423)
(11-Jul,4819,11-Aug,4500)

• FLATTEN: The FLATTEN operator is used to make relations such as bags and
tuple flat by removing the nesting in them. Please refer to the example code
in DISTINCT for the sample output and usage of FLATTEN.

The EXPLAIN operator
A Pig program goes through multiple stages as shown in the next diagram, before
being executed in the Hadoop cluster, and the EXPLAIN operator provides the best
way to understand what transpires underneath the Pig Latin code. The EXPLAIN
operator generates the sequence of plans that go into converting the Pig Latin scripts
to a MapReduce JAR.

The output of this operator can be converted into a graphical format by the use of the
-dot option to generate graphs of the program. This writes the output to a DOT file
containing diagrams explaining the execution of our script.

The syntax for the same is as follows:

pig -x mapreduce -e 'pigexample.pig' -dot -out <filename> or
 <directoryname>

Setting the Context for Design Patterns in Pig

[46]

Next is an example of usage. If we specify a filename directory after -out, all
the three output files (logical, physical, and MapReduce plan files) will get
created in that directory. In the next case, all files will get created in the
pigexample_output directory.

pig -x mapreduce -e ' pigexample.pig' -dot -out pigexample_output

Follow the given steps to convert the DOT files into an image format:

1. Install graphviz on your machine.
2. Plot a graph written in Dot language by executing the following command:

dot –Tpng filename.dot > filename.png

The following diagram shows each step in Pig processing:

Pig script
Pigexample.pig

Parser

Logical plan
Semantic checks

MR plan
MapReduce

launcher
Physical to MR

MapReducer Jar
To Hadoop

Logical
optimizer

Logical to
physical

Physical plan

Logical plan

Logical plan

Pig Latin to Hadoop JAR

• The query parser: The parser uses ANother Tool for Language Recognition
(ANTLR), a language parser, to verify whether the program is correct
syntactically and if all the variables are properly defined. The parser
also checks the schemas for type correctness and generates intermediate
representation, Abstract Syntax Tree (AST).

Chapter 1

[47]

• The logical plan: The intermediate representation, AST, is transformed into
a logical plan. This plan is implemented internally as a directed graph with
all the operators in the Pig Latin script mapped to the logical operators. The
following diagram illustrates this plan:

LOAD
(jaddr, jlogname, juser, jdt

Jmethod, juri, jproto, jstatus,

Jbytes)

(group, {(jaddr, jlogname, juser,

jdt, Jmethod, juri,

jproto, jstatus, Jbytes)})

(jdate, jcount)

GROUP

FOREACH

FILTER

JOIN

SORT

STORE

(jcount)

LOAD
(addr, alogname, auser, adt

amethod, auri, aproto, astatus,

abytes)

(group, {(aaddr, alogname,

auser, adt, amethod, auri,

aproto, astatus, abytes)})

(adate, acount)

GROUP

FOREACH

FILTER (acount)

(jdate, jcount, adate, acount)

(jdate, adate)

(jdate, jcount, adate, acount)

Logical plan

• The logical optimization: The logical plan generated is examined for
opportunities of optimization such as filter-projection pushdown and
column pruning. These are considered depending on the script. Optimization
is performed and then the plan is compiled into a series of physical plans.

• The physical plan: The physical plan is a physical description of the
computation that creates a usable pipeline, which is independent of
MapReduce. We could use this pipeline and target other processing
frameworks such as Dryad. The opportunities for optimizations in this
stage are in memory aggregations instead of using combiners. The physical
planning stage is also the right place where the plan is examined for the
purpose of reducing the number of reducers.

www.allitebooks.com

http://www.allitebooks.org

Setting the Context for Design Patterns in Pig

[48]

For clarity, each logical operator is shown with an ID. Physical operators
that are produced by the translation of a logical operator are shown with the
same ID. For the most part, each logical operator becomes a corresponding
physical operator. The logical GROUP operator maps into a series of physical
operators: local and global rearrange plus package. Rearrange is just like the
Partitioner class and Reducer step of the MapReduce where sorting by a
key happens.
The following diagram shows the logical plan translated to a physical
plan example:

LOAD
(jaddr, .., .., Jdt,

.., .., .., ..,)

(group,

{(jaddr, ..,

.., jdt, .., ..,

.., ..,)})

(jdate,

jcount)

GROUP

1

FOREACH

FILTER

JOIN

SORT

STORE

(jcount)

LOAD
(addr, .., .., adt

).., .., .., ..,

(group,

{(aaddr, ..,

.., adt, .., ..,

.., ..,)})

(adate,

acount)

GROUP

FOREACH

FILTER (acount)

(jdate, jcount,

adate, acount)

(jdate, adate)

2

3

5

7

9

4

6

8

10

11

LOCAL REARRANGE

GLOBAL REARRANGE

PACKAGE

FOREACH

SORT

STORE

9

9

9

9

10

11

LOCAL REARRANGE 4

GLOBAL REARRANGE

PACKAGE

FOREACH

FILTER

4

4

6

8

LOAD 1 LOAD 2

LOCAL REARRANGE 3

GLOBAL REARRANGE

PACKAGE

FOREACH

FILTER

3

3

5

7

(jdate, jcount,

adate, acount)

Logical to physical plan

Chapter 1

[49]

• MapReduce plan: This is the phase where the physical plan is converted into
a graph of actual MapReduce jobs with all the inputs and outputs specified.
Opportunities for optimization in the MapReduce phase are examined to see
if it is possible to combine multiple MapReduce jobs into one job for reducing
the data flow between Mappers and Reducers. The idea of decoupling the
Logical and Physical plans from the MapReduce plan is to divorce them from
the details of running on Hadoop. This level of abstraction is necessary to
port the application to a different processing framework like Dryad.

The following Physical to MapReduce Plan shows the assignment of the
physical operators to Hadoop stages for our running example (only the map
and reduce stages are shown). In the MapReduce plan, the local rearrange
operator interprets tuples with keys and input stream's identifiers.

LOCAL REARRANGE

GLOBAL REARRANGE

PACKAGE

FOREACH

SORT

STORE

9

9

9

9

10

11

LOCAL REARRANGE 4

GLOBAL REARRANGE

PACKAGE

FOREACH

FILTER

4

4

6

8

LOAD 1 LOAD 2

LOCAL REARRANGE 3

GLOBAL REARRANGE

PACKAGE

FOREACH

FILTER

3

3

5

7

MAP
LOAD1

3LOCAL REARRANGE

MAP
LOAD2

4LOCAL REARRANGE

PACKAGE 3

5FOREACH

7FILTER

COMBINE

PACKAGE 4

6FOREACH

8FILTER

COMBINE

PACKAGE 3

5FOREACH

7FILTER

REDUCE

MAP 9LOCAL REARRANGE

PACKAGE 9

9FOREACHCOMBINE

PACKAGE 9

9FOREACH

11STORE

REDUCE

PACKAGE 4

6FOREACH

8FILTER

REDUCE

Physical to the MapReduce plan

Setting the Context for Design Patterns in Pig

[50]

Understanding Pig's data model
The Pig's data model consists of both primitive and complex types. The following
sections give a brief overview of these data types:

Primitive types
Pig supports primitive data types such as Int, Float, Long, Double, and Chararray.

Complex types
The following are the complex data types, formed by combining the primitive
data types:

• Atom: An atom contains a single value and can be composed of any one of
the primitive data types.

• Tuple: A tuple is like a row of a table in an RDBMS, or a sequence of fields,
each of which can be any of the data types including primitive and complex
types. Tuples are enclosed in parentheses, (). An example is shown as follows:
 (163.205.85.3,-,-,13/Jul/1995:08:51:12 -
 0400,GET,/htbin/cdt_main.pl,HTTP/1.0,200,3585)

• Bag: A bag is analogous to a table and a collection of tuples, which may have
duplicates too. Bag is Pig's only spillable data structure, which implies that
when the full structure does not fit in memory, it is spilled on to the disk and
paged in when necessary. In a Bag, the schema of the constituent tuples is
flexible and doesn't need to have a consistent number and type of fields. Bags
are represented by data or tuple in curly braces, {}. An example is shown
as follows:
{(163.205.85.3,-,-,13/Jul/1995:08:51:12 -
 0400,GET,/htbin/cdt_main.pl,HTTP/1.0,200,3585)
(100.305.185.30,-,-,13/AUG/1995:09:51:12 -
 0400,GET,/htbin/cdt_main.pl,HTTP/1.0,200,3585)}

• Map: This is a key value data structure. The schema of the data items in a
Map is not strictly enforced, giving the option to take the form of any type.
Map is useful to prototype datasets where schemas may change over time.
Maps are enclosed in square braces, [].

Chapter 1

[51]

The relevance of schemas
Pig has a special way to handle known and unknown schemas. Schemas exist to give
fields their identity by naming them and categorizing them into a data type. Pig has the
ability to discover schemas at runtime by making appropriate assumptions about the
data types. In case the data type is not assigned, Pig defaults the type to bytearray
and performs conversions later, based on the context in which that data is used.
This feature gives Pig an edge when you want to use it for research purposes to
create quick prototypes on data with the unknown schema. Notwithstanding these
advantages of working with unspecified schemas, it is recommended to specify the
schema wherever or whenever it is possible for more efficient parse-time checking
and execution. However, there are a few idiosyncrasies of how Pig handles unknown
schemas when using various operators.

For the relational operators that perform JOIN, GROUP, UNION, or CROSS, if any one
of the operators in the relation doesn't have a schema specified, then the resultant
relation would be null. Similarly, a null would be the result when you try to flatten a
bag with unknown schema.

Extending the discussion of how nulls can be resulted in Pig as in the preceding
section, there are a few other ways nulls could result through the interaction of
specific operators. As a quick illustration, if any of the subexpression operand in the
comparison operators, such as ==, <, >, and MATCHES are null, then the result would
be null. The same is applicable to arithmetic operators (such as +, -, *, /) and the
CONCAT operators too. It is important to remember subtle differences between how
various functions respect a null. While the AVG, MAX, MIN, SUM, and COUNT functions
disregard nulls, the COUNT_STAR function does not ignore it and counts a null as if
there is a value to it.

Summary
In this chapter, we have covered a wide array of ideas, with the central theme of
keeping your focus latched on to Pig and then exploring its periphery. We understood
what design patterns are and the way they are discovered and applied, from the
perspective of Pig. We explored what Hadoop is, but we did it from a viewpoint of
the historical enterprise context and figured out how Hadoop rewrote the history of
distributed computing by addressing the challenges of the traditional architectures.

Setting the Context for Design Patterns in Pig

[52]

We understood how Pig brought in a fresh approach to programming Hadoop in
an intuitive style, and we could comprehend the advantages it offers over other
approaches of programming, plus it has given us the facility to write code in
scripting-like language, which is easy to understand for those who already know
scripting or don't want to code in Java MapReduce; with a small set of functions
and operators, it provides us with the power to process an enormous amount of
data quickly. We used a code example through which we understood the internals
of Pig. The emphasis of this section was to cover as much ground as possible without
venturing too deep into Pig and give you a ready reckoner to understand Pig.

In the next chapter, we will extend our understanding of the general concepts of
using Pig in enterprises to specific use cases where Pig can be used for the input and
output of data from a variety of sources. We shall begin by getting a ring-side view
of all the data that gets into the enterprise and how it is consumed, and then we will
branch out to look at a specific type of data more closely, and apply our patterns to it.
These branches deal with unstructured, structured, and semi-structured data. Within
each branch, we will learn how to apply patterns for each of the subbranches that
deal with multiple aspects and attributes.

Data Ingest and
Egress Patterns

In the previous chapter, you were introduced to the high-level concepts of design
patterns and saw how they were implemented using Pig. We explored the evolution
of Hadoop and Pig, the limitations with traditional systems, and how Hadoop
and Pig relate to the enterprise to solve specific issues related to Big Data. The Pig
programming language was explained using a ready-made example that elaborated
the language features.

We are about to see the power of using Pig design patterns to ingest and egress
various data to and from Hadoop. This chapter's overarching goal is to act as a
launch pad for a Hadoop practitioner to rapidly load data, start processing and
analyzing it as quickly as possible, and then egress it to other systems, without
being bogged down in the maze of writing complex MapReduce code.

This chapter begins with an overview of various types of data typically encountered
in the Big Data environment and the source of this data. We then discuss several
data ingest design patterns to import multistructured data stored in various
source systems into Hadoop. We will also discuss the data egress design patterns
that export the data stored in Hadoop to target systems in their native format. To
illustrate the ingest and egress patterns, we consider various data formats, such as
log files, images, CSV, JSON, and XML. The data sources considered to illustrate
these patterns are filesystems, mainframes, and NoSQL databases.

Data Ingest and Egress Patterns

[54]

The context of data ingest and egress
Data ingest is the process of getting the data into a system for later processing or
storage. This process involves connecting to the data source, accessing the data, and
then importing the data into Hadoop. Importing implies the copying of data from
external sources into Hadoop and storing it in HDFS.

Data egress is the process of sending data out of the Hadoop environment after the
data is processed. The output data will be in a format that matches that of the target
systems. Data egress is performed in cases where downstream systems consume
the data to create visualizations, serve web applications or web services, or perform
custom processing.

With the advent of Hadoop, we are witnessing the capability to ingest and egress
data at an unprecedented scale, quickly and efficiently. Enterprises are adopting
newer paradigms to ingest and egress data according to the needs of their analytical
value. There is a potential value in every data feed that enters an enterprise.
These feeds primarily consist of the legacy enterprise data, unstructured data, and
external data. The data ingest process deals with a variety of these feeds that are
synchronized at regular intervals with the existing enterprise assets. Data egress
deals with restricting the outbound data so that it meets the data requirements of the
integrated downstream systems.

Once the data is within the enterprise perimeter, there is an increase in its ability
to perform meaningful analysis on the raw data itself, even before it is converted
into something more structured in the traditional sense (that is, information). We
no longer require the data to be extremely organized and structured so that insights
are gathered from it. However, with the proliferation of new aged algorithms, any
type or form of data can be analyzed. This recently led to exciting business models
in which enterprises suddenly found themselves unspooling data from tapes,
stored for compliance purposes all these years, to uncover the hidden treasure and
value from them. Enterprises are beginning to realize that no data is dispensable or
useless, regardless of how unstructured or unrelated it may seem. They have started
to scramble for every scrap of data that might hold the potential to give them a
competitive edge in the industry.

Chapter 2

[55]

The unstructured data is examined with renewed interest: if it can be integrated
with the existing structured data sources in the enterprise and if this integration
can result in better business outcomes through predictive analytics. Today's data
scientists revel in heterogeneity. To explore unstructured data is their new challenge,
and to find patterns from random distributions is the new normal. Spinning up
a few Hadoop nodes on a cloud provider of choice, importing data, and running
sophisticated algorithms have become regular chores for many of data scientists;
this makes it relatively simple to process tons of various types of data from many
disparate sources. All this underscores the importance of data ingest and egress to
and from various sources, which forms the bedrock for the eventual value. In this
chapter, we will discuss the how of ingest and egress through design patterns in Pig
as well as give special impetus to the why.

Types of data in the enterprise
The following section details the enterprise-centric view of data and its relevance
to the Big Data processing stack as depicted in the following diagram:

Data Variety in the enterprise

Data Ingest and Egress Patterns

[56]

The following is an explanation of various categories of high-volume data:

• Legacy data: This data type includes data from all legacy systems and
applications, encompassing the structured and semi-structured formats of data
stored online or offline. There are lots of use cases for data types—seismic data,
hurricane data, census data, urban planning data, and socioeconomic data.
These types can be ingested into Hadoop and combined with the master data
to create interesting, predictive mash-ups.

• Transactional (OLTP) data: Data from the transactional systems is
traditionally loaded to the data warehouse. The advent of Hadoop has
addressed the lack of extreme scalability in traditional systems; thus,
transactional data is often modeled so that not all the data from the source
systems is used in the analysis. Hadoop can be used to load and analyze the
OLTP data in its entirety as a pre-processing or second-pass processing step.
It can also be used to ingest, egress, and integrate transactional data from
ERP, mainframe, SCM, and CRM systems to create powerful data products.

• Unstructured data: This data type includes documents, notes, memos,
and contracts residing in enterprise content management platforms. These
enterprise systems are geared toward producing and storing content without
much analysis being performed on the data. Hadoop provides interfaces to
ingest the content and process it by discovering context-based, user-defined
rules. The output of content processing is used to define and design analytics
to explore the mining of unstructured data using semantic technologies.

• Video: Many enterprises have started to harness into video-based data to
gain key insights into use cases related to security surveillance, weather,
media, and so on. Hadoop enables the ingest of the components in a video,
such as the content, audio, and associated metadata. Hadoop integrates the
contextualized video data and associated metadata with structured data in
the Enterprise Data Warehouses (EDW) to further process the data using
advanced algorithms.

• Audio: Data from call centers contains a lot of intelligence about customers,
competition, and other categories. While the current data warehouse has
limitations on the processing and integration of this type of data, Hadoop
ingests this data seamlessly by integrating it with the existing data in the
warehouse. Audio data extracts can be processed and stored as contextual
data with the associated metadata in Hadoop.

• Images: Static images carry a lot of information that can be very useful for
government agencies (geospatial integration), healthcare (X-ray and CAT
scans), and other areas. Ingesting this data in Hadoop and integrating it with
the data warehouse will provide large enterprises with benefits through
analytical insights, which generate business opportunities where initially none
existed, due to lack of data availability or processing capability.

Chapter 2

[57]

• Numerical/patterns/graphs: This data type belongs to the semi-structured
category. It includes seismic data, sensor data, weather data, stock market
data, scientific data, RFID, cellular tower data, automotive on-board
computer chips, GPS data, and streaming video. Other such data are patterns
that occur, or numeric data or graphs that repeat their manifests in periodic
time intervals. Hadoop helps to ingest this type of data and process it by
integrating the results with the data warehouse. This processing will provide
analytical opportunities to perform correlation analysis, cluster analysis, or
Bayesian types of analysis, which will help identify opportunities in revenue
leakage, customer segment behavior, and business risk modeling.

• Social media data: Typically classified as Facebook, LinkedIn, or Twitter
data, the social media data transcends those channels. This data can be
purchased from third-party aggregators, such as DataSift, Gnip, and Nielsen.
Ingesting these types of data and combining them in Hadoop with structured
data enables a wide variety of social network analysis applications, such as
sentiment detection.

In the upcoming sections, we will examine the numerous ingest and egress patterns
dealing with the aforementioned data types.

Ingest and egress patterns for
multistructured data
The next sections describe the specific design patterns for ingesting unstructured
data (images) and semi-structured text data (Apache log and custom log).The
following is a brief overview of the formats:

• Apache Log formats: Extracting intelligence from this format is a widely
used enterprise use case and is relevant across the board.

• Custom log format: This format represents an arbitrary log that can be
parsed through a regex. Understanding this pattern will help you to extend it
for many other similar use cases where a custom loader has to be written.

• Image format: This is the only pattern dealing with nontext data, and the
pattern described to ingest images can be tweaked and applied to any type
of binary data. We will also discuss the image egress pattern to illustrate the
ease of egressing the binary data using Pig's extensibility features.

Data Ingest and Egress Patterns

[58]

Considerations for log ingestion
The storage of logs depends on the characteristics of the use case. Typically, in the
enterprise, logs are stored, indexed, processed, and used for analytics. The role of
MapReduce starts from the point of ingestion to index and process the log data.
Once the processing is done, it has to be stored on a system that provides read
performance for real-time querying on the log indexes. In this section, we will
examine the various options to store the log data for real-time read performance:

• One of the options is a wide variety of SQL-based relational databases. They
are not a good fit to store large volumes of log data for the use cases that
need querying in real time to gain insights.

• NoSQL databases seem to be a good option to store unstructured data due to
the following characteristics:

 ° Document databases, such as CouchDB and MongoDB, store the data
in documents, where each document can contain a variable number
of fields or schemas. In the case of log processing, generally, the
schemas are predetermined and will not change so frequently. Hence,
document databases can be used in the use cases where schema
flexibility (logs with different schemas) is the primary criterion.

 ° Column-oriented databases, such as HBase and Cassandra, store
closely related data in columns, which are extendable. These
databases are good for distributed storage and are performance
centric. These are very efficient in reading operations and calculating
on a set of columns. However, at the same time, these databases are
not schema flexible like the other NoSQL counterparts. The database
structure has to be predetermined before storing the data. Most of
the common use cases of log file processing can be implemented in
column-oriented databases.

 ° Graph databases, such as GraphLab and Neo4j, are not suitable for
log file processing because the logs cannot be represented as the
nodes or vertices of a graph.

 ° Key-value databases such as SimpleDB store values that are accessible
by a certain key. A key-value database works well when the database
scheme is flexible and for data that needs to be accessed frequently.
Ideally, these databases are not suitable for log file processing where
there is no explicit change in the schema over a period.

Chapter 2

[59]

Considering the previously mentioned characteristics, the best practice is to choose
the performance and distribution capabilities of columnar databases over the schema
flexibility of a key value and document databases for logfile storage and processing.
Another important criterion to help make a better decision is to choose a columnar
database that has a good read performance instead of a good write performance, as
millions of logs have to be read and aggregated for analysis.

In light of all the criteria, enterprises have successfully implemented log analytics
platforms using HBase as their database of choice.

The Apache log ingestion pattern
The logfile ingestion pattern describes how you can use Pig Latin to ingest Apache
logs into the Hadoop File System to further process them on your data pipeline.

We will discuss the relevance of Apache logs to the enterprise, and get an
understanding of the various logs formats, how each format differs, and the use
cases where logs are used in conjunction with Pig. You will also understand how Pig
makes the ingestion of these logs a lot easier than programming them in MapReduce.

The subsequent discussion of the implementation-level detail of this pattern is meant
to familiarize you with the important concepts and alternatives as applicable. An
example code snippet is used to enable better understanding of the pattern from the
Pig language perspective, followed by the results of using the pattern.

Background
The Apache Server logs are used for general purpose tracking and monitoring of
server health. The Apache web servers create the Apache logs and store them in the
local storage. These logs are moved periodically to the Hadoop cluster for storage on
the Hadoop File System through the Apache Flume framework, which is distributed
in major Hadoop distributions such as Cloudera.

The following is a quick high-level introduction to Flume:

• Flume is a distributed and reliable producer-consumer system to move
large volumes of logs (automatically after they are configured) into
Hadoop for processing

• The Flume agents run on the web servers (producer)
• The producer agent collects the log data periodically using

collectors (consumer)
• The producer agent pushes the log data to the destination filesystem, HDFS

Data Ingest and Egress Patterns

[60]

A snapshot of this architecture is depicted in following diagram:

Web server 1
flume agent

HDFS

Hive

HBase

Web server 2
flume agent

Web server 3
flume agent

Web server 4
flume agent

Web server n
flume agent

Typical log acquisition

Motivation
The log data is analyzed to understand and track the behavior of any application
or web service. It contains a wealth of information about the application and its
users, which is aggregated to find patterns, errors, or suboptimal user experience,
thereby converting invisible log data into useful performance insights. These insights
are leveraged across the enterprise in the form of specific use cases that range from
product support to engineering and marketing, providing both operational and
business intelligence.

A computer cluster contains many individual servers, each with its own logging
facility. This makes it difficult for server administrators to analyze the overall
performance of an entire cluster. Combining log files of the individual servers into
one log file can be very useful to get information about the performance of the
cluster. The combined log files make it possible to visualize the cluster's performance
and detect problems in the cluster in a short period of time. However, storing server
logs of a cluster for a few days results in datasets of several gigabytes. Analyzing
such a large quantity of data requires a lot of processing power and memory. A
distributed system such as Hadoop is best suited for this kind of processing power
and memory.

The size of web logs can grow to hundreds of GB, and Hadoop ingests these files
for further analysis and considers various dimensions, such as time, geography of
origin, and type of browser, to extract patterns and vital information.

Chapter 2

[61]

Use cases
This design pattern can be used in the following use cases:

• To find the users who are linked to the website.
• To find the number of website visitors and unique users. This can be done

across spatial and temporal dimensions.
• To find peak load hours in temporal and spatial directions.
• To analyze the visits of bots and worms.
• To find stats relevant to site performance.
• To analyze the server's responses and requests and gain insights into the root

causes of web server issues.
• To analyze which page or part of the website is more interesting to the user.

Pattern implementation
The Apache access log ingestion pattern is implemented in Pig through the usage of
the ApacheCommonLogLoader and ApacheCombinedLogLoader classes of piggybank.
These functions extend the LoadFunc class of Pig.

Code snippets
The two different types of logs that are used in the following example are the
Common Log Format named access_log_Jul95 and the Combined Log Format
named access.log. In the enterprise setting, these logs are extracted using the
Flume agent residing on the web server where the log is generated.

The following table illustrates the constituent attributes of each type:

Attribute Common log format Combined log format
IP address Yes Yes
User ID Yes Yes
Time of request Yes Yes
Text of request Yes Yes
Status code Yes Yes
Size in bytes Yes Yes
Referer Yes
HTTP agent Yes

Data Ingest and Egress Patterns

[62]

Code for the CommonLogLoader class
The following Pig script illustrates the usage of the CommonLogLoader class to ingest
the access_log_Jul95 log file into the Pig relation logs:

/*
Register the piggybank jar file to be able to use the UDFs in it
*/
REGISTER '/usr/share/pig/contrib/piggybank/java/piggybank.jar';

/*
Assign the aliases ApacheCommonLogLoader and DayExtractor to
 piggybank's CommonLogLoader and DateExtractor UDFs
*/
DEFINE ApacheCommonLogLoader org.apache.pig.piggybank.storage.
 apachelog.CommonLogLoader();
DEFINE DayExtractor org.apache.pig.piggybank.evaluation.
 util.apachelogparser.DateExtractor('yyyy-MM-dd');

/*
Load the logs dataset using the alias ApacheCommonLogLoader into
 the relation logs
*/
logs = LOAD '/user/cloudera/pdp/datasets/logs/access_log_Jul95'
 USING ApacheCommonLogLoader
 AS (addr: chararray, logname: chararray, user: chararray,
 time: chararray,
 method: chararray, uri: chararray, proto: chararray,
 status: int, bytes: int);
/*
* Some processing logic goes here which is deliberately left out
 to improve readability
*/

/*
Display the contents of the relation logs on the console
*/
DUMP logs;

Code for the CombinedLogLoader class
The following Pig script illustrates the usage of the CombinedLogLoader class to
ingest the access.log file into the Pig relation logs:

/*
Register the piggybank jar file to be able to use the UDFs in it
*/
REGISTER '/usr/share/pig/contrib/piggybank/java/piggybank.jar';

Chapter 2

[63]

/*
Load the logs dataset using piggybank's CombinedLogLoader into the
 relation logs
*/
logs = LOAD '/user/cloudera/pdp/datasets/logs/access.log'
 USING org.apache.pig.piggybank.storage.apachelog.
 CombinedLogLoader()
 AS (addr: chararray, logname: chararray, user: chararray,
 time: chararray,
 method: chararray, uri: chararray, proto: chararray,
 status: int, bytes: int,
 referer: chararray, useragent: chararray);
/*
* Some processing logic goes here which is deliberately left out
 to improve readability
*/

-- Display the contents of the relation logs on the console
DUMP logs;

Results
As a consequence of using this pattern, data from the Apache log file is stored in
a bag. The following are a few ways in which a Pig relation can be stored with
invalid values:

• If the log file has invalid data, then nulls are stored in the bag.
• If the data types are not defined in the schema after the AS clause, then all the

columns are defaulted to bytearray in the bag. Pig performs conversions
later, based on the context in which that data is used. It is sometimes required
to typecast the columns explicitly to reduce parse time errors.

Additional information
• http://pig.apache.org/docs/r0.11.0/api/org/apache/pig/

piggybank/storage/apachelog/CombinedLogLoader.html

• http://pig.apache.org/docs/r0.11.0/api/org/apache/pig/
piggybank/storage/apachelog/CommonLogLoader.html

• http://pig.apache.org/docs/r0.11.0/api/org/apache/pig/
piggybank/evaluation/util/apachelogparser/package-summary.html

Data Ingest and Egress Patterns

[64]

The complete code and datasets for this section are in the following GitHub directories:

• chapter2/code/

• chapter2/datasets/

The Custom log ingestion pattern
The custom log ingestion pattern describes how you can use Pig Latin to ingest
any kind of logs into the Hadoop File System to further process logs on your
data pipeline.

We will discuss the relevance of custom logs in the enterprise, and get an
understanding of how these logs are generated and transferred to the Hadoop
cluster and of the use cases where logs are used in conjunction with Pig. You will
also understand how Pig makes ingestion of these logs a lot easier than
programming them in MapReduce.

The subsequent discussion of the implementation-level detail of this pattern is meant
to familiarize you with the important concepts and alternatives as applicable. An
example code snippet is used to enable the better understanding of the pattern from
the Pig language perspective, followed by the results of using the pattern.

Background
Most of the logs use certain conventions to delimit the constituent fields, similar
to a CSV file, but there are situations where we encounter text files, which are not
properly separated (by a tab or a comma).These logs are required to be cleaned
before they can be analyzed. Data can be cleaned before it arrives in HDFS via
Flume, Chukwa, or Scribe and stored in a format where Pig or Hive can easily
process it for analytics. If data is already stored in an uncleaned format in HDFS,
you can write a Pig script to clean up the data and analyze it by loading it in Hive or
HBase for it to be used later.

Motivation
Pig's reputation for handling unstructured data stems from its native support for
data with partial or unknown schemas. While loading data, it is optional to specify
the schema, and it is possible that the schema can be specified after the loading has
been completed. This is in stark contrast with other systems such as Hive, where you
have to enforce a schema before loading.

Use this pattern when the text data is not standardized and formatted yet.

Chapter 2

[65]

Use cases
The following are the generic use cases where this pattern can be applied:

• To ingest any text or log file that doesn't have a well-defined schema
• To ingest text or log files and experimentally figure out what schema can be

imposed on it, based on the suitability for analytics

Pattern implementation
The unstructured text ingestion pattern is implemented in Pig through the usage of
the TextLoader function of piggybank. These functions inherit the LoadFunc class.

Pig has a nice feature that deciphers the type of data if the schema is not explicitly
specified. In such cases, fields are set to the default bytearray type and then
the correct type is inferred based on the usage and context of the data in the
next statements.

The TextLoader function of piggybank enables you to load the text file, splitting on
new lines and loading each line into a Pig tuple. If a schema is specified using the
AS clause, each of the tuple is considered chararray. If no schema is specified by
omitting the clause, then the resultant tuples will not have the schema.

Similarly, you can use the MyRegexLoader class to load the contents of the file after
filtering the rows using the regex pattern specified. A regular expression format
can be specified using MyRegExLoader. This function returns a matched regex as
chararray if a pattern is passed to it as a parameter.

Code snippets
In this use case, we illustrate the ingestion of application log files to help identify
potential performance issues in a web server by analyzing the request/response
patterns. We will use the sample_log.1 dataset to calculate the average response
time taken by each service. This log file contains event logs embedded along with
the web service request and response information generated by a web application
in the format shown in the following code. Here, we are interested in extracting only
the request response pairs, ignoring the event information related to INFO, DEBUG,
and ERRORS:

/* other unstructured event logs related to INFO, DEBUG, and ERROR
 logs are depicted here */
Request <serviceName> <requestID> <Timestamp>
Response <serviceName> <requestID> <Timestamp>
/* other unstructured event logs related to INFO, DEBUG, and ERROR
 logs are depicted here */

Data Ingest and Egress Patterns

[66]

The following code snippet shows the usage of MyRegexLoader to load the lines that
match the specified regular expression:

/*
Register the piggybank jar file to be able to use the UDFs in it
*/
REGISTER '/usr/share/pig/contrib/piggybank/java/piggybank.jar';

/*
Load the logs dataset using piggybank's MyRegExLoader into the
 relation logs.
MyRegexLoader loads only the lines that match the specified regex
 format
*/
logs = LOAD '/user/cloudera/pdp/datasets/logs/sample_log.1'
 USING org.apache.pig.piggybank.storage.MyRegExLoader(
 '(Request|Response)(\\s+\\w+)(\\s+\\d+)(\\s+\\d\\d/\\d\\d/\\d
 \\d\\s+\\d\\d:\\d\\d:\\d\\d:\\d\\d\\d\\s+CST)')
 AS (type:chararray, service_name:chararray, req_id:chararray,
 datetime:chararray);

/*
* Some processing logic goes here which is deliberately left out
 to improve readability
*/

-- Display the contents of the relation logs on the console
DUMP logs;

Further processing would be done on the extracted logs to calculate the average
response time taken by each service and identifying potential performance issues.

The following code snippet shows the usage of TextLoader to load the custom log:

/*
Load the logs dataset using TextLoader into the relation logs
*/
logs = LOAD '/user/cloudera/pdp/datasets/logs/sample_log.1' USING
 TextLoader AS (line:chararray);

/*
The lines matching the regular expression are stored in
 parsed_logs.
FILTER function filters the records that do not match the pattern
*/

Chapter 2

[67]

parsed_logs = FILTER logs BY $0 MATCHES '(Request|Response)(\\s+\\w+)
(\\s+\\d+)(\\s+\\d\\d/\\d\\d/\\d\\d\\
 s+\\d\\d:\\d\\d:\\d\\d:\\d\\d\\d\\s+CST)';

/*
* Some processing logic goes here which is deliberately left out
 to improve readability
*/

-- Display the contents of the relation parsed_logs on the console

DUMP parsed_logs;

Results
As a consequence of using this pattern, data from the log file is stored in a bag.
This bag is used in the subsequent steps for analysis.

The following are a few ways in which a Pig relation could be stored with
invalid values:

• If the log file has invalid data, then nulls are stored in the Bag.
• If the data types are not defined in the schema after the AS clause, then all the

columns are defaulted to bytearray in the bag. Pig performs conversions
later based on the context in which that data is used. It is sometimes required
to typecast the columns explicitly to reduce parse time errors.

 ° You can define data types after the AS clause, but care has to be taken
when defining appropriate data types for each of the columns. A null
will be stored in the Bag when the data type casting cannot happen
such as in cases where a chararray type is forcibly typecasted to an
int result in a null. However, int can be casted to chararray. (For
example, int 27 can be typecast into chararray "27".)

• You have to pay special attention to data in a relation that could result in a
null. Relational operators such as COUNT disregard nulls, but the COUNT_STAR
function does not ignore it and counts a null as if there is a value to it.

Additional information
• http://pig.apache.org/docs/r0.11.0/api/org/apache/pig/

piggybank/storage/MyRegExLoader.html

• http://pig.apache.org/docs/r0.11.1/func.html#textloader

Data Ingest and Egress Patterns

[68]

The complete code and datasets for this section can be found in the following
GitHub directories:

• chapter2/code/

• chapter2/datasets/

The image ingress and egress pattern
The design patterns in this section describe how you can use Pig Latin to ingest
and egress a set of images into and from the Hadoop File System to further process
images in your data pipeline.

We will discuss the relevance of images in the enterprise and get an understanding
of the various ways images can be created and stored, the optimal way of gathering
images to be processed on Hadoop, and the use cases where images are used in
conjunction with Pig. You will also understand how Pig makes it easy to ingest
these images with a custom UDF written in Java.

The subsequent discussion of the implementation-level detail of this pattern is meant
to familiarize you with the important concepts and alternatives as applicable. An
example code snippet is used to enable better understanding of the pattern from
the Pig language perspective, followed by the results of using the pattern.

Background
There are many documented use cases of Hadoop that deal with structured data
and unstructured text data. However, we have evidence of many cases that exploit
the real power of Hadoop to process the other forms of unstructured data, such as
images, videos, and sound files.

In terms of processing images, Hadoop plays a key role in analyzing images taken
by weather/military/civil satellites, that is, when the image size is large and the
resolution is high and they need to be processed by a farm of servers.

Hadoop offers an effective storage mechanism for large images or a set of small
images. Unlike the process of storing images in a RDBMS as a BLOB without the
ability to perform a massive-scaled, meaningful analysis on them using SQL,
specific image processing algorithms can be written on Hadoop, which can work
on individual images and on a bundle of images for performing high-end image
analysis in a parallel way.

Chapter 2

[69]

Motivation
This pattern is applicable in cases where you want to load and process a large
number of image files in Hadoop. The loading of the images into the data pipeline
is accomplished by a UDF written in Java.

Seq/AVRO
files

Raw images

Image
convert

Pig MapReduce Pig MapReduce

Image ingress and egress

Ingesting the unstructured image data and combining it with the structured image
metadata, such as tags, EXIF information, and object tags, which provide the
contextual information, has led to newer developments in social media analytics and
other areas—such as security, intelligence gathering, weather predictions, and facial
recognition. This idea could be extended to a wider range of image features that
allow us to examine and analyze images in a revolutionary way.

After ingesting the images into Hadoop, the actual processing of raw images is
a complex task involving multiple calculations on the raw pixels level. These
calculations are accomplished by the low-level C and C++ algorithms. Hadoop is
integrated with these algorithms using Hadoop streaming to wrap these and work
as a standard Hadoop job.

The image egress pattern attempts to show a simple mechanism in which the
binary images existing as a sequence file in the HDFS are output as image files.
The motivation for this pattern lies in the ability of Hadoop-based image processing
algorithms to perform complex computations on images to join its constituent tiles
to create a bigger image.

Data Ingest and Egress Patterns

[70]

Hadoop works effectively by grouping image files into a small number of large
files as opposed to an enormous number of tiny image files. Using a large number
of small image files, whose size is less than the HDFS block size of 64 MB, could
cause many reads from the disk and heavy lookup in the NameNode, resulting in a
huge amount of network traffic to transfer these files from one node to another. This
causes unproductive data access. This design pattern explores a way to overcome
this limitation in Hadoop by grouping these image files into sequence files. You can
extend this pattern to ingest and process other types of binary files such as sound
and video.

The ingestion design pattern is applicable to images that are part of a large corpus
of image files, where each image is distinct and combining them is not natural. The
pattern is not applicable to a very large image that is split among the nodes of the
Hadoop cluster. An illustration of the architecture is shown in the previous diagram.

Use cases
You may consider applying the image ingestion pattern as a pre-processing step in
the following use cases:

• Ingest multiple images to apply the various types of image filters on each of
the images

• Perform batch enhancements to the image quality
• Understand the content of the images, for example, apply AI-based

unsupervised computer vision algorithms to extract features such as roads,
canals, or buildings from within the image

• Use images for pattern matching as in the case of medical and GIS imagery

You may consider applying the image egress pattern in use cases where noise has
to be removed from the images. The original images are loaded in Hadoop and
processed to remove noise; the noise-filtered images are egressed back by combining
multiple tiles of the images to create a new image.

Pattern implementation
The following sections describe the pattern implementation of the image ingest
pattern followed by image egress.

The image Ingress Implementation
The image ingestion pattern is implemented in Pig through the usage of a custom
loader function that is implemented as a UDF in Java. This ImageToSequenceFileUDF
converts the image(s) into a sequence file. The input is the HDFS path of the images
directory and the output is the sequence file path.

Chapter 2

[71]

The sequence file stores the contents of the image file as a value, mapped to
the filename key. As the sequence file can be split, it can be processed by
streaming or using MapReduce. MapReduce internally uses a marker to split
the files into block-sized chunks and operates on them independently. The
sequence file supports compression with many codecs, and block compression
is used for the maximum efficiency of storage and retrieval. There will not be
any reducer in this case to prevent the shuffling of data and consumption of
bandwidth. This will enable using Hadoop for its scalable advantages in case
you have a large amount of image data stored in the sequence files.

The image egress implementation
The image egress pattern is implemented in Pig through the usage of
a custom storage function that is implemented as a UDF in Java. This
SequenceToImageStorage class converts the sequence file into images
and stores it in the specified location on the disk. The input to this function
is the path of the sequence files.

Code snippets
The following sections describes the code of the image ingest pattern followed
by the image egress.

The image ingress
To illustrate the working of this pattern, we considered a set of image files
stored in a folder accessible to the Hadoop File System, HDFS. There is no
pre-processing done on the images; they are stored in the raw format (JPEG).
The following code primarily has two major parts. Firstly, the Pig Latin script,
which loads the file containing the path to images folder, and secondly, the
custom UDF written in Java that does the actual work behind the scenes to
decompose an image or a set of images to a sequence file.

Pig script
The following is the Pig script to read image files and convert them into a
sequence file:

/*
Register the custom loader imagelibrary.jar, it has UDFs to
 convert images to sequence file and sequence file to images
*/
REGISTER '/home/cloudera/pdp/jars/imagelibrary.jar';

/*

Data Ingest and Egress Patterns

[72]

Load images_input file, it contains the path to images directory
*/
images_file_path = LOAD
 '/user/cloudera/pdp/datasets/images/images_input' AS
 (link:chararray);

/*
ImageToSequenceFileUDF converts multiple image files to a sequence
 file.
This ensures that there are no large number of small files on
 HDFS, instead multiple small images are converted into a single
 sequence file.
Another advantage of sequence file is that it is splittable.
The sequence file contains key value pairs, key is the image
 file name and value is the image binary data.
It returns the path of the sequence file.
*/
convert_to_seq = FOREACH images_file_path GENERATE
 com.mycustomudf.ImageToSequenceFileUDF();

/*
* Some processing logic goes here which is deliberately left out
 to improve readability
*/

-- Display the contents of the convert_to_seq on the console
DUMP convert_to_seq;

Image to a sequence UDF snippet
The following is the Java code snippet of ImagetoSequenceFileUDF that shows the
conversion of image file(s) to a sequence file:

public static String createSequenceFile(Path inPutPath)
{
.
.

for(int i=0;i<status.length;i++)
 {
 //FSDataInputStream is opened at the given path
 dataInputStream = fileSystem.open(status[i].getPath());
 // extracting image name from the absolute path
 fileName = status[i].getPath().toString().
 substring(status[i].getPath().toString().
 lastIndexOf("/")+1);

Chapter 2

[73]

 byte buffer[] = new byte[dataInputStream.available()];
 //buffer.remaining() bytes will be read into buffer.
 dataInputStream.read(buffer);
 /*Add a key/value pair. Key is the image filename and
 value is the BytesWritable object*/
 seqFileWriter.append(new Text(fileName),
 new BytesWritable(buffer));
 .
 .
 }
}

The image egress
The following section describes the code for the image egress.

Pig script
The following is the Pig script to egress contents of the sequence file into images:

/*
Register the custom jar, it has UDFs to convert images to sequence
 file and sequence file to images
*/
REGISTER '/home/cloudera/pdp/jars/imagelibrary.jar';

/*
Load images_input file, it contains the path to images directory
*/
images_file_path = LOAD '/user/cloudera/pdp/datasets/images/images_
input' AS
 (link:chararray);

/*
ImageToSequenceFileUDF function converts multiple image files to a
 sequence file.
This ensures that there are no large number of small files on
 HDFS, instead multiple small images are converted into a single
 sequence file.
Another advantage of sequence file is that it is splittable.
The sequence file contains key value pairs, key is the image
 file name and value is the image binary data.
It returns the path of the sequence file.
*/
convert_to_seq = FOREACH images_file_path GENERATE
 com.mycustomudf.ImageToSequenceFileUDF();

Data Ingest and Egress Patterns

[74]

/*
* Some processing logic goes here which is deliberately left out
 to improve readability.
* It is assumed that in-between the load and store steps, a user
 performs some image processing step such as stitching multiple
 image tiles together.
*/

/*
The custom UDF SequenceToImageStorage reads the sequence file and
 writes out images.
It reads each key/value pair and writes out the contents as images
 with keyname as the filename in the folder seq_to_img_output
*/
STORE convert_to_seq INTO
 '/user/cloudera/pdp/output/images/seq_to_img_output' USING
 com.mycustomudf.SequenceToImageStorage();

Sequence to an image UDF
The following is a snippet of the custom store function, SequenceToImageStorage,
to read a sequence file and write out the contents to image file(s):

@Override
public void putNext(Tuple tuples) throws IOException {
 .
 .
 // Do this for each key/value pair
 while (seqFilereader.next(key, value))
 {
 bufferString = value.toString().split(" ");
 buffer =new byte[bufferString.length];
 for(int i=0;i<bufferString.length;i++)
 {
 /*
 String parameter parsed as signed integer in the radix given
 by the second parameter
 */
 buffer[i] = (byte)
 Integer.parseInt(bufferString[i], 16);
 }
 /*
 output path of the image which is the path specified, key is
 the image name
 */
 outPutPath=new Path(location+"/"+key);
 // FSDataOutputStream will be created at the given Path.

Chapter 2

[75]

 seqFileWriter = fileSystem.create(outPutPath);
 // All bytes in array are written to the output stream
 seqFileWriter.write(buffer);
 }
 .
 .
}

The SequenceFile.Reader class of Hadoop API is used to read the sequence file to
get the key-value pairs. The key-value pairs are iterated and then for each pair, a new
file is created with a key name, and the value is written as bytes into the file, thus
generating multiple image files.

Results
As a consequence of applying the image ingestion pattern, the corpus of images is
parsed by the Java UDF into sequence files. Each of the sequence files is decomposed
later into the RGB values and stored in a Pig Latin map relation. The next stages of
data pipeline use the map relation to further process the sequence files.

As a result of the image egress pattern, the sequence file stored in HDFS is converted
into image files so that the upstream image display systems can use these images.

Additional information
• http://pig.apache.org/docs/r0.11.0/api/org/apache/pig/

piggybank/storage/SequenceFileLoader.html

• http://pig.apache.org/docs/r0.11.1/udf.html#load-store-
functions

The complete code and datasets for this section is in the following GitHub directories:

• chapter2/code/

• chapter2/datasets/

The ingress and egress patterns for the
NoSQL data
This section describes the patterns that deal with ingesting data from two classes
of NoSQL data. To illustrate the power of Pig to readily support NoSQL databases
and the use cases associated with it, we have chosen document databases such as
MongoDB and columnar databases such as HBase.

Data Ingest and Egress Patterns

[76]

MongoDB ingress and egress patterns
The MongoDB ingress and egress patterns describe how you can use Pig Latin to
store the contents of MongoDB document collections in the Hadoop File System (Pig
relations) to process data and then write the processed data back into the MongoDB.

We will discuss the relevance of the data stored in MongoDB to the enterprise and
understand the various ways in which the MongoDB data can be accessed, the
motivation to perform ingest and egress, and the use cases where MongoDB data is
used in conjunction with Pig. You will also understand how Pig makes the ingestion
and egression of this data a lot more intuitive than doing it using MapReduce code
written in Java.

The subsequent discussion of the implementation-level detail of this pattern is meant
to familiarize you with the important concepts and alternatives as applicable. The
example code snippets enable better understanding of the patterns from the Pig
language perspective, followed by the results of using the pattern.

Background
MongoDB is a NoSQL database designed from the ground up to store data in the
form of document collections, unlike the rows and columns of RDBMS. It is highly
scalable and makes the retrieval of documents easy, owing to the extensive indexing
capability and the use of JSON for integration with external applications. MongoDB
is extremely flexible and handles variable schemas. (It is not mandatory to have the
same schema for each of the documents in the collection.) As MongoDB stores data
as documents and almost all attributes of these document collections are indexed,
it is a highly effective solution as an operational store to process real-time queries,
unlike Hadoop which excels in offline batch processing and aggregating of data from
various sources.

Motivation
In a typical enterprise, MongoDB and Hadoop are integrated in scenarios where
Hadoop is required to handle more extreme data loads compared to what MongoDB
is capable of to aggregate data and facilitate complex analytics.

The data from MongoDB is ingested into Hadoop and processed with MapReduce
jobs. Hadoop combines the data with additional data from other enterprise sources
using the Pig data pipelines to develop a multidata aggregation solution. After
processing the data in the Pig data pipelines, it is written back into MongoDB for
ad-hoc analysis and querying. This ensures that existing applications can use the
egressed data from Hadoop to create visualizations or drive other systems.

Chapter 2

[77]

In many enterprise use cases, Hadoop functions as a central data repository that
integrates the data with different data stores. In this case, MongoDB can function
as one of the data sources that feeds Hadoop periodically using MapReduce jobs.
Once the MongoDB data is ingested into Hadoop, the combined bigger datasets are
processed and made available to further query them.

MongoDB also acts as one of the Operational Data Store (ODS), which connects to
other data stores and data warehouses. Obtaining analytical insights involves the
movement of data from these connected data sources and the performing of ETL, for
which Pig can be effectively used. Hadoop acts as an ETL hub to pull data from one
store, perform various transformations using the MapReduce jobs, and load the data
onto another store.

It is important to note that ingesting data directly from an external
source (MongoDB) has very different operational performance
characteristics than data already loaded/transferred into HDFS.

Use cases
You might want to consider using the patterns of data ingress and egress in the
following scenarios where integrating MongoDB with Hadoop reaps rich dividends:

• MongoDB and Hadoop handle different workloads, near real time and batch,
respectively. Consider using the ingress design pattern in use cases where
you want to offload loads to Hadoop to be batch processed and thus, free
up resources in MongoDB. Consider using the egress design pattern to make
the MongoDB a sink to export data from Hadoop and enable real-time
query operations.

• MongoDB itself has a MapReduce implementation, which runs on the
MongoDB database. However, it is slower than the Hadoop MapReduce as
it is implemented in JavaScript, and it has fewer data types and libraries to
perform complex analytics. Consider using the ingress design pattern in use
cases that has data to be offloaded to Hadoop to take advantage of Hadoop's
library support, machine learning, ETL capabilities, and the scale of processing.
Consider using the egress design pattern to move data from Hadoop into
MongoDB and to take advantage of Mongo DB's MapReduce implementation.

• MongoDB has support for few basic data aggregation capabilities to
generate aggregates in the SQL style that requires a higher learning curve to
understand the aggregation framework. Consider using the ingress design
pattern in cases where you want to take advantage of Hadoop to perform
complex aggregation tasks.

Data Ingest and Egress Patterns

[78]

• This design pattern can be used in cases where there is a huge amount of
unstructured data and you need to use MongoDB for real-time analysis. In
this case, you can use the ingress design pattern to create a structure out of
the ingested raw data in Hadoop and export the data into MongoDB using
the egress design pattern to facilitate optimized storage in MongoDB for real-
time querying and analytics.

Pattern implementation
The following diagram shows the MongoDB connector integration:

BSON format

MongoLoader

Pig MapReduce Pig MapReduce

MongoDB
abstraction

MongoDB connector integration

Hadoop and MongoDB can be integrated using the MongoDB connector for Hadoop.
This connector helps to move data to and from MongoDB into the Hadoop ecosystem
and allows access through other programming languages (Hadoop streaming). The
connector's integration with Pig is depicted in the previous diagram.

The ingress implementation
Pig uses the MongoLoader function to load MongoDB data into a Pig Latin relation.
Using this function, the data is loaded directly from the database. Pig can also read
from the MongoDB native format (BSON) using the BSONLoader function.

The MongoLoader function can work in the schema-less mode in which the
field names are not specified. In this mode, the records are interpreted as tuples
containing a single map (document). This case is useful when you do not know the
schema of the MongoDB collection. The MongoLoader function can also work in the
schema mode where you specify field names that maps the fields in the Pig script
with those in the document.

Chapter 2

[79]

The egress implementation
The data in a Pig relation can be written into MongoDB in two ways. The first way is
to use the BSONStorage function to perform the storage of a relation into a .BSON file
that can be imported later into MongoDB. This method has the advantage of writing
at high throughput in the native storage format of MongoDB. The second way uses
MongoDB's wrapper to connect to the database and write directly into it through
the usage of the MongoStorage function. This function will operate on a tuple level
by storing each tuple it receives into the corresponding document in MongoDB. The
schema of the Pig relation and the MongoDB document is mapped before the writing
commences. Using the second method will give you a lot of flexibility to write data at
record or tuple level, but it compromises on the speed of I/O.

The MongoStorage function can also be used to update the existing document
collection in MongoDB by specifying the update key in the constructor. If the update
key is specified, the first document (value) corresponding to the key will be updated
by the contents of the Pig tuple.

Code snippets
In the following example code, we have considered the contents of the nasdaqDB.
store_stock data already residing in MongoDB. This dataset consists of NASDAQ
data spanning from the 1970s to 2010; this includes the stock tracking data of various
companies and how they performed on a specific day with its trading volume
figures. This dataset is alphabetically organized by the ticker symbol and stored as
JSON objects in MongoDB.

The ingress code
The following code performs the task of connecting to MongoDB, setting up the
connection, loading the MongoDB native file, parsing it, and retrieving only the
specified schema in the MongoLoader constructor by mapping the fields of the
MongoDB document with the fields specified in the schema. This abstraction is
performed by just one call to the MongoLoader function.

/*
Register the mongo jar files to be able to use MongoLoader UDF
*/
REGISTER '/home/cloudera/pdp/jars/mongo.jar';
REGISTER '/home/cloudera/pdp/jars/mongo-hadoop-pig.jar';

/*
Load the data using MongoLoader UDF, it connects to MongoDB, loads
 the native file and parses it to retrieve only the specified
 schema.

Data Ingest and Egress Patterns

[80]

*/
stock_data = LOAD 'mongodb://slave1/nasdaqDB.store_stock' USING
 com.mongodb.hadoop.pig.MongoLoader('exchange:chararray,
 stock_symbol:chararray, date:chararray, stock_price_open:float,
 stock_price_high:float, stock_price_low:float,
 stock_price_close:float, stock_volume:long,
 stock_price_adj_close:chararray') AS
 (exchange,stock_symbol,date,stock_price_open,stock_price_high,
 stock_price_low,stock_price_close,stock_volume,
 stock_price_adj_close);

/*
* Some processing logic goes here which is deliberately left out
 to improve readability
*/

/*
Display the contents of the relation stock_data on the console
*/
DUMP stock_data;

The egress code
The following code depicts the writing of data existing in a stock_data Pig relation
to a MongoDB document collection:

/*
Register the mongo jar files and piggybank jar to be able to use
 the UDFs
*/
REGISTER '/home/cloudera/pdp/jars/mongo.jar';
REGISTER '/home/cloudera/pdp/jars/mongo_hadoop_pig.jar';
REGISTER '/usr/share/pig/contrib/piggybank/java/piggybank.jar';

/*
Assign the alias MongoStorage to MongoStorage class
*/
DEFINE MongoStorage com.mongodb.hadoop.pig.MongoStorage();

/*
Load the contents of files starting with NASDAQ_daily_prices_ into
 a Pig relation stock_data
*/

Chapter 2

[81]

stock_data= LOAD '/user/cloudera/pdp/datasets/mongo/
 NASDAQ_daily_prices/NASDAQ_daily_prices_*' USING
 org.apache.pig.piggybank.storage.CSVLoader() as
 (exchange:chararray, stock_symbol:chararray, date:chararray,
 stock_price_open:chararray, stock_price_high:chararray,
 stock_price_low:chararray, stock_price_close:chararray,
 stock_volume:chararray, stock_price_adj_close:chararray);

/*
* Some processing logic goes here which is deliberately left out
 to improve readability
*/

/*
Store data to MongoDB by specifying the MongoStorage serializer.
 The MongoDB URI nasdaqDB.store_stock is the document collection
 created to hold this data.
*/
STORE stock_data INTO 'mongodb://slave1/nasdaqDB.store_stock'
 using MongoStorage();

Results
As a consequence of applying the ingest design pattern on a MongoDB document
collection, the contents of the collection specified by the MongoDB URI are loaded
into a stock_data Pig relation. Similarly, the egress design pattern stores the
contents of a stock_data Pig relation into the nasdaqDB.store.stock MongoDB
document collection.

The following are a few ways specific to MongoLoader implementation in which a
Pig relation can be stored with invalid values:

• If the input MongoDB document contains a field that is not mapped in the
schema of the constructor, the MongoLoader function will store nulls for that
field in a Pig relation.

• If the MongoDB document does not contain a field that is specified in the
schema of the constructor, the entire row or tuple of a relation is set to null.

• If there is a type mismatch between MongoDB documents fields and the
schema specified, MongoLoader will set the field as a null in a Pig relation.

Data Ingest and Egress Patterns

[82]

Additional information
• https://github.com/mongodb/mongo-hadoop/blob/master/pig/README.

md

The complete code and datasets for this section is in the following GitHub directories:

• chapter2/code/

• chapter2/datasets/

The HBase ingress and egress pattern
The HBase ingress and egress pattern describes how you can use Pig Latin to ingest
the contents of the HBase tables into the Pig relations to further process data and
then egress the processed data into HBase.

We will discuss the relevance of HBase to the enterprise and understand the various
ways in which the HBase data is stored internally and accessed externally as well
as of the use cases where HBase data is used in conjunction with Pig. You will also
understand how Pig makes the ingestion and egression of the HBase data a lot easier
with the ready-made functions provided.

The subsequent discussion of the implementation-level detail of this pattern is meant
to familiarize you with the important concepts and alternatives as applicable. The
example code snippets enable the better understanding of the pattern from the Pig
language perspective, followed by the results of using the pattern.

Background
HBase is a column-oriented NoSQL database created by taking inspiration from
Google's Big Table implementation and is specifically designed to store schema-flexible
data and access it in real time. It is linearly scalable for data containing billions of
columns and features compression of data and in memory operations for lightning
fast access.

The HBase data is internally stored in a custom optimized format called the Indexed
Storefiles in the HDFS. HBase uses HDFS to take advantage of its storage and
high availability features. As HDFS cannot store data to perform random reads
and writes, HBase uses a binary format optimized for random read-write access to
overcome the limitation of HDFS. The storage of HBase-indexed store files on HDFS
makes it perfectly suitable for MapReduce to work on it without the need to import
the data from elsewhere.

https://github.com/mongodb/mongo-hadoop/blob/master/pig/README.md

Chapter 2

[83]

Logically, HBase stores data in a nested multidimensional map abstraction that has
sorted key value pairs and a time stamp associated with the key value. The time
stamp enables the latest version of the data to be stored in a sorted order so that
the lookup can be easier. HBase implements the concept of fast and slow changing
data to store them accordingly using the versions. The data in the multidimensional
nested map is retrieved using a primary key, called a rowkey in HBase, through
which all the nested data can be dereferenced.

The multidimensional map has two important nested structures (implemented as a
map), called the column family and the columns belonging to the column family. The
schema of the column family cannot change over the storage lifetime, whereas the
schema of the columns inside a column family can have flexible schema, which may
change per row. This data organization is inherently suitable to store unrelated and
unstructured data suitable for real-time access (as everything is in a map).

Motivation
The need to ingest HBase tables into Pig facilitates its batch processing using the
MapReduce framework to achieve the use case goals. After the HBase data has
been processed in the Pig data pipeline, it is sometimes required to store it back into
HBase to provide real-time access to queries that run natively on HBase. It is in this
context that the ingress and egress patterns of HBase data have a special appeal.

The data in HBase is natively accessed through the HBase Java client API calls to put
and get data. This API is good enough for an integration with external applications
that need real-time query capability. The API, however, does not have the power to
perform batch data processing to create data aggregations and complex pipelines to
generate analytical insights. This batch processing capability comes with low-level
abstractions such as MapReduce or the high-level flexibility of Pig.

Java MapReduce jobs can be written to access data stored in HBase and process it,
but Pig scores heavily for simplicity and terse-optimized code when compared to
the Java code that one has to write to access the data in HBase.

Accessing the data stored in HBase with the operators in Pig enables the data to be
manipulated in the Pig data pipeline and consumed for transformation using the
batch processing. Storing the data into HBase from a Pig relation, enables HBase to
provide the application's access to query it in real time.

Data Ingest and Egress Patterns

[84]

As the data resides in HDFS in the form of Indexed Storefiles, Pig needs to be told how
to serialize and deserialize data to and from the HBase format in a way that Pig can
understand and process. Pig needs to understand explicitly how to translate between
column families, columns in the HBase abstractions, and Pig's native data types. This
pattern explains how to accomplish the tasks of ingesting and egressing data to and
from HBase using the HBaseStorage Pig function.

Unlike the MongoDB example, here we read the HBase files that are
already stored in HDFS. We do not connect to the HBase servers and
read the data from them over the network.

Use cases
The following are the use cases for Pig to ingest and egress data from HBase:

• Use the ingestion design pattern to create a data pipeline to integrate real-
time data residing in HBase to perform analytics.

• Use the ingestion design pattern to access data in HBase to perform high-
level data aggregates in Pig for consumption in downstream systems. Pig
can act as an ETL hub to transform data in HBase to integrate it with other
applications' data.

• Use the egress design pattern to store the contents of a flat file existing in
HDFS into an HBase table. This pattern is also useful to store the results of a
complex data integration or transformation pipeline in HBase for the purpose
of real-time querying.

Pattern implementation
The following sections describe the pattern implementation of HBase ingest pattern
followed by HBase egress.

The ingress implementation
Data in HBase can be ingested in the following two ways:

• The first option is to export entire tables using MapReduce EXPORT job that
reads parallelly to get the contents of the table into a HDFS sequence file. A
deserializer can be written in Java or Pig to access the contents of this sequence
file for later manipulation. This option is slightly difficult to implement owing
to the fact that we have to access the contents of HBase from the backend and
then deserialize the files. Moreover, this works on one table at a time and to
access multiple tables; the list of tables have to be iterated.

Chapter 2

[85]

• The second option is to implement the HBase ingest design pattern to use the
Pig's built-in load function called HBaseStorage. This is a straightforward
option to connect to the HBase table and get the contents of the table directly
into a Pig relation. The tasks of deserialization to map the HBase types to
Pig types and execution of MapReduce jobs that performs parallel import
are taken care of by Pig. HBaseStorage also comes with the additional
advantage of loading data into Pig relations, using all the column families or
only a subset of columns of the column families. As the columns contain key
value types, they can be typecast to the Pig's map type.

The egress implementation
Pig implements the egress design pattern using the HBaseStorage function. This
pattern is very similar to the ingest pattern implementation, except for the usage of the
STORE clause. The STORE clause conveys to the Pig compiler what data to extract from
the Pig relation specified and serializes it into the HBase table in the parameters.

The ingress and egress implementation options are illustrated in the
following diagram:

SEQ file
xtractore

Indexed tores
files

Pig MapReduceHive MapReducePig Hive

Sequence files

HBase
abstraction

HBase Integration with Pig

Data Ingest and Egress Patterns

[86]

Code snippets
The following code example uses a dataset that has sample synthetic retail
transactions. It contains attributes such as the transaction date, customer ID,
product subclass, product ID, amount, asset, and sales price. This data is
already stored in HBase to illustrate this example. The HBase table hbase://retail_
transactions is accessed through the Pig Latin's HBaseStorage function.

The ingress code
The following code snippet illustrates the ingestion of the HBase data into a
Pig relation:

/*
Load data from HBase table retail_transactions, it contains the
 column families transaction_details, customer_details and
 product_details.
The : operator is used to access columns in a column family.
First parameter to HBaseStorage is the list of columns and the
 second parameter is the list of options
The option -loadkey true specifies the rowkey should be loaded as
 the first item in the tuple, -limit 500 specifies the number of
 rows to be read from the HBase table
*/
transactions = LOAD 'hbase://retail_transactions'
 USING org.apache.pig.backend.hadoop.hbase.HBaseStorage(
 'transaction_details:transaction_date
 customer_details:customer_id customer_details:age
 customer_details:residence_area
 product_details:product_subclass product_details:product_id
 product_details:amount product_details:asset
 product_details:sales_price', '-loadKey true -limit 500')
 AS (id: bytearray, transaction_date: chararray, customer_id:
 int, age: chararray, residence_area: chararray,
 product_subclass: int, product_id: long, amount: int, asset:
 int, sales_price: int);

/*
* Some processing logic goes here which is deliberately left out
 to improve readability
*/

-- Display the contents of the relation transactions on the
 console
DUMP transactions;

Chapter 2

[87]

The egress code
The following code illustrates content storage of a Pig relation into HBase table:

/*
Load the transactions dataset using PigStorage into the relation
 transactions
*/
transactions = LOAD
 '/user/cloudera/pdp/datasets/hbase/transactions.csv' USING
 PigStorage(',') AS (
 listing_id: chararray,
 transaction_date: chararray,
 customer_id: int,
 age: chararray,
 residence_area: chararray,
 product_subclass: int,
 product_id: long,
 amount: int,
 asset: int,
 sales_price: int);

/*
* Some processing logic goes here which is deliberately left out
 to improve readability
*/

/*
Use HBaseStorage to store data from the Pig relation transactions
 into a HBase table hbase://retail_transactions.
The individual contents of transactions are mapped to three column
 families transaction_details, product_details and
 customer_details.
*/
STORE transactions INTO 'hbase://retail_transactions' USING
 org.apache.pig.backend.hadoop.hbase.HBaseStorage
 ('transaction_details:transaction_date
 customer_details:customer_id customer_details:age
 customer_details:residence_area product_details:product_subclass
 product_details:product_id product_details:amount
 product_details:asset product_details:sales_price');

Data Ingest and Egress Patterns

[88]

Results
As a result of applying the HBase data ingestion pattern, the data in the HBase table
represented by the column families and the corresponding columns will be loaded
in a Pig relation. In this design pattern, the type of result loaded into the Pig relation
varies based on the parameters passed. If you specify columns using the column
family and a column identifier (CFName:CName), then the resultant type will be a
tuple that consists of scalar values. If you specify the columns using a column family
name along with a part of the column name followed by an asterisk (CFName:CN*),
the resultant column type would be a MAP of the column descriptors as keys.

It is important to note that while retrieving a time series or event-based data stored
in HBase, Pig cannot be used to get time stamp information for an HBase value.

As a result of applying the HBase data egress pattern, the data in the pig relation
is stored into the HBase table, mapped to the respective column families and the
corresponding columns.

Additional information
• http://pig.apache.org/docs/r0.11.1/func.html#HBaseStorage

The complete code and datasets for this section is in the following GitHub directories:

• chapter2/code/

• chapter2/datasets/

The ingress and egress patterns for
structured data
The following section takes the example of Hive as one of the sources from where we
can ingest structured data and discuss different ways to do that. Hive is selected to
illustrate the structured data ingest pattern since it is the most widely used data sink
to consume structured data in the enterprise. Also, by understanding this pattern,
you can extend it to other structured data.

The Hive ingress and egress patterns
The Hive ingestion pattern describes how you can use Pig Latin to ingest and egress
data to and from the Hive tables into the Hadoop File System to further process on
your data pipeline.

Chapter 2

[89]

We will discuss the relevance of Hive to the enterprise and understand the various
ways in which the Hive data is stored internally (RCFile, the sequence file, and so on)
and accessed externally (HQL and Pig/MapReduce). You will explore the use cases
where the Hive data is used in conjunction with Pig. You will also understand how
Pig makes the ingestion of the Hive data a lot easier with the ready-made functions
provided and then comprehend the role of the Hadoop ecosystem component,
HCatalog, to simplify the connection and access the mechanism of Hive tables
with Pig.

The subsequent discussion of the implementation-level detail of this pattern is meant
to familiarize you with the important concepts and alternatives as applicable. An
example code snippet is used to enable the better understanding of the pattern from
the Pig language perspective, followed by the results of using the pattern.

Background
Hive makes Hadoop development easy for programmers who are familiar with SQL
and have worked on RDBMS. Hive uses HDFS for the physical storage of the data
and it gives a table-level abstraction from a logical perspective. Hive implements its
own SQL-like dialect, HiveQL, to access data and manipulate it. HiveQL provides
operators, such as SELECT, GROUP, and JOIN, that are converted into MapReduce
before being executed on the Hadoop cluster.

In the enterprises, Hive has gained widespread acceptance for use cases of data
warehouses, BI-analytics, dashboards, and so on. All these use cases have the
common thread of data in Hive being already cleansed, properly labeled, type
casted, and neatly organized in tables so that any ad-hoc query or report can be
generated effortlessly. Contrasting with this situation is the one with Pig, whose use
cases have to deal with freshly minted data from varied sources, which is messy and
without a name, category, or metadata associated to make sense out of it. Hence, the
relevance of Pig in researching the data itself: to create a quick prototype and find
sense in the seeming randomness of the schema-less data.

The storage of Hive data in HDFS is done through the serialization of Hive table's
content into a physical file that can be stored in the HDFS. In the context of Hive,
the HDFS is used to provide the features of high availability, fault tolerance, and
the ability to run MapReduce on the Hive-specific files. Currently, Hive supports
four different files for storage: plain text file, binary sequence file, ORC file, and the
RCFile. Each of these file formats have their own serialization and deserialization
functions associated, which converts the table-level abstraction of the data stored in
Hive into a file that is stored in the HDFS.

Data Ingest and Egress Patterns

[90]

Hive stores the information about what goes into the physical files in an external
metadata store implemented on an RDBMS (Derby by default and MySQL by
choice). This metadata store contains all the information of tables, schema, types,
physical file mapping, and so on. Whenever a user performs a data manipulation
operation, this metastore is first queried for the whereabouts of the data and then the
actual data is accessed.

Motivation
Hive stores the data in a ready-to-use format for ad-hoc analytics and reporting. The
data ingestion pattern is relevant to the Hive data that is ingested and integrated
with the newly arrived data in the Pig data pipeline; then the combined data
from Hive and Pig is aggregated, summarized, and transformed for further use in
advanced analytical models.

The data egress pattern is applicable to the data already existing in a Pig data
pipeline and there are ways to store it directly into a Hive table.

The external Hadoop ecosystem components, such as Pig, HBase, or MapReduce,
access Hive data by understanding which storage format (text, RCFile, or sequence
file) is used to store Hive data in HDFS, along with the metadata information of the
tables and schemas from the metastore.

This ingress and egress design patterns describe ways to read and write data to and
from Hive using Pig.

Similar to HBase, we load Hive files that are already in HDFS. This is in
contrast to MongoDB where we read the data directly from an external
source and not from HDFS.

Use cases
The primary use case of the Hive ingest design pattern is to provide Pig access to the
data stored in Hive. Pig uses this data for the following reasons:

• To integrate it with other unstructured sources
• To cleanse and transform the combined data
• To aggregate and summarize using a combination of other data sources in

the Pig pipeline

Chapter 2

[91]

The primary use case of the Hive egress design pattern is to provide a mechanism
for the transformed data in the Pig pipeline to be stored in the Hive table. You may
consider using this design pattern for the following purposes:

• To export data to Hive after integrating it with external data in the Pig
data pipeline

• To export cleansed and transformed data to Hive from the Pig data pipeline
• To export aggregates to Hive or to some other downstream systems for the

purpose of further processing or analytics

Pattern implementation
The following sections describes the pattern implementation of Hive ingest pattern
followed by Hive egress:

The ingress implementation
The following are the two ways to load the Hive data into a Pig Latin relation:

• One way is to explicitly specify the deserializer to retrieve data from Hive. As
an illustration, HiveColumnarLoader is a deserializer for Pig and is specific
to data loaded or serialized into Hive using the RCFile format. Similarly, we
can use Piggybank's SequenceFileLoader to load data already stored in the
SequenceFile format from Hive. Both these examples are closely coupled
with the location of the files, the format of the schemas used to store them, if
compression is used or not, and so on.

• The second way is to use the HCatalog's capability to accomplish the
loading of Hive data into Pig. This process has many advantages compared
to the previous point. HCatalog provides an abstract way of looking at the
storage of the files. It wraps the metastore and the storage information from
the HDFS to provide a uniform perspective of accessing the tables. Using
HCatalog, you no longer need to worry about the storage location of the
file, the format of the schema, or if the compression is used or not. All you
have to specify is the table name to the HCatalog loader and it does the
necessary plumbing behind the scenes to diagram out the underlying storage
format, location, and schema. The user is now made agnostic of the table's
location, partitions, schema, compression type, and storage format. HCatalog
simplifies this through a table-level abstraction and does the hard work
under the covers.

Data Ingest and Egress Patterns

[92]

The egress implementation
The egress design pattern is implemented using the HCatalog capability to store
the data from a Pig relation into a Hive table. HCatalog provides an HCatStorer
interface, which stores the contents of a Pig relation into a Hive table managed by
HCatalog. For more information on why HCatalog interfaces are the best choice to
perform load and store operations, please refer to the second point in the previous
The ingress implementation section.

The approach followed by these design patterns is illustrated in the
following diagram:

Pig MapReduce

RC files Seq files Flat files ORC files

HCatalog

MapReducePig Hive

Hive
abstraction

Hive integration with Pig

Code snippets
The following code example uses a sample retail transactions dataset. It contains
attributes such as Transaction ID, Date, Customer ID, Amount, Category, Product,
City, State, and Spend by. This data is already stored in Hive to illustrate this
example. The Hive's native storage RCFile, which has the contents for this table, is
used to illustrate direct access; HCatalogLoader is also illustrated in the next example.

The ingress Code
The following code illustrates ingesting data from Hive.

Chapter 2

[93]

Importing data using RCFile
The following code illustrates the usage of HiveColumnarLoader that loads data
from a Hive table stored in a RCFile:

/*
Register the Piggybank jar file to be able to use the UDFs in it
*/
REGISTER '/usr/share/pig/contrib/piggybank/java/piggybank.jar';

-- Register Hive common and exec jars
REGISTER '/usr/lib/hive/lib/hive-common-0.11.0.1.3.0.0-107.jar';
REGISTER '/usr/lib/hive/lib/hive-exec-0.11.0.1.3.0.0-107.jar';

/*
Load retail_transactions_rc RCfile and specify the names of the
 columns of the table and their types in the constructor of
 HiveColumnarLoader.
*/
transactions = LOAD '/apps/hive/warehouse/transactions_db.db/retail_
transactions_rc'
 USING org.apache.pig.piggybank.storage.
 HiveColumnarLoader('transaction_no int,transaction_date
 string,cust_no int,amount double,category string,product
 string,city string,state string,spendby string');

/*
* Some processing logic goes here which is deliberately left out
 to improve readability
*/

/*
Display the contents of the relation transactions on the console
*/
DUMP transactions;

Importing data using HCatalog
The following code illustrates the loading of data from Hive using HCatalog:

/*
Specify the table name as the input to the HCatLoader function
 provided by HCatalog.
This function abstracts the storage location, files type, schema
 from the user and takes only the table name as input
*/

Data Ingest and Egress Patterns

[94]

transactions = LOAD 'transactions_db.retail_transactions' USING
 org.apache.hcatalog.pig.HCatLoader();

/*
* Some processing logic goes here which is deliberately left out
 to improve readability
*/

/*
Display the contents of the relation transactions on the console
*/
DUMP transactions;

The egress code
The following code illustrates the egression of data to Hive using HCatStorer:

-- Register piggybank and hcatalog-pig-adapter jars
REGISTER '/usr/share/pig/contrib/piggybank/java/piggybank.jar';
REGISTER '/usr/lib/hcatalog/share/hcatalog/hcatalog-pig-
 adapter.jar';

/*
Load the transactions dataset into the relation transactions
*/
transactions = LOAD '/user/cloudera/pdp/datasets/hive/retail_
transactions.csv' USING
 org.apache.pig.piggybank.storage.CSVLoader() AS
 (transaction_no:int, transaction_date:chararray, cust_no:int,
 amount:double, category:chararray, product:chararray,
 city:chararray, state:chararray, spendby:chararray);

/*
* Some processing logic goes here which is deliberately left out to
improve readability
*/

/*
Specify the Hive table name transactions_db.retail_transactions as
 the input to the HCatStorer function.
The contents of the relation transactions are stored into the Hive
 table.
*/
STORE transactions INTO 'transactions_db.retail_transactions'
 using org.apache.hcatalog.pig.HCatStorer();

Chapter 2

[95]

Results
After applying the ingest design pattern, the data in Hive tables is loaded in a Pig
relation and is ready to be further processed. While using HCatLoader, it is important
to interpret correctly how the data types of HCatalog are mapped to Pig types. All the
primitive types of Pig are mapped to their HCatalog' s corresponding types, except for
the bytearray type that is mapped to binary in HCatalog. In the complex data types,
the map of HCatalog is mapped to a map in Pig, a list of HCatalog is mapped to a bag
in Pig, and struct of HCatalog is mapped to a tuple in Pig.

Applying the egress design pattern, the data in the Pig relation is stored in the Hive
tables to report and perform ad-hoc analyses in Hive. All the schema conversion
rules mentioned for HCatLoader in the previous paragraph are applicable to
HCatStorer too. The HCatStorer class takes a string parameter that represents
the key-value pair of a partitioned table. If you want to store the contents of a Pig
relation in a partitioned table, this argument should be mandatorily specified.

Additional information
• http://pig.apache.org/docs/r0.11.0/api/org/apache/pig/

piggybank/storage/HiveColumnarLoader.html

• https://cwiki.apache.org/confluence/display/Hive/
HCatalog+LoadStore

The complete code and datasets for this section is in the following GitHub directories:

• chapter2/code/

• chapter2/datasets/

The ingress and egress patterns for
semi-structured data
This section describes design patterns for semi-structured data such as XML,
JSON, and the mainframe data. We have chosen XML and JSON as they are the
most popular encoding formats for Internet data exchange. There is a wealth of
data locked in documents, journals, and content management systems that could
potentially be benefitted through analytics. The choice of the mainframe data for this
use case is primarily due to the fact that this is a relatively unexplored territory in
many enterprises that could gain eventual popularity as new patterns emerge.

https://cwiki.apache.org/confluence/display/Hive/HCatalog+LoadStore

Data Ingest and Egress Patterns

[96]

The mainframe ingestion pattern
The mainframe ingestion pattern describes how you can use Pig Latin to ingest the
data exported from mainframes into the Hadoop File System to be further processed
on your data pipeline.

We will discuss the relevance of processing data stored in the mainframe to the
enterprise, and get a deeper understanding of the various ways in which the
mainframe stores the data internally and accesses it. We will also discuss the
motivation to perform the ingest and the use cases where the mainframe data is
used in conjunction with Pig. You will also understand how Pig makes the ingestion
of this data a lot more intuitive (using UDFs) than doing it using MapReduce code
written in Java.

The subsequent discussion of the implementation-level detail of this pattern is meant
to familiarize you with the important concepts and alternatives as applicable. An
example code snippet is used to enable the better understanding of the pattern from
the Pig language perspective, followed by the results of using the pattern.

Background
Mainframes seem to have a long life ahead, and it is hard to imagine a world
without these workhorses crunching those transactions continuously for decades.
Such is the stability of these machines that even at extreme throughput of data, they
perform faithfully without ever blinking for a second. No wonder these wonders
of engineering have been the backbone of businesses ranging from aircrafts and
automobiles to financial services and governments by selling, tracking, inserting,
and updating every transaction for these entities continuously for years at a stretch.

With the experience of powering the industrial revolution in the 1960s, the
mainframes have evolved with time, to become even more powerful and handle
the specific high throughput transactional workloads they are designed for. Today,
they use custom-built processors and other high-end hardware to implement
virtualization, scale vertically, and exhibit transactional integrity, despite extreme
throughput. Mainframes can clearly deliver superlative results than any other
architecture at extreme throughput combined with unbelievably high-availability
levels with reliability and top-notch security baked in.

Chapter 2

[97]

Motivation
Hadoop is increasingly playing a vital role to offload much of the transactional data
from mainframes and perform batch processing on it. This is in tune with improving
the transaction throughput and batch processing times for the mainframes, by
moving the processing from an expensive and custom-built system to the commodity
hardware housing the Hadoop framework. Similarly, when the batch processing
capability of a mainframe is not efficiently scalable (within a price point versus
performance band), it is advantageous to offload processing to Hadoop, which does
it at a better price/performance ratio. This is represented in the following diagram:

Hadoop atch rocessingb p

Offload

Pig criptss Java MR obsj

Main ramef
atchb

rocessingp
User nterfacei Data ourcess

External
ystemss

Data
arehousew

Mainframe batch processing and offloading to Hadoop

Use cases
This design pattern can be applied to address the following use cases:

• To migrate data from mainframes to Pig for integration with data from
other systems and create advanced analytics

• To offload noncritical batch workloads to Pig and free up the mainframe
throughput considerably

• To rewrite COBOL code in Pig to bring in the advantages of reuse,
maintainability, simplicity, and compactness

Pattern implementation
By offloading, the relevant processing to Hadoop implies rewriting the code written
in COBOL to MapReduce and transferring data from the mainframes.

Data Ingest and Egress Patterns

[98]

COBOL is the lingua franca for the mainframes to access databases such as DB2,
perform batch processing, and process online transactions. It is not suitable to
implement sophisticated algorithms on, which could benefit newer business
requirements such as risk modeling, predictive analytics, and so on.

To migrate the COBOL code to MapReduce, we can choose parts of functionalities
implemented in the mainframe that are amenable to the constructs of a mapper
and reducer. As an illustration, the legacy COBOL code to sort billions of records,
merge them with other data sources and group them, and performe complex
transformations can be implemented in Pig more efficiently than COBOL. Add to
the Pig code the power of a Java UDF, which performs advanced analytics on the
data pipeline; this combination could work wonders. Thus, migrating code to Pig
Latin to perform specific processing effectively could pay rich dividends.

Migrating the mainframe data has its own set of challenges. Typically, mainframes
internally store various types of data in VSAM files, flat files, and a DBMS. For
Hadoop to access this data, it has to be converted into a format it can comprehend
and then physically transfer it through a file transfer mechanism to the Hadoop
cluster. VSAM files can be converted into flat files for Hadoop consumption using
specific utilities such as IDCAMS.

Every mainframe DBMS have their specialized utilities that understand the DBMS
internal file storage format and convert them to flat files. We may have to deal with
the conversion of these flat files from one code page in the mainframes to another
in the target machines of the Hadoop cluster. Generally, the flat files exported
from the mainframes are in the denormalized CSV format. This is represented in
following diagram:

UDF

Flat files

Copy
ookb

Hive

HBase

HDFS

Pi
g

sc
rip

t

Mainframe data extraction and ingestion into Hadoop

Chapter 2

[99]

To understand the physical layout and definition of each column in the CSV format,
a mainframe-specific copybook is used. In Hadoop, this information provided by
the copybook is used as a schema to parse the CSV and decode the meaning of the
contents of the CSV file. Thus, the ingestion of the mainframe data requires two
inputs: one is the flat file itself and the other is the copybook.

Pig has a built-in loader that can read CSV files, but the parsing has to be done on
the CSV in conjunction with the contents of the copybook. Hence, a Java UDF or a
custom loader has to be written to accomplish this.

Code snippets
The following code example uses a dataset that has sample vehicle insurance claims
data related to vehicle repair charges claims, from a mainframe to a CSV file. The
metadata and physical layout of the data elements in the VSAM file is defined in the
copybook. The copybook contains fields such as claim, policy, vehicle, customer,
and garage details. The Java code snippet in the following section parses the
copybook, retrieves the metadata, and uses it to load the data in the CSV file.

The following Pig script uses a custom loader implementation to load data extracted
from mainframes into a CSV file. Here, the VSAMLoader uses the copybook file to
determine the metadata of the CSV file and loads it:

/*
Register custom UDF vsamloader.jar and cb2java jar which is a
 dynamic COBOL copybook parser for Java
*/
REGISTER '/home/cloudera/pdp/jars/vsamloader.jar';
REGISTER '/home/cloudera/pdp/jars/cb2java0.3.1.jar';

/*
Load the contents of the automobile insurance claims dataset using
 custom UDF.
VSAMLoader uses the copybook file to parse the data and returns
 the schema to be used to load the data
*/
data = LOAD '/user/cloudera/pdp/datasets/vsam/automobile_
 insurance_claims_vsam.csv' USING
 com.mycustomloader.vsamloader.VSAMLoader();

/*
* Some processing logic goes here which is deliberately left out
 to improve readability
*/

Data Ingest and Egress Patterns

[100]

-- Display the contents of the relation data on the console
DUMP data;

-- Display the schema of the relation data
DESCRIBE data;

The following is a Java code snippet of VSAMLoader, which is a custom
loader implementation:

@Override
public ResourceSchema getSchema(String arg0, Job arg1) throws
 IOException {
 .
 .
 while (it.hasNext()) {
 Map.Entry pairs = (Map.Entry) it.next();
 //Get the next key/value pairs
 String key = (String) pairs.getKey();
 String value = (String) pairs.getValue();
 /*For Group and Alphanumeric types in copybook, return
 pig compliant type chararray*/
 if (value.toString()
 .equals("class net.sf.cb2java.copybook.Group")
 || value.toString().equals("class
 net.sf.cb2java.copybook.AlphaNumeric")){
 fieldSchemaList.add(new FieldSchema(key,
 org.apache.pig.data.DataType.CHARARRAY));
 }
 /*For Decimal type in copybook, return
 pig compliant type integer*/
 else if (value.toString()
 .equals("class net.sf.cb2java.copybook.Decimal")){
 fieldSchemaList.add(new FieldSchema(key,
 org.apache.pig.data.DataType.INTEGER));
 }
 // Else return default bytearray
 else
 {
 fieldSchemaList.add(new FieldSchema(key,
 org.apache.pig.data.DataType.BYTEARRAY));
 }
 }
 return new ResourceSchema(new Schema(fieldSchemaList));
}

Chapter 2

[101]

In the custom loader code of the vsamloader jar implementation, we use an external
API to parse the copybook file and get all the values. We then implement an interface
called LoadMetaData from Pig API and its getSchema() method, which will return
the schema that we obtained by parsing the copybook. An ArrayList class of type
FieldSchema is used, which will eventually be populated with the column names
and their data types in the copybook file. This ArrayList is returned as the new
schema, which will be used by Pig while it is loading the VSAM file.

Results
The result of applying the pattern on the data extract of the mainframe is the loading
of the data in the flat file into the Pig Latin relation, ready to be further processed. As
there are no ready-made functionalities available in Pig to understand the copybook
format, we have extended Pig through a custom loader. Care has to be taken to
properly map the schema in the custom loader as not all data types of COBOL can be
readily mapped to the Java counterparts. For example, COBOL has limited support
for Boolean and datetype and we have to implement specialized conversion to
process it in Java to get accurate results. Please see the links in the next section for
more information.

Additional information
• http://pig.apache.org/docs/r0.11.1/udf.html#load-store-

functions

• http://pic.dhe.ibm.com/infocenter/dmanager/v7r5/index.
jsp?topic=%2Fcom.ibm.dserver.rulestudio%2FContent%2FBusiness_
Rules%2F_pubskel%2FInfocenter_Primary%2Fps_DS_Rule_Designer772.
html

• http://www.3480-3590-data-conversion.com/article-reading-cobol-
layouts-1.html

The complete code and datasets for this section is in the following GitHub directories:

• chapter2/code/

• chapter2/datasets/

XML ingest and egress patterns
This section describes how you can use Pig Latin to ingest and egress the contents
of documents or logs encoded with XML to and from the Hadoop File System to be
further processed on your data pipeline.

http://pic.dhe.ibm.com/infocenter/dmanager/v7r5/index.jsp?topic=%2Fcom.ibm.dserver.rulestudio%2FContent%2FBusiness_Rules%2F_pubskel%2FInfocenter_Primary%2Fps_DS_Rule_Designer772.html

Data Ingest and Egress Patterns

[102]

We will discuss the relevance of processing the data stored in XML to the enterprise
and understand the various ways in which Pig can be used to access XML data (raw
XML and binary). You will understand the pros and cons of using raw and binary
XML parsing and then comprehend the motivation and the use cases where the XML
data is used in conjunction with Pig. You will also understand how Pig makes the
ingestion of this data a lot more intuitive and efficient (by using Avro) than doing it
using the MapReduce code written in Java.

The subsequent discussion of the implementation-level detail of this pattern is meant
to familiarize you with the important concepts and alternatives as applicable. An
example code snippet is used to enable the better understanding of the pattern from
the Pig language perspective, followed by the results of using the pattern.

Background
XML is one of the most widely used protocol for storage and transfer of data in
an intuitive way, that makes comprehending the meaning of data relatively easy
for humans and machines alike. XML, being a textual format rather than a binary
format, has the special ability to encode data with its relevant metadata to clarify
the meaning on its own. Owing to this feature, XML has become the defacto
standard of data transmission for most Internet applications. The versatility
of XML is evidenced in the fact that it can represent not only documents but
haphazard data structures in web services. Today, we see that there are thousands
of XML-based taxonomies, information exchange formats, and document formats
—such as MS Office, SOAP, RSS, XHTML, and ATOM—that are being widely used.
All these XML-based data storage and transmission formats contain a wealth of
information from an analytics perspective.

Motivation
Using Hadoop for the ingestion and egress of XML is an inherently complex job
and has some tradeoffs with flexibility. The complexity arises from the arbitrary
nesting, and the space required for the metadata itself could be phenomenal. While
XML gives you the flexibility to mimic the real world by encoding data with lots
of metadata information by the inclusion of tags and other optional fields in the
XML, this evidently results in the deep nesting of the attributes, and makes the
computation even more complex and time-consuming over vast amounts of data.
This implies that loading an XML document into the memory of a computer is a
nontrivial, complex CPU-intensive job.

Chapter 2

[103]

Owing to the abovementioned complexities, Hadoop offers multiple benefits to
process large and complex XML data faster, using less costly operations by ingesting,
transforming, and egressing XML for further consumption by downstream systems. To
handle XML in Hadoop, you may have to consider the nature of processing the XML
data and its context.

Motivation for ingesting raw XML
One reason to ingest and process XML in Hadoop is when you do not know the
schema of the XML ahead of time and want to understand the schema as you read
the files. The highlights of this approach are given as follows:

• The XML data is loaded in its raw format, its schema is discovered at the
time of querying, and its transformation is performed after the discovery

• This approach is more exploratory in nature; it offers fast initial loads since
the data is not cleaned up or stored in the binary format using serialization

• It supports greater flexibility so that more than one schema can be used to
parse the XML for different types of analytic queries

• It is suitable for well-defined formats that could result in the XML data
being parsed for every query with a slight hit on the query's performance.

Motivation for ingesting binary XML
The other reason to ingest and process XML in Hadoop is when you already know
the schema of the XML and you want to perform high-performance queries on the
XML. The highlights of this approach are as follows:

• The XML has to be parsed initially, serialized to disc in the binary format,
split across nodes, compressed, and optimized for querying

• This approach works if there is a huge amount of cleansing and reformatting
required at the load time

• It is suitable if there is a need to perform repetitive queries on the
production workloads

• This approach is not very suitable if the schema is not known at the time of
the load as it takes a long time to load, preprocess, and store the XML in a
format that can be queried.

Motivation for egression of XML
Hadoop can be used to create and output XML files from structured data such as
CSV, Hive tables, and so on, residing in HDFS. The XML files can be also be ingested
directly into Hadoop so that they can be validated or transformed using Pig and
written back as XML to conform to the exchange format of the downstream systems.

Data Ingest and Egress Patterns

[104]

Use cases
The XML ingestion pattern can be used in the following use cases to address
the following:

• It can be used for the ingestion of XML-based document data from content
management systems such as technical documents, reference manuals, and
journals. The ingestion is done prior to creating search indexes using Lucene
and performing analytics on it.

• It can be adopted for the ingestion of XML logs that contain SOAP and
EDXL-CAP kind of messaging texts for the request and response analysis
between systems. As an example, XML-encoded messages can be picked up
from the network fault management systems and analytics performed to
understand or predict future failure of subsystems.

The XML egress pattern can be used in cases where it is needed to convert the
structured data in HDFS (delimited flat files or hive tables) to be processed and
serialized into XML, so that the upstream systems can use the XML to further
process the data.

Pattern implementation
Pig provides constructs to directly load raw XML files, and supports the loading of
the preprocessed XML files.

The implementation of the XML raw ingestion
The Piggybank library provides the XMLLoader function to access the contents of
the XML file. The parameter of the XMLLoader function is an XML tag name that is
converted internally into a single record tuple. This record contains the text enclosed
within the start XML tag and the end XML tag. Using the returned tuple from the
XML file, you may have to perform further parsing to decompose the record-level
XML value to its constituent values; typically, a regex function, REGEX_EXTRACT, is
used on a flattened projection.

Chapter 2

[105]

The implementation of the XML binary ingestion
Converting XML into a binary format amenable for the purpose of splitting, is a two-
step process.

• In the first step, in order to parse the XML document, the file can be
completely read into a memory-based data structure, and a parser such as
DOM can be used to randomly access all elements of the data. Alternatively,
you can access the contents of the file in a serial fashion and control the
parsing one step at a time. This can be done with the XML SAX parser and
it is slightly slower to perform. The DOM parsing has the advantage of
chaining multiple processors, but it is difficult to program, while the SAX
parsing has the advantage of easy programmability and the ease of splitting.
However, on the flipside, SAX is slow to perform as it is a serial access
mechanism to parse the XML document.

• In the second step, to convert the parsed XML into a splittable binary format
that Hadoop can process, Avro is the best choice to perform serialization
that meets these criteria, and it helps to convert the XML document to a
byte stream for storage in the on-disk format. Avro is specifically designed
for Hadoop, making it a highly compressible and splittable binary format,
which is very similar to the sequence files. Unlike the sequence files, which
are accessible only through Java API, Avro files can be accessed from other
languages such as C, C++, C#, Ruby, and Python. Using its unique format
for interoperability, the Avro files can be transferred from being code written
in one language to a different code written in another language, even from a
complied language such as C to a scripting one such as Pig.

• Each Avro file wraps the underlying contents of the XML file with metadata
that contains information needed to deserialize or read the contents. Avro
stores both the metadata and the actual contents of the file together in a
single file, making it simpler for other programs to understand the metadata
first and then process the embedded data. Typically, the metadata is stored in
the JSON format and the data is stored in the binary format.

• The Avro file also includes a marker that is used to split the data on the
multiple nodes of the cluster. Before accessing the serialized Avro file, the
XML file has to be preparsed into the Avro format, which is read into Pig
Latin's relations by the usage of piggybank's AvroStorage.

Data Ingest and Egress Patterns

[106]

The above implementation aspects are depicted in the following diagram:

XML files AVRO
files

MapReducePig HiveMapReducePig Hive

XML
arserp

Avro
p pre rocess

XML data ingress and egress

Code snippets
The following code example uses an XML dataset that has MedlinePlus
health discussions.

The XML raw ingestion code
The XML data consists of tags for data elements such as topic title, the relevant URL,
primary language, date, vocabulary, summary, membership, and other related health
topics and content in other languages. The following code snippet parses the XML
tags and loads the contents as a relation into the Pig Latin script:

-- Register piggybank jar
REGISTER '/home/cloudera/pig-
 0.11.0/contrib/piggybank/java/piggybank.jar';

/*
XMLLoader accesses the specified XML file and retrieves the record
 level value to be stored in the tuple data specified by the
 parameter to the XMLLoader.
*/
data = LOAD '/user/cloudera/pdp/datasets/xml/mplus_topics_2013-09-
 26.xml' USING org.apache.
 pig.piggybank.storage.XMLLoader('article');

/*

Chapter 2

[107]

* Some processing logic goes here which is deliberately left out
 to improve readability
*/

/*
Print the contents of the relation data to the console
*/
DUMP data;

The XML binary ingestion code
The following code performs the binary ingestion of XML:

-- Register piggybank jar
REGISTER '/usr/share/pig/contrib/piggybank/java/piggybank.jar';

-- Register Avro and JSON jar files
REGISTER '/home/cloudera/pdp/jars/avro-1.7.4.jar';
REGISTER '/home/cloudera/pdp/jars/json-simple-1.1.1.jar';

/*
Assign the alias AvroStorage to piggybank's AvroStorage UDF
*/
DEFINE AvroStorage org.apache.pig.piggybank.
 storage.avro.AvroStorage();

/*
Load the dataset using the alias AvroStorage into the relation
 health_topics
*/
health_topics = LOAD '/user/cloudera/pdp/datasets/xml/mplus-
 topics_2013-09-26.avro' USING AvroStorage;

/*
* Some processing logic goes here which is deliberately left out
 to improve readability
*/

-- Print the contents of the relation health_topics to the console
DUMP health_topics;

Data Ingest and Egress Patterns

[108]

The flow of steps involved in the conversion of the XML file to AVRO is depicted in
following diagram:

CustomParser

XML

XSD

schemagen

Avro ilef

JAXB indingb Avro indingb Avro chemas

Generate XSD from XMLs

Pass XSD to schemagenes

Generate JAXB, Avro bindings Avro schemas , and

Generates Avro files

XML to Avro pre-processing

We have used a third-party tool to generate the XSD from the given XML file
and schemagen to generate JAXB, Avro bindings, and Avro schema. Internally,
schemagen uses the JAXB binding compiler XJC; then it generates a code model
from the XSD schema file. The XJC plugin is then executed, which creates the JSON-
formatted Avro schemas. The XJC plugin invokes Avro's Java schema compiler to
generate new Java classes for serialization to and from Avro.

The XML egress code
The following is the Pig script to convert the contents of the CSV file into an
XML format.

Pig script
A custom storage function XMLStorage is used to accomplish the conversion of the
CSV file's contents into an XML format:

/*
Register custom UDF jar that has a custom storage function
 XMLStorage to store the data into XML file.
*/

Chapter 2

[109]

REGISTER '/home/cloudera/pdp/jars/xmlgenerator.jar';

/*
Load the transactions dataset using PigStorage into the relation
 transactions
*/
transactions = LOAD '/user/cloudera/pdp/datasets/hbase/transactions.
csv' USING
 PigStorage(',') AS (
 listing_id: chararray,
 transaction_date: chararray,
 customer_id: int,
 age: chararray,
 residence_area: chararray,
 product_subclass: int,
 product_id: long,
 amount: int,
 asset: int,
 sales_price: int);

/*
* Some processing logic goes here which is deliberately left out
 to improve readability
*/

/*
Custom UDF XMLStorage generates the XML file and stores it in the
 xml folder
*/
STORE transactions INTO '/user/cloudera/pdp/output/xml' USING
 com.xmlgenerator.XMLStorage();

The XML storage
The following is the code for the XML storage:

protected void write(Tuple tuple)
 {
 // Retrieving all fieds from the schema
 ResourceFieldSchema[] fields = schema.getFields();

 //Retrieve values from tuple
 List<Object> values = tuple.getAll();

Data Ingest and Egress Patterns

[110]

 /*creating xml element by using fields as element tag
 and tuple value as element value*/
 Element transactionElement =
 xmlDoc.createElement(XMLStorage.elementName);
 for(int counter=0;counter<fields.length;counter++)
 {
 //Retrieving element value from value
 String columnValue =
 String.valueOf(values.get(counter));
 //Creating element tag from fields
 Element columnName =
 xmlDoc.createElement(fields[counter].getName().
 toString().trim());
 //Appending value to element tag
 columnName.appendChild
 (xmlDoc.createTextNode(columnValue));
 //Appending element to transaction element
 transactionElement.appendChild(columnName);
 }
 //Appending transaction element to root element
 rootElement.appendChild(transactionElement);
 }

The write method takes a tuple, which represents a row in the CSV file, as an input.
This method creates an XML element for each field in the tuple. The process is
repeated for all the rows in the CSV and consequently, an XML file is generated.

Results
The result of applying the pattern on the medline XML files is the loading of the data
into the Pig Latin relation, which is ready to be further processed. Make sure that
the XML file is formatted properly and all the elements have start and end tags, else
XMLLoader could return an invalid value.

Applying the egress design pattern, the data in the relation transactions is written as
an XML file in the specified path.

Additional information
• http://pig.apache.org/docs/r0.11.0/api/org/apache/pig/

piggybank/storage/XMLLoader.html

• http://pig.apache.org/docs/r0.11.0/api/org/apache/pig/
piggybank/storage/avro/AvroStorage.html

Chapter 2

[111]

The complete code and datasets for this section is in the following GitHub directories:

• chapter2/code/

• chapter2/datasets/

JSON ingress and egress patterns
The JSON ingestion pattern describes how you can use Pig Latin to ingest and egress
data represented as JSON to and from the Hadoop File System to further process it in
the data pipeline.

We will discuss the relevance of processing the data stored in JSON to the enterprise
and understand the various ways in which Pig can be used to access and store the
JSON data (simple JSON and nested JSON). You will understand the pros and cons
of using simple JSON and nested JSON parsing, comprehend the motivation, and the
use cases where JSON data is used in conjunction with Pig. You will also understand
how Pig makes the ingestion of this data a lot more intuitively (by using external
libraries such as elephant-bird) than doing it using the MapReduce code written
in Java.

The subsequent discussion of the implementation-level detail of this pattern is meant
to familiarize you with the important concepts and alternatives, as applicable. An
example code snippet is used to enable the better understanding of the pattern from
the Pig language perspective, followed by the results of using the pattern.

Background
JSON is one more way of structuring text. JSON is a data interchange format that
describes the data in a hierarchical way, so that machines and humans alike can read
and perform operations on it.

JSON represents data in a much simpler way, more like the key-value pairs where
the values can be very primitive, such as integers, strings, and arrays. JSON is not
designed to support extremely complex and nested data types like XML does. It is
less verbose and requires just a look-up function to retrieve the values, since the data
is stored in key-value pairs. This makes JSON very compact and suitable to represent
data more efficiently, unlike XML. In XML, data is represented in a complex nested
way with rich data types, making parsing XML trees very intricate. In the real world,
JSON is used to store simple data types and XML is used to model the complexity of
data types, which offers features that let you be more expressive about the structure
of the data.

Data Ingest and Egress Patterns

[112]

Motivation
The rise of JSON as one of the most popular standard for data representation is
largely due to the strong rise of social web companies, such as LinkedIn, Twitter,
and Facebook. These enterprises along with many other firms, which have the need
to exchange their internal business data (such as social conversations or any data
with a smaller footprint) with the external world, are predominantly moving toward
using APIs that can carry simple and efficient payload without the complexities
of XML. JSON is the preferred format for these APIs owing to its simplicity and
implementation as a key-value data source, enabling the ease of parsing.

Along with the rise of social media, we can see the advent of NoSQL databases
that have made JSON their mainstay. Many of these databases, such as MongoDB,
CouchDB, and Riak, have JSON as their primary storage format. Owing to the usage of
JSON, these databases exhibit extremely high-performance characteristics along with
the ability to scale horizontally. These databases are designed specifically for the needs
of Internet-scale applications where the need for real-time response is paramount.

There is also an accelerated proliferation of non-social media-centric enterprises,
where JSON is used currently to storelog files that have multiple headers and other
key-value pairs. The log data in the JSON format represents user sessions and
user activities especially well, with information on each user activity nested under
the session's information. This data nesting in the JSON format provides natural
advantages while performing advanced analytics. JSON is also a good choice for
enterprises dealing with the sensor data, containing varied attributes collected for
different measurements.

While JSON excels as a storage format of choice to perform quick retrieval and carry
Internet payloads more efficiently, there are many use cases (such as log processing
and sensor analysis) where data represented in JSON is not only used for lookups, but
also extensively integrated with other enterprise data assets to perform analytics. This
integration implies the performing of batch processing on a combination of JSON and
other structured data. The ingest design patterns discussed in the following sections
describe ways to accomplish the JSON ingestion into the data pipeline.

The output of a batch processing data pipeline can sometimes be summarized into
ready-to-use data represented in JSON. This is applicable in use cases where the
batch-processed JSON output is fed into the NoSQL databases consuming JSON,
and in cases where JSON can be used as a payload for web services. The egress
design pattern shows how we can use Pig to perform the conversion of data stored
in the data pipeline into the JSON format.

Chapter 2

[113]

Use cases
The following are the use cases for Pig to ingest and egress JSON data:

• Use the ingestion design pattern to integrate JSON data into Pig relation so
that the combined data in the data pipeline is used for analytics.

• Use the ingestion design pattern to consume JSON APIs from Twitter
and other social media sources, to perform advanced analytics such as
sentiment mining.

• Use the ingestion design pattern to ingest sensor data stored in JSON for
machine failure analytics.

• Use the egress design pattern to store the contents of a flat file existing in
HDFS into the JSON format. This pattern is also useful to store the results
of complex data integration or transformation pipeline in JSON format for
downstream system access.

Pattern implementation
The following sections show the ingress and egress implementations.

The ingress implementation
JSON can be loaded into a Pig relation using the JSONLoader function, which loads
the contents of the JSON file into a map. The JSONLoader function can work with or
without schema information.

• In case the schema information is provided in JSONLoader, the mapping
between the Pig and JSON data types is straightforward and follows the
schema specified.

• In case the schema information is not provided in JSONLoader, the Pig
relation's data type is set to the default bytearray, and the actual schema is
inferred later in the execution cycle. To process a large JSON file and perform
parallel processing on it, you may have to format the JSON file with one
JSON-object format per line. This prerequisite is applicable when you need to
parse a very large JSON file that exceeds the size of the HDFS-storage block,
and when you have control over the format of JSON to include one JSON
object per line.

Data Ingest and Egress Patterns

[114]

• In cases where JSON files cannot be formatted to include one JSON object
per line, it is not possible for MapReduce to perform a split on the JSON file,
since JSON is nested and the same element is used at various levels. The
JSON format is in contrast with XML, which has a start and end tag to denote
the boundaries of the nested data structure. The solution for this problem is
addressed in the elephant-bird library's implementation of LZOJSONLoader,
that allows the determining of the split boundaries of the nested JSON files.
The elephant-bird library is an open source library of utilities for working
with JSON and other formats, courtesy of Twitter. It is available at
https://github.com/kevinweil/elephant-bird.

The egress implementation
Use the JsonStorage function to store the contents of a Pig relation in the JSON
format. The content of the Pig relation is stored as a single JSON line in the output.
While performing schema mapping, the JsonStorage function maps the Pig tuples
to JSON objects. Similarly, it maps the Pig map to a JSON object, while the Pig bag
corresponds to the JSON array.

The general idea of how JSON is ingested and egressed using Pig is depicted in the
following diagram:

JSON
files

AVRO
files

MapReducePig HiveMapReducePig Hive

JSON
arserp

Avro
p pre rocess

JSON Hadoop Integration

Code snippets
The following code example uses a sample dataset from the enron corpus, which has
emails from 150 users with an average of 757 messages per user. The fields in the
dataset are Message ID, Date, From address, Subject of the email, Body of the
email, To addresses, Addresses marked in cc, and Addresses marked in bcc.

Chapter 2

[115]

The ingress code
The following section shows the code and its explanation to ingest the data stored in
the JSON format into a Pig relation.

The code for simple JSON
The code to load JSON files using JsonLoader is shown as follows:

/*
Use JSONLoader UDF, it takes in the parameter of the JSON schema
 and loads the contents of the JSON file emails.json into a map
 enron_emails
*/
enron_emails = LOAD '/user/cloudera/pdp/datasets/json/emails.json'
 USING JsonLoader('body:chararray, from:chararray, tos:chararray,
 ccs:chararray, bccs:chararray, date:chararray,
 message_id:chararray, subject:chararray');

/*
* Some processing logic goes here which is deliberately left out
 to improve readability
*/

/*
Display the contents of the relation enron_emails on the console
*/
DUMP enron_emails;

It is important to note that the JsonLoader does not use the AS clause to supply
the schema.

The code for nested JSON
The Pig script to load nested JSON is shown as follows, and we use the elephant-bird
libraries to accomplish this:

/*
Register elephant-bird and JSON jar files
*/
REGISTER '/home/cloudera/pdp/jars/elephant-bird-core-3.0.5.jar';
REGISTER '/home/cloudera/pdp/jars/elephant-bird-pig-3.0.5.jar';
REGISTER '/home/cloudera/pdp/jars/json-simple-1.1.1.jar';

/*
Use ElephantBird's JsonLoader for loading a nested JSON file
The parameter –nestedload denotes nested loading operation

Data Ingest and Egress Patterns

[116]

*/
emails = LOAD '/user/cloudera/pdp/datasets/json/emails.json' USING
 com.twitter.elephantbird.pig.load.JsonLoader('-nestedLoad');

/*
* Some processing logic goes here which is deliberately left out
 to improve readability
*/

/*
Display the contents of the relation emails on the console
*/
DUMP emails;

The egress code
The following section shows the code and its explanation to egress data stored in a
Pig relation to JSON format:

/*
Load the JSON file using JsonLoader to the relation enron_emails
*/
enron_emails = LOAD '/user/cloudera/pdp/datasets/json/emails.json'
 USING JsonLoader('body:chararray, from:chararray, tos:chararray,
 ccs:chararray, bccs:chararray, date:chararray,
 message_id:chararray, subject:chararray');

/*
* Some processing logic goes here which is deliberately left out
 to improve readability
*/

/*
Use JsonStorage to store the contents of the relation to a json
 file
*/
STORE enron_emails into '/user/cloudera/pdp/output/
 json/output.json' USING JsonStorage();

Chapter 2

[117]

Results
Applying the ingest design pattern will result in the JSON data getting stored in a
Pig relation. The JsonLoader stores a null in a Pig relation if the fields do not parse
correctly, or if the they cannot be found. JsonLoader does not care about the order
of the fields in the constructor; you can specify them in any order. JsonLoader
parses them correctly as long as the field name matches. If there is a type mismatch,
JsonLoader performs automatic typecasting based on the feasibility. It can cast an
int to a string, but will not cast a string to an int. As best practice, you may
consider using the JsonLoader function without the schema definition to understand
the top-level view of all the keys in the JSON object and get a better overview of
the data.

Applying the egress design pattern will result in data from a Pig relation stored in
the JSON format. The JsonStorage function uses a buffering technique for storage
in the JSON format. This buffering capability is used in the bulk loading of data
and increases the performance of the storage. A fixed-size buffer in kilobytes can
be specified in the JsonStorage constructor.

Additional information
• http://pig.apache.org/docs/r0.11.1/func.html#jsonloadstore

• https://github.com/kevinweil/elephant-bird

• http://pig.apache.org/docs/r0.11.1/func.html#jsonloadstor

The complete code and datasets for this section is in the following GitHub directories:

• chapter2/code/

• chapter2/datasets/

Summary
In this chapter, we started by understanding the types of data in the enterprise
setting and explored the relevance of each of these data types, how they are used
once they were inside the enterprise, and how Hadoop comes into the picture to
process it.

Data Ingest and Egress Patterns

[118]

In the subsequent sections, we began by looking at specific types of data more closely
and applied the ingress and egress design patterns on it. We covered the most
relevant data types from unstructured, structured, and semi-structured categories.
We have also attempted to highlight design patterns for advanced data types such
as images and mainframes to deliberate on the power of the Pig's adaptability and
extensibility. In each of the design pattern showcased in this book, we began to
understand the contextual relevance of the pattern from the background details,
followed by the motivation and applicability of the pattern to a particular data
type. The code and pattern implementation is discussed threadbare to ease the
implementation aspects of the design pattern. We discussed why choosing Pig is
better and talked about various options available to address specific cases within
a design pattern.

In the next chapter, we will understand in greater detail the data profiling patterns that
can be applied to various data formats. The goal of the next chapter is to make you
adept in using Pig to understand the content, context, structure, and condition of data
by profiling it. Pig provides a rich set of primitives to profile data and you will learn
the appropriate design patterns to use in profiling enterprise-grade data. You will also
learn to extend Pig's capability to cater to more advanced usages of data profiling.

Data Profiling Patterns
Time looking at your data is always well spent.

 — Witten, et al

In the previous chapter, you studied the various patterns for ingesting and egressing
different types of data into and from the Hadoop ecosystem, so that the next logical
steps in the analytics process can begin. In this chapter, we will understand the most
widely used design patterns related to data profiling. This chapter is all about a
step-by-step approach to diagnose if your dataset has any problem, and ultimately
turning the dataset into usable information.

Data profiling is a necessary first step in getting any meaningful insight into the data
ingested by Hadoop, by understanding the content, context, structure, and condition
of data.

The data profiling design patterns described in this chapter, collect important
information on attributes of data in the Hadoop cluster, before initiating the process
of cleaning the data into a more useful form. In this chapter, we will look at the
following sections:

• Understanding the data profiling concepts and their implications in the
context of Big Data

• Rationale for using Pig in data profiling
• Understanding the data type inference design pattern
• Understanding the basic statistical profiling design pattern
• Understanding the pattern-matching design pattern
• Understanding the string profiling design pattern
• Understanding the unstructured text profiling design pattern

Data Profiling Patterns

[120]

Data profiling for Big Data
Bad data lurks in all of the data that is ingested by Hadoop, but its impact magnifies
with the phenomenal volume and variety that constitutes Big Data. Working with
missing records, malformed values, and wrong file formats amplifies the amount of
wasted time. What drives us to frustration is seeing the amount of data that we can't
use even though we have it, data that we have at hand and then lost, and data that
was not the same as it was yesterday. In a Big Data analytics project, it is common
to be handed an extremely huge dataset without a lot of information as to where it
came from, how it was collected, what the fields mean, and so on. In many cases,
the data has gone through many hands and multiple transformations since it was
gathered, and nobody really knows what it all means anymore.

Data profiling is a measure of how good the data is and the fitness to process it in the
subsequent steps. It simply indicates what is wrong with the data. Data profiling is the
first short-burst analysis performed on the data to determine its suitability, understand
challenges, and give a go/no-go decision early in a data-intensive endeavor. Data
profiling activities provide you key insights into what the data ingested by Hadoop
looks like from a qualitative perspective, and assesses the risk involved in integrating
data with other sources before deriving any analytical insights. Sometimes, the
profiling process is conducted at various stages in the analysis process to weed
out bad data and to refine the analysis itself.

Data profiling plays a major role in improving the overall data quality, readability,
and processability, by helping us understand the data from a business standpoint
versus an analytical-insight standpoint. Building a data profiling framework within
a Big Data information management platform such as Hadoop, ensures that the
quality of data does not affect the results of reporting, analysis, forecasting, and
other key business requirements that deal with decision making.

Traditionally, data profiling is done in relation to its intended use, where the purpose
of using the data is defined well in advance. For Big Data projects, data may have to be
used in ways not originally intended, and it has to be profiled accordingly, to address
how data can be repurposed. This is due to the fact that most Big Data projects deal
with exploratory analytics on ill-defined data that try to find out how the data can be
used or repurposed. In order to do so, various quality measures, such as completeness,
consistency, coherence, correctness, timeliness, and reasonableness, must be clearly
articulated, measured, and made available to users.

Chapter 3

[121]

In a Big Data project, metadata is collected to ascertain the data quality. This
metadata includes the following:

• Data quality attributes
• Business rules
• Mappings
• Cleansing routines
• Data element profiles and measures

The measurement of data quality in a Big Data environment takes into account
the following:

• Source of data
• Type of data
• The intended and unintended usage of the data
• The user group that will consume the data and the resultant

analytical artifacts

Among the preceding points, the type of data plays a vital role on the data quality
requirements, as outlined in the following points:

• Profiling structured Big Data: In a Big Data project that deals with a huge
amount of structured data, an enterprise can reuse existing data quality
processes that deal with relational databases, given they can scale to meet the
requirements of a massive scale.

• Profiling unstructured Big Data: Social media related Big Data projects
concern themselves with the quality issues that deal with entity extraction
out of sentences expressed in non-standard language comprising of slangs
and abbreviations. Analytical value from social media can be extracted by
correlating it with structured transactional data, so that the relation between
what is happening on the social web can be mapped to an organization's
internal data, such as supply chain data or customer demographics data.
To perform this kind of mapping, unstructured text has to be profiled to
understand the following points:

 ° How to extract entities that are important for analytics
 ° How much of the data is misspelled
 ° What are the general abbreviations specific to a domain
 ° What criteria to use for the removal of stop words

Data Profiling Patterns

[122]

 ° How to perform stemming of the words
 ° How to understand the contextual meaning of words based on

preceding words

Big Data profiling dimensions
Profiling of Big Data is performed across multiple dimensions, and the choice of
choosing a particular dimension, typically, depends on the analytical problem and
balancing the time/quality trade-off. Some of the dimensions overlap and some are
not applicable to the problem at all. The following are a few of the most important
dimensions that measure the quality of Big Data:

• Completeness: This dimension is a measure to know if you have all the data
required to answer your queries. To evaluate if your dataset is complete,
start by understanding the answers that you wish to seek from the data, and
determine the fields needed and the percentage of complete records required
to comfortably answer these questions. The following are a few of the ways
completeness can be determined:

 ° In cases where we have prior knowledge of the master data
statistics (number of records, fields, and so on), completeness can be
determined as a proportion of the ingested records to the number of
master data records

 ° In cases where a master data statistics is not accessible, completeness
is measured by the presence of NULLS in the following ways:

 ° Attribute completeness: It deals with the presence of NULLS
in a specific attribute

 ° Tuple completeness: It deals with the number of unknown
values of the attributes in a tuple

 ° Value completeness: It deals with missing complete elements
or attributes in semi-structured XML data

As one of the aspects of Big Data analysis is to ask questions that have not
been asked before, checking for the completeness dimension assumes a newer
meaning. In this scenario, you may consider performing an iterative look
ahead for a generic range of questions you expect to be answered and reason
back to figure out what sort of data is needed to answer these questions. A
straightforward record-counting mechanism can be applied to check if the
total expected records exist in the Hadoop cluster; but, for data size spanning
petabytes, this activity can be onerous and has to be performed by applying
statistical sampling. If the data is found to be incomplete, the missing records
can be fixed, deleted, flagged, or ignored depending on the analytical use case.

Chapter 3

[123]

• Correctness: This dimension measures the accuracy of the data. To find out
if the data is accurate, you have to know what comprises inaccurate data,
and this purely depends on the business context. In cases where data should
be unique, duplicate data is considered inaccurate. Calculating the number
of duplicate elements in data that is spread across multiple systems is a
nontrivial job. The following techniques can be used to find out the measure
of potential inaccuracy of data:

 ° In a dataset containing discrete values, a frequency distribution can
give valuable insights into the potential inaccuracy of data; a value
with relatively very low frequency could probably be incorrect.

 ° For strings, you can create string length distribution patterns and flag
patterns with low frequency as potential suspects. Similarly, a string
with atypical length could be flagged as incorrect.

 ° In the case of continuous attributes, you can use descriptive statistics,
such as maximum and minimum to flag data as inaccurate.

For Big Data projects, it is recommended to determine which subset of
attributes are mandatory for accuracy, understand how much of the data
should be accurate, and work on sampling the data to determine the accuracy

It is important to note that in the classical finding a needle in a haystack
kind of Big Data problem, there is a lot of analytical value hidden in
inaccurate data, which can be considered as outliers. These outliers are
not to be considered inaccurate, and they can be flagged and considered
for further analysis in use cases such as fraud detection.

• Coherence: This dimension measures if the data makes sense relative to
itself and determines whether records relate to each other in ways that
are consistent, and follow the internal logic of the dataset. The measure of
coherence of a dataset can be understood by the following methods:

 ° Referential integrity: This ensures that the relationships between
tables remain consistent. In the Big Data context, referential integrity
cannot be applied to data stored in NoSQL databases such as HBase,
as there is no relational representation of the data.

 ° Value integrity: This ensures if the values in a table are consistent
relative to themselves. Inconsistent data can be found by comparing
values with a predefined set of possible values (from the master data).

Data Profiling Patterns

[124]

Sampling considerations for profiling
Big Data
Sampling of Big Data is done to understand the quality of the data, by analyzing
only a subset of the population rather than reaching out to the entire population.
One of the most important criteria to select a sample is its representativeness,
which determines how closely the sampled subset resembles the population.
Representativeness should be higher for an accurate result. Sampling size also
has a considerable impact on the representative accuracy of the subset.

Sampling enormous volumes of data for profiling balances the cost-quality trade-
offs, since it is very costly and complex to profile all of the population. Most of the
time, the profiling activity is not devised as a mechanism to perform a full-fledged
analysis on the entire data, but it is a first-pass analysis/discovery phase, to get
the overall quality of data, from the Correctness, Coherence, and Completeness
dimensions. The profiling activity is conducted iteratively as the data moves through
the pipeline and helps in data refinement. For this reason, sampling of the data for
profiling purposes has a very important role to play in Big Data.

While sampling is deemed necessary for profiling, it is recommended to tread with
caution while applying sampling techniques to Big Data. Due to the implementation
complexity and inapplicableness, not all data types and collection mechanisms may
necessitate sampling; this is valid in cases of data that are ingested from sensors in
near real time. Similarly, not all use cases may need sampling, and this is valid in
cases where data is ingested for search, recommendation systems, and click stream
analytics. In these cases, the data has to be looked at in its entirety, without recourse
to sampling. In these cases, sampling can introduce certain biases and reduce the
accuracy of the results.

The choice of appropriate sampling techniques has an impact on the overall accuracy
for profiling. These techniques include non-probabilistic sampling and probabilistic
sampling methods. Generally, we do not consider non-probabilistic methods to
perform data profiling activities. We limit ourselves to probabilistic sampling methods,
owing to the improved accuracy with less representational bias. For a better overview
of the sampling techniques, please refer to the Numerosity Reduction – Sampling Design
Pattern section in Chapter 6, Understanding Data Reduction Patterns.

Chapter 3

[125]

Sampling support in Pig
Pig has native support for sampling through the usage of the SAMPLE operator. We
have used the SAMPLE operator to illustrate how it works in the profiling context,
using the basic statistical profiling design pattern. The SAMPLE operator helps you
pick a random sample from the population using a probabilistic algorithm. The
internal algorithm is quite rudimentary, and sometimes, not representative of the
entire dataset that is being sampled. This algorithm internally uses the simple
random sampling technique. The SAMPLE operator is in the process of being evolved
to accommodate more esoteric sampling algorithms. More information on the path
ahead can be found at https://issues.apache.org/jira/browse/PIG-1713.

Other ways to implement a robust sampling method within Pig are to extend it by
using the UDF feature and by using Pig streaming.

Using Pig's extensibility feature, sampling can be implemented as a UDF, but it is
complex and taxing to work with, since the biggest limitation of a UDF is that it
takes only one input value and generates one output value.

You might also consider implementing sampling using streaming, which doesn't
have the limitation of the UDFs. Streaming can take any number of inputs and
emit any number of outputs. The language R has the needed functions to perform
sampling and you can use these functions in the Pig script through Pig streaming.
The limitations of this method are: it performs the sampling computation by holding
most of the data in the main memory and R has to be installed on every data node of
the Hadoop cluster for streaming to work.

The Datafu library of Pig utilities, from LinkedIn, has published a few of its own
implementations for sampling. This library is now a part of Cloudera's Hadoop
distribution. The following are the sampling techniques implemented by Datafu:

• ReservoirSampling: It generates random samples of a given size by using
an in-memory reservoir

• SampleByKey: It generates a random sample from tuples based on a certain
key. This internally uses the Stratified Random Sampling technique

• WeightedSample: It generates a random sample by assigning weights

Additional information on the Datafu sampling implementation can be found at
http://linkedin.github.io/datafu/docs/current/datafu/pig/sampling/
package-summary.html.

http://linkedin.github.io/datafu/docs/current/datafu/pig/sampling/package-summary.html

Data Profiling Patterns

[126]

Rationale for using Pig in data profiling
Implementing the profiling code within the Hadoop environment reduces the
dependency on external systems for quality checks. The high-level overview of
implementation is depicted in the following diagram:

B
ig

 D
at

a
in

ge
st

io
n

fra
m

ew
or

k

Pig scripts for profiling

UDFs

Structured data
sources

Unstructured
data

sources

Streaming

HDFS

Pr
of

ile
r

re
po

rt
s

Implementing profiling in Pig

The following are the advantages of performing data profiling within the Hadoop
environment using Pig:

• Implementing the design patterns in Pig reduces data movement by moving
the profiling code directly to the data, resulting in performance gains and
speeding up the analytics development process.

• By implementing the pattern in Pig, the data quality effort is performed
alongside the data transformation in the same environment. This alleviates
manual, redundant effort in performing repetitive data quality checks
whenever data is ingested into Hadoop.

• Pig excels in situations where the ingested data's schema is unknown until
runtime; its language features give data scientists flexibility to decipher the
correct schemas at runtime and build prototype models.

• Pig's inherent ability to discover data schema and sampling gives it an edge
to implement profiling code within the Hadoop environment.

Chapter 3

[127]

• Pig has readily available functions that make writing the custom profiling
code easier.

• Pig enables automating the profiling process by chaining complex profiling
workflows, which comes in handy for datasets that are periodically updated.

Now that we have understood the data profiling concepts and the rationale of
using Pig for profiling, we will explore few concrete design patterns in the
following sections.

The data type inference pattern
This section describes the data type inference design pattern in which we use
Pig scripts to capture important information about data types.

Background
Most of the ingested data in Hadoop has some associated metadata, which is a
description of its characteristics. This metadata includes important information
on the types of fields, their length, constraints, and uniqueness. We can also
know if a field is mandatory. This metadata is also used in interpretation of the
values by examining the scale, units of measurement, meaning of labels, and so
on. Understanding the intended structure of a dataset helps in expounding its
meaning, description, semantics, and the data quality. This analysis of data types
helps us to grasp if they are syntactically consistent (different datasets having the
same consistent format specification) and semantically consistent (different datasets
having the same value set).

Motivation
The intent of this design pattern is to infer the data type metadata from the ingested
data in Hadoop. This pattern helps you uncover the Type metadata that is compared
to the actual data, to see if they do not agree and cause any far-reaching consequence
to the analytics effort. Data types and the attributes values are scanned and
compared with documented metadata, and based on this scanning, appropriate data
types and data lengths are proposed.

This design pattern is used to review the structure of a dataset for which there is little
or no existing metadata, or for which there are reasons to suspect the completeness
or quality of existing metadata. The results of the pattern help to discover, document,
and organize the "ground truth" regarding the dataset's metadata. Here, the results
of data profiling are used to incrementally capture a knowledge base associated with
data element structure, semantics, and its use.

Data Profiling Patterns

[128]

Use cases
You can use this design pattern when an enormous volume of structured data has
to be ingested, and there is an absence of documented knowledge about the dataset.
If there is a need to use the undocumented data for further analysis or the need
for deeper knowledge of the domain business terms, related data elements, their
definitions, the reference datasets used, and structure of the attributes in the dataset,
you can use this design pattern.

Pattern implementation
This pattern is implemented as a standalone Pig script that internally uses a Java UDF.
The core concept in the implementation of this pattern is the discovery of the dominant
data type in a column. Firstly, the column values are examined to understand if they
belong to int, long, double, string, or boolean type. After the values are evaluated,
each data type is grouped together to find the frequency. From this analysis, we can
find out which one is the dominant (most frequent) data type.

Code snippets
To illustrate the working of this pattern, we have considered the retail transactions
dataset stored on the Hadoop Distributed File System (HDFS). It contains
attributes, such as Transaction ID, Transaction date, Customer ID, Phone
Number, Product, Product subclass, Product ID, Sales Price, and Country
Code. For this pattern, we are interested in the values of the attribute Customer ID.

Pig script
The following is the Pig script illustrating the implementation of this pattern:

/*
Register the datatypeinferer and custom storage jar files
*/
REGISTER '/home/cloudera/pdp/jars/datatypeinfererudf.jar';
REGISTER
 '/home/cloudera/pdp/jars/customdatatypeinfererstorage.jar';

/*
Load the transactions dataset into the relation transactions
*/

Chapter 3

[129]

transactions = LOAD
 '/user/cloudera/pdp/datasets/data_profiling/transactions.csv'
 USING PigStorage(',') AS (transaction_id:long,
 transaction_date:chararray, cust_id:chararray, age:chararray,
 area:chararray, prod_subclass:int, prod_id:long, amt:int,
 asset:int, sales_price:int, phone_no:chararray,
 country_code:chararray);

/*
Infer the data type of the field cust_id by invoking the
DataTypeInfererUDF.
It returns a tuple with the inferred data type.
*/
data_types = FOREACH transactions GENERATE
 com.profiler.DataTypeInfererUDF(cust_id) AS inferred_data_type;

/*
Compute the count of each data type, total count, percentage.
The data type with the highest count is considered as dominant data
type
*/
grpd = GROUP data_types BY inferred_data_type;
inferred_type_count = FOREACH grpd GENERATE group AS
 inferred_type, COUNT(data_types) AS count;
grpd_inf_type_count_all = GROUP inferred_type_count ALL;
total_count = FOREACH grpd_inf_type_count_all GENERATE
 SUM(inferred_type_count.count) AS tot_sum,
 MAX(inferred_type_count.count) AS max_val;
percentage = FOREACH inferred_type_count GENERATE inferred_type AS
 type, count AS total_cnt,
 CONCAT((Chararray)ROUND(count*100.0/total_count.tot_sum),'%') AS
 percent,(count==total_count.max_val?'Dominant':'Other') AS
 inferred_dominant_other_datatype;
percentage_ord = ORDER percentage BY
 inferred_dominant_other_datatype ASC;

/*
CustomDatatypeInfererStorage UDF extends the StoreFunc. All the
abstract methods have been overridden to implement logic that writes
the contents of the relation into a file in a custom report like
format.
The results are stored on the HDFS in the directory datatype_inferer
*/
STORE percentage_ord INTO
 '/user/cloudera/pdp/output/data_profiling/datatype_inferer'
 using com.profiler.CustomDatatypeInfererStorage
 ('cust_id','chararray');

Data Profiling Patterns

[130]

Java UDF
The following is the Java UDF code snippet:

@Override
 public String exec(Tuple tuples) throws IOException {

 String value = (String) tuples.get(0);
 String inferredType = null;
 try {
/*if tuples.get(0) is null it returns null else invokes getDataType()
method to infer the datatype
 */
 inferredType = value != null ? getDataType(value) : NULL;

 } catch (Exception e) {
 e.printStackTrace();
 }
 // returns inferred datatype of the input value
 return inferredType;

Results
The following is the result of applying the design pattern on the transactions data:

Column Name : cust_id
Defined Datatype : chararray
Inferred Dominant Datatype(s): int, Count: 817740 Percentage: 100%

In the previous result, the input data column, cust_id, is evaluated to check if the
values accurately reflect the defined data type. At the ingestion stage, the data type
is defined as chararray. By using the data inference design pattern, the data type
of the values in the cust_id column is inferred as an integer.

Additional information
The complete code and datasets for this section are in the following GitHub directories:

• Chapter3/code/

• Chapter3/datasets/

Chapter 3

[131]

The basic statistical profiling pattern
This section describes the basic statistical profiling design pattern in which we use
Pig scripts to apply statistical functions to capture important information about
data quality.

Background
The previous design pattern depicts one way of inferring the data type. The next
logical step in the data profiling process is to evaluate the quality metrics of the
values. This is done by collecting and analyzing the data by applying statistical
methods. These statistics provide a high-level overview of the suitability of the data
for a particular analytical problem, and uncover potential problems early in the data
lifecycle management.

Motivation
The basic statistical profiling design pattern helps to create data quality metadata
that includes basic statistics, such as mean, median, mode, maximum, minimum,
and standard deviation. These stats give you a complete snapshot of the entire data
field, and tracking these statistics over time will give insights into the characteristics
of new data that is being ingested by the Hadoop cluster. Basic statistics of new
data could be checked before ingesting it into Hadoop, to be forewarned about the
inconsistent data and help prevent adding low-quality data.

This design pattern tries to address the following profiling requirements:

• Range analysis methods scan values and determine if the data is subject to a
total ordering, and also determine whether the values are constrained within
a well-defined range

• The sparseness of the data can be evaluated to find the percentage of the
elements that are not populated

• The cardinality of the dataset can be analyzed by finding the number of
distinct values that appear within the data

• The uniqueness can be evaluated to figure out if each of the value assigned
to the attribute is indeed exclusive

• Overloading of the data can be evaluated to check if the attribute is being
used for multiple purposes

• Format evaluation can be done by resolving unrecognized data into
defined formats

Data Profiling Patterns

[132]

Use cases
The following are the use cases where the basic statistical profiling design pattern
can be applied:

• This design pattern can be used to detect anomalies in the dataset, by
empirically analyzing the values in a dataset to look for unexpected
behaviors. This pattern examines the dataset's frequency distributions,
the variance, percentage of data logged, and its relationships, to reveal
potential flawed data values.

• One of the common use cases where this design pattern can be potentially
used is when the data is ingested into the Hadoop cluster from legacy data
sources that are still actively used. In legacy systems such as mainframes, the
mainframe programmers, during the data creation process, design shortcuts
and encodings, and overload a particular field for different purposes that
are no longer used or understood. When such kinds of data are ingested into
Hadoop, the basic statistical design pattern can help uncover this issue.

Pattern implementation
This design pattern is implemented in Pig as a standalone script, which internally
uses a macro to pass parameters and retrieve the answers. Pig Latin has a set of Math
functions that can be directly applied to a column of data. Data is first loaded into
the Pig relation and then the relation is passed as a parameter to the getProfile
macro. This macro iterates over the relation and applies the Math function to each of
the columns. The getProfile macro is designed to be modular and can be applied
across various datasets to get a good understanding of the data profile.

Code snippets
To illustrate the working of this pattern, we have considered the retail transactions
dataset stored on the HDFS. It contains attributes, such as Transaction ID,
Transaction date, Customer ID, Phone Number, Product, Product subclass,
Product ID, Sales Price, and Country Code. For this pattern, we will be profiling
the values of the attribute Sales Price.

Pig script
The following is the Pig script illustrating the implementation of this pattern:

/*
Register the datafu and custom storage jar files
*/

Chapter 3

[133]

REGISTER '/home/cloudera/pdp/jars/datafu.jar';
REGISTER '/home/cloudera/pdp/jars/customprofilestorage.jar';

/*
Import macro defined in the file numerical_profiler_macro.pig
*/
IMPORT '/home/cloudera/pdp/
 data_profiling/numerical_profiler_macro.pig';

/*
Load the transactions dataset into the relation transactions
*/
transactions = LOAD
 '/user/cloudera/pdp/datasets/data_profiling/transactions.csv'
 USING PigStorage(',') AS (transaction_id:long,
 transaction_date:datetime, cust_id:long, age:chararray,
 area:chararray, prod_subclass:int, prod_id:long, amt:int,
 asset:int, sales_price:int, phone_no:chararray,
 country_code:chararray);

/*
Use SAMPLE operator to pick a subset of the data, at most 20% of the
data is returned as a sample
*/
sample_transactions = SAMPLE transactions 0.2;

/*
Invoke the macro getProfile with the parameters sample_transactions
which contains a sample of the dataset and the column name on which
the numerical profiling has to be done.
The macro performs numerical profiling on the sales_price column and
returns various statistics like variance, standard deviation, row
count, null count, distinct count and mode
*/
result = getProfile(sample_transactions,'sales_price');

/*
CustomProfileStorage UDF extends the StoreFunc. All the abstract
methods have been overridden to implement logic that writes the
contents of the relation into a file in a custom report like format.
The results are stored on the HDFS in the directory numeric
*/
STORE result INTO
 '/user/cloudera/pdp/output/data_profiling/numeric' USING
 com.profiler.CustomProfileStorage();

Data Profiling Patterns

[134]

Macro
The following is the Pig script showing the implementation of the getProfile macro:

/*
Define alias VAR for the function datafu.pig.stats.VAR
*/
DEFINE VAR datafu.pig.stats.VAR();

/*
Define the macro, specify the input parameters and the return value
*/
DEFINE getProfile(data,columnName) returns numerical_profile{

/*
Calculate the variance, standard deviation, row count, null count and
distinct count for the column sales_price
*/
data_grpd = GROUP $data ALL;
numerical_stats = FOREACH data_grpd
{
 variance = VAR($data.$columnName);
 stdDeviation = SQRT(variance);
 rowCount = COUNT_STAR($data.$columnName);
 nullCount = COUNT($data.$columnName);
 uniq = DISTINCT $data.$columnName;
 GENERATE 'Column Name','$columnName' AS colName,
 'Row Count',rowCount,'Null Count' , (rowCount - nullCount),
 'Distinct Count',COUNT(uniq),
 'Highest Value',MAX($data.$columnName) AS
 max_numerical_count,'Lowest Value',MIN($data.$columnName) AS
 min_numerical_count, 'Total Value',SUM($data.$columnName) AS
 total_numerical_count,'Mean Value', AVG($data.$columnName) AS
 avg_numerical_count,'Variance',variance AS variance,'Standard
 Deviation', stdDeviation AS stdDeviation,'Mode' as
 modeName,'NONE' as modevalue;
}

/*
Compute the mode of the column sales_price
*/
groupd = GROUP $data BY $columnName;
groupd_count = FOREACH groupd GENERATE 'Mode' as modeName, group
 AS mode_values, (long) COUNT($data) AS total;
groupd_count_all = GROUP groupd_count ALL;

Chapter 3

[135]

frequency = FOREACH groupd_count_all GENERATE
 MAX(groupd_count.total) AS fq;
filterd = FILTER groupd_count BY (total== frequency.fq AND total>1
 AND mode_values IS NOT NULL);
mode = GROUP filterd BY modeName;

/*
Join relations numerical stats and mode. Return these values
*/
$numerical_profile = JOIN numerical_stats BY modeName FULL,
 mode BY group;
};

Results
By using the basic statistical profiling pattern, the following results are obtained:

Column Name: sales_price
Row Count: 163794
Null Count: 0
Distinct Count: 1446
Highest Value: 70589
Lowest Value: 1
Total Value: 21781793
Mean Value: 132.98285040966093
Variance: 183789.18332067598
Standard Deviation: 428.7064069041609
Mode: 99

The previous results summarize the properties of the data, its row count, the null
count, and the number of distinct values. We also learn about the key characteristics of
the data with respect to central tendency and dispersion. Mean and mode are few of
the measures of central tendency; variance is one method of knowing data dispersion.

Additional information
The complete code and datasets for this section are in the following GitHub directories:

• Chapter3/code/

• Chapter3/datasets/

Data Profiling Patterns

[136]

The pattern-matching pattern
This section describes the pattern-matching design pattern in which we use Pig
scripts to match numeric and text patterns, to ascertain if the data is coherently
relative to itself and thus, get a measure of data quality.

Background
In the enterprise context, examining the data for coherence comes after the data has
been ingested and its completeness and correctness has been ascertained. The values
of a given attribute can come in different shapes and sizes. This is especially true for
fields requiring human input, where the values are entered according to the whims
of the user. Assuming a column representing the phone number field is coherent, it
can be said that all the values represent valid phone numbers since they match the
expected format, length, and data type (numeric), thus meeting the expectation of the
system. Wrongly representing data in incorrect format leads to inaccurate analytics,
and in the Big Data context, its sheer volume can amplify this inaccuracy.

Motivation
Profiling the data from the pattern-matching perspective, measures the consistency
of data and the amount of data matching an expected pattern. This profiling process
finds out if the values are consistently relative to themselves by comparing these
values with a predefined set of possible values. It captures the essence of the data
and tells you if a field is completely numeric or has consistent length. It also gives
other format-specific information about the data. Pattern evaluation is done by
resolving unrecognized data into defined formats. Abstract type recognition is done
on the data to perform a semantic data-type association based on pattern analysis
and usage. Identifying the percentage inaccuracy of mismatched patterns at an
earlier stage of the analytics cycle ensures better cleaning of data and reduced effort.

Use cases
This design pattern can be used to profile numerical or string data that is supposed
to match a particular pattern.

Chapter 3

[137]

Pattern implementation
This design pattern is implemented in Pig as a standalone script. This script attempts
to discover patterns in the data and the common types of records by analyzing the
string of data stored in the attribute. It generates several patterns that match the
values in the attribute, and reports the percentages of the data that follows each
candidate pattern. The script primarily performs the following tasks:

• The patterns are discovered from the tuples; the count and percentage of
each of them are calculated

• Examines the discovered patterns and classifies them as valid or invalid

Code snippets
To illustrate the working of this pattern, we have considered the retail transactions
dataset stored in HDFS. It contains attributes such as Transaction ID, Transaction
date, Customer ID, Phone Number, Product, Product subclass, Product ID,
Sales Price, and Country Code. For this pattern, we are interested in the values of
the attribute Phone Number.

Pig script
The following is the Pig script illustrating the implementation of this pattern:

/*
Import macro defined in the file pattern_matching_macro.pig
*/
IMPORT '/home/cloudera/pdp/data_profiling/pattern_matching_macro.pig';

/*
Load the dataset transactions.csv into the relation transactions
*/
transactions = LOAD
 '/user/cloudera/pdp/datasets/data_profiling/transactions.csv'
 USING PigStorage(',') AS (transaction_id:long,
 transaction_date:datetime, cust_id:long, age:chararray,
 area:chararray, prod_subclass:int, prod_id:long, amt:int,
 asset:int, sales_price:int, phone_no:chararray,
 country_code:chararray);

/*
Invoke the macro and pass the relation transactions and the column
phone_no as parameters to it.
The pattern matching is performed on the column that is passed.

Data Profiling Patterns

[138]

This macro returns the phone number pattern, its count and the
percentage
*/
result = getPatterns(transactions, 'phone_no');

/*
Split the relation result into the relation valid_pattern if the
phone number pattern matches any of the two regular expressions.
The patterns that do not match any of the regex are stored into the
relation invalid_patterns
*/
SPLIT result INTO valid_patterns IF (phone_number MATCHES
 '([0-9]{3}-[0-9]{3}-[0-9]{4})' or phone_number MATCHES
 '([0-9]{10})'), invalid_patterns OTHERWISE;

/*
The results are stored on the HDFS in the directories valid_patterns
and invalid_patterns
*/
STORE valid_patterns INTO '/user/cloudera/pdp/output/
 data_profiling/pattern_matching/valid_patterns';
STORE invalid_patterns INTO '/user/cloudera/pdp/output/
 data_profiling/pattern_matching/invalid_patterns';

Macro
The following is the Pig script showing the implementation of the getPatterns macro:

/*
Define the macro, specify the input parameters and the return value
*/
DEFINE getPatterns(data,phone_no) returns percentage{

/*
Iterate over each row of the phone_no column and transform each
value by replacing all digits with 9 and all alphabets with a to form
uniform patterns
*/
transactions_replaced = FOREACH $data
{
 replace_digits = REPLACE($phone_no,'\\d','9');
 replace_alphabets = REPLACE(replace_digits,'[a-zA-Z]','a');
 replace_spaces = REPLACE(replace_alphabets,'\\s','');
 GENERATE replace_spaces AS phone_number_pattern;
}
/*
Group by phone_number_pattern and calculate count of each pattern

Chapter 3

[139]

*/
grpd_ph_no_pattern = GROUP transactions_replaced BY
 phone_number_pattern;
phone_num_count = FOREACH grpd_ph_no_pattern GENERATE group as
 phone_num, COUNT(transactions_replaced.phone_number_pattern) AS
 phone_count;

/*
Compute the total count and percentage.
Return the relation percentage with the fields phone number pattern,
count and the rounded percentage
*/
grpd_ph_no_cnt_all = GROUP phone_num_count ALL;
total_count = FOREACH grpd_ph_no_cnt_all GENERATE
 SUM(phone_num_count.phone_count) AS tot_sum;
$percentage = FOREACH phone_num_count GENERATE phone_num as
 phone_number, phone_count as phone_number_count,
 CONCAT((Chararray)ROUND(phone_count*100.0/total_count.tot_sum),
 '%') as percent;
};

Results
The following is the result of applying the design pattern on the transactions data.
The results are stored in the folders valid_patterns and invalid_patterns.

Output in the folder valid_patterns is as follows:

9999999999 490644 60%
999-999-9999 196257 24%

Output in the folder invalid_patterns is as follows:

99999 8177 1%
aaaaaaaaaa 40887 5%
999-999-999a 40888 5%
aaa-aaa-aaaa 40887 5%

The previous results give us a snapshot of all the patterns of phone numbers
that exist in the dataset, their count, and the percentage. Using this data, we can
determine the percentage of inaccurate data in the dataset, and take necessary
measures in the data-cleansing stage. As the relative frequency of phone numbers
in the format 999-999-9999 is more, and it is a valid pattern, you can derive a rule
that requires all values in this attribute to conform to this pattern. This rule can be
applied in the data-cleansing phase.

Data Profiling Patterns

[140]

Additional information
The complete code and datasets for this section are in the following GitHub directories:

• Chapter3/code/

• Chapter3/datasets/

The string profiling pattern
This section describes the string profiling design pattern in which we use Pig scripts
on textual data to know important statistics.

Background
A majority of Big Data implementations deal with text data embedded in columns.
To gain insight from these columns, they have to be integrated with other enterprise-
structured data. This design pattern elaborates a few of the ways that help
understand the quality of textual data.

Motivation
The quality of textual data can be ascertained by applying basic statistical techniques
on the values of the attributes. Finding the string length is the most important
dimension in selecting the appropriate data types and sizes for the target system.
You can use the maximum and minimum string lengths to determine, at a glance,
if the data ingested into Hadoop meets a given constraint. While dealing with data
sizes in the petabyte range, limiting the character count to be just large enough
optimizes storage and computation by cutting down on unnecessary storage space.

Using the string lengths, you can also determine distinct lengths of individual strings
in a column and the percentage of rows in the table that each length represents.

For example, the profile of a column representing US State Codes is supposed to
be two characters but if the profile gathered shows distinct values other than two
characters, this indicates that the values in the column are not coherent.

Use cases
This pattern can be applied on data columns that predominantly contain text data
type to find out if the text is within the constraints defined.

Chapter 3

[141]

Pattern implementation
This design pattern is implemented in Pig as a standalone script, which internally
uses a macro to retrieve the profile. Pig Latin has a set of math functions that
can be directly applied to a column of data. Data is first loaded in to the Pig
relation transactions and then the relation is passed as a parameter to the
getStringProfile macro. This macro iterates over the relation and applies the
Math function on each of the values. The getStringProfile macro is designed to
be modular and can be applied across various text columns to get a good
understanding of the string data profile.

Code snippets
To illustrate the working of this pattern, we have considered the retail transactions
dataset stored in HDFS. It contains attributes such as Transaction ID, Transaction
date, Customer ID, Phone Number, Product, Product subclass, Product ID,
Sales Price, and Country Code. For this pattern, we are interested in the values of
the attribute Country Code.

Pig script
The following is the Pig script illustrating the implementation of this pattern:

/*
Register the datafu and custom storage jar files
*/
REGISTER '/home/cloudera/pdp/jars/datafu.jar';
REGISTER '/home/cloudera/pdp/jars/customprofilestorage.jar';

/*
Import macro defined in the file string_profiler_macro.pig
*/
IMPORT
 '/home/cloudera/pdp/data_profiling/string_profiler_macro.pig';

/*
Load the transactions dataset into the relation transactions
*/
transactions = LOAD
 '/user/cloudera/pdp/datasets/data_profiling/transactions.csv'
 using PigStorage(',') as
 (transaction_id:long,transaction_date:datetime, cust_id:long,
 age:chararray, area:chararray, prod_subclass:int, prod_id:long,
 amt:int, asset:int, sales_price:int, phone_no:chararray,
 country_code:chararray);

Data Profiling Patterns

[142]

/*
Invoke the macro getStringProfile with the parameters transactions and
the column name on which the string profiling has to be done.
The macro performs string profiling on the country_code column and
returns various statistics like row count, null count, total character
count, word count, identifies distinct country codes in the dataset
and calculates their count and percentage.
*/
result = getStringProfile(transactions,'country_code');

/*
CustomProfileStorage UDF extends the StoreFunc. All the abstract
methods have been overridden to implement logic that writes the
contents of the relation into a file in a custom report like format.
The results are stored on the HDFS in the directory string
*/
STORE result INTO
 '/user/cloudera/pdp/output/data_profiling/string' USING
 com.profiler.CustomProfileStorage();

Macro
The following is the Pig script showing the implementation of the
getStringProfile macro:

/*
Define the macro, specify the input parameters and the return value
*/
DEFINE getStringProfile(data,columnName) returns string_profile{

/*
Calculate row count and null count on the column country_code
*/
data_grpd = GROUP $data ALL;
string_stats = FOREACH data_grpd
{
 rowCount = COUNT_STAR($data.$columnName);
 nullCount = COUNT($data.$columnName);
 GENERATE 'Column Name','$columnName' AS colName,
 'Row Count',rowCount,'Null Count' ,
 (rowCount - nullCount),
 'Distinct Values' as dist,'NONE' as distvalue;
}

/*

Chapter 3

[143]

Calculate total char count, max chars, min chars, avg chars on the
column country_code
*/
size = FOREACH $data GENERATE SIZE($columnName) AS chars_count;
size_grpd_all = GROUP size ALL;
char_stats = FOREACH size_grpd_all GENERATE 'Total Char
 Count',SUM(size.chars_count) AS total_char_count,'Max Chars',
 MAX(size.chars_count) AS max_chars_count,'Min Chars',
 MIN(size.chars_count) AS min_chars_count,'Avg Chars',
 AVG(size.chars_count) AS avg_chars_count,'Distinct Values' as
 dist,'NONE' as distvalue;

/*
Calculate total word count, max words and min words on the column
country_code
*/
words = FOREACH $data GENERATE FLATTEN(TOKENIZE($columnName)) AS
 word;
whitespace_filtrd_words = FILTER words BY word MATCHES '\\w+';
grouped_words = GROUP whitespace_filtrd_words BY word;
word_count = FOREACH grouped_words GENERATE
 COUNT(whitespace_filtrd_words) AS count, group AS word;
word_count_grpd_all = GROUP word_count ALL;
words_stats = FOREACH word_count_grpd_all GENERATE 'Word
 Count',SUM(word_count.count) AS total_word_count,
 'Max Words',MAX(word_count.count) AS max_count,
 'Min Words',MIN(word_count.count) AS min_count,'Distinct Values'
 as dist,'NONE' as distvalue;

/*
Identify distinct country codes and their count
*/
grpd_data = GROUP $data BY $columnName;
grpd_data_count = FOREACH grpd_data GENERATE group as
 country_code, COUNT($data.$columnName) AS country_count;

/*
Calculate the total sum of all the counts
*/
grpd_data_cnt_all = GROUP grpd_data_count ALL;
total_count = FOREACH grpd_data_cnt_all GENERATE
 SUM(grpd_data_count.country_count) AS tot_sum;

/*
Calculate the percentage of the distinct country codes
*/

Data Profiling Patterns

[144]

percentage = FOREACH grpd_data_count GENERATE country_code as
 country_code,
country_count as country_code_cnt,
 ROUND(country_count*100.0/total_count.tot_sum) as
 percent,'Distinct Values' as dist;

/*
Join string stats, char_stats, word_stats and the relation with
distinct country codes, their count and the rounded percentage. Return
these values
*/
percentage_grpd = GROUP percentage BY dist;
$string_profile = JOIN string_stats BY dist,char_stats BY dist ,
 words_stats BY dist, percentage_grpd BY group;
};

Results
By using the string profiling pattern, the following results are obtained:

Column Name: country_code
Row Count: 817740
Null Count: 0
Total Char Count: 5632733
Max Chars: 24
Min Chars: 2
Avg Chars: 6.888171056815125
Word Count: 999583
Max Words: 181817
Min Words: 90723

Distinct Values
country_code Count Percentage
US 181792 22%
U.S 90687 11%
USA 181782 22%
U.S.A 90733 11%
America 90929 11%
United States 91094 11%
United States of America 90723 11%

Chapter 3

[145]

The previous results summarize the properties of the data, such as its row count,
number of occurrences of null, and total number of characters; the Max chars and
Min chars count can be used to validate the data quality by checking if the length
of the values is within a range. As per the metadata, the valid value for a country
code should be two characters, but the results show that the maximum character
count is 24, which implies that the data is inaccurate. The results in the Distinct
values section show the distinct country codes in the dataset with their count and
percentage. Using these results we can determine the percentage of inaccurate data
in the dataset and take necessary measures in the data-cleansing stage.

Additional information
The complete code and datasets for this section are in the following GitHub directories:

• Chapter3/code/

• Chapter3/datasets/

The unstructured text profiling pattern
This section describes the unstructured text profiling design pattern in which we use
Pig scripts on free-form text data to know important statistics.

Background
Text mining is done on unstructured data ingested by Hadoop to extract interesting
and non-trivial meaningful patterns, from blocks of meaningless data. Text mining
is an interdisciplinary field, which draws on information retrieval, data mining,
machine learning, statistics, and computational linguistics, to accomplish the
extraction of meaningful patterns from text. Typically, the parallel-processing power
of Hadoop is used to process massive amounts of textual data, to classify documents,
cluster tweets, build ontologies, extract entities, perform sentiment analysis, and
so on.

This pattern discusses a way of ascertaining the quality of text data using text
pre-processing techniques, such as stopword removal, stemming, and TF-IDF.

Motivation
Unstructured text is inherently inconsistent and the inconsistencies can result in
inaccurate analytics. Inconsistencies in textual data arise due to the fact that there
are many ways of representing an idea.

Data Profiling Patterns

[146]

Text pre-processing enhances the quality of data to improve the accuracy of analytics
and reduces the difficulty of the text mining process. The following are the steps to
accomplish text pre-processing:

• One of the first steps in text pre-processing is to convert the blocks of text
into tokens to remove punctuations, hyphens, brackets, and so on, and keep
only the meaningful keywords, abbreviations, and acronyms for further
processing. Tokenization involves a measure of a document's consistency,
as there is a linear proportionality between the number of meaningless
tokens eliminated and the inconsistency of data relative to itself.

• Stopword removal is the next logical step performed in text pre-processing.
This step involves removal of words that do not provide any meaning or
context to the document. These words are known as stop words and they
generally contain pronouns, articles, prepositions, and so on. A stop word list
is defined before actually removing them from the original text. This list can
include other words that are specific to a particular domain.

• The stemming step reduces multiple forms of a word to its root form by
removing or converting a word into its base word (stem). For example,
agreed, agreeing, disagree, agreement, and disagreement are stemmed
(depending on the specific stemming algorithm) to the word agree. This is
done in order to make all the tokens in the corpus consistent.

• After the stemming process is complete, the tokens are assigned weights
relative to the frequency of their occurrence by calculating the term
frequency. This statistic denotes the number of times a word occurs in a
document. Inverse document frequency is calculated to know the frequency
of the word across all the documents. This statistic determines if a word
is common or rare across all the documents. Finding the term frequency
and inverse document frequency has a bearing on the quality of the text,
since these statistics tell you if you can discard or use a word based on its
importance relative to the document or the corpus.

Use cases
This design pattern can be used in cases that require understanding the quality
of unstructured text corpora through text pre-processing techniques. This design
pattern is not exhaustive and covers a few important aspects of text pre-processing
and its applicability to data profiling.

Chapter 3

[147]

Pattern implementation
This design pattern is implemented in Pig as a standalone script, which internally
uses the unstructuredtextprofiling Java UDF to perform stemming and to
generate term frequency and inverse document frequency of the words. The script
performs a right outer join to remove the stop words. The list of stop words are first
loaded into a relation from an external text file and then used in the outer join.

Stemming is done through the usage of the Porter Stemmer algorithm implemented
in the unstructuredtextprofiling JAR file.

Code snippets
To demonstrate the working of this pattern, we have considered the text corpus of
Wikipedia, stored in a folder accessible to the HDFS. This sample corpus consists
of the wiki pages related to Computer Science and Information Technology.

Pig script
The following is the Pig script illustrating the implementation of this pattern:

/*
Register custom text profiler jar
*/
REGISTER '/home/cloudera/pdp/jars/unstructuredtextprofiler.jar';

/*
Load stop words into the relation stop_words_list
*/
stop_words_list = LOAD
 '/user/cloudera/pdp/datasets/data_profiling/text/stopwords.txt'
 USING PigStorage();

/*
Tokenize the stopwords to extract the words
*/
stopwords = FOREACH stop_words_list GENERATE
 FLATTEN(TOKENIZE($0));

/*
Load the dataset into the relations doc1 and doc2.
Tokenize to extract the words for each of these documents
*/

Data Profiling Patterns

[148]

doc1 = LOAD
 '/user/cloudera/pdp/datasets/data_profiling/text/
 computer_science.txt' AS (words:chararray);
docWords1 = FOREACH doc1 GENERATE 'computer_science.txt' AS
 documentId, FLATTEN(TOKENIZE(words)) AS word;
doc2 = LOAD
 '/user/cloudera/pdp/datasets/data_profiling/text/
 information_technology.txt' AS (words:chararray);
docWords2 = FOREACH doc2 GENERATE 'information_technology.txt' AS
 documentId, FLATTEN(TOKENIZE(words)) AS word;

/*
Combine the relations using the UNION operator
*/
combined_docs = UNION docWords1, docWords2;

/*
Perform pre-processing by doing the following
Convert the data into lowercase
Remove stopwords
Perform stemming by calling custom UDF. it uses porter stemmer
algorithm to perform stemming
*/
lowercase_data = FOREACH combined_docs GENERATE documentId as
 documentId, FLATTEN(TOKENIZE(LOWER($1))) as word;
joind = JOIN stopwords BY $0 RIGHT OUTER, lowercase_data BY $1;
stop_words_removed = FILTER joind BY $0 IS NULL;
processed_data = FOREACH stop_words_removed GENERATE documentId as
 documentId, com.profiler.unstructuredtextprofiling.Stemmer($2)
 as word;

/*
Calculate word count per word/doc combination using the Group and
FOREACH statement and the result is stored in word_count
*/
grpd_processed_data = GROUP processed_data BY (word, documentId);
word_count = FOREACH grpd_processed_data GENERATE group AS
 wordDoc,
 COUNT(processed_data) AS wordCount;

/*
Calculate Total word count per document using the Group and FOREACH
statement and the result is stored in total_docs_wc
*/

Chapter 3

[149]

grpd_wc = GROUP word_count BY wordDoc.documentId;
grpd_wc_all = GROUP grpd_wc ALL;
total_docs = FOREACH grpd_wc_all GENERATE
 FLATTEN(grpd_wc),
 COUNT(grpd_wc) AS totalDocs;
total_docs_wc = FOREACH total_docs GENERATE
 FLATTEN(word_count),
 SUM(word_count.wordCount) AS wordCountPerDoc,
 totalDocs;

/*
Calculate Total document count per word is using the Group and FOREACH
statement and the result is stored in doc_count_per_word
*/
grpd_total_docs_wc = GROUP total_docs_wc BY wordDoc.word;
doc_count_per_word = FOREACH grpd_total_docs_wc GENERATE
 FLATTEN(total_docs_wc),
 COUNT(total_docs_wc) AS docCountPerWord;

/*
Calculate tfidf by invoking custom Java UDF.
The overall relevancy of a document with respect to a term is computed
and the resultant data is stored in gen_tfidf
*/
gen_tfidf = FOREACH doc_count_per_word GENERATE $0.word AS word,
 $0.documentId AS documentId,
 com.profiler.unstructuredtextprofiling.GenerateTFIDF(wordCount,
 wordCountPerDoc,
 totalDocs,
 docCountPerWord) AS tfidf;

/*
Order by relevancy
*/
orderd_tfidf = ORDER gen_tfidf BY word ASC, tfidf DESC;

/*
The results are stored on the HDFS in the directory tfidf
*/
STORE orderd_tfidf into
 '/user/cloudera/pdp/output/data_profiling/
 unstructured_text_profiling/tfidf';

Data Profiling Patterns

[150]

Java UDF for stemming
The following is the Java UDF code snippet:

public String exec(Tuple input) throws IOException {
 //Few declarations go here
 Stemmer s = new Stemmer();
 //Code for exception handling goes here
 //Extract values from the input tuple
 String str = (String)input.get(0);

 /*
 Invoke the stem(str) method of the class Stemmer.
 It return the stemmed form of the word
 */
 return s.stem(str);
}

Java UDF for generating TF-IDF
The following is the Java UDF code snippet for computing TF-IDF:

public class GenerateTFIDF extends EvalFunc<Double>{
 @Override
 /**
 *The pre-calculated wordCount, wordCountPerDoc, totalDocs and
docCountPerWord are passed as parameters to this UDF.
 */
 public Double exec(Tuple input) throws IOException {
 /*
 Retrieve the values from the input tuple
 */
 long countOfWords = (Long) input.get(0);
 long countOfWordsPerDoc = (Long) input.get(1);
 long noOfDocs = (Long) input.get(2);
 long docCountPerWord = (Long) input.get(3);
 /*
 Compute the overall relevancy of a document with respect to a
term.
 */
 double tf = (countOfWords * 1.0) / countOfWordsPerDoc;
 double idf = Math.log((noOfDocs * 1.0) /
 docCountPerWord);
 return tf * idf;
 }
}

Chapter 3

[151]

Results
The following are the results after applying the design pattern on the computer_
science and information_technology wiki text corpus:

associat information_technology.txt 0.0015489322470613302
author information_technology.txt 7.744661235306651E-4
automat computer_science.txt 8.943834587870262E-4
avail computer_science.txt 0.0
avail information_technology.txt 0.0
babbag computer_science.txt 8.943834587870262E-4
babbage' computer_science.txt 0.0026831503763610786
base information_technology.txt 0.0
base computer_science.txt 0.0
base. computer_science.txt 8.943834587870262E-4
basic information_technology.txt 7.744661235306651E-4
complex. computer_science.txt 8.943834587870262E-4
compon information_technology.txt 0.0015489322470613302
compsci computer_science.txt 8.943834587870262E-4
comput computer_science.txt 0.0
comput information_technology.txt 0.0
computation computer_science.txt 8.943834587870262E-4
computation. computer_science.txt 8.943834587870262E-4
distinguish information_technology.txt 7.744661235306651E-4
distribut computer_science.txt 0.0
distribut information_technology.txt 0.0
divid computer_science.txt 8.943834587870262E-4
division. computer_science.txt 8.943834587870262E-4
document information_technology.txt 7.744661235306651E-4
encompass information_technology.txt 7.744661235306651E-4
engin computer_science.txt 0.0035775338351481047
engine.[5] computer_science.txt 8.943834587870262E-4
enigma computer_science.txt 8.943834587870262E-4
enough computer_science.txt 0.0017887669175740523
enterprise.[2] information_technology.txt 7.744661235306651E-4
entertain computer_science.txt 8.943834587870262E-4

The original text is passed through the stopword removal and stemming phases, and
term frequency-inverse document frequency is then calculated. The results show the
word, the document it belongs to, and the TF-IDF. Words with high TF-IDF imply a
strong relationship with the document they appear in, and words with a relatively
low TF-IDF are considered low quality and can be ignored.

Data Profiling Patterns

[152]

Additional information
The complete code and datasets for this section are in the following GitHub directories:

• Chapter3/code/

• Chapter3/datasets/

Summary
In this chapter, we build upon what we've learned from Chapter 2, Data Ingest and
Egress Patterns, where we have integrated data from multiple source systems and
ingested it into Hadoop. The next step is to find clues about the data type by looking
at the constituent values. The values are examined to see if they are misrepresented,
if their units are misinterpreted, or if the context of units is derived incorrectly. This
sleuthing mechanism is discussed in more detail in the data type inference pattern.

In the basic statistical profiling pattern, we examine if the values meet the quality
expectations of the use case by collecting statistical information on the numeric
values to find answers to the following questions: For a numeric field, are all the
values numeric? Do all of the values of enumerable fields fall into the proper set?
Do the numeric fields meet the range constraint? Are they complete?, and so on.

The pattern-matching design pattern explores a few techniques to measure the
consistency of both the numerical and text columnar dataset through its data type,
data length, and regex patterns. The next pattern uncovers the quality metrics of
columns representing string values by using various statistical methods. This is
explained in detail in the string profiling design pattern. The unstructured text
profiling design pattern is an attempt to formalize the text pre-processing techniques,
such as stopword removal, stemming, and TF-IDF calculation, to understand the
quality of unstructured text.

In the next chapter, we will focus on data validation and cleansing patterns that can
be applied to a variety of data formats. After reading this chapter, the audience will
be able to choose the right pattern in order to validate the accuracy and completeness
of data by using techniques, such as constraint checks and regex matching. We will
also discuss data cleansing techniques, such as filters and statistical cleansing, in the
next chapter.

Data Validation and
Cleansing Patterns

In the previous chapter, you have studied the various patterns related to data
profiling, through which you understood the different ways to get vital information
about the attributes, content, context, structure, and condition of data residing in the
Hadoop cluster. These data profiling patterns are applied in the data lifecycle before
initiating the process of cleaning the data into a more useful form.

The following are the design patterns covered in this chapter:

• Constraint validation and cleansing pattern: This explains the validation
of the data against a set of constraints to check if there are any missing
values, if the values are within a range specified by a business rule or if the
values conform to referential integrity and unique constraints. Depending
on the business rule, either the invalid records are removed or appropriate
cleansing steps are applied to the invalid data.

• Regex validation and cleansing pattern: This demonstrates validation
of data by matching it with a specific pattern or length using regular
expressions and pattern-based filtering of records to cleanse invalid data.

• Corrupt data validation and cleansing pattern: This sets the context to
understand corruption of data ingested from various sources. This pattern
details the impact of noise and outliers on data and the methods to detect
and cleanse them.

• Unstructured text data validation and cleansing pattern: This demonstrates
ways to validate and cleanse an unstructured data corpus by performing
pre-processing steps, such as lowercase conversion, stopword removal,
stemming, punctuation removal, extra spaces removal, identifying numbers,
and identifying misspellings.

Data Validation and Cleansing Patterns

[154]

Data validation and cleansing for
Big Data
Data validation and cleansing deal with the detection and removal of incorrect
records from the data. The process of data validation and cleansing ensures that
the inconsistencies in the data are identified well before the data is used in the
analytics process. The inconsistent data is then replaced, modified, or deleted
to make it more consistent.

Most of the data validation and cleansing is performed by analyzing the static
constraints based on the schema. Examining the schema in conjunction with the
constraints tells us about the existence of missing values, null values, ambiguity
in representation, foreign key constraints, and so on.

Data validation and cleansing assume an increasingly important role in deriving
value from the perspective of Big Data. While cleaning Big Data, one of the biggest
trade-offs to be considered is the time-quality trade-off. Given that there is unlimited
time, we can improve the quality of the bad data, but the challenge in devising
a good data cleansing script is to cover as much data as possible within the time
constraints and perform the cleansing successfully.

In a typical Big Data use case, the different types of data that are integrated can
add to the complexity of the cleansing process. High-dimensional data from
federated systems have their own cleansing approaches, whereas the huge
volumes of longitudinal data differ in their cleansing approach. Streaming
data could be time-series data that can be efficiently handled using a real-time
cleansing approach rather than a batch-cleansing mechanism. Unstructured data,
descriptive data, and web data have to be handled using a text pre-processing
cleansing approach.

Bad data can result from various touch points in the Hadoop environment, and the
following points outline the common cleansing issues mapped to these touch points:

• Cleansing issues in Big Data arising from data gathering: Inconsistency in
data can arise due to errors in the methods of data gathering. These methods
can range from manual entry to social media data (where nonstandard words
are used), entering duplicate data, and measurement errors.

Chapter 4

[155]

• Cleansing issues in Big Data arising from improper data delivery: This
could be due to improper conversion of data after it has entered into an
upstream system integrated with Hadoop. The reasons for bad data arising
out of improper data delivery include inappropriate aggregation, nulls
converted to default values, buffer overflows, and transmission problems.

• Cleansing issues in Big Data arising from problems in data storage:
Inconsistent data could be the result of problems in physical and logical
storage of data. Data inconsistency as a result of physical storage is a rare
cause; it happens when data is stored for an extended period of time and
tends to get corrupted, which is known as bit rot. The following issues
result from storing data in logical storage structures: inadequate metadata,
missing links in entity relationships, missing timestamps, and so on.

• Cleansing issues in Big Data arising from data integration: Integrating
data from heterogeneous systems has a significant contribution to bad data,
typically resulting in issues related to inconsistent fields. Varying definitions,
differing field formats, incorrect time synchronization and the idiosyncrasies
of legacy data, and wrong processing algorithms contribute to this.

Generally, the first step in Big Data validation and cleansing is to explore the data
using various mathematical techniques to detect the existence of any inaccuracies
in the data. This initial exploration is done by understanding the data type and
domain of each attribute, its context, the acceptable values, and so on; after this, the
actual data is validated to verify conformance to the acceptable limits. This gives an
initial estimate on the characteristics of the inaccuracies and its whereabouts. In the
validation phase, we can conduct this exploration activity by specifying the expected
constraints to find and filter data not meeting the expected constraints, and then take
required action on the data, in the cleansing step.

A sequence of data cleansing routines is run iteratively after we have explored
the data and located the anomalies in it. These data cleansing routines refer to the
master data and relevant business rules to perform cleansing and achieve the end
result of a higher quality data. Data cleansing routines work to clean the data by
filling in missing values, smoothing noisy data, identifying or removing outliers,
and resolving inconsistencies. After the cleansing is performed, an optional control
step is performed where the results are evaluated and exceptions are handled for
the tuples not corrected within the cleansing process.

Data Validation and Cleansing Patterns

[156]

Choosing Pig for validation and
cleansing
Implementing the validation and cleansing code in Pig within the Hadoop
environment, reduces the time-quality trade-off and the requirement to move data to
external systems to perform cleansing. The high-level overview of implementation is
depicted in the following diagram:

B
ig

 D
at

a
in

ge
st

io
n

fra
m

ew
or

k

Pig scripts for validation and
cleansing

UDFs

Completeness

Coherence

Correctness

Structured data

Sensor data

Real-time data

Transactional
data

Unstructured
data

Streaming

HDFS

C
le

an
si

ng
 r

ep
or

ts

Business rules

Implementing validation and cleansing in Pig

The following are the advantages of performing data cleansing within the Hadoop
environment using Pig:

• Improved overall performance since validation and cleansing are done in
the same environment. There is no need to transfer data to external systems
for cleansing.

• Pig is highly suitable to write code for validating and cleansing scripts since
the built-in functions are geared towards processing messy data and for
exploratory analysis.

• Pig enables automating of the cleansing process by chaining complex
workflows, which is very handy for datasets that are periodically updated.

Chapter 4

[157]

The constraint validation and cleansing
design pattern
The constraint validation and cleansing pattern deals with validating the data against
a set of rules and techniques and then cleansing the invalid data.

Background
Constraints tell us about the properties that the data should comply with. They
can be applied to the entire database, a table, a column, or an entire schema. These
constraints are rules created at design time to prevent the data from getting corrupt
and reduce the overhead of processing wrong data; they dictate what values are
valid for a data.

Constraints, such as null checks and range checks, can be used to know if the data
ingested in Hadoop is valid or not. Often, constraint validation and cleansing on the
data in Hadoop can be performed based on the business rules that actually determine
the type of constraint that has to be applied on a particular subset of data.

In cases where a given column has to belong to a particular type, a data type
constraint is applied. When we want to enforce a constraint, such as numbers or
dates should fall within a specified range, a range constraint is applied. These range
constraints typically specify a minimum and maximum value for comparison.
Mandatory constraint enforces a hard validation rule to ensure that certain important
fields do not remain empty, which in essence checks for null or missing values and
eliminates them using a range of methods. Set membership constraint enforces the
rule that the data values should always be from a pre-determined set of values.

Invalid data could be a result of ingesting data into Hadoop from legacy systems
where there are no constraints implemented in the software and ingesting data from
sources such as spreadsheets where it is relatively difficult to set a constraint on what
a user chooses to enter in a cell.

Motivation
The constraint validation and cleansing design pattern implements a Pig script to
validate the data by examining if it is within certain, specified, and mandatory range
constraints and then cleans it.

Data Validation and Cleansing Patterns

[158]

There are many ways to check if the data residing in Hadoop abides by the
mandatory constraints, and one of the most useful ways is to check for null or
missing values. If there are missing values in a given set of data, it is important
to understand if these missing values account for the lack of data quality, since
in many situations it is okay to have missing values in the data.

Finding null or missing values is relatively simple, but cleansing them by filling
the missing values with the appropriate values is a complex task and typically
depends on the business case.

Based on the business case, the null values can be ignored or they can be manually
entered as a part of the cleansing process, but this method is the least recommended.
For categorical variables, a constant global label such as "XXXXX" can be used to
depict missing values, in cases where this label cannot clash with other existing
values of the table or the missing values can be replaced by the most frequently
occurring value (mode). Depending on the data distribution, it is recommended to
use the mean value for data that is in normal distribution and the median value for
data that is in skewed distribution. The usage of mean and median is applicable only
to numerical data types. Using a probabilistic measure, such as Bayesian inference or
a decision tree, the missing values can be calculated in a more precise manner than
the other cases, but this is a time consuming method.

The range constraints limit the values that can be used in the data by specifying the
upper and lower limits of valid values. The design pattern first performs the validity
check of the data and finds out if the data is not within the range specified. This
invalid data is cleansed as per the business rules by filtering the invalid data, or by
replacing the invalid values with the maximum range value if the invalid data is
higher than the range; conversely, the invalid value is replaced with the minimum
range value if the invalid data is lower than the range.

Unique constraints limit the existence of a value to be unique across a table. This
is applicable to primary keys where the existence of duplicate values amounts to
invalid data. A table can have any number of unique constraints with the primary
key defined as one of them. After the data is ingested by Hadoop, we can use
this design pattern to perform validation to find if the data adheres to the unique
constraints and cleanse it by removing the duplicates.

Use cases
You can use this design pattern when an enormous volume of structured data is
ingested and you want to perform integrity checks on the data by validating it
against the mandatory, range, and unique constraints and then cleanse it.

Chapter 4

[159]

Pattern implementation
This design pattern is implemented in Pig as a standalone script. The script loads
the data and validates it based on the constraints specified. The following is a brief
description of how the pattern is being implemented:

• Mandatory constraints: The script checks the data for invalid and missing
data, which does not abide by the mandatory constraints, and cleanses it by
replacing the missing values by the median.

• Range constraints: The script has a range constraint defined, which states
that the valid values of the column claim_amount should be between a lower
and upper bound. The script validates the data, and finds all the values that
are outside the range. In the cleansing step, these values are filtered; they can
also be updated to the minimum and maximum values of the range as per
a predefined business rule.

• Unique constraints: The script performs a check to verify if the data is
distinct and then cleanses it by removing duplicate values.

Code snippets
To illustrate the working of this pattern, we have considered an automobile insurance
claims dataset stored on the HDFS that contains two files. automobile_policy_
master.csv is the master file; it contains a unique ID, vehicle details, price, and the
premium paid for it. The master file is used to validate the data present in the claims
file. The automobile_insurance_claims.csv file contains automobile insurance
claims data, specifically the vehicle repair charges claims; it contains attributes, such
as CLAIM_ID, POLICY_MASTER_ID, VEHICLE_DETAILS, and CLAIM_DETAILS. For this
pattern, we will be performing constraint validation and cleansing on CLAIM_AMOUNT,
POLICY_MASTER_ID, AGE, and CITY, as given in the following code:

/*
Register Datafu and custom jar files
*/
REGISTER '/home/cloudera/pdp/jars/datatypevalidationudf.jar';
REGISTER '/home/cloudera/pdp/jars/datafu.jar';

/*
Define aliases for Quantile UDF from Datafu and custom UDF
DataTypeValidationUDF.
The parameters to Quantile constructor specify list of quantiles to
compute
The parameter to the DataTypeValidationUDF constructor specifies the
Data type that would be used for validation
*/

Data Validation and Cleansing Patterns

[160]

DEFINE Quantile datafu.pig.stats.Quantile('0.25','0.5','0.75');
DEFINE
 DataTypeValidationUDF com.validation.DataTypeValidationUDF
 ('double');

/*
Load automobile insurance claims data set into the relation claims and
policy master data set into the relation policy_master
*/
claims = LOAD
 '/user/cloudera/pdp/datasets/data_validation/
 automobile_insurance_claims.csv' USING PigStorage(',') AS
 (claim_id:chararray, policy_master_id:chararray,
 registration_no:chararray, engine_no:chararray,
 chassis_no:chararray,
 customer_id:int,age:int,first_name:chararray,
 last_name:chararray,street:chararray,
 address:chararray, city:chararray, zip:long,
 gender:chararray, claim_date:chararray,
 garage_city:chararray,bill_no:long,claim_amount:chararray,
 garage_name:chararray,claim_status:chararray);
policy_master = LOAD
 '/user/cloudera/pdp/datasets/data_validation/
 automobile_policy_master.csv' USING PigStorage(',') AS
 (policy_master_id:chararray, model:int, make:chararray,
 price:double, premium:float);

/*
Remove duplicate tuples from the relation claims to ensure that the
data meets unique constraint
*/
claims_distinct = DISTINCT claims;

/*
Invoke the custom DataTypeValidationUDF with the parameter claim_
amount.
The UDF returns the tuples where claim_amount does not match the
specified data type (double), these values are considered as invalid.
Invalid values are stored in the relation invalid_claims_amt
*/
claim_distinct_claim_amount = FOREACH claims_distinct GENERATE
 claim_amount AS claim_amount;
invalid_c_amount = FOREACH claim_distinct_claim_amount GENERATE
 DataTypeValidationUDF(claim_amount) AS claim_amount;
invalid_claims_amt = FILTER invalid_c_amount BY claim_amount IS
 NOT NULL;

Chapter 4

[161]

/*
Filter invalid values from the relation claims_distinct and segregate
the valid and invalid claim amount
*/
valid_invalid_claims_amount_join = JOIN invalid_claims_amt BY
 claim_amount RIGHT, claims_distinct BY claim_amount;
valid_claims_amount = FILTER valid_invalid_claims_amount_join BY
 $0 IS NULL;
invalid_claims_amount = FILTER valid_invalid_claims_amount_join BY
 $0 IS NOT NULL;

/*
For each invalid_claims_amount, generate all the values and specify
the reason for considering these values as invalid
*/
invalid_datatype_claims = FOREACH invalid_claims_amount GENERATE
 $1 AS claim_id,$2 AS policy_master_id, $3 AS registration_no,
 $4 AS engine_no, $5 AS chassis_no,$6 AS customer_id,$7 AS age,
 $8 AS first_name,$9 AS last_name, $10 AS street, $11 AS address,
 $12 AS city, $13 AS zip, $14 AS gender, $15 AS claim_date,
 $16 AS garage_city,$17 AS bill_no, $18 AS claim_amount,$19 AS
 garage_name, $20 AS claim_status,'Invalid Datatype for
 claim_amount' AS reason;

valid_datatype_claims = FOREACH valid_claims_amount GENERATE $1 AS
 claim_id,$2 AS policy_master_id, $3 AS registration_no,
 $4 AS engine_no, $5 AS chassis_no,$6 AS customer_id,$7 AS age,
 $8 AS first_name,$9 AS last_name, $10 AS street, $11 AS address,
 $12 AS city, $13 AS zip, $14 AS gender, $15 AS claim_date,
 $16 AS garage_city,$17 AS bill_no, $18 AS claim_amount,
 $19 AS garage_name, $20 AS claim_status;

/*
Compute quantiles using Datafu's Quantile UDF
*/
groupd = GROUP valid_datatype_claims ALL;
quantiles = FOREACH groupd {
 sorted = ORDER valid_datatype_claims BY age;
 GENERATE Quantile(sorted.age) AS quant;
}

/*
Check for occurrence of null values for the column Age which is a
numerical field and for city which is a categorical field.
The nulls in age column are replaced with median and the nulls in city
column are replaced with a constant string XXXXX.

Data Validation and Cleansing Patterns

[162]

*/
claims_replaced_nulls = FOREACH valid_datatype_claims GENERATE $0,
 $1 ,$2 , $3 ,$4 , $5 ,(int) ($6 is null ? FLOOR
 (quantiles.quant.quantile_0_5) : $6) AS age, $7, $8 ,$9 , $10 ,
 ($11 is null ? 'XXXXX' : $11) AS city, $12, $13 , $14 , $15 ,
 $16 ,(double)$17 , $18 ,$19;

/*
Ensure Referential integrity by checking if the policy_master_id in
the claims dataset is present in the master dataset.
The values in the claims dataset that do not find a match in the
master dataset are considered as invalid values and are removed.
*/
referential_integrity_check = JOIN claims_replaced_nulls BY
 policy_master_id, policy_master BY policy_master_id;
referential_integrity_invalid_data = JOIN policy_master BY
 policy_master_id RIGHT, claims_replaced_nulls BY
 policy_master_id;
referential_check_invalid_claims = FILTER
 referential_integrity_invalid_data BY $0 IS NULL;

/*
For each referential_check_invalid_claims, generate all the values and
specify the reason for considering these values as invalid
*/
invalid_referential_claims = FOREACH
 referential_check_invalid_claims GENERATE $5 ,$6, $7, $8 ,$9 ,
 $10 , $11, $12, $13 , $14 , $15 , $16 ,$17 , $18 ,$19,
 $20, $21 ,(chararray) $22 , $23 ,$24,
 'Referential check Failed for policy_master_id' AS reason;

/*
Perform Range validation by checking if the values in the claim_amount
column are within a range of 7% to 65% of the price in the master
dataset.
The values that fall outside the range are considered as invalid
values and are removed.
*/
referential_integrity_valid_claims = FILTER
 referential_integrity_check BY
 (claims_replaced_nulls::claim_amount>=
 (policy_master::price*7/100) AND
 claims_replaced_nulls::claim_amount<=
 (policy_master::price*65/100));
valid_claims = FOREACH referential_integrity_valid_claims GENERATE
 $0, $1 ,$2 , $3 ,$4 , $5 ,$6 , $7, $8 ,$9 , $10 , $11 , $12,
 $13 , $14 , $15 , $16 ,$17 , $18 ,$19;

Chapter 4

[163]

invalid_range = FILTER referential_integrity_check BY
 (claims_replaced_nulls::claim_amount<=
 (policy_master::price*7/100) OR
 claims_replaced_nulls::claim_amount>=
 (policy_master::price*65/100));

/*
For each invalid_range, generate all the values and specify the reason
for considering these values as invalid
*/
invalid_claims_range = FOREACH invalid_range GENERATE $0, $1 ,$2 ,
 $3 ,$4 , $5 ,$6, $7, $8 ,$9 , $10 , $11, $12, $13 , $14 , $15 ,
 $16 ,(chararray)$17 , $18 ,$19,
 'claim_amount not within range' AS reason;

/*
Combine all the relations containing invalid values.
*/
invalid_claims = UNION
 invalid_datatype_claims,invalid_referential_claims,
 invalid_claims_range;

/*
The results are stored on the HDFS in the directories valid_data and
invalid_data
The values that are not meeting the constraints are written to a
file in the folder invalid_data. This file has an additional column
specifying the reason for elimination of the record, this can be used
for further analysis.
*/
STORE valid_claims INTO
 '/user/cloudera/pdp/output/data_validation_cleansing/
 constraints_validation_cleansing/valid_data';
STORE invalid_claims INTO
 '/user/cloudera/pdp/output/data_validation_cleansing/
 constraints_validation_cleansing/invalid_data';

Results
The following is a snippet of the original dataset; we have eliminated a few columns
to improve readability.

claim_id,policy_master_id,cust_id,age,city,claim_date,claim_amount
A123B39,A213,39,34,Maryland,5/13/2012,147157
A123B39,A213,39,34,Maryland,5/13/2012,147157
A123B13,A224,13,,Minnesota,2/18/2012,8751.24

Data Validation and Cleansing Patterns

[164]

A123B70,A224,70,59,,4/2/2012,8751.24
A123B672,A285AC,672,52,Las Vegas,10/19/2012,7865.73
A123B726,A251ext,726,26,Las Vegas,4/6/2013,4400
A123B21,A214,21,41,Maryland,2/28/2009,1230000000
A123B40,A214,40,35,Austin,6/30/2009,29500
A123B46,A220,46,32,Austin,12/29/2011,13986 Amount
A123B20,A213,20,42,Redmond,5/18/2013,147157 Price
A123B937,A213,937,35,Minnesota,9/27/2009,147157

The following is the result of applying this pattern to the dataset:

• Valid data
A123B39,A213,39,34,Maryland,5/13/2012,147157
A123B13,A224,13,35,Minnesota,2/18/2012,8751.24
A123B70,A224,70,59,XXXXX,4/2/2012,8751.24
A123B937,A213,937,35,Minnesota,9/27/2009,147157

• Invalid data

A123B672,A285AC,672,52,Las Vegas,10/19/2012,7865.73,
 Referential check Failed for policy_master_id
A123B726,A251ext,726,26,Las Vegas,4/6/2013,4400,
 Referential check Failed for policy_master_id
A123B21,A214,21,41,Maryland,2/28/2009,1230000000,
 claim_amount not within range
A123B40,A214,40,35,Austin,6/30/2009,29500,
 claim_amount not within range
A123B46,A220,46,32,Austin,12/29/2011,13986 Amount,
 InvalidDatatype for claim_amount
A123B20,A213,20,42,Redmond,5/18/2013,147157 Price,
 InvalidDatatype for claim_amount

The resultant data is divided into valid and invalid data. In the previous results,
the duplicate record with claim_id A123B39 is removed, the null value for age is
replaced by 35 (median) for the record with claim_id A123B13, and the null value
for city is replaced by XXXXX for the record with claim_id A123B70. Along with
these, the valid data has the list of records that match the data type, range, and
referential integrity constraints on the columns claim_amount and policy_master_
id. The invalid data is written to a file in the folder invalid_data. The last column
of the file mentions the reason for considering the record as invalid.

Chapter 4

[165]

Additional information
The complete code and datasets for this section are in the following GitHub directories:

• Chapter4/code/

• Chapter4/datasets/

The regex validation and cleansing
design pattern
This design pattern deals with using the regex functions to validate the data. The
regex functions can be used to validate the data to match a specific length or pattern
and to cleanse the invalid data.

Background
This design pattern discusses ways to use a regex function to identify and clean data
that has invalid field lengths. The pattern also identifies all the occurrences of values
with the specified date format from within the data and removes the invalid values
that do not comply with the format specified.

Motivation
Identifying string data with incorrect length is one of the quickest ways to understand
if the data is accurate. Often we will need this string length parameter to judge the data
without actually looking deeper into the data. This will be useful in use cases where it
is mandatory to have an upper limit to the string length, such as the US state codes that
generally have an upper limit of length as two.

Finding all the patterns of strings that match the date pattern is one of the most
common transformations done on data. Dates are prone to be represented in multiple
ways (DD/MM/YY, MM/DD/YY, YYYY/MM/DD, and so on). Transformation
includes finding the occurrence of these patterns and standardizing all of these
formats into a uniform date format that is mandated by the business rule.

Data Validation and Cleansing Patterns

[166]

Use cases
Regular expressions are used in cases that require full or partial pattern matches on
strings. The following are a few common use cases that come up while doing extract,
transform, and load (ETL):

• String length and pattern validation: Regular expressions are used to
validate the data if the structure of the data is in a standard format and if
the data matches a specified length. For example, it can help validate data
if the field starts with an alphabet and is followed by a three-digit number.

• Filtering fields that do not match a specific pattern: This can be used in the
cleansing phase if your business case mandates you to eliminate the data that
does not match a specific pattern; for example, filtering the records where
dates do not match a predefined format.

• Splitting string into tokens: Unstructured text can be parsed and split
into tokens using regular expressions. A common example is splitting the
text into words by tokenizing it with \s, which denotes splitting by space.
Another use could be to split a string using a pattern to get the prefix or
suffix. For example, extracting the numeric value of 100 from a string
"100 dollars".

• Extracting data that matches a pattern: This has uses where you want
to extract some text that matches a pattern out of a huge file. Logfile
pre-processing is an example for this; you can form a regular expression
to extract the request or response patterns from a huge log and further
analysis can be performed on the extracted data.

Pattern implementation
This design pattern is implemented in Pig as a standalone script. The script loads
the data and validates it against the regular expression patterns.

• String pattern and length: The script validates the values in the policy_
master_id column to match a predefined length and pattern. The values
that do not match the pattern or length are removed.

• Date format: The script validates values in the column claim_date to
match the MM/DD/YYYY date format; the records with invalid date
format are filtered.

Chapter 4

[167]

Code snippets
To illustrate the working of this pattern, we have considered an automobile
insurance claims dataset stored on the HDFS that contains two files. automobile_
policy_master.csv is the master file; it contains a unique ID, vehicle details, price,
and the premium paid for it. The master file is used to validate the data present in
the claims file. The automobile_insurance_claims.csv file contains automobile
insurance claims data, specifically the vehicle repair charges claims; it contains
attributes, such as CLAIM_ID, POLICY_MASTER_ID, VEHICLE_DETAILS, and CLAIM_
DETAILS. For this pattern, we will be performing regex validation and cleansing on
POLICY_MASTER_ID and CLAIM_DATE, as given in the following code:

/*
Load automobile insurance claims dataset into the relation claims
*/
claims = LOAD
 '/user/cloudera/pdp/datasets/data_validation/
 automobile_insurance_claims.csv' USING PigStorage(',') AS
 (claim_id:chararray, policy_master_id:chararray,
 registration_no:chararray, engine_no:chararray,
 chassis_no:chararray,
 customer_id:int,age:int,first_name:chararray,
 last_name:chararray,street:chararray,address:chararray,
 city:chararray,zip:long,gender:chararray, claim_date:chararray,
 garage_city:chararray,bill_no:long,claim_amount:chararray,
 garage_name:chararray,claim_status:chararray);

/*
Validate the values in the column policy_master_id with a regular
expression to match the pattern where the value should start with an
alphabet followed by three digits.
The values that do not match the pattern or length are considered as
invalid values and are removed.
*/
valid_policy_master_id = FILTER claims BY policy_master_id MATCHES
 '[aA-zZ][0-9]{3}';

/*
Invalid values are stored in the relation invalid_length
*/
invalid_policy_master_id = FILTER claims BY NOT
 (policy_master_id MATCHES '[aA-zZ][0-9]{3}');
invalid_length = FOREACH invalid_policy_master_id GENERATE $0,
 $1 ,$2 , $3 ,$4 , $5 ,$6 , $7, $8 ,$9 , $10 , $11, $12, $13 ,
 $14 , $15 , $16 ,$17 , $18 ,$19,
 'Invalid length or pattern for policy_master_id' AS reason;

Data Validation and Cleansing Patterns

[168]

/*
Validate the values in the column claim_date to match MM/DD/YYYY
format, also validate the values given for MM and DD to fall within 01
to 12 for month and 01 to 31 for day
The values that do not match the pattern are considered as invalid
values and are removed.
*/
valid_claims = FILTER valid_policy_master_id BY
 (claim_date MATCHES '^(0?[1-9]|1[0-2])[\\/]
 (0?[1-9]|[12][0-9]|3[01])[\\/]\\d{4}$');

/*
Invalid values are stored in the relation invalid_date
*/
invalid_dates = FILTER valid_policy_master_id BY NOT
 (claim_date MATCHES '^(0?[1-9]|1[0-2])[\\/]
 (0?[1-9]|[12][0-9]|3[01])[\\/]\\d{4}$');
invalid_date = FOREACH invalid_dates GENERATE $0, $1 ,$2 , $3 ,
 $4 , $5 ,$6 , $7, $8 ,$9 , $10 , $11, $12, $13 , $14 , $15 ,
 $16 ,$17 , $18 ,$19,
 'Invalid date format for claim_date' AS reason;

/*
Combine the relations that contain invalid values.
*/
invalid_claims = UNION invalid_length,invalid_date;

/*
The results are stored on the HDFS in the directories valid_data and
invalid_data
The invalid values are written to a file in the folder invalid_
data. This file has an additional column specifying the reason for
elimination of the record, this can be used for further analysis.
*/
STORE valid_claims INTO
 '/user/cloudera/pdp/output/data_validation_cleansing/
 regex_validation_cleansing/valid_data';
STORE invalid_claims INTO
 '/user/cloudera/pdp/output/data_validation_cleansing/
 regex_validation_cleansing/invalid_data';

Chapter 4

[169]

Results
The following is a snippet of the original dataset; we have eliminated a few columns
to improve readability.

claim_id,policy_master_id,cust_id,age,city,claim_date,claim_amount
A123B1,A290,1,42,Minnesota,1/5/2011,8211
A123B672,A285AC,672,52,Las Vegas,10/19/2012,7865.73
A123B726,A251ext,726,26,Las Vegas,4/6/2013,4400
A123B2,A213,2,35,Redmond,1/22/2009,147157
A123B28,A221,28,19,Austin,6/37/2012,31930.2
A123B888,A247,888,49,Las Vegas,21/20/2012,873
A123B3,A214,3,23,Maryland,7/8/2011,8400

The following is the result of applying this pattern to the dataset:

• Valid data
A123B1,A290,1,42,Minnesota,1/5/2011,8211
A123B2,A213,2,35,Redmond,1/22/2009,147157
A123B3,A214,3,23,Maryland,7/8/2011,8400

• Invalid data
A123B672,A285AC,672,52,Las Vegas,10/19/2012,7865.73,
 Invalid length or pattern for policy_master_id
A123B726,A251ext,726,26,Las Vegas,4/6/2013,4400,
 Invalid length or pattern for policy_master_id
A123B28,A221,28,19,Austin,6/37/2012,31930.2,
 Invalid date format for claim_date
A123B888,A247,888,49,Las Vegas,21/20/2012,873,
 Invalid date format for claim_date

As shown previously, the resultant data is divided into valid and invalid data. Valid
data has the list of records that match the regex pattern for validating policy_
master_id and claim_date. The invalid data is written to a file in the folder
invalid_data; the last column of the file mentions the reason for considering this
record as invalid. We chose to filter invalid data; however, the cleansing technique
depends on the business case where the invalid data might have to be transformed
to valid data.

Data Validation and Cleansing Patterns

[170]

Additional information
The complete code and datasets for this section are in the following GitHub directories:

• Chapter4/code/

• Chapter4/datasets/

The corrupt data validation and cleansing
design pattern
This design pattern discusses data corruption from the perspective of the corrupt
data being treated as a noise or as an outlier. The techniques to identify and cleanse
the corrupt data are discussed in detail.

Background
This design pattern explores the usage of Pig to validate and cleanse corrupt data
from a dataset. It tries to set the context of data corruption from various sources
of Big Data ranging from sensor to structured data. This design pattern probes the
data corruption angle from two perspectives, one is noise and the other is outliers,
as given in the following list:

• Noise can be defined as a random error in measurement that has caused
corrupt data to be ingested along with the correct data. The amount of
error is not too far away from the expected value.

• Outliers are also a kind of noise but the value of error is too far away from
the expected value. Outliers can have a very high influence on the accuracy
of an analysis. They are often measurements or recording errors. Some of
them can represent phenomena of interest, something significant from the
viewpoint of the application domain, which implies that not all outliers
should be eliminated.

Data corruption can manifest as noise or outliers, the major difference between
them being the degree of variation to the expected value. Noisy data varies to
a lesser degree and has values closer to the original data, whereas outliers vary to
a large degree and the values are way off the original data. Illustrating the example
in the following set of numbers, 4 can be considered as noise and 21 as an outlier.

A = [1,2,1,4,1,2,1,1,1,2,21,1,2,2]

Chapter 4

[171]

Corrupt data increases the amount of effort required to perform analytics and also
adversely affects the accuracy of the data mining analysis. The following points
illustrate a few sources of data corruption as applicable to Big Data:

• Data corruption in sensor data: Sensor data has become one of the biggest
sources of volume amongst the wide array of Big Data sources that pervades
our data universe. These sensors generally generate a huge amount of data
over a very long period of time and this leads to various computational
challenges arising due to the inaccuracy of data. Hadoop is extensively
used in mining longitudinal sensor data for patterns and one of the biggest
challenges faced in this process is the natural errors and incompleteness of
the sensor data. The sensors have inadequate battery life because of which
many of them probably may not be able to send accurate data over an
extended period of time, thus corrupting the data.

• Data corruption in structured data: In the structured Big Data context,
any data, be it numeric or categorical, that has been stored in Hadoop in
such a manner that it cannot be read or used by any of the data processing
routines written for the data can be considered corrupt.

Motivation
Corrupt data can be validated and cleansed by applying appropriate noise and
outlier detection techniques. The common techniques employed for this purpose
are binning, regression, and clustering, as given in the following list:

• Binning: This technique can be used to identify noise and outliers. This
technique is also used for removal of noisy data by applying a smoothing
function. Binning works by creating a set of sorted values partitioned into
bins. These values are partitioned by equal frequency or equal width. In
order to smoothen the data (or remove noise), the original data values
that are in a given partition or a bin, are replaced by the mean or median
of that partition. In the current design pattern, we will be illustrating the
applicability of binning to remove noise.

• Regression: It is a technique that fits the data values to a function. Noise
removal can be done using regression by identifying the regression function
and removing all the data values that lie far away from the function's predicted
value. Linear regression finds the "most appropriate" line function to fit two
variables so that one variable can be used to predict the other. Multiple linear
regressions, similar to linear regressions, is where more than two variables are
involved and the data is fit to a poly-dimensional surface.

Data Validation and Cleansing Patterns

[172]

• Clustering: Outlier analysis can be performed using clustering by grouping
similar values together to find the values that are outside of the cluster and
may be considered as an outlier. A cluster consists of values that are similar
to other values in the same cluster and at the same time, dissimilar to the
values in the other clusters. A cluster of values can be treated as a group to
compare with other cluster values at macro level.

One more method of finding the outliers is to compute the interquartile range (IQR).
In this method, three quartiles (Q1, Q2, and Q3) are first calculated from the values.
The quartiles divide the values into four equal groups with each group comprising
a quarter of data. The upper fence and lower fence are calculated using the three
quartiles and any value above or below these two fences is considered as an outlier.
The fences are a guideline to define the range outside which an outlier exists. In the
current design pattern, we are using this method to find the outliers.

Use cases
You can consider using this design pattern to cleanse corrupt data by removing noise
and outliers. This design pattern will be helpful to understand how to classify data
into noise or outliers and then remove them.

Pattern implementation
This design pattern is implemented as a standalone Pig script using a third-party
library datafu.jar. The script has the implementation for identifying and removing
noise and outliers.

Binning techniques identify and remove noise. In binning, the values are sorted
and are distributed into a number of bins. The minimum and maximum values are
identified for each bin and are set as bin boundaries. Each bin value is replaced by
the nearest bin boundary value. This method is called smoothing by bin boundaries.
To identify outliers, we are using the standard box plot rule method; it finds outliers
based on the upper and lower quartiles of the data distribution. The Q1 and Q3 of
the data distribution and their interquartile distance is calculated, using (Q1 - c *
IQD, Q3 + c *IQD), which gives the range that that the data should fall in. Here, c
is a constant with a value 1.5. The values that fall outside this range are considered
outliers. The script uses the Datafu library to calculate quartiles.

Chapter 4

[173]

Code snippets
To illustrate the working of this pattern, we have considered an automobile
insurance claims dataset stored on the HDFS that contains two files. automobile_
policy_master.csv is the master file; it contains a unique ID, vehicle details,
price, and the premium paid for it. The master file is used to validate the data
present in the claims file. The automobile_insurance_claims.csv file contains
automobile insurance claims data, specifically vehicle repair charges claims; it
contains attributes, such as CLAIM_ID, POLICY_MASTER_ID, VEHICLE_DETAILS,
and CLAIM_DETAILS. For this pattern, we will be performing corrupt data
validation and cleansing on CLAIM_AMOUNT and AGE, as given in the following code:

/*
Register Datafu jar file
*/
REGISTER '/home/cloudera/pdp/jars/datafu.jar';

/*
Define alias for the UDF quantile
The parameters specify list of quantiles to compute
*/
DEFINE Quantile datafu.pig.stats.Quantile('0.25','0.50','0.75');

/*
Load automobile insurance claims data set into the relation claims
*/
claims = LOAD
 '/user/cloudera/pdp/datasets/data_validation/
 automobile_insurance_claims.csv' USING PigStorage(',') AS
 (claim_id:chararray, policy_master_id:chararray,
 registration_no:chararray, engine_no:chararray,
 chassis_no:chararray,
 customer_id:int,age:int,first_name:chararray,
 last_name:chararray,street:chararray,address:chararray,
 city:chararray,zip:long,gender:chararray, claim_date:chararray,
 garage_city:chararray,bill_no:long,claim_amount:double,
 garage_name:chararray,claim_status:chararray);

/*
Sort the relation claims by age
*/

Data Validation and Cleansing Patterns

[174]

claims_age_sorted = ORDER claims BY age ASC;

/*
Divide the data into equal frequency bins.
Minimum and maximum values are identified for each bin and are set as
bin boundaries.
Replace each bin value with the nearest bin boundary.
*/
bin_id_claims = FOREACH claims_age_sorted GENERATE
 (customer_id - 1) * 10 / (130- 1 + 1) AS bin_id, $0 ,$1 ,$2 ,
 $3 ,$4 ,$5 ,$6 ,$7 ,$8 ,$9 ,$10 ,$11 ,$12 ,$13 ,$14 ,$15 ,
 $16 ,$17 ,$18 ,$19 ;
group_by_id = GROUP bin_id_claims BY bin_id;
claims_bin_boundaries = FOREACH group_by_id
{
 bin_lower_bound=(int) MIN(bin_id_claims.age);
 bin_upper_bound = (int)MAX(bin_id_claims.age);
 GENERATE bin_lower_bound AS bin_lower_bound, bin_upper_bound AS
 bin_upper_bound, FLATTEN(bin_id_claims);
};
smoothing_by_bin_boundaries = FOREACH claims_bin_boundaries
 GENERATE $3 AS claim_id,$4 AS policy_master_id,$5 AS
 registration_no,$6 AS engine_no,$7 AS chassis_no,
 $8 AS customer_id,(($9 - bin_lower_bound) <=
 (bin_upper_bound - $9) ? bin_lower_bound : bin_upper_bound)
 AS age,$10 AS first_name,$11 AS last_name,$12 AS street,
 $13 AS address,$14 AS city,$15 AS zip,$16 AS gender,
 $17 AS claim_date,$18 AS garage_city,$19 AS bill_no,
 $20 AS claim_amount,$21 AS garage_name,$22 AS claim_status;

/*
Identify outliers present in the column claim_amount by calculating
the quartiles, interquartile distance and the upper and lower fences.
The values that do not fall within this range are considered as
outliers and are filtered out.
*/
groupd = GROUP smoothing_by_bin_boundaries ALL;
quantiles = FOREACH groupd {
 sorted = ORDER smoothing_by_bin_boundaries BY claim_amount;
 GENERATE Quantile(sorted.claim_amount) AS quant;
}
valid_range = FOREACH quantiles GENERATE
 (quant.quantile_0_25 - 1.5 *
 (quant.quantile_0_75 - quant.quantile_0_25)) ,
 (quant.quantile_0_75 + 1.5 *
 (quant.quantile_0_75 - quant.quantile_0_25));

Chapter 4

[175]

claims_filtered_outliers = FILTER smoothing_by_bin_boundaries BY
 claim_amount>= valid_range.$0 AND claim_amount<= valid_range.$1;

/*
Store the invalid values in the relation invalid_claims
*/
invalid_claims_filter = FILTER smoothing_by_bin_boundaries BY
 claim_amount<= valid_range.$0 OR claim_amount>= valid_range.$1;
invalid_claims = FOREACH invalid_claims_filter GENERATE $0 ,$1 ,
 $2 ,$3 ,$4 ,$5 ,$6 ,$7 ,$8 ,$9 ,$10 ,$11 ,$12 ,$13 ,$14 ,
 $15 ,$16 ,$17 ,$18 ,$19,
 'claim_amount identified as Outlier' as reason;

/*
The results are stored on the HDFS in the directories valid_data and
invalid_data
The invalid values are written to a file in the folder invalid_
data. This file has an additional column specifying the reason for
elimination of the record, this can be used for further analysis.
*/
STORE invalid_claims INTO
 '/user/cloudera/pdp/output/data_validation_cleansing/
 corrupt_data_validation_cleansing/invalid_data';
STORE claims_filtered_outliers INTO
 '/user/cloudera/pdp/output/data_validation_cleansing/
 corrupt_data_validation_cleansing/valid_data';

Results
The following is a snippet of the original dataset; we have eliminated a few columns
to improve readability.

claim_id,policy_master_id,cust_id,age,city,claim_date,claim_amount
A123B6,A217,6,42,Las Vegas,6/25/2010,-12495
A123B11,A222,11,21,,11/5/2012,293278.7,claim_amount identified as
 Outlier
A123B2,A213,2,42,Redmond,1/22/2009,147157,claim_amount identified
 as Outlier
A123B9,A220,9,21,Maryland,9/20/2011,13986
A123B4,A215,4,42,Austin,12/16/2011,35478

Data Validation and Cleansing Patterns

[176]

The following is the result of applying this pattern on the dataset:

• Valid data
A123B6,A217,6,42,Las Vegas,6/25/2010,-12495
A123B9,A220,9,21,Maryland,9/20/2011,13986
A123B4,A215,4,42,Austin,12/16/2011,35478

• Invalid data
A123B11,A222,11,21,,11/5/2012,293278.7,
 claim_amount identified as Outlier
A123B2,A213,2,42,Redmond,1/22/2009,147157,
 claim_amount identified as Outlier

As shown previously, the resultant data is divided into valid and invalid data.
Valid data has the list of records where the noise is smoothened for the age column.
Outlier detection is done on the claim_amount column, the lower and upper fences
are identified as -34929.0 and 70935.0; the values that do not fall in this range
are identified as outliers and are written to a file in the folder invalid_data. The
last column of this file shows the reason for considering this record as invalid. The
outliers are filtered and the data is stored in the valid_data folder. The previous
script removes the outliers; however, this decision can vary as per the business rule.

Additional information
The complete code and datasets for this section are in the following GitHub directories:

• Chapter4/code/

• Chapter4/datasets/

The unstructured text data validation
and cleansing design pattern
The unstructured text validation and cleansing pattern demonstrates ways to
cleanse unstructured data by applying various data pre-processing techniques.

Background
Processing huge amounts of unstructured data with Hadoop is a challenging task in
terms of cleaning it and making it ready for processing. Textual data, which includes
documents, mails, text files, and chat files, is inherently unorganized without a defined
data model when it is ingested by Hadoop.

Chapter 4

[177]

In order to open the unstructured data for analysis, we have to bring in a semblance
of structure to it. The foundation of organizing unstructured data is to integrate
it with structured data existing in the enterprise by performing a planned and
controlled cleansing transformation and flow of data across the data store, for
operational and/or analytical use. Integration of unstructured data is necessary
to make the queries and analytics performed on the resultant data meaningful.

One of the first steps after unstructured data ingestion is to discover the metadata
from the textual data and organize it in a way that facilitates further processing,
thus removing a few of the irregularities and ambiguities from the data. This
metadata creation itself is a multistep iterative process employing various data
parsing, cleansing, and transformation techniques ranging from simple entity
extraction and semantic tagging to natural language processing using artificial
intelligence algorithms.

Motivation
This design pattern demonstrates one way to cleanse an unstructured data corpus
by performing pre-processing steps, such as lowercase conversion, stopword
removal, stemming, punctuation removal, extra spaces removal, identifying
numbers, and identifying misspellings.

The motivation for this pattern is to understand the various kinds of inconsistencies
in unstructured data and help identify these issues and cleanse them.

Unstructured data is prone to multiple quality issues ranging from integrity to
inconsistency. The following are the common cleansing steps for unstructured text:

• Textual data can also be represented using alternative forms of spellings;
for instance, a name can be written in different ways and searching for that
particular name will not give a result if it is spelled differently but still refers
to the same entity. This aspect can be considered as a form of misspelling.
Integrating and cleansing these alternative spellings to refer to the same entity
would mitigate the ambiguity. Effective conversion of unstructured text to
structured format requires us to take into account all the alternative spellings.

• Misspellings also account for many irregularities that will affect the accuracy
of the analytics. In order to make the data processable, we have to identify
the misspelled words and replace them with the correct ones.

Data Validation and Cleansing Patterns

[178]

• Numerical value identification from within the text enables us to pick all the
numbers. These extracted numbers can be included or eliminated from further
processing depending on the business context. Data cleansing can also be
performed by extracting numbers from text; for instance, if the text consists of
a phrase "one thousand", it can be transformed into 1000 so that appropriate
analytics can be performed.

• Extraction of data, which matches certain patterns using regex, can be a
cleansing method. For instance, dates can be extracted from within the
text by specifying a pattern. If the extracted dates are not in the standard
format (DD/MM/YY), standardizing the dates could be one of the cleansing
activities performed to read and index the unstructured data by date.

Use cases
You can consider using this design pattern to cleanup the unstructured data by
removing misspellings, punctuations, and so on after the data has already been
ingested by Hadoop.

Pattern implementation
This design pattern is implemented as a standalone Pig script, which internally
uses right-outer join to remove the stop words. The list of stop words are first
loaded into a relation from an external text file and then used in the outer join.

The LOWER function is used to convert all the words into lower case. Punctuations
are removed by using the REPLACE function matching the specific literal. Similarly,
numbers are removed by matching all the patterns of numbers in the text
using REPLACE.

The code for implementing the misspelled words uses a Bloom filter, which has
been recently included in Pig 0.10 version as a UDF.

The Bloom filter is a space-optimized data structure specifically used to filter a smaller
dataset from a larger dataset by testing whether an element belonging to the smaller
dataset is a member of the larger one or not. The Bloom filter achieves drastic space
optimization by internally implementing a clever mechanism to store each element
to use a constant amount of memory no matter the size of the element. Even though
the Bloom filter has an enormous space advantage compared to other structures, the
filtering is not completely accurate since there can be scope for false positives.

Chapter 4

[179]

Pig has support for the Bloom filters through calls to BuildBloom, which builds
a Bloom filter by loading and training it from the list of values loaded from the
dictionary corpus stored in a Pig relation. The trained Bloom filter, stored in a
distributed cache and passed on to the Mapper function internally, is used to
perform the actual filtering operation on the input data by doing a FILTER
operation using the BLOOM UDF. The resultant set filtered would be the correctly
spelled words after the Bloom filter has eliminated all the misspelled words.

Code snippets
To demonstrate the working of this pattern, we have considered the text corpus
of Wikipedia stored in a folder accessible to the HDFS. This sample corpus consists
of the wiki pages related to Computer Science and Information Technology. A few
misspelled words are deliberately introduced into the corpus to demonstrate the
functionality of this pattern.

/*
Define alias for the UDF BuildBloom.
The first parameter to BuildBloom constructor is the hashing technique
to use, the second parameter specifies the number of distinct elements
that would be placed in the filter and the third parameter is the
acceptable rate of false positives.
*/
DEFINE BuildBloom BuildBloom('jenkins', '75000', '0.1');

/*
Load dictionary words
*/
dict_words1 = LOAD
 '/user/cloudera/pdp/datasets/data_validation/unstructured_text/
 dictionary_words1.csv' as (words:chararray);
dict_words2 = LOAD
 '/user/cloudera/pdp/datasets/data_validation/unstructured_text/
 dictionary_words2.csv' as (words:chararray);

/*
Load stop words
*/
stop_words_list = LOAD
 '/user/cloudera/pdp/datasets/data_validation/unstructured_text/
 stopwords.txt' USING PigStorage();
stopwords = FOREACH stop_words_list GENERATE
 FLATTEN(TOKENIZE($0));

Data Validation and Cleansing Patterns

[180]

/*
Load the document corpus and tokenize to extract the words
*/
doc1 = LOAD
 '/user/cloudera/pdp/datasets/data_validation/unstructured_text/
 computer_science.txt' AS (words:chararray);
docWords1 = FOREACH doc1 GENERATE FLATTEN(TOKENIZE(words)) AS
 word;
doc2 = LOAD
 '/user/cloudera/pdp/datasets/data_validation/unstructured_text/
 information_technology.txt' AS (words:chararray);
docWords2 = FOREACH doc2 GENERATE FLATTEN(TOKENIZE(words)) AS
 word;

/*
Combine the contents of the relations docWords1 and docWords2
*/
combined_docs = UNION docWords1, docWords2;

/*
Convert to lowercase, remove stopwords, punctuations, spaces, numbers.
Replace nulls with the value "dummy string"
*/
lowercase_data = FOREACH combined_docs GENERATE
 FLATTEN(TOKENIZE(LOWER($0))) as word;
joind = JOIN stopwords BY $0 RIGHT OUTER, lowercase_data BY $0;
stop_words_removed = FILTER joind BY $0 IS NULL;
punctuation_removed = FOREACH stop_words_removed
{
 replace_punct = REPLACE($1,'[\\p{Punct}]','');
 replace_space = REPLACE(replace_punct,'[\\s]','');
 replace_numbers = REPLACE(replace_space,'[\\d]','');
 GENERATE replace_numbers AS replaced_words;
}
replaced_nulls = FOREACH punctuation_removed GENERATE
 (SIZE($0) > 0 ? $0 : 'dummy string') as word;

/*
Remove duplicate words
*/
unique_words_corpus = DISTINCT replaced_nulls;

/*

Chapter 4

[181]

Combine the two relations containing dictionary words
*/
dict_words = UNION dict_words1, dict_words2;

/*
BuildBloom builds a bloom filter that will be used in Bloom.
Bloom filter is built on the relation dict_words which contains all
the dictionary words.
The resulting file dict_words_bloom is used in bloom filter by passing
it to Bloom.
The call to bloom returns the words that are present in the
dictionary, we select the words that are not present in the dictionary
and classify them as misspelt words. The misspelt words are filtered
from the original dataset and are stored in the folder invalid_data.
*/
dict_words_grpd = GROUP dict_words all;
dict_words_bloom = FOREACH dict_words_grpd GENERATE
 BuildBloom(dict_words.words);
STORE dict_words_bloom into 'dict_words_bloom';
DEFINE bloom Bloom('dict_words_bloom');
filterd = FILTER unique_words_corpus BY NOT(bloom($0));
joind = join filterd by $0, unique_words_corpus by $0;
joind_right = join filterd by $0 RIGHT, unique_words_corpus BY $0;
valid_words_filter = FILTER joind_right BY $0 IS NULL;
valid_words = FOREACH valid_words_filter GENERATE $1;
misspellings = FOREACH joind GENERATE $0 AS misspelt_word;

/*
The results are stored on the HDFS in the directories valid_data and
invalid_data.
The misspelt words are written to a file in the folder invalid_data.
*/
STORE misspellings INTO
 '/user/cloudera/pdp/output/data_validation_cleansing/
 unstructured_data_validation_cleansing/invalid_data';
STORE valid_words INTO
 '/user/cloudera/pdp/output/data_validation_cleansing/
 unstructured_data_validation_cleansing/valid_data';

Data Validation and Cleansing Patterns

[182]

Results
The following are the words that are identified as misspellings and are stored in
the folder invalid_data. We chose to filter these words from the original dataset.
However, this depends on the business rule; if the business rule mandates that
misspelt words have to be replaced with their correct spellings, the appropriate
steps have to be taken to correct the spellings.

sme
lemme
puttin
speling
wntedly
mistaces
servicesa
insertingg
missspellingss
telecommunications

Additional information
The complete code and datasets for this section are in the following GitHub directories:

• Chapter4/code/

• Chapter4/datasets/

Summary
In this chapter, you have studied various Big Data validation and cleansing
techniques that deal with the detection and cleansing of incorrect or inaccurate
records from the data. These techniques ensure that the inconsistencies in the data
are identified by validating the data against a set of rules before the data is used in
the analytics process, and then the inconsistent data is replaced, modified, or deleted
as per the business rule to make it more consistent. In this chapter, we build upon
our learnings from the previous chapter on data profiling.

In the next chapter, we will focus on the data transformation patterns that can
be applied to a variety of data formats. After reading this chapter, readers will be
able to choose the right pattern to transform the data by using techniques such as
aggregation, generalizations, and joins.

Data Transformation Patterns
In the last chapter, you learned about various patterns related to data validation
and cleansing from which you understood that there are ways to detect and remove
incorrect or inaccurate records from the data. By the time data validation and cleansing
is complete, the inconsistencies in the data are identified even before the data is used
in the next steps of the analytics life cycle; then, the inconsistent data is replaced,
modified, or deleted to make it more consistent.

In this chapter, you will learn about various design patterns related to data
transformation, such as structured to hierarchical, normalization, integration,
aggregation, and generalization design patterns.

Data transformation processes
The process of data transformation is one of the fundamental building blocks
and a vital step in the knowledge discovery process of Big Data analytics. Data
transformation is an iterative process that modifies the source data into a format that
enables the analytics algorithms to be applied effectively. Transformation improves
the performance and accuracy of the algorithms by ensuring that the data is stored
and retrieved in a format that is conducive for applying the analytics. This is done
by improving the overall quality of the source data.

Data transformation for Big Data predominantly consists of the following
major processes:

• Normalization: This transformation scales the attribute data to bring it
within a specified range. Typically, an attribute value is transformed to fit
the range between 0 and 1. This is done to remove certain unwanted effects
of certain attributes on the analytics. The normalization transformation is
different from the first, second, and third normal form used in the relational
database design.

Data Transformation Patterns

[184]

• Aggregation: This transformation applies summary operations on the data,
for example, computing monthly and yearly summaries from the daily
stock data, thus creating a data cube for performing analysis in multiple
dimensions and granularities.

• Generalization: In this transformation, the low-level raw data is replaced by
higher level abstractions using concept hierarchies. For example, low-level
data such as street can be replaced by higher abstractions such as city or state
depending on the analytics use case.

• Data integration: It is the process of joining the data from multiple input
pipelines of similar or dissimilar structure into a single output pipe.

The following sections elaborate the most commonly used Pig design patterns that
help in data transformation.

The structured-to-hierarchical
transformation pattern
The structured-to-hierarchical transformation pattern deals with transforming
the data by generating a hierarchical structure, such as XML or JSON from the
structured data.

Background
The structured-to-hierarchical transformation pattern creates a new hierarchical
structure, such as JSON or XML out of data that is stored in flat, row-like structures.
It is a data transformation pattern that creates new records, which are represented in
a different structure when compared to the original records.

Motivation
Hadoop is good at integrating data from multiple sources, but performing joins for
the analytics just in time is always a complex and time-consuming operation.

In order to perform certain types of analytics efficiently (such as logfile analysis), the
data is sometimes not required to be stored in a normalized form in Hadoop. Storing
the data in the normalized form in multiple tables creates an additional step of
joining all the data together to perform analytics on it—joins are generally performed
on normalized structured data for integrating it from multiple sources that have a
foreign-key relationship.

Chapter 5

[185]

Instead, raw data is nested in a hierarchical fashion by denormalizing them. This
pre-processing of data will ensure that the analysis is performed efficiently.

NoSQL databases, such as HBase, Cassandra, or MongoDB facilitate the storage of
flat data in column families or JSON objects. Hadoop can be used to perform the task
of integrating data from multiple sources in a batch mode and creating hierarchical
data structures that could be readily inserted into these databases.

Use cases
This design pattern is predominantly applicable to integrate structured and row-based
data from multiple disjointed data sources. The specific objective of this integration is
to convert the data into a hierarchical structure so that the data is ready for analysis.

This pattern is also useful to convert data from a single source to a hierarchical
structure, which is then used to load data into columnar and JSON databases.

Pattern implementation
Pig has out-of-the-box support for hierarchical data in the form of tuples and bags
that are used to represent nested objects in a single row. The COGROUP operator
groups data in one or more relations and creates a nested representation of the
output tuples.

This design pattern is implemented in Pig as a standalone script. The script shows
the usage of this pattern by generating a hierarchical representation of data from
a structured format. The script loads a denormalized CSV file and passes it to a
custom Java UDF. The Java UDF uses XMLParser to build an XML file. A custom
storage function stores the result in the XML format.

Code snippets
To illustrate the working of this pattern, we have considered a manufacturing
dataset stored on HDFS. The file production_all.csv contains denormalized
data derived from production.csv and manufacturing_units.csv. We will
convert the structured data from the CSV format to a hierarchical XML format.

The Pig script for the structured-to-hierarchical design pattern is as follows:

/*
Register the piggybank jar and generateStoreXml jar, it is a custom
storage function which generates an XML representation and stores it
*/

Data Transformation Patterns

[186]

REGISTER '/home/cloudera/pdp/jars/generateStoreXml.jar';
REGISTER '/usr/share/pig/contrib/piggybank/java/piggybank.jar';

/*
Load the production dataset into the relation production_details
*/
production_details = LOAD
 '/user/cloudera/pdp/datasets/data_transformation/
 production_all.csv' USING PigStorage(',') AS
 (production_date,production_hours,manufacturing_unit_id,
 manufacturing_unit_name,currency,product_id,product_name,
 quantity_produced);

/*
Call the custom store function TransformStoreXML to transform the
contents into a hierarchical representation i.e XML and to store it in
the directory structured_to_hierarchical
*/
STORE production_details INTO
 '/user/cloudera/pdp/output/data_transformation/
 structured_to_hierarchical' USING
 com.xmlgenerator.TransformStoreXML
 ('production_details','production_data');

The following is a snippet of the Java UDF used by the previous Pig script to perform
structured-to-hierarchical transformation:

 /**
 * data from tuple is appended to xml root element
 * @param tuple
 */
 protected void write(Tuple tuple)
 {
 // Retrieving all fields from the schema
 ResourceFieldSchema[] fields = schema.getFields();
 //Retrieve values from tuple
 List<Object> values = tuple.getAll();
 /*Creating xml element by using fields as element tag
and tuple value as element value*/
 Element transactionElement =
 xmlDoc.createElement(TransformStoreXML.elementName);
 for(int counter=0;counter<fields.length;counter++)
 {
 //Retrieving element value from values

Chapter 5

[187]

 String columnValue =
 String.valueOf(values.get(counter));
 //Creating element tag from fields
 Element columnName =
 xmlDoc.createElement
 (fields[counter].getName().toString().trim());
 //Appending value to element tag

 columnName.appendChild(xmlDoc.createTextNode(columnValue));
 //Appending element to transaction element
 transactionElement.appendChild(columnName);
 }
 //Appending transaction element to root element
 rootElement.appendChild(transactionElement);
 }

Results
The following is a snippet of the XML file that is generated as a result of the code
being executed on the input:

<?xml version="1.0" encoding="UTF-8" standalone="no" ?>
<production_details>
 <production_data>
 <production_date>2011-01-01T00:00:00</production_date>
 <production_hours>7</production_hours>
 <manufacturing_unit_id>1</manufacturing_unit_id>
 <manufacturing_unit_name>unit1</manufacturing_unit_name>
 <currency>USD</currency>
 <product_id>C001</product_id>
 <product_name>Refrigerator 180L</product_name>
 <quantity_produced>49</quantity_produced>
 </production_data>
 <production_data>
 .
 .
 .

 </production_data>
 .
 .
 .
</production_details>

Data Transformation Patterns

[188]

Additional information
The complete code and datasets for this section are in the following GitHub directories:

• Chapter5/code/

• Chapter5/datasets/

The data normalization pattern
The data normalization design pattern discusses ways to perform normalization
or standardization of data values.

Background
Normalization of data implies fitting, adjusting, or scaling the data values measured
on different scales to a notionally common range. As a simplistic example, joining
datasets that consist of different units for distance measurement, such as kilometers
and miles, can provide varying results when they are not normalized. Hence, they
are normalized to bring them back to one common unit, such as kilometers or miles,
so that the effect of different units of measurement is not felt by the analytics.

Motivation
In Big Data, it is common to encounter varying values in the same data attribute
while integrating multiple data sources.

Normalization performs data pre-processing and transformation by changing the
original data and scaling it to bring it within a specified range (for example, in the
range 0 to 1), and assigning equal weight for all attributes. Before normalization
is performed on the data, any outliers are removed from it. Data normalization is
required in scenarios when analytics can be affected by the choice of the unit of
measurement and by values that are in the higher range.

Chapter 5

[189]

Normalization is used in analytics such as clustering, which is a distance-based
method where it prevents attributes with higher values from dominating attributes
with lesser values. The techniques to perform normalization on numeric and non
numeric data are as follows:

• Normalizing numeric data: Numeric data is normalized using methods such
as min-max normalization, thus transforming the data to a value between a
specified range [newMin, newMax]. The minValue and maxValue are usually
identified from the dataset and the normalization is done by applying the
following formula for each value:
normalizedValue = [((value - minValue) / (maxValue - minValue))*(newMax
- newMin) + newMin]

• Normalizing non-numeric data: Non numeric data is normalized by first
converting them into numeric data and then performing the normalizing
operation on it. As an example, if the values of a rating attribute can be
excellent, very good, good, average, below average, poor, or worst, they can
be converted into numeric values of 1 through 7; thus, normalization can be
performed on these numeric values to fit in the model.

Use cases
You can consider using this design pattern as a pre-processing technique for
performing analytics. This pattern can be used in analytics' use cases to avoid
attributes with initially higher values from dwarfing attributes with initially
lower values.

This pattern can be considered as a method to encapsulate the original data as
it transforms the original data by normalizing it.

Pattern implementation
This design pattern is implemented in Pig as a standalone script. The use case
identifies similar manufacturing units for a given product; it demonstrates
normalization. The script loads the data and computes total produced quantity
and total production hours for each manufacturing unit for the product C001.
Each manufacturing unit is represented by product, total produced quantity,
and total production hours. The script normalizes total number of units
produced and total production hours using the min-max normalization
technique to bring all the values to the same scale (range 0 to 1). The script then
computes the Euclidean distance between these points. The smaller the distance,
the more similar the manufacturing units are.

Data Transformation Patterns

[190]

Code snippets
To illustrate the working of this pattern, we have considered a manufacturing dataset
stored on the HDFS. The file production.csv contains production information of
each manufacturing unit; this file contains attributes such as production_date,
production_hours, manufacturing_unit_id, product_id, and produced_quantity.
We will be calculating total produced quantity and total production hours for
each manufacturing unit for the product C001, as shown in the following code:

/*
Load the production dataset into the relation production
*/
production = LOAD
 '/user/cloudera/pdp/datasets/data_transformation/
 production.csv' USING PigStorage(',') AS
 (production_date:datetime,production_hours:int,
 manufacturing_unit_id:chararray,product_id:chararray,
 produced_quantity:int);

/*
Filter the relation products to fetch the records with product id C001
*/
production_filt = FILTER production BY product_id=='C001';

/*
Calculate the total production hours and total produced quantity of
product C001 in each manufacturing unit
*/
production_grpd = GROUP production_filt BY
 (manufacturing_unit_id,product_id);
production_sum = FOREACH production_grpd GENERATE group.$0 AS
 manufacturing_unit_id, group.$1 AS product_id,(float)
 SUM(production_filt.production_hours) AS
 production_hours,(float)SUM(production_filt.produced_quantity)
 AS produced_quantity;

/*
Apply Min max normalization on total production hours and total
produced quantity for each manufacturing unit to scale the data to fit
in the range of [0-1]
*/
production_sum_grpd = GROUP production_sum ALL;

Chapter 5

[191]

production_min_max = FOREACH production_sum_grpd GENERATE
 MIN(production_sum.production_hours)-1 AS
 min_hour,MAX(production_sum.production_hours)+1 AS max_hour,
 MIN(production_sum.produced_quantity)-1 AS min_qty,
 MAX(production_sum.produced_quantity)+1 AS max_qty;
production_norm = FOREACH production_sum
{
 norm_production_hours = (float)(((production_hours -
 production_min_max.min_hour)/(production_min_max.max_hour -
 production_min_max.min_hour))*(1-0))+1;
 norm_produced_quantity = (float)(((produced_quantity -
 production_min_max.min_qty)/(production_min_max.max_qty -
 production_min_max.min_qty))*(1-0))+1;
 GENERATE manufacturing_unit_id AS manufacturing_unit_id,
 product_id AS product_id, norm_production_hours AS
 production_hours, norm_produced_quantity AS produced_quantity;
}
prod_norm = FOREACH production_norm GENERATE manufacturing_unit_id
 AS manufacturing_unit_id,product_id AS
 product_id,production_hours AS
 production_hours,produced_quantity AS produced_quantity;

/*
Calculate the Euclidean distance to find out similar manufacturing
units w.r.t the product C001
*/
manufacturing_units_euclidean_distance = FOREACH
 (CROSS production_norm,prod_norm) {
distance_between_points = (production_norm::production_hours -
 prod_norm::production_hours)*
 (production_norm::production_hours -
 prod_norm::production_hours) +
 (production_norm::produced_quantity -
 prod_norm::produced_quantity)*(production_norm::
 produced_quantity - prod_norm::produced_quantity);
GENERATE production_norm::manufacturing_unit_id,
 production_norm::product_id,prod_norm::manufacturing_unit_id,
 prod_norm::product_id,SQRT(distance_between_points) as dist;
};

/*
The results are stored on the HDFS in the directory data_normalization
*/
STORE manufacturing_units_euclidean_distance INTO
 '/user/cloudera/pdp/output/data_transformation/
 data_normalization';

Data Transformation Patterns

[192]

Results
The following is a snippet of the results that are generated as a result of the code
being executed on the input:

1 C001 1 C001 0.0
1 C001 3 C001 1.413113776343348
1 C001 5 C001 0.2871426024640011
3 C001 1 C001 1.413113776343348
3 C001 3 C001 0.0
3 C001 5 C001 1.1536163027782005
5 C001 1 C001 0.2871426024640011
5 C001 3 C001 1.1536163027782005
5 C001 5 C001 0.0

The similarity between manufacturing units is calculated for one product (C001).
As shown previously, manufacturing units 1 and 5 are similar with respect to the
product C001, as the distance between them is less when compared to the distance
between other units.

Additional information
The complete code and datasets for this section are in the following GitHub directories:

• Chapter5/code/

• Chapter5/datasets/

The data integration pattern
The data integration pattern deals with methods to integrate data from multiple
sources and techniques to address data inconsistencies that arise out of this activity.

Background
This pattern discusses ways of integrating data from multiple sources. Data
integration can sometimes lead to inconsistencies in the data, for example, different
data sources may use different units of measurement. The data integration pattern
deals with techniques to address data inconsistency.

Chapter 5

[193]

Motivation
For a multitude of Big Data solutions, it is common for data to exist in various places,
such as SQL tables, logfiles, and HDFS. In order to discover exciting relationships
between the data that is lying at different places, they have to be ingested and
integrated from different sources. On the flipside, this integration of data from
multiple sources can sometimes introduce data inconsistencies too. The integration
of data enables its enrichment by adding more attributes and giving it more meaning
and context. It can also enable the filtering of data by removing unwanted details.

Data integration is achieved predominantly by the join operation. A join operation
integrates records from more than one dataset based on a field called foreign key.
The foreign key is the field in a table that is equal to the column of another table,
and it is used as a means to cross-refer between tables. While this operation is fairly
simple in SQL, the way MapReduce works makes it one of the most costly operations
to perform on Hadoop.

The following example illustrates a simple way of understanding the different
types of joins by taking an example of two datasets: A and B. The following
figure represents the values in each dataset.

1

2

3

2

3

4

A B

The following are different types of joins that can be performed on the datasets:

• Inner join: When this is performed on two datasets, all the matching records
from both the datasets are returned. As shown in the following figure, it
returns the matching records (2, 3) from both the datasets.

1
2

3
4

A B

Data Transformation Patterns

[194]

• Left outer join: When this is performed on two datasets, all the matching
records from both the datasets are returned along with the unmatched
records from the dataset on the left-hand side. As shown in the following
figure, the matched records (2, 3) along with the unmatched record in the
dataset to the left (1) are returned.

1
2

3
4

A B

• Right outer join: When this is performed on two datasets, all the matching
records from both the tables are returned along with the unmatched records
from the dataset on the right-hand side. As shown in the following figure, the
matched records (2, 3) along with the unmatched record in the dataset to the
right (4) are returned.

1
2

3
4

A B

• Full outer join: When this is applied on two datasets, all the matching
records from both the tables are returned along with the unmatched records
from both tables. As shown in the following figure, the matched records (2, 3)
along with unmatched records in both the datasets (1, 4) are returned.

1
2

3
4

A B

Chapter 5

[195]

• Cartesian join: When the Cartesian join is performed on two datasets, each
record from the first dataset and all the records of the second dataset are
joined together. As shown in the following figure, the result would be (1, 2),
(1, 3), (1, 4), (2, 2), (2, 3), (2, 4), (3, 2), (3, 3), and (3, 4).

1

2

3

2

3

4

A B

Combining data from multiple sources can result in data inconsistencies. Different data
sources may use different units of measurement. For example, assume that there are
two data sources, each using a different currency, say dollar versus euro. Due to this,
the data integrated from these two sources is inconsistent. Another issue is that the
data in each source may be represented differently, for example, true/false versus yes/
no. You have to make use of data transformation to resolve these inconsistencies.

The two broad techniques to perform the join operations in Pig are as follows:

• Reduce-side join: The first technique is called the reduce side join in the
MapReduce terminology, and it uses the default join operator on multiple
large datasets that have foreign-key relationships. This technique executes
any type of join operations (inner, outer, right, left, and so on) on the
datasets. Also, it works on many datasets at once. The biggest drawback of
this join operation is that it puts tremendous load on the network as all of the
data that is being joined is first sorted and then sent to the reducers, thereby
making this operation slower to execute.

• Replicated join: The second technique is called the replicated join and uses
the replicated keyword along with the Join operator syntax. This join
technique is applicable between one very large dataset and many small
datasets. Internally, this join is performed only on the mapper side and does
not require the overhead sorting and shuffling of data to the reducer. The
replicated join lets Pig distribute the smaller dataset (which is small enough to
fit in the memory) to each node so that the dataset is joined directly to the map
job, thereby eliminating the need for the reduce job. Not all types of joins are
supported in the replicated join; it supports only inner and left outer joins.

Data Transformation Patterns

[196]

Use cases
You can consider using this design pattern in the following scenarios:

• When you need to combine data from multiple sources before applying
analytics on it

• To reduce the processing time by denormalizing the data; denormalization
can be achieved by joining the transactions dataset with its associated
master dataset(s)

• Transform data to resolve data inconsistencies that might have been
introduced as a result of data integration

• Filter data using specific joins

Pattern implementation
This design pattern is implemented in Pig as a standalone script. It combines
production information of all the manufacturing units, resolves data inconsistencies
by transforming the data, and finds out whether each unit is performing to its
optimal best.

The script first loads data of each manufacturing unit and combines them using
UNION. It then denormalizes the data by applying joins on the production dataset
with its master datasets to get manufacturing unit and product details. It has
an implementation of the replicated join to join a huge production dataset with
a smaller dataset called products. One of the units uses INR as its currency; this
introduces data inconsistency. The script resolves this inconsistency by transforming
the manufacturing cost attribute of the unit, which is in INR, to USD.

The script then compares the actual quantity produced with the expected
quantity for each unit to find out whether each unit is performing optimally.

Code snippets
To illustrate the working of this pattern, we have considered a manufacturing dataset
that is stored on the HDFS. It contains three master files; manufacturing_units.csv
contains information about each manufacturing unit, products.csv contains details of
the products that are manufactured, and manufacturing_units_products.csv holds
detailed information of products that are manufactured in different manufacturing
units. The production dataset has a separate production file for each manufacturing
unit; this file contains attributes such as production_date, production_hours,
manufacturing_unit_id, product_id, and produced_quantity. The following
code is the Pig script illustrating the implementation of this pattern:

Chapter 5

[197]

/*
Load the production datasets of five manufacturing units into the
relations
*/
production_unit_1 = LOAD
 '/user/cloudera/pdp/datasets/data_transformation/
 production_unit_1.csv' USING PigStorage(',') AS
 (production_date:datetime,production_hours:int,
 manufacturing_unit_id:chararray,product_id:chararray,
 produced_quantity:int);
production_unit_2 = LOAD
 '/user/cloudera/pdp/datasets/data_transformation/
 production_unit_2.csv' USING PigStorage(',') AS
 (production_date:datetime,production_hours:int,
 manufacturing_unit_id:chararray,product_id:chararray,
 produced_quantity:int);
production_unit_3 = LOAD
 '/user/cloudera/pdp/datasets/data_transformation/
 production_unit_3.csv' USING PigStorage(',') AS
 (production_date:datetime,production_hours:int,
 manufacturing_unit_id:chararray,product_id:chararray,
 produced_quantity:int);
production_unit_4 = LOAD
 '/user/cloudera/pdp/datasets/data_transformation/
 production_unit_4.csv' USING PigStorage(',') AS
 (production_date:datetime,production_hours:int,
 manufacturing_unit_id:chararray,product_id:chararray,
 produced_quantity:int);
production_unit_5 = LOAD
 '/user/cloudera/pdp/datasets/data_transformation/
 production_unit_5.csv' USING PigStorage(',') AS
 (production_date:datetime,production_hours:int,
 manufacturing_unit_id:chararray,product_id:chararray,
 produced_quantity:int);

/*
Combine the data in the relations using UNION operator
*/
production = UNION
 production_unit_1,production_unit_2,production_unit_3,
 production_unit_4,production_unit_5;

/*
Load manufacturing_unit and manufacturing_units_products datasets
*/

Data Transformation Patterns

[198]

manufacturing_units_products = LOAD
 '/user/cloudera/pdp/datasets/data_transformation/
 manufacturing_units_products.csv' USING PigStorage(',') AS
 (manufacturing_unit_id:chararray,product_id:chararray,
 capacity_per_hour:int,manufacturing_cost:float);
manufacturing_units = LOAD
 '/user/cloudera/pdp/datasets/data_transformation/
 manufacturing_units.csv' USING PigStorage(',') AS
 (manufacturing_unit_id:chararray,manufacturing_unit_name:
 chararray,manufacturing_unit_city:chararray,country:chararray,
 currency:chararray);

/*
Use replicated join to join the relation production, which is huge
with a smaller relation manufacturing_units_products.
The relations manufacturing_units_products and manufacturing units are
small enough to fit into the memory
*/
replicated_join = JOIN production BY
 (manufacturing_unit_id,product_id),
 manufacturing_units_products BY
 (manufacturing_unit_id,product_id) USING 'replicated';
manufacturing_join = JOIN replicated_join BY
 production::manufacturing_unit_id, manufacturing_units BY
 manufacturing_unit_id USING 'replicated';

/*
Identify varying representation of currency and transform the values
in the attribute manufacturing_cost to USD for the units that have INR
as currency
*/
transformed_varying_values = FOREACH manufacturing_join GENERATE
 $0 AS production_date,$2 AS manufacturing_unit_id,$3 AS
 product_id,$4 AS actual_quantity_produced,
 ($1*$7) AS expected_quantity_produced,(float)((($13 == 'INR') ?
 ($8/60) : $8)*$4) AS manufacturing_cost;

/*
Calculate the expected quantity to be produced, actual quantity
produced, percentage, total manufacturing cost for each month for each
manufacturing unit and product to identify how each unit is performing
*/
transformed_varying_values_grpd = GROUP transformed_varying_values
 BY (GetMonth($0),manufacturing_unit_id,product_id);
quantity_produced = FOREACH transformed_varying_values_grpd
{

Chapter 5

[199]

 expected_quantity_produced =
 SUM(transformed_varying_values.expected_quantity_produced);
 actual_quantity_produced =
 SUM(transformed_varying_values.actual_quantity_produced);
 percentage_quantity_produced =
 100*actual_quantity_produced/expected_quantity_produced;
 manufacturing_cost =
 SUM(transformed_varying_values.manufacturing_cost);
 GENERATE group.$0 AS production_month,group.$1 AS
 manufacturing_unit_id,group.$2 AS
 product_id,expected_quantity_produced AS
 expected_quantity_produced,actual_quantity_produced AS
 actual_quantity_produced,percentage_quantity_produced AS
 percentage_quantity_produced,ROUND(manufacturing_cost) AS
 manufacturing_cost;
}

/*
Sort the relation by the percentage of quantity produced
*/
ordered_quantity_produced = ORDER quantity_produced BY $5 DESC;

/*
The results are stored on the HDFS in the directory data_integration
*/
STORE ordered_quantity_produced INTO '/user/cloudera/pdp/output/
 data_transformation/data_integration';

Results
The following is a snippet of the results that are generated as a result of the code
being executed on the input:

6 2 C003 2400 2237 93 894800
10 2 C004 1984 1814 91 816300
12 3 L002 74400 66744 89 33372

The first column shows the month, the second column is manufacturing unit
id, and the third column represents product id. Expected quantity to be
produced, actual quantity produced, percentage, and total manufacturing
cost per month; all of these are calculated based on which monthly performance
of each unit can be analyzed.

Data Transformation Patterns

[200]

Additional information
The complete code and datasets for this section are in the following GitHub directories:

• Chapter5/code/

• Chapter5/datasets/

The aggregation pattern
The aggregation design pattern explores the usage of Pig to transform data by
applying summarization or aggregation operations on data.

Background
Aggregation provides a summarized high-level view of the data. Aggregation
combines more than one attribute into a single attribute, thus reducing the total
records by treating a set of records as a single record or by paying no attention to
subsections of unimportant records. Data aggregation can be performed at different
levels of granularity.

Data aggregation retains the integrity of the data, though the volume of the
resulting dataset is smaller than the original datasets.

Motivation
Data aggregation plays a key role in Big Data, as it is inherently difficult for huge
volumes of data to provide too much of information as a whole. Instead, the data
is collected on a daily basis to be aggregated into weekly data; this weekly data can
be aggregated into a value for the month and so on. This enables data patterns to
emerge, which can be used for analysis. A simple illustration would be to get more
information about particular groups based on specific attributes, such as purchases
by age, by segmenting age groups. This ability of aggregating data using specific
attributes quickly provides valuable insights to conduct further analytics.

There are various techniques to aggregate data. The basic techniques employed
for aggregating data include SUM, AVG, and COUNT; advanced techniques include CUBE
and ROLLUP.

CUBE and ROLLUP are similar in many aspects, and they both summarize data to
produce a single result set. ROLLUP calculates aggregations such as SUM, COUNT, MAX,
MIN, and AVG at varying levels of hierarchy, from the subtotals up to a grand total.

Chapter 5

[201]

CUBE enables the computation of SUM, COUNT, MAX, MIN, and AVG using all possible
combinations of the values in the selected columns. Once this aggregation is
computed on a set of columns, it can provide results of all possible aggregation
questions on those dimensions.

Use cases
You can consider using this design pattern to produce a summarized representation
of the data. We will look at a few scenarios where it is necessary to replace data
with either the summary or the aggregated information. Such aggregations are done
before the data is sent for analytical processing. The aggregation design pattern can
be used in the following specific scenarios:

• Records containing transactional information can be aggregated based
on multiple dimensions such as product or transaction date

• Individual information such as the income of each member in a family
can be summarized to represent the average family income

Pattern implementation
This design pattern is implemented as a standalone Pig script. The script has the
implementation to aggregate data using CUBE and ROLLUP operators that were
introduced in Pig Version 0.11.0.

Aggregation is the fundamental operation that is performed on the data in the
transformation phase in Extract, Transform, and Load (ETL). The fastest way to
aggregate data is to use ROLLUP and CUBE. In most cases, ROLLUP and CUBE provide
the most meaningful aggregation of the data. This script loads production data of
multiple manufacturing units. This data can be aggregated for various purposes. By
applying ROLLUP on this data, we can get the following aggregations:

• The production quantity of each product in each manufacturing unit for
each month

• The production quantity of each product in each manufacturing unit for
all months

• The quantity of total production in each manufacturing unit
• The quantity of total production in all manufacturing units

Data Transformation Patterns

[202]

By applying CUBE on the same dataset, we get the following aggregations in addition
to the previous ones:

• The production quantity in each manufacturing unit for each month
• The production quantity of each product for each month
• The production quantity of each product
• The production quantity for each month

The additional four aggregations returned by CUBE are the result of its built-in
capability to create subtotals for all possible combinations of grouping columns.

Code snippets
To illustrate the working of this pattern, we have considered a manufacturing dataset
stored on the HDFS. It contains three master files: manufacturing_units.csv
contains information about each manufacturing unit, products.csv contains details
of the products that are manufactured, and manufacturing_units_products.
csv holds detailed information of the products that are manufactured in different
manufacturing units. The file production.csv contains the production information
of each manufacturing unit; this file contains attributes such as production_date,
production_hours, manufacturing_unit_id, product_id, and produced_
quantity. We will be applying CUBE and ROLLUP aggregations on manufacturing_
unit_id, product_id, and production_month, as shown in the following code:

/*
Load the data from production.csv, manufacturing_units_products.
csv, manufacturing_units.csv files into the relations production,
manufacturing_units_products and manufacturing_units
The files manufacturing_units_products.csv and manufacturing_units.csv
contain master data information.
*/
production = LOAD
 '/user/cloudera/pdp/datasets/data_transformation/
 production.csv' USING PigStorage(',') AS
 (production_date:datetime,production_hours:int,
 manufacturing_unit_id:chararray,product_id:chararray,
 produced_quantity:int);
manufacturing_units_products = LOAD
 '/user/cloudera/pdp/datasets/data_transformation/
 manufacturing_units_products.csv' USING PigStorage(',') AS
 (manufacturing_unit_id:chararray,product_id:chararray,
 capacity_per_hour:int,manufacturing_cost:float);

Chapter 5

[203]

manufacturing_units = LOAD
 '/user/cloudera/pdp/datasets/data_transformation/
 manufacturing_units.csv' USING PigStorage(',') AS
 (manufacturing_unit_id:chararray,manufacturing_unit_name:
 chararray,manufacturing_unit_city:chararray,country:chararray,
 currency:chararray);

/*
The relations are joined to get details from the master data.
*/
production_join_manufacturing_units_products = JOIN production BY
 (manufacturing_unit_id,product_id), manufacturing_units_products
 BY (manufacturing_unit_id,product_id);
manufacture_join = JOIN
 production_join_manufacturing_units_products BY
 production::manufacturing_unit_id, manufacturing_units BY
 manufacturing_unit_id;

/*
The manufacturing cost attribute is converted to dollars for the units
that have currency as INR.
*/
transformed_varying_values = FOREACH manufacture_join GENERATE $2
 AS manufacturing_unit_id,$3 AS product_id,
 GetMonth($0) AS production_month,((($13 == 'INR') ? ($8/60) :
 $8)*$4) AS manufacturing_cost;

/*
Apply CUBE and ROLLUP aggregations on manufacturing_unit_id, product_
id, production_month and store the results in the relations results_
cubed and results_rolledup
*/
cubed = CUBE transformed_varying_values BY
 CUBE(manufacturing_unit_id,product_id,production_month);
rolledup = CUBE transformed_varying_values BY
 ROLLUP(manufacturing_unit_id,product_id,production_month);
result_cubed = FOREACH cubed GENERATE FLATTEN(group),
 ROUND(SUM(cube.manufacturing_cost)) AS total_manufacturing_cost;
result_rolledup = FOREACH rolledup GENERATE FLATTEN(group),
 ROUND(SUM(cube.manufacturing_cost)) AS total_manufacturing_cost;

/*
The results are stored on the HDFS in the directories cube and rollup
*/

Data Transformation Patterns

[204]

STORE result_cubed INTO
 '/user/cloudera/pdp/output/data_transformation/data_aggregation/
 cube';
STORE result_rolledup INTO
 '/user/cloudera/pdp/output/data_transformation/data_aggregation/
 rollup';

Results
After applying ROLLUP on manufacturing_unit_id, product_id, and production_
month, the following combination of results are produced:

• The production quantity of each product in each manufacturing unit for each
month is as follows:
1 C001 1 536600
5 C002 12 593610

• The production quantity of each product in each manufacturing unit for all
months is as follows:
1 C001 7703200
2 C003 10704000
5 C002 7139535

• The total production quantity in each manufacturing unit is as follows:
1 15719450
4 15660186

• The total production quantity in all manufacturing units is as follows:

 69236355

After applying CUBE on manufacturing_unit_id, product_id, and production_
month, the following combinations in addition to the combinations produced by
ROLLUP are obtained:

• The production quantity in each manufacturing unit for each month
is as follows:
1 4 1288250
5 12 1166010

• The production quantity of each product for each month is as follows:
 C001 8 1829330
 L002 12 101748
 L001 10 36171

Chapter 5

[205]

• The production quantity of each product is as follows:
 C002 15155785
 C004 16830110
 L002 667864

• The production quantity for each month is as follows:

 2 5861625
 10 5793634
 11 5019340

As shown previously, CUBE returns four additional aggregations (production quantity
in each manufacturing unit for each month, production quantity of each product for
each month, production quantity of each product, and production quantity for each
month) when compared to ROLLUP. This is because CUBE has the built-in capability of
creating subtotals for all possible combinations of grouping columns.

Additional information
The complete code and datasets for this section are in the following GitHub directories:

• Chapter5/code/

• Chapter5/datasets/

The data generalization pattern
The data generalization pattern deals with transforming the data by creating
concept hierarchies and replacing the data with these hierarchies.

Background
This design pattern explores the implementation of data generalization through a
Pig script. Data generalization is the process of creating top-level summary layers
called concept hierarchies that describe the underlying data concept in a general
form. It is a form of descriptive approach in which the data is grouped and replaced
by higher level categories or concepts by using concept hierarchies. For example, the
raw values of the attribute age can be replaced with conceptual labels (such as adult,
teenager, or toddler), or they can be replaced by interval labels (0 to 5, 13 to 19, and
so on). These labels, in turn, can be recursively organized into higher level concepts,
resulting in a concept hierarchy for the attribute.

Data Transformation Patterns

[206]

Motivation
In the context of Big Data, a typical analytics pipeline on huge volumes of data
requires the integration of multiple structured and unstructured datasets.

The data generalization process reduces the footprint of data to be analyzed in
the Hadoop cluster by using generalized data that is described in a concise and
summarized manner. Instead of analyzing the entire corpus of the data, the data
generalization process presents general properties of the data in the form of concept
hierarchies, which is helpful to get a broader, zoomed out view of an analytics trend
quickly and is useful for mining at multiple levels of abstraction.

Applying data generalization may result in the loss of detail, but the resultant
generalized data is more meaningful and easier to interpret in some of the analytics
use cases.

Organizing data in top-level concept hierarchies enables a consistent representation
of data when placed among multiple data analytics pipelines. In addition to
this, analytics on a reduced dataset requires fewer input/output operations and
lesser network throughput, and it is more efficient than analytics on a larger,
ungeneralized dataset.

Owing to these benefits, data generalization is typically applied before analytics
as a pre-processing step, rather than applying it during the mining process. There
are various techniques for performing data generalization on numerical data, such
as binning, histogram analysis, entropy-based discretization, chi-square analysis,
cluster analysis, and discretization by intuitive partitioning. Similarly, for categorical
data, generalization can be performed based on the number of distinct values of the
attributes that define the hierarchy.

Use cases
You can consider using this design pattern to produce a generalized representation
of the numeric and categorical structured data in analytics scenarios, where it is
necessary to generalize the data for consistency using a higher level summary rather
than a low-level raw data.

You can also consider using this pattern right after the data integration process as
an analytics accelerator to create a reduced dataset, making it more amenable for
efficient analytics.

Chapter 5

[207]

Pattern implementation
This design pattern is implemented as a standalone Pig script. The script
generates concept hierarchies for categorical data based on a number of
distinct values per attribute.

The script performs the join operation on manufacturing_unit_products,
products, components, and product_components relations. It then generates
the concept hierarchy by selecting distinct values from the attributes components
and products; the attributes are sorted in the ascending order of their distinct
values. This generates a hierarchy based on the sorted order; the first attribute
is at the top level of the hierarchy and the last attribute is at the bottom level of
the hierarchy.

Code snippets
The master dataset components.csv contains component details, and the products_
components.csv file contains component details and the count of components that
are required to manufacture a product. This file contains attributes such as product_
id, component_id, and required_quantity. The following code is the Pig script
illustrating the implementation of this pattern:

/*
Load products_components data set into the relation products_
components
*/
products_components = LOAD
 '/user/cloudera/pdp/datasets/data_transformation/
 products_components.csv' USING PigStorage(',') AS
 (product_id:chararray,component_id:chararray,
 required_qty_per_Unit:int);

/*
Calculate the distinct count for product_id and component_id and store
the results in the relations products_unique_count and components_
unique_count
*/
products_components_grpd = GROUP products_components ALL;
products_unique_count = FOREACH products_components_grpd
{
 attribute_name = 'Products';
 distinct_prod = DISTINCT products_components.product_id;
 GENERATE attribute_name AS attribute_name, COUNT(distinct_prod)
 AS attribute_count;
}

Data Transformation Patterns

[208]

components_unique_count = FOREACH products_components_grpd
{
 attribute_name = 'Components';
 distinct_comp = DISTINCT products_components.component_id;
 GENERATE attribute_name AS attribute_name, COUNT(distinct_comp)
 AS attribute_count;
}

/*
The relations product_unique_count and components_unique_count are
combined using the UNION operator.
This relation contains two columns attribute_name and attribute_count,
it is then sorted by attribute_count
*/
combined_products_components_count = UNION
 products_unique_count,components_unique_count;
ordered_count = ORDER combined_products_components_count BY
 attribute_count ASC;

/*
The results are stored on the HDFS in the directory data_
generalization
*/
STORE ordered_count INTO
 '/user/cloudera/pdp/output/data_transformation/
 data_generalization';

Results
The following is the result of applying generalization on categorical data:

Products 6
Components 18

The result shows attribute name and its unique count; the attributes are ordered
by their count. The result depicts the concept hierarchy; the first attribute Products
is in the top level of the hierarchy, and the last attribute Components is in the bottom
level of hierarchy.

Chapter 5

[209]

Additional information
The complete code and datasets for this section are in the following GitHub directories:

• Chapter5/code/

• Chapter5/datasets/

Summary
In this chapter, you have studied various Big Data transformation techniques that
deal with transforming the structure of the data to a hierarchical representation to
take advantage of Hadoop's capability to process semistructured data. We have seen
the importance of performing normalization on the data before performing analysis
on it. We then discussed using joins to denormalize the data joins. CUBE and ROLLUP
perform multiple aggregations on the data; these aggregations provide a snapshot of
the data. In data generalization, we discussed various generalization techniques for
numerical and categorical data.

In the next chapter, we will focus on data reduction techniques. Data reduction
aims to obtain a reduced representation of the data; it ensures data integrity, though
the obtained dataset is much smaller in volume. We will discuss data reduction
techniques such as dimensionality reduction, sampling techniques, binning, and
clustering. After reading this chapter, you will be able to choose the right data
reduction pattern.

Understanding Data
Reduction Patterns

In the previous chapter, we learned about the various Big Data transformation
techniques that dealt with transforming the structure of the data to a hierarchical
representation. This was done in order to take advantage of Hadoop's capability
to process semistructured data. We have seen the importance of performing
normalization on the data before performing analysis on it. We then discussed using
joins to denormalize the data. CUBE and ROLLUP perform multiple aggregations
on the data; these aggregations provide a snapshot of the data. In the data
generalization section, we discussed various generalization techniques for numerical
and categorical data.

In this chapter, we will discuss design patterns that perform dimensionality
reduction using the principal component analysis technique, and numerosity
reduction using clustering, sampling, and histogram techniques.

Data reduction – a quick introduction
Data reduction aims to obtain a reduced representation of the data. It ensures data
integrity, though the obtained dataset after the reduction is much smaller in volume
than the original dataset.

Data reduction techniques are classified into the following three groups:

• Dimensionality reduction: This group of data reduction techniques deals
with reducing the number of attributes that are considered for an analytics
problem. They do this by detecting and eliminating the irrelevant attributes,
relevant yet weak attributes, or redundant attributes. The principal
component analysis and wavelet transforms are examples of dimensionality
reduction techniques.

Understanding Data Reduction Patterns

[212]

• Numerosity reduction: This group of data reduction techniques reduces
the data by replacing the original dataset with a sparse representation of the
data. The sparse subset of the data is computed by parametric methods such
as regression, where a model is used to estimate the data so that only a subset
is enough instead of the entire dataset. There are other methods such as
nonparametric methods, for example, clustering, sampling, and histograms,
which work without the need for a model to be built.

• Compression: This group of data reduction techniques uses algorithms to
reduce the size of the physical storage that the data consumes. Typically,
compression is performed at a higher level of granularity than at the attribute
or record level. If you need to retrieve the original data from the compressed
data without any loss of information, which is required while storing string
or numerical data, a lossless compression scheme is used. If instead, there
is a need to uncompress video and sound files that can accommodate the
imperceptible loss of clarity, then lossy compression techniques are used.

The following diagram illustrates the different techniques that are used in each of the
aforementioned groups:

Principle
Component

Analysis

Wavelet
transforms

Kernel PCA Regression Histograms

Lossy

Multidimensional
scaling Log linear Clustering

Lossless

Sampling

Linear Nonlinear Parametric Nonparametric

Dimensionality
reduction

Numerosity
reduction

Data
compression

Data reduction
techniques

Data reduction techniques – overview

Chapter 6

[213]

Data reduction considerations for
Big Data
In Big Data problems, data reduction techniques have to be considered as part of the
analytics process rather than a separate process. This will enable you to understand
what type of data has to be retained or eliminated due to its irrelevance to the
analytics-related questions that are asked.

In a typical Big Data analytical environment, data is often acquired and integrated
from multiple sources. Even though there is the promise of a hidden reward for
using the entire dataset for the analytics, which in all probability may yield richer
and better insights, the cost of doing so sometimes overweighs the results. It is at
this juncture that you may have to consider reducing the amount of data without
drastically compromising on the effectiveness of the analytical insights, in essence,
safeguarding the integrity of the data.

Performing any type of analysis on Big Data often leads to high storage and retrieval
costs owing to the massive amount of data. The benefits of data reduction processes
are sometimes not evident when the data is small; they begin to become obvious
when the datasets start growing in size. These data reduction processes are one
of the first steps that are taken to optimize data from the storage and retrieval
perspective. It is important to consider the ramifications of data reduction so that
the computational time spent on it does not outweigh or erase the time saved by data
mining on a reduced dataset size. Now that we have understood data reduction
concepts, we will explore a few concrete design patterns in the following sections.

Dimensionality reduction – the Principal
Component Analysis design pattern
In this design pattern, we will consider one way of implementing the
dimensionality reduction through the usage of Principal Component Analysis
(PCA) and Singular value decomposition (SVD), which are versatile techniques
that are widely used for exploratory data analysis, creating predictive models, and
for dimensionality reduction.

Understanding Data Reduction Patterns

[214]

Background
Dimensions in a given data can be intuitively understood as a set of all attributes that
are used to account for the observed properties of data. Reducing the dimensionality
implies the transformation of a high dimensional data into a reduced dimension's
set that is proportional to the intrinsic or latent dimensions of the data. These latent
dimensions are the minimum number of attributes that are needed to describe
the dataset. Thus, dimensionality reduction is a method to understand the hidden
structure of data that is used to mitigate the curse of high dimensionality and other
unwanted properties of high dimensional spaces.

Broadly, there are two ways to perform dimensionality reduction. One of them is the
linear dimensionality reduction, examples of which are PCA and SVD. The other is
the nonlinear dimensionality reduction for which kernel PCA and Multidimensional
Scaling are the examples.

In this design pattern, we explore linear dimensionality reduction by implementing
PCA in R and SVD in Mahout and integrating them with Pig.

Motivation
Let's first have an overview of PCA. PCA is a linear dimensionality reduction
technique that works unsupervised on a given dataset by implanting the dataset into
a subspace of lower dimensions, which is done by constructing a variance-based
representation of the original data.

The underlying principle of PCA is to identify the hidden structure of the data by
analyzing the direction where the variation of data is the most or where the data is
most spread out.

Intuitively, a principal component can be considered as a line, which passes through
a set of data points that vary to a greater degree. If you pass the same line through
data points with no variance, it implies that the data is the same and does not carry
much information. In cases where there is no variance, data points are not considered
as representatives of the properties of the entire dataset, and these attributes can
be omitted.

PCA involves finding pairs of eigenvalues and eigenvectors for a dataset. A given
dataset is decomposed into pairs of eigenvectors and eigenvalues. An eigenvector
defines the unit vector or the direction of the data perpendicular to the others. An
eigenvalue is the value of how spread out the data is in that direction.

In multidimensional data, the number of eigenvalues and eigenvectors that can exist
are equal to the dimensions of the data. An eigenvector with the biggest eigenvalue
is the principal component.

Chapter 6

[215]

After finding out the principal component, they are sorted in the decreasing order
of eigenvalues so that the first vector shows the highest variance, the second shows
the next highest, and so on. This information helps uncover the hidden patterns that
were not previously suspected and thereby allows interpretations that would not
result ordinarily.

As the data is now sorted in the decreasing order of significance, the data size can
be reduced by eliminating the attributes with a weak component, or low significance
where the variance of data is less. Using the highly valued principal components,
the original dataset can be constructed with a good approximation.

As an example, consider a sample election survey conducted on a hundred million
people who have been asked 150 questions about their opinions on issues related to
elections. Analyzing a hundred million answers over 150 attributes is a tedious task.
We have a high dimensional space of 150 dimensions, resulting in 150 eigenvalues/
vectors from this space. We order the eigenvalues in descending order of significance
(for example, 230, 160, 130, 97, 62, 8, 6, 4, 2,1… up to 150 dimensions). As we can
decipher from these values, there can be 150 dimensions, but only the top five
dimensions possess the data that is varying considerably. Using this, we were able to
reduce a high dimensional space of 150 and could consider the top five eigenvalues
for the next step in the analytics process.

Next, let's look into SVD. SVD is closely related to PCA, and sometimes both terms are
used as SVD, which is a more general method of implementing PCA. SVD is a form of
matrix analysis that produces a low-dimensional representation of a high-dimensional
matrix. It achieves data reduction by removing linearly dependent data. Just like PCA,
SVD also uses eigenvalues to reduce the dimensionality by combining information
from several correlated vectors to form basis vectors that are orthogonal and explains
most of the variance in the data.

For example, if you have two attributes, one is sale of ice creams and the other is
temperature, then their correlation is so high that the second attribute, temperature,
does not contribute any extra information useful for a classification task. The
eigenvalues derived from SVD determines which attributes are most informative
and which ones you can do without.

Mahout's Stochastic SVD (SSVD) is based on computing mathematical SVD in a
distributed fashion. SSVD runs in the PCA mode if the pca argument is set to true;
the algorithm computes the column-wise mean over the input and then uses it to
compute the PCA space.

Understanding Data Reduction Patterns

[216]

Use cases
You can consider using this pattern to perform data reduction, data exploration,
and as an input to clustering and multiple regression.

The design pattern can be applied on ordered and unordered attributes with sparse
and skewed data. It can also be used on images. This design pattern cannot be
applied on complex nonlinear data.

Pattern implementation
The following steps describe the implementation of PCA using R:

• The script applies the PCA technique to reduce dimensions. PCA involves
finding pairs of eigenvalues and eigenvectors for a dataset. An eigenvector
with the biggest eigenvalue is the principal component. The components are
sorted in the decreasing order of eigenvalues.

• The script loads the data and uses streaming to call the R script. The R script
performs PCA on the data and returns the principal components. Only the
first few principal components that can explain most of the variation can be
selected so that the dimensionality of the data is reduced.

Limitations of PCA implementation
While streaming allows you to call the executable of your choice, it has
performance implications, and the solution is not scalable in situations where
your input dataset is huge. To overcome this, we have shown a better way of
performing dimensionality reduction by using Mahout; it contains a set of
highly scalable machine learning libraries.

The following steps describe the implementation of SSVD on Mahout:

• Read the input dataset in the CSV format and prepare a set of data points in
the form of key/value pairs; the key should be unique and the value should
comprise of n vector tuples.

• Write the previous data into a sequence file. The key can be of a type adapted
into WritableComparable, Long, or String, and the value should be of the
VectorWritable type.

• Decide on the number of dimensions in the reduced space.

Chapter 6

[217]

• Execute SSVD on Mahout with the rank arguments (this specifies the number
of dimensions), setting pca, us, and V to true. When the pca argument is set
to true, the algorithm runs in the PCA mode by computing the column-wise
mean over the input and then uses it to compute the PCA space. The USigma
folder contains the output with reduced dimensions.

Generally, dimensionality reduction is applied on very high dimensional datasets;
however, in our example, we have demonstrated this on a dataset with fewer
dimensions for a better explainability.

Code snippets
To illustrate the working of this pattern, we have considered the retail transactions
dataset that is stored on the Hadoop File System (HDFS). It contains 20 attributes,
such as Transaction ID, Transaction date, Customer ID, Product subclass,
Phone No, Product ID, age, quantity, asset, Transaction Amount, Service
Rating, Product Rating, and Current Stock. For this pattern, we will be using
PCA to reduce the dimensions. The following code snippet is the Pig script that
illustrates the implementation of this pattern via Pig streaming:

/*
Assign an alias pcar to the streaming command
Use ship to send streaming binary files (R script in this use
 case) from the client node to the compute node
*/
DEFINE pcar '/home/cloudera/pdp/data_reduction/compute_pca.R'
 ship('/home/cloudera/pdp/data_reduction/compute_pca.R');

/*
Load the data set into the relation transactions
*/
transactions = LOAD '/user/cloudera/pdp/datasets/
 data_reduction/transactions_multi_dims.csv' USING
 PigStorage(',') AS (transaction_id:long,
 transaction_date:chararray, customer_id:chararray,
 prod_subclass:chararray, phone_no:chararray,
 country_code:chararray, area:chararray, product_id:chararray,
 age:int, amt:int, asset:int, transaction_amount:double,
 service_rating:int, product_rating:int, curr_stock:int,
 payment_mode:int, reward_points:int, distance_to_store:int,
 prod_bin_age:int, cust_height:int);
/*

Understanding Data Reduction Patterns

[218]

Extract the columns on which PCA has to be performed.
STREAM is used to send the data to the external script.
The result is stored in the relation princ_components
*/
selected_cols = FOREACH transactions GENERATE age AS age, amt AS
 amount, asset AS asset, transaction_amount
 AS transaction_amount, service_rating AS service_rating,
 product_rating AS product_rating, curr_stock AS current_stock,
 payment_mode AS payment_mode, reward_points AS reward_points,
 distance_to_store AS distance_to_store, prod_bin_age AS
 prod_bin_age, cust_height AS cust_height;
princ_components = STREAM selected_cols THROUGH pcar;

/*
The results are stored on the HDFS in the directory pca
*/
STORE princ_components INTO
 '/user/cloudera/pdp/output/data_reduction/pca';

Following is the R code illustrating the implementation of this pattern:

#! /usr/bin/env Rscript
options(warn=-1)

#Establish connection to stdin for reading the data
con <- file("stdin","r")

#Read the data as a data frame
data <- read.table(con, header=FALSE, col.names=c("age", "amt",
 "asset", "transaction_amount", "service_rating",
 "product_rating", "current_stock", "payment_mode",
 "reward_points", "distance_to_store", "prod_bin_age",
 "cust_height"))
attach(data)

#Calculate covariance and correlation to understand the variation
 between the independent variables
covariance=cov(data, method=c("pearson"))
correlation=cor(data, method=c("pearson"))

#Calculate the principal components
pcdat=princomp(data)
summary(pcdat)
pcadata=prcomp(data, scale = TRUE)
pcadata

Chapter 6

[219]

The ensuing code snippets illustrate the implementation of this pattern using
Mahout's SSVD. The following is a snippet of a shell script with the commands for
executing CSV to the sequence converter:

#All the mahout jars have to be included in HADOOP_CLASSPATH
 before execution of this script.
#Execute csvtosequenceconverter jar to convert the CSV file to
 sequence file.
hadoop jar csvtosequenceconverter.jar
 com.datareduction.CsvToSequenceConverter
 /user/cloudera/pdp/datasets/data_reduction/
 transactions_multi_dims_ssvd.csv
 /user/cloudera/pdp/output/data_reduction/ssvd/transactions.seq

The following is the code snippet of the Pig script with commands for executing
SSVD on Mahout:

/*
Register piggybank jar file
*/
REGISTER '/home/cloudera/pig-
 0.11.0/contrib/piggybank/java/piggybank.jar';

/*
*Ideally the following data pre-processing steps have to be
 generally performed on the actual data, we have deliberately
 omitted the implementation as these steps were covered in the
 respective chapters

*Data Ingestion to ingest data from the required sources

*Data Profiling by applying statistical techniques to profile data
 and find data quality issues

*Data Validation to validate the correctness of the data and
 cleanse it accordingly

*Data Transformation to apply transformations on the data.
*/

/*
Use sh command to execute shell commands.
Convert the files in a directory to sequence files
-i specifies the input path of the sequence file on HDFS
-o specifies the output directory on HDFS

Understanding Data Reduction Patterns

[220]

-k specifies the rank, i.e the number of dimensions in the reduced
 space
-us set to true computes the product USigma
-V set to true computes V matrix
-pca set to true runs SSVD in pca mode
*/

sh /home/cloudera/mahout-distribution-0.8/bin/mahout ssvd -i
 /user/cloudera/pdp/output/data_reduction/ssvd/transactions.seq -
 o /user/cloudera/pdp/output/data_reduction
 /ssvd/reduced_dimensions -k 7 -us true -V true -U false -pca
 true -ow -t 1

/*
Use seqdumper to dump the output in text format.
-i specifies the HDFS path of the input file
*/
sh /home/cloudera/mahout-distribution-0.8/bin/mahout seqdumper -i
 /user/cloudera/pdp/output/data_reduction/
 ssvd/reduced_dimensions/V/v-m-00000

Results
The following is a snippet of the result of executing the R script through Pig streaming.
Only the important components in the results are shown to improve readability.

Importance of components:
 Comp.1 Comp.2 Comp.3
Standard deviation 1415.7219657 548.8220571 463.15903326
Proportion of Variance 0.7895595 0.1186566 0.08450632
Cumulative Proportion 0.7895595 0.9082161 0.99272241

Chapter 6

[221]

The following diagram shows a graphical representation of the results:

PCA output

From the cumulative results, we can explain most of the variation with the first three
components. Hence, we can drop the other components and still explain most of the
data, thereby achieving data reduction.

The following is a code snippet of the result attained after applying SSVD on Mahout:

Key: 0: Value: {0:6.78114976729216E-5,1:-2.1865954292525495E-4,2:-
 3.857078959222571E-5,3:9.172780131217343E-4,4:-
 0.0011674781643860148,5:-
 0.5403803571549012,6:0.38822546035077155}
Key: 1: Value: {0:4.514870142377153E-6,1:-1.2753047299542729E-
 5,2:0.002010945408634006,3:2.6983823401328314E-5,4:-
 9.598021198119562E-5,5:-0.015661212194480658,6:-
 0.00577713052974214}
Key: 2: Value: {0:0.0013835831436886054,1:3.643672803676861E-
 4,2:0.9999962672043754,3:-8.597640675661196E-4,4:-
 7.575051881399296E-4,5:2.058878196540628E-
 4,6:1.5620427291943194E-5}
.
.
Key: 11: Value: {0:5.861358116239576E-4,1:-
 0.001589570485260711,2:-2.451436184622473E-
 4,3:0.007553283166922416,4:-0.011038688645296836,
 5:0.822710349440101,6:0.060441819443160294}

Understanding Data Reduction Patterns

[222]

The contents of the V folder show the contribution of the original variables to every
principal component. The result is a 12 x 7 matrix as we have 12 dimensions in our
original dataset, which were reduced to 7, as specified in the rank argument to SSVD.

The USigma folder contains the output with reduced dimensions.

Additional information
The complete code and datasets for this section are in the following GitHub directories:

• Chapter6/code/

• Chapter6/datasets/

Information on Mahout's implementation of SSVD can be found at the following links:

• https://cwiki.apache.org/confluence/display/MAHOUT/Stochastic+S
ingular+Value+Decomposition

• https://cwiki.apache.org/confluence/download/
attachments/27832158/SSVD-CLI.pdf?version=18&modificationDate=1
381347063000&api=v2

• http://en.wikibooks.org/wiki/Data_Mining_Algorithms_In_R/
Dimensionality_Reduction/Singular_Value_Decomposition

Numerosity reduction – the histogram
design pattern
The Numerosity reduction – histogram design pattern explores the implementation of the
histograms technique for data reduction.

Background
Histograms belong to the numerosity reduction category of data reduction. They are
nonparametric methods of data reduction in which it is assumed that the data does
not fit into a predefined model or function.

https://cwiki.apache.org/confluence/display/MAHOUT/Stochastic+Singular+Value+Decomposition
https://cwiki.apache.org/confluence/download/attachments/27832158/SSVDCLI.pdf?version=18&modificationDate=1381347063000&api=v2
http://en.wikibooks.org/wiki/Data_Mining_Algorithms_In_R/Dimensionality_Reduction/Singular_Value_Decomposition

Chapter 6

[223]

Motivation
Histograms work by dividing the entire data into buckets or groups and storing
the central tendency for each of the buckets. Internally, this resembles binning.
Histograms can be constructed optimally using dynamic programming. Histograms
differ from bar charts in that they represent continuous data categories rather
than discrete categories. This implies that in a histogram, there are no gaps among
columns that represent various categories.

Histograms help in reducing the categories of data by grouping a large number of
continuous attributes. Representing a large number of attributes may result in a
complex histogram with so many columns that it becomes difficult to interpret the
information. Hence, the data is grouped into ranges that denote a continuous range
of values for an attribute. The data can be grouped in the following ways:

• Equal-width grouping technique: In this grouping technique, each range is
of uniform width.

• Equal-frequency (or equi-depth) grouping technique: In an equal-frequency
grouping technique, the ranges are created in a way that either the frequency
of each range is constant or each range contains the same number of
contiguous data elements.

• V-Optimal grouping technique: In this grouping technique, we consider
all the possible histograms for a given number of ranges and choose the one
with the minimal variance.

• MaxDiff grouping technique: This histogram grouping technique considers
grouping values into a range based on the difference between each pair of
adjacent values. The range boundary is defined between each pair of adjacent
points with the largest differences. The following diagram depicts sorted
data that is grouped into three ranges identified by the maximum differences
between 9-14 and 18-27.

1,1,4,5,5,7,9, 14,16,18, 27,30,30,32

Range 1 Range 2 Range 3

Maximum difference Maximum difference

Maximum difference – illustration

Understanding Data Reduction Patterns

[224]

In the previously mentioned grouping techniques, the V-Optimal and MaxDiff
techniques are more accurate and effective for approximating both sparse and
dense data, as well as highly skewed and uniform data. These histograms can also
work on multiple attributes by using multidimensional histograms that can capture
dependencies between attributes.

Use cases
You can consider using this design pattern in the following conditions:

• When the data does not fit into a parametric model such as regression or
log-linear models

• When the data is continuous and not discrete
• When the data has ordered or unordered numeric attributes
• When the data is skewed or sparse

Pattern implementation
The script loads the data and divides it into buckets using equal-width grouping.
The data for the Transaction Amount field is grouped into buckets. It counts the
number of transactions in each bucket and returns the bucket range and the count
as the output.

This pattern produces a reduced representation of the dataset where the transaction
amount is divided into the specified number of buckets and the count of transactions
that fall in that range. This data is plotted as a histogram.

Code snippets
To illustrate the working of this pattern, we have considered the retail transactions
dataset stored on the HDFS. It contains attributes such as Transaction ID,
Transaction date, Customer ID, age, Phone Number, Product, Product
subclass, Product ID, Transaction Amount, and Country Code. For this pattern,
we will be generating buckets on the attribute Transaction Amount. The following
code snippet is the Pig script illustrating the implementation of this pattern:

/*
Register the custom UDF
*/
REGISTER '/home/cloudera/pdp/jars/databucketgenerator.jar';

/*

Chapter 6

[225]

Define the alias generateBuckets for the custom UDF, the number of
 buckets(20) is passed as a parameter
*/
DEFINE generateBuckets com.datareduction.GenerateBuckets('20');

/*
Load the dataset into the relation transactions
*/
transactions = LOAD '/user/cloudera/pdp/datasets/
 data_reduction/transactions.csv' USING PigStorage(',') AS
 (transaction_id:long,transaction_date:chararray,
 cust_id:chararray, age:chararray, area:chararray,
 prod_subclass:int, prod_id:long, quantity:int, asset:int,
 transaction_amt:double, phone_no:chararray,
 country_code:chararray);

/*
Maximum value of transactions amount and the actual transaction
 amount are passed to generateBuckets UDF
The UDF calculates the bucket size by dividing maximum transaction
 amount by the number of buckets.
It finds out the range to which each value belongs to and returns
 the value along with the bucket range
*/
transaction_amt_grpd = GROUP transactions ALL;
transaction_amt_min_max = FOREACH transaction_amt_grpd GENERATE
 MAX(transactions.transaction_amt) AS
 max_transaction_amt,FLATTEN(transactions.transaction_amt) AS
 transaction_amt;
transaction_amt_buckets = FOREACH transaction_amt_min_max GENERATE
 generateBuckets(max_transaction_amt,transaction_amt) ;

/*
Calculate the count of values in each range
*/
transaction_amt_buckets_grpd = GROUP transaction_amt_buckets BY
 range;
transaction_amt_buckets_count = FOREACH
 transaction_amt_buckets_grpd GENERATE group,
 COUNT(transaction_amt_buckets);

/*
The results are stored on HDFS in the directory histogram.
*/
STORE transaction_amt_buckets_count INTO
 '/user/cloudera/pdp/output/data_reduction/histogram';

Understanding Data Reduction Patterns

[226]

The following code snippet is the Java UDF code that illustrates the implementation
of this pattern:

@Override
 public String exec(Tuple input) throws IOException {
 if (input == null || input.size() ==0)
 return null;
 try{
 //Extract the maximum transaction amount
 max = Double.parseDouble(input.get(0).toString());
 //Extract the value
 double rangeval = Double.parseDouble
 (input.get(1).toString());
 /*Calculate the bucket size by dividing maximum
 transaction amount by the number of buckets.
 */
 setBucketSize();

 /*Set the bucket range by using the bucketSize and
 noOfBuckets
 */
 setBucketRange();

 /*
 It finds out the range to which each value belongs
 to and returns the value along with the bucket range
 */
 return getBucketRange(rangeval);
 } catch(Exception e){
 System.err.println("Failed to process input; error - " +
 e.getMessage());
 return null;
 }

Results
The following is a snippet of the result of applying this pattern on the dataset; the
first column is the bucket range of the Transaction Amount attribute and the second
column is the count of transactions:

1-110 45795

110-220 50083

220-330 60440

330-440 40001

440-550 52802

Chapter 6

[227]

The following is the histogram generated by plotting this data using gnuplot. It
shows a graphical representation of the transaction amount buckets and the number
of transactions in each bucket.

Histogram output

Additional information
The complete code and datasets for this section are in the following GitHub directories:

• Chapter6/code/

• Chapter6/datasets/

Understanding Data Reduction Patterns

[228]

Numerosity reduction – sampling design
pattern
This design pattern explores the implementation of sampling techniques for
data reduction.

Background
Sampling belongs to the numerosity reduction category of data reduction. It can be
used as a data reduction technique, as it represents a very large amount of data by a
much smaller subset.

Motivation
Sampling is essentially a method of data reduction to determine the approximate
subset of a population that has the characteristics of the entire population. Sampling
is a general approach to choose a subset of data to accurately represent a population.
Sampling is performed by various methods that differ in the way in which they
define what goes into the subset and the way candidates are located for that subset.

In the Big Data scenario, the cost of performing analytics, such as classification and
optimization, over the complete population is high; sampling helps to reduce the
cost by reducing the footprint of the data used to perform the actual analytics and
then extrapolating the results on the population. There would be marginal loss of
accuracy, but it far outweighs the benefits of reduced time versus storage trade-offs.

When it comes to Big Data, wherever techniques of statistical sampling are applied, it
is important to be cognizant of the population about which one aims to perform the
analytics. Even if the data that has been collected is very big, the samples may relate
only to a small part of the population, and they may not represent the whole. While
picking the sample, representativeness plays a vital role, as it determines how close
the sampled data is to the population.

Chapter 6

[229]

Sampling can be performed using probabilistic and nonprobabilistic methods.
The following diagram captures the broad landscape of the techniques involved
in sampling:

Simple with
replacement

Simple without
replacement

Proportionate
stratified Judgment

Disproportionate
stratified Quota

Simple random Stratified Covariance

Probabilistic
sampling

Nonprobabilistic
sampling

Sampling
methods

Sampling methods

Probabilistic sampling methods use random sampling, and every element in the
population has a known nonzero (greater than zero) chance of getting selected into
the sampled subset. Probabilistic sampling methods use weighted sampling and
result in unbiased samples of the population. The following are a few probabilistic
sampling methods:

• Simple random sampling: This is the most basic type of sampling in which
every element of the population has an equal chance of being selected
into the subset. The samples are objectively selected at random. The
simple random sampling can be done by replacing the selected item in the
population so that it can be selected again (sampling with replacement)
or by not replacing the selected item in the population (sampling without
replacement). Random sampling doesn't always result in a representative
sample and is a costly operation to perform on a very large dataset. The
representativeness of random sampling can be improved by presampling
the population using stratification or clustering.

Understanding Data Reduction Patterns

[230]

• The following diagram illustrates the difference between the Simple
Random Sampling Without Replacement (SRSWOR) and Simple
Random Sampling With Replacement (SRSWR).

Raw data

SRSWR

(Simple Random

Sample Without

Replacement)

SRSWOR

SRSWOR versus SRSWR

• Stratified sampling: This sampling technique is used when we already
know that the population contains a number of unique categories that are
used to organize the population into subpopulations (strata); individual
samples can then be picked out of them. The chosen sample is forced to
contain elements from each of the subpopulations. This sampling method
concentrates on relevant subpopulations and ignores the irrelevant ones. The
representativeness of the sample is increased by eliminating the selection by
absolute randomness, as evidenced in the simple random sampling and by
selecting items from the independent strata. The stratified sampling method
is a more efficient sampling technique in cases where the unique categories
of the strata are identified in advance. There is an overall time-cost trade-off
associated with stratified sampling, as it could be tedious to initially identify
the unique categories for a population that is relatively homogeneous.

• NonProbabilistic sampling: This sampling method selects the subset of the
population without giving an equal chance of selection to some elements of the
population. In this sampling, the probability of the selection of the elements
cannot be accurately determined. The selection of the elements is done purely
based on a few assumptions on the population of interest. Nonprobabilistic
sampling score poorly to accurately represent the population, and hence the
resultant analytics cannot be extrapolated from the sample to the population.
Nonprobabilistic sampling methods include the covariance sampling, the
judgment sampling, and the quota sampling methods.

Chapter 6

[231]

Use cases
You can consider using the numerosity reduction sampling design
pattern in the following scenarios:

• When the data is continuous or discrete
• When each element of the data has an equal chance of getting

selected without affecting the representativeness of the sampling
• When the data has ordered or unordered attributes

Pattern implementation
This design pattern is implemented in Pig as a standalone script. It
uses the datafu library, which has the implementation of SRSWR as
a pair of UDFs, SimpleRandomSampleWithReplacementElect and
SimpleRandomSampleWithReplacementVote; they implement a scalable
algorithm for SRSWR. The algorithm consists of two phases: vote and elect.
Candidates for each position are voted during the vote stage. One candidate
per position is elected during the election stage. The output is a bag of
sampled data.

The script selects a sample of 100,000 records from the transactions dataset
using the SRSWR technique.

Code snippets
To illustrate the working of this pattern, we have considered the retail transactions
dataset stored on the HDFS. It contains attributes such as Transaction ID,
Transaction date, Customer ID, age, Phone Number, Product, Product
subclass, Product ID, Transaction Amount, and Country Code. For this pattern,
we will be performing SRSWR on the transactions dataset. The following code
snippet is the Pig script that illustrates the implementation of this pattern:

/*
Register datafu and commons math jar files
*/
REGISTER '/home/cloudera/pdp/jars/datafu-1.2.0.jar';
REGISTER '/home/cloudera/pdp/jars/commons-math3-3.2.jar';

Understanding Data Reduction Patterns

[232]

/*
Define aliases for the classes
 SimpleRandomSampleWithReplacementVote and
 SimpleRandomSampleWithReplacementElect
*/
DEFINE SRSWR_VOTE
 datafu.pig.sampling.SimpleRandomSampleWithReplacementVote();
DEFINE SRSWR_ELECT
 datafu.pig.sampling.SimpleRandomSampleWithReplacementElect();

/*
Load the dataset into the relation transactions
*/
transactions= LOAD '/user/cloudera/pdp/datasets
 /data_reduction/transactions.csv' USING PigStorage(',') AS
 (transaction_id:long,transaction_date:chararray,
 cust_id:chararray, age:int, area:chararray, prod_subclass:int,
 prod_id:long, quantity:int, asset:int, transaction_amt:double,
 phone_no:chararray, country_code:chararray);

/*
The input to Vote UDF is the bag of items, the desired sample size
 (100000 in our use case) and the actual population size.
 This UDF votes candidates for each position
*/
summary = FOREACH (GROUP transactions ALL) GENERATE
 COUNT(transactions) AS count;
candidates = FOREACH transactions GENERATE
 FLATTEN(SRSWR_VOTE(TOBAG(TOTUPLE(*)), 100000, summary.count));

/*
The Elect UDF elects one candidate for each position and returns a
 bag of sampled items stored in the relation sampled
*/
sampled = FOREACH (GROUP candidates BY position PARALLEL 10)
 GENERATE FLATTEN(SRSWR_ELECT(candidates));

/*
The results are stored on the HDFS in the directory sampling
*/
STORE sampled into '/user/cloudera/pdp/output
 /data_reduction/sampling';

Chapter 6

[233]

Results
The following is a snippet of the results obtained after applying sampling on the
transactions data. We have eliminated a few columns to improve readability.

580493 … 1621624 … … … … 1 115 576 900-435-5791 U.S.A
193016 … 1808643 … … … … 1 119 735 9020138550 U.S.A
800748 … 199995 … … … … 1 28 1577 904-066-467q USA

The result is a file that contains 100,000 records, taken as a sample from the
original dataset.

Additional information
The complete code and datasets for this section are in the following GitHub directories:

• Chapter6/code/

• Chapter6/datasets/

Numerosity reduction – clustering design
pattern
This design pattern explores the implementation of the clustering technique for
data reduction.

Background
Clustering belongs to the numerosity reduction category of data reduction.
Clustering is a nonparametric model and works without the prior knowledge
of a class label using unsupervised learning.

Motivation
Clustering is a general approach to solve the problem of grouping data. It can be
achieved by various algorithms that differ in the way they define what goes into
a group and how to find the candidates for that group. There are more than 100
different implementations of clustering algorithms that solve a variety of problems
for different objectives. There is no single size that fits all the clustering algorithms for
a given problem; the appropriate one has to be chosen by careful experimentation. A
clustering algorithm that works on a specific data model doesn't always work on a
different model. Clustering is widely used in machine learning, image analysis, pattern
recognition, and information retrieval.

Understanding Data Reduction Patterns

[234]

The objective of clustering is to partition the dataset and effectively reduce its size
based on a set of heuristics. Clustering is, in a way, similar to binning, since it mimics
the grouping aspect of binning; however, the difference lies in the precise way the
grouping is performed in clustering.

The partitions are performed in a way that the data in one cluster is similar to
another in the same cluster, but is dissimilar to other data in other clusters. Here,
similarity is defined as a measure of how close the data is to each other.

K Means is one of the most widely used methods for clustering. Partitions of
observations into k clusters is done by K Means of the cluster analysis; here, each
observation belongs to the cluster with the nearest mean. It is an iterative process
and stabilizes only if the cluster centroid does not move any further.

The quality measure of how well the clustering was performed can be ascertained
by measuring the diameter or the average distance of each cluster object from the
cluster centroid.

We can intuitively understand the need for clustering to reduce the numerosity of
data by the example of an apparel company planning to release a new model of
t-shirt into the market. If the company doesn't use a data reduction technique, it
ends up manufacturing t-shirts of varying sizes to cater to different people. In order
to prevent this, they reduce the data by first noting down the height and weight of
people, plotting them on a graph, and dividing them into three major clusters: small,
medium, and large.

The K Means method uses the dataset of height and weight (n observations) and
divides them into k (that is, three) clusters. For each of the cluster (small, medium,
and large), the data points inside the cluster are closer to the cluster category (that
is, mean of small's height and weight). K Means has provided us with the best three
sizes that will fit everyone and has thus effectively reduced the complexity of the
data; instead of working on the actual data, clustering enables us to work on the
replacement of the actual data by clusters themselves.

We have considered using the K Means implementation of Mahout;
more information on this can be obtained from https://mahout.
apache.org/users/clustering/k-means-clustering.html.

https://mahout.apache.org/users/clustering/k-means-clustering.html

Chapter 6

[235]

From a Big Data perspective, as there is a need to process a very large amount of
data, there would be a time-quality trade-off to be taken into consideration for
choosing a clustering algorithm. New research is underway to develop preclustering
methods, which can process Big Data efficiently. However, the results of a
preclustering method are an approximate prepartitioning of the original dataset,
which will eventually be clustered again by traditional methods such as K Means.

Use cases
You can consider using this design pattern in the following cases:

• When the data is continuous or discrete and the class labels of the data are
not known in advance

• When there is a need to preprocess the data by clustering for, eventually,
performing the classification on a very large amount of data

• When the data has numeric, ordered, or unordered attributes
• When the data is categorical
• When the data is not skewed, sparsed, or smeared

Pattern implementation
The design pattern is implemented in Pig and Mahout. The dataset is loaded into
Pig. The age attribute on which K Means clustering is to be performed is transformed
into vectors and is stored into a Mahout-readable format. It applies Mahout's K
Means clustering on the age attribute of the transactions dataset. K Means clustering
partitions the observations into k clusters in which each observation belongs to the
cluster with the nearest mean; the process is iterative and stabilizes only if the cluster
centroid does not move any further.

This pattern produces a reduced representation of the dataset where the age
attribute is partitioned into a predefined number of clusters. This information
can be used to identify the age groups of the customers visiting the store.

Code snippets
To illustrate the working of this pattern, we have considered the retail transactions
dataset stored on the HDFS. It contains attributes such as Transaction ID,
Transaction date, Customer ID, age, Phone Number, Product, Product
subclass, Product ID, Transaction Amount, and Country Code. For this pattern,
we will be performing K Means clustering on the age attribute. The following code
snippet is the Pig script that illustrates the implementation of this pattern:

Understanding Data Reduction Patterns

[236]

/*
Register the required jar files
*/
REGISTER '/home/cloudera/pdp/jars/elephant-bird-pig-4.3.jar';
REGISTER '/home/cloudera/pdp/jars/elephant-bird-core-4.3.jar';
REGISTER '/home/cloudera/pdp/jars/elephant-bird-mahout-4.3.jar';
REGISTER '/home/cloudera/pdp/jars/elephant-bird-hadoop-compat-
 4.3.jar';
REGISTER '/home/cloudera/mahout-distribution-0.7/lib/json-simple-
 1.1.jar';
REGISTER '/home/cloudera/mahout-distribution-0.7/lib/guava-
 r09.jar';
REGISTER '/home/cloudera/mahout-distribution-0.7/mahout-examples-
 0.7-job.jar';
REGISTER '/home/cloudera/pig-
 0.11.0/contrib/piggybank/java/piggybank.jar';

/*
Use declare to create aliases.
declare is a preprocessor statement and is processed before running
the script
*/
%declare SEQFILE_LOADER
 'com.twitter.elephantbird.pig.load.SequenceFileLoader';
%declare SEQFILE_STORAGE
 'com.twitter.elephantbird.pig.store.SequenceFileStorage';
%declare VECTOR_CONVERTER
 'com.twitter.elephantbird.pig.mahout.VectorWritableConverter';
%declare TEXT_CONVERTER
 'com.twitter.elephantbird.pig.util.TextConverter';

/*
Load the dataset into the relation transactions
*/
transactions = LOAD
 '/user/cloudera/pdp/datasets/data_reduction/transactions.csv'
 USING PigStorage(',') AS (id:long,transaction_date:chararray,
 cust_id:int, age:int, area:chararray, prod_subclass:int,
 prod_id:long, quantity:int, asset:int, transaction_amt:double,
 phone_no:chararray, country_code:chararray);

/*
Extract the columns on which clustering has to be performed
*/

Chapter 6

[237]

age = FOREACH transactions GENERATE id AS tid, 1 AS index, age AS
 cust_age;

/*
Generate tuples from the parameters
*/
grpd = GROUP age BY tid;
vector_input = FOREACH grpd generate group,
 org.apache.pig.piggybank.evaluation.util.ToTuple(age.(index,
 cust_age));
/*
Use elephant bird functions to store the data into sequence file
(mahout readable format)
cardinality represents the dimension of the vector.
*/
STORE vector_input INTO
 '/user/cloudera/pdp/output/data_reduction/kmeans_preproc' USING
 $SEQFILE_STORAGE (
 '-c $TEXT_CONVERTER', '-c $VECTOR_CONVERTER -- -cardinality 100'
);

The following is a snippet of a shell script with the commands for executing K Means
clustering on Mahout:

#All the mahout jars have to be included in classpath before
 execution of this script.
#Create the output directory on HDFS
 before executing VectorConverter
hadoop fs -mkdir
 /user/cloudera/pdp/output/data_reduction/kmeans_preproc_nv

#Execute vectorconverter jar to convert the input to named vectors
hadoop jar /home/cloudera/pdp/data_reduction/vectorconverter.jar
 com.datareduction.VectorConverter
 /user/cloudera/pdp/output/data_reduction/kmeans_preproc/
 /user/cloudera/pdp/output/data_reduction/kmeans_preproc_nv/

#The below Mahout command shows the usage of kmeans. The algorithm
 takes the input vectors from the path specified in the -i
 argument, it chooses the initial clusters at random, -k argument
 specifies the number of clusters as 3, -x specified the maximum
 number of iterations as 15. -dm specifies the distance measure
 to use i.e euclidean distance and a convergence threshold
 specified in -cd as 0.1

Understanding Data Reduction Patterns

[238]

/home/cloudera/mahout-distribution-0.7/bin/mahout kmeans -i
 /user/cloudera/pdp/output/data_reduction/kmeans_preproc_nv/ -c
 kmeans-initial-clusters -k 3 -o /user/cloudera/pdp/output/
 data_reduction/kmeans_clusters -x 15 -ow -cl -dm org.apache
 .mahout.common.distance.EuclideanDistanceMeasure -cd 0.01

Execute cluster dump command to print information about the
 cluster
/home/cloudera/mahout-distribution-0.7/bin/mahout clusterdump --
 input /user/cloudera/pdp/output/data_reduction
 /kmeans_clusters/clusters-4-final --pointsDir
 /user/cloudera/pdp/output/data_reduction
 /kmeans_clusters/clusteredPoints --output age_kmeans_clusters

Results
The following is a snippet of the result of applying this pattern on the
transactions dataset:

VL-817732{n=309263 c=[1:45.552] r=[1:4.175]}
 Weight : [props - optional]: Point:
1.0: 1 = [1:48.000]
 1.0: 2 = [1:42.000]
 1.0: 3 = [1:42.000]
 1.0: 4 = [1:41.000]
VL-817735{n=418519 c=[1:32.653] r=[1:4.850]}
 Weight : [props - optional]: Point:
 1.0: 5 = [1:24.000]
 1.0: 7 = [1:38.000]
 1.0: 12 = [1:34.000]
 1.0: 14 = [1:23.000]
VL-817738{n=89958 c=[1:65.198] r=[1:5.972]}
 Weight : [props - optional]: Point:
 1.0: 6 = [1:66.000]
 1.0: 8 = [1:58.000]
 1.0: 16 = [1:62.000]
 1.0: 24 = [1:74.000]

VL-XXXXXX is the cluster identifier for a converged cluster, c is the centroid and is
a vector, n is the number of points in the cluster, and r is the radius and is a vector.
The data is divided into three clusters as specified in the K Means command. When
this data is visualized, we can infer that values between 41 and 55 are grouped under
cluster 1, 20 and 39 under cluster 2, and 56 and 74 are grouped under cluster 3.

Chapter 6

[239]

Additional information
The complete code and datasets for this section are in the following GitHub directories:

• Chapter6/code/

• Chapter6/datasets/

Summary
In this chapter, you have studied various data reduction techniques that aim to
obtain a reduced representation of the data. We have explored design patterns that
perform the dimensionality reduction using the PCA technique and the numerosity
reduction using the clustering, sampling, and histogram techniques.

In the next chapter, you will explore the advanced patterns that use Pig to mimic
social-media data and understand the context better using text classification and
other relevant techniques. We will also understand how the Pig language would
evolve in the future.

Advanced Patterns
and Future Work

In the previous chapter, you have studied various Big Data reduction techniques that
aim to reduce the amount of data being analyzed or processed. We have explored
design patterns that perform dimensionality reduction using the Principal Component
Analysis technique and numerosity reduction using clustering, sampling, and
histogram techniques.

In this chapter, we will start by discussing design patterns that primarily deal with
text data and will explore a wide array of analytics pipelines that can be built using
Pig as the key ingestion and processing engine.

We will be delving into the following patterns:

• Clustering textual data
• Topic discovery
• Natural language processing
• Classification

We will also speculate about what the future holds for Pig design patterns. These
future trends analyze the kind of trends that are being followed now in the
mainstream to modify Pig for specific use cases. These include where these trends
will originate, what trends in data will affect current design patterns, and so on.

The clustering pattern
The clustering design pattern explores text clustering by calculating set similarities
and clustering the results using Pig and Python.

Advanced Patterns and Future Work

[242]

Background
In the previous chapter, we examined how clustering can be used as a data reduction
technique. We explored a clustering technique that deals with numeric data.

Clustering text automatically groups related documents into clusters that are similar
to each other and separates documents that are different into different clusters. The
primary reason clustering is performed is that if a corpus of documents is clustered,
we divide the search space so that the search can be performed on the cluster
containing the relevant documents. Clustering is one of the most important ways
of improving search effectiveness and efficiency. Whether a group of documents is
similar or different is not always clear and normally varies with the actual problem.
For example, when clustering research articles, any two articles are considered similar
if they share comparable thematic topics. When clustering websites, we are interested
in clustering the pages according to the type of information they hold. For instance,
to cluster university websites, we may want to separate professors' home pages from
students' home pages and pages for courses from pages for research projects.

Text clustering works in situations where we need to organize multiple text
documents into neatly tagged categories to make information retrieval easier. It
can also be used for automated summarization of text corpus so that we can get a
summary insight into the overall content of the corpus.

Text data has many unique properties, which require the design of specialized
algorithms for classification. The following are a few distinctive characteristics of
text representation:

• The text representation is generally very high dimensional, but the
underlying data is sparse. In other words, the dictionary from which the
documents are drawn may contain a million words, but a given document
may contain only a few hundred words.

• These words are typically correlated with each other, implying that the
principal components (or important concepts) are fewer than the words.

• The number of words in each document varies widely, requiring the word
vectors to be normalized in terms of their relative frequency of presence in
the document and over the entire collection. This is typically achieved by
calculating the term frequency–inverse document frequency (TF-IDF).

• These problems have a greater impact when we need to cluster shorter
sentences or tweets.

Chapter 7

[243]

Clustering plays a key role in retrieving vital insights from social media conversations,
which are predominantly unstructured and huge in volume. As social media content
is generated and delivered by one customer to other customers, the velocity of content
generation is also a factor to be considered when choosing a clustering mechanism.
Social media is not confined to just the content created by the microblogging platform
Twitter and the social networking platform Facebook alone; there are various other
sources of content that are routinely created in wikis, forums, blogs, and other media
sharing platforms. These platforms predominantly create text content, with the
exception of Flickr and YouTube, which create image and video data. Clustering
various types of social media content provides an inherent understanding of the
similarity in the relationship between documents, images, videos, network links,
and other contextual information.

In this design pattern, we limit ourselves to clustering text data gleaned from social
media so that we can interpret from the data if there are groups of similar people
in our own social network. This similarity could be owing to the same job titles,
companies, or location.

Motivation
There is a wide variety of algorithms commonly used for text clustering. We have
Hierarchical Agglomerative Clustering and distance-based clustering techniques,
which use a similarity function to measure the closeness between any two text
objects. Many clustering algorithms predominantly differ in the way the similarity
measure is calculated. The following diagram depicts the most common clustering
techniques for text data:

Important text
clustering
algorithms

Hierarchical
agglomerative

algorithms

Distance-based
partitioning
algorithms

Single-linkage
clustering

Group-average
linkage

Clustering

Complete-linkage
clustering

K-medoids

K-means

Common text clustering algorithms

Advanced Patterns and Future Work

[244]

The following is a brief description of the most common text clustering techniques:

• Hierarchical Agglomerative Clustering (HAC): This technique is useful for
supporting a variety of problems that arise while searching because it creates
a tree hierarchy that can be leveraged for the search process and improves
the search effectiveness and efficiency.
The general concept of HAC algorithms is to combine documents into
clusters based on their similarity to other documents. Hierarchical clustering
algorithms successively combine groups based on the best pairwise similarity
between these groups of documents. The similarity is computed between
different sets of points in documents using the popular distance measures
such as Euclidean, Manhattan, and Levenshtein. This corresponds to single-
linkage, group-average linkage, and complete linkage clustering respectively.
These algorithms are quite accurate, but they suffer from lack of efficiency.

• Distance-based partitioning algorithms: These algorithms are generally
used to create a cluster of objects where hierarchy does not play an important
role. There are two widely used distance-based clustering algorithms:
K-medoids and K-means. These algorithms are far less accurate than the
HAC algorithms, but are a lot more efficient.

 ° K-medoids clustering algorithm: This technique uses a set of k data
points from the original data as central points (or medoids) around
which the clusters are developed. The central aim of the algorithm
is to figure out an ideal set of documents from the original set of
documents around which the clusters are built. Each document
is assigned to the document nearest to it in the collection. This
creates an iterative set of clusters from the document set, which are
successively improved by a random process. The key disadvantages
of K-medoids clustering algorithms are that they are slow as they
require a large number of iterations in order to achieve convergence
and that they do not work well for sparse text data sets.

 ° K-means clustering algorithm: This technique is quite similar to
K-medoids as it also uses a set of k data points around which the
clusters are built. However, unlike the K-medoids, this initial set
of representative points is not obtained from the original data. The
initial set of representative points is obtained from methods such
as the hierarchical agglomerative clustering and partial supervision
techniques. The K-means algorithm is faster than the K-medoids
algorithm as it reaches the convergence in far fewer iterations. The
disadvantages of using the K-means method are that it is quite
dependent on the accuracy of the initial set of seeds and that the
centroids for a given cluster of documents may contain a large number
of words.

Chapter 7

[245]

Pig is used to ingest the source data and apply several standard transformations to
the term vector representation.

1. Remove the stop words. These are words that are nondescriptive for the
topic of a document (such as a, an, is, and the).

2. Stem the words using Porter stemmer so that words with different endings
are mapped into a single word.

3. Measure the effect of containing rare terms in the document on the overall
clustering ability and then decide to discard words that appear with less than
a specified threshold frequency.

The following is a quick overview of some of the string similarity measures used to
compute the closeness of strings for clustering purposes:

• Edit distance or Levenshtein distance: This calculates the dissimilarity
of strings by counting the minimum number of replacements required to
transform one string to another

• Jaccard similarity: This is calculated by dividing the number of items in
common between the two sets by the total number of distinct items in the
two sets

• Measuring Agreement on Set-valued Items (MASI): This distance returns a
shorter distance than the Jaccard similarity when there is partial overlapping
between the sets

Use cases
The clustering design pattern can be used for the following purposes:

• Clustering data after retrieval to present more organized results to the user
• Creating hierarchical taxonomies of documents based on their similarity for

browsing purposes

Pattern implementation
The use case depicted in this pattern clusters Outlook contacts with similar job titles.
Conceptually, this pattern identifies which of your contacts are similar based on
an arbitrary criterion such as job title. For example, this pattern can be extended to
answer which of your connections have worked in companies you want to work for
or where most of your connections reside geographically.

Advanced Patterns and Future Work

[246]

The Pig script loads the data and performs transformations on it by replacing
abbreviations with their full forms and passes distinct job titles to the Python script
via streaming. Passing distinct job titles ensures that the amount of data sent to the
Python script is reduced.

The bulk of the clustering code is implemented in Python, which has ready-made
support for clustering. The Python script is invoked via streaming in the Reduce
phase. The job titles passed by Pig are read by the Python script from stdin and
MASI distance is calculated. Clustering is done on the job title based on the distance
and threshold and then the clustered job titles are written to stdout.

The Pig script reads the values written by Python to stdout and performs the
name and job title association by fetching the job titles from the data available in
the Pig relation.

We have explored several methods to calculate string similarity in order to cluster
the job titles and zeroed in on the MASI distance for implementation in this pattern.
This distance measure is deemed appropriate for our current use cases where there
are overlaps in the job titles.

Code snippets
To illustrate the working of this pattern, we have exported contact names and their
job titles from Outlook into a CSV file and de-identified the names. This file is stored
on the HDFS.

All the external Python modules that are not in the default Python
path should be added to the PYTHONPATH environment variable
before execution of the script.

The following code snippet is the Pig script illustrating the implementation of
this pattern:

 /*
Assign alias cluster_contacts to the streaming command
Use SHIP to send the streaming binary files (Python script) from
 the client node to the compute node
*/
DEFINE cluster_contacts 'cluster_contacts.py' SHIP
 ('cluster_contacts.py');

/*
Register the piggybank jar file
*/

Chapter 7

[247]

REGISTER '/home/cloudera/pig-
 0.11.0/contrib/piggybank/java/piggybank.jar';

/*
Load the outlook_contacts.csv dataset into the relation
 outlook_contacts
*/
outlook_contacts = LOAD '/user/cloudera/pdp/datasets/
 advanced_patterns/outlook_contacts.csv' USING PigStorage(',') AS
 (name: chararray, job_title: chararray);

/*
Transform the job titles by replacing few abbreviations with their
 full forms
*/
transformed_job_titles = FOREACH outlook_contacts {
job_title_sr = REPLACE(job_title,'Sr', 'Senior');

.

.
job_title_vp = REPLACE(job_title_cfo,'VP', 'Vice President');

GENERATE name AS name,job_title_vp AS job_title;
}

/*
Trim spaces for the field job_title
*/
jt_trimmed = FOREACH transformed_job_titles GENERATE
 TRIM(job_title) AS job_title,name;

/*
Group outlook_contacts by job_title
Extract unique job titles and store into the relation jt_flattened
STREAM is used to send the data to the external script
The Python script executes as a reduce job as STREAM is called
 after GROUP BY
The result is stored in the relation clustered_jt
*/
jt_trimmed_grpd = GROUP jt_trimmed BY job_title;
jt_flattened = FOREACH jt_trimmed_grpd GENERATE flatten(group);
clustered_jt = STREAM jt_flattened THROUGH cluster_contacts;

Advanced Patterns and Future Work

[248]

/*
Clustered job titles from relation clustered_jt are typecasted to
 chararray and are assigned to relation clustered_jt_cast.
clustered_jt_cast relation contains job title clusters.
*/
clustered_jt_cast = FOREACH clustered_jt GENERATE (chararray)$0 AS
 cluster;

/*
The job titles are tokenized by using comma and are assigned to
 the relation clustered_jt_tokens along with the cluster name.
*/
clustered_jt_tokens = FOREACH clustered_jt_cast GENERATE
 TOKENIZE(cluster,','), cluster;

/*
Each job title in job cluster is converted into a new tuple and is
 assigned to relation clustered_jt_flattened along with the
 cluster name.
*/
clustered_jt_flattened = FOREACH clustered_jt_tokens GENERATE
 FLATTEN($0) AS cluster_job, cluster;

/*
Trim spaces in the job titles.
*/
clustered_jt_trimmed = FOREACH clustered_jt_flattened GENERATE
 TRIM(cluster_job) AS cluster_job, cluster;

/*
Join jt_trimmed relation by job_title with the relation
 clustered_jt_trimmed by cluster_job. Project the contact name
 and cluster name.
*/
jt_clustered_joind = JOIN jt_trimmed BY
 job_title,clustered_jt_trimmed BY cluster_job;
name_clustered_jt = FOREACH jt_clustered_joind GENERATE
 jt_trimmed::name AS name, clustered_jt_trimmed::cluster AS
 cluster;

/*
Remove duplicate tuples from relation name_clustered_jt.
*/
uniq_name_clustered_jt = DISTINCT name_clustered_jt;

Chapter 7

[249]

/*
Group the relation uniq_name_clustered_jt by field cluster and
 project the cluster name(consisting of a set of job titles) and
 the contact name
*/
name_clustered_jt_grpd = GROUP uniq_name_clustered_jt BY
 cluster;
similar_jt_clusters= FOREACH name_clustered_jt_grpd GENERATE group
 AS clustername, uniq_name_clustered_jt.name AS name;

/*
The results are stored on the HDFS in the directory clustering
*/
STORE similar_jt_clusters into
 '/user/cloudera/pdp/output/advanced_patterns/clustering';

The following is the Python code snippet illustrating the implementation of
this pattern:

#! /usr/bin/env python

Import required modules
import sys
import csv
from nltk.metrics.distance import masi_distance

Set the distance function to use and the distance threshold
 value
DISTANCE_THRESHOLD = 0.5
DISTANCE = masi_distance

def cluster_contacts_by_title():

Read data from stdin and store in a list called contacts
 contacts = [line.strip() for line in sys.stdin]
 for c in contacts[:]:
 if len(c)==0 :
 contacts.remove(c)

create list of titles to be clustered (from contacts list)
 all_titles = []
 for i in range(len(contacts)):

Advanced Patterns and Future Work

[250]

 title = [contacts[i]]
 all_titles.extend(title)

 all_titles = list(set(all_titles))

 # calculate masi_distance between two titles and cluster them
 based on the distance threshold, store them in dictionary
 variable called clusters
 clusters = {}
 for title1 in all_titles:
 clusters[title1] = []
 for title2 in all_titles:
 if title2 in clusters[title1] or
 clusters.has_key(title2) and title1 \
 in clusters[title2]:
 continue
 distance = DISTANCE(set(title1.split()),
 set(title2.split()))
 if distance < DISTANCE_THRESHOLD:
 clusters[title1].append(title2)

 # Flatten out clusters
 clusters = [clusters[title] for title in clusters if
 len(clusters[title]) > 1]

 # Write the cluster names to stdout
 for i in range(len(clusters)):
 print ", ".join(clusters[i])

Results
The following is a snippet of the results after executing the code in this pattern on
the dataset. We have shown only a few of the clusters to improve readability. The
comma separated list on the left shows the clustered job titles, while the names
associated with the job titles are displayed on the right.

IT Analyst, IT Financial Analyst {(Name268),(Name869)}
Delivery Head, Delivery Unit Head {(Name631),(Name662)}
Data Scientist, Lead Data Scientist {(Name50),(Name823),(Name960),
 (Name314),(Name124),(Name163),(Name777),(Name58),(Name695)}
Lead Analyst, Lead Business Analyst {(Name667),(Name495),
 (Name536),(Name952)}

Chapter 7

[251]

Pega Practice Head, M2M Practice Head {(Name618),(Name322)}
Technical Lead, Lead Technical Writer {(Name52),(Name101),
 (Name120),(Name969),(Name683)}
Vice President, Vice President Sales {(Name894),(Name673),
 (Name72)}
Business Analyst, Lead Business Analyst {(Name536),(Name847)}
Director - Presales, Director - Staffing {(Name104),(Name793)}
Product Manager, Senior. Product Manager {(Name161),(Name956)}
Technology Lead, Technology Lead Service {(Name791),(Name257)}

In the following diagram, we have graphically represented a few of the clusters to
improve readability:

Big Data scientist - Architect,
Data Architect - Big Data
Name179
Name941

Senior Software Engineer,
Senior Software Engineer
(Big Data)
Name11
Name32
Name71
............
............
Name87

Manager - Talent Acquisition,
Talent Acquisition Manager,
Manager – Recruitment
Name387
Name523
Name775
Name778

Director - Big Data,
Big Data Director,
Practice Director – Big Data
Name342
Name411
Name872

Clustering output

As shown in the preceding diagram, the first cluster consists of two contacts with the
job titles Big Data scientist – Architect and Data Architect – Big Data. These two
titles are similar and hence the contacts are grouped into a single cluster.

Advanced Patterns and Future Work

[252]

Additional information
The complete code and datasets for this section can be found in the following
GitHub directories:

• Chapter7/code/

• Chapter7/datasets/

The topic discovery pattern
The topic discovery design pattern explores one way of classifying a corpus of text
by the technique called Latent Dirichlet Allocation (LDA) using Pig and Mahout.

Background
The discovery of the hidden topic in a corpus of text is one of the latest developments
in the field of natural language processing. The data posted on social media sites
generally covers a wide array of subjects. However, in order to extract relevant
information from these sites, we have to classify the text corpus based on the
relevance of the topics hidden in the text. This will enable automated summarization
of a large amount of text and find what it is really about. Prior knowledge of the
topics that are thus discovered is used to classify new documents.

Motivation
The key difficulty topic models solve is that of classifying a text corpus and identifying
its topic in the absence of any prior knowledge of its contents. Prior knowledge implies
that the document has not been labeled before as belonging to a particular topic. Topic
models use statistical methods to discover topics hidden in the text corpus.

Latent Dirichlet Allocation (LDA) is an implementation of the topic models that
works by initially identifying topics from a set of words contained in a document
and then grouping the documents into combinations of topics.

LDA uses a TF-vector space model to identify the meaning of the word based on its
context rather than frequency. Using LDA, the word's intent is resolved by removing
ambiguities. LDA uses contextual clues to connect words with the same meaning
and differentiate between usages of words with multiple meanings.

Chapter 7

[253]

We can form an intuitive understanding of topic models by considering a case where
it is easy for humans to comprehend that the words "penicillin" and "antibiotics"
will appear more often in documents about medicine and the words "code" and
"debugger" will appear more often in documents about software. Topic models try
to glean the topic from the corpus based on the word distributions and document
distributions of the topics.

Let us consider the following statements:

• I ate oats and carrots for breakfast
• I love eating oranges and carrots
• Puppies and kittens are cute
• My brother brought a puppy home
• The cute rabbit is chewing a piece of carrot

LDA automatically discovers the topics these sentences contain. As an example, if we
perform LDA on these sentences and perform a query for the discovered topics, the
output might be as follows:

Topic A: 30% oats, 15% carrots, 10% breakfast, 10% chewing, … (this topic
could be interpreted to be about food)

Topic B: 20% Puppies, 20% kittens, 20% cute, 15% rabbit, ... (this topic
could be interpreted to be about cute animals)

Sentences 1 and 2: 100% Topic A

Sentences 3 and 4: 100% Topic B

Sentence 5: 60% Topic A, 40% Topic B

Pig is the glue that connects the raw data and LDA algorithm by pre-processing
the data and converting it into a format amenable to the application of the LDA
algorithm. It comes in handy to quickly ingest the right data from various sources,
cleanse it, and transform it into the necessary format. Pig manufactures the dataset
from the raw data and sends it to the LDA implementation script.

Use cases
You can consider using this design pattern on an unstructured text corpus to explore
the latent intent and summarization. This pattern can also be considered in cases where
we are not aware of the contents of the text corpus and cannot classify it based on a
supervised classification algorithm so that we can understand even the latent topics.

Advanced Patterns and Future Work

[254]

Pattern implementation
To implement this pattern, we have considered a set of articles on Big Data and
medicine, and we intend to find the topics inherent in the documents. This design
pattern is implemented in Pig and Mahout. It illustrates one way of implementing
the integration of Pig with Mahout to ease the problem of vectorizing the data and
converting it into a Mahout-readable format, allowing quick prototyping. We have
deliberately omitted the steps for pre-processing and vector conversion as we have
already seen an example illustrating these steps in Chapter 6, Understanding Data
Reduction Patterns.

The sh command in Pig is used to invoke Mahout commands that perform the
pre-processing, create sparse vectors, and apply Collapsed Variational Bayes (
CVB), which is Mahout's implementation of LDA for topic modeling. The resultant
list of words, along with their probabilities, is returned for each topic.

Code snippets
To illustrate the working of this pattern, we have considered a dataset with a couple
of articles on Big Data and medicine. The files are stored on HDFS. For this pattern,
we will be applying topic modeling on the text corpus to identify the topics.

The following code snippet is the Pig code illustrating the implementation of
this pattern:

/*
Register piggybank jar file
*/
REGISTER '/home/cloudera/pig-
 0.11.0/contrib/piggybank/java/piggybank.jar';

/*
*Ideally the following data pre-processing steps have to be
 generally performed on the actual data, we have deliberately
 omitted the implementation as these steps were covered in the
 respective chapters

*Data Ingestion to ingest data from the required sources

*Data Profiling by applying statistical techniques to profile data
 and find data quality issues

*Data Validation to validate the correctness of the data and
 cleanse it accordingly

Chapter 7

[255]

*Data Transformation to apply transformations on the data.

*Data Reduction to obtain a reduced representation of the data.
*/

/*
We have deliberately omitted the steps for vector conversion as we
 have an example illustrating these in the chapter Understanding
 Data Reduction Patterns.
*/

/*
Use sh command to execute shell commands.
Convert the files in a directory to sequence files
-i specifies the input directory on HDFS
-o specifies the output directory on HDFS
*/
sh /home/cloudera/mahout-distribution-0.8/bin/mahout seqdirectory
 -i /user/cloudera/pdp/datasets/advanced_patterns/lda -o
 /user/cloudera/pdp/output/advanced_patterns/lda/sequence_files

/*
Create sparse vectors
-i specifies the input directory on HDFS
-o specifies the output directory on HDFS
-nv to get the named vectors
*/
sh /home/cloudera/mahout-distribution-0.8/bin/mahout seq2sparse -i
 /user/cloudera/pdp/output/advanced_patterns/lda/sequence_files -
 o /user/cloudera/pdp/output/advanced_patterns/lda/sparse_vectors
 -nv -wt tf

/*
Use rowid to convert the sparse vectors by changing the text key
 to integer
-i specifies the input directory on HDFS
-o specifies the output directory on HDFS
*/
sh /home/cloudera/mahout-distribution-0.8/bin/mahout rowid -i
 /user/cloudera/pdp/output/advanced_patterns/lda/
 sparse_vectors/tf-vectors/ -o /user/cloudera/pdp/output/
 advanced_patterns/lda/matrix

Advanced Patterns and Future Work

[256]

/*
Use Collapsed Variational Bayes for topic modelling
-i specifies the input directory on HDFS
-o specifies the output directory on HDFS
-k specifies the number of topics
-x specifies the maximum number of iterations
-dict specifies the path to term dictionary
-dt specifies the path to document topic distribution
-mt specifies temporary directory of the model, this is useful
 when restarting the jobs
*/
sh /home/cloudera/mahout-distribution-0.8/bin/mahout cvb -i
 /user/cloudera/pdp/output/advanced_patterns/lda/matrix/matrix -o
 /user/cloudera/pdp/output/advanced_patterns/lda/lda-out -k 2 -x
 5 -dict /user/cloudera/pdp/output/advanced_patterns/lda/sparse_
 vectors/dictionary.file-* -dt /user/cloudera/pdp/output/advanced_
 patterns /lda/lda-topics -mt /user/cloudera/pdp/output/advanced_
 patterns/ lda/lda-model

/*
Display top ten words along with their probabilities for each
 topic
-i specifies the input directory on HDFS
-d specifies the path to the dictionary file
-dt specifies the type of the dictionary (sequence / text)
-sort sorts the Key/Value pairs in descending order
*/
sh /home/cloudera/mahout-distribution-0.8/bin/mahout vectordump -i
 /user/cloudera/pdp/output/advanced_patterns/lda/lda-out -d
 /user/cloudera/pdp/output/advanced_patterns/lda/sparse_vectors
 /dictionary.file-* -dt sequencefile -vs 10 -sort
 /user/cloudera/pdp/output/advanced_patterns/lda/lda-out

Results
The following is a snippet of the results after executing the code in this pattern on
the dataset:

Topic 1:
 {examination:0.11428571430112491,medical:0.09999999999299336,
 follow:0.057142857068596745,may:0.057142857068595974,
 patient:0.05714285706859565,order:0.05714285706858435,
 tests:0.042857142760463936,physical:0.04285714276045852,
 signs:0.04285714276044089,other:0.028571428452333902}

Chapter 7

[257]

Topic 2:
 {data:0.14754098319799064,parallel:0.0983606554177082,
 processing:0.08196721282428095,mapreduce:0.08196721282428092,
 big:0.06557377023085392,framework:0.06557377023085392,
 architecture:0.06557377023085391,use:0.032786885044002005,
 end:0.032786885044002005,type:0.032786885044002005}

The preceding result indicates discovery of two topics (Topic 1 and Topic 2) in the
document and the list of the top ten words along with their probabilities for each
topic. These topics are related to Big Data and medicine.

Additional information
The complete code and dataset for this section can be found in the following
GitHub directories:

• Chapter7/code/

• Chapter7/datasets/

More information on Mahout's implementation of LDA can be found at https://
mahout.apache.org/users/clustering/latent-dirichlet-allocation.html.

The natural language processing pattern
This design pattern explores the implementation of natural language processing on
unstructured text data using Pig.

Background
Information retrieval from unstructured data, such as blogs and articles, revolves
around extracting meaningful information from huge chunks of un-annotated text.
The core goal of information retrieval is to extract structured information from
unstructured text. This structured information is indexed to optimize the search.
For example, consider the following sentence:

"Graham Bell invented the telephone in 1876"

The preceding sentence is used to extract the following structured information:

Inventorof (Telephone, Graham Bell)
InventedIn(Telephone, 1876)

https://mahout.apache.org/users/clustering/latent-dirichlet-allocation.html

Advanced Patterns and Future Work

[258]

There are a number of ways in which information retrieval can be performed on a
corpus of text. We have studied in The unstructured text profiling pattern section of
Chapter 3, Data Profiling Patterns, how a bag of words model based on TF-IDF helps
to decompose a document into word frequencies and makes information retrieval
possible by accessing the document in which a word is frequent. One of the glaring
shortcomings of this model, based on TF-IDF, is that it does not require deep
semantic understanding of data. Instead, these models are concerned with the syntax
of the words that were separated by whitespace to break the document into a bag of
words and use frequency and simple similarity metrics to determine which words
were likely to be important in the data. Even though these techniques are used for a
wide variety of applications, they fail in cases where we have to retrieve information
dealing with the context of the data.

As an illustration, biomedical researchers often examine a large number of medical
publications to glean discoveries related to genes, proteins, or other biomedical
entities. To enable this effort, a simple search using keyword matching (such as TF-
IDF) may not be adequate, because many biomedical entities have synonyms and
ambiguous names; this makes it hard to accurately retrieve relevant documents. It
is a critical task in biomedical literature mining to identify biomedical entities from
text based on semantics or context and to link them to their corresponding entries in
existing knowledge bases. In this design pattern, we will explore extraction of named
entities from an unstructured corpus using Pig and Python.

Motivation
The two fundamental tasks of context-sensitive decomposition of data using natural
language processing are named entity recognition and relation extraction.

Named entity recognition is a technique for identifying names of entities, such as
"Obama", "president", and "Washington", from unstructured text and classifying
them into predefined types, such as people, job, and locations. Named entity
recognition generally cannot be performed using string matching since the entities
of a given type can be unlimited and also since the type of the named entity can be
context dependent. In the previous example, the entity "Washington" can belong to
the entity types, Location or Person; to correctly determine the correct entity type,
its context has to be considered. Named entity recognition is the foundational task
for information extraction. The extraction of other information structures, such as
relationships and events, depends on accuracy of named entity recognition as a
pre-processing step.

Typically, named entity recognition is implemented using statistical sequence
labeling algorithms, such as maximum entropy models, hidden Markov models,
and conditional random fields.

Chapter 7

[259]

The following are the high-level steps involved in performing named
entity recognition:

End of sentance
detection

Tokenization

Parts of speech
tagging

Chunking

Extraction

Named entity recognition

The following is a brief description of the steps involved in an NLP pipeline:

• End of sentence detection: This is the first step toward processing the
corpus. It is performed on the entire corpus of text to split it into a collection
of meaningful sentences. This step overcomes the ambiguities involved in the
end-of-sentence detection where a period or other punctuation mark denotes
the end of sentences and other abbreviations.

• Tokenization: This operates on single sentences and converts them
into tokens.

• Parts-of-speech tagging: This assigns information about parts of speech
(such as nouns, verbs, and adjectives) to each token. The parts of speech
listed as a result in this step will be grouped together (for example, all the
nouns may be grouped). This grouping will eventually help reasoning
about the types of entities they belong to (for example, people, places,
and organizations).

• Chunking: This performs a series of tasks such as finding noun groups
and verb groups, and completes partitioning of sentences into groups of
different types.

• Extraction: This analyzes each chunk and tags it as an entity type, such as
people, places, and organizations.

Advanced Patterns and Future Work

[260]

The previously mentioned steps to extract entities enable us to use these entities as
the basis of analysis as opposed to document-centric analysis involving keyword
searches and frequency analysis. One simple way to do this analysis would be
to extract all the nouns and noun phrases from the document, and index them as
entities appearing in the documents.

In this design pattern, Pig is used to ingest the source data and preprocess it before
the NLP algorithm is applied and the parts of speech or entities are identified.

Use cases
This design pattern can be used to address the needs of the following problem areas:

• Extracting the financial or biomedical information from news or other
text corpus

• Extracting entities to automatically summarize text and creating new text
by combining information from multiple documents

• Detection of certain sequences in text, which are needed prior to text
clustering or indexing

Pattern implementation
To implement this pattern, we have considered a text data set containing some text
on the invention of the telephone. The objective of the code is to extract named
entities from the document.

This design pattern is implemented by integrating Pig and Python. Python has
extensive support for processing natural language through its NLTK toolkit. The
Pig script loads a text file and passes this relation to a Python script via streaming.
Python's NLTK library has built-in functions to tokenize sentences and words. Its
pos_tag function tags parts of speech for each token; the chunking operation finds the
noun and verb groups and tags them with entity types such as people, organizations,
and places. The Python script uses these functions of the NLTK library and returns the
named entities to the Pig script.

Code snippets
To illustrate the working of this pattern, we have considered a text dataset extracted
from the Wikipedia article on the invention of the telephone. The file is stored on
HDFS. For this pattern, we will be using Pig and Python to extract named entities.

Chapter 7

[261]

All the external Python modules not in the default Python path should
be added to the PYTHONPATH environment variable before the execution
of the script.

The following code snippet is the Pig code illustrating the implementation of
this pattern:

 /*
Assign alias ner to the streaming command
Use SHIP to send the streaming binary files (Python script) from
 the client node to the compute node
*/
DEFINE ner 'named_entities.py' SHIP ('named_entities.py');

/*
Load the dataset into the relation data
*/
data = LOAD '/user/cloudera/pdp/datasets/advanced_patterns/input.txt';

/*
STREAM is used to send the data to the external script
The result is stored in the relation extracted_named_entities
*/
extracted_named_entities = STREAM data THROUGH ner;

/*
The results are stored on the HDFS in the directory nlp
*/
STORE extracted_named_entities INTO
 '/user/cloudera/pdp/output/advanced_patterns/nlp';

The following code snippet is the Python code illustrating the implementation of
this pattern:

 #! /usr/bin/env python

Import required modules

import sys
import string
import nltk

Read data from stdin and store it as sentences
for line in sys.stdin:

Advanced Patterns and Future Work

[262]

 if len(line) == 0: continue
 sentences = nltk.tokenize.sent_tokenize(line)

 # Extract words from sentences
 words = [nltk.tokenize.word_tokenize(s) for s in sentences]

 # Extract Part of Speech from words
 pos_words = [nltk.pos_tag(t) for t in words]

 # Chunk the extracted Part of Speech tags
 named_entities = nltk.batch_ne_chunk(pos_words)

 # Write the chunks to stdout
 print named_entities[0]

Results
The following is a snippet of the results after executing the code in this pattern on the
dataset. The tag NNP indicates a noun that is part of a noun phrase, VBD indicates a
verb that's in simple past tense, and JJ indicates an adjective. For more information
on the tags, refer to the Penn Treebank Project, which provides a full summary. The
following is a snippet of part of speech tags that are returned:

(S

 (PERSON Alexander/NNP)

 (PERSON Graham/NNP Bell/NNP)

 was/VBD

 awarded/VBN

 a/DT

 patent/NN

 for/IN

 the/DT

 electric/JJ

 telephone/NN

 by/IN

 (ORGANIZATION USPTO/NNP)

 in/IN

 March/NNP

 1876/CD

 ./.)

Chapter 7

[263]

We have redrawn the results for better readability, as shown in the
following diagram:

PERSON was VBD awarded VBN a DT patent NN for IN ORGANIZATION

USPTO NNP

PERSON

S

Alexander NNP

Graham NNP Bell NNP

The named entity recognition output

The parts of speech tagging is done for each word. Alexander Graham Bell is
identified as a person and part of speech tagging is done as an NNP (noun that is
part of a noun phrase), which indicates a proper noun. USPTO is identified as an
organization and is tagged as a proper noun.

Additional information
The complete code and dataset for this section can be found in the following
GitHub directories:

• Chapter7/code/

• Chapter7/datasets/

Additional parts of speech tagging information is at http://www.ling.upenn.edu/
courses/Fall_2003/ling001/penn_treebank_pos.html.

The classification pattern
This design pattern explores the implementation of classification using Pig
and Mahout.

http://www.ling.upenn.edu/courses/Fall_2003/ling001/penn_treebank_pos.html

Advanced Patterns and Future Work

[264]

Background
Classification is one of the core concepts of predictive analytics; it is a technique
in which data is labeled into categories or groups according to its characteristics.
Classification is a simplified way to make decisions based on the data and its
attributes. For example, in a survey questionnaire, we choose an appropriate answer
or select a particular check box for a given question. Here, we are making a decision
from a finite group of choices (check boxes or answers) provided to us. Sometimes,
the number of choices can be as small as two (yes/no). In these cases, classification
uses specific information on the input data to choose a single output from a group of
predetermined responses.

Consider the case of a human being making a decision to buy a pizza. The input
data for this decision making includes the price, toppings, type of crust, and so on,
for multiple pizzas, and the group of predetermined choices includes to buy and
don't buy. Classification helps the person involved to efficiently make the decision by
looking at the input information and choosing to buy a pizza if it suits his taste and is
within his specific price limit.

Using machine learning for classification, we can train the machine-learning algorithm
to mimic human thought and perform automated decisions based on the input data
characteristics. These algorithms work best when they have to decide a single output
from a short list of categorical values based on the specific input characteristics.

The well-known example of predictive analysis using classification is spam detection
where the machine learning algorithm uses the details of past e-mails that were
labeled as spam and combines this with the attributes of e-mail messages to decide
whether new messages are spam or not spam. Similarly, in the case of credit card
fraud detection, the past history of fraudulent transactions and the attributes of the
current transaction are used to decide whether the transaction is fraudulent or not.

All the classification algorithms learn how to decide based on the examples (past
data). The accuracy of the decision making depends on the accuracy of the examples
fed into the classification algorithm and also the quality of the input data.

Motivation
Classification is a three-step process: training, testing, and production. The training
and testing are preproduction steps, which specifically use historical data to build
and refine the model. This data has already been labeled with the decision (say spam
or not spam). The historical data is divided into two buckets, one for building the
training model and the other for testing. The training data is approximately 80 to 90
percent of the historical data and the rest is testing data. The decisions in the testing
bucket are deliberately removed.

Chapter 7

[265]

• Training: The input for the training step consists of example data labeled
with known decisions. Based on the known decisions and the input data
characteristics, the trained model performs classification in the testing step.
The training model is the most important artifact in the classification engine,
and it is tuned to predict as accurately as possible by supplying it with
appropriately labeled example data.

• Testing: The input for the testing step is the trained model from the previous
step plus the new examples that were withheld from the training step that
have the decisions deliberately removed. As a result of the testing step, the
model chooses a decision and these decisions are evaluated for accuracy.
This evaluation is done by comparing known results with the results from
the model. This step has a bearing on the performance on the model, which
is revised accordingly. Once the model performs as expected, it is deployed
into production, where more unlabelled examples are given to it.

• Production: The input to the production step is a set of new example data
whose decision is unknown. The model deployed in production uses the
inference formed out of the training and testing phase to perform the
actual classification. The output of this phase is generally in line with the
precision of the results obtained in the testing phase unless there is a drastic
change in the input values or poor data quality. Occasionally, the samples
of the production data are taken to be used as new training data so that the
classification model is updated and deployed back into production.

Estimated
target variables

Predictors
variables

Predictors
and target
variables

Copy model

T x1 ... xn
T x1 ... xn

T x1 ... xn
T x1 ... xn

T x1 ... xn

Training examples
with reference

decisions
Model

Training
algorithm

New examples Emulated
decisionsModel

T
T

T
T

T

? x1 ... xn
? x1 ... xn

? x1 ... xn
? x1 ... xn

? x1 ... xn

The classification process

Advanced Patterns and Future Work

[266]

The performance of the classification exercise can be understood by the confusion
matrix. The confusion matrix contains the values of the decisions made by the model
(predicted class) and the actual decisions (actual class). It generally has two rows and
two columns that report the number of true positives, false negatives, false positives,
and true negatives. The columns of the confusion matrix represent the predicted
class, and the rows represent the actual class.

For example, if the model needs to classify e-mails as SPAM and NOT_A_SPAM and
the document is actually SPAM but the model classified it as NOT_A_SPAM, then the
confusion matrix is as follows:

Actual
class

Predicted class

SPAM

NOT_A_SPAM

0

SPAM NOT_A_SPAM

1

0 0

The confusion matrix

In the preceding confusion matrix illustration, the diagonal contains the counts of
e-mails that the model has correctly classified and the off-diagonal contains the
wrongly classified instances. The perfect classifier will have all entries classified
correctly and hence will have all the counts along the diagonal.

Classification can be performed using a variety of algorithms. Each of these
algorithms differs broadly based on the type of input data it can handle (such as
skewed data and uniform data), the amount of data, explainability of the results,
the number of attributes (with high dimensional space), the number of classifiers
(such as binary yes/no or multiclassifier), speed of training and classification,
parallelizablility, and so on.

The following diagram shows a snapshot of the most important classification
algorithms. These algorithms have different trade-offs in terms of effectiveness,
efficiency, and applicability for a given problem set.

Chapter 7

[267]

Linear SVM

Winnow

Decision trees

Random forest

Linear models

Trees

Boosting

Neural networks

k-nearest
neighbors

Generative models Bayes

C
la

ss
ifi

ca
tio

n
al

go
rit

hm
s

A few classification algorithms

Pig is an extremely useful language to implement the classification pipeline in
production. It comes in handy to quickly explore the data, assign the right schema,
ingest the right data from various sources, cleanse it, integrate the data, and
transform it into the necessary format. Pig manufactures the dataset from the raw
data so that classification is performed on this ready-made set.

Use cases
This design pattern can be used to address the needs of the following problem areas,
but is not limited to them:

• Spam filtering
• Fraud detection
• Sentiment analysis

Pattern implementation
This design pattern is implemented in Pig and Mahout. It illustrates one way of
implementing integration of Pig with Mahout to ease the problem of vectorizing the
data and converting it into a Mahout-readable format, allowing quick prototyping.
We have deliberately omitted the steps for pre-processing and vector conversion as
we have already seen an example illustrating these steps in Chapter 6, Understanding
Data Reduction Patterns.

Advanced Patterns and Future Work

[268]

Typically, the data profiling, validation and cleansing, and transformation and
reduction steps can be applied using the Pig script before sending it to Mahout.
In our use case, we made the assumption that the data has already been profiled,
cleansed, and transformed.

The data is divided into training and test data in the ratio of 80:20. The training data
is used to train the model, and the test data is used to test the model's accuracy of
prediction. The decision tree model is built on the training data and is applied to
the test data. The resultant matrix shows the comparison between the predicted and
actual results.

Code snippets
To illustrate the working of this pattern, we have considered the German credit
dataset in the UCI format. There are 20 attributes (7 numerical and 13 categorical)
with 1000 instances. The file is stored on the HDFS. For this pattern, we will be using
Pig and Mahout to train the model to classify people as good or bad customers based
on a set of attributes; the prediction will then be tested on test data.

The following is the Pig script illustrating the implementation of this pattern:

 /*
Register piggybank jar file
*/
REGISTER '/home/cloudera/pig-
 0.11.0/contrib/piggybank/java/piggybank.jar';

/*
*The following data pre-processing steps have to be performed
 here, we have deliberately omitted the implementation as these
 steps were covered in the respective chapters
*Data Ingestion to ingest data from the required sources
*Data Profiling by applying statistical techniques to profile data
 and find data quality issues
*Data Validation to validate the correctness of the data and
 cleanse it accordingly
*Data Transformation to apply transformations on the data.
*Data Reduction to obtain a reduced representation of the data.
*/

/*
We have deliberately omitted the steps for vector conversion as we
 have an example illustrating these in the chapter Understanding
 Data Reduction Patterns.

Chapter 7

[269]

*/

/*
Use sh command to execute shell commands.
Generate file descriptor for the training dataset
The string C N 2 C N 2 C N 2 C N C N 2 C N C N 2 C L provides the
 description of the data.
C specifies that the first attribute is Categorical, it is
 followed by N specifying the next attribute to be Numeric. This
 is followed by 2 C which means that the next two attributes are
 Categorical.
L represents the Label
*/
sh hadoop jar /home/cloudera/mahout-distribution-
 0.8/core/target/mahout-core-0.8-job.jar
 org.apache.mahout.classifier.df.tools.Describe -p
 /user/cloudera/pdp/datasets/advanced_patterns/german-train.data
 -f /user/cloudera/pdp/datasets/advanced_patterns/german-
 train.info -d C N 2 C N 2 C N 2 C N C N 2 C N C N 2 C L

/*
Build Random Forests
-t specifies the number of decision trees to build
-p specifies usage of partial implementation
-sl specifies the number of random attributes to select for each
 node
-o specifies the output directory
-d specifies the path to the training dataset
-ds specifies the data descriptor
-Dmapred.max.split.size indicates the maximum size of each
 partition
*/
sh hadoop jar /home/cloudera/mahout-distribution-
 0.8/examples/target/mahout-examples-0.8-job.jar
 org.apache.mahout.classifier.df.mapreduce.BuildForest -
 Dmapred.max.split.size=1874231 -d /user/cloudera/pdp/datasets/
 advanced_patterns/german-train.data -ds /user/cloudera/pdp/
 datasets/advanced_patterns/german-train.info -sl 5 -p -t 100 -o
 /user/cloudera/pdp/output/advanced_patterns/classification

/*
Predict the label in the test dataset
-i specifies the file path of the test dataset
-ds specifies the dataset descriptor, we use the one generated
 for training data as the data description is the same for both
 training and test data

Advanced Patterns and Future Work

[270]

-m specifies the file path of the decision tree built on the
 training data
-a specifies that confusion matrix has to be calculated
-mr specifies usage of Hadoop to distribute the classification
-o specifies the output directory
*/
sh hadoop jar /home/cloudera/mahout-distribution-
 0.8/examples/target/mahout-examples-0.8-job.jar
 org.apache.mahout.classifier.df.mapreduce.TestForest -i
 /user/cloudera/pdp/datasets/advanced_patterns/german-test.data -
 ds /user/cloudera/pdp/datasets/advanced_patterns/german-
 train.info -m /user/cloudera/pdp/output/advanced_patterns
 /classification -a -mr -o /user/cloudera/pdp/output/
 advanced_patterns/classification_pred

Results
The following snapshot shows the results after executing the code in this pattern on
the dataset:

The decision tree output

The preceding matrix shows the comparison between the predicted and actual
results. We can see that the model predicted 154 instances correctly, while it
classified 46 instances incorrectly. The confusion matrix shows that out of 60
instances, 22 were correctly classified as bad customers and 38 were wrongly
classified as good. Similarly, out of 140 instances, 132 were correctly classified
as good customers and 8 were wrongly classified as bad.

Chapter 7

[271]

Additional information
The complete code and dataset for this section can be found in the following
GitHub directories:

• Chapter7/code/

• Chapter7/datasets/

Information on using Mahout for classification is present at https://mahout.
apache.org/users/stuff/partial-implementation.html.

Future trends
When I began writing this book, the usage of Pig was moving quickly. Knowledge
about new usage patterns, new features, and new systems that are integrated
with Pig is being pushed into the public domain by a variety of industries and by
academia at regular intervals. These developments will have a direct effect on the
Pig design patterns explored in this book. The adoption of newer techniques will
also drive the user community's documentation of Pig design patterns by sharing
new patterns and by maturing the already existing patterns.

Emergence of data-driven patterns
In this book, we have extensively dealt with using Pig design patterns in the
traditional enterprise settings. The future holds great promise owing to the growth of
the Internet of Things phenomenon. In the future, the Internet of Things will enable
every human artifact, every physical object of the world, and even every person to be
plausibly networked. All of these things will be capable of being connected, read, and
monitored, and data-driven intelligence will be delivered continuously.

In the traditional setting, the data journeys along familiar routes. Exclusive data and
information is lodged in regular databases and analyzed in reports; it then rises up
the management chain.

These familiar routes of data and information flow will change according to the
newer paradigm of the Internet of Things in which data from the external world
(from sensors and actuators of devices) is poised to be an important information
source to drive real analytics from the truly connected world.

https://mahout.apache.org/users/stuff/partial-implementation.html

Advanced Patterns and Future Work

[272]

Emerging Pig design patterns might potentially address the impending data deluge
emanating from the Internet of Things. These patterns might deal with integrating
high-velocity streaming data at regular intervals and perform streaming analysis
using Pig. The proposed work related to implementing Pig on Storm and Pig on Tez
could be a good starting point.

The emergence of solution-driven patterns
As design patterns continue to get wider acceptance for many business problems,
users tend to see the merits of grouping these patterns into manageable modular
chunks of reusable pattern libraries. In this book, the emphasis was to group patterns
based on the familiar route the data takes from ingestion to egression; there might
be a novel grouping mechanism in which the patterns are grouped based on the
functional usage. From this perspective, newer design patterns could potentially
emerge to fill the gaps, which this book has not addressed.

Patterns addressing programmability
constraints
Pig is designed to be a data-driven procedural language, which can perform
small-scale analysis and is not suitable for implementing complex mathematical
algorithms. Its mainstay is to be in front of the data pipeline trying to understand,
ingest, and integrate data so that data can be analyzed by the likes of R, Weka,
Python, OpenNLP, and Mahout libraries.

There is an immediate and compelling need to make the integration of these external
libraries seamless with Pig, owing to the inherent complexities involved. Typically,
while integrating Pig with R or any other analytics library, we encounter difficulties.
These include not finding all the commonly used algorithms implemented in
the library, problems registering the library functions, issues with data type
incompatibilities, lack of built-in functions, and many others.

Newer design patterns could potentially emerge, resulting in a framework with
closer integration between these external libraries and Pig. The extensibility features
of Pig, such as streaming and UDFs, could come in handy to implement these
frameworks. These design patterns take advantage of both the statistical analysis
capability of the libraries and the parallel data processing capability of Pig.

Chapter 7

[273]

Summary
In this chapter, we explored advanced patterns that specifically deal with using
Pig to analyze unstructured text data using various patterns.

We started by understanding the context and the motivation behind clustering
text data; we then examined in brief several techniques followed by a use case
that elaborates through Pig code. Similarly, we understood the relevance of topic
models to understanding the latent context of textual documents using an example
of text containing Big Data and medicine. We have explored how Pig integrates
with the Python's NLTK library to perform natural language processing in order to
decompose a text corpus into sentences and recognize named entities; these entities
are eventually used in indexing and information retrieval. In the last pattern, we
considered a credit dataset to illustrate the process of classification or predictive
analytics using Mahout integrated with Pig.

The Future trends section scratched the surface to identify future design patterns in
conjunction with the evolution of Pig as a mainstream programming language to
process Big Data. This section also brings into perspective the progressive nature of
design patterns that enables you to identify and develop new design patterns you
haven't seen before and share it with the world.

I hope that this book has provided you a springboard for readily using the
design patterns mentioned in this book. This bridges the gap between theoretical
understanding and practical implementation of creating complex data pipelines,
and apply it in various stages of data management life cycle and analytics. Through
this book, we covered the journey of Big Data from the time it enters the enterprise
to its eventual use in analytics; and throughout this journey, Pig design patterns
performed the role of a catalyst to guide us through the successive steps of data
management life cycle and analytics.

Index
Symbols

A
Abstract Syntax Tree (AST) 46
aggregation 184
aggregation pattern

about 200
background 200
code snippets 202
implementing 201
motivation 200, 201
results 204, 205
use cases 201

ANother Tool for Language
Recognition (ANTLR) 46

Apache log ingestion pattern
about 59
background 59
code snippets 61
CombinedLogLoader class 62
CommonLogLoader class 62
implementing 61
motivation 60
results 63
use cases 61

Apache projects, Hadoop
Avro 21
Chukwa 21
HBase 21
Hive 21
Mahout 21
Pig 22
SQOOP 21
ZooKeeper 22

Application Programming
Interface (APIs) 20

atom 50
audio 56
Avro 21

B
bag 50
basic statistical profiling pattern

background 131
code snippets 132
getProfile macro 134
implementing 132
motivation 131
Pig script 132
profiling requisites 131
results 135
use cases 132

Big Data
data cleansing 154
data profiling 120
data reduction considerations 213
data validation 154

Big Data analytics project
about 120
data quality, measuring 121
metadata 121
quality measures 120

Big Data profiling
about 120
dimensions 122
sampling considerations 124
sampling techniques 124
structured Big Data, profiling 121
unstructured Big Data, profiling 121

binning 171

[276]

C
Cartesian join 195
Chukwa 21
classification

about 264
performing 266
production 265
testing 265
training 265

classification pattern
about 263
background 264
code snippets 268
implementing 267, 268
motivation 264-267
results 270
use cases 267

cleansing steps, for unstructured data 177
clustering

about 172, 233, 242
text clustering 242

clustering design pattern, numerosity
reduction

about 233
code snippets 235, 237
implementing 235
motivation 233, 234
results 238
use cases 235

clustering pattern
about 241
background 242, 243
code snippets 246, 249
implementing 245
motivation 243
results 250, 251
use cases 245

code snippets, image egress
about 73
Pig script 73
results 75
SequenceFile.Reader class 75
SequenceToImageStorage 74

code snippets, image ingress
about 71
ImagetoSequenceFileUDF 72

Pig script 71
code snippets, JSON ingress and egress

patterns
code for nested JSON 115
code for simple JSON 115
egress code 116
ingress code 115
results 117

code snippets, XML ingest and
egress patterns

Pig Script 108
XML Binary Ingestion Code 107, 108
XML egress code 108
XML raw ingestion 106
XML Storage 109

coherence
about 123
measuring 123
referential integrity 123
value integrity 123

Collapsed Variational Bayes (CVB) 254
combiner 25
completeness

about 122
attribute completeness 122
determining 122
tuple completeness 122
value completeness 122

complex data types, Pig
about 50
atom 50
bag 50
map 50
tuple 50

Compression 212
constraint validation and cleansing design

pattern
about 157
background 157
code snippets 159
mandatory constraints 159
motivation 157, 158
pattern implementation 159
range constraints 159
results 163, 164
unique constraints 159
use cases 158

[277]

correctness
about 123
determining 123

corrupt data validation and cleansing
design pattern

about 170
background 170
code snippets 173
motivation 171, 172
pattern implementation 172
results 175
use cases 172

custom log ingestion pattern
about 64
background 64
code snippets 65, 66
implementing 65
motivation 64
results 67
use cases 65

Cygwin 31

D
data cleansing, for Big Data

about 154
issues 154, 155

data cleansing, Pig used
advantages 156

data corruption, sources
sensor data 171
structured data 171

data-driven patterns
emergence 271, 272

data egress 54
data generalization pattern

about 205
background 205
code snippets 207
implementing 207
motivation 206
results 208
use cases 206

data ingest 54
data integration 184
data integration pattern

about 192

background 192
code snippets 196
implementing 196
motivation 193
results 199
use cases 196

data model, Pig
complex data types 50
primitive data types 50

data normalization pattern
about 188
background 188
code snippets 190
implementing 189
motivation 188
results 192
use cases 189

data profiling
about 119
implementing in Hadoop, Pig used 126

data profiling, Big Data 120
data profiling design patterns 119
data reduction 211
data reduction considerations, Big Data 213
data reduction techniques

compression 212
diagrammatic representation 212
dimensionality reduction 211
numerosity reduction 212

data transformation
about 183
aggregation 184
data integration 184
generalization 184
normalization 183

data type inference pattern
background 127
code snippets 128
implementing 128
Java UDF code snippet 130
motivation 127
Pig script 128
results 130
use cases 128

data validation, Big Data 154
DEFINE operator 38
DESCRIBE operator 43

[278]

design patterns
about 14
scope, in Pig 15

dimensionality reduction
Principal Component Analysis

design pattern 213
SVD 215

Dimensionality reduction 211
dimensions, Big Data profiling

coherence 123
completeness 122
correctness 123

distance-based partitioning algorithms 244
DISTINCT operator 42
DUMP operator 39

E
edit distance 245
enterprise-centric view, data

diagrammatic representation 55
enterprise context 17, 18
equal-frequency grouping technique 223
equal-width grouping technique 223
EXPLAIN operator 45

F
File System nodes 23
FILTER operator 43
FLATTEN operator 45
FOREACH operator 41
full outer join 194

G
generalization 184
Google File System (GFS) 19
GROUP operator 41

H
Hadoop

Apache projects 21
challenges, of distributed systems 18
data profiling, implementing using Pig 126
enterprise context 17, 18

features 19, 20
integral parts 21

Hadoop Distributed File System. See HDFS
HBase 21
HBase ingress and egress pattern

about 82
background 82
code snippets 86
egress code 87
egress implementation 85
ingress code 86
ingress implementation 84
motivation 83
results 88
use cases 84

HDFS
about 22
DataNodes 22
design goals 22
NameNode 22
working 22, 23

Hierarchical Agglomerative Clustering
(HAC) 244

high-volume data
audio 56
images 56
legacy data 56
numerical/patterns/graphs 57
social media data 57
transactional (OLTP) data 56
unstructured data 56
video 56

histogram design pattern
about 222
background 222
code snippets 224, 225
implementing 224
motivation 223, 224
results 226
use cases 224

Hive 21
Hive ingress and egress pattern

about 88, 89
background 89, 90
code snippets 92
data, importing using HCatalog 93

[279]

data, importing using RCFile 93
egress code 94
egress implementation 92
HiveColumnarLoader, using 93
ingress code 92
ingress implementation 91
motivation 90
results 95
use cases 90

I
ILLUSTRATE operator 44
image egress implementation

performing 71
image ingress and egress pattern

about 68
background 68
code snippets 71
implementing 70
motivation 69, 70
use cases 70

image ingress implementation
performing 70, 71

images 56
inner join 193
integral parts, Hadoop

about 21
Hadoop Common 21
Hadoop MapReduce 21
HDFS 21

interquartile range (IQR) 172

J
Jaccard similarity 245
Java 1.6 31
JobTracker 24
JOIN operator 43
JSON ingress and egress patterns

about 111
background 111
code snippets 114
egress implementation 114
implementing 113
ingress implementation 113
motivation 112
use cases 113

K
K-means clustering algorithm 244
K-medoid clustering algorithm 244

L
Latent Dirichlet Allocation (LDA) 252
left outer join 194
legacy data 56
Levenshtein distance 245
LIMIT operator 45
LOAD operator 38
local mode, Pig 32
logical optimization, Pig processing 47
log ingestion pattern

considerations 58, 59

M
Mahout 21
mainframe ingestion pattern

about 96
background 96
code snippets 99, 101
implementing 97, 99
motivation 97
results 101
use cases 97

map 50
Map function 24
MapReduce

about 23, 37
components 25
internals 24
JobTracker 24
TaskTrackers 24
using 22
working 24

MapReduce components
combiner 25
job configuration 25
job input 25
output 25
partitioner 25

MapReduce job
Map function 24
Reduce function 24

[280]

MapReduce mode, Pig 33
MapReduce plan, Pig processing 49
master node 23
maxDiff grouping technique 223
Measuring Agreement on

Set-valued Items (MASI) 245
MongoDB ingress and egress pattern

about 76
background 76
code snippets 79
egress code 80
egress implementation 79
implementing 78
ingress code 79
ingress implementation 78
motivation 76
results 81
use cases 77

multistructured data
Apache Log formats 57
custom log format 57
egress pattern 57
image format 57
ingest pattern 57

N
natural language processing pattern

about 257
background 257, 258
code snippets 260, 261
implementing 260
motivation 258-260
results 262, 263
use cases 260

NLP pipeline
chunking 259
end of sentence detection 259
extraction 259
parts-of-speech tagging 259
tokenization 259

non-numeric data
normalizing 189

nonprobabilistic sampling
about 230
methods 229

normalization 183

NoSQL data
egress pattern 75
ingress pattern 75

Numerical/patterns/graphs category 57
numeric data

normalizing 189
numerosity reduction

about 212
clustering design pattern 233
histogram design pattern 222
sampling design pattern 228

O
operators, Pig code

DEFINE 38
DESCRIBE 43
DISTINCT 42
DUMP 39
FILTER 43
FLATTEN 45
FOREACH 41
GROUP 41
ILLUSTRATE 44
JOIN 43
LIMIT 45
LOAD 38
ORDERBY 44
PARALLEL 45
SAMPLE 40
STORE 39
UNION 40

ORDERBY operator 44

P
PARALLEL operator 45
partitioner 25
pattern-matching pattern

about 136
background 136
code snippets 137
getPatterns macro, implementing 138
implementing 137
Pig script 137
results 139
use cases 136

[281]

Perl 31
physical plan, Pig processing 47
Pig

about 22, 25
code listing 34
Datafu library 125
data model 50
dataset 36
design patterns 15, 16
EXPLAIN operator 45
extensibility 37
firing up 30, 31
functions, in Big Data

processing flow 27-29
installation, verifying 32
installing 32
local mode 32
MapReduce mode 33
operators 38
Pig compiler 25
Pig Latin script 25
prerequisites 31
sampling support 125
schemas, handling 51
standard data-processing operators 26
use case 34
used, for data cleansing 156
used, for implementing data

profiling in Hadoop 126
versus Hadoop, compatibility 30, 31
working 30

Pig core 31
Pig extensibility features

MAPREDUCE 37
REGISTER 37
STREAM 37

Pig Latin
about 25
features 26, 27
ILLUSTRATE function 27

Pig processing
logical optimization 47
logical plan 47
MapReduce plan 49
physical plan 47
query parser 46

primitive data types, Pig
about 50
Chararray 50
Double 50
Float 50
Int 50
Long 50

Principal Component Analysis
design pattern

about 213
background 214
code snippets 217
eigenvalues 214
eigenvectors 214
implementing 216
limitations 216
motivation 214, 215
results 220, 221
use cases 216

probabilistic sampling methods
about 229
nonprobabilistic sampling 230
simple random sampling 229
stratified sampling 230

Q
query parser, Pig processing 46

R
Reduce function 24
reduce-side join 195
regex validation and cleansing

design pattern
about 165
background 165
code snippets 167
motivation 165
pattern implementation 166
results 169
use cases 166

REGISTER 37
regression 171
replicated join 195
ReservoirSampling 125
right outer join 194

[282]

S
SampleByKey 125
SAMPLE operator 40, 125
sampling

nonprobabilistic methods 229
probabilistic sampling methods 228

sampling design pattern
about 228
background 228
code snippets 231
implementing 231
motivation 228
results 233
use cases 231

sampling support 125
sampling techniques, Datafu library 125

ReservoirSampling 125
SampleByKey 125
WeightedSample 125

semi-structured data
ingress and egress patterns 95
mainframe ingestion pattern 96
XML ingest and egress patterns 102

simple random sampling 125, 229
slave nodes 23
social media data 57
solution-driven patterns

emergence 272
SQOOP 21
standard data-processing operators, Pig

FILTER 26
GROUP BY 26
JOIN 26
ORDER BY 26
UNION 26

Stochastic SVD (SSVD)
about 215
implementing 216, 217

Storage Area Network (SAN) 20
STORE operator 39
Stratified Random Sampling technique 125
stratified sampling 230
STREAM 37
string profiling pattern

background 140
code snippets 141

getStringProfile macro, implementing 142
implementing 141
motivation 140
Pig script 141
results 144
use cases 140

structured data
ingress and egress patterns 88

structured-to-hierarchical transformation
pattern

about 184
background 184
code snippets 185, 186
implementing 185
motivation 184, 185
results 187
use cases 185

SVD 215

T
TaskTrackers 24
text clustering techniques

distance-based partitioning algorithms 244
Hierarchical Agglomerative Clustering

(HAC) 244
K-means clustering algorithm 244
K-medoid clustering algorithm 244

time-quality trade-off 154
topic discovery pattern

about 252
additional information 257
background 252
code snippets 254
implementing 254
motivation 252, 253
results 256, 257
use cases 253

transactional (OLTP) data 56
tuples 25, 27, 50

U
UNION operator 40
unstructured data 56
unstructured text profiling pattern

background 145
code snippets 147

[283]

implementing 147
Java UDF code snippet 150
Java UDF code snippet, for

computing TF-IDF 150
motivation 145
Pig script 147
results 151
text pre-processing 146
use cases 146

unstructured text validation and cleansing
pattern

about 176
background 176
code snippets 179
motivation 177
pattern implementation 178
results 182
use cases 178

User Defined Functions (UDFs) 26

V
video 56
V-Optimal grouping technique 223

W
WeightedSample 125

X
XML ingest and egress patterns

about 101
background 102
code snippets 106
implementing 104
motivation 102
motivation, for egression of XML 103
motivation, for ingesting binary XML 103
motivation, for ingesting raw XML 103
results 110
use cases 104
XML binary ingestion implementation 105
XML raw ingestion implementation 104

Z
ZooKeeper 22

Thank you for buying
Pig Design Patterns

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective
MySQL Management" in April 2004 and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike.
For more information, please visit our website: www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order
to continue its focus on specialization. This book is part of the Packt Open Source brand,
home to books published on software built around Open Source licences, and offering
information to anybody from advanced developers to budding web designers. The Open
Source brand also runs Packt's Open Source Royalty Scheme, by which Packt gives a royalty
to each Open Source project about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should
be sent to author@packtpub.com. If your book idea is still at an early stage and you would like
to discuss it first before writing a formal book proposal, contact us; one of our commissioning
editors will get in touch with you.
We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

Big Data Analytics with R and
Hadoop
ISBN: 978-1-78216-328-2 Paperback: 238 pages

Set up an integrated infrastructure of R and Hadoop
to turn your data analytics into Big Data analytics

1. Write Hadoop MapReduce within R.

2. Learn data analytics with R and the
Hadoop platform.

3. Handle HDFS data within R.

4. Understand Hadoop streaming with R.

Securing Hadoop
ISBN: 978-1-78328-525-9 Paperback: 116 pages

Implement robust end-to-end security for your
Hadoop ecosystem

1. Master the key concepts behind Hadoop security
as well as how to secure a Hadoop-based Big
Data ecosystem.

2. Understand and deploy authentication,
authorization, and data encryption in a
Hadoop-based Big Data platform.

3. Administer the auditing and security event
monitoring system.

Please check www.PacktPub.com for information on our titles

Hadoop MapReduce Cookbook
ISBN: 978-1-84951-728-7 Paperback: 300 pages

Recipes for analyzing large and complex datasets
with Hadoop MapReduce

1. Learn to process large and complex datasets,
starting simply, then diving in deep.

2. Solve complex big data problems, such as
classifications, finding relationships, online
marketing, and recommendations.

3. More than 50 Hadoop MapReduce recipes,
presented in a simple and straightforward
manner, with step-by-step instructions and
real-world examples.

Instant MapReduce Patterns –
Hadoop Essentials How-to
ISBN: 978-1-78216-770-9 Paperback: 60 pages

Practical recipes to write your own MapReduce
solution patterns for Hadoop programs

1. Learn something new in an Instant! A
short, fast, focused guide delivering
immediate results.

2. Learn how to install, configure, and run
Hadoop jobs.

3. Seven recipes, each describing a particular
style of the MapReduce program to give you
a good understanding of how to program
with MapReduce.

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	Foreword
	About the Author
	Acknowledgments
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Setting the Context for Design Patterns in Pig
	Understanding design patterns
	The scope of design patterns in Pig
	Chapter 2: Hadoop demystified – a quick reckoner
	The enterprise context
	Common challenges of distributed systems
	The advent of Hadoop
	Hadoop under the covers
	Understanding the Hadoop Distributed
File System
	HDFS design goals
	Working of HDFS

	Understanding MapReduce
	Understanding how MapReduce works
	The MapReduce internals

	Pig – a quick intro
	Understanding the rationale of Pig
	Understanding the relevance of Pig in the enterprise
	Working of Pig – an overview
	Firing up Pig
	The use case
	Code listing
	The dataset

	Understanding Pig through the code
	Pig's extensibility
	Operators used in code
	The EXPLAIN operator
	Understanding Pig's data model
	Primitive types
	Complex types

	Summary

	Chapter 2: Data Ingest and
Egress Patterns
	The context of data ingest and egress
	Types of data in the enterprise
	Ingest and egress patterns for multistructured data
	Considerations for log ingestion
	The Apache log ingestion pattern
	Background
	Motivation
	Use cases
	Pattern implementation
	Code snippets
	Results
	Additional information

	The Custom log ingestion pattern
	Background
	Motivation
	Use cases
	Pattern implementation
	Code snippets
	Results
	Additional information

	The image ingress and egress pattern
	Background
	Motivation
	Use cases
	Pattern implementation
	Code snippets
	Results
	Additional information

	The ingress and egress patterns for the NoSQL data
	MongoDB ingress and egress patterns
	Background
	Motivation
	Use cases
	Pattern implementation
	Code snippets
	Results
	Additional information

	The HBase ingress and egress pattern
	Background
	Motivation
	Use cases
	Pattern implementation
	Code snippets
	Results
	Additional information

	The ingress and egress patterns for structured data
	The Hive ingress and egress patterns
	Background
	Motivation
	Use cases
	Pattern implementation
	Code snippets
	Results
	Additional information

	The ingress and egress patterns for semi-structured data
	The mainframe ingestion pattern
	Background
	Motivation
	Use cases
	Pattern implementation
	Code snippets
	Results
	Additional information

	XML ingest and egress patterns
	Background
	Motivation
	Use cases
	Pattern implementation

	Code snippets
	Results
	Additional information

	JSON ingress and egress patterns
	Background
	Motivation
	Use cases
	Pattern implementation
	Code snippets
	Results
	Additional information

	Summary

	Chapter 3: Data Profiling Patterns
	Data profiling for Big Data
	Big Data profiling dimensions
	Sampling considerations for profiling
Big Data
	Sampling support in Pig

	Rationale for using Pig in data profiling
	The data type inference pattern
	Background
	Motivation
	Use cases
	Pattern implementation
	Code snippets
	Pig script
	Java UDF

	Results
	Additional information

	The basic statistical profiling pattern
	Background
	Motivation
	Use cases
	Pattern implementation
	Code snippets
	Pig script
	Macro

	Results
	Additional information

	The pattern-matching pattern
	Background
	Motivation
	Use cases
	Pattern implementation
	Code snippets
	Pig script
	Macro

	Results
	Additional information

	The string profiling pattern
	Background
	Motivation
	Use cases
	Pattern implementation
	Code snippets
	Pig script
	Macro

	Results
	Additional information

	The unstructured text profiling pattern
	Background
	Motivation
	Use cases
	Pattern implementation
	Code snippets
	Pig script
	Java UDF for stemming
	Java UDF for generating TF-IDF

	Results
	Additional information

	Summary

	Chapter 4: Data Validation and Cleansing Patterns
	Data validation and cleansing for
Big Data
	Choosing Pig for validation and cleansing
	The constraint validation and cleansing design pattern
	Background
	Motivation
	Use cases
	Pattern implementation
	Code snippets
	Results
	Additional information

	The regex validation and cleansing design pattern
	Background
	Motivation
	Use cases
	Pattern implementation
	Code snippets
	Results
	Additional information

	The corrupt data validation and cleansing design pattern
	Background
	Motivation
	Use cases
	Pattern implementation
	Code snippets
	Results
	Additional information

	The unstructured text data validation
and cleansing design pattern
	Background
	Motivation
	Use cases
	Pattern implementation
	Code snippets
	Results
	Additional information

	Summary

	Chapter 5: Data Transformation Patterns
	Data transformation processes
	The structured-to-hierarchical transformation pattern
	Background
	Motivation
	Use cases
	Pattern implementation
	Code snippets
	Results
	Additional information

	The data normalization pattern
	Background
	Motivation
	Use cases
	Pattern implementation
	Results
	Additional information

	The data integration pattern
	Background
	Motivation
	Use cases
	Pattern implementation
	Code snippets
	Results
	Additional information

	The aggregation pattern
	Background
	Motivation
	Use cases
	Pattern implementation
	Code snippets
	Results
	Additional information

	The data generalization pattern
	Background
	Motivation
	Use cases
	Pattern implementation
	Code snippets
	Results
	Additional information

	Summary

	Chapter 6: Understanding Data
Reduction Patterns
	Data reduction – a quick introduction
	Data reduction considerations for
Big Data
	Dimensionality reduction – the Principal Component Analysis design pattern
	Background
	Motivation
	Use cases
	Pattern implementation
	Limitations of PCA implementation

	Code snippets
	Results
	Additional information

	Numerosity reduction – the histogram design pattern
	Background
	Motivation
	Use cases
	Pattern implementation
	Code snippets
	Results
	Additional information

	Numerosity reduction – sampling design pattern
	Background
	Motivation
	Use cases
	Pattern implementation
	Code snippets
	Results
	Additional information

	Numerosity reduction – clustering design pattern
	Background
	Motivation
	Use cases
	Pattern implementation
	Code snippets
	Results
	Additional information

	Summary

	Chapter 7: Advanced Patterns
and Future Work
	The clustering pattern
	Background
	Motivation
	Use cases
	Pattern implementation
	Code snippets
	Results
	Additional information

	The topic discovery pattern
	Background
	Motivation
	Use cases
	Pattern implementation
	Code snippets
	Results
	Additional information

	The natural language processing pattern
	Background
	Motivation
	Use cases
	Pattern implementation
	Code snippets
	Results
	Additional information

	The classification pattern
	Background
	Motivation
	Use cases
	Pattern implementation
	Code snippets
	Results
	Additional information

	Future trends
	Emergence of data-driven patterns
	The emergence of solution-driven patterns
	Patterns addressing programmability constraints

	Summary

