THE EXPERT’S VOICE® IN SQL SERVER

Pro

ASPNET for
SQL Server

High Performance Data Access
for Web Developers

Mastering the bridge between ASPNET and SQL Server

Brennan Stehling

Apress:

ww.allitebooks.co

http://www.allitebooks.org

vww allitebooks.conl

http://www.allitebooks.org

Pro ASPNET
for SQL Server

High Performance Data Access
for Web Developers

Brennan Stehling

Apress*

vww allitebooks.conl

http://www.allitebooks.org

Pro ASP.NET for SQL Server: High Performance Data Access for Web Developers
Copyright © 2007 by Brennan Stehling

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any means,
electronic or mechanical, including photocopying, recording, or by any information storage or retrieval
system, without the prior written permission of the copyright owner and the publisher.

ISBN-13 (pbk): 978-1-59059-860-3
ISBN-10 (pbk): 1-59059-860-1
Printed and bound in the United States of America987654321

Trademarked names may appear in this book. Rather than use a trademark symbol with every occurrence
of a trademarked name, we use the names only in an editorial fashion and to the benefit of the trademark
owner, with no intention of infringement of the trademark.

Lead Editors: Jonathan Gennick, Jim Huddleston

Technical Reviewer: Vidya Vrat Agarwal

Editorial Board: Steve Anglin, Ewan Buckingham, Gary Cornell, Jonathan Gennick, Jason Gilmore,
Jonathan Hassell, Matthew Moodie, Jeffrey Pepper, Ben Renow-Clarke, Dominic Shakeshaft,
Matt Wade, Tom Welsh

Project Manager: Kylie Johnston

Copy Editors: Sharon Wilkey, Ami Knox

Assistant Production Director: Kari Brooks-Copony

Production Editor: Ellie Fountain

Compositor: Diana Van Winkle, Van Winkle Design

Proofreader: April Eddy

Indexer: Carol Burbo

Cover Designer: Kurt Krames

Manufacturing Director: Tom Debolski

Distributed to the book trade worldwide by Springer-Verlag New York, Inc., 233 Spring Street, 6th Floor,
New York, NY 10013. Phone 1-800-SPRINGER, fax 201-348-4505, e-mail orders-ny@springer-sbm.com, or
visit http://www.springeronline.com.

For information on translations, please contact Apress directly at 2855 Telegraph Avenue, Suite 600,
Berkeley, CA 94705. Phone 510-549-5930, fax 510-549-5939, e-mail info@apress.com, or visit
http://www.apress.com.

The information in this book is distributed on an “as is” basis, without warranty. Although every precaution
has been taken in the preparation of this work, neither the author(s) nor Apress shall have any liability to
any person or entity with respect to any loss or damage caused or alleged to be caused directly or indirectly
by the information contained in this work.

The source code for this book is available to readers at http://www.apress.comin the Source Code/
Download section.

[vww allitebooks.cond

mailto:ny@springer-sbm.com
http://www.springeronline.com
mailto:info@apress.com
http://www.apress.com
http://www.apress.com
http://www.allitebooks.org

Contents at a Glance

Aboutthe Author
About the Technical Reviewerc.cc i iiinennnn.
Acknowledgments e
Introduction i
CHAPTER1 GettingStarted
CHAPTER 2 Data Model Choices
CHAPTER 3 Database Management
CHAPTER 4 Databound Controls
CHAPTERS5 SQLProvidersooco.
CHAPTER 6 Caching,
CHAPTER 7 Manual Data Access Layer
CHAPTER 8 Generated Data Access Layer....................
CHAPTER9 Deployment.....................................
CHAPTER 10 A Sample Application
APPENDIX Photo Albuml
INDEX

[vww allitebooks.cond

http://www.allitebooks.org

vww allitebooks.conl

http://www.allitebooks.org

Contents

Aboutthe AUTNOr ... e Xi
About the Technical Reviewer Xiii
ACKNOWIBAGMENTSo XV
Introduction Xvii
CHAPTER1 Getting Started .. 1
Preparing Your Environment 1

Project Organization i, 2

CommonFolders ... 4

Datasource Configuration 5

Code and Database Separation 7

Managing Provider Servicesc. i 7

Using the CommandLinet 8

Mixing and Matching Providers 11

Configuring Providerso 11

Membership Configuration 13

Roles Configurationl 14

Profile Configurationl 15

CreatingUsersand Roles ..., 18

Securing the Admin Section 34

Creating the AdminUseroiiiiiiin.s. 35

SUMMANY ... e 36

CHAPTER 2 Data Model Choices .. 37
The Data Access Application Block 37

Data Access Code Snippetso 39

Sample Database 46

Trivial Data Examples 47

Nontrivial Data Examples i 49

TypedDataSet 49

Nontyped DataSet 51

DataReader i 53

[vww allitebooks.cond

http://www.allitebooks.org

CONTENTS

CHAPTER 3

CHAPTER 4

DataObject 53
What’s the Downside? 54
SUMMArY ... 54
Database Management 55
Using Database Projectsl 55
Visual Studio 56
SQL Server Management Studio 57
Managing Stored Procedureso i, 57
Managing Indexes and Constraints 62
Performance Considerationsc.coiiiii... 65
Stability Considerations 70
UnitTestsforData 70
Continuous Integration i, yal
SUMMANY ... yal
Databound Controls 73
DetailsView 73
FormView ... 74
GridView 76
Editing and Validating Fields 77
Binding Input Parameters 81
Binding Input Parameters witha Control 81
Binding Input Parameters Programmatically 82
BindingaUserControlcoiiiiiiiiiint. 83
Embedding Databound Controls 84
ViewState and DatabindingL. 87
SessionandViewState 87
Paging 88
DisablingViewStatel 89
ControlState vs. ViewState 89
Creating a Databound Control 91
GettingtheData il 94
Getting the Total Rows Count 97
Wiring the PagerEvents 98
Creating PersonRow ..., 101
Persisting ViewState Manually 105
Working Without ViewState 107
Walking the Debugger i 109
SUMMANY ... 110

[vww allitebooks.cond

http://www.allitebooks.org

CHAPTER 5

CHAPTER 6

CONTENTS

SQL Providers 111
The SgliMembershipProvider 112
Using XML Implementations 113
Setting the Database Connection............................ 113
Creating a Password Policyoouae. 114
The SqlRoleProvidercoii 115
Controlling AccessbyRole 115
Controlling BehaviorbyRole 117
The SqlProfileProvider i 118
Why Anonymous Profiles? 119
Configuring Anonymous Profiles 119
Managing Anonymous Profiles 120
Anonymous and Authenticated Profile Differences 121
Migrating from Anonymous to Authenticated 121
Creatinga USero it 122
Dynamic Profiles and Profilesas BLOBs 124
Using the Provider-Powered ASP.NET Controls 126
Building a SQL Photo Album Provider 129
Provider Requirements 130
Configuration SectionClass 130
Provider Collection Classccoiiiiiiiin... 131
Abstract Provider Class 132
The Provider Implementation 134
Provider Service Class ..., 135
UnitTesting ... 137
The Finished Product, 138
Building a SQL SiteMap Provider, 139
SiteMap Requirementsl 140
Implementing SiteMapProvider 140
SUMMANY ... 145
Caching ... 147
Alternativesto Caching 148
ApplicationState 149
SBSSION ... 150
ViewState 150
CurrentContext i 150
Caching Options i 153
OutputCaching 153
DataCachingo it 159

[vww allitebooks.cond

vii

http://www.allitebooks.org

CONTENTS

CHAPTER 7

Invalidating Cached Data 164
Absolute Expiration 164
Sliding Expiration 164
Cache Dependencyovouir i 165
Manual Removal 165

SQL Cache Dependencies ..., 165
Using the SqglDependency and SqlCacheDependency 165
Polling ... 168
Query Notifications 172
Troubleshooting Query Notifications 176

Problems with Caching il 186

Performance Strategiesooi i 187
DataWarehousing i 187
Lazyloadingo i 188

SUMMANY .. 189

Manual Data Access Layer 191

Using DataSets, Inline SQL, and Stored Procedures 191
DataSets ... 192
INine SAL 196
Stored Proceduresl 198

Using DataObjects and the ObjectDataSource 199
Design Contract i, 200
DataContract 201
Testing the Design and Data Contracts 203

Buildingthe Database 203
Creating the Database Structure 203
ConsolidatingtheData......................ccoiiiinn. 204
Managing Relationships, 204
Created and Modified 205
What About Nulls? 206
Using Database Projects 208
The DataAccessLayer ..., 217

Buildingthe Website i 225
Connecting the Data Access Layer 225
CreatingUser Controls, 226
Creatingthe Pages ..., 229

SUMMANY ... 231

vww allitebooks.conl

http://www.allitebooks.org

CHAPTER 8

CHAPTER 9

CHAPTER 10

CONTENTS

Generated Data Access Layer 233
Code Generation ...ttt 233
Build Providers i 234
CodeDom Namespaceccooiiiiiiiiiananans. 237
Templating ... 241
SUDSONIC ... 242
SubSonic Templating 243
Partial Classes ... 245
QueryTool 247
Scaffolding ... 248
BliNg ... 249
SUMMANY ... 253
Deployment 255
Automation with MSBuild 256
DeployingtheWebsite 261
Website Deployment Projects 261
Automating Configuration Changes 262
PostBuild Deployments 264
Deploying the Databasel 2711
Generating Change Scripts ..., 272
Automating Database Updates 274
Custom Configuration Sections 285
SUMMArY ... 288
A Sample Application 289
Understanding Performance and Scalability 289
ConcurrentRequestsl 290
Bottlenecks ... 291
Traffic SPIKeS 291
Distributing Traffic 293
Distributing Contentl 294
Distributing Services 295
Distributing the Back End 296
Planning for Scalabilityl 298
The Sample Application i 298
Creating the Database, 299

Get,Save,andDelete 300

ix

CONTENTS

APPENDIX

Creating Data Access Providerscooviiiiriinin... 303
EventProvider Objectl 303
Revised DomainObject 307

Managing Relationships 310
UsingLocationso 311

Custom Configurationco i 314
Configuration Groupingcc i 315
Declaring the Custom Configuration 317
Configuring the Providers, 318

Creating New Providersco i, 321

Implementing a LINQ Provider 321

Implementing a WCF Providerl 332
WCF Service Requirements 333
Hosting the Service 335
Defining the DataContracts 336
Configuring the Provider iiiiiiiit. 336

Usingthe Providers i 337

SUMMANY .. 341

Photo Album 343

Photo Album Provider 343
Configuration i 343
Classesoiit i 344
Table Scripts ... 371
Constraints Scripts 372
Stored Procedure Scripts 373
Website Classes ... 379

SQL SiteMap Providerl 385
ClasSesoviiti 385
Table Scripts ... 394
Stored Procedure Scripts ...l 394

... 399

About the Author

BRENNAN STEHLING is a developer who has a long background in web development. He
created SmallSharpTools.com, which is a collection of open source C# projects designed to

augment the .NET Framework with small components that are extensible and interoperable.

He is also a member of the Wisconsin .NET User Group executive committee.

Xi

About the Technical Reviewer

VIDYA VRAT AGARWAL is a Microsoft .NET purist and an MCPD, MCTS,
MCT, MCSD.NET, MCAD.NET, and MCSD. He works with Lionbridge
(NASDAQ: LIOX), and his business card reads Subject Matter Expert
(SME). He is also a lifetime member of the Computer Society of India
(CSI). He started working on Microsoft .NET with its beta release. He has
been involved in software development, evangelism, consultation, corpo-
rate training, and T3 programs on Microsoft .NET for various employers
and corporate clients.

He lives with his beloved wife, Rupali, and lovely daughter, Vamika (“Pearly”). He believes
that nothing will turn into a reality without them. He is the follower of the concept “No Pain, No
Gain” and believes that his wife is his greatest strength. He is a bibliophile; when he is not work-
ing on technical stuff, he likes to play with his one-and-a-half-year-old daughter and also likes
reading spiritual and occult science books. He blogs at http://dotnetpassion.blogspot.com.

xiii

http://dotnetpassion.blogspot.com

Acknowledgments

I would like to thank everyone who made this book possible. A great deal of work went into
creating every detail, and I received a lot of support and encouragement from the Apress staff,
which includes Kylie Johnston, Jonathan Gennick, Sharon Wilkey, Ami Knox, and Ellie Foun-
tain. Each of them has impressed me. I am glad I wrote this book with Apress.

I also want to thank others who helped me work through technical details. Julie Lerman
helped me through some strange technical problems and also deserves credit for being such a
great supporter and a speaker for INETA. The development community could use more devel-
opers like her.

XV

Introduction

This book covers the middle ground between ASPNET and SQL Server that is not covered
sufficiently by books that focus on these two big pieces independently. I wrote this book to
focus on the bridge between these two systems to reveal all of the techniques and features
available to developers so that you could learn to fully leverage these two technologies, which
were designed very cleverly to work together. As you read the book and work through the sam-
ple projects, my hope is that you will discover features that you did not know about previously
that will help you make your websites faster and easier to maintain.

Who This Book Is For

This book is for the developer who wants to dig deeper into what can be done with ASPNET
and SQL Server. If you ever wanted to know more about how databound controls worked
with the ObjectDataSource or to build your own provider model implementations, this book
is for you.

How This Book Is Structured

This book is made up of the following ten chapters with a sample project for each chapter:

Chapter 1: Getting Started

This chapter starts with preparing the development environment that will be used throughout
the book. Then it moves into managing and configuring the provider services and finally cre-
ating users and roles.

Chapter 2: Data Model Choices

There are many ways to access the database from ASPNET, so this chapter looks into those
choices and explains how to decide what to use in different situations as well as the reasons why.

Chapter 3: Database Management

Many ASPNET developers do not leverage the tools that are available in Visual Studio that
make it very easy to manage the tables, stored procedures, and other resources that are in the
database. This chapter walks through how to use a Database Project to manage the scripts to
create tables and stored procedures as well as manage the indexes and constraints. Finally, it
covers how you can test changes to the database regularly to ensure your application and
database stay in sync.

Xvii

xviii

INTRODUCTION

Chapter 4: Databound Controls

ASPNET has a broad collection of databound controls, and this chapter goes over the ones
that you will use the most and then digs into techniques you can employ to minimize the
amount of code that you would place in the code-behind files. Then it covers how to create a
databound control from the ground up and walks through how every part works including the
use of ViewState and ControlState.

Chapter 5: SQL Providers

The provider model is very useful, and this chapter covers the three most used providers. It
then covers the creation of a completely custom SQL Photo Album provider that works with a
custom SQL SiteMap provider implementation.

Chapter 6: Caching

Improving the speed of an application can be done using caching, but there are so many ways
this can be done. ASPNET does include a caching mechanism, which is covered extensively,
but there are also other simpler techniques that you can leverage that can also boost perform-
ance. All of these techniques are explained.

Chapter 7: Manual Data Access Layer

A manually constructed data access layer gives you the most control and greatest flexibility,
and this chapter goes through everything that you can do to produce a fully functioning web-
site built on top of a finely tuned data access layer.

Chapter 8: Generated Data Access Layer

Instead of manually building the data access layer, you can choose to generate some or all of
the data access code using various utilities that are available. This chapter covers how to use
code generation to automatically create working software and then explores two powerful util-
ities that generate complete data access layers for your website.

Chapter 9: Deployment

Once your website is built, you will need to deploy it, and this can often be the hardest part of
the job. Fortunately, there are ways to make it the easiest task. This chapter covers how to use
MSBuild to automate the build and deployment of a website including the database changes.

Chapter 10: A Sample Application

The final chapter puts it all together with a sample application that starts out with an explana-
tion of performance and scalability and then shows how all of the concerns about speed are
addressed by building a highly flexible website that can adapt to changing needs.

vww allitebooks.conl

http://www.allitebooks.org

INTRODUCTION

Prerequisites

To work with the sample projects for this book, you will need Visual Studio 2005 and SQL
Server 2005 for the majority of the chapters. Chapters 8 and 10 make use of the .NET Frame-
work 3.5, so you will need either the LINQ CTP or Visual Studio 2008.

Downloading the Code

The source code for this book is available to readers at http://www.apress.comin the Down-
loads section of this book’s home page as well as from http://SmallSharpTools.com/Apress.

Contacting the Author

You can contact the book’s author, Brennan Stehling, at brennan@smallsharptools.com or
access his blog at http://brennan.offwhite.net/blog/.

Xix

http://www.apress.com
http://SmallSharpTools.com/Apress
mailto:brennan@smallsharptools.com
http://brennan.offwhite.net/blog

CHAPTER 1

Getting Started

Brformance is always an issue. This book will show you how to optimize ASPNET 2.0 applica-
tion access to SQL Server databases. You can leverage the close integration of ASPNET 2.0 and
SQL Server to achieve levels of performance not possible with other technologies. You'll inves-
tigate in detail the middle ground between ASPNET 2.0 and SQL Server and how to exploit it.
This book demonstrates all concepts with professional code, so the first thing you need to
do is set up your development environment. I'll cover related issues along the way.
This chapter covers the following:

¢ Preparing your environment
* Managing provider services
* Configuring providers

* Creating users and roles

Preparing Your Environment

I typically run several Microsoft Virtual PC environments and move between them as my
needs change. When I first set up my initial virtual environments, I create as many as I need.
One will be my main development environment. This has been helpful as I keep a backup
image of the initial environment immediately after I create it. As I try out beta releases or
third-party add-ons, I may begin to dirty up my environment. Because the uninstall process
may not completely clean up Windows installations, the virtual environments come in handy.

For example, at a local user group session, a presenter was demonstrating a tool that
integrated with Visual Studio. Instead of installing the tool in my current development envi-
ronment, I cloned a fresh environment and used it to try the tool. Afterward, I turned off the
environment and deleted it to clear up space for another environment. My primary environ-
ment wasn't affected at all.

I also create two drives within my virtual environment. The C: drive holds the operating
system, while the D: drive holds my data. These drives are represented by virtual hard drives.
And if I decide to clone my data drive, I can use it with another system as I see it. Because I
typically develop every project by using source control, I can start with a fresh environment,
pull down the current project versions, and start development again.

To further leverage virtualization, you can also create a virtual hard-drive installation of
your development environment and set the files to read-only. Then you can create a new vir-
tual image that uses the read-only copy as a base image while keeping all changes on the

CHAPTER 1 ©' GETTING STARTED

secondary image. When you are given the option to create a new virtual hard drive, you can
choose the Differencing option, as shown in Figure 1-1.

Virtual Hard Disk Options
The Linked to & hard disk option is advanced., g

Select & virtual hard disk option:
() Dynamically expanding (Recommended)
The size of this virtual hard disk expands to a fixed maximum size as data is saved

to it, The disk size does not compact automatically when data is deleted. To
compact the disk size, edit the disk using this wizard.

) Fixed size
This virtual hard disk uses a fixed amount of space regardless of the amount of

data stored on it. Its default size is the maximum amount of space available on your
physical hard disk.

(%) Differencing
This virtual hard disk is based on an existing virtual hard disk configuration. Only
changes are stored to the differencing virtual hard disk.

() Linked to a hard disk (Advanced)
This virtual hard disk links to & hard disk on the physical computer,

I « Back |[Meaxt =]I Cancel

Figure 1-1. Creating a differencing virtual hard disk

The differencing image allows you to leave your base image untouched as you begin to
use a fresh environment for development. This conserves space on a hard drive, which can
fill up quickly; a typical virtual image can grow to 20 GB, not including the data image. And
because you can have multiple virtual images using the same base image, your environment
can quickly be prepared for your work as you need it.

One time my coworker needed to start work on a short .NET 1.1 project the next day. She
had only Visual Studio 2005 installed and so was facing a long install process that typically takes
several hours to complete. But because I had already prepared virtual images for .NET 1.1 and
.NET 2.0 development, I had her ready to go in under 20 minutes. The longest wait was for
copying the image off the file server. After she was finished with the short project, she was able
to remove the temporary environment.

Having access to these prebuilt environments has been a major time-saver. I can experi-
ment with tools and techniques that I would not have a chance to try if had to cope with the
consequences of having alpha- and beta-release software mixed in with my main develop-
ment environment.

Project Organization

For each environment, I place all of my projects into D: \Projects. And I explicitly have the
solutions at the root of each project. I have seen how some teams create solution files only as a
side effect of creating projects, but that undercuts the advantages you get when you properly
manage your projects within a solution.

For a typical web project, I start with the ASPNET website in a blank solution. I then add a
class library and call it ClassLibrary. I put as much of the code for the website into this class
library, for reasons I'll cover later. Then I associate the class library to the website as a reference,
which the solution records as a dependency. This is quite helpful, as the new ASPNET 2.0

CHAPTER 1 © GETTING STARTED

website project model does not include a project file that maintains a manifest for files and
dependencies. I add a database project called Database, which holds all of my database scripts
for creating tables and stored procedures, and scripts to prepare the database with supporting
data. (Database projects require Visual Studio 2005 Professional Edition.) Finally, I create a solu-
tion folder called Solution Items and add a text file named README. txt that provides the basic
information for the project, such as the name, description, requirements, dependencies, and
build and deployment instructions.

The result of all this is the solution structure shown in Figure 1-2.

Solution Explorer - Solution Items > 1 x

i 4

(A Solution 'Sample’ (3 projects)

- | README.txt
Q ClassLibrary
+|- [=d] Properties
T[22l References
2P D:\.\Website\
Bin
%) SampleClassLibrary.dll
@& sampleClassLibrary.pdb
= Database
[Change Scripts
-~ [Create Scripts
- [Queries
- (gll Database References
- @) vista\sqlexpress.Sample.dbo

Lj Selution Explorer | <4 Server Explorer

Figure 1-2. Typical solution environment

When you first set up a blank solution and add your first project or website to it, you may
find that the solution goes away. This is a default setting for Visual Studio, which you can
change. From the Tools menu, choose Options and then click the Projects and Solutions item,
as shown in Figure 1-3.

Options [(esa]
= Environment -~ Visual Studio projects location:
General C\Users\brennaniDocumentsiVisual Studio 20054 Projects |
- Add-in/Macros Security X i
AbtoRecover Visual Studio user project templates location:

C\Users\brennan\DocumentstVisual Studio 20054 Templates\ProjectTemplat |

- Documents
Find and Replace
- Fonts and Colors

Visual Studic user item templates location:
C\Users\brennan'\Documents'Visual Studic 2005\ Templates\ItemTemplates

+- Help =
Import and Export Settings (7 [] Always show Error List if build finishes with errors
-International Settings [7] Track Active Item in Solution Explorer
-+ Keyhaatd ¥| Show advanced build configurations
Saitip [7] Always show solution
- Task List =

Web Browser |¥| Save new projects when created

g [¥] Warn user when the project location is not trusted

Show Output window when build starts

[#- Source Control

[+ Text Editor 7| Prompt for symbelic renaming when renaming files
- Database Tools
Debuaaing

OK | l Cancel

Figure 1-3. Setting the Always Show Solution option

CHAPTER 1 ©' GETTING STARTED

This sample solution will be the template for all the examples in this book. Using the
same basic structure for all projects provides a consistent basis for build automation. It also
keeps everything in the same place for every application you develop. Being able to easily
search the solution for a reference to a database table and then get the table creation script
and any stored procedures using that table is very convenient. Most developers simply write
and keep their table Data Definition Language (DDL) and stored procedures in the database
and move them around by using tools within the database, never saving them as scripts that
can be version-controlled in a Visual Studio project. This common practice fails to leverage
one of the great strengths of Visual Studio 2005 and makes it harder to re-create database
objects from scratch. As a result, changes to improve the application when it comes to data-
base updates are avoided because of all the extra work necessary to make the change. When
your environment allows you to work in a very agile way, you can take on tasks that may not
be attempted otherwise.

Common Folders

As you work on many projects, you'll accumulate tools, templates, and scripts that are useful
across multiple projects. It’s helpful to place them into a common folder that you manage with
source control so that the developers among multiple teams can leverage them as they do
their work. With the Solution layout in Figure 1-2, it’s trivial to drop in an MSBuild script and
CMD scripts to a new project to provide build automation. You'll use the following folders for
tools, templates, and scripts throughout the book (see Figure 1-4):

D:\Projects\Common\Tools
D:\Projects\Common\Templates

D:\Projects\Common\Scripts

@'\:jv' <« DATA(D:) » Projects » Common » - | +y | | Search 2|

‘ Organize ~ Views -

= Name Date modif.. Type 3
‘|: Documents
BB Pictures i ! I
:[J' Music Scripts Templates Tools
Mare »
Folders v
a DATA (D) & Select a file to preview,
Common
Downloads

Program Files

m

w Projects
Archive
Commeon

Scripts
Templates -

Figure 1-4. Folders for tools, scripts, and templates

CHAPTER 1 © GETTING STARTED

To make it easier to script against these folders, let’s add some system environment vari-
ables for these locations (see Figure 1-5):

DevTools =D:\Projects\Common\Tools
DevTemplates =D:\Projects\Common\Templates

DevScripts =D:\Projects\Common\Scripts

Environment Variables

User variables for brennan

Variable Value

SVN_ASP_DOT_... *

TEMP %LUSERPROFILE%:\AppData'Local Temp
T™MP 2LUSERPROFILE%: \AppDataLocal \Temp

System variables

Variable Value

I ey empla{:es :\Projects \CommoniTempl ahés
DevToals D:\ProjectsiCommeniTools
FP_NO_HOST_C... NO i

| mMew.. || Edt. || Deete |

| OK | l Cancel |

Figure 1-5. Environment variables for development

You'll build on these folders and variables throughout the book to enhance your common
development environment.

Datasource Configuration

The datasource is the mechanism used to connect an ASPNET 2.0 web application to data.

For an ASPNET application, the data is typically in a SQL Server database. To connect to a data-
source, you use a connection string that sets various options for connecting to a database. There
are many options available with connection strings. For the most basic connection string, you
need the location of the database and the authentication details to access the database. The
following is an example of such a connection string:

server=localhost;database=Products;uid=webuser;pwd=webpw

Notice that this includes server, database, uid, and pwd parameters, which provide all that
is necessary to access the Products database on the local machine. This form should be very
familiar to an ASPNET developer. However, there are alternatives I will explain shortly.

5

6

CHAPTER 1 = GETTING STARTED

MIXED-MODE AUTHENTICATION

With SQL Server, you can choose to allow for Windows authentication, SQL Server authentication, or both.
This choice is presented to you when SQL Server is installed. SQL Server accounts are useful when the data-
base is hosted on a remote server without access to the Windows domain. Windows authentication is helpful
during development, when your users and the database server are running on the domain. For development
and staging databases, you may grant different levels of access to groups such as database developers and
web developers and then place people in those groups accordingly. For the production databases, you use a
user account that is not shared with the entire development team so that only those limited users who should
have access, do. The applications working with these databases just need the connection string updated to
change authentication modes.

In an ASPNET application, datasources are configured in the Web. config file in a section
named connectionStrings. Each connection string is added to this section with a name, con-
nection string, and provider name—for example:

<connectionStrings>
<add name="SampleDatabase" connectionString="...
providerName="System.Data.SqlClient" />
</connectionStrings>

In a team environment, you'll likely use a source-control system. You'll place your
Web.config file into source control so that each member of the team has the same configura-
tion. However, sharing a source-controlled configuration file can present some problems.

For starters, a common set of authentication values may be used. Using a Windows user
account (for example, of one of the team members) exposes the password to the whole
team—which is bad practice, especially if the password policy requires routine updates.
Another approach is to use a SQL Server account that is shared by the team. This way is better
than using a shared Windows account, but the following option works best. Each project
should be configured with a trusted connection string so that the current user’s account is
used to connect with the database—for example:

server=localhost;Trusted Connection=yes;database=Products;

Instead of providing the uid and pwd parameters, this uses Windows authentication to
access the database. All developers use the same connection string but individually access the
database by using their own accounts.

A trusted connection allows you to control who has access to what in the databases. When
there is a universally shared user account, everyone will have access to everything, and no
individual role management is possible. This way, you can set up the web development team
with access to create and modify stored procedures while not giving them access to directly
alter tables or data. Meanwhile, you can have your database team manage changes to the
tables and stored procedures. And if you do have business analysts or management accessing
the database, you can give them enough access to do what they need to do, but nothing that
would cause trouble with the databases.

A side benefit is that your web team can focus on their concerns without having responsi-
bility for what is happening to the database internals. It also gives the database team the

CHAPTER 1 © GETTING STARTED

freedom to change the database structure while using updated stored procedures to provide
the same public interface for the web team, taking in the same parameters and returning the
same result columns. Keep in mind that sometimes some team members will wear hats for the
web and database teams. That is perfectly fine. Some senior members of the team may have
the right level of mastery on every part of the system to handle those responsibilities. But not
every team member will be ready to take on that level of responsibility. Isolating the latter
group of developers to what they can manage will give them and the project leader some
peace of mind knowing that the project is in the right hands.

Code and Database Separation

On one recent project, I took care of changes to the database while developing the new web-
site from the ground up. The catch was that this website was being built as a front end for
multiple online stores and had a unique database structure for each store. That presented a
real challenge. I planned to build just one basket and order management component but had
to work with different databases while minimizing the effort to integrate the data with various
front ends.

To make the same front end work with these multiple back ends, I created a clean integra-
tion point by using a set of stored procedures that had the same name and a set of parameters
for each of the databases. These stored procedures each returned the same columns or output
parameters. Internally, each would join differently named tables and gather column data from
different locations than the next database, but ultimately would return data that the front end
could easily interpret and display to customers. To run this online store with a different data-
base, all that was needed was to implement those stored procedures. No coding changes were
needed for the websites.

Another side benefit was that my team member was proficient with T-SQL and intimately
familiar with each of the databases. By isolating her focus in that space, she was very produc-
tive and able to complete the integrations for a new website rollout much more quickly that I
could have. As she worked on those changes, I was able to focus on requested changes to the
front end as well as performance optimization.

As an alternative to using a set of stored procedures as a reliable integration layer, you
could consider a set of web services (Windows Communication Foundation, or WCF) as a
service-oriented architecture (SOA). I am sure that could work, but when a database already
allows a wide range of platforms to talk with it, you already have a cross-platform approach. It
may not use Extensible Markup Language (XML) or Web Services Interoperability Organiza-
tion (WSI) specifications, but SQL Server does work with .NET, PHP, Java, Delphi, and a whole
range of languages and platforms over an Open Database Connectivity (ODBC) connection.
And the developers using those languages and platforms will already have some basic profi-
ciency with SQL, so they can jump right into this approach without touching a single line of
C# or Visual Basic (VB).

Managing Provider Services

The provider model was introduced to ASPNET 2.0. It is to web applications what plug-ins
are to web browsers. Included with the ASPNET providers are the Membership, Roles, and
Profile providers. Each of these providers has a SQL Server implementation, among others. By
default, the SQL Server implementations are preconfigured for an ASPNET website. However,

CHAPTER 1 = GETTING STARTED

you must support these implementations with resources in the database. To prepare these
resources, you will use the aspnet_regsql.exe utility.

The Visual Studio 2005 command prompt provides easy access to this utility from the
console. The utility itself is located in the .NET 2.0 system directory, which is included on that
path defined for the special command line used by the Visual Studio 2005 command prompt.
The utility can be run with no arguments to start the wizard mode, which is a visual mode.
Despite the name, the wizard mode is not nearly as powerful as the command line, which
offers more options.

For starters, the visual mode turns on support for all providers. To enable just the Profile
or Membership provider, you can request just those features from the command line and not
add support for the Roles provider (which you may implement with a custom provider or not
at all). Get a full list of the available options with the following command:

aspnet_regsqgl.exe -?

The available services supported by the utility include Membership, Role manager,
Profiles, Personalization, and SQL Web event provider. Each can be selectively registered
with the database.

Using the Command Line

Most of the time that I work with a website using the available providers, I use only the
Membership, Roles, and Personalization support and leave the others off. To add just
the desired services, use the following Add Provider Services.cmd scriptin Listing 1-1.

Listing 1-1. Add Provider Services.cmd

@echo off

set REGSQL="%windir%\Microsoft.NET\Framework\v2.0.50727\aspnet_regsql.exe"
set DSN="Data Source=.\SQLEXPRESS;Initial Catalog=Chapteroi; w

Integrated Security=True"

%REGSQL% -C %DSN% -A mrpc

pause

This script can be placed at the root of a project, alongside the solution file, to make it
easily available during development. It sets the location of first the utility and then the data-
source to be used to host these features. Finally, the command is executed to add support for
the Membership and Roles provider in the database.

The -C switch specifies the connection string, while -A specifies the list of services you
want added to the database. To add all of them, you can simply specify all instead. The script
takes a short time to complete. When it is done, you can see there will be new tables and
stored procedures in the selected database.

Adding only the services that are going to be used is a practice of minimalism. Features
have a tendency to be used if they are available, so by withholding the services that you do not
plan to use, you save yourself the trouble of watching over them.

While you are developing a website with these features, you will occasionally want to reset
everything and start from scratch. To do so, you can use a script to remove the provider serv-
ices. However, the utility does not let you remove these services if there is data in tables

vww allitebooks.conl

http://www.allitebooks.org

CHAPTER 1 © GETTING STARTED

created by the utility. To help it out, you must delete the data in the right order because of the
foreign key constraints among the tables.
To do so, use the following script named WipeProviderData.sql in Listing 1-2.

Listing 1-2. WipeProviderData.sql

-- WipeProviderData.sql

-- Wipes data from the provider services table so the services can be removed
-- (and added back fresh)

-- SELECT name FROM sysobjects WHERE type = 'U' and name like 'aspnet %'

IF EXISTS (SELECT * FROM sysobjects WHERE type = 'U' AND
name = 'aspnet WebEvent Events')

BEGIN
delete from dbo.aspnet WebEvent Events
END
GO
IF EXISTS (SELECT * FROM sysobjects WHERE type = 'U' AND
name = 'aspnet PersonalizationAllUsers')
BEGIN
delete from dbo.aspnet PersonalizationAllUsers
END
Go

IF EXISTS (SELECT * FROM sysobjects WHERE type = 'U' AND
name = 'aspnet PersonalizationPerUser')
BEGIN
delete from dbo.aspnet PersonalizationPerUser
END
Go

IF EXISTS (SELECT * FROM sysobjects WHERE type
name = 'aspnet Membership')
BEGIN
delete from dbo.aspnet Membership
END
Go

1}
c

AND

IF EXISTS (SELECT * FROM sysobjects WHERE type
BEGIN
delete from dbo.aspnet Profile
END
GO

1}
c

AND name = 'aspnet Profile')

IF EXISTS (SELECT * FROM sysobjects WHERE type

1}
c

AND

10

CHAPTER 1 = GETTING STARTED

name = 'aspnet UsersInRoles')
BEGIN
delete from dbo.aspnet UsersInRoles
END
Go

IF EXISTS (SELECT * FROM sysobjects WHERE type
BEGIN
delete from dbo.aspnet Users
END
Go

"U' AND name = 'aspnet Users"')

IF EXISTS (SELECT * FROM sysobjects WHERE type
BEGIN
delete from dbo.aspnet Roles
END
Go

"U' AND name = 'aspnet Roles"')

IF EXISTS (SELECT * FROM sysobjects WHERE type

"U' AND name = 'aspnet Paths')

BEGIN
delete from dbo.aspnet Paths
END
Go
IF EXISTS (SELECT * FROM sysobjects WHERE type = 'U' AND

name = 'aspnet Applications')
BEGIN
delete from dbo.aspnet Applications
END
Go

You can place this script into your scripts folder, D: \Projects\Common\Scripts, for use in
multiple projects. When you want to use it, load it into SQL Server Management Studio and
run it in the context of the database you want wiped. Then you can run the removal script,
Remove Provider Services.cmd, shown in Listing 1-3.

Listing 1-3. Remove Provider Services.cmd

@echo off

set REGSQL="%windir%\Microsoft.NET\Framework\v2.0.50727\aspnet_regsql.exe"
set DSN="Data Source=.\SQLEXPRESS;Initial Catalog=Chapteroi; w

Integrated Security=True"

%REGSQL% -C %DSN% -R mrpc

Pause

This script is identical to Add Provider Services.cmd, except for the simple change in the
command-line switch from -A to -R, which specifies that the services are to be removed. After
the data is wiped, this script will run successfully.

CHAPTER 1 © GETTING STARTED

Mixing and Matching Providers

Because of the nature of the providers, it is possible to deploy these provider services to either
the same database that the rest of the website is using or an entirely different database. It is
possible to even deploy the services for each individual provider to a separate database. There
can be good reason to do so. In one instance, you may be running a website connected to a
massive database that needs to be taken offline occasionally for maintenance. In doing so, it
may not be completely necessary to take the provider services offline as well. You may also
find that you get better performance by having your provider services hosted on a database on
a different piece of hardware.

Your configuration options go much further, as explained in the next section.

Configuring Providers

When you first create a new ASPNET 2.0 website with Visual Studio 2005, it is already precon-
figured to work with a set of defaults. These defaults are set in the Machine. config file, which
is a part of the .NET 2.0 installation. Typically it is located at C: \WINDOWS\Microsoft.NET\
Framework\v2.0.50727\CONFIG, or wherever .NET 2.0 has been installed onto your computer.
The defaults for the provider configuration are near the bottom, in the system.web section, as
shown in Listing 1-4.

Listing 1-4. system.web in Machine.config

<system.web>
<processModel autoConfig="true"/>

<httpHandlers />

<membership>
<providers>
<add name="AspNetSqlMembershipProvider"
type="System.Web.Security.SqlMembershipProvider, w=
System.Web, Version=2.0.0.0, Culture=neutral, PublicKeyToken=b0o3f5f7f11d50a3a"
connectionStringName="LocalSqlServer"
enablePasswordRetrieval="false"
enablePasswordReset="true"
requiresQuestionAndAnswer="true"
applicationName="/"
requiresUniqueEmail="false"
passwordFormat="Hashed"
maxInvalidPasswordAttempts="5"
minRequiredPasswordLength="7"
minRequiredNonalphanumericCharacters="1"
passwordAttemptWindow="10"
passwordStrengthRegularExpression="" />
</providers>
</membership>

11

12

CHAPTER 1 = GETTING STARTED

<profile>
<providers>
<add name="AspNetSqlProfileProvider"
connectionStringName="LocalSqlServer" applicationName="/"
type="System.Web.Profile.SqlProfileProvider, System.Web, w=
Version=2.0.0.0, Culture=neutral, PublicKeyToken=b03f5f7f11d50a3a" />
</providers>
</profile>

<roleManager>
<providers>
<add name="AspNetSqlRoleProvider"
connectionStringName="LocalSqlServer" applicationName="/"
type="System.Web.Security.SqlRoleProvider, System.Web, w=
Version=2.0.0.0, Culture=neutral, PublicKeyToken=b03f5f7f11d50a3a" />
<add name="AspNetWindowsTokenRoleProvider" applicationName="/"
type="System.Web.Security.WindowsTokenRoleProvider, XXX
System.Web, Version=2.0.0.0, Culture=neutral, PublicKeyToken=b03f5f7f11d50a3a" />
</providers>
</roleManager>
</system.web>

A default connection string named LocalSqlServer is also defined, which looks for a file
called aspnetdb.mdf in the App_Data folder (see Listing 1-5).

Listing 1-5. connectionStrings in Machine.config

<connectionStrings>

<add name="LocalSqlServer"
connectionString="data source=.\SQLEXPRESS;Integrated =
Security=SSPI;AttachDBFilename=|DataDirectory|aspnetdb.mdf;User Instance=true" w
providerName="System.Data.SqlClient"/>
</connectionStrings>

The default LocalSqlServer connection is referenced by the Membership, Roles, and
Profile provider configurations in the system.web block. The datasource specifies that this
database exists in the DATA_DIRECTORY. That DATA DIRECTORY for an ASPNET 2.0 website is
the App_Data folder. If you were to create a new website and start using the Membership and
Profile services, this SQL Express database would be created for you in the App_Data folder.
However, if you have the Standard or Professional Edition of SQL Server installed, this process
would fail because SQL Express is required. This default configuration can be quite handy, but
also dangerous if you do not adjust it for the deployed environment.

For each provider configuration, the parent block has multiple attributes for the respec-
tive provider implementation. And within that block, you have the ability to add, remove, or
even clear the provider implementations. In your new website’s Web. config file, you will want
to clear the defaults set by Machine.config and customize them specifically for your needs.

Next you will configure a new website to use the SQL implementations of the Membership,
Roles, and Profile providers. Before those are configured, you must prepare the datasource.

CHAPTER 1 © GETTING STARTED

Assuming you have a sample website that will work with a database called Sample and that
has been prepared with the provider services as described in the previous section, use the
configuration in Listing 1-6.

Listing 1-6. Custom Web.config

<connectionStrings>
<add name="sampledb"
connectionString="Data Source=.\SOLEXPRESS;Initial Catalog=Sample; =
Integrated Security=True"
providerName="System.Data.SqlClient"/>
</connectionStrings>

During the development process, I use a trusted database connection and talk to the local
machine. Now you are ready to configure the providers with the SQL implementations. And
because the defaults in Machine. config already use the SQL implementations, let’s start with
them and then make our adjustments.

Membership Configuration

For starters, you'll organize the configuration block to make it more readable. You will be look-
ing at this quite a bit during development, so making it easy to read at a glance will save you
time. Place each attribute on a separate line and indent the attributes to line them up. Then
make the name, applicationName, and connectionStringName the first few attributes. These are
the critical values.

Next you want to ensure that this is the only Membership provider for this website.
Add the clear element before the add element in the membership block to tell the ASPNET
runtime to clear all preconfigured settings. Then add an attribute called defaultProvider to
the membership element and set it to the same value as the name for the newly added provider
configuration. Listing 1-7 shows the Membership configuration. Table 1-1 covers the various
settings that are available.

Listing 1-7. Membership Configuration

<membership defaultProvider="Chaptero1SqlMembershipProvider">

<providers>

<clear/>

<add
name="Chapter01SqlMembershipProvider"
applicationName="/chaptero1”
connectionStringName="chaptero1db"
enablePasswordRetrieval="true"
enablePasswordReset="true"
requiresQuestionAndAnswer="true"
requiresUniqueEmail="false"
passwordFormat="Clear"
maxInvalidPasswordAttempts="5"
minRequiredPasswordLength="7"

13

14

CHAPTER 1 = GETTING STARTED

minRequiredNonalphanumericCharacters="0"
passwordAttemptWindow="10"
passwordStrengthRegularExpression=
type="System.Web.Security.SqlMembershipProvider, w=

System.Web, Version=2.0.0.0, Culture=neutral, PublicKeyToken=b0o3f5f7f11d50a3a"

/>
</providers>
</membership>

nn

Table 1-1. Membership Configuration Settings

Setting Description

name Specifies the configuration name referenced by the
membership element

applicationName Defines the application name used as a scope in the
Membership database

connectionStringName Specifies the connection string to use for this provider

enablePasswordRetrieval Specifies whether this provider allows for password
retrieval

enablePasswordReset Specifies whether this provider can reset the user

password (enabled = true)

requiresQuestionAndAnswer Specifies whether the question and answer are required
for password reset and retrieval

requiresUniqueEmail Specifies whether this provider requires a unique e-mail
address per user

passwordFormat Specifies the password format, such as cleared, hashed
(default), and encrypted

maxInvalidPasswordAttempts Specifies how many failed login attempts are allowed
before the user account is locked

minRequiredPasswordLength Specifies the minimal number of characters required
for the password

minRequiredNonalphanumericCharacters Specifies the number of special characters that must be
present for the password

passwordAttemptWindow The duration in minutes when failed attempts are
tracked
passwordStrengthRegularExpression A regular expression used to check a password string for

the required password strength

Roles Configuration

Now you’ll do much of the same with the Roles provider. This configuration block is called
roleManager, and in addition to the defaultProvider attribute, it also has an attribute called
enabled, which allows you to turn it on and off. Later you can easily access the enabled setting
in your code by using the Roles.Enabled property. By default this value is set to false, so it
must be set to add support for roles even if you have configured a provider. See the following
roles configuration in Listing 1-8.

CHAPTER 1 © GETTING STARTED

Listing 1-8. Roles Configuration

<roleManager defaultProvider="ChapteroiSqlRoleProvider" enabled="true">
<providers>
<clear/>
<add
name="Chapter01SqlRoleProvider"
connectionStringName="chapteroidb"
applicationName="/chaptero1”
type="System.Web.Security.SqlRoleProvider, =
System.Web, Version=2.0.0.0, Culture=neutral, PublicKeyToken=b03f5f7f11d50a3a"
/>
</providers>
</roleManager>

Profile Configuration

Finally, you can add support for the Profile provider. And as with the preceding two provider
configurations, you will set the defaultProvider attribute to match the newly added configu-
ration and also add the clear element to ensure that this is the only configured provider. The
unique feature for the Profile provider configuration is the ability to define custom properties.
In the sample configuration shown in Listing 1-9, a few custom properties have been defined:
FirstName, LastName, and BirthDate. I will explain these properties in a bit; Table 1-2 lists the
profile configuration settings.

Listing 1-9. Profile Configuration

<profile defaultProvider="ChapteroiSqlProfileProvider"
automaticSaveEnabled="true" enabled="true">
<providers>
<clear/>
<add
name="Chapter01SqlProfileProvider"
applicationName="/chaptero1”
connectionStringName="chapteroidb"
type="System.Web.Profile.SqlProfileProvider, =
System.Web, Version=2.0.0.0, Culture=neutral, PublicKeyToken=b03f5f7f11d50a3a"/>
</providers>
<properties>
<add name="FirstName" type="String" allowAnonymous="true" />
<add name="LastName" type="String" allowAnonymous="true" />
<add name="BirthDate" type="DateTime" allowAnonymous="true" />
</properties>
</profile>

15

16

CHAPTER 1 = GETTING STARTED

Table 1-2. Profile Configuration Settings

Setting Description

name Specifies the configuration name referenced by the profile element
applicationName Defines the application name used as a scope in the Profile database
connectionStringName Specifies the connection string to use for this provider

You can see those custom properties near the end. The Profile provider allows you to
manage properties that are bound to the ASPNET user. You can define anything that can be
serialized. In the three examples, both String and DateTime objects can easily be serialized for
storage in the SQL Server database. However, the properties can be much more complicated
objects than these common primitive types. Perhaps you have a business object called
Employee, which holds properties such as Title, Name, Department, and Office. Instead of con-
figuring all these properties, you can instead just specify the Employee object as a property.

Then with code in either your code-behind classes or classes held with the App_Code
folder, you can access this property as Profile.Employee. Thanks to the dynamic compiler,
which is part of the ASPNET runtime, these properties are immediately available within
Visual Studio with IntelliSense support. That sounds really powerful, doesn't it? It is.

However, you can quickly paint yourself into a corner if you set up many complex
objects as Profile properties. What happens when you need to add or remove properties to
the Employee object but you already have many serialized versions of the object held in the
database? How will you upgrade them?

When ASPNET 2.0 first came out, I saw all kinds of examples of how you could create an
object called ShoppingBasket, add objects called Items to the ShoppingBasket, and set up the
ShoppingBasket as a Profile property. I immediately knew that would not be something I was
going to attempt. In the year previous to the launch of .NET 2.0, I was building a commerce
website to manage a basket with items and customer orders, and I never used the Profile
properties. I still had my ShoppingBasket object, which held lots of Item objects, but managed
the tables and stored procedures used with those objects so that I could add new properties to
them and easily manage the changes. If the ITtem started out with just one value for price called
Price, and later I needed to add a couple more such as SalesPrice and SeasonalPrice, it was
easy enough to add them. And to associate them to the current website user, I used the follow-
ing technique.

For this particular website, I had to work with anonymous and authenticated users. When a
user first came to the site, that user was given a token to identify him as he moved from page to
page. This was an anonymous user token. After the user created an account, that anonymous
token would be deleted and the user would be migrated to an authenticated user token. Authenti-
cated users were Members with the Membership provider. To seamlessly work with anonymous
and authenticated users, I needed a way to uniquely identify these users. Unfortunately, there is
no such default value as Profile.UserID. There is a property for Profile.UserName, but that is
available only for authenticated users. So I ended up creating a wrapper property, which provided
a Guid value whether the user was anonymous or authenticated.

CHAPTER 1 © GETTING STARTED

ANONYMOUS PROFILES

To make use of properties on the profile, you must first have anonymous profiles enabled. An element in
system.web named anonymousIdentification can be enabled to turn on this feature.

In the App_Code folder, I created a class called Utility and added the properties in
Listing 1-10.

Listing 1-10. Utility Methods

public static bool IsUserAuthenticated
{
get
{
return HttpContext.Current.User.Identity.IsAuthenticated;
}
}

public static Guid UserID
{
get
{
if (IsUserAuthenticated)
{

return (Guid)Membership.GetUser().ProviderUserKey;

}

else
{
Guid userld =
new Guid(HttpContext.Current.Request.AnonymousID.Substring(0, 36));
return userld;
}

}
}edd

Whenever I needed the unique identifier for the current user, I would access it with
Utility.UserID. But then I had to handle the transition from anonymous to authenticated.
To do so, I added a method to Global.asax called Profile OnMigrateAnonymous, shown in
Listing 1-11.

Listing 1-11. Profile_OnMigrateAnonymous

public void Profile OnMigrateAnonymous(object sender, ProfileMigrateEventArgs args)

{

Guid anonID = new Guid(args.AnonymousID);
Guid authId = (Guid)Membership.GetUser().ProviderUserKey;

17

18

CHAPTER 1 = GETTING STARTED

// migrate anonymous user resources to the authenticated user

// remove the anonymous user.
Membership.DeleteUser(args.AnonymousID, true);

}

In the case of the basket, I just added the items that were in the anonymous user’s basket
into the authenticated user’s basket, and removed the anonymous account and all associated
data.

T have considered adding a Guid property to the Profile properties called UserID, but the
dynamic compiler for the ASPNET runtime works only in code-behind files. It would not work
in the Utility class held in the App _Code directory, which is where I place a good deal of the
code. So the preceding technique was the only option.

Creating Users and Roles

When you work on a website with Visual Studio, you are able to use the Website Administra-
tion tool to create users and roles. But this utility is not a feature built into Microsoft Internet
Information Server (IIS). To work with users and roles, you have to do it yourself—either in the
database by carefully calling stored procedures or by creating an interface to safely use the
Membership API. I chose to create a couple of user controls that I can easily drop into any
website.

The two main controls, UserManager.ascx and RolesManager . ascx, do the work to manage
the users and roles. These controls are held in another user control called MembersControl.ascx.
This control switches between three views to create a new user, edit existing users, and edit
roles. Listings 1-12 through 1-17 provide the full source for these controls.

Listing 1-12. UserManager.ascx

<%@ Control Language="C#" AutoEventWireup="true"

CodeFile="UserManager.ascx.cs" Inherits="MemberControls UserManager" %>
<asp:Label ID="Titlelabel"

runat="server" Text="User Manager"></asp:Label>

<asp:MultivView ID="UsersMultiView" runat="server"

ActiveViewIndex="0">

<asp:View ID="SelectUserView" runat="server"
OnActivate="SelectUserView Activate">

<table>

<tr>

<td>

<asp:GridView ID="UsersGridView" runat="server"

AllowPaging="True"
AutoGenerateColumns="False"
OnInit="UsersGridView Init"
OnPageIndexChanging="UsersGridView PageIndexChanging"
OnRowCommand="UsersGridView RowCommand"

vww allitebooks.conl

http://www.allitebooks.org

CHAPTER 1 © GETTING STARTED

GridLines="None">
<Columns>
<asp:BoundField DataField="UserName" HeaderText="Username" />
<asp:BoundField DataField="Email" HeaderText="Email" />
<asp:TemplateField ShowHeader="False">
<ItemTemplate>
<asp:LinkButton ID="LinkButton1" runat="server"
CausesValidation="false"
CommandName="ViewUser"
CommandArgument="<%# Bind("UserName") %>
Text="View"></asp:LinkButton>
</ItemTemplate>
</asp:TemplateField>
</Columns>
<RowStyle CssClass="EvenRow" />
<HeaderStyle CssClass="HeaderRow" />
<AlternatingRowStyle CssClass="OddRow" />
</asp:GridView>
</td>
</tr>
<tr>
<td align="center">
<asp:TextBox ID="FilterUsersTextBox" runat="server"
Width="75px"></asp:TextBox>
<asp:Button ID="FilterUsersButton" runat="server"
OnClick="FilterUsersButton Click" Text="Filter" />
</td>
</tr>
</table>

</asp:View>
<asp:View ID="UserView" runat="server" OnActivate="UserView Activate">

<table>
<tr>
<td class="Label">
<asp:Label ID="UserNamelLabel" runat="server" Text="User Name:
Font-Bold="True"></asp:Label></td>
<td class="Data">
<asp:Label ID="UserNameValuelabel" runat="server"
Text=""></asp:Label></td>

</tr>
<tr>
<td class="Label">
<asp:Label ID="ApprovedlLabel" runat="server" Text="Approved:
Font-Bold="True"></asp:Label></td>
<td class="Data">

19

20

CHAPTER 1 = GETTING STARTED

</tr>
<tr>
<td

<td

</tr>
<tr>
<td

<td

</tr>
<tr>
<td

<td

</tr>
<tr>
<td

<td

</tr>
<tr>
<td

<td

</tr>
<tr>
<td

<asp:Label ID="ApprovedValuelabel" runat="server"
Text=""></asp:Label></td>

class="Label">

<asp:Label ID="LockedOutlLabel" runat="server" Text="Locked Out:

Font-Bold="True"></asp:Label></td>
class="Data">
<asp:Label ID="LockedOutValuelabel" runat="server"
Text=""></asp:Label></td>

class="Label">

<asp:Label ID="OnlinelLabel" runat="server" Text="Online:
Font-Bold="True"></asp:Label></td>

class="Data">

<asp:Label ID="OnlineValuelabel" runat="server"
Text=""></asp:Label></td>

class="Label">

<asp:Label ID="Creationlabel" runat="server" Text="Creation:
Font-Bold="True"></asp:Label></td>

class="Data">

<asp:Label ID="CreationValuelabel" runat="server"
Text=""></asp:Label></td>

class="Label">
<asp:lLabel ID="LastActivitylLabel" runat="server"
Text="Last Activity:" Font-Bold="True"></asp:Label></td>
class="Data">
<asp:Label ID="LastActivityValuelabel" runat="server"
Text=""></asp:Label></td>

class="Label">
<asp:Label ID="LastlLoginlLabel" runat="server"
Text="Last Login:" Font-Bold="True"></asp:Label></td>
class="Data">
<asp:Label ID="LastlLoginValuelabel" runat="server"
Text=""></asp:Label></td>

colspan="2" class="Data">
<asp:Label ID="UserCommentlLabel" runat="server"
Text="Comment:" Font-Bold="True"></asp:Label>

CHAPTER 1 © GETTING STARTED

<asp:Label ID="UserCommentValuelabel" runat="server"
Text=""></asp:Label>
</td>
</tr>
<tr>
<td colspan="2">
<asp:Button ID="EditUserButton" runat="server"
Text="Edit User" OnClick="EditUserButton Click" />
<asp:Button ID="ResetPasswordButton" runat="server"
Text="Reset Password" OnClick="ResetPasswordButton Click"
Visible="False" />
<asp:Button ID="UnlockUserButton" runat="server"
OnClick="UnlockUserButton Click" Text="Unlock" />
<asp:Button ID="ReturnViewUserButton" runat="server"
Text="Return" OnClick="ReturnViewUserButton Click" />
</td>
</tr>
</table>

</asp:View>
<asp:View ID="EditorView" runat="server" OnActivate="EditorView Activate">

<table>
<tr>
<td class="Label">
<asp:Label ID="UserName2lLabel" runat="server" Text="User Name:
Font-Bold="True"></asp:Label></td> <td class="Data">
<asp:Label ID="UserNameValue2lLabel" runat="server" Text="">
</asp:Label></td>
<td>
 </td>

</tr>
<tr>
<td class="Label">
<asp:lLabel ID="Emaillabel" runat="server" Text="Email:
Font-Bold="True"></asp:Label>

</td>
<td class="Data">
<asp:TextBox ID="EmailTextBox" runat="server"
AutoCompleteType="Email"></asp:TextBox></td>
<td>
<asp:RequiredFieldValidator
ID="EmailRequiredFieldValidator" runat="server"
ErrorMessage="*"
ControlToValidate="EmailTextBox"
EnableClientScript="False"></asp:RequiredFieldValidator>
<asp:RegularExpressionValidator

21

22 CHAPTER 1 = GETTING STARTED

ID="RegularExpressionValidator1" runat="server"
ControlToValidate="EmailTextBox"
EnableClientScript="False"
ErrorMessage="*"
ValidationExpression="\w+([-+." J\w+)*@\w+([-.]\w+) =
N\ AAw+([-.]\w+)*"></asp:RegularExpressionValidator>
</td>
</tr>
<tr>
<td class="Label">
<asp:Label ID="CommentlLabel" runat="server" Text="Comment:
Font-Bold="True"></asp:Label>
</td>
<td class="Data">
<asp:TextBox ID="CommentTextBox" runat="server"
AutoCompleteType="Email" TextMode="MultilLine"></asp:TextBox></td>
<td>
 </td>
</tr>
<tr>
<td class="Label"><asp:Label ID="Approved2lLabel" runat="server"
Text="Approved: " Font-Bold="True"></asp:Label></td>
<td class="Data"><asp:CheckBox ID="ApprovedCheckBox" runat="server" /></td>
<td></td>
</tr>
<tr>
<td class="Label"><asp:Label ID="RoleslLabel" runat="server"
Text="Roles " Font-Bold="True"></asp:Label></td>
<td class="Data">
<asp:CheckBoxList ID="RolesCheckBoxList" runat="server">
</asp:CheckBoxList>
</td>
<td></td>
</tr>
<tr>
<td colspan="3">
<asp:Button ID="UpdateUserButton" runat="server"
Text="Update User" OnClick="UpdateUserButton Click" />
<asp:Button ID="CancelEditUserButton" runat="server"
OnClick="CancelEditUserButton Click"
Text="Cancel" /></td>
</tr>
</table>

</asp:View>
</asp:Multiview>

CHAPTER 1 © GETTING STARTED

Listing 1-13. UserManager.ascx.cs

using System;

using System.Collections.Generic;
using System.ComponentModel;
using System.Web;

using System.Web.Security;

using System.Web.UI;

using System.Web.UI.WebControls;

public partial class MemberControls UserManager : UserControl

{

#iregion " Events
protected void Page Init(object sender, EventArgs e)
{
}
protected void Page Load(object sender, EventArgs e)
{
}
protected void FilterUsersButton Click(object sender, EventArgs e)
{
BindUsersGridView();
}
protected void EditUserButton Click(object sender, EventArgs e)
{

UsersMultiView.SetActiveView(EditorView);

}

protected void UnlockUserButton Click(object sender, EventArgs e)

{

MembershipUser user = CurrentUser;
if (user != null)

{
user.UnlockUser();
Membership.UpdateUser(user);
BindUserView();

}

}

protected void ResetPasswordButton Click(object sender, EventArgs e)

{

MembershipUser user = CurrentUser;
if (user != null)

{

user.ResetPassword();

}

UsersMultiView.SetActiveView(UserView);

}

protected void ReturnViewUserButton Click(object sender, EventArgs e)

{

23

24 CHAPTER 1 = GETTING STARTED

UsersMultiView.SetActiveView(SelectUserView);

}
protected void UpdateUserButton Click(object sender, EventArgs e)
{
if (CurrentUser != null)
{
MembershipUser user = CurrentUser;
user.Email = EmailTextBox.Text;
user.Comment = CommentTextBox.Text;
user.IsApproved = ApprovedCheckBox.Checked;
Membership.UpdateUser(user);
foreach (ListItem listItem in RolesCheckBoxList.Items)
{
string role = listItem.Value;
if (Roles.RoleExists(role))
{
if (!listItem.Selected &&
Roles.IsUserInRole(user.UserName, role))
{
Roles.RemoveUserFromRole(user.UserName, role);
}
else if (listItem.Selected &&
IRoles.IsUserInRole(user.UserName, role))
{
Roles.AddUserToRole(user.UserName, role);
}
}
}
UsersMultiView.SetActiveView(UserView);
}
}
protected void CancelEditUserButton Click(object sender, EventArgs e)
{
UsersMultiView.SetActiveView(UserView);
}
protected void CancelRolesButton Click(object sender, EventArgs e)
{
UsersMultiView.SetActiveView(UserView);
}
protected void SelectUserView Activate(object sender, EventArgs e)
{
BindUsersGridview();
}

protected void UserView Activate(object sender, EventArgs e)

{

CHAPTER 1 © GETTING STARTED

BindUserView();

}

protected void EditorView Activate(object sender, EventArgs e)
{

BindEditorView();
}
protected void UsersGridview Init(object sender, EventArgs e)
{
}

protected void UsersGridView PageIndexChanging(
object sender, GridViewPageEventArgs e) {
UsersGridView.PageIndex = e.NewPageIndex;
BindUsersGridview();
}
protected void UsersGridView RowCommand(
object sender, GridViewCommandEventArgs e)

{
if ("ViewUser".Equals(e.CommandName))
{
CurrentUser = GetUser(e.CommandArgument.ToString());
UsersMultiView.SetActiveView(UserView);
}
}
#endregion

#iregion " Methods
private void BindUsersGridView()

{
if (String.Empty.Equals(FilterUsersTextBox.Text.Trim()))
{
UsersGridView.DataSource = Membership.GetAllUsers();
}
else
{

List<MembershipUser> filteredUsers = new List<MembershipUser>();
string filterText = FilterUsersTextBox.Text.Trim();
foreach (MembershipUser user in Membership.GetAllUsers())

{
if (user.UserName.Contains(filterText) ||
user.Email.Contains(filterText))
{
filteredUsers.Add(user);
}
}

UsersGridView.DataSource = filteredUsers;

25

26 CHAPTER 1

GETTING STARTED

UsersGridView.DataBind();

private void BindUserView()

MembershipUser user = CurrentUser;
if (user != null)

UserNameValuelabel.Text = user.UserName;

ApprovedValuelabel.Text = user.IsApproved.ToString();
LockedOutValuelabel.Text = user.IsLockedOut.ToString();
OnlineValuelabel.Text = user.IsOnline.ToString();
CreationValuelabel.Text = user.CreationDate.ToString("d");
LastActivityValuelabel.Text = user.lLastActivityDate.ToString("d");
LastlLoginValuelabel.Text = user.lastlLoginDate.ToString("d");
UserCommentValuelabel.Text = user.Comment;

UnlockUserButton.Visible = user.IslLockedOut;
ResetPasswordButton.Attributes.Add("onclick",
"return confirm('Are you sure?');");

private void BindEditorView()

MembershipUser user = CurrentUser;
if (user != null)

}
{
{
}
}
{
{
}
}

UserNameValue2label.Text = user.UserName;
EmailTextBox.Text = user.Email;
CommentTextBox.Text = user.Comment;
ApprovedCheckBox.Checked = user.IsApproved;

RolesCheckBoxList.Items.Clear();
foreach (string role in Roles.GetAllRoles())

{
ListItem listItem = new ListItem(role);
listItem.Selected = Roles.IsUserInRole(user.UserName, role);
RolesCheckBoxList.Items.Add(1listItem);

}

public void Reset()

{

UsersMultiView.SetActiveView(SelectUserView);
Refresh();

CHAPTER 1 © GETTING STARTED

public void Refresh()

{
BindUsersGridview();
}
public bool IsUserAuthenticated
{
get
{
return HttpContext.Current.User.Identity.IsAuthenticated;
}
}
public string GetUserName()
{
if (IsUserAuthenticated)
{
return HttpContext.Current.User.Identity.Name;
}
return String.Empty;
}
public MembershipUser GetUser(string username)
{
return Membership.GetUser(username);
}
#endregion
#iregion " Properties "

[Category("Appearance"), Browsable(true), DefaultValue("User Manager")]
public string Title

{
get
{
return Titlelabel.Text;
set
{
Titlelabel.Text = value;
EnsureChildControls();
}
}

[Category("Appearance"), Browsable(true), DefaultValue(false)]
public bool TitleBold
{

get

{
return Titlelabel.Font.Bold;

27

28 CHAPTER 1 = GETTING STARTED

Titlelabel.Font.Bold = value;
EnsureChildControls();

}
}
[Browsable(false)]
public CssStyleCollection TitleStyle
{
get
{
return Titlelabel.Style;
}
}
private MembershipUser CurrentUser
{
get
{
return ViewState["CurrentUser"] as MembershipUser;
set
ViewState["CurrentUser"] = value;
}
}
#endregion

Listing 1-14. RoleManager.ascx

<%@ Control Language="C#" AutoEventWireup="true" CodeFile="RolesManager.ascx.cs"
Inherits="MemberControls RolesManager" %>
<asp:Label ID="TitlelLabel" runat="server"
Text="Roles Manager" Font-Bold="true"></asp:Label>
<table>
<tr>
<td align="center">
<asp:GridView ID="RolesGridView" runat="server"
AutoGenerateColumns="False"
OnRowCommand="RolesGridView RowCommand"
OnRowDataBound="RolesGridView RowDataBound"
GridLines="None"
Width="100%">
<Columns>
<asp:TemplateField HeaderText="Role">
<ItemTemplate>

vww allitebooks.conl

http://www.allitebooks.org

CHAPTER 1 © GETTING STARTED

<asp:Label ID="Label1" runat="server"
Text="Role"></asp:Label>
</ItemTemplate>
</asp:TemplateField>
<asp:TemplateField HeaderText="Users">
<ItemTemplate>
<asp:Label ID="Label1" runat="server"
Text="Users"></asp:Label>
</ItemTemplate>
</asp:TemplateField>
<asp:ButtonField CommandName="RemoveRole"
Text="Remove" />
</Columns>
<EmptyDataTemplate>
 - No Roles -
</EmptyDataTemplate>
<RowStyle CssClass="EvenRow" />
<AlternatingRowStyle CssClass="OddRow" />
<HeaderStyle CssClass="HeaderRow" />
</asp:CGridView>
</td>
</tr>
<tr>
<td align="center">
<asp:Label ID="Label3" runat="server"
Font-Bold="True" Text="Role: "></asp:lLabel>
<asp:TextBox ID="AddRoleTextBox" runat="server"
Width="75px"></asp:TextBox>
<asp:Button ID="AddRoleButton" runat="server"
Text="Add" OnClick="AddRoleButton Click" /></td>
</tr>

</table>

Listing 1-15. RoleManager.ascx.cs

using System;

using System.ComponentModel;
using System.Web.Security;

using System.Web.UI;

using System.Web.UI.WebControls;

public partial class MemberControls RolesManager : UserControl

n

#iregion " Events

protected void Page PreRender(object sender, EventArgs e)

{
BindRolesGridview();

29

30 CHAPTER 1 = GETTING STARTED

}

protected void RolesGridView RowDataBound(object sender, GridViewRowEventArgs e)
{
if (e.Row.RowType == DataControlRowType.DataRow)
{
string role = e.Row.Dataltem as string;
foreach (TableCell cell in e.Row.Cells)
{
foreach (Control control in cell.Controls)
{
Label label = control as Label;
if (label != null)

{
if ("Role".Equals(label.Text))
{
label.Text = role;
}
else if ("Users".Equals(label.Text))
{
label.Text = Roles.GetUsersInRole(role). =
Length.ToString();
}
}
else
{
LinkButton button = control as LinkButton;
if (button != null)
{
button.Enabled = Roles.GetUsersInRole(role).Length == 0;
if (button.Enabled)
{
button.CommandArgument = role;
button.Attributes.Add("onclick",
"return confirm('Are you sure?');");
}
}
}

}
}

protected void RolesGridView RowCommand(
object sender, GridViewCommandEventArgs e)

{

if ("RemoveRole".Equals(e.CommandName))

{

string role = e.CommandArgument as string;
Roles.DeleteRole(role, true);

CHAPTER 1

BindRolesGridView();

}
}
protected void AddRoleButton Click(object sender, EventArgs e)

{
if (Page.IsValid)

{
string role = AddRoleTextBox.Text;
if (!Roles.RoleExists(role))
{
Roles.CreateRole(role);
AddRoleTextBox.Text = String.Empty;
BindRolesGridview();
}
}
}
#endregion

#iregion " Methods "

public void Refresh()

{
BindRolesGridView();

}

private void BindRolesGridView()

{
RolesGridView.DataSource = Roles.GetAllRoles();
RolesGridView.DataBind();

}

#endregion

#iregion " Properties "

GETTING STARTED

[Category("Appearance"), Browsable(true), DefaultValue("Roles Manager")]

public string Title

{
get
{
return Titlelabel.Text;
set
Titlelabel.Text = value;
}
}

#endregion

31

CHAPTER 1 = GETTING STARTED

Listing 1-16. MembersControl.ascx

<%@ Control Language="C#" AutoEventWireup="true"
CodeFile="MembersControl.ascx.cs"
Inherits="MembersControl" %>
<%@ Register Src="UserManager.ascx" TagName="UserManager" TagPrefix="uc2" %>
<%@ Register Src="RolesManager.ascx" TagName="RolesManager" TagPrefix="uc1" %>

Select View:

<asp:DropDownlist ID="NavDropDownlist" runat="server"
AutoPostBack="True"
OnSelectedIndexChanged="NavDropDownList SelectedIndexChanged">
<asp:ListItem>Create User</asp:ListItem>
<asp:ListItem>Manage Users</asp:ListItem>
<asp:ListItem>Manage Roles</asp:ListItem>

</asp:DropDownList>

<asp:MultiView ID="MultiView1" runat="server">
<asp:View ID="UserCreationView" runat="server"
OnActivate="UserCreationView Activate">
<asp:CreateUserWizard ID="CreateUserWizard1i" runat="server"
AutoGeneratePassword="True"
LoginCreatedUser="False"
OnCreatedUser="CreateUserWizardl CreatedUser">
<WizardSteps>
<asp:CreateUserWizardStep
ID="CreateUserWizardStep1" runat="server">
</asp:CreateUserWizardStep>
<asp:CompleteWizardStep
ID="CompleteWizardStep1" runat="server">
</asp:CompleteWizardStep>
</WizardSteps>
</asp:CreateUserWizard>
</asp:View>
<asp:View ID="UserManagerView" runat="server"
OnActivate="UserManagerView Activate">

<uc2:UserManager
ID="UserManager1" runat="server"
Title="Users"
TitleBold="true" />
</asp:View>
<asp:View ID="RolesManagerView" runat="server">

<uci:RolesManager

CHAPTER 1 © GETTING STARTED

ID="RolesManager1" runat="server"
Title="Roles" />

</asp:View>
</asp:Multiview>

Listing 1-17. MembersControl.ascx.cs

using System;
using System.Web.UI;

public partial class MembersControl : UserControl

{
protected void Page Load(object sender, EventArgs e)
{
if (!IsPostBack)
{
MultiView1.SetActiveView(UserManagerView);
NavDropDownlist.SelectedValue = "Manage Users";
}
}

protected void NavDropDownlist SelectedIndexChanged(object sender, EventArgs e)

{
if ("Create User".Equals(NavDropDownlList.SelectedValue))

{
MultiViewl.SetActiveView(UserCreationView);
}
else if ("Manage Users".Equals(NavDropDownlList.SelectedValue))
{
MultiView1.SetActiveView(UserManagerView);
RefreshUserManager();
}
else if ("Manage Roles".Equals(NavDropDownlList.SelectedValue))
{
MultiView1.SetActiveView(RolesManagerView);
RefreshRolesManager();
}

}

protected void CreateUserWizardi CreatedUser(object sender, EventArgs e)
{
MultiView1.SetActiveView(UserManagerView);
NavDropDownlist.SelectedValue = "Manage Users";
RefreshUserManager();

33

34 CHAPTER 1 = GETTING STARTED

private void RefreshUserManager()

{
MemberControls UserManager userManager =
UserManagerView.FindControl("UserManager1")
as MemberControls UserManager;
if (userManager != null)
{
userManager.Refresh();
}
}
private void RefreshRolesManager()
{
MemberControls RolesManager rolesManager =
UserManagerView.FindControl("RolesManager1")
as MemberControls RolesManager;
if (rolesManager != null)
{
rolesManager.Refresh();
}
}
protected void UserManagerView Activate(object sender, EventArgs e)
{
UserManageri.Reset();
}
protected void UserCreationView Activate(object sender, EventArgs e)
{
CreateUserWizardi.ActiveStepIndex = 0;
}

Securing the Admin Section

With the user and role management controls placed into a folder named Admin, it can be
secured by requiring authenticated users in the Admin role. Near the end of Web. config, you
can create a location configuration for the Admin path and allow members in the Admin role
(see Listing 1-18).

Listing 1-18. Securing the Admin Section with Web.config

<?xml version="1.0"?>
<configuration>

<!-- other configuration settings -->

CHAPTER 1 © GETTING STARTED

<location path="Admin">
<system.web>
<authorization>
<allow roles="Admin"/>
<deny users="*"/>
</authorization>
</system.web>
</location>

</configuration>

Creating the Admin User

After your Admin section is ready, you will naturally need the Admin user so you can log in to
this section and use the controls. It is sort of a catch-22 scenario. But just as you can use the
Membership API to manage users and roles, with these controls you can also programmati-
cally create users and roles. To automatically ensure that your website has the necessary Admin
user, you can add the code to do all of this work to the Application Start event handler in the
Global.asax file for the website. I first check whether the three default roles exist and add each
one that does not exist. And then if there are no users, I have the method add the default Admin
user, as shown in Listing 1-19.

Listing 1-19. Adding Roles and Users

public void Application Start(object sender, EventArgs e)
{
if (Roles.Enabled)
{
String[] requiredRoles = { "Admin", "Users", "Editors" };
foreach (String role in requiredRoles)

{
if (!Roles.RoleExists(role))
{
Roles.CreateRole(role);
}
}

string[] users = Roles.GetUsersInRole("Admin");
if (users.lLength == 0)
{
// create admin user
MembershipCreateStatus status;
Membership.CreateUser("admin", "CHANGE ME", "admin@localhost",
"Favorite color?", "green", true, out status);
if (MembershipCreateStatus.Success.Equals(status))
{
Roles.AddUserToRole("admin", "Admin");

}

else

35

36

CHAPTER 1 = GETTING STARTED

{
LogMessage("Unable to create admin user: " + status, true);
}
}
}
}

Summary

This chapter covered how to prepare your environment for working with ASPNET websites
and how to configure the link to the database. You learned how to configure and manage the
provider services, including adding users and roles programmatically so a new website can be
managed immediately after it is deployed.

CHAPTER 2

Data Model Choices

The ASPNET 2.0 data model allows for many methods to get the data from the database to
the Web Form. The three top methods are DataSets, DataReaders, and DataObjects. This chap-
ter reviews each of these options as well as the Data Access Application Block, which is a part
of the Enterprise Library.

This chapter covers the following:

¢ Data Access Application Block

* Data Access code snippets

» Sample Person database

* Performance and ViewState considerations
* Typed DataSet

* Nontyped DataSet

* DataReader

* Subsets and sorting with ranges

There is not just one way to work with data in .NET. There are many distinct and some-
times intermingling ways, which give you a seemingly overwhelming set of choices. Although
you may get by using a limited set of the available features, you will find that as your knowl-
edge of your options deepens, you can come up with more-streamlined approaches that
reduce the amount of work you need to do to get the job done. That translates quickly into
higher productivity and less code to maintain.

And although the clever examples documented on the Microsoft Developer Network
(MSDN) offer some amazing solutions, they really are simple examples. This chapter digs
beyond the simplistic by throwing a wrench into the works and showing you how to get past it.

The Data Access Application Block

The Microsoft Patterns & Practices group provides a set of modules called Application Blocks,
which give developers additional tools to work with the .NET framework. One of the modules
is the Data Access Application Block, which provides a set of methods that consolidate the
work you would normally have to do in order to work with the database. This layer of abstrac-
tion simplifies what can otherwise be a cumbersome task.

37

38

CHAPTER 2 " DATA MODEL CHOICES

One goal of the Data Access Application Block is to give the developer an interface that is
not specific to the underlying database. Software using this module will work with SQL Server
and SQL Server CE as well as Oracle without modification of the C# code. This module also
handles common tasks you must do if you are just using ADO.NET, such as opening and clos-
ing each database connection. Various tasks such as this one are handled automatically.

In addition to this alternate interface, the Enterprise Library includes configuration tools
that can modify your web configuration file for you. In the case of the Data Access Application
Block, such a configuration tool is unnecessary because all you need to configure is the con-
nection string you will use to connect to the database. However, the configuration tool can set
the default connection string to be used when it is not specified explicitly in the code.

At the core of the Data Access Application Block is the Database object, which abstracts
away much of the complexity of the .NET framework related to database communications.
You run your database commands through the Database object by using the DbCommand from
the System.Data.Common namespace to do everything from selects, inserts, updates, and
deletes to calling stored procedures that carry out more-complex tasks.

The majority of examples throughout this book use the Data Access Application Block. It
is an easy-to-use interface and should be used to build your data access layer if you choose to
build that layer manually.

To use the Enterprise Library, you will have to download it from the Microsoft Patterns &
and Practices website. When you run the installation, you may want to change the installation
directory so that it is placed in your common folder, such as D: \Projects\Common\Microsoft
Enterprise Library 3.1.As apart of the installer, you are given the option to install and com-
pile the source. You can place the source in the same folder, as shown in Figure 2-1. When you
build from the source, it will create assemblies that are not signed, so you will need to update
the projects to use your own key if you plan to deploy the assemblies to the global assembly
cache (GAC) or use them with projects that are strongly signed. Otherwise, you can use the
assemblies in the bin folder, which are signed by Microsoft.

[F=3 Eol 5
@-\%/-vl « Projects » Common v Microsoft Enterprise Librang 3.1 ¢ EntLib3Src » - | v,| [P
Folders v | Mame ’ Date modified Typ
Common -~ App Blocks 5/25/2007 2:00 Pr File
Microsoft Enterprise Library 3.0 Application Block Softwa.., 5/25/2007 8:10 Ph File
Microsoft Enterprise Library 3.1 Quick Starts 5/25/2007 &0 PM File
EntLib35r: Strong Marning Guidance.. 5/25/2007 8:10 P File
App Blocks
Application Block Software Factory |E Select afile to preview.
Quick Starts
Strong Marning Guidance Package
Ity Shippets
Scripts
Templates
Taols -4 m b

Figure 2-1. Enterprise Library 3.1 in the Common directory

The Enterprise Library is made up of many assemblies for all the Application Blocks. You
do not need to reference every one of these assemblies to make use of just a single module.
In the case of the Data Access Application Block, you need only three assemblies: Microsoft.

vww allitebooks.conl

http://www.allitebooks.org

CHAPTER 2 ' DATA MODEL CHOICES

Practices.Enterpriselibrary.Common.dll, Microsoft.Practices.ObjectBuilder.dll, and
Microsoft.Practices.EnterpriselLibrary.Data.dll.

When I build my data access layer, I do so with a class library instead of placing all that
code in the App_Code folder of an ASPNET Website Project. Doing so allows it to be used as a
dependency for multiple websites as well as console and desktop applications. It also makes
it easy to version-control the data layer and run unit tests against it. When it is built inside the
App_Code folder, it cannot be used externally, which makes versioning and unit testing difficult.

GUIDANCE AUTOMATION TOOL

The Enterprise Library is just one product of the Patterns & Practices team. The team also produces the Guid-
ance Automation Extensions for Visual Studio, which uses templates and recipes for building applications that
conform to their recommendations. Within the WCF and Web Service Software Factories is the Data Access
Guidance Package, which can generate code for your data access layer.

Whenever you start work on an application, you do not want to be slowed down with all
the tedious work of setting up your database with the various tables, stored procedures, index-
ing, and constraints only to spend a significant amount of time writing the intermediate layer
between the database and the front end of the application. To speed up the process of creating
all that code, you can use code snippets. This powerful feature of Visual Studio 2005 (and
Visual Studio 2008) allows you to quickly select a template and fill in placeholders so you can
avoid manually writing each line of code (typically, boilerplate code). Code snippets also help
you avoid coding errors due to typos.

Data Access Code Snippets

I have created five code snippets to assist with writing code that uses the Data Access Applica-
tion Block. In addition to adding lines of code to your class, the snippets can also specify the
required namespace statements for the new block of code. The namespace imports work only
in VB code, but the references will work if the assemblies can be found by Visual Studio. If you
add the necessary assembly references to your project before adding one of the following code
snippets, Visual Studio will automatically add the using statements to your class.

My collection of data access code snippets is as follows:

¢ Data Access Types

¢ Database Creation

* DataSet Method

* DataReader Method
* Nonquery Method

The code for these snippets follows in Listings 2-1 through 2-5.

39

CHAPTER 2 " DATA MODEL CHOICES

Listing 2-1. Data Access Types

<?xml version="1.0" encoding="utf-8"?>
<CodeSnippets
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmlns:xsd="http://www.w3.0rg/2001/XMLSchema"
xmlns="http://schemas.microsoft.com/VisualStudio/2005/CodeSnippet">
<CodeSnippet Format="1.0.0">
<Header>
<Title>1 Type Declarations</Title>
<Shortcut>da1</Shortcut>
<Description>Data Access Types</Description>
<Author>Brennan Stehling</Author>
<SnippetTypes>
<SnippetType>Expansion</SnippetType>
</SnippetTypes>
</Header>
<Snippet>
<References>
<Reference>
<Assembly>Microsoft.Practices.EnterpriseLibrary.Common.dll</Assembly>
</Reference>
<Reference>
<Assembly>Microsoft.Practices.EnterpriselLibrary.Data.dl1</Assembly>
</Reference>
<Reference>
<Assembly>Microsoft.Practices.ObjectBuilder.dl1l</Assembly>
</Reference>
</References>
<Imports>
<Import>
<Namespace>System.Data</Namespace>
</Import>
<Import>
<Namespace>System.Data.Common</Namespace>
</Import>
<Import>
<Namespace>Microsoft.Practices.Enterpriselibrary.Data</Namespace>
</Import>
</Imports>
<Code Language="CSharp" Kind="type decl" Delimiter="$">
private Database db;

</Code>
</Snippet>
</CodeSnippet>
</CodeSnippets>
</CodeSnippet>
</CodeSnippets>

http://www.w3.org/2001/XMLSchema-instance
http://www.w3.org/2001/XMLSchema
http://schemas.microsoft.com/VisualStudio/2005/CodeSnippet

CHAPTER 2 ' DATA MODEL CHOICES

The Data Access Types snippet simply declares a reference for the Database object that is
used in the data access methods. This initial code snippet specifies the imports and references
that are required for all the code snippets. Although C# does not automatically include the
imports as in VB, I have included them with the expectation that a future release of Visual
Studio will be able to use them.

Listing 2-2. Database Creation

<?xml version="1.0" encoding="utf-8"?>
<CodeSnippets
xmlns="http://schemas.microsoft.com/VisualStudio/2005/CodeSnippet">
<CodeSnippet Format="1.0.0">
<Header>
<Title>2 Database Creation</Title>
<Shortcut>da2</Shortcut>
<Description>Data Access Database Creation</Description>
<Author>Brennan Stehling</Author>
</Header>
<Snippet>
<Imports>
<Import>
<Namespace>Microsoft.Practices.EnterpriselLibrary.Data</Namespace>
</Import>
</Imports>
<Declarations>
<Literal Editable="true">
<ID>connectionStringName</ID>
<ToolTip>Connection String Name</ToolTip>
<Default>db</Default>
<Function>
</Function>
</Literal>
</Declarations>
<Code Language="CSharp" Kind="method body">
<I[CDATA[
db = DatabaseFactory.CreateDatabase("$connectionStringName$");
11></Code>
</Snippet>
</CodeSnippet>
</CodeSnippets>

The Database Creation snippet creates the database instance. It should be placed in
the constructor so that it needs to be initialized only once. The connection string is the only
placeholder defined here. You should set this to the name of the connection string to use for
this instance of the Database object.

41

http://schemas.microsoft.com/VisualStudio/2005/CodeSnippet

42 CHAPTER 2 " DATA MODEL CHOICES

Listing 2-3. DataSet Method

<?xml version="1.0" encoding="utf-8"?>
<CodeSnippets
xmlns="http://schemas.microsoft.com/VisualStudio/2005/CodeSnippet">
<CodeSnippet Format="1.0.0">
<Header>
<Title>3 Get DataSet Method</Title>
<Shortcut>da3</Shortcut>
<Description>Data Access DataSet Method</Description>
<Author>Brennan Stehling</Author>
</Header>
<Snippet>
<Imports>
<Import>
<Namespace>Microsoft.Practices.Enterpriselibrary.Data</Namespace>
</Import>
</Imports>
<Declarations>
<Literal Editable="true">
<ID>methodName</ID>
<ToolTip>Method Name</ToolTip>
<Default>GetDataSet</Default>
<Function>
</Function>
</Literal>
<Literal Editable="true">
<ID>sproc</ID>
<ToolTip>Stored Procedure</ToolTip>
<Default>GetDataSet</Default>
<Function>
</Function>
</Literal>
</Declarations>
<Code Language="CSharp" Kind="method decl">
<! [CDATA[

public DataSet $methodName$()

{
DataSet ds = new DataSet();

using (DbCommand dbCmd = db.GetStoredProcCommand("$sproc$”))

{
//db.AddInParameter(dbCmd, "@Parameterl”, DbType.String, String.Empty);

//db.AddOutParameter (dbCmd, "@Parameter2", DbType.String, 0);

ds = db.ExecuteDataSet(dbCmd);
//0bject outputParameter =

http://schemas.microsoft.com/VisualStudio/2005/CodeSnippet

CHAPTER 2 ' DATA MODEL CHOICES

//db.CetParameterValue(dbCmd, "@OutputParameter");
}

//return the results
return ds;
}11></Code>
</Snippet>
</CodeSnippet>
</CodeSnippets>

The DataSet method returns a DataSet after filling it with the results of a stored procedure
call. The placeholders are for the name of the method and the name of the stored procedure.
The snippet also includes a few lines for input and output parameters. These are in place to
show how to add input and output parameters. These lines can be deleted if the stored proce-
dure that is called does not take parameters. This snippet references the DbCommand variable
with the using statement, which was introduced as a part of C# 2.0. It ensures that the
DbCommand is disposed of at the end of the block. You will notice that it is not necessary to
open and close the database connection here.

Listing 2-4. DataReader Method

<?xml version="1.0" encoding="utf-8"?>
<CodeSnippets
xmlns="http://schemas.microsoft.com/VisualStudio/2005/CodeSnippet">
<CodeSnippet Format="1.0.0">
<Header>
<Title>4 Get DataReader Method</Title>
<Shortcut>dag</Shortcut>
<Description>Data Access DataReader Method</Description>
<Author>Brennan Stehling</Author>
</Header>
<Snippet>
<Imports>
<Import>
<Namespace>Microsoft.Practices.Enterpriselibrary.Data</Namespace>
</Import>
</Imports>
<Declarations>
<Literal Editable="true">
<ID>methodName</ID>
<ToolTip>Method Name</ToolTip>
<Default>GetDataReader</Default>
<Function>
</Function>
</Literal>
<Literal Editable="true">
<ID>sproc</ID>
<ToolTip>Stored Procedure</ToolTip>

43

http://schemas.microsoft.com/VisualStudio/2005/CodeSnippet

44 CHAPTER 2 " DATA MODEL CHOICES

<Default>GetDataReader</Default>
<Function>
</Function>
</Literal>
</Declarations>
<Code Language="CSharp" Kind="method decl">
<1 [CDATA[

public IDataReader $methodName$()

{
IDataReader dr = null;
using (DbCommand dbCmd = db.GetStoredProcCommand("$sproc$”))
{
//db.AddInParameter(dbCmd, "@Parameter", DbType.String, String.Empty);
dr = db.ExecuteReader(dbCmd);
}
//return the results
return dr;
}11></Code>
</Snippet>
</CodeSnippet>
</CodeSnippets>

The DataReader snippet does exactly the same work as the DataSet snippet, except that
the DataReader snippet returns a DataReader object.

Listing 2-5. Nonquery Method

<?xml version="1.0" encoding="utf-8"?>
<CodeSnippets
xmlns="http://schemas.microsoft.com/VisualStudio/2005/CodeSnippet">
<CodeSnippet Format="1.0.0">
<Header>
<Title>5 Execute Nonquery</Title>
<Shortcut>das</Shortcut>
<Description>Data Access Nonquery Method</Description>
<Author>Brennan Stehling</Author>
</Header>
<Snippet>
<Imports>
<Import>
<Namespace>Microsoft.Practices.Enterpriselibrary.Data</Namespace>
</Import>
</Imports>
<Declarations>

http://schemas.microsoft.com/VisualStudio/2005/CodeSnippet

CHAPTER 2 ' DATA MODEL CHOICES

<Literal Editable="true">
<ID>methodName</ID>
<ToolTip>Method Name</ToolTip>
<Default>SaveData</Default>
<Function>
</Function>
</Literal>
<Literal Editable="true">
<ID>sproc</ID>
<ToolTip>Stored Procedure</ToolTip>
<Default>SaveData</Default>
<Function>
</Function>
</Literal>
</Declarations>
<Code Language="CSharp" Kind="method decl">
<1 [CDATA[

public void $methodName$()

{
using (DbCommand dbCmd = db.GetStoredProcCommand("$sproc$"))
{
//db.AddInParameter(dbCmd, "@Parameter", DbType.String, 0);
//db.AddOutParameter(dbCmd, "@Parameter2", DbType.String, 0);
db.ExecuteNonQuery (dbCmd);
//0bject outputParameter =
//db.GetParameterValue(dbCmd, "@OutputParameter");
}
}11></Code>
</Snippet>
</CodeSnippet>
</CodeSnippets>

The Nonquery snippet does not return a DataSet or a DataReader. It can be used when
doing an insert, an update, or a delete call into the database. It can also be used when simply
pulling output parameters from the result of an executed command. In each of the three
preceding method snippets (Listings 2-3, 2-4, and 2-5), the line after the execution line is a
commented line showing how an output parameter value is pulled from the executed data-
base command. Initially such a parameter is a generic object, but if the output value is
DbType.Int32, the variable can be an int with the value cast as int. When running an insert
command, it is common practice to return the primary key value of the newly inserted record.

To use code snippets, you must first add them to Visual Studio with the Code Snippet
Manager. Place the preceding code snippets in a folder under D: \Projects\Common\Templates\
My Snippets in a folder called Data Access. Then click Tools » Code Snippet Manager. This
brings up the Code Snippet Manager. Click the Add button and select the My Snippets folder.
Then click OK. This makes these code snippets available to you in the editor.

45

46

CHAPTER 2 " DATA MODEL CHOICES

With the code snippets in place, you can access them in three ways. You can right-click
the editor, select Insert Snippet, and use the selection menu to get to the snippet you want to
insert. Alternatively, you can use the hot keys Ctrl+K, Ctrl+X to pull up the menu. The fastest
way is to use the shortcut specified by the snippet. The five snippets are marked as dal, da2,
and so forth. Entering dal and pressing the Tab key twice will include that snippet. Figure 2-2
shows the selection menu for code snippets.

Insert Snippet: My Snippets > Data Access >

[] 1 Type Declarations

1;'_:b'_'_c GethllPeople :]JE Database Creation

i Data Access DataSet Method
=] 4 Get DataReader Method Shortcut: da3
5] 5 Execute Mon Query

ds =

Figure 2-2. Code Snippet selection menu

After you select a snippet, the code is placed into the editor and the placeholders are
highlighted. You can press Tab to move from placeholder to placeholder. There are default val-
ues in each placeholder. You can change the text in each marked placeholder and tab to the
next value until you are finished. Then press Enter to accept the code snippet. In a matter of
seconds, you can have a new method that returns a DataSet from a call to a stored procedure.

COMMON FOLDER ADDITIONS

These code snippets can be added to your Common folder in the My Snippets subfolder. (D: \Projects\
Common\Templates\My Snippets).After they are in place, you can set up Visual Studio to reference them
to be used in all your projects.

Sample Database

The examples shown through the rest of this chapter use a database holding two tables,
Person and Location, as shown in Figure 2-3. Each record in the Person table references a
record in the Location table with a foreign key constraint. A random and significantly sized
set of data is then loaded into the Person table to allow for a distribution of values across the
three columns: FirstName, LastName, and BirthDate. The foreign key reference is LocationId.

¥ Personld

. ? LocationId
Firsthame
City
LastMame o=
. Country
BirthDate

LocationId

Figure 2-3. Person and Location tables

CHAPTER 2 ' DATA MODEL CHOICES

With a single table, it is trivial to drop a table from the Server Explorer onto a Typed
DataSet Designer to generate the basic CRUD methods: Create, Read, Update, and Delete.
By adding the secondary table, additional work is necessary to make the following examples
work. A simple SELECT * FROM Tablel will not be sufficient to bring two tables together.
Instead, you can use a stored procedure to get all the desired data. The script in Listing 2-6
creates this stored procedure.

Listing 2-6. chpr02_GetAllPeople.sql

IF EXISTS (SELECT * FROM sysobjects WHERE type = 'P'
AND name = 'chpt02_GetAllPeople')
BEGIN
DROP Procedure chpt02_GetAllPeople
END

Go

CREATE Procedure dbo.chpt02_GetAllPeople
AS

SELECT p.Personld,p.FirstName,p.LastName,p.BirthDate,1.City,1.Country
FROM chpt02_Person AS p
JOIN chpto2_Location AS 1 on 1.LocationId = p.LocationId

Go

GRANT EXEC ON chpt02_GetAllPeople TO PUBLIC
Go

Trivial Data Examples

It is amusing to call some data examples trivial in ASPNET because they really are pulling off a
complex task with little or no code. Simply dropping a table from the Server Explorer onto the
design surface of a Web Form will automatically create a GridView and associate it with an
SqlDataSource. The SqlDataSource is immediately configured with the SQL necessary to
select, insert, update, and delete rows in that table. At all launch events for .NET 2.0, this sort
of example was used to show the power of the ASPNET 2.0 data model.

As you change properties on the GridView to allow for paging, sorting, selecting, and edit-
ing, it all just works. And more than that, it works without you writing any code. Listing 2-7
shows all the markup created after the Person table from the sample database is dragged onto

a page.

Listing 2-7. TrivialExample.aspx with SqlDataSource

<%@ Page Language="C#" MasterPageFile="~/Site.master"
AutoEventWireup="true" CodeFile="TrivialExample.aspx.cs"
Inherits="TrivialExample" Title="Trivial Example" %>
<asp:Content

47

48 CHAPTER 2 " DATA MODEL CHOICES

ID="Content1" ContentPlaceHolderID="ContentPlaceHolder1" Runat="Server">
<asp:CridView
ID="CridView1" runat="server" AllowPaging="True" AllowSorting="True"

AutoGenerateColumns="False" DataSourceID="SqlDataSource1"

EmptyDataText="There are no data records to display.">

<EmptyDataTemplate>

No Data
</EmptyDataTemplate>
</asp:CGridView>
<asp:SqlDataSource ID="SqlDataSource1l" runat="server"

ConnectionString="<%$ ConnectionStrings:chpto2 %>"

ProviderName="<%$ ConnectionStrings:chpto2.ProviderName %>"

DeleteCommand="DELETE FROM [chpt02 Person] WHERE [Personld] = =
@PersonId"

InsertCommand="INSERT INTO [chpt02 Person] ([FirstName], w
[LastName], [BirthDate], [LocationId]) VALUES (@FirstName, w
@LastName, @BirthDate, @LocationId)"

SelectCommand="SELECT [PersonId], [FirstName], [LastName], w
[BirthDate], [LocationId] FROM [chpt02 Person]”

UpdateCommand="UPDATE [chpt02 Person] SET [FirstName] = w»
@FirstName, [LastName] = @LastName, [BirthDate] = @BirthDate, =
[LocationId] = @LocationId WHERE [PersonId] = @PersonId">

<InsertParameters>

<asp:Parameter Name="FirstName" Type="String" />

<asp:Parameter Name="LastName" Type="String" />

<asp:Parameter Name="BirthDate" Type="DateTime" />

<asp:Parameter Name="LocationId" Type="Int64" />
</InsertParameters>

<UpdateParameters>

<asp:Parameter Name="FirstName" Type="String" />

<asp:Parameter Name="LastName" Type="String" />

<asp:Parameter Name="BirthDate" Type="DateTime" />

<asp:Parameter Name="LocationId" Type="Int64" />

<asp:Parameter Name="PersonId" Type="Int64" />
</UpdateParameters>

<DeleteParameters>

<asp:Parameter Name="PersonId" Type="Int64" />
</DeleteParameters>
</asp:SqlDataSource>
</asp:Content>

The first concern I always have is that instantly you have inline SQL, right in the applica-
tion layer, directly in a page. And as easy as that SQL was to create, it is not that easy to update
it for changes later, which will eventually trip you up unless the database never changes or you
understand everything that has just been generated. It is easy to imagine that the Person table
would eventually have more columns (for example, for the middle initial and gender). And if
the table started with just a Name column and was split into First Name and Last Name, you

[vww allitebooks.cond

http://www.allitebooks.org

CHAPTER 2 ' DATA MODEL CHOICES

would need to make some changes to the SQL shown in Listing 2-7; otherwise, that SQL would
be invalid.

The SqlDataSource in Listing 2-7 has a Refresh Schema command on the Smart Tag, but it
really is not as capable as you might hope. Changing Last Name to Surname will cause an error
when you refresh the schema. And adding a new column for the Middle Initial will notadd
the new column to the Select and other commands. To make those adjustments, you have to
choose the other option on the Smart Tag, Reconfigure Datasource. And when this is done,
there are consequences with the GridView, such as resetting the columns that you may have
already customized considerably and will not want changed by the automatically generated
changes. With all of this in mind, it is best to leave this quick-and-dirty way of data binding
to prototyping new ideas and adjust to use a more maintainable and architecturally sound
approach as a project moves past the early stages. Fortunately, the fast prototypes created
with an inline query by using an SqlDataSource can be replaced with an ObjectDataSource
later, as the prototype starts to become the actual application. The columns produced by the
ObjectDataSource simply have to match the columns from the SqlDataSource, while your
GridView can remain unchanged.

Nontrivial Data Examples

In real-world applications, the trivial examples get you only so far, and soon you are required
to work with more than one table at a time. Adding data from more than one table to be
shown as well as edited in a GridView or other databound control enters into the space of the
nontrivial example.

In the sample Person database, the Person table has a relationship with the Location table
through the LocationId. And in the Location table, the City and Country values define the
location where the person lives. When displaying a GridView of all the people in the database,
it will be much more intuitive to show the city and country instead of the LocationId. The
chpto2_GetAllPeople stored procedure shown previously pulls these values together so they
can be used as if they were in just a single table in the database from the application’s point
of view. Unfortunately, you cannot drag a stored procedure from the Server Explorer window
onto the design surface of a Web Form as you can with the tables. Instead, you must drag a
GridView from the Toolbox and configure it with a datasource. When configured as an
SqlDataSource, the stored procedure can be selected, but the Insert, Update, and Delete
commands will not be offered as options in the datasource wizard. It is still possible to get all
the features of the single table example in the previous sections, but providing all the features
that a GridView needs will require more than just this one stored procedure configured with a
Typed DataSet. An example of how to do this is covered in detail in Chapter 3.

Typed DataSet

Starting with the basic stored procedure in Listing 2-6, you can build a customized Typed
DataSet. You simply go to the class library project you have prepared to act as your data access
layer and add a DataSet to it called PersonDataSet.xsd. Then add a TableAdapter and follow
the steps provided by the wizard to add the existing stored procedure defined here. You then
rename the DataTable and TableAdapter to more user-friendly names such as People and

49

50

CHAPTER 2 " DATA MODEL CHOICES

PeopleTableAdapter in an attempt to make the code that is generated with the Typed DataSet
better resemble the object it is meant to represent. Figure 2-4 shows what the People Typed
DataSet looks like, and Figure 2-5 shows the properties from the Fil1Al1People method.

FillallPeople Query -

[e=]44

E Code Generation

E People & FillMethodModifier Public
ey FillMethodMarme FillallPeople
FirstRarne GenerateMethods Bath
GetMethodModifier Public
LaskMarne GetMethodMame GetallPeople
. B Dpata
BlrthDEltE CommandText dbo.chpt0Z_GetallPeo
Ciby CommandType StoredProcedure
c F ExecuteMode Reader
Quncry Parameters {Collection)
I
L CommandText
i . The query or stored procedure to be executed against the
=1 FillallPecple, zetalPecple () Database
Figure 2-4. People Typed DataSet Figure 2-5. FillAllPeople properties

This Typed DataSet is defined as a part of a class library. With the website set to use this
class library as a dependency, run the build for the website to ensure that the current assem-
blies used by the website have this newly created Typed DataSet. After the dependency is
compiled, it is copied automatically into the bin directory of the website and is ready to be
used in aWeb Form. Simply drag a GridView control onto the design surface. Then use the
Smart Tag to choose a datasource. Select a new ObjectDataSource. The available options
will show the PeopleTableAdapter as it was named earlier. Set the select method to the
GetAllPeople method. After the ObjectDataSource is set, you can return to the GridView
and open the Smart Tag to enable paging and sorting. Now try out the page by right-clicking
the page in the Solution Explorer and selecting View in Browser.

You may be pleasantly surprised that the page loads in a reasonable time and provides the
sorting and paging functionality that you expect. The Typed DataSet also does a great job of
cutting down the size of the ViewState. It is no wonder that the approach I've just described is
strongly encouraged by MSDN documentation. However, this solution is not the only option
or even the best option for all scenarios. Next you will explore a few alternatives.

RIGID TYPED DATASETS

When a Typed DataSet is put together on the XML Schema Definition (XSD) designer, it reads in all the
schema information from the database and hard-codes the names of all the columns as well as the types
and exact sizes. Changing a VARCHAR (10) to VARCHAR (11) can break the Typed DataSet. As soon as a
record that is 11 characters long is inserted into the data and the Typed DataSet comes across this data, it
will throw an exception due to the size constraint. If you are not careful, this problem could go unnoticed until
it is pushed into a production environment and discovered at the worst time. To head off the problem, the
updated column definition can be adjusted in the Typed DataSet manually in the Properties panel.

CHAPTER 2 ' DATA MODEL CHOICES

Nontyped DataSet

The Typed DataSet used in the previous section was built with an XSD file, which defines the
various properties of the DataTables and TableAdapters. This is a fairly rigid model because
the XSD file is edited primarily by using Visual Studio and the visual Typed DataSet Designer.
It also locks in the database schema, which will most likely change over the life of a project. It
can be helpful to use a more flexible option.

The stored procedure used by the Typed DataSet can be run directly to get the same
columns that will generate a compatible DataSet at runtime. Instead of the columns redun-
dantly being defined by the Typed DataSet and the stored procedure, they can be defined by
just the stored procedure.

In the same class library, you create a class called PersonDomain and start filling in the
code by using the code snippets defined earlier in this chapter. First you add the reference to
the Database object and then add the initialization for that reference to the constructor (see
Listing 2-8).

Listing 2-8. Database Initialization

/// <summary>

/// This is used as a global connection for database connectivity
/// </summary>

private Database db;

public PersonDomain()

{
db = DatabaseFactory.CreateDatabase("chpto2");

}

Next you add the method in Listing 2-9, which calls the same stored procedure as the
Typed DataSet.

Listing 2-9. GetAllPeopleDataSet

[DataObjectMethod(DataObjectMethodType.Select)]
public DataSet GetAllPeopleDataSet()

{
DataSet ds = new DataSet();

using (DbCommand dbCmd =
db.GetStoredProcCommand("chpto2_GetAllPeople"))

{
}

ds = db.ExecuteDataSet(dbCmd);

//return the results
return ds;

51

52

CHAPTER 2 " DATA MODEL CHOICES

The simple method in Listing 2-9 calls the chpt02_GetAllPeople stored procedure and
returns the generated DataSet with all the same columns as the Typed DataSet. The method
also includes the DataObjectMethod attribute, which indicates that the associated method
acts as a Select method. In addition to this method attribute, an attribute is also placed in the
class declaration. For example:

[DataObject(true)]
public class PersonDomain

{

The attributes preceding the class and method declarations make these Select methods
available to the ObjectDataSource configuration wizard used by the Web Form. Create a new
Web Form and repeat the same steps to add the GridView to the page as done for the Typed
DataSet. When configuring the ObjectDataSource, select the PersonDomain object and the
GetAllPeopleDataSet method. Because the class is marked as a DataObject and the method
is marked as a Select method, it is listed.

Also, instead of creating a new implementation from scratch, you can add a second
ObjectDataSource to the same Web Form as the Typed DataSet by using the newly created
class and method. Now you can use the Smart Tag on the GridView to select this new
ObjectDataSource. Because the columns are completely compatible, you use either
datasource interchangeably. Figure 2-6 shows a databound control with two configured
ObjectDataSources.

(i3]
Content - Contentl (Custom)

FirstName LastName BirthDate City Country
Databound Databound Databound Datab ound Databound
Databound Databound Databound Databound Databound
Databound Databound Databound Datab ound Databound
Databound Databound Databound Datab ound Databound
Databound Databound Databound Datab ound Databound
Databound Databound Databound Databound Databound
Databound Databound Databound Databound Databound
Databound Databound Databound Datab ound Databound
Databound Databound Databound Datab ound Databound
Databound Databound Databound Databound Databound
12

zlthiecI:DataSource - ObjectDataSourcel

zlthiecI:DataSource - ObjectDataSource?

Figure 2-6. Interchangable datasources

Both of the solutions I've described work sufficiently if there is not a great deal of data.
But after there is a significant amount of data, the time necessary to transfer all that data
between the database and application will become unreasonably long because the query is
transferring all the data each time. The sheer size of the data being pulled from the database

CHAPTER 2 ' DATA MODEL CHOICES

will contribute to this sluggishness. Then shaping that data into the DataSet requires a certain
amount of processing overhead. By using a DataReader, you can reduce that overhead.

DataReader

Unlike a DataSet, the DataReader does not offer functionality such as sorting, filtering, or even
bidirectional movement on the result set. It has minimal features to iterate over the result rows
and access the fields as needed. After you have passed a row, you cannot return to it with a
DataKey or an index. Those seem like major limitations, but these limitations are meant to
cut down on the overhead necessary with the DataSet, which maintains indexes on the data
columns and holds the full result set in memory. In contrast, the DataReader is a lean and
mean option with unique characteristics that make it ideal in some cases.

Listing 2-10 shows the code to add to PersonDomain, which again calls the same stored
procedure but returns an IDataReader object as the result instead of a DataSet.

Listing 2-10. GetAllPeopleReader

[DataObjectMethod(DataObjectMethodType.Select)]
public IDataReader GetAllPeopleReader()

{
IDataReader dr = null;

using (DbCommand dbCmd = db.GetStoredProcCommand("chpt02 GetAllPeople"))
{
dr = db.ExecuteReader(dbCmd);

}

//return the results
return dr;

Build the website, and this new Select method can be used with an ObjectDataSource.
Either create a new Web Form to start from scratch, or add a new ObjectDataSource to the
Web Form used for the Typed and Nontyped DataSet and associate it with the GridView.
Naturally, you should select this new method. The new datasource shows the same data as
the other two options, but unfortunately you will discover that the paging functionality does
not work with the DataReader in its current form. Some changes must be made to allow for
paging as well as sorting.

DataObject

These examples are all using the new DataObject introduced with .NET 2.0. With a Typed
DataSet, the generated classes are marked as DataObjects and each of the methods are
marked as one of the enumerations of DataObjectMethodType. One useful point about

the DataObject and how databound controls work is that you can return a Typed DataSet,
Nontyped DataSet, a DataReader, or a collection of Person objects as long as the column
names or properties give the databound controls the values and types it is configured to use.

53

54

CHAPTER 2 " DATA MODEL CHOICES

In fact, you can change the PersonDomain method returning a DataSet to return a collec-
tion of Person objects with properties called FirstName, LastName, BirthDate, City, and Country
as they are defined by the stored procedure. The GridView will happily bind those properties
just as easily as it would named columns on the DataSet.

What’s the Downside?

Each of the approaches discussed in this chapter has a common shortcoming. Every time the
page is displayed, the full set of data is pulled from the database—even if only ten rows are
sent to the web client. When the database server is on the same machine as the web server,
this is not a major issue. However, if the database server is on a different machine, especially
when there is a very large amount of data, the time to transfer all that data will be a critical
concern. Cutting down on the data moved from the database to the application is one of the
optimizations we will explore in the next chapter.

Summary

This chapter covered the various choices available in the .NET framework for working with
data. We looked at how each choice has its own unique advantages and disadvantages. As we
go forward, we will leverage these options.

CHAPTER 3

Database Management

Often the database is treated as an unchangeable resource as new application versions are
released. Performance improvements are isolated to changes in the application layer instead
of fully leveraging any improvements that could be made to the database. Database scripts
can be managed as projects. This feature of Visual Studio is extremely useful but terribly
underused. Every table, stored procedure, and database resource can be created and managed
within these Database Projects. The solutions that hold your websites and other projects can
be managed alongside your Database Projects. As each release is prepared, changes to the
application and data layer can be adjusted as needed.

This chapter covers the following:

* Creating a Database Project

* Managing stored procedures

e Managing indexes and constraints

¢ Considering performance and stability

* Performing unit testing and continuous integration

Databases and the scripts tables and stored procedures are often not included within
Visual Studio solutions along with the website and class library projects that we work with all
the time.

By not including these scripts with a solution, they are disconnected and unmanaged.
They are not even included in the same source-control system as the software that uses the
databases. But Visual Studio Professional Edition supports Database Projects that you can
include alongside your website and class library projects and organize with your source-
control system.

Using Database Projects

Instead of only creating your tables and stored procedures in the database, you can extract
those creation scripts and place them in Database Projects. Doing so aligns their changes
directly with applications and manages them with the same source-control system. This
allows you to deploy every application release with the necessary database changes.

55

CHAPTER 3 © DATABASE MANAGEMENT

Note To use Database Projects, you must have Visual Studio Professional Edition. The Standard and
Express editions do not recognize this project type.

Visual Studio

In Visual Studio, the Database Projects are included in the other project types group when
you add a new project to a solution. A file manifest keeps track of which files are in each of
the folders, as with a class library project, and when you add a new table or stored procedure
script to a folder, you are given a quick start template just as with Web Forms and classes.

But the Database Project goes beyond the mundane work of holding your Structured Query
Language (SQL) scripts. Each project can be associated with a database connection, with one
being marked as the default. To run a stored procedure script on the default database, you
simply right-click on the script and select Run On. The results of the script will be shown in
the Output window. Figure 3-1 shows how to create a Database Project.

Add New Project

Projeck bypes: Templates:
= Wisual C# ~ ¥isual Studio installed templates
Windows
+- Smart Device (5] Database Project
Database
Starter Kits My Templates
Weh

% Other Languages -i|Search Online Templates. ..

= Other Project Types
Setup and Deployment
Database
Exctensibility

Create a new database project allowing direct manipulation of the database objects and data

Mame: Database

Location: [n\ProjectsiApress -

O,][Cancel]

Figure 3-1. Database Projects

Database Projects are not used as often as they should be. All too often, tables and stored
procedures are managed directly in the database, and changes to the schema or stored proce-
dures are propagated either manually or with a third-party tool that generates scripts by
analyzing the differences between these databases. By developing the scripts within Visual
Studio, you will better understand the changes and have the control you need to plan for
changes. And when the database scripts are managed within the solution, they will also be

CHAPTER 3 © DATABASE MANAGEMENT

version-controlled with your source-control system. At each release, you should be able to not
only build your projects, but also return the database to a state that works with that release.
Relying on manual changes or tools that adapt for unmanaged changes leads to confusion
over the state of the database schema. And although these tools can eliminate the need to
write change scripts yourself, they should not generate so much scripting that it is not possi-
ble to make sense of everything that is changing.

A silent feature built into the Run On process is dependency detection across table and
stored procedure scripts. If you have several table scripts that must be run in a certain order,
the dependency detection will determine the order when you highlight all the tables and click
the Run On command. That is a real time-saver.

Visual Studio also has the Server Explorer, where you can view the tables and stored pro-
cedures deployed to the database. You can open a table to view and edit the contents of the
table. You can even start a new query window within Visual Studio to query the databases
listed in the Server Explorer. But for a little more power, many developers choose to use SQL
Server Management Studio, which has a few additional features beyond what Visual Studio
offers.

SQL Server Management Studio

SQL Server Management Studio does everything you need to manage table creation and mod-
ifications. It also works great with any sort of script. I have learned it is a valuable tool when it
is paired properly with the Database Projects available in Visual Studio. I first create the stubs
for the tables and stored procedure scripts in Visual Studio and then use Management Studio
to build the tables and stored procedures. I do so with one table and one stored procedure at a
time and test the changes at each step.

To create a table, I simply add a new table to the database with Management Studio and
save it with the name I choose. Then I right-click the table in the Object Explorer and select
Script Database As and then Create To and send it to the Clipboard. I move back to Visual Stu-
dio and paste the script in place and save the script. From that point, I can make adjustments
to the script in Visual Studio, such as resizing the size of a VARCHAR or adding a new column.
And to ensure that my script works after changes, I run it from Visual Studio against the devel-
opment database. Right-click the script in the Solution Explorer and select Run On. The script
will be run on the default database for the Database Project and report the result in the Output
window.

Managing Stored Procedures

The process of creating stored procedures is very different from creating tables. In Visual
Studio, you write your stored procedure script, run it against the database, and test it with
any required parameters. As you refine the script, you will find that the process of deploying
the stored procedure to the database to test it requires unnecessary overhead. Instead you
can write the script in Management Studio and adjust it to work as a stored procedure.

I start by declaring the variables that the script will need and then set their values. Then I
write the rest of the script, which makes use of those variables, as shown in Listing 3-1.

57

58

CHAPTER 3 " DATABASE MANAGEMENT

Listing 3-1. Script to Select People by First and Last Name

DECLARE @FirstName varchar(50)
DECLARE @LastName varchar(50)

SET @FirstName = 'John'
SET @LastName = 'Smith'

SELECT * FROM chpt03_Person
WHERE FirstName = @FirstName
AND LastName = @LastName

The preceding script shows how the variables are declared, set, and used within the script.
After the script is working propetly, it can be placed into the stored procedure template that was
stubbed out in the Database Project (see Listing 3-2).

Listing 3-2. Stored Procedure to Select People by First and Last Name

IF EXISTS (SELECT * FROM sysobjects WHERE type = 'P' AND
name = 'chpt03_GetPeopleByName')
BEGIN
DROP Procedure chpt03_GetPeopleByName
END
Go

CREATE Procedure dbo.chpt03_GetPeopleByName

(
@FirstName varchar(50),
@LastName varchar(50)

}

AS

SELECT * FROM chpt03_Person
WHERE FirstName = @FirstName
AND LastName = @LastName

Go

GRANT EXEC ON chpt03_GetPeopleByName TO PUBLIC
Go

You can see how the declared variables are now used as parameters and the set commands
are not necessary. The rest of the script follows unchanged. As your stored procedures grow more
and more complex, this process will help simplify your work. A key difference is that Management
Studio will be able to give you more descriptive and accurate warnings and errors when run as
scripts instead of calls to a stored procedure.

CHAPTER 3 © DATABASE MANAGEMENT

CRUD PROCEDURES

CRUD is an acronym for Create, Read, Update, and Delete. The typical approach is to create stored proce-
dures for each of these actions for every table in the database. With a fully normalized database structure,
this means there would be many of these CRUD procedures that may not be very useful. By updating records
in a piecemeal way, performance can suffer. By grouping CRUD functionality into planned-out stored proce-
dures, it is possible to update multiple tables at a time without multiple trips to the database. As a result,
there will not always be four stored procedures per database table.

Stored procedures do more than just return the results of a Select statement. A stored
procedure may just set the value of an output parameter. In the case of saving data to the
database, it may just return the key value of the saved record. Listing 3-3 shows how a person
is saved.

Listing 3-3. chpt03_SavePerson.sql

IF EXISTS (SELECT * FROM sysobjects WHERE type = 'P'
AND name = 'chpt03_SavePerson')
BEGIN
DROP Procedure chpt03_SavePerson
ENDGO

CREATE Procedure dbo.chpt03_SavePerson
(

@FirstName varchar(50),

@LastName varchar(50),

@BirthDate datetime,

@LocationId bigint,

@PersonId bigint OUTPUT

INSERT into chpto3 Person
(FirstName, LastName, BirthDate, LocationID)
values (@FirstName, @LastName, @BirthDate, @LocationID)

SET @PersonId = @@IDENTITY
Go

GRANT EXEC ON chpt03_SavePerson TO PUBLIC
GO

This stored procedure inserts a new person record and sets the output parameter for the
PersonId. Notice that the PersonId parameter defined near the top has OUTPUT marking it as
an output parameter. Having access to such values can become quite useful when you take
advantage of them. The Person table has a relationship with the Location table and takes

59

60 CHAPTER 3 " DATABASE MANAGEMENT

LocationId as a parameter. An arbitrary value cannot be used, so a real value should be.
Listing 3-4 shows the procedure of how to save a location.

Listing 3-4. chpt03_SaveLocation.sql

IF EXISTS (SELECT * FROM sysobjects WHERE type = "P' AND
name = 'chpto3_Savelocation')
BEGIN
DROP Procedure chpt03_Savelocation
END

@0

CREATE Procedure dbo.chpt03_Savelocation
(

@City [varchar](50),

@Country [varchar](50),

@LocationId bigint OUTPUT

)
AS

IF NOT EXISTS (
SELECT * FROM chpt03_Location
WHERE City = @City and Country = @Country
)
BEGIN
-- INSERT
PRINT 'Inserting Location'
INSERT into chpto3_Location
(City,Country)
values (@City, @Country)

SET @LocationId = @@IDENTITY
END
ELSE
BEGIN
-- get LocationId
PRINT 'Location Exists'
SET @LocationId = (
SELECT LocationId FROM chpt03_ Location
WHERE City = @City and Country = @Country

)
END

Go

GRANT EXEC ON chpt03_Savelocation TO PUBLIC
GO

CHAPTER 3 © DATABASE MANAGEMENT

This stored procedure includes an additional location to first check whether the city
and country combination already exists. The procedure then either runs an INSERT or a SELECT
command to get the value of the LocationId, which is the output parameter. When saving a
Location and Person, this stored procedure can be called to get the LocationId.

Finally, a single stored procedure, shown in Listing 3-5, can be created to combine all this
work into a single call to the database.

Listing 3-5. chpt03_SavePersonWithLocation.sql

IF EXISTS (SELECT * FROM sysobjects WHERE type = 'P' AND
name = 'chpt03_SavePersonWithLocation")
BEGIN
DROP Procedure chpt03_SavePersonWithLocation
END

Go

CREATE Procedure dbo.chpt03_SavePersonWithLocation
(

@FirstName varchar(50),

@LastName varchar(50),

@BirthDate datetime,

@City [varchar](50),

@Country [varchar](50),

@LocationId bigint OUTPUT,

@PersonId bigint OUTPUT

)
AS

EXEC chpto3_Savelocation @City, @Country, @LocationId OUTPUT

EXEC chpt03_SavePerson @FirstName, @LastName, @BirthDate, @LocationId, =
@PersonId OUTPUT

Go

GRANT EXEC ON chpt03_SavePersonWithLocation TO PUBLIC
GO

Fewer trips to the database makes for a more efficient application. It also gives you some
flexibility with how the tables are organized in the database. Schema changes could be com-
pletely encapsulated behind the stored procedures so that the applications using the database
require no changes.

61

62

CHAPTER 3 " DATABASE MANAGEMENT

Managing Indexes and Constraints

As you add tables that have foreign key constraints, you will start to run into some complica-
tions. You cannot drop a table if there are foreign key dependencies preventing that action. To
get past this problem, I create a folder in each Database Project called Constraints, which has
a script to add all the foreign key constraints and another to remove them. I also often have a
script that will purge all data and fill in some initial sample data. When I change several table
scripts, I can remove the constraints, run the table scripts, and repopulate the database with
sample data so I can test the stored procedures.

There are no templates for Database Projects to check indexes and foreign keys, so you
have to start from scratch. The best feature of table and stored procedure templates is the
check for the existence of an item that needs to be dropped before it is re-created so that you
can run the script without errors.

For the Person and Location tables, there are just three indexes. The scripts to manage the
indexes are created by using Management Studio. The scripts were first added to the tables,
and before saving the change I used the Generate Change Script button on the taskbar, which
displays the script used to make an individual change. I copied and pasted that script into the
script to add indexes. This script does not check whether the index already exists, so the query
to check for these indexes must be included before the CREATE INDEX command to be run suc-
cessfully each time. Listing 3-6 shows the script that removes indexing.

Listing 3-6. Remove Indexing.sql

BEGIN TRANSACTION
Go

IF EXISTS
(SELECT * FROM sysindexes AS i
JOIN sysobjects AS o on i.id = o.id
WHERE o.name = 'chpt03_Location' and i.name =
'IX_chpto3_Location City")
BEGIN
PRINT 'Dropping index IX chpt03 Location City'
DROP INDEX IX chpt03_Location City ON dbo.chpt03_Location
END
Go

IF EXISTS
(SELECT * FROM sysindexes AS i
JOIN sysobjects AS o on i.id = o.id
WHERE o.name = 'chpt03_Location' and i.name =
"IX _chpto3_Location Country')
BEGIN
PRINT 'Dropping index IX chpt03 Location Country'
DROP INDEX IX chpt03_Location Country ON dbo.chpt03_Location
END
Go

CHAPTER 3 © DATABASE MANAGEMENT

IF EXISTS
(SELECT * FROM sysindexes AS i
JOIN sysobjects AS o on i.id = o.id
WHERE o.name = 'chpt03_Person' and i.name =
"IX _chpto3_Person BirthDate')
BEGIN
PRINT 'Dropping index IX chpt03 Person BirthDate'
DROP INDEX IX chpt03_Person BirthDate ON dbo.chpt03_Person
END
Go

COMMIT

The sysindexes and sysobjects tables provide the information needed to detect whether
an index already exists so the DROP command can be run conditionally to avoid any errors.
Removing indexing makes the process of adding lots of data to tables much faster because the
indexes do not have to be checked and maintained for each insert when it is removed. After
the index can be added back, the script in Listing 3-7 can be run. After the indexes are back in
place, queries should run much faster when there is a lot of data.

Listing 3-7. AddIndexing.sql

BEGIN TRANSACTION
Go

IF NOT EXISTS
(SELECT * FROM sysindexes AS i
JOIN sysobjects AS o on i.id = o.id
WHERE o.name = 'chpt03_Location' and i.name =
'IX _chpto3_Location City")
BEGIN
PRINT 'Adding index IX chpto3 Location City'
CREATE NONCLUSTERED INDEX
IX chpto3_Location City ON dbo.chpto3 Location
(
City
) WITH(STATISTICS NORECOMPUTE = OFF, IGNORE DUP_KEY = OFF,
ALLOW_ROW_LOCKS = ON, ALLOW_PAGE_LOCKS = ON)
ON [PRIMARY]
END
Go

IF NOT EXISTS

(SELECT * FROM sysindexes AS i

JOIN sysobjects AS o on i.id = o.id

WHERE o.name = 'chpt03_Location' and i.name =
"IX chpto3_Location Country')

BEGIN

63

64

CHAPTER 3 " DATABASE MANAGEMENT

PRINT 'Adding index IX chpto3 Location Country'
CREATE NONCLUSTERED INDEX
IX _chpto3_Location Country ON dbo.chpt03 Location
(
Country
) WITH(STATISTICS NORECOMPUTE = OFF, IGNORE DUP_KEY = OFF,
ALLOW_ROW_LOCKS = ON, ALLOW PAGE_LOCKS = ON)
ON [PRIMARY]
END
Go

IF NOT EXISTS
(SELECT * FROM sysindexes AS i
JOIN sysobjects AS o on i.id = o.id
WHERE o.name = 'chpt03_Person' and i.name =
"IX _chpto3_Person BirthDate')
BEGIN
PRINT 'Adding index IX chpto3 Person BirthDate'
CREATE NONCLUSTERED INDEX IX chpt03_Person BirthDate
ON dbo.chpt03_Person
(
BirthDate
) WITH(STATISTICS NORECOMPUTE = OFF, IGNORE DUP_KEY = OFF,
ALLOW_ROW_LOCKS = ON, ALLOW_PAGE_LOCKS = ON)
ON [PRIMARY]
END
Go

COMMIT

After the indexes are easily managed, it is time to move on to the foreign key constraints.
In the case of these constraints, there also is no starter template that checks for existing con-
straints before dropping them. The script in Listing 3-8 removes the single foreign key
between the Person and Location tables.

DEFRAGGING INDEXES

Over time indexes can become fragmented. A fragmented index will take longer to scan than a freshly
created index, so it is necessary to occasionally use the REORGANIZE command to clean up indexes. That
command does not fully refresh an index but does improve performance. The REBUILD command can be
used to fully refresh the index. These tasks are best left to your database administrator (DBA). As you start to
notice performance degradation, you can consider this tuning technique.

CHAPTER 3 © DATABASE MANAGEMENT

Listing 3-8. RemoveConstraints.sql

IF EXISTS (SELECT * FROM dbo.sysobjects

WHERE id = object id(N'[dbo].[FK chpt03 Person chpto3 Location]")
and OBJECTPROPERTY(id, N'IsForeignKey') = 1)

ALTER TABLE [dbo].[chpt03 Person]

DROP CONSTRAINT FK chpto3 Person chpt03 Location

And then to add the constraint back, the constraint in Listing 3-9 is run.

Listing 3-9. AddConstraints.sql

ALTER TABLE [dbo].[chpto3 Person] WITH CHECK ADD
CONSTRAINT [FK _chpt03_Person _chpt03 Location] FOREIGN KEY([LocationId])
REFERENCES [dbo].[chpto3_Location] ([LocationId])

Now that roadblock is easily removed whenever the tables need to be readjusted for a
change to the tables. If you want to add a column, you can update the table script, remove the
constraints, run the table script, and add the constraints back.

Performance Considerations

Before I get to the next example, there are some considerations to review. Where performance
is concerned, there are many factors to consider. To tune a slow application using a database,
there are a few basic steps you can take such as adding indexes to your tables and pulling only
the necessary data. The indexing will help assemble the results more quickly, while pulling less
data will reduce the amount of data transferred. In the case of very large result sets, leaving off
some columns will add up to a measurable difference. There are many other changes that can
be made to enhance performance, but these first two are the low-hanging fruit that will typi-
cally give the most benefit.

After you have pulled all data from the database into the web application to display on
the Web Form, the databound values will be serialized to ViewState. With a very large amount
of data, the result will be a very large file that the users of the website will have to download.
For a GridView that is showing only 10 of 100 rows, the ViewState can still hold all the data for
all 100 rows. And although the pages with such large sets of data will load quickly during
development while you are working on the same computer as the web server, it will be
painfully slow for a user accessing the website remotely. As a rule of thumb, the web page
must be under 100 KB, if not under 50 KB.

I once worked on a website using a dynamic navigational menu that had ViewState and
PostBack events covering several levels of the website hierarchy. It included a large number of
links, which added to the size of the ViewState. The typical web page was nearly 300 KB, with
over 90 percent of the page content being the ViewState. The original developer never knew
about this problem as he worked on his laptop, and everything was always fast. He never
checked the page size or how long it took to move from page to page from a remote server.
This sort of problem should be caught early, when it is easier to fix.

65

66

CHAPTER 3 " DATABASE MANAGEMENT

You can tune your tables and queries all you like, but if the page is 300 KB and many of your
users are still using dial-up or even low-end broadband speeds, they will find that your website is
slow. In contrast, most major news sites and information portals are under 30 KB. In the follow-
ing examples, the ViewState issue will be addressed and resolved with a simple strategy.

Note The time to transfer data is just one aspect of a slow web page. Large tables with many rows and
cells add to the rendering time for a web page. If it takes less than a second to load the data for a page, it
can still take a few more seconds for the web page to render a complex table.

It would be much more efficient to ask that the database return only the range of items that
will be displayed, rather than have the database return all possible items. When only ten rows
are shown, it is wasteful to transfer thousands of rows from the database to the web application.
Fortunately, we can request just that subset, but we will need a new stored procedure that will
work with our new goal. Listing 3-10 shows the script to create this special stored procedure.

Listing 3-10. chpt03_GetPeopleSubSetSorted.sql

IF EXISTS (SELECT * FROM sysobjects WHERE type = 'P' AND
name = 'chpto3_GetPeopleSubSetSorted")
BEGIN
DROP Procedure chpto3_GetPeopleSubSetSorted
END

Go

CREATE Procedure dbo.chpto3_GetPeopleSubSetSorted
(

@sortExpression nvarchar(50),

@startRowIndex int,

@maximumRows int

)
AS

IF LEN(@sortExpression) = 0
SET @sortExpression = 'PersonId’

-- reset to 1 based index
SET @startRowIndex = @startRowIndex + 1

-- build sql
DECLARE @sql nvarchar(4000)
SET @sql = 'SELECT PersonId,FirstName,LastName,BirthDate,City,Country
FROM
(SELECT p.Personld,p.FirstName,p.LastName,p.BirthDate,1.City,1.Country,

CHAPTER 3 © DATABASE MANAGEMENT

ROW_NUMBER() over(ORDER BY ' + @sortExpression + ') AS RowNum
FROM chpt03_Person AS p
JOIN chpto3_Location AS 1 on 1.LocationId = p.LocationId
) AS People
WHERE RowNum between ' + CONVERT(nvarchar(10), @startRowIndex) +
"and (' + CONVERT(nvarchar(10), @startRowIndex) + ' + '
+ CONVERT(nvarchar(10), @maximumRows) + ') - 1'

-- Execute the SQL query
EXEC sp_executesql @sql

Go

GRANT EXEC ON chpt03_GetPeopleSubSetSorted TO PUBLIC
Go

COMMON FOLDER ADDITIONS

The stored procedure in Listing 3-10 is a technique that you can apply many times to reduce load on the
database while speeding up the application layer. This script can be placed in your Common folder in the
Scripts subfolder to be referenced in future projects (D: \Projects\Common\Scripts\Database).

Alot is happening in this new stored procedure. It does not return every item in the
Person table. Instead it uses input parameters @startRowIndex and @maximumRows to define
arange of items to return. It also uses the @sortExpression input parameter to provide for
sorting.

Introduced with SQL Server 2005 is the new Row_Number function. Given the order of a
selection, the Row_Number function assigns a row number to each row. This row number is used
to limit the scope of the returned items.

But the @startRowIndex and @maximumRows values have to come from somewhere. This infor-
mation is given by the ObjectDataSource. When paging is enabled on the ObjectDataSource,
the SelectMethod must reference a method that has these parameters. We must add such a
method to the PersonDomain class. Listing 3-11 shows sample methods that use these additional
parameters.

Listing 3-11. GetPeopleSubSetSortedDataSet Methods

[DataObjectMethod(DataObjectMethodType.Select)]
public DataSet GetPeopleSubSetSortedDataSet(int? startRowIndex, int? maximumRows)

{
}

return GetPeopleSubSetSortedDataSet(null, startRowIndex, maximumRows);

[DataObjectMethod(DataObjectMethodType.Select)]
public DataSet GetPeopleSubSetSortedDataSet(

67

68

CHAPTER 3 " DATABASE MANAGEMENT

string sortExpression, int? startRowIndex, int? maximumRows)

DataSet ds = new DataSet();
if (String.IsNullOrEmpty(sortExpression))

{

sortExpression = "";
}
if (!startRowIndex.HasValue)
{

startRowIndex = 0;

}

if (!maximumRows.HasValue)

{

maximumRows = 0;

}

using (DbCommand dbCmd =
db.GetStoredProcCommand("chpto3_GetPeopleSubSetSorted"))
{
db.AddInParameter(dbCmd, "@sortExpression”, DbType.String, sortExpression);
db.AddInParameter(dbCmd, "@startRowIndex", DbType.Int64, startRowIndex);
db.AddInParameter(dbCmd, "@maximumRows", DbType.Int64, maximumRows);

ds = db.ExecuteDataSet(dbCmd);
}

//return the results
return ds;

In Listing 3-11 there are two methods with the same name. The difference is the addi-
tional argument for sortExpression on the second method. You may recognize this technique
as method overloading. Depending on whether the ObjectDataSource supports sorting, this
parameter will be used. The first method simply calls the second method with a null value for
the sortExpression, which leads to the chpt03_GetPeopleSubSetSorted stored procedure in
Listing 3-10.

The ObjectDataSource has one other property beyond the SelectMethod property that we
have been using so far and that we will use to make the solution work more efficiently. This
property, called SelectCountMethod, is used to tell the databound control the total number of
items the datasource returns. This value comes from another stored procedure. Listing 3-12
shows this stored procedure.

Listing 3-12. chpr03_GetPeopleRowCount.sql

IF EXISTS (SELECT * FROM sysobjects WHERE type = 'P' AND w
name = 'chpt03_GetPeopleRowCount")
BEGIN
DROP Procedure chpt03_GetPeopleRowCount

CHAPTER 3 © DATABASE MANAGEMENT

END
Go

CREATE Procedure dbo.chpt03_GetPeopleRowCount

(
@Count int OUTPUT
)

AS
SET @Count = (SELECT COUNT(*) AS [Count] FROM chpt03_Person)
GO

GRANT EXEC ON chpt03_GetPeopleRowCount TO PUBLIC
Go

This counts all records in the Person table and is used in the method shown in Listing 3-13.

Listing 3-13. GetPeopleRowCount Method

public long? GetPeopleRowCount()
{

long? count = 0;

using (DbCommand dbCmd = db.GetStoredProcCommand("chpto3_GetPeopleRowCount"))

{
db.AddOutParameter(dbCmd, "@Count", DbType.Int64, 0);

db.ExecuteNonQuery(dbCmd);
count = (long)db.GetParameterValue(dbCmd, "@Count");

return count;

Finally, the following ObjectDataSource in Listing 3-14 pulls it all together so it can be
used by a databound control.

Listing 3-14. ObjectDataSourcel

<asp:ObjectDataSource ID="ObjectDataSourcel" runat="server"
OldvaluesParameterFormatString="original {0}"
TypeName="Chapter02.PersonDomain"
SelectMethod="GetPeopleSubSetSortedDataSet"
SelectCountMethod="GetPeopleRowCount"
EnablePaging="True"
SortParameterName="sortExpression">

</asp:0ObjectDataSource>

69

70

CHAPTER 3 " DATABASE MANAGEMENT

With this ObjectDataSource, you can page through thousands of rows quickly and effi-
ciently. It also reduces the amount of data moved from the database to the web application.

Stability Considerations

The link between the application and the database is often taken for granted. As a result, it is
not given enough protection nor treated as a true integration point. As much as we would like
a database query to be as reliable as looping over an array of objects in memory, it is not. Part
of the disconnected nature of the database is the ability to change the application or database
independently of the other, and despite our best efforts to keep them compatible, it is easy to
change one without adjusting the other properly.

With a Typed DataSet, the schema is very strict. The slightest change on a single column
will cause the application to break. Changing the name of a column will cause unwanted
behavior on a Nontyped DataSet. When the relationship between the application and the
database is treated as an integration point, the approach and assumptions change. And that
change will allow for additional steps to be taken to ensure the stability of the integration.
Later in this chapter, you will see what the options are for working with the data and what you
can do to ensure that this important link stays reliable.

ISOLATING CHANGES

A primary goal of any software project should be to minimize the amount of maintenance. When a database
used by several applications changes, it can generate a great deal of work to update all of the applications.
But the changes could be isolated to a choke point, where all applications share a dependency. Consider
placing your Typed DataSets and domain classes in a class library, which creates an assembly to be used by
all the applications. When the database schema changes, the class library can be updated and deployed to
each of the applications. In the case of a growing VARCHAR, it is easily absorbed into .NET because the
String object is not concerned with the size and will not throw an exception if this class library suddenly
starts returning longer String values. There may still be adjustments to be made, such as validation control
properties, but this approach avoids updating a Typed DataSet reference in each application by isolating the
change to a single point. And with this single point of access to the database, we have the perfect opportunity
to test the class library to ensure that the changes in the database have been synchronized with the code.

Unit Tests for Data

Instead of manually testing every change each time a change is made, you can use unit tests,
which can run a whole suite of tests automatically. These tests can confirm that each stored
procedure and domain method do as they are requested and can give you an early warning
when something does break. The early warning gives you the opportunity to correct the prob-
lem soon after the breaking change is made so you can more easily identify and fix it. If a
problem were to go unnoticed until the application was being prepared for deployment, iden-
tifying the cause would be quite difficult, which would make it harder to make a correction.
The most popular unit-testing framework for .NET is NUnit. It is a simple framework used
by placing attributes on classes and methods to indicate that they are part of a test suite. The

CHAPTER 3 © DATABASE MANAGEMENT

NUnit test runner will load an assembly, look for these attributes, and dynamically build a
collection of tests to be run. In each test you will make calls into the database and check the
return values with Assert statements, which will be either succeed or fail. When a test suite
succeeds in all tests, the indicators are all green. But when a test fails, it is lit up in red.

After unit tests are in place and the test suite comprehensively covers your code base,
each developer can run the tests prior to committing changes to the source-control system.
Doing so will keep broken code out of the source-control system, which would spread to the
other developers’ systems as they pull down updates. But even when tests are run, the combi-
nation of changes from multiple developers can break the unit tests. To protect against this
scenario, you can set up a build server to pull updates from source control, build the projects,
and run the tests at regular intervals. This is commonly known as continuous integration.

Continuous Integration

The most popular continuous integration solution over the past few years has been
CruiseControl.NET. It works with the unit-testing frameworks such as NUnit as well as a

wide range of source-control systems. It can be configured to check the source-control system
for updates every five minutes. When there is an update, CruiseControl.NET kicks off the build
and testing process. The results of the build and tests are recorded with build reports, and the
developer can get the results immediately by e-mail.

CruiseControl.NET also has a system tray application that stays in touch with the build
server to report changes back to the developers. When a build is successful, the application
pops up a notification bubble from the system tray. And when there is a failure, it displays a
notification with the bad news. CruiseControl. NET also has a website that displays each of
the configured projects with a list of all of the build reports. When a build fails, you can look
at the latest build to see exactly what went wrong.

Not only does it show you the files that were changed for the latest build, but also the line
numbers where the code broke. These details make it much easier to determine who broke the
build and what was changed to cause the break. A side effect of having the automated build
report failures is that it is much less personal, and the developer can simply volunteer to fix
his problem right away. Many times I have seen the build fail because of a missing file that
was not committed to source control with all the other changes. Committing that missing file
quickly fixes the build, and everyone can get back to work. Because of such cases, it is best to
commit your changes and request the build server to run the build immediately so you can
ensure that the build is run successfully after your changes are included but before you head
home for the day. That last thing you need is to be called back into work because you did not
include a file with your latest changes.

The upcoming chapters cover specific examples for unit testing and continuous integra-
tion. They will become a regular part of your daily routine.

Summary

This chapter covered database management processes, from organizing the scripts in Data-
base Projects to creating the scripts for managing stored procedures, indexes, and constraints.
It concluded with a review of automated testing techniques that can be used to ensure that
the application layer continues to work well with the database.

7

CHAPTER 4

Databound Controls

There are many useful controls available in ASPNET 2.0, which makes it very easy to work
with data. Many of the examples provided by Microsoft show how you can quickly assemble a
data-driven website with little or no code. But sometimes the real-world requirements push
you beyond this safe space and demand a more complex solution. The solutions can still be
elegant and work with very little code. You just need a deeper understanding of what you can
do with the available controls and what you do with a more complex combination of these
controls. And once you break up your approach into smaller components that work together,
you can handle the more complicated requirements with manageable components.

This chapter covers the following:

* The DetailsView control

e The FormView control

* The GridView control
 Editing and validating fields

* Binding input parameters

* Embedding user controls

* Creating a databound control

By far the most commonly used databound control is the GridView control. It is a very
powerful control that can show your data and provide add, update, and delete functionality
you would expect from a rich data control. Beyond this one control, there are several other
databound controls that provide the same display and editing features as GridView but do
itin a different way. Let’s look at those other controls first.

DetailsView

The DetailsView control shows a single record at a time. Like the GridView control, it features
add, update, and delete functionality. It also has paging functionality. In contrast, the GridView
shows the data in a tabular format so you can view multiple records at a time. The DetailsView is
useful when there are more fields than you would reasonably want to show in a tabular view.
This makes it better suited for editing.

Let’s use the DetailsView control with the person and location data from the previous
chapter. The first example is in Listing 4-1.

73

74 CHAPTER 4 =" DATABOUND CONTROLS

Listing 4-1. DetailsView Example

<asp:DetailsView ID="DetailsViewl" runat="server"
DataSourceID="0ObjectDataSource1" AllowPaging="True"
AutoGenerateRows="False" DataKeyNames="PersonId">
<Fields>
<asp:BoundField DataField="FirstName"
HeaderText="First Name" SortExpression="FirstName" />
<asp:BoundField DataField="LastName"
HeaderText="Last Name" SortExpression="LastName" />
<asp:BoundField DataField="BirthDate"
HeaderText="Birth Date" SortExpression="BirthDate"
DataFormatString="{0:MM/dd/yyyy}" HtmlEncode="False" />
<asp:BoundField DataField="City"
HeaderText="City" SortExpression="City" />
<asp:BoundField DataField="Country"
HeaderText="Country" SortExpression="Country" />
<asp:CommandField ShowDeleteButton="True"
ShowEditButton="True" ShowInsertButton="True" />
</Fields>
</asp:DetailsView>

The columns selected here include First Name, Last Name, Birth Date, City, and Country.
Each of these fields is automatically editable, and each record can be deleted. You can even
add a new record. And with paging enabled, you can jump to each of the records. It is all as
you would expect from such a data-editing control. I'll come back to the DetailsView control
in the advanced examples throughout the rest of this chapter.

FormView

The FormView control starts out looking a lot like the DetailsView, but it is not as rigid. It may
start out as a two-column layout, but it is a template control that can be changed completely.

You may choose to group the First Name, Last Name, and Birth Date columns together in one
block and the City and Country columns in another. When you view the code, you will see the
various templates, including the ItemTemplate, which shows the data in read-only mode; you
will also see all of the Label controls with the Bind method calls to fill each Label with the data
from the DataSource. A sample FormView is shown in Listing 4-2.

Listing 4-2. FormView Example

<asp:FormView ID="FormViewl" runat="server"
AllowPaging="True" DataKeyNames="PersonId"
DataSourceID="0ObjectDataSource1">
<EditItemTemplate>
Personld:
<asp:Label ID="PersonIdlLabel1" runat="server"
Text="<%# Eval("PersonId") %>'></asp:Label>

FirstName:

CHAPTER 4 =" DATABOUND CONTROLS

<asp:TextBox ID="FirstNameTextBox" runat="server"
Text="<%# Bind("FirstName") %>'>

</asp:TextBox>

LastName:

<asp:TextBox ID="LastNameTextBox" runat="server"
Text="<%# Bind("LastName") %>'>

</asp:TextBox>

BirthDate:

<asp:TextBox ID="BirthDateTextBox" runat="server"
Text="<%# Bind("BirthDate") %>'>

</asp:TextBox>

City:

<asp:TextBox ID="CityTextBox" runat="server"
Text="<%# Bind("City") %>'>

</asp:TextBox>

Country:

<asp:TextBox ID="CountryTextBox" runat="server"
Text="<%# Bind("Country") %>'>

</asp:TextBox>

<asp:LinkButton ID="UpdateButton" runat="server"
CausesValidation="True" CommandName="Update" Text="Update">

</asp:LinkButton>

<asp:LinkButton ID="UpdateCancelButton" runat="server"
CausesValidation="False" CommandName="Cancel" Text="Cancel">

</asp:LinkButton>

</EditItemTemplate>
<InsertItemTemplate>

FirstName:

<asp:TextBox ID="FirstNameTextBox" runat="server"
Text="<%# Bind("FirstName") %>'>

</asp:TextBox>

LastName:

<asp:TextBox ID="LastNameTextBox" runat="server"
Text="<%# Bind("LastName") %>'>

</asp:TextBox>

BirthDate:

<asp:TextBox ID="BirthDateTextBox" runat="server"
Text="<%# Bind("BirthDate") %>'>

</asp:TextBox>

City:

<asp:TextBox ID="CityTextBox" runat="server"
Text="<%# Bind("City") %>'>

</asp:TextBox>

Country:

<asp:TextBox ID="CountryTextBox" runat="server"
Text="<%# Bind("Country") %>'>

</asp:TextBox>

76 CHAPTER 4 =" DATABOUND CONTROLS

<asp:LinkButton ID="InsertButton" runat="server"
CausesValidation="True" CommandName="Insert" Text="Insert">
</asp:LinkButton>
<asp:LinkButton ID="InsertCancelButton" runat="server"
CausesValidation="False" CommandName="Cancel" Text="Cancel">
</asp:LinkButton>
</InsertItemTemplate>
<ItemTemplate>
FirstName:
<asp:lLabel ID="FirstNamelabel" runat="server"
Text="<%# Bind("FirstName") %>'></asp:Label>

LastName:
<asp:Label ID="LastNamelLabel" runat="server"
Text="<%# Bind("LastName") %>'></asp:Label>

BirthDate:
<asp:Label ID="BirthDatelabel" runat="server"
Text="<%# Bind("BirthDate") %>'></asp:Label>

City:
<asp:lLabel ID="CitylLabel" runat="server"
Text="<%# Bind("City") %>'></asp:Label>

Country:
<asp:Label ID="CountrylLabel" runat="server"
Text="<%# Bind("Country") %>'></asp:Label>

<asp:LinkButton ID="EditButton" runat="server"
CausesValidation="False" CommandName="Edit" Text="Edit">
</asp:LinkButton>
<asp:LinkButton ID="DeleteButton" runat="server"
CausesValidation="False" CommandName="Delete" Text="Delete">
</asp:LinkButton>
<asp:LinkButton ID="NewButton" runat="server"
CausesValidation="False" CommandName="New" Text="New">
</asp:LinkButton>
</ItemTemplate>
</asp:FormView>

The free-form nature of the FormView allows for layouts that are very different from those
possible with the DetailsView, yet still gives you the same features to add, edit, and delete data.

GridView

Now for the granddaddy of all databound controls: the GridView control. Whether it lists
transactions from your checking account or lists contacts in your address book, this control
is used nearly everywhere. And while it lists data in a tabular format and allows you to add,
edit, and delete records, it also allows you to sort the data. This makes it a powerful and easy
means of looking at data in a way that is most useful to you. Listing 4-3 shows an example of
the GridView control.

CHAPTER 4 =" DATABOUND CONTROLS

Listing 4-3. GridView Example

<asp:Gridview ID="GridViewl" runat="server" AllowPaging="True" AllowSorting="True"
AutoGenerateColumns="False" DataKeyNames="PersonId"
DataSourceID="0ObjectDataSource1">
<Columns>
<asp:BoundField DataField="FirstName"
HeaderText="First Name" SortExpression="FirstName" />
<asp:BoundField DataField="LastName"
HeaderText="Last Name" SortExpression="LastName" />
<asp:BoundField DataField="City"
HeaderText="City" SortExpression="City" />
<asp:BoundField DataField="BirthDate"
HeaderText="Birth Date" HtmlEncode="False"
SortExpression="BirthDate" />
<asp:BoundField DataField="Country"
HeaderText="Country" SortExpression="Country" />
<asp:CommandField ShowDeleteButton="True" ShowEditButton="True" />
</Columns>
</asp:GridView>

The editing functionality of the BoundField used by the GridView and the DetailsView is
pretty limited. Fields will be edited with a TextBox control for strings as well as dates. And in
the case of the City and Country fields, it will allow for any value. It would be an improvement
to use an editor that recognized data types. This shortcoming will be addressed in the follow-

ing section.

Editing and Validating Fields

While the preceding controls do allow you to modify the data they display, they do not offer a
great deal of smart functionality for various data types. For example, the date-editing function
will have you edit the date with a regular TextBox control. Entering a string that is not a date
will cause the postback event to throw an exception, as shown in Figure 4-1.

€ The string was not recognized as a walid DateTime, There is a unknown word starting at index 7. - Win... | = || B |[Z3]

@_/ - |ﬁ_ http:fflocalhost 1636 \ebsite/ Termpd.aspz v ‘ "7‘ x ‘ | Live Search R -

W ,é The string was not recognized as a valid DateTirm...

Server Error in 'fWebsite' Application. [

The string was not recognized as a valid DateTime. There is a
unknown word starting at index 7.

Description: An unhandled exception occurred during the execution of the current weh request. Please review the stack
trace for more information about the error and where t originated inthe code.

Exception Details: System FormatException: The string was not recognized as & valid DateTime. There i3 & unknown
weord starting at index 7 ik

« m 3

Dane &) Internet | Protected Mode: On H100% v

Figure 4-1. FormatException when saving a date value

77

78

CHAPTER 4

You may even enter a value that looks like a valid date, such as June 31, but there is no 31+
day of June, so it will also fail. It would be best to prevent that error from happening and prevent
the exception. To do so, the BoundField can be replaced with a TemplateField. This can be done
by converting the BoundField to a TemplateField in the Fields panel, shown in Figure 4-2, which
is accessed by clicking the Edit Columns link on the Smart Tag for the GridView.

DATABOUND CONTROLS

Fields

Awailable fields:
=] (Al Fields) -
=12l BoundField
=] Personld =
=] FirstMame
=] LastMame
(=] BirthDate
5] Locationld
=1 CherkRoField g

BoundField properties:

734

B Accessibility
AccessibleHeaderText

E Appearance
FooterText
Headerdmagelrl

HeaderText BirthDate

Selected fields:

A edit, Update, Cancel | III
=] personld =
=] FirstName |L|
] e |T|
= . £

=] Lacationld |
|

Auto-generate fields

Refresh Schema

5 Behavi
LpplyFormatinEdithod: False
ConvertErnptyStringTal True

HtrmlEncode True
Insertiisible True
NullDisplayText

ReadOnly False

HeaderText

The text within the header of this field.

Convert this field into a TernplateField

[EeRx]

m

oK

Cancel

Figure 4-2. Fields editor

Once you have your TemplateField, it will start with a Label for read-only mode and a
TextBox for edit mode and be placed in the ItemTemplate and EditTemplate. An example is

shown in Listing 4-4.

Listing 4-4. GridView with TemplateField

<asp:GridView ID="GridView1" runat="server"
AllowPaging="True" AllowSorting="True"

AutoGenerateColumns="False" DataKeyNames="PersonId"

DataSourceID="0ObjectDataSource1">

<Columns>

<asp:BoundField DataField="FirstName"
HeaderText="First Name" SortExpression="FirstName" />

<asp:BoundField DataField="LastName"

HeaderText="Last Name" SortExpression="LastName" />
<asp:BoundField DataField="City" HeaderText="City" SortExpression="City" />
<asp:TemplateField HeaderText="Birth Date" SortExpression="BirthDate">

<EditItemTemplate>

<asp:TextBox ID="TextBox1" runat="server"
Text="<%# Bind("BirthDate") %>'></asp:TextBox>

</EditItemTemplate>
<ItemTemplate>

<asp:Label ID="Label1" runat="server"

CHAPTER 4 =" DATABOUND CONTROLS

Text="<%# Bind("BirthDate") %>'></asp:Label>
</ItemTemplate>
</asp:TemplateField>
<asp:BoundField DataField="Country"
HeaderText="Country" SortExpression="Country" />
<asp:CommandField ShowDeleteButton="True" ShowEditButton="True" />
</Columns>
</asp:GridView>

The new TemplateField initially does not stop the problem with the invalid date but will
allow you to add validation controls to check on the value. A ValidationSummary control can
be placed above the GridView to show the ErrorMessage property of any validator that indi-
cates an invalid value, but this would have to be repeated in every place that a date is edited. It
also makes the GridView definition quite bulky. Instead, you will create a simple user control
called DateEditor. This user control will be made up of a TextBox along with a CustomValidator
and RegularExpressionValidator. The DateEditor is shown in Listing 4-5.

Listing 4-5. DateEditor

<%@ Control Language="C#" AutoEventWireup="true"
CodeFile="DateEditor.ascx.cs" Inherits="DateEditor" %>

<asp:TextBox ID="TextBox1" runat="server"></asp:TextBox>

<asp:CustomValidator ID="cvDate" runat="server"
ControlToValidate="TextBox1" Display="Dynamic"
EnableClientScript="False" ErrorMessage="Date is invalid"
OnServerValidate="cvDate ServerValidate">*

</asp:Customvalidator>

<asp:RegularExpressionValidator ID="revDate" runat="server"
ControlToValidate="TextBox1"
Display="Dynamic" ErrorMessage="Date format is invalid. [MM/dd/yyyy]"
ValidationExpression=""\d\d*\/\d\d*\/\d\d\d\d$">*

</asp:RegularExpressionValidator>

In the code-behind, you add a little help to the CustomValidator to verify the value is truly
avalid date and also make the value available through a property for the TemplateField that
will hold the DateEditor (see Listing 4-6).

Listing 4-6. DateEditor Code-Behind

using System;
using System.Web.UI;
using System.Web.UI.WebControls;

public partial class DateEditor : UserControl

{

protected void Page Load(object sender, EventArgs e)

{
}

79

80 CHAPTER 4 =" DATABOUND CONTROLS

public DateTime Date

{
get
{
DateTime tmpDate = DateTime.MinValue;
DateTime.TryParse(TextBox1.Text, out tmpDate);
return tmpDate;
set
{
TextBox1.Text = value.ToString("MM/dd/yyyy");
}
}

protected void cvDate ServerValidate(object source,
ServerValidateEventArgs args)

{
DateTime tmpDate;
if (!DateTime.TryParse(TextBox1.Text, out tmpDate))
{
args.IsValid = false;
return;
}
// these are the database constraints
DateTime minDate = new DateTime(1753,1,1);
DateTime maxDate = new DateTime(9999,12,31);
if (tmpDate < minDate || tmpDate > maxDate)
{
args.IsValid = false;
return;
}
}

The code-behind carefully checks the value of the TextBox to ensure it never returns
an invalid value. In the ServerValidate event handler for the CustomValidator, it uses the
TryParse method of the DateTime object to check that the Text property from TextBox not only
looks like a date, but also is a valid date. It will not allow June 31 through. And then in the Date
property, the same check is done to prevent an invalid date from getting through. Back in the
GridView, the DateEditor is placed in the EditTemplate with the Date property bound to the
Birth Date field (see Listing 4-7).

Listing 4-7. DateEditor

<EditItemTemplate>
<chpto4:DateEditor ID="DateEditor1" runat="server"
Date="'<%# Bind("BirthDate") %>' />
</EditItemTemplate>

CHAPTER 4 =" DATABOUND CONTROLS

Now when an invalid date is entered, a helpful error is shown instead of the exception.
Better yet, the DateEditor can be used anywhere throughout the website, so a consistent vali-
dation check is used everywhere that will make for a better interface and less work.

Binding Input Parameters

Datasources can be configured with input parameters to filter data in multiple ways. Input
parameters could come from controls like a TextBox or DropDownlList as well as query string
values. The wizard for configuring an ObjectDataSource and a SqlDataSource will detect when
the datasource requires input parameters and will present these options. You can bind these
parameters or choose to handle them programmatically.

Binding Input Parameters with a Control

The simplest example of working with input parameters is to bind them to a control such as a
TextBox or a DropDownlList. With the sample database, you will start by binding a list of last
names to a DropDownlList. Then a GridView will take the SelectedValue from the DropDown-
List and get all people where the last names are a match. This example can be done without
writing any code in the code-behind file. It is just a matter of dragging and dropping the con-
trols. Listing 4-8 shows the code.

Listing 4-8. InputParameterExample.aspx

Select Last Name:
<asp:DropDownList ID="DropDownlList1" runat="server" AutoPostBack="True"
DataSourceID="ObjectDataSource1" DataTextField="LastName">
</asp:DropDownList>
<asp:ObjectDataSource ID="ObjectDataSourcel" runat="server"
OldvaluesParameterFormatString="original {0}"
SelectMethod="GetLastNames" TypeName="Chapter04.PersonDomain">
</asp:0bjectDataSource>
<asp:CridView ID="GridView1l" runat="server" AllowPaging="True"
AllowSorting="True" DataSourceID="ObjectDataSource2">
</asp:CridView>
<asp:0ObjectDataSource ID="ObjectDataSource2" runat="server"
OldvaluesParameterFormatString="original {0}"
SelectMethod="GetPeopleByLastName"
TypeName="Chapter04.PersonDomain">
<SelectParameters>
<asp:ControlParameter ControlID="DropDownList1"
Name="lastName" PropertyName="SelectedValue"
Type="String" />
</SelectParameters>
</asp:0bjectDataSource>

The important part is near the bottom with the SelectParameters, which defines that the
ControlParameter comes from the DropDownListl and sets the lastName input parameter.

81

82

CHAPTER 4 =" DATABOUND CONTROLS

Binding Input Parameters Programmatically

Sometimes you cannot just get a value from a control. Either the datasource is not bound

to the control yet or it needs to be carefully validated before setting the value as an input
parameter to prevent an exception. In these cases, you can withhold the ControlParameter
definition and instead leave the input parameter undefined except for the Name and Type. The
ObjectDataSource has an event called Selecting, which is where you will want to set the input
parameter programmatically. Listing 4-9 shows an example of declaring input parameters.

Listing 4-9. InputParameterExample2.aspx

Select Last Name:

<asp:DropDownList ID="DropDownlList1" runat="server" AutoPostBack="True"
DataSourceID="0ObjectDataSource1" DataTextField="LastName">

</asp:DropDownlList>

<asp:GridView ID="GridView1l" runat="server" AllowPaging="True"
AllowSorting="True" DataSourceID="ObjectDataSource2">

</asp:GridView>

<asp:0ObjectDataSource ID="ObjectDataSourcel" runat="server"
0ldValuesParameterFormatString="original {0}"
SelectMethod="GetLastNames"
TypeName="Chapter04.PersonDomain"></asp:0bjectDataSource>

<asp:0ObjectDataSource ID="ObjectDataSource2" runat="server"
0ldValuesParameterFormatString="original {0}"
SelectMethod="GetPeopleByLastName"
TypeName="Chapter04.PersonDomain"
OnSelecting="0ObjectDataSource2 Selecting">

<SelectParameters>
<asp:Parameter Name="lastName" Type="String" />
</SelectParameters>
</asp:0bjectDataSource>

Notice that the OnSelecting event handler is specified and the SelectParameters specifies
the lastName parameter with no control association. The value for the parameter is set in the
code-behind file. Listing 4-10 shows an event handler for the Selecting event.

Listing 4-10. Selecting Event Handler

protected void ObjectDataSource2 Selecting(object sender,
ObjectDataSourceSelectingEventArgs e)
{

e.InputParameters["lastName"] = DropDownlist1.SelectedValue;

}

If this input parameter wanted a date and the value was coming from a TextBox, the value
could be checked to ensure that it really is a valid date and only set the input parameter when
it is valid. An input parameter may also be a more complex type, like a business object, that
you assemble in the Selecting event handler. This simple handler gives you many options.

CHAPTER 4 =" DATABOUND CONTROLS

Binding a User Control

All too often I have seen very large pages with piles and piles of markup in the template side
of each page and plenty more code in the code-behind because the pages were not broken up
into user controls. A user control is just a fragment of a page that is very useful when used to
encapsulate a section of the page. It will isolate not only a piece of the markup, but also events
and behavior. User controls can also be used multiple times on one page as well as across
many pages. It is a great way to introduce code reuse for a website.

The matter of binding to a user control can be tricky when you first attempt it. Should it
try to read values from the query string or somehow traverse the control hierarchy to get to a
control that defines the input parameter it needs to carry out its DataBind function? The best
way to handle this is to treat the user control just like you already treat other controls such as
the TextBox and set properties on the user control. First you need a user control, as shown in
Listing 4-11.

Listing 4-11. PersonListingControl.ascx

<%@ Control Language="C#" AutoEventWireup="true"
CodeFile="PersonListingControl.ascx.cs"
Inherits="Controls_PersonlListingControl" %>
<asp:GridView ID="GridViewl" runat="server" AllowPaging="True"
AllowSorting="True" DataSourceID="ObjectDataSource1">
</asp:GridView>
<asp:0ObjectDataSource ID="ObjectDataSourcel" runat="server"
0ldValuesParameterFormatString="original {0}"
SelectMethod="GetPeopleByLastName"
TypeName="Chapter04.PersonDomain"
OnSelecting="0ObjectDataSourcel Selecting">
<SelectParameters>
<asp:Parameter Name="lastName" Type="String" />
</SelectParameters>
</asp:0bjectDataSource>

This example includes the GridView as in the previous examples, yet it is held in a user
control. It also has an ObjectDataSource with a lastName input parameter with the Selecting
event handler specified. The parent page will need to pass in the value for the lastName
parameter, and you will do it with a property declaration (see Listing 4-12).

Listing 4-12. PersonListing.aspx.cs Code-Behind

protected void ObjectDataSourcel Selecting(
object sender, ObjectDataSourceSelectingEventArgs e)

{

e.InputParameters["lastName"] = LastName;

}

private string lastName = String.Empty;
public string LastName

{

83

84

CHAPTER 4 =" DATABOUND CONTROLS

get
{

return _lastName;

_lastName = value;
ObjectDataSourcel.DataBind();

The LastName property holds the value that is used on the Selecting event handler. And
when the LastName property is set, you can see that it calls DataBind on ObjectDataSourcel to
immediately bind the data to the GridView. Without calling DataBind, the GridView may not
be bound at all because it will not automatically get fired like it would if the ObjectDataSource
was configured with a control property. It makes sense to call it right here when the value is
set, but it can also be called on the PreRender event for the user control or even have the page
holding this control call the DataBind method on the user control. Having the data bound
immediately once the value is known ensures that the data is always bound.

In the case when there are multiple properties that are used to set multiple input parame-
ters, it is better to defer the data binding to a later event like the PreRender event so all of the
properties can be set before the Selecting event runs.

Embedding Databound Controls

For a more complex data hierarchy, you may find that you would like to embed a user control
within another user control, just as the previous example embedded a user control within a
page and bound data to it by passing a value to it through a property. Perhaps you are showing
areport, and with each section there is a related subsection. Creating a user control to repre-
sent the section that holds another user control representing the subsection is a great way to
break up the code into isolated pieces that are responsible for their own data binding.

The sample database has a Location table holding a City and a Country column. You will
bind a list of countries to a Repeater control that displays the country with a Label control and
then passes the country to a user control to show a list of cities in that country. You just need
to design the user controls and wire them together to set the properties and fire the data bind-
ing in the right order.

The first user control, shown in Listing 4-13, draws a bulleted list with the countries.

Listing 4-13. CountryListingControl.ascx

<%@ Control Language="C#" AutoEventWireup="true"
CodeFile="CountrylListingControl.ascx.cs"
Inherits="Controls CountrylListingControl" %>
<%@ Register Src="CitylListingControl.ascx"
TagName="CitylListingControl" TagPrefix="uc1" %>
<asp:Repeater ID="Repeater1" runat="server"
DataSourceID="ObjectDataSource1">

CHAPTER 4 =" DATABOUND CONTROLS

<HeaderTemplate>

</HeaderTemplate>
<ItemTemplate>
<1i>
<asp:Label ID="Label1" runat="server"
Text="<%# Bind("Country") %>'></asp:lLabel>
<ucl:CitylListingControl ID="CitylListingControl1"
runat="server" Country='<%# Bind("Country") %>"' />
</1i>
</ItemTemplate>
<FooterTemplate>

</FooterTemplate>
</asp:Repeater>
<asp:0ObjectDataSource ID="ObjectDataSourcel" runat="server"
0ldValuesParameterFormatString="original {o}"
SelectMethod="GetAllCountries"
TypeName="Chapter04.PersonDomain"></asp:0bjectDataSource>

What is interesting here is that the Country property on the user control can be bound to
the Country value just like the Label control, which is a standard ASPNET control. When the
data is bound to Repeaterl, it automatically sets the Country property on CityListingControll.
And this all happens without any additional code in the code-behind. Listing 4-14 shows the
city listing control.

Listing 4-14. CityListingControl.ascx

<%@ Control Language="C#" AutoEventWireup="true"
CodeFile="CityListingControl.ascx.cs" Inherits="Controls CitylListingControl" %>
<asp:Repeater ID="Repeater1" runat="server" DataSourceID="ObjectDataSource1">
<HeaderTemplate>

</HeaderTemplate>
<ItemTemplate>
<1li>
<asp:Label ID="Label1" runat="server"
Text="<%# Bind("City") %>'></asp:Label>

</1i>
</ItemTemplate>
<FooterTemplate>

</FooterTemplate>
</asp:Repeater>
<asp:0ObjectDataSource ID="ObjectDataSourcel" runat="server"
0ldvaluesParameterFormatString="original {0}"
SelectMethod="GetCitiesByCountry"
TypeName="Chapter04.PersonDomain"

85

86

CHAPTER 4 = DATABOUND CONTROLS

OnSelecting="0ObjectDataSourcel Selecting">
<SelectParameters>
<asp:Parameter Name="country" Type="String" />
</SelectParameters>
</asp:0bjectDataSource>

This user control also makes use of a Repeater to list all of the data in a bulleted list. In this
case, it is all of the cities in the selected country. In the code-behind, shown in Listing 4-15, a
little bit of code is put in place to wire together the parent user control to bind the data.

Listing 4-15. CityListingControl.ascx.cs

protected void ObjectDataSourcel Selecting(
object sender, System.Web.UI.WebControls.ObjectDataSourceSelectingEventArgs e)

{
}

e.InputParameters("country"] = Country;

private string _country;
public string Country

{
get {
return _country;
}
set {
_country = value;
ObjectDataSourcel.DataBind();
}
}

You could theoretically go many levels deeper, perhaps listing the people who live in each
city by following this same pattern of passing properties into the user control to be bound as
an input parameter. And doing so completely encapsulates the behavior of each user control.

BEWARE OF RECURSIVE DATA BINDING

Be sure to bind just the ObjectDataSource and not the entire user control when the properties are set.
Rebinding the user control will cause an infinite recursive loop on the property as the user control repeatedly
binds the data over and over.

CHAPTER 4 =" DATABOUND CONTROLS

ViewState and Databinding

When working with databinding, you will be using ViewState extensively as a part of the post-
back model. All of the data that is bound to a control, such as a GridView, is held in ViewState.
By default, the data is serialized to a string, encrypted, and included in the page as a hidden
input field. When a postback occurs, the value from the hidden field is decrypted and deserial-
ized. The postback process then attempts to reset the control values with this data. By using
the ViewState to redraw a databound control, you avoid going back to the database to get all
of the necessary data. On a typical page, you may have several databound controls that will
make use of this ViewState. In the case of a GridView, you could click one of the pager links to
change the selected index, which will cause new data to be pulled from the database. While
that happens, the other databound controls will simply use the ViewState data to redraw
themselves. It is a pretty efficient model if you compare it to other solutions that would need
to rebind all of the data from the database with each page request.

However, using ViewState does mean that when a page displays a large set of data, the
ViewState data held in the hidden input field is also large. It is also a duplication of the dis-
played data held inside of an encrypted string to preserve the integrity of the data. So while
you reduce the number of trips to the database during postbacks, you cause the page load
time to increase, which may be just as much of a performance penalty for users who have a
limited-bandwidth connection to your web application. Such users could be using a modem
or mobile connection that does not offer high-speed access. They could also be sharing a
high-speed connection with everyone in their office, which degrades the speed of their access.
In any case, you want to make your page load times as fast as possible by reducing the size of
the page. When ViewState becomes large, you will want to consider ways to reduce the size.

PAGE SIZE AND LOAD TIME

Jakob Nielsen, a leader in web usability, notes on his website that a user connected to the Internet with a
modem will take ten seconds to load a page that is just 34 KB (http://www.useit.com/alertbox/
sizelimits.html). For a Cable/DSL connection, it would take one second to load a 100KB page. It is easy
for a data-heavy page to go well beyond 100 KB, so high-speed users may still wait two to five seconds for
your pages to load. Cutting the ViewState could save a few seconds for those high-speed users and much
more for any user on a slower connection. Of course these delays are extended by the time to prepare and
start sending a response to a user.

Session and ViewState

You can change how ViewState is persisted to avoid placing all of this extra data in the page.
ASPNET 2.0 introduced the option to store ViewState in the Session instead of the hidden
input field. You just have to override the PageStatePersister property to return either the
HiddenFieldPagePersister, which is the default, or the SessionPageStatePersister. An exam-
ple is shown in Listing 4-16.

87

http://www.useit.com/alertbox/sizelimits.html
http://www.useit.com/alertbox/sizelimits.html
http://www.useit.com/alertbox/sizelimits.html
http://www.useit.com/alertbox/sizelimits.html

88

CHAPTER 4 =" DATABOUND CONTROLS

Listing 4-16. PageStatePersister Set to Use the Session

protected override PageStatePersister PageStatePersister

{
get
{
return new SessionPageStatePersister(Page);
}
}

The implementation for SessionPageStatePersister places a Guid value into the hidden
input field in place of all the encrypted data and places the actual data into the user’s Session.
When a postback occurs, the Guid value is used to look up that data. This data is limited to a
rotating queue that holds only the last ten pages of data. And while this reduces the page size,
the limitation of placing it in the Session presents a few problems.

The clear problem is that if the data is removed from the Session, a postback will throw
an exception. This can happen if the user’s Session expires after the default time-out of 20 min-
utes. When a user’s Session expires, the Session is abandoned on the server along with the
server-side ViewState. If a user steps away for that time period, returns, and then clicks a but-
ton causing a postback, that user will see the exception. You may consider bumping up the
Session time-out to eight hours, but doing so will cause more memory to be used on the server.
If you retain the Session state for all users who visit your website in that eight-hour period, you
may struggle with the amount of memory that is required.

Users could also open two browser windows while using your web application. They click
around in one window for a while and then move to the other window and click some more,
causing postbacks as they do so. If they go beyond the ten-click limit and return to the other
window and cause a postback, they will get the state exception. Fortunately, this feature can
be enabled on a page-by-page basis. If your website has a limited set of data-intensive pages,
you could set them to use the SessionPageStatePersister while the rest of the pages use the
default functionality.

You could also implement your own custom PageStatePersister that works much like the
SessionPageStatePersister, butinstead of limiting the data to ten items, older data could be
stored to the database in case it is needed. A scheduled job could purge this data nightly.

Paging

The size of the ViewState can also be reduced using paging. Consider a GridView that has
1,000 total items with the page size set to 10 items. Only the data for those 10 items will be per-
sisted in ViewState instead of the data for all 1,000 items. When paging is combined with the
subset selection technique covered in the last chapter, you can ensure that only the 10 rows
that are shown are pulled from the database, which will reduce the load on the database. You
will learn more about the benefits of paging later when you get into building a custom data-
bound control in the section “Creating a Databound Control.”

CHAPTER 4 =" DATABOUND CONTROLS

Disabling ViewState

Another way to reduce page size is to disable ViewState. You can do so with an entire page or
at the control level with the EnableViewState property. If you disable ViewState for the page,
that decision will have an impact on every control included on the page. Each control will not
be able to override that setting, so the impact would be universal and possibly damaging for
controls that require ViewState. The same is true for any control that holds other controls
below it. The setting impacts all controls below it.

Due to the fact that you cannot enable ViewState for a control if the ViewState has been
disabled for the entire page, you will want to identify individual controls that do not need it. A
navigational control included on each page, perhaps as a part of the master page, would make
for an ideal candidate. If it simply contains markup and a few HyperLink controls that have the
NavigateUrl set declaratively, the value will be available during a postback when ViewState is
disabled.

For a custom user control, you may also design its behavior to work with and without
ViewState. Listing 4-17 shows how this can be done.

Listing 4-17. Working With and Without ViewState

if (! IsPostBack)

{
GridView1.DataSource = GetDataSource();
GridView1.DataBind();

}

else if (! IsViewStateEnabled)

{
GridView1.DataSource = GetDataSource();
GridView1.DataBind();

}

The datasource for the GridView is set on the first page load when it is not a postback and
when it is a postback with ViewState disabled. Doing it this way will load the GridView data
when the control needs it. However, this approach is pretty manual. It is better to simply use
a declared ObjectDataSource reference. Doing so will allow the GridView to automatically
detect when ViewState is disabled and bind using the ObjectDataSource when it needs data.

ControlState vs. ViewState

Because some pieces of data are critical to the functionality of a control, it is necessary to
retain access to those details when ViewState is enabled. Controls such as the GridView are
smart enough to work with and without ViewState, but they still need to retain the current
state of the control related to position when paging is enabled. The data for each of the
columns can be pulled from the database with each postback, but the database will not know
that the fourth page of the GridView was selected. This value is retained by the SelectedItem
property that is persisted with ControlState, a variation of ViewState.

ControlState was introduced with ASPNET 2.0. It is not an automatic feature like
ViewState. You must implement it yourself and register with the Page to persist the data.
Listing 4-18 shows how to save ControlState.

89

90

CHAPTER 4 =" DATABOUND CONTROLS

Listing 4-18. SaveControlState

protected override object SaveControlState()

{
Pair state = new Pair();
state.First = base.SaveControlState();
state.Second = controlStateData;
return state;

}

ControlState and ViewState are often persisted using the Pair and Triplet types from the
System.Web.UI namespace. They are simply tiny arrays that hold onto your data. You could also
use an array of objects that can be serialized, which means it is best to stick to types like string,
int, and DateTime. You want to use the least amount of data to persist the necessary state. Using
the Pair type is a good first layer that will hold the ControlState of the base class in the First
property and the state of the current instance in the Second property. If you have many values to
persist, the value stored in the Second property could be the array of many objects. This hierar-
chy of this state will then be unfolded when it is loaded, as shown in Listing 4-19.

Listing 4-19. LoadControlState

protected override void LoadControlState(object savedState)

{
Pair pair = savedState as Pair;
if (pair != null)
{
base.loadControlState(pair.First);
_controlStateData = (string)pair.Second;
}
else
{
base.LoadControlState(null);
}
}

The state is cast as a Pair type and used to load the ControlState of the base class with
the First property and then the state of the current instance with the Second property. With
these values defined, it is necessary to tell the Page that ControlState is required for this con-
trol. This must be done during the Init event before the events to load ControlState are fired
later in the event life cycle, as shown in Listing 4-20.

Listing 4-20. Requiring ControlState

protected void Page Init(object sender, EventArgs e)

{
}

Page.RegisterRequiresControlState(this);

CHAPTER 4 =" DATABOUND CONTROLS

The preceding examples for ControlState simply persist a single string variable. Many
times you should not have much data to persist. The event ordering will cause ControlState
to be persisted and loaded between the Init and Load events so that the persisted data will be
available when your Load event is fired. Later the PreRender event will fire where most data-
bound controls actually load the data. It is important to know when this data is available to
your page or control.

Given the option to persist state in the Session or in ControlState, it should be noted that
not all state has to be persisted. Some data can be lost safely because the input fields that were
using them are already persisting the data, such as a TextBox. The value from the form will
always be set in the Text property. However, the TextChanged event will now fire with each
postback because the control cannot compare whether or not the value actually changed.

If your control does handle this event, you will not be affected by ViewState being disabled.
Other controls such as the ListBox and RadioButtonList may be populated declaratively
instead of binding them to a datasource. These will work like the TextBox in that they can give
you the currently selected value properly and redraw themselves with all of the available
selections with the declared values. And again, the events triggered when a selection changes
will not work as they would with ViewState enabled. In either situation, you can still get the
value the user has set and take action as needed.

Creating a Databound Control

In order to deepen your understanding of how databound controls work, you will learn how to
create a control that will be bound to an ObjectDataSource. You will be able to do more with this
control than you can with standard controls such as the GridView and DetailsView because you
will have the full source code, which you can modify and walk with the debugger. You can also
see directly what the consequences are for those modifications.

This new control, called the PersonListingControl, will take in several fields related to
people and locations and display them in one of two formats. It will also offer optional paging
support that is coordinated with the datasource, which is defined declaratively with the
DataSourcelD property on the control. It will also work with and without ViewState enabled.
This control will implement a great deal of functionality with very rich controls such as the
GridView.

WHY CREATE A CUSTOM DATABOUND CONTROL?

The purpose of this databound control is purely as a learning tool. You would be hard pressed to come up with
many scenarios where you cannot use the existing databound controls, from the GridView to the Repeater, to
serve your needs. What you cannot do with those controls is walk them with the debugger to see exactly what is
happening internally and experiment with various tests to see how you can improve on the process. Because
this databound control also inherits from CompositeDataBoundControl, it will behave like the standard
databound controls.

However, you could use this example as a basis for creating a practical solution that is closely cus-
tomized to your application to leverage every advantage available to you. You may not see a great deal of
improved performance just by converting a user control to a server control. With this example to get you
started, you may be able to compare the two and measure the difference.

91

92

CHAPTER 4 =" DATABOUND CONTROLS

When you dig into the code for this control, you will start to see all of the facilities that
are available to a control through the use of abstract classes. Just a few years ago, creating
controls was quite difficult. In ASPNET 2.0, it became much easier with the CompositeControl
and CompositeDataBoundControl, which are base classes that the standard ASPNET controls
are built on. You can also use these base classes, which automatically provide you with rich
Design Time support as well as extensive runtime functionality.

Both of these base classes include a method called CreateChildControls, which takes no
parameters and does not return anything. The control hierarchy is created in this method, which
is called automatically as a part of the event life cycle. In the CompositeControl you could over-
ride the behavior of this method, but in the CompositeDataBoundControl this method has already
been implemented. Instead, there is an abstract method by the same name that takes a couple
of parameters and has a result type. Because it is an abstract method, it must be implemented in
the inheriting class. The example method signature is shown in Listing 4-21.

Listing 4-21. CreateChildControls for CompositeDataBoundControl

protected override int CreateChildControls(IEnumerable dataSource, bool dataBinding)

{
}

// code

The CreateChildControls method is the core of the databound control. The overall
control is created by initializing controls and adding them to the Controls collection. The
Controls property is the accessor for this collection. When the dataBinding parameter is true,
the dataSource value should be holding onto data that can be enumerated over while creating
a collection of controls that are added to the Controls collection.

This may make you wonder why the dataBinding parameter would ever be false. You may
also wonder why it returns an integer. When a postback occurs, the ViewState must be applied
to the control hierarchy constructed when the control was first created. This means there
must be the same number of rows, but because you are not going to have access to the actual
data at this time, you have to create the skeleton of the previous hierarchy that will match the
data in ViewState. There must be the same number of items in the Controls collection as there
were before in order for the ViewState to be applied successfully.

For the PersonListingControl, these items are instances of the PersonRow control. This
is equivalent to a GridViewRow. Each item pulled from the IEnumerable value is passed to the
PersonRow through the constructor and added to the Controls collection. The PersonRow is
then responsible for drawing that individual row.

There are a few additional classes that provide Design Time support that you will find in
the downloadable sample code. The class library with these classes looks like Figure 4-3.

CHAPTER 4 =" DATABOUND CONTROLS

= 5 ClassLibrany
. [~ [=d Properties

4 (3] References

- | Controls
H cﬁ
] PersonlistingControl&ctionlist.cs
] PersanListingDesigner.cs
A PersonRowcs
L] PersonRowsCollection.cs

Figure 4-3. Files for the PersonListingControl

You will skip the PersonRow for the moment and look at the implementation of the
CreateChildControls method. When the control is created for the initial page request, it
will call CreateChildChild controls with the Boolean value set to true with a defined value for
the data. You can iterate over that data, create the PersonRow instances, and add them to the
Controls collection.

During a postback, before ViewState is applied, the CreateChildControls method must
be called with the Boolean value set to false for the dataBinding parameter and a null value
for the dataSource parameter. And somehow the number of items created in the previous
control rendering must be known at this point so the correct number of items are re-created.
Listing 4-22 shows the full implementation.

Listing 4-22. CreateChildControls Implementation

protected override int CreateChildControls(
IEnumerable dataSource, bool dataBinding)

{
Controls.Clear();

int count = 0;

if (dataBinding &3 dataSource != null)

{
IEnumerator e = dataSource.GetEnumerator();
while (e.MoveNext())
{
object datarow = e.Current;
PersonRow row = new PersonRow(count, datarow);
Rows . Add(row);
Controls.Add(row);
count++;
}
_itemCount = count;
}
else
{

if (_itemCount > 0)
{

93

94

CHAPTER 4 =" DATABOUND CONTROLS

for (count = 0; count < _itemCount; count++)

{
PersonRow row = new PersonRow(count, null);
Rows.Add(row);
Controls.Add(row);

}

}

CreatePagerControls();
AttachStyle();

ClearChildViewState();
ChildControlsCreated = true;

return count;

When there is data available, the first section of code moves over the enumerator, creates
instances of PersonRow, and adds them to the Rows and Controls collections and increments
the count. When there is no data, the member variable itemCount is used to ensure the cor-
rect number of empty items is added to the Controls collection. As you can see, a null value is
given to the PersonRow constructor. Finally, at the very end the count variable that was incre-
mented on both execution branches is used as the return value.

Getting the Data

In order to get the data that is passed into CreateChildControls, a databound control will fire
the PerformSelect method. The implementation details of the CompositeDataBoundControl
take care of calling this method when it is needed so you do not have to call it explicitly with
your own code. This is the method that raises the OnDataBinding and OnDataBound events
before and after the data is requested.

The data is represented as a DataSourceView, which could be a datasource that was manu-
ally bound to the control or defined by the DataSourceID property. In any case, you can get an
instance of it with the built-in GetData method, as shown in Listing 4-23.

Listing 4-23. GetData Method
DataSourceView dataSourceView = GetData();

This view has a method called Select that takes two parameters, DataSourceSelectArguments
and DataSourceViewSelectCallback, which are used to give the view additional details that will be
used when retrieving the data. In the case of an ObjectDataSource configured with a DataObject
and DataObjectMethod with paging enabled, the StartRowIndex and MaximumRows must be defined.
These values are passed as parameters to the DataObjectMethod. This is shown in Listing 4-24.

CHAPTER 4 =" DATABOUND CONTROLS

Listing 4-24. Calling the Select Method

DataSourceSelectArguments selectArguments = CreateDataSourceSelectArguments();
selectArguments.StartRowIndex = PageSize * Pagelndex;
selectArguments.MaximumRows = PageSize;

dataSourceView.Select(selectArguments, callback);

The callback takes the data and carries out the data binding. Declare this callback inline
with the PerformSelect method as a delegate. The callback delegate is shown in Listing 4-25.
Listing 4-25. DataSourceViewSelectCallback

DataSourceViewSelectCallback callback =
delegate(IEnumerable data)

{
if (IsBoundUsingDataSourcelD)
{
OnDataBinding(EventArgs.Empty);
}
PerformDataBinding(data);
};

Both the PersonListingControl and the ObjectDataSource have a property named
EnablePaging that controls how the Select method will work. If paging is enabled, it
requires the StartRowIndex and MaximumRows values and passes them into the declared
DataObjectMethod. If paging is not enabled, it uses a method that does not have those
parameters. However, the ObjectDataSource and PersonListingControl do not have to
have the same value for EnablePaging. If the ObjectDataSource has paging enabled and the
PersonListingControl does not, it will still use the method that takes the paging parameters.
When this mixed mode is the case, the values should be set to allow for all data to be returned
to the control. The code to these values is shown in Listing 4-26.

Listing 4-26. Select Arguments in Mixed Mode

if (dataSourceView.CanPage)

{
selectArguments.AddSupportedCapabilities(DataSourceCapabilities.None);
selectArguments.StartRowIndex = 0;
selectArguments.MaximumRows = Int16.MaxValue;

}

The MaximumRows property is set to Int16.MaxValue to allow for effectively unlimited results.
This mixed mode is useful when more than one control is using the same ObjectDataSource.
Once the Select method has been called on the view, that data will be sent to the callback.
To finish up, the RequiresDataBinding value must be set to false to indicate that the
data has been requested. Also, the MarkAsDataBound method, which updates the state of the
control to indicate that data has been successfully bound to the control, must be called.
The PerformSelect method is shown in Listing 4-27.

95

96

CHAPTER 4 =" DATABOUND CONTROLS

Listing 4-27. PerformSelect Method

protected override void PerformSelect()

{
if (!IsBoundUsingDataSourcelD)
{
OnDataBinding(EventArgs.Empty);
}

DataSourceView dataSourceView = GetData();

DataSourceViewSelectCallback callback =
delegate(IEnumerable data)
{ if (IsBoundUsingDataSourceID)
{ OnDataBinding(EventArgs.Empty);
gerformDataBinding(data);

};

if (EnablePaging 8& dataSourceView.CanPage)
{
DataSourceSelectArguments selectArguments =
CreateDataSourceSelectArguments();
selectArguments.StartRowIndex = PageSize * Pagelndex;
selectArguments.MaximumRows = PageSize;
dataSourceView.Select(selectArguments, callback);

}

else
{
DataSourceSelectArguments selectArguments =
CreateDataSourceSelectArguments();
if (dataSourceView.CanPage)
{
selectArguments.AddSupportedCapabilities(DataSourceCapabilities.None);
selectArguments.StartRowIndex = 0;
selectArguments.MaximumRows = Int16.MaxValue;

}

dataSourceView.Select(selectArguments, callback);

RequiresDataBinding = false;
MarkAsDataBound();

OnDataBound(EventArgs.Empty);

CHAPTER 4 =" DATABOUND CONTROLS

Getting the Total Rows Count

When paging through data, it is necessary to know the total number of rows. Because the data
returned from the selection is limited to the MaximumRows property, it does not represent the total.
Instead, you must use the Select method on the DataSourceView to get the TotalRowCount, as is
done in Listing 4-28.

Listing 4-28. GetTotalRowCount

private int GetTotalRowCount()
{
int totalRowCount = 0;
DataSourceView dataSourceView = GetData();
if (dataSourceView.CanRetrieveTotalRowCount)
{
DataSourceSelectArguments selectArguments =
CreateDataSourceSelectArguments();
selectArguments.AddSupportedCapabilities(
DataSourceCapabilities.RetrieveTotalRowCount);
selectArguments.RetrieveTotalRowCount = true;
DataSourceViewSelectCallback callback =
delegate

{
};

dataSourceView.Select(selectArguments, callback);

totalRowCount = selectArguments.TotalRowCount;

}

return totalRowCount;

The DataSourceSelectArguments method is adjusted by adding t