THE EXPERT’S VOICE® IN WEB DEVELOPMENT

Pro

WordPress it
Theme Development

YOUR COMPREHENSIVE GUIDE TO
WORDPRESS THEME DEVELOPMENT

Adam Onishi

MLLL L/ /o
Apress-


http://www.allitebooks.org

For your convenience Apress has placed some of the front
matter material after the index. Please use the Bookmarks
and Contents at a Glance links to access them.

Apress*

vww allitebooks.conl



http://www.allitebooks.org

Contents at a Glance

About the AUthOr ..o ————————————_ Xix
About the Technical ReVIEWET .......ccsveessrsssssssssmsssssmsssssssssssssssssssssssssssnssssssssssassnsnssnsnsnsansas xxi
Acknowledgments........ccccuuiissmnmmmnnmmmmmssssssssssnnnmmmssssssssssssnnneeessssssssnnsnnnneesssssssnnnnnnnnnssssssnnn Xxiii
INtrodUCTioN .....cciiieeniisnnnssssnnnsssnnssssnnnsssansssssnnssssnnnsssnnnsssnnsnssnnnsssnnnnssnnnnssannesssnnnnsnnnnssnnnnnnnnn XXV
Chapter 1: Getting Started........ccccccmmnnnmmmmmnsssnnmmmsssnsss s —————— 1
Chapter 2: Theme Anatomy and Template Hierarchy ........ccccciimimmmmssssssnnnnnnmmmmssssssssnnns 17
Chapter 3: Content Options and the LOOP ........ccciuvsssmmmmmmssssnsnmmsssssssmssssssssssssssssssnssssssnsnssns 45
Chapter 4: Using Custom PoSt TYPES ....curriummrmssmmmsssnnsssssnsssssnsssssnsssssnsesssnsesssnsessnnsesssnnessnns 79
Chapter 5: Creating Custom Taxonomies and Fields ........ccccvuuseenmmmssssssnmssssssssnsssssssnnnans 109
Chapter 6: Customize with Hooks, Shortcodes, and Widgets........ccummmmmmsnnnmmssssnnnnnnans 153
Chapter 7: Theme Options and the Theme Customizer..........c.cccvnemrmssensmsssssssssssssssnssnns 193
Chapter 8: Users, Roles, and Capabilities .......ccccturmmmmmssnsmssnmmmmmmmmssssssssnsmmssssssssssssssnns 231
Chapter 9: Plugins: When the Time Is Right..........cccciinnnmmmmmmnsemmmmmsssnmmmssssmmmssssns 273
Chapter 10: Security and Performance ........c..cccuussmsmmssssmssssssssssssssssssssssssesssssssssnsssssnsenss 297
Chapter 11: Distributing Your TREME ........cccuseemmmssnnmsssasssssasssssasssssanssssasssssnsssssanssssnnnsnss 333
Chapter 12: Extending Your THEME ......cccciuusuemmmmmsssnanmmssssssnmsssssssnssssssssnssssssnsnsssssnnnnnnsnns 359
Chapter 13: Plugin Development ..........occccinnnnnemmnmmnssessnmmmsessmmmmssssnssssssssssssssssessssnsnnns 393
Chapter 14: WordPress Multisite........ccuemmmmissemnmmmmsseesmmmsssessmmsssssssmmssssssnnssssssssnssssnnsnnns 439
11 . 463
v

[vww allitebooks.cond



http://www.allitebooks.org

Introduction

Welcome to Pro WordPress Theme Development and thank you for shelling out your hard-earned pennies to buy
this book. From here on, you'll delve deep into the world of WordPress, looking at everything there is to know about
WordPress theme development.

I'll cover every topic you can think of (and probably even a few you haven’t), covering all aspects of WordPress
theming. You'll learn the basic functionality of the core template files, how custom post types and taxonomies
work, how to allow users to customize your theme, and even how to build your own plugins. This book really is your
comprehensive guide to WordPress theme development.

I'll be covering everything in great depth so you can not only create this or that cool bit of functionality but
also understand how the core concepts work inside of WordPress. With that level of knowledge, you should be well
equipped to really be able to manipulate WordPress to create seriously advanced functionality and to know when
something might be better served being built with a different system.

With WordPress, you're joining a huge community, which I'll be discussing throughout the book. Because
WordPress is open source, the community is responsible for almost everything that goes along with it: from the
development of the core code through the documentation in the WordPress Codex (http://codex.wordpress.org/),
and including the plethora of available themes and plugins. If you really want to be involved in shaping the future of
WordPress, joining this community allows you to do so. Whether you want to be part of the continued development of
the core, to help out by reporting bugs, or by creating plugins for others to use with their system, it’s all part of shaping
the way we use WordPress today.

Besides the huge community, there is also a huge user base for WordPress that is always on the lookout for new
themes and plugins. I'll show you how you can capitalize on that as well. Developing a business as a theme developer
still has potential today; many people have made it a successful career.

Who This Book Is For

The Pro in the title refers more to the depth with which you will be learning WordPress, not the skill level required
for the contents to be accessible. If you are a capable web developer and have used at least a couple of content
management systems in the past, you should be able to keep up with the subjects discussed.

You should have at least a working knowledge of PHP. The code examples within will be explained in full,
enabling you to get up to speed easily enough. If you don’t know any PHP, I recommend that you begin by taking a few
lessons on the server-side language before you delve deep into WordPress.

Working with WordPress means that you will be writing a lot of PHP. Unlike some content management systems that
create their own tags for you to use, WordPress sticks with standard PHP functions, so understanding the core concepts is
necessary. To get you started, there are plenty of resources online, as well as a couple of books I thoroughly recommend:

e  PHP Academy (https://phpacademy.org/)

e Codecademy PHP (http://www.codecademy.com/tracks/php)

e  Treehouse PHP (http://teamtreehouse.com/library/topic:php)

e  Beginning PHP and MySQL (http://www.apress.com/web-development/php/9781430231141)

e  Essential PHP Fast (http://www.springer.com/computer/
database+management+%26+information+retrieval/book/978-1-85233-578-6)

XXV

[vww allitebooks.cond



http://codex.wordpress.org/
https://phpacademy.org/
http://www.codecademy.com/tracks/php
http://teamtreehouse.com/library/topic:php
http://www.apress.com/web-development/php/9781430231141
http://www.springer.com/computer/database%2bmanagement%2b%2526%2binformation%2bretrieval/book/978-1-85233-578-6
http://www.springer.com/computer/database%2bmanagement%2b%2526%2binformation%2bretrieval/book/978-1-85233-578-6
http://www.allitebooks.org

INTRODUCTION

WordPress Versions

This book has been predominately written using WordPress version 3.6 (and version 3.7 in some parts). Although
most of the code contained within should be compatible with most future versions of WordPress, be careful when
using the examples. If you are working with a more-advanced version of WordPress, make sure to check the Codex
regularly for updates.

WordPress is constantly being updated with new features and bug fixes; it'’s important that you stay up to date,
as you'll learn later on in the book. Updates will now be even more regular. Over the course of writing the book,
WordPress has gone from version 3.5 to 3.7, with a major update in version 3.8 due by the end of 2013.

What You Will Need

Before you begin, you need a few things to work with and have set up on your computer:
e  Your favorite text editor (Sublime Text 2 is my choice)

e Alocal server set up to run PHP and MySQL on your own machine (WAMP, MAMP, XAMPD, or
other MySQL, and PHP solution)

e A working WordPress install

Installing WordPress

Once you have your server set up with one of the “AMPs” (or the built-in Apache server on a Mac), you have to install
WordPress. Fortunately, this is pretty easy thanks to the “Famous 5-Minute Install” (http://codex.wordpress.org/
Installing WordPress#Famous 5-Minute_Install).

Although you could follow this link, because you've gone to all the trouble of buying this book in the first place,
I'll tell you how I install WordPress quickly whenever I work with the system.

Goto http://wordpress.org/download/ to get the latest version of WordPress; you can also find the direct
download of the latest version at (http://wordpress.org/latest.zip). Set up a folder for your site in your local
development environment and extract the contents of the ZIP file inside.

Set up a database for WordPress to use on your local environment. You can do this through PHPMyAdmin if you
have it set up or through a database program if you have one. Make sure that the database user has all the privileges to
read and write to the database.

With your database set up, visit the address for your development folder. You'll receive a message letting you
know that there is currently no configuration created and that you need to create one to set up WordPress. Select
Create a Configuration File and follow the steps to install WordPress with the database details and the information for
your new site.

You should be all set up and ready to start learning how to become a pro WordPress Theme developer.

XXVi

[vww allitebooks.cond



http://codex.wordpress.org/Installing_WordPress%23Famous_5-Minute_Install
http://codex.wordpress.org/Installing_WordPress%23Famous_5-Minute_Install
http://wordpress.org/download/
http://wordpress.org/latest.zip
http://www.allitebooks.org

CHAPTER 1

Getting Started

WordPress was born out of a desire for an elegant, well-architectured personal publishing system.

http://wp-themes-book.com/01001

An Introduction to WordPress

WordPress was created in 2003 by Matt Mullenweg and Mark Little as a fork of the previous system: b2/cafelog.

Since then, the open source system has evolved from a simple blogging platform into what is today: the most popular
content management system (CMS) on the Web. More than 60% of web sites using CMSs on the Web use WordPress,
and a whopping 15% of all web sites on the Web have WordPress at their core.

The release of version 3.0 (Thelonious) in 2010 saw the introduction of custom post types, easier taxonomy
management, and custom menus, which increased the use of WordPress as an out-and-out CMS. The 2012 WordPress
survey results backed this up, showing that the most dominant use case for WordPress sites is now as a CMS.

WordPress may not be a typical system build on a Model-View-Controller (MVC) framework, and many people
lament the “WordPressy” way of doing things, but it’s a process that over the years has worked well for its users and
developers. I'm not about to question it.

Community

WordPress is also a very community-driven project. Because it is open source, anyone can contribute, so the
development of the system is global with hundreds of contributors. Anything created around WordPress—from the
core to themes, plug-ins, and the documentation—all come from the community for the community.

If you want to get involved with WordPress development long term, a good way is to get involved with the
community, whether that is through the mailing lists or on Internet Relay Chat (IRC). After a while, you might even
answer questions on the support forums instead of asking them.

The Codex

Unlike other platforms, even the documentation for WordPress is created by the community, which is one of its
greatest assets. The WordPress Codex (available at http://wp-themes-book.com/01002 and shown in Figure 1-1) is
where you can find valuable information on everything and anything related to WordPress. From full-blown “lessons”
to a reference for almost every function available for use in templates, it’s a great resource that should be known by all
WordPress users.

The main page (shown in Figure 1-1) contains links to the main areas of the Codex, the main content links to the
basics of coming to grips with WordPress—for example, how to download the CMS, use key aspects, and access the
WordPress lessons directory. Because this is Pro WordPress theme development, you will probably find most use from
areas linked to in the sidebar on the far right, such as the Developer Docs (http://wp-themes-book.com/01003) and
Advanced Topics (http://wp-themes-book.com/01004) sections.

[vww allitebooks.cond



http://wp-themes-book.com/01001
http://wp-themes-book.com/01002
http://wp-themes-book.com/01003
http://wp-themes-book.com/01004
http://www.allitebooks.org

CHAPTER 1 © GETTING STARTED

eno Main Page » WordPresa Coo »

& (] codex wordpress.org & oo0Os=s

_\ RG
@I WORDPRESS s Showcase Themos Plugine Mobile Support Got Involved About Blog -n-.--nm

Codex Codex ook Log o

Main Page

Walcoma to the WordPress Codex. the online manual for WoedPress and a living repository for WordPress infomation and

documantation

Conte:
What You Most Need to Know About DI
WordPress

dPross Foaturos

Codex Resources

| wordpressorg

Figure 1-1. Get used to using the codex as much as possible

I regularly explore one of the main areas of the Developer Docs in the Codex: the Functions reference
(http://wp-themes-book.com/01005). It holds a list of almost every function available in WordPress and how to use
it, so by the time you finish this book you'll likely be pretty au fait with it as well.

WordPress Themes

Themes are what bring your content to life through the power of the WordPress core and database. Using a
combination of PHP template files and Cascading Style Sheets (CSS), as well as optional JavaScript files and images,
themes manage all the structure and style of your web site. Here’s how WordPress describes the theme system:

"Fundamentally, the WordPress Theme system is a way to "skin” your weblog. Yet, it is more than
Jjust a "skin.” Skinning your site implies that only the design is changed. WordPress Themes can
provide much more control over the look and presentation of the material on your website.”

http://wp-themes-book.com/01010

Themes in WordPress weren’t always there from the start; they appeared in version 1.5 (Strayhorn). Before then,
the job of structuring blogs was down to a simple templating system using PHP, usually created as just one template
file with any others being handled by PHP include() tags.

The introduction of themes was the beginning of a whole new world for WordPress users. They could now “switch
between themes with a single click” or build their own custom themes using a variety of template files at their disposal
(more on this later).

vww allitebooks.conl



http://wp-themes-book.com/01005
http://wp-themes-book.com/01010
http://www.allitebooks.org

CHAPTER 1~ GETTING STARTED

Default Themes

This introduction of theming WordPress also came with one of most iconic themes WordPress has seen throughout
its years: Kubrick. Named after the designer Michael Heilemann's favorite movie director, Stanley Kubrick, the
theme showed off several of the new powerful features of WordPress 1.5, including the capability to break your site
up into separate sections with template files. It also showed off the new template functions. You can see Kubrick in
action in Figure 1-2.

8086 / ..ij\.dimo_nishl i =2 el
€« - C [ review.dev/ B & o @ 2 u =

Adam Onishi

Adam Onishi

Just another WordPress site

Home . | _search
Archives
Edit this entry. » September 2012
» September 2008
» June 2008
Leave a Reply » f“‘fffé’:g
f con = Apri
Logged in as adamonishi. Log out » B
Categories

» aciform (2)

» antiquarianism (1)
» arrangement (1)

» asmodeus (1)

» broder (1)

» buying (1)

4 = Cat A (2)

»Cat B (1)

» Cat C (1)

Submit Comment

Figure 1-2. The iconic Kubrick theme by Michael Heilemann

This default theme for WordPress lasted half a decade and was replaced only when version 3.0 (Thelonius) was
released. Even today, the theme is still used by more than 4 million WordPress users and is the 37th most popular
theme in the WordPress.com themes database.

vww .allitebooks.cond



http://wordpress.com/
http://www.allitebooks.org

CHAPTER 1 © GETTING STARTED

The Twenty-somethings

Since the release of version 3.0, WordPress has released a new default theme each year named Twenty-something,
with the aim of showcasing the latest new features of the CMS. The first of the Twenty-somethings, Twenty Ten, is still
the most downloaded theme in the WordPress themes repository, with more than half a million downloads. It is much
improved from Kubrick (see Figure 1-3).

Twenty Ten it it Wil dhiing

dAl
Search

A Sticky Post

' o October 2012
This post is sticky. It gets a special style and always resides at the top of the home page. M T WY F 8 8
Lorem ipsum dolor sit amet. Suspendisse bibendum nulla vitae eros lobortis
ullamcorper. Aenean pretium hendrerit ipsum, vitae aliquet ligula commodo vitae
nonummy est aliquet. Ut ultrices, nulla id fringilla condimentum, augue tellus vehicula
nisi, volutpat tincidunt mi nisi quis ligula. Vivamus in lectus nisl. Pellentesque viverra
mauris eget lectus vestibulum hendrerit fringilla arcu eleifend. Nam ut turpis diam, in
varius tellus. Quisque id nisl neque, eget aliquet nibh. Cras cget urna velit, ac egestas =
quam. Fusce lobortis, risus id cursus vestibulum, risus mi tempor turpis, sit. Recont Posts

« The Great Wave off Kanagres

= WYSIWYRG

Figure 1-3. Twenty Ten: Still the most popular theme with 500,000+ downloads

Why this popularity? Probably because it was the first of the Twenty-something themes, which for the first time
in years gave users a brand new style of WordPress. Twenty Ten introduced all the major new functionality introduced
in WordPress 3.0 and brought a simple clean design with great typography that was also user-customizable, allowing
people to mold their own versions of this incredibly popular theme and design.

WordPress version 3.2 (Reinhardt) heralded the release of the Twenty Eleven theme, which was the first theme
to allow users to choose custom page layouts and offered theme options in the form of choosing colors and custom
backgrounds.

The next default theme was of course Twenty Twelve, released along with WordPress version 3.5 (Elvin).

It showed off plenty of the new goodies at the time, including the Theme customizer and a new, clean, mobile
first responsive design. Twenty Twelve is also the theme that brought with it a custom home page template and
widgets, which at the time, seemed to be a nod to the shift of WordPress to a CMS as opposed to a conventional
blogging platform.

vww allitebooks.conl



http://www.allitebooks.org

CHAPTER 1 * GETTING STARTED

Twenty Thirteen

Twenty Thirteen is the latest of the Twenty-somethings (see Figure 1-5) a dramatic contrast to past years’ themes. The
focus has shifted massively back to blogging with extreme use of the new post formats introduced in version 3.1 and
with the latest version, 3.6, there has been even more focus on the post formats interface and coding (Figure 1-4).

Format

(® s Standard

O B aside
O [c4 image
O [# video
O 66 Quote

) & Link

Figure 1-4. The new Post Formats selector in version 3.6

800 y %thnt\l‘rhirteenl'meh: x‘ -

L C‘ 4 ythi " dpress.com Cj::;? 'ﬁ .: @ U u

Home Blog Archives About Q

Read More About Twenty Thirteen @ February 18, 2013
More details about this theme over on Make WordPress Core,

Popular Science

W
Founoeo MONTHLY 58 72

NOW

Figure 1-5. A preview of Twenty Thirteen

vww allitebooks.conl



http://www.allitebooks.org

CHAPTER 1 © GETTING STARTED

The theme, released earlier this year with version 3.6, is extremely bright and colorful with strong serif headings
(Bitter) and a neat flowing sans-serif body copy (Source Sans). There’s now unique styling for each post format,
putting an emphasis on the new functionality like that of the updated post formats and new media player.

As much as I can’t see the new version of WordPress making another dramatic shift away from acting as an out-
and-out CMS, I can see it as a move from the people at Automattic to turn the default theme’s focus back to its primary
job as a blogging theme for use more with WordPress.com than with the self-hosted solutions you see today.

There is a lot to be learned from the way themes are built in terms of new functionality from the updated CMS. But
you can also see how WordPress has evolved into what it is today and ultimately what you're getting yourself into as a
WordPress theme developer. Throughout this book, I hope to give you the skills to not only understand how a theme
works but also to build your theme from scratch and be a true “Theme Wrangler” (Automattic’s words, not mine!).

WordPress in the near future

At the time of writing WordPress is on version 3.6.1 a recent update that I'll talk about more throughout the book, but
by the time of release the next major update 3.7 will probably have already launched. Scheduled for mid-October
version 3.7 is a major update but focuses more on the infrastructure of the system. From reading the Make WordPress
Core blog it seems like automatic updates (for minor versions only) will be a big feature coming to version 3.7,

along with updates to search and a lot more system and development updates, like inline documentation and a new
structure for the Subversion repository.

The next and possibly more interesting major update is also being worked on in parallel with the version 3.7
update. Version 3.8 looks at the moment as if it will include a major update to the WordPress admin interface, it’s
something that WordPress. com users have had for a while now but will be coming to WordPress core in a few months
(or less). The new admin shown in Figure 1-6 is a shift to a much cleaner design removing a lot of gradients and
multiple colors.

8.0 0/ T pustiousd «sdam onish_ -
| « (e review.dev/wordpress/wp-admin /index.php [ k| =
i apps [ Natwest @ nseC PN Santander [ Virgin - E.OW Apress Ugload - ap WP Shorten [ Other Bookmarks

) €9 Adamonishi B + New Howdy, adamonishi &

h Screen Options Help
& Destiboard Dashboard
Home

Right Now A QuickPress
Updates

CONTENT DISCUSSION
A Posts 25 Posts 0 Comments

Add Media

07 Media 15 Pages 0 Approved

52 Categories 0 Pending

49 Tags 0 Spam

B Pages

Theme Pro WordPress - book dev

Search Engines Discouraged Save Draft = Reset m

You are using WordPress 3.6.1.

§ Comments

¥ Appearance

K¢ Plugins

e Users Recent Drafts
Recent Comments

4~ Tools This is test 1

Ala rammante vuat Laram inciim dalar cit amat rancartatire adinicicine
Figure 1-6. The new WordPress admin design

6


http://wordpress.com/
http://wordpress.com/

CHAPTER 1 © GETTING STARTED

At the moment it’s possible to see the new admin design thanks to a plugin (MP6 - http://wp-themes-book.com/
01006), which is forming part of the active development of the new feature. This is part of a system the WordPress core
team is calling “Features as Plugins.”

Features as Plugins

The new system for feature development at WordPress is taking the route of writing new features as plugins instead
of into a development branch of the core. This has a whole host of benefits to the core development process, as Sam
Sidler mentions in the WordPress core blog:

The features-as-plugins model makes it easy to wait for a feature to be ready before including it in
a release. It also allows for a lot of experimentation.

Sam Sidler (http://wp-themes-book.com/01007)

Another major benefit is that if these new features developed as plugins don’t eventually make it into the
WordPress core, they can still live on and benefit the community and not feel like the developers time has been
wasted. New features have always come with the suggestion to be developed this way before eventually the core team,
along with the feature team add it to core, however this is now become a formalized process.

Looking at the core blog currently there’s a whole host of new features being developed as plugins:

e  MP6 - the new WordPress admin interface

e  Omnisearch - the new search system for the WordPress admin
e DASH - a new dashboard design

e THX38 - looking at improving the themes part of the admin

e Featured Content - a way to allow users to highlight content

The next default theme Twenty Fourteen

Another update due to be released with potentially version 3.8 is of course a new default theme. The preview of next
year’s planned Twenty Fourteen theme has also appeared on the make WordPress core blog (Figure 1-7). Similar to
Twenty Thirteen this is another radical move away from past default themes, including a lot of differences from it’s
soon to be predecessor.


http://wp-themes-book.com/01006
http://wp-themes-book.com/01006
http://wp-themes-book.com/01007

CHAPTER 1 © GETTING STARTED

(8] 5
B 00O @ Twenty Fourteen | A bea L
— c twentyfourteendemo.wordpress.com M n 2 =
B vatwest @ nsec P santander Virgin = LON Apress Upload - a (& other Bookmarks

Tmnty Fa]rtaen E APARENT PAGE FULL WIDTH PAGE HTML ELEMENTS IMAGE ALIGNMENT AND STYLES

post ]

MUSIC

JAZZWITH BARRY ALLEN

x Nyl

18 s i “
ARCHITECTURE

ITHINKTHIS ISCHEESE — TELLME IF TWO'S COMPANY SCARIEST BUILDING EVER?
YOU KNOW

Figure 1-7. The new Twenty Fourteen theme preview

I think this goes to show how Automattic are looking at using the default themes nowadays, as more experimental
and innovative themes, looking to show off the latest features in the WordPress core releases. With Twenty Thirteen
came a focus on blogging and post formats, something that was worked on for release of WordPress at that time.
Twenty Fourteen is set for release with version 3.8, scheduled for early December 2013, the main focus of this release
seems to be the admin UI at the moment. The Twenty Fourteen theme design is likely to therefore cover aspects of
WordPress as a whole and show off more general aspects than specifics tailored to the release.

Themes from Scratch versus Premade

Frameworks, templates, boilerplates and resets make for a very speedy production of prototypes
and can help create complex and cross-compatible layouts requiring minimal prior knowledge.

—Laura Kalbag

The last few years have seen a massive surge in development frameworks, and the popularity of the Twitter Bootstrap
and the 960 Grid System, to name but two, have seen a rise in the battle of writing from scratch versus building on top
of a ready-made solution. The quote from Laura Kalbag covers some of the great aspects of these solutions.

In the article from which the quote is drawn (http://wp-themes-book.com/01008), Laura makes a good
argument against frameworks being such great solutions. From a lack of good markup and semantics, to being a quick


http://wp-themes-book.com/c01l08

CHAPTER 1 © GETTING STARTED

fix that ultimately could lead to an absolute headache in maintenance further down the line, frameworks should be
left to prototyping and not to production code because it sullies a craft that many work so hard for.

You know which side I'm on. The argument mentioned previously applies directly to theme development: if you
don’t take the time to build your themes from scratch (or from a base you develop yourself—more on that later), you
might be dealing with poor code that can lead to more hassle than it’s worth.

There are certainly some positives of taking a premade theme and hacking it yourself until you have what you are
aiming for. It’s a quick process, you might think; most of the work is already done for you. It’s great if you're not very
familiar with PHP, HTML, JavaScript, or CSS.

Taking something that another developer has written and trying to modify the way it works isn’t always as easy
as it seems, however. Most developers have their own nuances, so decoding the theme might take a lot longer than
you think.

There might also be licensing to consider. If you're planning to buy a premium theme and modify it, you might
find that it’s actually prohibited by the terms of the sale. Although WordPress is an open source platform, private
designers/developers may want to protect their work and not release it under an editable license. For me, these
are more than enough reasons for building your themes from scratch. Good thing you're reading a Pro themes
development book!

PHP in WordPress

Now it’s time to take a look at some code. But before you dig into WordPress theming fully, I want you to take a quick

look at PHP and how it’s utilized within WordPress. Please take a few minutes to read on for the rest of the chapter

because I'll cover some of the nuances of WordPress and how it uses PHP, which may come in handy later in the book.
I think this is the main reason why I have those strange tingly feelings about WordPress; it’s the way it treats

PHP that makes me enjoy using it so much. When it comes to building your templates and creating your themes,

there’s one thing you see in WordPress that you don’t often see in many other CMSs: it is straightforward PHP. A lot

of other systems create their own template tags using special syntax and different ways of passing in information, but

WordPress uses this well-known language. I think that’s why WordPress is one of the easier systems to come to grips

with; although there are still functions to get to know and logic to understand, most of it boils down to getting your

hands dirty with straightforward PHP.

Note Throughout the book, | assume that you have at least a working knowledge of PHP in general; for a list of
handy resources to get you up to speed, refer to the introduction before this chapter.

Functions

Most things you deal with in WordPress are functions, whether template tags such as the_title() orthe content(),
or theme-related functions such as get_header() orwp_head(). Functions in WordPress can work in several ways:
they can return data to a variable or output something directly to the template. In the following example, two
functions act on similar content: the get_the_title() function returns the title string, and the the_title function
echoes it straight out to the HTML:

// get the title() returns the title to a variable for use in the PHP code
$title = get_the_title();

// Do stuff with $title variable

echo "<h2>$title</h2>";



CHAPTER 1 © GETTING STARTED

// whereas the_title() prints the title out straight from the function ?>
<h1><?php the_title(); ?></h2>

Some functions can also take parameters, so you can choose how the data is returned. In WordPress, there are a
variety of ways in which functions can receive parameters. The usual way is the following:

do_something cool('dance', true);
You can also pass in an array as the only parameter (this is one of the WordPress favorites):

$params = Array (
'argl' => 'dance’,
'arg2' => true

do_something_cool($params);
Finally, there is the query-string style of parameter passing:
do_something cool('argi=dance8arg2=true")

If you want to keep the code a little tidier, you can separate out the parameters inside the string by adding spaces
around the ampersands, like so:

do_something cool('argi=dance & arg2=true');

This final method is nothing new to PHP; it is used in WordPress quite often, but not in all functions. It is mostly
found in the functions beginning with wp_ or in the WordPress query functions (discussed a bit later). The reason for using
these types of parameter passing is for functions with a lot of defined parameters. One example iswp_list categories(),
which has a total of 24 parameters. Instead of writing out a long list of comma-separated options in the function call, you
can use an array-style or query-string-style function call and set only the ones you want to change. WordPress uses the
defaults for all the other parameters.

Objects and Classes

You'll mostly find objects and classes behind the scenes in WordPress, but every now and then they appear in the
theming system and can come in very handy. The main example is when you’re creating a custom query in one of
your templates. (I won’t go into detail about it too much here because it will be covered in Chapter 3.)

Objects can be thought of as representations of things that have properties and methods. In WordPress, an object
is an individual post, for example. The post’s properties include its title or content; and its methods are functions such
as save, edit, and so on. A class can be thought of as the blueprint or plan for that object, so in WordPress WP_Query is a
class that can be used to create instances of query objects.

When you're theming WordPress, you don’t have to worry too much about creating classes until you're building
plug-ins (you'll learn more in Chapter 8). For now, take a look at how to create and work with objects in PHP. I'll use
the WP_Query object as an example.

To create a new object, you use the new keyword and the name of the class:

$new_query = new WP_Query();

10



CHAPTER 1 © GETTING STARTED

Now the variable $new_query becomes the object. To access the methods or properties of the object, you need to
use the object operator -> followed by the name of the property/method:

$new_query->the post();

You'll learn more about the WP_Query object in Chapter 3 when you look at ways to get content for templates. The
important thing to note here is how you access the methods of an object, because you'll be using them a lot, later in
the book.

Alternate Syntax for Control Structures

Control structures are blocks of code that affect the flow of the code. They usually come in the form of conditional
statements (if, switch, and so on) and loops (for, while, foreach, and so on). In PHP, there are two different ways of
expressing these control structures. The first is the usual way in PHP, which uses curly braces:

if( condition ) {
// do something
}

The alternate syntax that replaces the opening curly brace with a colon (:) and the closing curly brace with a
closing statement depending on the control being used: endif;, endfor;, endwhile, and so on, as shown here:

if( condition ):
// do something
endif;

This alternate syntax also applies to the else: and elseif: statements, which look like this:

if( condition ):

// do something
elseif( condition ):

// do something different
else:

// if all else fails do this
endif;

In WordPress theme development, you see this style of syntax an awful lot because alternate syntax is the main
way of using control structures in the theme templates. For example, take a look at the loop in the index.php template
from the default theme, Twenty Twelve:

<?php if ( have posts() ) : ?»
<?php /* Start the Loop */ ?>
<?php while ( have posts() ) : the post(); ?»
<?php get_template_part( 'content', get post_format() ); ?>
<?php endwhile; ?>
<?php twentytwelve_content_nav( 'nav-below' ); ?>
<?php else : 2>
<h1 class="entry-title"><?php _e( 'Nothing Found', 'twentyeleven' ); ?></h1>
<?php endif; endwhile; ?>

11



CHAPTER 1 © GETTING STARTED

The major advantage of using this alternate syntax is readability. It makes the template files much more
understandable, and when you look through them, you can easily see which control structure you are inside based on
the more obvious endpoints.

There are a couple of things to consider when using this syntax. If you are nesting control structures (of similar
or different types), you must continue to use the same syntax at each level, and the alternate syntax should be used
predominantly in the display template files in the theme. When writing code inside the functions file or any template
that doesn’t necessarily deal with HTML output, you should use the standard syntax with the curly braces (you’ll take
alook at that and more in the following “Coding Standards” section).

Coding Standards

With WordPress being such a large and distributed project among the core and thousands of plug-ins and themes
available, it makes sense that it should have a set of standards. WordPress uses these standards as a way of ensuring
that the code stays as accessible as possible, allowing anyone who develops on the platform to work on code created
by anyone else. This is extremely important given the nature of WordPress as open source software.

Keeping to the coding standards ensures that the code is easier to maintain and debug. If code is well-formatted
instead of a scattered mess, it is easier to see where the bug is on line *n*. Standardization also enables people to
easily learn from the code you've written, meaning that others can start coding based on something you've done. It is
always a good idea to give back to the community in this way.

Let’s have a look at some of the standards WordPress wants you to adhere to when writing your code.

Note The full details of the WordPress code standards can be found in the codex at http: //wp-themes-book.com/01009.

No Shorthand PHP Tags

When writing PHP code in WordPress, you should always use full PHP tags:
<?php // some code ?>
Never use shorthand tags:

<? // some code ?>
<?=$title ?»

While this appears in the coding standards to ensure WordPress code is kept consistent throughout, it’s also
a good idea to stick to the full PHP tags regardsless due to the frailty of support on servers. Prior to version 5.4 of
PHP, shorthand tags needed a flag to be set in the PHP.ini file to function. As you cannot always guarantee this will
be set correctly it’s best to stick to the full tags for you PHP files. Further to this, there is talk that in version 6 of PHP
shorthand tags will be deprecated entirely, so best to be safe than sorry.

Indentation, Spacing, and Tabs

All code throughout the themes and plug-ins should reflect a natural indentation flow, including cases of following
the correct HTML flow when mixing PHP and HTML in templates. For example, the flow here is correct:

<div id="primary" class="site-content">
<div id="content" role="main">

12


http://wp-themes-book.com/01009

CHAPTER 1 © GETTING STARTED

<?php while ( have_posts() ) : the_post(); ?>
<?php get template part( 'content', 'page' ); >
<?php comments_template( '', true ); ?>

<?php endwhile; // end of the loop. ?>

</divy><!-- #content -->
</div><!-- #primary -->

All indentations should be made with tabs and not spaces, except for mid-line indenting in which spaces should
be used to line up values in lists of variable assignments and associative arrays:

$var = "These";
$var2 = "are";

$var_long = "variables";

$var_array = Array (

'argl' = 'this',
‘arg2' = 'is',
'arg_4' = 'array’,
‘arg 3' = 'an',

);
It’s also in the coding standards (and is good practice) to keep a comma after the last item in the array. This
makes for easier switching of the order in the array and is perfectly valid in PHP.
Use spaces in control structures to ensure better readability for the conditions and statements, as well as in

function calls when passing parameters. When accessing arrays, use spaces around the index only if it is a variable,
not when it’s a string.

if( condition ) {
// do stuff
}

for( $i=0; $i<10; $i++ ) {
// do stuff 10 times

}

do_stuff( $argl, $arg2 );

echo $array[ $idx 1;

echo $array['index'];

Quotes and Braces

WordPress coding standards are fairly lenient concerning using quotes in PHP. You can use whichever ones are best
suited for the job. If you're evaluating a variable in the string like so, it’s best to use double quotes to avoid having to
escape the string to evaluate the variables:

echo "<h2>$title</h2>";

13



CHAPTER 1 © GETTING STARTED

Usually I prefer to use single quotes because I use double quotes in my HTML. Again, I don’t have to escape any
strings when writing the following line:

echo '<a href="/about">About us</a>';

In control structures, braces should be used to define blocks unless you are in a template file for which the
alternate syntax applies. Although the WordPress codex says that braces can be omitted for one-line statements, I
prefer to always use them for better readability. The layout of braces should follow this structure:

if( condition ) {
// do stuff
} elseif( condition ) {
// do something else
} else {
// do this if all else fails
}

Yoda Condition

A great convention to stick to, the Yoda condition requires you to keep the comparison variable on the right side of the
conditional statement. This means that a missed equals sign results in a parse error instead of returning true; it takes
time to debug a hard-to-spot mistake.

if ( true == $the force ) {
$victorious = you will( $be );
}

Naming Conventions

In WordPress, you should stick to strict naming conventions. All words should be separated by underscores at all
times and the following rules should be followed:

e  Functions and variables should be lowercase.

e  (Class names should always use capitalized words.
e  All constants should be uppercase.

e CamelCase should never be used.

e  File names should be lowercase with words separated by hyphens.

HTML

In order for the HTML for the code to be accepted by WordPress, it needs to pass validation using the W3C validator.
All tags should be properly closed; even though WordPress is still based on the XHTML 1.0 standard, code should still
be in line with XML serialization, which is part of the HTML5 standard, so “XHTML5” (essentially HTML with self-
closing tags and strict lowercase elements) is fine here.

WordPress keeps these coding standards to ensure that the code is easily readable and accessible. To write good
code, always put these ideals ahead of brevity or cleverness of code.

14



CHAPTER 1 © GETTING STARTED

Debugging WordPress

Finally, I want show you how to debug code as you develop your theme in WordPress. WordPress is actually set
up really well for handling debugging; it comes with its own built-in system to help you through the development
process. The debugging system enables WordPress to not only help its developers but also standardize the code
within the plug-ins, themes, and core.

Ensuring that your theme is well tested is part of the requirements to gain any promotion from any official
WordPress tools such as the themes or plug-ins repositories. Using the WordPress debugging system is not
mandatory, but comes highly recommended and is a great resource so is worth taking advantage of.

To enable debugging in WordPress you simply have to set the ‘WP_DEBUG’ PHP constant to true, which is usually
best done through the wp-config.php file as standard. ‘WP_DEBUG’ is meant for use only during development, so it
should not be left in for a live site. By the time your web site/theme goes live, you should be thoroughly tested and not
be relying on ‘WP_DEBUG’ to catch anything.

define('WP_DEBUG', true);

An alternative way to do this, used by Joost de Valk at Yoast, is to put the constant declaration inside a conditional
so it can be used if you encounter any issues during development:

if ( isset($ _GET['debug']) 8& $ GET['debug'] === 'debug') {
define('WP_DEBUG', true);
}

This is a nice idea, but I still recommend keeping this code only in your WordPress setup for development, not
in live sites, mainly because any code you put out in the world should be heavily tested and free from error. If an error
were to occur on the live site, the one thing you most certainly don’t want to be doing is debugging on your live server.
So to remove that temptation, I recommend keeping any handy tricks like this safely in your development code.

By enabling ‘WP_DEBUG’, you get access to a whole host of information. It enables all PHP errors, warnings, and
notices; and although some of these notices/warnings might relate to code that is working fine, fixing it is usually
quick and easy and is worthwhile doing to prevent future issues. Using ‘WP_DEBUG’ also notifies you if you are using
any deprecated WordPress functions and gives you direction about which newer function you should be using.

There are a few other options that come with the WordPress debugging system that enable you to deal with the
debugging information the way you want:

e  'WP_DEBUG_LOG': When set to true, this option stores all errors, warnings, and notifications
in a debug.log file in the wp-content/ folder.

e  "WP_DEBUG_DISPLAY': Set to true by default, this option inserts all debug information as
and when it happens. If setting to false, ensure that you use ‘WP_DEBUG_LOG'’ to store the
information somewhere.

e  'SCRIPT_DEBUG': This option can make the WordPress admin use the development styles and
scripts in case you are editing anything in the WordPress admin area (see Chapter 11 for more
information).

e  'SAVEQUERIES': When set to true, this option saves all queries made to the database as well,
as where they were called from in an array, so you can get more detail about how the pages
are constructed. It can cause some performance issues, however, so turn this feature on only
when actively debugging your theme.

On top of all the great built-in information that you can access from WordPress, there are many plug-ins out there
to help you with debugging and testing your theme. I'll cover some of them in Chapter 7 when I discuss when and why
to use plug-ins.

15

[vww allitebooks.cond



http://www.allitebooks.org

CHAPTER 1 © GETTING STARTED

Summary

This chapter introduced you to WordPress and, more specifically, WordPress theme development. You took a brief
look at how it all got started and some of the history behind the more iconic of the WordPress default themes that have
helped shape WordPress theme development as we know it today.

I also gave you a quick guide to PHP and how it relates to WordPress. This knowledge will help make the
coding you do throughout this book seem relatively straightforward, allowing you to concentrate on the nuances of
WordPress theme development.

In the next chapter, you start to build a WordPress theme when you take a look at the anatomy of a WordPress
theme and how to use the template hierarchy to your advantage to target specific pages for unique functionality.

16



CHAPTER 2

Theme Anatomy and Template
Hierarchy

This chapter looks at the anatomy of a WordPress theme, starting with the absolute bare minimum files needed for
creating a theme, to creating templates, and to fully customize every aspect of your theme.

All WordPress themes can be found in the /wp-content/themes/ directory, with each theme located in its own
folder (see Figure 2-1). In the latest install of WordPress version 3.7, you already have two themes available for use:
Twenty Twelve and the latest version Twenty Thirteen.

e 0o (] themes
EIDE = LD ERERIEREE Q
Name 4 Date Modified Size Kind
& index.php 15 Apr 2009 20:57 30 bytes PHP
» ] twentythirteen 1 Aug 2013 21:49 - Folder
> [ twentytwelve 1 Aug 2013 21:49 - Folder

3 items, 6.25 GB available

Figure 2-1. The default themes directory

Note the strict naming convention for WordPress themes: theme names must never include any numbers;
otherwise, the WordPress theme manager won't display them (see Figure 2-2). You'll learn more shortly about how
to customize the information displayed for your theme in the themes manager.

17




CHAPTER 2 © THEME ANATOMY AND TEMPLATE HIERARCHY

enon

Manage Themes « Adam O = L
| € & € [ 12devs.cevrw +8 /wp- admin [themes.ohp g oo0=

Howdy, adamonishi I

Twenty Twelve

Bythe WordPressteam  Version 1.1

The 2012 Tom or WOrIPress & & lully rsponsive Meme at looKs Graat on any device. Feaures include a
front page lemplate with its own widgets, an optional display font, styling for post formats on both index and
single views, and an 0ptonal no-sidebar Dags 1wmpkale. Make I YOUrS with & cussom menu, header image, and
background

nd

Customiza Widgels Manus Header Backgrour

£ Plagi
- Available Themes Soarch stalled Themes  Faature e
H Users

Tl Tools

17| Settings

Twenty Eleven
By e WorcPross ion

Actvate  Live Prevew  Datails

Figure 2-2. WordPress theme manager

The Bare Minimum

Let’s start with the absolute basics of a WordPress theme. It must contain two files:
e style.css
e index.php

Every theme created must have at least these two files, as well as any others that the developer chooses to
include. Even though you can use other templates (discussed shortly) to display all your content, you have to have
the index file because it is the final fallback for anything that gets displayed in your theme. If one of these files from
your theme is missing, it simply won’t appear in the theme manager for you to activate it.

The index.php File

WordPress uses the index. php file as the default file for rendering a web site. If there aren’t any other files in the
theme, WordPress will use this template for everything; and if there is no file for the type of content being asked for,
WordPress will fall back to index. php. You could create your theme with an index.php file and a style.css file;

but as you'll see through the course of this chapter, there are plenty of ways to customize the output of your web site
using the templates in WordPress.

18



CHAPTER 2 © THEME ANATOMY AND TEMPLATE HIERARCHY

The style.css File

The style.css file should be the main Cascading Style Sheets (CSS) file in a WordPress theme. It is perfectly fine
to create more style sheets for more maintainable code, but the main style.css file should always exist.

The most important feature of the style.css file is that it holds all the metadata for your theme, which is
displayed in the theme manager. They are set through the style sheet header in comments using specific attribute
names, which WordPress finds and outputs in the theme manager. Here are the comments from the Twenty Twelve
style.css header:

/*

Theme Name: Twenty Twelve

Theme URI: http://wordpress.org/extend/themes/twentytwelve

Author: the WordPress team

Author URI: http://wordpress.org/

Description: The 2012 theme for WordPress is a fully responsive theme that looks great on any
device. Features include a front page template with its own widgets, an optional display font,
styling for post formats on both index and single views, and an optional no-sidebar page template.
Make it yours with a custom menu, header image, and background.

Version: 1.1

License: GNU General Public License v2 or later

License URI: http://www.gnu.org/licenses/gpl-2.0.html

Tags: light, gray, white, one-column, two-columns, right-sidebar, flexible-width, custom-background,
custom-header, custom-menu, editor-style, featured-images, flexible-header, full-width-template,
microformats, post-formats, rtl-language-support, sticky-post, theme-options, translation-ready
Text Domain: twentytwelve

This theme, like WordPress, is licensed under the GPL.
Use it to make something cool, have fun, and share what you've learned with others.
*/

This is a very comprehensive style sheet header that includes everything from the author of the theme to any
additional details that are found at the bottom of the comments.
Here’s a quick guide to the information you can set in the style sheet header:

e Theme Name: The full title of the theme, including spaces; it can be capitalized.
e  Theme URI: The location in which you find the theme to download.

e Author: The theme creator’s name. Although WordPress suggests the username the author
uses to log in to wordpress.org, it’s left up to the author.

e  Author URI: The author’s web site.
e Description: A brief description of the theme’s features and design.

e Version: The version of the theme as you work on it. As you update your theme and upload
it to the WordPress themes directory, the version number is used to trigger notifications for
theme updates for anyone using your theme.

e License: Thelicense the theme uses.

e License URI: The web address in which you can find more information on the license.

19


http://wordpress.org/extend/themes/twentytwelve
http://wordpress.org/
http://www.gnu.org/licenses/gpl-2.0.html

CHAPTER 2 = THEME ANATOMY AND TEMPLATE HIERARCHY

e Tags: Alist of appropriate tags that can be used to help users find the theme in the
WordPress repository. The full list of acceptable tags can be found at
http://wp-themes-book.com/02001.

e Text Domain: A unique identifier for use in localization in WordPress. This is often a
lowercase (with no spaces) version of your theme name (refer to the previous Twenty
Twelve example).

Any further comments about the theme can be added to the bottom of the style sheet header comments.
Not all the preceding meta information is required for the theme; WordPress picks up the information that is
there and ignores anything else.

Note In addition to the information in the style sheet header, an image with the name screenshot.png can be used
for the theme manager. The image is usually a screenshot of how the theme looks, so the user can have a brief preview
before activating the theme. The image is recommended to be sized at 600 x 450px and should be located in the root
of your themes folder.

Basic Template Files

The anatomy in Figure 2-3 should be fairly familiar if you have developed a WordPress theme before. It shows a simple
example of the makeup of a page using the basic template files available in WordPress.

header.php

sidebar.php

footer.php

Figure 2-3. A typical WordPress theme anatomy


http://wp-themes-book.com/02001

CHAPTER 2 © THEME ANATOMY AND TEMPLATE HIERARCHY

All pages in a WordPress theme can be constructed using a series of basic template files, including the following:
e  header.php
e footer.php
e sidebar.php
e comments.php
e  searchform.php

This section takes a more detailed look at each of these files (what they can and should be used for) and some
important WordPress functions that have to be included in these base sections.

header.php

The header . php file is used for any common markup to show at the top of the HTML page. It usually includes
the following:

e DOCTYPE declaration

e  Opening <html> tag

e  Entire <head> of your HTML document
e  Opening <body> tag

It can also contain any markup to be used consistently across all site pages, for example, the main logo and
navigation, which won’t change throughout your site. The header. php file can include as much or as little content
as you want to be used consistently across your theme. Here’s an example of a simple header . php file:

<?php
/x*

* The Header for our theme.
*

*/
?><IDOCTYPE html>
<html <?php language attributes(); ?>>

<head>
<meta charset="<?php bloginfo( 'charset' ); ?>" />
<meta name="viewport" content="width=device-width" />
<title><?php wp title( '|', true, 'right' ); ?></title>
<!-- HTML5 SHIV for IE --><!-- If using Modernizr you can remove this script! -->
<!--[if 1t IE 9]>
<script src="//html5shiv.googlecode.com/svn/trunk/htmls.js"></script>
<![endif]-->
<?php wp_head(); ?>
</head>

21


//html5shiv.googlecode.com/svn/trunk/html5.js

CHAPTER 2 © THEME ANATOMY AND TEMPLATE HIERARCHY

<body <?php body class(); ?>>

<header class="site-header">

<h1>
<a href="<?php echo home_url(); ?>">
<img src="<?php bloginfo('template directory'); ?>/images/
logo.jpg" alt=" ">
</a>
</h1>
</header>

This is a pretty straightforward example of a header file that you can use throughout the development of the
theme; it includes the usual HTML5 DOCTYPE, opening <html> tag, the full <head> of the site, and an initial <header>
block to display the site's logo.

In the <head> section, no style sheet is declared because WordPress has a great way of dealing with the style sheet
(and JavaScript) includes, which are handled by the wp_head() function.

The wp_head() Function

This function is a mandatory inclusion inside the <head> section of all pages in a theme and should always be located
before the closing </head> tag. This WordPress function is used to include style sheets and scripts from the theme and
any plug-ins that might be used. If you don’t include it, you might end up inadvertently breaking your site. Here is the
HTML generated from the preceding wp_head() function call:

<meta name='robots' content='noindex,nofollow' />

<link rel="stylesheet' id='twelvedevs-style-css' href="http://12devs.dev/wordpress/wp-content/
themes/12devs/style.css?ver=3.5.1" type="text/css' media='all' />

<!--[if 1te IE 7]>

<link rel="stylesheet' id="twelvedevs-ie-css' href="http://12devs.dev/wordpress/wp-content/
themes/12devs/ie-old.css?ver=3.5.1" type="text/css' media='all' />

<![endif]-->

<script type="text/javascript' src="http://ajax.googleapis.com/ajax/1libs/jquery/1/jquery.min.
js?ver=3.5.1'></script>

<link rel="canonical' href="http://12devs.dev/events/12-devs-at-easter/" />

Asyou can see, there are two style sheet includes and a script include for jQuery as well as a canonical link tag
and a robots meta tag. This output can be controlled using functions in WordPress; you'll take a look at how to include
style sheets and scripts a bit later in this chapter.

The wp_title() Function

Another function that you might have noticed in the header . php example is the wp_title() function. This function is
used to create a title for the browser based on the current page being viewed. The function can take three parameters:
a separator string, whether to display the title or return it as a PHP string, and the location for the separator. By default,
this function outputs only the name of the page you're on, but later in the book you'll learn ways to customize it,
turning it into something a lot more useful and more (ahem) search engine optimization (SEQ)—friendly.

22


http://12devs.dev/wordpress/wp-content/themes/12devs/style.css?ver=3.5.1
http://12devs.dev/wordpress/wp-content/themes/12devs/style.css?ver=3.5.1
http://12devs.dev/wordpress/wp-content/themes/12devs/ie-old.css?ver=3.5.1
http://12devs.dev/wordpress/wp-content/themes/12devs/ie-old.css?ver=3.5.1
http://ajax.googleapis.com/ajax/libs/jquery/1/jquery.min.js?ver=3.5.1'%3E%3C/script
http://ajax.googleapis.com/ajax/libs/jquery/1/jquery.min.js?ver=3.5.1'%3E%3C/script
http://12devs.dev/events/12-devs-at-easter/

CHAPTER 2 © THEME ANATOMY AND TEMPLATE HIERARCHY

Note This function can also be used throughout the WordPress theme, just not inside the loop; the <title> tag is the
most common place to find the function.

footer.php

The footer.php template is similar to the header. php file, but it contains the end of the HTML document. It’s the
place where you’ll most likely find the </body></html> pairing, but it could also be used for common markup that
is located at the bottom of every page in your theme. Once more, there is the need for a special WordPress function,
wp_footer(), to be included.

The wp_footer() Function

As with the wp_head() function, wp_footer() is a mandatory function required in all themes, located just before

the closing </body> tag. This function is used mostly to output script files at the end of the document or analytics
code. If you don’t include it, you risk some of the features of your theme or included plug-ins not working. It is where
WordPress includes the markup for the admin bar that appears when a user is logged in to WordPress. You'll soon
learn to always remember the wp_footer() function if (like me) you spend ages wondering why there’s suddenly

a 30px space at the top of your site.

sidebar.php

The sidebar is another of the basic templates that can be used to make up a file. It is usually used for content that
appears on multiple pages, but is not directly linked to the main content of the page. The sidebar file is often used
to display widgets, which exist in WordPress natively, or can be created by plug-ins or in the themes functions
(you’ll get more information in Chapter 6).

comments.php

As the name suggests, comments. php is used to generate the markup for the comments on a particular post. Until
recently, WordPress had a default template for displaying the comments that could be overwritten using a
comments. php file in your theme. This functionality is being deprecated, however, so in newer versions you will
be required to have a comments . php file in your theme if you want to render comments. (You'll take a deeper look
at comments in Chapter 13.)

searchform.php

The searchform. php file does pretty much exactly what it says on the tin. WordPress has kept a default version of this
file for use in your theme, however, so if one isn’t declared, WordPress falls back to its own default:

<form role="search" method="get" id="searchform" action="<?php echo home_url( '/' ); ?>">
<div><label class="screen-reader-text" for="s">Search for:</label>
<input type="text" value="" name="s" id="s" />
<input type="submit" id="searchsubmit" value="Search" />
</div>

</form>

23



CHAPTER 2 © THEME ANATOMY AND TEMPLATE HIERARCHY

Keep in mind that when creating a custom search form, to render it correctly in WordPress you should be using
a GET method directed at the home page of your site. (More on search is covered later in the chapter.)

Including Basic Template Files

Learning about all these template files is all well and good, but now you need to actually include them in your main
template files. Each of the previous files could be included with a regular PHP include() call, but WordPress goes one
better and furnishes some template functions to use specifically for each of the base files:

e get header()
e get footer()
e get sidebar()
e get search_form()
e comments_template()
Each of these functions includes the correct default file in the location in which it has been called. Here’s what
a standard template file looks like with all the inclusions:

<?php get_header(); ?»

<div class="container">
<div class="search">
<?php get_search form(); ?>
</div>

<div class="main">
<?php // do stuff ?>

<?php comments_template(); ?>
</div>

<?php get_sidebar(); ?>
</div>

<?php get footer(); ?»

Another trick with these include() functions is that get_header(), get_footer(), and get_sidebar() can each
be passed a string as a parameter. By doing this, WordPress searches for a different file from the default to include in
the template. For example, you could have multiple sidebars to use in different places in your theme to allow for better
structure or just easier maintainability. To create a second sidebar, create a template file named sidebar-secondary.
php; to include it in your template files, simply call the get_sidebar() function with ‘secondary’ as a string parameter:

get sidebar('secondary');

The same can be done with the header and footer files. It might seem a bit odd to have multiple headers for your
site, but I had an experience in which a client wanted two main sections to their website. They were linked together
but displayed differently, with a separate brand and main navigation. It was achieved using two header files and two
footer files, one for each of the main site sections. It allowed me to build the site on one install of WordPress, which
meant better management for the client and only a few more template files built into the theme.

24



CHAPTER 2 © THEME ANATOMY AND TEMPLATE HIERARCHY

The comments_template() is the other function that can have parameters passed to it. By default, the function
simply outputs the contents of the comments . php file, but you can pass it two parameters. First is a template name;
in this case, it has to be the whole template name and path relative to the template directory (for example,

' /custom-comments.php'). The second parameter is a Boolean that determines whether to have the comments
separated by type; this is set to false by default.

Functions File

In a sense, the functions file of a WordPress theme (functions.php in the root of your theme) acts as your own little
plugin. It gets loaded automatically by WordPress when a page is initialized in both the front end and admin of your
site. It can be used for a variety of functions:

e  To set up WordPress functionality such as post-thumbnails or custom post types
¢  To define functions that can be used throughout your theme templates

e  To change the WordPress admin or add in options pages

This is an example of a small functions.php file:

<?php

/**

* Pro WordPress functions and definitions
*

* @package prowordpress

*/

add_theme support( 'automatic-feed-links' );
add_theme_support( 'post-thumbnails' );

All this code does is set up a couple of theme support features: the feed links feature to enhance the RSS feeds
generated by the site and the post-thumbnails feature, which is always handy on any WordPress site. It enables you
to attach an image to any post or page that can be included specifically in your templates.

Note Because a functions.php file acts much like a plugin, there might be a point when you need to consider
actually writing a plugin instead. (Creating plugins is discussed in Chapter 7).

Template Hierarchy

Now that the basic template files have been introduced, you can start to look at ways to customize the output of your
theme with more specific template files. All the files discussed in this section work in a similar way to the index.php

file and normally have some or all of the basic template files included inside them. If you take a look at the template

hierarchy (see Figure 2-4), you see a plethora of options when creating custom templates for almost any part of your
content. The diagram has actually become so big that to fit it in the book I included a partial section. (For a full view

of the hierarchy, see http://wp-themes-book.com/02002.)

25

[vww allitebooks.cond



http://wp-themes-book.com/02002
http://www.allitebooks.org

CHAPTER 2 = THEME ANATOMY AND TEMPLATE HIERARCHY

Error 404 I

| Page I

Search

Result Page |

Taxonomy

taxonomy.Staxonomy Stermphp SR taxonomy.Staxen omy.php taxonomy. php

V / category $slug.php category-Sid.php category.php
// I tag-Sslugphp | tag-Sid php tag.php

Archive
Page

author$nicemame.php | author $id.php auther.php

_.-I Wear Archive I»-..

o~ Date Archive Manth Archive date.php
© —H——-.._‘_‘__‘_“_ _FH”_,_,—-"

> ~—( OuAme

o Custom Post.

w Type Archive

attachment. ph

$subtypephp @ Smimetype_S$subtype.php

Smimetype.php

Attachment
Pest

1 Custom Post [
1 Elog Post |

Single Post
Page

Singular
Page

{osam ——— Y- T TR

Pags Tempbite

Static Page

Site Front

Page front-page.php

Shown On Front

Blag Posts

single-$postype.php

P

Index Page

Comments
Popup Page

Figure 2-4. WordPress template hierarchy

Take a look at some of the base files that appear on the right of the hierarchy:

e page.php
e single.php
e attachment.php

26

search.php

archive.php
Faged

7S
Cinte [vae ]

paged.php

T

single.php

page.php

home.php

comments-
popup.php




CHAPTER 2 © THEME ANATOMY AND TEMPLATE HIERARCHY

e archive.php
e  taxonomy.php
e category.php
e date.php
e tag.php
e author.php
Here are some of the special template files used for more specific purposes:
e front-page.php
e home.php
e search.php
e 404.php
e comments-popup.php

The main thing to remember about the hierarchy is that the farther right the template appears, the more general
itis. Any template file format to the left of the one on the same row is more specific to a certain page or type, and is
given priority.

page.php

As its name suggests, this template is used to generate and display the pages in your WordPress site. If you need to
create a custom template for a specific page, you can do it easily by using the page’s slug, which is usually a lowercase,
hyphenated version of the page title. In WordPress, the page slug is located beneath the main title in the editor.

—— 15| Edit Page A nes

sr Posts

(33 Media About

._,—;’E' Links Permalink: htip=/review dev/iabout/| Edit || View Page

Gl B I = « 22 = Bo-08

Figure 2-5. The permalink below the title shows the page slug after the site address

You can also use the page ID in place of the slug, but I don’t recommend it because it’s not very easy to see which
template is for which page. I can't think of a situation in which you would often change the location of a page but keep
the same format.

The two templates you need to remember when using pages are page . php for general use and page-{slug}.php
for targeting specific pages for custom layout (where {slug} is the page slug of the targeted page).

27



CHAPTER 2 © THEME ANATOMY AND TEMPLATE HIERARCHY

single.php

The single.php template is used to display all individual posts. It is also used when custom post types have been
created, and you want to display an individual post of that type. To target a specific post type, you need to use the
name of that post type as you use the page slug to target a specific page. To create a template to display all standard
posts in WordPress, use single-post.php, but remember that all individual posts fall back to single.php if
single-post.php does not exist. My usual approach is to use single-posttype.php for all custom posts and
single.php for the native post type in WordPress.

The single.php template is used to display all post attachments if you allow them to be linked to in WordPress.
To create a more basic page for attachments, use the attachment.php template file.

attachment.php

The attachment.php file is used to display any attachments that can be directly linked to from the WordPress front
end. When you upload images/videos/documents to WordPress, it creates the file’s path where it is stored in the
WordPress file system (usually /wp-content/uploads), and then an attachment URL, that can be linked to directly
to show the attachment within the front end of your WordPress site.

You can also create more specific template files for certain attachment types by using the MIME type as the
template name:

e image.php
e video.php
e text.php

archive.php

The archive template is used whenever a group of posts or information is being accessed through the query. It can be
used for anything from a date-specific archive, to posts by a certain author, or to posts that are in a certain category.
The main archive. php template displays everything, but as shown in the template hierarchy shown in Figure 2-6,
there are many template files that can be used to overwrite the archive.php.

28



TETom

Category
Archive

Tag Archive

Archive f
Page %

Author Archive

Date Archive

CHAPTER 2 © THEME ANATOMY AND TEMPLATE HIERARCHY

axon omy.§taxonomy Sterm.php taxonomy.Staxonomy.php
category-$slug.php category-Sid.php
teg-Sslug.php tag-Sid.php
| authorSnicename.php author §id.php

Yaar Archiva

Custom Post.

I 7.

Type Archive

Figure 2-6. The archive section of the template hierarchy

The archive types include the following:

e category

e tag
e author
e date

e taxonomy

taxonomy.php

category.php

tag.php

author.php

date.php

archive Sposttype.php

archive.php

N
e [ vase

paged.php

T~

Note Custom post-type specific archives are covered in more detail in Chapter 4.

You can also target specific categories, tags, and authors by using the specific category, tag, or author name
(author nicename as used in WordPress). The date template file catches any archives relating to a specific date period
including year, month, and day; but you cannot target other types of date information.

The taxonomy template can be used to target custom taxonomies you create in WordPress as well as specific

terms in that template. To target a custom taxonomy, append the taxonomy name to the template name

(for example, taxonomy-taxonomyname.php). To access a specific term of a specific taxonomy, append the term
name to it (for example, taxonomy-taxonomyname-termname.php).

Now that I've covered some of the more general templates available in the template hierarchy, look at some
of the templates that have more specific functionality in WordPress.

29



CHAPTER 2 © THEME ANATOMY AND TEMPLATE HIERARCHY

front-page.php

The front-page template is used when a static front page has been selected from the WordPress admin options in
Settings » Reading (see Figure 2-7). When this option is set, the page template is overwritten with front-page.php
ahead of any others, enabling you to create a custom home page for your site based on a specific template file

and making that template file a lot easier to spot among your template files.

I Reading Settings

Front page displays 'Your latest posts

(®)A static page (select below)
Frontpage: Home A

Posts page: — Select— %

Blog pages show at most 10 :) posts
Syndication feeds show the most 10 :) items
recent
For each article in a feed, show @ Full text
) Summary
Search Engine Visibility ™ Discourage search engines from indexing this site

Itis up to search engines to honor this request.

Figure 2-7. Set up a static page at the top of the reading settings

home.php

The home template is used in two circumstances: as the main template for the home page for your web site or as the

main listing page template of your site when you have set up a static front page using the reading settings, as shown
in Figure 2-7.

search.php

The search page template displays the results of any search performed on the web site. To get this template to load
a search, you need to submit a GET request to the home page of the site. For example, mysite.com?s=about would
search mysite.com for the term “about’, and the search template would be used to display those results.

In this template, to display the search that was performed, you can use the the_search_query()function:

<p>You searched for " <?php the_search_query() ?> ". Here are the results:</p>

30


http://mysite.com?s=about
http://mysite.com

CHAPTER 2 © THEME ANATOMY AND TEMPLATE HIERARCHY

It is also possible, although it requires a bit of trickery, to change the default location of the search while retaining
the correct page template, thanks to this code snippet from Paul Davis:

function search url rewrite(){
if(is_search() 8& !empty($ _GET['s'])){
wp_redirect(home_url("/search/"). urlencode(get query var('s')));
exit();

}

add_action('template redirect', 'search url rewrite');

This function adds on to the 'template_redirect' hook, which determines the page template WordPress needs
to load. When a search is detected, it redirects the URL to /search/searchterm, which creates better URL structures
and means you are no longer required to use a GET to perform a search.

404.php

The 404 template is displayed by WordPress when it cannot find a result for the query for a specific page or post.
General queries for an archive page that turn up no results still load the correct archive template with errors for that
handled in the template file using the Loop (more on that in the next chapter).

A custom 404 page helps users who may have been redirected to the wrong page or have mistyped a URL by
giving them a way back into the site and allowing them to find what they were looking for. Have a bit of fun, as with the
GitHub 404 page in Figure 2-8. A fun 404 page is good design because it can help reduce any user frustration from not
finding something on your site.

900_’. (@ Page net found - GitHub x & 2

N e e ——— e s e e s
«

C | & CitHub, Inc. [US] https://github.com/404

This is not the
web page you
are looking for.

. il

Can't find what you're looking for?

Explore projects and code.
Signin if you're trying to access a private repository.
Search for a project on GitHub.

Still puzzied? Let us help!

Contact Support Status Site egithub

Figure 2-8. GitHub 404 page

31



CHAPTER 2 © THEME ANATOMY AND TEMPLATE HIERARCHY

Custom Template Files

So if all the options for different page templates discussed here aren’t enough, there’s even a way to create custom
page templates in WordPress to give you even more opportunity for customization.

You might need a custom template file when you want to offer an alternative layout or piece of functionality as an
option for any page on the site.

Note Custom page templates are available only for pages in WordPress, not for posts or custom post types.

To create a custom page template, you need to create a new file in your theme directory and ensure that it doesn’t
conflict with any of the reserved template names already in the WordPress template hierarchy. (A full list of names can
be found at http://wp-themes-book.com/02003.)

Begin the file with a PHP comment similar to that in the style.css file:
<?php
/%%

* Template Name: Custom page type 1
ok /
>

After you set up your custom template file, it activates a new option in the Page Attributes box on the right side
of the editor page (see Figure 2-9).

Page Attributes
Parent

(no parent) %
Template

Custom page type 1 %

Order

Need help? Use the Help tab in the upper right
of your screen.

Figure 2-9. Custom template selector in the WordPress page editor

32


http://wp-themes-book.com/02003

CHAPTER 2 © THEME ANATOMY AND TEMPLATE HIERARCHY

Post Formats

Post formats are relatively new to WordPress; they were introduced in version 3.1 (Gershwin). They allow users to add
specific metadata to a post to enable more specific formatting and styling in the theme.

WordPress has a list of standardized post formats that are specifically controlled to be supported across a wide
range of themes and have the potential to allow external tools to access the feature in a consistent manner. Themes
don’t have to support the full list or even support formats at all, but the addition of some simple metadata is a great
way to add some easy customization to a theme.

This is such a big addition to WordPress that in the new default theme Twenty Thirteen there is a major focus on
showing off the capability of the post formats to create beautiful and dynamic themes. In fact one of the major focuses
of the version 3.6 update was to improve the Ul of the post formats, giving them more focus in the post admin.

This full list of available post formats can be found at http://wp-themes-book.com/02004, but a small selection
includes these:

e gallery
e image

e video

e status
e quote

The formats are labeled to give the post they’re attached to more context and to enable better layout or styling
based on the format. For example, the image format should be used for a post that contains a single image as the main
focus, and the video format should be used for a post that contains a video. Formats such as these allow the image or
video to be styled differently and perhaps as the focus of the post, instead of a generic post display that might render
a smaller image and not draw any extra attention.

By adding a format to a post, WordPress doesn’t change the way it stores or renders the post; it is left up to the
theme to control, either by querying the post format or accessing it through the post class.

To enable post formats, you need to use the add_theme_support() function shown here:

add_theme_support( 'post-formats', array( 'image', 'gallery', 'video' ) );

The add_theme_support() function usually takes only one parameter: the feature name that you want to add
to the theme. To enable post formats, however, you need to pass a second parameter in the form of an array of
the formats you want to include. If you don’t pass an array of formats, WordPress doesn’t display any options; only
the option box displays. After you include the previous code, you will see an option box appear on the right side of the
editor page (see Figure 2-10).

Format

(®) s~ Standard
“ Gallery
24| Image

»| Video

Figure 2-10. Post formats option box

33


http://wp-themes-book.com/02004

CHAPTER 2 © THEME ANATOMY AND TEMPLATE HIERARCHY

By default, post formats can be used for posts and custom post types if specified when you create them, but not
by pages. To add post formats to pages, you need to call the add_post_type support() function like this:

// add post-formats to post_type 'page’
add_post_type support( 'page', 'post-formats' );

There are many ways to access the post format in your theme; for example, you can use a conditional tag to check
in the template file whether the post has a certain format:

if( has_post format('video') ):
// do something
endif;

You can get the post format as a PHP string:
$format = get post format($post_id);

You could then use this information any way you want in your template to display the post differently. If this
function is called inside the loop, you don’t need to pass in the $post_id value. The most common use of this method
of getting the post format is to call in a special template part, as shown in this code used in the Twenty Twelve theme:

<?php get template part( 'content', get post format() ); ?»

In this code, the theme is using the post format as a parameter in the get_template_part() function to include
a separate template file to use specifically with posts with a certain format.

Template Parts

You can think of the basic template files header . php and footer.php as template parts as well; the only difference is
that they are common files that have been used in WordPress for many years and come with their own functions for
inclusion. In version 3.0, WordPress introduced the get_template part() function that allows you to include partial
template files for use in the theme with a native function in WordPress. Before this function was introduced, you
would have had to use a standard PHP include.

You can create template parts with any naming convention you want as long as you avoid the reserved template
names discussed earlier. The get_template part() function works with two parameters: a slug and a specific name
for the template file. It assumes that the names are made up: slug-name.php. So if you assume the post format
will be video for the previous code snippet, the function will include the content-video.php file from the main
theme directory, if it exists. If the theme file doesn'’t exist, the function tries to find a template file using just the slug
parameter passed (content.php); if it still can’t find a file matching that name, instead of throwing an error like
a PHP include would, it simply won’t include anything.

If you want to store your template parts in a subfolder inside your theme to help keep your theme neat and tidy,
you can pass the file structure of the slug as part of the first parameter like so:

<?php get_template part( 'parts/content', get_post_format() ); ?>

More Theme Setup

There are some conventions and best practices to follow when setting up your theme. They include how to structure
the file system of your theme and how to load in your style sheets and JavaScript files. I'll show you a couple of tips
regarding the anatomy of your theme to make things a little easier for you when you develop it.

34



CHAPTER 2 © THEME ANATOMY AND TEMPLATE HIERARCHY

Theme Folder Structure

You already know that themes reside in the wp-content/themes/ directory. But within your themes you often have a
range of template files, style sheets, JavaScript files, and images. To keep the theme tidy and manageable, the following
is a basic folder structure based on past default themes and my own experience of theme development:

/: The root theme directory is where all main template files and the style. css file are stored.
Any template file you find in the template hierarchy should be stored here to ensure that
WordPress can load the template when required.

/images/: The main folder for all images used in the theme. These images are ones usually
used for presentation and styling of the theme, which are different from images uploaded to
WordPress as content, which are stored in the uploads folder in wp-content/.

/js/: All JavaScript files should be stored in their own folder (could also be named javascript,
depending on your personal preference).

/languages/: If your theme is multilingual, all languages files should be stored in a languages
directory (a best practice, not a WordPress requirement).

/css/: Any additional CSS files should be stored in and loaded from a css/ directory.

/inc/: Can be used for additional PHP files that may be needed for functionality in the theme.
As an example, you can group common functions inside their own file inside the inc folder before
loading them into the functions.php file. This is also a common practice among other themes.

/scss/ or /less/: If T use a CSS preprocessor, I like to keep the files located within the theme
and use a compiler such as Codekit or specific settings in the configuration of Compass to
compile them into style.css in the root of the theme.

That’s about it for folder structure. You may have seen some themes using other folders such as page-templates
or partials to group template parts together to keep them organized, but this is up to you and is not a requirement.

Loading Styles and Scripts

As you saw earlier, no style sheets or scripts were loaded in HTML in the main <head> of your document because you
can now use a function in WordPress to add style sheets and script files dynamically. This has a few advantages in that
all scripts and style sheets can be added to the theme in one place and distributed to the correct places in the <head>
and end of your documents. You can also add things like version numbers programmatically.

Both of these file types has two separate functions that can be used to insert style sheets and scripts into the pages:

wp_register style()
wp_register script()
wp_enqueue_style()

wp_enqueue_script()

The register functions are used to tell WordPress there is a style sheet or script available to be used and give it a
handle. The enqueue functions are used to add the style sheet or script to a generated WordPress page through either
wp_head() orwp_footer().

35

[vww allitebooks.cond



http://www.allitebooks.org

CHAPTER 2 © THEME ANATOMY AND TEMPLATE HIERARCHY

Adding Styles

First, here’s how to register and add the main style sheet for the theme:

// Get the current theme object

$theme = wp_get_theme();

wp_register style( 'prowordpress-style', get stylesheet uri(), false, $theme->Version, 'screen');
wp_enqueue_style('prowordpress-style');

Using the preceding functions, you callwp_register style() with the following:

e Ahandle for the style sheet (to be used later in the wp_enqueue_style function)

e  Thelocation of the file—in this case using the WordPress function get_stylesheet uri()
e Anydependencies for this style sheet (false if none)

e  The theme version using the theme object you queried for previously

e The media type, in this case screen.

Then, using the handle you set in the previous function, you add the style with the wp_enqueue_style() function.
In most sites I develop now, I use a separate style sheet for older versions of a certain browser. From here,
it’s hard to see how that would be done because it is where HTML conditional comments would be used. Fortunately,
WordPress has a function for that, too. Here’s the code I use to include a style sheet specifically for a certain
troublesome browser:

global $wp_styles;

wp_register style( 'prowordpress-ie', get template directory uri() . '/ie-old.css',
array( 'prowordpress-style' ));

$wp_styles->add_data( 'prowordpress-ie', 'conditional', 'lte IE 7' );
wp_enqueue_style('prowordpress-ie');

In this bit of code, you get a reference to the $wp_styles WordPress global in which all registered styles are
stored. You can register your style as normal, but with the addition of your main style sheet as a dependency, it will
get added to the templates after the main style sheet. After you register the style, use the add_data() function of the
$wp_styles global to add a conditional around the style with the condition '1te IE 7'.

Adding JavaScript

Adding JavaScript to a theme is almost the same as adding a style sheet. The only difference is that you replace the
parameter for setting a media type for the style sheet with a Boolean parameter showing whether the script should be
loaded into the footer or header (true for footer, false for header; the default is false).

Here’s an example of how to include a JavaScript file into your theme:

$theme = wp_get theme();

wp_register script( 'core', get template directory uri() . "/javascript/core.js', array( 'jquery' ),
$theme->Version, true);

36



CHAPTER 2 © THEME ANATOMY AND TEMPLATE HIERARCHY

In this example, you use jQuery as the handle for a dependency on the script you're loading. WordPress does
have a version of jQuery loaded as a default, but depending on how recent the version of WordPress is and whether
you've kept WordPress up to date (I hope so), you may not always have the latest version of jQuery to use in your
theme. To ensure this is not the case, you can load jQuery using a short snippet of code:

if (lis_admin()) {
wp_deregister script('jquery');
wp_register script('jquery', ("http://ajax.googleapis.com/ajax/1libs/jquery/1/jquery.min.js"), false);
wp_enqueue_script('jquery');

This bit of code checks whether WordPress is trying to load an admin page; if it is, you don’t want to overwrite
the latest version of the framework just in case the WordPress admin area is using code that is dependent on the
version of jQuery bundle with the content management system (CMS). Remove the registered jQuery version with
wp_deregister_script() and then include your own using the Google API-hosted version of the code.

Note You can download your own version of jQuery to bundle with your theme, but the Google API version is so
widely used now, a lot of people already have it cached and ready for use, which improves the performance of your site
as a whole. You also won’t have to worry about keeping the jQuery version up to date because Google takes care of it.

Where should you include these styles and scripts? I normally do this inside the functions.php file because it
keeps everything in one place, allowing for more manageable and cleaner template files.

Conditional Tags

The conditional tags in WordPress are related closely to the template hierarchy, with most types of template file
available being covered by a conditional tag (for example, is_front_page()).

Each function simply returns true or false, and can be used inside or outside the loop without you having to
pass a post ID to the function. Some conditional tags do accept parameters, however, which are used in addition to
the conditional tag’s main function to narrow down the condition. An example is the is_single() conditional tag that
accepts parameters in a series of formats:

is_single() if a single post is displayed.

e is single( 7 ) ifasingle post with the ID 7 is displayed.

e is single( 'Hello World' ) ifa single post with the title ‘Hello World’ is displayed.
e is single( 'hello-word' ) if a single post with the slug ‘hello-world’ is displayed.

e is single( array(7, 'hello-world', 'Bob has new shoes') ) if any of the conditions
passed through in the array is true. An array can be passed in with any of the preceding
values, in whichever order or format. If the post being displayed matches any of them, it
returns true.

37


http://ajax.googleapis.com/ajax/libs/jquery/1/jquery.min.js

CHAPTER 2 © THEME ANATOMY AND TEMPLATE HIERARCHY

The best example of the use of WordPress conditional tags is in the archive.php template of any of the default
WordPress themes, which uses them to display a different title based on the type of archive being displayed:

<h1 class="archive-title"><?php
if ( is_day() ) :
printf( _ ( 'Daily Archives: %s', 'twentytwelve' ), '<span>' . get the date() . '</span>' );
elseif ( is_month() ) :
printf( _ ( 'Monthly Archives: %s', 'twentytwelve' ), '<span>' . get the date( x( 'FY',
'monthly archives date format', 'twentytwelve' ) ) . '</span>' );
elseif ( is year() ) :
printf( _ ( 'Yearly Archives: %s', 'twentytwelve' ), '<span>' . get the date( x( 'Y',
'yearly archives date format', 'twentytwelve' ) ) . '</span>' );
else :
_e( 'Archives', 'twentytwelve' );
endif;
?></h1>

A full list and examples of the conditional tags in WordPress can be found at http://wp-themes-book.com/02005.

Find Out Which Template Is Being Used

Before you start creating your own theme, I want to share a code snippet I like to use that functions in a similar way to
the WordPress conditional functions, but allows me to check which template file is used on a certain page. It can also
be used to return the current template name so I can view which template is being used for debugging purposes:

function prowordpress is template( $name = false ) {
global $post;

$template file = get_post meta($post->ID,' wp page_template',TRUE);

// check for a template type
if( $name ):
if ( $name === $template file ):
return true;

else:
return false;
endif;
else:
return $template file;
endif;

The function takes in a parameter of the template name you are checking against, and by using the
_wp_page_template metadata attached to the current post or page being displayed, it returns true or false if they
match. It can be used if you want to include only certain functionality in the functions file when certain templates
are being used. For example, a custom script or style sheet file that relates only to a specific template could be queued
using this conditional function:

if ( prowordpress is template('custom-template-1.php') ) {
wp_enqueue_style('custom-template-style');
}

38


http://wp-themes-book.com/02005

CHAPTER 2 © THEME ANATOMY AND TEMPLATE HIERARCHY

Building Your Theme, Part 1

Now it’s time to put into practice what you've learned throughout this chapter. You will do this in most of the chapters

throughout the book to build up a theme, putting into practice everything you learn through each chapter. In this part,
you will set up your folder structure and main template files. At this stage, none of the template files you'll be creating

displays any content, so it won’t make for the best viewing of the web site (but you have to start somewhere).

Folder Structure

Earlier in the chapter, you took a look in detail at how you should structure your folders and templates, so they
aren’t covered in any more detail here. For now, you just need folders for JavaScript; images; and, for this theme,
your CSS partials.

Base Template Files

Now you need to get some templates into your theme. As you know, the most important theme files needed for any
theme are the index.php and style. css files. You will also set up some other base files to use here: header. php,
footer.php, and functions.php.

Now your theme folder should look something like Figure 2-11.

e 0o (L] prowordpress - part 1
(> ][ Bl ) (2] (8] (m~)[ 2 Q
Name 4| Date Modified Size Kind

> il css 7 Apr 2013 16:01 - Folder
= footer.php 24 Mar 2013 17:56 129 bytes PHP
® functions.php 21 Apr 2013 10:02 7KB  PHP
= header.php 29 Mar 2013 11:12 1KB PHP

> L images 6 Apr 2013 13:00 - Folder
¥ index.php 24 Mar 2013 19:53 335 bytes PHP

» [ javascript 24 Mar 2013 12:13 -= Folder
E style.css 24 Mar 2013 12:14 Zero bytes Ccss

8 items, 16.79 GB available

L a4

Figure 2-11. Basic theme files and folders

39



CHAPTER 2 © THEME ANATOMY AND TEMPLATE HIERARCHY

Now that your files and folders are created, you can start to add some code. First, add your theme information
into the style. css file to make sure your theme can be picked up by WordPress.

Style.css

You can use whatever information you prefer here; just remember to substitute anything you customize yourself when
you work through the rest of the examples so things work correctly. I suggest that you always have a few attributes as
an absolute bare minimum. Here's an example of the style sheet header you'll use for your theme:

Vioio

* Theme Name: Pro WordPress

* Author: Adam Onishi

* Author URI: http://adamonishi.com

* Description: An example theme for the Pro WordPress theme development book
* Version: 0

*

Text Domain: prowordpress
*/

Next, you can start adding some markup to your theme. Start with the header and footer, which create the base
of the generated HTML pages.

header.php and footer.php

You will use a very similar version of the code you've already looked at in the header. php example, but with a few
modifications just to keep the header a bit cleaner and more compact.

<?php

/**

* Pro WordPres header file
*

*/
?><IDOCTYPE html>
<html class="no-js" <?php language_attributes(); ?>>
<head>
<meta charset="<?php bloginfo( 'charset' ); 2>" />

<meta name="viewport" content="width=device-width" />
<title><?php wp_title( '|', true, 'right' ); ?></title>

<!-- HTML5 SHIV for IE --><!-- If using Modernizr you can remove this script! -->

<!--[if 1t IE 9]>
<script src="//html5shiv.googlecode.com/svn/trunk/html5.js"></script>
<![endif]-->

<?php wp_head(); >
</head>

40


http://adamonishi.com/
//html5shiv.googlecode.com/svn/trunk/html5.js

CHAPTER 2 © THEME ANATOMY AND TEMPLATE HIERARCHY

<body <?php body class(); ?>>

<header class="site-header">

<h1>
<a href="<?php echo home_url(); ?>">
Pro WordPress Theme Development
</a>
</h1>
</header>

Again, this is just a very simple header template with a few PHP functions to output some useful bits that are
set up or accessible via WordPress. I also included the HTMLS5 shiv for IE because the rest of the theme uses
HTML5 markup.

Next is the footer. php file; for now all you do is close the main tags like so:

<!—- END OF THEME -->
</body>
</html>

Now you have really simple header and footer files for your theme; you're doing just enough to get the basic
information about your site output on every page at the top of your document. Your final basic template to set up
is the functions file.

functions.php

The last of the basic files is the theme functions file. You will set up a couple of functions to enable you to use certain
features in your theme. Here is where you'll include your style sheet and where you can add your JavaScript files later on.

When you write things into your theme functions file, you don’t always want the code to be run as soon as the
theme is being set up because it might not be necessary. So in the following examples, I use some WordPress hook
functions to make the code you add run only for certain actions. (Don’t worry too much about the details; you'll learn
about actions and hooks in much more detail in Chapter 6).

<?php
/**

* Pro WordPress functions and definitions
*

* @package prowordpress
*/

if (! function_exists( 'prowordpress setup' ) ) :
function prowordpress setup() {

Jx*

* Add default posts and comments RSS feed links to head
*/
add_theme_support( 'automatic-feed-links' );

41



CHAPTER 2 © THEME ANATOMY AND TEMPLATE HIERARCHY

/¥
* Enable support for Post Thumbnails
*/

add_theme_support( 'post-thumbnails' );

}

endif; // prowordpress setup
add_action( 'after setup theme', 'prowordpress setup' );

This example sits at the top of your theme and is the main theme setup function you’ll use throughout your
theme development. You'll keep adding to it as you go along. The function is wrapped in a conditional to see whether
the function already exists, which prevents any issues when using child themes. Inside the function are two simple
setup functions that you saw earlier in the chapter, and the hook function is in the last line. It tells WordPress that
when the after theme_setup action is performed, it should run the function that’s in the second argument.

The only other bit of setup you'll do in the functions file is to include your style sheet. Instead of including the
style sheet directly in the header . php file, you can do it programmatically using the wp_enqueue_style() function:

/**

* Enqueue scripts and styles

*/

function prowordpress scripts and styles() {
wp_enqueue_style( 'style', get stylesheet uri() );

}

add_action( 'wp_enqueue scripts', 'prowordpress scripts and styles' );

The function is named scripts_and_styles because it is also where you include any JavaScript files.
Next, you can start creating some page templates to use in the theme.

Starter Templates

Finally, you'll set up some templates that you'll likely use throughout your theme. For now, you'll just create them all
with the same code snippet, so you just need to create one of the templates to copy from. The code you'll use is just to
include the header and footer of your theme, so they’ll all just look like this for now:

<?php get_header(); >
<!—- Stuff will go here -->
<?php get _footer(); ?»
Using this as your code for each template, go ahead and create the following list of primary template files:
e index.php
e front-page.php
e home.php
e single.php
e page.php
e archive.php

42



CHAPTER 2 © THEME ANATOMY AND TEMPLATE HIERARCHY

Now your theme directory should look something like Figure 2-12 with all the main templates you've just created
and your main folder structure.

e 0o (L] prowordpress - part 1
I E] = OERERIERINED Q
Name 4| Date Modified Size Kind

& archive.php 24 Mar 2013 18:36 2 KB PHP

> [l css 7 Apr 2013 16:01 - Folder
= footer.php 24 Mar 2013 17:56 129 bytes  PHP
= front-page.php 24 Mar 2013 18:10 768 bytes PHP
® functions.php Today 12:50 7KB PHP
= header.php 29 Mar 2013 11:12 1KB PHP
& home.php 21 Apr 2013 09:09 551 bytes PHP

» [ images 6 Apr 2013 13:00 = Folder
= index.php 24 Mar 2013 19:53 335 bytes PHP

» [ javascript 24 Mar 2013 12:13 - Folder
& page.php 24 Mar 2013 18:20 282 bytes PHP
= single.php 24 Mar 2013 21:57 401 bytes PHP
@ style.css 24 Mar 2013 12:14 Zero bytes Css

13 items, 16.79 GB available

Figure 2-12. The initial set of files for your theme

The theme structure and templates just created can work out to be the base of many themes and is often my
main starting point for any theme I develop. You'll build on this throughout the course of the book and develop an
outstanding theme with plenty of advanced features that will give you a chance to work on the skills you learn along
the way.

Summary

This chapter took a detailed look at how to structure a WordPress theme. You should now have a good understanding
of how the basic template files work and how to manipulate them to create more custom and complex web sites.

You navigated the template hierarchy and learned a bit more about how the templates are loaded based on what
content is being queried for. I covered in detail the new post formats that will allow you to customize the content
of your posts in more detail and how to use custom template parts to do this in a tidier fashion to keep your theme
maintainable.

You also looked at ways of managing your theme, how to include style sheets and JavaScript files, and use some
best practices for structuring your theme folder. Finally, you put all this information to good use by starting to develop
your custom theme, creating the starting point of what you'll develop throughout the book.

The next chapter digs into displaying content using the Loop and different ways of querying for content to create
a dynamic web site.

43



CHAPTER 3

Content Options and the Loop

The Loop is what makes WordPress go. It's how all of the WordPress magic happens. It’s the most
important thing. Everything else is secondary.

—TJustin Tadlock

This chapter explores the variety of ways of getting content into your WordPress themes. You'll take an

in-depth look at querying for content in WordPress and how to output that content to your pages using The Loop
and WordPress template tags (more functions). You'll also look at how to use the different functions available in
WordPress to give you plenty of information about the current content to give classes and IDs to use in Cascading
Style Sheets (CSS) and JavaScript for styling and giving interactivity to your site.

WP_Query

At the heart of WordPress is the query, or more accurately, WP_Query: the PHP class that holds the functionality you will
use a lot in this chapter. The query can be created in a variety of ways, whether from the initial load when WordPress
is generating a page or from a customize query being put together inside a template or plug-in. The WP_Query class
handles all this information and more, giving you a lot of control over the content being returned, as well as holding
information about how that content was requested in the first place, which is great for debugging, among other things.

The WP_Query class also handles a lot of things for you, such as security with MySQL requests, so you don’t
have to worry about it in your code. The WP_Query class doesn’t make database requests; it acts as the main gateway
through which you pass the parameters for your queries. Doing this means that WordPress can take care of the
requests and give you a nice easy access point to query for content in the database.

The WP_Query class also makes creating queries a lot easier through modularity. It allows you to pass
information through to the class in easy-to-read associative arrays, which means creating even the most complex
queries becomes a lot more understandable. You'll have a look in more detail later in the chapter at how to create
custom queries using the WP_Query class.

Before you start looking at how your content is generated, though, I want you to take a brieflook at how
WordPress initializes everything before you even output a single bit of HTML.

Constructing the Page

Before WordPress gets to any of the template pages you created in the second chapter, it has to go through a series

of initializations to make sure it returns the correct page and content. If you've ever looked at the files WordPress
contains, you'll notice that there are a lot! Just counting the PHP and JavaScript (JS) files in the main WordPress folder
and wp-includes folders only (not the admin or content folders, which go into displaying content); there are well over
200 files that go into creating the WordPress content management system (CMS).

45



CHAPTER 3 © CONTENT OPTIONS AND THE LOOP

It all begins with one file, though; every request made to a WordPress web site goes through the index.php file.
And here it is:

<?php

/**
* Front to the WordPress application. This file doesn't do anything, but loads

* wp-blog-header.php which does and tells WordPress to load the theme.
*

* @package WordPress
*/
/**

* Tells WordPress to load the WordPress theme and output it.
*

* @var bool
*/
define('WP_USE_THEMES', true);

/** Loads the WordPress Environment and Template */

require(‘/wp-blog-header.php’);As the comments state this file mainly does nothing, but there are two lines that start
you off, setting up the WP_USE_THEMES constant and then including another PHP file, the wp-blog-header.php file.
Which can be seen here:

<?php

Jx*

* Loads the WordPress environment and template.
ES

* @package WordPress
*/

if ( !isset($wp_did header) ) {
$wp_did_header = true;
require once( dirname(_FILE_) . '/wp-load.php' );
wp();

require_once( ABSPATH . WPINC . '/template-loader.php' );

This is where it gets a bit more interesting. The inclusion of wp-1oad. php here basically sets up WordPress.
The wp-1load file sets up the database connection and a whole load of other things (such as the settings for the theme)
and includes most of the other files that are necessary for WordPress to work. (Don’t worry; I'm not going to show you
every PHP file in WordPress—just these two for now.) After wp-1oad has done its work, the wp() function is called,
which sets up the main query by adding the current query parameters to the main WP_Query instance in use.

46

[vww allitebooks.cond



http://www.allitebooks.org

CHAPTER 3 = CONTENT OPTIONS AND THE LOOP

Get Query Parameters

The query parameters are based on two main things: the settings in WordPress and the page GET/PATHINFO data.
The page GET/PATHINFO data is the information passed in via the URL navigated to. The first thing most people
do when they set up WordPress is to change the permalinks to ‘pretty permalinks’, which means that instead of this:

example.com?p=hello-world
you get this:
example.com/hello-world

But if you take a quick look at the default permalinks in WordPress, what you'll see is the GET parameters that you
are passing into your queries. (You'll learn more later in the chapter, when I discuss editing The Loop with queries.)

Decide on Template File

After the query parameters have been set and passed through to the main WP_Query object, the template-loader.php
file can then use the conditional tags that were covered in the last chapter to work out what template file to use.
The decision is based on what type of query will be run and what the available templates are in the current theme.
As covered in Chapter 2, this is where the template hierarchy comes into play, with WordPress using it to decide
which template in the theme it should be loading.

Following is the function that retrieves the correct template to display a page. If you remember the discussion
of how you can specify templates for a certain page in Chapter 2, you should be able to see how the template is loaded
based on the order they are looked for and the available files in the theme:

Retrieve path of page template in current or parent template.

*

*

* Will first look for the specifically assigned page template

* The will search for 'page-{slug}.php' followed by 'page-id.php’
* and finally 'page.php’
*
*
ES
ES

@since 1.5.0

@return string
*/
function get page template() {
$id = get queried object id();
$template = get page template slug();
$pagename = get query var('pagename');

if (! $pagename &3 $id ) {
// If a static page is set as the front page, $pagename will not be set. Retrieve it
from the queried object
$post = get queried object();
$pagename = $post->post_name;

47


http://example.com?p=hello-world
http://example.com/hello-world

CHAPTER 3 © CONTENT OPTIONS AND THE LOOP

$templates = array();
if ( $template 88 0 === validate file( $template ) )

$templates[] = $template;
if ( $pagename )

$templates[] = "page-$pagename.php";
if ( $id )

$templates[] = "page-$id.php";
$templates[] = 'page.php’;

return get query template( 'page', $templates );

So now that the page template loaded, you can actually display the content, which is where you finally get to
tackle the WordPress Loop.

The Loop

As shown by the quote at the start of the chapter, the Loop in WordPress is a pretty crucial area. There is a lot more
to the Loop than just these few lines of code:

<?php

if( have_posts() ): while( have_posts() ): the post();
// Stuff...

endwhile; endif;

>

So to take a proper look at the Loop, I will focus on the main two parts of it—its two functions:
e have_posts()
e the post()

The remainder of the Loop is an if and a while loop using the alternative control structure in PHP, as discussed
in the opening chapter. I've already spoken a bit about the WP_Query class in this chapter, but here’s a first actual look
at functions from the class. The have_posts() and the_post() functions are actually just functional wrappers around
the WP_Query object. If used as they are here, the functions simply call the method on the main WP_Query object
currently in use.

have_posts

The have_posts() function is the first of the two functions in the Loop; notice that it comes up twice as well. The
function of have_posts() is actually pretty self-explanatory: it checks a Loop counter to see whether there are posts
available to output; if so, it returns true and if not, it returns false. Simple. This is why it is used twice in the main
Loop code you often see. If the function returns false the first time (in the if statement), it means there are no posts
to display. It is where you'll often see an else with an error message as well:

<?php else : 2>

<p>Apologies, but no results were found for the requested archive.</p>

<?php endif; ?>

48



CHAPTER 3 = CONTENT OPTIONS AND THE LOOP

In the while loop, it will allow you to continue running the code inside the Loop until the function returns false.

It also has one last little function. When it finds that there are no more posts to display, it will return false but
also call rewind posts() so that WordPress is ready to set up another loop should it need to. You'll look more at
resetting the query later in the chapter.

the_post()

This is the function that does all the hard work; when you call the_post it goes through the current posts array and
sets up the post data that gets used in the template tags so you can start crafting your templates. It also sets up the
global $post variable and advances the loop counter ready to access the next post when the_post is called again
(in the next iteration of the while loop).

Do You Need to “Loop” Every Time?

This is a question I've asked a few times: do I always need to have an if statement and while loop when accessing the
post data? The simple answer is no, to be honest. If you're accessing a page that you know will always return only one
“post” and not a series of posts, it’s perfectly fine to call the_post() only at the beginning of your template so that you
have access to the post data and template tags.

However, be careful with this use because it is not a convention in WordPress, and if you plan to sell your themes
or market them in the themes directory, my advice is to stick with the conventional Loop format. Conventions happen
for a reason because they help others pick up code more easily, which aids collaboration. So sticking to a convention
such as this would be far easier and more helpful to the overall WordPress community. Who knows—there might
come a time when you need help from other WordPress developers, and that tiny difference in your code could ensure
they find it a lot easier to help.

Custom and Dynamic Content with Queries

Now you know how the Loop works and how the data is collected, let’s have a look at the different ways of running
custom queries to create pages with the data you want. The ability to manipulate the query such as this is one of the
more powerful parts of WordPress. You can even run multiple queries and loops on the same page to create pages
made up of a variety of different types of content.

This section discusses the various ways you can create custom content for your sites. First, I'll introduce you
to the main four methods of manipulating the WordPress query. Then you'll take a look at some examples of when
you might want to use them and for what circumstances. Finally, you'll look at some advanced examples of custom
queries so you really can see the power you have in WordPress.

Methods of Querying in WordPress

WordPress gives you three functions to use when you want to customize the query in your templates:

query posts()

get_posts()
e creating a new WP_Query instance

You'll look at each function in turn; in the rest of the section, you'll look at when these functions can or should
be used.

49



CHAPTER 3 © CONTENT OPTIONS AND THE LOOP

query_posts()

If you take a look at what the WordPress Codex has to say about query _posts(), it's mostly made up of warnings about
when and when not to use the query posts() function. I'll discuss this in more detail later, but for now let’s look at
how to use the function itself. The query posts() function takes an argument made up of query parameters. It can do
it in two ways. The first is with an array of arguments like this:
$args = array(
'cat' => 5,
'posts_per page' => 2,
‘order' => 'ASC'
)
query_posts($args);
The second way is in a string of parameters (discussed in Chapter 1):

$args = "cat=58posts_per page=28order=ASC";
query posts($args);

This code will modify the main query and allow you to use the WordPress Loop normally without any
modifications. Here’s a look at it in action:

query posts("cat=5" );
if( have posts() ): while( have posts() ): the post();
// Do stuff
endwhile; endif;
Asyou can see, I made no edits to the regular WordPress Loop; I just added the query posts() function above it.

The parameters passed will simply run a query returning all posts that are in the category with the ID of 5.

get_posts()

Another way of querying in WordPress is by using get_posts(). The difference here is that get_posts() returns an
array of post objects as the result for you to manipulate. To go through the data this time, you need to loop through the
result in a slightly different way from the other options:
$new_posts = get posts( $args );
foreach ( $new_posts as $post ):

setup_postdata($post);

// Do stuff - using normal template tags

endforeach;

wp_reset postdata();

50



CHAPTER 3 = CONTENT OPTIONS AND THE LOOP

In the preceding example, I used a standard foreach loop in PHP to go through the array. The important part
is to use $post as the value argument in the foreach loop. By doing this, it allows you to use the setup postdata()
function to give you the template tags to use as normal. However, when this method is used, the main post data from
the default query is overwritten. When you do this, you need to reset the data so that functions you may want to use
later on that relate to the main query don’t get caught up with the leftover data from your modified query. That'’s
where the wp_reset_postdata() function comes in. (You'll be taking a more detailed look at resetting things in
WordPress later on in the chapter.)

If you don’t use the setup_postdata() function to make the template tags available, you need to use the raw data
returned by the get_posts() function as follows:

$new_posts = get posts( $args );
foreach ( $new posts as $post ):
echo '<h1>'.$post->post_title.'</h1>';

echo $post->post_content; // raw
echo apply filters('the content', $post->post content); // formatted

endforeach;

The preceding code shows how to access the raw data through the post variable you get from the get_posts()
query. I also included two ways of outputting the content data. The first gets the raw data as you've written it into
the content editor, so if you leave some of the formatting to WordPress (such as p tags), you'll need to use the
apply filters() function to process the content data the same way WordPress does when it sets up the post data
as normal.

One more thing to note about get_posts() is that although it does take many of the same arguments
as the previous two query types, there are a few subtle differences. For instance, to change the number of
posts queried for, use numberposts instead of posts_per page. (For a full list of parameters, take a look at
http://wp-themes-book.com/03001.)

WP_Query

To loop with a WP_Query object, you use query parameters as arguments when creating a new instance of the WP_Query
class. It's similar to the way in which you use query_posts()—both functions accept the same parameters—but you
use the new constructor and pass the result into a variable that looks like this:
$new_query = new WP_Query( $args );
if( $new_query->have_posts() ): while( $new_query->have posts() ): $new_query->the post();
// Do stuff - with normal template tags

endwhile; endif;

The $new_query variable now becomes an instance of the WP_Query class. To set up your loop instead of calling
have posts() and the_post() functions as usual, you need to call them as methods of the new instance of the class

you created $new_query->have_posts. This then gives you use of the same template and conditional tags used before
in a regular loop.

51


http://wp-themes-book.com/03001

CHAPTER 3 © CONTENT OPTIONS AND THE LOOP

Modifying the Default Query

Now you'll look at customizing the queries you create using the methods just discussed. The first way of customizing
content is to modify the default query, the one that I talked about that gets created based on the settings and page URL.

But if the query is being created automatically, how can you modify it? The query parameters are also stored in a
variable in WordPress that you can access in your template files: the $query_string global. This is one of those variables
created by the WP_Query class early on in the setup of the initial page load (I told you it would come in handy):

// access the global variable which stores the default query string
global $query string;

query posts( $query string . "&cat=-5" );
if( have_posts() ): while( have posts() ): the post();
// Do stuff
endwhile; endif;
The preceding code takes the $query string variable and uses query posts()—more on that in a second.
You can do this because the $query_string quite literally does exactly what it says on the tin: it’s a string containing

the current query that will be run on the database. You create the new query by simply concatenating more query
parameters to the end of the default string and then pass it as the argument to the query posts() function.

Note Remember to start your additional parameters with an ampersand (8) as you add to the current query
parameters; think of it as 'query string' & 'new parameters’.

I already mentioned that there lots of caveats to be aware of when using the query_posts() function. It is not
the most preferred or efficient method of setting up a new query in WordPress. It is, however, the best method of
modifying a default query when you're already in the page template. If you want to intercept the query before you get
to the template, however, you can use the pre_get_posts hook, which is called after the query variable is built, but
before the query is actually run by WordPress. This method does come with a few caveats. Because the query has yet
to be run, there are a lot of functions that aren’t available (namely, the is_front_page() conditional function),
but is_home() is available, so you can use it for tasks such as modifying what appears on the post listing page.

Here’s an example of using the hook to remove a category from display in the main posts list:

function exclude_category( $query ) {
if ( $query->is_home() & $query->is_main_query() ) {
$query->set( 'cat', '-5' );
}

}
add_action( 'pre_get posts', 'exclude category' );

The $query object is the main instance of the WP_Query; the object variable is passed in by reference here, so the
function doesn’t need to return the variable after you've modified it—you’re working with the $query object itself.
Also notice that you're using more methods of the WP_Query object to check the conditional functions and to add
an extra parameter using the set method (it just takes the parameter you want to set and the value to set it to as two
arguments of the function).

52



CHAPTER 3 = CONTENT OPTIONS AND THE LOOP

Multiple Loops

When you build a web site, there will be times when you want to display multiple types of content on the same page.
As you can imagine, the easiest way of doing this is to use multiple queries on the same page.

The codex seems a little confusing on this subject; it says that it is perfectly okay to use the query posts()
function to create a new query. I say that this should absolutely not be the case, however. Because query posts()
overwrites the main query, you lose all the information for the current query, information that might be useful if you
need to do things after the second loop has been used. The better way is to create a new instance of the WP_Query class
and run the second loop with that object. The bonus of creating a brand-new WP_Query is that you get all the useful
information along with it as well.

Now let’s get to an example of creating a secondary loop in the template with the WP_Query class:

if( have posts() ): while( have posts() ): the_post();
// Do stuff
endwhile; endif;

$secondary query = new WP_Query( $args );

if( $ secondary query->have posts() ): while( $ secondary query->have posts() ): $ secondary query->the post();
// Do stuff - with normal template tags
endwhile; endif;

wp_reset_postdata();

It doesn’t have to stop at just a secondary loop; by using the new WP_Query instance you can create as many
queries as you like on a page. Be cautious, however, because for each new query created you are making an extra
MySQL request on the database, and this can hamper performance.

Remember that when you're creating multiple loops you should always ensure that you reset the postdata or the
query as soon as your new query has finished in order to put back the default query.

Resetting the Loop

Even with the WP_Query method of creating new loops, you still need to reset the postdata back to the default query.
In fact, any time you change what will be output by the template tags away from that default query, you need to reset
it. In the previous multiple loops example, I used the wp_reset postdata() function after the secondary loop to
ensure that the template tags and $post variable go back to reflect the default query.

There are three functions you can use to reset the query and postdata:

e wp reset postdata()
e wp reset query()

e rewind posts()

wp_reset_postdata()

Firstup is thewp_reset postdata() function (discussed earlier). This function is simple and easy to use; it just needs
to be called after the end of any additional or custom loops you create and requires no parameters.

53



CHAPTER 3 © CONTENT OPTIONS AND THE LOOP

wp_reset_query()

Used in exactly the same way as the wp_reset_postdata() function, this should be called straight after a custom
loop and with no passed parameters. It is a function created specifically for use when modifying the query with
the query _posts() function. As you already know, query posts() modifies the main query, so this function is
used specifically to counter that action and get you back to the main query you started with when WordPress
was initialized.

If you take a look at the latest core files and find these functions in includes/query.php, you'll find that
wp_reset_query() actually calls the wp_reset postdata() function. The important thing to note is that the
wp_reset_query() function additionally resets the global query variable to the initial default query by overwriting
it with the main query global. As shown in the following comments, this function was created purely to fix bugs when
the query_posts() function gets used (which is why I strongly advise against its use unless you want to modify the
main query).

Vais
Destroy the previous query and set up a new query.

*
*
* This should be used after {@link query posts()} and before another {@link
* query posts()}. This will remove obscure bugs that occur when the previous
* wp_query object is not destroyed properly before another is set up.

*

*

@since 2.3.0
* @uses $wp_query
*/
function wp reset query() {
$GLOBALS[ 'wp_query'] = $GLOBALS[ 'wp_the_query'];
wp_reset postdata();
}

/**
* After looping through a separate query, this function restores
* the $post global to the current post in the main query
*
* @since 3.0.0
* @uses $wp_query
*/
function wp reset postdata() {
global $wp_query;
if ( lempty($wp_query->post) ) {
$GLOBALS[ 'post'] = $wp_query->post;
setup_postdata($wp_query->post);

54



CHAPTER 3 = CONTENT OPTIONS AND THE LOOP

rewind_posts()

This function is less about resetting the query as it is about resetting the Loop so you can run it again somewhere else
in the page. For instance, if you were to create an FAQ page with a listing at the top of the page of each post title with
links to the content of the post farther down the page, you could call the loop once and then run rewind posts() after
your first loop before starting again farther down the page. Here's an example:

<?php if( have_posts() ): while( have posts() ): the post(); ?>
<h2><a href="#faq-<?php the_ID(); ?>"><?php the_title(); ?></a></h2>
<?php endwhile; endif; ?>

<?php rewind posts(); ?>

<?php if( have_posts() ): while( have posts() ): the_post(); ?>
<article id="faq-<?php the ID(); ?>">
<h3><?php the_title(); ?></h3>
<?php the_content(); ?>
</article>
<?php endwhile; endif; ?>

Multiple Loops with get_posts()

You can also use get_posts() to create a secondary loop of content. The usual use for get_posts() is when you
require the data to be used in PHP, possibly for creating some new functionality through the functions file or in a
plug-in, for instance. When creating a secondary loop to get secondary content for a page, I usually go with the
WP_Query option, but if I'm getting only a small amount of data, such as listing the post titles of some related posts,
get posts() can be a good option.

The following example is a loop using get_posts() at the base of a single post page, showing posts from the
current posts category:

<?2php if( have_posts() ): while( have posts() ): the post(); ?>
<div <?php post_class(); ?>>
<h2><?php the_title(); ?></h2>
<p><?php the_content(); ?></p>
</div>
<?php endwhile; ?>
<p>Sorry that post could not be found</p>

<?php endif; ?>

<div class="related-posts">
<h2>Related Posts</h2>

<?php

// globalise the post

global $post;

// get the categories the post is in

$cats = get the category( $post->ID );

$cat_ids = array(); // empty array to put the IDs into

55



CHAPTER 3 © CONTENT OPTIONS AND THE LOOP

// Loop through the categories and store the IDs in an array
foreach( $cats as $cat ):
$cat_ids[] = $cat->term id;

endforeach;

// Set up the arguments for the query

$args = array(
'post_type' => 'post’,
"category__ in' => $cat_ids,

)s
// Run the query
$related_posts = get_posts($args); ?>

<ul id="related-posts">
<?php foreach( $related posts as $related ): ?>
<li><a href="<?php echo get permalink( $related->ID ); ?>"><?php echo
$related->post_title; ?></a></li>
<?php endforeach; ?>
</ul>

</div>

The preceding code could be created using a WP_Query just as easily, but this way you don’t overwrite the
current global post or the function of the template tags because the result of the additional query is stored in the
$related posts variable only.

Advanced Queries

Now that you know how to create queries in themes correctly and how and when to run certain types of queries, let’s
take a look at some of the more advanced queries you can create with the power of the WordPress query. The amount
of control you have over the posts you can query for in WordPress is getting pretty impressive, so here is an advanced
look at some of the complex queries you can create to get use extremely specific information from the database.

There are two ways to pass arguments into a new query: with an array or as a query string. To create more
complex queries, the best method of doing this is with arrays because many more detailed options can be passed and
in multiple levels with associative arrays.

Note Most of the queries you'll look at in this section can be created with either a new WP_Query object or with the
query posts() function. However I'll be opting for the much more robust WP_Query object option.

First take a look at a standard custom query using the WP_Query class:

$args = array (

'post_type' => 'post’,
'cat’ = '5',
‘orderby' => 'title',
'order’ => 'desc’,

)5

$new_query = new WP_Query($args);

56

[vww allitebooks.cond



http://www.allitebooks.org

CHAPTER 3 = CONTENT OPTIONS AND THE LOOP

That’s the first simple query using an associative array with only one level of parameters. Next, you'll see how you
can handle a multiple category query using an array of IDs passed as one of the parameters:

// Get posts which are in categories 2 and 6
$args = array (

'post_type' => 'post’',
'orderby’ => 'title',
‘order’ => 'desc’,

'category and' => array( 2, 6 ),
);
$new_query = new WP_Query($args);

Okayj, still not that advanced and not that impressive, but it does get better, I promise.

Taxonomy Queries

The next chapter covers how to create and manage custom post types and taxonomies, but in this chapter I'll briefly
discuss how to query for them using more advanced taxonomy queries.

With the tax_query parameter in the query, you can start to query based on a range of different possibilities.
The new tax_query parameter was introduced in version 3.1 and takes as its arguments an array of arrays (I told you
it was going to get more complex). But it wasn’t done to create added complexity; it actually means that you can query
multiple taxonomies and compare them with each other.

For instance, if you had a movie review web site and wanted to look for a review about a sci-fi movie with a
certain actor, you could use the following query:

// Get review posts which are in the category sci-fi and actors included Matt LeBlanc and Heather Graham
$args = array (
'post_type' => 'review',
"tax_query' => array(
'relation' => 'AND',

array (
"taxonomy' => 'genre',
'field' => 'slug’,
"terms' => 'sci-fi',

)s

array (
"taxonomy' => 'actor’,
'field' => 'slug',
"terms’ => array('matt-leblanc', 'heather-graham'),
'operator' => 'IN',

)s

)5
)5

$new_query = new WP_Query($args);

It may have sounded complex to start with, but just look at how simple that code makes it look. Inside the
tax_query parameter you have a couple of arrays to look for each of the taxonomies you're after. You also have
the relation parameter, which goes at the first level of the tax_query and states how to compare the included
taxonomies. In this case, you used AND because you want all posts that come under both categories (the other option,
OR, returns the posts that are in either taxonomy).

57



CHAPTER 3 © CONTENT OPTIONS AND THE LOOP

Metadata Queries

In the next chapter, you'll learn to create custom fields for posts; here you'll look at how to query for them. WordPress
has a built-in capability to add custom metadata to a post, so even before you get to the next chapter you can start
applying this code to what you already created in WordPress.

Similar to the tax_query parameter, the meta_query parameter was added to the query parameters in version 3.1.
This powerful query parameter allows you to do a multitude of comparisons on the metadata of your posts to return
posts with extreme precision.

Although meta queries have been around in WordPress for a while, the new meta_query parameter adds a lot
more complexity, but in a very easy-to-see-and-understand manner like the tax_query. Here’s a regular meta query
you might have seen in earlier WordPress versions:

$args = array (
'post_type' => ‘any’,
'meta_key' => 'title',
'meta_value' => 'desc’,
)

$new_query = new WP_Query($args);

That query simply returns any posts with the meta x set to y. But with the new meta query, you can get a lot more
complex. You can start to query multiple metadata and compare it with each other and use conditional operators,
as you did with the taxonomy queries:

$args = array (
'post_type' => ‘any’,
'meta_query' => array(

array (
"key' => 'publisher’,
'value' => 'Marvel',
'compare' => '=',

)s

array (
"key' => 'price',
'value' => array( 50, 100 ),
"type’ => 'numeric',
‘compare' => 'BETWEEN',

)s

)s
)s

$new_query = new WP_Query($args);

For a full list of the comparison operators available and how to use them in the meta_query, take a look
at the WordPress codex, which has a full list and more detail on how to use them:
http://wp-themes-book.com/03002

The possibilities that this type of querying, along with the previous taxonomy queries, give you is fantastic.
These queries allow you to give great control to your users through filtering the content on the site or advanced
searching options, for instance.

58


http://wp-themes-book.com/03002
http://wp-themes-book.com/03002

CHAPTER 3 = CONTENT OPTIONS AND THE LOOP

Pagination with Custom Queries

Unfortunately, one thing you do lose when you're creating a custom query for a page is the ability to do pagination
automatically. If you are modifying the current query on the page, you should be all right, but if you're manipulating
the query entirely, you need to take care of the pagination yourself.

Fortunately, pagination is really simple to do. As WordPress does with the $query_string variable it uses to store
the current default query string for the page, it also sets up a global variable for the current page number trying to be
accessed: the $paged variable. Here’s how to use the $paged global variable to add back pagination to your page with
a custom query:

global $paged; // globalize the paged variable.
query posts('post_type=review8posts per page=48paged=".$paged);

if( have_posts() ):
while( have posts() ): the post();
// Do stuff...
endwhile;

next_posts_link();
previous posts link();
endif;

Note The previous posts link and next posts_link page navigation links still work normally and return a link
only if there are next or previous posts to display.

Properties and Global Variables

Along with WP_Query, you get a lot of handy properties from the WP_Query class and global variables that you can
use in your theme for various development and debugging purposes. These properties and globals should never
be altered inside your template files, but they are extremely useful during development and debugging.

WP_Query Properties

You used the WP_Query a lot in this chapter; after all, it does power most of the WordPress content in your themes.
It is also good to use because of the amount of information it gives you access to for help throughout development.
The WP_Query contains a lot of properties with information about the current query and posts it has returned.
To interact with these properties, you use a series of methods of the WP_Query class, a few of which you've seen
already. Methods such as have_posts, the_post, and rewind_posts are all methods of the WP_Query class and
can be used from any object of the class you create.

Here are some of the more useful properties that can come in handy when building themes:

e  $query: The query string passed to the query object.

e $query_vars: An associative array of the full list of query vars and values, such as the array of
arguments you can pass to your query constructors.

e  $posts: Holds the requested posts from your current query. It is rarely needed because it is the
data used in loop(s).

59



CHAPTER 3 © CONTENT OPTIONS AND THE LOOP

Globals

You have seen a variety of global variables get used in one form or another in this chapter. You just used the $paged
global which stores the current page number you're on, and earlier you used the $query_string global to get the
current query in a template file. Apart from these global variables there are a lot of other globals set by WordPress.

To access a global variable in WordPress, you must first globalize the variable using the global keyword, which
allows access to the global data from inside the template. If you don’t globalize the variable, you create a new variable

$post_count: Holds the number of posts being displayed. It can come in handy on a paginated
page to see whether you have a full page worth of posts or the number of the last few posts.

$found_posts: Total number of posts found from the query ignoring any pagination limits
(posts_per page and numberposts).

$max_num_pages: Number of pages based on the number of found posts and the
pagination limit.

entirely that could lead to issues further along the line.

global $paged;

A full list and explanation can be found at http://wp-themes-book.com/03003, but here are a few globals that

might come in handy throughout theme development:

$post: The current $post object, it stores all the information about the current post and is
used by the various template tags to output the information neatly. This variable is handy if
odd data show up and you want to check a full list of the entire post data.

$authordata: All the available data about the author of the current post.

$wp_query: All the data referring to the default query; it gets overwritten by query_posts, but
other functions should leave it alone.

$wp: Holds all the data relating to the initialization of the WordPress instance.

$wpdb: The global object for accessing the database, this global becomes much more useful in
plug-in territory (discussed later in the book).

$wp_rewrite: Holds all the current information on what rewrite rules apply to the site; used
primarily for the pretty permalinks you see in WordPress. It is possible to add to them when
creating new post types (you'll find out about that in the next chapter).

$query_string: Holds the current query for the page.

$paged: Holds the current page number; if on the first page. $paged is set to 0.

Although these globals come in handy throughout theme development, they should never be modified.

The information stored in the globals can be used for debugging and access purposes only; to use and modify data

stored in the globals, use the functions provided in WordPress.

60


http://wp-themes-book.com/03003

CHAPTER 3 = CONTENT OPTIONS AND THE LOOP

Template Tags

Now you can start to look at the content of your themes. The WordPress template tags are a simple way to access

all the content you store in WordPress and get it into your themes. Again the template tags; although they have the
name “tags,” they are still just functions. They are built into the WordPress core and process, and return or output the
content stored in the database. Here’s how the WordPress codex describes the template tags:

[W]hen you view your WordPress [theme], it doesn’t say “My Blog Name” in the template file. In
fact, it has a bunch of strange arrows and parentheses and words that don't make much sense.

This is an example of a template tag: http://wp-themes-book.com/03004. I'm sure by now you can recognize a
template tag and understand what it allows you to do. The next section takes an in-depth look into how the template
tags work, how to modify their output, and where you can use them in your templates.

Template Tag Varieties

There are hundreds of template tags available for you to use in your themes. They can be used to get data about
the current post, get comment information, list categories and tags, show a limitless number of settings, and even
sometimes provide functionality not related to content.

Here I'll discuss some of the main groups of template tags and show some examples of the useful functions in
these groups—ones that help you create really dynamic themes based on every detail you can set in the WordPress
admin. For a full list of template tags, go to http://wp-themes-book.com/03005 to view more information and get the
full list of tags that belong to each of these groups. To see more functions available to you in WordPress, take a look at
http://wp-themes-book.com/03006 for a nicely organized list of every available function.

General Tags, Including Site Information and Settings

The tags I'm denoting as “general” are those that don’t really have anything to do with the content, so to speak, of your
site. Instead, they deal with things like settings or information about the site that often won’t change. Tags such as
these can come in very handy for programmatically getting at information about the current site without hard-coding
itinto the templates, which is extremely important when you have separate dev/live sites (which you should have by
the way; it’s 2013, after all).

Here I'll discuss one tag in particular: the bloginfo() tag. I've used this tag countless times throughout multiple
templates in all my themes. It's extremely useful because, as the name suggests, it returns information about the site,
based on the parameter you pass it. For instance, you can get the name of your blog, which you set in the
Settings » General page in the admin.

bloginfo('name");

The function then outputs the value directly to the HTML; no need for the "echo" PHP command. I use it all the
time to get the current template directory for the site, so I can output assets such as JS files or images; for example,
here’s how I access a logo image from the template directory:
<img src="<?php bloginfo('template_directory'); ?>/images/logo.png" alt="Site logo" />

For a full list of the information that just this one function can output, take a look at the function reference page
here: http://wp-themes-book.com/03007. Other functions that come under the “general” group would-be template

include get_header(), get footer(), and get_sidebar(); as well as functions such aswp_title() that you can use
to generate a title in the head of your blog (refer to Chapter 2).

61


http://wp-themes-book.com/03004
http://wp-themes-book.com/03005
http://wp-themes-book.com/03006
http://wp-themes-book.com/03007

CHAPTER 3 © CONTENT OPTIONS AND THE LOOP

Post Tags

The post tags are probably the most used functions in WordPress templates (no surprise) because they are the means
for getting your content out into the world. Tags such as the_title(), the_content(), and the_excerpt() are just a few
examples of the ones you'll most likely see in every WordPress theme.

A tag you might not see very often is the_title_attribute (), which is a function used to return the title of the post,
but with HTML tags stripped and characters encoded properly for use in HTML attributes. Here’s an example:

<h2><a href="<?php the permalink(); ?>" title="<?php the title attribute(); ?>"><?php the title(); ?></a></h2>

Comment Tags

If you've ever built a blog before (or a web site with a commenting functionality), you most likely know a bit about the
comment tags in WordPress. Similar to the post tags, the comment tags let you get at almost every bit of information
attached to a comment. The main function you'll be seeing in your themes iswp_list _comments(). This is the main
template tag for displaying all the comments attached to a post. It also allows you to pass in a set of arguments

(in an array) to customize how the comments will be listed:

<?php $args = array(
'style’ = 'ul’,
'per_page' => 10,
'avatar_size' => 50,

);

wp_list comments($args); ?>

Category Tags

There are two types of category tags in WordPress: those that return categories in relation to the current post and
those that return information on categories in general. A function such as the_category() is used inside the loop
to output categories that the current post belongs to, and functions such aswp_list categories() is used to list all
categories in the site. Note that when referring to categories here, I am explicitly talking about the post categories
taxonomy, not taxonomies in general. There are functions to deal with taxonomies, including the post categories
(discussed in more detail in Chapter 4).

For now, take a look at thewp 1ist categories() function, which can give you a list of all the categories in
WordPress and can be heavily customized again by passing in a few arguments:

<?php $args = array(

'orderby’ => 'count',
'order’ => 'ASC',
'style’ => 'list’,
"'show_count' => 1,
'hide_empty' => 0,
"title 1i' ="',
"number’ => 10,
"depth’ = -1,

);

wp_list categories( $args );
?>

62



CHAPTER 3 = CONTENT OPTIONS AND THE LOOP

This list of arguments means that the category list is displayed in a series of <1i> tags (you have to provide the
wrapper <ul> or <o0l>), is ordered by the number of posts in each category, and shows the number of posts in each
category while not hiding any empty categories. You also set title li to be a blank string so it doesn’t give you an
extra <11> tag with a title for the list in, and you limit the number of categories to display to ten. The depth argument
lets you determine how many levels down the hierarchy of categories you want to go. You can set it to a positive
number to explicitly set a number of levels, or pass it -1 to tell the function to list all categories and show them
all as a flat list without worrying what categories are children or parents.

Author Tags

The author tags can be used to output information on the author of a current post or get information on authors
on the web site. Note that the author functions don’t relate to the WordPress role “author”; they are aimed at any
WordPress user that has been attached to a post or piece of content as the “author”.

The most obvious author function is to list the name as part of what could be called a byline (taken from
newspaper terminology). You want to show the name of the author alongside the articles published date; here's
an example:

<header>

<h1><?php the_title(); ?></h1>

<p class="byline">by <?php the_author(); ?> | <?php echo get _the_date(); ?></p>
</header>

Or you may want to give site visitors a link to view more posts by the author of the current post they're reading.

<p class="more-posts">More posts by <?php the_author posts_link(); ?></p>

Link Tags

A link tag can be classed as any tag that interacts with a link in some form or another. If it returns a URL or an HTML
link tag, it can go into this group. That means that the permalink functions get_permalink() and the permalink()
could be grouped here. Because these functions are familiar to many, let’s discuss a few different ones.

There are functions to return links for pagination purposes, such as next_posts_link() and previous_posts_
link(); or functions that go to the next and previous post, such as next_post_1ink() and previous_post 1ink().
A function I use quite often when I create a home page link via the site logo or when I'm linking to the home page
from another part of the template is the home_ur1() function. I know you could use a simple slash (/) to link back
to the relative home page on the site, but what if that sometimes doesn’t cut it? The home_url() function is great for
that, and it means all links in my sites are maintained programmatically, not manually. It saves a lot of changes if
something messes up and has to be changed in a number of places.

Here’s an example of the function being used in a code snippet similar to the one used earlier:

<h1><a href="<?php home url('/"'); ?>"><img src="<?php bloginfo('template directory'); ?>/images/logo.png"
alt="Site logo" /></a></h1>

Menu Tags

Menu tags can be used to output a custom menu for your WordPress theme. In WordPress 3.0, custom menus were

introduced so you could create a menu for your site to include links to any content on the site and even add custom links.
To output a custom menu in your theme, you can use the template tagwp_nav_menu() that, like many other tags,

takes a series of arguments. The most important argument is theme_location, which requires it to be defined in your

63



CHAPTER 3 © CONTENT OPTIONS AND THE LOOP

theme for the menu to be attached to. There are fallbacks in place to output a custom menu if you do not create a
theme_location, but it could result in the easy overriding of a nav menu where you don’t want it. So the best option
is to register a navigation menu location to be used. Here’s how you can do it:

// Register the menu location in your functions.php file
register nav_menus( array(
"primary' => _ ( 'Primary Menu', 'prowordpress' ),

) );

<?php

// To be able to access the menu in your templates through the wp_nav_menu function
wp_nav_menu( array('theme location' => 'primary', 'container' => '' ));

?>

I also used another argument in the wp_nav_menu() function called 'container' and passed it an empty string
because normally the function will output the menu inside a <div> tag. If you want to control that yourself or not have
the menu wrapped at all, however, the easy way to do so is by passing an empty string to the argument.

Template Tags and the Loop

Now you can look at where certain tags can be used. When I talk about location in the template, I mean which tags
must be used inside of the Loop and which ones can be used outside.

The basic rule is that any template tag relating to post-specific content must be used inside the Loop, and tags
that hold information about the web site itself can be used anywhere in the templates where they're needed.

Other location-specific tags include the comment information tags that need to be included inside the loop for
returning comments and the get_search_query() tag that, for obvious reasons, is only really worthwhile when used
on a search page.

Note There are some exceptions to the rule that has to do with post—specific template tags because some tags
accept a post ID parameter, which means they can return information based on the ID passed.

Display, Return, or Both

The plethora of template tags used in WordPress all operate in one of two ways: they echo out the information
or return in PHP. And, as the heading title suggests, some functions can do both.

The majority of tags that will output the information straight to HTML are ones that begin with the.
Here's an example:

e the title()
e the content()
e the_permalink()

All these functions echo out HTML directly to the page. You'll often find them used in the templates looking
something like this:

<h1><a href="<?php the_permalink(); ?>"><?php the_title(); ?></a></h1>
<?php the_content(); ?>

64



CHAPTER 3 = CONTENT OPTIONS AND THE LOOP

Notice that two functions are put inside of HTML, and one of them is left out of any HTML tags entirely.
The reason is that the the_content() function uses a content filter on the data entered in to the CMS to add <p>
tags and other formatting that the user can add through the edit screen.

I chose those three template tags because they also have alternative tags that instead return the data as PHP.
These tags can usually be identified by the get keyword at the beginning of the function. Alternatives to the three
functions are these:

o get the title()
e get the content()
e get permalink()

Each of these functions returns the information to PHP so they must be echoed out using one of the PHP print
functions (echo, print, and so on). Two of these are also unique functions in that they can be used inside or outside
the loop; the get_the title() and get permalink() functions take an optional parameter of the post ID that you
want to get the information from. The parameter is optional because when the tag is used within the Loop, the post ID
will be assumed from the current post being accessed.

Finally, there are a few template tags that allow you to choose whether the data returned is either output directly
to the HTML or returned as PHP. One of these is the the_date() function that takes a Boolean parameter (among its
other parameters) that asks whether or not to echo or return the data from the tag.

Passing Tag Parameters

As discussed in Chapter 1, there are a variety of ways to pass parameters to functions in WordPress, and the template
tags are no different. Some template tags don’t require any parameters, many have optional parameters that are used
to modify or add to the content being output, and some require mandatory parameters to return specific data.

Remember that certain template tags must be used in accordance with certain parameter formats and cannot be
interchanged with other formats, such as query string parameters. This is a slightly confusing standard set by WordPress,
but it’s fairly easy to see how each template tag should be used by checking with the codex. Most functions are listed
with the parameters they take and the format in which they must be passed (http://wp-themes-book.com/03008).
One rule of thumb is that functions with a smaller number of parameters usually require them to be passed with
PHP function-style parameters, and ones with a larger number of parameters can use the array- or query string-style
parameters.

Many template tags with parameters often have defaults set, so they don’t need to be passed to the function.
When using tags with PHP function-style parameters, if you want to set one parameter and keep some of the defaults,
you must always keep parameters in the correct order.

Using body_class() and post_class()

The body class() and post_class() functions always come in extremely handy when creating WordPress themes. As
their names suggest, they output classes that you can use on HTML elements in your templates. To use them in your
templates, simply add them before the closing arrow bracket of the HTML tag you want them to be used in:

<body <?php body class(); ?>>

This code outputs something along these lines:

<body class="page page-id-744 page-template-default">

65


http://wp-themes-book.com/03008

CHAPTER 3 © CONTENT OPTIONS AND THE LOOP

The body_class() and post_class() functions output the full class attribute and a series of classes that can be
used to identify the page being generated. Here'’s an example of how detailed the classes can be:

<body class="paged page page-id-744 page-template-default logged-in admin-bar no-customize-support
paged-11 page-paged-11 custom-font-enabled debug-bar-maximized">

Asyou can see, there are many classes that you could potentially hook into with the CSS. Some might not be all
that helpful, but some (such as paged, for instance) could be used to style the page slightly differently now that you
know you're traversing through a list of posts. If you look a little farther through the list, you'll notice a paged-11 class
that can also let you know the exact page number you're on.

Here’s another example, this time using post_class(), which can be used on any HTML page, but usually the
one that wraps around the main content of the page (in this case, an article tag):

<article <?php post_class(); ?>>
It outputs the following:
<article class="post-675 page type-page status-publish hentry">

Here are a couple of examples that could be useful in styling as well: the type-page class would allow you to style
content based on the post type (a post would have type-post in the class list) and a status class.

These two functions can be passed a string value as a parameter that will get output in the class list as well.
This can come in really handy if you create a custom page template for some specific function and want to use
a specific class to also use for custom styling. Here’s a quick example:

<article <?php post_class("custom-page unique-styles"); ?>>
// Outputs
<article class="post-675 page type-page status-publish hentry custom-page unique-styles">

Notice that to pass multiple classes, you just need to use a space between the two classes because they will just
be entered directly into the class tag as they were passed in.

More Useful Classes with Hooks

A great function of WordPress is the fact you can hook into pretty much any function and play with the intended output
to your advantage. You'll learn more about hooks later in the book when plug-ins are covered in Chapters 7 and 8, but
for now you'll look at an example of some code:

/¥
* Include category IDs in body class and post class
*/
function add_category classes($classes) {

global $post;

foreach((get_the category($post->ID)) as $category) {
$classes [] = 'cat-' . $category->slug;
}

return $classes;

}

add filter('post class', 'add category classes');

66

[vww allitebooks.cond



http://www.allitebooks.org

CHAPTER 3 = CONTENT OPTIONS AND THE LOOP

In the functions file, you can add this snippet of code, which will add some extra classes based on the categories
the post is in. First, you can create a function that takes in a $classes parameter that contains the classes that would
normally be output using the post_class() function. The $classes variable is actually an array at this stage, so to add
extra classes to it you just add them on to the end of the array. The function gets the current post being accessed, and
using the get_the_categories() function gets the categories the post is in and then loops through them, adding the
category slug (the lowercase hyphenated version of the category name) prefixed with cat- (so you know it’s a category
class). After you set up the function, using the add_filter () WordPress function you “hook” your function into the
post_class() function, meaning it will be called when the post_class function() is executed.

Adding this function to the post_class() tag will result in a class list like this one:

<article id="post-168" class="post-168 post type-post status-publish format-standard hentry
cat-championship cat-winners">

Toward the end of the class list are two extra classes, cat-championship and cat-winners, which are added
through the function. This is just one example but using a similar function essentially you could add any classes that
would be useful through a function like this.

Styling Sticky Posts

As you've seen, the post_class and body_class functions generate classes for you to use in the CSS to help style
aspects of your sites. A great example can be seen when used in conjunction with the WordPress sticky posts
functionality. Sticky posts are blog posts that can be set to “stick” to the front page of your blog list page (imagine an
important announcement that you want to be constantly visible on your site).

To set up a sticky post, you need to select the Stick This Post To The Front Page check box in the Visibility options
of the Publish box in the post editor window (see Figure 3-1).

Publish
Save Draft Preview
Visual et Status: Draft Edit
Visibility: Public
(=) Public
Stick this post to the front page

Password protected
Private

OK |Cancel

[i1] Publish immediately Edit

Move 10 Trash

Figure 3-1. The Publish box showing the sticky post check box

67



CHAPTER 3 © CONTENT OPTIONS AND THE LOOP

With this check box selected, the post will always be retrieved on the posts listing page and any pages that query
for a list of the posts, even a custom query. So with a post that is stuck as the first one appearing on any page listing
your posts, it might be worth giving it a different look from the rest so people understand that it’s different or there for
areason. It is extremely simple to do, thanks to the post_class() function. By using it on the containing element of
the post, you have the class sticky to use in your CSS (see Figure 3-2). Here's an example:

.sticky {
background-color:lightblue;
color:darkblue;

This gives a clearly different style to the rest of your posts.

Figure 3-2. A sticky post at the top of a blog page

A Note on HTML IDs

Something you see quite often in WordPress themes, and even in WordPress default themes, is the use of the post ID
in the ID attribute of elements. Here’s an example from the Twenty Twelve theme:

<article id="post-<?php the_ID(); ?>" <?php post_class(); ?>>

This code would give an ID of "post-23" for you to use in your CSS (or, more likely nowadays, to use as a hook in
your JS). This seems like a great idea; it will always be a unique identifier for the post or page you're displaying, so you
can be confident it can be used as a JS or CSS hook.

More and more often, developers work with separate development and live versions, so with WordPress being
a database-driven CMS it’s unlikely that your development and live databases will be the same. This means if you're
transferring code from your development to a live environment, you'll lose the accuracy of your post IDs. It’s unlikely
that you’ll add content in exactly the same order, so you need another option for your CSS and JS hooks.

To have a more accurate hook, you need to look for something that’s likely to stay the same on both the
development and live environments. The best option I've come up with so far is the post slug that acts as the URL of
the post (with pretty permalinks). With WordPress, the slug does not come with its own function to retrieve it easily,
unlike a lot of the post data. You can access it through the global post data but that requires more code and access to
the global $post variable, for example:

<?php

global $post;

$slug = $post->post_slug;

2>

<article id="post-<?php echo $slug; ?>

<?php post class(); ?>>

It would be much nicer if there were a function to make this a lot cleaner to access in your templates. So how
about this one?

function get the post slug($id) {
$post_data = get post($id, ARRAY A);
$slug = $post_data['post_name'];
return $slug;

68



CHAPTER 3 = CONTENT OPTIONS AND THE LOOP

Then in the template file, you can access it like this:

<article id="<?php echo get the post slug(get the ID()); ?>" <?php post class(); ?>>

This code keeps your template files a lot cleaner and promotes reusable code, which is always good.

Building Your Theme, Part 2

Now you can take what you've learned about the WordPress Loop and content options and apply it to the theme you
started creating in the last chapter. At the moment, all you have are template files set up ready to display the different
content you add to your site. In this section, you'll add loops and template tags to make your templates actually
display some content.

Content First

Before you get started though, you need to have some content in WordPress. To save a lot of hassle, throughout the book
and construction of the theme I've created a series of content files that can be imported into your WordPress installs.

If you have migrated content to WordPress, you already know about the WordPress import function; if not,
first you'll need to download the WordPress importer plug-in. You can get this either through the WordPress
plug-in installer page (Plugins » Add New) or download it from the web site: http://wp-themes-book.com/03009.
Then go to Tools » Import and select WordPress. It gives you the page shown in Figure 3-3, in which you can select
the Chapter_3_content.xml file to upload. Make sure when importing that you choose to add the new authors as well
as the content.

{z} Dashboard = f
(| Import WordPress
s+ Posts Lo
e Howdy! Upload your WordPress eXtended RSS (WXR)| file and we'llimpor the posts, pages, comments, custom fields, categories, and 1ags into this site.
Eh in
_ Choose a WXR (xmi) file to upload, then click Upload file and impon.
%* Links

[] Pages Choose a file from your computer: (Maximum size: 32MB) | Choose File | N file chosen

{2 Comments
[ Appearance
£% Plugins

&, Users

Available Tools
Import

Export

Deprecated Calls ()
Developer

Beta Testing

Regen. Thumbnails

Figure 3-3. WordPress import page
69


http://wp-themes-book.com/03009

CHAPTER 3 © CONTENT OPTIONS AND THE LOOP

Have a look around the WordPress admin; you should now have a few posts and pages to play around with,
as well as a few new authors and categories. This data should be enough to allow you to go ahead and build out some
of the templates in your theme to get the content displayed.

Adding Code to Your Templates

At the end of Chapter 2, the only template files you'd really added content to were the header . php, footer.php, and
functions.php files. Here you'll add the code needed to display the content of your site in the form of a series of loops.
Using some of the template tags discussed in the chapter so far, you'll also see a couple of new tags (their functionality
should be fairly straightforward).

Let’s start with the home page; you'll use a static page as the home page for your theme and make use of the
front-page.php template. First, you need to tell WordPress to do this through the settings. Go to Settings » Reading
and make sure the Front Page Displays options is set to A Static Page; then choose the page named Home as your front
page from the drop-down menu. You also want to set a posts page here; in this site, your posts will represent news
about the company, so select News as the posts page.

Coding the front-page.php Template

The idea behind the front page of your web site is to give some introductory information about the company and
show a brief summary of the latest news as well. This means you get your first example of multiple loops in action
in your theme:

<?php get_header(); ?»
<?php the_post(); ?>

<article class="page-content">
<?php the_content(); ?>
</article>

<aside class="latest-news">
<h2>Latest News</h2>

<?php
// New Query for news articles
$args = array(

'post_type' => 'post’',
'orderby’ => 'date’,
'order’ => 'ASC',

'posts_per page' => 2,

)5
$latest _news = WP_Query( $args );
if( $latest news->have posts() ): while( $latest news->have posts() ):

$latest_news->the_post();
?>

70



CHAPTER 3 = CONTENT OPTIONS AND THE LOOP

<article <?php post class(); ?>>
<h3><?php the_title(); ?></h3>

<?php the_excerpt(); ?>

<a href="<?php the_permalink(); ?>">Read more 8raquo;</a>
</article>
<?php endwhile; endif; ?>

<?php wp_reset_query(); ?>
</aside>

<?php get_footer(); ?»

Notice the lack of a loop for the first section of your page; it is because you know you will list only the one page,
and if it’s already made it to the front page template, you're sure that you'll have one single page in your query to work
with. Therefore, at the top of the previous template I just used the the_post() function to set up the $post global
and the template tags.

Next is the second loop in the template, which is for the latest news list. The new query here is created using the
new WP_Query instance option and is passed the arguments through an array variable. The arguments ask for only two
posts from the post type posts and in the most recent date order. The following loop lists out the returned posts with
the excerpt and a link to go read the full article. Finally, after you close the secondary loop, run the wp_reset_query()
function to make sure you go back to the original query while WordPress finishes rendering the page. With that page
done, you can move on to your home template, which will display the list of posts (the news section in this case).

Coding the home.php Template

The home template will be a pretty straightforward posts listing page based from the default query. Don’t forget that
you'll have to paginate this page as well if you reach the posts-per-page limit that you set in the WordPress admin
under Settings » Reading. Because this is a news section of the site, you can make your default something like 5 and
then paginate the rest, but this can vary depending on how regularly people might want to update the site with news.
If it is more frequently, they might want to show a lot more on each page.

Let’s have a look at the code and see whether there’s anything else you can do to make this page more dynamic:

<?php get_header(); 2>
<h1>Latest news</h1>
<?php if( have posts() ): >
<?php while( have posts() ): the_post(); ?>
<?php get template part( 'content', get post format() ); ?>
<?php endwhile; ?>
<?php else: ?>

<article class="error"»
<h2>Sorry there were no news articles found</h2>
</article>

<?php endif; ?>

71



CHAPTER 3 © CONTENT OPTIONS AND THE LOOP

<p class="post-page-navigation">
<?php previous posts link( "&laquo; More recent news"); ?>
<?php next_posts_link( "Past news &raquo;"); ?>

</p>

<?php get sidebar( 'news' ); ?>
<?php get footer(); ?»

The content for this page will be fairly simple and not require anything too amazing. The previous and next post
page links at the bottom have been included with the template tags, but I passed a parameter to the function to give
the link a different label. Usually these functions would just say “Next posts »” and “« Previous posts’, but because
you're on a news page the language could be misread as “Next posts.” This link is actually a link to older posts, so the
ability to add a label to the links through the functions comes in very handy.

In Chapter 2, you set up separate sidebar for the news pages, which is included by passing the string 'news ' into
the function. Let’s look at the code you're will have in this template file.

Coding the sidebar-news.php Template

The sidebar for the news section will allow users to navigate to some archives and categorized news stories. You've
already seen thewp list categories() function earlier; and here I'm just using a couple of arguments to get a list
of categories sorted by popularity. The other function iswp_get_archives(), which is used to show links to monthly
archives of posts by default. You want that here; this function is quite powerful and can be used with a variety of
different options to give you really custom archive displays. I suggest checking out the codex for more details

about the tag.

<aside class="sidebar news">

<h2>Archives</h2>
<ul class="news-navigation">

<?php wp_get _archives(); >
</ul>

<h2>Popular categories</h2>
<ul class="news-navigation">
<?php
$args = array(
"title 1i' => ',
'orderby' => 'count’,

);

wp_list categories( $args ); ?>
</ul>

</aside>

The links created from these tags direct to pages handled by the archive template.

72



CHAPTER 3 = CONTENT OPTIONS AND THE LOOP

Coding the Archive Template

This template is another fairly straightforward list page similar to the home.php template. Because the posts listed on
this page can come in a variety of formats, however, you'll use the conditional functions to display different title and
error messages depending on what you're displaying.

<?php get_header(); ?»
<?php if (have_posts()) : the_post(); ?»

<?php if (is_category()) : ?>
<h1>Archive for category: <?php single cat title(); ?></h1>
<?php elseif( is tag() ) : >
<h1>Posts Tagged: <?php single tag title(); ?></h1>
<?php elseif (is_day()) : >
<h1>Archive for <?php the_time('F jS, Y'); ?></h1>
<?php elseif (is_month()) : ?>
<h1>Archive for <?php the time('F, Y'); ?></h1>
<?php elseif (is_year()) : ?»
<h1>Archive for <?php the_time('Y'); ?></h1>
<?php elseif (is_author()) : 2>
<h1>Author Archive</h1>
<?php elseif (isset($_GET['paged']) && !empty($_GET['paged'])) : >
<h1>Archives</h1>
<?php endif; ?>

<?php rewind_posts(); ?>

<?php while (have_posts()) : the_post(); ?>
<?php get template part( 'content', get post format() ); ?»
<?php endwhile; ?>

<?php else : ?>

<?php if (is_category()) : >
<h1>Sorry, but there aren't any posts in the <?php single cat title(); ?> category
yet.</h1>
<?php elseif (is date()) : ?»
<h1>Sorry, but there aren't any posts with this date.</h1>
<?php elseif (is_author()) : ?»
<?php get userdatabylogin(get query var('author name')); ?>
<h1>Sorry, but there aren't any posts by <?php echo $userdata->display name; ?> yet.</h1>
<?php else : 2>
<h1>No posts found.</h1>
<?php endif; ?>

<?php endif; ?>

<?php get_footer(); ?»

73



CHAPTER 3 © CONTENT OPTIONS AND THE LOOP

You may have noticed a different format of your loop this time. Here you call the_post () before you start the
while loop.

<?php if( have_posts() ): the_post(); ?>

Doing this allows you to use conditional tags and tags such as single cat_title to create the title of your page
before you list the posts below it. Because calling the_post () advances the post counter only by one, by the time
you get the while loop and call the_post () again, you'll be setting up the template tags for the second post in your
query. You can get back to the beginning of your list of posts before you start the while loop, however, by calling
rewind_posts(), which you'll see at the start of the while loop:

<?php rewind posts(); ?>

<?php while (have_posts()) : the_post(); ?>

Coding the Page and Single Templates

You can display a single page or post in your site with the page.php and single.php templates. They are fairly similar,
so the following code is only from the page. php template. The only difference is that the single template has the
get_sidebar() function called after the content instead of before and with the name parameter "news" on the

single template.

<?php get_header(); ?»
<?php get sidebar(); ?>
<?php if( have_posts() ): while( have posts() ): the_post(); ?>

<article <?php post class(); ?>>
<h1><?php the title(); ?></h1>

<?php the_content(); ?>
</article>

<?php endwhile; endif; ?>
<?php get_footer(); ?»

This is a really simple template; it just creates an article containing the title and content of the page. For now
that’s all you need, but there is a nice bit of functionality in the sidebar for you to look at.

Coding the Sidebar Template

This sidebar is used for any page on the site; for now, it lists a simple subnavigation. To do this, you can use the
wp_list pages() function and pass it the ID of the current page so you can see the child pages in the sidebar. You also
need to be able to list the menu when you're on one of those child pages. You do that using the get_post_ancestors()
function (you get all the higher-level pages of the current page); with the PHP function end you get the last element

in the array. The array of ancestors will always be sorted with the highest ancestor at the end of the array, and for
subnavigation you generally want the highest-level parent page. After you have the top-level page information, you
can use it to get the title of the subnavigation and pass the ID into the child_of parameter of thewp_list pages()
function to get the subpage navigation.

74



CHAPTER 3 = CONTENT OPTIONS AND THE LOOP

<aside class="sidebar page-navigation">

<?php
global $post;
$ancestors = get post ancestors( $post );
$top = get post(end($ancestors), "OBIECT");
>

<h2><?php echo $top->post_title; ?></h2>
<ul class="sub-nav">
<?php wp_list pages('title li=&child of='.$top->ID); 2>
</ul>
</aside>

Last Bits

Now you’ll look at some additional bits added to the template files that you already added code to in the previous
chapter: the header, footer, and functions files.

In the header, you have a logo included with the use of the bloginfo tag to get the theme directory and the main
menu for the site being included with the wp_nav_menu() function.

<header>

<h1><a href="<?php home url('/"); ?>"><img src="<?php bloginfo('template directory'); ?>/
images/logo.png" alt="Pro WordPress Theme Development"></a></h1>
</header>

<nav class="main-navigation">
<?php wp_nav_menu( array( 'theme_ location' => 'primary', 'container' => false )); >
</nav>

The menu 'primary' has been set up in the functions file to allow you to add this to your WordPress admin,
and these few functions setting up the site have been moved into a theme setup function, which is common to a lot
of WordPress themes.

if (! function exists( 'prowordpress setup' ) ) :
function prowordpress setup() {

/¥
* Add default posts and comments RSS feed links to head
*/

add_theme support( 'automatic-feed-links' );

/**
* Enable support for Post Thumbnails
*/
add_theme support( 'post-thumbnails' );
/**
* This theme uses wp _nav_menu() in one location.
*/
register nav_menus( array(
"primary' => _ ( 'Primary Menu', 'ao_starter' ),
) );

75



CHAPTER 3 © CONTENT OPTIONS AND THE LOOP

Viss
* Enable support for Post Formats

*/

add_theme_support( 'post-formats', array( 'aside', 'image', 'video', 'quote', 'link' ) );

}

endif; // ao_starter setup
add_action( 'after setup theme', 'prowordpress setup' );

You can check to see whether the function hasn’t already been set up before using the line:
if( ! function_exists( 'prowordpress setup' ) ):

Just in case you're using a child theme and the function is called somewhere else. In the footer I added a footer
tag with a small function I created a while back to add a simple dynamic copyright to the site. This function has been
declared in the functions file as well, so it can be used in the theme. It is something that you might consider creating
as a plug-in as it’s not going to be unique to this theme, but because it’s so small, it’s not worth the effort.

function simple copyright () {
echo "&copy; " . get bloginfo('name') ." ". date("Y");
}

The last addition to your functions file is a function to include the scripts and styles in the web site. I put this
in the functions file so it is all in one place, but some people include these functions in the header of the theme,
which is fine (I just don’t like the clutter).

/**

* Enqueue scripts and styles

*/

function prowordpress scripts and styles() {
wp_enqueue_style( 'style', get stylesheet uri() );

/**

* Better jQuery inclusion

*/

if (lis_admin()) {
wp_deregister script('jquery');
wp_register script('jquery',

("http://ajax.googleapis.com/ajax/1libs/jquery/1/jquery.min.js"), false);

wp_enqueue_script('jquery');

}

}

add_action( 'wp_enqueue_scripts', 'prowordpress scripts and styles' );

76


http://ajax.googleapis.com/ajax/libs/jquery/1/jquery.min.js

CHAPTER 3 = CONTENT OPTIONS AND THE LOOP

Summary

Wow, that was an absolutely epic chapter. Apologies for the length, but the Loop and content methods in WordPress
are the absolute core of WordPress theme development.

The chapter went into real depth with the WordPress querying method, and I showed you in detail how the
WP_Query class operates as well as how to edit and customize the query to get custom content into your templates.
With these query methods, you can create extremely powerful queries to display almost any combination of content
on your site.

I also covered in great detail how the template tags work in WordPress, covering the main groups and how the
template tags work in a variety of ways to output the content the way you want it for your site. As well, I showed you
how the body_class and post_class functions can be used to add useful classes to HTML to help create custom
designs for content through clean CSS.

Finally, a lot of code was added to your templates to generate the content output for your theme. You should
now have the beginnings of a WordPress theme displaying dynamic pages of content from WordPress.

The next chapter looks at how to extend the functionality of WordPress to give you more contextual content
through the use of custom post types, custom taxonomies, and custom fields.

77



CHAPTER 4

Using Custom Post Types

You could say that the catalyst for the evolution of WordPress as a fully-fledged content management system (CMS)
came about through the introduction of the custom post type. For me, that was when the agency I first worked for
moved toward using WordPress as the back end for the sites we built. This major functionality gave WordPress

the capability to easily move away from what had been its key functionality, a blogging system, and toward a

more dynamic system for storing content. This chapter shows you how to take advantage of custom post types in
WordPress, how to create them, how to display them, and how to add advanced functionality to your post type to
make it extremely easy to work with as a content author.

Everything Is a Post

When I say, “Everything is a post,” I mean that all the main content types in WordPress are stored as a post. This
goes back to the very first version of WordPress, in which the only content type available was posts. It wasn’t until
WordPress version 1.5 (Strayhorn), in which the field post_type was introduced to the posts table (see Figures 4-1
and 4-2) in the database, that you started to see custom post types, the first being the static page type that still forms
one of the main parts of WordPress today.

| Browse | Structure || SQL , Search 3¢ Insert | Export ..} Import * Operations Ii Triggers
# Name Type Collation Aftributes Null Default Extra Action
11D bigint(20) UNSIGNED No  None AUTO_INCREMENT 7 Change @ Drop |/) Browse distinct values & Primary |y Unique w More
2 post_author bigint{20) WNAGNED  Nn D " Change @ Drop | | Browse distinct values 5 Primary gy Unique w More
3 post_dato datetime No  0000-00-00 00:00:00 & Chango @ Drop [[]] Browse distinet values > Prmary [y Unique w Moro
4 post_date_gmt datetime No  0000-00-00 00:00:00 & Change @ Drop Browse distincl values . Pimary |y Unique w More
5 post_content longtext utfB_general_ci No  None & Change @ Drop ] Browse distinct values Primary |y Unique w More
& post title text utf8_general_ci No  None & Change @) Drop | | Browse distinct values 5 Pimary |y Unique w More
7 post_excerpt et utf8_general_ci No  None &7 Change @ Drop | /] Browse distinct values & Primary |yj Unique w More
B post_status varchar(20) utfB_general_ci No  publish & Change @ Drop Browse distinct values > Primary |y Unique w More
9 comment status varchar(20) utf8 general ci No open o~ Change @ Drop | Browse distinct values . Primary | y Unique w More
10 ping_status varchar(20) utfB_general_ci No open & Change @ Drop | | Browse distinct values > Primary |y Unique w More
11 post_password varchar(20)  utfB_general_ci No & Change @ Drop Browse distinct values > Primary |y Unique + More
12 post_name warchar(200) utf8_geneval_ci No & Change g Drop Browse distinct values Primary |y Unique w More
13 to_ping tet utf8_genaral_ci No  None &7 Change @ Drop |11] Browse distinct values 5 Primary |{j Unique w More
14 pinged et utf8_general_ci No  None & Change @) Drop | | Browse distinct values 5 Pimary |y Unique w More
15 post_modified datetime No  0000-00-00 00:00:00 & Change @ Drop | || Browse distinct values > Primary |y Unique +w More
16 post_modified_gmt datetime No  0000-00-00 00:00:00 " Change & Drop Browse distinct values > Primary | yj Unique w More
17 post_content filtered longlaxt utf8_general_ci No  None &7 Change @ Drop [7] Browse distinct values Primary |y Unique w More
18 post_parent bigint(20) L ol O o” Change @ Drop || Browse distinct values > Primary |y Unique w More
19 guid varchar(255) ulf8_general_ci No & Change @ Drop | /] Browse distinct values Primary |y Unique + More
20 menu_ocrder int(11) No O & Change @ Drop | || Browse distinct values Primary |y Unique w More
21 post_type varchar(20) utf8_general_ci No post & Changa @ Drop ||| Browse distinct values 5 Primary |yj Unique w More
22 post_mime_type varchar{100) utf8_general_ci No & Change @) Drop | | Browse distinct values > Primary |y Unique w More
23 comment_count bigint(20) Ne 0 &” Change @ Drop Browse distinct values Primary |yj Unique w More

Figure 4-1. The structure of the posts database table

79



CHAPTER 4 © USING CUSTOM POST TYPES

wd post_name to_ping pinged post modified post_moedified_gmt post_content_filtered post parent guid menu_order post_type
hello-worid 2013-03-23 14:57:47 | 2013-03-23 14:57:47 0 http:/fadamonishi.dev/wordpress/7p=1 0 post
sample- 2012-09-27 07:13:18 2012-08-27 07:13:18 0 http:/fadamonishi.deviwordpress/?page_id=2 0 page

page

Figure 4-2. Database records showing the post_type in action

Although the ability to create custom post types has been around for quite some time now (by passing a post_
type parameter to the wp_insert post function), it didn't get “officially” included until the major release version 3.0
(Thelonious). Version 3.0 is what heralded most of the new functionality such as custom menus and custom post
types, and came with the introduction of the first of the Twenty-somethings’ default themes Twenty Ten. However, if
you look into the WordPress release notes it mentions “improved custom post types and custom taxonomies” because
really the functionality was added in version 2.9 when the register post_type function was originally included.

Before I tell you why custom post types are so great and how they can improve your WordPress themes, let’s take
a quick look at when and why they should be used.

When Do | Need a Custom Post Type?

I find myself asking this question more and more as I work on larger sites. There are times when a custom post type
is definitely necessary, but at other times the hierarchical nature of the page post type can be used to display content
that you might at first have thought required a custom post type. For example, I've used child pages for an instance in
which the content would be displayed only on the parent page, not as a single page themselves, but where I needed
more functionality than a standard custom field could offer. Initially in that example I would have used a custom post
type. However, because of the size of the site and the limitation of how the data would display, I went with the child
pages solution instead to keep the WordPress admin a bit smaller.

Although it could be considered a controversial approach, based on the requirements at the time, not using a
custom post type was the correct method. It’s best to approach each situation as unique and take into account the
circumstances around which you're building your admin. If the site in the example was to be maintained by a client,
for instance, it might be better stored in a custom post type.

What Is a Custom Post Type Used for?

A custom post type should be used when you have a series of content to be grouped in one way or another. All content
that goes into this post type should conform to the same format and page structure, or revolve around the same
theme. The usual examples of custom post types are these:

e  Products

e Movies
e  Books
e Events

e Testimonials

e Staff/team listings

80



CHAPTER 4 © USING CUSTOM POST TYPES

You can probably see a certain commonality among the types in the list. They are all likely to be accessed in a
similar way on the site—displayed in a list with a possible drill-down to a single display. They all need to be managed
separately from the rest of the content on the site. The posts contained within them all have a similar structure and
content. The main thing is that none of those examples identifies easily with the characteristics of a page or post.

Creating Custom Post Types

Now that you know why you may need a custom post type, you can start looking at how to add your own to the
WordPress admin. When you create a custom post type in WordPress, you create an entire new section of the
WordPress admin, which means for the post type to be fully integrated into WordPress there’s a lot of extra options
you can and should be looking to set up for the new post type. In this section, you'll look at all these options and more
so that your custom post types are not only set up correctly but also give users of the admin area as much information
to make the best use of these new types as possible. You'll look at the following:

e  Naming conventions

e  Using a plugin or the theme functions file

e  Setting up a basic new post type

e  Full set up and advanced options for custom post types
e  (Custom interaction messages

e  Custom contextual help

e  Custom help tab content

Naming Conventions

First up, let’s look briefly at how you should be naming your post types. Apart from post type identifiers being all in
lowercase, the WordPress Codex suggests that you use a prefix (or namespace) when creating your post types. This
book uses the namespace ptd (for Pro Theme Development), so using the earlier examples of post types, they use
these identifiers:

e ptd product

e ptd movie

e ptd book

e ptd_event

e ptd_testimonial
e ptd staff

This method is used to help prevent conflicts with any other themes or plugins you may use in the future. It’s also
incredibly important if you consider creating premium themes or plugins because you lose control over what will be
used in conjunction with your theme. So adding a namespace to your post types saves a lot of support requests in
the future.

Also notice that the examples I list here use a singular word to describe the post type—“product” over “products’,

”u

for instance. This conforms to the convention set in the WordPress for default post type names: “post’, “page’,
“revision’; “attachment’; and “nav_menu_item” as well as keeping the reference from post type to post correct because
you will create instances of the post type in the singular. It’s not until you group them on the web site that they become

“products’, so to speak.

81



CHAPTER 4 © USING CUSTOM POST TYPES

Note that your custom post type identifiers must not exceed 20 characters in length, possibly for the cause of
brevity but also simply because the database field for post_type is set to accept a maximum of 20 characters.

Using a Plugin or the Theme Functions File

When looking through tutorials on how to set up a custom post type, you will invariably see a lot of suggestions for
putting all the code for creating a custom post type in a custom plugin. To me, this all depends on the circumstances
of creating the custom post type. If the post type will be unique to the theme with custom templates created
specifically for that post type, adding it to a plugin just adds one more thing for the user to download and install to get
your theme working. In this case, it's much more sensible to add your custom post type declarations to the themes
functions file, which (as discussed in Chapter 1) acts as the theme’s own little plugin file. This way, the code is kept
related directly to the theme.

However, if your custom post types will be used across multiple themes and set up the same way each time,

I definitely recommend the use of a plugin. The functionality will stay the same for each site, and any updates that are
required need the code base to be updated only once to get the improvements.

This section looks primarily at building your custom post types into the theme itself, so you'll use the theme
functions file for now. Later, when you add to your theme, I'll also show you a method for separating your custom
post type code from the rest of the functions file so you can keep it neatly away from the rest of your custom functions
because (as you'll see later in the chapter, the code for custom post types can get quite big).

Setting a Basic Custom Post Type

To set up a basic custom post type you'll be using the register post_type function. This function comes with a
whole array of options that cover everything you could possibly imagine that’s related to a post type in WordPress and
a few things you probably didn’t. Let’s take a look at a quick example of how to set up a post type of 'Movies', which is
using possibly the most basic options you will need to use in the register post_type function:

register post type( 'ptd_movie',

array(
'labels' => array(
"name’ => _ ( 'Movies', 'prowordpress' ),
"singular_name' => _ ( 'Movie', 'prowordpress' )
)s

'public' => true,
"has_archive' => true,
)

)s

The previous function call contains all you need to get a custom post type set up in WordPress and displaying in
the WordPress admin menu (see Figure 4-3). The preceding options give the post type two different name labels: a
singular name and a plural name—using the 'name' label setting becomes the main label used throughout the admin
(again shown in Figure 4-3).

82



CHAPTER 4 © USING CUSTOM POST TYPES

{3} Dashboard

<~ Posts
(34 Media
@ Links

[C] Pages

All movies
Add new

() Comments

Figure 4-3. The Movie post type displaying in the admin menu

Other options shown previously mean the function will be visible to users (the 'public' option) and allow the
post type to have its own archive page: the 'has_archive' option. This means you can view a list of the posts in this
post type at a specific URL; in this case, because an alternative is not set, it uses the post identifier "ptd_movie" using
the URL http://website.com/ptd_movie.

You may have also noticed the post type names are wrapped in a function themselves, the () function. This
is to allow them to be localized for a particular language. The __ () function takes two parameters, the text to be
translated and the text domain of your theme/plugin. For now that’s all you need to know, however you will be
covering internationalization and localization in a lot more detail in Chapter 12.

This function should be run as soon as possible; when WordPress is constructing pages, the theme functions file
is loaded automatically when any page is set up by WordPress, front-end or admin pages. However, the
register post_type function needs to be called at a certain time before other functionality in WordPress has been
set up so the new post types can be taken into account. The best way to do this is to hook the register post type
function to the WordPress init action by putting all the calls to register post_type inside a containing function and
use the add_action function to add this on init

add_action('init', 'new post types');

function new_post types() {
register post type( 'ptd_movie',
array(
'labels' => array(
"name' => _ ( 'Movies', 'prowordpress' ),
"singular name' => _ ( 'Movie', 'prowordpress' )
)s
'public' => true,
"has_archive' => true,
)
);

83


http://website.com/ptd_movie

CHAPTER 4 © USING CUSTOM POST TYPES

This is the first example of creating a custom post type. Next, you'll take a deeper look into the register post_
type function and all the options you have available to highly customize how your post type will work, what content it
can store, and how it can be accessed.

Full Setup and Advanced Options for Custom Post Types

Now that you've seen a basic custom post type and how it can be set up, you can have a look at the full set of options

available when creating custom post types:

$labels = array(
"name’ => 'Movies',
"'singular_name' => 'Movie',
"add_new' => 'Add New',
"add_new_item’ => 'Add New Movie',
'edit_item’ => 'Edit Movie',
"new_item' => 'New Movie',
'all_items' => 'All Movies',
'view item’ => 'View Movies',
'search_items' => 'Search Movies',
"not_found' => 'No movies found',
'not_found_in_trash' => 'No movies found in Trash',
'parent_item_colon' => "',
'menu_name' => 'Movies'

)5

$args = array(
'labels’ => $labels,
"description’ = "",
"exclude_from_search' => false,
"public’ => true,
'publicly queryable' => true,
"show_ui’ => true,
"show_in_nav_menus' => true,
"show_in menu’ => true,
"show_in_admin bar' => true,
'query var' => true,
'rewrite’ => array( 'slug' => 'movie' ),
'capability type' => 'post’,
'menu_icon' => bloginfo('template directory'). '/images/movie-menu-icon.png',
"has_archive' => true,
"hierarchical’ => false,
'menu_position' => 20,
'supports’ => array('title', 'editor', 'author', 'thumbnail', ‘excerpt', 'comments'),
"can_export' => true,

)s

register post_type( 'ptd _movie', $args );

Asyou can see from this code, there is a plethora of options available to you when setting up a custom post type. You'll
take alook at what they all do over the course of this section, starting with possibly the most obvious option, the labels.

84



CHAPTER 4 © USING CUSTOM POST TYPES

Labels

Probably the most self explanatory of all the options, the labels allow you to set a number of different bits of text
that make up the WordPress admin for the custom post type. Although the basic example sets up only the name and
singular_name labels, by setting a lot more labels, as shown previously, you can create a much more informative
admin area. You can see the comparison in Figure 4-4.

ok 5P Add New Post &2 57 Add new movie
s~ Posts s Posts '
(54 Media 5y Media
&2 Links ? Links
[C) Pages (5 Add Media [C] Pages (3 Add Media
B;mgzg;ccg B I m = = « E S
All movies Parsgraph (R == NARTIH All movies Paragraph ~ U = A~ [
Add new Add new
(©) Comments (> Comments
ED Appearance [0] Appearance
/% Plugins /& Plugins

Figure 4-4. A comparison showing the use of standard custom labels (left) vs. advanced custom labels (right)

All the label titles are pretty easy to follow, the format of all the labels are set out to be similar to the regular
WordPress admin, with the new post type name replacing what would normally be “post” or “page”.

For the example code I have intentionally left off the internationalization functions to make the text easier to see,
however in your themes you should always be internationalizing any content that a user will be seeing.

Although this may not look like a major difference in the admin area, these options allow you to make the admin
feel more complete; even little touches like these can lead to a much more improved user experience in your theme.

Display Options

What I'm going to call the “display options” are any options passed into the functions that control how and where the
new post type is displayed in the admin area. They include the following:

e public

e publicly queryable
e exclude_from search
e show_ui

e show_in_menu

e show_in_nav_menu

e show_in_admin_bar

e menu_position

85



CHAPTER 4 © USING CUSTOM POST TYPES

You saw the public option before in the basic post type setup. This is the option that sets whether the post type
appears in the admin user interface (UI) and is displayed in the front end as well. This is also the main option for
most of the display options listed previously in that the rest of the options (all apart from menu_position) inherit their
setting from the public setting. However, they do not all rely on this setting and will take whatever setting is passed
through with the function.

The publicly queryable setting determines whether you can query for the post type from your theme. It should
be set to true for most post types; if it’s set to false, you can’t view any custom posts from this post type. Although this
may seem to be an irregular option, suppose that you are creating a shopping system that needs to store the orders
in the database for administrators to monitor. You could easily do this using a custom post type and by setting
publicly queryable to false. No one from the front end would then have access to view the orders placed in the
database.

The setting exclude_from_search is fairly self-explanatory: if set to true, searching the site via website.
com/?s=searchterm would return no results. This could be useful, but be aware that if set to true you cannot use
taxonomy-based filters to display the custom post type because that functionality requires the post type to be
searchable, so this option is likely to be set to false most of the time.

The show_ui option tells WordPress whether to generate an admin interface for the post type. It’s unlikely that
you will need to change this setting if you have set public to true because I can’t imagine many situations in which
you would want a post type to be usable but not have an admin interface.

The options show_in_nav_menus and show_in_admin_bar should also be self-explanatory. Both are true or false
settings; the first is whether this post type should be usable in custom menus, and the second is whether this post type
shows in the admin bar from the Add New drop-down menu (see Figure 4-5).

Add New Post « Adam On| %

o C' [} review.dev/wordpress/wp-admin/post-new.php?post_type=ptd_movie

'>J|” ) A dl Post

{3} Dashboard

sr Posts heae

-Lg,g Media Link

@ Links Fap

— Movie

(L] Pages (55 Add Mec

B User

* r
T M
All movies Paragaph v U = AR @ Q Q =

Add new

() Comments

Figure 4-5. The Add New drop-down menu showing the Movie post type in the list

86



CHAPTER 4 © USING CUSTOM POST TYPES

The show_in_menu option can act as a simple Boolean option, setting whether the post type should be displayed
in the admin menu. The other function that the show_in_menu option can be used for is set up by passing a string to
the option. This string is used to tell WordPress which admin menu the post type should appear under. For instance, if
you wanted your item to appear in the Page drop-down menu, you can pass the string "edit.php?post_type=page",
the result of which you can see in Figure 4-6. This functionality can be seen a lot in different WordPress plugins and
frameworks, which add post types to the Tools submenu (using the string "tools.php") or add multiple post types
under the same main admin menu.

806 Mavie « Adam Onishi — ¥

L c review.dev/wordpress/wp-admin/edit.php?post_type=ptd_mavie

Adam Onishi x4 @

{3} Dashboard

5P Movie  Adiren

s~ Posts
All (0) | Trash (7)

(35 Media (8 1x T

= . 5 R ;
& Links Bulk Actions 3 | Apply Showalldates 4 | Filter
Til

All Pages No movies found

Add New | Title

All movies

Bulk Actions 4 | Appl
() Comments = By

K

(0] Appearance
/% Plugins
) llsars

Figure 4-6. The Movies post type appearing in the Pages submenu

The final setting of the display options is menu_position. This takes an integer value, which decides where in the
admin menu the new post type will appear. The default is to appear after the comments menu item, but here is a full
list of the stop points you can use to position your post type anywhere in the admin menu:

e  5:below Posts

e 10: below Media

e 15:below Links

e  20: below Pages

e  25:below comments

e  60: below first separator

e  65: below Plugins

87



CHAPTER 4 © USING CUSTOM POST TYPES

e  70: below Users
e  75:below Tools
e  80:below Settings

e 100: below second separator

Supports and Capabilities

The supports option is probably one of the more important options for creating a post type. This option takes an array
argument containing all the different post features that you want to be able to use in the post type being set up. The
defaults are title and editor, which give you the main title field and the main content editor for the post type. But
there are many more options available to theme developers than this basic pair of features; almost any feature that
can be used in a WordPress post or page type can be added to a custom post type:

e title:default post title field

e editor: main post content

e author: set an author of the post

e thumbnail: add post thumbnail support

e excerpt: add an excerpt field

e  trackbacks: recognize trackbacks

e custom-fields: have the WordPress built-in custom fields added to it
e comments: enable the post type to have comments

e revisions: enable the post type to track and store revisions

e page-attributes: give the post type page attributes such as post order and page template
e post-formats: add post format selectors to the post type

To add any or all of these, you need to add each one to the array passed to the 'supports' option:
'supports' => array('title', 'editor', 'thumbnail', 'page-attributes', 'author'),

Besides what the post type supports in terms of features, you can also set the capabilities of the post type with the
argument 'capability type'. When talking about capabilities, I'm referring to the read, edit, and delete capabilities
that the user has over the post type. The default setting for 'capability type' is post, which means that access to the
custom post type will be granted to users in the same way it’s granted to the 'post" post type. For instance, using
the post capability type, users of the author role can create and edit their own posts in the custom post type, but if
the capability type were set to page, you would need to be an editor to be able to do this. I'll go into more detail on
WordPress roles and capabilities in Chapter 8.

There is also a ' capabilities' option for this function that allows you to construct a custom set of capabilities
for the post type. Suffice it to say, this is an extremely large subject that will be covered in more detail in Chapter 8.

Custom Rewrite Rules

The next set of options cover how to set custom rewrite rules for the post type. Rewrite rules relate to how you access
the post type through the front end from specific URLs, one of the many great parts to WordPress as a CMS. This only
applies however when you've set up “pretty permalinks” in the WordPress settings.

88



CHAPTER 4 © USING CUSTOM POST TYPES

The rewrite option in the register post_type function takes an array of arguments that control how WordPress
handles the permalinks for the post type. It can also just take the argument 'true', which will set the permalink
structure for the post type to the post type name passed in at the beginning of the function. However, because of the
way I'm setting up the post type name with a prefix—"ptd_movie"—the permalink structure would actually be quite
untidy: http://website.com/ptd_movie/clerks. That’s where the extra options of this function come in handy; in the
code example, the rewrite argument looks like this:

'rewrite' => array( 'slug' => 'movie’ ),

You see a nice clean URL in the form of http://website.com/movie/clerks instead. Much better.
The other options in the array help customize the permalink structure further and allow you to set whether
WordPress should process other permalink structures based around this post type:

e with_front (defaults to true): If set to true, the permalink structure will use the front base set
in the permalink settings; if false, it will ignore the base and use the slug only.

e feeds (defaultsto has_archive setting):If setto true, WordPress will generate a feed
permalink structure for the post type.

e  pages (defaults to true): If set to true, WordPress will accommodate the pagination permalink
structure for the post type (e.g., /movie/page/2).

e ep_mask (default not set): This option takes in an endpoint mask to be used for the post type.

Most of these defaults are taken care of automatically or based on other settings passed to the function, meaning
that if the main post type settings are taken care of, you need to worry only about setting a slug parameter for this option.

Flush Rewrite Rules

When creating custom post types and setting custom rewrite structures, you need to tell WordPress that you've made
these changes. This applies to when you're activating your new post types, which can occur when you're activating the
plugin or theme that contains them as well as when you first set them up. To do this, simply use a function provided
by WordPress that tells the CMS to check and reset all the rewrite rules for the current active install, which is called
flush_rewrite rules().

This function should be used only when setting up the custom post types because it is quite operation-heavy and
will slow down your site if used every time you load a page. To make sure to run the function only when necessary,
you can call it only when the plugin or theme is loaded.

add_action( 'after switch theme', 'prowordpress flush rewrite rules' );

function prowordpress flush rewrite rules() {
flush_rewrite_rules();
}

This code simply wraps the flush_rewrite rules() function in your own function so you can call it on the
after switch_theme action using the action hook. This way, whenever the theme is changed and your theme is
activated, the flush_rewrite rules() function will do its magic.

It's a similar process if you create custom post types in a plugin, except that you need to call the function when
the plugin is activated and deactivated:

add_action( 'init', 'my_cpt init' );

function my cpt init() {
// register our post types
}

89


http://website.com/ptd_movie/clerks
http://website.com/movie/clerks

CHAPTER 4 © USING CUSTOM POST TYPES

function my rewrite flush() {
my cpt_init();

flush_rewrite rules();

}

register_activation_hook( _ FILE_ , 'my rewrite_flush' );

function myplugin deactivate() {
flush_rewrite rules();
}

register deactivation hook( _ FILE , 'myplugin_deactivate' );
This code gives you a rough idea of how loading custom post types in a plugin should work. First, the function

at the top in which you create post types and then two functions that are hooked on to the activation and
deactivation hooks of the plugin containing the flush_rewrite rules() function.

Menu icons

To add even more customization to the new post type, you can add a custom menu icon, which will be used in the
WordPress admin menu. The easy way of doing this is to take a standard 16-pixel-square icon and add the location of
it to the menu_icon option in the function call, as in the earlier example code:

‘menu_icon' => bloginfo('template_directory').'/images/movie-menu-icon.png',

The icon then is included in the admin menu tab for the new post type, which you can see in Figure 4-7.

(3} Dashboard

'I7 General Settings

s~ Posts

) Media Site Title
2 Li ;

@ Links Tagline
(| Pages

= Movie

WordPress Address (URL)

() Comments

— Site Address (URL)
0] Appearance

£% Plugins

&, Users E-mail Address

Figure 4-7. Custom post type menu item with a color icon

90



CHAPTER 4 © USING CUSTOM POST TYPES

Unfortunately, it’s likely that your new color icon, will stick out like a sore thumb among the rest of the default
WordPress icons. There is a way to get past this—you’ll look at that in the next section on customizing the admin
interfaces.

Miscellaneous Settings
The last few options should be fairly easy to figure out, but I'll mention them nonetheless.
e ‘'description': Contains a short summary of the post type.

e 'can_export':Ifsetto true or false, allows the post type to have its content exported via the
WordPress export function.

e ‘hierarchical': Another true or false option that sets whether the posts in the type can
have children, meaning that they act in a similar way to pages; if set to false, they are more
like posts.

e 'query var':Sets the string which can be used to query for the post type using the format

?{query_var}={single post_slug}. For instance, if this were set to "movie" for the movie
post type, you would be able to return a post with the URL
http://website.com/?movie=clerks. This setting does not interfere with the custom rewrite
settings, but it’s not very useful because it’s preferable to use a custom URL rewrite such as
http://website.com/movie/clerks.

So there are a lot of settings available to truly customize post types, enabling you to create really dynamic content
types using WordPress. I also touched on some options in the form of menu icons and custom labels, which help set
up the admin interface so the post types actually feel like a truly integrated part of the WordPress admin.

Next, you'll look into more detail at how you can make the WordPress admin custom post types even more
user-friendly with custom interaction and helper copy.

Customizing the Admin Interfaces

When creating a custom post type, you create all this new functionality for the user, but by default (apart from
editing all the labels associated with the post type) you're left with an admin interface that still talks about posts. This
would be a lot more user-friendly if it referred to the post type you'd created instead, and maybe have more specific
instructions about how to use and edit the custom post type.

Luckily, WordPress has this functionality; although it’s a bit of a mess of code, there is a way of updating all the
interaction messages, contextual help, and even the Help tab that appears with your post type. As I said, the code in
the following examples may look a bit untidy and cumbersome, but in the long run it’s really worth it to make sure
your users are getting the complete experience and most user-friendly interface for managing their content.

Interaction Messages

Interaction messages are little bits of microcopy shown by WordPress based on user actions around the interface. If a
person updates, publishes, or searches within a post screen, they trigger one of the interaction messages.

91


http://website.com/?movie=clerks
http://website.com/movie/clerks

CHAPTER 4 © USING CUSTOM POST TYPES

To create custom messages for the post types, you can use the post_updated messages hook and manually edit
the messages output for the post type. Let’s have a look at the code:

function prowordpress updated messages( $messages ) {
global $post, $post ID;
$messages[ 'ptd movie'] = array(
0o="",
1 => sprintf( _ ('Movie updated. <a href="%s">View movie</a>', 'prowordpress'),
esc_url( get permalink($post ID) ) ),
=> _ ('Custom field updated.', 'prowordpress'),
=> _ ('Custom field deleted.', 'prowordpress'),
__('movie updated.', 'prowordpress'),
=> isset($_GET['revision']) ? sprintf( _ ('Movie restored to revision from %s',
'prowordpress'), wp_post revision title( (int) $ GET['revision'], false ) ) : false,
sprintf( _ ('Movie published. <a href="%s">View Movie</a>', 'prowordpress'),
esc_url( get permalink($post ID) ) ),
__('Movie saved.', 'prowordpress'),

8 => sprintf( _ ('Movie submitted. <a target="_blank" href="%s">Preview movie</a>"',
"prowordpress'), esc_url( add query arg( 'preview', 'true',
get_permalink($post_ID) ) ) ),

9 => sprintf( _ ('Movie scheduled for: <strong>%1$s</strong>. <a target="_blank"
href="%2$s">Preview movie</a>', 'prowordpress'), date i18n( _ ( 'M j, Y @ G:i' ),
strtotime( $post->post_date ) ), esc_url( get permalink($post _ID) ) ),

10 => sprintf( _ ('Movie draft updated. <a target="_blank" href="%s">Preview movie</a>',
"prowordpress'), esc_url( add_query arg( 'preview', 'true',
get_permalink($post_ID) ) ) ),

v b W N
U
v

(o))
U
v

~
U
v

);
return $messages;
}

add filter( 'post_updated messages', 'prowordpress updated messages' );

This function doesn’t look too friendly, I'll grant you, but unfortunately it’s the only way to update the messages
in WordPress at the moment. (With WordPress being updated so regularly, it may make some changes to this soon).
In the function, you first need to grab the current post global variable and the $post_ID variable, which you'll use in
the messages when outputting links and various other bits for your messages. The $messages variable in the function
is passed in by reference from the hook and is what stores all the messages for all custom post types, so if you want to
update multiple post types here, you can do so in this one function.

The messages for the post type are stored in the messages array using the post identifier as the key and then each
message is simply contained in that array. The improvement in the future could be that the messages get stored in an
associative array so you know what each message is referring to, but for now you have to go from the current messages
that exist. The messages are simply using the example from the WordPress codex with all references to 'post’
replaced with 'movie’. The code in and around the messages are WordPress internationalization functions and string
building functions that you can leave alone because they do the job superbly.

Adding Contextual Help

Along with interaction messages, there is also contextual help you can add to your post types to give the user more
information on how to use the custom post type or what to add. All this is done via the Help drop-down list in the
top corner of the page (see Figure 4-8). It is visible on most of the pages throughout WordPress, although it does not
appear on your custom post types unless you set up some information to go in it, which is what you will do here.

92



CHAPTER 4 © USING CUSTOM POST TYPES

Overview Pages are similar to posts in tha they have a tite, body text, and associated metadata, but they are different in that ey are not part of the chronological blog For more information:
stream, kind of like permanent posts. Pages are no! calegorized of tagged, but can have a hierarchy. You can nest pages under other pages by making one the
Managing Pages “Parent” of the ather, creating a group of pages.

Support Forums

F Help
" Pages addnew

Al | Published (9) | Drahs Search Pages

Bulk Actions 3 Apply Showalldates & | Filer

Figure 4-8. The Help tab content dropped down for you to see

To add to the Help tab, you need to write a function that hooks into the display of the editor pages of WordPress.
For this, you have the contextual_help hook. You can also write different help text based on the screen you're
viewing, which is where the contextual part comes in. Each screen has its own ID, so you can use it to figure out what
content to display.

function prowordpress add_help text( $contextual help, $screen_id, $screen ) {
if ( 'ptd_movie' == $screen->id ) {
$contextual_help =
'<p>' . _ ('Things to remember when adding or editing a movie:',
"prowordpress') . '</p>'.
"<ul>'
'<1i>" . _ ('Add the synopsis to the main content editor.’, 'prowordpress'). '</li>'.
'<1i>' . _ ('You can also add a custom excerpt of the synopsis to display on the
listing page in the excerpt box', 'prowordpress') . '</1li>"' .
"</ul>' .
‘<p>' . _ ('If you want to schedule the book review to be published in the
future:', 'prowordpress') . '</p>' .
"<ul>' .
‘<1i>' . _ ('Under the Publish module, click on the Edit link next to Publish.',
'prowordpress') . '</1i>'
"<Jul>' .
"<p><strong>' . _ ('For more information:', 'prowordpress') . '</strong></p>' .
<p>' . _ ('<a href="http://codex.wordpress.org/Posts _Edit SubPanel" target="_
blank">Edit Posts Documentation</a>', 'prowordpress') . '</p>'
<p>' . __('<a href="http://wordpress.org/support/" target="_blank">Support
Forums</a>', 'prowordpress') . '</p>' ;
} elseif ( 'edit-ptd movie' == $screen->id ) {
$contextual help .=
"<p>' . __('Pick a movie to edit from the list or add a new movie from this screen’,
'prowordpress') . '</p>' ;

}

return $contextual_help;
add_action( 'contextual help', 'prowordpress add help text', 10, 3 );

Here you're adding content for two different screens for the post type: the first has the screen ID of the post type
identifier and relates to the editing page of the post type; the second is the post type list page that has the screen ID
of the post type identifier but is prefixed by edit-. All the function then does is add content to the $contextual_help
variable, which is passed in by reference. You return it at the end of the function and you get a Help tab with the
content shown in Figure 4-9.

93


http://codex.wordpress.org/Posts_Edit_SubPanel
http://wordpress.org/support/

CHAPTER 4 © USING CUSTOM POST TYPES

+ New Howdy, adamonishi =,

Overview Things to remember when adding or editing a movie:
» Add the synopsis 1o the main content editor

» You can glso add a custom excerpt of the synopsis 1o display on the lsting page in the excerpl box
I you want to schedule the book review to be published in the future

« Under the Publish module, dick on the Edit link next o Publish.

For more information:

Edit Posts Documentation

Suppon Forums

Haln

Figure 4-9. The contextual help content added to the drop-down list

Custom Help Tabs

In WordPress 3.3 (Sonny), tabs were added to the Help drop-down lists to be able to provide better help to the user
when working with WordPress. This allowed for more detailed help content and for it to be displayed in a much
nicer way. In the previous example, you added the help content to the drop-down list, but it created only one tab: an
overview tab (refer to Figure 4-9). If you want to emulate the WordPress experience, though, and create more useful
help content, you can create your own custom tabs:

function prowordpress custom help tab() {
global $post_ID;
$screen = get current screen();

if( isset($_GET['post_type']) ) $post_type = $_GET['post_type'];
else $post_type = get post_type( $post ID );

if( $post_type == 'ptd_movies' ) {

$screen->add_help tab( array(
'id" => 'movie_help genre', //unique id for the tab
"title' => 'Genres', //unique visible title for the tab
'content' => '<h3>Choosing genres</h3><p>For help with selecting the correct
genre for your movie you could check out the information on
<a href="http://www.imdb.com/">imdb.com</a>.</p>",

));
}
add_action('admin_head', 'prowordpress custom help tab');
This code is called on the admin_head hook; if you were to use it on the contextual_help hook as you did in the
previous example, it would overwrite the help you set up first. However, if you will use tabs in your contextual help,
I suggest taking this approach and leaving out the contextual help method. For instance, you could combine the

two functions shown in these examples and set up tabs for each screen using the conditional tags from the previous
example.

94


http://www.imdb.com/%22%3Eimdb.com%3C/a%3E.%3C/p

CHAPTER 4 © USING CUSTOM POST TYPES

Advanced Custom Menu Icons

If you look back at the example in Figure 4-7, you can clearly see the difference between the new custom post type
menu icon and the rest of the icons. When inactive, the menu icon, despite having its opacity lowered, still shows up
in color, whereas the rest of the default icons appear in grayscale. The reason is that when you set an icon up through
the register post_type function, WordPress adds the icon that you've set as an img tag into the menu structure,
whereas all the default icons are controlled with CSS using a sprite.

To add an icon to the custom post type that acts in a similar way to the WordPress defaults, you have to veer
slightly off the path suggested by the WordPress Codex. To get the custom menu icon working as default WordPress
icons do, you need to create some custom icons and add some CSS to the admin area of the theme.

To fully customize the post type icons, you need to create more than just the color and grayscale icons for the
admin menu; you also want to create a large grayscale icon, 32x32 pixels in size, to go at the top of the main screens of
the post type. (You can see an example of one at the top of the Page editor screen in Figure 4-7.) With WordPress being
kept up to date with modern technology, you'll need to have versions of the icons at 2x the size for high-dpi screens,
too. On top of that, WordPress also has a blue admin theme (not that I know anyone who uses it) that uses icons with
a blue tint, whereas the normal theme uses grayscale icons. This means that in total you can be creating up to 10 icons
per post type to make the menu icons fully compatible with all aspects of the WordPress admin. For this example,
though, I look only at the standard WordPress admin; for the blue tint admin, you can use similar CSS but note that
the body class to look for is ' .admin-color-classic’

First, you need to create the graphics. The method I use is having the icons all in one sprite graphic, but you can
do this in whatever way you prefer; just substitute the images where necessary in the CSS.

To add these icons to the admin, you need to do it via CSS, not via the post type function, so if you use this
method, you can remove the 'menu_icon' option from the function, and instead allow the default icon to be used,
which you'll overwrite in the CSS. To add CSS to the admin pages, some people pass a function with CSS written into a
<style> tag to the "admin_head' function; it simply places the styles into the page <head> tag. However, I prefer to use
a separate style sheet for any extra admin styles I want to use, and it is really simple to do with another hook and the
wp_enqueue_style function you used in Chapter 2.

add_action('admin_enqueue_scripts', 'my admin_theme style');

function my _admin_theme style() {
wp_enqueue_style('ptd-admin-theme', get bloginfo('template directory') . '/css/admin-style.css'

If you add the previous few lines of code to the functions file in your theme, you have a style sheet included in the
WordPress admin pages. In the style sheet, you can add the following CSS to change the menu icon for the new post type:

/* Admin Menu - normal */
#menu-posts-ptd_movie .wp-menu-image {

background: url(../images/icon-movie-sprite.png) no-repeat 0 0;
}

/* Admin Menu - hover/active */

#menu-posts-ptd _movie:hover .wp-menu-image,

#menu-posts-ptd_movie.wp-has-current-submenu .wp-menu-image {
background-position: 6px -26px;

}

/* Post Screen */

.icon32-posts-ptd movie {
background: url(../images/icon-movie-sprite.png) no-repeat 0 0;
}

95



CHAPTER 4 © USING CUSTOM POST TYPES

@media
only screen and (-webkit-min-device-pixel-ratio: 1.5),
only screen and ( min--moz-device-pixel-ratio: 1.5),

only screen and ( -0-min-device-pixel-ratio: 3/2),
only screen and ( min-device-pixel-ratio: 1.5),
only screen and ( min-resolution: 1.5dppx) {

/* Admin Menu */
#menu-posts-ptd_movie .wp-menu-image {
background-image: url('../images/icon-movie-sprite_2x.png');
-webkit-background-size: 16px 48px;
-moz-background-size: 16px 48px;
background-size: 16px 48px;
}
/* Post Screen */
.icon32-posts-ptd _movie {
background-image: url('../images/icon-movie-sprite_2x.png');
-webkit-background-size: 32px 32px;
-moz-background-size: 32px 32px;
background-size: 32px 32px;

This CSS makes use of only the WordPress-added IDs that include the post type name given to the new post type.
All you would have to do to add icons for the blue theme is to add the same selectors again but with the body class
'.admin-color-classic' prepended to the selectors.

Plugins and Code Generators

As you've seen so far, setting up a custom post type can be one heck of a task: there are a lot of options and a load of
information to go with the post types you create to make the admin interfaces as user-friendly as the rest of WordPress
for your new post types. Because of all this complexity and because WordPress is so easily extendible, there are a lot of
plugins available to make setting up and managing custom post types easier. You might think that I will have a bit of a
moan at people using plugins to manage things that are easily solved with code, but this is one of the times when it’s
not entirely the case.

If you're building and maintaining a site and theme yourself, a custom post type plugin might be a good idea. It
helps by saving you a lot of time and gives you a better way of managing your post types without having to write a lot
of code. However, there are none I have seen so far that deal with the custom functionality of customizing the admin
interfaces and help messages.

If you're creating a theme that will be distributed and managed by others, asking them to download a plugin and
add specific custom post types to work with your theme is a complete no go. If you are distributing a theme for others
or creating a premium theme, you can’t expect to list a series of dependencies for your users or customers to be able
to use your theme. In this case, you should be writing the code in with the theme so everything will be set up ready for
users to get going as soon as they install your theme.

For this reason, I like the idea of code generators. For WordPress and for custom post types there are quite a few
of these available; the best I've found so far is at http://generatewp.com/post-type/ (see Figure 4-10). Here you can
create the bulk of your code very quickly by inputting the main naming details into the site, and it will generate the
code for the post type for you. Then you're free to edit it and add to your theme yourself. It will save you a lot of time
and you will have complete control over the code you're putting into your theme.

96


http://generatewp.com/post-type/

CHAPTER 4 © USING CUSTOM POST TYPES

806 Cenerate WordFress Posi

L = generatewp.com/post-type/ sCo9on0

Post Type Generator

# Home @ wpconfigphp B Taxonomy JURE-SRLCN & Fost

s ¥ Sidebars HEMenus % Then 3upport @ Shoricodes

s tool to create custom code for Post Types with register_post_type() function. Fill out the form, update the cods, copy the code to your

General PostType Labeis Options Visibilty Query Permalinks Capabiities
Post Type Key Name (Singular) Link To Taxonomies
ptd_movie Movie fenre
Key used In e code. Up 1o 32 characters, Post type singuiar name. e.g. Product, Eventor  Link 1o Texonomies, Gommas separated
owercass, Movie. taxonomies.
Description Name (Plural) Hierarchical
Maovies to show on our site Movies No (ke posts) H
A short descriptive summary of the post type Post type plural name, e.g. Products, Everts or  Hiararchical post types allows descendants
Movies.

ff Register Custom Post Type
function ptd_movie() {
Slabels = array(

'nome * =» _x{ "Movies', 'Post Type General Nome®, 'text_domain' ),
*singular_name’ => _x( "Movie', 'Post Type Singular Name®, 'text_domein' ),
‘menu_name => __( 'Product’, "text_domain' ),

Figure 4-10. The GenerateWP post type generator

Displaying Custom Post Types

Once you set up the custom post types in WordPress, you'll need a way to display the content in your themes. As
I talked about at the beginning of the chapter, custom post types are stored in a similar way to the rest of the main
content of posts and pages in WordPress. Because of this, it means that accessing them in your theme uses very
similar techniques. You can do it through the WordPress query, which you learned about in the last chapter; or
through custom page templates, as discussed in Chapter 2.

Querying with Custom Post Types

The first method you'll look at is using the custom query. You've already seen this in action a lot in the previous chapter,
so you should be familiar with the main code you'll be using. To get the custom post type to appear in the query, you
simply use the custom post identifier you created the post with as the value of the post_type option in the query
arguments. Using the example of the ptd_movie post type you created earlier, the query would look a lot like this:

$args = array(

'post_type' => 'ptd_movie',
'posts_per page' => 10,
'orderby’ => "title’',
"order’ => 'ASC'

)5

$movies = new WP_Query( $args );

97



CHAPTER 4 © USING CUSTOM POST TYPES

if( $movies->have posts() ) : while( $movies->have posts() ) : $movies->the post(); ?>

<article <?php post_class(); ?>>
<h2><?php the_title(); ?></h2>

<?php the_content(); ?>
</article>

<?php endwhile; endif; ?>

You just created a new instance of the WP_Query with the arguments querying for the posts in the ptd_movie post
type and then run a loop normally, including all the usual template tags.

You can also add your custom post type to the default query so it will be intermixed with the normal posts and
displayed on your home and standard archive pages. To do this, you need to add the custom post type to the query
before it has run, which is easy to do using the pre_get_posts hook:

add_action( 'pre_get posts', 'prowordpress custom post types in main_query' );

function prowordpress custom post types in main_query( $query ) {
if ( is_home() &% $query->is main_query() ) {
$query->set( 'post_type', array( 'post', 'ptd _movie' ) );
}

return $query;

This is a simple function that modifies the main query if on the homepage via the WP_Query set method. The
set method is another way of editing the options in the WP_Query object, which should be used when modifying an
already built query. This function changes the current value of the post_type option and sets it to an array containing
the standard post type and the custom post type ptd_movie. Using this method, the home page of latest posts could
now be used to show a series of latest updates, which can include any new movies that have been posted as well as
most recent blog posts.

Custom Post Type Templates

The next method of displaying custom post types in your WordPress theme is with the page templates in your theme.
When you set up the post type earlier, you set some URL rewrite options, which means that the ptd_movie post type
can be accessed through URLs on your site at these locations, for example:

e http://website.com/movie: For a page listing posts in the ptd_movie post type
e http://website.com/movie/clerks: To access a specific ptd_movie post: Clerks in this case

The pages these URLs go to are generated through different page templates, usually when working with the
standard post type and the archive.php and single.php templates, respectively. Since version 3.1, you can now
create specific templates to be used to display the custom post types by adding the post type identifier to the template
file name as with the page slug to create bespoke page templates. The template files look like these:

e archive-ptd_movie.php
e single-ptd_movie.php
They now work the same way as standard WordPress page templates and will output the custom post type

information from the default query passed into the template.

98


http://website.com/movie
http://website.com/movie/clerks

CHAPTER 4 © USING CUSTOM POST TYPES

Note Sometimes WordPress doesn’t recognize a new template file for custom post types right away. To remedy this,
you need to edit the permalink settings in Settings » Permalinks, change them to something different, save the change,
and then reset to your desired settings. This procedure forces WordPress to flush the rewrite rules, so you don’t have to
run the function in your theme when you’re creating new post types.

Extending Post Types

Now that you know how to create and display custom post types in WordPress, you can take a look at how to extend
the functionality of the post types to allow you to do all sorts of things. This extended functionality can also apply to
the standard post types, meaning that you can customize the WordPress admin area to be as useful to you as possible.

Post Type Supports

You saw earlier the 'supports' option, which is used when setting up the custom post type:
"supports' => array( 'title', 'editor', ‘author', 'thumbnail', 'excerpt' ),

This option sets up what functionality the post type can have; each option has its own specific keyword
(e.g., editor, for the main WordPress editor box that gets stored as the post content).

WordPress also has functions that can be used on already created post types to add support for any desired
features that weren’t set up within the register post type function. Although it may seem unnecessary, if you're using a
plugin that creates a post type, you can add support for a certain feature to that post type without modifying the plugin
code. Likewise, you can add different feature support to the WordPress default post types: post, page, attachment,
and so on.

There are three main functions for dealing with post type supports:

e add_post_type support(),
e remove post type support(), and
e post_type supports()

The first two functions simply take two arguments: the post type identifier (post, ptd_movie) and the support
feature you want to add or remove. For example, adding support for an excerpt on the page post type looks like this:

add_action('init', 'prowordpress add excerpt support');
function prowordpress add_excerpt support() {

add_post_type support( 'page', 'excerpt' );
}

As with setting up custom post types, you should be running these functions on the init hook to make sure the
setting is implemented before the rest of the WordPress setup is run.

99



CHAPTER 4 © USING CUSTOM POST TYPES

The final function checks whether a post type supports a certain feature. This is useful when you develop themes
and plugins because it ensures that the content you look for is actually there for the custom post type. Here’s an
example:

<?php if( post_type supports( 'ptd movie', 'excerpt' ) ) : >

<div class="movie-synopsis">
<?php the_excerpt(); >
</div>

<?php endif; ?>

The code makes sure that the movie post type has an excerpt before displaying it. Of course, you know the
outcome of this statement because you created the post type, but if you're using a custom post type, created by a
plugin for instance, it might be worth checking.

Customizing the Post Type Overview Screen

Since WordPress 3.1, it's now extremely simple to add custom columns and information to the post’s overview screen
for a post type, allowing for a much more user-friendly interface for your WordPress admin. To do this, you can use
two functions attached to two different hooks through WordPress. The first adds the columns to the overview page;
the second populates that content on a post-by-post basis. The two hooks you'll be using are constructed using

the post type identifier to make sure they get called on the correct post type; an example is manage_{post-type-
identifier} posts_columns. So for the ptd_movie post type, the hooks look like these:

e manage ptd movie posts_columns
e manage_ptd movie posts _custom_column

First, you'll set up the custom columns:

function prowordpress custom columns( $cols ) {
$cols = array(

"cb' => '<input type="checkbox" />',
"title' => _ ( 'Title', 'prowordpress' ),
"director' => _ ( 'Director', 'prowordpress’ ),
'year' => _( 'Year', 'prowordpress' ),

)5
return $cols;

}

add filter( "manage ptd movie posts columns", "prowordpress custom columns" );

This function receives a parameter containing the current columns for the overview display. The following is the
default content of the $cols array, so you can see what the settings are for the default columns:

Array (
['cb'] => '<input type="checkbox" />",
['title'] => 'Title',
['date'] => 'Date’,

)

100



CHAPTER 4 © USING CUSTOM POST TYPES

If you wanted to continue using one of the default options, you would need to replicate the entry in the array for
the default columns in the new array, or you could append the new columns to the array if you want only to add to
what'’s already there. In the example function, I simply copied in the title entry to ensure that you get the title in the
overview page as normal.

The 'cb' entry in the array is required for the select all check box, which appears in the first column by default;
this is the only required field. As you can tell by the <input> tag in the value for the 'cb' entry, the values of the array
store what will be output to the header of the columns so the column titles in plain English format are needed there,
including any spaces.

To populate the columns, you need to use another function attached to the second hook I mentioned:

function prowordpress custom column_content( $column, $post id ) {

switch ( $column ) {
case "director":
echo get post meta( $post _id, 'director’, true);
break;
case "year":
echo get post meta( $post_id, 'year released', true);
break;
}
}
add_action( "manage ptd movie posts custom column", "prowordpress custom_column_content", 10, 2 );

This function, which is called every time a column is populated, takes two parameters: the name of the column
and the id of the current post. So you can get the correct data for the post, but you need to make sure to output
the function into the correct column. You solve this by using a switch statement to decide which column you're
populating based on the column parameter passed to the function; it is set to the same key you used when you created
the columns. You need to get the content only for the new custom columns you created because any default columns
are populated automatically.

The result of these functions is a nice and informative overview page that you can see in Figure 4-11.

Movies AddNew

All | Published
Bulk Actions % Apply Show all dates % Filter
Title Director Year
Clerks Kevin Smith 1994

Title Director Year

Bulk Actions & = Apply

Figure 4-11. Custom post type with custom columns on the overview page

101



CHAPTER 4 © USING CUSTOM POST TYPES

There is one last trick you can do with the custom columns: make them sortable by each column. If you look at
the title header in Figure 4-11, it appears as a link compared with the Director and Year titles that are just static text.
This means the Title column can be used to sort the posts by the content of that column. You can do this for the new
columns very easily in one last function, which uses the manage_edit-{post-type-identifier} sortable columns
hook or the manage_edit-ptd movie sortable columns hook:

function prowordpress sortable custom columns() {
return array(

"title' => 'title’',
"director' => 'director’,
'year' => 'year'

)5

add_filter( "manage edit-ptd movie sortable columns", "prowordpress sortable custom columns");

For this function, all you need to do is return an array of the keys for the columns that you want to be sortable.
Unlike the previous function for setting up the content of the column, you do need to include all columns that should
be sortable, so any default columns must be included as well.

Add Post Types to Feed

By default, when WordPress generates an RSS feed for your site, it includes only the 'post’ post type and no others.
This does what a feed is meant to do, but it might be good for you to also be able to add custom post types to your
feeds. Again this is done through a hook; in this case the 'request’ hook, which fires when the query is generated but
before it is executed on the database. With this hook, you can also find out where the request is coming from by using
the argument’s passed parameter:

function prowordpress_customise feed($args) {

if( isset($args['feed']) && !isset($args['post type']) ) {
$args[ 'post_type'] = array('post', 'ptd_movie');
}

return $args;

}

add filter('request', 'prowordpress customise feed');

This function first checks the arguments to make sure that the request being made is for a feed; it then checks
whether the post_type argument has been set. If the post_type argument is set, the feed being requested is for a
certain post type so you want to let that continue. If both criteria pass, you then simply add the post_type option to
the arguments variable with an array containing the post types. The array must include all the post types you want
to be in the theme, including the 'post' post type because you are setting the post_type option here, which will
override all other options.

102



CHAPTER 4 © USING CUSTOM POST TYPES

Building Your Theme, Part 3

Again it’s time to put what you've learned in the chapter to some good use by continuing to build your custom theme.
In the last chapter, you set up the theme to display the basic content for your site through the default WordPress back
end with posts and pages. This time, you can start to really customize the site with what you've learned about custom
post types by adding a couple to your theme.

You're creating a web site for a boutique restaurant, so the obvious post type is one for the items on the menu.
Because it’s a boutique restaurant you're building the site for, you'll also want to add a more personal feel to the site,
which you can do by adding a staff member’s post type as well.

Adding Custom Post Types

The first thing you need to do is register the post types in the functions.php file because the post types will be tied
directly to the theme; you won't be creating a plugin. In the code example, I was a bit creative and used a loop to save
you a lot of time when creating new post types. All you need to do is set up a new entry in the array, and the loop will
take care of the rest. This saves you a lot of typing, especially when it comes to setting up all those custom labels.

function prowordpress post types() {
$types = array(
'ptd_staff' => array(
'menu_title' => 'Staff’,

"plural’ => 'People’,

'singular' => 'Person’,

"supports’'  => array('title', 'editor', 'excerpt', 'thumbnail',
'author', 'page-attributes'),

'slug’ => 'staff’

)s

'ptd_menu' => array(
'menu_title' => 'Menu’,

"plural’ => 'Items',

'singular' => 'Item',

'supports'  => array('title', 'editor', 'excerpt', 'thumbnail',
"author', 'page-attributes'),

"'slug’ => 'menu’

)

)5

$counter = 0;
foreach( $types as $type => $arg ) {

$labels = array(
"name’ => $arg[ 'menu_title'],
"singular_name’ => $arg['singular'],
"add_new' => 'Add new',
'add_new_item’ => 'Add new '.strtolower($arg['singular']),
'edit_item’ => "Edit '.strtolower($arg['singular']),
"new_item' => 'New '.strtolower($arg['singular']),
'all items’ => 'All '.strtolower($arg['plural']),
'view item’ => 'View '.strtolower($arg['plural']),
'search_items' => 'Search '.strtolower($arg['plural']),
"not_found' => 'No '.strtolower($arg['plural'])." found',

103



CHAPTER 4 © USING CUSTOM POST TYPES

"not_found in trash' => 'No '.strtolower($arg['plural']).' found in Trash',
'parent_item_colon' => "'

)
'menu_name' => $arg[ 'menu_title']
)
register post_type( $type,
array(
'labels’ => $labels,
"public’ => true,
"has_archive' => true,
'capability type' => 'post’,
'supports’ => $arg[ 'supports'],
'rewrite’ => array( 'slug' => $arg['slug'] ),
"menu_position' => (20 + $counter),
)
)
$counter++;

}
}
add_action('init', 'prowordpress post types');

I'm just setting up the post types with the most basic settings at the moment; both have a set of custom labels,
a unique slug, and their own list of features they support. Although both post types are similar at the moment,
this function allows you to change them pretty easily and add new ones without much hassle. If you need to make one
of the post types more customizable, you can either add that option to the $types array and add that setting to the
register post_type function, or create a new one entirely.

Interaction Messages

The post types wouldn’t be complete without setting up some custom interaction messages as well to make sure

the admin area is more consistent and feels better to use. Again there is a quick win to be had here by using an array
containing each post type and its unique title. You can again use a loop to set up the different messages you need. The
reason you only need the singular title here is because all the interaction messages talk only about interactions with a
single post, so the array you'll use is a lot more straightforward.

function prowordpress updated messages( $messages ) {
global $post, $post_ID;

$types = array(
'ptd_staff' => 'Person’,
'ptd_menu' => 'Item’,

)5

foreach( $types as $type => $title) {
$messages[$type] = array(
0= ',
1 => sprintf( _ ('%s updated. <a href="%s">View %s</a>'),$title, esc_url(
get permalink($post ID) ),$title ),
> _ ('Custom field updated.'),

> _ ('Custom field deleted.'),

2
3

104



CHAPTER 4 © USING CUSTOM POST TYPES

4 => (strtolower($title).' updated.'),

5 => isset($ GET['revision']) ? sprintf( _ ('%s restored to revision from %s'),
$title, wp post revision title( (int) $ GET['revision'], false ) ) : false,

6 => sprintf( _ ('%s published. <a href="%s">View %s</a>'), $title, esc_url(
get permalink($post ID) ), strtolower($title) ),

7 => _ ($title.' saved.'),

8 => sprintf( _ ('%s submitted. <a target="_blank" href="%s">Preview %s</a>'),
$title, esc_url( add_query arg( 'preview', 'true', get permalink
($post_ID) ) ), strtolower($title) ),

9 => sprintf( _ ('%s scheduled for: <strong>%2$s</strong>. <a target="_blank"
href="%3$s">Preview %1$s</a>'), $title, date i18n( _( 'M j, Y @ G:i' ),
strtotime( $post->post date ) ), esc_url( get permalink($post ID) ) ),

10 => sprintf( _ ('%s draft updated. <a target="_blank" href="%s">
Preview %s</a>"), $title, esc_url( add query arg( 'preview', 'true',
get permalink($post ID) ) ), strtolower($title) ),

)5
}

return $messages;

}

add_filter( 'post_updated messages', 'prowordpress updated messages' );

At the start of the function, include a small associative array with the post type identifier with the title as the
value. This means when you do the foreach loop you can use the two values as their own variables in the message
settings.

The code does seem fairly complicated to look at because there are many string-formatting functions (sprintf),
but you should be fine as long as the options are in the correct order.

Custom Columns

The last bit of setup for custom post types is to give them their own custom columns in the overview screen.
Unfortunately, unlike the previous two examples, there isn’t a quick way to do this because to set up columns for each
post type you need to use a hook specific to each post type. However, because each post type for the moment has
similar columns (this will change in the next chapter), you can cheat a little by calling the same function to set up the
columns and column content from the two different hooks:

function prowordpress custom columns( $cols ) {
$cols = array(

"cb' => '<input type="checkbox" />,
"title' => _ ( 'Title', 'prowordpress' ),
'photo’ => _ ( 'Thumbnail', 'prowordpress' ),
"date’ => _ ( 'Date', 'prowordpress' ),

)5

return $cols;

add_filter( "manage ptd staff posts columns", "prowordpress custom columns" );
add_filter( "manage ptd menu_posts columns", "prowordpress custom columns" );

105



CHAPTER 4 © USING CUSTOM POST TYPES

function prowordpress custom column_content( $column, $post id ) {

switch ( $column ) {
case "photo":
if( has_post thumbnail( $post_id ) ) {
echo get_the_post_thumbnail( $post_id, array(50,50));
}

break;

}
}

add_action( "manage ptd staff posts custom column", "prowordpress custom_column_content", 10, 2 );
add_action( "manage_ptd menu_posts custom column", "prowordpress custom column_content", 10, 2 );

There are only two functions here: one to set up the columns and one to add the content. But because you want
the columns to be the same for each post type, you just call the same functions in the add_action argument for each
of the post types. You will need to change this in the future when you develop the post types further, but for now this
is a good example of how the actions work. You don’t need to create a unique function for each action; you can simply
pass the same one to multiple if they're doing a similar job. You'll see actions, filters, and hooks described in much
more detail in Chapter 6.

flush_rewrite Function
The last thing to do in the functions.php file is to add in a function to flush the WordPress rewrite rules when your

theme is activated:

function my rewrite flush() {
flush_rewrite rules();
}

add_action( 'after switch theme', 'prowordpress flush rewrite rules' );

This function and action simply make sure that the flush_rewrite_rules function is called whenever anyone
activates your theme. There is no need to add in the call to activate the custom post types because it is done through
their own actions on the WordPress init hook.

Post Type Templates

Now that you set up the post types, you need to set up some templates for displaying your content. For the moment,
you have only the post types listed on their own pages with a click-through to the individual post content. So you need
to add only four files:

e archive-ptd_staff.php
e single-ptd_staff.php
e archive-ptd_menu.php

e single-ptd menu.php

106



CHAPTER 4 © USING CUSTOM POST TYPES

These templates are used here just to output the basic content of the post types, so they don’t look too different
from the ones you've created so far. As an example, here are the menu archive page and menu single page templates:

<?php
/**
*
*/
>
<?php get_header(); ?»

Template menu archive

<h1>0ur menu</h1>
<?php if( have_posts() ): >
<?php while( have_posts() ): the post(); ?>
<?php get template part( 'content', 'menu’ ); ?>
<?php endwhile; ?>
<?php else: ?>
<article class="error"»
<h1>Sorry there were no news articles found</hi>
</article>
<?php endif; ?>
<?php get_footer(); >
<?php

/**
* Template menu single
*/
>
<?php get_header(); 2>
<?php if( have posts() ): while( have posts() ): the_post(); ?>

<article <?php post_class(); ?>>
<h1><?php the_title(); ?></h1>

<?php if( has_post_thumbnail() ): ?>
<?php the post_thumbnail(); ?>
<?php endif; ?>

<?php the_content(); ?>
</article>

<?php endwhile; endif; ?>
<?php get _footer(); >

107



CHAPTER 4 © USING CUSTOM POST TYPES

In the code for the first template, a template part of content-menu. php is also called in, which just contains the
basic code to display the menu on the archive page:

<article <?php post_class(); ?>>
<header>
<h1><a href="<?php the_permalink(); ?>"><?php the_title(); ?></a></h1>
<?php if( has_post_thumbnail() ): ?>
<?php the_post_thumbnail(); ?>
<?php endif; ?>
</header>

<?php the_excerpt(); >

<p><a href="<?php the_permalink(); ?>">Read more &raquo;</a></p>
</article>

The templates for the staff page for now are exactly the same, but with a different page title on the archive page
because you currently have only basic functionality from the post types. In the next chapter, you'll learn how to
customize post types further to develop the page templates more there.

Content

Finally, there’s another content file for you to upload to your web site that adds some content into the custom post
types. Just make sure that the post type identifiers are the same as the ones shown previously and the import should
work perfectly. Now you'll be able to navigate to http://website.com/menu/ to see a full list of all the menu items for
the site, and see http://website.com/staff for a list of staff members. If it doesn’t work, try editing your permalink
settings, which were mentioned earlier in the chapter when you set up the new post types and page templates.

Summary

This chapter took a really detailed look at creating custom post types for WordPress, which is a core functionality that
has led WordPress to become better positioned as a fully-fledged CMS.

Along with how to set up and display custom post types, you learned how to make them an integral part of the
CMS admin. You saw how to avoid them looking like a stuck-on extra at the end, which makes a much better user
experience for site admins. By using the extensibility of WordPress custom post types, you can add unique touches
such as custom columns to the post types, making the interface more dynamic than WordPress by default.

In the next chapter, you'll look at extending custom post types even further with custom taxonomies and custom
metadata. This functionality enables all sorts of dynamic filtering of content, which makes your site even more
customizable and easier to use.

108


http://website.com/menu/
http://website.com/staff

CHAPTER 5

Creating Custom Taxonomies
and Fields

The last chapter looked at one of the main game-changing features of WordPress as a fully fledged content
management system (CMS). Another couple of aspects that have contributed just as much are allowing users to
customize taxonomies and add custom fields to their content. This gave users the ability to control the organizational
structure of their content and add extra information any way they like. This chapter looks at how to get the most from
custom taxonomies and custom fields, how to add them to post types, even specific posts, and then at the myriad of
ways you can display your content based on this data. First, you'll take a look at WordPress taxonomies; later in the
chapter, you'll delve into custom fields. Finally, the two are combined to give users the power to find specific content
on their sites.

Introducing Taxonomies

Taxonomies in WordPress are a way of grouping your content and are used in a variety of ways throughout the CMS.
In WordPress, there are now five default taxonomies:

e  (Categories

e Tags

e Link categories

e  Navigation menus

e  Post formats

Even though you're unlikely to see the last two used in a way you're used to seeing taxonomies, they are still
stored and accessed in much the same ways as typical taxonomies such as categories and tags. However, to describe
taxonomies in more detail, I'll stick with the two well-known forms of taxonomy: categories and tags.

In a post for Smashing Magazine, Kevin Leary classes these two taxonomies as hierarchical and multifaceted.
Categories in WordPress are an example of a hierarchical taxonomy; the terms (an individual classification defined
within the taxonomy) can be related to each other and are usually used for a more broad and general grouping of the
post. Tags are classed as multifaceted; a tag can be descriptive of just one small aspect of the current post, and a post
can be tagged with multiple terms. The way I classify the two is by thinking this: a post is in a category and a post has
one or more tags.

109



CHAPTER 5 © CREATING CUSTOM TAXONOMIES AND FIELDS

Before custom post types were fully introduced to WordPress in version 3, custom taxonomies were already
around for a little while. But as with custom post types in version 3, they were introduced as a core feature, and later
on in version 3.1, there was a whole bunch of new features and functions to make custom taxonomies even more
useful. In the following section of this chapter, you'll look at how to create custom taxonomies and the range of ways
you can use these new taxonomies to display content.

When Do I Need a Custom Taxonomy?

But first, as with the previous chapter on custom post types, let’s take a quick look at reasons for using custom
taxonomies. You can create taxonomies not only for a custom post type you created but also for use with the default
post types in WordPress. As you'll see, you can create custom taxonomies for almost anything.

Taxonomies are used to group content together, so the main reason for adding a custom taxonomy is to make
your content more dynamic and easy to find/understand/display.

First, ask whether one of the built-in taxonomies will suit the purpose in the first place. Even for custom post
types, you can still use the built-in taxonomies of categories and tags; the only issue being that when you attach
built-in taxonomies to custom post types, the content for these post types becomes linked. If you use the taxonomy
categories on both the posts and a custom post type, you must use the same terms, and both post types will be
returned when looking to display that individual term. This applies unless you're querying for the term, in which case
inside the query you can specify the post type along with the term and taxonomy.

Going back to creating a custom taxonomy and sticking with the examples in previous chapters, you'll again
look to movies to help you out. If you build a site to display a bunch of films that have a lot of content, the best thing
is to classify them in some way so users can get to the information they want more easily. Luckily, movies are easy to
categorize:

e Genres

e Actors

e  Directors

o  Writers

e  Film studio

I could go on and on—there are lot of taxonomies you could create. When creating them, think about the method
you'll use to create the taxonomies if you create a hierarchical category such as taxonomy or a tag style multifaceted
taxonomy. Let’s look at those taxonomies again, but think about what sort of taxonomy they will be:

e  Genres (hierarchical)

e  Actors (multifaceted)

e Directors (hierarchical)

e  Writers (multifaceted)

e  Film studio (hierarchical)

You may wonder why I've given them such different classification. Why should a director be created differently
from an actor? This for me is because of the way WordPress works with and displays taxonomies (see Figure 5-1).

110



CHAPTER 5 * CREATING CUSTOM TAXONOMIES AND FIELDS

Genres
All Genres  Most Used

™ Action

™ Comedy
Comic book
Drama
Horror
Romance
Sci-fi

+ Add New Genre
Last edited by adamonishi on 19th May 2013 at 10:21 am

Actors

Add

Separale tags with commas

1 more about manual excerpts. Bruce Willis Tracy Morgan

Choose from the most used lags

Figure 5-1. The contrasting displays of hierarchical vs. multifaceted taxonomies

Hierarchical taxonomies usually have their terms defined first; then posts are added and classified with a term
when it’s written. Whereas multifaceted taxonomies are usually created on the fly and generally hold a lot more
terms than hierarchical ones. In this situation, films have many actors, with new actors coming into films more often
than new directors, so the on-the-fly adding of a tag like taxonomy would suit actors well. Although not strictly using
the “hierarchical” nature of the taxonomy with the director’s taxonomy, it makes much more sense from a content
management point of view to have them added earlier on in the process and a visible list in the post editor screen
when adding a new movie.

Creating Custom Taxonomies

Now that I've covered the whys of creating custom taxonomies in quite a lot of detail, let’s take a look at the how.
Again, as with the previous chapter on custom post type creation, you'll look at creation in a few stages:

e  Naming conventions
e  Basic creation of a custom taxonomy
e  Full setup with advanced options

e  Custom help tab content

111



CHAPTER 5 © CREATING CUSTOM TAXONOMIES AND FIELDS

Naming Conventions

WordPress suggests certain naming conventions when creating custom taxonomies, which are very similar to those
used when creating custom post types. All names should be in lowercase with no spaces and fewer than 32 characters
long (because of the database field limit).

When naming your taxonomy, be careful not to conflict with any other taxonomies in use by WordPress
or the themes/plugins and avoid clashing with any of the WordPress reserved terms. The full list can be found here:
http://wp-themes-book.com/05001.

As with the custom post types, I recommend that any custom taxonomies you create are named with a prefix so
you can reduce the chance of any possible conflicts with plugins or themes you may use alongside your own. Looking
at the list you made before with the movie taxonomies, the names for these would look something like this:

e ptd genres

e ptd actors

e ptd directors
e ptd writers

e ptd film studio

Setting Up a Basic Custom Taxonomy

Asyou did in the previous chapter when setting up a custom post type, here you’'ll have a look at setting up a custom
taxonomy with the bare minimum of options and then look in more detail later on in the chapter. This is so you can
see just how little there is needed for you to get up and running right away while leaving WordPress to handle the rest.

To create a new taxonomy, you'll use the register taxonomy function. In functions or plugin files, you also need
to remember that it needs to be hooked onto the WordPress init action the same as the custom post type functions
were before. With that in mind, let’s have a look at the code to create the first custom taxonomy:

function prowordpress taxonomies() {
register taxonomy( 'ptd genre', 'ptd movie',
array(
'label’ => _( 'Genre', 'prowordpress' ),
'rewrite’ => array( 'slug' => 'genre' ),
'hierarchical' => true,

)
add_action('init', 'prowordpress taxonomies');
This code is what I consider the absolute minimum for creating a custom hierarchical taxonomy. Of course, if you
want to create a custom multifaceted taxonomy, you can remove the hierarchical argument from the array because

that argument is false by default. The result of this code can be seen in Figure 5-2, which shows the location of the
taxonomy under the Movies post type on the left and the edit screen for the Genres taxonomy.

112


http://wp-themes-book.com/05001

CHAPTER 5 * CREATING CUSTOM TAXONOMIES AND FIELDS

800 Genves « Adam Onishi

& c review.dev/wordpress fwp-admin/edit-tags. php?taxonomy=ptd_genre&post_type=ptd_movie . ﬁ _ O, U n =

MY AdamOnish &4 @ 4+ New

(i Dashboard
~~ Genres
i Posts
Search Genres
[ Media
. Add New Genre Bulk Acsons & | Apply
Z* Links
Name Name Description Slug Movie
i[] Pages
Action acton 2
The narme is how if aopears on your site.
Comady comady 4
Add now Slug
Genre
Actor The * o Comic book comic-book 2
owen
= Comments
Drama drama
[ Appearance Parent
(& Plugins € Pyore i Horror homar
¥, Users
: Descripion R T
T1 Tools omance ramance
17| Settings
Sci-fi $ei-6 o
% Admin Style
ot prominent by dalaut; howaver, some themes may Name Description slug Movie

Bulk Acsions & | Apply

ank you for creating with WordPress You are using a development versicn (3.5.1). Cool! Please siay updated.
Figure 5-2. Genres taxonomy edit screen

The register taxonomy function takes three parameters: the name of the taxonomy, the name of the post type
the taxonomy should be attached to, and an array of options for the taxonomy. The final parameter of arguments is
actually optional for this function because WordPress will get the main settings from the defaults and infer the labels
from the taxonomy name parameter passed in. So realistically all you need to define a simple multifaceted taxonomy
is the following code:

function prowordpress taxonomies() {
register taxonomy( 'ptd actors', 'ptd movie' );
}

add_action('init', 'prowordpress taxonomies');

This would technically work, but in using this approach you would end up with a taxonomy called “Tags” as
WordPress would use the default label for a multifaceted taxonomy, and you would have to access tags through a URL
with the prefixed taxonomy identifier instead of a nice clean rewrite URL.

The final thing to mention about the register_taxonomy function is that technically the second argument of
post type could be set to null when the taxonomy is created. This seems a little odd, but it means that later on in the
code you can use the register taxonomy for object type function to assign the taxonomy to a post type or use the
taxonomies argument in the register_post_type function. What this could allow you to do is from within a plugin,
set up a custom taxonomy that your plugin would use but allow it to be assigned to a custom post type by the user. In
your user’s code, they could take that setting and use the register_taxonomy for_ object_type function to assign
your taxonomy to the user’s plugin of choice.

113



CHAPTER 5 © CREATING CUSTOM TAXONOMIES AND FIELDS

Note When registering a taxonomy using a null post type argument and adding it instead to the register post_type
function, you must ensure that your taxonomies are declared before the custom post types.

Full Setup of a Custom Taxonomy

Now that you've seen the basics of the register taxonomy function and how to get a custom taxonomy set up
quickly and easily, let’s have a look at the full options available for the function and see the full detail of the custom
taxonomies you can create.

First, here’s an example of a full function call making use of most arguments you need to customize your
taxonomy:

function prowordpress taxonomies() {

$labels = array(

"name’ => x( 'Genres', 'taxonomy general name', 'prowordpress' ),
'singular_name' => x( 'Genre', 'taxonomy singular name', 'prowordpress' ),
'search_items' => _ ( 'Search Genres', 'prowordpress' ),
'all items' => _ ( 'All Genres', 'prowordpress’ ),
'parent_item' => _ ( 'Parent Genre', 'prowordpress' ),
"parent_item colon' => _ ( 'Parent Genre:', 'prowordpress' ),
'edit_item’ => _ ( 'Edit Genre', 'prowordpress' ),
'update_item' => _ ( 'Update Genre', 'prowordpress' ),
'add_new_item' => _ ( 'Add New Genre', 'prowordpress' ),
"new_item_name' => _ ( 'New Genre Name', 'prowordpress' ),
'menu_name' => _ ( 'Genre', 'prowordpress' )

);

$args = array(
'labels’ => $labels,
'hierarchical' => true,
"public’ => true,
"show_tagcloud’ => false,
'show_admin_column' => true,
'query_var' => true,
'rewrite’ => array( 'slug' => 'genre' ),
'sort’ => true,

)s
register taxonomy( 'ptd genre', 'ptd movie', $args );
add_action('init', 'prowordpress taxonomies');
This is probably the set of arguments that most make sense when setting up a custom hierarchical taxonomy.
There are more options that can be used in this function, but I'll cover them separately later on.
Again you'll look at each option in detail as you did in the last chapter with custom post types; you've already

looked at the first two parameters of the register taxonomy function, so you'll concentrate on the arguments array
and the options you can pass using that.

114



CHAPTER 5 * CREATING CUSTOM TAXONOMIES AND FIELDS

Labels

Again the labels are probably the easiest place to start, being extremely self-explanatory. However, this time you'll
notice a couple of differences with the label definitions compared with the custom post type function you used before
because here you're using some different internationalization functions.

There’s a second example of the WordPress internationalization functions at use in the labels code: _x(). This
function is used to translate words in which the context might change the meaning of the word; for example, post
can be used as a verb (“click here to post your comment”) or as a noun (“edit post”). For help with the translations
in situations like this, the x() function takes a second argument for the context of the word being used, so in the
preceding case of the labels, you have two labels that need their context adding. The text in the second argument is set
specifically from WordPress to help with the translations, so you can just copy the wording there into your functions.
You'll read more about the use of the _x() function and the other internationalization functions in Chapter 12.

Taxonomy Display Options
As with the register post_type function, there are a few different display options that can be used when setting up a
custom taxonomy. They're pretty similar to the post type options, but with a few exceptions/additions:

e public

e show_ ui

e show_in_nav_menus

e show_tagcloud

e show_admin_column

The first three should be fairly familiar, and they work in exactly the same way as the same options in the
register post_type function. The last two, however, are unique to taxonomies.

The show_tagcloud option is a Boolean setting that either allows or prevents the use of the tag cloud function on
the chosen taxonomy. If you haven’t seen a WordPress tag cloud before, see Figure 5-3. It’s a collection of all the terms
in the taxonomy, which are then formatted in size based on the popularity of each term. From the name, the tag cloud
might suggest that the function is available only for taxonomies that resemble tags in function (i.e., multifaceted).
That’s not the case, however, and by using the wp_tag_cloud function you can display a tag cloud of any taxonomy
on your site.

Popular Tags

Ben Affleck Brian O'Halloran sruce wiis Eizabetn
s Jason Lee Jason Mewe.‘ Jeff

Aﬂdel’SOH Jeremy London (eVin Smlh Scott

Maosier Seth Rogen Shannen Doherty Tracy Morgan

Figure 5-3. Example of a tag cloud from the tags edit screen

The show_admin_column function is a new option that was added recently in version 3.5. Again, it’s another
Boolean option that when set to true sets up an admin column for the taxonomy on the associated post type; an
example can be seen in Figure 5-4.

115



CHAPTER 5 © CREATING CUSTOM TAXONOMIES AND FIELDS

Genres Actors Date
lishi Comedy, Romance Elizabeth Banks, Jason Mewes, Jeff Anderson, 2013/05M19
Seth Rogen Published
lishi Action, Comedy Bruce Willis, Tracy Morgan 2013/0519
Published
lishi Comedy Ben Affleck, Brian O'Halloran, Jason Lee, Kevin 2013/05M19
Smith Published
lishi Comedy Ben Affleck, Jason Lee, Jason Mewes, Jeremy 2013/04/20
London, Kevin Smith, Shannen Doherty Published
lishi Comedy Brian O'Halloran, Jason Mewes, Jeff Anderson, 2013/04/20
Kevin Smith, Scott Mosier Published
Genres Actors Date

Figure 5-4. Genres and Actors admin columns on the Movies post type

The query_var and rewrite Options

The query_var and rewrite options work in almost the same way here as they do when used for registering custom
post types. Both settings relate to how you can query for the taxonomy by using the web site URL or using the
WordPress custom queries which was talked about in Chapter 3.

When setting query_var to true, you have access to your taxonomies via URL queries; when set to false, this
method is prevented from working. However, when set to false, the taxonomy can still be queried by using a query
within WordPress (more on this later):

new WP_Query( array(
'post_type' => 'custom_post_type name',
"tax_query' => array (
"taxonomy' => 'taxonomy name',
'field' => 'slug',
"terms’ => 'taxonomy_name'

)s
)5

You can also use a string for the argument of the query_var parameter to set a custom query_var for the
taxonomy.

Capabilities

I'll discuss custom capabilities in more detail in Chapter 8, but just a quick mention here that there are four
capabilities that can be assigned by using an array as the argument: assign_terms, edit_terms, manage_terms, and
delete terms.

116



CHAPTER 5 * CREATING CUSTOM TAXONOMIES AND FIELDS

Sort

The sort argument allows you to set whether the taxonomy remembers in which order the terms were added to a
specific post.

Hierarchical

The last main option to discuss is a pretty straightforward one, as discussed at length in this chapter. This Boolean
option is the difference between a hierarchical taxonomy and a multifaceted one.

The very last argument to discuss is the update_count_callback option, which acts like a hook and takes a
function name as the parameter, much like the add_action function that’s used a lot in the book already. The function
passed to the argument is called when the count of the associated post type is updated. It has one useful function that
is related to when you create a multifaceted taxonomy with hierarchical set to false. For your taxonomy to behave like
the WordPress default tags taxonomy in which the user can enter multiple tags at once, comma-separated, you need to
pass the update_count_callback function the parameter _update_post_term count. It is the function that WordPress
has built-in to deal with separating tags and storing them correctly in the database. Otherwise, if you tried to add
multiple comma-separated terms to a post without this function, you would end up with a single string as the term.

Contextual Help and Help Tabs

Again this is something I think is very important to the all-around user experience when you create a custom theme.
The ability to add custom help messages throughout the user interfaces (Uls) you create will help improve the
usability of your theme and allow your clients or customers to get the best from the themes you create.

Adding contextual help text and help tabs is just as simple for custom taxonomies as it was for custom post types,
and you can even add them to the functions created before.

Here’s a snippet of the code you used before, but with the addition of the contextual help for the new taxonomy:

function prowordpress add help text( $contextual help, $screen id, $screen ) {
if ( 'ptd_movie' == $screen->id ) {

// Add contextual help to $contextual_help variable
} elseif ( 'edit-ptd movie' == $screen->id ) {

// Add contextual help to $contextual help variable
} elseif ( 'edit-ptd genre' == $screen->id ) {

$contextual _help .=

<p>' . _ ('Add movie genres to the Genre taxonomy to help classify the movies added',
'prowordpress') . '</p>' ;

}

return $contextual_help;

add_action( 'contextual help', 'prowordpress add help text', 10, 3 );

The bit you want to focus on is the last elseif statement. Here you're checking the screen ID is edit-ptd_genre,
the identifier of the taxonomy, and then adding the help text to the contextual help variable as before.

117



CHAPTER 5 © CREATING CUSTOM TAXONOMIES AND FIELDS

To add custom help tabs to the help section, you can again use the function you had before for the custom post
type; then add in an extra bit of code to check whether you're viewing the newly created taxonomy:

function prowordpress custom help tab() {
global $post_ID;
$screen = get_current_screen();

// Custom post type code here

if ( is_taxonomy( 'ptd genre' ) ) {
$screen->add_help_tab( array(
'id" => 'movie_help genre', //unique id for the tab
"title' => 'Genres', //unique visible title for the tab
"content’ => '<h3>Choosing genres</h3><p>For help with selecting the correct
genre for your movie you could check out the information on <a href=
"http://www.imdb.com/">imdb.com</a>.</p>",

));
}
}

add_action('admin_head', 'prowordpress custom help tab');

And it really is as simple as that. If all you need is a few lines of code to add some help text to the admin
interfaces, it seems silly not to add that little bit of extra effort for the benefit of clients and customers.

Displaying Posts by Custom Taxonomy

Now that you have set up taxonomies to group content, you can start to look at how to view the content based on these
taxonomies. Again, as with custom post types, there are two main methods of displaying posts based on the related
taxonomies, you can do it programmatically with the WordPress query or through custom URLs with custom page
templates to catch and display the content uniquely.

The tax_query Parameter

You saw the tax_query parameter in Chapter 3 when you looked at the WordPress query. Here you'll look at it in more
depth and go over the different options you have to query for posts using taxonomy information.

What I didn’t mention in the earlier chapter is that since WordPress 3.1 and the introduction of the tax_query
parameter, now every query argument relating to taxonomies is filtered through into a tax_query. For example, if you
were to take a look at a simple tag query that used the tag__in parameter, it would look like this:

"tag_and' => array( 37, 47 )

However, inside the core files you can see what happens to this query once it reaches the query.php file:

if ( lempty($q['tag_and']) ) {
$q[ 'tag__and'] = array map('absint', array unique( (array) $q['tag_and'] ) );
$tax_query[] = array(
"taxonomy' => 'post_tag',
"terms' => $q['tag_and'],
'operator' => 'AND'

);

118


http://www.imdb.com/%22%3Eimdb.com%3C/a%3E.%3C/p

CHAPTER 5 * CREATING CUSTOM TAXONOMIES AND FIELDS

Since WordPress 3.1, when the tax_query parameter was introduced, the previous method of querying
taxonomies using just the taxonomy slug and terms slug has been deprecated (this doesn’t apply to the built-in
taxonomies, categories, and tags that still work as shown previously). Currently, it’s still possible to use the old
method, and it will return results; however, the deprecation of the method means that at some stage it will be removed
from the core code and any remaining queries using that method will no longer work.

So with that in mind, make sure that you know exactly what you're doing with the tax_query parameter. A simple
tax query for one term in a taxonomy would look like this:

"tax_query' => array(

array(
"taxonomy' => 'ptd_genre’,
'field' => 'slug’',
"terms' => 'comedy'
)

)s

The tax_query parameter takes its arguments in the form of an array of arrays, so a single taxonomy query
requires one nested array with at least the three fields shown here. There are five parameters you can set in total:

e  taxonomy: Taxonomy identifier
e field: What to search for; either the term ID or terms slug (defaults to ID)
e  terms: A string or number for one term and an array if querying for multiple

e include_children: A Boolean for whether to look into the return; also the child terms of the
term being queried (defaults to true)

e operator: Database comparison operator for which to compare the terms; can be IN, NOT 1IN,
or AND (defaults to IN).

A full query for a single taxonomy could look something like this:

"tax_query' => array(

array(
"taxonomy ' => 'ptd_genre’',
'field' => 'slug’,
"terms’ => array('horror', 'thriller', 'drama'),
'operator’ => 'NOT IN',
"include_children' => false,
)

)

This code returns movies that are not horror, thriller, or drama films, but would return posts in their children
terms, so maybe a comedy horror might slip through.

The real power of tax_query, however, comes when querying for multiple taxonomies. To do this, you pass in
multiple arrays constructed in the same manner as you've seen before, but with a multitaxonomy query, there’s one
more parameter that the tax_query uses: the relation parameter. This argument can take one of two options, which

119



CHAPTER 5 © CREATING CUSTOM TAXONOMIES AND FIELDS

then dictates how the terms are queried for in the database: either OR or AND, with AND being the default. Therefore, if
you were to add a query for the ptd_actor taxonomy to the tax_query, it might look something like this:

"tax_query' => array(
'relation' => 'AND',

array(
"taxonomy' => 'ptd_genre’,
'field' => 'slug’,
"terms' => array('horror', 'thriller', 'drama'),
'operator’ => 'NOT IN',
"include_children' => false,
)s
array(
"taxonomy' => 'ptd_actor’,
'field' => 'slug',
"terms' => array('simon-pegg', 'nick-frost' ),
'operator’ => 'AND',
)

)

That now gives you the power to really narrow down the query using taxonomies. But besides narrowing down
the query by using the AND operator for the relation parameter, you can also use the OR operator to broaden the query
between several categories. Here you can query for movies that aren’t a horror, thriller, or drama film; OR star Zooey
Deschanel; OR are directed by Seth Rogen or Kevin Smith. Granted, that’s a myriad of unrelated options, but it returns
a bunch of movies that someone might want to watch:

"tax_query' => array(
‘relation’ => 'OR’,

array (
"taxonomy' => 'ptd_genre’,
'field' => 'slug’,
"terms' => array('horror', 'thriller', 'drama'),
'operator' => 'NOT IN',
)s
array(
"taxonomy' => 'ptd_actor’,
'field' => 'slug’,
"terms’ => array( 'zooey-deschanel' ),
)s
array(
"taxonomy' => 'ptd_writer’,
'field' => 'slug’,
"terms' => array( 'seth-rogen', 'kevin-smith' ),
)s

)

That was a pretty detailed look at how to use the tax_query option in your WordPress queries; next you'll see
what options you have when it comes to custom templates and displaying posts based on custom taxonomies.

120



CHAPTER 5 * CREATING CUSTOM TAXONOMIES AND FIELDS

Custom Taxonomy Templates

Because taxonomies are a method of grouping your posts, there’s only one lineage of page templates that you can
work with, which is part of the archive template route. However, there are many ways to create a template to show
content for specific taxonomies down to specific taxonomy terms. The hierarchy for custom taxonomy templates
looks like this:

e  taxonomy-taxonomy name-term name.php; if not available, use

e taxonomy-taxonomy name.php; if not available, use

taxonomy. php; then finally use
e archive.php (followed by index. php if you want to be thorough)

To translate them into page templates using the genre taxonomy you've created, you would need to use the
taxonomy identifier you used when you set up the taxonomy and the term slugs; they would look like these:

e taxonomy-ptd genre-comedy.php
e taxonomy-ptd _genre.php

Besides the different custom templates you can use, custom taxonomy information will also be added to the body
classes when using the body_class function. This would allow you to use classes in your CSS such as the following:

e tax-ptd_genre (the taxonomy identifier prefixed with tax)
e term-comedy (the term slug prefixed with term)
e term-3 (the term ID prefixed with texrm)

Now you've looked at ways of getting posts from WordPress using custom taxonomies, you'll now look at ways of
displaying and using the custom taxonomy information in your templates.

Taxonomy and Term Conditionals

When using any of the preceding templates, you can also use the taxonomy conditional function that can help you
decide what information to display. Much as you did in the archive page template to decide what title to show in
previous examples, you can use the is_tax function to show a title suited to the listing of a taxonomy archive.

The excellent thing about the is_tax function is that it can be passed a series of different arguments that gives
you a variety of choices about how you can query which taxonomy or term is being displayed:

e is tax():Alone, this returns true if any taxonomy archive page is displayed. Note that this
works only for custom taxonomies, not for built-in taxonomies such as categories.

e is tax( 'ptd_genre' ):With the taxonomy identifier as the only parameter, this returns true
when you're on any ptd_genre taxonomy archive page.

e is tax( 'ptd genre', 'comedy' ):With a taxonomy and one of the terms passed as two
parameters, the function returns true if you're on the specific term’s archive page.

e is tax( 'ptd genre', array('comedy', 'comic-book') ):When passed an array of term
names in the second parameter, the function returns true if you're displaying either of the
terms archive pages.

121



CHAPTER 5 © CREATING CUSTOM TAXONOMIES AND FIELDS

Besides the taxonomy conditionals for use on archive pages, there are also term conditionals that you can use
when displaying a single post. The has_term function works in a similar way to the preceding taxonomy conditionals,
except with the arguments the other way around:

e has_term( 'comedy', 'ptd_genre' ):Returns true if the current post has the term comedy
from the taxonomy ptd_genre.

e has_term( array( 'comedy', 'horror' ), 'ptd_genre' ):Returns true if the post has any
of the terms in the array from the taxonomy ptd_genre.

Displaying Custom Taxonomy Information

Now that you have your content being displayed based on the taxonomies and terms being used, you can start to
look at how to display these taxonomies in your themes to help users navigate and understand the content better.
Here you'll look at ways to display content based around the taxonomy and based around the posts that use the
taxonomies. Most of the functions you'll be looking at can be found in the Codex at
http://wp-themes-book.com/05002, but I'll focus on a few of the main ones that will be most useful here.

Listing All Taxonomy Terms

The first method you'll look at is a way of showing all the terms in your custom taxonomy and allow users to navigate
to the specific archive page of a term. You've already used this function in previous examples, so it should be fairly
familiar: thewp_list_categories function.

What I didn’t discuss in the earlier chapter is that thewp_list categories function also has an argument for
taxonomy. So to get a list of terms from your custom taxonomy similar to the categories list, you can use the
following code:

<?php $args = array(

"taxonomy ' => 'ptd_genre’,
'orderby’ => "name’,
'order' => 'ASC',
'style’ => 'list’,
'show_count' => 0,
'hide_empty' => 0,
"title 1i' ="',
"depth’ => 1,

)

>

<ul class="genre-terms">
<?php wp_list categories( $args ); >
</ul>

This code displays an alphabetical list of genres from the ptd_genre taxonomy that should look something like
Figure 5-5.

122


http://wp-themes-book.com/05002
http://wp-themes-book.com/05002

CHAPTER 5 * CREATING CUSTOM TAXONOMIES AND FIELDS
-
Movie genres

Action
Comedy
Comic book
Drama
Horror
Romance
Sci-fi

® & & & & 4 0

Figure 5-5. List of genres from the ptd_genre taxonomy

There is also a function that allows you to retrieve all the terms as an array of objects called get_terms. This
function takes two arguments: either a string of a taxonomy name or an array of multiple taxonomies, and an array of
arguments similar to the wp_list_categories arguments (but without the taxonomy argument). The function looks
like this:

<?php

$args = array(
'orderby’ => 'name’,
'order’ => 'ASC',
'style’ => 'list’,
'show_count' => 0,
'hide_empty' => 0,
"title 1i' ="',
"depth’ => 1,

)s

$genres = get terms( 'ptd genre', $args );
?>

It then returns the data for each term as an object that gives you information that looks like this:

[1] => stdClass Object

(
[term_id] => 105
[name] => Comedy
[slug] => comedy
[term _group] => 0
[term_taxonomy id] => 106
[taxonomy] => ptd_genre
[description] =>
[parent] => 0
[count] => 1

The information returned is everything WordPress stores about the terms for the taxonomy, which can come in
very handy if you want to do something more programmatically with the term data.

123



CHAPTER 5 © CREATING CUSTOM TAXONOMIES AND FIELDS

Term Name and Descriptions

While there is a function that returns just the term description information exclusively: term_description(). It might
be best to get an object of the entire terms details by using the get term() function.

The most useful place I can think of using these is on the taxonomy archive page, in which you can display a
title and header for the current term before you list the posts in the current term. To do this, you need access to the
current term ID to get the title and description. Because there’s no function to get the current term ID, you need to use
the current query object to find the term ID. Using the following code, you can generate a header for the taxonomy
archive pages:

<?php

$term id = get queried object()->term id;

$current_term = get term( $term id, 'ptd genre' );

>

<header class="taxonomy-heading">
<h2><?php echo $current_term->name; ?></h2>
<p><?php echo $current_term->description; ?></p>

</header>

By using the get_queried_object function and returning the term_id property, you can now use the get_term
function to get the information for the current term and display it as the header of the taxonomy archive pages.

Tag Clouds

You can also list all your taxonomy’s terms by using the tag_cloud function; this is probably my least favorite way of
displaying term information, but it’s still worth a mention. Similar to the way to list a taxonomy’s terms, generating
a tag cloud uses the same function as the default tag cloud function, but with a taxonomy parameter for the chosen
taxonomy. So to generate a tag cloud for the ptd_genre taxonomy, you can use the code:

wp_tag cloud( array ( 'taxonomy' => 'ptd genre' ) );

This generates a tag cloud that looks a little like Figure 5-6. There are many ways you can customize the tag cloud,
including setting the size limits of the smallest and largest tag and whether to display it as a straight string of HTML or
put each term into a list element. You can see the full list of terms in the Codex at http://wp-themes-book.com/05003.

Terms by Post

Besides displaying taxonomy terms in general, you can also display terms relating to a specific post. To do this, you
have a few options including functions similar to the way you can return terms in general.

To display the terms for the post you're in, you can use the the_terms function. Unlike the the_categories
function that will return something with no parameters passed, the the_terms function requires you to pass in at least
the ID of the post (even if you're inside the loop) and the name of the taxonomy. To get a list of the associated terms
for the post from within the loop, you can do this:

the_terms(get the id(), 'ptd genre');

124


http://wp-themes-book.com/05003

CHAPTER 5 * CREATING CUSTOM TAXONOMIES AND FIELDS

This code gives you a comma-separated list of links to the relevant terms. There are also three other parameters
that can be used: before, separator, and after. These parameters allow you to customize the display of the list a little
more, so the following code:

the_terms(get_the_id(), 'ptd_genre', 'Genres: ', '/ ');
outputs the following:
Genres: Comedy / Romance

There are two more functions that can be used to return the associated terms. The get_the_term_list function
works exactly the same as the the_terms function with the same parameters, but it returns the information as a string
in PHP if you want to be able to manipulate it.

Finally, the get_the_terms function takes the post ID and taxonomy name as its two parameters and returns an
array of objects similar to the get_terms function before, but only for the associated terms for the post.

Introducing Custom Fields

Custom fields have been in WordPress since way back in version 1.2. The ability to add a custom bit of metadata
to content was considered a core feature being added so early in the life of the CMS, at the same time as the plugin
architecture was added to WordPress.

First, take a quick look at how custom fields work as standard before you start to implement a custom UI for
your fields with the use of WordPress metaboxes. With the release of WordPress version 3.1 in 2011, core developers
were aiming to tidy up the post editor screen to be able to see the standard interface for custom fields, drop down
the screen options tab from the top right, and turn on the check box for Custom fields. This process adds the Custom
Fields editor box to your editing page, as shown in Figure 5-6.

Custom Fields
Add New Custom Field:

Name Value

>

— Select —

Enter new

Add Custom Field

Custom fields can be used to add extra metadata to a post that you can use in your theme.

Figure 5-6. Custom Fields editor

Here you can select from a list of existing custom fields or create a new one, with the Enter New link below
the drop-down menu. Custom fields are stored as key/value pairs: the key is how the metadata is referred to and
accessed, and the value is the data that will be displayed. Keys can and should be used for multiple posts where the
values for each field are unique for each post.

In the movies example you've used so far, a custom field could be used to store the classification rating of the
movie, the release date, the running time of the film, and the review score (see Figure 5-7). They could then be
displayed on the posts page.

125



CHAPTER 5 © CREATING CUSTOM TAXONOMIES AND FIELDS

Custom Fields

Name Value
Running time 102 minutes
Delete Update
Rated R
Delete Update
Release date 26 February 2010

Delete Update

Add New Custom Field:

Mama Walia

Figure 5-7. Adding custom fields to the movie

Once you add custom fields to your posts, you can use a few WordPress functions to output them to your posts
page. Here I'll discuss one simple function that displays all custom fields for the current post: the the_meta function;
later in the chapter, you'll look at more advanced ways of accessing the custom metadata.

Here’s an example of the the_meta function used as part of the <header> area to one of the movie posts. The
function takes no parameters and simply outputs the data in the form of an unordered list:

<header>
<h1><?php the_title(); ?></h1>
<p><?php echo get the_term list(get the id(), 'ptd_genre', 'Genres: ', ' / '); 2></p>
<?php the_meta(); ?>

</header>

The meta function outputs the following HTML:

<ul class="post-meta'>
<li><span class="post-meta-key'>Rated:</span> R</1i>
<li><span class="post-meta-key'>Running time:</span> 92 minutes</li>
<li><span class="'post-meta-key'>Release date:</span> 19 October 1994</li>
<li><span class='post-meta-key'>Review rating:</span> 9/10</1i>

</ul>

The function adds a couple of useful classes to help you style the metadata. Making use of them, you could add
the following styles just to make the metadata list a bit more readable:

.post-meta {
list-style:none;
padding:0;

}

.post-meta .post-meta-key {
font-weight:bold;

}

126



CHAPTER 5 * CREATING CUSTOM TAXONOMIES AND FIELDS

This code gives you a nicely formatted list of information to display inside the <header> area of the movie post
(see Figure 5-8).

Running time: 102 minutes
Rated: R

Release date: 26 February 2010
Review rating: 5.6/10

Figure 5-8. The metadata displayed using the the_meta function

Custom Field Functions

Besides the simple custom field interface provided by WordPress, there is also an application programming interface
(API) for working with the metadata in your themes. This API consists of four main functions:

e add_post_meta
e update_post_meta
e get post meta
e delete post meta

To understand the how these functions work, it’s best to look at how the database stores the posts metadata. The
database table for metadata is stored in (wp_postmeta) and has four fields: meta_id, post_id, meta_key, and meta_value.
Ignoring meta_id for now because it’s simply a database primary key, the other three fields get used most of the time
in these four functions. Every time you store or access some custom metadata, you need to know the post ID under
which the metadata is stored and the meta key being used.

The meta_id field is useful because this key is always unique; you can store multiple values for the same post and
the same meta key in the database at the same time. This feature isn’t often made use of, but you'll see how to deal
with it when I discuss the functions in more detail.

add_post_meta
The add_post_meta function takes four parameters:
e post_id
e meta_key
e meta_value
e unique (Boolean)

The first three parameters should be fairly self-explanatory: the ID of the post for which you're adding the custom
field, the key of the custom field, and the value you want to set. When adding or updating a custom field using these
functions, you can submit an array of values to the meta_value parameter. When doing so, WordPress serializes the
array into a string for storage in the database.

The last parameter, unique, is used to make sure that the post meta key is the only one being used. When set
to true, the function returns false and has no effect on the database if there is already a post meta entry for the post
ID and the meta key passed to the function. If false, the function simply updates the database with a new entry,
regardless of whether a metadata with that key for the post currently exists.

127



CHAPTER 5 © CREATING CUSTOM TAXONOMIES AND FIELDS

Here are two examples:

// Add running time meta data
add post _meta( $post _id, 'running time', '92 minutes', true );

// Add classification meta data with array
$classifications = array(
'usa' => 'R',
‘uk' => '18'
)

add_post _meta( $post id, 'movie classification', $classifications, true);

These two examples show adding metadata for the running_time post meta and the classifications metadata,
which also uses a data array that will get serialized by WordPress when inserted into the database.

Note When you create custom fields in this way, they all become visible in the custom fields drop-down menu on
the default post edit page. To prevent this from happening, you can prefix your meta keys with an underscore to keep
them private (i.e., _private custom_field). This is how WordPress stores the custom fields for things like custom page
templates, for which the meta key is _wp_page_template.

update_post_meta

Again there are four parameters for the update_post_meta function; the first three are the same as the previous
function, but the last is the parameter for prev_value. This final parameter is again used when there might be more
than one value added to the same meta key for the same post.

If the prev_value parameter is set, the post metadata is updated only for a record in which prev_value matches
the value currently stored in the database. If there is no match, the function returns false and doesn’t update anything.
If the value is omitted entirely, any and all records with the meta key passed to the function for the post ID are
updated to the new value.

Here are two examples:

// Using update meta data if there is already a post meta in the database

if( ! add_post_meta( $post_id, 'running_time', '108 minutes', true) ) {
update post meta( $post id, 'running time', '108 minutes' );

}

// update post meta for a value already in the database
update_post meta( $post_id, 'running time', '108 minutes', '92 minutes' );

The first example shows how you can use update_post_meta to update a metadata record when the meta key
for the current post is already stored in the database. The second shows updating a record in the database when you
already know the data you want to update.

delete_post_meta

Only three parameters this time to delete a post meta record: the first two are the post id and meta key for the field; the
last parameter, meta_value, works similarly to the prev_value parameter of the update function.

128



CHAPTER 5 * CREATING CUSTOM TAXONOMIES AND FIELDS

If the meta_value parameter is present, the function will delete records that match the value parameter passed;
if there are no matches, no records are deleted. If the parameter is omitted, any records with the meta key passed for
the post ID are deleted.

Here’s an example:

// delete metadata for running_time
delete post meta( $post id, 'running time' );

This is the straightforward way of deleting a post meta entry; with only one entry that you care about in the
database, you can safely omit the meta_value parameter and delete the data for the key entirely.

get_post_meta

The final function, get_post_meta, is used to return the meta_value from the database. Again this function takes the
usual two parameters to start with: the post_id and meta_key parameters. The last parameter is a Boolean called
single. When set to true, it returns one result from the database as a string regardless of how many post meta entries
with the same key are stored. When false, the function returns an array of all the entries.

This gets complicated only when dealing with serialized arrays that have been added as metadata to a single
record. In this case, single should be true to return only the one record, and when returning the entry, WordPress
returns an unserialized array. If set to false, the docs say that a serialized array is returned as a string as part of the
returned array. However, as you can see from the following examples, the array is returned intact, even with the
single parameter omitted.

Here are some examples:

// get the classification meta unserialized
get post meta( $post _id, 'movie classification', true );

// Returns:

// Array

/1 (

// [usa] => R
// [uk] => 18
/1)

// get the classification meta serialized
get_post_meta( $post_id, 'movie_classification' );

// Returns:

// Array (

// [0] => Array (

// [usa] => R
// [uk] => 18
// )

// )

Although in practice it seems that the returned metadata does get unserialized, it’s worth ensuring that you use
the single variable just in case the old behavior still occurs in older versions of WordPress.

129



CHAPTER 5 © CREATING CUSTOM TAXONOMIES AND FIELDS

Custom Metaboxes

Now that you understand these functions, how will you use them to get the best from the custom fields in your
themes? Where these functions come in handy is when you create custom metaboxes.

In version 2.5, the add_meta_box function was introduced to the WordPress core. This function allowed users to
create draggable boxes for use in the post editor screen, much like you're already used to with the taxonomy input
boxes you have seen. Combined with some advanced custom field functions that I'll discuss shortly, they made
adding additional data to posts a lot more convenient and easier to do than simply using the previous custom fields
interface.

Adding a custom metabox can be quite daunting task for some, and there have been many tutorials and even
frameworks created that complicate the task even more. I've been adding custom metaboxes to web sites for as long as
I've worked with WordPress, and to be honest it’s not as complicated as people say. There seems to be a lot of code to
do it, but when you break it down, it’s actually quite straightforward.

There are three main functions that are used to add custom metaboxes to your posts, and two hooks. The three
functions consist of the following:

e Initializing the metabox
e Displaying the contents of the metabox
e  Saving the data

The two hooks are used to call two of the functions on the add_meta_boxes hook and the save_post hook; the
third function is called from the add_meta_box function.

add_meta_box

Before you look at the three functions you'll create to set up your custom metabox, let’s take a quick look at the
add_meta_box function. This is the function that adds the box to a post edit screen, but doesn’t create any of the fields
you'll be setting up. It can take up to seven parameters, all of which need to be passed in order, not as an array of
arguments, unfortunately.

e  $id: The identifier of the metabox. This is a custom ID you create that will be used as the
HTML ID for the metabox on the page.

e $title: Atitle for the edit screen. For best practices, it should be added using the WordPress
internationalization functions.

e  $callback: The name of the function you'll use to display the contents of the metabox passed
in without the parentheses.

e $post_type: The post type on which the metabox should be displayed. It can be only one post
type identifier passed as a string; to add the metabox to multiple post types, you need to call
the function multiple times.

e  $context: Where on the edit page the box should appear. Settings can be normal, advanced, or
side; the default is set to advanced.

e  $priority: The priority of the box compared with others within the context set. Settings can
be high, low, default, or core; defaults to default.

e $callback args: Here you can add arguments to be passed to the callback; the $post object is
sent by default, but you can add custom arguments as an array.

130



CHAPTER 5 * CREATING CUSTOM TAXONOMIES AND FIELDS

All parameters up to and including the $post_type parameter are required for the function to work; the last three
can be omitted if you don’t need to change them from their defaults.

Now that you've had a look at the function, it’s time to put it to some use and set up a post metabox of your own
to work with.

Initializing the Metabox

The first function of the three you'll look at initializes the post metabox. Here you need to create a function to be run
on the first hook I mentioned (add_meta_boxes), which runs the add_meta_box function.
The code you'll use will look something like this:

function prowordpress movies meta box () {
add_meta_box (
'ptd_movies meta’,
__('Movie details', 'prowordpress'),
'prowordpress movie meta_fields',
'ptd_movie',
'side’,
'core'
)
}

add_action ('add_meta boxes', 'prowordpress movies meta box');

As I mentioned, it’s really simple to just call the add_meta_function with your chosen settings. All the functions
here are prefixed with the theme namespace and the metabox ID is prefixed with ptd_ to stay consistent with the rest
of your theme. Also note that the metabox title has been added with the __ () internationalization function with the
text domain of the theme.

Directly after the metabox initialization function is the add_action call, which attaches the function to the add_
meta_boxes hook. For now, all this does is add an empty box with the "Movie details" header to the movies editor
pages. Next you need to populate the boxes with some content.

Adding Content to the Metabox

The next function to create is the callback function that was previously defined in the add_meta_box function. This
function deals with what's displayed in the custom metabox (when you're creating one to house custom fields, it
is mostly made up of form elements).

You'll take a look at the code first, and then I'll explain what'’s going on because there’s quite a bit to go through.

function prowordpress movie meta fields ( $post ) {
// Use nonce for verification
wp_nonce_field( plugin basename( _ FILE ), 'ptd movie meta noncename' );

$rating = get post_meta( $post->ID, 'ptd movie rating', true );

$running = get_post_meta( $post->ID, 'ptd_movie_running_time', true );

$release = get_post_meta( $post->ID, 'ptd_movie_release date', true );

$review = get post meta( $post->ID, 'ptd movie review rating', true );
>

131



CHAPTER 5 © CREATING CUSTOM TAXONOMIES AND FIELDS

<p>
<label for="ptd movie rating">Movie classification</label><br />
<select name="ptd movie_rating" id="ptd_movie rating">
<option value="">Select a classification</option>

<option value="G" <?php if( 'G' === $rating ) echo 'selected'; ?>>G</option>

<option value="PG" <?php if( 'PG' === $rating ) echo 'selected'; ?>>PG</
option>

<option value="PG-13" <?php if( 'PG-13' === $rating ) echo 'selected';

?>>PG-13</option>
<option value="R" <?php if( 'R' ==

= $rating ) echo 'selected'; ?>>R</option>
<option value="NC-17" <?php if( 'NC-1

7' === $rating ) echo 'selected';
?>>NC-17</option>
</select><br />
<span class="description">Select the US rating classification from the dropdown</span>
</p>

<p>
<label for="ptd_movie_running_time">Running time</label><br />
<input type="text" class="all-options" name="ptd movie running time" id="ptd movie
running_time" value="<?php echo esc_attr( $running ); 2>" />
<span class="description">Enter the running time in minutes</span>
</p>

<p>
<label for="ptd movie release date">Release date</label><br />
<input type="text" class="all-options" name="ptd movie release date" id="ptd movie
release_date" value="<?php echo esc_attr( $release ); ?>" />
<span class="description">Enter the release date or year of the movie</span>
</p>

<p>

<label>Review rating</label><br />

<label for="review rating 1"><input type="radio" value="1" id="review rating 1"
name="ptd movie review rating" <?php if( '1' === $review ) echo 'checked'; ?> /> <span>1 star</
span></label><br />

<label for="review rating_2"><input type="radio" value="2" id="review_rating 2"
name="ptd movie_review rating" <?php if( '2' === $review ) echo 'checked'; ?> /> <span>2 star</
span></label><br />

<label for="review rating 3"><input type="radio" value="3" id="review rating 3"
name="ptd_movie_review_rating" <?php if( '3' === $review ) echo 'checked'; ?> /> <span>3 star</
span></label><br />

<label for="review rating 4"><input type="radio" value="4" id="review rating 4"
name="ptd _movie review rating" <?php if( '4' === $review ) echo 'checked'; ?> /> <span>4 star</
span></label><br />

<label for="review_rating 5"><input type="radio" value="5" id="review rating 5"
name="ptd_movie_review_rating" <?php if( '5' === $review ) echo 'checked'; ?> /> <span>5 star</
span></label><br />

<span class="description">Select the movie review rating</span>

</p>

<?php
}

132



CHAPTER 5 * CREATING CUSTOM TAXONOMIES AND FIELDS

Now there’s a heck of a lot of code, the result of which gives you something that should resemble what you can
see in Figure 5-9: a metabox full of four different fields with three varieties of input.

Movie details

Movie classification
Select a classification 4

Select the US rating classification from the
dropdown

Running time

Enter the running time in minutes

Release date

Enter the release date or year of the movie

Review rating
)1 slar
)2 star
)3 star
)4 star
)5 star
Select the movie review rating

Figure 5-9. The full Movie metabox with fields

Although it looks like quite a scary amount of code, when you break it down you'll see that there are really only a
few things going on. First let’s look at the function declaration:

function prowordpress movie meta fields ( $post )

This line is a normal function declaration with a $post parameter. Remember when discussing the callback
arguments parameter of the add_meta_box function, I mentioned that the post object is sent by default? In the
function now, the $post variable is set to the current post object you're viewing:

// Use nonce for verification
wp_nonce_field( plugin basename( _ FILE ), 'ptd movie meta noncename' );

The next line may sound a little strange, but bear with me; it is what you use to validate that the sent form request
came from the correct site. Using a nonce field is suggested by WordPress—although not mandatory, it’s just good
practice to do so. The function simply states where the nonce has come from, and you give it a unique identifier for
the metabox you're creating:

$rating = get post meta( $post->ID, 'ptd movie rating', true );

$running = get_post_meta( $post->ID, 'ptd_movie_running_time', true );
$release = get post meta( $post->ID, 'ptd movie release date', true );
$review = get post meta( $post->ID, 'ptd movie review rating', true );

133



CHAPTER 5 © CREATING CUSTOM TAXONOMIES AND FIELDS

The next four lines are used to get the current metadata for your fields from the database. Doing this allows you to
populate the form inputs you set out in the next section so that stored data is made visible to the user. You don’t want
to have a blank form on view every time users visit the page; otherwise, they’ll think that the data hasn’t been saved.

The remaining code is your form elements. Most of it is self-explanatory, but here’s one to go through a few little
bits that come in useful when you're creating your own.

<p>
<label for="ptd movie_release_date">Release date</label><br />
<input type="text" class="all-options" name="ptd _movie release date" id="ptd _movie release_
date" value="<?php echo esc_attr( $release ); ?>" />
<span class="description">Enter the release date or year of the movie</span>
</p>

First of all, each form input is set up inside a paragraph tag, which is for layout purposes so everything is set out
nicely in rows. Next is a standard label with a for attribute to enable a click on the label to select the input element.

Next is the form input. When creating a metadata input, I tend to use the same name as my metadata key for the
input name; the naming is consistent at all times and allows me to easily see what input is for what metadata.

There are also a couple of little things to look out for here, too. First is the class attribute. WordPress has a lot of
built-in classes for admin Ul elements so it’s worth using them so the styling stays consistent throughout the admin
pages. Second, when you output the current value of the metadata, you use the esc_attr function to do so. This
function encodes characters into HTML entities for use specifically when printing out variables into HTML. Last
is the description class used on the span element containing a brief instruction on what to put in the input. The
description class is there again to keep styling consistent across the WordPress admin.

Now you’ve been through the display function for your metabox, it doesn’t seem so scary after all. Most of the
code consists of fairly straightforward form elements used to input the metadata. Now that you have your shiny new
metabox, you should probably look at storing the data that’s input when the post is updated.

Saving Metabox Data

The final function in the set is used to update the metadata in the database. This function also uses the second of the
hooks I mentioned, the save_post hook, because you want to call this function every time a post is saved to make sure
you save any metadata that’s been submitted. Again, this is quite a large amount of code, but nothing too complex.
You'll see it in its entirety first; then I'll step through each bit separately to explain what’s going on.

function prowordpress movie meta save ( $post id ) {
// verify if this is an auto save routine.
// If it is the post has not been updated, so we don't want to do anything
if ( defined( 'DOING_AUTOSAVE' ) && DOING AUTOSAVE ) {
return $post_id;
}

// verify this came from the screen and with proper authorization,
// because save_post can be triggered at other times
if ( !isset( $_POST['ptd movie meta noncename'] ) || !wp_verify nonce( $_POST['ptd movie_
meta noncename'], basename( _ FILE_ ) ) ) {
return $post_id;
}

// Get the post type object.
global $post;
$post_type = get post_type object( $post->post type );

134



CHAPTER 5 * CREATING CUSTOM TAXONOMIES AND FIELDS

// Check if the current user has permission to edit the post.

if (! current_user can( $post_type->cap->edit post, $post id ) ) {
return $post_id;

}

// Get the posted data and pass it into an associative array for ease of entry

$metadata[ 'ptd_movie rating'] = ( isset( $ POST['ptd _movie rating'] ) ? $_POST['ptd movie
rating'] : "' );

$metadata[ 'ptd_movie running time']

( isset( $ _POST['ptd movie running time'] ) ? $_

POST[ 'ptd_movie_running_time'] : '' );
$metadata[ 'ptd_movie release date'] = ( isset( $ POST['ptd movie release date'] ) ? §
POST[ 'ptd movie release date'] : '' );

$metadata[ 'ptd _movie review rating'] = ( isset( $_POST['ptd movie review rating'] ) ? $_
POST[ 'ptd movie review rating'] : '' );

// add/update record (both are taken care of by update post meta)
foreach( $metadata as $key => $value ) {

// get current meta value

$current_value = get post meta( $post _id, $key, true);

if ( $value 88 '' == $current value ) {
add _post_meta( $post_id, $key, $value, true );

} elseif ( $value && $value != $current value ) {
update_post meta( $post _id, $key, $value );

} elseif ( '' == $value 88 $current value ) {
delete post meta( $post_id, $key, $current value );

}

}

add_action ('save post', 'prowordpress movie meta save');

Although it’s a bit more involved than the display function, once you've stepped through it you'll start to see that
there’s really nothing too scary going on.

The first thing to notice (although I won't pick it out in the code this time) is that the function is passed a
parameter for you to use within the function: the $post_id of the post that’s been saved. This means you know which
post to access data for.

Next are three series of conditional statements:

if ( defined( 'DOING_AUTOSAVE' ) && DOING AUTOSAVE ) {
return $post_id;
}

The first statement is there to check whether the current post is being autosaved; if it is, you don’t want to update
your post meta just yet because WordPress autosaves brief amounts of content regularly when editing a post. The
function you use to update the post meta run database queries so you don’t want to be doing that quite so regularly.
The return inside the if statement could just be left as a blank return, but it seems to be a convention to return the
parameter passed in back as the function hasn’t failed; you just chose to quit out early.

if ( !isset( $_POST['ptd movie meta noncename'] ) || !wp_verify nonce( $ POST['ptd movie meta

noncename'], basename( _FILE ) ) ) {
return $post_id;
}

135



CHAPTER 5 © CREATING CUSTOM TAXONOMIES AND FIELDS

The next if statement is where the nonce appears again. This time you're checking whether the nonce exists and
verifying it with the wp_verify_nonce function before moving on. If the nonce isn’t there or can’t be verified, you'll
quit out of the function. The nonce is used to ensure that you're getting data from a source that has your metabox in it;
otherwise, the function could just be getting called as part of another save_post action.

// Get the post type object.
global $post;
$post_type = get_post_type object( $post->post_type );

// Check if the current user has permission to edit the post.

if (! current_user can( $post_type->cap->edit post, $post_id ) ) {
return $post_id;

}

The last conditional requires that you first get the current post via the global $post object and then use it to
get the current post type. With the post type information, you can use it to check whether the current user has the
capabilities to edit the current post. If not, you can exit out of the function early.

Next, you can actually start updating the metadata for your post. Let’s look at the example of getting one field
from the $_POST object:
$metadata[ 'ptd_movie_rating'] = ( isset( $_POST['ptd_movie_rating'] ) ?
$_POST[ 'ptd_movie rating'] : '' );

Here you'll get each post metadata and store it in an associative array so you can easily enter it with a little less
code. Because you're setting up a few custom fields here, it seems the logical way to go about it. In this assignment,
you're using a shorthand if statement for brevity (the ternary operator), checking that the data from the $_POST object
has been sent with the PHP isset function. If so, set your variable to it; otherwise, set the variable to nothing.

Once you have your array of metadata, you can run through it with the foreach loop and update the data in the
database:

// add/update record (both are taken care of by update_post meta)
foreach( $metadata as $key => $value ) {

// get current meta value

$current_value = get post meta( $post _id, $key, true);

if ( $value & '' == $current value ) {
add _post_meta( $post_id, $key, $value, true );

} elseif ( $value && $value != $current value ) {
update_post meta( $post _id, $key, $value );

} elseif ( '' == $value &3 $current value ) {
delete post meta( $post_id, $key, $current value );

}

Because each of the functions you'll use runs a database query to update the records in the database, you want
to ensure that you really have to use them (the conditional block in the preceding code is used for just that reason).
You want to use the add_post_meta function only if there isn’t currently any data in the database for this post and
key combination. So check to see whether you have a current value and whether there is a value to enter into the
database. The second condition is whether there is a value for this post and key in the database; if so, use the
update_post_meta function, but only if the new value is different from the current value. Finally, if data is already
stored, but the value you've been sent is empty, you can delete the post meta record from the database. This is good
practice because if you're storing a lot of data and lots of metadata for different posts, it's good to keep the database
records tidy instead of having empty records everywhere.

136



CHAPTER 5 * CREATING CUSTOM TAXONOMIES AND FIELDS

Conditional Display of Custom Metaboxes

The last thing you'll learn in this section is how to display a custom metabox only under certain circumstances. For
instance you might want certain custom fields to be used only when a page is being displayed with a certain page
template, or when a post is in a certain category, you may want to allow for entering some additional details.

You can do this by editing your first function: the add_meta_box function. To decide whether the post metabox
should be set up, you can use a simple conditional to check the circumstances of the page you're on. To get most
information, you need the post object for the current post, which can be done by adding the global $post object
declaration at the top of the function:

function prowordpress movies meta box () {
global $post;

Next, you need to do something with it. To check the custom page template for the current page (note that this
is a setting only for the page post type), you can check a WordPress custom field called _wp_page template. In this
custom field, WordPress stores the file name for the custom template, so to test it, you can do the following:
if( 'template-page-custom.php' === get post meta( $post->ID, '
add_meta_box (

_wp_page_template', true) ) {

'ptd_page meta’,

__('Custom page fields', 'prowordpress'),
'prowordpress_page meta_fields',

page’

)

If the current page is using the template-page-custom.php template, call the add_meta_box function and have a
custom metabox on that page. If not, the metaboxes don’t display.

Just as easily you can also check whether the current post has a certain term from any given taxonomy. This
example may seem odd, but it’s here just to demonstrate the ease with which you can test for situations in which you
might want to show only certain custom fields for certain posts.

if ( has_term( 'comedy', 'ptd genre', $post) ) {
add_meta_box (

'ptd_movies meta',
__('Movie details', 'prowordpress'),
'prowordpress movie meta fields',
'ptd_movie',
'side’,
'core'

);

Here you're checking whether the current movie is in the comedy genre, and if it is, to display the movie some
extra custom fields.

Now I've covered almost everything you need to create a custom metabox for your posts. You can even decide
which specific pages or posts can use your custom fields. These can come in really handy if you have metadata you'll
be using regularly in your posts and want a nicer interface than the standard custom fields section on the post edit
screen.

Next, you'll look at how you can use these fields to generate custom queries on the database.

137



CHAPTER 5 © CREATING CUSTOM TAXONOMIES AND FIELDS

Building Queries with Custom Fields

As with custom taxonomies, you can also create custom queries for posts based around custom fields. With custom
fields, however, the custom queries can be a lot more advanced. You took a look at custom field queries in Chapter
3, and already looked at the tax_query option earlier in the chapter. So here we'll just take a look at the differences
between the two.

The first thing to note is that when the meta_query was introduced in version 3.1, it didn’t lead to the previous
methods of querying by metadata being deprecated. So you can still use the following options in your queries:

e meta_key

e meta_value

e meta_value num
e meta_compare

So far, I haven’t discussed the meta_compare option, which allows you to not only search for a specific
meta_value but also compare the meta value of the post against the queried-for meta value to see whether it should
be returned. The comparison operators available are ' !=", '>", '>=", '<', or '<=", with the default being ‘=’ These
comparison operators enable you to query your movie posts, for instance, for movies that were released after the year
2000 (this would require the meta key to be stored in a comparable format) with a query similar to this one:

WP_Query( array(
'meta_key' => 'ptd_release year’,
'meta_value' => 2000,
'meta_compare' => '>='
)

)s

The meta_query option gives you far more control, and like the tax_query option, you can compare multiple
meta key/value pairs simultaneously. When comparing multiple custom fields, the relation option is the same as
with tax_query and can be set to either 'AND" or 'OR". The difference with the custom fields queries is with the
meta_query arguments.

There are four options available to use in the custom field meta_query argument:

e  key: The meta key to be queried

e value: The meta value to be queried, which can be either a string of one value or an array
of many.

e compare: The comparison to use between the value and the post value you're querying for.
It can be set to any of the aforementioned comparison operators or 'LIKE', ‘NOT LIKE',
"IN', '"NOT IN', 'BETWEEN', 'NOT BETWEEN', 'EXISTS', or 'NOT EXISTS'.Again with the
defaultis ‘=

e type: The type of the value you're querying with. It can be set to 'NUMERIC', 'BINARY', 'CHAR',
'DATE', 'DATETIME', 'DECIMAL', 'SIGNED', 'TIME', or 'UNSIGNED', with the default value
being 'CHAR'.

Asyou can see from the choice of comparisons and operators, you have a huge amount of power when querying
with custom fields. There are two things to note. When an array of values is used, the only operators that can be used
are limited to ‘IN; ‘NOT IN, ‘BETWEEN, and ‘NOT BETWEEN’; and when the date type is being used for comparisons,
you can use the ‘BETWEEN'’ value, but only with the date format set to YYYYMMDD in all cases.

138



CHAPTER 5 * CREATING CUSTOM TAXONOMIES AND FIELDS

Now that you know what tools you have, let’s look at a brief example. Suppose that you want to take your release
year query a bit further and look for films from the first decade of the 21st century that run for less than two hours.
You could use this query:

WP_Query( array(

"post_type' => 'ptd_movie',
'meta_query' => array(
'relation’ => 'AND',
array(
"key' => 'ptd_release year',
'value' => array(2000,2010),
"compare' => 'BETWEEN'
)s
array (
"key' => 'ptd_running_time',
'value' => 120
'compare’ => '<'
)

);

This is one very small example of how you can use custom fields in your queries, but you can now start
experimenting with your own advanced meta queries.

Adding Custom Fields to the Feed

The last thing to look at for custom fields is how to add them to your RSS feeds. By default, the information provided in
the RSS feed is fairly limited to mostly just the content or the excerpt, depending on the options the user has set. But
there may be occasions when you create a custom field that would be very usefully displayed in your RSS feed.

It takes only a fairly simple function and a couple of hooks to do this. The hooks you need are the_excerpt_rss
and the_content. (There used to be the the_content_rss function to hook on to, but it was deprecated in version 2.9;
now feeds just use the regular the_content function). With these hooks, you can create one function that will be
called when either hook is activated; then you can add your custom fields content. An example of the full function
code follows; I'll discuss the important bits in more detail after.

function prowordpress add _review to rss( $content ) {
global $wp_query;
$post_id = $wp_query->post->ID;

$review = get post meta($post_id, 'ptd movie review rating', true);

if ( is_feed() &% '' !== $review ) {
$content = '<h2>Movie review score: ' . $review . ' stars</h2>' . $content;
}

return $content;

add filter('the excerpt rss', 'prowordpress add review to rss');
add_filter('the content', 'prowordpress add review to rss');

139



CHAPTER 5 © CREATING CUSTOM TAXONOMIES AND FIELDS

Note that the function has a passed parameter of $content. This is the content that will eventually get output by
the function and the variable that you will be manipulating.

Next, you need to get the ID of the current post. You can do that with the $wp_query global variable and return the
current post ID.

global $wp_query;
$post_id = $wp_query->post->ID;

When you have the ID, you can get the custom field data in the usual way with the get_post_meta function.
When you have the data, you then use the if statement to check whether you're accessing a feed with the is_feed
conditional function and whether there is some data in the review custom field.

if ( is_feed() & '' !== $review ) {

If both conditions return true, you can then add your custom field to your $content variable. Remember to
concatenate in the current $content variable as well because you don’t want to overwrite the content and just have
your feed display the custom field.

$content = '<h2>Movie review score: ' . $review . ' stars</h2>' . $content;

Also remember to return the $content variable from the function no matter what the result, so that this function
stays outside of any conditionals. You always need to return the content, regardless of whether you edited it or not.

return $content;

This is a relatively straightforward function that adds extra content to your RSS feeds. You can use it for any type
of content; you can also add the data from the movie’s genre taxonomy to the feed content.

Creating an Advanced Search Form with Custom Taxonomies
and Custom Fields

This last section takes the two new pieces of WordPress content you've learned to create and makes use of them
together to create a powerful search functionality for your themes. With the classification of taxonomies and the extra
data of a custom field, you can open them up to users to give them an advanced way of searching your content. As an
example, you'll use the movie post type with its taxonomies and custom fields to build your custom search form.

You'll go through the functionality in two stages: building your search form using the taxonomy data and custom
form inputs, followed by receiving the data and creating your custom WordPress queries.

Taxonomy Drop-Down Input

First you'll look at how to create an input for a taxonomy; in this case, it is a select field with a drop-down list of all
the terms in your taxonomy that can be searched. To do this, get the taxonomies for the movie post type with the
get_taxonomies function:

$movie_taxonomies = get_taxonomies( array( 'object_type' => array('ptd_movie') ), 'objects' );
You want to get the taxonomies via this method so you have a result that gives you a taxonomy name and a label

to use in the first select field. Once you have this data, you can create a function to build your drop-down list. This
function takes two arguments: the taxonomy id and name for the label. It then uses the get_terms function to get

140



CHAPTER 5 * CREATING CUSTOM TAXONOMIES AND FIELDS

every term in the taxonomy. Finally, it loops through each term to create the select field and returns it at the end of
the function:

// Create a select drop down from the given taxonomy

function prowordpress build tax select( $tax, $label ) {
// Get all terms - no arguments for the get terms function means the
// function will return only the terms which have been assigned to posts
$terms = get terms($tax);

// Start the select field

$select = '<select name=""'. $tax .'">";
// Our first option is the instruction field with a blank value
$select .= '<option value="">Select '. $label .'</option>';

// Loop through all the terms to create the dropdown list
foreach ($terms as $term) {

$select .= '<option value="' . $term->slug . '">' . $term->name . '</option>';
}
// close the select field
$select .= '</select>’;

// Return the select field
return $select;

If you look through the comments in the function, you'll see where each step is taking place. Note that in the
get_terms function, you just pass the taxonomy name because the default arguments are good enough to return a list
of only the terms that have posts assigned to them. It would be useless to add empty terms to your drop-down list here
because they are guaranteed to return no results in your search.

Building the Search Form

Now that you can easily create a select field for your taxonomies, you can start building the full search form for the
movie post type. The only thing you need to do here is set up an HTML form with some input fields for the rest of the
fields you want to allow users to search through. In this case, I chose the classification and running time custom fields,
as well as adding in a free text search field.

The form is shown in full here; I'll pick out some things to note after you've had a quick lookthrough:

<h2>Search movies</h2>
<form action="/movie-search" method="post">

<p>

<label for="search text">Search:</label>

<input type="text" name="ptd movie search_text" id="search_ text">
</p>

<?php foreach( $movie taxonomies as $tax ): ?>
<p>
<label>Movie <?php echo $tax->name; ?>:</label>
<?php echo prowordpress_build tax_select($tax->name, $tax->label); ?>
</p>
<?php endforeach; ?>

141



CHAPTER 5 © CREATING CUSTOM TAXONOMIES AND FIELDS

<p>
<label for="movie_rating">Movie certificate:</label>
<select name="ptd movie_rating" id="movie_ rating">
<option>Select rating</option>
<option value="G">G</option>
<option value="PG">PG</option>
<option value="PG-13">PG-13</option>
<option value="R">R</option>
<option value="NC-17">NC-17</option>
</select>
</p>
<p>
<label for="running_ time">Running time (less than):</label>
<input type="text" name="ptd movie running time" id="running time">
</p>

<p><input type="submit" value="Search"></p>
</form>

Note the form action, which goes to a custom page in which you can catch the form submissions and build the
query (more on that shortly). Next is the free text field for searching (I made sure to use a name that doesn'’t clash
with any WordPress reserved terms because it can cause the submitted form data to be confused with any WordPress
functions that go on before the page is built and might redirect the result to the wrong page).

After the free text search input, you have three inputs for the custom taxonomy and custom fields. The first makes
use of the function you looked at before, and the second is a simple drop-down list of the possible settings of the
custom field you set up in the custom field and a free text input for the running time custom field (see Figure 5-10).

Search movies

Search:

Movie ptd_genre: | Select Genres +
Movie ptd_actor: | Select Actors s
Movie certificate: | Select rating 3
Running time (less than):

Search

Figure 5-10. The full custom search form you created

142



CHAPTER 5 * CREATING CUSTOM TAXONOMIES AND FIELDS

Now that the search form is built (refer to Figure 5-10), you can set up the page to catch the form submission and
create the query for the search.

Setting Up the Search Query

The form action redirects users to the “/movie-search/” page, so you need to set up a page and page template to deal
with the results. Once that’s done, you can look at retrieving the form submission and building the search query.

All your data will come through as part of the $_POST variable, so you need to go through this variable, pull out
the data in the correct order, and add it to your query. Because you're using three very different fields for the search
query, there’s no easy way to create it without checking which field is which before adding it to the query. However,
you can use a nice foreach loop to make working with the $ POST variable a little easier to look at. To start, create this
foreach loop:

foreach ( $ POST as $key => $value ) { }

Now you can start working with your custom search arguments. Do one quick check to see whether you need to
add the current post argument to the query at all by checking whether the value has any contents, like so:

if( "' l== $value ) {

If the value does have something in it, you can start to check what needs to be added to the search query. The
search text field needs to be added it to the 's' argument of the query (WordPress’ generic search field):

if( 'ptd movie search text' === $key ) {
$args['s'] = htmlentities($value);
}

The code checks that the key of the field is the search text field you're looking for and then simply adds it to the
arguments array. You use the htmlspecialchars function to encode any special characters into HTML entities. The
function also takes care of single and double quotes, so you don’t need to worry about them breaking your queries.

Next is to build the taxonomy part of the query:

elseif( 'ptd genre' === $key ) {
$genre[ 'taxonomy'] = htmlspecialchars($key);
$genre[ "terms'] = htmlspecialchars($value);
$genre[ 'field'] = 'slug';
$args[ 'tax_query'] = $genre;

Check the key to make sure it’s the correct one; then set up an array with the tax_query arguments (discussed
earlier in the chapter). The new array gets added to the tax_query argument of the $args array.

Add each of the custom fields to the argument. This one is a little tricky because you need to have two
$meta_query arrays in the argument, and both queries use different comparison operators:

elseif( 'ptd_movie_rating' === $key || 'ptd_movie_running time' === $key ) {

$meta[ 'key'] = htmlspecialchars($key);
$meta[ 'value'] = htmlspecialchars($value);

143



CHAPTER 5 © CREATING CUSTOM TAXONOMIES AND FIELDS

if( 'ptd_movie_running_time' === $key ) {
$meta[ 'compare'] = '<';
$meta[ "type'] = 'NUMERIC';

} else {
$meta[ 'compare'] = '=';

}

$meta_query[] = $meta;

Because you're creating a $meta_query array for both fields, you can use similar code for both. In the condition,
usethe ' || (or) operator to catch both custom field keys. Add the key and the value as normal to an array and then
perform another test to see which of the two fields you're looking at, so you can set the compare value. If the value is
for the running time field, you're also going to set the meta type option to numeric so you can do a math comparison
with the '<"' operator. When you finish, you can add the array to another array that will eventually store both fields.

You can finish building the query inside the main $args array as so far they’ve only been built in the
$meta_query array.

if( isset( $meta_query ) ) {
$args[ 'meta_query'] = array merge( array('relation' => 'AND'), $meta_query );
}

The code first checks whether the $meta_query array was created in the loop because if there were no input for
the two fields, you wouldn’t have anything to add to your $meta_query.

Next you need to add the relation argument for the meta_query, which you can do with array_merge. This
function takes two arrays and outputs a merged array into the variable, which is the $args[ 'meta_query'] variable
in this case. This is one example of how to do this; you could add the $meta_query array directly to the meta_query
argument of the $args array because 'AND' is the default setting for the relation parameter.

To finish the search query, add any more parameters that are necessary to narrow down the search. In this
example, you'll just add the post_type argument, but you could also add pagination options and a posts_per_page
limit, for example.

$args[ 'post_type'] = 'ptd_movie';
This is what the query looks like when someone submits a search:
Array
(
[tax_query] => Array
[taxonomy] => ptd genre
[terms] => comedy

[field] => slug
)

[meta_query] => Array

[relation] => AND
[0] => Array

[key] => ptd_movie rating

144



CHAPTER 5 * CREATING CUSTOM TAXONOMIES AND FIELDS

[value] => R
[compare] => =

)
[1] => Array

[key] => ptd_movie_running_time
[value] => 100
[compare] => <

)

[post_type] => ptd movie

It's a perfectly constructed query that allows you to perform really detailed searches on the database.
The last bit of the search is to set up the query using a new WP_Query object with the $arg array and away you go.
You can create the bespoke page to be laid out however you like.

Building Your Theme, Part 4

In part 4 of building the custom theme, you’ll make better use of the custom post types you created in the previous
chapter by giving them some custom taxonomies and custom fields. You'll use them to help categorize the menu to
make it easier to browse and add things such as prices to the menu items.

With custom fields, you'll also set up a couple of methods to be able to highlight certain menu items and staff
members to be featured on different pages of your site.

Adding Custom Taxonomies

Let’s start by adding custom taxonomies. You’ll add a custom taxonomy of item type to your menu items. For the
staff post type, you'll add a taxonomy for the different job titles. Inspired by the function in the previous section to
define custom post types in a really simple loop form, I did the same here for your new taxonomies:

function prowordpress taxonomies() {

$taxs = array(
'ptd_menu_category' => array(

'menu_title' => 'Menu Category',
"plural’ => 'Categories',
'singular’ => 'Category’,
'hierarchical' => true,

'slug' => 'menu-category’,
'post_type' => 'ptd_menu'

'ptd_job_roles' => array(

'menu_title' => 'Job Roles’,
"plural’ => 'Roles’,
"singular’ => 'Role’,

'hierarchical' => true,

145



CHAPTER 5 © CREATING CUSTOM TAXONOMIES AND FIELDS

'slug’ => 'job-role',
'post_type' => 'ptd_staff’
)
foreach( $taxs as $tax => $args ) {
$labels = array(
"name’ => x( 'Ttem '.$args['plural'], 'taxonomy general
name' ),
'singular_name' => x( 'Item '.$args['singular'], 'taxonomy singular
name' ),
'search_items' => _ ( 'Search '.$args['plural'] ),
'all items' => _( 'All '.$args['plural'] ),
'parent_item' => _ ( 'Parent '.$args['plural’] ),
'parent_item colon' => _ ( 'Parent '.$args['singular'].’':' ),
'edit_item' => _ ( "Edit '.$args['singular'] ),
'update_item' => _ ( 'Update '.$args['singular'] ),
'add_new_item’ => _( 'Add New '.$args['singular'] ),
"new_item_name' => _ ( 'New '.$args['singular'].' Name' ),
'menu_name' => _ ( $args['menu_title'] )
);
$tax_args = array(
"hierarchical’ => $args[ 'hierarchical'],
'labels’ => $labels,
"public’ => true,
'rewrite’ => array( 'slug' => $args['slug'] ),
)s
register taxonomy( $tax, $args['post type'], $tax args );
}
}

add_action('init', 'prowordpress taxonomies');

The function first sets up an array with the custom taxonomy details similar to the one you made before. It then
loops through each one, creating the arguments for the register_taxonomy function before calling it at the bottom of
the loop. Easy.

Unfortunately, there’s no export file for the taxonomy data, so if you're following along with the theme build, here
are the terms you'll be adding to the custom taxonomies. For the menu category taxonomy, add the following:

e  Starters

e  Main courses

e Desserts

e  Drinks
e  Soft drinks
e  Alcohol
e  Hotdrinks

146



CHAPTER 5 * CREATING CUSTOM TAXONOMIES AND FIELDS

And for the staff job roles taxonomy, add the following:
e  Manager
e  Chef
¢  Kitchen staff
e  Waiting staff

You can now move on to setting up your custom fields.

Adding Custom Metaboxes

You'll set up a couple of custom metaboxes to house some custom fields for both post types. The menu item post
type will have two custom fields: the first to set the price, and the second as a check box to set whether the product
is a featured item. The staff post type will have a similar check box field for whether the current person is the staff
member of the month.

This code can get quite long and quite involved for creating a couple of custom metaboxes, so I picked out some
of the code examples from the functions to show you:

add _meta box ( 'ptd menu meta',
__('Menu item info', 'prowordpress'),
'prowordpress_menu_meta_fields', // callback
'ptd_menu', // post type
'side’,
'core’

);

add meta box ( 'ptd_staff meta',
__('Staff extra info', 'prowordpress'),
'prowordpress_staff meta_fields', // callback
'ptd_staff', // post type
'side’,
'core'

)5

Inside the first function, which calls the add_meta_box functions, I'll add metaboxes at the same time. There’s no
need to do this separately because the hook is the same for each. Notice, however, that as well as being added to the
different post types, they each have a different callback function to build up the metabox content. You could do this
with a single function and then test which post type you're viewing, but it’s a lot easier to just use a different function.

The field creation functions are pretty straightforward, so I'll ignore them for now because you can catch up in
the code downloads. You can also try to create them and then check your work against the example. The only thing
I mention here is the nonce:

wp_nonce_field( basename( _ FILE ), 'ptd custom meta noncename' );
Here’s the line of code to generate the nonce field for both the field population functions. I use the same nonce

because it makes it a lot easier when saving the metadata in the next function. As long as you use a nonce and check it
in the save function, you'll be perfectly fine.

147



CHAPTER 5 © CREATING CUSTOM TAXONOMIES AND FIELDS

Finally, the save function is pretty similar to the one you created earlier in the chapter, but you're using the one
function to save both sets of custom fields:

if( 'ptd_menu' === $post_type->name ) {
$metadata[ 'ptd_menu_item price'] = ( isset( $_POST['ptd menu_item price'] )
? $_POST['ptd_menu_item price'] : "' );

$metadata[ 'ptd_menu_item featured'] = ( isset( $ POST['ptd menu_item featured'] ) ?
$_POST[ 'ptd_menu_item featured'] : '' );

} else {
$metadata[ 'ptd_staff of the month'] = ( isset( $ POST['ptd staff of the month'] ) ?
$_POST[ 'ptd_staff of the month'] : '' );
}

The code uses the $post_type object (the one you made when checking whether the current user has edit
permissions) and checking which post type the post is for. This allows you to set up array entries only for the fields
you'll save data for because if the field is empty (which it is if you're saving data for a different post type), it gets
deleted from the database.

As shown in Figure 5-11, you're now all set to go with the custom metaboxes. Next you'll put the new custom
taxonomies and custom fields to good use.

Menu item info

Price
4,00
Enter the price in £5

(™ Featured item
Select whether this item should be featured on
the homepage

Figure 5-11. Custom metabox for the menu items

Setting Up the Menu Page

Now that the menu items are nicely split up into their different menu categories of starter, main, dessert, and so on,
you can create a nice menu page based on this information. To do so, you need to create a custom page template
to run a bespoke set of queries for, running through all the terms in the categories taxonomy and creating a custom
query for each. Luckily, this is really easy to do in WordPress.

First create a page for "Our menu" and the custom page template "page-our-menu.php". Add the usual header
and footer as you did before, but you'll create a bespoke function to run the series of loops and queries. Here’s how the
function will be structured:

1. Getall terms from the Menu categories taxonomy.
Loop through each term.

For each term inside the loop, create a custom query for posts within that term.

Eal A

From the query, run the posts loop to output each menu item.

148



CHAPTER 5 * CREATING CUSTOM TAXONOMIES AND FIELDS

It probably sounds a lot more complex than it actually is, so take a look at the code you'll use to do it:

function prowordpress build menu(){
$menu_terms = get terms( 'ptd menu_category' );

if( $menu_terms ){
foreach( $menu_terms as $term ){

$args = array(
'post_type' => 'ptd_menu',
"tax_query" => array(

array(
"taxonomy' => 'ptd_menu_category',
'field' => 'slug',
"terms’ => $term->slug

)

)s

'posts_per page' => -1,

)5

$menu_items = new WP_Query( $args );
if( $menu_items->have posts() ) {
?>
<h2 id="<?php echo $term->slug; ?>"
<?php echo $term->name; ?></h2>

class="tax_term-heading">

<?php
while ($menu_items->have_posts()) : $menu_items->the_post();
get template part('content', 'menu');
endwhile;
}
wp_reset_query();
}
}
}

You start the function by getting the terms using get_terms. Again, no need for any arguments because the
default arguments give you a set of terms that you want to display on the page (i.e., the ones that have items). Check
that you have some terms to loop through and then start the foreach loop.

For each of the terms, you build a simple set of arguments for the custom query, which includes the tax query
argument to get only the posts for the current term. Run the query, followed by the usual if statement to see whether
any posts have been returned. Before you run the while loop to output the posts, create a heading for the current term.

Before moving on to using the custom fields, I'll quickly mention the custom taxonomy you set up for the staff
post type. This one is a pretty standard taxonomy; adding the attached term as a link next to the staff members’ details
so people can select the job role term and view a page listing all staff members with that job role. Simply list the
person’s job role with the the_term function:

<?php the_terms( get the id(), 'ptd _job roles', 'Position: ' ); >

149



CHAPTER 5 © CREATING CUSTOM TAXONOMIES AND FIELDS

You have the choice of using a new custom template such as taxonomy-ptd_job_role.php if you want some
custom layout to a page for each of the single job roles, or the listing page will fall back and use the regular archive.php
template. It doesn’t use the archive-ptd_staff.php template that you created in the last chapter because here it
looks specifically for the taxonomy display.

Displaying the Featured Menu Item

The last bit of code to add is for the new custom fields. Besides adding the price custom field to be displayed with
each of the menu items with the get_post_meta function, you'll use the featured item custom fields to show a featured
item on the home page.

I'll show the example code for only one of the two features because they both work in the same way, but display
different content with a different title. The aim of these custom fields is display a featured item on the home page for
the menu and the current team member of the month on one of the staff or about pages.

The code isn’t that complex here; it creates a simple query using the meta_query argument to look for the
featured custom field you created for the menu items:

<aside class="featured-item">
<h2>Featured item</h2>

<?php
// New query for featured menu item
$args = array(

'post_type' => 'ptd_menu',
'orderby’ => 'rand’,
'posts_per page' => 1,
'meta_query' => array(
array(
"key' => 'ptd_menu_item_featured’',
'value' => 'on',
‘compare’ => 's='
)
)

)
$featured = new WP_Query( $args );
if( $featured->have posts() ): while( $featured->have posts() ): $featured->the post();
>
<article <?php post_class(); ?>>
<h3><?php the_title(); ?></h3>
<?php the_post thumbnail( 'small'); ?>
<a href="<?php the_permalink(); ?>">Find out more &raquo;</a>
</article>
<?php endwhile; endif; ?>

<?php wp_reset query(); ?»

</aside>

150



CHAPTER 5 * CREATING CUSTOM TAXONOMIES AND FIELDS

Most of the code is standard, but I'll go through the query arguments briefly. The code sets the post type to the
menu type, uses the ‘rand’ orderby value, and sets the posts per page value to 1. The admin can set more than one
item to be featured, but only one at a time is pulled out for the home page.

Last is the meta_query. When the value is stored from a check box, the "checked" setting is stored as "on", so
make sure to test for that in the query.

Now you can replicate this for the staff member of the month field or just check out the rest of the example code.

Summary

You're at the end of another pretty huge chapter, but I hope that covering two main topics didn’t make it too
overwhelming. With your newfound abilities in dealing with custom taxonomies and custom fields, you now have
some great content organizational skills to add to your WordPress theme development toolkit.

The chapter covered everything you need to know about setting up custom taxonomies, including how to add
some nice Ul elements in the form of custom help text and help tabs. You looked at how to use these new taxonomies
to great effect and give your users ways of filtering down your content.

You learned about custom fields, seeing where they come from and how to manage the fields as they are by
default in WordPress. You saw how to create your own custom metaboxes to create a better admin interface when
adding this extra metadata. You then looked at how these fields can be used for custom querying and how to display
them both in your theme and in your feeds if necessary.

Before you added these new features to your custom theme, you learned how to combine both features to create
areally detailed search form for your users.

The next chapter takes a look in detail at WordPress actions and hooks—how you've used them so far and what
exactly you're doing every time you use the add_action function. Then you’ll find out about shortcodes, what they’re
used for and how to create them to make it easy for your users to add dynamic content.

151



CHAPTER 6

Customize with Hooks, Shortcodes,
and Widgets

Now that you have dealt with the main structural elements of setting up your WordPress theme, you can start to look
at ways of adding customizable and dynamic content for your users to control. To do this, you'll look at three features
in WordPress that have been added for these purposes: hooks, shortcodes, and widgets.

You've already used a lot of hooks in previous chapters, but here you'll look more deeply at what they’re actually
doing behind the scenes and how to get the best from them. You'll also take a look at shortcodes and how they allow
users to add dynamic content through the WordPress content editor without having to use any code. Finally you'll
take a look at the customizable options you have with sidebars (and sidebar widgets in particular), which allow you to
create custom snippets of content that your users can choose to have in specified areas of your site.

Hooks

Hooks in WordPress were introduced as part of the plugin application programming interface (API) back in WordPress
version 1.2. Hooks were the way of allowing plugin developers to “hook into” the functionality of WordPress and
activate functions at certain times during the WordPress execution process. Hooks are the best way to add your
custom functionality to WordPress and ensure that you're not hacking the core WordPress code. There are two types
of hooks you should know about: actions, and filters.

Actions are points in the WordPress execution process where something happens; you can “hook” into an action
and do something of your own. You saw actions in use in the last two chapters: you used add_action to call a function
at a certain point when WordPress is constructing pages so that you could add your own functionality. So far, it has
added custom post types, taxonomies, and custom fields to the WordPress admin.

Filters are hooks that manipulate data; they take an input based on the filter you're calling, modify it, and then
output the modified data back into the execution process. So far, there’s one example of a filter that you saw briefly
earlier in the book: the the_content filter. This is a WordPress built-in filter that runs when the content is asked for
from the database. Attached to this filter are several WordPress functions such as wptexturize and convert_smilies,
which take the content, convert plain text into HTML entities, and convert text “smilies” to images, respectively.

The main difference between the two types of hooks is easy to remember: an action hook does something when
something happens; a filter hook takes data and modifies it.

153



CHAPTER 6 © CUSTOMIZE WITH HOOKS, SHORTCODES, AND WIDGETS

Why Actions Are Not Filters
Now I'm going to confuse you a little, but I promise there’s a reason for it. Take a quick look at the add_action function

from the WordPress core:

function add_action($tag, $function to add, $priority = 10, $accepted args = 1) {
return add_filter($tag, $function to_add, $priority, $accepted args);
}

Wow! It took me a little while to get my head around that one as well. Let me explain. Although WordPress
handles the adding of actions and filters in the same way, the processing has one major difference. If you look at the
two functions that call the actions and filters—do_action and apply filters—you see a lot of similarities but one
fundamental difference:

// From the apply filters function
// Line 173 of the wp-includes/plugin.php file
$value = call user func_array($the ['function'], array slice($args, 1, (int) $the ['accepted args']));

// From the do_action function
// Line 406 of the wp-includes/plugin.php file
call user func_array($the ['function'], array slice($args, 0, (int) $the ['accepted args']));

The difference should be quite apparent: the function in the apply filters function returns data to the $value
variable, whereas the do_action function simply calls the function with nothing to return. Although it’s already been
mentioned that actions and filters are very different, it’s important to understand why there is a difference and how
that difference manifests itself in the WordPress core. Knowing this allows you to better understand how and where to
use the functions in your theme (or plugin; more on that later).

When Do Actions and Filters Happen?

The simple answer is: all the time! But you're probably expecting me to go into a bit more detail.
There is always some action or filter happening; more than likely, many happening at the same time. For
instance, publishing a post in the admin triggers the following:

e publish_post (action) or publish_page
e save post (action)

e wp_insert post (action)

e wp_insert postdata (filter)

e category save_pre (filter)

e content_save_pre (filter)

e excerpt_save_pre (filter)

e name_save pre (filter)

e title save pre (filter)

154



CHAPTER 6 CUSTOMIZE WITH HOOKS, SHORTCODES, AND WIDGETS

There are quite a lot of things going on just for that one process. There are far too many actions and filters to list
here, so I point you to the WordPress Codex, which has two long pages on actions and filters, and the actions are listed
in the order they are executed.

e Actionreference: http://wp-themes-book.com/06001

e  Filter reference: http://wp-themes-book.com/06002

There is also a full list of all hooks that is kept up to date with every new WordPress release on Adam Brown’s site
athttp://wp-themes-book.com/06003.

Actions in the WordPress Core Load

Back in Chapter 3, I spoke about the stages WordPress goes through to construct a page. Each time this happens,
actions are fired as well, allowing theme and plugin developers to add to the WordPress core functionality. You
saw a few of them in action already, but let’s take a closer look at some of the actions triggered in a typical load of
WordPress:

e muplugins_loaded: The very first action to be fired when “must-use” plugins have been
loaded. It’s a bit of a useless action because the theme hasn’t been loaded. So none of your
code can attach anything here. It is mainly for any must-use and network-wide plugins in
multisite, but I'll talk more about them later.

¢ plugins_loaded: The next in the list of actions, which means that all plugins have been loaded
and can start executing code if needed.

e after setup theme: The first real action you should care about. This action fires when the
functions.php file for the active theme has been loaded. You can use this to set up certain
theme functions and things you'll need from WordPress, it is the best time to use the
add_theme_support function to add support for thumbnails and post formats (among others).
You already used this action when constructing the custom theme by using it to call the
theme setup function.

e init: Typically the first point at which plugins and themes start to add functionality to
WordPress, this is where you previously added custom post types and taxonomies. At this
point in the core load, the user has been authenticated, so you know what level of user you're
dealing with to be able to add functionality.

e parse_request: The hook that exposes the current HTTP request and allows you to manipulate
itif you need to.

e pre get posts: The point where the query parameters for the current page load are made
available for you to edit. You looked at this briefly when the loop was discussed in Chapter 3.
Using this hook is the best place to edit the current query and add things like custom post
types to the default query.

e template redirect: The hook called before WordPress allocates the template from the default
request. It can be used to redirect users to a different page or load a new template to handle
the current request. With plugins, it is typical to use this action to load a template from the
plugin to create a bespoke page instead of allowing the default theme template to be loaded.

e wp_enqueue_scripts: Where you previously added the functions to enqueue the scripts and
style sheets for the theme. It’s used only for enqueuing styles and scripts for the front end of
the WordPress theme, and even though it has “scripts” in the name, it’s used for both scripts
and styles.

155


http://wp-themes-book.com/06001
http://wp-themes-book.com/06002
http://wp-themes-book.com/06003

CHAPTER 6 © CUSTOMIZE WITH HOOKS, SHORTCODES, AND WIDGETS

That's a brief overview of the most-often-used action hooks when the WordPress core is loaded and before the
theme is displayed. Each action has its own best uses to ensure that any custom functionality you want to add to
WordPress happens at the correct time.

Actions in Your Theme Files

There are points in your theme files that you can use when writing functionality to add content/code to your themes
in the shape of certain functions, but they need to be added to your theme files in order to ensure that they're
available. You might recognize them because I've mentioned them already. And if you built a WordPress theme
before, you will have almost certainly used them:

e wp_head: An action point that should always go in the <head> tag of your themes. This is
primarily used for adding styles, scripts, and meta data but can be used by plugins to add
anything else needed to go in the <head>.

e wp_footer: An action point at the end of the HTML <body>. Used for things such as scripts and
any code that should be inserted last of all in your site. A popular use is by plugins to add Analytics
tracking code or by WordPress to add the markup for the admin bar when a user is logged in.

e wp_meta: It might be new to you; it’s usually seen in the sidebar of a theme under a “meta”
section, which can be used by plugins to add advertisements or extra functionality for a sidebar.
It's not very common, but when developing a theme for sale or that you will not be in control of
administering, it should be added so any plugins the user might add can work correctly.

e comment_form: If the theme you're building has comments, you will definitely be using this
function anyway. It also holds an action that plugins or theme developers can hook into.

These are the four actions that happen within your theme, but there are also plenty of filters going on at the same
time that allow you to modify the content that will be output from your templates.

Filters Are Everywhere

Filters are used in almost every input or output action performed by WordPress. They sit between the admin and the
database, and between the database and the templates, and can be used at any time to modify the data that’s being
passed between the various states.

Although WordPress has some of its own filters, which it uses to modify things coming out and going into
the database, most of the available filters are largely unused unless a plugin or theme wants to use them. The best
example is the content filter. WordPress uses it to run several functions to format the content for display on the site;
you can also use this filter to add to the content before it gets output in your themes, say to add a generic sentence to
the end of each post telling the reader about the author or where to find more information on the site.

Some filters happen before content or meta data is input into the database, and some instead work before
outputting data to the theme. This is an important distinction to make, and you need to make sure you choose which
to use carefully, based on the effect you want your filter to have on the content. For instance, if you use a filter to
modify data before it goes into the database, the data you edit will get stored from then on and will be displayed in the
edit screen (if you were modifying any post content, for instance).

Suppose you have a filter to detect swearing in an author’s post. The filter you use to detect and modify the
profanities depends on the effect you want to have on the content. If you filter the content before the content is added
to the database, the author could see in the edit screen where the words have been modified. Whereas if you were
to use this filter before the content was displayed on the front end, the content editor would stay the same, but the
censoring would appear on the front end of the web site. How you want the user to perceive this profanity filter will
determine the time at which you want to filter the content.

Now that you know what hooks are and when they happen, you can look at how they work and how you can add
them to the theme.

156



CHAPTER 6 CUSTOMIZE WITH HOOKS, SHORTCODES, AND WIDGETS

Using Hooks

Although you previously used hooks throughout the book, here you'll take a closer look at what is actually going on
and how to use them in detail. Hooks come in two forms, and you know that actions and filters are actually handled in
the same way by almost the same function.

add_filter (and add_action)

Here you'll look at the add_filter function and remember that the same thing applies to the add_action function.
To start off, look at the full function for add_filter, which takes four arguments:

add filter( $tag, $function to add, $priority, $accepted args );

e  $tag: The tag name of the filter (or action) you want to hook your function to.

e $function_to_add: The name of the PHP function you're going to use to modify the data
(or run on the action).

e $priority: Specifies an order in which the function should be called on that action. The lower
the numbery, the sooner it gets called. The priority defaults to 10, and any functions that share a
priority just get run in the order they are added.

e  $accepted_args: The number of arguments the function can take when being called with
apply filtersordo_action. This was added in version 1.5.1.

The common example for a function using a filter is the profanity filter already discussed. It’s a fairly simple one,
but bad as an example for the book because I can’t write any actual swear words here. So let's move on with a better
example. Let’s filter the body_class and add your own classes to be output under certain circumstances:

function prowordpress_add_category classes( $classes ) {
global $post;

// Adds classes for the current post categories
if( is_single() ) {
$categories = get_the_category( $post->ID );
foreach ( $categories as $cat ) {
$classes[] = $cat->slug;
}

}

return $classes;

}

add filter( 'body class', 'prowordpress add category classes' );

In this example, you first check whether the current page being constructed is a single page. Then you get the
categories for the current post and add the slug for each category to the $classes array. When you finish looping
through them, you return the $classes array at the end of the function.

With this function set up, you can just as easily add the category classes to the post_class output by simply
calling the add_filter function with the function you already created. Just switch out the body_class tag for the
post_class:

add filter( 'post class', 'add category classes' );

157



CHAPTER 6 © CUSTOMIZE WITH HOOKS, SHORTCODES, AND WIDGETS

Note Each filter handles content in a slightly different way. In the example, the $classes variable is an array of the
classes being added. If, however, you use the the_content filter, the $content variable would be a string of text from the
database because the filter you're adding is intercepting the flow of the WordPress core as it is, so the way the content is
handled is exactly how WordPress is currently using that content.

The same concept applies to the add_action function: it’s just a function wrapper to call the add_filter
function. But you should always use the function, which applies specifically to the hook you want to use. This is just
plain common sense; if you set up all your actions and filters using the add_filter function, it may still work and you
may save yourself a function call. But you make your code unreadable because where people are expecting to find an
action being created, they end up seeing add_filter, which just leads to confusion. So please ensure that you're using
the correct function for the correct purpose.

You've seen many examples of the add_action function in use throughout the book so far, so I won’t repeat
myself by adding another one here. Action functions are called at a point during the WordPress core load or when
something happens in the WordPress admin that allows you to execute your own code. For good examples, you
can look back at the previous chapter, in which you used a couple of actions in the process of setting up the custom
metaboxes for the posts.

Using Class Functions to Avoid Naming Collisions

Here you'll learn how to use PHP classes to help avoid naming collisions and also keep your hook functions
self-contained nicely from the rest of your code. This mostly applies to plugins, which you will look at in more depth
in the next chapter and later on in Chapter 13, but for now you'll take a brief look at how to use a class with the
add_filter/add_action functions.

This comes in handy because when naming functions, it’s entirely possible that another plugin could name a
function the same as one of your functions and it could result in a conflict. PHP doesn’t allow two functions of the
same name, so this essentially breaks everything. It is not a gigantic problem when creating a theme because you’ll
likely be using a namespace on your function, which should reduce the possibility of a conflict. You could also do
that in a plugin as well to help reduce the chances of a naming conflict. However, when writing a plugin it’s likely that
you're going to have a lot of functions and not want to be writing really long function names; it can be quite a pain to
do so. This is where PHP classes come in.

A class can be namespaced easily, then within the class you can use more straightforward function names and
have them protected from the global namespace based on their location within the class. In the following example
of the class layout, you have a prefixed class name to make sure you have a unique class and then you have simply
named functions within:

class prowordpress notifications {
function email($post_ID) {

$addresses = "someone@somewhere.com";
$subject = "New post on Pro Wordpress: ".get the title( $post ID );

$content = "Hi x, \n\n Here's the latest from the Pro WordPress blog. \n\n";
$content .= get the title( $post ID ). "\n\n";
$content .= 'Read it here: '.get permalink( $post ID);

wp_mail($addresses, $subject, $content);

158


http://someone@somewhere.com/

CHAPTER 6 CUSTOMIZE WITH HOOKS, SHORTCODES, AND WIDGETS

return $post_ID;

}
add_action('publish post', array('prowordpress notifications', 'email') );

This really simple class is used for notifications from the blog when something happens. In this case, it's when
a post is published. I won’t run through everything because the function is relatively straightforward, you're just
building up an email and using the wp_mail function to send it. What you're looking at here is the add_action
function on the last line. As normal it takes a tag for the action you're going to hook onto but the second argument is
now in the form of an array:

array('prowordpress notifications', 'email')

This is the way of passing a class function through to the action hook. You pass in the name of the class as the first
entry in the array; the second entry in the array is the function name. This results in a static call of the function in the
class from the action. If you were to do that with standard PHP, it would look like this:

prowordpress notifications::email();

If, however, you had an instance of the class in your code already and you wanted to use that instance of the class
(because other parameters/functions have already run on that class instance), you would simply pass the instance of
the class as the first entry in the array parameter like so:

$wpd_notifications = new prowordpress notifications();
add_action('publish post', array($wpd notifications, 'email') );

This is a really simple example at the moment; I'll develop this further when you look at building your own
plugins in more depth in Chapter 13.

Creating Custom Action Hooks

Not content with the plethora of available action hooks already in WordPress, there is also a way of creating your own
custom hooks to add functionality to. You might wonder why on earth you would need to create custom actions in
addition to the multitude of actions you already have at your disposal. Most of the actions are related to theme setup,
not from within the theme itself. By creating custom hooks, you can set up precise points from within the theme to
attach functions specific to the theme.

To do this, it’s fairly simple; you need to look to the do_action function. This is the function that tells WordPress
an action is running and to run any associated functions to that action at that point in the execution. For instance, let’s
have a look at how the wp_head function is built in the WordPress core:

function wp_head() {
do_action('wp_head");
}

Yep, it’s that simple. The only thing that happens when you add wp_head to your header. php is that the do_action
gets called with the argument 'wp_head'. The magic of the wp_head action doesn’t happen until you connect
functions to the action; take a look at what goes on in the WordPress core for example. Here’s just a short example of
what hooks are added to the wp_head action in the default-filters.php file:

add_action( 'wp_head', 'wp_enqueue scripts’, 1 );
add_action( 'wp_head', 'feed links', 2 );

159



CHAPTER 6 = CUSTOMIZE WITH HOOKS, SHORTCODES, AND WIDGETS

add_action( 'wp_head', 'feed links extra', 3 );
add_action( 'wp_head', 'rsd link' );
add_action( 'wp_head', 'wlwmanifest link' );
add_action( 'wp_head', ‘'adjacent posts rel link wp head', 10, 0 );
add_action( 'wp_head', 'locale stylesheet' );

There’s a lot that goes on when the wp_head action gets executed. So for you to define your own custom action
hook, all you need to do is create a function that does exactly the same thing as the wp_head() function:

function ptd_custom hook() {
do_action('ptd_custom_hook');
}

There it is; you now have your very own custom hook function to add to the theme at any point you like using the
usual add_action function with the ptd_custom_hook as the tag name.

Action Hooks with Parameters

Now that you have a simple way of creating an action hook, have a look at how you can add extra parameters to that
action to give you some better context of where you are in the theme or what you should be interacting with once
you're performing your action.

If you look at the docs for the do_action function, it’s possible to not only create an action with the necessary
action tag but also with one or more arguments:

do_action( 'ptd_custom_hook', $argi, $arg2, $etc );

This means that you can give the function you're running at the action a series of arguments to help with the
functionality you're adding. The best example for this is to add the post ID as an argument so the function knows for
what post the action is being called. You've seen this already when using the save_post action to update the metabox
data in the last chapter, but here’s how to put this functionality together.

As an example, you're going to add an action to the end of the loop on one of the single pages for the movie
reviews, with the intent that it will be used to add an advertisement for the latest movie coming out related to the
current movie being viewed. In this case, before the end of the loop you can add this do_action function:

<?php do_action( 'ptd_movie_end main_content', get the ID() ); ?>
<?php endwhile; endif; ?>

To set up the function to receive the post ID for the action, all you would then have to do is set up the function
and add_action call like this:

function ptd show related movie trailer( $post id ) {

// Do stuff
}

add_action( 'ptd movie end main content', 'ptd show related movie trailer' );

160



CHAPTER 6 CUSTOMIZE WITH HOOKS, SHORTCODES, AND WIDGETS

You can use the defaults for the add_action function of priority and accepted arguments because you're passing
in one argument: the post ID. However, if you were to add a second and third argument, for instance by getting the IDs
of the genres the post is in and also passing the taxonomy name of the genres taxonomy to the action:

$genres = get the terms(get the id(), 'ptd _genre');
foreach( $genres as $gen ):

$gen_ids[] = $gen->term id;
endforeach;

do_action( 'ptd movie end main content', get the ID(), $gen ids, 'ptd genre' );
You would then need to set the function and add_action calls up like this:

function ptd _show related movie trailer( $post_id, $term ids, $taxonomy slug ) {
// Do stuff
}

add_action( 'ptd movie _end main_content', 'ptd_show related movie trailer', 10, 3 );

Notice that the function takes three arguments ($post_id, $term_ids, and $taxonomy slug—named generically so
you could envision doing this for something other than just the related movie reviews) and that the add_action function
now has the parameter '3" at the end to signify that there will be three arguments passed to the resulting function.

Creating Custom Filter Hooks

Now that you've seen how to create custom action hooks, you can take a quick look at creating a custom filter hook,
which works very similarly to the custom action hook but with a couple of minor differences.

The first difference is the function used to create them. Where you used do_action to add an action point, you
can now use apply filters to add a custom filter. You used the apply_filters function before; what you were doing
was adding another point in the code to set up the hook, and because you used the built in "the_content" filter, it just
called all the functions attached to the hook already.

The second difference in creating a custom filter hook is the need for a second parameter, the $value parameter.
This is the bit of data that will get modified by any filter functions you attach to the hook. Here’s a simple example of a
custom filter you'll add to the movie post type:

$title = apply filters( 'ptd_movie title', get the title() );

Here you're creating a filter point for the title of the post, which sets a custom hook tag of "ptd_movie_ title"
and passes through the title as the value you'll be modifying. The apply_filters function always returns some
data—because filters are used to modify things—so you take the return value of the filter and put it in the $title variable.

The function and add_filter call would look something like this:

function ptd edit movie title( $title ) {
// Do stuff

return $title;

}

add filter( 'ptd movie title', 'ptd edit movie title' );

161



CHAPTER 6 © CUSTOMIZE WITH HOOKS, SHORTCODES, AND WIDGETS

Again the function is pretty straightforward except that by default you have the $title argument as part of the
function. You have to make sure to return that value at the end of the function once you've made the modifications.
Similar to a custom action hook, a custom filter can also take more than one argument. but this means that
you need to add the accepted_args argument to the add_filter call and pass in the necessary values to the
apply filters function as you did before with the do_action function.

Debugging Hooks

Finally, you need to know a little about debugging WordPress hooks and how they work internally so you can get the
best out of them and resolve problems when things go awry.

All hooks, whether actions or filters, are stored in the same way: inside the $wp_filter array. This is a complex
array containing every single filter and action added throughout the process of both the WordPress core execution
and any other actions/filters added in theme and plugin files. To give you a better idea of how the hooks work, you can
look at an example of how things are stored in the $wp_filter array. This is not a direct dump of the content of the
array because that might be a couple of hundred lines long; it is a representative structure of the data:

Array (
'[tag]" => Array (
"[priority]’ => Array (
"[idx]" => '[function_name]’,
"[idx]" => '[function_name]',
"[idx]" => '[function_name]'
)s
"[priority]" => Array (
"[idx]" => '[function_name]’,
"[idx]" => '[function_name]’,
"[idx]" => '[function_name]'
)
)
"[tag]' => Array (
"[priority]' => Array (
'[idx]" => '[function_name]',
"[idx]" => '[function_name]'
)
)
)

The only part of that array structure that should be unfamiliar to you is the '[idx]" part; the rest is part of the
add_filter function you've already seen. The 'idx' is a unique identifier created by WordPress when adding the
function to the $wp_filter array to create a unique instance of the function for the tag. It ensures that the function is
called only once for each tag it’s added to.

Now that you know the structure of the $wp_filter array, it should be easier to dump the parts of the $wp_filter
array you need to check. For example, if you need a closer look at the functions attached to the wp_head action, you
can do this:

<pre>
<?php
global $wp_filter;
var_dump($wp filter['wp head']);
>
</pre>

162



CHAPTER 6 CUSTOMIZE WITH HOOKS, SHORTCODES, AND WIDGETS

Of course, this still gives you a massive list of data for each function attached to the wp_head action, so let’s look at
a more useful way of checking the hooks being used.

Debugging via the ‘all’ Hook

The 'all’ hook fires every time apply filters ordo_actionis called, and it gives you a nice way to track and
trace the hooks being called in real time in your theme. To do this, there is a great set of functions written by Andrey
Savchenko (aka Rarst) that looks at the $wp_filter variable and then, with the use of the 'all' hook, lists out hooks
when they're being called in real time.

I haven’t got room to list all his code here (it’s included in the example code along with the book), but here is the
example of the 1ist_live_hooks function that shows which hooks are being fired when in your theme:

function list live hooks( $hook = false ) {
if ( false === $hook )
$hook = 'all';

add_action( $hook, 'list hook details', -1 );

The function also takes a $hook parameter that allows the function to list the details of the functions called for
whenever the passed hook is run.

Shortcodes

Introduced in WordPress version 2.5, shortcodes have provided a brilliant way for authors in WordPress to add
dynamic content to their posts without having to know any code or go anywhere near theme files. Using shortcodes
allows you to empower the content authors using your theme with the ability to easily add things like related posts or
custom functionality to their content without the need to worry about how to do so.

Shortcodes in WordPress are added by including a tag inside square brackets in the content editor. For instance,
the gallery shortcode in WordPress looks like this: [gallery]. When the post content is parsed, the shortcodes are then
extracted and the functions related to them are run in their place, adding the dynamic content in the place where
the shortcode appeared. At the heart of it, shortcodes are another type of filter in which the content is taken and then
modified and added back to the original content.

Shortcodes can also be passed attributes in a similar way that you would with a HTML element, like so:

[gallery id="custom-gallery"]. Or they can wrap around content to include the enclosed content in the shortcode
function [related]Related posts[/related] (the last example is a custom shortcode created because the default
WordPress gallery shortcode doesn’t work as a wrap-around shortcode).

There is a series of shortcodes already built in to WordPress for authors to make use of, including the gallery
shortcode, the embed shortcode, and the caption orwp_caption shortcodes. There’s also a bunch of shortcodes
that are in use on the WordPress. com installs of WordPress blogs (see http://wp-themes-book.com/06004), but the
downloadable version of the content management system (CMS) comes only with the four main ones mentioned. This
isn’t necessarily a bad thing because you can easily create your own shortcodes to be added to your themes really easily.

Creating Custom Shortcodes

Now you know what shortcodes are and the concept behind how they work you can create your own examples and
build some simple functions for authors to add to their posts.

163


http://wordpress.com/
http://wp-themes-book.com/06004

CHAPTER 6 © CUSTOMIZE WITH HOOKS, SHORTCODES, AND WIDGETS

Naming Conventions

As with anything in WordPress, you need to consider some naming conventions for your shortcodes. As always, the
WordPress convention is to use only lowercase letters; for shortcodes specifically, try to stick to using a simple word
or two. Because of their nature, I don’t recommend using a prefixed or complex name for the shortcode tag because
it would add more complexity for the authors who use your shortcodes. Instead, try to be aware of which other
shortcodes might possibly be used by other plugins and name yours sensibly to not conflict.

The use of hyphens in shortcodes could be problematic, possibly due to a bug that exists in the functions that
process shortcodes. And as yet there is no known fix. The best way to get around this bug is to avoid the use of hyphens
in your shortcode names by either removing hyphens altogether or using underscores in their place to avoid issues.

WordPress allows only one hook for each shortcode, so if there are instances in which a shortcode is created with
the same tag, the last one to be created will be the one that gets parsed. You could avoid this by using prefixes in your
shortcodes, however, this is counterintuitive to the nature of creating shortcodes, as I've already mentioned. Another
way to combat this is to make sure your theme shortcodes are set up after any plugins so that in a worst-case scenario
in which a plugin does have a similarly named shortcode, your function will overwrite the one added by the plugin.
You'll look at a method to do this in the next section.

Simple Shortcodes

Similar to the way you create actions and filters in WordPress, shortcodes require a function to create and output the
information and a way of registering them with WordPress so it knows what shortcodes to look for.

First you'll create the function—note that the functions you create for the shortcodes don’t output the content;
they act much in the same way filters do in that they return the content from the function to be output when the
shortcode is processed:

function prowordpress related posts shortcode() {
global $post;

$tags = wp_get post_tags( $post->ID, array( 'fields' => 'ids' ) );
$output = false;
if ($tags) {
$args = array(
"tag_ in' => $tags,
'post__not_in' => array($post->ID),
'posts_per page' => 5,

)s
$related = new WP_Query($args);

if( $related->have posts() ) {
$output = '<h2>Recent posts</h2>';
$output .= '<ul class="related-posts">';

while ($related->have posts()) {
$related->the_post();
$output .= '<li><a href=

.get_permalink().'">".
get_the_title().'</a></1i>";
}

164



CHAPTER 6 CUSTOMIZE WITH HOOKS, SHORTCODES, AND WIDGETS

$output .= "</ul>";
}

return $output;

}

// if no related posts then show an error message
return "<p>There are currently no related posts for this article</p>";

This function looks pretty big, but it’s just an example of a way to get the tags for the current post and then use
them in a query for posts that are tagged the same. Here you're using a variable ($output) to capture the intended
output so you can return it at the end of the function.

You can now register this function with a shortcode tag so you can use it with your themes. To do this, add the
add_shortcode function, which is as simple as they come. It takes only two arguments: the shortcode tag and the
function that should be called. In this case, the function looks like this:

add_shortcode('related posts', 'prowordpress related posts shortcode');

As mentioned, it’s best to ensure that your add_shortcode functions are called after plugins have been set up
so that in case your shortcodes are named similarly to another plugin’s shortcodes, you can try to avoid conflicts.
Obviously, if the plugin uses the same technique, it will come down to the order in which they are created. If yours
loses, you'll have to rename your shortcode or change the plugin that’s generating the conflict. The easy way to add
the add_shortcode functions after the plugins have been set up is by using an action hook on the init action:

function prowordpress setup shortcodes () {
add_shortcode('related posts', 'prowordpress related posts shortcode');
}

add_action( 'init', 'prowordpress setup shortcodes' );

You've seen this type of action many times already; here you're adding the add_shortcode functions inside
another function that gets called only after the init action is run.

Now you have the shortcode setup and ready to go, give it a whirl. You just need to add the shortcode
[related posts] to the content section of a post and see the results shown in Figure 6-1.

Post Format Test: Quote

Only one thing is impossible for God: To find any sense in any copyright law on the planet.
Mark Twain

Related posts

Post Format Test: Gallery
Post Format Test: Aside
Post Format Test: Chat
Post Format Test: Link

Post Format Test: Image (Attached)

Figure 6-1. The related posts shortcode in action

165



CHAPTER 6 © CUSTOMIZE WITH HOOKS, SHORTCODES, AND WIDGETS

Shortcodes with Parameters

Next you'll look at creating shortcodes, which take parameters, building on the previous example of a related posts
shortcode. There are a couple of parameters you could add here to make the shortcode more dynamic and allow the user
to have the content output that they want. Let’s add a 1imit and a category parameter, so the shortcode looks like this:

[related posts 1limit="3" category="review"]
To receive the attributes from the shortcode to the function, add an $atts parameter to the function, like so:
function prowordpress related posts shortcode($atts) {

There’s no need to add a default because WordPress handles it. The $atts variable is passed all parameters that
are added to the shortcode, which means that even unknown attributes that an author adds will be passed, whether
you can use them or not. The format the $atts variable takes is of an associative array with the keys as the names of
the attributes. You could essentially use this array in the function and be done with it, calling $atts[ '1limit'] to get
the value of the 1imit parameter passed through to the shortcode. However, there is a much better way of doing this:
using a WordPress function, shortcode_atts. This function takes two parameters, the first is an associative array of
the default arguments for the shortcode, and the second is the $atts array. It would look something like this:

$attributes = shortcode atts( array(

"limit’ => 5,
'category' => ""
), $atts );

This function then returns an array of the parameters to the $attributes variable with only the two parameters
from the default array, but with the values from the $atts array if they have also been passed. In this case from the
earlier example, it would result in the $attributes array looking like this:

Array (
'limit’ => 3,
'category' => 'review'

It's pretty straightforward; the attributes have been set from the $atts array when you passed in the parameters
from the shortcode. However, the power of this function comes in when there are no parameters set or the author has
set up some parameters that you don’t need for this shortcode. Suppose that someone used this shortcode in the post:

[related posts limit="3" tag="action"]

You don’t want a tag parameter for the function here, so by passing the incoming $atts array through the
shortcode_atts function with the defaults as before, you end up with this array in $attributes:

Array (

"limit’ => 3,
'category' => "'

166



CHAPTER 6 CUSTOMIZE WITH HOOKS, SHORTCODES, AND WIDGETS

The tag parameter has been completely ignored, and you now have an array with two entries only and the
category parameter set to its default. Pretty powerful stuff! The last thing to note about the shortcode_atts function
is that when parsing the attributes, it converts all keys to lowercase but leaves the values alone, so a shortcode that
looks like this:

[related_posts LIMIT="3" CATEGORY="review"
You end up with an $attributes array that looks like the standard one you would expect.

Array (
"limit’ => 3,
'category' => 'review'

There is one more trick you can also use when setting up attributes for shortcodes: the extract() PHP function.
The extract() function parses an array and sets up local variables for the attribute keys. Therefore, by using the
following snippet of code to parse the attributes, you end up with the variables $1imit and $category to use in the
function, which is really very handy:

extract(shortcode atts( array(
"limit’ => 5,
'category' = ""

), $atts ));
So let’s put these attributes into action into the shortcode function:

function prowordpress_related posts shortcode($atts) {
global $post;

extract(shortcode atts( array(
"limit' => 5,
'category' => ""

), $atts ));

$tags = wp_get_post_tags( $post->ID, array( 'fields' => 'ids' ) );
$output = false;
if ($tags) {
$args = array(
'tag_ in' => $tags,
'post__not_in' => array($post->ID),
// Using the extracted $limit attribute
'posts_per page' => $limit,
// Using the extracted $category attribute
'category_name' => $category,

)
$related = new WP_Query($args);
if( $related->have posts() ) {

$output = '<h2>Recent posts</h2>';
$output .= '<ul class="related-posts">';

167



CHAPTER 6 © CUSTOMIZE WITH HOOKS, SHORTCODES, AND WIDGETS

while ($related->have posts()) {
$related->the post();
$output .= '<li><a href=
. get_the_title().'</a></1i>";

.get_permalink().'">'

$output .= "</ul>";

}

return $output;

}

// if no related posts just get recent posts
return "<p>There are currently no related posts for this article</p>";

Now you have a more customizable shortcode that gives the user more control over the dynamic content that'’s
being output using the shortcode.

Enclosing Shortcodes

So far, you looked at self-enclosing shortcode tags, but WordPress also has the power to use enclosing WordPress
tags—those that wrap around content that will be output in some form along with the dynamic content generated by
the shortcode. An example of such a shortcode would look like this:

[related posts 1limit="3"]Some related posts[/related posts]

This could come in useful for adding things such as headings to the dynamic content you produce, or adding
intros or descriptions to go with the content you create. You could even pass full HTML into an enclosing shortcode and
have that output as well; for instance, if you wanted a heading and intro paragraph, the shortcode could look like this:
[related posts limit="3"]
<h2>Some related posts</h2>
<p>Take a look at some more posts that might be of interest</p>
[/related_posts]

To get this content into the shortcode you just need to add one more parameter to the function, the $content
parameter, like so:

function prowordpress related posts shortcode($atts, $content = null) {

Here you will use a default value in the parameter declaration as when no content is passed, the default allows
you to check whether the shortcode is an enclosing or self-enclosing shortcode by using this quick test:

is_null($content)

168



CHAPTER 6 CUSTOMIZE WITH HOOKS, SHORTCODES, AND WIDGETS

If the default were false, you would know whether the content was empty, but not how the shortcode was used.
Now look at the function again with the addition of the $content parameter to the code. There are only the two
changes: one to include the $content parameter in the function setup and the other to add the content first to the
output based on whether it exists:

function prowordpress related posts shortcode($atts, $content = null) {
global $post;

$tags = wp_get post tags( $post->ID, array( 'fields' => 'ids' ) );
$output = false;
if ($tags) {
$args = array(
'tag__ in' => $tags,
'post__not_in' => array($post->ID),
'posts_per page' => 5,

)s
$related = new WP_Query($args);
if( $related->have posts() ) {

if( ! is_null( $content ) ) {
$output = $content;

} else {

$output = '<h2>Related posts</h2>';
}
$output .= '<ul class="related-posts">';

while ($related->have posts()) {
$related->the_post();
$output .= '<li><a href=

.get_permalink().'">".
get the title().'</a></1i>";
$output .= "</ul>";

}

return $output;

}

// if no related posts just get recent posts
return "<p>There are currently no related posts for this article</p>";

Now you can see the shortcode in action in Figure 6-2, when you use it as an enclosing shortcode and pass
through some intro text for the related posts.

169



CHAPTER 6 = CUSTOMIZE WITH HOOKS, SHORTCODES, AND WIDGETS

Post Format Test: Quote

Only one thing is impossible for God: To find any sense in any copyright law on the planet.
Mark Twain

Some related posts

Take a look at some more posts that might be of interest:

Post Format Test: Gallery

Post Format Test: Aside

Post Format Test: Chat

Post Format Test: Link

Post Format Test: Image (Attached)

Figure 6-2. Related posts shortcode output with added content

Things to Watch Out for

When you create shortcodes, there are a few things you should be aware of that you may need to pass on to your
authors, or exceptions you need to code for to make sure things work as expected.

Because the content is parsed only once by WordPress, you can’t use a shortcode within another shortcode.
If you wanted to do something like this, WordPress would ignore the [related posts] shortcode within your
[feature] shortcode and just output it as content:

[feature]Some related posts [related posts][/feature]

There is a way to get around this problem: use the do_shortcode function on the content, inside of the function
for your feature shortcode:

function prowordpress_feature_shortcode( $atts, $content = null ) {
if( ! is_null($content) ) {
return '<div class="feature">' . do_shortcode($content) . '</div>';
} else {
// return default filter
}

The function first checks whether there is any content been passed through and then runs the do_shortcode
function on the content you're returning. When doing this, you want to run the do_shortcode function in the place
where the content for that shortcode should appear because, as with all shortcodes, the content will be returned
in place.

170



CHAPTER 6 CUSTOMIZE WITH HOOKS, SHORTCODES, AND WIDGETS

You should also be aware that the WordPress parser can’t make the distinction between enclosing and
non-enclosing shortcodes at the same time. So using shortcodes in this manner:

[embed media="http://www.youtube.com/embed/LtE6kxgV3XE?rel=0"]
Now embed this too:

[embed media="http://www.youtube.com/embed/ng30C7t03v0?rel=0"]
Here's a caption

[/embed]

The parser just simply treats this as one shortcode and adds the start of the second shortcode as content of the
first. Annoying, but you can see why this can happen.

Using Shortcodes in Other Parts of Your Theme

Shortcodes by default are only looked for in the main content section of your posts, which can be quite frustrating if
you want to use them in other areas of your site. However, it is a simple and easy fix to enable shortcodes throughout
other areas of your site. You saw the function you'll use to do this when you added a fix for adding shortcodes to
enclosing shortcodes: the do_shortcode function.

Because the do_shortcode function is essentially just another WordPress filter, you can add it like any other filter
to hooks for other parts of the WordPress content. For widgets, you can use the widget_text hook; for excerpts, you
can use the the_excerpt hook:

add filter('widget text', 'do_shortcode');
add_filter('the_excerpt', 'do_shortcode');

Those two lines of code are enough to ensure that you can use the shortcodes throughout these areas of content
as well as just the standard main content area.

Multiple Shortcodes with the Same Function

When creating shortcodes, you use the add_shortcode function to set the tag for the shortcode to be used and

a function to handle that tag when the shortcode is parsed. However, nothing can stop you from using the same
function for multiple shortcode tags, and actually there is a great use case for doing so. The best example is when
setting up shortcodes to handle video embeds. There are a couple of ways you could do this. You could set up one
function with an attribute to set the site you're embedding content from, like so:

[video site="youtube" id="F1YZnd7dEPw"]

In the function to handle this, you could then simply query the site attribute and return the embed code for a
YouTube video:

function prowordpress embed shortcode($atts) {
extract(shortcode atts( array(
'site' => 'youtube',
'id' = "

), $atts ));

171


http://www.youtube.com/embed/LtE6kxgV3XE?rel=0
http://www.youtube.com/embed/ng30C7t03v0?rel=0

CHAPTER 6 © CUSTOMIZE WITH HOOKS, SHORTCODES, AND WIDGETS

switch( $site ) {

case 'youtube':

return '<iframe width="853" height="480"
src="http://www.youtube.com/embed/"'.$id."'" frameborder="0" allowfullscreen></iframe>'

break;

case 'vimeo':
return "...";
break;

Another method is to create a different shortcode for each site and have a series of functions to deal with each
one in turn:

function prowordpress_youtube embed shortcode($atts) {
extract(shortcode atts( array(
IdT o>

), $atts ));

return '<iframe width="853" height="480" src="http://www.youtube.com/embed/".$id.""
frameborder="0" allowfullscreen></iframe>';
}
function prowordpress vimeo_embed shortcode($atts) {
extract(shortcode atts( array(
Iidl => L]

), $atts ));

return '<iframe src="http://player.vimeo.com/video/'.."'" width="850" height="478"
frameborder="0" webkitAllowFullScreen mozallowfullscreen allowFullScreen></iframe>';

}

add_shortcode('youtube', 'prowordpress youtube embed shortcode');
add_shortcode('vimeo', 'prowordpress vimeo embed shortcode');

Both these methods are fine, but the first requires a more complex shortcode, and the second requires a load of
code to do almost the same thing. So if you combine the two methods, creating multiple shortcodes and using one
function to handle them all, you'll have a perfect combination.

If you do this though, how do you know which site to embed the video from? Fortunately for you, WordPress
makes the tag name from which the function was called available to you in the form of a $tag parameter. The function
and shortcodes can now look like this:

function prowordpress embed shortcode($atts, $content = NULL, $tag) {

extract(shortcode atts( array(
It o>
)) $atts )),

switch( $tag ) {
case 'youtube':
return '<iframe width="853" height="480"
src="http://www.youtube.com/embed/"'.$id."" frameborder="0" allowfullscreen></iframe>";
break;

172


http://www.youtube.com/embed/'.$id
http://www.youtube.com/embed/'.$id
http://player.vimeo.com/video/
http://www.youtube.com/embed/'.$id

CHAPTER 6 CUSTOMIZE WITH HOOKS, SHORTCODES, AND WIDGETS

case 'vimeo':
return '<iframe src="http://player.vimeo.com/video/'.$id."" width="850"

height="478" frameborder="0" webkitAllowFullScreen mozallowfullscreen allowFullScreen></iframe>"';
break;

}
}

add_shortcode('youtube', 'prowordpress embed shortcode');
add_shortcode('vimeo', 'prowordpress embed shortcode');

The code reuse of a single handler function, combined with the ability to have a separate shortcode available for
each, makes the code a lot more compact, avoids a lot of repetition, and makes the shortcodes more user-friendly.

Making Shortcodes More User-Friendly

As great as shortcodes are, there is still one small issue that can come up from time to time. Consider this snippet

of code:

[related posts 1limit="3" category="review"]

It may look simple enough to you, but remember that we are usually developers (although if you're not, kudos
for getting this far along), so you're used to seeing code that looks like this. We developers generally can remember
attributes and how to add them like this. However, for authors, it’s more likely that they will never have seen code
like this before, and remembering attributes and how to add them can be quite a foreign experience for someone
generally just used to writing copy. Fortunately, there is a really easy way of adding a better method for the authors

to insert shortcodes: the TinyMCE interface (see Figure 6-3).

(5 Add Media
B I m - « EE =2 =
Paragaph v U = A~ @ @ @ Q = (2)

Figure 6-3. The TinyMCE editor interface is the range of buttons above the main editor window

The TinyMCE editor has a range of controls for users to add things like headers or bold styling to their content,

but there’s also an API available for developers to be able to add their own buttons.
The first step is to create functions to register the button with the TinyMCE buttons and then include a JavaScript

file that will handle the button processing:
function prowordpress register shortcode button( $buttons ) {

array push( $buttons, "relatedposts" );
return $buttons;

}

function prowordpress add_shortcode plugin( $plugin array ) {
$plugin_array[ 'relatedposts'] = get template directory uri() . '/javascript/shortcode.js';

return $plugin_array;

173


http://player.vimeo.com/video/'.$id

CHAPTER 6 © CUSTOMIZE WITH HOOKS, SHORTCODES, AND WIDGETS

The first function takes the $buttons parameter as an array of the TinyMCE buttons, and then adds the name of
the button (relatedposts) to the end of the array. The second function is the one that handles the JavaScript file; here
you have another array as the parameter that you then add another key with the name of the shortcode to, pointing to
the JavaScript file you'll be using to control the functionality for the button.

Next you need to add a function to call the two other functions above to register the new button, of course this is
done with actions but first you need to check whether the user is able to edit posts and whether you have the ability to
use the rich editor (the TinyMCE editor).

function prowordpress related posts button() {

if (! current user can('edit posts') && ! current user can('edit pages') ) {
return;
}

if ( get_user option('rich editing') == "true' ) {
add_filter( 'mce_external plugins', 'prowordpress add shortcode plugin' );
add_filter( 'mce_buttons', 'prowordpress register shortcode button' );

}
add_action('init', 'prowordpress related posts button');

This function is then added to the WordPress execution on the init hook, so you add the button before the page
and editor are loaded.

Now you have the button being added via the PHP in the functions file, but you don’t have any code to make it do
anything; this is where the JavaScript file comes in. There seem to be a couple of methods out there to do this, but I've opted
for a method similar to the one used by Konstantinos Kouratoras in his Smashing Magazine article. His code contains a
couple more functions, but I've just included the main piece of code that’s needed to give the button some functionality:

(function() {
tinymce.create('tinymce.plugins.relatedposts', {
init : function(ed, url) {
ed.addButton('relatedposts’, {
title : 'Related posts',
image : url+'/shortcode-icon.png',
onclick : function() {
var limit = prompt("Number of posts to display", "5");

if (limit != null && limit != '") {
ed.execCommand( 'mceInsertContent', false,
'[related posts limit="'+limit+'"]");
} else {
ed.execCommand('mceInsertContent’, false,
'[related posts]');

}s
};

tinymce.PluginManager.add('relatedposts', tinymce.plugins.relatedposts);

IOF

174



CHAPTER 6 CUSTOMIZE WITH HOOKS, SHORTCODES, AND WIDGETS

This JavaScript function creates a new button based on the name you created in the PHP function
'relatedposts’, and then you can add all necessary functionality within the init function.

The init function takes an object containing the title, image icon for the button, and what to do when the button
is clicked. In the onclick function, you're using a simple prompt to ask the user how many posts the shortcode should
show (with a default of 5). Once the prompt has returned you can check the result and construct the shortcode with
the mceInsertContent function. The result determines how the shortcode is constructed. The shortcode button now
appears nicely at the end of the top line of the TinyMCE editor (see Figure 6-4).

(5 Add Media

B I = = §= « E = = = V-
Paragraph ~ U = A~[@ W € Q =L
This post is schet
The page at review.dev says:
‘ Number of posts to display

5 |

Cancel

Figure 6-4. Shortcode plugin button and the prompt to ask users for a number of posts

This was just a very brief look at how to add a button for your shortcodes; there are many more in-depth
articles on the subject by Konstantinos Kouratoras as mentioned in his Smashing Magazine article:
http://wp-themes-book.com/06005 and by Gary Cao on his blog: http://wp-themes-book.com/06006.

Widgets (and Dynamic Sidebars)

Widgets were introduced in WordPress in version 2.8 as another way to allow content editors to easily add and control
dynamic content. Widgets can range from adding a search box, to listing categories, archives, and posts or pages.
Widgets use a simple drag-and-drop interface (see Figure 6-5) to allow users to position content within the theme
wherever a widget area has been allocated and can be customized from within the Widget control panel, adding titles
and choosing options about what or how that content will be displayed (see Figure 6-6).

175


http://wp-themes-book.com/06006

CHAPTER 6 = CUSTOMIZE WITH HOOKS, SHORTCODES, AND WIDGETS

Scraen Options Help

21| Widgets
Available Widgets Sidebar 1
Drag widgets from her fo.a sidebar on the right 1 activate hem. Drag widgets back here b deactivate them and delote their sefings.
Search
Archives Calendar Categories
Tite:
A monthly archive of your site's posts Acalendar of your si%a's posts Alistor dropdown of categories Search my site
Custom Menu Links Meta Delete | Ciose [ savo |
’ Usza this widget to add ane of your custom Your blogroll Log infout, admin, feed and WordPrass
menus asa widgel links
Archives
Monster Pages Recent Comments
Test multiple widgets at the same time. Your site's WordPress Pages The most recent comments Categories
Recent Posts RSS Search
The most recent posts on your site Entries from any RSS or Atom feed A search form for your site
Tag Cloud Toxt
Your most used 1ags in cloud format Arbitrary sext or HTML

Inactive Widgets

Drag widgets here lo remove them from Me sidebar but keep their selings.

Recent Posts: Latest Categories Archives

Figure 6-5. The Widgets control panel with the sidebar containing displayed widgets on the right

Categories
Title:
[_] Display as dropdown

™ show post counts
| Show hierarchy

Delete | Close m

Figure 6-6. Closeup of a Widget control panel, showing the customizable options available for users

Note Although I'm using the term widget area, the WordPress Codex and a lot of other documentation refer to them
as sidebars, which is where the term dynamic sidebars comes from.

176



CHAPTER 6 CUSTOMIZE WITH HOOKS, SHORTCODES, AND WIDGETS

Dynamic Sidebars

When I use the term dynamic sidebars here, I'm not actually speaking about a sidebar.php template, although that
is one of the more common locations for widgets to be added. A sidebar in this context is defined in your code using
the register sidebar function, which allows you to place a dynamic sidebar for the positioning of widgets in your

theme. A good example of this is the WordPress default theme Twenty Twelve, which has a series of different widget
areas defined for use throughout the theme (see Figure 6-7).

v Primary Widget Area
Secondary Widget Area
First Footer Widget Area
Second Footer Widget Area
Third Footer Widget Area

Fourth Footer Widget Area

Figure 6-7. The Twenty Twelve Widget control panel showing the number of available widget areas

Adding Dynamic Sidebars to Your Theme

When adding dynamic sidebars, there are two steps you need to take. The first is to register a sidebar and set up any
options for it using the register sidebar function; the second is to set up an area of your theme to use the dynamic
sidebar using the dynamic_sidebar function.

In the early days of WordPress, sidebars used to be set up as a series of list elements in an unordered list:

<ul id="sidebar">
<1i id="about">
<h2>About</h2>
<p>This is my blog.</p>

</1i>
<1i id="links">
<h2>Links</h2>
<ul>
<li><a href="http://example.com">Example</a></1i>
</ul>
</1i>

</ul>

The previous sidebar example is taken from the Codex page about widgetizing your theme
(http://wp-themes-book.com/06007).

177


http://example.com">Example</a></li
http://wp-themes-book.com/06007

CHAPTER 6 © CUSTOMIZE WITH HOOKS, SHORTCODES, AND WIDGETS

That markup is still perfectly fine today and you may find some people still using it. However, in the age of
HTML5 and tags such as <aside>, you may see something a little more like this in your sidebar:

<aside class="sidebar news">
<h2>Archives</h2>
<ul class="news-navigation">
<?php wp_get_archives(); ?>
</ul>

<h2>Popular categories</h2>
<ul class="news-navigation">
<?php
$args = array(
"title 1i' = ',
'number’ => 10,
"orderby' => 'count’,

);

wp_list categories( $args ); ?>
</ul>
</aside>

You can still see the WordPress functions for sidebars and widgets tend to have defaults that relate more closely to
the old method of marking up your pages. You need to overwrite a few of the defaults when registering the sidebars, so

let’s take a close look at the register_sidebar function now and see what'’s going on:

$args = array(

"name’ => _ ( 'Sidebar {#}', 'theme text domain' ),
'id" => 'sidebar-{#}',

'description’ = '',

"class’ = "'

)
'before _widget' => '<1i id="%1$s" class="widget %2$s">",
'after_widget' => '</1i>’,
'before_title' => '<h2 class="widgettitle">',
'after_title' => '</h2>’
)

register sidebar($args);

In the code are the defaults for the register sidebar function arguments. The first thing to note is that in
the 'name' and 'id' parameters, the "{#}" bit s in place of an auto incremented ID number. Your sidebar name
will default to "Sidebar 1" and the ID to sidebar-1, and any subsequent calls of 'register sidebar' will auto
increment the numeric element of the name and ID. In the defaults, you can also see what I've been talking about
when I mention the default setup of sidebars being in HTML lists. The before_widget and after_widget defaults
contain <1i> tags because that was normally the way widgets needed to be marked up in the sidebars. This process is
somewhat outdated now, so you must remember to overwrite these settings each time you set up a sidebar.

Note As with any good function that requires naming things in WordPress, there are a whole bunch of IDs
you need to avoid when setting up the sidebars. Luckily, there is a handy list of all reserved IDs here:
http://wp-themes-book.com/06008. The list is curated and kept up to date by John Landells,

178


http://wp-themes-book.com/06008

CHAPTER 6 CUSTOMIZE WITH HOOKS, SHORTCODES, AND WIDGETS

Here’s a look at a function call to set up a regular widgetized sidebar for your themes:

function prowordpress setup sidebars() {
$args = array(
"name’ => _ ( 'Sidebar right', 'prowordress' ),
'id' => 'sidebar-right',
'before_widget' => '<section class="widget">',
'after_widget' => '</section>’,
'before_title' => '<h2 class="widget-title">',
"after_title' => '</h2>’
);
register_ sidebar($args);
}

add_action( 'widgets init', 'prowordpress setup sidebars' );

Ienclosed the register sidebar function in a function that will get called on the widget_init hook, which is set
up specifically for use in setting up dynamic sidebars and widgets. Inside the function, I'm calling the sidebar “Sidebar
right” (showing the user that the sidebar will appear in the right side of the theme) and then changed the before and
after widget arguments to something that fits better with the more up-to-date markup.

Now that you've registered your sidebar, you can set up a place for it somewhere in your theme. You can do this
with the dynamic_sidebar function, which is fairly simple to look at but actually does a whole bunch of functionality
for you. The function takes one argument, which is the ID of the sidebar you want to use in that location, and then
the function does the rest, looping through and outputting all widgets that have been added to that sidebar with the
correct markup that you specified in your register sidebar function.

Before you take a look at how to set this up in your theme, there’s one quick thing to mention. Besides having
your dynamic_sidebar function to run through the widgets available, you should also add content as a fallback in case
there is nothing for the dynamic sidebar to display. You do this by enclosing the dynamic_sidebar function in an if
statement and keeping your fallback content inside:

<aside class="sidebar news">
<?php if( ! dynamic_sidebar( 'sidebar-right' ) ): ?>
<h2>Movie genres</h2>
<ul class="genre-navigation">
<?php
$args = array(

"taxonomy' => 'ptd_genre',
'orderby’ => 'name’,
'order’ => 'ASC',
'style’ => 'list’,
'show_count' => 0,
'hide_empty' => o,
"title 1i' =",
"depth’ => 1,
);
wp_list categories( $args ); ?>
</ul>
<?php endif; ?>

</aside>

179



CHAPTER 6 = CUSTOMIZE WITH HOOKS, SHORTCODES, AND WIDGETS

The if statement is using an ! operator to check whether the function returns false; if so, the Movie genres list will
be shown, which is your fallback content. Otherwise, if the function returns something, it has run and will display the
content of the widgets for that selected sidebar.

You now have a dynamic sidebar set up ready to display your widgets. I won'’t cover how to set up and customize
default widgets because they are all pretty straightforward. If you need more information, you can always take a look
at the Codex: http://wp-themes-book.com/06007. Instead, let’s look at how to create your own widgets to add to
your theme.

Creating Custom Widgets

Now that you know how to set up your dynamic sidebars to display widgets on your site, you can look at creating your
own widgets to display in these areas. When widgets were released in version 2.8, it came with a complete developer
API to enable developers to create their own widgets to go along with their themes and plugins.

Creating widgets involves using object-oriented PHP and setting up a class for your widget functions. This is
made easier with WordPress creating the WP_Widget class that you can easily extend off of to make your own widgets.
You'll look into how to set up the class for your custom widget in a moment; first you need to tell WordPress about
your new widget with the register widget function. Once again, this is loaded using the widgets_init hook you
used when registering your sidebars:

function prowordpress register widgets() {
register widget( 'Genre Widget' );
}

add_action( 'widgets init', 'prowordpress register widgets' );

The register_widget function takes only one parameter—the name of the widget class that controls all the
functionality for your widget. The name of the class is formatted similarly to that of all PHP classes with words
separated by an underscore and each word in Title Case. This function can be used to add more than one widget by
just calling the register widget function multiple times.

Note So far in this chapter, all your code has been getting added to the functions.php file as in previous chapters.
In the following section for your custom widget, you’ll add a new widgets.php PHP file inside an inc folder in your
theme directory. It can then be included at the same time as you set up your register widget function with
require( get template directory() . '/inc/widgets.php' ), placed above the register widget function.

Setting Up the Widget Class

For this example, let’s take the list of movie genres you already have in the sidebar of your theme and turn it into a
widget with some options for the user. WordPress makes it easy to create your own widgets by giving you a class to
extend from and build your functionality upon the existing code that all widgets in WordPress start with: the WP_Widget
class. So your class function starts off like this:

class Genre Widget extends WP_Widget {
// Widget code here
}

180


http://wp-themes-book.com/06007

CHAPTER 6 CUSTOMIZE WITH HOOKS, SHORTCODES, AND WIDGETS

Next you'll set up four functions in your class to take care of the different methods needed to control a widget:

e construct: Sets up your widget with WordPress. You may sometimes see this function
replaced by a function with the same name as the class; in this case, a Genre_Widget function.
Before PHP 5, this was the method of creating a constructor function for the class. However,
because we're now up to version 5.4 of PHP (supported by WordPress, but not the minimum
requirement yet), you need to use the __construct method, because functions named with
the same name as the class are treated as a regular method after PHP version 5.3.3.

e widget: Handles the front-end display of the widget.
e form: Handles the setup of the form to be used in the WordPress admin.
e update: Stores the form values when they are saved in the admin.

Next you'll go through these functions one by one. setting up each feature of the widget and seeing what goes into
each function to make everything work.

__construct

public function _ construct () {

// Widget settings.

$widget_ops = array( 'classname' => 'genre-list', 'description’ => 'A widget that displays
the genres for our movies' );

// Create the widget - calling the parent class construct method
parent:: construct(
'genre_widget', // Base ID
'Genre Widget', // Name
$widget_ops
);

The first function is the __construct function. This is where you set up your function with any options you need
and the ID and name that the widget will have when displayed in the widget admin area. The options are just an array
with the settings you want to add; the main two you're using here are setting up a custom class and a description. Any
other options are taken care of by the main WP_Widget class; you don’t need to worry too much about them because
they aren’t used to display anything extra.

You then call the constructor function of the parent class WP_Widget. Here you're passing the ID of the widget,

a name to display in the widgets admin, and the options array you just created. With that done, the widget is now set
up and should appear in the widget admin page, albeit with no options and no method of displaying on the front end.
So let’s move on to the widget function.

widget

public function widget( $args, $instance ) {
extract( $args );

// Get the user-selected settings
$title = apply filters('widget title', $instance['title'] );
$order = $instance['sort order'];

181



CHAPTER 6 © CUSTOMIZE WITH HOOKS, SHORTCODES, AND WIDGETS

$show_hidden = isset( $instance['show_hidden'] ) ? $instance['show_hidden'] : false;
$show_count = isset( $instance['show post count'] ) ? $instance['show post count'] : false;

// Before widget code (defined in the register sidebar function).
echo $before_widget;

// Title of widget - with fallback (before and after defined by register sidebar function)
echo $before title;
if ( $title ) {
echo $title;
} else {
echo "Genres";
}

echo $after title;

echo '<ul class="genre-list">"';

$args = array(

"taxonomy' => 'ptd_genre',
'orderby’ => $order,
'order’ => 'ASC',
"'style’ => 'list’,
"show_count'  => $show_count,
'hide_empty' => $show_hidden,
"title 1i' ="',

"depth’ => 1,

);
wp_list categories( $args );
echo '</ul>';

// After widget code (defined in the register sidebar function).
echo $after widget;

The bits you need to look out for are right at the start of the function. The function has two parameters:
$args and $instance. $args are the argument from the register sidebar function, and $instance is the settings for
this widget instance. (I'll show you how they are created and stored in a second.)

Next, you use the extract PHP function to get the arguments in the $args array into their own local variables.
This gives you the list of variables you can see being echoed throughout the plugin:

e $before widget
o S$before title

o S$after title

e S$after widget

Next is the $instance parameter, which holds an array of your widget settings. In the next four lines of code, you
simply check and store the values of the settings in local variables. The only one to note is that the title of your widget
goes through a filter called widget_title before being stored in the variable.

182



CHAPTER 6 CUSTOMIZE WITH HOOKS, SHORTCODES, AND WIDGETS

The rest of the widget function is fairly straightforward; you display the title or a default title if none has been
passed and then list the genres passing in the options you have for the arguments from your local variables.
Next you can move on to the admin part of the widget with the form function.

form

public function form( $instance ) {

/* Set up some default widget settings. */
$defaults = array( 'title' => 'Genres', 'sort_order' => 'name', 'show_hidden' => false,
"show_post_count' => false );
$instance = wp_parse args( (array) $instance, $defaults );
>
<p>
<label for="<?php echo $this->get field id( 'title' ); ?>">Title:</label>
<input id="<?php echo $this->get field id( 'title' ); ?>" name="<?php echo
$this->get field name( 'title' ); ?>" value="<?php echo $instance[ 'title']; ?>" style="width:95%" />
</p>

<p>
<label for="<?php echo $this->get field id( 'sort order' ); ?>">Sort order:</label>
<select id="<?php echo $this->get field id( 'sort order' ); ?>" name="<2?php echo
$this->get field name( 'sort_order' ); ?>" class="widefat">
<option <?php selected( $instance['sort_order'], 'name' ) ?>>name</option>
<option <?php selected( $instance['sort order'], 'slug' ) ?>>slug</option>
<option <?php selected( $instance['sort order'], 'count' ) ?>>count</option>
</select>
</p>

<p>
<input class="checkbox" type="checkbox" <?php checked( $instance['show_hidden'],
‘on' ); ?> id="<?php echo $this->get field id( 'show hidden' ); ?>" name="<?php echo
$this->get field name( 'show_hidden' ); ?>" />
<label for="<?php echo $this->get field id( 'show_hidden' ); ?>">Hide empty
genres?</label>
</p>
<p>
<input class="checkbox" type="checkbox" <?php checked( $instance['show_post count'],
'on' ); ?> id="<?php echo $this->get field id( 'show_post_count' ); ?>" name="<?php echo
$this->get field name( 'show_post count' ); ?>" />
<label for="<?php echo $this->get_field id( 'show_post_count' ); ?>">Display post

count?</label>
</p>

<?php

}

The widget form function has one parameter: the $instance array, again containing the current settings for the
plugin. You then set up a defaults array with a set of default values for the form, which then gets combined with the
current $instance array to create your set of current arguments using the wp_parse_args function. This works in
exactly the same way as the shortcode_atts function you've seen already in the chapter.

183



CHAPTER 6 © CUSTOMIZE WITH HOOKS, SHORTCODES, AND WIDGETS

After you have your current values or defaults, you can build your form. I won’t go into too much detail about
building the form (it’s a fairly standard HTML form), but there are a couple of functions that I'll pick out.

$this->get field id( 'title' );

The get_fieldID is a function found in the main widget class (hence the use of the $this operator), which
builds a unique ID for the widget field. If you take a quick look at the function from the WordPress core, you can see
what it’s getting up to:

function get field id($field name) {
return 'widget-' . $this->id_base .
}

-' . $this->number . '-' . $field name;

The function combines the name of the widget, the number of the widget (set by WordPress), and the name of the
field, which creates something like this:

widget-genre widget-2-title

The next functions are pretty similar, so you'll look at them together. These are handy form functions that make
using check boxes and select inputs a breeze:

selected( $instance['sort order'], 'name' );
checked( $instance['show_hidden'], 'on' );

Both functions work in a similar way: the first argument is the variable to check and the second is the value to
compare it against. If the result is true, the functions output the selected and checked HTML attributes, respectively.
This is a really useful function in WordPress, which saves you from writing long ugly code like this in every one of your
select, checkbox, or radio button inputs:

if ( "name' === $instance['sort order] ) { echo 'selected="selected"'; }

Finally, you need to look at the update function, so the widgets options get saved when the user customizes
the plugin.

update

public function update( $new_instance, $old instance ) {
$instance = $old_instance;

/* Strip tags (if needed) and update the widget settings. */
$instance[ 'title'] = strip tags( $new_instance['title'] );
$instance[ 'sort_order'] = $new_instance['sort order'];
$instance[ 'show_hidden'] = $new_instance['show_hidden'];
$instance[ 'show_post count'] = $new_instance['show _post count'];

return $instance;

184



CHAPTER 6 CUSTOMIZE WITH HOOKS, SHORTCODES, AND WIDGETS

The last function you need for your widget is almost the simplest of them all. The update function takes two
parameters, the $new_instance array, which holds the latest values of the widget settings, and $old_instances, which
holds the widget’s previous settings. The function is a step in the process before the new variables are stored in the
database, so you can do any data sanitizing you need. In your widget, the example is just to use the strip_tags on
the title value because the rest are safe to add to the database as is. After you sanitize the values and add them to the
$instance array you've created from the $0ld_instance array, you simply return the new array so WordPress can
continue on and save the data.

That’s all there is to creating your own widgets. Of course, they can be a lot more complex and do a multitude of
things, but for now that’s the basis of creating widgets to get you up and running and give your users the power to add
extra dynamic functionality to their sidebars.

Building Your Theme, Part 5

In this section, you'll look at adding some dynamic content options for your users with what you've learned about
hooks, shortcodes, and widgets. In the previous chapter, you set up a custom field in your metaboxes to set featured
menu items and a staff member of the month. In this section, you'll set up a shortcode to display each of these as well
as widgetizing your sidebar and adding a widget to do the same.

You have already seen a lot of code in this section, so I'll go over them only briefly to give you an idea of how to
use the concepts to match the theme you're creating.

Adding shortcodes

You'll use a trick you learned earlier in the chapter when creating these shortcodes: using one function to handle both
shortcodes for the featured menu item and staff member of the month. Let’s dive straight in and look at the code for this:

function prowordpress featured shortcode($atts, $content = NULL, $tag) {
// No attributes for this function

// Set up an array for the arguments for our query
$args = array(

'posts_per page' => 1,
)s

$class = $tag;

switch( $tag ) {
case 'featured product':
$args[ 'post_type'] = 'ptd menu';
$args['orderby'] = 'rand';
$args[ 'meta_query'] = array(

array(
"key' => 'ptd_menu_item featured',
‘value' => 'on',
‘compare’ => '='

)

)5
$title = "<h2>Featured item</h2>";

break;

185



CHAPTER 6 © CUSTOMIZE WITH HOOKS, SHORTCODES, AND WIDGETS

case 'staff of _the month':
$args['post_type'] = 'ptd_staff';
$args['orderby'] = 'date’;
$args[ 'meta_query'] = array(

array(
"key' => 'ptd_staff_of the month’',
'value' => 'on',
'compare’ => '='

)

)5
$title = "<h2>Staff member of the month</h2>";

break;

}

$featured = new WP_Query( $args );
if( $featured->have_posts() ) {

$output = '<div class="'.$class.'">';
if( ! is_null($content) ) {
$output .= '<h2>'.$content.'</h2>";
} else {
$output .= $title;
}

while( $featured->have posts() ) {
$featured->the _post();

$output

'<h3>'.get the title().'</h3>";

$output .= get the post thumbnail( get the id(), 'small');

$output .= '<a href="'.get permalink().'">Find our more &raquo;</a>';

}

$output .="</div>";
}

return $output;

}

add_shortcode('staff of the month', 'prowordpress featured shortcode');
add_shortcode('featured product', 'prowordpress featured shortcode');

The code first sets up a couple of defaults that both shortcodes will need. Then the switch statement sets up the
rest of the arguments specific to the type of query you'll be making. The last section of the function is the query itself,
which also goes through storing everything in the $output variable ready to return at the end of the function, so the
content you're creating stays in line with the shortcode’s position in the content.

186



CHAPTER 6 CUSTOMIZE WITH HOOKS, SHORTCODES, AND WIDGETS

Leave it there for shortcodes in your theme for now, without adding a custom TinyMCE button for your new
features. However, this is a great exercise for you to do if you want to try to build in this functionality on your own.
The functionality was already covered in the chapter, so it would just be a case of adding it to your theme and making
specific buttons for the featured items and staff of the month shortcodes.

Adding Widgets to Your Theme

Now take a look at how to create a widget similar to the functionality you just set up with shortcodes, but with a few
customizable options so the user can choose what content to display where. However, first you need to set up a couple
of widgetized areas in your theme. The first obvious one is in your sidebar for the news pages.

Creating Widget Areas

For your theme, you need three different widget areas for the user to customize. You can do this by using a similar
function that you've used before, but this time looping through the arguments with an array of names and IDs for the
different widget areas:

function prowordpress setup_sidebars() {
$widget_areas = array (

array(
'name' => _ ( 'News widget area', 'prowordress' ),
'id"  => 'news-widget-area’
)s

array(
"name’ => _ ( 'Subnav widget area', 'prowordress' ),
'id"  => 'subnav-widget-area’
)s

array(
'name' => _ ( 'Homepage widget area', 'prowordress' ),
'id'  => "homepage-widget-area’
)

)5

foreach( $widget areas as $area ) {
$args = array(
"name’ => $area[ 'name'],
'id" => $area['id'],
'before widget' => '<div class="widget">",
'after_widget' => '</div>’,
'before_title' => '<h2 class="widget-title">',
"after title' => '</h2>’
);
register sidebar($args);
}
}

add_action( 'widgets init', 'prowordpress setup sidebars' );

187



CHAPTER 6 © CUSTOMIZE WITH HOOKS, SHORTCODES, AND WIDGETS

After you've added that bit of code to your functions. php file, you can add your dynamic_sidebar functions
to the rest of your theme. In the sidebar-news.php and the front-page.php templates, you can wrap the
dynamic_sidebar function inside a conditional statement around some of the content that’s already there. For
instance with the home page, you can wrap it around your latest news code so that if a user chooses a widget to be
displayed there, the latest news content will be replaced by the widget.

<?php if( ! dynamic_sidebar( 'homepage-widget-area' ) ): ?>
<h2>Latest News</h2>

<?php
// Latest news code went in here...
>

<?php endif; ?>

If you do this again for the sidebar-news.php template, you have the fallback of your two bits of content:
the archives (which can be added back in with one of the built in WordPress widgets) and the popular categories.
However, on the standard sidebar template you can just call the dynamic_sidebar function without the conditional
wrapper statement because you don’t need fallback content. If the user doesn’t want to add a widget here, there’s no
need to display anything. So your function would look like this:

<?php dynamic_sidebar( 'subnav-widget-area' ); ?»

Now that you have your widget areas set up, you can create your custom widget to display a featured item or the
staff of the month.

Creating the Custom Widget

Creating the custom widget is quite similar to both the format of the widget created in this chapter and the shortcode
you just created in this section. Very briefly, here’s the code for the widget function for your widget. Then I'll show you
what it looks like in the admin interface. You should then be able to create the rest (or you can copy the code from the
example code that accompanies this book).

public function widget( $args, $instance ) {
extract( $args );

// Get the user-selected settings

$title = apply filters('widget title', $instance['title'] );

$show_featured = isset( $instance['show featured'] ) ? $instance['show featured'] : false;
$show staff = isset( $instance['show staff'] ) ? $instance['show staff'] : false;

// Before widget code (defined in the register sidebar function).
echo $before_widget;

if ( $title ) {
echo $before_title.$title.$after title;
}
if( $show _featured ) {
$args = array(
'posts_per page' => 1,

'post_type' => 'ptd_menu',

188



CHAPTER 6 CUSTOMIZE WITH HOOKS, SHORTCODES, AND WIDGETS

'orderby’ => 'rand',
'meta_query’ => array(
array(
"key' => 'ptd_menu_item_featured’',
'value' => 'on',
‘compare’ => '='
)
)

);

$featured = new WP_Query( $args );
if( $featured->have_posts() ) {

echo '<div class="featured-item">';
echo '<h3>Featured item</h3>';

while( $featured->have posts() ) {
$featured->the post();

7>
<h3><?php the_title(); ?></h3>
<?php the_post_thumbnail( 'small' ); ?>
<a href="<?php the_permalink(); ?>">Find our more &raquo;</a>
<?php
}
echo '</div>";
wp_reset_query();
}
}

if( $show_staff ) {
// As above with the arguments for the staff member of the month - see the shortcode
example before...

}

// After widget code (defined in the register sidebar function).
echo $after widget;

Because this is such a large function, you can see why I omitted the rest of the widget class and cut out the
second section of the function. The widget function shown here gets the settings from the widget and then displays
the featured item or staff member of the month, depending on which one the user has set to be displayed. You can see
the result of the rest of the featured widget class in Figure 6-8, which shows you the widgets admin screen complete
with the new widget and the open widget form contents.

189



CHAPTER 6 = CUSTOMIZE WITH HOOKS, SHORTCODES, AND WIDGETS

News widget area

ght to activate them. Drag widgets back here lo deactivale them and delele their seltings.

Archives
Calendar Categories
A calendar of your site's posts A listor dropdown of categories Categories
Featured Widget Links
Awidget that can display either or both Your blogroll
featured menu items and the statt member
of the month

Subnav widget area

Monster Pages
Test multiple widgets at the same time. Your site's WordPress Pages Featured Widget

Title:
Recent Posts RSS
The most recent posts on your site Entries from any RSS or Atom feed ™ Show featured menu item?

Show staff of the month?

Tag Cloud Text
‘Your most used tags in cloud format Arbitrary text or HTML Delete | Close m

Figure 6-8. The featured widget in the widget admin screen

Spring Cleaning the functions File

One last task is a quick spring cleaning of your functions.php file because it’s starting to overflow with a lot of code
that can be split up into files to make finding and managing the code a lot easier.

First, move all the code relating to custom post types, custom taxonomies, and custom fields into a custom-types.php
file in a directory called inc inside your theme folder. The widget class can be put into its own file called
custom-widgets.php inside the inc folder. And finally top that off with any functions that add extra functions for use
in your theme such as prowordpress_customise_feed and prowordpress_build_our_menu, which provide extra
functionality to the theme but should be stored together neatly in their own section of the theme.

Once you set up these three files, you can include them in your functions files with the PHP require functions
inside the theme setup function. At the bottom of the theme setup function, add these three functions:

/**

* Include our custom types functions

*/

require( get template directory() . '/inc/custom-types.php' );

/**

* Include custom theme functions

*/

require( get template directory() . '/inc/theme-functions.php' );
/**

* Include the custom widgets file
*/
require( get template_directory() . '/inc/custom-widgets.php' );

190



CHAPTER 6 CUSTOMIZE WITH HOOKS, SHORTCODES, AND WIDGETS

Now you have a nice and clean theme functions file and three organized files containing groups of similar
functions. Because the theme setup function gets called on the after_theme_setup hook it means that all of your
functions are there ready to go at the correct time.

Summary

Another slog of a chapter, but you got through it. The chapter covered a ton of great features in WordPress that allow
you to customize WordPress and give your users access to some great dynamic content features. You used hooks
throughout the book so far without much explanation, but back at the start of the chapter you took a deeper look at
how hooks work in WordPress and why they're so important. Hooks have singlehandedly allowed WordPress theme
and plugin developers to extend and modify the features in WordPress without having to touch the core code.

Next you looked at two options for giving the user the power to add dynamic content: shortcodes and widgets.
Shortcodes give the power to authors to add dynamic generated content in line with the copy they’re writing.
However, even though they look like a nice simple addition for authors to use, the syntax and code might be confusing
to a complete beginner. If that’s the case, try adding in a button to the TinyMCE editor interface instead. Your users
may thank you in the long run.

Finally you took a look at widgets and how to get them into your themes in the form of adding dynamic sidebars
in various places throughout your theme. You learned about creating a basic widget of your own, allowing the user to
customize the output with simple settings in the WordPress admin.

191



CHAPTER 7

Theme Options and the Theme
Customizer

Whether you're developing your themes for your clients or creating them to sell or distribute as standalone themes,
adding theme options and customizations is worth considering. Adding customizable options to your themes can
enable your users to make your theme feel like their own, adding their own unique touches to a theme that may be
downloaded hundreds of times. And giving clients customization options allows them to make simple tweaks without
having to come to you for support, saving you time and giving them a sense of ownership of their own site.

WordPress theme options have changed dramatically over the period of the last few updates. In version 3.4
(Green), launched in the middle of 2012, came a new addition to the WordPress core: the theme customizer
(see Figure 7-1). This new addition sought to change up theme options dramatically, and in this chapter you'll see
the newfound powers that the theme customizer gives to your WordPress themes.

800 Manage Themes «Adam ¢ % | | -

€« C | [ review.dev/wordpress/wp-admin/customize. php?theme=twentythirteen a> @9 =
Cancel Save & Activate
You are previewing -

Twenty Thirteen

Tests Home  AboutThe Tests (@]

S Lorem Ipsum

the blog, featuring a full range of post formats,

each displayed beautifully in their own unique

way. Design details abound, starting with a Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Donec mollis. Quisque convallis
b it do = h and tehi haader % 1 " . . . ” . - .

i it i libero in sapien pharetra tincidunt. Aliquam elit ante, malesuada id, tempor eu, gravida id,

images, beautiful typography and icons, and a ) e i . i . i
flexible layout that looks great on any device, big odio. Maecenas suscipit, risus et eleifend imperdiet, nisi orci ullamcorper massa, et

or small, adipiscing orci velit quis magna. Praesent sit amet ligula id orci venenatis auctor.
Phasellus porttitor, metus non tincidunt dapibus, orci pede pretium neque, sit amet
Collapse adipiscing ipsum lectus et libero. Aenean bibendum. Curabitur mattis quam id urna.
review.dev

Figure 7-1. The theme customizer added in WordPress 3.4

193




CHAPTER 7 © THEME OPTIONS AND THE THEME CUSTOMIZER

Before you get cracking with the new theme customizer, though, it’s important to take a step back and look at
where to start with adding customization options to your themes. You'll also look briefly at how options were added
prior to version 3.4, what can be learned from past methods, and why others may be reluctant to move over to newer
features. Toward the end of the chapter, you'll be diving back into building your theme once more by adding some
options to allow your users to add their own little tweaks to your theme.

Why Provide Theme Options?

To some, this question may seem simple. However it’s likely that you will be falling into one of two categories:
¢ Theme options are great; customize everything.
e Theme options are evil; I don’t want my theme being altered.

On one side of the fence, people think that having customization options for everything in your theme is the
best route to go, allowing your users the freedom to create the site they want from the base theme you've created.
On the other side, people believe that if a theme is designed and built with care and consideration, giving users a
chance to customize it will end up ruining it. They would much rather keep it as beautifully designed as
they intended.

Like most things in life, I think there’s something to be said for getting a comfy pillow and perching right in the
middle of the fence instead. Too many options for customizations will lead to your theme being overly complex
and your users left staring at a panel of options running off the screen, not knowing where to start or, in fact, what
customizes what. On the other hand, few or no options may leave your users looking for another theme or regularly
calling up for support when they need to change the tiniest thing:

[A] large portion of [the Please Advise team’s] support questions are customers who want help
customizing their themes.

Andy Adams (http://wp-themes-book.com/07001)

For me, adding theme options is important where necessary. If you're creating your theme to sell or distribute
via a themes directory (more on that in Chapter 11), you might want to consider adding some options for your users
so they can make the theme feel a bit more unique. Conversely, if you're developing your theme for clients, there may
be no need for them to have any theme options, so avoiding them is best because you need to have control over how
the site is displayed. In my experience working for clients over the last 4 years, I've found it rare to have to add theme
options for a client site. However, there have been times when adding them was worthwhile and cost effective for the
amount of time I spent dealing with minor client requests for updates.

Choosing the Right Options

There’s something to be said for choosing the right parts of a theme for users to customize. A header image, logo,
and main background site color can be good options for a user to really see a major difference from a few small
customizations.

However, also think about the way you offer the customizations. Allowing a user to change all the different colors
on a web site—from body text, to links, to headers, and even the background—could result in a hideous combination
of colors (not to mention a site that’s completely inaccessible). You may say that it's completely up to the user if they
want to make those choices, which is true. But what if the amount of choice you've given them is too much and they
feel overwhelmed trying to choose something from a huge color picker?

194


http://wp-themes-book.com/07001

CHAPTER 7 © THEME OPTIONS AND THE THEME CUSTOMIZER

What if you offered them a choice of several color palettes instead? How about offering color selections that
you've worked on and designed to look the best with your theme design? Doing so not only helps ensure that your
theme will look good but also gives the user a smaller set of options, removing complexity while still allowing them to
customize the theme.

Remember to think about your user when you create theme options; consider what they might want to customize
depending on the style of the theme, and remember to ensure that your options are also user friendly and complexity
is kept to a minimum.

Simple Customizations with Theme Features

Before you start looking at the theme customizer and adding custom theme options, there are two WordPress
features you should know that have allowed customization since version 2.1: custom backgrounds (version 3.0)
and custom headers (version 2.1). In version 3.4, both functions got a slight makeover and were added as theme
features. Although both theme features can ultimately be set through the theme customizer, each has distinct
methods of adding them to your theme and creating a completely separate page to manage them outside of the
theme customizer.

Both custom headers and custom backgrounds are added to your theme with the add_theme_supports()
function, which you worked with in Chapter 2 when setting up some default features and post formats. These theme
features work in a similar way to the post formats feature because they can be set up by just passing the name of
the feature to the add_theme_supports() function. However both of these features can also take some optional
arguments, in the form of an array, which you’ll look at in the next sections.

Custom Backgrounds
The custom background feature is included with the following line of code:
add_theme_support( 'custom-background' );
This single line of code will set up the screen shown in Figure 7-2. It will instantly allow your users to add a
custom image or select a custom color for the background. As mentioned before, there are options you can pass along

with this feature to set up some defaults. The extended setup of the feature looks like this:

$defaults = array(

'default-color' ="',
"default-image’ ="',
'wp-head-callback’ => ' _custom_background cb',
'admin-head-callback’ ="',

"admin-preview-callback' =>
)s
add_theme_support( 'custom-background', $defaults );

195



CHAPTER 7 © THEME OPTIONS AND THE THEME CUSTOMIZER

800 Background « Adam Onish ]

€« c review.dev/wordpress/wp-admin/themes.php?page =custom-background e+ @O

A Adam Onishi » 4+ New Howdy, adamonishi rj

{z} Dashboard Help
21| Custom Background

=~ Posts

. Media Background Image
<
4 Links Preview
|| Pages

(=) Comments

T Appearance
Themes Select Image Choose an image from your computer

Customize Choose File Mo file chosen
Merus
Background Or choose an image from your media ibrary.
Editor Choose Image
/% Plugins
i Display Options
#, Users

Ti Tools Background Color Select Color

17| Settings

Figure 7-2. The custom background setting page

Looking at the full list of arguments, there are really only two parameters you'll ever need to customize:
'default-color' and 'default-image'. The remaining three are callback functions that apply to the setting of a
custom background at various times. The only one you might customize is 'wp-head-callback' because there’s a
quirk in the custom background settings. If you apply a default image in the arguments, it will be displayed, but if
you set a default color, it won’t get displayed until a user visits (and saves) the background customization page. I'll
talk about this quirk in a bit more detail shortly, but for now it’s worth looking at how the function makes changes
to your theme.

Note When adding a custom background color, add it as a hex color value without the preceding #.

After the user has set a custom background (or when a default background image is set in your function),
WordPress will output a custom inline style to the <head> of every page. The style is set up using the _custom_
background_cb() function, taking all the settings the user has chosen (color, position, repeat, and scroll or fixed) and
adding them to a custom background style declaration. The style is added to the body with a ' . custom-background"
class that gets added in the body class() function when a custom background has been chosen.

<style type="text/css" id="custom-background-css">

body . custom-background { background:#000000 url(http://website.com/wp-content/uploads/2013/10/
matrix.jpg) O 0 no-repeat scroll; }

</style>

196


http://website.com/wp-content/uploads/2013/10/matrix.jpg
http://website.com/wp-content/uploads/2013/10/matrix.jpg

CHAPTER 7 © THEME OPTIONS AND THE THEME CUSTOMIZER

This style will appear inline in the page and after any style sheet you have included with the wp_enqueue_style()
function. I recommend that you avoid adding any styles to the ' .custom-background' class in your default style sheet
because it should be left to WordPress to customize with this feature.

Custom Background Color Quirk

The quirk with a default background color mentioned earlier happens for two reasons. First, the default callback
function is set up to get a custom background color only if it’s been set via the customization page. If you look in the
wp-includes/theme.php file in the WordPress core and search for the _custom_background_cb() function, you will
find these few lines of code:

// $%color is the saved custom color.
// A default has to be specified in style.css. It will not be printed here.
$color = get_theme mod( 'background color' );

This code says that there must be a ' theme_mod" for the background_color value for it to be displayed.

Second, if the user hasn’t been to the background customization page and clicked Save, the ' . custom-
background' class will not be applied to the body. To get around both of these issues, Justin Tadlock wrote a
replacement callback function that can be used to set up the default background color (you can find it here:
http://wp-themes-book.com/07002). However I'm of the opinion that the WordPress core is actually correct: if you'll
set up a default background color, it should be added to your theme style sheet in the first place. There’s no need for
the theme to add custom styles to the page if there’s if the user hasn’t selected a custom color, the default is there in
case the user chooses to reset the setting after it's been customized.

Custom Headers

The custom header feature is set in a similar way, with the choice of passing some default options with the add_theme_
support () function. However with the custom headers there are more options to choose from:

$defaults = array(

"default-image’ ="',
'random-default’ => false,
'width’ => 0,
"height' => 0,
'flex-height' => false,
"flex-width' => false,
'default-text-color' ="'
'header-text' => true,
'uploads’ => true,
'wp-head-callback’ ="',
"admin-head-callback' ="',

"admin-preview-callback' => "',

)s
add_theme_support( 'custom-header', $defaults );

Because the custom header feature is aimed at the full header of your site, you get loads of options to customize
how the header image will be displayed; whether to allow text inside the header; and defaults for height, size, and
colors. The result is best seen in the Twenty Thirteen theme, which comes with a plethora of options for the user
(see Figure 7-3).

197


http://wp-themes-book.com/07002

CHAPTER 7 © THEME OPTIONS AND THE THEME CUSTOMIZER

s+ Posts
() Media
¥ Links
i) Pages
) Comments

T3 Appearance

Themes
Customize
Widgets
Manus
Header
Editor

£ Plugins

&, Users

Ti Tools

[47] Settings

Coliapse menu

Header updated. Visit your site to see how it looks.

Header Image

Preview

Select Image

Default Images

Remove Image

Feset Image

Header Text

Header Text

Text Color

You can select an image to be shown at the top of your site by from your or ing from your media library.

After selecting an image you will be able to crop .
Images of exactly 1600 = 230 pixels will be used as-is.

Choose an image from your computer:

Choose File | Mo file chosen Upload

Or choose an image from your media library:
Choose Image

 you don't want to upload your own image, you can use one of these cool headers, or show a random one.

‘*) Random: Show a different image on each page.

T &
T X

This will remove the header image. You wil not be able to restore any customizations.

Remove Header Image

This will restore the original header image. You will not be able to restore any customizations.

Restore Original Header Image

| Show header text with your image.

W st oo

Figure 7-3. Twenty Thirteen header customization page

The size settings—height, width, flex-height, and flex-width—all relate to the cropping options given to users
when they upload their image. With the height and width settings, they act as maximum sizes the user can crop their
image to. If you set either of the flex settings to true, the user can change that specific size on the image crop. Whether
either flex argument is set to true, when users upload an image, they are always met with a crop area the size you
specified with the height and width settings. If you leave them at their defaults, the user can choose whether or not to

crop the images.

198



CHAPTER 7 © THEME OPTIONS AND THE THEME CUSTOMIZER

The rest of the default options are relatively self-explanatory. The uploads and header-text arguments are
true if you want to allow uploads and if you want to let the user add text to the header image. The random-default
argument allows you to set the random display of headers to true by default.

To display the headers in your theme, WordPress provides a series of functions referencing different parts of
the header:

e header_image() echoes out the URL of the header image.
e get header image() returns the URL.
e get header textcolor() returns the text color value (hex code without the preceding #).

o display header_ text() returns true or false depending on whether the user has selected to
display the header text.

e get custom_header() returns an object of the custom header, including url, thumbnail url,
width, height, and attachment_id.

The best example of these functions in action is again the Twenty Thirteen theme and the function it uses to
output the header. There are also a lot of other great examples in the theme file inside inc/custom-header. php.
The result of the output function is shown in Figure 7-4.

<div id="headimg" style="background: url(<?php header image(); ?>) no-repeat scroll top; background-
size: 1600px auto;">
<?php $style = ' style="color:#' . get header textcolor() . ';"'; >
<div class="home-1link">
<h1 class="displaying-header-text"><a id="name"<?php echo $style; ?> onclick="return
false;" href="#"><?php bloginfo( 'name' ); ?></a></h1>
<h2 id="desc" class="displaying-header-text"<?php echo $style; ?>><?php bloginfo(
"description' ); ?></h2>
</div>
</div>

Figure 7-4. Twenty Thirteen header

In this code, the header image() function is being used to output the header image URL inside a background-
image inline style as well as the get_header textcolor() function outputting the color of the text inline inside the
links. The header text is provided by the bloginfo() function, and if the user has selected not to display the header
text, the code also generates some inline style for the header of the page to hide the text.

199



CHAPTER 7 © THEME OPTIONS AND THE THEME CUSTOMIZER

Adding Default Images for Custom Headers

Look at the screenshot of the Twenty Thirteen custom header page in Figure 7-3 and notice that some default headers
are already uploaded for the user to choose. WordPress allows you to do this with the register default headers()
function. Again, you can see how the Twenty Thirteen theme is used to add the three default images you see in the
screenshot:

register_default_headers( array(
'circle' => array(

"url’ => '%s/images/headers/circle.png’,

"thumbnail url' => '%s/images/headers/circle-thumbnail.png’,

'description' => x( 'Circle', 'header image description', 'twentythirteen' )
)s
"diamond' => array(

'url’ => '%s/images/headers/diamond.png’,

"thumbnail url' => '%s/images/headers/diamond-thumbnail.png",

'description' => x( 'Diamond', 'header image description', 'twentythirteen' )

)s

"star' => array(

"url’ => '%s/images/headers/star.png’,
"thumbnail url' => '%s/images/headers/star-thumbnail.png’,
"description’ => x( 'Star', 'header image description', 'twentythirteen' )

)s
) )s

The register_default_headers() function takes an array as the only parameter containing one or more further
arrays with the details for each image. The %s in the url setting will be replaced with the theme directory, and the
description is used in the title tag for each image in the custom headers page.

With the allowance for you to create a set of custom headers for your theme, it means that if the uploads option
is set to false, users can choose some carefully designed and selected header images. This again shows how you can
offer better choices for your users. Giving them too much freedom could add unneeded complexity, whereas a choice
of some carefully selected options allows for the ability to customize without the burden of too many choices. It’s a
subject you'll struggle with whenever you create options for your users: when are there not enough options and how
many is too many? Throughout this chapter, I'll be coming back to this theme so you can learn to make well-thought-
out decisions about how much customization you offer to your users.

Saying Goodbye to Theme Options Pages

Now that you've seen some of the simpler theme features offered for your WordPress themes, it’s time to take a look
at how you can add some serious customization features to your themes. Before I introduce the theme customizer in
detail, however, I want to discuss how it came to be and what it has meant to previous systems such as theme
options pages.

Before the theme customizer came along in version 3.4, the theme customizing landscape looked a whole lot
different; themes developers created theme options pages to include all the customizations possible with their
themes. Even default themes came with some theme options, as shown in Figure 7-5.

200



CHAPTER 7 © THEME OPTIONS AND THE THEME CUSTOMIZER

| 8eoco Therse Options « Adar ¢ M )
<« c review.dev/wordpress/wp-admin/themes.php?page=theme_options oy @ Q@ =
&) AdamOnishi @ 4 New Howdy, adamonishi I
{#} Dashboard = g Help
| =] Twenty Eleven Theme Options
=+ Posts T
= Media Color Scheme .
iz Links Hello worl [RgEU[-R"sTg
(] Pages
- Posted on February 15 1 on February 1
) Comments
| Weicome to WordF
Themes Light Dark
Customize
btz Link Coior #168b90 B seectacoor
Mar:
] Default color: #1b3bel
Theme Options
Header Default Layout .
Background
Editor
£ Plugins
4, Users
T} Tools
17| Settings Content on left Content on right One-column, no sidebar

Figure 7-5. Theme options page for the Twenty Eleven theme

So when the theme customizer turned up in version 3.4, not all theme developers took much notice; the
customizer was a new toy for WordPress, but nothing to take seriously. I can understand a lot of the reasoning for this;
it was something brand new, and the default options did make it look like a bit like the next new shiny toy for theme
users. However, when you look at the competition from the likes of Squarespace and Koken, to name just two, you see
that interactive theme customization systems in those platforms were built in from the very start.

Some developers might feel reluctant to grab on to this new feature based purely on the amount of time they've
already invested in creating the best way for to add options to their themes already. Theme option pages range from
very simple implementations to extremely complex frameworks (see Figure 7-6), and once you have a system set up,
it's hard to find the motivation to change something you're comfortable with.

201



CHAPTER 7 © THEME OPTIONS AND THE THEME CUSTOMIZER

Home Themes Plugins WooCommerce Blog Support L My Account  Cart

The WooFramework

The turbo charged engine behind all our WordPress themes

Some of the many benefits of the WooFramework

Figure 7-6. WooThemes’ own framework for theme options: the WooFramework

On a more positive note, some theme development shops have really taken to the theme customizer by
understanding the power it can give theme users. It’s great to see quotes like the following, which was said back in
June 2012 as the theme customizer was released:

We're planning on adding Theme Options for all themes to the customizer in future updates.

Andy Adams (http://wp-themes-book.com/07003)

So the old theme options page should now be a thing of the past, you'll start to see less and less of the old theme
options pages and see people moving more toward the theme customizer—and for good reasons, too.

Introducing the Theme Customizer

Besides showing a quick screenshot, I haven’t really mentioned much about the theme customizer except that it was
introduced in version 3.4. It's now time to have a real look at what the theme customizer is, what it can do, and why it’s
so important to the future of WordPress theme development.

The theme customizer is essentially a WYSIWYG editor for WordPress themes; packed with certain customization
options, users can edit options and see their updates in real time without having to update their site. Themes can now
be customized from the WordPress admin without the hassle that came before with theme options. Users no longer
need to save the option, refresh the front end, test that it looks okay, and if not rush back to change it before anyone
else has seen it.

202


http://wp-themes-book.com/07003

CHAPTER 7 © THEME OPTIONS AND THE THEME CUSTOMIZER

The customizer now lives in the Appearance menu, right below the Themes submenu. When first released in
version 3.4, the customize option was available only from the themes page beneath the theme you had active. Now
there’s much more emphasis on the customizer; any installed theme can be opened in the customizer without
activating it. This enables users to customize a new theme and preview any changes they make before putting the new
theme live, which is certainly a significant improvement to the old system.

The customizer is also an important step for WordPress to take, as I mentioned in the last section. Other systems
are starting to compete with WordPress on the ease-of-use and customizations front. Although there is still quite a
stretch between the WordPress customizer and Squarespace’s drag-and-drop layout interface, the move to a more
user-friendly system for customizing themes definitely shows that WordPress intends to compete.

Although it will be a long time before WordPress loses its dominance in the blogging and content management
system (CMS), it’s telling that more offerings are starting to spring up that boast of more user-friendly interfaces. You
can’t deny that new systems such as Squarespace, and especially Ghost, intend to compete directly with WordPress on
the blogging front and are taking aim at the “complexity” they feel WordPress still possesses.

Getting Started with the Theme Customizer

Having looked at the theory behind the customizer, it’s time to get down to utilizing the customizer in your own
themes. The customizer is built using fully object-oriented PHP (OOPHP), but fortunately you need only a very basic
understanding to be able to use all the features of the customizer. When going through the system, I'll be explaining
everything in plenty of detail as well, so you should be able to see how the object orientation helps make this system
really easy to work with.

The theme customizer API is made up of four classes:

e WP_Customize_ Manager
e WP _Customize Setting
e WP _Customize Section

e WP _Customize Control

WP_Customize Manager is the main class that looks after the entire customizer; the other three classes add the
different parts found within the customizer. The WP_Customize Manager class is accessed through the $wp_customize
global object variable. To get access to the object, you need to hook into the customize _register action before
adding your theme customizer options.

The remaining classes used in the customizer control the individual settings, sections, and controls, as their
names suggest. The setting class controls what the customization is and how it’s stored in WordPress, the section
class defines where the option appears in the customizer, and the control class is the method of configuring a setting.
All three must be used in conjunction to add a new setting to the customizer, although you can add controls to one of
the default sections (but even then, the section has still been defined at one point).

This is just a basic overview of what each class does in relation to the customizer, now you’ll see how they work
together to enable you to create theme options.

Adding Options to the Customizer

Instead of adding everything to the functions.php file as usual, start by creating a new PHP file to keep all the code
for the customizer separate. Because this section will produce a lot of code, it's worth keeping it in a file separate from
the rest of your functions. I end up doing this a lot with my themes to ensure that everything is easy to find.

Create a new file called something like theme-options.php and include it inside your theme functions file (like
you did in with the widget functions in Chapter 6). Because you'll run all the code through a hook in the file, you can
just include this anywhere outside of a function in the functions.php file.

203



CHAPTER 7 © THEME OPTIONS AND THE THEME CUSTOMIZER
require( get template directory() . '/inc/theme-options.php' );

With your new file created, it’s time to start working with the theme customizer. As I mentioned before, to access the
WP_Customize_Manager class, you need to use the customize_register action. With this action, the $wp_customize
object is passed in by reference for you to work with:

function prowordpress customize register( $wp_customize ) {
// Settings, Sections, and Controls are defined here
}

add_action( 'customize register', 'prowordpress customize register' );

Once the function is set up, you can begin to add settings, sections, and controls for your theme options.

Adding a Setting

Settings is the term used for each option for your theme. These settings are stored in the database and accessed by you
in the theme to provide the customizations. To add a setting, use the add_setting() method of the $wp_customize
object. The method comes with two parameters, the ID of the setting to be added and an array of arguments. The
arguments are the following:

e default is the default value for the setting.

e  typeisthe way the setting is stored, either as option or theme_mod. The differences and
advantages/disadvantages of both will be discussed later in the chapter (the default is theme_mod).

e transport is the method with which the setting will be updated in theme preview, either
refresh or postMessage. The differences will be covered later in the chapter (the default is
refresh).

e capability is the capability required to use the setting (the defaultis edit_theme_options—
more on this in Chapter 8 with users, roles and permissions).

e theme-supports tests whether the theme supports this setting (used with theme default
settings such as custom headers).

e sanitize callbackis the data sanitization function to be used when data is saved.

e sanitize js_callback s the sanitization function to be used when the data will be used in
JavaScript.

The first three arguments are the ones you will be using most often: adding the default value of the setting, how
it's stored, and how it's updated on the theme preview. To add a new setting for link colors on your theme, you could
use the following:

$wp_customize->add_setting( 'link color' , array(

"default’ => 'FFOOFF',
"type' => "theme_mod',
"transport’ => 'refresh’',

'sanitize_callback' => 'sanitize hex_color_no_hash',

));

Here you are setting the default color, type, and transport methods; and adding a sanitization callback, one that is
already included in WordPress (you’ll look at how to create other sanitization functions later in the chapter).

204



CHAPTER 7 © THEME OPTIONS AND THE THEME CUSTOMIZER

Adding a Section

The next part of adding a new option to the theme customizer is to create a section in which your control will appear.
A setting on its own actually adds nothing visible to the theme customizer; the setting is just for behind-the-scenes
work in WordPress. A section is what appears in the left side of the customizer, as you can see in Figure 7-7. The
sections shown are “Site Title & Tagline’, and “Colors”.

Site Title & Tagline

Site Title
Adam Onishi

Tagline

Just another WordPress site

| Display Header Text

Colors

Figure 7-7. Sections in the theme customizer

To add a section, you need the add_section() method of the $wp_customize object. Again this method takes two
parameters: the ID of the section and an array of arguments. This time the arguments include the following:

e title:Thetitle of the section
e description: A description to display in the title attribute of the section
e priority: Where in the list of sections it should appear

Next is to add a section for your new setting. You could use something similar to the following (remember to
always add text using the WordPress internationalization functions):

$wp_customize->add_section( 'prowordpress_content_customizations' , array(

"title' => _ ('Content customizations', 'prowordpress'),
"description' => _ ('Customize the link colors in the theme', 'prowordpress'),
"priority’ => 30,

));

With the section defined, you'll notice that it’s not yet appearing in the customizer; this is because you still need
to define a control to go in the section.

205



CHAPTER 7 © THEME OPTIONS AND THE THEME CUSTOMIZER

Adding a Control

With the setting and section defined, you're now all set to add your control. The control is the actual part the user
is interacting with when it comes to customizing the setting, whether it is a text box or a color picker for instance.
Although the control is set using the add_control() method of the $wp_customize object, there are two methods
available for setting up a new control. You can either use the standard method of passing in an ID and array of
arguments that define how the control will look and work, or you can pass an instance of a class that defines the
control instead of passing the ID and arguments. Sounds complicated on the surface, but once you see an example,
you should be able to see how it works in practice.

The standard method allows you to create a number of standard HTML form controls; the latter method using
classes allows you to create more custom controls like the color picker or image upload controls. Let’s look at both
methods.

The arguments for the standard control give you quite a few options for the way your control will work:

e label: The label to appear along with the control.

e settings: The setting the control is for (if left blank, the control ID needs to be the same as the
setting ID it will be controlling).

e section: The section in which the control will appear.

e type: The type of control—mostly standard HTML form elements with the exception of
dropdown-pages, which will be a select list of all available pages on the site. The options are
these:

o text

e checkbox

e radio

e select

e dropdown-pages

e choices: If using either a radio or select type control, you need to pass in an array of the
different selections.

e priority: The order in which the setting will appear in the section.

If you create a simple text entry control to set the custom link color, it might look like this:

$wp_customize->add_control( 'link color control', array(

'label’ => _ ( 'Link Color', 'prowordpress' ),
'section’ => 'prowordpress_content_customizations',
'settings' => 'link_color’,

"type’ => 'text',

));

However, as I mentioned, there is a method allowing you to add more-complex controls to the customizer.
By default, five custom controls are available for you to use with the customizer. You can also create custom controls,
which I'll cover later in the chapter. The default control classes are these:

e WP_Customize Color Control(): A color picker control
e WP Customize Upload Control(): A media upload control

e WP Customize Image Control(): Animage upload control

206



CHAPTER 7 © THEME OPTIONS AND THE THEME CUSTOMIZER

e WP_Customize Background Image Control(): A background image control that specifically
displays the custom background options

e WP_Customize Header Image Control():A header image control specifically for the custom
header options

To use one of these controls instead of a default HTML form controls, you need to create an instance of the class
with the default arguments and pass it to the add_control() method. With PHP this isn't too complex; you can actually
create the new instance of the class inside the method call itself. Each of the preceding classes is actually an extension
of the initial class WP_Customize Control, which is the class that is accessed whenever you create a control for the
customizer. This means that when you create a new control using one of the classes, most of the standard arguments
stay the same. Here’s how your link color option control could be defined with the color picker control class:

$wp_customize->add_control( new WP_Customize Color Control( $wp customize, 'link color control’,
array(

'label’ => _ ( 'Link Color', 'prowordpress' ),
'section’ => 'prowordpress_content_customizations',
'settings' => 'link_color’',

));

With that control definition complete, you can add it to the rest of the theme customizer function to get a block of
code that looks like the following code block (the result can be seen in Figure 7-8).

function prowordpress customize ( $wp_customize ) {
$wp_customize->add_setting( 'link_color' , array(

'default’ => 'FFOOFF',
"type' => "theme_mod',
"transport’ => 'refresh’,
'sanitize_callback' => 'sanitize_hex_color no_hash',
));
$wp_customize->add_section( 'prowordpress content customizations' , array(
"title' => _ ('Content customizations', 'prowordpress'),
"description' => _ ('Customize the link colors in the theme', 'prowordpress'),
'priority’ => 30,

));

$wp_customize->add_control( new WP_Customize Color Control( $wp_customize,
'link _color control', array(

'label’ => _ ( 'Link Color', 'prowordpress' ),
'section’ => 'prowordpress_content_customizations',
'settings' => 'link_color’,

)

add_action( 'customize register', 'prowordpress_customize register' );

207



CHAPTER 7 © THEME OPTIONS AND THE THEME CUSTOMIZER

Content customizations

Link Color

B E80ee

Current Color FFOOFF Default

o

Figure 7-8. The link color control

Default Sections

There are a series of default sections in the customizer, so instead of always creating a new section for any control you
want to add to the customizer, it’s worth taking a look at these default settings to see whether your new control would
fit in better in a section that already exists. For instance, the control you just created to customize the link color of the
theme wouldn’t be out of place in the default Colors section of the customizer.

To add to a default section, you simply use the ID of one of the sections instead of creating a new section entirely.
Here’s the full list of default section IDs:

title tagline: Site Title & Tagline
colors: Colors

header_image: Header Image
background_image: Background Image
nav: Navigation

static_front_page: Static Front Page

By reusing the sections already available in the customizer, you can reduce complexity for the user by grouping
your options more sensibly instead of creating a new section for every setting you create.

208



CHAPTER 7 © THEME OPTIONS AND THE THEME CUSTOMIZER

Using Settings in Your Theme

Once you have created your options for the theme customizer, you'll probably want to start using them in your theme.
There are a few ways of doing this, depending on the type of result you're aiming for. Options in which a user can
define styles (colors, background images, and so on) probably need to be output as inline style in the <head> of your
pages, whereas text and content options need to be accessed in the templates directly.

Think back to when you were defining the theme customizer settings. You had the option of creating settings with
a type setting of either theme_mod or option; this parameter defines how you will access the setting when you want to
retrieve its value.

A theme_mod setting requires you to use the get_theme_mod() function, and a setting with the type option
requires the get_option() function. In the next section, I will talk about the differences with the way data is stored,
but for now all you need to know is how to access each one.

Both functions work in a similar way: they return the value as PHP, so you need to “echo” each result still or store
itin a variable to use at a later stage. And both require the setting ID as the first parameter to know which setting to
retrieve. The only difference is with the get_theme_mod() function, which can take an optional default value as the
second parameter that will be returned if there is no value found for that setting ID.

As an example, if you access the 1ink_color setting you created earlier, you have one of three options, depending
on the type of the setting you created:

// type = theme mod (with no default)
echo get_theme_mod('link color');

// type = theme_mod (with a default parameter)
echo get theme mod('link color', 'FFOOFF');

// type = option
echo get option('link color');

All these can be accessed in your templates at any point, so if the example option were instead some introductory
text meant for one of the pages, you could use either the get_theme_mod() or get_option() functions to output that
text straight to the template.

Adding Inline Styles with Theme Options

The other method of adding customizations to your theme is to add them as inline styles to the head of your pages.
This means that you can insert the styles after the main style sheet has been included so the inline styles will overwrite
those set in the style sheet.

To do this, you'll need to hook into the wp_head action and output a style tag with your customizations inside.
As long as your styles have been included with the wp_enqueue_scripts action, using the wp_head action means that
they will be output in the correct order because the wp_enqueue_scripts action is fired toward the start of the wp_head
action so the main style sheets are included early on in the <head>.

To include the inline styles for your earlier link setting, your function could look a little like the following code.
Remember that when you output a color from the settings, it will be saved as a hex value without the #, so you need to
add it manually:

function prowordpress_customize_css()
{
>
<style type="text/css">
a { color:#<?php echo get theme_mod('link color', 'FFOOFF'); ?>; }
</style>

209



CHAPTER 7 © THEME OPTIONS AND THE THEME CUSTOMIZER
<?php
add_action( 'wp_head', 'prowordpress customize css');

As your theme options grow, you need to add more and more styles to overwrite the default styles in your main
style sheet. With this in mind, think about all the options you'll add and make sure to add the ones you think the
user will benefit from most; don’t be scared of limiting options in order to keep your theme maintainable and well
structured. What you don’t want is to set hundreds of styling options in the theme customizer and for the inline CSS to
be as big as your default CSS because it is doing so many overrides.

How Theme Settings Are Stored

Having seen now how theme options are created and how you can add them to your theme, take a quick step back to
look at how your options will be stored in the database. I already touched on this when I mentioned that each setting has
a type parameter that defines how it’s stored in the database, which then affects how you access it in your theme. Now I'll
discuss the differences in the way these two methods store data and what the benefits and downsides are of each.

Theme Mods

Theme mods have been available in the WordPress core for quite some time now, originally being added to the core
in version 2.1. Theme mods store data relating to a specific theme, so each theme has its own “mods” data that gets
stored in the database.

Theme mods store every option in a single row in the database via a serialized array of key value pairs, so that when
the theme is loaded, the theme mods are retrieved from the database ready to be available via the get_theme_mod()
function by passing the key (the setting ID from which you initially created the setting). You can see what the data
looks like when stored it in a theme_mod by looking at Figure 7-9.

| Browse ¢ Structure [ | SQL , Search ¥t Insert |« Export =+ Import ~ Operations =& Triggers

Column Type Function Null Value
option_id  bigint(20) unsigned

>

688

option_name varchar(64
- ) theme_mods_prowordpress

option_value longtext »

"nav_menu_locations";a:l:

:7: ry";i:lll;}s:16: "background_color";s:6:"f£f£££ff";8:16: "background_image"
;8:0:"";8:22;: "background_image_thumb”;s:0:"";8:12:"header_image";s:72: "http://revi
ew.dev/wordpress/wp-content/uploads/2013/09/cropped-
jpeg.jpeg";s:17:"header_image_data";0:8:"stdClass":5:
{s:l3:"attachment_id";i:920;8:3:"url";8:72: "http://reviev.dev/vordpress/wp-
content/uploads/2013/09/cropped-

jpeg.jpeg”;a:13:"thumbnail url”;s:72:"http://review.dev/wordpress/wp-
content/uploads/2013/09/cropped-
jpeg.jpeg”;s:6:"height”;i:417;8:5:"width";i:1500;}s8:16: "header_textcolor”;s:0:"";s
$10:"1link_color”;s:6:"££00££";}

autoload varchar(20)

“

yes

Go

Figure 7-9. The theme_mods field in the WordPress database

210



CHAPTER 7 © THEME OPTIONS AND THE THEME CUSTOMIZER

Based on the active theme, the get_theme_mod () function will change which field in the database it will retrieve
the settings from. With the prowordpress theme active, it will use the theme_mods_prowordpress field (as shown in
the figure), but when the Twenty Thirteen theme is active, it will be accessing the theme_mods_twentythirteen field.

There are a few benefits of this method. All settings are stored in relation to a single theme, so there’s no
possibility that the options you create will leak into another theme. There’s no need for complex naming conventions
or even prefixes because the data is stored specifically under the theme name, which must be unique in the first place.
And because the mods are stored in a single row in the database, using theme mods doesn’t bloat the database.

However, some of these benefits might also be seen as downsides. Locking your options to a single theme means
that if the user has a more general setting, it will be required to be controlled on a per-theme basis and result in users
reconfiguring every time they switch themes. There are also some negatives to storing data as a serialized array in the
database in that it negates searching and can have an impact on data portability. In that case, I would say that because
of the way in which the serialized data is so heavily tied with WordPress, these issues shouldn’t be too great a problem.

Options

The other method of storing your theme customizations is by using the 'option’ type. Options are common in
WordPress and are the usual method used by any theme authors when they were previously using theme options
pages to add theme customizations. To use the options method is to use the Settings API in WordPress, which stores
options in the database with some really simple functions. You'll find out more about the full Settings API in Chapter
13 when you look at plugin development toward the end of the book. For now, though, it’s enough to know how the
data is stored and the pros and cons when relating to the theme customizer.

Asyou can see in Figure 7-10, when using the option type in your customization setting, the setting gets stored as
a single row in the database.

Browse ¢ Structure || SQL ., Search *t Insert [« Export =+ Import - Operations == Triggers
Column Type Function Null Value
option_id  bigint{20) unsigned s
4 2408
option_name varchar(64) s
link_color
option_value longtext s
0003e0
autoload varchar(20) 4
yes
Go

Figure 7-10. The link_color setting field in the database

211



CHAPTER 7 © THEME OPTIONS AND THE THEME CUSTOMIZER

The main advantage of this method is that the option will be stored in the database and persist across all
themes, meaning that no matter which theme you currently have active, you can still access the setting with
get option('link color'). Thisis good meaning that settings can now port across all themes and be used throughout
the life of the site, no matter which theme is active.

However, I feel that there are far more downsides to this method. Although having theme options persist could
be a good thing, it might potentially be useful only if the user is switching between themes by the same developer
because it would require all options to be named the same and used in a consistent manner. This is probably a good
thing for a theme development shop, but for an individual not so much. Also look at the way the setting is stored in
the database; for your color setting, which will always just be stored as six characters, the field type is 'longtext'. The
ability to not control the format of how the data is stored can be very costly to database performance and add bloat
that could have been easily prevented.

Other disadvantages include requiring a naming convention to prevent data from being overwritten by other
settings and plugins, and also that the more options you have, the more rows you'll add to the database, causing
potentially unnecessary database bloat.

Asyou can probably tell, I have a distinct bias toward the best method to use here, but it does come down to
a case-by-case basis, as always. If you are developing a series of themes and want to make a framework for adding
common customizations to each one of your themes and market yourself with that consistency, the likelihood is that
you will need to use the Settings API method for the main advantage it possesses. If you are going down this route,
there is one more thing I suggest to make storing options in your theme a little easier on the database and negate a
couple of the downsides I've mentioned so far: create an options array.

Creating an Options Array

Instead of setting up your options as a single option to be stored in the database, there’s a method that many theme
and plugin developers have been using for some time now: to store all related options together in one field in a
serialized array. This works much like the theme mods method, but it removes the downside of the options being tied
to one specific theme. With this method, the database will no longer be quite so bloated with all your options, and you
no longer need to worry about naming conventions for each of your settings because you can set up one option name,
and the rest will be fine as part of that option.

To enable this method to work in your settings, ensure that the type is setto 'option' and that your setting name
is now something like this:

$wp_customize->add_setting( 'prowordpress_theme_options[link_color]' , array(

The ID is the option name, but as an index of the top-level option prowordpress theme_options. You must also
remember to set up the 'settings' option in your control to point to the full ID of the setting as well:

'settings' => 'prowordpress theme options[link color]’,

By doing this, your option will now be stored in the database under the prowordpress_theme_options field name
(shown in Figure 7-11) and be accessed across all themes, so you kind of get the benefits of both options.

212



CHAPTER 7 © THEME OPTIONS AND THE THEME CUSTOMIZER

Browse ¢ Structure [ | SQL ., Search ¥t Insert |« Export =4 Import ' Operations <= Triggers

Column Type Function Null Value
option_id  bigint(20) unsigned

ar

2411

option_name varchar(64)

@

prowordpress_theme_options

option_value longtext N

asls{s110:"link_color";s:16:"££0000";}

autoload varchar(20)

ar

yes

Go

Figure 7-11. The prowordpress_theme_options setting in the database

Data Sanitization in Theme Options

In Chapter 10, I'll go into a lot more detail about data sanitization in WordPress in general and why it’s extremely
important that you are cautious around any data that interacts with your theme. For now, I'll just cover some
techniques for data sanitization when using the theme customizer.

Earlier in the chapter when you set up your custom setting for the customizer, I talked about the two optional
parameters of the add_setting() function: the sanitize callback and sanitize js callback parameters.
These parameters allow you to set functions to be run when the setting is saved so that you can perform some data
sanitization on the data input by the user. In the earlier example, you passed the sanitize _hex_color_no_hash
function, a WordPress built-in sanitization function, to the sanitize_callback parameter for your color setting.

The sanitize hex_color no_hash() function in the WordPress core is not very big and calls the sanitize hex _
color() function to perform the sanitization. You can see both functions here:

function sanitize hex_color no_hash( $color ) {
$color = ltrim( $color, '#' );

if (' === $color )

return '';

return sanitize hex _color( '#' . $color ) ? $color : null;

}
function sanitize hex color( $color ) {
if (' === $color )
return '';

213



CHAPTER 7 © THEME OPTIONS AND THE THEME CUSTOMIZER

// 3 or 6 hex digits, or the empty string.
if ( preg match(' | #([A-Fa-f0-9]{3}){1,2}$|", $color ) )
return $color;

return null;

The main function that performs the sanitization (sanitize hex_color) just checks that the data passed to the
function begins with a #. It is either three or six characters long and made up only of hexadecimal characters. If that’s
the case, it returns the data; otherwise, it returns null. This is just a really simple way of testing the data to ensure that
it appears as you expect it to. There are also quite a few other WordPress functions for data sanitization that you can
find by visiting the Codex at: http://wp-themes-book.com/07004.

Creating Your Own Sanitization Functions

In the theme customizer, besides adding a sanitization callback for color options, you might also need to add
validation for other data types. For example, if you have a free text input box, you need to make sure that users
don’t input any malicious data, whether by design or by accident. If a user adds some HTML tags into a text input
box, for example, you may want to allow it, but run a few checks to make sure it’s safe (i.e., not containing any
script tags) or just to ensure that all the HTML tags are closed correctly to stop the added HTML from breaking your
theme when it’s output.

WordPress provides two functions that you can utilize for these purposes: the wp_kses_post() function
(known as KSES Strips Evil Scripts—a nice iterative acronym) and the force_balance_tags() function. With this
combination, you can ensure that the HTML entered is safe and has removed any potentially malicious scripts, and
that all the tags are balanced so that the HTML can’t break your theme accidentally:

function prowordpress sanitize html( $input ) {
return wp_kses_post( force_balance tags( $input ) );
}

Thewp_kses_post() function will format out disallowed HTML tags. The wp_kses () function requires an array of
allowed tags to do this, but the wp_kses_post() function uses a default list of allowed tags based on the tags allowed
in a post. The force_balance_tags() function is fairly self-explanatory; it just ensures that all tags included in the text
are closed off correctly, which will help prevent some bad HTML from breaking your theme.

Another way to sanitize data is to make sure that if you expect a value from a certain range of known values
(for example, from a check box or series of radio buttons), you ensure that the input value matches one of the values
in your expected range of values. Data sanitization is about ensuring that if there’s a known format the data should be
in before being submitted, it’s checked against it, and all other possibilities are removed.

Automatically Update the Theme Customizer

Another parameter that I didn’t cover fully earlier in the chapter is the 'transport' parameter. This parameter can
have one of two settings: refresh or postMessage. The default is refresh, which means that when the option has
been changed, the customizer needs to be refreshed before the change is shown in the customizer. The second option
is postMessage, and this is where the customizer gets interesting. The postMessage option allows for the data to be
sent via the HTML5 postMessage API, meaning that values can be updated in real time.

Having real-time updating of customizations is great for users to be able to see how each customization will look
before they publish their changes. Also seeing things happen in real time makes your tweaks a lot easier to visualize,
so overall this is a great addition to the user experience of the theme customizer.

214


http://wp-themes-book.com/07004

CHAPTER 7 © THEME OPTIONS AND THE THEME CUSTOMIZER

Note To find out more about how postMessage works, you can visit the MDN article at:
http://wp-themes-book.com/07005.

To use the postMessage setting in your options, you need to set the 'transport' parameter of your setting to be
postMessage and then create some JavaScript to handle the data sent by postMessage:

$wp_customize->add_setting( 'link_color' , array(
'default’ => 'FFOOFF',
"transport’ => 'postMessage’,
'sanitize callback' => 'sanitize hex_color no_hash',

));

The script will work alongside the theme customizer script in the WordPress core that gives you access to the wp
object. With it, you can then access the customize object as well, which contains a few functions to allow you to access
the controls in the customizer:

(function (%) {

// Update 1link color in real time
wp.customize( 'link color', function( value ) {
value.bind( function( to ) {
$('a").css('color', to );
})s

)

})( jQuery );

The previous short function gets access to your setting via the setting ID '1ink_color', and the callback function
then adds a bind function to the value of your setting. By using a simple bit of jQuery, you can update the element
with the new value of the setting every time it gets updated.

With the JavaScript file written, you just need to include it into the page when you're viewing the customizer.
Fortunately, as with most things, WordPress has a hook to do just that:

function prowordpress customizer script()

{

wp_enqueue_script( 'prowordpress-customizer-script',
get template directory uri().'/javascript/theme-options.js’,
array( 'jquery','customize-preview' ),
ll)
true

);
add_action( 'customize preview init', 'prowordpress customizer script' );
This function includes the script in the footer of the customizer page and ensures that the dependencies (jQuery

and the customizer preview script) are loaded ahead of your custom script. With your JavaScript file in place and the
script included in the page correctly, you can now test the script to ensure that it is working (see Figure 7-12).

215


http://wp-themes-book.com/07005

CHAPTER 7 © THEME OPTIONS AND THE THEME CUSTOMIZER

| 800 Customize Pro WordPress % || e
L C'  [7 review.dev/wordpress/wp-admin/customize.php avy B =
2 apps [ Natwest < Hsee [P Santander Virgin == E.ON Apress Upload - ap WP Sharten [ Other Bagkmarks

— oy This is a sticky post!!! Make sure it sticks! This should then split into other pages with
NS ve layout, images, HTML tags, and other things.
You are previewing Read more »
Pro WordPress - book dev Many Trackbacks
Site Title & Tagline This post has many trackbacks.Lorem ipsum dolor sit amet, consectetuer adipiscing

elit. Cras ligula. Vivamus urna diam, mollis nec, pellentesque et, semper nec, lorem.

Nam lobortis, eros a feugiat porttitor, nibh mi imperdiet nulla, eu venenatis diam enim
non eros. Duis consectetuer augue a ante. Vivamus adipiscing orci et ipsum. Ut

Link Color consectetuer lacinia magna. Etiam [...]

B current Coior | #16€000 | Default Rea

] Comments Disabled

(@)

Comments are disabled. This post should display no comment-reply form.

Read more »

Collapse © Adam Onishi 2013

Figure 7-12. The theme customizer live preview in action

Adding Live Preview to Default Options

By default, all the standard WordPress options in the customizer use the transport 'refresh' option instead of
postMessage, so to set this up you'll need to change the transport parameter and also add more to your script file to
update the default options as well as your own custom options.

To change the transport setting in the default options, you need get the options with the customizer and then
update them. Thanks to the way the theme customizer is built in WordPress, it is a lot easier with its object-oriented
(OO0) nature. To get the default settings, you use the get_setting() method of the customizer object and then change
the property of the transport setting. This is all possible to do in one line of code because of the OO nature of the
customizer. You also need to make sure that you perform this action from within the customize_register function
you created earlier in the chapter.

$wp_customize->get_setting( 'blogname' )->transport = 'postMessage';

This is the equivalent of saving the blogname setting into its own object variable with the get setting() method
and then changing the property using the new object. But because of the way PHP works with objects, you can just
chain the command (as shown previously). To update all the default options, run the same line of code with the
other setting IDs:

$wp_customize->get setting( 'blogname' )->transport = 'postMessage';

$wp_customize->get setting( 'blogdescription' )->transport = 'postMessage';
$wp_customize->get setting( 'header_ textcolor' )->transport = 'postMessage';
$wp_customize->get setting( 'background color' )->transport = 'postMessage';

216



CHAPTER 7 © THEME OPTIONS AND THE THEME CUSTOMIZER

Once all the default options have had the transport function set to postMessage, you can add the JavaScript to
handle their value changes to your theme customizer JavaScript file:

(function (%) {

// Update site title in real time
wp.customize( 'blogname', function( value ) {
value.bind( function( to ) {
$( '#site-title a' ).html( to );
})s

P

// Update the site description in real time
wp.customize( 'blogdescription', function( value ) {
value.bind( function( to ) {
$( '.site-description’ ).html( to );
});

)

// Update site title color in real time
wp.customize( '"header textcolor', function( value ) {
value.bind( function( to ) {
$('#site-title a').css('color', to );
})s

)

// Update site background color in real time
wp.customize( 'background color', function( value ) {
value.bind( function( to ) {
$('body").css("'background-color', to );
b

});

// Update link color in real time

wp.customize( 'link_color', function( value ) {
value.bind( function( to ) {

$('a").css('color', to );

});

});

})( jQuery );

With that JavaScript added, all the default options can now be updated, and the changes happen in real time as
well as your custom options (see Figure 7-13).

217



CHAPTER 7 © THEME OPTIONS AND THE THEME CUSTOMIZER

| 800 Customize Fro WordPress = | | "
L C'  [7 review.dev/wordpress/wp-admin/customize.php [0 u =
i apps [l Natwest @ nsec P sanander [ Virgin - EON Apress Upload - ap WP Shorten [ Other Bagkmarks
This is a sticky post!!! Make sure it sticks! This should then split into other pages with
Cancel Save & Publish s N
layout, images, HTML tags, and other things.
Header Text Color Many Trackbacks

[ curentcoor | #d60660 | Ciear

This post has many trackbacks.Lorem ipsum dolor sit amet, consectetuer adipiscing
M elit. Cras ligula. Vivamus urna diam, mollis nec, pellentesque et, semper nec, lorem.
— Nam lobortis, eros a feugiat porttitor, nibh mi imperdiet nulla, eu venenatis diam enim
non eros. Duis consectetuer augue a ante. Vivamus adipiscing orci et ipsum. Ut
consectetuer lacinia magna. Etiam [...]

Read more »

Comments Disabled

Comments are disabled. This post should display no comment-reply form.

8 Esrees

Read more »

Collapse © Adam Onishi 2013

-adri ize.phps

Figure 7-13. Default theme options being updated in real time

Adding Custom Controls

At the moment, WordPress has only a limited number of controls you can use for settings in the customizer. This
situation is likely to change over time as WordPress updates, but what if you now want to add your own more bespoke
controls to the customizer? Fortunately, because of the way the customizer has been built, this becomes quite a
straightforward task, but it requires some knowledge of OOPHP. I will guide you through some examples that you
should be able to follow even as a beginner with OOPHP.

It's worth looking at one of the controls that already exists in WordPress. The code is a little too large to include
here, but if you go to your WordPre ss install and look up the file class-wp-customize-control.php, you'll see all
the code that goes into a customizer control. All the different controls are included in that file and all are created as
classes (as you saw earlier in the chapter when you implemented the color picker control). If you take a look at line
318 of the class-wp-customize-control.php file, you'll see the WP_Customize_Color_Control class defined:

Jx*

* Customize Color Control Class

ES

* @package WordPress

* @subpackage Customize

* @since 3.4.0

*/
class WP_Customize Color Control extends WP_Customize Control {



CHAPTER 7 © THEME OPTIONS AND THE THEME CUSTOMIZER

Here you can see that the WP_Customize_Color_Control is an extension of the main WP_Customize_Control
class. This is where you start to see clues about how to create your own custom control. Every control that exists in
WordPress for the customizer is an extension of the WP_Customize_Control; this holds a few properties and some
methods:

e enqueue(): Used to enqueue control-related scripts/styles
e value(): Gets a setting’s value
e to_json(): Refreshes the parameters passed to the JavaScript via JSON

e check capabilities(): Checks if the theme supports the control and checks user
capabilities—test if a user is allowed access to the control

e maybe render(): Checks capabilities and renders the control

e render(): Renders the control wrapper and then calls the render_content() function
e get link(): Gets the data link parameter for a setting

e 1link():Renders the data link parameter

e render content(): Renders the control’s content

If you again look through the class-wp-customize-control.php file, you will see some control classes overriding
these methods with their own and some not declaring them at all. In that case, as with all OOPHP classes, the
extended class will inherit the functionality from the parent class’ method.

When creating your own control class, you just need to do the same as the WordPress built-in controls have done.
To start creating your own control, go back to the customizer file you created to add the settings before and create a
new control class. This class will add a textarea control so the user can add a paragraph of text about the web site.

The first step is to create the class, which is done in the same way as the default controls have done in WordPress:

class PTD Textarea Control extends WP_Customize Control {
// Do stuff here
}

To make the function more resistant to errors in case someone attempts to use your theme on a WordPress install
prior to version 3.4, you can add the class inside a conditional that checks for the existence of the default class:

if( class_exists('WP_Customize Control') ) {

class PTD Textarea Control extends WP_Customize Control {
// Do stuff here
}

With your class set up, you can create the methods needed to override the ones from the parent class to output
your new textarea control. The only real method you need to add for this control is the render _content () method to
display the textarea itself. Make sure you are aware of how the customizer outputs the HTML for other controls, so you
can be consistent when you do so for your custom controls. Take a quick look at the Site Title & Tagline section of the
controls; if you view the HTML, you see this:

<label>
<span class="customize-control-title">Site Title</span>

<input type="text" value="Adam Onishi" data-customize-setting-link="blogname">
</label>

219



CHAPTER 7 © THEME OPTIONS AND THE THEME CUSTOMIZER

For consistency, it’s best to stick to this format with the <label>, <span>, and <input> in the same structure.
Back to the controls render content() function. To add a control with the textarea, you can create a function
with the following code:

public function render content() {

>
<label>
<span class="customize-control-title"><?php echo esc_html( $this->label );
?></span>
<textarea class="large-text" cols="20" rows="5" <?php $this->1link(); ?>>
<?php echo esc_textarea( $this->value() ); ?»
</textarea>
</label>
<?php

The function outputs the HTML, following the same structure as the default options. You also need to use some
of the parent class methods to output the details for the input, such as the value, link (required for the input to be
saved), and label, which is set by the user when they add the control.

Now the control is set up, so you can use the class to create a new control in the theme customizer in the standard
way you've seen so far. Just add in the new control class where you previously had one of the defaults:

$wp_customize->add_setting( 'site_intro' , array(

"default’ = ',
"transport' => 'postMessage',
));
$wp_customize->add_section( 'prowordpress site info' , array(
"title' => _ ('Site information', 'prowordpress'),
"description' =>  ('Custom site information for all pages', 'prowordpress'),
"priority’ => 20,
));
$wp_customize->add_control( new PTD Textarea Control( $wp customize, 'site intro control', array(
'label’ => _ ( 'Website introduction', 'prowordpress' ),
'section’ => 'prowordpress_site info',
'settings’ => 'site_intro’',

M)

With this included in your theme, the textarea now appears in the theme customizer, as you can see in Figure 7-14.

220



CHAPTER 7 © THEME OPTIONS AND THE THEME CUSTOMIZER

Site information

Website introduction

Hello this is the site introduction

Figure 7-14. The textarea control in the customizer

The simple textarea example I used is also part of a series of custom controls created by Paul Und. You can find
some great examples of custom controls on his Github account (http://wp-themes-book.com/07006), including a
lot of useful ways of selecting different post types and categories from the site through the customizer. Currently, the
controls include the following:

Category Dropdown: Creates a drop-down list of all categories on your WordPress theme
Date Picker: Adds a date picker control to the theme customizer

Layout Picker: Adds three images of layouts to the page for you to select a new style
Menu Dropdown: Creates a drop-down list of all menus on your WordPress site

Post Dropdown: Creates a drop-down list of all posts on your WordPress site

Tags Dropdown: Creates a drop-down list of all tags on your WordPress site

Text Editor: Creates a text box with the TinyMCE textarea

Textarea: Creates a textarea input field

Taxonomy Dropdown: Creates a drop-down list of taxonomies

User List Dropdown: Creates a drop-down list of users for a role

Adding a Color Palette Selector

This is a feature I mentioned earlier in the chapter with regards to improving user experience when creating
options for your themes. Instead of giving your users a whole list of different colors to customize in the theme
(see Figure 7-15), why not curate a series of color schemes that work well for your theme and give the users a
choice between only a few options? Doing so enables the user to make the theme a bit more unique and feel less
overwhelmed by the number of choices. It is also a good way of keeping some design control over your theme.

221


http://wp-themes-book.com/07006

CHAPTER 7 © THEME OPTIONS AND THE THEME CUSTOMIZER

Header Text Color
Select Color

Link Color
Select Color

Header Background Color

Select Color

Background Color

Select Color

Sidebar Color
Select Color

Figure 7-15. Too many color options can result in a bad user experience in your theme

This control could easily be created using a standard radio button selection, but it would have to show the color
options for the user as well. When using the option in your theme, instead of outputting the setting via some inline
CSS (as you've seen), it would be better to include a separate full style sheet containing the color scheme styles.

I'll cover both of these methods here, starting with the control.

Building the Control

The control is a series of radio buttons with images that represent each different color palette. To use it, you can
extend the basic control class and add something along the lines of the following code. Most of this is hard-coded to
the control, but you could, in theory, set it up to enable users to add a custom location for the color palette files and
pass in custom names for each of the color palettes. For now, however, this suits our purpose:

class PTD_Color_Scheme_Control extends WP_Customize Control {

public $type = 'color_palette';

222



CHAPTER 7 © THEME OPTIONS AND THE THEME CUSTOMIZER

public function render content() {

$name = ' _customize-radio-' . $this->id;
$values = array(
'palette-1' => 'Palette 1°',
'palette-2' => 'Palette 2',
'palette-3' => 'Palette 3',

);
>
<span class="customize-control-title">Color palettes</span>
<?php

foreach( $values as $value => $label ):
>
<label class="color-palette-option">
<input type="radio" value="<?php echo esc_attr( $value ); ?>"
name="<?php echo esc_attr( $name ); ?>" <?php $this->1link(); checked( $this->value(), $value ); ?> />
<img src="<?php echo get template directory uri() .
'/images/color-palettes/' . $value . '.png'; ?>" alt="<?php echo $label; 2>">
</label>
<?php
endforeach;

This function creates a list of radio buttons in labels with images for each of the different color palettes available.
AsImentioned, it is currently hard-coded, but if you're defining this in your theme, it should be no problem for you to
edit the whereabouts of the images.

To go along with the new control, I also added another custom function to add a little styling to the radio buttons.
When working with the WordPress admin, you usually add styles either inline or via enqueueing the styles with the
wp_enqueue_style() function using the admin_head action hook. However, with the customizer open, this hook no
longer fires, so you need to use the customize_controls print_styles hook instead:

function prowordpress customizer styles () {
7>
<style>
.customize-control-color palette .color-palette-option { float:left; width:100%;
margin-bottom:10px; }
.customize-control-color_palette .color-palette-option input { float:left;
margin:13px 10px 0 0; }
</style>
<?php
}

add_action( 'customize controls print styles', 'prowordpress customizer styles', 30 );

This adds a couple of lines of style to the customizer to make the color palette look a bit more considered; you can
see the results in Figure 7-16.

223



CHAPTER 7 © THEME OPTIONS AND THE THEME CUSTOMIZER

Color Palette

Color palettes

Figure 7-16. The color palette customizer control

Once the control is working, you can set up your theme to include the correct style sheet, depending on the color
palette chosen.

Adding Color Palette Styles to Your Theme

There are two issues to consider when adding the new color palettes to your theme: the need to add the correct style
sheet for the color palette to the theme and to display the color palette changes in the theme customizer. The first
problem shouldn’t be too hard; you can run a query in the function that includes your styles for the front end with the
option set by the user using get_theme_mod (). However, the second is a little trickier.

To take care of the first method quickly, get the current setting from the database with the get_theme_mod ()
function and use it in the wp_enqueue_style() function (unless, of course, you used the type 'option’, in which case
you'll need the get_option() function):

$palette = get_theme_mod('color palette', 'palette-1');
wp_enqueue_style( 'palette', get template_directory uri() . '/css/' . $palette . '.css',
array('style') );

That was quite straightforward; the color palette style sheet will be included in your theme after the main style
sheet as the array of dependencies (the third parameter) contained the ID of the main style sheet.

Next is the tricky part: including your color palette as part of the theme customizer page. Instead of creating a
style sheet for each color palette, you'll need a single style sheet for all of them or you'll need to create a second style
sheet for each color palette to use specifically for the customizer. The reason is that to be able to update the preview,
you need to be able to initiate the styles through JavaScript. Although you could add or update a single style sheet link
in the preview, the quicker way to do this is through changing a class on the body of the preview that relates to each
color palette.

224



CHAPTER 7 © THEME OPTIONS AND THE THEME CUSTOMIZER

To include the preview styles, you can add a line to the prowordpress_customizer script() function you created
earlier to add the live-updating functionality.  added a separate style sheet to preview all palettes in this example:

function prowordpress customizer script()

{
wp_enqueue_script( 'prowordpress-customizer-script’,
get template directory uri().'/javascript/theme-options.js’,
array( 'jquery','customize-preview' ),
TN
true
)
wp_enqueue_style( 'palette', get template directory uri() . '/css/palette-previews.css' );
}

add_action( 'customize preview init', 'prowordpress customizer script' );

For now, the style sheet being added is just an example that will change the background color based on the color
palette selected:

.preview-palette-1 { background-color:rgb(10,44,85); }
.preview-palette-2 { background-color:rgb(207,31,40); }
.preview-palette-3 { background-color:rgb(13,121,58); }

With these in place, you can now add another function to the JavaScript file to update the body class of the page
based on which color palette has been selected:

wp.customize( 'color palette', function( value ) {
value.bind( function( to ) {
for(var i=1; i<4; i++ ) {
$('body"').removeClass('preview-palette-' + i);
}

$('body').addClass('preview-' + to);
})s
})s

The background color now changes every time you select a new color palette for the theme (see Figure 7-17).
And when you save and go to the live site, the single color palette style sheet you created for each palette will be
included based on the user selection.

225



CHAPTER 7 © THEME OPTIONS AND THE THEME CUSTOMIZER

8086 Customize Pro WordPress = | | -
= C'  [7 review.dev/wordpress/wp-admin/customize.php ey @9 =
B vatwest o Hsac P Santander Virgin  += E.ON Apress Upload - ap WP Shorten (3 Other Bagkmarks
Cancel Save & Publish
You are previewing

Pro WordPress - book dev

Site Title & Tagline
Colors

Color Palette >

Collapsa

Figure 7-17. The color palette live update in action

Building Your Theme, Part 6

In the final part of the chapter, you'll extend your custom theme further with some theme options through the theme
customizer based on what you've learned so far in the chapter. With the theme being aimed at restaurants to use and
customize for their own locations, it's worth adding a few customization options for users to help make your theme
more easily represent their restaurant.

In this section you’ll look at creating four custom options for the customizer:

e Logo

e  Contact details

e  Featured product selector
e  Color palette

I'll walk you through the the options, but you should be able to implement a couple of them based on what you
learned so far in the chapter. Of the four options you'll create, two will use controls provided for you by WordPress as
standard, and the other two will make use of custom controls that you can create yourself.

You should add the postMessage transport method in your custom theme to all the default options provided by
WordPress. You've seen how to do that, so it shouldn’t be too difficult.

Start by creating a new PHP file and include it in the functions file inside the main prowordpress_setup()
function (similar to creating widgets for your theme). Remember to start your theme options file with the
customize_register function and set up the postMessage transport value on the default WordPress options.

226



CHAPTER 7 © THEME OPTIONS AND THE THEME CUSTOMIZER

Adding a Logo Option

The first option is to enable the user to upload a custom logo, which needs to be positioned on the page in your
theme and updated through the theme customizer preview screen. You can use the standard WordPress control class
WP_Customize Image_Control. It takes the same arguments as all the standard WordPress controls, so to set up a new
image control in a new section of the customizer for your theme, your code could look something like this.

$wp_customize->add_setting( 'site logo' , array(

"default’ = ',
"transport’ => 'postMessage’,
));
$wp_customize->add_section( 'prowordpress logo section' , array(
"title' => _ ('Custom logo', 'prowordpress'),
"description’ => _ ('Add a custom logo for the site', 'prowordpress'),
'priority’ => 30,
));
$wp_customize->add_control( new WP_Customize Image Control( $wp_customize, 'site logo', array(
'label’ => _ ( 'Site logo', 'prowordpress' ),
'section’ => 'prowordpress_logo section',

));

With this code added to your customize register function, you are ready to set up your template to add the
logo to your theme as well as the JavaScript to add the logo to the theme preview page. Adding the image to the theme
requires using the get_theme_mod() function to output the image to the template. With the image upload control, the
data stored is the full URL of the image, so to output the image, echo the value returned from the get_theme_mod()
function into the SRC attribute of an <img> tag.

<h1>
<a href="<?php home_url( '/' ); >">
<img src="<?php echo get_theme_mod('site_logo'); ?>" alt="<?php
bloginfo( 'blogname' ); ?>" class="site-logo">
</a>
</h1>

Next, add the JavaScript to update the header automatically in the theme customizer preview. This process is
helped by adding a class, in this case 'site-logo', to the <img> tag. In the JavaScript file, you can now add a small
amount of jQuery to update the SRC attribute of the image whenever the value is updated (similar to the way you
updated CSS with other options in the chapter so far):

wp.customize( 'site logo', function( value ) {
value.bind( function( to ) {
$('img.site-logo").attr("'src', to);
});

)

With the first option complete, you can now add a text area option, similar to the one you created earlier in the
chapter, to allow the user to add contact details to the site footer. I won’t add the code to show you what to do because
you should be able to write it yourself; it just requires you to re-create the text area custom control, as you did earlier
in the chapter.

227



CHAPTER 7 © THEME OPTIONS AND THE THEME CUSTOMIZER

Adding a Featured Post Option

Two options down; just two more left to go before the end of the chapter. In Chapter 5, you created a custom field for
the products to select whether a product should be displayed as a featured image on the home page. Although this is a
great way to add the functionality to your theme, it would be good if users could see the featured product updated on
the home page before they publish the change. This is something you can easily achieve with the theme customizer.

To add a featured product option to the customizer, you have to create another custom control based on the idea
behind one of the controls in Paul Und’s customizer controls on Github (http://wp-themes-book.com/07006). This
control adds a drop-down list of the available products for the user to select from.

To begin, you need to create a new class, as you did before when creating a custom control. However, instead of
just adding a single method, the render_content() method, you also need to add a new property to the class. This
property will store the post type you want to list in the control:

class Posts Dropdown Custom Control extends WP_Customize Control {

Jx*
* @access public

* @var string

*/

public $post_type = 'post';

/**
* Render the control's content

*/

public function render content() {

}

The new property defined here adds a default value of 'post' so thatif the post_type parameter isn’t passed to
the control, the control will just display the default 'post' post type. With the beginning of the new class setup, you
can now create the rest of the render_content () function, which will set up a select input and add all the available
posts to the options and also check whether one has been selected:

public function render content() {
>
<label>
<span class="customize-post-dropdown"><?php echo esc_html( $this->label ); ?></span>
<select id="<?php echo $this->id; ?>" <?php $this->1link(); ?>>
<option value="">Please select</option>
<?php
$args = wp_parse_args( array(
'post_type' => $this->post_type,
"numberposts’ => '-1',

)
)s
$posts = get posts($args);

foreach ( $posts as $post ) {
echo '<option value="'.$post->ID.'" '.selected($this->value(),
$post->ID).">".$post->post_title.'</option>’;

>

228


http://wp-themes-book.com/07006

CHAPTER 7 © THEME OPTIONS AND THE THEME CUSTOMIZER

</select>
</label>
<?php
}

That'’s all there is to the custom control: it will generate a drop-down option to allow the user to choose from any of
the selected posts for the post_type you set the control up to display. Next is to add the control to the theme customizer:

$wp_customize->add_setting( 'featured item' , array(

"default’ ="',
"transport’ => 'refresh’',
));
$wp_customize->add_section( 'prowordpress featured item' , array(
"title' => _ ('Featured item', 'prowordpress'),
'description’ => _ ('Add a featured item to the homepage', 'prowordpress'),
'priority’ => 40,
));

$wp_customize->add_control( new Posts_Dropdown Custom_Control( $wp_customize, 'featured item',
array(

'label’ => _ ( 'Featured item', 'prowordpress' ),

'section’ => 'prowordpress_featured item',

'post_type' => 'ptd_menu',
));

Again, not much different from what you would expect because you've done this a few times now. One thing to
point out, however, is that the transport parameter is set to 'refresh' for the setting. The reason is that instead of
simply adding some content or changing a style whenever the control is updated, you will be changing the parameters
of a query for the front page of the site. In JavaScript, this would involve doing some complicated Ajax request to some
PHP to just return the data for the new content to appear. Instead of doing that, it’s much easier to leave the page to
refresh whenever the setting is updated so the new content can be generated with PHP instead.

Finally, you should add this option to your front-page template. You added the featured items to the page before,
so you should remember this code that was used:

$args = array(

'post_type' => 'ptd_menu’,
'orderby’ => 'rand',
'posts_per page' => 1,
'meta_query' => array(
array(
"key' => 'ptd_menu_item featured’',
'value' => 'on',
‘compare’ => '='
)
)

);

$featured = new WP_Query( $args );

229



CHAPTER 7 © THEME OPTIONS AND THE THEME CUSTOMIZER

Create ameta_query to look for items with “featured” selected. This time, however, you can simplify the query
slightly by querying only for a certain post ID because you can get it from the new theme customizer option:

$item id = get theme mod( 'featured item' );
$args = array(

'post_type' => 'ptd_menu',
'posts_per page' => 1,
p' => $item id,

);

Now the query to get the featured item has been hugely reduced and should save a bit of time executing because
there’s no longer a need to look up any metadata for the posts; the query can instead just pull out the post type directly
from the ID.

Adding a Color Palette Option

This is another option I will let you create yourself. The final code is in the accompanying code examples, but based
on what you've learned so far in the chapter, you should be able to create the color palette control yourself and add it
to the theme.

With these four options complete, you should now have a fairly good set of theme customizations to launch
your theme with. There are probably more options you could add to benefit the user, but these few give you a good
starting point.

Summary

This chapter discussed why theme customization options are an important feature for your themes and how to
go about adding them using the new theme customizer. Theme options are a great way to make your theme more
appealing to users, enabling them to make your theme uniquely theirs.

I talked briefly about how theme options were handled prior to version 3.4 and the emergence of the theme
customizer; it’s likely you'll still see some theme options still appearing on some themes because people are still
making the adjustment in their own practices. However, I say that it’s important to embrace the new features of
WordPress because they are there for a good reason, and it’s safe to say that you should definitely make use of the
theme customizer.

You also learned a lot about how to handle the theme customizer and how to add standard and custom controls
to make your theme customizations more dynamic. Knowing the power of what can be done with both standard and
custom controls will be a great benefit to your themes and give a lot more power to your users.

Finally you have once again added to the restaurant theme you’ve been building throughout the book, adding
extra power with the theme customizer.

In the next chapter, you'll take a look in depth at how the user system works in WordPress, discovering the power
of the Roles and Capabilities system and learning how to add some custom user features to your themes.

230



CHAPTER 8

Users, Roles, and Capabilities

So far, this book has covered a lot of ways to work with and customize the content of a WordPress site through theme
development. This chapter will focus on who manages the content in the form of users. Users, in this sense, are people
who can log in to your site through WordPress, as opposed to people who visit the front end of the site.

In this chapter, you'll look at the core system behind users in WordPress—how they get their privileges and how
you can manipulate them. You'll also see how to create some user-oriented features for your WordPress sites, such as
custom login and registration pages, as well as creating user-only sections of your web site.

User System

A WordPress site can use its users for any number of reasons, not always just for managing the site content. Thanks
to the comprehensive WordPress user system, doing this is made very easy. Whether you have a site that has a lot of
article authors, requires editors to manage the main site, or even has a set of users who can just maintain a profile and
post comments, the WordPress user system makes doing so a breeze.

The user system in WordPress consists of two main concepts: Roles and Capabilities.

Roles

In WordPress, roles refer to a grouping of users; each user is assigned a role and that role is assigned a series of
capabilities. In total, there are six default roles in WordPress, five of which you're probably familiar with, and the sixth
you know only if you have used a multisite install. Following is a summary of the default roles and examples of their
initial usage; later in the chapter, you'll find out more about how to modify/extend their default capabilities.

e  Subscribers: Have access only to their own profile and can leave comments under their
username.

e  Contributors: Have access to write their own posts, but can’t publish them.
e  Authors: Have access to write and publish their own posts.
¢ Editors: Have access to manage all posts and pages on the site.

e Administrators: Have access to all administration features on a single site install; limited to
the individual site administration features on a multisite install.

e  Super Admins: Have access to all administration features across the network of sites in a
multisite install.

When a site is created, during installation you always set up the initial administrator user, but from then on, the
default new user type can be set in Settings » General.

231



CHAPTER 8 " USERS, ROLES, AND CAPABILITIES

Another concept about user roles that some people find hard to grasp is that WordPress user roles are not
hierarchical. Although it may seem to be because of the way default roles are set up, it is not the case. Editors are not
superior to authors; they simply have more capabilities. I think Justin Tadlock puts it really well in his article on Roles
and Capabilities:

[R]emember this — roles are defined by what capabilities they are granted. There is no hierarchy.

—Justin Tadlock

Admins vs. Super Admins

There are two administrator roles within WordPress: Administrator and Super Admin. The Super Admin appears only
on multisite installs of WordPress, whereas usually there is only the Administrator role on a single site that has all the
capabilities available.

However, working with multisite not only introduces the Super Admin role but also reduces the capabilities of
the single site Administrator role (by default). In multisite, the Super Admin is the only one with all the capabilities
for the entire network—including some capabilities introduced specifically for multisite. The ability to install themes
and plugins, update the WordPress core, and add users are all now given only to Super Admins and removed from the
multisite Administrator role.

Capabilities

Now let’s look at the actual power behind the WordPress user system: capabilities. You can think of capabilities as
permissions that users are given to do certain things in WordPress. For example, edit_posts is a capability that allows
users to edit their own posts.

Capabilities are assigned to each role, and roles are assigned to users, which gives them their level of abilities in
the system. The edit_posts capability is the one allowing you to edit your own posts, which is what is assigned to a
contributor role. However, the contributor role does not have the publish_posts capability, meaning that another
user with that capability must publish the posts written by a contributor.

In total, there are more than 60 different capabilities (and a few more with a multisite install). To see the full list
and a table of how they relate to the default roles, see the Codex page: http://wp-themes-book.com/08001.

As a theme (or plugin) developer, you can modify these roles and grant different capabilities to different roles, but
I suggest that you maintain the capabilities of each of the default roles as much as possible and build in other roles as
and when they are needed.

One Special Capability

There is one very special capability in WordPress that needs to be enabled specifically: unfiltered _upload. This
capability allows users to upload files of any type (normally uploads are filtered through a list of accepted file types
before they are allowed).

To enable this capability, you need to define a constant in the wp-config.php file. Add the following line of code
anywhere above the line where /* That's all, stop editing! Happy blogging. */ appears:

define( 'ALLOW_UNFILTERED UPLOADS', true );
In a single site install, this code enables the capability for all user roles, but in multisite it is available only to
Super Admins. This is clearly not a capability that should be enabled lightly; the filter on uploads is in place for

security reasons, but if you are creating a site that requires the upload of certain files not accepted by the filter, this is
how to activate that ability.

232


http://wp-themes-book.com/08001

CHAPTER 8 ' USERS, ROLES, AND CAPABILITIES

Customizing Roles and Capabilities

Now you can start to see how to use roles and capabilities to your advantage and manipulate them for your site.
Customizing the roles and capabilities in WordPress enables you to give more specific permissions to your users and
extend the default roles if you need to.

How Roles and Capabilities Are Stored

First, let’s look at how WordPress stores roles and capabilities so you can understand exactly what’s happening in
the database when you're modifying anything. I think it’s important to understand them in detail so it’s easier to
conceptualize and understand the methods you're working with.

In fact, it's amazing how easily user roles are stored in the database: as a single option in the wp_options table.
The wp_user_roles option is where you'll find a serialized array of all the roles and capabilities used in WordPress; it
looks similar to this:

a:5:{s:13:"administrator";a:2:{s:4:"name";s:13:"Administrator";s:12:"capabilities";a:62:
{s:13:"switch_themes";b:1;s:11:"edit themes";b:1;s:16:"activate plugins";b:1;s:12:"edit_
plugins";b:1;s:10:"edit_users";b:1;s:10:"edit_files";b:1;s:14:"manage_options";b:1;s:17:"moderate_
comments”;b:1;s:17:"manage_categories”;b:1;s:12:"manage_links";b:1;s:12:"upload_files";b:1;s:6:"impo
rt";b:1;s:15: "unfiltered html";b:1;s:10:"edit posts";b:1;s:17:"edit others posts"; [...]

That’s not actually all of it, of course; if I included it all, it would take up the rest of this page! If you unserialize it,
though, and take a look at the expanded array, you'll see segments like this:

[author] => Array

(
[name] => Author
[capabilities] => Array

[upload files] => 1
[edit_posts] => 1
[edit_published posts] => 1
[publish _posts] => 1

[read] => 1

[level 2] => 1

[level 1] => 1

[level 0] => 1

[delete posts] => 1
[delete_published posts] => 1

This code shows the Author role, but the other four are formatted in exactly the same way. Each role has its own
array in which is stored the full name of the role and an array of the capabilities, with each one set to 1 (true). As you
can see, capabilities are stored purely as strings in the keys of these arrays; there’s not really much more to it than
that. However, when you're creating new roles and capabilities, you'll start to understand just what’s going on in the
database.

233



CHAPTER 8 " USERS, ROLES, AND CAPABILITIES

You might also notice that in the array is a series of “level” entries:

[level 2] => 1
[level 1] => 1
[level 0] => 1

They date back to the old user system in WordPress, which was a series of “levels” for each user. The current roles
and capabilities system was introduced way back in version 2, and the old levels system has since been deprecated from
version 3 onward. However, there are some plugins that over time have not been updated and still use the very outdated
levels system. So for their sake, the levels markers have been left in for each role. This is definitely not something you
should be coding for in your themes/plugins, so ensure that you stick to the current capabilities system.

The WP_Roles Class

The WordPress WP_Roles class actually controls the user roles; it contains all the functions you'll be using to
manipulate user roles and capabilities in your themes/plugins. You don’t need to access the class directly because
WordPress does it for you. When you call a function such as get_role, WordPress checks to see whether there is
already an instance of the WP_Roles class; if not, it creates one and then runs the WP_Roles->get_role method.

Almost any time you work with roles and capabilities in WordPress you'll use methods of the WP_Roles class.
These are the main ones you'll see in this section:

e add_role

e remove_role
e get role

e add cap

e remove cap

There are several more, but you'll look at ways to use them later in the chapter.

Creating a Role

Creating a new role in WordPress is a simple case of using the add_role function and specifying the new role with a
unique slug, a name, and some capabilities. The capabilities you specify can include some of those already set up in
WordPress or custom capabilities.

To add a custom capability, you just need to specify a name for it in the array and set it to true (the value 1 in this
case). There is no special function for creating a custom capability because everything is stored as part of the array in
the options table of the database. When creating custom roles and assigning capabilities, be careful to spell everything
correctly when you assign WordPress default capabilities.

Here’s an example of adding a new role for your users. The role will enable them to create and publish their own
posts, edit and publish others’ posts, but not access the site’s pages.

function prowordpress _add moderator role () {
$result = add role('moderator', 'Moderator', array(

'read' => 1,
'edit_posts' => 1,
'delete posts' => 1,
'edit_others posts' => 1,
'edit_published posts' => 1,
'publish_posts' => 1,

234



CHAPTER 8 © USERS, ROLES, AND CAPABILITIES

'delete_others posts' => 1,

"delete_published posts' => 1,

'moderate_comments' => 1,

'manage_categories' => 1,

'upload_files' => 1,

'edit_pages' => false, // explicitly deny capability
));

if (null !== $result) {

echo "Role created";
} else {

echo "Role already exists!";
}

}
add_action('after switch_theme', 'prowordpress add moderator role');

The add_role function shown here takes the first two parameters of a slug and name, followed by the array
of capabilities for that role. Here you have all the capabilities for the moderator to be able to edit all the posts and
comments. Notice that the lastitem in the array is 'edit_pages'.Itis set to false, which means this capability is
explicitly denied to the user role.

The result of the add_role function is then stored in the variable $result. The function will return null if the role
type already exists and a WP_Role object if the role is created successfully. To illustrate this, the end of the function
checked the result returned and just echoed out a message depending on the status of the result.

Because this function adds to the option in the database, there’s no need to run it multiple times, so here I added
itusing the after_switch_theme action. It will be run as soon as your theme has been activated and only once, so
as soon as someone installs and activates your theme, the new user role will be available (see Figure 8-1). It's not
necessarily a theme activation hook, but you can be sure it will run only on the active theme because after the theme
has been switched, only one theme’s code will be available to be run.

Membership Anyone can register

New User Default Role v Subscriber

Administrator

Timezone Editor 4
Author

Contributor iame timezone as you.
Moderator

Date Format () August 19,2013
2013/08N19
108/19/2013
)19/08/2013
(®)Custom: jSFY  18th August 2013

UTC time is 2e13-88-19 10:85:40

Documentation on date and time formatting.

Figure 8-1. The list of roles in Settings » General with your new role

235



CHAPTER 8 " USERS, ROLES, AND CAPABILITIES

Removing a Role

Besides creating a role when the theme is installed, you also need to make sure you clean up the WordPress site when
the theme is deactivated. Although there’s no deactivation hook for themes as there is for plugins, you can use a
similar trick using the after_switch_theme action, which is run only on the theme that is being disabled at the time:

function prowordpress remove moderator role () {
remove role( 'moderator' );
}

add_action('switch_theme', 'prowordpress remove moderator role');

The code for this one is ridiculously simple; you just call the remove_role function with the slug of the role you
want to remove.

Adding Capabilities

To add capabilities for existing roles, you can either add existing capabilities in WordPress to the default roles or you
can create new capabilities entirely.

You need to run two functions to be able to add capabilities to a user role: get the user role you're going to add to
by using the get_role function and then add the capabilities with the add_cap method of that role.

When you get the role with the get_role() function, you're creating a WP_Role object in the variable you assign.
The WP_Role class is slightly different from the WP_Roles class discussed earlier in that it deals only with a single role at a
time, which is why you're using it to edit a role and add capabilities. It still interfaces with the WP_Roles class eventually,
but the object you're creating is defined through the WP_Role class, which is an important distinction to make.

As an example, you'll be editing the Author default role in WordPress; as I already mentioned, this is probably
not the most ideal solution. People who use your theme might either know a little about WordPress or look to find out
about WordPress when they’re using it, and if you're editing the default roles, it might come as a surprise to them that
the default roles don’t do what they’re supposed to. So this is for demonstration purposes only:

function prowordpress_setup_roles () {
$author = get role('author');

$author->add _cap('edit_pages');

$author->add_cap('publish_pages');

$author->add_cap('delete_pages', false);
}

add_action('after switch theme', 'prowordpress setup roles');

The function shows how you can add new capabilities to the Author role: first you get the role and store it in
the $author variable using the get_role function; then with that object you use the add_cap method to add the
capabilities you need for the role. There are two things to note here. First, the method deals with only one capability
at a time, so to add multiple capabilities, you need to call the method multiple times. Second, it’s possible to add a
second argument to the add_cap function, which is a Boolean, as to whether the capability is to be granted or denied.
The default is true, but to deny a capability you can pass false as the second argument.

Because of the way the roles are stored in the database, you should be calling this function when the theme is
activated so it is run only once.

236



CHAPTER 8 ' USERS, ROLES, AND CAPABILITIES

Removing Capabilities

If you're setting up your theme and modifying roles and capabilities, you need to make sure you're resetting all your
changes when your theme is deactivated. Or if you want to make a change to a user role by removing some of its
default capabilities, you can do it this way (once again, this is not recommended unless absolutely necessary):

function prowordpress reset roles () {
$author = get role('author');

$author->remove_cap('edit_pages');
$author->remove_cap('publish_pages');
$author->remove cap('delete pages');

}

add_action('switch_theme', 'prowordpress reset roles');

The remove_cap method works in the same way as add_cap requiring a WP_Role object to work from and only
allowing you to remove one capability at a time.

WP_User Class

The WP_User class allows you to manipulate a user’s roles and capabilities on a per-user basis, which means you can
do things like assigning multiple roles to a single user or manually managing the capabilities of single users.

All the available functions act as methods of the WP_User class, so you need to get a user object before you can
manipulate its roles and capabilities. To get a user object, use the new operator with the WP_User class and pass it
either a user ID or the user’s login name, or use the wp_get_current_user function if you want to manipulate the
current logged-in user.

// Get the admin by user ID (admin user is always user ID 1)
$user = new WP_User( 1 );

// Get a user by their login name
$user = new WP_User( null, 'adamonishi' );

// Get the current user
$user = wp_get current user();

Once you have a user object, you can use any of the six available methods to modify the user’s roles or
capabilities:

e add role()

e set role()

e remove role()
e add cap()

e remove_cap()

e remove all caps()

237



CHAPTER 8 " USERS, ROLES, AND CAPABILITIES

Most of these methods should be fairly self-explanatory; the add_cap() and remove _cap() functions work exactly
the same way as in the WP_Roles class, but per-user instead.

The add_role() function can be used to add a entire role to a specific user, which could possibly save you from
having to add a bunch of separate new capabilities to a certain role when you're creating a series of new capabilities.
For instance, if you add the moderator role and also want to add the same capabilities to your main admin user, you
could just add the role to the admin instead of adding each new capability individually.

function prowordpress _add moderator role () {
$result = add_role('moderator', 'Moderator', array(

'read' => 1,
'edit_posts' => 1,
'delete posts' => 1,
'edit_others_posts' => 1,
'edit_published posts' => 1,
'publish_posts' => 1,
'delete _others posts' => 1,
'delete published posts' => 1,
'moderate_comments' => 1,
'manage_categories' => 1,
'upload_files' => 1,
'edit_pages' => false,

));

if (null !== $result) {
$admin = new WP_User( 1 );
$admin->add_role('moderator');

The example shows that after you create your new moderator role, you can also add this role directly to the
site administrator. Of course, if you want all administrator users to also have these capabilities, it might be best to
go through the process of adding the capabilities to the role so that new administrator users have these capabilities
without having to check when each new user is created.

The other two role functions do what their names infer: the set_role() function changes the role of a current
user to the one passed into the function, and the remove_role() function removes the role passed.

The final function, remove_all caps(),can be used to remove every capability from a user. For instance, it could
be used if a user is being blocked from accessing the site. Instead of deleting the user and allowing them to sign up
again by freeing their e-mail address, you could remove all their capabilities. This would mean that they couldn’t
access anything in the site; and because they're still technically signed up, they wouldn’t be able to sign up again.

Custom User Capabilities

So far, you've dealt with the default capabilities used within WordPress. But it’s also incredibly easy to add custom
user capabilities to WordPress because all they consist of is adding a unique capability name to a role via either the
create role or add_cap functionality.

However, when you create a custom capability, you also need to be able to test the capability to make sure it
means something within the site. There are a few ways to do this: you can assign custom capabilities to custom post
types when registering them, you can assign custom capabilities to WordPress menu pages, and you can check custom
capabilities manually.

238



CHAPTER 8 ' USERS, ROLES, AND CAPABILITIES

First let’s look at setting up custom capabilities for your users and then look at how you can apply them to various
situations. To add a custom capability to a user role, you can just use the add_cap function as you did before and pass
it a custom capability that you create:

function prowordpress add reviewer role () {
$result = add_role(reviewer', 'Movie Reviewer, array(
'read' => 1,
'edit_movies' => 1,
'publish_movies' => 1,
'delete movies' => 1,
'upload _files' => 1,
));
}

add_action('after_switch theme', 'prowordpress add reviewer role');

It then creates the user role with only custom capabilities to allow them to update and create movies of their own.
You can then add to this function the following lines to allow your moderator role to also access movies and to access
every author’s movie posts:

$mod = get role('moderator');

$caps = array (
'edit_movies’,
'publish movies',
'delete_movies',
'edit_others movies',
'delete_others movies',
'read_private movies',

)5

foreach( $caps as $cap ) {
$mod->add_cap( $cap );
}

In these few lines, I'm getting the moderator role, as with the Author role, and then instead of listing out lines
and lines of $mod->add_cap() for each capability, I just put them in an array and looped through it to make it a bit
easier to read.

Custom Post Type Capabilities

In Chapter 4, I discussed custom post types, but there was one bit I glossed over because it required quite a bit of
explaining that related more to the subject of this chapter. So here you'll take a look at the two arguments I covered
only slightly: capability type and capabilities.

In the capability type argument of the register post_type function, you have two choices when creating a
post type: post or page. Depending on which one you choose, different capabilities will apply (i.e., if post is selected,
users with the edit_posts capability can access that post type). When customizing the capabilities needed to access
a custom post type, however, you can create a custom capability type, which needs to go hand in hand with a set of
custom capabilities in the capabilities argument.

239



CHAPTER 8 " USERS, ROLES, AND CAPABILITIES

The following code shows how a version of the register post_type function would look if you added custom
capabilities for managing the post type, based on the ones you assigned to your custom roles:

register_post_type(
'ptd_movie',
array(
'public' => true,
'capability type' => 'movie’,
'capabilities' => array(
'publish_posts' => 'publish movies',
'edit_posts' => 'edit_movies',
'edit_others posts' => 'edit_others movies',
'delete_posts' => 'delete movies’,
'delete_others posts' => 'delete others movies',
'read_private_posts' => 'read private movies',
'edit_post' => 'edit_movie',
"delete_post' => 'delete_movie',
'read_post' => 'read_movie',

)s
);

Adding a custom value to the capability type argument results in capabilities being set automatically by
WordPress, but you can have very granular control over capabilities if you want to by passing an array of custom
capabilities to the capabilities argument.

Unfortunately, it isn’t quite as simple to get a custom set of capabilities up and running for your custom post
type: you have to set up the meta capabilities mapping. Meta capabilities refer to the last three capabilities listed in the
previous example: edit_post, delete_post, and read_post. Notice that they are all in singular form; it’s because they
refer to a capability in context at their time of use. For example, is the user the author of this post?

The following function is courtesy of Justin Tadlock’s brilliant post on this subject
(http://wp-themes-book.com/08002), which shows you how to map the meta capabilities and filter it into the
map_meta_cap function:

add_filter( 'map_meta cap', 'my map meta cap', 10, 4 );
function my map meta_cap( $caps, $cap, $user id, $args ) {

/* If editing, deleting, or reading a movie, get the post and post type object. */
if ( 'edit_movie' == $cap || 'delete_movie' == $cap || 'read_movie' == $cap ) {
$post = get_post( $args[o] );
$post_type = get post_type object( $post->post type );

/* Set an empty array for the caps. */
$caps = array();

}

/* If editing a movie, assign the required capability. */
if ( 'edit movie' == $cap ) {
if ( $user_id == $post->post_author ) {
$caps[] = $post_type->cap->edit_posts;
} else {
$caps[] = $post_type->cap->edit _others posts;
}

240


http://wp-themes-book.com/08002

CHAPTER 8 " USERS, ROLES, AND CAPABILITIES

/* If deleting a movie, assign the required capability. */
elseif ( 'delete movie' == $cap ) {
if ( $user_id == $post->post_author ) {
$caps[] = $post_type->cap->delete posts;
} else {
$caps[] = $post_type->cap->delete_others_posts;
}

}

/* If reading a private movie, assign the required capability. */
elseif ( 'read movie' == $cap ) {

if ( 'private' != $post->post_status ) {
$caps[] = 'read';
} elseif ( $user_id == $post->post_author ) {
$caps[] = 'read';
} else {
$caps[] = $post_type->cap->read private posts;
}

}

/* Return the capabilities required by the user. */
return $caps;

This function is a filter for the map_meta_cap and will run every time WordPress requires it to. It works like the
WordPress default function that takes in the meta capability being tested as $cap and the capabilities of the user as
$caps, along with the $user_id and some additional $args, such as the post ID.

In the function, you're testing what capability is being accessed and then returning the primitive capability
required to access these functions. For instance, if the meta capability passed in is edit_movie, you set the capability
required to edit_posts if the user is the author or to edit_others_posts if the user is not the post’s author. With the
primitive capability returned, WordPress then tests this against the current user’s capabilities and decides whether
they can perform the action they're attempting.

Being able to map meta capabilities like this is very powerful and allows you to customize what users can do
with their capabilities. However, I suggest not customizing much beyond the example of Justin’s function. Otherwise,
you're beginning to manipulate the roles and capabilities system beyond what you can expect in WordPress, which
could trip you up later in development.

Capabilities for Admin Menus

In the WordPress admin, by default each user role is allowed access to a different set of menus (see Figures 8-2 and 8-3).

241



CHAPTER 8 © USERS, ROLES, AND CAPABILITIES

Home
Updates ()
= Posts

f&b Media

& Links

(] Pages

= Movie

© Comments
[ Appearance
£ Plugins
&, Users

T} Teols

[27] Settings

Figure 8-2.

000
€ c

i Dashboard

& Posis

3 Media
i[] Pages
& Movie
() Comments
&, Profile
T} Tools

| Dashboard « Adam Onishi  x

A Adam Onishi

—

[ review.dev/wordpress/wp-admin/

@ Dashboard

Right Now

Content Discussion
25 Posts 209 Comments
12 Pages 29 Approved
B2 Categories 0 Pending
49 Tags O Spam

Theme Pro WordPress - book dev with 2 Widgets
Search Engines Discouraged

You are using WordPress 3.5,

Recent Comments

From Mr WordPress on Hello world! #

Hi, this is a comment.To delete a comment, justlog in
and view the post's comments. There you will have ...

From admin on Comment Test #
Administrator comment reply.

| Dashboard « Adam Onishi  *

[ review.dev/wordpress/wp-admin/

P + New

@ Dashboard

Right Now

Content Discussion
25 Posts 29 Comments
12 Pages 29 Approved
52 Camgories 0 Pending
49 Tags 0 Spam

Theme Pro WordPress - book dev with 2 Widgets

You are using WordPress 3.6.

Incoming Links

‘Waobmaster linked hera saying, "Personal Trainer -
httpfinwise.noaa.govie ..

Androa Bandiera linked here saying, "Pingback:

hittp:fwww jivamuktiyoga comisatsanglope ..."

Laura linked here saying, "Adam Onishi has spoken extansivaly
about burnout, ..."

Chris Brogan linked here saying, "you can subscribe 1 me via the
Zune panofthe X .."

diots ag linked hare saying, Title... [..Jalthough web sites wa
backlink o bene ...

il lialinnd insn sndns 200 Kb &

Figure 8-3. WordPress admin when signed in as Author

242

Screen Options v

Help

QuickPress

3 Add Media

Save Draf Reset

Recent Drafts

Test post 1stJune 2013

This is my new post again again

This is draft 2 5th March 2013

Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do...

This is test1 5th March 2013

Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do...

View all

WordPress admin when signed in as Administrator

L

el < L)

Howdy, Adam Onishi

Secreen Options ¥ Help

QuickPress

Add Media

Save Draft Resel Fublish

Recent Drafts

There are no drafts at the moment

WordPress Blog

WordPress 3.6 “Oscar”™ 15t Au
The latest and greatest WordPress, version 3.6, is now live to the

world and includes a beautiful new blog-centric theme, bullet-proof
autosave and post locking, a revamped revision browser, native

support for audio and video embeds, and improved integrations with
Snatifv. Rdin_and SaundCloud Herm's a viden that shows off sama ]

gust 2013



CHAPTER 8 ' USERS, ROLES, AND CAPABILITIES

Being able to show and hide different menus in the admin is also controlled by the capabilities of users. For
an Administrator, they have capabilities such as 'manage_options', which gives them access to the Settings menu
and all the subpages associated with it. All the menu pages in WordPress are controlled this way, as you can see by
the different menu options available in Figure 8-3 for a user with the Author role. They don’t have capabilities for
managing the options of the site or for any of the theme options such as the 'edit_theme_options' and 'switch_
themes' capabilities.

You'll learn more about setting up administration menus in Chapter 13 when I cover WordPress plugin
development, but here you see how to give access to different users when creating these menus. There are many
functions available in WordPress to set up administration menus, but they all follow a similar format to the general
functions add_menu_page() and add_submenu_page() shown here:

add_menu_page( $page title, $menu_title, $capability, $menu_slug, $function, $icon url, $position );
add_submenu_page( $parent_slug, $page_title, $menu_title, $capability, $menu_slug, $function );

Both functions are called with a number of standard function parameters, each relating to settings like the
menu’s name and location in the admin. The main parameter to focus on here is the $capability parameter, which
is used to set the capability required for the menu to be shown to the user. Again, this is simply one of the many
capabilities available in WordPress (depending on which roles you want to have access to the admin menu), or it can
be a custom capability that you can then add to specific roles.

For example, suppose that you required the moderator role you created earlier to be able to see a custom page
that held a summary of the details of the latest movie reviews submitted to the site and maybe some other analytical
information. You could create a new menu page with a custom capability and then add it to the moderator role’s
capabilities:

function prowordpress add moderator page() {
add_menu_page( 'Moderation stats', 'Moderation Stats', 'moderator view stats',
'moderator-admin-menu', 'prowordpress build moderator stats' );

$mod = get role('moderator');
$mod->add_cap('moderator_view_stats');

$admin = get role('administrator');
$admin->add_cap('moderator view stats');

}

if( is_admin() ) {
add_action( 'admin_menu', 'prowordpress add moderator page' );
}

This function would add a menu page to the WordPress admin with a custom capability called
'moderator_view_stats'.For now, don’t worry about the rest of the parameters because they are discussed later
in the book.

After you add the menu page, you need to add the capability to the moderator user and the admin user.

(In general, it is always good practice for the site admin to be able to see all the available functionality in the admin.)
The function is added with a hook in the last few lines of code. In this instance, you want to run this hook only when
you're viewing the admin page, so wrap the hook inside a check for is_admin().

243



CHAPTER 8 " USERS, ROLES, AND CAPABILITIES

Testing User Capabilities

The final task to look at is how to test user capabilities manually in your own custom code. There are a few reasons
why you may want to do this, such as checking whether to display a custom metabox depending on the user’s
capabilities. Three functions are available that allow you to test the user’s capabilities:

e current_user can()
e user _can()
e author can()

The one you’ll use most often is current_user can() because it gives you a quick way to check whether the
current logged-in user has a certain capability. All you need to do is pass the capability name into the function to get a
true/false result; you can see the function used here in the WordPress core update. php file:

if ( current user can( 'update_plugins' ) ) {
$update plugins = get site transient( 'update plugins' );
if (! empty( $update plugins->response ) )
$counts[ 'plugins'] = count( $update_plugins->response );

}

if ( current user can( 'update_themes' ) ) {
$update_themes = get site transient( 'update themes' );
if (! empty( $update_themes->response ) )
$counts[ 'themes'] = count( $update themes->response );

}

if ( function exists( 'get core updates' ) &% current user can( 'update core' ) ) {
$update_wordpress = get core updates( array('dismissed' => false) );
if (! empty( $update wordpress ) 8& ! in_array( $update wordpress[0]->response,
array('development', 'latest') ) 8& current user can('update core') )
$counts[ 'wordpress'] = 1;
}

The series of checks see whether the current user has access to update certain parts of the WordPress site, such
as plugins, theme, and core. Based on this, you can set up a similar check in your functions when you're setting up a
custom metabox for certain posts based on the user’s capabilities. Here is the metabox function from Chapter 5:

function prowordpress movies meta box () {
global $post;

if( current_user can('publish movies') ) {
add_meta_box (

'ptd_movies meta’,
__('Movie details', 'prowordpress'),
'prowordpress_movie meta fields',
'ptd_movie',
'side’,
'core'

)5
}

add_action ('add_meta boxes', 'prowordpress movies meta box');

244



CHAPTER 8 ' USERS, ROLES, AND CAPABILITIES

To display it only for users who can publish the movie post type, wrap the entire add_meta_box() function in a
condition with the current_user_can() function. By displaying the metabox only when a user has the capability to
publish the posts means you can have specific post editors who enter the main content, but a moderator is needed to
enter the more specific and maybe factual data before the post is published.

Of course, when doing this for metaboxes, it’s also good practice to test whether the user has the correct
capabilities in the function used to save the metadata as well. By adding this snippet of code before you save any of the
data, you ensure that the data has been submitted by a user with the correct capabilities, just in case:

// Check if the current user has permission to edit the post.

if (! current_user can( 'publish movies', $post id ) ) {
return $post_id;

}

The snippet also shows a second parameter of the current_user can() function because it can be passed the
post ID for any post to check the specific information relating to that post.

The other two functions, user _can() and author_can(), work in much the same way. The user_can() function
takes a user’s ID and the capability to be checked; and author_can() takes either a post ID or post object as the first
parameter, followed by the capability as the second. Both functions are less commonly used however (only three
times in core between them), and you'll find that most of your capability checking will (and possibly should) be done
with the current_user can() function.

Customizing User Login

Now that you understand how the user system works in WordPress, you can take a look at some user features to

add to your WordPress sites. First, you'll see some ways to customize how users log in to the web site, whether by
simply modifying the default WordPress login page with custom branding or by creating a completely bespoke login
page outside of the WordPress system. Later in the chapter, you'll look at some other user features, including how to
manage users programmatically and even how to create a full user registration system.

Customizing the Login Page

This is definitely one of the easiest things to do with WordPress, and if you're building web sites for clients, this is a
really quick way to make the site a little bit more tailored toward the company’s brand.

Starting with the standard WordPress login page shown in Figure 8-4, you can customize everything from the logo
and link, through to the styles for the entire form.

245



CHAPTER 8 " USERS, ROLES, AND CAPABILITIES

]
® 00 Adam Onishi » Log In x ®

“~ C | [Y review.dev/wordpress/wp-login.php o7 n ()

@WORDPRESS

Username

Password

Remember Me m

Lost vour password?

+ Back to Adam Onishi

Figure 8-4. Default WordPress login page

Adding a Custom Logo

A custom logo is probably the easiest way to make the login page look a bit more familiar to a brand. The logo is
displayed by default using CSS and is linked to the following HTML markup. (Notice that in the header, the title has a
link to the wordpress.org site, so you'll probably want to change it.)

<h1><a href="http://wordpress.org/" title="Powered by WordPress">Your Site Name</a></h1>
The default CSS is quite verbose and sets a lot of styles on the link:

.login h1 a {
background-image: url('../images/wordpress-logo.png?ver=20120216");
background-size: 274px 63px;
background-position: top center;
background-repeat: no-repeat;
width: 326px;
height: 67px;

246


http://wordpress.org/

CHAPTER 8 ' USERS, ROLES, AND CAPABILITIES

text-indent: -9999px;
outline: 0;
overflow: hidden;
padding-bottom: 15px;
display: block;

To get around this, WordPress has a hook called 'login_enqueue_scripts' that allows you to add your own
custom styles to the page after the inclusion of the standard style sheets in the head on the login page only. Depending
on the level of styling you want to do, you could create a separate style sheet to be included here, but for now you'll
just use inline styles to override the WordPress defaults. The following function creates a block of inline style that is
hooked onto the login page using the previously mentioned hook:

function twelvedevs login logo() { ?»
<style type="text/css">
.login #login {
padding-top:50px;
}

.login h1 a {
width:100%;
height:220px;
padding-bottom: 30px;
background-image: url(<?php

echo get_bloginfo( 'template_ directory' ) ?>/images/12devslogo.png);

background-size:221px 220px;

}

</style>

<?php }
add_action( 'login_enqueue_scripts', 'twelvedevs login logo' );

The WordPress Codex mentions that you should use more-specific selectors in your CSS to ensure that you
overwrite the default WordPress styles. However, because the inline style is included by the hook after the default
style sheets are included, they will be overwritten as long as you use the same level of specificity. Because of the way
WordPress defines the default background image, I had to be a bit more specific here and define styles such as the
background size and size of the <a> tag itself.

The following code shows how the <head> of the login page now looks with the included inline styles. You can
see the results of the new styles in Figure 8-5.

<link rel="stylesheet' id='buttons-css' href="http://12devs.dev/wordpress/wp-includes/css/buttons
.min.css?ver=3.5.2" type="text/css' media='all' />
<link rel="stylesheet' id='colors-fresh-css' href="http://12devs.dev/wordpress/wp-admin/css/colors-
fresh.min.css?ver=3.5.2" type='text/css' media='all' />
<style type="text/css">

.login #login {

padding-top:50px;
}

.login h1 a {
width:100%;
height:220px;
padding-bottom: 30px;

247


http://12devs.dev/wordpress/wp-includes/css/buttons.min.css?ver=3.5.2
http://12devs.dev/wordpress/wp-includes/css/buttons.min.css?ver=3.5.2
http://12devs.dev/wordpress/wp-admin/css/colors-fresh.min.css?ver=3.5.2
http://12devs.dev/wordpress/wp-admin/css/colors-fresh.min.css?ver=3.5.2

CHAPTER 8 " USERS, ROLES, AND CAPABILITIES

background-image: url(http://12devs.dev/wordpress/wp-
content/themes/12devs/images/12devslogo.png);

background-position:top center;

background-size:221px 220px;

</style>
800 12 Devs » Log In * s\ "5
« C' [ 12devs.co.uk/wordpress/wp-login.php A9 =

s3

SRRy,
&

RS -~

12

v *
orys co

w0t
£
x
Rxsuar®

¥

Usarname
Password

Remember Me m

Lost vour password?

+ Back 1o 12 Davg

Figure 8-5. Styled WordPress login with the 12 Devs logo

The last part to do was the default link in the header of the login page that linked to wordpress.org and had a title
"Powered by WordPress".This time, WordPress provides two very specific hooks to overwrite these two parts of the
login header:

function twelvedevs login logo url() {
return get bloginfo( 'url' );

add filter( 'login_headerurl', 'twelvedevs login logo url' );

function twelvedevs login logo url title() {
return '12 Devs';
}

add_filter( 'login_headertitle', 'twelvedevs login logo url title' );

248


http://12devs.dev/wordpress/wp-content/themes/12devs/images/12devslogo.png
http://12devs.dev/wordpress/wp-content/themes/12devs/images/12devslogo.png
http://wordpress.org

CHAPTER 8 ' USERS, ROLES, AND CAPABILITIES

These two functions and hooks allow you to overwrite the link and title text in the login page header and results
in the following markup being generated:

<hi><a href="http://12devs.dev" title="12 Devs">12 Devs</a></h1>

Adding Custom Styles to the Rest of the Login Page

Besides styling the header of the login page with the previous hook and knowing a few more CSS selectors, you can
also customize the entire look of the login page. Again, the WordPress Codex does provide a list of bespoke selectors to
use, which are shown in the following code. However, because of the way the wp_enqueue_scripts hook works, your
script should always be included after the default scripts. So as long as you use the same specificity in your styles, the
defaults should be overwritten.

body.login {}

body.login div#login {}

body.login divi#login h1 {}

body.login divi#login hi a {}

body.login div#tlogin form#loginform {}

body.login divi#login form#loginform p {}

body.login div#login form#loginform p label {}

body.login div#login form#loginform input {}

body.login divi#login formiloginform input#user login {}
body.login divi#login form#loginform input#user pass {}
body.login divi#tlogin form#loginform p.forgetmenot {}

body.login div#login form#loginform p.forgetmenot input#rememberme {}
body.login div#login form#loginform p.submit {}

body.login divi#login form#loginform p.submit input#wp-submit {}
body.login divilogin p#nav {}

body.login div#login pi#nav a {}

body.login divi#login pi#tbacktoblog {}

body.login divi#login p#backtoblog a {}

Most of these styles have been made more specific by adding the element as part of the selector, but this can be
easily removed and the styles will still overwrite those of the defaults.

Although you could add these styles to an inline <style> block (as you did when customizing the header logo),
because of the amount of styling you have to do here, it might be better to include the styles as a separate style sheet.
To do this you can use the same action hook as before, but just include a link tag to your custom style sheet.

function twelvedevs login style() { ?>
<link rel="stylesheet" id="custom wp_login css" href="<2?php echo
get bloginfo( 'stylesheet directory' ) . '/css/login.css'; ?>" type="text/css" media="all" />
<?php
}

add_action( 'login_enqueue_scripts', 'twelvedevs login style' );
When including styles in WordPress, the wp_enqueue_style() function is normally used. However, because of

how late the function is called in the WordPress runtime, using it would result in the link tag not appearing until the
footer of the document.

249


http://12devs.dev/

CHAPTER 8 " USERS, ROLES, AND CAPABILITIES

Adding Custom Content to the Login Page

Besides adding custom styles to the login page, WordPress provides some hooks that are called throughout the login page.
You can use any of these hooks to add in custom content from your function.php file or a plugin. For example, custom
messages or a custom footer could be added to the page, allowing for more customizations beyond that of just styling.

You've seen some of the hooks already when using them to customize the link and title of the login page header
and when including your custom login CSS. The full list of available actions and filters is shown here:

e login_enqueue_scripts (action)
e login_head (action)

e login_form (action)

e login_footer (action)

e login_headerurl (filter)

e login_headertitle (filter)

e login_message (filter)

e login_errors (filter)

Creating a Custom User Login Page

Instead of just customizing the default login page, you can create an entirely separate login page of your own, enabling you
to prevent people from going to the standard login page or even getting in to the WordPress admin entirely, for example.
WordPress provides a single function that allows you to create your own login form for the front end of your sites:
wp_login_form. However, this function deals only with the form, so you have to take some additional steps if you want
a truly custom page for users to log in to your site. Although the form is covered by WordPress, there are still things
such as lost password links and handling login errors that need to be dealt with by you when creating your custom
login page.
To start, you need to create a custom page template where the login form will go. Where you do this on the site
is completely up to you; for now, you'll create this page as a custom page template that can be applied to any page.
In the examples, you'll be using /1login as the custom site URL, so ensure that if you are using a different URL, you
substitute it in the examples.

<?php
Vioio
* Template Name: Login template
*/
get_header();
>
<div class="content">
<h2><?php the_title(); ?></h2>
</div>

<?php get footer(); ?»

The code includes the site’s default header and footer and a page title, but you can use any of the site’s content to
build a custom login page.

250



CHAPTER 8 " USERS, ROLES, AND CAPABILITIES

Now you need to look at the main function that will create your custom login form: wp_login_form. The function
takes an array of arguments as its only parameter. These arguments allow you to customize almost every aspect of the
login form—from the text used in the form to the redirect links and IDs used in the form for styling hooks.

<?php

$args = array(
"echo’ => true,
'redirect’ => site url( $_SERVER['REQUEST URI'] ),
'form_id' => 'loginform',

'label username' => _( 'Username' ),
'label password' => _( 'Password' ),
'label remember' => _ ( 'Remember Me' ),

'label log in' => _( 'Log In' ),
'id_username’ => 'user_login',
'id_password’ => 'user_pass',
'id_remember’ => 'rememberme’,
'id_submit’ => 'wp-submit’,
'remember’ => true,

'value_username' => NULL,
'value_remember' => false
)

>

The code shows all the arguments and their defaults. The defaults are pretty good, so there’s rarely much need to
change them unless you want some more-specific labels or to change some IDs. For the login form, you'll keep most
of the defaults, but change the redirect URL to be to the home page and add some different IDs to prevent any of the
default WordPress login form styles from applying:

<?php
$args = array(
'redirect' => home_url(),

'form_id' => 'loginform-custom',
'id_username’ => 'user-login-custom’',
'id_password’ => 'user-pass-custom',
'id_remember’ => 'rememberme-custom',
"id_submit’ => 'wp-submit-custom’,

);

wp_login form( $args ); ?>
The login form is now on the page and ready to go (see Figure 8-6).

Login

Username

Password

Remember Me
Log In
Figure 8-6. The login form generated by the code

251



CHAPTER 8 " USERS, ROLES, AND CAPABILITIES

However, if you look at the form generated in comparison with the ones in Figure 8-4 or 8-5, you'll see one handy
link missing: the “Forgotten your password?” link. This is because you need to create this one outside of the login form
using the wp_lostpassword url() function. This function simply prints a link to the default WordPress password
reset page, and you can pass it a redirect URL as well. So to complete your initial login form, you can add in a link to
the “Forgotten your password?” page.

<p><a class="forgot-pass-link" href="<?php echo wp_lostpassword url(); ?>" title="<?php
_e('Forgotten your password?', 'prowordpress'); ?>"><?php _e('Forgotten your password?',
'prowordpress'); ?></a></p>

At the moment, it links only to the default WordPress password reset page. It would, of course, be preferable if you
were creating a fully custom login and registration system (which I'll cover later in the chapter) to have a custom page
for the password reset as well. Unfortunately, WordPress doesn’t provide any functions to create one of them easily,
so it would require programming a custom form and coding the password reset. For now, leave the password reset
page to WordPress to deal with; remember that any custom styling you added to the login page is also present on the
password reset page as well, so it’s not all bad news.

Handling Login Errors

The login form function deals only with handling the output of the form. If logins are successful, the user sees only
the login page you created and is successfully redirected to the home page (or whichever redirect link you've chosen).
When an error occurs, though, the user is directed to the default login page and given an error message. Obviously, if
you're creating a custom login page, you'll prefer that errors be handled by the same page if and when they occur.

So there are several functions you need to set up.

There are two conditions you need to catch when handling login form errors because WordPress handles them in
slightly different ways. The first is when there has been a failed login attempt (i.e., the wrong username and password
combination has been entered); the second is when no values are entered into either the username or password
inputs. The reason for the difference is based on the point at which the redirect occurs in the WordPress core. When
no data has been entered for either password or username, WordPress knows this will be a failed login attempt and
immediately redirects back to the login page with an error. When values are entered, WordPress needs need to check
the database for the user data before it can do a redirect.

To catch these two login errors, you need two functions. Both are pretty similar; for example, they both check
the referrer to see where the login attempt originated so the user is redirected to the correct page. Because you're not
actually disabling the default login page, users might be coming from that page, so it’s best to redirect them to your
custom login page only if they are using it.

function prowordpress failed login( $user ) {
// save the referrer to a local var
if( isset($_SERVER['HTTP REFERER']) ) {
$referrer = $_SERVER['HTTP_REFERER'];
}

// Check the referrer to make sure we're not coming from the default login page and there is
no user set
if (! empty($referrer) &8 ! strstr($referrer, 'wp-login') &8 ! strstr($referrer, 'wp-admin')
8& $user !== null ) {
// Make sure the current referrer doesn't already have the login failed query string
if (! strstr($referrer, '?login=failed’ ) ) {
// Redirect to the login page and append a querystring of login failed
wp_redirect( $referrer . '?login=failed');
} else {

252



CHAPTER 8 ' USERS, ROLES, AND CAPABILITIES

wp_redirect( $referrer );

}

exit;
}
}

add_action( 'wp_login_failed', 'prowordpress_failed login' );

Each step of the function is commented along the way, but I'll explain in more detail. The first condition checks
where the referrer is coming from to ensure that you're redirecting to the correct place. The second condition makes
sure that if you came from a page having an error that you don’t add another query string to the end of the URL again.
The function is then hooked into WordPress using the wp_login_failed hook that fires when there have been values
entered into the form but no user records with those values.

Your second function uses most of the code from the first, but it also needs to check the values entered:

function prowordpress blank login( $username ){
// save the referrer to a local var
if( isset($_SERVER[ '"HTTP_REFERER']) ) {
$referrer = $ SERVER['HTTP_REFERER'];
}

$error = false;
// Check if either the username value or POST password value is empty
if( empty($username) || empty($ POST['pwd']) ) {
$error = true;
}

// check that were not on the default login page
if (! empty($referrer) 8% ! strstr($referrer, 'wp-login') &&
! strstr($referrer, 'wp-admin') && $error ) {

// Make sure the current referrer doesn't already have the login failed query string
if (! strstr($referrer, '?login=failed’ ) ) {
// Redirect to the login page and append a querystring of login failed
wp_redirect( $referrer . '?login=failed');
} else {
wp_redirect( $referrer );
}

exit;

}
add_action( 'wp_authenticate', 'prowordpress blank login');

The main difference in the functions is that the first conditional checks whether there was a username or
password value sent. If neither of these exists, you can conclude that there is an error and then perform the

redirect. The function is then added on the wp_authenticate action hook, which fires before the default WordPress
authentication of a user.

253



CHAPTER 8 " USERS, ROLES, AND CAPABILITIES

With those two functions set up in functions.php, you can now go back to your login template and make sure
that you alert the user about an error with the login. Both the functions added a login=failed querystring to the URL
if there was an error, so you can just check for that value and display a message if it is present.

<?php
if( isset($ GET['login']) & 'failed' === $ GET['login']) :
>

<div class="message error-message">

<p><?php _e('Login failed. Please check your details and try again.',

'prowordpress'); ?></p>

</div>
<?php
endif;
>

Now users have some feedback for when something goes wrong with their login, and they know to try again.

One last thing to do with your login page is to make sure that you display only the form when no user is logged in.
It would be confusing to encounter a login form on the site when you are already logged in. To check whether a user
is logged in, you can use a WordPress function called is_user logged in(), which returns true or false if there is a
current user logged in to the site.

<?php if ( ! is_user logged in() ): >

<!-- Login form code -->
<?php else: ?>

<p><?php wp_loginout( home_url() ); ?></p>
<?php endif; ?>

You can just wrap your login form in this if statement using the is_user logged in() function. If there is a user
present, your form doesn’t display and you can instead show a logout link using the wp_loginout() function. This
function displays a login or logout link, depending on whether there is a user logged in or not. In this case, it always
show a logout link.

Creating User-Only Content Areas

You can combine thewp _login formand is_user logged in() functions to easily create user-only content areas of
your site. By wrapping your page content in a check to see whether the current user is logged in, you can then display
a message and login form on any content page in which you want a user to be logged in to view the content.

The following example uses the single page template of a site. By using the is_user logged in() function, you
can check whether to display the content of the page. If there isn’t a user logged in, you can display just the excerpt of
the post’s content, followed by a message and the login form:

<?php
if( is_user_logged in() ):
the_content();
else:
the_excerpt(); ?»

<p>Please login to view the rest of the content:</p>
<?php

if( isset($_GET['login']) &8 'failed' === $ GET['login']) :
>

254



CHAPTER 8 ' USERS, ROLES, AND CAPABILITIES

<div class="alert alert-error">
<p><?php _e('Login failed. Please check your details and try again.',
'prowordpress'); ?></p>

</div>

<?php

endif;

>

<?php

$args = array(
'form_id' => 'loginform-custom',
'id_username’ => 'user-login-custom',
'id_password' => 'user-pass-custom',
'id_remember' => 'rememberme-custom’,
'id_submit’ => 'wp-submit-custom’,

);
wp_login_form( $args ); ?>
<?php endif; ?>

The only difference between the arguments you used in the login form on your custom page and the one
here is that a custom argument for the redirect URL is taken out because it is preferable to leave it to the default
argument, which is a redirect back to the current page. So once users are signed in, they are redirected back to the
page they were viewing (because there is nothing more frustrating than logging in to a web site and being directed
away from the content you are about to read). Because of the work you did earlier when handling potential login
errors on the site, the user is always redirected back to the same page, so you can leave in your error handling
messages as well.

Testing for Certain Types of Users

Besides being able to test whether a user is logged in to the web site, you can also take a look at the user’s level of
privileges and allow different levels of access for different levels of user. For instance, if you had a web site with three
tiers of membership, you could create them as custom roles in WordPress and assign each user a custom capability
based on their level of membership. Using the current_user_can() function you can then check for those capabilities
if the user is logged in and display a message to the user if the level of access isn’t high enough:

if( is_user_logged in() ):

if( current_user can('manage_gold membership') ):
the_content();
else: ?>
<p>Sorry that content is only available to Gold members, <a href="/membership">find
out more</a>.</p>
<?php endif;
else:
// Previous example continues...

This opens up endless possibilities for a members’ site based on WordPress and is easily tailored to different use

cases. If you're creating a membership system of this type, I suggest making sure to create member roles using custom
roles and capabilities (covered earlier in the chapter) instead of modifying the default roles in WordPress.

255



CHAPTER 8 " USERS, ROLES, AND CAPABILITIES

Managing Users and User Data

The last thing to look at is how you can manage users on your WordPress sites them and the data you store for them
programmatically. You've seen how to set up custom login pages. but you can also go as far as a full user section on
the front end of the site. WordPress provides a lot of functions for you to be able to do all this from right inside your

themes (or from a plugin), so making a members-only section with custom signup is relatively easy.

Creating Users

There are two ways to create users programmatically in WordPress: use either the wp _create user() function or the
wp_insert user() function. The wp_create_user() function takes three arguments: the username, password, and
e-mail of the user to be created; thewp_insert user() function can take an array of all the values associated with a
user in one go.

If you want to create a really quick signup form for your site users, you can use the wp_create_user() function to
just get the username and e-mail of potential users and allow them to fill out further details when they have access to
their profile in WordPress. If you prefer your signup process to take a lot of the users’ information in one go, however,
you can use thewp_insert user() function to set up all the details at once, removing the need for users to access the
WordPress admin to modify their profile.

Creating a User with wp_create_user()

First you'll take a look at the wp_create_user () function and set up a quick form on the front end of your site, which
asks users to enter just their e-mail address. On submission, you'll create the user and e-mail them a generated
password, using their e-mail address as the username. While asking a user to enter a username and password on
registration is usually the norm and most people’s preference (as surveyed on Twitter), I'll cover this method to show
you some of the WordPress functions available. You'll look at how you can also deal with a user entering a username
and password in the next example.

Let’s look at how the wp_create user() function works regarding parameters and their order. Remember that
there are three separate parameters for this function:

wp_create_user( $username, $password, $email );

Asyou can see, just the three parameters are required for the function. The username and e-mail must be unique
to WordPress, and the password can be passed as plain text because WordPress deals with the hashing and secure
storage of the password for you. Notice that in the function you can't set a role for your user. The wp_create_user()
function sets the user up with the default role from the WordPress settings, so make sure it is set to the user role you
want your new users to have when using this function.

The next step is to set up your form for the user to sign up. You'll need only the e-mail address, so I'm using a
single input field. (If you want to have an e-mail confirmation field, that’s fine, too).

<form action="<?php the_permalink(); ?>" method="post">

<label for="email-address">Enter your email address to register</label>

<input type="email" name="email address" id="email-address" placeholder="name@example.com'
required>

<input type="submit" name="simple registration" value="Register">
</form>

256



CHAPTER 8 ' USERS, ROLES, AND CAPABILITIES

I'll quickly run through the way I set up the form. First, the action is to the current page, using the the_permalink()
function inside the loop of the current page, with a POST method. Next is the your e-mail address field which is just
a simple field, but the name I used uses an underline (_) as a separator. (This is generally personal preference, but it
means that when I'm using PHP to process the form, the POST variables are already in a PHP style naming convention
for me.) Finally, the submit button also has a name, so when I'm processing the form, I can see that I'm processing the
correct one based on the presence of a unique name on the submit button.

With the form set up and on your page, you can now set up form processing. In this case, you'll do this from inside
the functions.php file. (I've seen some people use the template file in which the page was accessed, but keeping
everything in the functions file makes for much neater code.) Of course, this means you'll need to use a hook to get
at the data before the page is generated again after the form submission. Here you use the "template_redirect' hook
because it’s the last hook that gets called before the template is loaded. You can safely perform a page redirect from
here when your form is processed because a PHP page redirect is possible as long as no HTML is output at the time.

function prowordpress process simple registration() {
// Check that a POST request has been made
// and that there is POST data
// and the POST data contains the simple_registration field
if( $_SERVER[ 'REQUEST METHOD'] === 'POST' && isset($_POST) && isset($_POST['simple_
registration']) ) {
// Save the POST email value to a local variable
$email = § POST['email address'];

// Check if there is already a user with the email address or username already set up
if( email exists( $email ) || username_exists( $email ) ) {

// redirect to the same page with an error

wp_redirect( $ SERVER['REQUEST URI'] . '?error=1' );

exit();
} else {

// Generate a password for the user

$password = wp_generate password( 8 );

// Create the user, returns either the User ID or error

$user = wp create user( $email, $password, $email );

// Test if there was an error when the user was created

if( is_wp error($user) ) {
// redirect to the same page with an error
wp_redirect( $ SERVER['REQUEST URI'] . '?error=1');
exit();

} else {
// Notify the new user and send them their password
wp_new_user_notification( $user, $password );

}

add_action('template redirect', 'prowordpress process simple registration');

257



CHAPTER 8 " USERS, ROLES, AND CAPABILITIES

Most of the function’s actions can be described in the comments within the function but I'll describe the main
process of what happens when you process the form data and create a new user. The first step is to check that you are
actually getting a submission from your form. You first check the request method from the server (in this case, it is
POST); then you check for the presence of the submit button named earlier in the form. When you know you have data
coming from the correct form, you can start to process the new user.

WordPress has two functions available to check whether you can create a new user: username_exists() and
email exists(). They tell you whether there’s already a user in the database with the same e-mail or username.
Because you're using the e-mail address for both of these, you could test just one, but you should test both just in case.
If either function returns true, you can then redirect back to your page, but add an "error=1" query string to the URL
so you can show an error on the page for the user.

If the e-mail is unique for the user, you can safely create a new user account. The information needed for wp _
create_user is e-mail, username, and password. So far, you have the username and e-mail because you're using the
e-mail for both of them, so now you just need to create a password. Fortunately, WordPress has a function to do this,
wp_generate password(), which creates a random password to the number of characters specified and with a couple
of optional settings such as "use special characters".In the function, I specified an eight-character password with
the default settings that get saved in a variable because you'll need to use it in the next couple of lines as well.

Finally, you can use the wp_create_user() function to create the new user account. The function either returns
the ID of the user created or a WP_Error object if an error occurred, so the next step is to check the status of the return
value using thewp_is_error() function. If there is an error, redirect back to the page you came from with the error in
the query string; if the user creation was successful, all that’s left is to send them a copy of the password they created.
You can use the wp_new_user_notification() function, which takes the newly created user ID and their password.

This might not be the most popular way of setting up a new user; you didn’t take much user information and
didn’t let users set up their own password (which, according to people on Twitter, is very much their preference). The
wp_create_user() function is great when you need only a simple registration from your users, but for a more detailed
registration process, use the wp_insert_user() function instead.

Creating a User with wp_insert_user()

Thewp_insert user() function allows you to set up much more than the standard data for the user, including
everything from the first and last name, the user’s WordPress “nickname,” and even their “AIM” account details

(if anyone actually uses that anymore). By default, anything you see in the WordPress user profile page can be set up
using thewp_insert user() function. Here’s the full list:

e UserID:ID

e  Password: user_pass

e Username: user_login

e Nicename: user_nicename
e  Website: user_url

e  Email:user_email

e Display name: display name
e  Nickname: nickname

e  Firstname: first_name

e Lastname: last_name

e  Description: description

e  Visual Editor: rich_editing

258



CHAPTER 8 ' USERS, ROLES, AND CAPABILITIES

e Registered date: user_registered
e Userrole: role

e Jabber account: jabber

e AOLIM account: aim

¢ Yahoo IM account: yim

Included in this list is the user ID because wp_insert_user() can also be used to update a user if a there is a user
ID passed in the array. I recommend that you use the wp_update_user () function for that purpose instead, for obvious
reasons. I included all the keys for the values because you'll need to use them later in the array for the function.

When using the wp_insert_user() function, the process for setting up the user is similar to the wp_create_
user() function, so you'll need a similar form setup and you'll do the processing in the functions. php file again.
I'won'’t show you the full form setup, I suggest that when creating the form you use the names of the values are needed
for the array keys in thewp_insert user() function to make processing the form a little easier. Here’s an example:

<label for="email-address">Email address</label>
<input type="email" name="user email" id="email-address" placeholder="name@example.com" required>

<label for="username">Username</label>
<input type="text" name="user login" id="username" required>

<label for="firstname">First name</label>
<input type="text" name="first name" id="firstname" required>

Set up as many or as few of the possible user settings as you like and then you can use the same function to
process the user, no matter the number of fields you want to set.

You'll use a function similar to the one you used before with the wp_create_user() function. This time, you
just need to set up the $userdata array for use in the function and notify the user as usual. Here’s a look at the
new function:

function prowordpress process full registration() {

if( $_SERVER[ 'REQUEST METHOD'] === 'POST' &% isset($_POST) && isset($_POST['full_
registration']) ) {
// Unset the submit button value from the postdata
unset($_POST[ 'full registration']);

$userdata = array();

// Loop through the $ POST variable to create our $userdata array
foreach($_POST as $key => $value) {

$userdata[ $key ] = $value;
}

if( email exists( $userdata['user email'] ) ) {
wp_redirect( $_SERVER['REQUEST URI'] . '?error=1' );
exit();

} elseif( username_exists( $userdata['user login'] )) {
wp_redirect( $_SERVER['REQUEST URI'] . '?error=2' );
exit();

259



CHAPTER 8 " USERS, ROLES, AND CAPABILITIES

else {
$user = wp_insert user( $userdata );
if( is_wp error($user) ) {
wp_redirect( $ SERVER['REQUEST URI'] . '?error=3');
exit();
} else {
wp_new_user notification( $user );
}
}

}
}

add_action('template_redirect', 'prowordpress_process_full registration');

Most of this process is very similar to the function you used before; there are just a few little changes to process
the information into an array to use in the function instead. First, when you get into the function, you need to create
the $userdata array from the POST values, which is really easy to do when you've named the inputs the same as the
keys required for the $userdata array. The only thing to remember to do first is unset the POST variable for the submit
input because it isn't needed in the array.

You still need to check whether a user with the same username or e-mail already exists on the site, but if you will
allow the user to create their own username, it might be worth checking them separately. If either of the values exists,
you redirect back to the form page again, but this time I set a different error code based on the error that occurred, so
you can show different, more relevant error messages to the user.

Before you create your user, there’s one point to note: in earlier versions of WordPress, the wp_insert_user()
function didn’t hash the user’s password when setting up or updating a user. Since version 3.4.1, however, the function
deals with the hashing of the user’s password, so you don’t have to worry about it in your user creation functions.

After the data is checked, you can create the user by passing your $userdata array to the wp_insert_user()
function. If it returns an error, you can redirect to the registration page and show an error to your user. If it’s successful,
you can notify the user without passing the user’s password to the wp_new_user_notification() function because
the user set that password and doesn’t need to have it sent.

With that, you now know both methods to create a user. The examples I used are just rough scenarios in which
you could use either of the two functions to set up a new user. The function that you use will depend on how you
want your site’s user system to work and how much you need to know about your users, but there should be enough
information for you to be able to set up any kind of system you require.

Updating and Deleting Users

Now you've seen how to create users, you can look at how to update or delete them once they’re set up on the site. Not
only does this include looking into the wp_update_user() andwp_delete user() functions, but to also allow your
users to update their details, you'll need to set up a profile page with a form where users can see all their information
and make changes.

Setting Up a User Profile Page

The first step in allowing users to update their information is to create a profile page for them to view the information
stored in WordPress. When you set this page up, you should show the form only to registered users. So when you set
up your page template, check whether there is a current user logged in; if not, display the login form and a link to the
registration page if they need to sign up to the site.

260



CHAPTER 8 " USERS, ROLES, AND CAPABILITIES

Here’s the basic page template for the profile page:

<?php

/¥
* Template Name: Profile page
*/

get_header(); >

<div class="content">

<h2>Your profile</h2>

<?php if( is_user logged in() ): ?»
<!-- User details form goes here -->

<?php else: ?>
<p>You need to be a registered member of the site to view your profile,

please either login below or <a href="/register">register here</a> to view your profile.</p>

<?php

$args = array(
'redirect' => home_url(),

'form_id' => 'loginform-custom',
'id_username’ => 'user-login-custom',
'id_password’ => 'user-pass-custom',
'id_remember' => 'rememberme-custom’,
'id_submit’ => 'wp-submit-custom’',

)s

wp_login_form( $args ); ?»

<p><a class="forgot-pass-1ink" href="<?php echo wp_lostpassword url(); ?»"
title="<?php _e('Forgotten your password?', 'prowordpress'); ?>"><?php _e('Forgotten your
password?', 'prowordpress'); ?></a></p>

<?php endif; ?>
</div>

<?php get footer(); ?»

The form on this page is basically the same as the user registration form; depending on whether you limit the
available fields upon registration and then open up new fields for users to set from their profile page.

Besides setting up the form, you need to get the current information you have for that user to display in the form.
You can do with thewp_get_current user() function, which returns a user object with all the details of the current
user (every field available in the $userdata array discussed in the last section). With that user data, you can then
populate the values of your inputs ready for the user to edit:

<?php $userdata = wp_get_current_user(); ?>

<form action="<?php the_permalink(); ?>" method="post">

261



CHAPTER 8 " USERS, ROLES, AND CAPABILITIES

<label for="email-address">Email address</label>
<input type="email" name="user email" id="email-address" value="<?php echo $userdata->user_
email; ?>" required>

<label for="firstname">First name</label>
<input type="text" name="first_name" id="firstname" value="<?php echo $userdata->first_name;
required>

>

<label for="lastname">Last name</label>
<input type="text" name="last_name" id="lastnam" value="<?php echo $userdata->last name; ?>
required>

<label for="website">Website</label>
<input type="url" name="user url" id="website" value="<?php echo $userdata->user url; ?>">

<input type="submit" name="update_user profile" value="Update">
</form>

That’s just a small example of a form with a few of the fields; you can set up the rest in a similar fashion. Again I
just changed the name of the submit button, so you can look out for this in your processing function.

Processing the User 