
www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

PROFESSIONAL

UNIFIED COMMUNICATIONS DEVELOPMENT

WITH MICROSOFT® LYNC™ SERVER 2010

INTRODUCTION . xxv

CHAPTER 1 Building Communications Solutions with Microsoft

Lync Server 2010 . 1

CHAPTER 2 Integrating Microsoft Lync Functionality into

Your Applications . 11

CHAPTER 3 Building Communications Clients with the Microsoft

Lync 2010 Managed API . 39

CHAPTER 4 Adding Context to Conversations . 77

CHAPTER 5 Building Custom Communications Clients with Lync

UI Suppression . 103

CHAPTER 6 Introduction to the Unifi ed Communications Managed API 145

CHAPTER 7 Starting Up and Shutting Down a UCMA Application 171

CHAPTER 8 Two - Party Call Control with UCMA .209

CHAPTER 9 Presence with UCMA . 263

CHAPTER 10 Contact and Group Services in UCMA . 287

CHAPTER 11 Conference Services in UCMA . 307

CHAPTER 12 Advanced Media Control in UCMA . 353

CHAPTER 13 Debugging UCMA Applications . 407

CHAPTER 14 Building Communications- Enabled Business Processes

with the UCMA 3.0 Workfl ow SDK . 429

INDEX . 483

www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

PROFESSIONAL

Unifi ed Communications Development
with Microsoft® Lync™ Server 2010

www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

PROFESSIONAL

Unifi ed Communications Development
with Microsoft® Lync™ Server 2010

George Durzi

Michael Greenlee

D
o

www.allitebooks.com

http://www.allitebooks.org

Professional Unifi ed Communications Development with Microsoft® Lync™ Server 2010

Published by

Wiley Publishing, Inc.

10475 Crosspoint Boulevard

Indianapolis, IN 46256

www.wiley.com

Copyright © 2011 by Wiley Publishing, Inc., Indianapolis, Indiana

Published simultaneously in Canada

ISBN: 978-0-470-93903-1

ISBN: 978-1-118-11650-0 (ebk)

ISBN: 978-1-118-11396-7 (ebk)

ISBN: 978-1-118-11397-4 (ebk)

Manufactured in the United States of America

10 9 8 7 6 5 4 3 2 1

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means,

electronic, mechanical, photocopying, recording, scanning or otherwise, except as permitted under Sections 107 or 108

of the 1976 United States Copyright Act, without either the prior written permission of the Publisher, or authorization

through payment of the appropriate per-copy fee to the Copyright Clearance Center, 222 Rosewood Drive, Danvers,

MA 01923, (978) 750-8400, fax (978) 646-8600. Requests to the Publisher for permission should be addressed to the

Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201) 748-6011, fax (201)

748-6008, or online at http://www.wiley.com/go/permissions.

Limit of Liability/Disclaimer of Warranty: The publisher and the author make no representations or warranties with

respect to the accuracy or completeness of the contents of this work and specifi cally disclaim all warranties, including

without limitation warranties of fi tness for a particular purpose. No warranty may be created or extended by sales or

promotional materials. The advice and strategies contained herein may not be suitable for every situation. This work

is sold with the understanding that the publisher is not engaged in rendering legal, accounting, or other professional

services. If professional assistance is required, the services of a competent professional person should be sought. Neither

the publisher nor the author shall be liable for damages arising herefrom. The fact that an organization or Web site is

referred to in this work as a citation and/or a potential source of further information does not mean that the author or the

publisher endorses the information the organization or Web site may provide or recommendations it may make. Further,

readers should be aware that Internet Web sites listed in this work may have changed or disappeared between when this

work was written and when it is read.

For general information on our other products and services please contact our Customer Care Department within the

United States at (877) 762-2974, outside the United States at (317) 572-3993 or fax (317) 572-4002.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be available

in electronic books.

Library of Congress Control Number: 2011926919

Trademarks: Wiley, the Wiley logo, Wrox, the Wrox logo, Wrox Programmer to Programmer, and related trade dress

are trademarks or registered trademarks of John Wiley & Sons, Inc. and/or its affi liates, in the United States and other

countries, and may not be used without written permission. Microsoft and Lync are trademarks or registered trademarks

of Microsoft Corporation. All other trademarks are the property of their respective owners. Wiley Publishing, Inc., is not

associated with any product or vendor mentioned in this book.

www.allitebooks.com

http://www.wiley.com
http://www.wiley.com/go/permissions
http://www.allitebooks.org

 To my wife Amy, my parents Victor and Juliette, and

my siblings Mark and Tamara. I love you.

 — George

 To my father.

 — Michael

www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

ABOUT THE AUTHORS

 GEORGE DURZI is a Principal Consultant at Clarity Consulting, where he works with clients to

implement solutions based on various Microsoft tools and technologies. George started working

with Lync as part of a project for the Microsoft Developer and Platform Evangelism team to build

and deliver developer training content for early adopters of Lync and Exchange. George is active in

the Chicago software development community, helping to organize and speaking at events in the

region. George was born in Lebanon, raised in the United Arab Emirates, and moved to the United

States to attend college. To this day, some American pop culture references completely elude him.

MICHAEL GREENLEE works for Clarity Consulting, where he manages implementations of Clarity

Connect, a contact center and customer care platform native to Microsoft Lync. Michael has

worked with the Unifi ed Communications Managed API since 2008, when it was still referred to

by the code name OOTY, and his blog about Lync development is widely read within the Lync

developer community. Born and raised on the tropical island of New Jersey, Michael is fl uent in

several languages, including American English, Canadian English, and British English.

ACQUISITIONS EDITOR

Paul Reese

DEVELOPMENT EDITOR

Kelly Talbot

TECHNICAL EDITOR

Jon Rauschenberger

PRODUCTION EDITOR

Daniel Scribner

COPY EDITOR

Paula Lowell

EDITORIAL DIRECTOR

Robyn B. Siesky

EDITORIAL MANAGER

Mary Beth Wakefi eld

PRODUCTION MANAGER

Tim Tate

VICE PRESIDENT AND EXECUTIVE GROUP

PUBLISHER

Richard Swadley

VICE PRESIDENT AND EXECUTIVE PUBLISHER

Barry Pruett

ASSOCIATE PUBLISHER

Jim Minatel

PROJECT COORDINATOR, COVER

Katherine Crocker

PROOFREADER

Nancy C. Hanger, Windhaven

INDEXER

Robert Swanson

COVER DESIGNER

LeAndra Young

COVER PHOTO

© Lise Gagne

CREDITS

ACKNOWLEDGMENTS

 I ’ D LIKE TO THANK CHRIS MAYO FOR PRESENTING the opportunity to write this book, and Ryan

Powers for telling me “ If you get an opportunity to write a book, you fi gure out a way to make it

happen, ” when I was agonizing over whether this was something I wanted to do. Various people on

the Lync team were incredibly helpful throughout the process, providing guidance and taking the

time to meet in person to make sure that the content was the best that it could be. I ’ d like to thank

Albert Kooiman, Marcelo Ivan Garcia, Chris Schindler, Stephane Taine, Nick Fish, Ajay Soni,

Bahram Chehrazy, Yiu - Ming Leung, and Julio Lins for all of their help. Thanks to Rebecca Laszlo

for being a great non - fi ctitious, fi ctitious user. Thanks to Jon Rauschenberger (our technical

editor) for being a great mentor. Thanks to Clarity Consulting for supporting us as we worked on

this book and providing the opportunity to be involved in projects which something like this could

come out of. Finally, thanks to my lovely wife Amy for being patient as every minute of my free time

was consumed by this and various other activities.

 — George

 MANY OF THE EXPLANATIONS AND CONCEPTS in this book originated in conversations I had with

others who were working with the Lync APIs. Talking to these people and getting their feedback on

the book helped immeasurably in deciding how to say what we wanted to say. I ’ d like to thank all of

these folks who contributed in this way, including Peter Miller, Dan Gardiner, Marshall Harrison,

Curtis Swartzentruber, Oscar Newkerk, Hui Liu at Computer - Talk, and Lav Pathak. I ’ d also like

to thank Ahmed Stewart for reviewing several of the UCMA chapters on short notice for technical

accuracy, and Stephane Taine, Dalibor Kukoleca, K. Ganesan, and Ganesh Sridharan for explaining

details of the Lync APIs as this book was coming together. Jon Rauschenberger (our technical

editor) introduced me to Unifi ed Communications development, and his vision of the Lync APIs as a

revolutionary tool that changes the game of communications development fi rst got me excited about

this topic. Without that, this book (or at least my chapters!) would not have been written. Finally,

I ’ d like to say thanks to my wife for her support, patience, and shoulder rubs during the writing of

this book.

 — Michael

CONTENTS

INTRODUCTION xxv

CHAPTER 1: BUILDING COMMUNICATIONS SOLUTIONS WITH
MICROSOFT LYNC SERVER 2010 1

Lync Product Overview 2
Building Communications Applications with the Lync SDK 3

Integrating Lync Functionality into Your Applications Using the
 Lync Controls 4

Integrating Communications into Your Applications Using the Lync API 4

Working with Lync UI Suppression 5

Adding Context to Conversations 6

Building Communications Solutions with the Unifi ed
 Communications Managed API SDK 7

Building Communications Solutions with UCMA 7

Building Workfl ow Solutions with the UCMA Workfl ow SDK 8

Summary 9

CHAPTER 2: INTEGRATING MICROSOFT LYNC FUNCTIONALITY
INTO YOUR APPLICATIONS 11

Setting Up Your Development Environment 12
Requirements for Developing with the Lync Controls 12

Installing the Lync Controls 13

Working with the Lync Controls 15
Displaying Presence 16

Working with Contact Lists 22

Searching for Contacts 25

Displaying Information about the Current User 29

Starting Conversations 30

Starting Contextual Conversations from the Lync Controls 31

Extending the Lync Controls with Expression Blend 4 34
Creating a Copy of the Control Template 35

Examining the Control Template 36

Modifying the Control Template 37

Summary 38

xvi

CONTENTS

CHAPTER 3: BUILDING COMMUNICATIONS CLIENTS WITH THE
MICROSOFT LYNC 2010 MANAGED API 39

Getting Started with the Lync 2010 Managed API 41
Setting Up Your Development Environment 41

Interacting with the Running Instance of the Lync Client 41

Managing the Lifecycle of the Lync Client 44

Working with Conversations 46
Starting Conversations with Automation 46

Getting Started with the ConversationManager 54

Docking the Lync Conversation Window in a WPF Application 61

Working with Contacts and Groups 65
Getting Started with the ContactManager 65

Adding and Removing Groups 70

Adding and Removing Contacts 71

Interacting with the Self Contact 73
Publishing Self Presence Items 73

Subscribing to Self Presence Events 75

Summary 76

CHAPTER 4: ADDING CONTEXT TO CONVERSATIONS 77

Launching Applications from Lync Conversations 79
Registering a Contextual Application Package for Launch Link Context 79

Setting Conversation Contextual Info for Launch Link Context 82

Registering a Contextual Application Package for Lync Launch
 Link Context at Runtime Using Runtime Registration 85

Hosting Silverlight Applications in the Lync Conversation
 Extensibility Window 91

Working with Lync Extensibility Window Context Using Install Registration 92

Working with Lync Extensibility Window Context at Runtime Using
 Runtime Registration 97

Security Requirements for Lync Extensibility Window Context 99

Install Registration, Runtime Registration, or Both? 100

Summary 101

CHAPTER 5: BUILDING CUSTOM COMMUNICATIONS CLIENTS
WITH LYNC UI SUPPRESSION 103

Working with Lync UI Suppression 104
Confi guring Lync UI Suppression 105

Interacting with the Lync Client Process 106

xvii

CONTENTS

Working with the Instant Message Modality 113
Creating a New Conversation and Adding Participants 114

Sending Instant Messages 118

Receiving Instant Messages 122

Terminating Instant Message Conversations 124

Working with the AudioVideo Modality 126
Starting Audio and Video Conversations 127

Handling Incoming Audio and Video Conversations 140

Summary 142

CHAPTER 6: INTRODUCTION TO THE UNIFIED COMMUNICATIONS
MANAGED API 145

What Is a UCMA Application? 146
What Does UCMA Do? 146

Server-side Uses 147

Client-side Uses 147

Integration with Non-Microsoft SIP Platforms 148

Session Initiation Protocol in Brief 148
SIP User Agents 148

SIP Proxies and Registrars 149

SIP Methods and Responses 150

How Is Lync Server Dif erent from Other Platforms? 153

UCMA Basic Concepts 153
The Collaboration Platform 154

Endpoints 154

Conversations and Calls 156

Conferencing 160

Enhanced Presence 161

Automatic Presence Publishing in UCMA 164

Local Presence and Remote Presence 164

Contact List and Contact Group Operations in UCMA 164

UCMA Development Practices 164
Asynchronous Programming 165

Exception Handling 167

Deploying a UCMA Application 169
Where to Deploy 169

Deployment Tips 169

Load-Balanced Applications 170

Summary 170

xviii

CONTENTS

CHAPTER 7: STARTING UP AND SHUTTING DOWN A
UCMA APPLICATION 171

Provisioning an Application 171
Creating a Trusted Application Pool 172

Creating a Trusted Application 179

Starting Up and Shutting Down with Explicit Settings 184
A UCMA Test Harness 184

Building the Test Harness Class 185

Building the Console Application 197

Running the Test Harness 197

Loading Trusted Application Settings Automatically 198
Starting a Collaboration Platform with
 ProvisionedApplicationPlatformSettings 199

Discovering Application Endpoints Automatically 199

Preparing Endpoints for an Application 201
Using ApplicationEndpoint for Services 201

Using UserEndpoint for Clients 203

Shutting Down Without Dropping Calls 204
Troubleshooting Startup and Provisioning 205

Troubleshooting a Trusted Service 206

Troubleshooting Errors on Startup 207

Summary 208

CHAPTER 8: TWO-PARTY CALL CONTROL WITH UCMA 209

Placing Outbound Calls with UCMA 209
Preparing an Outbound Call Using UCMA Objects 212

Establishing a Two-Party Call with BeginEstablish 214

Handling Incoming Calls and Messages with UCMA 225
Registering for Incoming Calls 227

Receiving an Incoming Call 229

Forwarding an Incoming Call to Another Endpoint 237

Accepting a Transfer on a Connected Call 239

Handling the Accepted Transfer 240

Accepting a Forward on an Outgoing Call 241

Transferring an Active Call 242
The SIP Anatomy of a Transfer 243

Types of Transfers 244

Initiating a Transfer with BeginTransfer 248

Recovering from a Failed Transfer 251

www.allitebooks.com

http://www.allitebooks.org

xix

CONTENTS

Parking and Retrieving Calls 252
The Call Park Server 253

Parking a Call 253

Retrieving a Parked Call 253

Media and Messages on an Active Call 253
Flow Classes for Media Management 253

Sending Messages to a Remote Participant Using InstantMessagingFlow 254

Manipulating Audio Media Using AudioVideoFlow 258

Monitoring Call States 258
Receiving Updates on Call State Changes 258

Receiving Updates on Flow State Changes 259

Receiving Quality of Service Data 260

Retrieving Information on Remote Participants 260
Summary 261

CHAPTER 9: PRESENCE WITH UCMA 263

Retrieving Presence Information for a Remote Endpoint 264
Querying a User’s Presence 266

Subscribing to Continuous Presence Updates Using
 RemotePresenceView 268

Parsing Presence Information 273

Publishing Presence for the Local Endpoint 278
Publishing Presence with a Presence Grammar 279

Publishing Presence Without a Presence Grammar 281

Retrieving Presence Information for the Local Endpoint 283
Making an Application an Automaton 284

Publishing an Always-On Presence 285

Automatic Presence Publication for User Endpoints 286

Summary 286

CHAPTER 10: CONTACT AND GROUP SERVICES IN UCMA 287

Manipulating Contacts in the Contact List 288
Querying a List of Contacts 288

Adding a Contact to the List 294

Modifying an Existing Contact 295

Deleting a Contact 297

Manipulating Groups in the Contact List 298
Adding a Group to the List 298

Modifying an Existing Group 299

Deleting a Group 300

xx

CONTENTS

Manipulating Presence Access Control Using Containers 301
Adding Contacts to Presence Containers 303

Removing Contacts from Presence Containers 303

Summary 305

CHAPTER 11: CONFERENCE SERVICES IN UCMA 307

Setting Up a Conference with UCMA 308
Using Scheduled Versus Ad-Hoc Conferences 309

Scheduling a Conference Using ConferenceServices 309

Inviting Participants to a Conference 315
Understanding the SIP Anatomy of a Conference Invitation 315

Inviting Participants Using a ConferenceInvitation Object 320

Inviting Participants Using Audio MCU Dial-Out 323

Transferring a Call into the Conference 325

Joining a Conference 326
Managing Conference Communication Using the
 ConferenceSession Object 327

Specifying Conference Joining Details with the
 ConferenceJoinOptionsClass 330

Joining an Ad-Hoc Conference 330

Providing Services with Trusted Conference Participants 331
Avoiding Problems with the Trusted Conference Join Feature 333

Using the Trusted Join Feature to Provide Common Services 334

Controlling Conference Attendance with Conference Commands 334
Terminating a Conference 335

Ejecting a Conference Participant 336

Locking or Unlocking a Conference 338

Modifying Conference Confi guration or Participants’ Roles 339

Managing Access with the Conference Lobby 339
Requiring Participants to Enter Via the Lobby 340

Allowing Participants into the Conference from the Lobby 340

Controlling Media Using the McuSession Classes 341
Receiving Instant Messages in a Conference 342

Muting a Participant 342

Monitoring Conference Events 344
Receiving Notifi cations of Conference Participant Changes 345

Receiving Notifi cations of Media Participant Changes 345

Tracking Conference States 346

Summary 352

xxi

CONTENTS

CHAPTER 12: ADVANCED MEDIA CONTROL IN UCMA 353

Playing or Recognizing DTMF Tones 354
Attaching the ToneController 354

Sending DTMF Tones 354

Receiving DTMF Tones 355

Detecting Fax Tones 355

Playing Music, Sounds, or Speech 356
Playing Music and Sounds with the Player Class 356

Text-to-Speech with the SpeechSynthesisConnector 362

Recording Calls and Conferences 365
Starting, Stopping, and Pausing Recording 367

Recording a Conference 368

Detecting Speech on a Call 368

Recognizing Speech 368
Controlling Hold and Mute States 372

Holding or Retrieving an Audio Call 372

Muting or Unmuting the Audio Flow 374

Staying on the Signaling Path with Back-to-Back Calls 375
The Straight and Narrow Signaling Path 375

How the Back-to-Back Call Works 378

Initiating a Back-to-Back Call 380

Back-to-Back Calls with Conferences 388

Controlling Who Can Hear What 391
Adding or Removing Participants from the Default Audio Mix 392

Creating Custom MCU Audio Routes 397

Summary 406

CHAPTER 13: DEBUGGING UCMA APPLICATIONS 407

Using Logs and Server Traces 408
Using Lync Server Logs 408

Interpreting SIP Messages in Server Logs 411

Using Lync Client Logs 417

Using Quality of Experience Metrics in UCMA 418
Troubleshooting Common UCMA Issues 419

Troubleshooting TLS Exceptions 419

Handling a “Failed to Listen On Port Specifi ed” Error 423

Resolving Problems with Auto-Provisioning 424

Troubleshooting Incoming Calls 425

Troubleshooting Transfers 426

Solving Issues with Referenced Assemblies 426

xxii

CONTENTS

Inspecting SIP Responses in Code 427
Summary 427

CHAPTER 14: BUILDING COMMUNICATIONS-ENABLED BUSINESS
PROCESSES WITH THE UCMA 3.0 WORKFLOW SDK 429

Setting Up Your Development Environment 430
Requirements for Developing with the UCMA 3.0 Workfl ow SDK 430

Installing the UCMA 3.0 Workfl ow SDK 431

Creating your First Communications Workfl ow 433
Creating a New Communications Workfl ow Project 433

Starting the Communications Workfl ow 437

Working with Communications Workfl ow Activities 440
Interacting with Callers with Statement Activities 440

Querying Callers with Question/Answer Activities 441

Other Communications Workfl ow Activities 444

Adding Windows Workfl ow Foundation Activities 445

Using Prompts to Create a Natural Dialog with the Caller 448
Building Prompts Dynamically 448

Working with Professionally Recorded Prompts 454

Working with Grammars 454
Using GRXML Grammars to Validate Input 454

Building Grammars Dynamically in Code 456

Other Tools to Build GRXML Grammars 458

Communications Events and Commands 458
Handling Global Workfl ow Events 458

Implementing Global Workfl ow Commands 460

Calling UCMA Code from a Communications Workfl ow 462
Creating a Code Activity to Perform the Attended Transfer 462

Impersonating the Caller 463

Creating a New AudioVideo Call 463

Transferring the Call 464

Building Your Own Workfl ow Activities 465
Creating the Custom Activity 466

Defi ning the Custom Activity’s Properties 466

Implementing the Activity Logic 468

Adding the Custom Activity to the Workfl ow 470

Deploying a Communications Workfl ow in a Windows Service 471
Adding a Windows Service Project to the Solution 471

Setting the Current Directory for the Windows Service 472

Starting and Stopping the Communications Workfl ow from
 the Windows Service 472

xxiii

CONTENTS

Adding an Installer to the Windows Service 473

Installing the Windows Service Using InstallUtil 474

Confi guring and Starting the Service 475

Hosting a Communications Workfl ow in a UCMA Application 476
Integrating a Communications Workfl ow XOML Into a UCMA Application 476

Creating a Generic Workfl ow Initiator 478

Starting a Workfl ow from the UCMA Application 480

Summary 482

INDEX 483

 INTRODUCTION

 RATHER THAN SIMPLY REPLACING PHONES and instant messages, Microsoft Lync, Microsoft ’ s

Unifi ed Communications platform, makes communicating in completely new ways possible. Lync

users can see whether a contact is available and where he or she is located before reaching out.

After a user has decided to contact someone, he can choose between a variety of methods, including

audio, video, and instant message, depending on the situation, or even combine them all. Users can

even send context along with a communication, so that the person on the other end does not need to

scramble for old emails or account details before the conversation can begin.

 Once of the most distinctive things about Lync, though, is how easy it is to extend. Conventional

telephony platforms tend to be diffi cult to customize, and require learning esoteric development

platforms or hiring expensive consultants. The Lync development platform described in this book

allows developers to build custom solutions for Lync in a fraction of that time using the familiar

and widely used .NET platform. This makes Lync perfect for building a custom communications

solution for your organization.

 This book explains in detail how to write custom client and server applications for Lync.

 WHO THIS BOOK IS FOR

 This book is intended primarily for readers ages 3 and up who are doing custom development to

extend Microsoft Lync, either on the client side or the server side. Readers are expected to have

a working familiarity with C# and the .NET Framework 3.5, and at least a very rudimentary

understanding of Microsoft Lync and what it does. Newcomers to the Lync platform can ramp up

slowly with the introductory material in Chapters 1 and 6, whereas those who are already familiar

with Lync development or who worked with the development platform in Offi ce Communications

Server 2007 will fi nd plenty of advanced material throughout the book.

 Readers who are interested primarily in building custom server applications to extend Lync can

begin with Chapter 6 after a brief dip into Chapter 1, and return to Chapters 2 – 5 later. Readers

who have been tasked with building custom client applications for Lync can read Chapters 1 – 5 in

order. Finally, those who are already somewhat familiar with Lync development and are desperate

to solve a knotty server - side development problem may want to skip to Chapter 13, which covers

troubleshooting.

 Readers who are hungry are advised to have a snack before beginning, because this book does not

contain any food.

INTRODUCTION

xxvi

 WHAT THIS BOOK COVERS

 This book describes in detail how to extend Lync through custom development. It covers both

client - side development using the Lync 2010 Software Development Kit (SDK), and custom server

application development using the Unifi ed Communications Managed API (UCMA) SDK and the

Unifi ed Communications Managed API Workfl ow SDK. Rather than rehash the API documentation

and detail every single feature of the Lync development platform, this book attempts to explain in

depth what the authors feel are the most commonly used areas of functionality. Readers will fi nish

the chapters in this book not only understanding the big picture of what can be done with Lync

development, but also the real - world practices that make life easier for a Lync developer. Last, but

not least, a thorough examination of this book will reveal the meaning of the word octothorpe .

 HOW THIS BOOK IS STRUCTURED

 Aside from Chapter 1, which explains what Lync is all about and how the development platform

works, the book is roughly divided into two sections. Chapters 2 – 5 cover client - side development,

while Chapters 6 – 14 cover server - side development.

 Chapter 2 explains how to use the Lync controls to embed Lync client features into WPF and

Silverlight applications.

 Chapter 3 introduces the Lync 2010 Managed API, which allows developers to perform Lync

client operations, such as initiating calls or monitoring the presence of contacts, from within other

applications.

 Chapter 4 describes how you can use the Lync controls and the Lync Managed API to create

 “ contextual conversations, ” where information relevant to the topic is sent along with the

communication.

 Chapter 5 discusses the UI Suppression feature in the Lync Managed API, which allows the

standard Lync client interface to be hidden and Lync client operations managed through custom

development.

 Chapter 6 is the fi rst of the server - side development chapters, and introduces the Unifi ed

Communications Managed API (UCMA).

 Chapter 7 explains how to build the skeleton of a UCMA application, which can connect to a Lync

server.

 Chapter 8 describes how to use UCMA to initiate, accept, monitor, and control two - party calls.

 Chapter 9 discusses the presence capability in Lync and how to manipulate it through UCMA.

 Chapter 10 talks about using UCMA to perform contact list operations on behalf of Lync users.

 Chapter 11 introduces conferencing: how to create, join, modify, and manipulate conferences, either

for traditional conference call scenarios or for specialized applications such as call center or billing

systems.

INTRODUCTION

xxvii

 Chapter 12 describes some of the advanced features in UCMA, which allow applications to control

media, including playing and recording audio, manipulating the fl ow of media between conference

participants, and dealing with tones.

 Chapter 13 explains some of the fundamentals of troubleshooting custom server applications for

Lync, delving into some details of messaging in the process.

 Chapter 14 covers the UCMA Workfl ow SDK, which allows developers to build interactive voice

and messaging applications quickly with a graphical designer.

 WHAT YOU NEED TO USE THIS BOOK

 To derive the most benefi t from this book, the authors recommend having access to a functioning

Lync environment, with at least one free application server on which to test server applications. To

derive maximum enjoyment from this book, a sense of humor is also recommended.

 The Lync 2010 SDK (for client - side development) and the UCMA 3.0 SDK (for server - side

development) will be necessary to try out any of the code discussed in this book. The chapters

contain details on fi nding and installing these SDKs. In order to install and use the SDKs, readers

will also need Visual Studio 2008 SP1 or a later version.

 CONVENTIONS

 To help you get the most from the text and keep track of what ’ s happening, we ’ ve used a number of

conventions throughout the book.

 Boxes with a warning icon like this one hold important, not - to - be - forgotten
information that is directly relevant to the surrounding text.

 The pencil icon indicates notes, tips, hints, tricks, or asides to the current
discussion.

 As for styles in the text:

 We italicize new terms and important words when we introduce them.

 We show keyboard strokes like this: Ctrl+A.

 We show fi lenames, URLs, and code within the text like so: persistence.properties .

➤

➤

➤

INTRODUCTION

xxviii

 We present code in two different ways:

We use a monofont type with no highlighting for most code examples.
 We use bold to emphasize code that is particularly important in the present

context or to show changes from a previous code snippet.

 SOURCE CODE

 As you work through the examples in this book, you may choose either to type in all the code

manually, or to use the source code fi les that accompany the book. All the source code used in this

book is available for download at www.wrox.com . When at the site, simply locate the book ’ s title

(use the Search box or one of the title lists) and click the Download Code link on the book ’ s detail

page to obtain all the source code for the book. Code that is included on the website is highlighted

by the following icon:

Available for

download on

Wrox.com

 Listings include the fi lename in the title. If it is just a code snippet, you ’ ll fi nd the fi lename in a code

note such as this:

Code snippet fi lename

➤

 Because many books have similar titles, you may fi nd it easiest to search by
ISBN; this book ’ s ISBN is 978 - 0 - 470 - 93903 - 1.

 After you download the code, just decompress it with your favorite compression tool. Alternatively,

you can go to the main Wrox code download page at www.wrox.com/dynamic/books/download

.aspx to see the code available for this book and all other Wrox books.

 ERRATA

 We make every effort to ensure that no errors are in the text or in the code. However, no one is

perfect, and mistakes do occur. If you fi nd an error in one of our books, like a spelling mistake or

faulty piece of code, we would be very grateful for your feedback. By sending in errata, you may

save another reader hours of frustration, and at the same time, you will be helping us provide even

higher quality information.

 To fi nd the errata page for this book, go to www.wrox.com and locate the title using the Search box

or one of the title lists. Then, on the book details page, click the Book Errata link. On this page, you

www.allitebooks.com

http://www.wrox.com
http://www.wrox.com
http://www.allitebooks.org

INTRODUCTION

xxix

can view all errata that has been submitted for this book and posted by Wrox editors. A complete

book list, including links to each book ’ s errata, is also available at www.wrox.com/misc-pages/

booklist.shtml .

 If you don ’ t spot “ your ” error on the Book Errata page, go to www.wrox.com/contact/

techsupport.shtml and complete the form there to send us the error you have found. We ’ ll check

the information and, if appropriate, post a message to the book ’ s errata page and fi x the problem in

subsequent editions of the book.

 P2P.WROX.COM

 For author and peer discussion, join the P2P forums at p2p.wrox.com . The forums are a web - based

system for you to post messages relating to Wrox books and related technologies and interact with

other readers and technology users. The forums offer a subscription feature to email you topics of

interest of your choosing when new posts are made to the forums. Wrox authors, editors, other

industry experts, and your fellow readers are present on these forums.

 At http://p2p.wrox.com , you can fi nd a number of different forums that will help you, not only as

you read this book, but also as you develop your own applications. To join the forums, just follow

these steps:

 1. Go to p2p.wrox.com and click the Register link.

 2. Read the terms of use and click Agree.

 3. Complete the required information to join, as well as any optional information you want to

provide, and click Submit.

 4. You will receive an email with information describing how to verify your account and

complete the joining process.

 After you join, you can post new messages and respond to messages other users post. You can

read messages at any time on the Web. If you want to have new messages from a particular forum

emailed to you, click the Subscribe to this Forum icon by the forum name in the forum listing.

 For more information about how to use the Wrox P2P, be sure to read the P2P FAQs for answers to

questions about how the forum software works, as well as many common questions specifi c to P2P

and Wrox books. To read the FAQs, click the FAQ link on any P2P page.

 You can read messages in the forums without joining P2P, but to post your own
messages, you must join.

Building Communications
Solutions with Microsoft
Lync Server 2010

 WHAT ’ S IN THIS CHAPTER?

 What Is Lync?

 Using the Lync Controls to Integrate Lync Functionality into Your

Applications

 Building Custom Communications Clients with the Lync API

 Building Server - Side Communications Solutions with the Unifi ed

Communications Managed API

 Building Communications Workfl ows with the Unifi ed Communications

Managed API Workfl ow SDK

 Information workers rely heavily on two inherently ineffi cient technologies — email and

the telephone — to perform their day - to - day job duties. If you ’ ve ever been buried in email

and can only dream of achieving “ inbox zero, ” you recognize the limitations of email as a

productivity tool. When you email someone, he is probably not sitting at his desk anxiously

awaiting your email and chomping at the bit to helpfully respond. Occasionally, you might

receive someone ’ s out of offi ce notifi cation in response to your email and realize that you

probably won ’ t get a real response for a few days. The same goes for the traditional phone:

you don ’ t know whether or not the person you are trying to reach is available to pick up your

call; you end up playing voicemail tag until you fi nally get in touch with him or her.

 Even entertaining the possibility that email and the phone are going anywhere would be

naive; however, both could use a complementary technology to increase their usefulness and

streamline the process of communicating and collaborating with others. Instead of calling

people without knowing whether they are available, how about knowing their availability and

➤

➤

➤

➤

➤

 1

D
o

2 ❘ CHAPTER 1 BUILDING COMMUNICATIONS SOLUTIONS WITH MICROSOFT LYNC SERVER 2010

the best way to contact them before placing the call? Instead of emailing a document back and forth

with changes, how about starting an application sharing session and collaborating on the document

in real time? Wouldn ’ t it be great if you knew what an incoming call was about before you even

picked it up? Or if you could pick up that call anywhere, not just at your desk?

 Microsoft Lync Server 2010 — the successor to Offi ce Communications Server — provides instant

messaging, voice and video calling, online meeting, and application sharing capabilities that

integrate with the tools that information workers use every day: Microsoft Offi ce and SharePoint.

When working with a Word document in SharePoint, you can see the edits that someone else who is

editing the document at the same time has made and use Microsoft Lync to start an audio or instant

message conversation with him to discuss the edits. Because you can see peoples ’ presence in various

Offi ce applications, SharePoint, and your custom - developed applications, you know whether they

are actually available before contacting them.

 As a Private Branch Exchange (PBX) replacement, Microsoft Lync Server 2010 can double as your

phone system, enabling you to make phone calls directly from the Microsoft Lync client running

on your desktop or laptop. You are no longer tethered to that hunk of plastic sitting at your desk;

you can receive a call on whatever device you happen to be connected from, wherever you are. Your

ability to receive calls at a certain number no longer depends on your proximity to the physical

phone attached to that number.

 If you have an Internet connection and a headset, that ’ s all you need! This is what happens when

telephony moves from being a hardware solution to a software one.

 Have you begun thinking of the types of communications features that you can build into your

applications? After a brief introduction of the functionality available in the Microsoft Lync Server

2010 product, this chapter gives you a developer - centric overview of the types of communications

solutions that you can build on top of it.

 You ’ ll learn about the Lync software development kit (SDK), which includes the Lync controls

that you can use to integrate Lync functionality such as presence and click - to - call into your

applications. The Lync SDK also includes the Lync API; a brand - new, managed API for

building communications - enabled applications. Finally, the chapter shows you how the Unifi ed

Communications Managed API 3.0 (UCMA 3.0) and the Unifi ed Communications Managed API

3.0 Workfl ow SDK (UCMA 3.0 Workfl ow SDK) are used to build server - side communications

solutions such as automatic call distributors, conferencing solutions, Interactive Voice Response

(IVR) systems, and virtual personal assistants.

 LYNC PRODUCT OVERVIEW

 So, what is Lync? Microsoft Lync Server 2010 is the successor to Offi ce Communicators Server, and

Live Communications Server before that. Although most people might be familiar with Lync as an

enterprise instant messaging solution, it ’ s a lot more than that when you take advantage of all the

features it has to offer.

 Lync adds value to the Microsoft applications that you use every day: Offi ce and SharePoint.

It provides a unifi ed communication and collaboration experience across Offi ce and SharePoint,

providing the same way to start an instant message, audio call, or desktop sharing session with a

contact regardless of the application you are working in. The new Lync client (the replacement for

Microsoft Communicator) enables you to connect with people within your organization by allowing

you to perform a skills search to fi nd coworkers with a particular skill. The Lync skills search

queries users ’ My Sites for skills that they have indicated expertise in.

 Lync provides a built - in conferencing solution that you can use to schedule and host online meetings

with contacts both inside and outside your organization. Online meetings are easy to create by

scheduling them in Outlook, or by selecting a list of contacts in Lync and starting an ad - hoc meeting.

For users outside your organization who don ’ t have the Lync client installed, the Lync Web App —

the successor to LiveMeeting — enables them to join your online meeting and participate in your

application sharing session. Attendees can dial in to a conference call, or have the Lync Web App call

them back on a number they provide. A new conference lobby experience allows presenters and the

meeting organizers to exercise more control over the online meeting by notifying them when people

outside the organization join the meeting and providing them with the option to admit these visitors

(or not) into the meeting.

 This book is not geared to people responsible for architecting, deploying, and administering

Microsoft Lync Server 2010 in an enterprise environment; however, the following is a brief overview

of the new features available to administrators.

 The Microsoft Lync Server 2010 Control Panel is a new Silverlight - based tool for administering a

Lync deployment; it includes functionality to :

 Manage users

 Manage the various servers in the Lync topology

 Confi gure instant messaging and presence

 Create and maintain voice dialing plans

 Confi gure conferencing

 Monitor the quality of service in the deployment

 Adjust bandwidth utilization

 Administrators can alternatively use PowerShell to execute management scripts in the topology. The

Lync Server Management Shell provides an experience that Exchange and SharePoint administrators

are already familiar with from managing their environments using PowerShell.

 Now that you know a little bit about the functionality offered by Microsoft Lync Server 2010, it ’ s

time to learn about the development tools that you use to build communications functionality into

your applications.

 BUILDING COMMUNICATIONS APPLICATIONS WITH
THE LYNC SDK

 The Lync 2010 SDK includes the Lync controls, a set of Silverlight and Windows Presentation

Foundation (WPF) controls that you can use to integrate functionality found in the Lync client

directly into your applications.

➤

➤

➤

➤

➤

➤

➤

Building Communications Applications with the Lync SDK ❘ 3

4 ❘ CHAPTER 1 BUILDING COMMUNICATIONS SOLUTIONS WITH MICROSOFT LYNC SERVER 2010

 The SDK also includes the Lync application programming interface (API), a brand - new, managed

API for building custom communications solutions. The Lync API is intended to replace the

IMessenger and UCC APIs available with Offi ce Communications Server 2007 R2. The IMessenger

API was easy to get started with, but was fairly limited in functionality; it was also a little

cumbersome to troubleshoot because it used COM interoperability to interact with the running

instance of Communicator on the user ’ s machine.

 The UCC API was very diffi cult to get started with in comparison, but it provided the most power and

functionality if you wanted to build a Communicator replacement. Unlike the UCC API, the Lync

API requires the Lync client to be running — it reuses the connection that the client has established

with the Lync infrastructure. You can confi gure the Lync client to run in UI Suppression mode —

where its user interface is invisible to the user — enabling you to build custom communications

clients previously only possible when using the UCC API.

 Integrating Lync Functionality into Your Applications
Using the Lync Controls

 Think of the Lync client as being built out of LEGO blocks, each providing a specifi c piece of

functionality such as showing the presence of contacts, organizing contacts into groups, and

interacting with contacts by starting instant message or phone conversations. The Lync controls

separate the functionality in Lync clients into individual controls that developers can drag and

drop into their Windows Presentation Foundation (WPF) or Silverlight applications.

 The Lync controls include a control to show the presence of a contact; for example, the presence of

an account manager in a CRM system. Controls are also available to easily start an instant message

or audio conversation with that contact at the click of a button. with no additional code required.

 A set of other controls provides functionality for managing contact lists; for example, to integrate

the user ’ s Lync contact list into an application. You can also use custom contact lists to create and

display an ad - hoc list of contacts, such as the account team for a client in a CRM application.

Additional controls are available to search for contacts and display the results. Controls are also

available to set the current user ’ s presence, personal note, and location.

 Due to their obvious dependence on user interface elements of the Lync client, the Lync controls are

not available in UI Suppression mode.

 Integrating Lync functionality into applications using the Lync controls allows users to launch

communications directly from the application that they are working in without needing to switch

to the Lync client. The Lync controls are available in WPF and Silverlight and are extremely easy to

use; you only need to drag and drop the appropriate controls into the application, and they work

without the need for any additional code.

 Integrating Communications into Your Applications
Using the Lync API

 The Lync API object model exposes extensibility points that allow developers to build applications that

interact with the running instance of the Lync client. You can use the Lync API to programmatically sign

a user into the Lync client and handle events for changes in its state. You can also start a conversation,

add participants, handle conversation and participant events, and add contextual data to the

conversation.

 You can use the Lync API to create subscriptions on attributes of contacts in your contact list; for

example, to track when the availability of a particular contact changes. The Lync API also provides

functionality to modify attributes of users signed in to Lync, such as changing their presence or

publishing a personal note or location.

 Like the IMessenger API, the Lync API includes automation: the ability to start conversations in

different modalities (such as instant message or audio/video) with a very small amount of code.

The functionality in automation simply invokes the necessary Lync user interface elements, such

as a Lync conversation that includes the Application Sharing modality so that a user can share her

desktop with another user. Because it is dependent on Lync user interface elements, the functionality

in automation is not available when the Lync client is running in UI Suppression mode.

 In conjunction with the Lync controls, you can use the Lync API to easily add communications

functionality into Silverlight, WPF, and Windows Forms applications. For example, you can spruce

up a customer relationship management (CRM) application by integrating presence and click - to - call

functionality, allowing users to accomplish their work without needing to switch back and forth

between the application and the Lync client.

 Working with Lync UI Suppression

 When the Lync client is confi gured to run in UI Suppression mode, its interface is completely hidden

from the user. Applications that use Lync UI Suppression are responsible for recreating those user

interface elements from scratch. The Lync API with Lync running in UI Suppression mode is the

recommended development pattern for applications you would have previously built with the UCC API.

 Lync UI Suppression requires that the Lync client is installed on the user ’ s machine; this eliminates

the complexity of managing the connectivity of the application back to the Lync server infrastructure.

In UI Suppression, you use the Lync API to replicate some of the functionality available in the Lync

client, such as signing users into Lync, retrieving their contact list, and starting and responding to

conversations in different modalities.

 When working with UI Suppression, you interact with conversations at the modality level —

activating individual modalities manually, creating conversations, adding participants, and

disconnecting the modalities when the conversation is completed. For example, you can build

a Silverlight instant messaging client that provides a completely customized user interface for

instant message conversations. In this case, you would be responsible for recreating application

functionality and user interface elements such as a contact list and conversation window. You would

work directly with the instant message modality, creating a conversation, connecting the modality,

sending instant message text to participants, notifying participants when someone is typing, and

delivering the instant message text to the participants in the conversation.

 Using the Lync API with Lync running in UI Suppression mode, you can build compelling Lync -

 replacement solutions such as a custom instant messaging client, or a dedicated audio/video

conferencing solution.

Building Communications Applications with the Lync SDK ❘ 5

6 ❘ CHAPTER 1 BUILDING COMMUNICATIONS SOLUTIONS WITH MICROSOFT LYNC SERVER 2010

 Adding Context to Conversations

 The context of a conversation refers to the subject or topic of the conversation; the Lync API

provides some mechanisms for embedding context directly into a conversation, allowing the

participants to immediately know what a new conversation is about.

 A great example of adding context to a conversation is the “ Reply by IM ” feature in Microsoft

Outlook that allows you to respond to an email message using Lync. The message recipient sees the

subject of the original email message in the incoming conversation notifi cation window (also known

as the toast) and as the title of the conversation window. When the person receives the instant

message, she knows right away what you are contacting her about.

 The Lync API introduces the concepts of Launch Link context and Lync Extensibility Window

context that you can use to enhance the communications capabilities of your applications by

embedding context into the conversations started by the application.

 Launch Link context allows conversation recipients to launch applications directly from the Lync

conversation window. For example, you select a customer account when working with a CRM

application; after selecting the account, you can see the account manager ’ s presence and are able

to start an instant message or audio conversation with her directly from the application. The

conversation that the account manager receives contains a link that she can use to launch the CRM

application directly from the conversation window. The contextual data payload supplied with the

conversation also includes information about the particular account that you are contacting her

about. The user can launch the CRM application and automatically load the customer account

record in question.

 Lync Extensibility Window context allows you to host Silverlight or Web applications in the Lync

conversation window. When a person receives a conversation that includes Lync Extensibility

Window context, the Lync conversation window expands to host the specifi ed Silverlight or Web

application. The application hosted in the Lync conversation window enhances the conversation by

providing additional services to it not available in the out - of - the - box Lync experience.

 Launch Link and Lync Extensibility Window context are often combined to provide an end - to - end

contextual conversation experience to the user. For example, a developer working in Visual Studio

can highlight a section of code — using a Visual Studio add - in — and learn which team member

authored that section of code. The Lync controls are used to show the team member ’ s presence

and, if she is available, start a conversation with her. When she receives the conversation, you can

use Lync Extensibility Window context to display the section of code in question in a Silverlight

application hosted in the Lync conversation window. If the developer needs to modify the code, you

can use Launch Link context to include a launch link in the Lync conversation that allows her to

start Visual Studio and automatically open the project containing the code.

 You can build two main types of applications to run in the Lync conversation window. The fi rst is

a companion application, such as a translation application that provides two - way translation of an

instant message conversation. This type of application interacts with the conversation but doesn ’ t

depend on it for startup parameters; the user can start this application as needed from the Lync

conversation window. The other type of application depends on the conversation it is hosted in

to provide the necessary startup parameters; for example, when a customer service agent in a call

center receives a call, a Silverlight application automatically loads in the Lync conversation window

and uses the caller ’ s phone number to look up the customer record and display information, such as

the recent order history to the agent.

 The contextual conversation functionality provided by Launch Link context and Lync Extensibility

Window context allows you to inject contextual data into conversations, providing for a richer

and more effi cient conversation experience that ensures that participants always have access to the

contextual application data that they need.

 BUILDING COMMUNICATIONS SOLUTIONS WITH THE
UNIFIED COMMUNICATIONS MANAGED API SDK

 The Unifi ed Communications Managed API SDK includes the Unifi ed Communications Managed

API (UCMA) and the Unifi ed Communications Managed API Workfl ow SDK (UCMA Workfl ow

SDK) that are used to build middle - tier communications solutions such as automatic call

distributors, IVR (Interactive Voice Response) systems, and virtual personal assistants.

 UCMA is the most mature of the APIs in Microsoft Lync Server 2010 and its predecessors. In

Offi ce Communications Server 2007, UCMA 1.0 simply provided an abstraction over the Session

Initiation Protocol (SIP) while providing limited collaboration functionality to developers. In Offi ce

Communications Server 2007 R2, UCMA 2.0 added presence, conferencing, media, and workfl ow

and collaboration functionality, fi nally establishing Microsoft as a player in the software telephony

space and enabling developers to build software to power high - volume call centers.

 In Microsoft Lync Server 2010, UCMA 3.0 builds upon the functionality in UCMA 2.0 to make

developing and deploying these types of applications much easier. It also adds functionality that

enables some advanced call center scenarios such as supervisor monitoring and coaching.

 Building Communications Solutions with UCMA

 Although the Lync SDK is used to integrate communications functionality into applications that

run on the client, UCMA is typically used to build communications applications that run on the

server; for example, hosted in Internet Information Services (IIS), exposed through Windows

Communication Foundation (WCF), or running in a Windows Service. A UCMA application is

usually a long - running process such as an automatic call distributor used to handle and distribute

incoming calls in a call center. Users interact with the UCMA application via an endpoint that can

either be a contact in Lync, such as sip:HelpDesk@fabrikam.com , or simply a phone number. The

user can start a Lync call, instant message with the UCMA application contact or dial the phone

number associated with the application.

 Consider the following scenario where Contoso, a fi ctitious company, uses a UCMA - based

application to run its call center operations.

 When customers call Contoso ’ s customer service phone number, the UCMA application picks up

the calls and guides callers through a workfl ow, such as one built with the UCMA Workfl ow SDK,

to gather information from them such as the reason for their call, their account number, and so on.

After the workfl ow gathers the necessary information from the callers, it places them on hold and

searches for an agent with the right skills to assist them. Customers remain on hold until an agent

Building Communications Solutions with the Unifi ed Communications Managed API SDK ❘ 7

8 ❘ CHAPTER 1 BUILDING COMMUNICATIONS SOLUTIONS WITH MICROSOFT LYNC SERVER 2010

becomes available; the UCMA application tracks all the agents ’ Lync presence so it knows when an

agent becomes available again to handle a call.

 When an agent picks up calls, he or she already knows a lot about the callers based on the information

they provided. An Agent Dashboard application hosted in the Lync conversation window can display

information about the caller such as order history or any open customer service tickets that require

attention. The agent can use this information to provide better service to the customer.

 An application such as the customer service Agent Dashboard is built using the Lync SDK, including

the Lync controls and the Lync API. The UCMA application interacts with the Agent Dashboard

using the Context Channel, a new feature in UCMA 3.0 that provides a channel across which a

UCMA application and Lync SDK application can send information to each other. For example,

if the agent realizes that he needs to consult another agent to help with the call, he can issue an

 “ escalate ” command from the Agent Dashboard application. The command is sent across the

context channel to the UCMA application, which knows how to process it and look for another

available agent with the necessary skills to assist with the call.

 Part of a supervisor ’ s duties in Contoso ’ s customer service department is to monitor the performance

of agents and coach them on how to provide better service to customers. The supervisor can launch

a Supervisor Dashboard application that shows a list of all active calls. The supervisor selects a

call to silently join, allowing him to monitor the call without the knowledge of either the customer

or agent. The new audio routes functionality in UCMA 3.0 enables developers to build routes

across which audio can travel in a conference, effectively controlling who can hear what. When the

supervisor is monitoring a call, audio fl ows to her from the conference but doesn ’ t fl ow back in,

allowing her to listen in to a call without being heard. If the supervisor needs to provide coaching to

the customer service agent, an audio route is established from the supervisor to the agent, allowing

her to “ whisper ” to the agent without the customer hearing any of the conversation.

 UCMA 3.0 includes several other enhancements that are covered in more detail later in the book,

including an easier development experience for working with presence and conferences, and a

feature known as auto - provisioning, which greatly simplifi es the process of managing the plumbing

and confi guration information required to run a UCMA application.

 Building Workfl ow Solutions with the UCMA Workfl ow SDK

 You use the UCMA Workfl ow SDK to build communications - enabled workfl ow solutions such as

IVR systems and virtual personal assistants. You typically use an IVR system to gather information

from a caller such as the customer account number and reason for the call before connecting him

or her to a live agent. A virtual personal assistant, on the other hand, provides services to the caller

such as the ability to reserve a conference room from a mobile phone.

 For a more concrete example, consider this scenario. In the legal industry, potential cases need

be vetted for any confl icts of interest that could prevent the fi rm from being able to take on the

case. This process is referred to as new matter intake , and each potential case is called a matter .

Most law fi rms have software in place to streamline this process; however, such a solution can be

extended to provide users with the ability to call in and check on the status of a new matter.

 For example, an attorney could place a call to the New Matter Intake application contact in

Microsoft Lync from her mobile phone. Using text - to - speech technology, the IVR prompts the

www.allitebooks.com

http://www.allitebooks.org

attorney to enter her identifi cation PIN and validates her identity. The IVR can then execute code

to access the database, retrieve a list of outstanding matters for that attorney, and prompt her to

select one. After the attorney selects a matter, the IVR can again access the database to identify

the confl icts attorney assigned to the matter. The IVR can now check the presence of the confl icts

attorney, and if he is available, ask the caller whether she wants to be transferred. The IVR can then

perform a blind transfer of the call and disconnect itself from the call.

 The UCMA 3.0 Workfl ow SDK enables developers to visually construct communications - enabled

workfl ows by dragging workfl ow activities onto a design service, arranging and connecting them to

form the workfl ow solution. You can construct workfl ows to accept audio or instant message calls,

or both.

 In the case of audio calls, input from the user can be in the form of dual - tone multi - frequency (DTMF)

tones (choosing an option by entering its corresponding number using the phone ’ s keypad), speech

recognition, or both. The text - to - speech engine, available in 26 different languages, converts text

to prompts that the caller hears during different activities of the workfl ow. You can also substitute

professionally recorded audio prompts to give the IVR a more polished feel.

 The previous attorney example represents an incoming communications workfl ow; however, developers

can also build outgoing communications workfl ows. For example, a person might receive an automated

call from the Service Desk asking him to rate his experience with a ticket he recently opened. The

communications workfl ow can ask him several questions, such as his satisfaction with how the ticket

was handled, and then save the results of the survey to a database when the call is completed.

 Workfl ows are a critical part of a communications solution, allowing the software to provide

services to a caller and only transferring the call to a live customer service agent — the comparatively

more expensive resource — if necessary and only after providing the agent with all the relevant

information about the caller.

 SUMMARY

 The development tools available in Microsoft Lync Server 2010 not only enable you to integrate

communications features into your applications, they also enable you to build a whole new type

of communication - centric application that can be the backbone of your business. In the next

chapter, you will learn about the Lync controls that are available in the Lync SDK. You use the Lync

controls to easily integrate functionality found in the Lync client directly into your applications.

Summary ❘ 9

Integrating Microsoft
Lync Functionality into
Your Applications

 WHAT ’ S IN THIS CHAPTER?

 Setting up your development environment to work with the

Lync controls

 Working with the Lync controls in WPF and Silverlight

 Starting conversations from the Lync controls

 Extending the Lync controls by creating a new control template

 Using the Lync controls, you can integrate functionality from the Microsoft Lync 2010

client into your Windows Presentation Foundation (WPF) and Silverlight applications.

Think of the Lync client as being built out of Lego blocks, each providing a specifi c piece of

functionality such as showing the presence of contacts, organizing contacts into groups, and

interacting with contacts by starting instant messaging or audio conversations. The Lync

controls make this functionality available in WPF and Silverlight controls that you can use

in your applications.

 The Lync controls include individual controls to show the presence of contacts; for example,

the presence of an account manager for a client in a Customer Relationship Management

(CRM) application. Controls are also available to easily start an instant message or audio

conversation with that contact at the click of a button — with no additional code required.

 A set of other controls provides functionality for managing contact lists; for example, to

integrate the user ’ s Lync contact list into an application. You can also create custom contact

lists and use them to display an ad - hoc list of contacts, such as the entire account team for a

➤

➤

➤

➤

 2

D
o

12 ❘ CHAPTER 2 INTEGRATING MICROSOFT LYNC FUNCTIONALITY INTO YOUR APPLICATIONS

client in a CRM application. Additional controls are available to search for contacts and display the

results. Controls are also available to set the current user ’ s presence, personal note, and location.

 Integrating Lync functionality into applications using the Lync controls enables end users of the

application to launch communications directly from the application in which they are working

without needing to switch to Lync. The Lync controls are available in WPF and Silverlight and are

extremely easy to use; you only need to drag and drop the appropriate controls into the application,

and they work with little to no additional code.

 All the code shown in this chapter is available as part of a companion WPF project that you can

download at Wrox.com.

 SETTING UP YOUR DEVELOPMENT ENVIRONMENT

 This section describes how to set up your development environment to use Visual Studio or

Expression Blend to integrate the Lync controls into your WPF and Silverlight applications.

 Requirements for Developing with the Lync Controls

 Before you install the Microsoft Lync 2010 SDK and start developing with the Lync controls,

take a moment to ensure that you have the right prerequisites installed and confi gured in your

development environment.

 Microsoft Lync 2010

 The user ’ s machine must have Lync installed and running in order to use the Lync controls. Lync

acts as an “ endpoint ” for the controls, providing a communications channel between the controls and

the Microsoft Lync Server 2010 infrastructure. When used in an application, the Lync controls are

automatically associated with the identity of the user currently signed in to Lync.

 If Lync is not running — or if the user is not signed in — the Lync controls are disabled and

appear grayed out.

 Visual Studio Support

 Visual Studio 2008 SP1 and Visual Studio 2010 are offi cially supported for developing applications

with the WPF Lync controls. You can use the WPF controls in both C# and Visual Basic .NET

applications targeting either .NET Framework 3.5 SP1 or .NET Framework 4.

 The Silverlight Lync controls are only supported in Visual Studio 2010 and Silverlight 4. You

can use the Silverlight controls in both C# and Visual Basic .NET applications targeting .NET

Framework 4.

 Expression Blend Support

 Expression Blend 3 and Expression Blend 4 are offi cially supported for developing applications

with the WPF Lync controls. The Silverlight Lync controls are only offi cially supported in

Expression Blend 4.

 Silverlight Tools and Support

 The Lync controls are only supported in Silverlight 4. Be sure to install the Silverlight 4 Tools for

Visual Studio before beginning development.

 If the appropriate Silverlight tools are not installed in your development environment, you will not

be able to use the Visual Studio Silverlight project templates that are available with the Lync SDK.

 When working with the Silverlight Lync controls, be sure to add the web site that hosts the Silverlight

application to the user ’ s Trusted Sites collection in the security settings in Internet Explorer.

 The Silverlight Lync controls are not supported in Silverlight applications running in

out - of - browser mode.

 Installing the Lync Controls

 The Lync controls are installed as part of the Microsoft Lync 2010 SDK, which also includes the

Microsoft Lync 2010 Managed API (which Chapter 3 covers in detail).

 The installer deploys the necessary assemblies for Silverlight and WPF, some sample applications,

and Visual Studio project templates.

 The Microsoft Lync 2010 SDK is installed to C:\Program Files (x86)\Microsoft Lync\SDK .

 Assemblies

 The Microsoft Lync 2010 SDK installation directory contains an Assemblies folder where you

can fi nd assemblies compiled for Silverlight and WPF. If you ’ re not using the Visual Studio project

templates that are available with the SDK, you should reference the assemblies from this location.

 A good practice is to include the necessary assemblies in a lib folder in your Visual Studio solution

and reference them directly from there. This is particularly useful if you are using Microsoft Team

Foundation Server — or any other build automation software — to perform automated builds of

your application because you don ’ t need to install the Microsoft Lync 2010 SDK directly on the

build server.

 Lync SDK Redistributable

 When building a custom software application that uses the Lync SDK, you can ’ t assume that users

will have the SDK already installed on their machine. You can package the Microsoft Installer

(MSI) fi le for the Lync SDK Redistributable with your application ’ s installer, and then install it on

the user ’ s machine as part of the application ’ s installation process.

 The redistributable is available by default at C:\Program Files (x86)\Microsoft Lync\SDK\

Redist\LyncSdkRedist.msi .

 Visual Studio Project Templates

 After installing the Microsoft Lync 2010 SDK, you will be able to create a Lync Silverlight

Application or Lync WPF Application project in Visual Studio as shown in Figure 2 - 1.

Setting Up Your Development Environment ❘ 13

14 ❘ CHAPTER 2 INTEGRATING MICROSOFT LYNC FUNCTIONALITY INTO YOUR APPLICATIONS

 These Visual Studio project templates provide a great starting point for integrating the Lync

controls into your applications. The project templates take care of adding the appropriate references

to the Lync controls assemblies, declaring the XAML namespace references to the Lync controls,

and laying out a PresenceIndicator control on the project ’ s main page, as shown in Figure 2 - 2.

 FIGURE 2 - 1

FIGURE 2 - 2

 Setting Up Your Visual Studio Project Manually

 If you have an existing Silverlight or WPF application that you need to integrate the Lync controls

into, you won ’ t have the luxury of being able to create your project from the Lync Silverlight

Application or Lync WPF Application Visual Studio project templates. In that case, the following

describes how to integrate the Lync controls into an existing Silverlight or WPF project.

 Adding References to the Lync Controls

 You can fi nd all the assemblies for the Microsoft Lync 2010 SDK by default at C:\Program Files

(x86)\Microsoft Lync\SDK\Assemblies . Assemblies for WPF and Silverlight are available in

separate folders.

 Add references to the following assemblies:

 Microsoft.Lync.Controls.dll

 Microsoft.Lync.Controls.Framework.dll

 Microsoft.Lync.Utilities.dll

 Microsoft.Offi ce.Uc.dll (only for WPF applications)

 Be sure to also add a reference to Microsoft.Lync.Model.dll if you need to use the Microsoft Lync

2010 API in your application. The Lync controls expose objects from the Microsoft.Lync.Model

namespace; for example, a contact list contains a list of Microsoft.Lync.Model.Contact objects.

You will only be able to interact with these objects in code if you add a reference to Microsoft.Lync

.Model.dll.

 Declaring XAML Namespaces

 In the pages that you intend to use the Lync controls, add the following XAML namespace declaration:

xmlsn:controls=”clr-namespace:Microsoft.Lync.Controls;
assembly=Microsoft.Lync.Controls”

 Code snippet LyncControls\MainWindow.xaml

With this XAML namespace declaration in place, you can use the controls: prefi x to use the Lync

controls in a Silverlight or WPF application; for example, < controls:PresenceIndicator .../> .

 WORKING WITH THE LYNC CONTROLS

 The Lync controls include controls for displaying presence of contacts, working with lists of

contacts, searching for contacts, modifying the current user ’ s presence properties, and starting

conversations. You can integrate the controls into your Silverlight or WPF applications to provide

Lync functionality to your users directly from within the applications.

➤

➤

➤

➤

Available for

download on

Wrox.com

Available for

download on

Wrox.com

 The assemblies for WPF are contained in a folder called Desktop .

Working with the Lync Controls ❘ 15

16 ❘ CHAPTER 2 INTEGRATING MICROSOFT LYNC FUNCTIONALITY INTO YOUR APPLICATIONS

 You can also attach context to the controls that start conversations, allowing you to include

contextual application data that gets passed to the conversation. For example, you can specify text

that will appear in the toast (the notifi cation window that appears on the bottom right of the screen

when you receive a conversation invitation) that the recipients see when they receive a conversation

invitation. You learn about the basic scenarios in this chapter; Chapter 4 covers contextual

conversations in much more detail.

 The code accompanying this chapter contains a WPF application that demonstrates the various

Lync controls. The application shown in Figure 2 - 3 is divided into sections highlighting controls

in the areas of presence, contacts, and communications.

 When you use the Lync controls in a Silverlight application, an ActiveX control is
used to provide an automation bridge between the controls and Lync. ActiveX
is obviously only supported in Internet Explorer. Unfortunately, this means
that the Lync controls are currently only supported in Silverlight applications
running in Internet Explorer.

 FIGURE 2 - 3

 Displaying Presence

 You use the PresenceIndicator and ContactCard controls to display the presence and contact

card information for a contact. Both of these controls expose a Source property representing the

Session Initiation Protocol (SIP) URI of the contact that they will be bound to; for example,

 sip:adamb@fabrikam.com .

 You can set the Source property explicitly in XAML, through binding, or in the code behind.

 You can also set the Source property to a tel URI representing a telephone
contact; for example, tel:+13125551212 . Although doing this doesn ’ t make
much sense for the PresenceIndicator control, it ’ s useful for the ContactCard
control because you would be able to place a call to the tel URI from the control.

 The PresenceIndicator Control

 The PresenceIndicator control is often referred to as the “ tic - tac. ” It is a graphical representation

of a contact ’ s presence. This section describes the various ways to connect the PresenceIndicator

control to a contact to display its presence.

 The Source Property

 To connect the PresenceIndicator control to a contact, set its Source property in the XAML

to the SIP URI of the contact.

 < controls:PresenceIndicator Source=”sip:georged@fabrikam.com” / >

 Code snippet LyncControls\MainWindow.xaml

You can also set the Source property of the PresenceIndicator in code behind. In this case, you

don ’ t need to set the Source property in XAML. However, you must give the PresenceIndicator

control a Name so you can refer to it from the code behind.

 < controls:PresenceIndicator x:Name=”presenceIndicator” / >

Set the Source property in the code behind of the page.

presenceIndicator.Source = “sip:georged@fabrikam.com”;

 You can also set the Source property in the XAML through binding. This is useful if the

 PresenceIndicator control is in the data template of an items control such as a DataGrid

or ListBox , or if the value for Source is being populated from another property in the page ’ s

data context.

 In the following example, AccountManagerSIPUri represents the SIP URI of the contact to

which the PresenceIndicator control will be bound. In this case, AccountManagerSIPUri is

a property of the DataContext of the page containing the PresenceIndicator control.

Available for

download on

Wrox.com

Available for

download on

Wrox.com

Working with the Lync Controls ❘ 17

18 ❘ CHAPTER 2 INTEGRATING MICROSOFT LYNC FUNCTIONALITY INTO YOUR APPLICATIONS

 < controls:PresenceIndicator x:Name=”presenceIndicator”
 Source=”{Binding AccountManagerSIPUri}” / >

 DisplayName and ActivityStatus Properties

 You can bind other properties of the PresenceIndicator control to properties of other controls

on your page, as shown in Figure 2 - 4. For example, you can bind the DisplayName property to the

 Text property of a TextBlock .

 < TextBlock Text=”{Binding DisplayName,
 ElementName=presenceIndicator}” / >

 Code snippet LyncControls\MainWindow.xaml

You can also bind the ActivityStatus property to the Text property of a TextBlock .

 < TextBlock Text=”{Binding ActivityStatus,
 ElementName=presenceIndicator}” / >

 Code snippet LyncControls\MainWindow.xaml

 Using the PresenceIndicator Control in a ListBox DataTemplate

 Here ’ s an example of using the PresenceIndicator control and the properties it exposes in an

items control such as a ListBox .

 In WPF and Silverlight, you can defi ne a DataTemplate for items in controls such as the

 ListBox or DataGrid , giving you complete control over how the items are displayed in

the control.

 Defi ne a DataTemplate that contains a grid with three columns. The PresenceIndicator control

is bound to the default property of the data source using the Source= ” {Binding} ” syntax. The

 Text property of the two TextBlock elements is bound to the DisplayName and ActivityStatus

property of the PresenceIndicator control.

 < ListBox x:Name=”accountManagers” BorderThickness=”0” >
 < ListBox.ItemTemplate >
 < DataTemplate >
 < Grid >
 < Grid.ColumnDefinitions >
 < ColumnDefinition Width=”*”/ >
 < ColumnDefinition Width=”150”/ >
 < ColumnDefinition Width=”75”/ >
 < /Grid.ColumnDefinitions >
 < controls:PresenceIndicator Source=”{Binding}”
 x:Name=”accountManagerPresence” Grid.Column=”0” / >
 < TextBlock Text=”{Binding DisplayName,

Available for

download on

Wrox.com

Available for

download on

Wrox.com

Available for

download on

Wrox.com

Available for

download on

Wrox.com

Available for

download on

Wrox.com

Available for

download on

Wrox.com

 FIGURE 2 - 4

www.allitebooks.com

http://www.allitebooks.org

 ElementName=accountManagerPresence}”
 Grid.Column=”1” Margin=”5,0,10,0”/ >
 < TextBlock Text=”{Binding ActivityStatus,
 ElementName=accountManagerPresence}”
 Grid.Column=”2”/ >
 < /Grid >
 < /DataTemplate >
 < /ListBox.ItemTemplate >
 < /ListBox >

 Code snippet LyncControls\MainWindow.xaml

Create a list of strings containing the SIP URIs of the contacts to display in the list, and set the

 ItemsSource property of the ListBox to the list of SIP URIs.

var contacts = new List < string > ()
{
 “sip:georged@fabrikam.com”,
 “sip:michaelg@fabrikam.com”
};
accountManagers.ItemsSource = contacts;

 Code snippet LyncControls\MainWindow.xaml.cs

Because the ListBox is simply bound to a List < string > , you don ’ t need to specify a property

to bind to when setting the Source property of the PresenceIndicator control. Instead, use

the default binding syntax of Source= “ {Binding} “ . If you were binding the ListBox to a more

complex list, such as a List < AccountManager > , you would need to specify the property of the

 AccountManager class to bind the Source property of the PresenceIndicator control to; for

example, Source= ” {Binding AccountManagerSIPUri} ” .

 The PhotoDisplayMode Property

 You can set the PhotoDisplayMode property of the PresenceIndicator control to choose how to

display the contact ’ s profi le photo if he or she has one.

 The PhotoDisplayMode property of the PresenceIndicator can be set to:

 Hidden

 Large

 Small

The default value for PhotoDisplayMode is Hidden . Figure 2 - 5 shows the

 PresenceIndicator control with the PhotoDisplayMode set to Hidden ,

 Small , and Large .

➤

➤

➤

Available for

download on

Wrox.com

Available for

download on

Wrox.com

 FIGURE 2 - 5

Working with the Lync Controls ❘ 19

20 ❘ CHAPTER 2 INTEGRATING MICROSOFT LYNC FUNCTIONALITY INTO YOUR APPLICATIONS

 SETTING PROFILE PHOTOS FOR CONTACTS

 A domain administrator can set the profi le photo for contacts in Microsoft Lync by

setting the thumbnailPhoto property of the user ’ s Active Directory object using a

PowerShell script.

 The thumbnailPhoto property in Active Directory expects a base 64 – encoded

string of the user ’ s profi le photo. Note that the profi le photo must be less than

100KB in size.

 You can write a PowerShell script to set the user ’ s thumbnailPhoto property. The

following PowerShell script accepts three parameters: the user ’ s fi rst and

last name, and the path to the image to use as a profi le photo.

 The script attempts to locate the user in Active Directory using the fi rst name, last

name, and LDAP path to where his or her account is stored (make sure to modify

this to match your environment).

 The script then encodes the image, applies the encoded string to the thumbnailPhoto

property, and fi nally commits the changes to Active Directory.

$firstName = $args[0]
$lastName = $args[1]
$profilePic = $args[2]
$ldapPath = $args[3]

$objDomain = [ADSI]””
$dn = $objDomain.distinguishedname # returns a formatted DN

[string]$fullName = [string]$firstName
 + “ “ + [string]$lastName

$user = [ADSI](“LDAP://cn=”+$fullName+”,”
 +$ldapPath)

[byte[]]$file = Get-Content $profilePic -Encoding Byte
$user.Properties[“thumbnailPhoto”].Clear()
$user.Properties[“thumbnailPhoto”].Add
 ([System.Convert]::ToBase64String($file))
$user.CommitChanges()

 Code snippet SetUserProfi lePhoto.ps1

 Here ’ s an example of calling SetUserProfi lePhoto.ps1 to set a user ’ s thumbnail

photo in Active Directory. In this example, the user is in the users organizational

unit of the fabrikam.com domain in Active Directory:

.\SetUserProfilePhoto.ps1 “George”, “Durzi”, “gdurzi.png”,
 “ou=users,dc=fabrikam,dc=com”

Available for

download on

Wrox.com

Available for

download on

Wrox.com

 HoverAction and SingleClickAction Properties

 If you hover over the PresenceIndicator control, the default behavior is to show the ContactCard

control for the contact to whom the PresenceIndicator control is bound.

 You can control this behavior by setting the HoverAction and SingleClickAction properties of

the PresenceIndicator control:

 None

 ShowContactBrief

 ShowContactDetails

 If you want to override the default behavior and only show the ContactCard control when the

user clicks the PresenceIndicator control, set HoverAction to None , and SingleClickAction

to either ShowContactBrief or ShowContactDetails :

 < controls:PresenceIndicator Source=”sip:georged@fabrikam.com”
 SingleClickAction=”ShowContactBrief” HoverAction=”None”/ >

 The ContactCard Control

 The ContactCard control is a composite control that shows a contact ’ s presence and provides

click - to - communicate functionality for starting conversations with the contact.

➤

➤

➤

 Before you can see the contact ’ s profi le photo in Lync, you must run two

PowerShell cmdlets in the Lync Server Management Shell to update the user

database and address book:

$fqdn = $args[0]
Update-CsUserDatabase $fqdn
Update-CsAddressBook $fqdn

 Code snippet UpdateUserDatabaseAndAddressBook.ps1

where $fqdn is the fully qualifi ed domain name of the Lync Server front - end server;

for example, cs - se.fabrikam.com .

 According to the Lync Server Management Shell documentation, the

 Update - CsUserDatabase PowerShell cmdlet forces the backend database to

clear itself and re - read all the user - related information from Active Directory.

The Update - CsAddressBook cmdlet forces Lync Server to sync immediately with

Active Directory — Lync Server otherwise syncs with Active Directory every

fi ve minutes.

Available for

download on

Wrox.com

Available for

download on

Wrox.com

Working with the Lync Controls ❘ 21

22 ❘ CHAPTER 2 INTEGRATING MICROSOFT LYNC FUNCTIONALITY INTO YOUR APPLICATIONS

 The default behavior of the PresenceIndicator control is to display the ContactCard control

for the contact when hovering over the presence tic - tac. However, you can use the ContactCard

control independently from the PresenceIndicator control:

 < controls:ContactCard Source=”sip:georged@fabrikam.com” / >

 Code snippet LyncControls\MainWindow.xaml

 If the contact with whom the control is associated has a

personal note set in Microsoft Lync, the note appears at the

top of the control, as shown in Figure 2 - 6.

 The IsExpanded Property

 You can expand the ContactCard control to display other

information about the contact. When you expand the control

using the expander toggle button, the details container contains two tabs:

Contact and Organization.

 The Contact tab displays contact information such as department, phone numbers, email address,

upcoming calendar availability, and location. The Organization tab displays information about the

contact ’ s organizational hierarchy such as to whom he or she reports.

 By default, the ContactCard loads with the IsExpanded

property set to false . You can set the IsExpanded property to

 true to display the details container when the control loads, as

shown in Figure 2 - 7.

 The SelectedTabIndex Property

 When the ContactCard control is expanded, the

 SelectedTabIndex property represents the index of the tab

that is currently active.

 Setting IsExpanded to true and SelectedTabIndex to 1 loads

the ContactCard control with the details container expanded

and Organization tab active.

 Working with Contact Lists

 The Lync controls include two controls for working with lists of contacts: ContactList

and CustomContactList . You can use the ContactList control to integrate the user ’ s Lync

contact list into your WPF or Silverlight application. The CustomContactList is suitable for

displaying an ad - hoc or application - specifi c list of contacts, such as the sales team contacts for a

customer account in a CRM system.

Available for

download on

Wrox.com

Available for

download on

Wrox.com

 FIGURE 2 - 6

 FIGURE 2 - 7

 The ContactList Control

 The ContactList control represents the current user ’ s

Microsoft Lync contact list. The ContactList control shown

in Figure 2 - 8 does not expose a Source property; it will always

display the contact list control for the user who is signed in

to Lync.

 < controls:ContactList / >

 Code snippet LyncControls\MainWindow.xaml

 You can confi gure the ContactList control similarly to how you can confi gure your contact

list in Lync; for example, you can customize how contacts are laid out in the list.

 The ContactLayoutView Property

 You can set the ContactLayoutView property of the ContactList control to either OneLine

or TwoLines .

 Setting ContactLayoutView to OneLine displays the contact ’ s

presence tic - tac, name, and availability on one line, as shown

in Figure 2 - 9.

 When you set ContactLayoutView to TwoLines , the

 PresenceIndicator control that is a part of the list item ’ s data

template appears with its PhotoDisplayMode property set to

 Large . The contact ’ s name and availability are displayed on one line, and the contact ’ s personal

note (if it ’ s set) is displayed on the next line.

 The ShowFriendlyName Property

 Setting the ShowFriendlyName property of the ContactList control to false displays the SIP URI

of the contact instead of his or her friendly name.

 The ShowFrequentContacts Property

 Set the ShowFrequentContacts property of the ContactList control to false to hide the Frequent

Contacts group from the list.

 The GroupViewBySetting Property

 You can set the GroupViewBySetting property of the ContactList control to Groups ,

 Relationship , or Status , allowing you to set the method by which the contacts in the list are

grouped.

 The ShowPivotBar Property

 The ShowPivotBar property of the ContactList control is set to true by default, allowing

you to toggle displaying the contacts in the list by Group, Status, or Relationship.

Available for

download on

Wrox.com

Available for

download on

Wrox.com

 FIGURE 2 - 8

 FIGURE 2 - 9

Working with the Lync Controls ❘ 23

24 ❘ CHAPTER 2 INTEGRATING MICROSOFT LYNC FUNCTIONALITY INTO YOUR APPLICATIONS

 The pivot bar also enables you to customize the ContactList control, effectively allowing you to set

the GroupViewBySetting , ContactLayoutView , ShowFrequentContacts , and ShowFriendlyName

properties of the control directly in the UI.

 The SelectedContactUri Property

 The SelectedContactUri property of the ContactList control is a read - only property that you

can use to retrieve the SIP URI of contact who is selected in the list.

 The CustomContactList Control

 The CustomContactList control enables you to display an ad - hoc list of contacts in your

application. The contacts in the list don ’ t necessarily have to be in the current user ’ s Lync

contact list. For example, if you want to show all the contacts in the account team for a particular

client in a CRM application, you can use the CustomContactList control to display the list

of contacts.

 You can create the CustomContactList control and corresponding CustomContactListItem

elements declaratively in XAML:

 < controls:CustomContactList >
 < controls:CustomContactListItem Source=”sip:georged@fabrikam.com”/ >
 < controls:CustomContactListItem Source=”sip:michaelg@fabrikam.com”/ >
 < /controls:CustomContactList >

 Code snippet LyncControls\MainWindow.xaml

The contacts are added to the custom contact list, as shown in

Figure 2 - 10.

 Alternatively, you can set the ItemsSource property of the

 CustomContactList control to a List < string > representing

the contacts to show in the control. In this case, the XAML

for the CustomContactList control doesn ’ t contain any

 CustomContactListItem elements.

 < controls:CustomContactList x:Name=”customContactList” / >

In the code - behind for the page, set the ItemsSource property of the CustomContactList

control to a List < string > containing the SIP URIs of the contacts to display

in the list.

var accountTeam = new List < string > ()
{
 “sip:georged@fabrikam.com”,
 “sip:michaelg@fabrikam.com”,
};
customContactList.ItemsSource = accountTeam;

Available for

download on

Wrox.com

Available for

download on

Wrox.com

 FIGURE 2 - 10

 Control Properties

 The CustomContactList control exposes some of the same properties as the ContactList control

such as ContactLayoutView and ShowFriendlyName .

 The ContactList and CustomContactList controls are based on the ListBox control, so they

expose all the properties you would expect a ListBox to have. For example, you can set the

 SelectionChanged event to execute logic each time the user selects an item in the list.

 < controls:CustomContactList x:Name=”accountManagers”
 SelectionChanged=”customContactList_SelectionChanged”/ >

In this simple example, the code in the SelectionChanged event loads the clients belonging

to the selected account manager.

private void customContactList_SelectionChanged(object sender,
 SelectionChangedEventArgs e)
{
 LoadClients((accountManagers.SelectedItem as Contact).Uri);
}

The value of SelectedItem is an object of type Microsoft.Lync.Model.Contact .

 CustomContactList Versus ListBox and DataTemplate

 You saw earlier how to use a ListBox with a custom DataTemplate to display a list of contacts

and their presence. How is this different from using the CustomContactList control? Not much

actually, except that the CustomContactList control does a lot of the work for you by already

defi ning the DataTemplate for the items to show in the list.

 For each contact in the list, the CustomContactList control shows the contact ’ s presence, name,

activity status, and also provides a click - to - call button to start calls with the contact. Double -

 clicking a contact in the list starts an instant messaging conversation with the contact. The

 CustomContactList control also handles some of the styling for you, such as the font styling and

hover states of the items in the list.

 If you want absolute control of how your contacts appear in the CustomContactList , you have

two options: Start from scratch with a ListBox and custom DataTemplate , or use Expression

Blend 4 to customize the various DataTemplates that the CustomContactList control exposes.

 You learn how to create a new control template for the Lync Controls in the “ Extending the

Lync Controls with Expression Blend 4 ” section later in this chapter.

 Searching for Contacts

 To replicate the contact search functionality available in Lync, simply add the ContactSearch control

to your application. Use the ContactSearchInputBox and ContactSearchResultList controls if

you need to split up the search and results functionality, or if you need to add additional search fi lters

to the search results.

Working with the Lync Controls ❘ 25

26 ❘ CHAPTER 2 INTEGRATING MICROSOFT LYNC FUNCTIONALITY INTO YOUR APPLICATIONS

 The ContactSearch Control

 The ContactSearch control replicates the contact search

functionality in Microsoft Lync. It allows you to search for

contacts by name or skill. Search results appear under the

search input box, as shown in Figure 2 - 11.

 < controls:ContactSearch / >

 Code snippet LyncControls\MainWindow.xaml

 The MaxResults Property

 You use the MaxResults property to limit the number of search results returned by the

 ContactSearch control.

 The SearchType Property

 The SearchType property sets the default mode of the ContactSearch control, specifying

whether to search for contacts by Name or Skill. The default value of SearchType is Name.

When SearchType is set to Skill, the ContactSearch control performs a search for contacts by

skill unless the user changes the search type by clicking on Name in the control.

Available for

download on

Wrox.com

Available for

download on

Wrox.com

FIGURE 2 - 11

 When performing a Skill search, Microsoft Lync uses the SharePoint search web
service to search for users whose Ask Me About property in their My Site
matches the search criteria.

 An administrator must confi gure Microsoft Lync Server 2010 to know the
URL of the SharePoint search service and People Results page. This is done by
running the following PowerShell script in the Lync Server Management Shell:

$SearchInternalURL = $args[0]
$SearchCenterInternalURL = $args[1]
Set-CsClientPolicy – SPSearchInternalURL $SearchInternalURL
 - SPSearchCenterInternalURL

$SearchCenterInternalURL

 Code snippet Confi gureSkillSearch.ps1

where SPSearchInternalURL is the internal URL of the SharePoint search
service, and SPSearchCenterInternalURL is the internal URL of the SharePoint
search people results page; for example:

.\ConfigureSkillSearch
 “http://sps2010/sites/search/_vti_bin/search.asmx”
 “http://sps2010/sites/Search/Pages/peopleresults.aspx”

Available for

download on

Wrox.com

Available for

download on

Wrox.com

 ContactSearchInputBox and ContactSearchResultList Controls

 If you want more control over contact search functionality in

your application, you can use the ContactSearchInputBox and

 ContactSearchResultList controls to separate the search input

and results functionality, as shown in Figure 2 - 12.

 To connect the ContactSearchResultList control to a

 ContactSearchInputBox control, bind the ItemsSource and

 ResultsState properties of the ContactSearchResultList

control to the Results and SearchState properties of the

 ContactSearchInputBox control that will be supplying the search

results.

 < controls:ContactSearchInputBox x:Name=”contactSearchInputBox” / >
 < controls:ContactSearchResultList x:Name=”contactSearchResultList”
 ItemsSource=”{Binding Results, ElementName=contactSearchInputBox,
 Mode=OneWay}”
 ResultsState=”{Binding SearchState,
 ElementName=contactSearchInputBox,
 Mode=OneWay}” / >

 Code snippet LyncControls\MainWindow.xaml

 ContactSearchInputBox exposes some of the same properties as ContactSearch , such as

 MaxResults and SearchType . The control also exposes a SearchTextInput property that, if

specifi ed, immediately executes a search with the criteria being the value of the property.

 < controls:ContactSearchInputBox x:Name=”contactSearchInputBox”
 SearchTextInput=”Rebecca Laszlo” / >

 When the ContactSearchResultList control is bound to a ContactSearchInputBox control,

it is only visible if the ContactSearchInputBox control returns any search results. Make sure to

account for this in your layout.

Available for

download on

Wrox.com

Available for

download on

Wrox.com

 To enable the skill search functionality when the user is connected to Lync
from outside the corporate network, you can use the Set - CsClientPolicy
PowerShell cmdlet to set the values of SPSearchExternalURL and
 SPSearchCenterExternalURL to the corresponding externally accessible URLs.

 Note that a skill search is performed using the identity of the user who is
running Lync — the user should thus be able to access the URLs specifi ed in
 SPSearchInternalURL , SPSearchCenterInternalURL , SPSearchExternalURL ,
and SPSearchCenterExternalURL .

FIGURE 2 - 12

Working with the Lync Controls ❘ 27

28 ❘ CHAPTER 2 INTEGRATING MICROSOFT LYNC FUNCTIONALITY INTO YOUR APPLICATIONS

 When you separate the contact search functionality in your application between the

 ContactSearchInputBox and ContactSearchResultList control, you can fi lter the search

results before they are rendered by the ContactSearchResultList control. This is useful if you

need to add additional criteria to the search; for example, to limit the search results to contacts

from a particular department, or to contacts who have a specifi c title.

 The Lync SDK documentation has a great example of using this technique to fi lter the search

results based on Microsoft.Lync.Model.ContactInformationType ; for example, by Title,

Department, or Availability. Take a look at the Lync SDK documentation for the complete source

code of the solution.

 The solution uses a custom control called AdvancedSearch to display a series of checkboxes and

textboxes to provide additional search criteria:

 < CheckBox x:Name=”cbTitle”
 Content=”Title”
 Unchecked=”OnSearchStateChanged” Checked=”OnSearchStateChanged” / >
 < TextBox x:Name=”tbTitle”
 IsEnabled=”{Binding IsChecked, ElementName=cbTitle, Mode=OneWay}”
 LostFocus=”OnSearchStateChanged”/ >

 The results list is fi ltered (by executing the OnSearchStateChanged handler) when the checkbox

is checked/unchecked or when the value in the textbox changes. For example, when the user checks

the Title checkbox, the search results will be fi ltered to only include contacts whose value for

 Microsoft.Lync.Model.ContactInformationType.Title matches the text in the Title search

criteria textbox.

 You can implement your own AdvancedSearch control that provides the capability to search

using other properties.

 The AdvancedSearch control exposes the same Dependency properties as the

 ContactSearchResultList control: SearchType , SearchState , and Results . The control also

exposes a FilteredResults property that contains the fi ltered search results.

 Most importantly, instead of being bound to the ContactSearchInputBox control, the

 ContactSearchResultList control is bound to the AdvancedSearch control:

 < local:AdvancedSearchControl
 x:Name=”advancedSearch”
 Results=”{Binding Results, ElementName=input, Mode=OneWay}”
 SearchType=”{Binding SearchType, ElementName=input, Mode=OneWay}”
 SearchState=”{Binding SearchState, ElementName=input,
 Mode=OneWay}” / >

 < controls:ContactSearchInputBox x:Name=”input” / >

 < controls:ContactSearchResultList
 x:Name=”searchResults”
 ItemsSource=”{Binding FilteredResults, ElementName=advancedSearch,
 Mode=OneWay}”

www.allitebooks.com

http://www.allitebooks.org

 ResultsState=”{Binding SearchState, ElementName=advancedSearch,
 Mode=OneWay}”
 SearchType=”{Binding SearchType, ElementName=advancedSearch,
 Mode=OneWay}” / >

 In the OnSearchStateChanged handler, the AdvancedSearch control iterates through every

 SearchResult item (an object of type Microsoft.Lync.Model.Contact) in the Results collection

and compares the contact ’ s Title to the search criteria. A contact is only added to the results

collection if it matches the search criteria.

 The FilteredResults property of the AdvancedSearch control is an instance of

 SearchResultCollection containing the fi ltered search results.

 Displaying Information about the Current User

 The “ My ” controls are a set of controls that allow the user who is currently signed in to Lync to

view and update information about himself such as his personal note and presence. These controls

don ’ t expose a Source property because they ’ re only intended to be used by the current user. You

can ’ t use these controls to set a user ’ s personal note or presence on his behalf.

 The MyNoteBox Control

 Users can use the MyNoteBox control to change their personal

note from within your application, as shown in Figure 2 - 13.

When users change their personal note in the MyNoteBox control,

their new personal note is also shown in Lync, and vice versa.

 < controls:MyNoteBox / >
 Code snippet LyncControls\MainWindow.xaml

 Use the PersonalNote property to get the text of the user ’ s personal note.

 The MyPresenceChooser Control

 Users can use the MyPresenceChooser control to change their presence from

within your application, as shown in Figure 2 - 14. When a user changes their

presence using the MyPresenceChooser control, their new presence is also

shown in Lync, and any of the other Lync controls that display the presence

of users. Changing presence in Lync also sets the user ’ s presence in the

 MyPresenceChooser control.

 < controls:MyPresenceChooser / >

 Code snippet LyncControls\MainWindow.xaml

 Use the AvailabilityState property to get the user ’ s presence. The AvailabilityState property

is of type ContactAvailability ; an enumeration of valid availability states.

Available for

download on

Wrox.com

Available for

download on

Wrox.com

Available for

download on

Wrox.com

Available for

download on

Wrox.com

FIGURE 2 - 13

FIGURE 2 - 14

Working with the Lync Controls ❘ 29

30 ❘ CHAPTER 2 INTEGRATING MICROSOFT LYNC FUNCTIONALITY INTO YOUR APPLICATIONS

 The MyStatusArea Control

 The MyStatusArea is a composite control made up of a

 MyNoteBox and a MyPresenceChooser control. It exposes the

 PersonalNote and ContactAvailability properties that

the MyNoteBox and MyPresenceChooser controls expose. When

you add it to an application, the logged - in users can use it to

change their availability and set their personal note, as shown

in Figure 2 - 15.

 < controls:MyStatusArea / >

 Code snippet LyncControls\MainWindow.xaml

 The control also exposes a PhotoDisplayMode property similar to the PresenceIndicator control

that you can use to control how the contact photo is rendered.

 Starting Conversations

 The StartInstantMessagingButton , StartAudioCallButton , StartVideoCallButton ,

 ShareDesktopButton , SendEmailButton , and SendFileButton controls provide

click - to - communicate functionality to start conversations and interact with contacts. All of

these controls expose a Source property that you can set to the SIP URI of a contact.

 The StartInstantMessagingButton Control

 Use the StartInstantMessagingButton control to start an instant message with the

contact specifi ed in the Source property, as shown in Figure 2 - 16.

 < controls:StartInstantMessagingButton Source=”sip:adamb@fabrikam.com” / >

 Code snippet LyncControls\MainWindow.xaml

 The StartAudioCallButton Control

 Use the StartAudioCallButton control to start an audio call with the

contact specifi ed in the Source property, as shown in Figure 2 - 17.

 < controls:StartAudioCallButton Source=”sip:adamb@fabrikam.com” / >

 Code snippet LyncControls\MainWindow.xaml

 The StartAudioCallButton control exposes the various phone numbers that the contact to

whom it is bound to has published, just as you would see in Lync. You can start an audio call

to the contact ’ s mobile phone number, or simply start a Lync call.

Available for

download on

Wrox.com

Available for

download on

Wrox.com

Available for

download on

Wrox.com

Available for

download on

Wrox.com

Available for

download on

Wrox.com

Available for

download on

Wrox.com

FIGURE 2 - 15

FIGURE 2 - 16

FIGURE 2 - 17

 The StartVideoCallButton Control

 Use the StartVideoButton control to start a video call with the contact specifi ed in

the Source property, as shown in Figure 2 - 18.

 < controls:StartVideoCallButton Source=”sip:adamb@fabrikam.com” / >

 Code snippet LyncControls\MainWindow.xaml

 The ShareDesktopButton Control

 Use the ShareDesktopButton control to start a desktop sharing session

with the contact specifi ed in the Source property, as shown in Figure 2 - 19.

 < controls:ShareDesktopButton Source=”sip:adamb@fabrikam.com” / >

 Code snippet LyncControls\MainWindow.xaml

 When starting a desktop sharing session with the ShareDesktopButton control, you can select the

area of your monitor to share.

 The SendEmailButton Control

 Use the SendEmailButton control to start composing a new email to the contact

specifi ed in the Source property, as shown in Figure 2 - 20.

 The SendFileButton Control

 Use the SendFileButton control to send a fi le to the contact specifi ed in the Source

property, as shown in Figure 2 - 21. A fi le chooser dialog box appears after the user

clicks the SendFileButton control to allow him or her to select the fi le to send.

 Starting Contextual Conversations from the Lync Controls

 The context of a conversation refers to the topic of the conversation. Context is usually established

at the beginning of an audio call or instant message; for example, “ Do you have time to discuss

the General Industries account? ” The back - and - forth involved in establishing the conversation ’ s

context can be wasteful: “ I ’ d like to check on the status of the request so we can get started with

the case. ” ; “ Hang on, let me open the CRM application and pull up the General Industries account

so I can check on the status. ”

 Throughout this book, you learn about the different ways to streamline this process by injecting

context into conversations. This section shows you how to add context to conversations initiated

from the Lync controls. Later chapters show you more complex ways to attach context to a

conversation, such as the ability to host a Silverlight application in the Lync conversation window.

 What does it mean to attach context to the Lync controls? Suppose you ’ re building a new Customer

Relationship Management (CRM) application in Silverlight. Using the PresenceIndicator , you

Available for

download on

Wrox.com

Available for

download on

Wrox.com

Available for

download on

Wrox.com

Available for

download on

Wrox.com

FIGURE 2 - 18

FIGURE 2 - 19

FIGURE 2 - 20

FIGURE 2 - 21

Working with the Lync Controls ❘ 31

32 ❘ CHAPTER 2 INTEGRATING MICROSOFT LYNC FUNCTIONALITY INTO YOUR APPLICATIONS

added functionality to be able to see the presence of the account manager for a particular client.

You also used the StartInstantMessagingButton and StartAudioCallButton controls to enable

users to start a conversation with the account manager directly from the application.

 By attaching context to the StartInstantMessagingButton and StartAudioCallButton controls,

you can enable users to launch a conversation with the account manager about the particular

account .

 Attaching Context to the Lync Controls Using ConversationContextualInfo

 When an instance of ConversationContextualInfo is attached to one of the Lync controls, the

context described by the properties exposed by ConversationContextualInfo is attached to

conversations initiated from the control.

 Subject

 Suppose that in the example of the CRM application, if the user is on the Account Detail page, you

would like the subject of any conversations started from the page to be the name of the account.

 Defi ne a static resource that ’ s accessible to the page, for example in Page.Resources :

 < Page.Resources >
 < controls:ConversationContextualInfo x:Key=”contextualInfo”
 Subject=”General Industries” / >
 < /Page.Resources >

 Code snippet LyncControls\MainWindow.xaml

where General Industries is the name of the account currently loaded in the application. The

 Subject is hardcoded for simplicity; you will typically use binding to set its value; for example,

 Subject= “ {Binding AccountName} “ .

 You can now attach the instance of ConversationContextualInfo to a Lync control such as the

 StartInstantMessagingButton control:

 < controls:StartInstantMessagingButton Source=”sip:adamb@fabrikam.com”
 ContextualInformation=”{StaticResource contextualInfo}”/ >

 Code snippet LyncControls\MainWindow.xaml

where sip:adamb@fabrikam.com is the SIP URI of the account manager. This is again hardcoded

for simplicity; you will typically use binding to set its value; for example, Source= “ {Binding

AccountManagerSIPURI} “ .

 When the user starts a conversation with the account

manager from that page, the toast window that the

conversation recipient sees will contain a custom toast

string with the name of the account, as shown

in Figure 2 - 22.

Available for

download on

Wrox.com

Available for

download on

Wrox.com

Available for

download on

Wrox.com

Available for

download on

Wrox.com

 FIGURE 2 - 22

 As shown in Figure 2 - 23, the subject of the conversation window

will also be the name of the account.

 You can also attach the instance of

 ConversationContextualInfo to a Lync control in

the code behind of the page. Create an instance of

 ConversationContextualInfo and set the Subject property

to the account name:

var contextInfo = new ConversationContextualInfo()
{
 Subject = accountName
};

 Set the ContextualInformation property of

 StartInstantMessagingButton control to contextInfo :

startIMAccountManager.ContextualInformation = contextInfo;

 ContextualLink

 Specifying the ContextualLink property of ConversationContextualInfo also embeds a link

into the conversation, as shown in Figure 2 - 24.

var contextInfo = new ConversationContextualInfo()
{
 Subject = accountName,
 ContextualLink = “http://crm.fabrikam.com/Account/” + accountName
};

 Lync notifi es the user that a contextual link has been

provided with the conversation; it also warns the user

not to click the link if it appears suspicious. Chapter 4

shows you how to securely embed a contextual link into a

conversation so that no warning text appears.

 ApplicationId and ApplicationData

 You may have noticed that ConversationContextualInfo

exposes two more properties: ApplicationId and

 ApplicationData . You use these properties to specify

that a contextual application package is attached to the

conversation. You learn about contextual application

packages in Chapter 4.

 FIGURE 2 - 23

FIGURE 2 - 24

Working with the Lync Controls ❘ 33

34 ❘ CHAPTER 2 INTEGRATING MICROSOFT LYNC FUNCTIONALITY INTO YOUR APPLICATIONS

 Lync Controls That Support ContextualInformation

 You can attach an instance of ConversationContextualInfo to any Lync control that exposes a

 ContextualInformation property. In a composite Lync control such as the ContactCard control,

the value of the ContextualInformation property cascades down into any of the contained

controls that expose the ContextualInformation property.

 For example, the ContactControl contains other Lync controls that can be used to start a

conversation, such as the StartInstantMessagingButton and StartAudioCallButton

controls. When you set the ContextualInformation property of the ContactCard control,

the context is then also attached to the StartInstantMessagingButton and

 StartAudioCallButton controls.

 The same applies to any of the Lync controls that display lists of contacts, such as the ContactList

and ContactSearch controls. Starting a conversation with a contact who is listed in those

controls attaches the context described in ContextualInformation to the conversation.

 The following Lync controls expose the ContextualInformation property:

 ContactCard

 ContactList

 ContactSearch

 ContactSearchResultList

 CustomContactList

 ScheduleMeetingButton

 SendEmailButton

 SendFileButton

 ShareDesktopButton

 StartAudioCallButton

 StartInstantMessagingButton

 StartVideoCallButton

 EXTENDING THE LYNC CONTROLS WITH
EXPRESSION BLEND 4

 You can apply some limited styling to the Lync controls in XAML, but if you need to make

more extensive changes to one of the controls, you must extend the underlying control template.

This section shows you how to use Microsoft Expression Blend 4 to create a new control template

for the Lync controls.

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

 You ’ re already familiar with the ContactCard control; now take

a look at a simple example of extending the ContactCard control,

shown in Figure 2 - 25, to also show the contact ’ s department in

addition to his or her title.

 Creating a Copy of the Control Template

 To create a new control template for the ContactCard control, you will fi rst use Blend to create a

copy of the existing control template and instruct the instance of the ContactCard control to use the

new template. You can leave the new control template in the XAML, or you can put it in a Resource

dictionary so that all instances of the ContactCard control in your application can reference it and

take advantage of the customizations and improvements that you will make.

 Launch Expression Blend 4 and open an existing project into which you ’ ve already integrated

the ContactCard control. The Lync SDK doesn ’ t include Visual Studio project templates for

Blend; you can create a Lync WPF Application project in Visual Studio 2010, save it, and open

it in Blend.

 Locate the ContactCard control on the design surface and select it. In the Objects and Timelines

window, right - click the ContactCard control and select Edit Template ➪ Edit a Copy, as shown

in Figure 2 - 26.

FIGURE 2 - 25

FIGURE 2 - 26

Extending the Lync Controls with Expression Blend 4 ❘ 35

36 ❘ CHAPTER 2 INTEGRATING MICROSOFT LYNC FUNCTIONALITY INTO YOUR APPLICATIONS

 As shown in Figure 2 - 27, you will now be

prompted to choose where to save the new control

template resource. You can choose:

 Application (The resource will be created

in your application ’ s App.xaml fi le.)

 This document (The resource will be

created in a Resources section of the

window or page; for example, in < Window

.Resources > .)

 Resource dictionary (The resource will be

created in an existing or new resource dictionary.)

 For this exercise, choose Resource dictionary to add the new control template to a new or

existing Resource dictionary in your application. This is much better than adding the generated

control template into the XAML in the page because other instances of the ContactCard control

in your application will be able to use the new control template by simply referencing it from the

Resource dictionary.

 Examining the Control Template

 The new control template is now available as a custom style in the application ’ s Resource

dictionary. Open the Resource dictionary and examine the XAML that was generated for the

 ContactCardStyle1 style.

 < Style x:Key=”ContactCardStyle1”
 TargetType=”{x:Type controls:ContactCard}” .../>

 Code snippet LyncControls\Assets\ContactCard.xaml

 The Style element has a Key property specifying a unique name for the style, and a TargetType

property indicating that it can only be applied to items of type ContactCard .

 The ContactCard control now has a Style attribute that points to the newly created

 ContactCardStyle1 style.

 < controls:ContactCard Source=”sip:adamb@fabrikam.com”
 Style=”{DynamicResource ContactCardStyle1}” / >

 Code snippet LyncControls\\MainWindow.xaml

 Switch back to the resource dictionary and spend some time looking through the XAML that was

generated for ContactCardStyle1 — it ’ s really long! You can see the various parts that make up

the control template for the ContactCard control; for example, PART_NoteContainer contains the

XAML for the section of the control that displays the user ’ s personal note.

➤

➤

➤

Available for

download on

Wrox.com

Available for

download on

Wrox.com

Available for

download on

Wrox.com

Available for

download on

Wrox.com

FIGURE 2 - 27

 The style contains different templates for displaying information about the different types of

contacts that the ContactCard control can be bound to. For example, if the Source property of

the ContactCard control is set to a tel URI such as tel:+13125551212 , the control is rendered using

 ContactCardBriefTelephoneDataTemplate , not the ContactCardBriefPersonDataTemplate .

 Modifying the Control Template

 If you take a closer look at the ContactCardStyle1 style, you ’ ll notice that it includes multiple data

templates. The ContactCard control is fl exible enough to be connected to a SIP URI, a tel URI, a

distribution list, and even an application contact that is associated with a Unifi ed Communications

Managed API (UCMA) application. The ContactCard control renders using a different data

template depending on the type of contact that it is connected to. For example, you can ’ t start an

instant message with a telephone number, so the data template for a tel URI contact doesn ’ t include

a StartInstantMessagingButton control.

 When extending or modifying any of the Lync control templates, be sure to modify the data

template for the appropriate type of contact. In this example, you ’ re displaying the contact ’ s

department in the ContactCard control next to his title, so you need to modify the control template

for a person, not a telephone, distribution list, or application contact. In the ContactCard control,

the data template for a person has a key of ContactCardBriefPersonDataTemplate .

 Locate the < DataTemplate x:Key= “ ContactCardBriefPersonDataTemplate “ > line in the style

defi nition and examine the data template. Inside the Grid element, you can see the various pieces

that make up this section of the control: the availability icon, the contact ’ s name, the amount of

time he has been idle (if applicable), and his title.

 Insert the following code in the grid ’ s content to display the contact ’ s Department in a smaller font

to the right of his name.

 < Microsoft_Lync_Controls_Internal:TruncatedTextBlock
 Grid.Row=”0” Grid.Column=”2” Grid.ColumnSpan=”3” Margin=”0,0,42,0”
 VerticalAlignment=”Bottom” HorizontalAlignment=”Right”
 Text=”{Binding PresenceItems.Department, Mode=OneWay}”
 Foreground=”{Binding GlobalTextColor_Black,
 Source={StaticResource ControlColors}}”
 Style=”{StaticResource GlobalTruncatedTextSizeStyle.Medium}”
 AutomationProperties.AutomationId=”Department” >
 < ToolTipService.ToolTip >
 < ToolTip Style=”{StaticResource DefaultToolTipStyle}”
 Content=”{Binding PresenceItems.Department}” / >
 < /ToolTipService.ToolTip >
 < /Microsoft_Lync_Controls_Internal:TruncatedTextBlock >

 Code snippet LyncControls\Assets\ContactCard.xaml

 When you run the application, the ContactCard control

that is using the ContactCardStyle1 style will now show the

contact ’ s Department to the right of his name, as shown

in Figure 2 - 28.
FIGURE 2 - 28

Extending the Lync Controls with Expression Blend 4 ❘ 37

38 ❘ CHAPTER 2 INTEGRATING MICROSOFT LYNC FUNCTIONALITY INTO YOUR APPLICATIONS

 SUMMARY

 Using the Lync controls, you can easily add Lync functionality such as presence, contact lists,

and contact search to your WPF and Silverlight applications. You can also use the controls to start

contextual conversations with contacts directly from your applications.

The next chapter shows you how to use the Microsoft Lync 2010 Managed API to programmatically

integrate communications functionality into your applications, such as managing groups,

subscribing to the presence of contacts, and starting contextual conversations.

 The Lync controls for WPF and Silverlight were designed to add functionality
into your applications that is consistent with the look and feel of Lync. When
extending the controls, keep in mind that your users are expecting behavior that
is consistent with their experience when using Lync. In the authors ’ opinion, if
you need to drastically change how one of the Lync controls functions, you ’ re
better off just building your own control — you have access to all the tools that
you would need to do so.

www.allitebooks.com

http://www.allitebooks.org

Building Communications
Clients with the Microsoft
Lync 2010 Managed API

 WHAT ’ S IN THIS CHAPTER?

 Integrating Communications into Your Applications Using the

Microsoft Lync 2010 Managed API

 Managing Conversations

 Publishing and Subscribing to Presence Items

 Automating the Running Instance of Microsoft Lync

 Managing Contacts and Groups

 The Microsoft Lync 2010 Managed API is a new API that is available as part of the Microsoft

Lync 2010 SDK. You can use the Lync Managed API in your application to interact with the

running instance of the Lync client, manage groups and contacts, start conversations, and

publish and subscribe to contact presence items. The Lync API requires a running instance of

the Lync client; it uses the endpoint provided by the Lync client as the connection back to the

Lync Server infrastructure.

 The Lync API fi ts somewhere in between the IMessenger and Unifi ed Communications Client

(UCC) APIs that shipped with Offi ce Communications Server 2007 R2. Although it was

relatively easy to get started with, the IMessenger API was fairly limited in functionality.

It also used COM to interact with an instance of Microsoft Communicator, making for an

unpleasant development experience, especially when it came to handling and troubleshooting

COM exceptions. The UCC API was very diffi cult to get started with in comparison,

but provided the most power and functionality if you wanted to build a Communicator

replacement. When developing with the UCC API, you were responsible for managing

➤

➤

➤

➤

➤

 3

D
o

40 ❘ CHAPTER 3 BUILDING COMMUNICATIONS CLIENTS WITH THE MICROSOFT LYNC 2010 MANAGED API

the endpoint and its ability to handle calls, which could be confusing if you were running

Communicator alongside a custom client built with the UCC API.

 The Lync API is intended to replace both the IMessenger and UCC APIs. The advantages that the

Lync Managed API has over the IMessenger API are obvious: It provides a lot more functionality

and a much better development experience. However, how the Lync Managed API can replace the

UCC API to build custom communications clients might be a little less clear. When you build a

communications client with the UCC API, you are responsible for creating all the user interface

items such as conversation windows, notifi cations, replicating features such as location and E911

support, and so on. You are essentially building a communications client intended to replace the

Lync client; you don ’ t even need to have the Lync client installed.

 The Lync 2010 client can run in UI Suppression mode, where its UI is completely hidden from the

user. Using the Lync Managed API in conjunction with UI Suppression enables you to build a

custom communications client while still taking advantage of the benefi ts of programming with the

Lync Managed API, such as the ability to reuse the Lync endpoint to connect to the Lync Server

infrastructure. However, similar to developing with the UCC API, you are responsible for developing

all the UI components of the communications client when the Lync client is in UI Suppression mode.

In Chapter 5, you learn about using UI Suppression to build custom communications clients.

 The code accompanying this chapter includes a Windows Presentation Foundation (WPF)

application, shown in Figure 3 - 1, that highlights the functionality available in the Lync API.

The application monitors various events that the Lync API can subscribe to, such as creating and

removing conversations and contacts, and subscribing to the properties of contacts such as their

presence. The application also uses the Automation functionality of the Lync API to easily start

conversations in different modalities, and to dock the Lync conversation window into the application.

 FIGURE 3 - 1

 GETTING STARTED WITH THE LYNC 2010 MANAGED API

 In this section you learn about setting up your development environment to work with the Lync

API. Applications use the Lync API to interact with the running instance of the Lync client — a

concept reiterated throughout this chapter. The Lync API reuses the connection that the running

instance of the Lync client has to the Lync infrastructure, making for a much easier development

experience where you are not responsible for maintaining this connection or the underlying logic

of starting and participating in conversations across the connection. You learn how to use the Lync

API so that your application can connect to the running instance of the Lync client and manage

changes in its state.

 Setting Up Your Development Environment

 The Lync API is installed as part of the Microsoft Lync 2010 SDK, which also includes the Lync

controls. In a default installation, the Lync SDK is installed at C:\Program Files (x86)\

Microsoft Lync\SDK .

 Microsoft Lync 2010

 The Lync client must be installed in order for you to programmatically interact with it using the

Lync API. The user doesn ’ t necessarily have to be initially signed in to the Lync client to start; you

can use the Lync API to programmatically sign in the current user.

 Visual Studio Support

 Visual Studio 2008 SP1 and Visual Studio 2010 are offi cially supported for developing applications

with the Lync API. You can use the Lync API in.NET applications targeting either .NET

Framework 3.5 SP1 or .NET Framework 4.

 The Lync API for Silverlight is only supported in Visual Studio 2010 and Silverlight 4. You can

use the Lync API in Silverlight applications targeting .NET Framework 4.

 Assemblies

 You can fi nd the Lync API assemblies in C:\Program Files (x86)\Microsoft Lync\SDK\

Assemblies , where different assemblies are available for WPF (and Windows Forms) and Silverlight

applications. When adding the necessary references, make sure to add them from the correct folder.

 Add references to the following assemblies:

 Microsoft.Lync.Model.dll

 Microsoft.Lync.Utilities.dll

 Interacting with the Running Instance of the Lync Client

 When integrating communications features into your application using the Lync API, you are

responsible for managing the lifecycle of the Lync client. If the Lync client is not signed in, you can

use the Lync API to sign in to the running instance. Your application must also react accordingly

➤

➤

Getting Started with the Lync 2010 Managed API ❘ 41

42 ❘ CHAPTER 3 BUILDING COMMUNICATIONS CLIENTS WITH THE MICROSOFT LYNC 2010 MANAGED API

when the state of the Lync client changes; for example, the user signs out or loses network

connectivity and is disconnected. In this section, you learn how to sign in to the running instance of

the Lync client and wire up the necessary events so that your application can handle changes in the

state of the Lync client.

 Signing into the Lync Client Instance

 To access functionality exposed by the Lync API throughout your application, add a module level of

type LyncClient representing the running instance of the Lync client, as shown in the following:

private Microsoft.Lync.Model.LyncClient _lyncClient;

Code snippet LyncEventsLogger\Window1.xaml.cs

 You can now access the running instance of the Lync client throughout the application; for example,

to sign in or out, wire up event handlers for changes in the state of the Lync client, and access other

features such as Automation.

 Getting a Handle to the Running Instance of the Lync Client

 When your application loads, you can get a reference to the running instance of the Lync client

by calling the static GetClient method of the Microsoft.Lync.Model.LyncClient class. Set the

module level variable _lyncClient to the return value of the GetClient method. Be sure to wrap

the call to GetClient in a try/catch block as shown in the following code; an exception is raised

if the Lync client is not installed or not running.

try
{
 _lyncClient = Microsoft.Lync.Model.LyncClient.GetClient();
}
catch
{
 MessageBox.Show(
 “Microsoft Lync is not running.”,
 “Error”,
 MessageBoxButton.OK,
 MessageBoxImage.Error);

 Close();
}

Code snippet LyncEventsLogger\Window1.xaml.cs

 Signing In with the Current User ’ s Credentials

 After checking that the Lync client is installed and running on the user ’ s machine, the next step is to

programmatically sign the user into Lync. Signing in the user programmatically has the same effect

as the user signing in by interacting directly with the Lync client.

 Call BeginSignIn on the instance of LyncClient to sign into the running instance of the

Lync client, as shown in the following code. The BeginSignIn method takes in userUri ,

 domainAndUsername , and password parameters to sign in a user with specifi c credentials. Passing in

 null for these parameters will sign in the user who is currently logged into Windows.

_lyncClient.BeginSignIn(
 null,
 null,
 null,
 result = >
 {
 if (result.IsCompleted)
 {
 _lyncClient.EndSignIn(result);

 LogEvent(“SignInCallback”, “Signing in to Lync”);
 InitializeClient(); // Setup application logic
 }
 else
 {
 LogEvent(“SignInCallback”, “Count not sign in to Lync”);
 }
 },
 “Local user signing in” as object);

Code snippet LyncEventsLogger\Window1.xaml.cs

 Alternatively, you can specify credentials for the user to sign in as the following:

_lyncClient.BeginSignIn(
 “adamb@fabrikam.com”,
 “fabrikam\\adamb”,
 “pass@word1”,
 ...

 As with most other operations in the Lync API, BeginSignIn is an asynchronous operation that

implements the IAsyncResult pattern. You can use a lambda expression to handle the callback

inline or specify a callback function that will execute when the sign - in process is completed. If

you prefer not to use a lambda expression, defi ne a callback function that will execute when the

operation is complete, and set the callback function as the callback parameter of the BeginSignIn

method:

_lyncClient.BeginSignIn(
 null,
 null,
 null,
 SignInCallback,
 “Local user signing in” as object);

Getting Started with the Lync 2010 Managed API ❘ 43

44 ❘ CHAPTER 3 BUILDING COMMUNICATIONS CLIENTS WITH THE MICROSOFT LYNC 2010 MANAGED API

 Defi ne a callback method following the IAsyncResult pattern; for example, the SignInCallback

method accepts a parameter of type IAsyncResult , which you can use to check the status of the

operation:

void SignInCallback(IAsyncResult ar)
{
 if (ar.IsCompleted)
 {
 ...
 }
}

 After signing in successfully to the running instance of the Lync client,
you can defi ne other Lync API objects that your application will use.
Encapsulating this logic into its own function is useful; you never know how
many times the current user will sign in and out of Lync while using your
application. You will have to react to these state changes and re - create any
objects that your application is using; for example, to create instances of the
 ConversationManager and ContactManager objects.

 Managing the Lifecycle of the Lync Client

 Applications using the Lync API are responsible for managing the lifecycle of the LyncClient

instance and reacting accordingly. For example, if your application subscribes to the presence of

some contacts, those subscriptions are lost when the Lync client signs out; your application needs to

re - create them when the connection to the Lync client is reestablished.

 Checking the State of the Lync Client

 The LyncClient class exposes a State property that you can use to check the state of the running

instance of the Lync client. The ClientState enum represents the various states that the client

can be in:

 Invalid

 Uninitialized

 SignedOut

 SigningIn

 SignedIn

 SigningOut

 ShuttingDown

 Initializing

➤

➤

➤

➤

➤

➤

➤

➤

 When the application starts, it can check to see whether the current user is signed in to the Lync

client — the State property of LyncClient is not equal to ClientState.SignedIn . If the user is

not signed in, you can use the Lync API to programmatically sign them in.

 Handling Changes in the State of the Lync Client

 The StateChanged event of LyncClient is raised when the state of the Lync client changes; for

example, from ClientState.SignedIn to ClientState.SigningOut and then ClientState

.SignedOut when the user signs out or is disconnected. The StateChanged event fi res immediately

when you sign into the Lync client; you must wire up the event handler for the StateChanged event

beforehand if you want your application to execute any custom logic when the user signs in.

 Wire up the StateChanged event of LyncClient and specify an event handler that will be called

when the state of the Lync client changes.

_lyncClient.StateChanged +=
 new EventHandler < ClientStateChangedEventArgs >
 (LyncClient_StateChanged);

Code snippet LyncEventsLogger\Window1.xaml.cs

 The instance of ClientStateChangedEventArgs in the StateChanged event handler exposes

 OldState and NewState properties representing the previous and current state of the Lync client.

You can use that information to perform application logic specifi c to the state of the Lync client; for

example, to clean up any Lync API – related application resources when signing out:

void LyncClient_StateChanged
 (object sender, ClientStateChangedEventArgs e)
{
 switch (e.NewState)
 {
 case ClientState.SigningOut:
 Cleanup();
 break;
 };

 ...

 UpdateMyAvailability();
 UpdateMyConnectionStatus(e.NewState.ToString());
}

Code snippet LyncEventsLogger\Window1.xaml.cs

 The StateChanged event handler is also an ideal place from which to globally update the current

user ’ s availability and connection status in the application. For example, the application can

implement a visual cue representing the current status of the Lync client.

Getting Started with the Lync 2010 Managed API ❘ 45

46 ❘ CHAPTER 3 BUILDING COMMUNICATIONS CLIENTS WITH THE MICROSOFT LYNC 2010 MANAGED API

 WORKING WITH CONVERSATIONS

 The Lync API provides functionality that your application can use to manage and interact with

conversations. For example, it can track when conversations are started and closed and when

participants join and leave them. You can also use the Lync API to create conversations and to join a

conference.

 The Lync API provides two ways to programmatically start conversations. You can use the

 Automation class to automate the running instance of the Lync client (just like the IMessenger

API) and start conversations in various modalities. You can also interact directly with the

 ConversationManager class and manually create a conversation, add modalities to

the conversation, and invite participants.

 The Automation class is the quickest way to start conversations using the least code, while the

 ConversationManager class is a more manual method that involves a little more code. However,

regardless of the method used to start a new conversation, you use the events and classes exposed by

the ConversationManager class to track the conversation throughout its lifecycle.

 In Chapter 5, you learn about working with the Lync API when the Lync
client is running UI Suppression mode and its user interface is invisible to the
user. Automation is not available in UI Suppression mode because it relies on
Lync user interface elements to start new conversations, so you need to use
the ConversationManager to start conversations. When the Lync client is not
running in UI Suppression mode, you can simply use Automation to create
conversations instead of dealing with the complexity of creating conversations
with the ConversationManager .

 Chapter 5 details using the ConversationManager to start conversations. This
chapter will instead focus on using Automation to start conversations, and then
using the ConversationManager to interact with and track the lifecycle of the
conversations.

 Starting Conversations with Automation

 Lync Automation provides the simplest way of starting conversations because it completely

leverages the Lync user interface and is very easy to program with. Lync Automation automates

the running instance of the Lync client, invoking the appropriate user interface elements based on

the type of conversation that is started. With a very small amount of simple code, you can start

conversations in different modalities such as instant message, audio, video, application sharing,

and fi le transfer.

 In this section, you learn about initializing the Automation object so that you can use it to start

conversations throughout the application. You also learn how to start conversations in different

modalities, and fi nally get a handle to the conversation that was created.

 Getting Started with Automation

 To integrate the functionality available in the Automation class into your application, you initialize

an instance of the class after the application has programmatically signed in to the running instance

of the Lync client.

 Defi ne a module - level instance of the Microsoft.Lync.Model.Extensibility.Automation class

in your application to take advantage of the Lync Automation functionality in the Lync API:

private Microsoft.Lync.Model.Extensibility.Automation _automation;

Code snippet LyncEventsLogger\Window1.xaml.cs

 After initializing the LyncClient object, set _automation to the return value of the static

 GetAutomation function in the LyncClient class:

_automation = LyncClient.GetAutomation();

Code snippet LyncEventsLogger\Window1.xaml.cs

 With the Automation object initialized, you can easily start conversations in different

modalities using the BeginStartConversation method.

 Starting Conversations Using Automation

 Starting conversations using Lync Automation follows a simple pattern:

 1. Create a list of participants to invite to the conversation.

 2. Create a set of automation modality settings to attach to the conversation. These settings

will vary, depending on whether you are dealing with instant messaging, desktop sharing,

transferring fi les, using video, and so on.

 3. Start the conversation.

 4. Handle the callback.

 Using this pattern, you can start conversations in different modalities including instant message,

audio, video, application sharing, and fi le transfer.

Working with Conversations ❘ 47

48 ❘ CHAPTER 3 BUILDING COMMUNICATIONS CLIENTS WITH THE MICROSOFT LYNC 2010 MANAGED API

 Creating the Participant List

 You can create a List < string > containing the SIP URIs of the contacts to invite to the

conversation; for example:

var participants = new List < string > ();
participants.Add(“sip:georged@fabrikam.com”);
participants.Add(“sip:adamb@fabrikam.com”);

 Alternatively, if you are using a Lync control such as the ContactList or CustomContactList

control, those controls expose a SelectedContactUris property that returns the SIP URIs of

the contacts selected by the user; for example:

 < controls:ContactList x:Name=”myContactList”
 ContactLayoutView=”OneLine” ShowPivotBar=”False” / >

...

var participants = myContactList.SelectedContactUris;

 Defi ning Automation Modality Settings

 The BeginStartConversation method accepts a contextData parameter of type Dictionary

 < AutomationModalitySettings, object > representing the various automation modality settings

to start the conversation with. Table 3 - 1 shows the values for the AutomationModalitySettings

enum.

 TABLE 3 - 1: AutomationModalitySettings Enum

 ENUM DESCRIPTION VALUE

 SharedDesktop Specifi es the conversation will

share a desktop.

 An integer that specifi es the

desktop ID.

 SharedMonitor Specifi es the conversation will

share a monitor.

 An integer that specifi es the

monitor ID.

 SharedProcess Specifi es the conversation will

share a process.

 An integer that specifi es the

process.

 SharedWindow Specifi es the conversation will

share a window.

 An hWnd that specifi es the

window handle.

 ApplicationData Specifi es the conversation will

share data.

 A string that specifi es the

application data.

 ApplicationId Specifi es the application ID

used to initiate the contextual

conversation.

 A GUID that specifi es the

application ID.

 ENUM DESCRIPTION VALUE

 ContextualLink Specifi es the URL shared by the

conversation.

 A string that specifi es the URL.

 ToastString Specifi es the string to be displayed

on the toast.

 A string displayed on the

custom toast.

 DataObjectFor

FileTransfer

 Specifi es the conversation will

pass a fi le.

 An IDataObject that

contains the drag - and - drop

fi le object.

 FileHistoryLink Specifi es the history fi le for the

conversation.

 A string that specifi es the fi le

path.

 FileIsShared Specifi es whether or not the fi le

passed in the conversation is

shared.

 A Boolean value that specifi es

whether the fi le is shared.

 FilePathToTransfer Specifi es the path to the fi le shared

in the conversation.

 A string that specifi es the fi le

path.

 FirstInstantMessage Specifi es the text of the fi rst IM in

the conversation.

 A string that specifi es the

message text.

 OutlookEntryId Specifi es the ID of the Outlook

message shared in the

conversation.

 A string that specifi es the

message ID.

 PreviousConversation Specifi es the previous

conversation shared in the current

conversation.

 A string that specifi es the

message.

 SendFirstInstant

MessageImmediately

 Specifi es whether or not the IM

text is sent immediately.

 A Boolean value that specifi es

whether the IM text is sent

immediately.

 StartConferenceBy

CallingMeAt

 Specifi es the phone number to

open the conference.

 A string that specifi es the

phone number.

 Subject Specifi es the subject line for the

conversation.

 A string that specifi es the

subject text.

 ParentWindow Specifi es the hWnd for the parent

window of the conversation

window.

 An hWnd that specifi es the

window handle.

 Lync SDK documentation

Working with Conversations ❘ 49

50 ❘ CHAPTER 3 BUILDING COMMUNICATIONS CLIENTS WITH THE MICROSOFT LYNC 2010 MANAGED API

 When starting conversations of different modalities, you must create and set the automation

modality settings specifi c to that modality. Table 3 - 2 shows the automation modalities defi ned

in the AutomationModalities enum paired up with automation modality settings from the

 AutomationModalitySettings enum.

 TABLE 3 - 2: Pairing AutomationModalities and AutomationModalitySettings

 AUTOMATIONMODALITIES AUTOMATIONMODALITYSETTINGS

 ApplicationSharing SharedDesktop, SharedMonitor, SharedProcess, SharedWindow

 Audio StartConferenceByCallingMeAt

 FileTransfer DataObjectForFileTransfer, FileHistoryLink, FileIsShared,

FilePathToTransfer

 InstantMessaging ApplicationData, ApplicationId, ContextualLink,

FileHistoryLink, FirstInstantMessage, OutlookEntryId,

SendFirstInstantMessageImmediately, ToastString

 Video ApplicationData, ApplicationId, ContextualLink, OutlookEntryId,

ParentWindow, StartConferenceByCallingMeAt, ToastString,

Subject

 Lync SDK documentation

 If the modality of the conversation is not paired up appropriately with a set of automation modality

settings, the call to BeginStartConversation will throw an exception. As you can see, automation

modality settings can apply to multiple modalities.

 In Chapter 4, you learn how to use the ApplicationData , ApplicationId , and ContextualLink

enum values to start contextual conversations using Lync Automation.

 Instant Messaging

 For an instant messaging conversation, you can set the text for the fi rst instant message and specify

whether it should be sent immediately to the participants after starting the conversation.

var contextData = new Dictionary < AutomationModalitySettings, object > ();

contextData.Add(
 AutomationModalitySettings.FirstInstantMessage,
 instantMessageText.Text);

contextData.Add(
 AutomationModalitySettings.SendFirstInstantMessageImmediately,
 true);

 As shown in Figure 3 - 2, the text is added to the instant message and sent immediately to all the

participants.

 FIGURE 3 - 2

 Desktop Sharing

 To invite participants to a desktop sharing session, add the SharedDesktop enum to the application

modality settings property bag:

var contextData = new Dictionary < AutomationModalitySettings, object > ();
contextData.Add(AutomationModalitySettings.SharedDesktop, true);

 As shown in Figure 3 - 3, a desktop sharing conversation is started among the participants in the

conversation.

Working with Conversations ❘ 51

52 ❘ CHAPTER 3 BUILDING COMMUNICATIONS CLIENTS WITH THE MICROSOFT LYNC 2010 MANAGED API

 File Transfer

 To transfer a fi le to the participants in the conversation, add the FilePathToTransfer and

 FileIsShared enumerations to the automation modality settings property bag:

var contextData = new Dictionary < AutomationModalitySettings, object > ();

contextData.Add(
 AutomationModalitySettings.FilePathToTransfer,
 fileTransferPath.Text);

contextData.Add(
 AutomationModalitySettings.FileIsShared,
 true);

 You can use a fi le transfer dialog to capture the path of

the fi le to share. As shown in Figure 3 - 4, a fi le transfer

request for the specifi ed fi le is sent to the participants in

the conversation.

 Audio and Video

 You don ’ t need to set any specifi c Automation

ModalitySettings to start a simple audio or video

conversation. You can simply pass null to the

 contextData parameter of the BeginStartConversation

function.

 FIGURE 3 - 3

 FIGURE 3 - 4

 Starting a Conversation

 To start a conversation of a given modality with the specifi ed automation modality settings, call the

 BeginStartConversation method of the Automation object, specifying the modality, participants,

automation modality settings, a callback to execute when the conversation is started, and if

necessary, an object representing the state of the asynchronous operation:

if (!String.IsNullOrEmpty(imText.Text))
{
 // Specify some simple context to add to the conversation
 var contextData =
 new Dictionary < AutomationModalitySettings, object > ();

 // Specify the text of the first instant message
 contextData.Add(
 AutomationModalitySettings.FirstInstantMessage,
 imText.Text);

 // Specify that the message should be sent immediately.
 contextData.Add(
 AutomationModalitySettings.SendFirstInstantMessageImmediately,
 true);

 _automation.BeginStartConversation(
 AutomationModalities.InstantMessage,
 myContactList.SelectedContactUris,
 contextData,
 StartConversationCallback,
 _automation);
}

Code snippet LyncEventsLogger\Window1.xaml.cs

 Pass _automation as the state of the asynchronous function call. When handling the conversation

callback, you will use this to get a handle to the ConversationWindow instance created as a result.

 You can also combine modalities; for example, to send an instant message to a contact inviting him

or her to a desktop sharing session. In this case, separate the automation modalities passed in to the

 BeginStartConversation method with a | character:

var contextData = new Dictionary < AutomationModalitySettings, object > ();

contextData.Add(
 AutomationModalitySettings.FirstInstantMessage,
 imText.Text);

contextData.Add(
 AutomationModalitySettings.SendFirstInstantMessageImmediately,
 true);

contextData.Add(
 AutomationModalitySettings.SharedDesktop,

Working with Conversations ❘ 53

54 ❘ CHAPTER 3 BUILDING COMMUNICATIONS CLIENTS WITH THE MICROSOFT LYNC 2010 MANAGED API

 true);

_automation.BeginStartConversation(
 AutomationModalities.InstantMessage
 | AutomationModalities.ApplicationSharing,
 myContactList.SelectedContactUris,
 contextData,
 StartConversationCallback,
 _automation);

 Handling the Conversation Callback

 In the conversation callback, fi rst check whether the asynchronous operation was completed

successfully. Cast the AsyncState property of the IAsyncResult into an Automation object and

call its EndStartConversation function.

void StartConversationCallback(IAsyncResult ar)
{
 if (ar.IsCompleted)
 {
 var conversationWindow =
 ((Automation)ar.AsyncState).EndStartConversation(ar);

 var conversation = conversationWindow.Conversation;

 ...
 }
}

 Calling EndStartConversation returns a ConversationWindow object for the conversation that

was just created. Later in this section, you learn how to use this to dock the conversation window

into the WPF application. You can also get a handle to the Conversation object for the new

conversation via the Conversation property of the ConversationWindow object.

 Getting Started with the ConversationManager

 After creating a conversation, you use an instance of the Microsoft.Lync.Model

.ConversationManager class to interact with the conversation. For example, you can wire up

events for the conversation or add and remove participants. This section covers how to manage

a new conversation throughout its lifecycle by handling changes in the conversation ’ s state and

monitoring properties of the conversation.

 To access the functionality available in the ConversationManager , defi ne a module - level instance

of the class in your application.

private Microsoft.Lync.Model.ConversationManager _conversationManager;

Code snippet LyncEventsLogger\Window1.xaml.cs

 After your application has initialized the instance of LyncClient , use its read - only

 ConversationManager property to get a reference to an instance of ConversationManager

for the running instance of the Lync client.

_conversationManager = _lyncClient.ConversationManager;

Code snippet LyncEventsLogger\Window1.xaml.cs

 With the ConversationManager initialized, your application can now manage conversations in the

running instance of the Lync client.

 ConversationManager Events

 Use the ConversationAdded and ConversationRemoved events to track when conversations

are added or removed from the Conversations collection of the ConversationManager object.

These events are raised regardless of how the conversations were created or closed; for example,

programmatically by the application, or by the user in the Lync client. Wire up the event handlers

for the ConversationAdded and ConversationRemoved events:

_conversationManager.ConversationAdded +=
 new EventHandler < ConversationManagerEventArgs >
 (Conversations_ConversationAdded);

_conversationManager.ConversationRemoved +=
 new EventHandler < ConversationManagerEventArgs >
 (Conversations_ConversationRemoved);

Code snippet LyncEventsLogger\Window1.xaml.cs

 The instance of ConversationManagerEventArgs in the event handler for the ConversationAdded

and ConversationRemoved events provides access to the Conversation object responsible for

raising the event. You can use e.Conversation to access properties of the conversation such as its

modalities, and also to wire up various conversation events:

void Conversations_ConversationAdded(
 object sender, ConversationManagerEventArgs e)
{
 LogEvent(“Conversation added”,
 String.Format(“Current conversations: {0}”,
 _conversationManager.Conversations.Count));

 e.Conversation.ParticipantAdded +=
 new EventHandler < ParticipantCollectionChangedEventArgs >
 (Conversation_ParticipantAdded);

 e.Conversation.ParticipantRemoved +=
 new EventHandler < ParticipantCollectionChangedEventArgs >

Working with Conversations ❘ 55

56 ❘ CHAPTER 3 BUILDING COMMUNICATIONS CLIENTS WITH THE MICROSOFT LYNC 2010 MANAGED API

 (Conversation_ParticipantRemoved);
}

void Conversations_ConversationRemoved(
 object sender, ConversationManagerEventArgs e)
{
 LogEvent(“Conversation removed”,
 String.Format(“Current conversations: {0}”,
 _conversationManager.Conversations.Count));
}

Code snippet LyncEventsLogger\Window1.xaml.cs

 Wire up an event handler for the ParticipantAdded and ParticipantRemoved events of the

conversation to track when people join and leave the conversation. You will learn about other events

that the Conversation class exposes later in this section.

 Figure 3 - 5 illustrates how the companion WPF

application tracks conversations as they are

started and closed.

 Conversation Properties

 After a conversation is created, you have access to its various properties. These properties enable

you to work with things such as the participants in the conversation, its modalities, and the

conversation ’ s state.

 Modalities: A Lync conversation can have multiple modalities such as instant message or

audio. The Modalities property is of type Dictionary < ModalityTypes, Modality > ;

the dictionary key gives you access to the instance of the Modality if it is present in

the conversation. You can get access to the underlying Modality object for a particular

conversation modality as follows:

var instantMessageModality =
 conversation.Modalities[ModalityTypes.InstantMessage]

 In Chapter 5, you will learn how to interact with the modalities in a conversation; for
example to programmatically add the instant messaging modality to a conversation to
send an instant message.

 Participants: The Participants collection is a List < Participant > representing everybody

in the conversation.

 Properties: The Properties property is a Dictionary < ConversationProperty, Object >

that contains other attributes of the conversation not available as fi rst - level properties.

Table 3 - 3 shows the values of the ConversationProperty enum. You can access the

properties shown in Table 3 - 3 as follows:

var conversationId = conversation.Properties[ConversationProperty.Id]

➤

➤

➤

 FIGURE 3 - 5

 SelfParticipant: The SelfParticipant property of the Conversation class is a shortcut to

the participant in the conversation who is the user currently signed in to Lync.

 State: The State of the conversation is represented by the ConversationState enum; the

valid states of a conversation are

 Inactive

 Active

 Parked

 Terminated

➤

➤

➤

➤

➤

➤

 TABLE 3 - 3: ConversationProperty Enum

 NAME DESCRIPTION

 Id The conversation identifi er.

 Subject The conversation subject.

 Importance The conversation importance level.

 TransferredBy If this conversation originated through a transfer, then the ID of

the conversation that originated transfer.

 Replaced If this conversation is or has ever been in conference, the

conference focus URI it is connected to or will reconnect to.

 ConferencingUri If this conversation is or has ever been in conference, the

conference focus URI it is connected to or will reconnect to.

 RepresentedBy If this conversation is af ected by boss or admin retargeting,

this provides the representation details.

 ConferenceInviter

RepresentationInfo

 If this conference conversation is af ected by boss or admin

retargeting, this provides the representation details.

 FollowUp The conversation follow - up fl ag.

 ConferenceAccepting

Participant

 If this conference conversation is answered by another party,

this provides the party ’ s contact object.

 AcceptanceState The acceptance state (from the local point of view) of this

conversation.

 IsUsbConversation Indicates whether the conversation is a USB conversation.

 AutoTerminateOnIdle Indicates whether the conversation will implicitly terminate

when the last modality session becomes inactive.

continues

Working with Conversations ❘ 57

58 ❘ CHAPTER 3 BUILDING COMMUNICATIONS CLIENTS WITH THE MICROSOFT LYNC 2010 MANAGED API

 Conversation Events

 The Conversation class exposes the following events that you can wire up event handlers for when

a conversation is created:

 ActionAvailabilityChanged

 ContextDataReceived

 ContextDataSent

 ConversationContextLinkClicked

 InitialContextReceived

➤

➤

➤

➤

➤

 NAME DESCRIPTION

 ConferenceEscalation

Progress

 Indicates the progression of escalation to conference.

 ConferenceEscalationResult Indicates the result code of escalation to conference.

 ConferencingInvitedModes Mask with bits set corresponding to invited types.

 Inviter Contact for the party that sent the invite to the conversation.

 ConferencingLocked Flag corresponding to whether the conference is currently

locked.

 ConferencingFirst

InstantMessage

 If the IM message was sent with a conference invite, the simple

text of the value of it (string).

 ConferenceAccess

Information

 Conference access information detailing accessibilty

mechanisms for this conference. (ConferenceAccessInfo).

 ConferencingAccessType Indicates the current access type of the conference.

 CallParkOrbit The orbit used to retrieve a parked call.

 ConferenceDisclaimer Disclaimer title and body.

 ConferenceDisclaimer

Accepted

 Set when the user accepts the conference disclaimer.

 ConferenceTerminate

OnLeave

 Terminate conference when terminating the conversation.

 IsBeingRecorded The conversation is being recorded by at least one participant.

 Lync SDK Documentation

TABLE 3-3 (continued)

 InitialContextSent

 ParticipantAdded

 ParticipantRemoved

 PropertyChanged

 StateChanged

 The ContextDataReceived , ContextDataSend , ConversationContextLinkClicked ,

 InitialContextReceived , and InitialContextSend event are used to work with contextual

application data in contextual conversations. You learn about contextual conversations and their

related events in Chapter 4.

 This section focuses on the ParticipantAdded , ParticipantRemoved , PropertyChanged , and

 StateChanged events that are raised when participants join or leave a conversation, or when a

property or the state of the conversation changes.

 ParticipantAdded and ParticipantRemoved

 The ParticipantAdded and ParticipantRemoved events are raised when participants join and

leave a conversation. These events are raised when a participant either is programmatically added to

the conversation or joins by accepting a conversation invitation in the Lync client:

void Conversation_ParticipantAdded(object sender,
 ParticipantCollectionChangedEventArgs e)
{
 if (e.Participant.Contact.Uri !=
 (sender as Conversation).SelfParticipant.Contact.Uri)
 {
 LogEvent(“Conversation participant added”,
 e.Participant.Contact.Uri);
 }
}

void Conversation_ParticipantRemoved(object sender,
 ParticipantCollectionChangedEventArgs e)
{
 if (e.Participant.Contact.Uri !=
 (sender as Conversation).SelfParticipant.Contact.Uri)
 {
 LogEvent(“Conversation participant removed”,
 e.Participant.Contact.Uri);
 }
}

Code snippet LyncEventsLogger\Window1.xaml.cs

 The ParticipantCollectionChangedEventArgs object in the event handler exposes the Contact

object for the Participant that was added or removed from the conversation. In this example, the

application checks fi rst whether the participant responsible for raising the event is not the user who

is signed in to the running instance of the Lync client.

➤

➤

➤

➤

➤

Working with Conversations ❘ 59

60 ❘ CHAPTER 3 BUILDING COMMUNICATIONS CLIENTS WITH THE MICROSOFT LYNC 2010 MANAGED API

 Figure 3 - 6 shows how the companion WPF

application tracks participants as they

join and leave a conversation.

 PropertyChanged

 You can use the PropertyChanged event to track changes of any of the items in the Properties

property of the conversation:

e.Conversation.PropertyChanged +=
 new EventHandler < ConversationPropertyChangedEventArgs >
 (Conversation_PropertyChanged);

...

void Conversation_PropertyChanged(
 object sender, ConversationPropertyChangedEventArgs e)
{
 if (e.Property == ConversationProperty.Subject)
 {
 // do something
 }
}

 The ConversationPropertyChangedEventArgs object in the event handler exposes the property

responsible for raising the event. You can check for the property that changed and perform custom

logic accordingly; for example, you can monitor the IsBeingRecorded property of an audio

conversation to be notifi ed if any of the participants begins recording the conversation.

 StateChanged

 You can use the StateChanged event to track changes in the state of a conversation:

e.Conversation.StateChanged +=
 new EventHandler < ConversationStateChangedEventArgs >
 (Conversation_StateChanged);

...

void Conversation_StateChanged(object sender,
ConversationStateChangedEventArgs e)
{
 LogEvent(“Conversation state changed”,
 String.Format(“{0} = > {1}”,
 e.OldState,
 e.NewState));
}

 The ConversationStateChangedEventArgs object in the event handler exposes both the OldState

and NewState of the conversation, as well as access to its Properties property.

 FIGURE 3 - 6

 Tracking the state of the conversation is useful if you need to enable or disable functionality in your

application based on the state of the application. For example, if the conversation state changes from

 Active to Terminated , you can disable user interface elements that allow the user to add a new

participant to the conversation.

 Managing Participants

 You can manually add and remove participants in a conversation using the AddParticipant

and RemoveParticipant methods of the Conversation object. When a participant joins the

conversation, the Conversation.ParticipantAdded event is raised. Similarly, when a participant

leaves or is removed from a conversation, the Conversation.ParticipantRemoved event is raised.

conversation.AddParticipant(
 _contactManager.GetContactByUri(“sip:seanc@fabrikam.com”));

 You can also use the Add method of the Participants collection of the Conversation object to

add a Participant object to the collection. However, using Conversation.AddParticipant

to add a new participant to a conversation is easier because it accepts a Contact object instead of a

 Participant object — instantiating a Contact object using ContactManager.GetContactByUri or

 Group.TryGetContact is easier than instantiating a Participant object because the Participant

class doesn ’ t defi ne a constructor.

 To remove a participant from a conversation, you fi rst must identify them in the Participants

collection in the Conversation object:

conversation.RemoveParticipant(conversation.Participants.Where(
 p = > p.Contact.Uri == “sip:seanc@fabrikam.com”)
 .FirstOrDefault());

 Docking the Lync Conversation Window in a WPF Application

 Conversation window docking enables you to dock the Lync conversation window directly into your

WPF application. Using conversation window docking, you can integrate the Lync conversation

window into your application or build a custom communications client that supports tabbed

conversations.

 This section will walk you through integrating conversation window docking into your application,

starting by adding the necessary references into your application in order to integrate Windows

Forms controls into a WPF application, performing the conversation window docking, and handling

events raised by the conversation window after it is docked.

 1. Begin by adding the following assembly references to your application:

 System.Windows.Forms

 WindowsFormsIntegration

 These assemblies provide access to the Windows Forms Panel object that the
conversation window is docked in, and to some necessary supporting objects such as
 WindowInteropHelper .

➤

➤

Working with Conversations ❘ 61

62 ❘ CHAPTER 3 BUILDING COMMUNICATIONS CLIENTS WITH THE MICROSOFT LYNC 2010 MANAGED API

 2. Add the following namespace declarations to the XAML in the window in the application

where you will dock the conversation window:

xmlsn:interop=”clr-namespace:System.Windows.Forms.Integration;
 assembly=WindowsFormsIntegration”
xmlsn:forms=”clr-namespace:System.Windows.Forms;
 assembly=System.Windows.Forms”

Code snippet LyncEventsLogger\Window1.xaml

 3. Add a WindowsFormsHost control to the XAML; this will contain the Windows Forms

 Panel to dock the conversation window in:

 < interop:WindowsFormsHost x:Name=”windowsFormsHost” >
 < forms:Panel x:Name=”windowsFormsPanel” > < /forms:Panel >
 < /interop:WindowsFormsHost >

Code snippet LyncEventsLogger\Window1.xaml

 4. Defi ne the FocusWindow and ResizeWindow delegates that the application will use to handle

the NeedsAttention and NeedsSizeChanged events of the ConversationWindow object:

private delegate void FocusWindow();
private delegate void ResizeWindow(Size resizeTo);
private WindowInteropHelper _windowHelper;
private Int32 _handle;

Code snippet LyncEventsLogger\Window1.xaml.cs

 5. Create an instance of WindowInteropHelper and an Int32 representing the handle of the

conversation window. In the application window ’ s Loaded event handler, prep the instance

of WindowInteropHelper :

void Window1_Loaded(object sender, RoutedEventArgs e)
{
 ...

 _windowHelper = new WindowInteropHelper(this);
 _handle = _windowHelper.Handle.ToInt32();
}

Code snippet LyncEventsLogger\Window1.xaml.cs

 6. Now you will implement the ConversationWindow event handlers. In the callback for

the BeginStartConversation method, get a handle to the ConversationWindow object

created for the new conversation and wire up event handlers for the NeedsSizeChange

and NeedsAttention events of the window as shown in the following snippet. If your

application will manage multiple conversation windows, you can also maintain a list

of active conversation windows in order to be able to dock a certain window in the

application. The companion WPF application also maintains an ObservableCollection

 < string > of active conversation IDs to display in the application.

void StartConversationCallback(IAsyncResult ar)
{
 if (ar.IsCompleted)
 {
 conversationWindow =
 ((Automation)ar.AsyncState).EndStartConversation(ar);

 Dispatcher.Invoke(new Action(() = >
 {
 _activeConversationWindows.Add(
 conversationWindow.Conversation.Properties
 [ConversationProperty.Id].ToString(),
 conversationWindow);

 _activeConversationIds.Add(
 conversationWindow.Conversation.Properties
 [ConversationProperty.Id].ToString());
 }));

 ...

 _conversationWindow.NeedsSizeChange +=
 new EventHandler < ConversationWindowNeedsSizeChangeEventArgs >
 (ConversationWindow_NeedsSizeChange);

 _conversationWindow.NeedsAttention +=
 new EventHandler < ConversationWindowNeedsAttentionEventArgs >
 (ConversationWindow_NeedsAttention);
 }
}

Code snippet LyncEventsLogger\Window1.xaml.cs

 7. You can now use the Dock and Undock methods of the ConversationWindow object to

dock and undock the conversation window in the WPF application. When calling the Dock

method, provide the handle of the WindowsFormsHost control containing the Windows

Forms Panel control to dock the conversation window in:

void dockConversationWindow_Click(object sender, RoutedEventArgs e)
{
 if (activeConversations.SelectedItem != null)
 {
 var conversationWindow = _activeConversationWindows

Working with Conversations ❘ 63

64 ❘ CHAPTER 3 BUILDING COMMUNICATIONS CLIENTS WITH THE MICROSOFT LYNC 2010 MANAGED API

 [activeConversations.SelectedItem.ToString()]
 as ConversationWindow;

 if (conversationWindow.Width != -1
 & & conversationWindow.Height != -1
 & & conversationWindow.Left != -1
 & & conversationWindow.Top != -1)
 {
 if (!_isDocked)
 {
 dockConversationWindow.Content = “Undock”;
 if (_handle != 0)
 {
 conversationWindow.Dock(windowsFormsHost.Handle);

 startIM.IsEnabled = false;
 startLyncCall.IsEnabled = false;
 }
 }
 else
 {
 dockConversationWindow.Content = “Dock”;
 conversationWindow.Undock();
 }
 _isDocked = !_isDocked;
 }
 else
 {
 dockConversationWindow.Content = “Dock”;

 conversationWindow.Undock();

 _isDocked = false;
 startIM.IsEnabled = true;
 startLyncCall.IsEnabled = true;
 }
 }
}

Code snippet LyncEventsLogger\Window1.xaml.cs

 Before docking the conversation window, check that the conversation window exists by
verifying that its Height , Width , Left , and Top properties are not equal to – 1.

 As shown in Figure 3 - 7, the conversation window is docked into the WPF application. The
chrome for the conversation window is removed.

 WORKING WITH CONTACTS AND GROUPS

 The Lync API provides functionality that your application can use to interact with the current

user ’ s groups and contacts in Lync. For example, you can subscribe to events that are raised when a

contact is added or removed from a group, when a contact ’ s presence changes, or when a property

of the contact changes.

 Getting Started with the ContactManager

 You can use an instance of the Microsoft.Lync.Model.ContactManager class in your application

to interact with the current user ’ s Lync groups and contacts. To access the functionality available in

the ContactManager , defi ne a module - level instance of the class in your application:

private Microsoft.Lync.Model.ContactManager _contactManager;

Code snippet LyncEventsLogger\Window1.xaml.cs

 After your application has initialized the instance of LyncClient , use its read - only ContactManager

property to get a reference to an instance of ContactManager for the running instance of the

Lync client:

_contactManager = _lyncClient.ContactManager;

Code snippet LyncEventsLogger\Window1.xaml.cs

 FIGURE 3 - 7

Working with Contacts and Groups ❘ 65

66 ❘ CHAPTER 3 BUILDING COMMUNICATIONS CLIENTS WITH THE MICROSOFT LYNC 2010 MANAGED API

 With the ContactManager initialized, you are ready to confi gure its events and interact with the

current user ’ s Lync groups and contacts.

 ContactManager Events

 To interact with the current user ’ s groups and the contacts contained with them, start by wiring up

event handlers for the ContactManager instance ’ s GroupAdded and GroupRemoved events:

_contactManager.GroupAdded +=
 new EventHandler < GroupCollectionChangedEventArgs >
 (ContactManager_GroupAdded);

_contactManager.GroupRemoved +=
 new EventHandler < GroupCollectionChangedEventArgs >
 (ContactManager_GroupRemoved);

Code snippet LyncEventsLogger\Window1.xaml.cs

 The GroupAdded and GroupRemoved events are raised when a group is added or removed

from the ContactManager ’ s Groups collection, as shown in the following code. This happens when

a user creates or deletes a group directly in the Lync client, or it happened when the user signed in to

the Lync client and his existing groups and contacts

were initialized. Figure 3 - 8 illustrates these events

occurring when the user signs into the Lync client

when starting up the companion WPF application.

void ContactManager_GroupAdded
 (object sender, GroupCollectionChangedEventArgs e)
{
 LogEvent(“Group added”, e.Group.Name);
}

void ContactManager_GroupRemoved
 (object sender, GroupCollectionChangedEventArgs e)
{
 _contactSubscriptions.Remove(e.Group.Name);

 LogEvent(“Group removed”, e.Group.Name);
}

Code snippet LyncEventsLogger\Window1.xaml.cs

 You will learn later in this section about creating subscriptions for properties of contacts that are

members in groups. When a group is removed from the user ’ s collection of groups, you should also

remove any subscriptions that were created for the group.

 Group Events

 With the application initialized and the supporting objects created, you can now iterate through the

 Groups collection of the ContactManager instance and wire up events for the groups in the collection.

 FIGURE 3 - 8

 Iterate through the Groups collection, verifying that the group is not null, and wire up event

handlers for the ContactAdded and ContactRemoved events of each group:

foreach (var group in _contactManager.Groups)
{
 if (group != null & & !String.IsNullOrEmpty(group.Name))
 {
 group.ContactAdded += new EventHandler < GroupMemberChangedEventArgs >
 (Group_ContactAdded);
 group.ContactRemoved +=
 new EventHandler < GroupMemberChangedEventArgs >
 (Group_ContactRemoved);

 LogEvent(“Subscribe to events for “, group.Name);

 SubscribeToGroup(group);
 }
}

Code snippet LyncEventsLogger\Window1.xaml.cs

 Similar to the GroupAdded and GroupRemoved events of the ContactManager class, the

 ContactAdded and ContactRemoved events are raised when the user adds or removes contacts in

the Lync client, and also when the LyncClient instance signs in and initializes the current user ’ s

existing groups.

 Creating Contact Subscriptions

 The Microsoft.Lync.Model.ContactSubscription class provides functionality to subscribe to

changes in the properties of a group of contacts; for example, changes in their availability, location,

or personal note.

 To create a new contact subscription, call CreateSubscription on the ContactManager object

in your application. You then must defi ne the attributes of the contact that the application

will subscribe to changes in; this is defi ned by the ContactInformationType enum. Create a

 List < ContactInformationType > and add to it the values of ContactInformationType to track.

Finally, call the Subscribe method of the ContactSubscription object to create the subscription:

var subscription = _contactManager.CreateSubscription();

// Choose the types of presence changes to listen for
var contactInformationTypes =
 new List < ContactInformationType > ()
 {
 ContactInformationType.Availability,
 ContactInformationType.Activity
 };

subscription.Subscribe(

Working with Contacts and Groups ❘ 67

68 ❘ CHAPTER 3 BUILDING COMMUNICATIONS CLIENTS WITH THE MICROSOFT LYNC 2010 MANAGED API

 ContactSubscriptionRefreshRate.Low,
 contactInformationTypes);

_contactSubscriptions.Add(group.Name, subscription);

Code snippet LyncEventsLogger\Window1.xaml.cs

 ContactInformationType Enum

 The ContactInformationType enum represents the many attributes of a Contact object that

your application can subscribe to. Table 3 - 4 shows some of the most commonly used values of the

 ContactInformationType enum.

 TABLE 3 - 4: ContactInformationType Enum

 NAME DESCRIPTION

 Availability Contact availability. Value type is AvailabilityTypeenum .

 ActivityId A token describing current contact activity.

 LocationName The name of a contact ’ s location.

 Activity A contact ’ s current activity (for example, on the phone, in a

meeting, or available).

 DisplayName Display name of a contact.

 PrimaryEmailAddress The primary e - mail address.

 HomePageUrl The contact ’ s homepage URL.

 Photo A contact ’ s photo.

 DefaultNote The default note, shown if no other note is set.

 PersonalNote A personal note.

 OutOfficeNote An out - of - oi ce note.

 ContactType Contact ’ s type. Value type is ContactPresentityTypeenum .

 Lync SDK Documentation

 ContactSubscriptionRefreshRate Enum

 The ContactSubscription.Subscribe method accepts a subscription refresh rate defi ned

by the ContactSubscriptionRefreshRate enum to specify how often the subscription should be

refreshed. Table 3 - 5 shows the values for the ContactSubscriptionRefreshRate enum.

 Contact Events

 The contact subscription alone doesn ’ t provide a mechanism for your application to handle the

events that are raised when one of the ContactInformationType values for a particular contact

in the subscription changes. To track changes in the properties of contacts in a group, wire up the

 ContactInformationChanged event for each contact in the group:

foreach (var contact in group)
{
 contact.ContactInformationChanged +=
 new EventHandler < ContactInformationChangedEventArgs >
 (Contact_ContactInformationChanged);
}

Code snippet LyncEventsLogger\Window1.xaml.cs

 You can use the instance of ContactInformationChangedEventArgs in the handler for the

 ContactInformationChanged event to discover which ContactInformationType values caused

the event to be raised, as shown in the following snippet. This is useful if you are subscribing to

multiple ContactInformationType values and need to handle each slightly differently.

void Contact_ContactInformationChanged
 (object sender, ContactInformationChangedEventArgs e)
{
 if (_lyncClient != null)
 {
 if (e.ChangedContactInformation.Contains
 (ContactInformationType.Activity))

 TABLE 3 - 5: ContactSubscriptionRefreshRate Enum

 NAME DESCRIPTION

 Low The caller needs infrequent refreshing of contact data.

 High The caller needs frequent refreshing of contact data.

 Lync SDK Documentation

 Set the contact subscription refresh rate based on the individual requirements
of your application, keeping in mind that overhead is involved in maintaining
a large number of contact subscriptions, especially when the application is
subscribed to a large number of ContactInformationType values for the
contacts in the subscription.

Working with Contacts and Groups ❘ 69

70 ❘ CHAPTER 3 BUILDING COMMUNICATIONS CLIENTS WITH THE MICROSOFT LYNC 2010 MANAGED API

 {
 LogEvent(String.Format(
 “Updated presence for {0}”,
 (sender as Contact).GetContactInformation
 (ContactInformationType.DisplayName).ToString()),
 (sender as Contact).GetContactInformation
 (ContactInformationType.Activity).ToString());
 }
 }
}

Code snippet LyncEventsLogger\Window1.xaml.cs

 Query the ChangedContactInformation list to check whether it contains a specifi c

 ContactInformationType . The event sender is a Contact object; use the Contact

.GetContactInformation method to get the value of a specifi c ContactInformationType for the

contact that caused the event to be raised; for example, his

display name. Figure 3 - 9 illustrates how the companion

WPF application displays changes in contacts ’ presence.

 You can also use the GetContact method of ContactManager to get a Microsoft.Lync.Model

.Contact object for a contact given a SIP URI:

var contact = _contactManager.GetContactByURI(“sip:adamb@fabrikam.com”);

 If you provide an invalid contact SIP URI to the GetContactByURI method, the return value will be

null. Always check to verify that the returned Contact object is not null before proceeding.

 Adding and Removing Groups

 The ContactManager provides functionality for maintaining the groups in the current user ’ s Lync

groups list, allowing your application to programmatically add and remove contacts from the user ’ s

contact list. You can also use the Lync API to add or remove existing contacts from a group, or add

new contacts to the user ’ s contact list and assign them to a group.

 You can use the ContactManager to add and remove groups from the current user ’ s groups in Lync.

When a group is added or removed, the operation raises the GroupAdded or GroupRemoved events of

the ContactManager object.

 Adding a Group

 Use the BeginAddGroup and EndAddGroup methods of ContactManager to add a new distribution

group or custom group to the current user ’ s Lync groups. The following code creates a new custom

group called My Group in the current user ’ s Lync groups:

_contactManager.BeginAddGroup(
 “My Group”,
 result = >
 {

 FIGURE 3 - 9

 _contactManager.EndAddGroup(result);

 SubscribeToGroup(contactManager.Groups.Where
 (g = > g.Name == “My Group”).FirstOrDefault());
 },
 null);

 You can create a contact subscription for the group as soon as it is created. The group is obviously

empty at fi rst, but the necessary event handlers are in place to subscribe to changes in contact

properties as contacts are added to the group.

 Email distribution lists defi ned in your organization ’ s Active Directory can also be added as groups

in Lync. For example, if your organization has a distribution group called Employees that contains

all the employees in the company, adding it as a group in Lync instead of adding the individual

employees as contacts is very convenient.

 Removing a Group

 To remove a group from the user ’ s list of groups in Lync, use the BeginRemoveGroup and

 EndRemoveGroup methods of the ContactManager class. The BeginRemoveGroup only accepts a

 Group object representing the group to remove; you have to query the Groups collection exposed by

the ContactManager to fi nd the group by name:

_contactManager.BeginRemoveGroup(
 _contactManager.Groups.Where(g = > g.Name == “My Group”)
 .FirstOrDefault(),
 result = >
 {
 _contactManager.EndRemoveGroup(result);
 },
 null);

 If the group being removed is not empty, the contacts in the group are automatically moved into the

Other Contacts group.

 Adding and Removing Contacts

 Contacts must be added or removed from the group in which they are contained. When a contact is

added or removed from a group, the group ’ s ContactAdded or ContactRemoved events are raised.

 Adding Contacts

 To add a contact to a group, call the Add method on the Group object and provide the Contact

object to add. Use the ContactManager object ’ s GetContactByURI method to get a Contact object

given a SIP URI:

group.BeginAddContact(
_contactManager.GetContactByURI(“sip:adamb@fabrikam.com”),
 result = >

Working with Contacts and Groups ❘ 71

72 ❘ CHAPTER 3 BUILDING COMMUNICATIONS CLIENTS WITH THE MICROSOFT LYNC 2010 MANAGED API

 {
 _group.EndAddContact();
 },
 null);

 Removing Contacts

 To remove a contact from a group, call the Remove method on the Group object and provide the

 Contact object to remove:

group.BeginRemoveContact(
 _contactManager.GetContactByURI(“sip:adamb@fabrikam.com”),
 result = >
 {
 _group.EndRemoveContact();
 },
 null);

 When you remove a contact from a group, it is moved to the Other Contacts group, but not deleted

from the user ’ s Lync contact list. To permanently remove a contact from the user ’ s Lync contact list,

use the ContactManager object ’ s BeginRemoveContactFromAllGroups method.

_contactManager.BeginRemoveContactFromAllGroups(
 _contactManager.GetContactByURI(“sip:adamb@fabrikam.com”),
 result = >
 {
 _contactManager.EndRemoveContactFromAllGroups(result);
 },
 null);

 Using TryGetContact

 The ContactCollection property of a Group exposes a TryGetContact method that you can use

to query the collection of contacts in a group for a particular contact. The TryGetContact method

returns a Boolean value indicating whether or not the contact exists in the group; if it does,

the resulting Contact object is populated into the method ’ s outcontact parameter:

Group group = _contactManager.Groups.Where
(g = > g.Name == “My Group”).FirstOrDefault();

Contact contact = null;

if (group.TryGetContact(“sip:adamb@fabrikam.com”, out contact))
{
 group.BeginRemoveContact(
 contact,
 result = >
 {
 group.EndRemoveContact(result);
 },
 null);
}

 INTERACTING WITH THE SELF CONTACT

 An instance of the Microsoft.Lync.Model.Self class represents the user signed into the running

instance of the Lync client. You can use the Self class to set the current user ’ s presence, publish his

personal note, or set other presence information such as his location.

 To get started, defi ne a module level Self object in your application:

private Microsoft.Lync.Model.Self _self;

Code snippet LyncEventsLogger\Window1.xaml.cs

 After your application has initialized the instance of LyncClient , use its read - only Self property to

get a reference to an instance of Self for the current user:

_self = _lyncClient.Self;

Code snippet LyncEventsLogger\Window1.xaml.cs

 Using the Self class, you can publish presence items for the user currently signed in to the running

instance of the Lync client. For example, you can set their presence or personal note. You can also

wire up events to handle when any of these presence items change. For example, you can update the

user ’ s location in your application when it changes in the Lync client.

 Publishing Self Presence Items

 As shown in Figure 3 - 10, you can update the current

user ’ s presence directly from the application by

selecting the appropriate presence in the drop - down

list and clicking the Update button to publish the

user ’ s presence.

 You can programmatically change the user ’ s

availability, status, and other properties defi ned by

the PublishableContactInformationType enum. To publish a set of presence items for the user,

your application should:

 Create a list of presence items to publish

 Publish the list of presence items

 Setting Publishable Contact Information

 The PublishableContactInformationType enum defi nes the publishable attributes of a contact;

these include:

 Availability

 ActivityId

➤

➤

➤

➤

 FIGURE 3 - 10

Interacting with the Self Contact ❘ 73

74 ❘ CHAPTER 3 BUILDING COMMUNICATIONS CLIENTS WITH THE MICROSOFT LYNC 2010 MANAGED API

 CustomStatusId

 Location

 PersonalNote

 DisplayPhoto

 PhotoUrl

 To publish contact information for the Self contact, create a List < KeyValuePair < Publishable

ContactInformationType, object > > to store a list of key value pairs of the attributes of

the contact to publish:

var contactInformation =
new List < KeyValuePair < PublishableContactInformationType, object > > ();

Code snippet LyncEventsLogger\Window1.xaml.cs

 Add each contact information item to the list of attributes to publish. In the companion WPF

application, the drop - down list defi nes the numerical value for each presence state; for example,

3500 represents Available. Add PublishableContactInformationType.Availability to the list,

and set its value to the presence selected in the drop - down list:

contactInformation.Add(
 new KeyValuePair < PublishableContactInformationType, object > (
 PublishableContactInformationType.Availability,
 Convert.ToInt32((status.SelectedValue as ComboBoxItem).Tag)));

Code snippet LyncEventsLogger\Window1.xaml.cs

 Publishing the Presence Items

 Call BeginPublishContactInformation to publish the items defi ned in the list:

_self.BeginPublishContactInformation(
 contactInformation,
 result = > _self.EndPublishContactInformation(result),
 “Updating my status”);

Code snippet LyncEventsLogger\Window1.xaml.cs

 As shown in Figure 3 - 11, the user ’ s updated presence is immediately refl ected in the Lync client.

➤

➤

➤

➤

➤

 FIGURE 3 - 11

 Subscribing to Self Presence Events

 The Self class exposes the Contact object for the current user; you can use that to wire up an event

handler for the ContactInformationChanged event of the contact:

_self.Contact.ContactInformationChanged += new
 EventHandler < ContactInformationChangedEventArgs >
 (Self_ContactInformationChanged);

Code snippet LyncEventsLogger\Window1.xaml.cs

 The ContactInformationChanged is raised when an application using the Lync API updates a

contact information item, or when the user himself updates his presence, personal note, or location

in the Lync client.

 The ChangedContactInformation property of the instance of ContactInformationChanged

EventArgs in the ContactInformationChanged event handler contains a collection of contact

information items that have changed. You can query the collection for a particular

contact information item and perform custom logic for that item:

void Self_ContactInformationChanged
 (object sender, ContactInformationChangedEventArgs e)
{
 // This event can be triggered by the application itself
 // and also by Lync
 // Always use Dispatcher.Invoke to execute on the UI thread
 //
 if (_lyncClient != null)
 {
 this.Dispatcher.Invoke(
 DispatcherPriority.Input,
 new Action(() = >
 {
 var contact = sender as Contact;

 if (e.ChangedContactInformation.Contains
 (ContactInformationType.PersonalNote))
 {
 LogEvent(“My personal note changed”,
 contact.GetContactInformation
(ContactInformationType.PersonalNote) == null? “n/a” :
contact.GetContactInformation
(ContactInformationType.PersonalNote).ToString());
 }

 if (e.ChangedContactInformation.Contains
 (ContactInformationType.Activity))
 {
 LogEvent(“My presence changed”,
 contact.GetContactInformation

Interacting with the Self Contact ❘ 75

76 ❘ CHAPTER 3 BUILDING COMMUNICATIONS CLIENTS WITH THE MICROSOFT LYNC 2010 MANAGED API

 (ContactInformationType.Activity).ToString());

 UpdateMyAvailability();
 }
 }));
 }
}

Code snippet LyncEventsLogger\Window1.xaml.cs

 As shown in Figure 3 - 12, changes in the current user ’ s presence or personal note are captured and

logged in the companion WPF application.

 FIGURE 3 - 12

 SUMMARY

 Using the Lync API, you can interact with the running instance of the Lync client to manage groups

and contacts, conversations, and their participants. The Automation capabilities of the Lync API

are used to easily start conversations of different modalities and to integrate the Lync conversation

window into your application by docking the conversation window into a Windows Forms Panel

control.

 In the next chapter, you will learn about more advanced features of the Lync API that are used to

add context to conversations. Context in conversations enables all the participants in a conversation

to immediately know what the conversation is about. You will learn how to start contextual

conversations that provide contextual links, launch applications, and use the Lync extensibility

window to host a Silverlight application directly in the Lync conversation window.

Adding Context
to Conversations

 WHAT ’ S IN THIS CHAPTER?

 Adding Context to the Lync Controls

 Starting Contextual Conversations using Automation

 Registering Contextual Application Components

 Launching Applications using Launch Link Context

 Embedding Silverlight Applications in Conversations using Lync

Extensibility Window Context

 The context of a conversation is typically established at the beginning of a call or instant

message; for example, “ Do you have time to talk about the General Industries account? ”

The back and forth involved in establishing context can be wasteful as everybody in the

conversation slowly gets on the same page, with the conversation sometimes going like this:

 “ Hi Sean, do you have time to talk about the General Industries account? ”

 “ Give me a minute; let me open the CRM application. “ OK, here we go . . .

 What about the General Industries account? ”

 “ I have a question about the 2010 sales fi gures. ”

 “ OK, hang on; let me pull those up . . . What about the sales fi gures? ”

➤

➤

➤

➤

➤

 4

D
o

78 ❘ CHAPTER 4 ADDING CONTEXT TO CONVERSATIONS

 Using the Lync SDK, you can build functionality into your communications - enabled applications to

streamline this process and enable the participants in the conversation to immediately know what

the call or instant message they are receiving is about.

 A great example of this capability is the Reply by IM feature in Outlook, which allows you to

reply to any email in your mailbox with an instant message. The email subject appears in the toast

window that the recipient sees; the subject also appears as the title of the Lync conversation window

itself. The Lync SDK provides several mechanisms to inject this context directly into the Lync

conversation. The simplest of these is Simple Link context, which allows you to embed a link

into a conversation that is initiated from the Lync controls or programmatically by the Lync API.

You saw in Chapter 2 how to start contextual conversations that include Simple Link context from

the Lync controls using the ConversationContextualInfo class.

 Launch Link context allows you to launch applications from within a Lync conversation, and also

send contextual application data back and forth between communications - enabled applications.

For example, when working with a customer relationship management (CRM) application, you can

start a conversation with the account manager for a particular client directly from the application.

When he receives the conversation invitation, not only does he know what you are calling about,

but he can open the CRM application directly from the Lync conversation and automatically load

the account. Using Launch Link context, you can launch any application and provide the necessary

launch parameters to it. The catch is that the application in question must be able to process the

parameters provided to it, either by the ability to accept and process command line arguments, or

through a plug - in mechanism where you can use the Lync API to allow the application to process

contextual data in incoming conversations.

 Lync Extensibility Window context allows you to host Silverlight applications in the Lync

conversation window. For example, when a customer call is routed to an agent in a call center, a

Silverlight application displaying information about the customer is available to the agent directly

in the Lync conversation window. The agent can easily access the necessary customer information

such as the reason for the call or the customer ’ s order history without needing to open a separate

application.

 The ConversationContextualInfo class is central to the ability to start contextual conversations.

A subset of the Lync controls exposes a ConversationContextualInfo property that you

can set in order to start contextual conversations from the controls. Also, when starting a

conversation using Automation or manually via the Lync API, you can provide an instance of

 ConversationContextualInfo to add context to the conversation.

 The companion solution for this chapter includes a Fabrikam CRM Windows Presentation

Foundation (WPF) application (shown in Figure 4 - 1) that includes built - in communications features.

Users can browse accounts, account team contacts, and start contextual conversations with account

team members. The application uses Lync Extensibility Window context to display a mini version

of the Fabrikam CRM application to conversation recipients. The conversation recipients can also

use Launch Link context to launch the full Fabrikam CRM application from the Lync conversation

window if they choose to. In this chapter, you learn how to integrate contextual conversation

functionality similar to the Fabrikam CRM application into your own application using Launch

Link and Lync Extensibility Window context.

 LAUNCHING APPLICATIONS FROM LYNC CONVERSATIONS

 In this section, you learn to start a contextual conversation that includes Launch Link context

from the Lync controls and using Automation . You also learn about the different ways to register

contextual conversation components so that they are trusted by the Lync Server infrastructure.

 Registering a Contextual Application Package
for Launch Link Context

 To start an application that includes Launch Link context from a Lync conversation, you must provide

some details about the application such as the path to its executable and any parameters that that it will

start with. You then must compile this information into a contextual application package and register it

with the Lync Server infrastructure. A contextual application package has some other properties such as

a GUID representing a unique ID for the contextual application, as well as the application name.

 Later in this chapter, you learn about combining Launch Link context and Lync Extensibility

Window context into a single contextual application package.

 Deploying a Contextual Application Package for Lync Launch Link Context to the
Registry using Install Registration

 Deploying a contextual application package to the user ’ s registry hive is referred to as Install

Registration. When deploying a contextual application package to the registry, the package must be

installed in the registry of every user who will use the application. You have several ways to deploy

 FIGURE 4 - 1

Launching Applications from Lync Conversations ❘ 79

80 ❘ CHAPTER 4 ADDING CONTEXT TO CONVERSATIONS

contextual application packages into the registry; for example, during the setup process of the

application, manually using code, by an administrator, or with an Active Directory Group Policy.

 To use Install Registration to deploy a contextual application package in the registry, create a

Windows registry fi le to deploy the registry entries:

Windows Registry Editor Version 5.00

[HKEY_CURRENT_USER\Software\Microsoft\Communicator\ContextPackages]
[HKEY_CURRENT_USER\Software\Microsoft\Communicator\ContextPackages\
 {6B7BACE8-3968-4A1E-9BB5-F4BD666E36FB}]
“Name”=”Fabrikam CRM”
“Path”=”C:\\Program Files\\FabrikamCRM\\Fabrikam.CRM.WPF.exe”
“Parameters”=”%AppData%”
“InstallLink”=”https://register.fabrikam.com/Default.aspx
 ?ApplicationId={6B7BACE8-3968-4A1E-9BB5-F4BD666E36FB}”

 Code snippet Fabrikam.CRM.WPF\PackageRegistration_Launch.reg

 The syntax used in the PackageRegistration_Launch.reg fi le isn ’ t specifi c to Lync; you use

the Windows Registry Editor to deploy entries to the Windows registry. The fi rst line of the fi le

specifi es the version of the Windows Registry Editor version; for example, Windows Registry Editor

Version 5.00. The next two lines refer to the location in the registry to which contextual application

packages are deployed.

 As shown in Figure 4 - 2, the contextual conversation components are written to the registry at

 HKEY_CURRENT_USER\Software\Microsoft\Communicator\ContextPackages . A sub - key is

created in this location for every installed contextual application package; the GUID representing

the unique ID for the application is used as the registry sub - key.

Available for

download on

Wrox.com

Available for

download on

Wrox.com

 FIGURE 4 - 2

 When creating a contextual application package for Launch Link context using Install Registration,

you must defi ne the settings shown in Table 4 - 1 in the package.

 TABLE 4 - 1: Contextual Application Package Settings for Launch Link Context

 SETTING DESCRIPTION NOTES

 Name The name of the contextual application package.

 Path The location where the application is installed

— the path to its executable.

 Parameters Parameters to pass to the application when

launching it from a Lync conversation window.

 Set this to %AppData% .

 Size limit is 2kB.

 InstallLink If the user doesn ’ t have the contextual application

package installed, he can browse to this URL — if

specifi ed — to install it.

 Optional.

 Developer is responsible

for implementing install

logic.

 As noted in Table 4 - 1, the size limit for the %AppData% parameter is 2kB; this is plenty of space to

pass a delimited set of startup parameters, or even a simple XML structure that your application

can deserialize into an instance of some class and consume.

 Install Registration can present some deployment challenges to an organization,
particularly when it comes to modifying the details of a contextual application
package that has already been deployed to users in the organization. However,
the advantage of this approach is that the contextual application package
persists in the registry regardless of whether or not the user is signed in to Lync,
and also doesn ’ t need to be redeployed whenever the user starts the application.

 Later in this chapter, you will learn about additional settings you can use during Install Registration

to enable Lync Extensibility Window context in the contextual application package.

 Launching Applications Using Launch Link Context

 When receiving a conversation that contains Launch Link context, a message such as the one shown

in Figure 4 - 3 appears in the Lync conversation window.

 The message notifi es the user that the conversation he is in contains some embedded context. The

application name — from the Name attribute used during Install Registration — also appears in

the message. The user can click the link to launch the application.

Launching Applications from Lync Conversations ❘ 81

82 ❘ CHAPTER 4 ADDING CONTEXT TO CONVERSATIONS

 If the user receives a conversation with embedded context,

but doesn ’ t have the necessary contextual application package

deployed on his computer, he will see a message similar to

the one shown in Figure 4 - 4 notifying him that he doesn ’ t

have the necessary contextual application package installed

to process the context in the conversation. If you specifi ed

the InstallLink parameter in the contextual application

package, the user will also see a link pointing him to a

web page where you can implement some custom logic for

installing the contextual application package on his computer.

 If you attempt to open the contextual application without

installing the contextual application package, you will see a

warning similar to the one in Figure 4 - 4 letting you know

that the contextual application is not installed or registered

with Lync.

 You can use Launch Link context to start any application

that can process the parameters provided in the contextual

conversation payload. For example, you can start the

Fabrikam CRM application and provide a command line

argument for the customer account to load in the application.

In this case, the Fabrikam CRM application understands how

to process command line arguments. Not all applications

might have this functionality; if you didn ’ t write the

application yourself to start with (or have access to its source),

you should explore whether it offers any extensibility or

plug - in mechanism to allow you to add the Lync API code

necessary to handle application context.

 You can also launch native Windows and Offi ce applications such as Internet Explorer and Microsoft

Word. These applications can process command line arguments; for example, you can launch Internet

Explorer from the Run menu or from a command prompt using the following syntax:

iexplore.exe http://crm.fabrikam.com/account/234

In this case, you can deploy the contextual application package to launch iexplore.exe or

 winword.exe and then programmatically provide the command line parameters. In this example,

you don ’ t need to provide the full path to iexplore.exe or winword.exe because the PATH

environment variable already contains the full path to the executables for these applications.

 Setting Conversation Contextual Info for Launch Link Context

 To start a contextual conversation that uses Launch Link context, you fi rst use the

 ConversationContextualInfo class to defi ne the context data. You can then attach the instance

of ConversationContextualInfo to one of the Lync controls capable of starting conversations, or

use it to start a conversation using Automation .

 FIGURE 4 - 4

 FIGURE 4 - 3

 Start by creating an instance of ConversationContextualInfo and set its Subject ,

 ApplicationId , and ApplicationData properties.

var context = new ConversationContextualInfo();
context.Subject = account.AccountName;
context.ApplicationId = _applicationGuid;
context.ApplicationData = String.Concat
 (“AccountId:”, account.Id.ToString());

 Code snippet Fabrikam.CRM.WPF\MainWindow.xaml.cs

The string specifi ed in Subject will appear in the toast window notifying the conversation

recipients of the new conversation, and also as the title of the Lync conversation window.

 ApplicationId represents the GUID of the contextual application package, and ApplicationData

is the data that will be passed to the application.

 Adding Launch Link Context to the Lync Controls

 To attach the context to any Lync control capable of starting a

conversation, you set its ContextualInformation property to

the instance of ConversationContextualInfo . For example,

in the Fabrikam CRM application, the ContactCard Lync

control is embedded into the application, as shown in Figure 4 - 5,

and used to start conversations with the account manager for an

account.

 When you set the ContextualInformation property

of the ContactCard Lync control to the instance of

 ConversationContextualInfo , all conversations started from

the ContactCard Lync control will contain the context defi ned

in the instance of ConversationContextualInfo .

accountManager.ContextualInformation = context;

 Code snippet Fabrikam.CRM.WPF\MainWindow.xaml.cs

Available for

download on

Wrox.com

Available for

download on

Wrox.com

Available for

download on

Wrox.com

Available for

download on

Wrox.com

 FIGURE 4 - 5

 The ContactCard control is a composite control in that it contains other Lync
controls capable of starting conversations. When you set the Contextual
Information property of the ContactCard control — or any composite Lync
control — all the embedded controls will inherit the context. For example, the
 ContextualInformation details attached to the ContactCard Lync control
will cascade down to the instances of the StartInstantMessagingButton and
 StartAudioCallButton controls embedded in the control.

Launching Applications from Lync Conversations ❘ 83

84 ❘ CHAPTER 4 ADDING CONTEXT TO CONVERSATIONS

 In Chapter 3, you also learned how to easily start a conversation using the Automation class. To

make those conversations contextual, simply set the instance of ConversationContextualInfo as

the contextData parameter of the Automation.BeginStartConversation method:

_automation.BeginStartConversation(
 AutomationModalities.Audio,
 myContactList.SelectedContactUris,
 context,
 StartConversationCallback,
 _automation);

 Setting and Retrieving Command Line Arguments for Application Context

 To enable your application to process command line parameters, you must defi ne a format that

the parameters should be in and implement a mechanism for processing the parameters that are

supplied.

 In the Fabrikam CRM application, the logic to process command line arguments is implemented

in the Application_Startup event in App.xaml.cs . This implementation was adapted from an

MSDN article; it fi rst checks for the presence of any command line parameters, verifi es that they are

in the correct format, and then puts them in a Hashtable of parameters that is available throughout

the application.

// http://msdn.microsoft.com/en-us/library/ms743714(VS.85).aspx

public static Hashtable CommandLineArgs = new Hashtable();

private void Application_Startup(object sender, StartupEventArgs e)
{
 if (e.Args.Length == 0) return;

 // Parse command line args for args in the following format:
 // /argname:argvalue /argname:argvalue /argname:argvalue ...
 string pattern = @”(? < argname > \w+):(? < argvalue > \w+)”;
 foreach (string arg in e.Args)
 {
 var match = Regex.Match(arg, pattern);

 // If match not found, command line args are improperly formed.
 if (!match.Success)
 throw new ArgumentException
 (“The arguments are improperly formed.
 Use argname:argvalue.”);

 // Store command line arg and value
 CommandLineArgs[match.Groups[“argname”].Value]
 = match.Groups[“argvalue”].Value;
 }
}

 Code snippet Fabrikam.CRM.WPF\App.xaml.cs

Available for

download on

Wrox.com

Available for

download on

Wrox.com

In the Loaded event of the application ’ s Mainpage.xaml.cs , you can check the command line

arguments collection for a particular argument and perform the appropriate logic. In the Fabrikam

CRM application, if the AccountId parameter is provided, the application will load that account.

void MainWindow_Loaded(object sender, RoutedEventArgs e)
{
 accountList.ItemsSource = _accounts;

 try
 {
 _lyncClient = Microsoft.Lync.Model.LyncClient.GetClient();

 if (App.CommandLineArgs.Count > 0
 & & App.CommandLineArgs[“AccountId”] != null)
 {
 LoadSelectedAccount(
 Convert.ToInt32(App.CommandLineArgs[“AccountId”]));
 }

 InitializeLyncClient();
 }
 catch (Exception)
 {
 throw;
 }
}

 Code snippet Fabrikam.CRM.WPF\MainWindow.xaml.cs

 Registering a Contextual Application Package for Lync Launch
Link Context at Runtime Using Runtime Registration

 An alternative approach to deploying a contextual application package to the registry is to use the

Lync API to register the contextual application package at runtime with the Lync infrastructure.

This is called Runtime Registration. Note, though, that Runtime Registration does not replace

Install Registration; it can be either used on its own or to complement Install Registration.

However, when used alone, Runtime Registration doesn ’ t offer all the capabilities of Install

Registration for contextual application packages that use Launch Link context. For example, you

can ’ t launch an application from the Lync conversation window without having fi rst registered the

contextual application package using Install Registration.

 Runtime Registration allows your contextual application to receive and process context when it

is already running. For example, if you are already running the Fabrikam CRM application and

receive a contextual conversation request in Lync from a coworker with a question about another

account, Runtime Registration allows your application to process the context provided in the

conversation and load that account. In this section, you learn how the Fabrikam CRM application

uses Runtime Registration to register itself in the Lync registration pool.

Available for

download on

Wrox.com

Available for

download on

Wrox.com

Launching Applications from Lync Conversations ❘ 85

86 ❘ CHAPTER 4 ADDING CONTEXT TO CONVERSATIONS

 In Install Registration, the contextual application package is deployed permanently to the Windows

Registry; however, when using Runtime Registration the application registration only exists in the

Lync registration pool until the user signs out of Lync, or the application registration is explicitly

removed in code, or garbage is collected.

 You typically will use both Install Registration and Runtime Registration to enable the users to use

Launch Link context to start an application directly from a Lync conversation window, and then be

able to process application context if the application is already running.

 When you use both Install Registration and Runtime Registration, any settings in
the Runtime Registration of the contextual application package will override their
Install Registration equivalents until the application registration is removed.

 When an application starts, use the ApplicationRegistration class to perform Runtime

Registration for a contextual application package. Use the CreateApplicationRegistration static

method of the LyncClient class to create an instance of ApplicationRegistration . You only

need to provide the application GUID and name to the CreateApplicationRegistration method.

Finally, call the AddRegistration method on the ApplicationRegistration object to complete

the registration.

private ApplicationRegistration _applicationRegistration;

...

_applicationRegistration =
 _lyncClient.CreateApplicationRegistration(
 _applicationGuid,
 _applicationName);

_applicationRegistration.AddRegistration();

 Code snippet Fabrikam.CRM.WPF\MainWindow.xaml.cs

Use the RemoveRegistration method to remove the application registration from the Lync

registration pool.

void MainWindow_Unloaded(object sender, RoutedEventArgs e)
{
 _applicationRegistration.RemoveRegistration();
}

 Code snippet Fabrikam.CRM.WPF\MainWindow.xaml.cs

 Later in this section, you learn about using the SetExtensibilityWindowProperties method of

the ApplicationRegistration class to add Lync Extensibility Window context to the contextual

application package using Runtime Registration.

Available for

download on

Wrox.com

Available for

download on

Wrox.com

Available for

download on

Wrox.com

Available for

download on

Wrox.com

 Processing Application Context at Runtime

 When using the ApplicationRegistration class to perform Runtime Registration for the contextual

application package, your application can process context data when it is already running. Because

the application is running, you must use a mechanism other than processing command line arguments

during start up in order to process the context provided with the conversation.

 Contextual data will arrive as part of an incoming conversation, so your application must wire up

the ConversationAdded event of the instance of the ConversationManager class. To process the

context in the ConversationAdded event handler, wire up the ConversationContextLinkClicked

or InitialContextReceived events of the conversation.

 The ConversationContextLinkClicked or InitialContextReceived events
of the conversation are only available if you are able to handle the Conversation
Added event in your application. If you used Launch Link context to launch the
application for the fi rst time from the Lync conversation window, your application
won ’ t handle the ConversationAdded event because it wasn ’ t even running when
the conversation was created.

 Based on the experience that you intend to present to the users of the application, you might choose not

to implement both the ConversationContextLinkClicked and InitialContextReceived events.

 The ConversationContextLinkClicked event is only raised when the user clicks the launch link

inside the Lync conversation window. On the other hand, the InitialContextReceived event

is raised even before the conversation recipient opens the conversation window for the incoming

conversation. If your application is only implementing the InitialContextReceived event, you can

present a choice to the user — for example in a modal pop - up window — letting her know that she

is receiving incoming application context and allow her to accept or decline it.

void ConversationManager_ConversationAdded
 (object sender, ConversationManagerEventArgs e)
{
 e.Conversation.ConversationContextLinkClicked +=
 new EventHandler < InitialContextEventArgs >
 (Conversation_ConversationContextLinkClicked);

 e.Conversation.InitialContextReceived +=
 new EventHandler < InitialContextEventArgs >
 (Conversation_InitialContextReceived);
}

 Code snippet Fabrikam.CRM.WPF\MainWindow.xaml.cs

 InitialContextReceived

 The InitialContextReceived event is raised when your application fi rst receives

contextual application data in an incoming conversation. This event is raised even as the

Available for

download on

Wrox.com

Available for

download on

Wrox.com

Launching Applications from Lync Conversations ❘ 87

88 ❘ CHAPTER 4 ADDING CONTEXT TO CONVERSATIONS

recipients in the conversation are just seeing the incoming toast for the conversation. Use the

 InitialContextReceived event if your application needs to handle contextual application data

without intervention from the user, or if you want to allow the user to choose whether he or she

wants to accept the incoming context.

 The contextual application data is accessible through the instance of InitialContextEventArgs .

Your application can potentially receive contextual application data from multiple contextual

applications, so be sure to use the ApplicationId property of InitialContextEventArgs to

ensure that you are handling contextual application data from the expected contextual application.

 The application data accessible in the InitialContextReceived event is similar to context passed

to the application using the %AppData% parameter of the contextual application package during

launch; its size limit is thus also 2kB.

void Conversation_InitialContextReceived
 (object sender, InitialContextEventArgs e)
{
 Dispatcher.Invoke(
 DispatcherPriority.Input,
 new Action(() = >
 {
 Debug.Assert(e.ApplicationData != null,
 “Initial Context Received: “ + e.ApplicationData);

 int accountId = Convert.ToInt32
 (e.ApplicationData.Split(new char[] { ‘:’ })[1]);
 LoadSelectedAccount(accountId);
 }));
}

 Code snippet Fabrikam.CRM.WPF\MainWindow.xaml.cs

Available for

download on

Wrox.com

Available for

download on

Wrox.com

When working with the InitialContextReceived and
 ConversationContextLinkClicked events, the authors noticed that the
 InitialContextReceived event is sometimes raised multiple times for a single
conversation. Be sure to account for this, especially if you are doing any sort of
setup logic as part of the InitialContextReceived event.

 ConversationContextLinkClicked

 The ConversationContextLinkClicked event is only raised when the user clicks the launch link

visible in the Lync conversation window. Use the ConversationContextLinkClicked event if your

application should only take action on the contextual application data if the user clicks the launch

link in the Lync conversation window.

 Similar to the InitialContextReceived event, the contextual application data is also accessible

through an instance of InitialContextEventArgs . This is also considered to be initial contextual

data, so it is subject to the 2kB size limitation.

 You would likely implement similar business logic in the InitialContextReceived and

 ConversationContextLinkClicked events. Choosing between them comes down to the application

experience that you must present to the users of the application.

void Conversation_ConversationContextLinkClicked
 (object sender, InitialContextEventArgs e)
{
 Dispatcher.Invoke(
 DispatcherPriority.Input,
 new Action(() = >
 {
 int accountId = Convert.ToInt32
 (e.ApplicationData.Split(new char[] { ‘:’ })[1]);
 LoadSelectedAccount(accountId);
 }));
}

 Code snippet Fabrikam.CRM.WPF\MainWindow.xaml.cs

 Passing Contextual Data Back and Forth between Conversation Participants

 After creating and sending the initial contextual application data to the participants in a

conversation, you now programmatically send additional contextual application data back and forth

between the participants in a conversation. You can even reset

the context and send new initial contextual application data.

 Consider a CAD application implemented in WPF: The users

of the application can interact with a model by rotating

it or zooming in to an area of interest. Those actions in

the application can be packaged up and sent to the other

participants as contextual application data — allowing them to

all see the same thing.

 In the Fabrikam CRM application, after initiating a contextual

conversation with the account manager for the selected account,

you can now browse the sales data for recent years. The year

selected to run the report for is passed back and forth as the

context of the conversation and the chart is automatically

loaded with the report data, as shown in Figure 4 - 6.

 BeginSendContextData

 You use Conversation.BeginSendContextData to inject additional application context data

into the conversation. In the Fabrikam CRM application, when a user selects a different account

or a different year to show the chart data for, the application injects the application context into

the active conversation. Every time the user chooses a new year, the context data is sent again

to the recipient. You can use this mechanism to allow users to send application context data back

and forth.

Available for

download on

Wrox.com

Available for

download on

Wrox.com

 FIGURE 4 - 6

Launching Applications from Lync Conversations ❘ 89

90 ❘ CHAPTER 4 ADDING CONTEXT TO CONVERSATIONS

 To send contextual application data using Conversation.BeginSendContextData , you must

specify the following:

 The GUID representing the ID of the contextual application package

 A string representing the type of data being sent; for example, text/plain

 The contextual application data to send

private void accountList_SelectionChanged
(object sender, SelectionChangedEventArgs e)
{
 if (accountList.SelectedItem != null)
 {
 if (_conversation != null)
 {
 _conversation.BeginSendContextData(
 _applicationGuid,
 “text/plain”,
 String.Concat(“AccountId:”,
 ((Account)accountList.SelectedItem).Id),
 result = > { _conversation.EndSendContextData(result); },
 null);
 }
 }
}

 Code snippet Fabrikam.CRM.WPF\MainWindow.xaml.cs

 On the sender side, calling the BeginSendContext method raises

the ContextDataSent event. On the receiver side, it raises the

 ContextDataReceived event. You can add custom business logic

in the ContextDataSent and ContextDataReceived events to take

action on the context data that was sent or received; for example,

to log it. The Fabrikam CRM logs context events, as shown in

Figure 4 - 7.

 BeginSendInitialContext

 You learned in the previous section how to handle initial

application context using the InitialContextReceived event; this event is raised when

a contextual conversation is started manually in code or when initial context is injected

into the conversation using Conversation.BeginSendInitialContext . You can use

 BeginSendInitialContext multiple times; for example, to change the subject of the conversation

when you choose a new account in the Fabrikam CRM application.

➤

➤

➤

Available for

download on

Wrox.com

Available for

download on

Wrox.com

 Unlike initial context, you can send a signifi cantly larger application context
payload using BeginSendContextData : 64kB. This is suffi cient for sending an
XML structure representing much more complex application context, or even a
serialized object that you can deserialize on the receiving side.

 FIGURE 4 - 7

Hosting Silverlight Applications in the Lync Conversation Extensibility Window ❘ 91

 To send application context to a conversation using BeginSendInitialContext , you fi rst must

create a List < KeyValuePair < ContextType, object > > representing the context data to pass to the

operation. To this list, add the GUID representing the ID of the contextual application package and

the contextual application data to send.

private void accountList_SelectionChanged
 object sender, SelectionChangedEventArgs e)
{
 if (accountList.SelectedItem != null)
 {
 if (_conversation != null)
 {
 var contextData =
 new List < KeyValuePair < ContextType, object > > ();

 contextData.Add(new KeyValuePair < ContextType, object >
 (ContextType.ApplicationId, _applicationGuid));

 contextData.Add(new KeyValuePair < ContextType, object >
 (ContextType.ApplicationData,
 String.Concat(“AccountId:”,
 ((Account)accountList.SelectedItem).Id)));

 _conversation.BeginSendInitialContext(
 contextData,
 result = >
 {
 _conversation.EndSendInitialContext(result);
 },
 null);
 }

 ...
}

 Code snippet Fabrikam.CRM.WPF\MainWindow.xaml.cs

 On the sender side, calling the BeginSendInitialContext method will raise the

 InitialContextSent event. On the receiver side, it will raise the InitialContextReceived event.

Available for

download on

Wrox.com

Available for

download on

Wrox.com

 Regardless of how it is sent, initial context is always limited to 2kB.

 HOSTING SILVERLIGHT APPLICATIONS IN THE LYNC
CONVERSATION EXTENSIBILITY WINDOW

 Lync Extensibility Window context allows you to host Silverlight applications in the Lync

conversation window. The Silverlight application can be a utility application such as a translator, or

a mini version of an application that the user can also launch from the Lync conversation window

using Launch Link context.

92 ❘ CHAPTER 4 ADDING CONTEXT TO CONVERSATIONS

 When used in conjunction with Launch Link context, Lync Extensibility Window context is a

powerful mechanism that you can use to pass initial context to a conversation. For example, in the

Fabrikam CRM application, you can embed the Account Sales by Category chart into a Silverlight

application that runs in the Lync conversation window. When someone receives the conversation

that includes that context, the specifi ed Silverlight application loads in the conversation window.

This visual context is more useful than just setting the title of the conversation window; it provides

additional information to streamline getting all the contacts in the conversation on the same page. If

they need to, the contacts can also use the Launch Link embedded in the conversation to launch the

full version of the application.

 When used alone, Lync Extensibility Window context is useful for applications that are only intended

to run in the Lync conversation window. A great example of this is an Agent Dashboard that call

center agents use for all customer calls. The Agent Dashboard Silverlight application can be defi ned in

a contextual application package that also sets itself as a default context package — meaning that it is

used for all incoming calls that don ’ t include embedded context. Agents in the call center will receive

calls from customers; the Agent Dashboard can do a reverse - lookup on the customer ’ s phone number

and load his customer profi le, allowing the agent to provide him with personalized service without

having to open a separate application.

 You have several options for registering a contextual application package that uses Lync

Extensibility Window context. The method you choose depends on several factors such as:

 Will the application receive parameters from the conversation it is hosted in? A Silverlight

application hosted in the Lync Extensibility Window may rely on some startup parameters

in order to load. For example, in the Fabrikam CRM application, the Silverlight application

needs to know the customer for which to display the sales chart.

 Should the user be able to manually start the application from the Lync menu? A companion

application such as a conversation translator application may interact with the active

conversation, but it doesn ’ t expect any startup parameters from it. This type of application

can be launched manually from the Lync conversation window ’ s context menu.

 Will the application be used in a contextual application package that also uses Launch

Link context? Choosing to combine Launch Link context and Lync Extensibility Window

context in the same contextual application package affects how you can register

the contextual application package.

 Now you will explore how to register a contextual application package for Lync Extensibility

Window context using install registration, starting the contextual conversation, and retrieving the

contextual application data supplied to the conversation. Then you will look at how to register

a contextual application package for Lync Extensibility Window context at runtime using runtime

registration. After examining both options, you will be ready to consider which registration method

is most suitable for your application.

 Working with Lync Extensibility Window Context
Using Install Registration

 When using install registration to deploy a contextual application package that uses Lync

Extensibility Context, the application settings are deployed to the user ’ s Lync hive in the Windows

➤

➤

➤

Hosting Silverlight Applications in the Lync Conversation Extensibility Window ❘ 93

registry. Adding Lync Extensibility Window context to a contextual application package is just a

matter of adding the appropriate settings to the package, as shown in Table 4 - 2.

 TABLE 4 - 2: Contextual Application Package Settings for Lync Extensibility Window Context

 SETTING DESCRIPTION NOTES

 Name The name of the contextual

application package.

 Parameters Parameters to pass to the Silverlight

application.

 Optional.

 Only required if the

application needs to

receive startup parameters

from the conversation it is

hosted in.

 Set this to %AppData% .

 Size limit is 2kB.

 InstallLink If the user doesn ’ t have the

contextual application package

installed, she can browse to this

URL — if specifi ed — to install it.

 Optional.

 Developer is responsible

for implementing install

logic.

 InternalURL An internally accessible URL to the

website that hosts the Silverlight

application.

 ExternalURL An externally accessible URL to the

website that hosts the Silverlight

application.

 Lync will automatically

determine which URL to

open.

 ExtensibilityWindowSize The size of the extensibility

window embedded into the Lync

conversation window.

 Default value is 0.

 0 � small (300 x 200

pixels).

 1 � medium (400 � 600

pixels) .

 2 � large (800 x 600

pixels).

 DefaultContextPackage Specifi es whether the contextual

application package is the default

context package for the user.

 Default is 0 / No.

 The Fabrikam CRM application combines Launch Link context and Lync Extensibility Window

context in the same contextual application package. Users will see the Silverlight application

specifi ed in the InternalURL and ExternalURL settings embedded in the Lync conversation

94 ❘ CHAPTER 4 ADDING CONTEXT TO CONVERSATIONS

window; they will also be able to launch the application specifi ed by the Path setting directly from

the Lync conversation window, as shown in the following code.

Windows Registry Editor Version 5.00

[HKEY_CURRENT_USER\Software\Microsoft\Communicator\ContextPackages]
[HKEY_CURRENT_USER\Software\Microsoft\Communicator\ContextPackages\
 {6B7BACE8-3968-4A1E-9BB5-F4BD666E36FB}]
“Name”=”Fabrikam CRM”
“Path”=”C:\\Program Files\\FabrikamCRM\\Fabrikam.CRM.WPF.exe”
“Parameters”=”%AppData%”
“InstallLink”=”http://register.fabrikam.com?ApplicationId=
 {6B7BACE8-3968-4A1E-9BB5-F4BD666E36FB}”
“InternalURL”=”http://crm.fabrikam.com/Default.aspx”
“ExternalURL”=”https://crm.fabrikam.com/Default.aspx”
“ExtensibilityWindowSize”=dword:00000000
“DefaultContextPackage”=dword:00000000

 Code snippet Fabrikam.CRM.WPF\PackageRegistration_Launch.reg

Available for

download on

Wrox.com

Available for

download on

Wrox.com

You can optionally combine Launch Link context and Lync Extensibility Window
context into the same contextual application package by combining the necessary
settings from Table 4 - 1 and Table 4 - 2 into the one contextual application package.
In the section “ Install Registration, Runtime Registration, or Both? ” , you learn
about scenarios where you would combine Launch Link context and Lync
Extensibility Window context into the same contextual application package.

 When you deploy a contextual application package that includes Lync Extensibility Window context

to the registry using Install Registration, the user can start the associated contextual application

directly from a context menu in a Lync conversation window, as shown in Figure 4 - 8.

 FIGURE 4 - 8

Hosting Silverlight Applications in the Lync Conversation Extensibility Window ❘ 95

 This is useful for utility applications such as a translator application that don ’ t expect startup

parameters from the conversation. However, if a user manually starts a Lync Extensibility Window

context application that requires a startup parameter, make sure your application uses defensive

coding techniques to alert the user that the application doesn ’ t have all the information it needs in

order to start. Otherwise, your users will see the ugly JavaScript error handling alert pop out of the

Silverlight application in the Lync conversation window.

 Keep your application ’ s expected user experience in mind when choosing between Install

Registration and Runtime Registration to deploy the application ’ s contextual application package.

Consider whether or not you want users to be able to start the application from the context menu of

a Lync conversation window.

 When the contextual application package is deployed to the user ’ s Lync registry hive, new

contextual conversations can access this information and launch the Silverlight application in the

Lync conversation window. Now you will learn how to start a contextual conversation using

the Lync Extensibility Window context.

 Starting a Contextual Conversation with Lync Extensibility Window Context

 Starting a contextual conversation with Lync Extensibility Window context is exactly

the same as starting one that includes Launch Link context; create an instance of

 ConversationContextualInfo and set its Subject , ApplicationId , and ApplicationData

properties, as shown in the following code:

var context = new ConversationContextualInfo();
context.Subject = account.AccountName;
context.ApplicationId = _applicationGuid;
context.ApplicationData = String.Concat
 (“AccountId:”, account.Id.ToString());

 Code snippet Fabrikam.CRM.WPF\MainWindow.xaml.cs

 When the user receives a conversation that includes Lync Extensibility Window context, the

Silverlight application specifi ed in the contextual application package is immediately loaded in the

Lync conversation window, as shown in Figure 4 - 9.

Available for

download on

Wrox.com

Available for

download on

Wrox.com

 FIGURE 4 - 9

96 ❘ CHAPTER 4 ADDING CONTEXT TO CONVERSATIONS

 The Silverlight application specifi ed in the contextual application package is only loaded for the

contacts on the recipient side of the conversation, but not the person who initiated the conversation.

 Notice how the Silverlight version of the Fabrikam CRM application shown
in Figure 4 - 9 is loaded in its own tab in the extensibility window in the Lync
conversation. This enables the scenario where one Silverlight application is loaded
automatically by a contextual application package, and the user can launch
another one manually from the context menu in the Lync conversation window.

 Unless you are building a simple companion Silverlight application that will run in the Lync

conversation window, the application will likely need to receive and process some startup

parameters when the conversation is initiated. Next you will learn how to process the contextual

application data supplied to the Silverlight application running in the Lync conversation window.

 Retrieving Contextual Application Data from the Silverlight Application

 To access the contextual application data from a Silverlight application running in the Lync

conversation window, you fi rst must get access to the Conversation object that is hosting the

application. You can get access to this hosting conversation in the Loaded event handler of the Page .

 To get the hosting conversation, call LyncClient.GetHostingConversation() and cast the

resulting object as a Conversation object. After checking that the conversation is not null, you can

get the application data by calling the GetApplicationData method of the Conversation instance

and providing the GUID of the contextual application package as a parameter.

Accounts _accounts = new Accounts();

string _appData = String.Empty;
string _applicationGuid = “{6B7BACE8-3968-4A1E-9BB5-F4BD666E36FB}”;

public Page()
{
 InitializeComponent();
 this.Loaded += new RoutedEventHandler(Page_Loaded);
}

void Page_Loaded(object sender, RoutedEventArgs e)
{
 Conversation conversation = null;
 conversation = LyncClient.GetHostingConversation() as Conversation;

 if (conversation != null)
 {
 _appData = conversation.GetApplicationData(_applicationGuid);

 this.Dispatcher.BeginInvoke(
 new Action(() = >
{

Available for

download on

Wrox.com

Available for

download on

Wrox.com

Hosting Silverlight Applications in the Lync Conversation Extensibility Window ❘ 97

 int accountId = Convert.ToInt32
 (_appData.Split(new char[] { ‘:’ })[1]);
 Account account =
 _accounts.Where(a = > a.Id == accountId).First();

 this.accountName.Text = account.AccountName;

 ((BarSeries)accountSalesChart.Series[0]).ItemsSource =
 account.GetSalesByYear(DateTime.Now.Year);
}));
 }
}

 Code snippet Fabrikam.CRM.Silverlight\Page.xaml.cs

 The Default Context Package

 When starting a contextual conversation and specifying an instance of ConversationContextualInfo ,

you are explicitly telling Lync to load a specifi c Silverlight application in the conversation window.

What if you need a certain Silverlight application to always load for every conversation that the user

receives? A contextual application package can be set as the default context package for the user,

meaning it is processed for every conversation that the user receives. When installing a contextual

application package using Install Registration, you can set the DefaultContextPackage attribute to 1

to indicate that the contextual application package is the default context package for the user.

 A user can only have one default context package. A contextual application
package can only be set as the default context package using Install Registration.

 A default context package is only useful for contextual application packages that include Lync

Extensibility Window context, such as an Agent Dashboard application that customer service agents

in a call center would be using. In this case, you might want to load a Silverlight CRM application

in the Lync extensibility window for every incoming call. The CRM application could do a reverse

lookup on the phone number in the incoming call, and if the number points to an existing customer,

open the customer ’ s record in the application.

 To enforce this behavior for every incoming call, you can register a default context package on every

customer service agent ’ s computer. When the agent receives a call with no context specifi ed — such

as a call from a customer — the contextual application defi ned in the default context package is

automatically loaded.

 Working with Lync Extensibility Window Context
at Runtime Using Runtime Registration

 Runtime Registration enables you to set the properties for Lync Extensibility Window context

at runtime using the ApplicationRegistration class instead of using Install Registration. Keep

98 ❘ CHAPTER 4 ADDING CONTEXT TO CONVERSATIONS

in mind, though, that the experience for the user is going to be different, particularly because the

application responsible for creating the application registration must already be running.

 Later, in the “ Install Registration, Runtime Registration, or Both? ” section, you will learn about

choosing the registration method most suitable for your application.

 You can still use Install Registration to register a contextual application package containing

settings specifi c to Lync Extensibility Window context, such as InternalURL , ExternalURL , and

 ExtensibilityWindowSize . However, these settings are overridden by the registration created at

runtime using ApplicationRegistration .

 Creating Application Registration

 After creating an instance of ApplicationRegistration , you can call its

 SetExtensibilityWindowProperties method to set the InternalURL , ExternalURL , and

 ExtensibilityWindowSize properties:

_applicationRegistration =
 _lyncClient.CreateApplicationRegistration(
 _applicationGuid,
 _applicationName);

_applicationRegistration.SetExtensibilityWindowProperties(
 “http://crm.fabrikam.com/Default.aspx”,
 “https://crm.fabrikam.com/Default.aspx”,
 ConversationWindowExtensionSize.Small);

_applicationRegistration.AddRegistration();

 Retrieving Contextual Data in the Silverlight Application

 When using Install Registration to defi ne a contextual application package that includes Lync

Extensibility Window context, you saw how to get access to the hosting conversation and call the

 GetApplicationData method of the Conversation instance to get the application data that was

passed into the application.

 When you ’ re using Runtime Registration alone, this approach won ’ t work. The call to

 GetApplicationData will throw a security exception because of a security mechanism dictating

that only the application that performed the application registration — the WPF application that

launched the conversation — can access the application data.

 The workaround for this issue is to modify the application registration to pass %AppData% to the

Silverlight application as a querystring parameter:

_applicationRegistration =
 _lyncClient.CreateApplicationRegistration(
 _applicationGuid,
 _applicationName);

Hosting Silverlight Applications in the Lync Conversation Extensibility Window ❘ 99

_applicationRegistration.SetExtensibilityWindowProperties(
 “http://crm.fabrikam.com/Default.aspx?data=%AppData%”,
 “https://crm.fabrikam.com/Default.aspx?data=%AppData%”,
 ConversationWindowExtensionSize.Small);

_applicationRegistration.AddRegistration();

In the Silverlight application, instead of using Conversation.GetApplicationData to get the

application data, grab it from the querystring parameter:

_appData = System.Windows.Browser.HtmlPage.Document.QueryString[“data”];

 Manually Opening the Extensibility Window

 To manually open the extensibility window from the application, you must subscribe to the

 ConversationAdded event of the ConversationManager and open it from there. To get a handle

to the conversation window in the ConversationAdded event handler, call the Automation

.GetConversationWindow method and pass in the Conversation instance as a parameter. You

can then call the BeginOpenExtensibilityWindow method on the conversation window and

provide the GUID of the contextual application to open in the extensibility window.

void ConversationManager_ConversationAdded
(object sender, ConversationManagerEventArgs e)
{
 Automation automation = LyncClient.GetAutomation();
 ConversationWindow window =
 automation.GetConversationWindow(e.Conversation);

 window.BeginOpenExtensibilityWindow(
 _applicationGuid,
 result = > { window.EndOpenExtensibilityWindow(result); },
 null);

 ...
}

 There is no overload for BeginOpenExtensibilityWindow that allows you to also specify

application data to pass in. This dictates the type of Silverlight application that you can run in the

Lync extensibility window if you choose to open it manually, especially if your Silverlight application

expects some startup parameters.

 Security Requirements for Lync Extensibility Window Context

 You must add the website hosting a Silverlight application that is intended to run in the Lync

conversation window to the Trusted Sites collection for every user. The easiest way to do this is

using an Active Directory Group Policy.

 During development, you will most likely be using Visual Studio ’ s built - in web server so your

application will be accessible at a URL such as http://localhost:5454/Default.aspx . In this

100 ❘ CHAPTER 4 ADDING CONTEXT TO CONVERSATIONS

case, you only need to add http://localhost to the Trusted Sites collection on your development

machine.

 If the website hosting the Silverlight application is not in the user ’ s Trusted Sites collection, the

Lync API code will throw an AutomationServerException with a detail message of “ Client is not

trusted. ”

 Install Registration, Runtime Registration, or Both?

 How should you register your contextual application packages — do you use Install Registration,

Runtime Registration, or both? As with any good software development question, the answer is:

It depends! It all comes down to how users will interact with the application as defi ned by the

contextual application package.

 Table 4 - 3 shows some common scenarios for using contextual application packages and the

registration method you should choose for each. You might realize that your requirements may be a

combination of those shown in Table 4 - 3. In that case, combining Install Registration and Runtime

Registration for the contextual application package will give you the fl exibility you need.

 TABLE 4 - 3: Choosing a Contextual Package Registration Method

 REQUIREMENT CHOOSE

 The contextual application package needs to be set as a

Default Context Package.

 Install Registration

 Users should be able to launch an application and pass

startup parameters to it from a Lync conversation window.

 Install Registration

 Users should be able to pass context to an application that is

already running.

 Runtime Registration

 Users should be able to start a Silverlight application in the

Lync extensibility window from the context menu of a Lync

conversation window.

 Install Registration

 Users should not be able to start a Silverlight application in

the Lync extensibility window from the context menu of a Lync

conversation window.

 Runtime Registration

 A Silverlight application running in the Lync extensibility window

needs to receive startup parameters in order to function.

 Install Registration

 A Silverlight application running in the Lync extensibility

window does not need to receive startup parameters in order to

function.

 Runtime Registration

 SUMMARY

 The Lync API includes new functionality to allow you to start contextual conversations from

the Lync controls or using Automation . This functionality gives you the ability to build new

applications — or extend existing ones — to take advantage of the contextual conversation features

available in the Lync API. You can use these features to allow users to launch applications directly

from the Lync conversation window, and to also host Silverlight application in the extensibility

window or a Lync conversation window.

 In the next chapter, you will learn about working with the Lync API at a lower level. Instead of

starting conversations from the Lync controls or using Automation , you will work with the

underlying conversation modality. This will allow you to build communications clients that don ’ t

rely on the Lync interface being visible to the user. You will learn how to put the Lync user interface

in UI Suppression mode to hide it from the user.

Summary ❘ 101

Building Custom
Communications Clients with
Lync UI Suppression

 WHAT ’ S IN THIS CHAPTER?

 Suppressing the Lync Client User Interface

 Building Custom Communications Solutions with Lync UI

Suppression

 Working with the Instant Message Modality

 Working with the Audio and Video Channels in the Audio

Video Modality

 In Microsoft Lync Server 2010, the Microsoft Lync 2010 Managed API is intended to replace

both the IMessenger and UCC APIs that were available with Microsoft Offi ce Communications

Server 2007 R2. The case for replacing the IMessenger API is easy to make because although it

is easy develop with, it is extremely limited in functionality. In OCS 2007 R2, the UCC API was

the tool of choice for building completely custom communications clients; however, the API is

diffi cult to get started with because the developer is responsible for managing the connectivity

of the communications client back to the OCS 2007 R2 infrastructure.

 As you learned in Chapters 3 and 4, the Lync API combines the ease of use of the IMessenger

API and the rich functionality provided by the UCC API. However, a common requirement

for building custom communication clients is to replace the Lync user interface with your

own. In Lync 2010, you can suppress the Lync user interface and replace it with your own,

enabling you to build a custom communications client such as a communications kiosk or a

custom conference room control system, while still taking advantage of the ease of developing

➤

➤

➤

➤

 5

D
o

104 ❘ CHAPTER 5 BUILDING CUSTOM COMMUNICATIONS CLIENTS WITH LYNC UI SUPPRESSION

with the Lync API — specifi cally not having to deal with programming the connectivity of the

custom client back to the Microsoft Lync 2010 Server infrastructure.

 Lync UI Suppression requires that the Lync client is installed on the user ’ s machine. You use the Lync

API to replicate some of the functionality available in the Lync client, such as the ability to sign the

user into Lync and start conversations.

 In this chapter, you learn how to confi gure and build communications clients that use Lync UI

Suppression. You also learn about the tradeoffs you make when putting the Lync client into

UI Suppression mode, such as the inability to use automation or the Lync controls in your solution.

When building solutions that work with Lync UI Suppression, you will work with conversations at

the individual modality level. You learn to work with the instant messaging modality and both the

audio and video channels of the AudioVideo modality to programmatically create conversations

from scratch.

 This chapter includes two companion projects that take advantage of Lync UI Suppression:

 A simple Silverlight instant messaging client

 A custom WPF audio video communications client

 WORKING WITH LYNC UI SUPPRESSION

 When developing an application that uses Lync in UI Suppression mode, understanding the tradeoffs

that you ’ re making is important; for example, you are responsible for creating custom versions of

almost the entire Lync client user interface. Additionally, your application has to programmatically

sign the user into the Lync client using a custom login interface that you are also responsible for

creating.

 With the exception of the VideoWindow control that is used to render video, all the user interface

elements of the Lync client are not visible when it is running in UI Suppression mode. The

 VideoWindow control is only available when running in UI Suppression mode. Later in this chapter,

you learn how to access the VideoWindow when working with conversations that use the AudioVideo

modality.

 The Lync controls are not available when the Lync client is running in UI Suppression mode; they

are automatically grayed out and disabled. You must create your own custom versions of controls

such as the PresenceIndicator and ContactList .

 Automation is also unavailable when running in UI Suppression mode. Automation provides an

extremely easy way of starting conversations in different modalities; however, it relies exclusively on

Lync user interface elements such as the conversation window. Later in this chapter, you will learn

about creating conversations at the modality level and building the necessary user interface elements

to support them.

 This section walks you through confi guring the Lync client to run in UI Suppression mode, and

programmatically signing the user in to the Lync client using a custom sign - in interface.

➤

➤

 Confi guring Lync UI Suppression

 Lync UI Suppression mode is confi gured in the registry. When the Lync client is put into UI

Suppression mode, it affects every user on the machine. Lync UI Suppression mode can ’ t be

confi gured on a per - user basis. To put Lync into UI Suppression mode, you must create and set

a registry key called UISuppressionMode in the appropriate location in the Windows registry

depending on whether you ’ re running the 32 - bit or 64 - bit version of the Lync client.

 Both WPF and Silverlight applications can interact with the Lync client when it
is running in UI Suppression mode.

 When the Lync client is confi gured to run in UI Suppression mode on a machine
that is shared by multiple users, it affects every user on the machine.

 Confi guring UI Suppression on 32 - bit Machines

 To confi gure the 32 - bit version of the Lync client to run in UI Suppression mode, create a key called

 UISuppressionMode in HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Communicator and set its

value to 1.

 Alternatively, create and run a Windows registry script to create and set the appropriate registry entry:

Windows Registry Editor Version 5.00

[HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Communicator]
“UISuppressionMode”=dword:00000001

 Code snippet Registry\32 - bit\EnableUISuppressionMode.reg

 To disable UI Suppression mode, set the UISuppressionMode registry key value back to 0.

Windows Registry Editor Version 5.00

[HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Communicator]
“UISuppressionMode”=dword:00000000

 Code snippet Registry\32 - bit\DisableUISuppressionMode.reg

 Confi guring UI Suppression on 64 - bit Machines

 Confi guring Lync UI Suppression mode on a 64 - bit machine is identical to confi guring it on a

32 - bit machine except for the location in the registry where the UISuppressionMode key is created.

To confi gure the 64 - bit version of the Lync client to run in UI Suppression mode, create a key called

Available for

download on

Wrox.com

Available for

download on

Wrox.com

Available for

download on

Wrox.com

Available for

download on

Wrox.com

 Working with Lync UI Suppression ❘ 105

106 ❘ CHAPTER 5 BUILDING CUSTOM COMMUNICATIONS CLIENTS WITH LYNC UI SUPPRESSION

 UISuppressionMode in HKEY_LOCAL_MACHINE\SOFTWARE\Wow6432Node\Microsoft\Communicator

and set its value to 1.

 Alternatively, create and run a Windows registry script to create and set the appropriate registry

entry:

Windows Registry Editor Version 5.00

[HKEY_LOCAL_MACHINE\SOFTWARE\Wow6432Node\Microsoft\Communicator]
“UISuppressionMode”=dword:00000001

 Code snippet Registry\64 - bit\EnableUISuppressionMode.reg

 To disable UI Suppression mode, set the UISuppressionMode registry key value back to 0.

Windows Registry Editor Version 5.00

[HKEY_LOCAL_MACHINE\SOFTWARE\Wow6432Node\Microsoft\Communicator]
“UISuppressionMode”=dword:00000000

 Code snippet Registry\64 - bit\DisableUISuppressionMode.reg

 Interacting with the Lync Client Process

 When Lync is confi gured to run in UI Suppression mode, your application has to initialize the Lync

client process, sign the user in, and perform any necessary startup logic. Multiple applications that

use Lync could also be running on the machine and may have already initialized the Lync client

process and signed the user in. As part of its startup logic, your application must check the state of

the Lync client process and act accordingly. This section walks you through the necessary startup

logic that your application has to implement when Lync is running in UI Suppression mode.

 Initializing the Lync Client Process

 When Lync is confi gured to run in UI Suppression mode, users aren ’ t able to start the Lync client

as they typically would — from the Windows Start menu. Nothing happens if the user attempts

to launch the Lync client manually. Your application is responsible for initializing the Lync

client process by calling the BeginInitialize method of the LyncClient class; this starts the

 Communicator.exe process. In Figure 5 - 1, you can see the Communicator.exe process running in

the Windows Task Manager, but the Lync client is nowhere to be seen because its user interface is

suppressed.

 After getting a handle to the LyncClient object by calling LyncClient.GetClient() , wire up

handlers for the StateChanged and CredentialRequested events. The Lync client process raises

the StateChanged event when its state changes, and the CredentialRequested event when it

doesn ’ t have the necessary credentials to sign the user in.

Available for

download on

Wrox.com

Available for

download on

Wrox.com

Available for

download on

Wrox.com

Available for

download on

Wrox.com

 You can then check whether the Lync client is confi gured to run in UI Suppression mode by checking

the InSuppressedMode property of the LyncClient object. After checking whether the Lync client is

running in UI Suppression mode, your application has to determine whether to initialize the Lync client

process. If the state of the Lync client is ClientState.Unitialized , you must call LyncClient

.BeginInitialize to initialize and start the Lync client process. Calling BeginInitialize will

prompt the Lync client process to start and its state to change; for example, from ClientState

.Unitialized to ClientState.Initializing — your application will respond to these state

changes in the StateChanged event handler.

FIGURE 5 - 1

 Your application should maintain a Boolean fl ag to denote whether it was responsible
for initializing the Lync client process. As part of its shutdown process, the application
shouldn ’ t sign out of or terminate the Lync client process if it wasn ’ t responsible for
initializing it in the fi rst place.

 Working with Lync UI Suppression ❘ 107

108 ❘ CHAPTER 5 BUILDING CUSTOM COMMUNICATIONS CLIENTS WITH LYNC UI SUPPRESSION

 As you can see in the following code, if the Lync client process has already been initialized by

another application, you must check its state and perform the necessary logic. For example, if the

process is already initialized but the user is signed out, it display a pop - up window that the user

can use to enter his credentials and sign in. If the user is already signed in, all you have to do is

perform the application startup logic specifi c to your application; for example, initialize instances

of ConversationManager and ContactManager that your application will use to work with

conversations and contacts.

_lyncClient = LyncClient.GetClient();

_lyncClient.StateChanged +=
 new EventHandler < ClientStateChangedEventArgs > (LyncClient_StateChanged);
_lyncClient.CredentialRequested +=
 new EventHandler < CredentialRequestedEventArgs > (LyncClient_CredentialRequested);

if (_lyncClient.InSuppressedMode)
{
 if (_lyncClient.State == ClientState.Uninitialized)
 {
 try
 {
 _lyncClient.BeginInitialize(
 result = >
 {
 if (result.IsCompleted == true)
 {
 _lyncClient.EndInitialize(result);
 _myAppInitializedLync = true;
 }
 },
 null);
 }
 catch (Exception)
 {
 throw;
 }
 }
 else
 {
 if (_lyncClient.State == ClientState.SignedOut)
 {
 ShowSignInPopUpWindow();
 }
 else if (_lyncClient.State == ClientState.SignedIn)
 {
 PerformApplicationStartupLogic();
 }
 }
}

 Code snippet SilverlightIMClient\Page.xaml.cs

Available for

download on

Wrox.com

Available for

download on

Wrox.com

 Signing In to the Lync Client

 When Lync is running in UI Suppression

mode, your application can sign in a user by

calling the LyncClient.BeginSignIn method

and providing the credentials of the user. The

application can collect the user ’ s credentials

using a custom form such as the one shown in

Figure 5 - 2.

 If the application is intended to always sign

in using a specifi c user ’ s credentials, you can

hardcode the credentials to use when calling

the LyncClient.BeginSignIn method. For

example, in a kiosk application used to look

up and dial employees in a company directory,

you can create a domain account such as

 “ Front Desk ” for the application, and sign in

to Lync using that account ’ s credentials.

 When capturing the user ’ s credentials using a custom login form such as the one shown in Figure 5 - 2,

you need a mechanism to pass those credentials back to the application ’ s main form to use them to

call the LyncClient.BeginSignIn method. The Silverlight IM Client application available with

this chapter uses an implementation of a loosely coupled notifi cation mechanism available in the

MVVMLight toolkit for the Model - View - ViewModel (MVVM) software development pattern to

notify the application of a sign in attempt. You can implement your own notifi cation mechanism

to allow different windows in your application to send messages to each other.

 The application defi nes a SignInAttemptNotification class that exposes properties for the user ’ s

SIP URI, domain and username, and password:

public class SignInAttemptNotification : NotificationMessage
{
 public string SipUri { get; set; }
 public string DomainUserName { get; set; }
 public string Password { get; set; }

 public SignInAttemptNotification() : base(string.Empty) { }

 public SignInAttemptNotification(
 string sipUri, string domainUserName, string password)
 : base(string.Empty)
 {
 this.SipUri = sipUri;
 this.DomainUserName = domainUserName;
 this.Password = password;
 }
}

 Code snippet SilverlightIMClient\Notifi cations\SignInAttemptNotifi cation.cs

Available for

download on

Wrox.com

Available for

download on

Wrox.com

 FIGURE 5 - 2

 Working with Lync UI Suppression ❘ 109

110 ❘ CHAPTER 5 BUILDING CUSTOM COMMUNICATIONS CLIENTS WITH LYNC UI SUPPRESSION

 When a user enters his credentials into the custom login form and clicks OK, the application

broadcasts a notifi cation of type SignInAttemptNotification as shown in the following code:

private void OKButton_Click(object sender, RoutedEventArgs e)
{
 if ((!String.IsNullOrEmpty(this.sipUri.Text))
 & & (!String.IsNullOrEmpty(this.domainUserName.Text))
 & & (!String.IsNullOrEmpty(this.password.Password)))
 {
 this.DialogResult = true;

 Messenger.Default.Send < SignInAttemptNotification > (
 new SignInAttemptNotification(
 this.sipUri.Text,
 this.domainUserName.Text,
 this.password.Password));
 }
}

 Code snippet SilverlightIMClient\SignInPopUpWindow.xaml.cs

 In this loosely typed architecture, subscribers can subscribe to notifi cations of a particular type and

defi ne a handler that will execute when they receive a notifi cation of that type:

Messenger.Default.Register < SignInAttemptNotification >
 (this, Notification_SignInAttempt);

 Code snippet SilverlightIMClient\Page.xaml.cs

 When the application receives a notifi cation of type SignInAttemptNotification , you can call

 LyncClient.BeginSignIn and sign in the user with the credentials specifi ed in the notifi cation:

public void Notification_SignInAttempt(SignInAttemptNotification notification)
{
 if ((!String.IsNullOrEmpty(notification.SipUri))
 & & (!String.IsNullOrEmpty(notification.DomainUserName))
 & & (!String.IsNullOrEmpty(notification.Password)))
 {
 _lyncClient.BeginSignIn(
 notification.SipUri,
 notification.DomainUserName,
 notification.Password,
 result = >
 {
 if (result.IsCompleted)
 {
 _lyncClient.EndSignIn(result);
 PerformApplicationStartupLogic();
 }
 },

Available for

download on

Wrox.com

Available for

download on

Wrox.com

Available for

download on

Wrox.com

Available for

download on

Wrox.com

Available for

download on

Wrox.com

Available for

download on

Wrox.com

 “Local user signing in” as object);
 }
}

 Code snippet SilverlightIMClient\Page.xaml.cs

 The CredentialRequested event is raised if your application calls LyncClient.BeginSignIn with

null or invalid values for the SIP URI, domain and username, and password parameters. In the

handler for the CredentialRequested event, you can check for the type credentials that are being

requested and direct the user again to the login form for him to enter the correct credentials:

void LyncClient_CredentialRequested(object sender, CredentialRequestedEventArgs e)
{
 if (e.Type == CredentialRequestedType.SignIn)
 {
 ShowSignInPopUpWindow();
 }
}

 Code snippet SilverlightIMClient\Page.xaml.cs

 Performing Application Startup Logic

 After completing the sign - in process, your application can perform application - specifi c startup

logic such as creating instances of Self , ConversationManager , and ContactManager to enable

it to interact with the signed in user ’ s conversations, groups, and contacts. This is also an ideal

place to wire up other event handlers that your application will work with, such as those for the

 ConversationAdded and ConversationRemoved events:

void PerformApplicationStartupLogic()
{
 _conversationManager = _lyncClient.ConversationManager;
 _contactManager = _lyncClient.ContactManager;
 _self = _lyncClient.Self;

 _conversationManager.ConversationAdded +=
 new EventHandler < ConversationManagerEventArgs >
 (ConversationManager_ConversationAdded);
 _conversationManager.ConversationRemoved +=
 new EventHandler < ConversationManagerEventArgs >
 (ConversationManager_ConversationRemoved);

 this.MyContacts = new List < Contact > ();

foreach (var group in _contactManager.Groups)
 {
 foreach (var contact in group)
 {

Available for

download on

Wrox.com

Available for

download on

Wrox.com

Available for

download on

Wrox.com

Available for

download on

Wrox.com

 Working with Lync UI Suppression ❘ 111

112 ❘ CHAPTER 5 BUILDING CUSTOM COMMUNICATIONS CLIENTS WITH LYNC UI SUPPRESSION

 if (!this.MyContacts.Contains(contact))
 {
 this.MyContacts.Add(contact);
 }
 }
 }
}

 Code snippet SilverlightIMClient\Page.xaml.cs

 Signing Out Of or Shutting Down the Lync Client Process

 If your application was responsible for initializing the Lync client process as part of its startup logic,

its shutdown logic should also sign out the logged - in user. Your application doesn ’ t necessarily

have to call LyncClient.BeginShutdown to shut down the Lync client process — the process will

automatically terminate if it is no longer being used and all references to it have been released. You

can verify this by looking for the Communicator.exe process in the Windows Task Manager after

your application has shut down and released any references to the Lync client process.

 In a Silverlight application such as the Silverlight IM Client application, there isn ’ t a good

extensibility point to automatically perform any signout and shutdown logic when the user closes the

browser or navigates away from the Silverlight application. The LyncClient.BeginSignOut and

 LyncClient.BeginShutdown operations are asynchronous; you shouldn ’ t block the UI thread in

a Silverlight application and attempt to execute these operations synchronously in an event such as

 Application.Exit .

 However, in a .NET or WPF application, you can subscribe to the Dispatcher.ShutdownStarted

event in a window and add logic in the event handler to sign out of the Lync process as part of the

application ’ s shutdown process. You should disconnect the event handlers for the LyncClient

.StateChanged and LyncClient.CredentialRequested events to prevent them from fi ring as

the application is signing out of the Lync client process.

void Dispatcher_ShutdownStarted(object sender, EventArgs e)
{
 if (_lyncClient != null)
 {
 _lyncClient.StateChanged -=
 new EventHandler < ClientStateChangedEventArgs >
 (LyncClient_StateChanged);
 _lyncClient.CredentialRequested -=
 new EventHandler < CredentialRequestedEventArgs >
 (LyncClient_CredentialRequested);

 if (_myAppInitializedLync & & _lyncClient.State == ClientState.SignedIn)
 {
 _lyncClient.BeginSignOut(SignOutCallback, null);
 }
 }
}

void SignOutCallback(IAsyncResult ar)
{
 if (ar.IsCompleted)
 {

 if (ar.IsCompleted == true)
 {
 _lyncClient.EndSignOut(ar);
 _lyncClient = null;
 }
 }
}

 In a .NET or WPF application, the easiest approach is to simply sign out of the Lync client process

before shutting down the application. You should only do this if the application was responsible

for initializing the process in the fi rst place. No need exists to explicitly shut down the Lync client

process; it automatically terminates when all references to it are released.

 WORKING WITH THE INSTANT MESSAGE MODALITY

 You learned in Chapter 3 how to easily start conversations using the Automation class. To start a

conversation using Automation , simply specify the modality of the conversation, the participants,

any context data to be embedded in the conversation, a callback function that will execute when the

asynchronous operation completes, and some asynchronous state value:

_automation.BeginStartConversation(
AutomationModalities.InstantMessage,
 myContactList.SelectedContactUris,
 contextData,
 StartConversationCallback,
 _automation);

As you can see from the preceding code, starting

a conversation using Automation is extremely

easy to do; however, calling Automation.Begin

StartConversation immediately brings up a new

Lync conversation window for the conversation

that was just created. When working with Lync

in UI Suppression mode, Automation is not

available because it relies on user interface elements

from the Lync client in order to function. Calling

 LyncClient.GetAutomation when the Lync client

is running in UI Suppression mode will throw a

 ClientNotFoundException , as shown in Figure 5 - 3.

 Applications that need to send and receive instant messages when the Lync client is running in UI

Suppression mode need to work directly with the Instant Message modality. In this section, you

learn how to programmatically create a new conversation, add participants to the conversation, and

interact with the Instant Message modality for each participant in the conversation.

 The Lync client doesn ’ t necessarily have to be running in UI Suppression
mode for your application to work directly with the Instant Message modality.
However, when the Lync user interface is not suppressed, using the Lync
controls or Automation instead to start conversations is a lot easier.

 FIGURE 5 - 3

Working with the Instant Message Modality ❘ 113

114 ❘ CHAPTER 5 BUILDING CUSTOM COMMUNICATIONS CLIENTS WITH LYNC UI SUPPRESSION

 The code accompanying this chapter includes a

Silverlight IM Client application that displays a list

of the user ’ s contacts, as shown in Figure 5 - 4. The

user selects a contact from the list with whom to

start an instant message conversation; the application

then launches a custom conversation window for the

new conversation.

 After selecting a contact with whom to start a

conversation, the application programmatically creates

a new conversation and adds the selected contact as a

participant in the conversation. However, the contact

doesn ’ t see the new conversation toast window until

you send the fi rst instant message. Afterwards, you

can engage in a back - and - forth instant message

conversation. The application also implements

behavior similar to the Lync client where a participant

in the conversation is notifi ed when the other

participant is composing a message.

 Creating a New Conversation and
Adding Participants

 To allow the user to engage in multiple instant

message conversations at the same time, the Silverlight

IM Client application maintains a list of active

conversation IDs in a module - level ObservableCol

lection < string > , as shown in the following code.

The application uses this collection to keep track of

all the active conversations and to broadcast instant

messages it receives to the correct conversation window based on the conversation ID.

private ObservableCollection < string > _activeConversationIds =
new ObservableCollection < string > ();

 Code snippet SilverlightIMClient\Page.xaml.cs

 As part of its startup logic, the application creates an instance of the ConversationManager class

and wires up handlers for its ConversationAdded and ConversationRemoved events:

_conversationManager = _lyncClient.ConversationManager;

_conversationManager.ConversationAdded +=
 new EventHandler < ConversationManagerEventArgs >
 (ConversationManager_ConversationAdded);
_conversationManager.ConversationRemoved +=

Available for

download on

Wrox.com

Available for

download on

Wrox.com

Available for

download on

Wrox.com

Available for

download on

Wrox.com

 FIGURE 5 - 4

 new EventHandler < ConversationManagerEventArgs >
 (ConversationManager_ConversationRemoved);

 Code snippet SilverlightIMClient\Page.xaml.cs

 Creating a New Conversation

 When the user clicks a contact with whom to start a conversation, the application calls

the AddConversation method on the instance of ConversationManager , causing its

 ConversationAdded event to fi re.

 The application should fi rst verify that the contact is not offl ine before starting a new conversation.

You can create a new conversation with a contact who happens to be offl ine and even add that

person as a participant in a conversation; however, the Lync API will throw an exception when you

attempt to send an instant message to a contact who is offl ine:

void MyContacts_SelectionChanged(object sender, SelectionChangedEventArgs e)
{
 var contact = (Contact) contactList.SelectedValue;

 if ((ContactAvailability)contact.GetContactInformation
 (ContactInformationType.Availability)
 != ContactAvailability.Offline)
 {
 _conversationManager.AddConversation();
 }
}

 Code snippet SilverlightIMClient\Page.xaml.cs

In the handler for the ConversationAdded event, add the ID of the new conversation to the

collection of active conversation IDs. The Conversation object for the new conversation is

accessible from the ConversationManagerEventArgs in the event handler; you can then get the ID

of the new conversation from its properties collection.

 Adding a Participant to the Conversation

 After wiring up the ParticipantAdded and StateChanged events of the new conversation, the

Silverlight IM Client application adds the selected contact as a participant in the conversation and

then launches the conversation window for the new conversation:

void ConversationManager_ConversationAdded
 (object sender, ConversationManagerEventArgs e)
{
 _activeConversationIds.Add(
 e.Conversation.Properties[ConversationProperty.Id].ToString());

 e.Conversation.ParticipantAdded +=
 new EventHandler < ParticipantCollectionChangedEventArgs >
 (Conversation_ParticipantAdded);

Available for

download on

Wrox.com

Available for

download on

Wrox.com

Available for

download on

Wrox.com

Available for

download on

Wrox.com

Working with the Instant Message Modality ❘ 115

116 ❘ CHAPTER 5 BUILDING CUSTOM COMMUNICATIONS CLIENTS WITH LYNC UI SUPPRESSION

 e.Conversation.StateChanged +=
 new EventHandler < ConversationStateChangedEventArgs >
 (Conversation_StateChanged);

 if (e.Conversation.CanInvoke(ConversationAction.AddParticipant))
 {
 e.Conversation.AddParticipant((Contact)contactList.SelectedValue);

 var conversationWindow = new ConversationWindow(
 e.Conversation.Properties[ConversationProperty.Id].ToString(),
 e.Conversation.Participants);

 conversationWindow.Show();
 }
}

 Code snippet SilverlightIMClient\Page.xaml.cs

 The Conversation class exposes a CanInvoke method that you can use to check whether you

can invoke a particular action on the conversation. The available actions are represented by the

 ConversationAction enum whose values are

 Merge

 Park

 AddParticipant

 RemoveParticipant

If the CanInvoke check for ConversationAction.AddParticipant returns true , add the selected

contact as a participant in the conversation. To add a participant to the conversation, you must

supply a Contact object to the AddParticipant method; the item ’ s source for the contact list is a

 List < Contact > so you can simply pass in the selected value from the ListBox. Alternatively, you

can use the ContactManager.GetContactByUri method to get a Contact object given a SIP URI.

 In a Lync conversation window like the one shown in

Figure 5 - 5, you can see the list of participants in the

conversation by clicking the People Options button in

the conversation window toolbar and selecting Show

Participant List. Next to each participant are icons

representing the modalities that can be used in the

conversation. In Figure 5 - 5, the instant message icon is

enabled to indicate that the participants are engaged in

an instant message conversation; the icons for the other

modalities are grayed out because those modalities aren ’ t

currently active in the conversation.

 When working with conversations programmatically,

the modalities in the conversation are accessible at

either the conversation or participant level; for example,

➤

➤

➤

➤

 FIGURE 5 - 5

 Conversation.Modalities or Participant.Modalities . The Silverlight IM Client application

works with the Instant Message modality at the participant level. Calling Conversation

.AddParticipant will cause the ParticipantAdded event to be fi red; the ParticipantAdded event

handler is where you wire up events specifi c to the Instant Message modality for that participant

such as InstantMessageReceived and IsTypingChanged .

 In the ParticipantAdded event handler, check fi rst to verify that the participant being added

is not the user who is currently signed in to Lync. You can then verify that the conversation

includes the Instant Message modality by checking for the ModalityTypes.InstantMessage

key in the Modalities dictionary that the Conversation class exposes. You can then wire up

the event handlers for the InstantMessageReceived event and the IsTypingChanged event. The

 InstantMessageReceived event is raised when an instant message is received from that participant.

The IsTypingChanged event is raised when the participant begins composing a message in the

conversation window:

void Conversation_ParticipantAdded
 (object sender, ParticipantCollectionChangedEventArgs e)
{
 if (e.Participant.IsSelf == false)
 {
 if (((Conversation)sender).Modalities
 .ContainsKey(ModalityTypes.InstantMessage))
 {
 var imModality = e.Participant.Modalities
 [ModalityTypes.InstantMessage] as InstantMessageModality;

 imModality.InstantMessageReceived +=
 new EventHandler < MessageSentEventArgs >
 (InstantMessageModality_InstantMessageReceived);

 imModality.IsTypingChanged +=
 new EventHandler < IsTypingChangedEventArgs >
 (InstantMessageModality_IsTypingChanged);
 }
 }
}

 Code snippet SilverlightIMClient\Page.xaml.cs

Available for

download on

Wrox.com

Available for

download on

Wrox.com

The InstantMessageModality class inherits from the Modality base class; the
 Modality class exposes a BeginConnect method that you use to connect to a specifi c
modality in a conversation. Unlike with the AudioVideo modality, you do not need
to call BeginConnect to begin working with the InstantMessageModality — the
modality is automatically accepted and usable as soon as you retrieve it from the
 Modalities collection of the Conversation or Participant object.

Working with the Instant Message Modality ❘ 117

118 ❘ CHAPTER 5 BUILDING CUSTOM COMMUNICATIONS CLIENTS WITH LYNC UI SUPPRESSION

 Sending Instant Messages

 The Silverlight IM Client application implements a

simple conversation window, as shown in Figure 5 - 6.

The conversation window displays the name of the

contact with whom you are having an instant message

conversation, a history of the individual messages in

the conversation, and a textbox to compose and

send the message text.

 Implementing a Custom Instant Message Class

 The conversation window includes a ListBox

that contains all the messages in the instant message

conversation. The individual instant messages are

represented by the InstantMessage class; this simple

class exposes properties representing the date and time

that the message was sent, who it was sent by, and the

contents of the message:

public class InstantMessage
{
 public DateTime DateTimeSent { get; set; }
 public string Author { get; set; }
 public string MessageText { get; set; }

 public InstantMessage(
 DateTime dateTimeSent,
 string author,
 string messageText)
 {
 this.DateTimeSent = dateTimeSent;
 this.Author = author;
 this.MessageText = messageText;
 }
}

 Code snippet SilverlightIMClient\Model\InstantMessage.cs

Available for

download on

Wrox.com

Available for

download on

Wrox.com

 Note that the ConversationWindow control is a custom control provided with
the sample code in this chapter. It is not an offi cial control in the Lync API.

 FIGURE 5 - 6

 Implementing an Instant Message Notifi cation Mechanism

 The conversation window also needs to implement a notifi cation mechanism to communicate

with the underlying application to

 Notify the other participant in the conversation that the user is composing an instant

message

 Send an instant message

 Receive notifi cations that the other participant is composing an instant message

 Receive an instant message

The Silverlight IM Client application uses the loosely coupled notifi cation mechanism available in

the MVVMLight toolkit to broadcast and process these notifi cations — this is implemented in the

 InstantMessageNotification class. The notifi cation class exposes a ConversationId property to

specify the conversation that the notifi cation is intended for, a value of the Direction enumeration

to specify whether the notifi cation is incoming or outgoing, a Boolean to indicate whether

the participant is in the process of composing a message, and an instance of InstantMessage

containing the message being sent or received.

public enum Direction
{
 Incoming = 0,
 Outgoing
};

public class InstantMessageNotification : NotificationMessage
{
 public string ConversationId { get; set; }
 public Direction Direction { get; set; }
 public string Author { get; set; }
 public bool Composing { get; set; }
 public InstantMessage Message { get; set; }

 public InstantMessageNotification() : base(string.Empty) { }

 public InstantMessageNotification(
 string conversationId,
 string author,
 Direction direction,
 bool composing) : base(string.Empty)
 {
 this.ConversationId = conversationId;
 this.Author = author;
 this.Direction = direction;
 this.Composing = composing;
 }

 public InstantMessageNotification(
 string conversationId,
 string author,
 Direction direction,

➤

➤

➤

➤

Available for

download on

Wrox.com

Available for

download on

Wrox.com

Working with the Instant Message Modality ❘ 119

120 ❘ CHAPTER 5 BUILDING CUSTOM COMMUNICATIONS CLIENTS WITH LYNC UI SUPPRESSION

 bool composing,
 InstantMessage message)
: this(conversationId, author, direction, composing)
 {
 this.Message = message;
 }

 Code snippet SilverlightIMClient\Notifi cations\InstantMessageNotifi cation.cs

 When the user is composing an instant message

in the conversation window, the window

broadcasts a notifi cation letting the other

participant know that the user is typing, as

shown in Figure 5 - 7.

 When the user presses the Enter key, the

conversation window broadcasts a notifi cation

containing the text of the instant message.

Because the user has completed typing, the

notifi cation also specifi es that he is no longer

composing the message:

void messageText_KeyDown(object sender, KeyEventArgs e)
{
 var messageAuthor = _lyncClient.Self.Contact.GetContactInformation
(ContactInformationType.DisplayName).ToString();

 if (e.Key == Key.Enter)
 {
 if (!String.IsNullOrEmpty(messageText.Text.Trim()))
 {
 var instantMessage = new InstantMessage(
 dateTimeSent: DateTime.Now,
 author: messageAuthor,
 messageText: messageText.Text.Trim());

 Messenger.Default.Send < InstantMessageNotification > (
 new InstantMessageNotification(
 conversationId: this.ConversationId,
 author: instantMessage.Author,
 direction: Notifications.Direction.Outgoing,
 composing: false,
 message: instantMessage));

 this.Messages.Add(instantMessage);

 messageText.Text = string.Empty;
 messages.GetScrollHost().ScrollToBottom();
 }
 }
 else
 {
 Messenger.Default.Send < InstantMessageNotification > (

Available for

download on

Wrox.com

Available for

download on

Wrox.com

 FIGURE 5 - 7

 new InstantMessageNotification(
 conversationId: this.ConversationId,
 author: messageAuthor,
 direction: Notifications.Direction.Outgoing,
 composing: true));
 }

 Code snippet SilverlightIMClient\ConversationWindow.xaml.cs

 The Page class in the Silverlight IM Client application subscribes to notifi cations of type

 InstantMessageNotification and executes the Notification_InstantMessageComposing

handler when it receives a matching notifi cation.

Messenger.Default.Register < InstantMessageNotification > (this,
 Notification_InstantMessagingComposing);

 Code snippet SilverlightIMClient\Page.xaml.cs

 When the application processes the notifi cation, the fi rst thing it needs to do is fi nd the conversation

that the notifi cation is referring to — the application must make sure to send message composition

notifi cations and instant messages to the appropriate conversation.

 After retrieving the InstantMessageModality from the Modalities of the Conversation , the

application checks the value of Composing in the InstantMessageNotification instance to

determine whether the participant is in the process of composing an instant message.

 As shown in the following code, if Composing is false , and the notifi cation is for an outgoing

instant message, the application calls the InstantMessageModality.BeginSendMessage method

to send the instant message text packaged in the notifi cation to the appropriate conversation.

If Composing is true, the application calls the InstantMessageModality.BeginSetComposing

method to notify the other participants in the conversation that the user is still typing.

public void Notification_InstantMessagingComposing
(InstantMessageNotification notification)
{
 if (notification.Direction == Direction.Outgoing)
 {
 var conversation = _conversationManager.Conversations.Where(
 c = > c.Properties[ConversationProperty.Id].ToString()
 == notification.ConversationId).FirstOrDefault();

 if (conversation != null)
 {
 var imModality = conversation.Modalities
 [ModalityTypes.InstantMessage] as InstantMessageModality;

 if (notification.Composing == false
 & & !String.IsNullOrEmpty(notification.Message.MessageText))
 {
 imModality.BeginSendMessage(
 notification.Message.MessageText,

Available for

download on

Wrox.com

Available for

download on

Wrox.com

Available for

download on

Wrox.com

Available for

download on

Wrox.com

Working with the Instant Message Modality ❘ 121

122 ❘ CHAPTER 5 BUILDING CUSTOM COMMUNICATIONS CLIENTS WITH LYNC UI SUPPRESSION

 sendMessageResult = >
 {
 imModality.EndSendMessage(sendMessageResult);
 },
 null);
 }

 if (imModality.CanInvoke(ModalityAction.SetIsTyping))
 {
 imModality.BeginSetComposing(
 notification.Composing,
 composingResult = >
 {
 imModality.EndSetComposing(composingResult);
 },
 null);
 }
 }
 }
}

 Code snippet SilverlightIMClient\Page.xaml.cs

 Receiving Instant Messages

 In addition to displaying the history of instant messages between participants in the conversation,

the custom conversation window in the Silverlight IM Client application notifi es the user when other

participants in the conversation are typing. When the remote participant fi nishes typing and sends

the instant message, the application displays the message in the conversation window.

 Processing Composition Notifi cations from Remote Participants

 The IsTypingChanged changed event of the InstantMessageModality is raised when a remote

participant in the conversation is in the process of composing an instant message. The instance

of IsTypingChangedEventArgs in the IsTypingChanged event handler exposes an IsTyping

property that indicates whether the remote participant is still typing. When the Silverlight IM Client

application handles the IsTypingChanged event, it broadcasts an InstantMessageNotification to

notify the other participants in the conversation if the participant that raised the event is still typing:

void InstantMessageModality_IsTypingChanged
(object sender, IsTypingChangedEventArgs e)
{
 var imModality = sender as InstantMessageModality;

 if (imModality != null)
 {
 Messenger.Default.Send < InstantMessageNotification > (
 new InstantMessageNotification(
 conversationId: imModality.Conversation.Properties
 [ConversationProperty.Id].ToString(),
 author: imModality.Participant.Contact.GetContactInformation

Available for

download on

Wrox.com

Available for

download on

Wrox.com

 (ContactInformationType.DisplayName).ToString(),
 direction: Notifications.Direction.Incoming,
 composing: e.IsTyping));
 }
}

 Code snippet SilverlightIMClient\Page.xaml.cs

 The ConversationWindow control in the Silverlight IM Client application subscribes to

notifi cations of type InstantMessageNotification and executes the Notification_

InstantMessageComposing handler when it receives a matching notifi cation:

Messenger.Default.Register < InstantMessageNotification > (this,
 Notification_InstantMessagingComposing);

 Code snippet SilverlightIMClient\ConversationWindow.xaml.cs

When the ConversationWindow control processes

the InstantMessageNotification , it checks

whether the notifi cation indicates that the remote

participant is composing an instant message. If so,

it displays a status message, as shown in Figure 5 - 8,

to let the user know that the remote participant

is typing.

 The ConversationWindow control itself

broadcasts and subscribes to notifi cations of type

 InstantMessageNotification ; when processing an

 InstantMessageNotification , check the notifi cation

direction to ensure that the ConversationWindow

processes only incoming notifi cations. If the

notifi cation includes an instant message, the

application adds it to the Messages collection and

displays it in the conversation window:

public void Notification_InstantMessagingComposing
(InstantMessageNotification notification)
{
 if (this.ConversationId == notification.ConversationId
 & & notification.Direction == Direction.Incoming)
 {
 if (notification.Composing)
 {
 status.Text = String.Format(“{0} is typing”, notification.Author);
 }
 else
 {
 status.Text = string.Empty;

Available for

download on

Wrox.com

Available for

download on

Wrox.com

Available for

download on

Wrox.com

Available for

download on

Wrox.com

 FIGURE 5 - 8

Working with the Instant Message Modality ❘ 123

124 ❘ CHAPTER 5 BUILDING CUSTOM COMMUNICATIONS CLIENTS WITH LYNC UI SUPPRESSION

 if (notification.Message != null)
 {
 this.Messages.Add(notification.Message);
 }
 }
 }
}

 Code snippet SilverlightIMClient\ConversationWindow.xaml.cs

 Receiving Instant Messages from Remote Participants

 When the participant fi nishes typing and sends the instant message, the InstantMessageReceived

event of the InstantMessageModality is raised. The text of the instant message is available in

the Text property of the instance of MessageSentEventArgs in the event handler. The application

broadcasts a notifi cation of type InstantMessageNotification that includes an instance of

 InstantMessage containing the instant message text.

void InstantMessageModality_InstantMessageReceived
(object sender, MessageSentEventArgs e)
{
 var imModality = sender as InstantMessageModality;

 if (imModality != null)
 {
 string author = imModality.Participant.Contact.GetContactInformation
 (ContactInformationType.DisplayName).ToString();

 var instantMessage = new InstantMessage(
 dateTimeSent: DateTime.Now,
 author: author,
 messageText: e.Text);

 Messenger.Default.Send < InstantMessageNotification > (
 new InstantMessageNotification(
 conversationId: imModality.Conversation.Properties
 [ConversationProperty.Id].ToString(),
 author: author,
 direction: Direction.Incoming,
 composing: false,
 message: instantMessage));
 }
}

 Code snippet SilverlightIMClient\Page.xaml.cs

 Terminating Instant Message Conversations

 The Silverlight IM Client application can support simultaneous instant message conversations

in multiple instances of the ConversationWindow control. When the user closes a conversation

Available for

download on

Wrox.com

Available for

download on

Wrox.com

window, the application should also terminate the conversation in the window. When the user

closes a conversation window in the Silverlight IM Client application, the ConversationWindow_

Unloaded event of the ConversationWindow control is raised. In the handler for the

 ConversationWindow_Unloaded event, the application broadcasts a notifi cation of type

 ConversationRemovedNotification to notify any subscribers to this notifi cation type that the

conversation should be terminated:

void ConversationWindow_Unloaded(object sender, RoutedEventArgs e)
{
 Messenger.Default.Send < ConversationRemovedNotification > (
 new ConversationRemovedNotification(this.ConversationId));
}

 Code snippet SilverlightIMClient\ConversationWindow.xaml.cs

The Silverlight IM Client application subscribes to notifi cations of type ConversationRemoved

Notification . In the handler for the notifi cation, the application disconnects any modalities in the

conversation that are not disconnected. When all the modalities in a conversation are disconnected,

the state of the conversation changes to ConversationState.Terminated . On every iteration

through the modalities of the conversation, the application checks to ensure that conversation has

not been terminated. When all the modalities of the conversation are disconnected, the conversation

is automatically terminated and its properties become inaccessible — the Lync API will throw an

exception if the application tries to access the Modalities collection of the conversation after it has

been terminated.

public void Notification_ConversationRemoved
(ConversationRemovedNotification notification)
{
 var conversation = _conversationManager.Conversations.Where(
 c = > c.Properties[ConversationProperty.Id].ToString()
 == notification.ConversationId).FirstOrDefault();

 if (conversation != null)
 {
 foreach (var modalityKey in conversation.Modalities.Keys)
 {
 if (conversation.State != ConversationState.Terminated)
 {
 if (conversation.Modalities[modalityKey] != null)
 {
 if (conversation.Modalities[modalityKey].State
 != ModalityState.Disconnected)
 {
 conversation.Modalities[modalityKey].BeginDisconnect(
 ModalityDisconnectReason.None,
 result = >
 {
 conversation.Modalities[modalityKey]
 .EndDisconnect(result);
 },

Available for

download on

Wrox.com

Available for

download on

Wrox.com

Available for

download on

Wrox.com

Available for

download on

Wrox.com

Working with the Instant Message Modality ❘ 125

126 ❘ CHAPTER 5 BUILDING CUSTOM COMMUNICATIONS CLIENTS WITH LYNC UI SUPPRESSION

 null);
 }
 }
 }
 else
 break;
 }
 }
}

 Code snippet SilverlightIMClient\Page.xaml.cs

When all the modalities in the conversation are disconnected and its state changes to

 ConversationState.Terminated , the ConversationManager.ConversationRemoved event is

immediately raised. In the event handler for the ConversationRemoved event, the application

removes the conversation from the collection of active conversations it is maintaining:

void ConversationManager_ConversationRemoved
(object sender, ConversationManagerEventArgs e)
{
 this.Dispatcher.BeginInvoke(
 new Action(() = >
 {
 _activeConversationIds.Remove(
 e.Conversation.Properties[ConversationProperty.Id].ToString());
 }));
}

 Code snippet SilverlightIMClient\Page.xaml.cs

 WORKING WITH THE AUDIOVIDEO MODALITY

 Working with the Audio Video modality in a conversation is quite different than working with the

Instant Message modality because Lync does all the heavy lifting after your application connects to

the modality. In the previous section, you learned how to use the Instant Message modality to send

messages to participants in the conversation, and to broadcast message - composing notifi cations so

that participants know when someone else is composing an instant message. There is no such concept

when working with the Audio Video modality; after you connect the audio, video, or both channels

of the modality, audio and video automatically fl ow between the participants in the conversation.

Unlike when composing an instant message, you are not responsible for capturing the audio or video

and sending it to the other participants — all of that is taken care of automatically by Lync.

 Another key difference between the Instant Message and Audio Video modalities is that you

have to explicitly connect to the Audio Video modality in the conversation. You will recall that

in the Silverlight IM Client application in the previous section, the Instant Message modality is

automatically accepted by all the participants in the conversation and connected as soon as it is

retrieved from the conversation ’ s Modalities collection. When working with the Audio Video

Available for

download on

Wrox.com

Available for

download on

Wrox.com

modality, your application has to connect to the modality before it is able to use it and access its

audio and video channels.

 The code that accompanies this chapter includes a WPF Kiosk application, shown in Figure 5 - 9,

that demonstrates working with the Audio Video modality and its audio and video channels. The

application demonstrates how to start audio and video calls and how to perform simple call control

functionality with the Audio Video modality.

 FIGURE 5 - 9

 Starting Audio and Video Conversations

 To start an audio conversation with a contact, the application creates a new conversation, adds a

participant to the conversation, and then connects to the Audio Video modality of the conversation.

The audio channel of the Audio Video modality is automatically started after the connection

is established. After the application connects to the Audio Video modality, you can access the

individual audio and video channels to start or stop them.

 The WPF Kiosk application displays a list of the user ’ s contacts; after selecting one of these

contacts, the application verifi es that the contact is available before adding a conversation to the

 ConversationManager instance available in the application.

Working with the AudioVideo Modality ❘ 127

128 ❘ CHAPTER 5 BUILDING CUSTOM COMMUNICATIONS CLIENTS WITH LYNC UI SUPPRESSION

var contact = (Contact)contactList.SelectedValue;

if ((ContactAvailability)contact.GetContactInformation
(ContactInformationType.Availability) != ContactAvailability.Offline)
{
 _conversationManager.AddConversation();
}

 Code snippet WPFKiosk\Window1.xaml.cs

Adding a conversation to the ConversationManager instance causes the ConversationManager

.ConversationAdded event to fi re. In the handler for the ConversationAdded event, the application

wires up handlers for the conversation ’ s ParticipantAdded and StateChanged events. The

application also gets a handle to the Audio Video modality and wires up its ModalityStateChanged

event. Finally, the application adds the selected participant to the conversation, as shown in the

following code.

void ConversationManager_ConversationAdded
(object sender, ConversationManagerEventArgs e)
{
_conversation = e.Conversation;

 e.Conversation.BeginSetProperty(
 ConversationProperty.AutoTerminateOnIdle,
 false,
 result = > { e.Conversation.EndSetProperty(result); },
 null);

 e.Conversation.ParticipantAdded +=
 new EventHandler < ParticipantCollectionChangedEventArgs >
 (Conversation_ParticipantAdded);

 e.Conversation.StateChanged +=
 new EventHandler < ConversationStateChangedEventArgs >
 (Conversation_StateChanged);

 if (e.Conversation.Modalities.ContainsKey(ModalityTypes.AudioVideo))
 {
 _avModality = e.Conversation.Modalities[ModalityTypes.AudioVideo]
 as AVModality;

 _avModality.ModalityStateChanged +=
 new EventHandler < ModalityStateChangedEventArgs >
 (AVModality_ModalityStateChanged);
 }

 if (e.Conversation.CanInvoke(ConversationAction.AddParticipant))
 {
 this.Dispatcher.BeginInvoke(
 new Action(() = >
 {

Available for

download on

Wrox.com

Available for

download on

Wrox.com

Available for

download on

Wrox.com

Available for

download on

Wrox.com

 e.Conversation.AddParticipant((Contact)contactList.SelectedValue);
 }));
 }
}

 Code snippet SilverlightIMClient\Page.xaml.cs

 Later in this chapter, you learn how to distinguish between an outgoing and incoming conversation

in the ConversationAdded event.

 Understanding the AutoTerminateOnIdle Conversation Property

 The WPF Kiosk application also sets the AutoTerminateOnIdle property of the new conversation

to false . The AutoTerminateOnIdle property indicates whether the conversation will terminate

when all of its modalities are no longer active. In conversations created by the Lync client, the

 AutoTerminateOnIdle property of the conversation is set to false by default; this allows the

conversation to remain active as long as the Lync conversation window is open.

e.Conversation.BeginSetProperty(
 ConversationProperty.AutoTerminateOnIdle,
 false,
 result = > { e.Conversation.EndSetProperty(result); },
 null);

 When the Lync client is running in UI Suppression mode, new conversations are created with the

 AutoTerminateOnIdle property set to true by default. In the WPF Kiosk application, this causes

the conversation to automatically terminate if the Audio Video modality becomes inactive. Setting the

 AutoTerminateOnIdle property of the conversation to false when in UI Suppression mode ensures

that the application can still access the conversation and its properties after the Audio Video modality

is no longer active. This allows the application to restart the audio or video channels of the modality

because the conversation is not in a terminated state.

 If a conversation contains both the Instant Message and Audio Video modalities, it will only terminate

when both of the modalities become inactive. Setting the AutoTerminateOnIdle property to true

ensures that the underlying conversation never enters a terminated state, allowing the application to

connect to either modality again as needed. Note that in this case, when the application shuts down, it

needs to explicitly terminate any active conversations by calling the End method of the conversation.

void Dispatcher_ShutdownStarted(object sender, EventArgs e)
{
 if (_conversation != null)
 {
 if (_conversation.State != ConversationState.Terminated)
 {
 _conversation.End();
 }
 }

 ...
}

 Code snippet WPFKiosk\Window1.xaml.cs

Available for

download on

Wrox.com

Available for

download on

Wrox.com

Working with the AudioVideo Modality ❘ 129

130 ❘ CHAPTER 5 BUILDING CUSTOM COMMUNICATIONS CLIENTS WITH LYNC UI SUPPRESSION

 Connecting to the Audio Video Modality

 Like the Instant Message modality, the Audio Video modality is accessible either at the conversation

or participant level. The WPF Kiosk application works with the Audio Video modality at the

conversation level, and initially connects to it when a participant joins the conversation. You can

connect to the Audio Video modality as long as the conversation itself is not in a terminated state

and at least one other participant is in the conversation other than the logged - in user. The WPF

Kiosk application also demonstrates how to disconnect from and reconnect to the audio and video

channels in the Audio Video modality of the conversation.

 To connect to the Audio Video modality, call the BeginConnect method on the AVModality object.

In the asynchronous callback for the operation, wire up an event handler for the ActionAvailability

Changed event of the AVModality class. You can now also get a handle to the AudioChannel and

 VideoChannel in the modality and wire up a hander for their StateChanged events.

void Conversation_ParticipantAdded
(object sender, ParticipantCollectionChangedEventArgs e)
{
 if (e.Participant.IsSelf == false)
 {
 try
 {
 if (_avModality.CanInvoke(ModalityAction.Connect))
 {
 _avModality.BeginConnect(
 result = >
 {
 _avModality.EndConnect(result);

 _avModality.ActionAvailabilityChanged +=
 new EventHandler
 < ModalityActionAvailabilityChangedEventArgs >
 (AVModality_ActionAvailabilityChanged);

 _audioChannel = _avModality.AudioChannel;
 _audioChannel.StateChanged +=
 new EventHandler < ChannelStateChangedEventArgs >
 (AudioChannel_StateChanged);

 _videoChannel = _avModality.VideoChannel;
 _videoChannel.StateChanged +=
 new EventHandler < ChannelStateChangedEventArgs >
 (VideoChannel_StateChanged);
 },
 null);
 }
 }
 catch (Exception)
 {
 throw;
 }
 }

}

 Code snippet WPFKiosk\Window1.xaml.cs

Available for

download on

Wrox.com

Available for

download on

Wrox.com

When the Audio Video modality is connected, the audio channel is immediately started and an

audio call is placed to the participant, as shown in Figure 5 - 10.

 FIGURE 5 - 10

 To disconnect the Audio Video modality in a conversation, call the AVModality.BeginDisconnect

method and specify a value of the ModalityDisconnectReason enum.

if (_avModality.CanInvoke(ModalityAction.Disconnect))
{
 _avModality.BeginDisconnect(
 ModalityDisconnectReason.None,
 disconnectResult = > { _avModality.EndDisconnect(disconnectResult); },
 null);
}

 Code snippet WPFKiosk\Window1.xaml.cs

 The ModalityDisconnectReason enum describes the reason for disconnecting the modality; its

values include:

 None

 Timeout

 Busy

 NotAcceptableHere

 Decline

 DeclineEverywhere

 ReplyOther

➤

➤

➤

➤

➤

➤

➤

Available for

download on

Wrox.com

Available for

download on

Wrox.com

Working with the AudioVideo Modality ❘ 131

132 ❘ CHAPTER 5 BUILDING CUSTOM COMMUNICATIONS CLIENTS WITH LYNC UI SUPPRESSION

 Later in this section, you learn how to use the ModalityDisconnectReason enum to handle

incoming calls that use the Audio Video modality.

 Tracking Changes in the State of the Audio Video Modality

 You can track changes in the state of the Audio Video modality in the handler for the ModalityState

Changed event. The WPF Kiosk application uses the value of ModalityStateChangedEventArgs

.NewState in the ModalityStateChanged event handler to display the current status of the Audio

Video modality.

void AVModality_ModalityStateChanged
(object sender, ModalityStateChangedEventArgs e)
{
 this.Dispatcher.BeginInvoke(
 new Action(() = >
 {
 this.AudioVideoModalityStatus = e.NewState.ToString();
 }));
}

 Code snippet WPFKiosk\Window1.xaml.cs

 The valid states for the Audio Video modality are defi ned by the ModalityState enum; its

values include:

 Disconnected

 Connecting

 Notified

 Joining

 ConnectingToCaller

 Connected

 Suspended

 OnHold

 Forwarding

 Transferring

 Understanding Modality Actions

 As the state of the Audio Video modality changes, different actions become available on the modality.

These actions are defi ned by the ModalityAction enum and include the following values:

 Connect

 Disconnect

 SetProperty

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

Available for

download on

Wrox.com

Available for

download on

Wrox.com

 Hold

 Retrieve

 Forward

 RemoteTransfer

 ConsultAndTransfer

 SendInstantMessage

 SetIsTyping

 SetAudioEndpoint

 Accept

 Reject

 LocalTransfer

You can check whether an action is currently available on the modality by calling the CanInvoke

method and specifying the ModalityAction to check for; for example:

if (_avModality.CanInvoke(ModalityAction.Connect))
 _avModality.BeginConnect(...
else
 Console.Writeline(“Can’t connect to AVModality.”);

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

 The Modality.ActionAvailabilityChanged event is raised when the availability of a particular

action on the modality changes. In the handler for the ActionAvailabilityChanged event, the

WPF Kiosk application checks for the availability of certain actions and updates its user interface

accordingly. The ModalityActionAvailabilityChangedEventArgs class exposes Action and

 IsAvailable properties that you can use to check whether a particular action is available.

void AVModality_ActionAvailabilityChanged(object sender,
ModalityActionAvailabilityChangedEventArgs e)
{
 this.Dispatcher.BeginInvoke(
 new Action(() = >
 {
 switch (e.Action)
 {
 case ModalityAction.Connect:
 this.CanConnectAudioChannel = e.IsAvailable;
 this.CanConnectVideoChannel = e.IsAvailable;
 break;

Available for

download on

Wrox.com

Available for

download on

Wrox.com

You should always use CanInvoke to check whether a particular action is
availability on the modality before performing the action. If the action is not
available, you should notify the application and take an alternative action.

Working with the AudioVideo Modality ❘ 133

134 ❘ CHAPTER 5 BUILDING CUSTOM COMMUNICATIONS CLIENTS WITH LYNC UI SUPPRESSION

 case ModalityAction.Disconnect:
 this.CanDisconnectAudioChannel = e.IsAvailable;
 this.CanDisconnectVideoChannel = e.IsAvailable;
 break;
 case ModalityAction.Hold:
 break;
 case ModalityAction.Retrieve:
 break;
 case ModalityAction.Forward:
 break;
 case ModalityAction.RemoteTransfer:
 break;
 case ModalityAction.ConsultAndTransfer:
 break;
 };
 }));
}

 Code snippet WPFKiosk\Window1.xaml.cs

 Starting the Audio Channel

 You can start the audio channel manually by calling the AudioChannel.BeginStart method.

This is useful when the Audio Video modality is still connected but the audio channel has been

disconnected.

 Various actions are available on the channel; these actions are defi ned by the ChannelAction enum

and include the following values:

 Start

 Stop

 SendDtmf

Before starting the audio channel, you should use the CanInvoke method to check whether you can

invoke the appropriate action on the channel.

void ConnectAudioChannel_Click(object sender, RoutedEventArgs e)
{
 if (_audioChannel.CanInvoke(ChannelAction.Start))
 {
 _audioChannel.BeginStart(
 result = >
 {
 _audioChannel.EndStart(result);
 },
 null);
 }
}

 Code snippet WPFKiosk\Window1.xaml.cs

➤

➤

➤

Available for

download on

Wrox.com

Available for

download on

Wrox.com

 In the handler for the AudioChannel.StateChanged event, you can examine the state of the audio

channel and enable or disable specifi c functionality in the application accordingly. The state of both

the audio and video channels is represented by the ChannelState enum, whose values include:

 Connecting

 Notified

 Send

 Receive

 SendReceive

 Inactive

The WPF Kiosk application uses the state of the audio channel to enable and disable the buttons

to control the audio and video channels of the Audio Video modality. For example, if the audio

channel is in a ChannelState.Connecting state, the application doesn ’ t allow the user to attempt

to start the channel again.

void AudioChannel_StateChanged(object sender, ChannelStateChangedEventArgs e)
{
 this.Dispatcher.BeginInvoke(
 new Action(() = >
 {
 switch (e.NewState)
 {
 case ChannelState.SendReceive:
 this.CanDisconnectAudioChannel = true;
 this.CanConnectVideoChannel =
 _videoChannel.State == ChannelState.None ? true : false;
 this.CanDisconnectVideoChannel = !this.CanConnectVideoChannel;
 break;
 case ChannelState.Send:
 case ChannelState.Receive:
 case ChannelState.Notified:
 case ChannelState.Connecting:
 this.CanConnectAudioChannel = false;
 this.CanDisconnectAudioChannel = false;
 this.CanConnectVideoChannel = false;
 this.CanDisconnectVideoChannel = false;
 break;
 case ChannelState.Inactive:
 this.CanConnectAudioChannel = true;
 this.CanDisconnectAudioChannel = false;
 break;
 default:
 break;
 };

 this.AudioChannelStatus = e.NewState.ToString();
 }));
}

 Code snippet WPFKiosk\Window1.xaml.cs

➤

➤

➤

➤

➤

➤

Available for

download on

Wrox.com

Available for

download on

Wrox.com

Available for

download on

Wrox.com

Available for

download on

Wrox.com

Working with the AudioVideo Modality ❘ 135

136 ❘ CHAPTER 5 BUILDING CUSTOM COMMUNICATIONS CLIENTS WITH LYNC UI SUPPRESSION

 The audio and video channels of the Audio Video modality are closely related; for example,

the audio channel is automatically started when the video channel starts. Because the video

functionality available from the video channel depends on the state of the audio channel, the WPF

Kiosk application uses the handler for the AudioChannel.StateChanged event to enable or disable

user interface elements used to control the video channel.

 Call Control with the Audio Video Modality

 The Audio Video modality provides simple call control functionality that includes the ability to:

 Place a call on hold and later retrieve it

 Send DTMF tones to a call

 Transfer a call

Actions taken on the Audio Video modality of a conversation can affect the Instant Message

modality if it is also active in the conversation; for example, a conversation that includes both the

Instant Message and Audio Video modality can be placed on hold or transferred.

 Placing a Call on Hold

 When issuing the AVModality.BeginHold command, the Instant Message modality is also put

on hold if it is active in the conversation. If both the audio and video channels of the Audio Video

modality active, they are placed on hold. To place a call on hold, fi rst use CanInvoke to ensure that

you can invoke the Hold modality action on the call, and then call the AVModality.BeginHold

method to place the call on hold.

private void HoldCall_Click(object sender, RoutedEventArgs e)
{
 if (_avModality.CanInvoke(ModalityAction.Hold))
 {
 _avModality.BeginHold(
 result = > { _avModality.EndHold(result); },
 null);
 }
}

 Code snippet WPFKiosk\Window1.xaml.cs

When the call is placed on hold, a message is displayed

to the participant in the Lync conversation window, as

shown in Figure 5 - 11.

 When a call is placed on hold:

 The state of the Audio Video modality changes

to OnHold .

 The state of the audio channel changes to

 Inactive .

 If it is started, the state of the video channel also changes to Inactive .

➤

➤

➤

➤

➤

➤

Available for

download on

Wrox.com

Available for

download on

Wrox.com

 FIGURE 5 - 11

 To retrieve a call from hold, fi rst use CanInvoke to ensure that you can invoke the Retrieve modality

action on the call, and then call the AVModality.BeginRetrieve method to retrieve the call.

private void RetrieveCall_Click(object sender, RoutedEventArgs e)
{
 if (_avModality.CanInvoke(ModalityAction.Retrieve))
 {
 _avModality.BeginRetrieve(
 result = > { _avModality.EndRetrieve(result); },
 null);
 }
}

 Code snippet WPFKiosk\Window1.xaml.cs

When a call is retrieved from hold:

 The state of the Audio Video modality changes back to Connected .

 The state of the audio channel changes to SendReceive .

 If it was previously started, the state of the video channel changes to Send , Receive , or

 SendReceive , depending on its previous state.

 Sending DTMF Tones

 A custom communications application that uses Lync UI Suppression mode needs to provide an

alternate mechanism for the user to send DTMF tones to a call. For example, a communications

kiosk that allows a user to look up and dial employees in a company directory may require the user

to use a number keypad to enter the extension to dial.

 The number keypad in the Lync conversation window is not available in UI Suppression mode; the

application needs to implement a custom number keypad control, and a mechanism to send DTMF

tones to the audio channel of the Audio Video modality in the call.

 You can implement a custom number keypad control that sends the DTMF tone to the audio

channel of the call when the user presses a key on the keypad. After verifying that you can invoke

the SendDtmf action on the audio channel, use the AudioChannel.BeginSendDtmf method to send

a DTMF tone to the audio channel representing the key that the user pressed on the keypad:

if (_audioChannel.CanInvoke(ChannelAction.SendDtmf))
{
 _audioChannel.BeginSendDtmf(
 numericKeypad.PressedKey,
 result = > { _audioChannel.EndSendDtmf(result); },
 null);
}

 Working with Video

 The Audio Video modality includes a video channel that you can use to broadcast and receive video

from other participants. The video channel of the Audio Video modality relies heavily on the audio

➤

➤

➤

Available for

download on

Wrox.com

Available for

download on

Wrox.com

Available for

download on

Wrox.com

Available for

download on

Wrox.com

Working with the AudioVideo Modality ❘ 137

138 ❘ CHAPTER 5 BUILDING CUSTOM COMMUNICATIONS CLIENTS WITH LYNC UI SUPPRESSION

channel; the audio for the video channel is broadcast to all participants in the conversation via the

audio channel. When starting the video channel of the Audio Video modality, the audio channel

is started automatically if it isn ’ t already. If the audio channel is stopped, the video channel is also

stopped if it was previously started.

 To start the video channel, fi rst check whether you can invoke the Start channel action, and then

call VideoChannel.BeginStart :

void ConnectVideoChannel_Click(object sender, RoutedEventArgs e)
{
 if (_videoChannel.CanInvoke(ChannelAction.Start))
 {
 _videoChannel.BeginStart(
 result = >
 {
 _videoChannel.EndStart(result);
 },
 null);
 }
}

 Code snippet WPFKiosk\Window1.xaml.cs

After the video channel is started, its status changes to Send and the recipient in the conversation

sees the video you are broadcasting. If the recipient begins broadcasting video, the status of the

video channel changes to SendReceive to indicate that you are sending and also receiving video

across the video channel of the Audio Video modality.

 To track changes in the state of the video channel, wire up a handler for its StateChanged event. In

the handler for the StateChanged event, you can check the state of the video channel and display a

 VideoWindow control for incoming video, outgoing video, or both. The VideoWindow control is only

available when Lync is running UI Suppression mode.

Available for

download on

Wrox.com

Available for

download on

Wrox.com

 Calling VideoChannel.CaptureVideoWindow control returns an instance of the VideoWindow control

representing the video being broadcast by the user currently signed in to Lync. Calling VideoChannel

.RenderVideoWindow returns an instance of the VideoWindow control for the video being broadcast by

the other participant in the conversation.

void VideoChannel_StateChanged
(object sender, ChannelStateChangedEventArgs e)
{
 this.Dispatcher.BeginInvoke(

Available for

download on

Wrox.com

Available for

download on

Wrox.com

The VideoWindow control is not a Lync control; it is a native Win32 control,
and is available in the Microsoft.Lync.Model.Conversation.AudioVideo
namespace. Recall that the Lync controls are not available when Lync is running
in UI Suppression mode.

 new Action(() = >
 {
 this.VideoChannelStatus = e.NewState.ToString();

 if ((e.NewState == ChannelState.Send
 || e.NewState == ChannelState.SendReceive)
 & & _videoChannel.CaptureVideoWindow != null)
 {
 ShowVideo(windowsFormsPanelOutgoingVideo,
 _videoChannel.CaptureVideoWindow);
 }

 if ((e.NewState == ChannelState.Receive
 || e.NewState == ChannelState.SendReceive)
 & & _videoChannel.RenderVideoWindow != null)
 {
 ShowVideo(windowsFormsPanelIncomingVideo,
 _videoChannel.RenderVideoWindow);
 }

 }));
}

 Code snippet WPFKiosk\Window1.xaml

 Because the VideoWindow control is a native Win32 control, you need to host it in a Windows

Forms Panel control that is inside a WindowsFormsHost control in the XAML.

 < TextBlock > Outgoing Video < /TextBlock >
 < interop:WindowsFormsHost x:Name=”windowsFormsHostOutgoingVideo” >
 < forms:Panel x:Name=”windowsFormsPanelOutgoingVideo”/ >
 < /interop:WindowsFormsHost >

 < TextBlock > Incoming Video < /TextBlock >
 < interop:WindowsFormsHost x:Name=”windowsFormsHostIncomingVideo” >
 < forms:Panel x:Name=”windowsFormsPanelIncomingVideo”/ >
 < /interop:WindowsFormsHost >

 Code snippet WPFKiosk\Window1.xaml.cs

 To show the VideoWindow , you need to place it in a Windows Forms Panel control, and then set its

position and style.

// From AudioVideoConversation sample application in Lync SDK
void ShowVideo(System.Windows.Forms.Panel videoPanel, VideoWindow videoWindow)
{
 //Win32 constants: WS_CHILD | WS_CLIPCHILDREN | WS_CLIPSIBLINGS;
 const long lEnableWindowStyles = 0x40000000L | 0x02000000L | 0x04000000L;
 //Win32 constants: WS_POPUP| WS_CAPTION | WS_SIZEBOX
 const long lDisableWindowStyles = 0x80000000 | 0x00C00000 | 0x00040000L;
 const int OATRUE = -1;

 try

Available for

download on

Wrox.com

Available for

download on

Wrox.com

Available for

download on

Wrox.com

Available for

download on

Wrox.com

Working with the AudioVideo Modality ❘ 139

140 ❘ CHAPTER 5 BUILDING CUSTOM COMMUNICATIONS CLIENTS WITH LYNC UI SUPPRESSION

 {
 //sets the properties required for the native video window to draw itself
 videoWindow.Owner = videoPanel.Handle.ToInt32();
 videoWindow.SetWindowPosition(0, 0, videoPanel.Width, videoPanel.Height);

 //gets the current window style to modify it
 long currentStyle = videoWindow.WindowStyle;

 //disables borders, sizebox, close button
 currentStyle = currentStyle & ~lDisableWindowStyles;

 //enables styles for a child window
 currentStyle = currentStyle | lEnableWindowStyles;

 //updates the current window style
 videoWindow.WindowStyle = (int)currentStyle;

 //updates the visibility
 videoWindow.Visible = OATRUE;
 }
 catch (Exception exception)
 {
 throw(exception);
 }
}

 Code snippet WPFKiosk\Window1.xaml.cs

 The WPF Kiosk application renders incoming and outgoing video, as shown in Figure 5 - 12.

 FIGURE 5 - 12

 Handling Incoming Audio and Video Conversations

 An application that works with Lync running in UI Suppression mode may need to provide the

user with an interface to initiate and receive instant message and audio or video calls. This section

describes how to handle incoming instant message and audio or video conversations.

 Evaluating the Direction of the Conversation

 The ConversationManager.ConversationAdded event is raised by an outgoing or incoming

conversation; however, the event doesn ’ t expose a way of checking the direction of the

new conversation. Instead, you must rely on checking the status of the individual modalities in

the conversation.

 Recall that the Instant Message modality is automatically accepted by all the participants

in a conversation; so when checking the state of the Instant Message modality in the

 ConversationAdded event, the conversation is incoming if the state of the Instant Message modality

is Connected .

 The Audio Video modality is not automatically accepted by the participants in the conversation;

so the conversation is incoming if the state of the Audio Video modality is Notified .

void ConversationManager_ConversationAdded
 (object sender, ConversationManagerEventArgs e)
{
 _conversation = e.Conversation;

 _isIncomingAVConversation = false;

 if (_conversation.Modalities.ContainsKey(ModalityTypes.AudioVideo)
 && _conversation.Modalities[ModalityTypes.AudioVideo].State
 == ModalityState.Notified)
 {
 _isIncomingAVConversation= true;
 }

 ...
 if (_isIncomingAVConversation)
 {
 ...
 }
}

 Code snippet WPFKiosk\Window1.xaml.cs

 Working with Audio and Video Devices

 If the state of the Audio Video modality is Notified , you have to explicitly handle and accept the

incoming call. However, before accepting the call, you must ensure that the user has the necessary

audio or video hardware available to handle the call.

 The LyncClient class exposes a DeviceManager class that you can use to query the audio and

video devices that are installed on the user ’ s machine. The DeviceManager class exposes an

 ActiveAudioDevice and ActiveVideoDevice property that allows you to get a handle to the active

audio or video device on the machine. If an active audio device is present, call AVModality.Accept

to accept the incoming call, and AVModality.BeginConnect to connect to the Audio Video modality.

Available for

download on

Wrox.com

Available for

download on

Wrox.com

Working with the AudioVideo Modality ❘ 141

142 ❘ CHAPTER 5 BUILDING CUSTOM COMMUNICATIONS CLIENTS WITH LYNC UI SUPPRESSION

 If no active audio device is present, call AVModality.Reject to reject the call; you need to also

provide a ModalityDisconnectReason — in this case, use NotAcceptableHere to indicate that the

user doesn ’ t have the hardware required to accept the incoming call.

void ConversationManager_ConversationAdded
(object sender, ConversationManagerEventArgs e)
{

 ...

 if (_isIncomingAVConversation)
 {
 if (_lyncClient.DeviceManager.ActiveAudioDevice != null)
 {
 if (_avModality.CanInvoke(ModalityAction.Connect))
 {
 _avModality.Accept();
 _avModality.BeginConnect(
 result = > { _avModality.EndConnect(result); },
 null);
 }
 }
 else
 {
 _avModality.Reject(ModalityDisconnectReason.NotAcceptableHere);

 throw new Exception(“No active audio device.”);
 }
 }

 ...

}

 Code snippet WPFKiosk\Window1.xaml.cs

 If you also need to ensure that the user has an active video device before accepting the call, verify

that LyncClient.DeviceManager.ActiveVideoDevice is not null.

 The DeviceManager class also exposes AudioDevices and VideoDevices collections that contain a

list of Microsoft.Lync.Model.Device.Device objects. You can iterate through the collections to get

or set the active audio or video device if more than one audio or video device is on the user ’ s machine.

 SUMMARY

 When running the Lync client in UI Suppression mode, you can build a new class of

communications applications that don ’ t rely on the Lync user interface to provide communications

capabilities. UI Suppression mode gives you the ability to build such applications without having

to work with a lower level API such as the UCC API; the Lync client is still the user endpoint that

connects to the Microsoft Lync Server 2010 infrastructure — its user interface is just not visible.

Available for

download on

Wrox.com

Available for

download on

Wrox.com

When the Lync client is running in UI Suppression mode, you have to start conversations at the

individual modality level because Automation and the Lync controls are not available. Using

the Lync API, you can work with the Instant Message and Audio Video modalities to create

conversations; add participants; and start instant message, audio, or video calls.

 The next chapter introduces you to building server - side communications applications with the

Unifi ed Communications Managed API 3.0 (UCMA). Unlike the Lync API, UCMA applications are

typically long - running processes hosted in a Windows or Windows Communications Foundation

(WCF) service. UCMA applications can be used to run back offi ce operations such as help desks,

call centers, or virtual personal assistants.

Summary ❘ 143

Introduction to the Unifi ed
Communications Managed API

 WHAT ’ S IN THIS CHAPTER

 Building server - side Lync applications with UCMA

 Working with Session Initiation Protocol

 Using basic UCMA classes

 Applying coding best practices for UCMA applications

 Deploying UCMA applications

 Think of Microsoft Lync Server 2010 as a sort of technological iceberg. On the surface, it is

a revolutionary enterprise voice and unifi ed communications platform that makes powerful

communication capabilities easy and inexpensive to deploy in organizations of any size. Dig a

bit deeper, and you fi nd that it has fantastic integration with other Microsoft products, such as

Exchange, Outlook, SharePoint, the Offi ce suite, Dynamics CRM, and others.

 This integration capability alone would make Lync Server 2010 a compelling product. But

many people are unaware of the enormous range of customization that is possible with the

server - side extensibility platform that is built into Lync Server. The Unifi ed Communications

Managed API, commonly known as UCMA, is the large and powerful chunk of Lync Server

2010 that is usually hidden below the surface.

 Using this API, developers can build communication - enabled applications that can facilitate

special communication scenarios such as automatic call distribution for contact centers,

interactive voice response applications, call monitoring and billing solutions, middle - tier

communications clients, and many others. Even better, UCMA provides a layer of abstraction

over the complexities of connection management and messaging, so that developers can

concentrate on solving business problems.

➤

➤

➤

➤

➤

 6

D
o

146 ❘ CHAPTER 6 INTRODUCTION TO THE UNIFIED COMMUNICATIONS MANAGED API

 The following chapters attempt to take you on progressively deeper dives below the water to see

the full extent of the customization that you can accomplish with Lync Server using UCMA.

 Each chapter, besides describing generally what a UCMA feature can do, pulls back the layers

of abstraction to show you what happens under the surface in Session Initiation Protocol (SIP)

messages when a UCMA operation is executing. The chapters also show UCMA capabilities

as much as possible in context, so that you can understand how they can fi t into the real - world

applications you may need to develop.

 UCMA 3.0 is the current version of the API that ships with Lync Server 2010. Throughout the

following chapters, the authors highlight features that are new in UCMA 3.0, for the benefi t of

readers who have experience building applications using previous versions of the API.

 This chapter initiates you into the wonderful world of UCMA, beginning with a short overview of

Session Initiation Protocol, the language spoken by Lync Server 2010, and then a sort of whirlwind

tour of what UCMA applications can do and some key points of development and deployment.

 WHAT IS A UCMA APPLICATION?

 In theory, you could create server - side applications that interact with Lync Server by opening a TCP

connection with the server yourself in code, constructing the necessary SIP messages manually,

line by line, listening for the responses, and parsing them. This would be a bit like building a new

telephone from spare parts every time you want to make a phone call.

 As an example, here are the individual low - level steps you would need to go through, even in the

simplest case, to initiate an audio call:

 1. Send an INVITE request to the proxy server for the target user agent.

 2. Include some SDP (Session Description Protocol) in the message body to negotiate how

media should be sent back and forth.

 3. Receive a 100 Trying message from the proxy server.

 4. Receive a 180 Ringing message from the proxy server after the call is ringing to the user

you are calling.

 5. Receive a 200 OK when the user has answered the call.

 6. Look at the SDP in the 200 OK and decide whether the media parameters are acceptable.

 7. Send an ACK message to acknowledge the 200 OK .

 8. Begin sending audio media in Real - Time Transport Protocol (RTP) format to the other

user agent.

 9. Begin receiving audio media in RTP format from the other user agent.

 What Does UCMA Do?

 The Unifi ed Communications Managed API, also known as UCMA, saves you all of this trouble

by abstracting away all the messy details of SIP signaling, so that the entire sequence of messages

that two user agents exchange to initiate an audio call becomes a single asynchronous method

like this one:

// Start the call.
_call.BeginEstablish(OnEstablishCompleted, null);

This saves your intellectual energy for the code that is specifi c to the scenario you are trying to

enable or the other components with which you want to integrate your call control code.

 UCMA adds this level of abstraction by means of a collection of classes that handle the various

aspects of unifi ed communications. The actual SIP signaling goes on under the covers. These

high - level classes make diving right into unifi ed communications development easy.

 Server - side Uses

 The primary purpose of UCMA is to allow developers to build server - side Unifi ed

Communications applications that extend Lync Server. These fall into two general categories:

middle - tier client applications and highly available multi - user services.

 The Lync Web App (formerly known as Communicator Web Access) is a great example of a

middle - tier client application. This type of application acts as a sort of proxy for clients, allowing

users to perform Lync operations through an interface that is hosted on a server rather than a client

application on the user ’ s PC. A middle - tier client could be a web application, a web service, a

voice - activated application, or even something else entirely.

 The other common use of UCMA is to provide services that extend Lync in some way to many

users at once. An example is conference recording: With UCMA, a developer can easily create an

application with a Lync contact that users can invite to conferences to have them recorded. UCMA

takes care of needs such as high availability, resiliency, and connection pooling so that developers

do not need to reinvent each of these capabilities for every new application.

 Client - side Uses

 UCMA can work in conjunction with the client - side extensibility APIs, discussed in the previous

chapters, to dynamically provide a wide variety of types of context to users in the Lync client.

 Also, UCMA can simulate a large number of clients for load - testing purposes.

 Finally, although UCMA is primarily intended as a server - side API, building some types of client -

 side applications with this API is possible, as long as the UCMA runtime is installed on every

computer that will run the application.

 Unlike previous versions of the API, UCMA 3.0 supports only the 64 - bit versions
of Windows. There is no 32 - bit version of the UCMA 3.0 SDK available.

What Is a UCMA Application? ❘ 147

148 ❘ CHAPTER 6 INTRODUCTION TO THE UNIFIED COMMUNICATIONS MANAGED API

 Integration with Non - Microsoft SIP Platforms

 Lync Server 2010 and UCMA 3.0 can interoperate with other SIP platforms in certain cases. UCMA

3.0 applications can route two - party audio calls to and from an IP - PBX or gateway if its SIP domain

is confi gured as a trusted SIP domain for the application ’ s collaboration platform. Audio is the only

supported modality; interoperation with instant messaging and conferencing is not supported.

 SESSION INITIATION PROTOCOL IN BRIEF

 To initiate and control calls and other communication sessions, Microsoft Lync Server uses a

somewhat extended version of the Session Initiation Protocol , commonly known as SIP. SIP is one

of the three relatively standard protocols that are used in Internet telephony and in other unifi ed

communications solutions. The others are H.323 , which is the oldest of the three protocols, and IAX ,

which is specifi c to the open - source VoIP (Voice over Internet Protocol) platform Asterisk .

 SIP is defi ned in RFC 3261, a so - called Request for Comments document written by the Internet

Engineering Task Force (IETF). It was intended to standardize the initiation of VoIP calls across

different platforms, and it allows interoperation between servers and devices from different vendors.

Although Lync Server adds a number of its own Microsoft - specifi c features to SIP, forming what you

can think of as a SIP dialect, Lync Server 2010 and UCMA 3.0 supports interoperation with non -

 Microsoft SIP platforms for basic voice calls.

 Although SIP plays many important roles in communication sessions, it does not
carry the actual audio for voice calls. For this purpose, Lync Server uses another
protocol, Real - time Transport Protocol (RTP), discussed later.

 A number of excellent books cover the Session Initiation Protocol in great detail, so the authors

won ’ t attempt to rehash those in their entirety here. However, several SIP concepts are important

to a full understanding of how Lync Server works behind the scenes.

 SIP User Agents

 In SIP - based communications, the senders and recipients are known as user agents , or UAs for

short. During each SIP transaction, one endpoint acts as the server (the user agent server, or UAS)

and the other acts as the client (the user agent client , or UAC). Generally speaking, any SIP endpoint

can act at different times as both a client and a server, just as any normal phone can both send and

receive calls.

 In Lync Server, the Communicator application acts as a user agent on an individual PC. SIP phones

and voicemail boxes are also user agents, and nearly any UCMA application you build will need to

function as a user agent (or multiple user agents). In fact, if it had a TCP/IP connection to the Lync

Server domain and spoke proper SIP, your nose hair trimmer could register with the server as a user

agent and send and receive SIP messages.

 Although sending messages to one another directly is entirely possible for user agents, they need to

know the exact network location of the target user agent to do this. To relieve individual user agents

of the burden of keeping track of each other user agent and following its every move, SIP introduces

two other roles: the proxy and the registrar.

 SIP Proxies and Registrars

 In Lync Server, the SIP proxy and the SIP registrar are alter egos; although they have different

names and different (though related) roles, they are performed by the same server. In a nutshell, the

registrar receives a message from a user agent telling its current location, and stores this information

in a directory. The proxy receives incoming communication requests that are intended for a specifi c

user agent, optionally authenticates the requestor, looks up its location and registration status

in the directory, and either denies the request, responds that the recipient is not available, or routes

the request.

 Registration

 Imagine a busy lawyer with a thriving international law practice. This lawyer, although she

travels frequently and is diffi cult to reach, is lucky enough to have a top - notch secretary who knows

her travel schedule and her important contacts down to the letter. Because she is too busy to fi eld

unsolicited calls from photocopier salesmen, Jane (the lawyer) never gives out any of her phone

numbers or email addresses. Instead, anyone who needs to reach her calls the secretary.

 Whenever she arrives in a new location, Jane sends a message from her phone to her secretary (let ’ s

call her Roxanne, or Roxie for short) saying, for instance, “ Arrived Slovakia. Send calls to Ljubljana

offi ce until 1pm EST. ”

 While she is still around, she sends a regular update so the secretary knows she is still available:

 “ Still in Ljubljana. Send calls here until 2pm EST. ”

 If she gets on a plane and won ’ t be able to take any calls, Jane sends a message to “ sign off, ” so the

secretary knows not to send her any more calls.

 Jane might even give her secretary multiple places to reach her: “ Arrived. Send calls to Beirut offi ce

or Lebanese cell number. ”

 This is more or less how SIP registration works in Lync Server. Every user agent that wants to

receive communication requests and other messages from the proxy server is responsible for

registering with the SIP registrar (in this case, the front - end server) by means of a REGISTER

message. The message specifi es the user agent ’ s current IP address along with some other

information on its status.

 The Proxy

 Every day, hundreds of calls come in for Jane. Before she sends a call anywhere, Roxie asks a few

questions to determine the caller ’ s identity. She politely rebuffs any unwanted callers, be they

photocopier salesmen, competitors fi shing for information, or neurotic ex - lovers, telling them, in a

Session Initiation Protocol in Brief ❘ 149

150 ❘ CHAPTER 6 INTRODUCTION TO THE UNIFIED COMMUNICATIONS MANAGED API

gentle but fi rm voice, “ 403 Forbidden, ” which is SIP for “ I ’ m sorry, she ’ s not available. I ’ ll let her

know you called. ”

 To those wrong number callers who hesitantly ask whether they ’ ve reached Jane ’ s Drains and Sinks,

Roxie calmly says, “ 404 Not Found, ” sending them on their way.

 Sometimes the caller is someone Jane would want to speak with, but she is on a plane and can ’ t

take calls. In these cases, Roxie can either ask the caller to call back, or send the call along to Jane ’ s

voicemail box.

 Finally, if an important call comes in and Jane has registered with Roxie saying she is available,

Roxie lets the caller know she is trying to put the call through to Jane, and rings all the phones Jane

has registered. If Jane answers one of the phones, Roxie puts the call through.

 Roxie is doing basically what a SIP proxy server does. The proxy server (which is the front - end

server in Lync Server) receives SIP requests for user agents, authenticates the clients if necessary, and

then proxies the request to the destination as well as the response back to the client.

 SIP Methods and Responses

 The foundation of SIP is defi ned in RFC 3261, which includes six standard SIP methods. When SIP

was originally conceived, it was meant for the much more specifi c purpose of initiating VoIP

calls, and it has gradually been applied to other communications functions such as presence,

multi - modal communication sessions, sending instant messages, and conferencing, necessitating

extensions to the original specifi cation. On top of this, Lync Server adds a few of its own

proprietary extensions to the SIP protocol.

 SIMPLE is a protocol that was devised to handle the new functions of presence
management and instant messaging that were not supported by the original SIP
protocol. Lync Server uses SIMPLE as part of its own brand of SIP; you may see
the term SIP/SIMPLE to describe this pairing. SIMPLE, in case you are curious,
stands for “ SIP for Instant Messaging and Presence Leveraging Extensions, ”
which is a mouthful, especially if you read out SIP as separate words. Reciting it in
a deep voice can be effective at warding off anyone who challenges your technical
knowledge, as well as feral animals.

 Although Lync Server treats its own SIP progeny and the ones it adopted from the RFCs perfectly

equally, knowing which MS - SIP features are proprietary is useful. These features are highlighted as

they come up in discussions of SIP operations.

 Any SIP - enabled device should support at least the methods defi ned in RFC 3261, and many support

the methods defi ned in the other RFCs. The methods shown in Table 6 - 2, however, are very rarely

supported by SIP platforms other than Lync Server.

 TABLE 6 - 1: Standard SIP Methods Supported By Lync Server

 METHOD

NAME PURPOSE WHERE DEFINED

 INVITE Requests a SIP signaling session with another user agent. RFC 3261

 ACK Acknowledges a request or response from another agent. RFC 3261

 CANCEL Requests the cancellation of a SIP request that has already been

sent before it is accepted by the remote user agent.

 RFC 3261

 BYE Requests the termination of a SIP signaling session that is in progress. RFC 3261

 REGISTER Requests that the SIP registrar register the user agent ’ s current

network location so that requests coming from other user agents

can be routed.

 RFC 3261

 OPTIONS Requests information on the capabilities of a SIP server. RFC 3261

 SUBSCRIBE Requests ongoing notifi cation of a specifi ed type of events, such

as presence changes.

 RFC 3265

 NOTIFY Informs subscribers that an event has occurred. RFC 3265

 MESSAGE Carries some type of message, which can be either text or

another content type, to another user agent.

 RFC 3428

 INFO Carries a session control message that does not change the

session state to another user agent.

 RFC 2976

 REFER Requests the other user agent in an existing session to issue a

new SIP INVITE to a specifi c user agent (generally for a transfer).

 RFC 3515

 TABLE 6 - 2: SIP Methods Specifi c to Lync Server

 METHOD NAME PURPOSE

 BENOTIFY Informs subscribers that an event has occurred without requiring any

response.

 SERVICE Requests a service provided by the server.

Session Initiation Protocol in Brief ❘ 151

 SIP Methods in Lync Server

 Table 6 - 1 shows all the standard SIP methods that are supported by Lync Server.

152 ❘ CHAPTER 6 INTRODUCTION TO THE UNIFIED COMMUNICATIONS MANAGED API

 UCMA 3.0 provides access in some way to each of the SIP methods described here, and we will

discuss how the methods work in a bit more detail in later chapters.

 SIP Responses in Lync Server

 Most SIP methods (the one signifi cant exception being BENOTIFY) require the recipient to send

a response back to the sender. These responses are very similar to the standard HTTP responses,

although they have different meanings in the SIP world. Each one begins with a three - digit response

code, with the fi rst digit between 1 and 6, followed by a short plain - text description of the response.

 Table 6 - 3 shows some of the more common SIP response codes used by Lync Server.

 TABLE 6 - 3: Common SIP Responses

 SIP STATUS CODE ENGLISH TRANSLATION

 100 Trying I ’ m trying to route your request.

 180 Ringing It ’ s ringing, and we ’ re waiting for the user to accept.

 183 Session Progress Something ’ s changed, but we ’ re still waiting for the user to

accept.

 200 OK Okay, I accept your call.

 202 Accepted Got your message. (MESSAGE requests don ’ t require a SIP

session to be created, so there ’ s no 200 OK.)

 301 Moved Permanently Update your address book.

 302 Moved Temporarily This user is taking calls somewhere else for a while.

 400 Bad Request I didn ’ t understand your request.

 401 Unauthorized I need you to authenticate before you can register.

 403 Forbidden “ I ’ m sorry, Dave. I ’ m afraid I can ’ t do that. ”

 404 Not Found No such user.

 407 Proxy Authentication Required I need you to authenticate before you can send requests.

 408 Request Timeout The user couldn ’ t send a response fast enough.

 480 Temporarily Unavailable Can ’ t take your call right now.

 481 Call/Transaction Does Not Exist You ’ re telling me to do something with a call that doesn ’ t

exist or already ended.

 484 Address Incomplete This isn ’ t a valid SIP address.

 486 Busy Here The user is already on a call at this particular network

location.

UCMA Basic Concepts ❘ 153

 You can perform almost any operation in UCMA 3.0 without using these codes at all, but you will

fi nd them in exception details and in the response data from call control operations if you inspect

it under a powerful microscope. There ’ s certainly no need to memorize the codes, but a basic

familiarity with what they mean and which ones are bad news will take you a long way in some of

the trickier troubleshooting situations.

 SIP STATUS CODE ENGLISH TRANSLATION

 488 Not Acceptable Here This user can ’ t do what you ’ re asking for.

 500 Server Internal Error Something ’ s wrong with the server.

 503 Service Unavailable The proxy server is down or not available.

 504 Server Timeout I was trying to reach another server and it didn ’ t respond.

 603 Decline I don ’ t want to take your call.

 If you want to be cool and cutting - edge, consider answering your phone with
the words “ 200 OK. ” It ’ s very trendy, and, paired with a stylish hat, will get you
into some of the most exclusive clubs.

 How Is Lync Server Dif erent from Other Platforms?

 At this point, you may be wondering what differentiates Lync Server 2010 from other SIP - based

communications platforms. This question has many answers, including some concerning call quality,

security, and the like, but from the perspective of what you can do with the Unifi ed Communications

Managed API, you can take note of a few features as they come up later in this chapter: multi - modal

communication sessions, enhanced presence, and powerful conferencing capabilities.

 One noteworthy technical feature that distinguishes Lync from most SIP - based
telephony platforms is that Lync uses TCP to transmit SIP messages, while most
other platforms use UDP. This is important to keep in mind when integrating
Lync applications with other SIP platforms.

 UCMA BASIC CONCEPTS

 This section serves as a sort of primer on the fundamentals of the Unifi ed Communications

Managed API. The classes and concepts described here come up frequently in the following

chapters on UCMA, and so spending a bit of time understanding them before delving in to the

various capabilities of UCMA is worthwhile.

154 ❘ CHAPTER 6 INTRODUCTION TO THE UNIFIED COMMUNICATIONS MANAGED API

 The Collaboration Platform

 The foundation of any UCMA application is an instance of the CollaborationPlatform class,

which manages connections with Lync Server, as well as other resources that are shared between all

the user agents created by the application.

 Any application that will use the UC Managed API must have an instance of the

 CollaborationPlatform class. Depending on the purpose of the application, it will use

either ClientPlatformSettings, ProvisionedApplicationPlatformSettings,or

ServerPlatformSettings to supply the confi guration values for the collaboration platform.

 Chapter 7 goes into the details of creating and confi guring a collaboration platform and describes

the steps in starting it up.

 Client Platforms

 Although UCMA is primarily a server - side API, one situation in which it can be useful

is for building client - side applications. To load - test server applications, having many clients

connected to the application at once is usually necessary. This is diffi cult to do with Communicator,

because each instance of Communicator allows only one user to be signed in. A collaboration

platform initialized with ClientPlatformSettings can use only user endpoints and cannot

perform any trusted operations. However, it can be used in an application without any

provisioning (that is, objects do not need to be created in the Lync central management store for the

application).

 Server Platforms

 By far the majority of UCMA applications use a server platform, which allows them to perform

trusted operations. To initialize the collaboration platform with ServerPlatformSettings , your

application must have its own trusted application object in the central management store (see

Chapter 7 for details). Unlike client platforms, server platforms have the option of using transport

layer security (TLS) for all SIP signaling rather than ordinary TCP, as long as the server on which

the application runs has a certifi cate that it can use to authenticate itself to Lync Server. Using TLS

is a good idea in almost all cases for security reasons.

 Endpoints

 The network endpoints that UCMA applications use for their user agents are represented in code

by instances of the UserEndpoint or the ApplicationEndpoint class, which, with the assistance

of some other related classes, handle all operations that concern a single user agent. The individual

endpoints are tied to the collaboration platform, which can have any number of endpoints

associated with it.

UCMA Basic Concepts ❘ 155

 In theory, a UCMA application can run without any endpoints, but it would not be able to serve any

useful purpose, because the application would have no SIP user agents with which to send or receive

messages. Therefore, any useful UCMA application will, when starting up, initialize and establish at

least one user endpoint or application endpoint. Each class is appropriate for a somewhat different

type of UCMA application.

 When to Use a UserEndpoint

 The UserEndpoint class allows an application to perform communication operations on behalf of

a single Lync Server user (a User object in Active Directory). When established, the user endpoint

always registers with Lync Server and retrieves presence and contact information for the specifi ed

user. Through the UserEndpoint class, you can perform contact and contact group operations as

well as publish a presence using a presence grammar (both of which are covered in later chapters),

but because the user endpoint represents a single user, an application cannot use it to perform

trusted operations such as impersonating another Lync Server user.

 Acting on Behalf of One or More Users

 The UserEndpoint class is best suited for an application that acts on behalf of a number of different

existing users simultaneously. Some common examples are

 Load testing applications

 Voice mail systems

 Web - based client applications (like Communicator Web Access)

 Contact and Group Operations

 Because contact lists are only available for full - fl edged Lync users (not server application contacts)

any application that performs contact list operations must use the UserEndpoint class.

 Presence Publishing Using Grammars

 Publishing presence information for a user is simplifi ed by the UserEndpoint class, because it can

take advantage of grammar - based presence publication, which automatically assigns access control

information and instance IDs to presence elements.

 The user endpoint is not as robust in recovering from connection failures as the application endpoint,

so it is less appropriate for server applications that must be highly available. When a user

endpoint loses connectivity with Lync Server, it attempts to re - register with Lync Server once, but if

this attempt fails it gives up and makes no further attempts to recover the connection. Applications

that must weather temporary losses of connectivity should use the application endpoint.

➤

➤

➤

 Although the terms represent slightly different concepts, UCMA developers use
the term endpoint more or less interchangeably with user agent when talking
about unifi ed communications applications. In this book you ’ ll mostly see the
terms Lync Server endpoints or just endpoints during discussions about the
specifi cs of UCMA code.

156 ❘ CHAPTER 6 INTRODUCTION TO THE UNIFIED COMMUNICATIONS MANAGED API

 When to Use an Application Endpoint

 The ApplicationEndpoint class is meant for highly available server applications that provide a

service to many different users simultaneously. Because it does not represent an individual user, it

has a separate identity defi ned by a Contact object in Active Directory.

 Automated Communications Services

 Common examples of applications for which the ApplicationEndpoint class is appropriate include:

 Interactive voice response (IVR) systems

 Automatic call distributors

 Message broadcasting or alert applications

 Conference recording services

 Impersonation and Other Trusted Operations

 Because an application endpoint is automatically trusted by Lync Server, it is able to “ impersonate ”

any individual user in order to perform communications operations on behalf of that user. The trust

relationship also frees the endpoint from the connection throttling that is normally imposed on

endpoints by Lync Server.

 Providing Services to a Conference

 The application endpoint ’ s trusted status with Lync server allows it to perform conference operations

that would otherwise be restricted to conference leaders, as well as some special operations that cannot

be performed at all through the Lync client. It can also join conferences as a trusted participant; in this

state, it is not shown in the conference roster and has the same rights as a conference leader.

 The ApplicationEndpoint class is able to load - balance connections across several front - end

servers. In addition, it is more persistent than the UserEndpoint class in recovering connectivity

with Lync Server. When an application endpoint loses its connection to Lync Server, it goes into the

 Reestablishing state and tries to regain its connection with the server until it succeeds, regardless

of how long it remains without a connection.

 Application endpoints are not able to perform any contact operations, nor can they publish

presence with a presence grammar. Applications that need to do either of these should use the

 UserEndpoint class.

 Conversations and Calls

 In theory, an adventurous developer with plenty of time to spare could build a .NET application

that acts as a SIP user agent without using UCMA at all. It would need to open and manage the

necessary TCP connections on its own, receive incoming connections, build SIP messages to send to

other user agents, and parse incoming SIP messages, extracting the necessary information from

the headers and the message body.

 In most cases, however, the repetitive steps of establishing a connection, building SIP messages

with the proper headers, and keeping track of SIP session state would be a distraction from the

more varied business logic that needs to go into complex unifi ed communications applications.

➤

➤

➤

➤

UCMA Basic Concepts ❘ 157

UCMA 3.0 takes those low - level signaling responsibilities off of developers ’ hands, so that they

can concentrate on the higher - level functions of the application, while allowing access to technical

details such as SIP headers, signaling, and media negotiation where fi ner - grained control is necessary.

 Communication Between Local and Remote Endpoints

 Just as the UserEndpoint and ApplicationEndpoint classes abstract away the low - level details

of maintaining a SIP user agent, the Conversation class abstracts away the signaling required to

establish a SIP dialog with another user agent. Between Lync Server endpoints, a Conversation can

consist of multiple modalities, with each modality represented by a Call object.

 WHAT IS A MODALITY?

 One of the features of “ unifi ed communications ” platforms such as Lync Server is that

they support a number of different forms of communication. These typically include

audio, video, and instant messaging. Lync Server also supports application sharing

and web sharing. Each of these forms of communication is known as a modality .

 A Call object represents a single SIP signaling session (with a single modality) between the

application and a remote user agent. The Call class itself is abstract, so an application must use

one of the modality - specifi c subclasses, such as InstantMessagingCall or AudioVideoCall .

 Figure 6 - 1 shows the relationship between endpoints, conversations, and calls in UCMA.

I’m an application endpoint. I can manage

any number of conversations. Each of my

conversations can have one or more calls

that belong to it.

AudioVideoCall

AudioVideoCallApplicationEndpoint

InstantMessagingCall

InstantMessagingCall

Conversation

Conversation

Conversation

 FIGURE 6 - 1

158 ❘ CHAPTER 6 INTRODUCTION TO THE UNIFIED COMMUNICATIONS MANAGED API

 Conversation Objects Provide a Layer of Abstraction

 The different functions of the Conversation and Call classes are a common source of confusion

for developers new to UCMA 3.0. Which one is responsible for doing what can often be unclear at

fi rst when you are establishing a new instant messaging session or audio call from an application.

 In two - party communication, the Conversation object holds together all the calls to a single

remote endpoint. Through its associated ConferenceSession instance, it also handles signaling

with a conference focus to join a conference for multi - party communication.

 Visualizing Conversation and Call may help, as shown in Figure 6 - 2. You can think of the

 Conversation object as a larger pipe between two endpoints that contains one smaller pipe, a Call

instance, for each modality.

InstantMessagingCall

Conversation
AudioVideoCall

 FIGURE 6 - 2

 In Lync Server terms, any communication session, whether or not it involves
audio, is referred to as a call. Throughout this book, consider audio, instant
message, and application sharing sessions alike as calls.

 Another easy way to understand the Conversation class is to think of the conversation windows

in the Communicator application. Generally anything that would occur in a single window in

Communicator is handled by a single instance of the Conversation class in UCMA 3.0. Two -

 party instant message and audio calls with a single other user can be handled with one instance of

 Conversation , just as they would require only one window in Communicator. To create a second

instant message call with a different user, however, you require a new Conversation , just as you

would need a new window in Communicator.

 Call Objects Represent Types of Media

 A Conversation alone is not enough to start communicating with another endpoint. Actually

establishing a signaling session and negotiating media exchange is the responsibility of the

subclasses of Call .

UCMA Basic Concepts ❘ 159

 Establishing a call has three major components: the SIP signaling, the media negotiation (using

SDP), and the media delivery (via RTP). Each of these responsibilities is handled by a separate class.

Table 6 - 4 shows the responsibilities of these three classes.

 TABLE 6 - 4: Abstract Base Classes Involved in Call Establishment

 CLASS RESPONSIBILITY

 Call SIP signaling

 MediaProvider SDP media negotiation

 MediaFlow Media delivery

 TABLE 6 - 5: Subclasses of Call , MediaProvider , and MediaFlow

 BASE CLASS AUDIO/VIDEO SUBCLASS INSTANT MESSAGING SUBCLASS

 Call AudioVideoCall InstantMessagingCall

 MediaProvider AudioVideoProvider InstantMessagingProvider

 MediaFlow AudioVideoFlow InstantMessagingFlow

 Each modality has a set of subclasses derived from these three base classes. Table 6 - 5 shows the

subclasses for audio/video calls and for instant messaging calls.

 There is also a set of subclasses for the application sharing modality, with names following the same

pattern.

 Generally, unless you extend UCMA 3.0 to handle a new modality, you will not need to deal

directly with the MediaProvider subclasses. The Call subclasses use their corresponding media

providers to perform media negotiation at the appropriate point in call establishment.

 The MediaFlow subclasses also do much of their work behind the scenes. They provide an

abstraction for the fl ow of media back and forth between the participants in a call. These classes

expose APIs that allow an application to manipulate the media for the call. For instant messaging

calls, this can include, for example, sending and receiving individual instant messages. For audio calls,

UCMA 3.0 provides several helper classes, such as Player and Recorder , that allow an application

to easily send audio to a call or process audio that it receives from a call. You can read about these

classes in detail in Chapter 12.

160 ❘ CHAPTER 6 INTRODUCTION TO THE UNIFIED COMMUNICATIONS MANAGED API

 The Call object itself is responsible for signaling, which includes just about anything that affects

the state of the call. To establish, accept, terminate, or transfer a call, for instance, you must call

methods on the Call object. Chapter 8 covers all of these call control APIs.

 Conferencing

 Many SIP - based communication platforms extend SIP in some way to support conference calling.

Lync Server makes use of some extensions to SIP based on the framework described in RFC 4353 to

handle multi - party communication sessions, or conferences. Microsoft ’ s version of this conferencing

protocol is known as C3P (Centralized Conference Control Protocol). A conference in Lync Server

is any communication session (whether instant message, audio, web sharing, or something else) in

which having more than two participants is possible.

 SIP Sessions with Multiple Remote Endpoints

 A SIP signaling session can only have two participating endpoints: the user agent server and the user

agent client. To get around this limitation, Lync Server introduces two server roles, the conference

focus and the multipoint control unit, which manage conferences by handling multiple sessions

at once — one with each conference participant — and route the media from each participating

endpoint to all the others.

 A number of UCMA classes deal with conferences. These can be divided roughly into three

categories:

 The ConferenceServices class handles conference scheduling and management.

 ConferenceServices is accessible through a property on the ApplicationEndpoint or

 UserEndpoint instance.

 The ConferenceInvitation class allows an application to invite remote users to a

conference. The application must create a new instance of ConferenceInvitation for each

remote user who is to be invited.

 The ConferenceSession class represents a communication channel with a conference focus,

and handles joining the conference. ConferenceSession also handles sending commands to

the conference focus to perform conference operations such as removing a participant. It is

associated with McuSession objects, each of which represents a communication channel with

an MCU. These expose methods to send commands to the MCU.

 The Conference Focus Manages the Roster

 The conference focus is a Lync Server role that acts as a sort of traffi c cop for SIP signaling in

conferences. Whenever a conference is created, the focus creates a new conference focus session that

represents that conference. Endpoints that want to join the conference send a SIP INVITE message

to the conference focus along with some additional information that specifi es which conference they

want to join. Depending on the conference admission policy (who is allowed to join under what

circumstances) the focus either admits them or forbids them to join.

➤

➤

➤

UCMA Basic Concepts ❘ 161

 The focus keeps track of which modalities are included in the conference, how long it is scheduled

to last, which participants are designated as leaders, and who is to be invited to the conference.

Conference leaders can send commands to the focus to invite additional participants or to terminate

the conference.

 Multipoint Control Units Mix the Media

 While the conference focus manages the conference as a whole and its participants, multipoint control

units, or MCUs, handle the routing of media from each participant to the others in the conference.

A separate MCU exists for each modality, because the routing works differently for each one.

 Trusted conference participants can send commands to an audio MCU to manipulate the routing of

media. See Chapter 12 for details.

 Collaboration is the term used for the capabilities in Lync Server that enable you to keep track of

other users and whether they are available for conversations, as well as control which other users

can see the same information about you.

 The collaboration features in Lync Server fall into two general categories: presence and contact lists.

Each of these has a chapter devoted to it later in the book. For now, the following sections introduce

some basic concepts that can help you to understand the presence and contact list APIs in UCMA

3.0, so that they will make sense to you when they come up in later chapters.

 Enhanced Presence

 The essential idea behind presence is simple and clever. With a conventional telephone, you have no

way to tell whether the person you are about to call is available to talk, or even near a phone. There

is also no particularly good way to determine which number (home, offi ce, mobile) will be the best

to call. This leads to situations such as “ phone tag ” where two people repeatedly miss each other ’ s

phone calls.

 Presence - enabled communication platforms alleviate this problem by allowing users to publish

 “ presence ” information that shows whether they are available on one or more communication

devices (whether a phone, computer, or something else) and whether they are in a position to answer

incoming communications. At a minimum, users can generally be “ Available, ” “ Busy, ” or “ Away. ”

 Some platforms, such as Lync Server, allow users to publish a number of different categories of

information, such as location, contact details, customized status notes, and calendar information.

These things give others even more context to use as they decide whether and how to contact

the user.

 Some protocols, such as Extensible Messaging and Presence Protocol (XMPP), which is used by

Google Chat, have built - in support for presence. The plain vanilla variety of SIP, unfortunately,

does not have any presence support. Lync Server accordingly uses a popular SIP extension called

SIP/SIMPLE that introduces some new headers and message types into standard SIP to support

presence operations.

162 ❘ CHAPTER 6 INTRODUCTION TO THE UNIFIED COMMUNICATIONS MANAGED API

 What Is Enhanced Presence?

 The presence mechanism in Lync Server is known as enhanced presence . It is “ enhanced ” because it has

a number of features that go above and beyond the basic concept of presence. These features include:

 Multiple “ categories ” of presence information, including state, calendar data, contact card,

and location

 Support for multiple points of presence — more than one endpoint publishing presence

information for a single user

 Access control lists that allow users to limit who can see what presence information

 Interruption control — the Do Not Disturb status allows users to block incoming

communications

 Presence Categories

 Lync Server has fi ve built - in presence categories, which are shown in Table 6 - 6. All the standard

presence information is contained in these categories.

➤

➤

➤

➤

 TABLE 6.6: Built - in Presence Categories

 CATEGORY PURPOSE

 State Indicates how available the user is for communications, and whether the user is in

a call or conference .

 contactCard Contains contact details for the user .

 calendarData Contains data from Exchange on the user ’ s availability during the day .

 Services Indicates what communication capabilities (such as audio, instant messaging, or

application sharing) the user can currently support .

 routing Indicates where calls to the user should be routed (forwarding or simultaneous - ring

details) .

 note Holds a plain - text status note that is usually entered by the user in Communicator .

 In addition to these, with a bit of tinkering, defi ning custom presence categories to hold other types

of information on the user is possible.

 Presence Aggregation

 Lync Server allows users to be logged in from more than one place. That is to say, a user can have

multiple endpoints with his or her SIP URI connected to Lync Server at the same time. Each of these

endpoints can publish its own presence information. For instance, one of the endpoints could be

a computer that publishes an “ Away ” state when the user hasn ’ t moved the mouse for 20 minutes.

UCMA Basic Concepts ❘ 163

Another could be a SIP - enabled phone that publishes a “ Busy ” state when the phone is “ off the

hook. ” If the user picks up the phone and makes a long call, neglecting the computer for some time,

the phone might publish a “ Busy ” state to Lync Server while the computer publishes an “ Away ”

state. For Lync Server to come up with a single, consistent presence state to make available to other

users, it needs to combine all of these various inputs in a process called presence aggregation .

 Lync Server mixes together four types of state when calculating an aggregated presence that will

determine the color of the user ’ s presence indicator. These states are shown in Table 6 - 7.

 TABLE 6 - 7: Types of State in Lync Server

 STATE TYPE DESCRIPTION

 User state The presence selected by the user in Communicator or another client.

 Phone state Whether the user is in an audio call or conference at the moment.

 Machine state Whether the user is active at the machine associated with this endpoint

(for example, whether the mouse has been moved recently).

 Calendar state The user ’ s availability according to his or her Exchange calendar.

 Lync Server collects these four types of information from all the available sources and looks at when

each one was published to determine an aggregate presence state.

 Presence Containers for Access Control

 In Communicator, users have the option of putting a contact into an access control list such as “ Team, ”

 “ Company, ” or “ Public ” to indicate how much of the user ’ s presence information should be available

to that contact. Within Lync Server, these access control lists are managed using presence containers .

 You can think of a presence container as a box for pieces of presence information that is restricted

to certain users. When Lync Server stores a user ’ s presence, it associates each piece of information

with one or more of the presence containers. Other users only get the presence information in the

containers they have access to.

 Each user has a different set of presence containers. So, for instance, Deborah might publish her

location details to the Team and Personal containers, whereas Reginald only publishes them to the

Personal container. Likewise, Deborah might give Reginald access to her Team container, whereas

Adela gives Reginald access to her Company container.

 Presence Queries and Subscriptions

 A Lync Server endpoint has two options for learning about the presence of a specifi c user. To check

a user ’ s presence on a one - time or intermittent basis, an endpoint can query Lync Server to fi nd

out the current presence of one or more users. If an endpoint needs to be notifi ed of a user ’ s every

presence update, it can register a presence subscription with Lync Server for one or more users.

Thereafter, whenever Lync Server receives a presence update for one of those users (the subscription

targets), it sends the subscriber a notifi cation of the new presence.

164 ❘ CHAPTER 6 INTRODUCTION TO THE UNIFIED COMMUNICATIONS MANAGED API

 Because multiple points of presence can exist for a single user, each endpoint needs a way to fi nd

out about presence updates that are triggered by other endpoints for the same user. Lync Server

allows an endpoint to subscribe to its own (“ local ”) presence, so that it fi nds out about any presence

updates published by other endpoints for the same user.

 Automatic Presence Publishing in UCMA

 When registering with Lync Server, you can confi gure both user endpoints and application

endpoints to automatically publish certain pieces of presence information. In the case of an

application endpoint, this is an “ automaton ” presence that is designed to remain on the server for a

long period of time without expiring. For user endpoints, it is simply an initial presence publication

to be provided to the server on registration.

 Local Presence and Remote Presence

 UCMA provides separate APIs to handle local presence and remote presence . Local presence is the

presence of the application or the user on whose behalf it is acting; a UCMA application can use

the LocalOwnerPresence class to publish presence updates and receive notifi cations of presence

changes made by other endpoints representing the same user.

 Remote presence is the presence of any other Communications Server user. Access to remote

presence operations is through instances of the RemotePresenceView class. This class maintains

up - to - date presence information on one or more other users, which are referred to as the subscription

targets . Performing a one - time query of a user ’ s presence through the RemotePresenceServices

object associated with an endpoint is also possible.

 Contact List and Contact Group Operations in UCMA

 Because a user may sign in to Lync Server from any instance of Communicator, or from a web client,

storing information on contacts locally would be problematic — the contact list would be different

depending on where the user signed in. Instead, Lync Server maintains a contact list for each user at

the server level. Endpoints can retrieve this information from Lync Server and can make modifi cations

to the server - side contact list by sending SIP messages with a particular type of XML content.

 Lync Server also allows you to place the contacts into contact groups for ease of lookup.

 The ContactGroupServices property on the UserEndpoint class references an object through

which you can make changes to the contact list that belongs to the endpoint owner.

 Application endpoints do not have contact lists associated with them, and so the Application

Endpoint class does not have the ContactGroupServices property.

 UCMA DEVELOPMENT PRACTICES

 A number of best practices exist for development with the UC Managed API that will come up in

subsequent chapters. Having a general understanding of these before diving into UCMA code is

helpful, so this section briefl y explains some of the common practices you will see in UCMA 3.0

applications. When you encounter them later in sample code, they will be familiar.

 Asynchronous Programming

 Perhaps the most important thing to know as you begin developing with UCMA is that most of

its methods execute asynchronously. There are two primary reasons for this. The fi rst is that most

UCMA operations involve sending SIP messages to a remote endpoint and awaiting responses, so

quite a bit of waiting can be involved. The second is that, to take advantage of the full processing

power of multiple CPUs, the UCMA runtime queues these operations and executes them using a pool

of worker threads.

 The Begin/End Pattern

 The asynchronous programming model used by UCMA is the Begin/End pattern. Each operation

is initiated by a Begin MethodName method, such as BeginEstablish . The Begin MethodName

method queues the operation for execution on a worker thread managed by the UCMA runtime. The

last two parameters of any Begin MethodName method are always userCallback (which takes an

optional callback delegate) and state (which takes an optional object containing context about the

operation).

 The Begin MethodName method returns an object that implements the IAsyncResult interface. This

object gives the application visibility to the status of the asynchronous operation.

 Each operation with a Begin MethodName method also has a corresponding End MethodName

method (for example, EndEstablish). The End MethodName method waits on the completion of the

asynchronous operation if it has not yet completed, and then throws any exceptions that occurred

on the calling thread.

UCMA Development Practices ❘ 165

 CHAINING BEGIN AND END METHODS

 You might be tempted, especially when writing test code, to simply chain together

the Begin and End methods for an asynchronous operation, in effect making it

synchronous, as in the following line of code:

call.EndEstablish(call.BeginEstablish(null, null));

This approach is not always a bad thing, but that ’ s just about the best thing to say

about it. It ’ s strongly discouraged in any code that might be used in a production

environment. Asynchronous operations in UCMA, although they are designed to

fi nish eventually, are not 100 percent guaranteed to complete, so calling them in

this way could very rarely cause a thread to block endlessly. Blocking threads also

can have a negative impact on performance if an application does it too often or for

too long.

 In summary, chaining Begin and End methods occasionally to keep coding easy

when testing a new feature won ’ t hurt anything, but steer clear of it whenever

possible in any code you plan to use in a production application.

166 ❘ CHAPTER 6 INTRODUCTION TO THE UNIFIED COMMUNICATIONS MANAGED API

 Callback Methods

 If you supply a callback delegate when calling Begin MethodName , the UCMA runtime will call

that delegate after the asynchronous operation fi nishes executing. The callback method must take

a single parameter, an instance of IAsyncResult . When the UCMA runtime executes the callback

method, it passes in the IAsyncResult instance that represents this operation. You can use that

instance to call the End MethodName method.

 Always calling the End MethodName method for whatever operation you are
performing within the callback method is important. If you skip this step, you
will miss any exceptions that were thrown during the asynchronous operation.

 The following code snippet shows what this pattern looks like in code. Don ’ t worry too much

about the AudioVideoCall class for now; the important thing to note is how the Begin/End pattern

works.

void EstablishCall(AudioVideoCall call)
{
 // Queue the asynchronous operation.
 // This will return immediately and the
 // operation will execute on a worker thread.
 call.BeginEstablish(OnCallEstablishCompleted, call);
}

private void OnCallEstablishCompleted(IAsyncResult result)
{
 // Retrieve a reference to the call object from
 // the AsyncState property.
 AudioVideoCall call = (AudioVideoCall)result.AsyncState;

 // Complete the operation and throw
 // any exceptions that occurred.
 call.EndEstablish(result);
}

Notice how the callback method retrieves the AudioVideoCall object from the AsyncState

property on the IAsyncResult instance. Whatever is passed into the state parameter on

 Begin MethodName is stored in this AsyncState property for later retrieval. The code simply needs

to cast it to its original type in order to use it.

 Lambda Expressions as Callbacks

 At times, the aforementioned method of keeping track of state across the stages of the asynchronous

operation can feel clunky and inconvenient. Thankfully, an alternative exists. Instead of defi ning the

callback method separately and passing it into the Begin MethodName method as a delegate, you can

simply pass an anonymous delegate or lambda expression as the callback delegate. The following

code snippet demonstrates this:

void EstablishCall(AudioVideoCall call)
{
 // Queue the asynchronous operation.
 // This will return immediately and the
 // operation will execute on a worker thread.
 call.BeginEstablish(result = >
 {
 // Complete the operation and throw
 // any exceptions that occurred.
 call.EndEstablish(result);
 },
 null // No need for the state parameter.
);
}

The compiler creates a closure, so that the local variables from the EstablishCall method are

essentially still in scope in the callback. This allows for much more concise code, particularly when

the callback needs to work with a number of state objects.

 Avoiding blocking the thread that is executing a callback method is best. These
threads are UCMA worker threads. Other operations will continue even if a
worker thread is blocked in a callback, but no other events or callbacks on the
same object will be invoked until the thread is released.

 Exception Handling

 Proper exception handling is an often tedious but always crucial part of UCMA development.

Thankfully, UCMA keeps things easy by throwing exceptions in a very consistent way.

 Begin MethodName methods can throw the following types of exceptions:

 InvalidOperationException

 ArgumentException

 ArgumentNullException

Assuming you are careful about your arguments, catching InvalidOperationException is

generally only necessary when calling Begin MethodName methods.

 End MethodName methods throw nothing but subclasses of RealTimeException . The

 RealTimeException type is defi ned in the Microsoft.Rtc.Signaling namespace, and is

used exclusively for errors that occur during asynchronous UCMA operations.

 Catching RealTimeException whenever you ’ re calling an End MethodName method is important. By

default, the UCMA runtime does not have any handling of its own for exceptions that occur when it

is executing a callback. If you do not catch these exceptions, your application may crash or become

unstable. For the same reason, catching any exceptions that may be thrown by any other code that

is executed in callback methods is important.

➤

➤

➤

UCMA Development Practices ❘ 167

168 ❘ CHAPTER 6 INTRODUCTION TO THE UNIFIED COMMUNICATIONS MANAGED API

 The following code snippet illustrates catching exceptions on both ends of the asynchronous

operation.

try
{
 call.BeginEstablish(result = >
 {
 try
 {
 // Complete the operation and throw
 // any exceptions that occurred.
 call.EndEstablish(result);
 }
 catch (RealTimeException ex)
 {
 // Catch and log exceptions.
 Console.WriteLine(ex);
 }
 },
 null
);
}
catch (InvalidOperationException ioex)
{
 // Catch and log exceptions.
 Console.WriteLine(ioex);
}

This does, admittedly, make the code a bit longer and more cumbersome, but it is important for

keeping UCMA applications working reliably.

 As a last resort for handling any exceptions that are thrown in callbacks and not handled, UCMA

provides a static class called UnhandledExceptionManager . By setting the VerifyAndIgnore

UnhandledThreadPoolException static property to a delegate with the correct method signature,

you can defi ne your own handling for otherwise unhandled exceptions thrown in callbacks.

 The following code shows how to register a delegate for unhandled thread pool exceptions.

UnhandledExceptionManager.VerifyAndIgnoreUnhandledThreadPoolException =
 HandleUnhandledException;

A negligently simple handler method might look like the following:

private bool HandleUnhandledException(Exception ex,
 System.Threading.WaitCallback method, object state)
{
 // Log the exception.
 Console.WriteLine(ex);

 // Return true to tell UCMA to ignore the exception.
 return true;
}

The fi rst parameter passed to the handler method is the exception that was thrown, so that it can be

logged or inspected. The other two parameters should be ignored. The handler can return false to

rethrow the exception (probably causing the application to crash) or true to have UCMA ignore it.

 UCMA endpoints can automatically recover from brief connection failures by
re - registering with Lync Server. While these reconnection attempts do not cause
exceptions to be thrown, the UCMA application sometimes needs to do some
cleanup afterwards. Events such as RepublishingRequired can notify the
application of these conditions. Chapters 7 and 9 discuss these events in
more detail.

 DEPLOYING A UCMA APPLICATION

 During development and initial testing, nothing is wrong with running a UCMA application on

the server you are using for development. When deploying an application, however, giving it a

dedicated server is best. This is particularly important if the application handles audio, video, or

other media at all. Problems will usually arise if more than one media stack is active on a single

physical server.

 Where to Deploy

 You may be able to run a UCMA application successfully on the same server as other Lync server

roles, but hosting UCMA applications on separate application servers is best. This is especially

important for UCMA applications that handle real - time media such as audio. Hosting a UCMA

application on a server that also hosts a Lync server role such as the audio/video MCU will generally

lead to performance problems and poor audio quality.

 To host a UCMA application, your application server must have a number of things:

 Connectivity with Lync Server

 If your application will use mutual TLS, a certifi cate whose subject name is the fully

qualifi ed domain name (FQDN) of the application server, issued by a CA that is trusted by

Lync Server

 The UCMA 3.0 runtime

Your application must also be confi gured with the following:

 A trusted application

 A service ID with permission to access the certifi cate store, if your application is using TLS

to connect to Lync Server

 Deployment Tips

 Setting up an application server for a UCMA application takes a number of steps that are not

obvious and bear mentioning. These steps are often the culprit when a UCMA application works

fi ne in debugging but will not run on the application server.

➤

➤

➤

➤

➤

Deploying a UCMA Application ❘ 169

170 ❘ CHAPTER 6 INTRODUCTION TO THE UNIFIED COMMUNICATIONS MANAGED API

 Certifi cates

 To use mutual transport - layer security (MTLS) when communicating with Lync Server, which is

highly recommended, a UCMA application must have access to a certifi cate in the local computer

store. This certifi cate must be issued by a certifi cate authority that is trusted by Lync Server, and its

subject name must be the fully qualifi ed domain name of the application server.

 If this certifi cate is not installed or the application does not have suffi cient permissions to access it, a

 TlsException will be thrown on startup.

 Depending on your confi guration, you may be able to request the certifi cate from the Certifi cates

snap - in in Microsoft Management Console on the application server. Alternatively, you can issue

the certifi cate elsewhere, move it to the application server, and import it through the Certifi cates

snap - in.

 Permissions

 For a UCMA application to function properly, it should be run in the context of an account that

is a member of the RTCComponentsUniversalServices group in Active Directory. The

recommended approach is to add the computer account to this group, and then run the UCMA

application as a Network Service. Alternatively, you can create a new Active Directory identity for

the UCMA application, and add it to the RTCComponentsUniversalServices group.

 If the application is using mutual transport - layer security (TLS), as mentioned earlier, it must have

adequate permissions to access the certifi cate in the local computer certifi cate store that it will use

to authenticate with Lync Server. You can confi rm this by right - clicking on the certifi cate in the

Certifi cates management console and selecting All Tasks ➪ Manage Private Keys.

 Load - Balanced Applications

 You can deploy UCMA applications in a load - balanced topology if they are provisioned accordingly.

Chapter 7 covers the necessary provisioning process in detail.

 UCMA supports both hardware and DNS load balancing.

 SUMMARY

 This chapter introduced the Unifi ed Communications Managed API, what you can do with it, and

some of the fundamentals required to begin developing with the API and deploying applications.

It also discussed the Session Initiation Protocol (SIP) and how Lync Server uses it to control

communication sessions.

 The next chapter goes a bit deeper into the API, showing how to build a simple UCMA application,

initialize and clean up basic components such as the collaboration platform and endpoints, and

provision the necessary Active Directory objects to get a UCMA application running on the server.

Starting Up and Shutting Down
a UCMA Application

 WHAT ’ S IN THIS CHAPTER

 Provisioning applications in Active Directory

 Starting up a UCMA application

 Shutting down a UCMA application

 Draining calls

 Troubleshooting startup and shutdown

 A bit of preparation is required before you can run an application written with the Unifi ed

Communications Managed API (UCMA). Although building a simple communications service

takes a matter of minutes, you must take a few steps in your code to set the stage for whatever

communication operations you will perform. Also, before your application can actually run,

connect to Lync Server, and interact with the server or other endpoints, you must provision

some objects to represent it in Active Directory.

 This chapter describes the steps required to set up a server to run UCMA applications, and

explains how to write the basic startup and shutdown code which forms the foundation of

any UCMA application.

 PROVISIONING AN APPLICATION

 Each server - side UCMA application is represented by a trusted application object in the

Lync Central Management Store (a repository that contains topology and confi guration

data for Lync Server). The properties of this object provide the confi guration settings for the

➤

➤

➤

➤

➤

 7

D
o

172 ❘ CHAPTER 7 STARTING UP AND SHUTTING DOWN A UCMA APPLICATION

 CollaborationPlatform object in UCMA code. In addition, just as any Lync Server user must

exist as a User object in Active Directory, any application endpoint must correspond to an Active

Directory Contact object. This object is the source of the settings for an ApplicationEndpoint

object in the application ’ s code.

 Unifi ed Communications developers usually refer to this process of creating Active Directory objects

for a UCMA service as provisioning an application .

 Client - side UCMA applications, which use the ClientPlatformSettings object to provide

confi guration for the collaboration platform, do not require any provisioning. However, applications

of this variety never amount to much, because they are limited to user endpoints and consequently

cannot perform any trusted operations. They can often be found roaming the streets late at night,

mumbling to no one in particular about their bitter fate.

 Active Directory itself does not provide a user interface for creating these objects. Rather than

leave users to struggle helplessly with WMI commands, the developers of the UC Managed

API SDK created some tools to make this provisioning process easier. The UCMA 2.0

SDK, which was associated with Offi ce Communications Server 2007 R2, had a tool called

 ApplicationProvisioner.exe , a Windows Forms application that provided a graphical user

interface for these provisioning operations. For Lync Server 2010, these have been replaced

with a set of Windows PowerShell cmdlets.

 Before sitting down to write code for a new UCMA application, you generally want to begin with

a cup of tea, some light stretching, and a short session of application provisioning with these handy

and easy - to - use PowerShell cmdlets.

 Creating a Trusted Application Pool

 Before provisioning a trusted application and endpoint for your UCMA application, you must

confi gure the server that the application will run on to host a trusted application pool. You can

create a trusted application pool using the Lync Topology Builder — a new Silverlight - based

management tool for administering your Lync Server deployment — or using the PowerShell

cmdlets. In this section, you learn how to create a trusted application pool using the

PowerShell cmdlets.

 Before creating a UCMA trusted application pool, you must confi gure a Windows server to run

UCMA applications on. You can host UCMA 3.0 applications on a server running Windows Server

2008 or Windows Server 2008 R2.

 The UCMA 3.0 SDK is now only supported on 64 - bit operating systems, so start with a Windows

Server 2008 (64 - bit) or Windows Server 2008 R2 server that is fully patched and joined to the

domain.

 If you ’ re going to be doing development on this machine, you should also install Visual Studio 2010.

Visual Studio 2010 is a required prerequisite for installing the UCMA 3.0 SDK, which includes the

necessary Visual Studio project templates.

 Installing the UCMA 3.0 SDK

 The UCMA 3.0 SDK includes the necessary components that allow you to run and develop UCMA

applications on a Windows server. Your environment for developing UCMA applications differs

from typical .NET development environments in that you have to perform development tasks on a

server machine that has been confi gured to connect to an existing Lync Server environment.

The fi rst step in confi guring a Windows server to run UCMA applications is to install the

UCMA 3.0 SDK.

 Download the UCMA 3.0 SDK and run UcmaSdkSetup.exe to start the installation process. As

shown in Figure 7 - 1, the installer verifi es that the necessary prerequisites are available and prompts

you to proceed if they are.

 FIGURE 7 - 1

 The installer also installs the Windows Media Format Runtime and prompts you
to reboot before continuing.

Provisioning an Application ❘ 173

174 ❘ CHAPTER 7 STARTING UP AND SHUTTING DOWN A UCMA APPLICATION

 Install the UCMA 3.0 SDK to the default location, as shown in Figure 7 - 2.

 FIGURE 7 - 2

 As shown in Figure 7 - 3, the installer informs you after the installation is complete. It also provides

some handy links for downloading additional language packs and tools and resources.

 FIGURE 7 - 3

 Installing the Lync Server 2010 Core Components

 The UCMA 3.0 SDK installation also installs additional tools that you can now use to confi gure the

server to host a Lync local management store. The local management store is a local SQL Server

Express database containing information about provisioned applications. The central management

store runs on the front - end server in the Lync topology and syncs to each application server ’ s local

management store.

 Why do you care about this as a developer? If you did any development in UCMA 2.0, recall

all the pieces of information you had to provide to your application in order to start the

 CollaborationPlatform for the trusted application. You had to specify a Globally Routable User

Agent URI (GRUU), port, certifi cate, trusted application name, and trusted application contact

name. UCMA 3.0 introduces the concept of auto - provisioning where your application only needs

to know the UCMA application ’ s application ID; for example, urn:application:contactcenter .

The UCMA runtime queries the local management store using the application ID to get all the other

necessary pieces of information such as the GRUU, port, and certifi cate.

 To install the Lync Server 2010 core components and confi gure a local management store, browse to

 C:\Program Files\Microsoft Lync Server 2010\Deployment and run the following command:

Bootstrapper.exe /BootstrapLocalMgmt /MinCache

 As shown in Figure 7 - 4, the command checks for the necessary prerequisites and installs the Lync

Server 2010 core components.

 FIGURE 7 - 4

 Using PowerShell to Create a Trusted Application Pool

 After the Lync Server 2010 core components are installed, you will see a new program group called

Microsoft Lync Server 2010. Expand this program group and run the Lync Server Management

Provisioning an Application ❘ 175

176 ❘ CHAPTER 7 STARTING UP AND SHUTTING DOWN A UCMA APPLICATION

Shell. The Lync Server Management Shell provides an environment to run the Lync PowerShell

cmdlets against the Lync Server environment.

 Use the New - CsTrustedApplicationPool cmdlet to create a new trusted application pool. The

cmdlet requires you to specify the fully qualifi ed domain name of the registrar and also the site ID.

To get these pieces of information, run the Get - CsSite and Get - CsService cmdlets and take note

of the registrar name and site ID, as follows:

Get-CsSite

Get-CsService -Registrar

 Run the New - CsTrustedApplicationPool cmdlet and specify the name of the trusted application

pool, the registrar, and the site ID:

New-CsTrustedApplicationPool -Identity < fqdn > – Registrar < registrar > – Site < site >

 Figure 7 - 5 shows the New - CsTrustedApplicationPool cmdlet being used to create a trusted

application pool called appsrv2.fabrikam.com using the cs - se.fabrikam.com registrar and the

 fabrikam.com site ID.

 FIGURE 7 - 5

 As prompted by the output of the New - CsTrustedApplicationPool cmdlet, run the Enable -

 CsTopology cmdlet to complete the operation. According to the UCMA 3.0 SDK documentation,

this creates the necessary entries in Active Directory for the trusted service:

Enable-CsTopology

 To check that the trusted application pool was created properly and added to the Lync topology,

run the Get - CsTopology cmdlet and examine its output:

 (Get-CsTopology -AsXml).ToString() > Topology.xml

 Topology.xml contains the details for the entire Lync topology; look for a Cluster node for the

trusted application pool that was just created:

 < Cluster Fqdn=”appsrv2.fabrikam.com” RequiresReplication=”true”
 RequiresSetup=”true” >
 < ClusterId SiteId=”fabrikam.com” Number=”5” / >
 < Machine OrdinalInCluster=”1” Fqdn=”appsrv2.fabrikam.com” >
 < NetInterface InterfaceSide=”Primary”
 InterfaceNumber=”1” IPAddress=”0.0.0.0” / >
 < /Machine >
 < /Cluster >

 Confi guring Management Store Replication

 Now that you have created a UCMA 3.0 trusted application pool on the server, the next step is to

confi gure replication from the central management store to the new local management store.

 Run the Enable - CsReplica cmdlet as shown in the following code snippet to enable the Replica

service on the server. The Replica service is responsible for replicating changes in the central

management store to all local management store databases in the topology.

Enable-CsReplica

 The Replica service is now installed on the server, but it hasn ’ t done anything yet. You can verify

this by running the Get - CsManagementStoreReplicationStatus cmdlet to check the replication

status of the servers in the topology, as follows:

Get-CsManagementStoreReplicationStatus

 You can see in Figure 7 - 6 that the UpToDate property of the new server is still False .

 FIGURE 7 - 6

Provisioning an Application ❘ 177

178 ❘ CHAPTER 7 STARTING UP AND SHUTTING DOWN A UCMA APPLICATION

 Force replication to start by running the Invoke - CsManagementStoreReplicationStatus cmdlet,

as follows:

Invoke-CsManagementStoreReplicationStatus

 As shown in Figure 7 - 7, this cmdlet has no output; it just starts the replication process to replicate

the central management store database to all the local management store databases in the topology.

 FIGURE 7 - 7

 Replication takes some time; use the Get - CsManagementStoreReplicationStatus cmdlet to check

the status of the replication:

Get-CSManagementStoreReplicationStatus

 As shown in Figure 7 - 8, the UpToDate property of the new server is True when replication has

completed, meaning that the local management store is in synch with the central management store.

 FIGURE 7 - 8

 Requesting and Setting a New Certifi cate for the Server

 The application server is now hosting a UCMA 3.0 trusted application pool and is replicating back

and forth between the local management store on the server and the central management store on

the registrar server. The fi nal step in the process is to request a new certifi cate from the domain

certifi cate authority and set it on the server. This allows the Lync server infrastructure to recognize

and trust the application server as a component of the Lync topology.

 Use the Request - CsCertificate cmdlet to request a new certifi cate. Use the - New switch to specify

that this is a new certifi cate, and the - Type switch to specify that this will be the default certifi cate

on the server, as shown in the following snippet. Also provide the path to the certifi cate authority.

Request-CSCertificate -New -Type default
 -CA < Domain Controller FQDN > \ < Certificate Authority > -Verbose

 Here is an example:

Request-CSCertificate – New – Type default – CA dc.fabrikam.com\FabrikamCA – Verbose

 Set the - Verbose switch of the cmdlet to get detailed output from the cmdlet, such as the

 Thumbprint of the new certifi cate.

 Use the Set - CsCertificate cmdlet to set the certifi cate and specify its type and thumbprint:

Set-CsCertificate -Type Default -Thumbprint < Thumbprint >

 There is no output if the Set - CsCertificate cmdlet runs successfully.

 Creating a Trusted Application

 The steps you take to provision your application are generally the same from application to

application. For any UCMA server - side application, you must provision a trusted application using

the New - CsTrustedApplication cmdlet. If the application uses only user endpoints, no other

provisioning is necessary. If it uses any application endpoints, then you must provision a contact

object for each application endpoint using the New - CsTrustedApplicationEndpoint cmdlet.

 To begin, open the Lync Server Management Shell from the Start menu on any server where it

has been installed. The Lync Server Management Shell is a Windows PowerShell console that

automatically connects to Lync Server in your domain and loads the various cmdlets that you can

use to manage Lync Server.

 To run the cmdlets, you must be logged in as a user who is a member of the RTCUniversalServerAdmins

group in Active Directory and also a local administrator on the server.

 Unifi ed Communications development is much like a fi rst date in that many
of the things you want to do require special permissions. Provisioning, for
instance, requires you to have administrative privileges on both the local
machine and on the server where Lync Server is running. If you have any issues
with the Management Shell, check that you are running it with administrator
permissions.

Provisioning an Application ❘ 179

180 ❘ CHAPTER 7 STARTING UP AND SHUTTING DOWN A UCMA APPLICATION

 Creating a Trusted Application

 The cmdlet for creating a new trusted application has the fairly unsurprising name of New -

 CsTrustedApplication . To create a trusted application, type this cmdlet into Management

Shell and press Enter.

 To encourage laziness, Lync Server Management Shell allows you to type the
fi rst few letters of a cmdlet and press Tab to auto - fi ll the rest of the name. You
can press Tab again to cycle through the options.

 As shown in Figure 7 - 9, you are prompted for a number of required parameters:

 ApplicationId: This is a name for your trusted application. You will use this later to refer to

it when confi guring your collaboration platform. For ease of reference, choose a descriptive

name such as Percival or Bartholomew .

 TrustedApplicationPoolFqdn: This is the fully qualifi ed domain name of the trusted

application pool you created on your application server.

 Port: This is a listening port number for your application. The application will listen for

incoming SIP traffi c from Lync Server on this port. Choosing a high - numbered port that is

unlikely to confl ict with other services is usually easiest.

➤

➤

➤

 It is important to ensure that the listening port you choose is opened on the local
fi rewall for the application server, so that other servers can send messages to the
application successfully on that port.

 FIGURE 7 - 9

 Alternatively, you can specify all the parameters at once:

New-CsTrustedApplication -ApplicationId startup.sample
 -TrustedApplicationPoolFqdn ts.fabrikam.com -Port 14000

 If you need help with a cmdlet, you can enter the cmdlet name followed by - ?
for an explanation of its usage and syntax.

 Viewing a Trusted Application

 To look up the details for a trusted application after creating it, use the Get - CsTrustedApplication

cmdlet. The simplest way to use this cmdlet is to supply the Identity parameter, which is composed of:

 applicationPoolFqdn /urn:application: applicationName

 For instance, to look up the MyUC14App trusted application, enter:

 Get-CsTrustedApplication -Identity ts.fabrikam.com/urn:application:startup.sample

 The result is a number of details on the application, as shown in Figure 7 - 10.

 FIGURE 7 - 10

 You can also express the same command by entering the application ID and the fully qualifi ed

domain name of the trusted application pool separately:

 Get-CsTrustedApplication -ApplicationId urn:application:startup.sample
 -TrustedApplicationPoolFqdn ts.fabrikam.com

Provisioning an Application ❘ 181

182 ❘ CHAPTER 7 STARTING UP AND SHUTTING DOWN A UCMA APPLICATION

 The result is exactly the same.

 Finally, if the application ID is unknown, you can list details on all trusted applications by entering

only the following:

 Get-CsTrustedApplication

 This retrieves all trusted applications that have been created. Because the list is often quite long, the

output can be sent to a fi le using a command like the following:

 Get-CsTrustedApplication > C:\applications.txt

 Creating a Trusted Application Endpoint

 After you ’ ve created the trusted application, the next step is to create one or more endpoints with

which the application can send and receive calls and other communications, publish and subscribe

to presence, and perform other Lync Server operations.

 To create an endpoint for a trusted application, use the New - CsTrustedApplicationEndpoint

cmdlet. Include the following parameters, as shown in Figure 7 - 11.

 ApplicationId: The name of the application in the form urn:application: name .

 TrustedApplicationPoolFqdn: The fully qualifi ed domain name of the trusted application

pool associated with the trusted application.

 SipAddress: The SIP URI that the new endpoint should use, in the form sip: user@domain .

 DisplayName: The name that should be displayed for this endpoint in the Lync client.

➤

➤

➤

➤

 FIGURE 7 - 11

 Viewing a Trusted Application Endpoint

 To retrieve the details for a previously created trusted application endpoint, use the Get -

 CsTrustedApplicationEndpoint cmdlet, with the SIP URI of the endpoint as the Identity

parameter, as shown in Figure 7 - 12.

 As with trusted applications, retrieving the whole list as a fi le by entering something like the

following is possible:

 Get-CsTrustedApplicationEndpoint > C:\endpoints.txt

 This creates a fi le called endpoints.txt , which contains details on every trusted application

endpoint that has been confi gured.

 Deleting Applications and Endpoints

 To remove a trusted application that has been confi gured previously, use the Remove -

 CsTrustedApplication cmdlet . Like Get - CsTrustedApplication , you can run this cmdlet

with just the Identity parameter, as in the following example:

 Remove-CsTrustedApplication -Identity
 ts.fabrikam.com/urn:application:startup.sample

 If any endpoints exist for this trusted application, the cmdlet will ask for confi rmation that these

should be deleted. After you confi rm this, the application and endpoint(s) will be deleted, as shown

in Figure 7 - 13.

 FIGURE 7 - 12

 FIGURE 7 - 13

Provisioning an Application ❘ 183

184 ❘ CHAPTER 7 STARTING UP AND SHUTTING DOWN A UCMA APPLICATION

 To remove a trusted application endpoint without affecting the rest of the application, use Remove -

 CsTrustedApplicationEndpoint . In this case, the Identity parameter should be the SIP URI of

the endpoint, as shown here:

 Remove-CsTrustedApplicationEndpoint -Identity sip:startup.sample@fabrikam.com

 STARTING UP AND SHUTTING DOWN WITH EXPLICIT SETTINGS

 The fi rst order of business in starting any UCMA application is to create an instance

of CollaborationPlatform and start it up. All the other UCMA classes depend on the

collaboration platform in order to operate.

 Simply starting up the collaboration platform and establishing an endpoint by itself does not really

accomplish anything useful, so the code in this chapter will be less exciting than in some of the

subsequent ones. At the same time, you must perform these same steps for every single UCMA

application you develop.

 Because the setup and teardown code is essentially the same in every UCMA application, having a

sort of test harness that you can use for trying things out in UCMA is handy. The next few sections

describe how to build a test harness application, and then go into more detail on the various

methods of starting up and shutting down.

 A UCMA Test Harness

 Whenever you do any UCMA development in Visual Studio, assuming you are using transport -

 layer security (TLS) for the connection with Lync Server (almost always a good idea), you must

run Visual Studio with administrator rights so that your application can access the certifi cate store

when you are debugging. You can do this by right - clicking on Visual Studio and selecting Run as

administrator.

 If you forget to start Visual Studio with administrator rights and then try to
debug a UCMA application, the UCMA runtime will throw a TlsException
when you try to start your collaboration platform with TLS enabled. The
exception is thrown because the process needs access to the local certifi cate store
to retrieve the certifi cate private key, which it uses for TLS. See Chapter 13 for
more details on this.

 After starting Visual Studio, follow these steps to create a project for a basic UCMA application:

 1. Create a new C# class library project. This project will contain the UCMA code for your

application. You can call it StartupShutdown , or, if you prefer, Samuel .

 2. Go to the Solution Explorer, right - click on your project, and choose Add Reference. Add a

reference to the Microsoft.Rtc.Collaboration assembly, which has everything you will

need for core UCMA development.

 3. Return to the Solution Explorer, right - click on the project, and choose Add Reference

again. Add a reference to System.Configuration , which you will use to get your trusted

application information from an App.config fi le.

 4. Now add a second project to your solution. This one should be a console application project

(StartupShutdown.Console , if you like). After creating this project, right - click on it in the

Solution Explorer and choose Add Reference. Switch to the Project tab and add a reference

to the StartupShutdown project.

 Building the Test Harness Class

 The next step is to create a class which will handle startup and shutdown of the collaboration

platform and endpoint. In larger applications, these responsibilities may be split into several classes.

 Add a code fi le called ApplicationEndpointStarter.cs to your UCMA project. This class will

eventually handle starting up the collaboration platform and a single application endpoint. You can

modify this class to try out different methods of initialization and startup.

 To begin building the ApplicationEndpointStarter class, add the following using statements to

the code fi le. Microsoft.Rtc.Collaboration is the namespace for UCMA 3.0 Core, which you

may see referred to as the collaboration API. Microsoft.Rtc.Signaling is the namespace for

the lower - level signaling API (originally UCMA 1.0) on which UCMA 3.0 is built. The other two

namespaces will come in handy later.

using Microsoft.Rtc.Collaboration;
using Microsoft.Rtc.Signaling;
using System.Threading;
using System.Configuration;

Code snippet StartupShutdown\ApplicationEndpointStarter.cs

 Next, add a couple of instance variables to your class to hold references to the CollaborationPlatform

object and the ApplicationEndpoint object:

using System;
using Microsoft.Rtc.Collaboration;
using Microsoft.Rtc.Signaling;
using System.Threading;
using System.Configuration;

namespace Wrox.ProfessionalUC.Chapter7
{
 public class ApplicationEndpointStarterManualSettings

Available for

download on

Wrox.com

Available for

download on

Wrox.com

Available for

download on

Wrox.com

Available for

download on

Wrox.com

Starting Up and Shutting Down with Explicit Settings ❘ 185

186 ❘ CHAPTER 7 STARTING UP AND SHUTTING DOWN A UCMA APPLICATION

 {
 CollaborationPlatform _collaborationPlatform;
 ApplicationEndpoint _appEndpoint;
 }
}

Code snippet StartupShutdown\ApplicationEndpointStarter.cs

 Adding Logging and Certifi cate Helper Classes

 The application needs some way of logging what it is doing. Add another code fi le to your project

called ILogger.cs . This will be an interface that the ApplicationEndpointStarter class can use

to post log messages.

 The interface will defi ne three methods: one that takes only a string as a parameter, another that

also takes an exception, and another that takes a string plus a list of parameters.

 Enter the following code into the new fi le for the ILogger interface:

using System;

namespace StartupShutdown
{
 public interface ILogger
 {
 void Log(string message);

 void Log(string message, Exception ex);

 void Log(string message, params object[] arg);
 }
}

Code snippet StartupShutdown\ILogger.cs

 Having a more robust logging framework later on might be useful, but for now logging to the

console window should be suffi cient. Create a new code fi le, ConsoleLogger.cs , which will contain

an implementation of ILogger that logs all messages to the console window:

using System;

namespace StartupShutdown
{
 public class ConsoleLogger : ILogger
 {
 public void Log(string message)
 {
 Console.WriteLine(message);
 }

 public void Log(string message, Exception ex)

Available for

download on

Wrox.com

Available for

download on

Wrox.com

Available for

download on

Wrox.com

Available for

download on

Wrox.com

 {
 Console.WriteLine(message, ex);
 }

 public void Log(string message, params object[] arg)
 {
 Console.WriteLine(message, arg);
 }
 }
}

Code snippet StartupShutdown\ConsoleLogger.cs

 Before returning to ApplicationEndpointStarter , create one more helper class. This one is a

static class that does nothing but retrieve a private key from the local machine certifi cate store.

This is the certifi cate that the application needs in order to authenticate with Lync Server for

mutual TLS.

 Call the new code fi le CertificateHelper.cs , and add the following code. The GetLocalCertificate

method opens the local machine certifi cate store and iterates through the collection of certifi cates,

returning the fi rst one it fi nds whose subject name matches the fully qualifi ed domain name of the local

machine, and which has a private key.

using System.Net;
using System.Security.Cryptography.X509Certificates;

namespace StartupShutdown
{
 internal static class CertificateHelper
 {
 internal static X509Certificate2 GetLocalCertificate()
 {
 // Get a reference to the local machine certificate store and
 // open it in read-only mode.
 X509Store store = new X509Store(StoreLocation.LocalMachine);
 store.Open(OpenFlags.ReadOnly);

 // Get a reference to the collection of certificates in the store.
 X509Certificate2Collection certificates = store.Certificates;

 // Find the first certificate whose name is the
 // FQDN of the local machine.
 foreach (X509Certificate2 certificate in certificates)
 {
 if (certificate.SubjectName.Name.ToUpper().Contains
 (Dns.GetHostEntry(“localhost”).HostName.ToUpper())
 & & certificate.HasPrivateKey)
 {
 return certificate;

Available for

download on

Wrox.com

Available for

download on

Wrox.com

Starting Up and Shutting Down with Explicit Settings ❘ 187

188 ❘ CHAPTER 7 STARTING UP AND SHUTTING DOWN A UCMA APPLICATION

 }
 }

 return null;
 }
 }
}

Code snippet StartupShutdown\Certifi cateHelper.cs

 Notice that the code uses the ToUpper method to make the comparison between
the certifi cate subject name and the host name case - insensitive. Make sure you
don ’ t forget this step, because the two will not necessarily match case.

 Returning to the ApplicationEndpointStarter class, add another instance variable to hold a

reference to an instance of ILogger , along with a constructor that takes an ILogger instance as a

parameter and stores it in the instance variable.

public class ApplicationEndpointStarter
{
 CollaborationPlatform _collaborationPlatform;
 ApplicationEndpoint _appEndpoint;

 ILogger _logger;

 public ApplicationEndpointStarter(ILogger logger)
 {
 _logger = logger;
 }
}

Code snippet StartupShutdown\ApplicationEndpointStarter.cs

 Starting the Collaboration Platform with Explicit Settings

 The class needs an entry point for starting the UCMA application; this will be the Start method.

Go ahead and add it to your class as follows:

public void Start()
{

Code snippet StartupShutdown\ApplicationEndpointStarter.cs

 To start up the collaboration platform, your application needs a number of settings: the trusted

application name, the GRUU, and the listening port. Those can come from the App.config fi le.

Available for

download on

Wrox.com

Available for

download on

Wrox.com

Available for

download on

Wrox.com

Available for

download on

Wrox.com

It also needs the host name of the server on which the application will be running, which you can

determine using System.Net.Dns .

 GRUUs

 A GRUU, contrary to initial impressions, is not a mythical beast or the noise

you make when Lync calls won ’ t connect because of a complex certifi cate issue.

GRUU stands for Globally Routable User Agent URI, and a GRUU is a URI that is

assigned uniquely to a user agent and can be used to route SIP messages to that user

agent from any user agent client with Internet connectivity.

 Each Lync user has a SIP URI that can be used to route communications to that

user. However, a user can be signed in from multiple locations, in which case the

SIP URI does not uniquely identify an endpoint, or user agent. Communications

sent to that SIP URI will be routed (“ forked ”) to all the registered endpoints for

that user.

 Each of these endpoints has a different GRUU associated with it, which allows the

endpoints to be uniquely identifi ed with a URI.

 A trusted application is identifi ed by a GRUU because it is confi gured for a specifi c

server and so messages intended for it are always directed to the same location.

 // Get the trusted application settings from App.config.
 string applicationName = ConfigurationManager.AppSettings[“applicationName”];
 string localhost = System.Net.Dns.GetHostEntry(“localhost”).HostName;
 int listeningPort =
 int.Parse(ConfigurationManager.AppSettings[“listeningPort”]);
 string gruu = ConfigurationManager.AppSettings[“gruu”];

Code snippet StartupShutdown\ApplicationEndpointStarter.cs

 A ServerPlatformSettings object will hold all of these settings for the initialization of the

collaboration platform:

 // Create a settings object.
 ServerPlatformSettings settings = new ServerPlatformSettings(
 applicationName,
 localhost,
 listeningPort,
 gruu,
 CertificateHelper.GetLocalCertificate()
);

Code snippet StartupShutdown\ApplicationEndpointStarter.cs

Available for

download on

Wrox.com

Available for

download on

Wrox.com

Available for

download on

Wrox.com

Available for

download on

Wrox.com

Starting Up and Shutting Down with Explicit Settings ❘ 189

190 ❘ CHAPTER 7 STARTING UP AND SHUTTING DOWN A UCMA APPLICATION

 Using the ServerPlatformSettings object, create a new instance of CollaborationPlatform and

store a reference to it in the _collaborationPlatform instance variable:

 // Create a new collaboration platform with the settings.
 _collaborationPlatform = new CollaborationPlatform(settings);

Code snippet StartupShutdown\ApplicationEndpointStarter.cs

 Finally, call BeginStartup on _collaborationPlatform in order to start up the platform:

 // Start the platform as an asynchronous operation.
 _collaborationPlatform.BeginStartup(OnPlatformStartupCompleted, null)
}

Code snippet StartupShutdown\ApplicationEndpointStarter.cs

 At this point, the UCMA runtime will begin starting the collaboration platform and initiating a

connection to Lync Server. It will do this on a worker thread, so execution of the Start method will

fi nish right away, while the startup operation continues in the background.

Available for

download on

Wrox.com

Available for

download on

Wrox.com

Available for

download on

Wrox.com

Available for

download on

Wrox.com

 ASYNCHRONOUS METHODS IN UCMA

 Most methods in UCMA are asynchronous, and use the Begin/End pattern for

asynchronous operations. This means that you call a Begin method (for example,

 BeginStartup) to queue up the asynchronous operation for execution by a worker

thread.

 In addition to any other method - specifi c parameters, the Begin method takes two

additional parameters, usually at the end of the parameter list: asyncCallback and

 state . The asyncCallback parameter takes a delegate that represents a callback

method that executes when the operation concludes. The state parameter can be

any object that should be made available to the callback method when it is called.

 The worker thread performs the operation in the background, and when it fi nishes,

it calls the callback method, which must take a single parameter, a reference to an

 IAsyncResult . The callback method must call the corresponding End method (for

example, EndStartup), passing in the IAsyncResult , to fi nish the operation and

throw any exceptions on the application thread.

 The object that was passed in as the state parameter, if any, is accessible in the

 IAsyncResult.AsyncState property (and must be cast to its original type).

 Turning these operations synchronous is actually quite possible by stringing

together the Begin and End methods, but this is a bit like trying to catch the tooth

fairy at work by staying awake all night, and is highly discouraged. The reason is

 The compiler will be complaining right about now that there is no such method as OnPlatform

StartupCompleted , so go ahead and add that in as well. This method does little more than cleanly

fi nish the asynchronous operation, but this is always an important step.

 As mentioned in Chapter 6, always catching RealTimeException when calling any End method

in UCMA is a good practice. This prevents any exceptions from bubbling back up to the UCMA

runtime and crashing your application or causing unpredictable behavior.

private void OnPlatformStartupCompleted(IAsyncResult result)
{
 try
 {
 // Finish the startup operation.
 _collaborationPlatform.EndStartup(result);

 _logger.Log(“Collaboration platform started.”);
 }
 catch (RealTimeException ex)
 {
 _logger.Log(“Platform startup failed: {0}”, ex);
 }
}

Code snippet StartupShutdown\ApplicationEndpointStarter.cs

 Establishing an Application Endpoint

 After the collaboration platform starts up, the application must establish an endpoint. Add a new

method, EstablishEndpoint , to your class to do this:

private void EstablishApplicationEndpoint()
{

Code snippet StartupShutdown\ApplicationEndpointStarter.cs

Available for

download on

Wrox.com

Available for

download on

Wrox.com

Available for

download on

Wrox.com

Available for

download on

Wrox.com

that some of the operations are quite long - running (a good example is establishing

a call, which can take a few seconds or more if the recipient does not answer right

away), and it ’ s not absolutely guaranteed that they will always fi nish.

 Along those same lines, throwing unhandled exceptions or blocking for long

periods of time in the callback methods are also not good ideas. There is only

one worker thread for each major UCMA object (CollaborationPlatform ,

 ApplicationEndpoint , UserEndpoint , Conversation , and so on), and if you

block it, no other operations can be processed for that object.

Starting Up and Shutting Down with Explicit Settings ❘ 191

192 ❘ CHAPTER 7 STARTING UP AND SHUTTING DOWN A UCMA APPLICATION

 Retrieve the confi guration for the application endpoint from App.config . The standard port for

TLS is 5061; if for whatever reason your Lync Server deployment uses a different TLS port, you can

switch the value of the tlsPort variable.

 string contactUri = ConfigurationManager.AppSettings[“contactUri”];
 string proxyServerFqdn = ConfigurationManager.AppSettings[“proxyServerFqdn”];
 int tlsPort = 5061;

Code snippet StartupShutdown\ApplicationEndpointStarter.cs

 Use these settings to create an instance of ApplicationEndpointSettings , and set the

 UseRegistration property on the settings object to true . This causes the application endpoint to

register with Lync Server, which it would not do by default.

 ApplicationEndpointSettings settings =
 new ApplicationEndpointSettings(contactUri, proxyServerFqdn, tlsPort);

 Code snippet StartupShutdown\ApplicationEndpointStarter.cs

 Initialize a new instance of ApplicationEndpoint , passing in the reference to your collaboration

platform and the newly created ApplicationEndpointSettings . Store a reference to the new

endpoint in _ appEndpoint .

 _appEndpoint = new ApplicationEndpoint(_collaborationPlatform, settings);

 Code snippet StartupShutdown\ApplicationEndpointStarter.cs

 Whenever the ApplicationEndpoint class changes state, it calls the StateChanged event. Add an

event handler for StateChanged so that you can watch the state changes as they occur.

 _appEndpoint.StateChanged +=
 new EventHandler < LocalEndpointStateChangedEventArgs > (
 _appEndpoint_StateChanged);

 Code snippet StartupShutdown\ApplicationEndpointStarter.cs

 Finally, call BeginEstablish to establish the endpoint.

 _logger.Log(“Establishing application endpoint...”);

 _appEndpoint.BeginEstablish(OnApplicationEndpointEstablishCompleted, null);
}

 Code snippet StartupShutdown\ApplicationEndpointStarter.cs

Available for

download on

Wrox.com

Available for

download on

Wrox.com

Available for

download on

Wrox.com

Available for

download on

Wrox.com

Available for

download on

Wrox.com

Available for

download on

Wrox.com

Available for

download on

Wrox.com

Available for

download on

Wrox.com

Available for

download on

Wrox.com

Available for

download on

Wrox.com

 Now create the callback method, OnApplicationEndpointEstablishCompleted . In addition to

calling EndEstablish , it also sends some details on the endpoint to the log, just so you can see that

it is really established.

private void OnApplicationEndpointEstablishCompleted(IAsyncResult result)
{
 try
 {
 _appEndpoint.EndEstablish(result);

 _logger.Log(“Application endpoint established.”);
 _logger.Log(“Contact URI: {0}”, _appEndpoint.OwnerUri);
 _logger.Log(“Endpoint URI: {0}”, _appEndpoint.EndpointUri);
 }
 catch (RealTimeException ex)
 {
 _logger.Log(“Application endpoint establishment failed: {0}”, ex);
 }
}

 Code snippet StartupShutdown\ApplicationEndpointStarter.cs

 The application should begin establishing the endpoint only after the collaboration platform is fully

started up. Go back to the OnPlatformStartupCompleted callback method and add a line of code

to call EstablishCompleted after the startup operation fi nishes.

private void OnPlatformStartupCompleted(IAsyncResult result)
{
 try
 {
 // Finish the startup operation.
 _collaborationPlatform.EndStartup(result);

 _logger.Log(“Collaboration platform started.”);

 EstablishApplicationEndpoint();

 }
 catch (RealTimeException ex)
 {
 _logger.Log(“Platform startup failed: {0}”, ex);
 }
}

 Code snippet StartupShutdown\ApplicationEndpointStarter.cs

 Also, add the event handler for ApplicationEndpoint.StateChanged . This can simply log the

state change.

private void _appEndpoint_StateChanged(object sender,
 LocalEndpointStateChangedEventArgs e)
{

Available for

download on

Wrox.com

Available for

download on

Wrox.com

Available for

download on

Wrox.com

Available for

download on

Wrox.com

Available for

download on

Wrox.com

Available for

download on

Wrox.com

Starting Up and Shutting Down with Explicit Settings ❘ 193

194 ❘ CHAPTER 7 STARTING UP AND SHUTTING DOWN A UCMA APPLICATION

 _logger.Log(“Application endpoint state changed from {0} to {1}”,
 e.PreviousState,
 e.State);
}

 Code snippet StartupShutdown\ApplicationEndpointStarter.cs

 Shutting Down the Platform and Endpoint Cleanly

 Now that the platform and endpoint are both set up and started, it ’ s time to shut everything down.

Add a public ShutDown method to the class, which kicks off the shutdown process by terminating

the application endpoint.

public void ShutDown()
{
 _logger.Log(“Terminating application endpoint...”);

 _appEndpoint.BeginTerminate(OnApplicationEndpointTerminateCompleted, null);
}

Code snippet StartupShutdown\ApplicationEndpointStarter.cs

 As you can see, the shutdown process is more or less the reverse of startup; the fi rst step is to

terminate the endpoint, and after the endpoint is terminated the application can shut down the

platform.

Available for

download on

Wrox.com

Available for

download on

Wrox.com

 The callback for the endpoint termination can fi nish the asynchronous operation and then begin

shutting down the collaboration platform.

private void OnApplicationEndpointTerminateCompleted(IAsyncResult result)
{
 try
 {
 _appEndpoint.EndTerminate(result);

 _logger.Log(“Application endpoint terminated.”);

 ShutDownPlatform();
 }
 catch (RealTimeException ex)

Available for

download on

Wrox.com

Available for

download on

Wrox.com

 Exiting a UCMA application without properly shutting down the collaboration
platform can cause memory leaks, because unmanaged resources may not be
released correctly. You needn ’ t worry about it too much during debugging if your
application crashes a few times without shutting down cleanly, but ensuring that
a clean shutdown always occurs in any production application is important.

 {
 _logger.Log(“Application endpoint termination failed: {0}”, ex);
 }
}

private void ShutDownPlatform()
{
 _logger.Log(“Shutting down platform...”);

 _collaborationPlatform.BeginShutdown(OnPlatformShutdownCompleted, null);
}

 Code snippet StartupShutdown\ApplicationEndpointStarter.cs

 Last but not least, the callback method for the platform shutdown calls the EndShutdown method

and writes one fi nal log message:

private void OnPlatformShutdownCompleted(IAsyncResult result)
{
 try
 {
 _collaborationPlatform.EndShutdown(result);

 _logger.Log(“Platform shut down.”);
 }
 catch (RealTimeException ex)
 {
 _logger.Log(“Platform shutdown failed: {0}”, ex);
 }
}

 Code snippet StartupShutdown\ApplicationEndpointStarter.cs

 Adding Wait Handles for Startup and Shutdown

 The UCMA code is complete and ready to be run. One more addition to the code will make things

easier for the host console application. When the console application calls the Start method on

the ApplicationEndpointStarter , having a way for it to wait until the startup has fi nished before

moving on to the shutdown process will be helpful. Add two ManualResetEvent instance variables

to the class. These function as wait handles for startup and for shutdown.

// A wait handle for startup and one for shutdown.
// They are set to unsignaled to start.
ManualResetEvent _startupWaitHandle = new ManualResetEvent(false);
ManualResetEvent _shutdownWaitHandle = new ManualResetEvent(false);

 Code snippet StartupShutdown\ApplicationEndpointStarter.cs

Available for

download on

Wrox.com

Available for

download on

Wrox.com

Available for

download on

Wrox.com

Available for

download on

Wrox.com

Starting Up and Shutting Down with Explicit Settings ❘ 195

196 ❘ CHAPTER 7 STARTING UP AND SHUTTING DOWN A UCMA APPLICATION

 Return to the OnApplicationEndpointEstablishCompleted and add a line of code (indicated in

bold) to signal the startup wait handle:

private void OnApplicationEndpointEstablishCompleted(IAsyncResult result)
{
 try
 {
 _appEndpoint.EndEstablish(result);

 _logger.Log(“Application endpoint established.”);
 _logger.Log(“Contact URI: {0}”, _appEndpoint.OwnerUri);
 _logger.Log(“Endpoint URI: {0}”, _appEndpoint.EndpointUri);

 _startupWaitHandle.Set();

 }
 catch (RealTimeException ex)
 {
 _logger.Log(“Application endpoint establishment failed: {0}”, ex);
 }
}

 Code snippet StartupShutdown\ApplicationEndpointStarter.cs

 Add a corresponding line of code (indicated in bold) to the OnPlatformShutdownCompleted

callback method:

private void OnPlatformShutdownCompleted(IAsyncResult result)
{
 try
 {
 _collaborationPlatform.EndShutdown(result);

 _logger.Log(“Platform shut down.”);

 _shutdownWaitHandle.Set();

 }
 catch (RealTimeException ex)
 {
 _logger.Log(“Platform shutdown failed: {0}”, ex);
 }
}

 Code snippet StartupShutdown\ApplicationEndpointStarter.cs

 Now add two more public methods to the class. Each one will block until its respective wait handle

has been signaled.

public void WaitForStartup()
{
 _startupWaitHandle.WaitOne();
}

public void WaitForShutdown()
{
 _shutdownWaitHandle.WaitOne();
}

 Code snippet StartupShutdown\ApplicationEndpointStarter.cs

 Building the Console Application

 With your starter class complete, you can open the Program.cs fi le in your console application

project and add some code to initialize and run your ApplicationEndpointStarter class:

static void Main(string[] args)
{
 ApplicationEndpointStarter sample =
 new ApplicationEndpointStarter (new ConsoleLogger());

 sample.Start();
 sample.WaitForStartup();

 System.Console.WriteLine(“Hit enter to stop”);
 System.Console.ReadLine();

 sample.ShutDown();
 sample.WaitForShutdown();

 System.Console.WriteLine(“Hit enter to exit”);
 System.Console.ReadLine();
}

 Code snippet StartupShutdown\Program.cs

 Running the Test Harness

 All that ’ s left is to add an App.config fi le to the console application project, containing the settings

you referenced in the startup code:

 < configuration >
 < startup >
 < supportedRuntime version=”v2.0.50727”/ >
 < /startup >
 < appSettings >
 < add key=”applicationName” value=”startup.sample”/ >
 < add key=”gruu” value=” < your trusted application’s gruu > ”/ >
 < add key=”listeningPort” value=” < your trusted application’s listening port > ”/ >
 < add key=”contactUri” value=” < contact for your application > ”/ >
 < add key=”proxyServerFqdn” value=” < CS server FQDN > ”/ >
 < /appSettings >
 < /configuration >

 Code snippet StartupShutdown\App.confi g

Available for

download on

Wrox.com

Available for

download on

Wrox.com

Available for

download on

Wrox.com

Available for

download on

Wrox.com

Starting Up and Shutting Down with Explicit Settings ❘ 197

198 ❘ CHAPTER 7 STARTING UP AND SHUTTING DOWN A UCMA APPLICATION

 With that in place, go ahead and run your application. Assuming everything is confi gured properly,

you should see something like this in the console window:

Starting collaboration platform...
Collaboration platform started.
Establishing application endpoint...
Application endpoint state changed from Idle to Establishing
Application endpoint state changed from Establishing to Established
Application endpoint established.
Contact URI: sip:startup.sample.app@fabrikam.com
Endpoint URI: sip:appsrv.fabrikam.com@fabrikam.com;gruu;opaque=srvr:startup.samp
le:lodROR5GXVeJton_2mjypwAA
Hit enter to stop

 After you press Enter, the shutdown code runs:

Terminating application endpoint...
Application endpoint state changed from Established to Terminating
Application endpoint state changed from Terminating to Terminated
Application endpoint terminated.
Shutting down platform...
Platform shut down.
Hit enter to exit

 Congratulations. You ’ ve just successfully run a simple, but complete, UCMA application.

 LOADING TRUSTED APPLICATION SETTINGS AUTOMATICALLY

 Given how simple the steps are to get a UCMA application up and running, you may have felt

that the most diffi cult part of the process was copying the GRUU correctly into the App.config

fi le. For those of you who found this irritating, and particularly those who suffered through this

step many times with the previous version of the API, UCMA 2.0, glad tidings are here. UCMA 3.0

introduces a feature, usually referred to as “ auto - provisioning, ” which allows your application to

automatically load all of those troublesome alphanumeric hemorrhages without the need for you

to enter them anywhere in confi guration or code. All that you need to provide in order for this to

work is the application ID from your trusted application, which you may remember looks something

like this:

urn:application:maximillian

 Applications that use one or more application endpoints can also automatically discover settings for

all application endpoints that are provisioned for that trusted application by means of an event on

the CollaborationPlatform class. These two approaches often go together, but can just as easily

be used separately, so that automatically loading settings for a collaboration platform and then

manually entering settings for an application endpoint are perfectly possible.

 Starting a Collaboration Platform with
ProvisionedApplicationPlatformSettings

 Loading provisioning settings automatically when starting a collaboration platform is as simple

as using an instance of ProvisionedApplicationPlatformSettings to provide settings when

initializing the CollaborationPlatform object.

 ProvisionedApplicationPlatformSettings takes two parameters:

 applicationUserAgent is the identifi er for the application that will appear in SIP messages

in the User - Agent header. It doesn ’ t have much effect on your application ’ s behavior, but

could be useful if you look at the SIP messages for debugging.

 applicationId is an ID of the form urn:application: something that you created for

your trusted application when provisioning it.

 Modifi ed to use ProvisionedApplicationPlatformSettings , the Start method in the test

harness application would look like this:

public void Start()
{
 // Get the application ID from App.config.

 string applicationUserAgent = “maximillian”;

 string applicationId =

 ConfigurationManager.AppSettings[“urn:application:maximillian”];

 // Create a settings object.

 ProvisionedApplicationPlatformSettings settings =

 new ProvisionedApplicationPlatformSettings(applicationUserAgent,

 applicationId);

 // Create a new collaboration platform with the settings.
 _collaborationPlatform = new CollaborationPlatform(settings);

 _logger.Log(“Starting collaboration platform...”);

 // Start the platform as an asynchronous operation.
 _collaborationPlatform.BeginStartup(OnPlatformStartupCompleted, null);
}

 Nothing else in the code needs to change in order for the application to use auto - provisioning for the

collaboration platform.

 Discovering Application Endpoints Automatically

 UCMA can also retrieve provisioning information automatically for application endpoints.

There is no ProvisionedApplicationEndpointSettings ; instead, there is a method on the

 CollaborationPlatform class called RegisterForApplicationEndpointSettings , which

➤

➤

Loading Trusted Application Settings Automatically ❘ 199

200 ❘ CHAPTER 7 STARTING UP AND SHUTTING DOWN A UCMA APPLICATION

takes an event handler. In the test harness application, this could go just after the line of code that

initializes the collaboration platform:

public void Start()
{
 // Get the application ID from App.config.
 string applicationUserAgent = “maximillian”;
 string applicationId =
 ConfigurationManager.AppSettings[“urn:application:maximillian”];

 // Create a settings object.
 ProvisionedApplicationPlatformSettings settings =
 new ProvisionedApplicationPlatformSettings(applicationUserAgent,
 applicationId);

 // Create a new collaboration platform with the settings.
 _collaborationPlatform = new CollaborationPlatform(settings);

 _collaborationPlatform.RegisterForApplicationEndpointSettings(

 OnApplicationEndpointSettingsDiscovered);

 _logger.Log(“Starting collaboration platform...”);

 // Start the platform as an asynchronous operation.
 _collaborationPlatform.BeginStartup(OnPlatformStartupCompleted, null);
}

 UCMA calls the handler delegate supplied to this method once for each application endpoint

associated with the trusted application. The event arguments contain a reference to an instance of

 ApplicationEndpointSettings , which you can use to initialize the new ApplicationEndpoint object.

 Here is what an event handler might look like. Because this application only needs a single

application endpoint, the event handler keeps track of how many endpoints the application has

already discovered, and uses only the fi rst one. (If the application were designed to use multiple

endpoints, the handler could initialize each one and store them in a collection or another object.)

private void OnApplicationEndpointSettingsDiscovered(object sender,
 ApplicationEndpointSettingsDiscoveredEventArgs args)
{
 // Keep track of how many endpoints we’ve found
 // so that we only take one.
 Interlocked.Increment(ref _endpointsDiscovered);

 if (_endpointsDiscovered > 1)
 {
 // We’ve already found an endpoint
 // and we don’t need another one. Sorry!
 return;
 }

 _appEndpoint = new ApplicationEndpoint(_collaborationPlatform,
 args.ApplicationEndpointSettings);

 _appEndpoint.BeginEstablish(OnApplicationEndpointEstablishCompleted, null);
}

 After the application has a reference to the ApplicationEndpointSettings object, the process of

establishing the endpoint is exactly the same as if you initialized the settings manually.

 Note that the number of times the event handler runs depends on how many application endpoints

are provisioned for the trusted application. For this reason, code that uses auto - discovery of

application endpoints should not depend on fi nding a certain number of them if it can be avoided,

or at least should gracefully handle conditions where the wrong number of endpoints has been

provisioned.

 PREPARING ENDPOINTS FOR AN APPLICATION

 Chapter 6 introduces the concept of endpoints and offers some guidance for choosing between user

endpoints and application endpoints. This section describes how to confi gure settings for an instance

of ApplicationEndpoint or UserEndpoint to fi t the needs of the UCMA application.

 Using ApplicationEndpoint for Services

 As mentioned in Chapter 6, the ApplicationEndpoint class is most suited to highly available

Lync services that do not act on behalf of specifi c users, such as “ bots ” or interactive voice response

systems.

 The settings for an instance of ApplicationEndpoint are supplied in the form of an

 ApplicationEndpointSettings object. When an application uses auto - provisioning, the settings

object is provided when an application endpoint is discovered; otherwise, it must be created from

scratch using the constructor. In either case, the properties on the settings object can be changed

to customize the other settings.

 ApplicationEndpointSettings has a number of these properties, which control the behavior of

the endpoint. Table 7 - 1 covers some of the more commonly used ones.

 TABLE 7 - 1: Properties of ApplicationEndpointSettings

 PROPERTY DESCRIPTION

 AutomaticPresencePublicationEnabled If this is true , UCMA automatically publishes an initial

presence state for the endpoint when it starts up.

 EndpointUserAgent Determines what text will appear in the User - Agent

SIP header for messages from this endpoint.

 IsDefaultRoutingEndpoint If this is true , UCMA routes any messages that

are sent to the application but are not matched

with any specifi c endpoint to this endpoint. For

example, messages where the destination URI is

the GRUU of the application rather than a SIP URI

will go to the endpoint in this case.

Preparing Endpoints for an Application ❘ 201

continues

202 ❘ CHAPTER 7 STARTING UP AND SHUTTING DOWN A UCMA APPLICATION

 PROPERTY DESCRIPTION

 MaxRegisterRetries Determines how many times the endpoint tries to

register with Lync Server before giving up.

 Presence Used to set the presence information that will be

published on endpoint startup if automatic presence

publication is enabled. See Chapter 9 for details.

 PresenceBasedScreeningDisabled In short, when set to false this allows endpoints to

use the Do Not Disturb presence to block incoming

messages. In order for this property to work, the

 UseRegistration property must also be true .

 UseRegistration If true , this property tells the endpoint to

register with Lync Server. The default is false ,

because application endpoints are not required

to register. This must be true if the endpoint will

be publishing presence updates that expire when

the endpoint “ signs out of Lync, ” as opposed to

persistent presence states, which never expire.

TABLE 7-1 (continued)

 ENDPOINT TYPE AND SUBTYPE

 Two other properties on ApplicationEndpointSettings control how the endpoint

is treated by other Lync endpoints: EndpointType and EndpointSubtype .

 EndpointType has four possible values: User , Application , Gateway , and

 Conference . Normally, only the fi rst two will be of any use for a UCMA

application. They control how calls are routed in a multi - modal conversation. If

the endpoint type is Application , any modalities that are added to a conversation

with this endpoint must be routed to exactly the same endpoint, and not to another

endpoint owned by the same user (that is, with the same SIP URI). On the other

hand, if the endpoint type is User , any calls for modalities that are added are

routed to all endpoints representing that user — so that a user can pick up the

audio on a phone while typing IM messages on the computer, for example.

 The default value is almost always appropriate for this property.

 The EndpointSubtype property gives further detail on what purpose the endpoint

serves (if it belongs to the Application category), with values of None , Principal ,

 MessageTaker , Attendant , and Information . Normally this can be left at the

default value of Attendant .

 To change these values, call the SetEndpointType method on

 ApplicationEndpointSettings .

 UserEndpoint has the same properties, but does not allow them to be modifi ed.

 Most applications that use ApplicationEndpoint , being intended as highly available services,

do not need to make changes to their presence state, and simply need to appear as available in

the contact lists of potential users. For these applications, UCMA makes publishing a persistent

presence state that does not expire possible.

 In UCMA 3.0, publishing this type of presence on application startup is quite easy. Chapter 9

describes how to modify the ApplicationEndpointSettings object to do this.

 Using UserEndpoint for Clients

 The UserEndpoint class, as discussed in Chapter 6, is best for applications that act on behalf

of Lync users or provide a client interface of some kind for them. Instances of this class are

confi gured with a UserEndpointSettings object.

 There is no automatic endpoint discovery for user endpoints, as there is for application endpoints,

because user endpoints are not associated with specifi c applications. To create an instance of

 UserEndpointSettings , use the constructor, passing in the same three parameters as for an

instance of ApplicationEndpointSettings :

UserEndpointSettings settings =
 new UserEndpointSettings(contactUri, proxyServerFqdn, tlsPort);

 UserEndpointSettings , like ApplicationEndpointSettings , has a number of additional

properties that you may set to control the endpoint ’ s behavior; Table 7 - 2 lists some of these.

 TABLE 7 - 2: Properties of UserEndpointSettings

 PROPERTY DESCRIPTION

 AutomaticPresencePublicationEnabled If true , causes UCMA to automatically publish

presence for the endpoint on startup, as described

in Chapter 9.

 Credential Contains the credentials that will be used to sign

in to Lync Server as the user represented by the

endpoint. When the endpoint is part of a trusted

application, the credential is not necessary, and

Lync Server will allow the application to register as

any user.

 EndpointUserAgent Determines what text appears in the User - Agent

SIP header for messages from this endpoint.

 MaxRegisterRetries Determines how many times the endpoint tries to

register with Lync Server before giving up.

Preparing Endpoints for an Application ❘ 203

continues

204 ❘ CHAPTER 7 STARTING UP AND SHUTTING DOWN A UCMA APPLICATION

 As with application endpoints, UCMA 3.0 can automatically publish presence information for a

user endpoint on startup. Chapter 9 describes this mechanism in more detail.

 SHUTTING DOWN WITHOUT DROPPING CALLS

 Inevitably, performing some sort of maintenance on a UCMA server application becomes necessary

at some point. If the application handles many communications, shutting it down without

interrupting any calls or chat sessions that are in progress is important.

 UCMA 3.0 introduces a draining feature which makes taking down services for maintenance in this

way easy. An application that is being drained waits for all currently active communication sessions

to conclude, while rejecting any new incoming ones. If the application is load balanced, Lync

automatically redirects incoming calls to an active instance of the application.

 After all calls have terminated, the draining operation completes and UCMA calls the callback

method, at which point the application can continue with shutdown. Because the draining is not

considered complete until all calls fi nish on their own, this process can potentially take quite a

long time. In some cases, application developers may wish to use a Timer object or some other

mechanism to force shutdown after a certain period of time if the draining has not concluded.

 PROPERTY DESCRIPTION

 Presence Used to set the presence information that will be

published on endpoint startup if automatic presence

publication is enabled. See Chapter 9 for details.

 PresenceBasedScreeningDisabled Set this to true to allow other users to send

messages to this endpoint even when the presence

state is Do Not Disturb.

TABLE 7-2 (continued)

 Both application endpoints and user endpoints can take advantage of the
draining capability in UCMA 3.0.

 Telling an endpoint to begin draining is simple: Call the BeginDrain method on the endpoint

object, as the following code demonstrates:

public void Drain()
{
 _logger.Log(“Draining endpoint.”);

Available for

download on

Wrox.com

Available for

download on

Wrox.com

 try
 {
 _appEndpoint.BeginDrain(OnDrainingCompleted, null);
 }
 catch (InvalidOperationException ioex)
 {
 _logger.Log(“Failed draining endpoint.”, ioex);
 }
}

private void OnDrainingCompleted(IAsyncResult result)
{
 try
 {
 _appEndpoint.EndDrain(result);

 // Begin terminating the endpoint, etc.
 }
 catch (RealTimeException rtex)
 {
 _logger.Log(“Failed draining endpoint.”);
 }
}

 Code snippet Draining\DrainingSample.cs

 After BeginDrain and the corresponding EndDrain method are called, any subsequent calls into the

endpoint are declined. The UCMA runtime invokes the callback method (OnDrainingCompleted

in the preceding example) after all active calls have completed. At this point, the application can call

the BeginTerminate method on the endpoint to start the shutdown process.

 TROUBLESHOOTING STARTUP AND PROVISIONING

 As touched upon previously, Unifi ed Communications development requires quite a bit more

environment setup than better - known development platforms such as, say, ASP.NET. With Visual

Studio and perhaps a SQL Server Express instance, a single developer can write, run, and debug

an ASP.NET website on the local machine, without any other special setup. Running a UCMA

application, on the other hand, requires quite a few complex dependencies. Lync Server must be

deployed and confi gured on the network, the UCMA application must be able to connect to it,

and any number of misconfi gurations can prevent the application from even starting up. At times,

starting a server - side application for Lync Server on an unfamiliar environment can feel like an

insurmountable task requiring superhuman endurance.

 Because startup and shutdown are so uniform between different UCMA applications, most of

the problems that developers encounter with the startup code can be traced to one of a handful of

underlying causes. With experience, unifi ed communications developers begin to notice the patterns

and recognize certain common issues when they occur, but those who are just starting out can fi nd

themselves using up hours of debugging time on identifying the same issues over and over.

Troubleshooting Startup and Provisioning ❘ 205

206 ❘ CHAPTER 7 STARTING UP AND SHUTTING DOWN A UCMA APPLICATION

 For each of the common symptoms, having a circuit of things to check can help. More often than

not, by trying the common fi xes one by one, you can quickly resolve issues with the collaboration

platform or endpoints.

 The common issues fall into two large categories: diffi culties with provisioning a trusted application

or application endpoint, and errors encountered while trying to start a UCMA application.

 Troubleshooting a Trusted Service

 Lync Server in its simplest confi gurations still requires a fairly complex server architecture, and

developers who do not have a background in confi guring Lync Server may fi nd the application

provisioning process challenging at fi rst. This section covers some common issues that can arise

during application provisioning and how to resolve them.

 Fixing Insui cient Permissions Errors in Provisioning

 To run the PowerShell cmdlets that create or modify trusted application pools and trusted applications,

a user must be a domain administrator. Trying to run one of these cmdlets without the necessary

permissions results in an error much like the one shown in Figure 7 - 14.

 FIGURE 7 - 14

 A user who is a member of the RTCUniversalServerAdmins group in Active Directory and who

is also a local administrator on the application server can create and modify trusted application

endpoints.

 Fixing a Missing Trusted Application Pool

 Because each trusted application object is tied to a specifi c server, simply moving a UCMA

application to another server and running it with the same provisioning settings is not possible. In

fact, a close inspection of the GRUU reveals that the server name is incorporated into the GRUU so

that identifying which server a particular trusted application is associated with is fairly easy.

 Preparing a new server for a UCMA application requires creating a new trusted application pool

and trusted application using the PowerShell cmdlets described in the section “ Provisioning an

Application ” earlier in this chapter.

 If you attempt to create a trusted application on a server that is not part of a trusted application

pool, the PowerShell cmdlet will fail with an error message, as shown in Figure 7 - 15.

 FIGURE 7 - 15

 In this case, either creating a new trusted application pool or, if the application is load balanced,

running New - CsTrustedApplicationComputer to add a new server to the existing application

pool is necessary.

 Troubleshooting Errors on Startup

 An application can run into errors either on starting the collaboration platform or while establishing

endpoints. Most of the issues that come up during these actions have to do with the provisioning

settings for the application and can be resolved by double - checking these settings for various

common errors.

 Dealing with a Failed to Listen on Any Address and Port Supplied Message

 If a UCMA application tries to start up a collaboration platform using the same provisioning

settings as another UCMA application that is already running, it will fail with a

 ConnectionFailureException with the message “ Failed to listen on any address and port

supplied. ” Having another instance of the application running is the most common reason for this

somewhat confusing exception message. This can be particularly bewildering if the other process

is running in the context of another user on the same server. If an application fails to start with

this exception, check for other UCMA applications running on the server using the same trusted

application. See Chapter 13 for more advice on troubleshooting this problem.

Troubleshooting Startup and Provisioning ❘ 207

208 ❘ CHAPTER 7 STARTING UP AND SHUTTING DOWN A UCMA APPLICATION

 Troubleshooting TLS Exceptions

 Using transport - layer security (TLS) for the connection with Lync Server whenever possible is

recommended for any server - side application. For an application to use TLS, however, it must

authenticate with Lync Server using a certifi cate. If an application throws a TlsException on

startup, chances are it does not have a certifi cate to use for TLS.

 The simplest explanation in these cases is that a valid certifi cate was never installed on the server where

the application is running. The certifi cate must be in the local machine store, in the Personal folder, and

its subject name must be the fully qualifi ed domain name (FQDN) of the application server.

 If such a certifi cate is not installed on the application server, you must install it. Refer to the

instructions in the previous chapter on installing certifi cates trusted by Lync Server on an

application server.

 If the certifi cate is installed, the possibility exists that the application cannot access it because it

does not have suffi cient permissions. This happens most often because developers forget to open

Visual Studio with administrator rights (by right - clicking on Visual Studio and selecting Run as

administrator). When running with administrator permissions, the Visual Studio process will have

no trouble accessing the certifi cate store and retrieving the certifi cate to use for TLS.

 If the application is being run by a service account, the service account must be granted read

permissions on the private key for this certifi cate. The easiest way to do this is through the

Certifi cates snap - in in Microsoft Management Console, by right - clicking on the certifi cate and

selecting All Tasks ➪ Manage Private Keys.

 See Chapter 13 for more details.

 Fixing Failures with Auto - Provisioning

 The section “ Confi guring Management Store Replication ” earlier in this chapter describes how

to confi gure replication from the master Central Management Store into the local management

store replica on the application server. If this step is not completed on the application server,

auto - provisioning using ProvisionedApplicationSettings will not work properly. If a UCMA

application will not start using auto - provisioning on a new server but works fi ne with manual

provisioning, likely this step has been missed. See the section “ Confi guring Management Store

Replication ” earlier in this chapter for step - by - step instructions.

 SUMMARY

 In this chapter, you have learned how to provision and build a functioning UCMA application that

brings up a Lync endpoint and shuts down cleanly. You have also learned how to drain endpoints to

shut down without interrupting communications.

 The next chapter covers one of the most important and fundamental topics in UCMA: how to

establish, accept, and control two - party communication sessions.

Two - Party Call Control with UCMA

 WHAT ’ S IN THIS CHAPTER

 Managing calls

 Working with media fl ows

 Monitoring call state

 Using quality of service metrics

 Retrieving call information

 Call parking

 Managing communication sessions is the bread and butter of the Unifi ed Communications

Managed API (UCMA). Every form of communication supported by Lync — audio, video,

instant messaging, application sharing — can be reduced to an SIP signaling session plus some

sort of transfer of media. In UCMA parlance, these communications are known as calls and

are represented by Call objects in code.

 This chapter describes how applications can set up, manage, and tear down communication

sessions using the various call control APIs in UCMA.

 PLACING OUTBOUND CALLS WITH UCMA

 Establishing an outbound call from the application to a remote endpoint is one of the most

common tasks with UCMA. The three main steps in placing an outbound call in code are:

 1. Creating the Conversation

 2. Creating the Call

 3. Establishing the Call asynchronously

➤

➤

➤

➤

➤

➤

 8

D
o

210 ❘ CHAPTER 8 TWO-PARTY CALL CONTROL WITH UCMA

 The next few sections describe each of these steps in gruesome detail, explaining the process for

performing each operation in code and delving into the SIP signaling that happens behind the

scenes during the call establishment. The code snippets are taken from sample applications that are

available on this book ’ s website at www.wrox.com .

 The following code shows a class that places an outbound instant messaging call to a remote

endpoint.

using System;
using System.Configuration;
using System.Threading;
using Microsoft.Rtc.Collaboration;
using Microsoft.Rtc.Collaboration.AudioVideo;
using Microsoft.Rtc.Signaling;

namespace TwoPartyCallControl
{
 public class OutboundInstantMessagingCallSample : ISampleComponent
 {
 ApplicationEndpoint _appEndpoint;
 InstantMessagingCall _imCall;
 string _destinationSipUri;

 // A wait handle for startup and one for shutdown.
 // They are set to unsignaled to start.
 ManualResetEvent _startupWaitHandle =
 new ManualResetEvent(false);
 ManualResetEvent _shutdownWaitHandle =
 new ManualResetEvent(false);

 ILogger _logger;

 public OutboundInstantMessagingCallSample(
 ApplicationEndpoint endpoint, ILogger logger)
 {
 _appEndpoint = endpoint;
 _logger = logger;
 }

 public void Start()
 {
 Console.Write(“Enter destination URI: “);
 _destinationSipUri = Console.ReadLine();

 EstablishCall();
 }

 private void EstablishCall()
 {
 // Create a new Conversation.

 Conversation conversation = new Conversation(_appEndpoint);

 // Create a new IM call.

Available for

download on

Wrox.com

Available for

download on

Wrox.com

http://www.wrox.com

Placing Outbound Calls with UCMA ❘ 211

 _imCall = new InstantMessagingCall(conversation);

 try

 {

 // Establish the IM call.

 _imCall.BeginEstablish(_destinationSipUri,

 new CallEstablishOptions(),

 result =>

 {

 try

 {

 // Finish the asynchronous operation.

 _imCall.EndEstablish(result);

 }

 catch (RealTimeException ex)

 {

 // Catch and log exceptions.

 _logger.Log(“Failed establishing IM call”,

 ex);

 }

 },

 null

);

 }

 catch (InvalidOperationException ioex)

 {

 _logger.Log(“Failed establishing IM call”, ioex);

 }

 }

 public void Stop()
 {
 // Terminate the IM call if necessary.

 if (_imCall.State != CallState.Terminating & &
 _imCall.State != CallState.Terminated & &
 _imCall.State != CallState.Idle)
 {
 try
 {
 _imCall.BeginTerminate(ar = >
 {
 try
 {
 _imCall.EndTerminate(ar);
 }
 catch (RealTimeException rtex)
 {
 _logger.Log(“Failed terminating IM call.”,
 rtex);
 }
 },
 null);
 }
 catch (InvalidOperationException ioex)

212 ❘ CHAPTER 8 TWO-PARTY CALL CONTROL WITH UCMA

 {
 _logger.Log(“Failed terminating IM call.”, ioex);
 }
 }
 }
 }
}

 Code snippet TwoPartyCallControl\OutboundInstantMessagingCallSample.cs

 The section of the code that actually creates and initiates the outgoing call is highlighted in bold.

Notice that placing the call takes only a few lines of code. This is because UCMA is performing

some sleight of hand. When you call the BeginEstablish method, UCMA handles an entire SIP

handshake — a complex sequence of SIP messages to initiate the call — behind the scenes on your

behalf.

 To handle the sending and receiving of SIP messages and the other activities involved in communicating

with Lync Server, the UCMA runtime creates and manages a pool of worker threads that it uses to

perform its communication operations in the background.

 As a developer, you can easily just sit back and enjoy the magic show without needing any

knowledge of the underlying SIP messaging or what it means. However, if you build applications of

moderate to high complexity with UCMA, you will eventually face situations where understanding

the inside of the black box is important.

 So, although each of the operations discussed in this chapter consists of only a few lines of code,

the chapter also covers the messaging that happens in each case below the surface.

 Preparing an Outbound Call Using UCMA Objects

 The fi rst step in establishing a new outbound call is creating the necessary UCMA objects: an

instance of Conversation and one or more Call objects.

 Every Lync communication session handled by UCMA must start with a Conversation object.

The Conversation object is associated with one or more Call objects and has a couple of functions:

It allows for multi - modal communication sessions by tying together Call objects (and under the

covers, SIP signaling sessions) of different modalities, and also provides access to the conferencing

APIs in UCMA for Call objects that are involved in a conference.

 MULTI - MODAL COMMUNICATION

 A multi - modal communication session is a conversation that includes, for instance,

audio and instant message, or instant message and application sharing, at the same

time — a single conversation where more than one communication method is

in play.

 In the Lync client, you can easily make a conversation multi - modal by adding

new modalities (audio, video, instant messaging, application sharing) within a

conversation window that is already open.

Placing Outbound Calls with UCMA ❘ 213

 The Conversation object alone is not suffi cient to establish a communication session.

Along with the conversation, you must create at least one instance of AudioVideoCall ,

 InstantMessagingCall , or some other class that derives from the Call abstract class. You can then

call the BeginEstablish method on this object to start the asynchronous operation that

establishes the call.

 Initializing UCMA Conversation and Call Objects

 Creating a new instance of Conversation and one of the Call subclasses can be quite simple. In its

simplest form, it looks like the code in the following snippet.

// Create a new Conversation.
Conversation conversation = new Conversation(_endpoint);

// Create a new IM call.
InstantMessagingCall imCall = new InstantMessagingCall(conversation);

 Code snippet TwoPartyCallControl\OutboundInstantMessagingCallSample.cs

 For two - party calls, these two objects, the Conversation and the Call objects, are usually

initialized together, because a Conversation object by itself is about as useful as a bicycle tire

without a bicycle. Conferences work a bit differently, as you will see in Chapter 11.

 The simplest constructor for Conversation takes only a reference to an endpoint. The endpoint you

provide will be the one that initiates the communication session, so if the application has established

multiple endpoints you must pass a reference to the endpoint you want to place the call or send the

instant message.

 Another constructor for Conversation takes a ConversationSettings object as a second

parameter. This object has properties that enable you to specify a subject and priority for the

conversation. These will be associated with the Lync communication session and be visible in the

Lync conversation window if the other participant is using the Lync client.

 The constructors for InstantMessagingCall and AudioVideoCall always take a reference to

a Conversation object.

 Impersonating a User

 Application endpoints, shady characters that they are, have the ability to impersonate any user when

initiating a communication session. Using impersonation, a single application endpoint can manage

Lync communication sessions on behalf of a number of different users.

 Impersonation is often useful for applications that broker calls between users. As an example, a

 “ click to call ” application can place a call to User B on behalf of User A and then transfer the call

to User A ’ s mobile phone. By impersonating User A in the outgoing call, the application can make it

appear that User A is actually placing the call.

Available for

download on

Wrox.com

Available for

download on

Wrox.com

214 ❘ CHAPTER 8 TWO-PARTY CALL CONTROL WITH UCMA

 To impersonate a user when initiating a communication session, call the Impersonate method on

the Conversation object. The Impersonate method takes three parameters: the impersonated

user ’ s SIP URI, display name, and tel URI. The latter two parameters can be null.

 The following code snippet shows how to impersonate a user:

// Create a new Conversation.
Conversation conversation = new Conversation(_endpoint);

// Impersonate a user.

conversation.Impersonate(“sip:aldous@wrox.com”,

“tel:+15555551212”,

 “Aldous”);

// Create a new IM call.
InstantMessagingCall imCall = new InstantMessagingCall(conversation);

 You can add the highlighted line of code into the OutboundInstantMessagingCallSample class

shown earlier to see how impersonation works.

 An interesting thing about impersonation is that the impersonated user does not have to be a real

Lync user. Your application can make up a fake SIP URI, fake display name, and everything short

of a fake moustache, and the conversation will still work fi ne.

 Keep in mind that impersonation operates at the level of a single Conversation object. Any

outgoing communications you initiate using this Conversation or its associated Call objects after

calling Impersonate will come from the impersonated SIP URI. The impersonation will not apply

to any new Conversation objects you create.

 Establishing a Two - Party Call with BeginEstablish

 After the necessary objects are initialized, you can place the outgoing call using the BeginEstablish

and EndEstablish methods on the Call object. In UCMA, the process is more or less the same

whether the call is an InstantMessagingCall , an AudioVideoCall , or some other Call subclass,

although the parameters are slightly different for some of the overloads of BeginEstablish . In the

underlying SIP messaging, however, some signifi cant differences exist, as discussed next.

 Establishing an Instant Messaging Call

 The following code snippet establishes an outgoing instant message call, catching exceptions at both

the beginning and end of the asynchronous operation.

try
{
 // Establish the IM call.
 imCall.BeginEstablish(_destinationSipUri,
 new CallEstablishOptions() /* this could also just be null */,
 result = >

Available for

download on

Wrox.com

Available for

download on

Wrox.com

Placing Outbound Calls with UCMA ❘ 215

 {
 try
 {
 // Finish the asynchronous operation.
 imCall.EndEstablish(result);
 }
 catch (RealTimeException ex)
 {
 // Catch and log exceptions.
 _logger.Log(“Failed establishing IM call”, ex);
 }
 },
 null
);
}
catch (InvalidOperationException ioex)
{
 _logger.Log(“Failed establishing IM call”, ioex);
}

 Code snippet TwoPartyCallControl\OutboundInstantMessagingCallSample.cs

 In this case, the fi rst parameter of BeginEstablish is the SIP URI to which the call is being

directed. The second parameter is a CallEstablishOptions object, which allows you to

specify custom MIME parts, SIP headers, and some other options for the SIP INVITE message

that is sent to the remote endpoint. If you have no options to specify, this parameter can

be null.

 OMITTING THE DESTINATION SIP URI

 One of the overloads of BeginEstablish leaves out the parameter for the

destination SIP URI. You should use this overload and let UCMA determine

the destination in two cases. The fi rst case is when the call belongs to a

 Conversation object that already has another call (for another modality)

established. In this case, UCMA already knows the SIP URI for the remote user

and you do not need to supply it again. The second case is when the call and its

associated Conversation object are for a conference. Chapter 11 covers this

situation in more detail.

 When the application calls BeginEstablish , an entire SIP drama unfolds behind the curtains.

Figure 8 - 1 shows the storyline in a nutshell.

216 ❘ CHAPTER 8 TWO-PARTY CALL CONTROL WITH UCMA

FIGURE 8 - 1

INVITE
1

2

3

4

5

100 Trying

Roger Proxy server

Ring, ring, ring...

Regina

Roger Proxy server Regina

Roger Proxy server Regina

Roger Proxy server

Roger Proxy server

INVITE

100 Trying

180 Ringing

Regina

Regina

Hi Regina, can you take a call? Here’s my

media info: blah blah blah

6

7

8

9

10

Roger Proxy server

Roger Proxy server

Roger

200 OK

ACK

Great, these media settings work for me.

180 Ringing

200 OK

ACK

Proxy server

Roger Proxy server

Roger Proxy server

Regina

Regina

Regina

Regina

Regina

Hi Roger, I can take the call. Here’s my

media info: blah blah blah

Placing Outbound Calls with UCMA ❘ 217

 First, the UCMA endpoint (Roger in the diagram) sends a SIP INVITE request to the SIP proxy,

which for Lync is the Front End or Director server role, for the destination (remote) endpoint.

The SIP INVITE for an instant messaging call looks something like this:

INVITE sip:regina@wrox.com SIP/2.0
From: “Roger” < sip:roger@wrox.com > ;epid=5CA655BF4D;
 tag=69cb34c4e9
To: < sip:regina@wrox.com >
CSeq: 4 INVITE
Call-ID: 82ee5000-876e-45e7-b03e-7d0795e47785
MAX-FORWARDS: 70
VIA: SIP/2.0/TLS 192.168.0.40:51762;branch=z9hG4bKfbe1f9cc
CONTACT: < sip:ts.wrox.com@wrox.com;gruu;opaque=srvr:
 outbound.sample:jRw31iBwA16ogIm8s~CA
 XN68AAA > ;automata;actor=”attendant”;text;audio;video;image
CONTENT-LENGTH: 146
EXPIRES: 600
PRIORITY: Normal
SUPPORTED: ms-dialog-route-set-update
SUPPORTED: timer
SUPPORTED: ms-delayed-accept
SUPPORTED: ms-sender
SUPPORTED: gruu-10
USER-AGENT: RTCC/4.0.0.0 maximillian
CONTENT-TYPE: application/sdp
ALLOW: ACK
P-ASSERTED-IDENTITY: “Roger” < sip:roger@wrox.com >
Content-ID: ed829ac4-2119-4fb6-a003-7f8b4f25aa4f
Ms-Conversation-ID: 98fbb0767c774e629f215886a75501de
Session-Expires: 1800
Min-SE: 90
Allow: CANCEL,BYE,INVITE,MESSAGE,INFO,SERVICE,
 OPTIONS,BENOTIFY,NOTIFY,UPDATE
Message-Body: v=0
 o=- 727625166 727625166 IN IP4 67.104.203.240

 s=session

 t=0 0

 m=message 5060 sip null

a=accept-types:text/plain application/ms-imdn+xml

 Contained in the body of the INVITE is a Session Description Protocol (SDP) message, which

describes the media transfer arrangement the calling endpoint is proposing. In the example above,

the SDP message begins with v=0 . This is generally quite simple for instant messaging calls, and

somewhat more complex for audio/video or application sharing calls. In the media negotiation

(or Offer/Answer) process, this SDP content is the “ offer, ” and it comes into play if the receiving

endpoint accepts the call.

 The proxy server, on receiving the INVITE , sends a 100 Trying response back to the initiating

endpoint. It then attempts to pass the INVITE along to the destination. This is step 2 in Figure 8 - 1.

 The destination endpoint may respond with a failure response, but if it does not, it sends its own

 100 Trying to the proxy server. It follows this up with a 180 Ringing response, indicating that the

call is ringing and that the user, if any, is being notifi ed. These are steps 3 – 5 in Figure 8 - 1.

218 ❘ CHAPTER 8 TWO-PARTY CALL CONTROL WITH UCMA

 The proxy server passes the 180 Ringing response back to the initiating endpoint (step 6 in Figure 8 - 1).

 If the destination endpoint accepts the call (step 7 in Figure 8 - 1), it eventually responds with a 200

OK , which the proxy again passes back to the calling endpoint. The 200 OK may also have more SDP

in its body. This section of SDP is the “ answer, ” and is generally based on the initial media “ offer ”

as well as the receiving endpoint ’ s own capabilities.

 A typical 200 OK response for an instant messaging call looks something like this:

SIP/2.0 200 OK
From: “Roger” < sip:roger@wrox.com > ;epid=55E8B5E4B4;
 tag=b3a32f5933
To: < sip:regina@wrox.com > ;epid=330747cef7;tag=f4daaba013
CSeq: 5 INVITE
Call-ID: e05acebe-c668-4203-92df-b967d3f2c54a
Via: SIP/2.0/TLS 192.168.0.20:5061;branch=z9hG4bK4ED93107.
 08B41FBE4FF11978;branched=TRUE;ms-internal-
info=”baZ0rPfy5Z9RCA7VIWpYkS5rqgJJcIpGljf4ANfA8v3ga-H7QIEvWV9wAA”
Via: SIP/2.0/TLS 192.168.0.40:51953;branch=z9hG4bKcf182b6;
 ms-received-port=51953;ms-received-cid=14E00
Record-Route: < sip:CS-SE.fabrikam.com:5061;transport=tls;
 opaque=state:T:F:Ci.R400;lr;
 ms-route-sig=aaaw2xtSBHscf6ZTaMnR-KwzRPaTSB73rYfwAgq0_ujK2-
H7QIzkdb4QAA > ;tag=6B86779D25FF4920F0F73855F9486523
Contact: < sip:regina@wrox.com;opaque=user:
 epid:HDBxNZHKnV2aRq0Ta5HnuAAA;gruu >
User-Agent: UCCAPI/4.0.7457.0 OC/4.0.7457.0 (Microsoft Lync 2010 (RC))
Supported: ms-sender
Supported: histinfo
Supported: ms-safe-transfer
Supported: ms-dialog-route-set-update
Allow: INVITE, BYE, ACK, CANCEL, INFO, MESSAGE, UPDATE,
 REFER, NOTIFY, BENOTIFY
Supported: ms-conf-invite
Proxy-Authorization: TLS-DSK qop=”auth”,
 realm=”SIP Communications Service”, opaque=”5049DE55”,
 targetname=”CS-SE.wrox.com”, crand=”3656df38”,
cnum=”64”, response=”0e68db68b1dfb3131ea2262e6e227ae1036b4bfa”
Content-Type: application/sdp
Content-Length: 265
Message-Body: v=0
o=- 0 0 IN IP4 192.168.0.40
s=session
c=IN IP4 192.168.0.40
t=0 0
m=message 5060 sip sip:regina@wrox.com
a=accept-types:text/plain multipart/alternative
 image/gif text/rtf text/html application/x-ms-ink
 application/ms-imdn+xml text/x-msmsgsinvite

 Notice that although the 200 OK is sent from the receiving endpoint to the initiating endpoint, the

 To and From headers have the same SIP URIs as in the INVITE . This is true for the other responses

as well. So, in the 200 OK , the To header has the SIP URI of the call recipient and the From header

has the SIP URI of the caller.

Placing Outbound Calls with UCMA ❘ 219

 Finally, assuming it accepts the receiving endpoint ’ s media negotiation answer, the calling

endpoint acknowledges the 200 OK with an ACK message (step 9 in Figure 8 - 1), like the

following one:

ACK sip:regina@wrox.com;opaque=user:epid:
 HDBxNZHKnV2aRq0Ta5HnuAAA;gruu SIP/2.0
From: < sip:roger@wrox.com > ;epid=EF1E6F9EFD;tag=be20a45d39
To: < sip:regina@wrox.com > ;epid=330747cef7;tag=fd97fb2043
CSeq: 4 ACK
Call-ID: 672fa237-1e0b-4b50-bb43-6eae35651a7c
MAX-FORWARDS: 70
VIA: SIP/2.0/TLS 192.168.0.40:51982;branch=z9hG4bK063f5e3
ROUTE: < sip:CS-SE.wrox.com:5061;transport=tls;opaque=state:T:F;lr >
CONTENT-LENGTH: 0
SUPPORTED: ms-dialog-route-set-update
USER-AGENT: RTCC/4.0.0.0 maximillian
Message-Body: –

 The SIP handshake is now complete, and the endpoints can begin to send media back and forth.

 Establishing an Audio/Video Call

 The code to establish an AudioVideoCall looks nearly identical to the equivalent for an

 InstantMessagingCall , as you can see in the following code snippet.

try
{
 // Establish the A/V call.
 avCall.BeginEstablish(_destinationSipUri,
 new CallEstablishOptions() /* this could also just be null */,
 result = >
 {
 try
 {
 // Finish the asynchronous operation.
 avCall.EndEstablish(result);
 }
 catch (RealTimeException ex)
 {
 // Catch and log exceptions.
 _logger.Log(“Failed establishing A/V call”, ex);
 }
 },
 null
);
}
catch (InvalidOperationException ioex)
{
 _logger.Log(“Failed establishing A/V call”, ioex);
}

220 ❘ CHAPTER 8 TWO-PARTY CALL CONTROL WITH UCMA

 However, the SIP handshake is somewhat different, particularly when it comes to media negotiation.

Here is an example of an INVITE message for an outgoing audio call:

INVITE sip:regina@wrox.com SIP/2.0
From: “Roger” < sip:roger@wrox.com > ;
 epid=968F0DB62C;tag=8d9bdb997
To: < sip:regina@wrox.com >
CSeq: 4 INVITE
Call-ID: 0fd4e971-b834-49e7-9b3e-ea7a8dbae674
MAX-FORWARDS: 70
VIA: SIP/2.0/TLS 192.168.0.40:51918;branch=z9hG4bK88f54bc8
CONTACT: < sip:ts.wrox.com@fabrikam.com;gruu;opaque=srvr:
 outbound.sample:jRw31iBwA16ogIm~CA
 8sXN68AAA > ;automata;actor=”attendant”;text;audio;video;image
CONTENT-LENGTH: 2912
EXPIRES: 600
PRIORITY: Normal
SUPPORTED: Replaces
SUPPORTED: ms-dialog-route-set-update
SUPPORTED: timer
SUPPORTED: 100rel
SUPPORTED: gruu-10
USER-AGENT: RTCC/4.0.0.0 maximillian
CONTENT-TYPE: multipart/alternative;
 boundary=7AXOlKeopsdkNyOEOZ1H0bmi6VtsOuBK
ALLOW: ACK
P-ASSERTED-IDENTITY: “Roger” < sip:roger@wrox.com >
Ms-Conversation-ID: 4a974820c5d64c1bba324de4a6a75e2b
ms-endpoint-location-data: NetworkScope;ms-media-location-type=Intranet
Session-Expires: 1800
Min-SE: 90
Allow: CANCEL,BYE,INVITE,MESSAGE,INFO,SERVICE,OPTIONS,
 BENOTIFY,NOTIFY,PRACK,UPDATE
Message-Body: --7AXOlKeopsdkNyOEOZ1H0bmi6VtsOuBK
Content-Type: application/sdp
Content-ID: 8ceb5037-b55f-432f-a7bc-df853d9b55f8
Content-Disposition: session;handling=optional;ms-proxy-2007fallback
v=0
o=- 1 0 IN IP4 192.168.0.40
s=session
c=IN IP4 192.168.0.40
b=CT:3000000
t=0 0
 m=audio 22148 RTP/SAVP 112 111 0 8 116 4 13 118 97 101

c=IN IP4 192.168.0.40
a=rtcp:22149
a=candidate:/uVXmZpmEYTjeY3jMHTk/ZYjBjxZHIRxK8G3fxXcDk0 1
 vPaqkFeIhmlAG1R1vkCrrw UDP~CA
 0.830 67.104.203.240 24976
a=candidate:/uVXmZpmEYTjeY3jMHTk/ZYjBjxZHIRxK8G3fxXcDk0 2
 vPaqkFeIhmlAG1R1vkCrrw UDP~CA
 0.830 67.104.203.240 24977
a=candidate:V47grZeFck6d9zBHNQLSA0p5psZniTDCmrE3KJ0/bhM 1

Placing Outbound Calls with UCMA ❘ 221

 TkNrw7Xy0YhonPtxIWVcTQ UDP~CA
 0.840 192.168.0.40 22148
a=candidate:V47grZeFck6d9zBHNQLSA0p5psZniTDCmrE3KJ0/bhM 2
 TkNrw7Xy0YhonPtxIWVcTQ UDP~CA
 0.840 192.168.0.40 22149
a=label:main-audio
a=cryptoscale:1 client AES_CM_128_HMAC_SHA1_80
 inline:Do9MxY1Pp2C+bek0JDLhU7eVbCjg0nSdAJYYmQDH|2^31|1:1
a=crypto:2 AES_CM_128_HMAC_SHA1_80
 inline:GMGAJ5f0SitIUSEQxJ5IcKrm9vFYBW1I1vzVSFLW|2^31|1:1
a=crypto:3 AES_CM_128_HMAC_SHA1_80 inline:
 O361O0LhqMUHi3V1FROwpvlrwvgHfvWfomtqT5Me|2^31
a=rtpmap:112 G7221/16000
a=fmtp:112 bitrate=24000
a=rtpmap:111 SIREN/16000
a=fmtp:111 bitrate=16000
a=rtpmap:0 PCMU/8000
a=rtpmap:8 PCMA/8000
a=rtpmap:116 AAL2-G726-32/8000
a=rtpmap:4 G723/8000
a=rtpmap:13 CN/8000
a=rtpmap:118 CN/16000
a=rtpmap:97 RED/8000
a=rtpmap:101 telephone-event/8000
a=fmtp:101 0-16,36

 The SDP message for an audio INVITE is quite a bit longer. The primary indication that this INVITE

is for a different modality is contained in the line which begins with m=audio . This line indicates

that the SDP describes an audio media session. The SDP message also contains information on

where the audio stream should be sent, possible audio codecs, and various other details on the

audio media. Chapter 13 provides some more detail on interpreting these messages for

troubleshooting purposes.

 The 200 OK response to an audio INVITE is, again, quite a bit longer than the equivalent for an

instant messaging call. Here is a typical 200 OK response for an audio call:

SIP/2.0 200 OK
From: “Roger” < sip:roger@wrox.com > ;
 epid=EF1E6F9EFD;tag=be20a45d39
To: < sip:regina@wrox.com > ;epid=330747cef7;tag=fd97fb2043
CSeq: 4 INVITE
Call-ID: 672fa237-1e0b-4b50-bb43-6eae35651a7c
ms-application-via: cs-qms.wrox.com_rtc;
 ms-server=CS-SE.wrox.com;~CA
 ms-pool=CS-SE.wrox.com;
 ms-application=51FB453D-5B9F-45df-83B4-ADD1F7E604A8
P-Asserted-Identity: < sip:regina@wrox.com >
Via: SIP/2.0/TLS 192.168.0.40:51982;branch=z9hG4bKdf621f0;
 ms-received-port=51982;~CA
 ms-received-cid=15900
Record-Route: < sip:CS-SE.wrox.com:5061;transport=tls;
 opaque=state:T:F;lr >
Contact: < sip:regina@wrox.com;opaque=user:
 epid:HDBxNZHKnV2aRq0Ta5HnuAAA;gruu >

222 ❘ CHAPTER 8 TWO-PARTY CALL CONTROL WITH UCMA

User-Agent: UCCAPI/4.0.7457.0 OC/4.0.7457.0 (Microsoft Lync 2010 (RC))
Supported: histinfo
Supported: ms-safe-transfer
Supported: ms-dialog-route-set-update
Allow: INVITE, BYE, ACK, CANCEL, INFO, UPDATE, REFER,
 NOTIFY, BENOTIFY, OPTIONS
Session-Expires: 720;refresher=uac
ms-accepted-content-id: 8a5ccd25-a87c-4ef2-855f-71d7556e2724
ms-client-diagnostics: 51007;reason=”Callee media connectivity diagnosis
info”;CalleeMediaDebug=”audio:ICEWarn=0x80000,
 LocalSite=192.168.0.40:32354,~CA
 RemoteSite=192.168.0.40:29746,PortRange=1025:65000,LocalLocation=2,~CA
 RemoteLocation=2,FederationType=0”
ms-endpoint-location-data: NetworkScope;ms-media-location-type=Intranet
Supported: replaces
Content-Type: application/sdp
Content-Length: 1068
Message-Body: v=0
o=- 0 0 IN IP4 192.168.0.40
s=session
c=IN IP4 192.168.0.40
b=CT:99980
t=0 0
m=audio 32354 RTP/SAVP 112 111 0 8 116 4 97 13 118 101
a=ice-ufrag:8GWb
a=ice-pwd:bevuz8JIwIHtbiXcW8hfx3jp
a=candidate:1 1 UDP 2130706431 192.168.0.40 32354 typ host
a=candidate:1 2 UDP 2130705918 192.168.0.40 32355 typ host
a=candidate:2 1 UDP 2130705919 67.104.203.240 14850 typ host
a=candidate:2 2 UDP 2130705406 67.104.203.240 14851 typ host
a=candidate:3 1 TCP-ACT 1684798463 192.168.0.40 32354 typ
 srflx raddr 192.168.0.40~CA
 rport 32354
a=candidate:3 2 TCP-ACT 1684797950 192.168.0.40 32354 typ
 srflx raddr 192.168.0.40~CA
 rport 32354
a=crypto:2 AES_CM_128_HMAC_SHA1_80
 inline:dvEqb8qZOWmEoep2FG0uo2caL++9wLCpZya7JueK|2^31|1:1
a=maxptime:200
a=rtpmap:112 G7221/16000
a=fmtp:112 bitrate=24000
a=rtpmap:111 SIREN/16000
a=fmtp:111 bitrate=16000
a=rtpmap:0 PCMU/8000
a=rtpmap:8 PCMA/8000
a=rtpmap:116 AAL2-G726-32/8000
a=rtpmap:4 G723/8000
a=rtpmap:97 RED/8000
a=rtpmap:13 CN/8000
a=rtpmap:118 CN/16000
a=rtpmap:101 telephone-event/8000
a=fmtp:101 0-16

Placing Outbound Calls with UCMA ❘ 223

 Like the audio INVITE , this 200 OK message contains a large block of SDP in its message body,

describing the call recipient ’ s answer to the media options proposed by the caller. Again, Chapter 13

describes in more detail how to interpret these messages.

 Supplying an Initial Message

 When establishing an instant messaging call, you can determine the message that appears

in the pop - up box in the recipient ’ s Lync client by supplying an initial message, or toast message .

The toast message is the text that the recipient should see when being notifi ed of the incoming

instant message. It is usually taken from the fi rst message in the conversation, and is passed in

as a parameter to the BeginEstablish method in the form of a ToastMessage object.

You can create the ToastMessage object with a string body or, if you choose, with another

content type.

 The following code snippet shows how to initiate an instant messaging call with a toast message.

// Create a new IM call.
InstantMessagingCall imCall = new InstantMessagingCall(conversation);

try
{
 ToastMessage toast = new ToastMessage(“Good day”);

 // Establish the IM call.
 imCall.BeginEstablish(_destinationSipUri,
 toast,

 new CallEstablishOptions(),
 result = >
 {
 try
 {
 // Finish the asynchronous operation.
 imCall.EndEstablish(result);
 }
 catch (RealTimeException ex)
 {
 // Catch and log exceptions.
 _logger.Log(“Failed establishing IM call”, ex);
 }
 },
 null
);
}
catch (InvalidOperationException ioex)
{
 _logger.Log(“Failed establishing IM call”, ioex);
}

 Code snippet TwoPartyCallControl\ToastMessageSample.cs

 UCMA applications that receive instant messaging calls can access the toast message content

on the incoming call.

Available for

download on

Wrox.com

Available for

download on

Wrox.com

224 ❘ CHAPTER 8 TWO-PARTY CALL CONTROL WITH UCMA

 Specifying Custom Headers

 For one reason or another, you may one day fi nd that you need to manually add a certain SIP header

to the INVITE message for a new call — or to the SIP message for some other UCMA operation.

 Most of the asynchronous operations in UCMA have a sidekick, an options object that allows you

to specify extra information about the operation. In the case of BeginEstablish / EndEstablish ,

for example, this options object is CallEstablishOptions . These options objects have a Headers

property that is a collection of SignalingHeader objects. For any custom header you want to add

to the SIP message UCMA will generate for the operation, you can create a new SignalingHeader

object with the name and value of the header and add it to the options object, which you can then

pass in with the Begin Operation method.

 Here is an example:

// Create a SignalingHeader object for the custom header.
SignalingHeader myHeader =
 new SignalingHeader(“Polygraph-Result”, “Lying”);

// Create a new CallEstablishOptions instance and
// add the custom header to the Headers collection.
CallEstablishOptions options = new CallEstablishOptions();
options.Headers.Add(myHeader);

 This code creates a custom signaling header and adds it to the CallEstablishOptions object. This

object can then be passed as a parameter to BeginEstablish .

 For establishing calls, you also have the option of providing custom MIME content for the SIP

 INVITE message using the CustomMimeParts property of CallEstablishOptions .

 HOW DO YOU CHANGE THE POP - UP TEXT FOR AN AUDIO CALL?

 Developers often wonder whether any way exists to supply a toast message for an

 AudioVideoCall . Although toast messages only work with InstantMessagingCall ,

a way does exist to change the text that appears in the incoming audio call popup

in Lync — changing the conversation subject. (Incidentally, this also works with

conference invitations.)

 To do this, create a ConversationSettings object when fi rst initializing the

UCMA objects for your call. Set the Subject property on the

 ConversationSettings object to whatever text you want to appear in the call

popup. Then use this ConversationSettings object as a parameter for the

 Conversation constructor.

 The Lync client will display the conversation subject in the incoming call popup.

 HANDLING INCOMING CALLS AND MESSAGES WITH UCMA

 Adept as it is at starting conversations, a UCMA application is equally capable of receiving

incoming calls from other endpoints. To receive notifi cations of incoming calls in a UCMA

application, registering for calls of each type is necessary. An event handler will then be invoked

whenever a call arrives. The application will have the option of accepting the call, declining it, or

forwarding it to another destination.

 This section covers all of these operations in detail.

 The following code shows a class that establishes an application endpoint, registers for incoming

audio calls, and accepts any audio calls that come in. The two important bits (highlighted in the

code) are registering an event handler for incoming calls and accepting calls in the event handler.

The following sections cover both.

using System;
using System.Configuration;
using System.Threading;
using Microsoft.Rtc.Collaboration;
using Microsoft.Rtc.Collaboration.AudioVideo;
using Microsoft.Rtc.Signaling;

namespace TwoPartyCallControl
{
 public class AcceptIncomingAudioCallSample : ISampleComponent
 {
 ApplicationEndpoint _appEndpoint;
 AudioVideoCall _avCall;

 // A wait handle for startup and one for shutdown.
 // They are set to unsignaled to start.
 ManualResetEvent _startupWaitHandle =
 new ManualResetEvent(false);
 ManualResetEvent _shutdownWaitHandle =
 new ManualResetEvent(false);

 ILogger _logger;

 public AcceptIncomingAudioCallSample(
 ApplicationEndpoint endpoint, ILogger logger)
 {
 _appEndpoint = endpoint;
 _logger = logger;
 }

 public void Start()
 {
 // Register for incoming audio/video calls.

 _appEndpoint.RegisterForIncomingCall < AudioVideoCall > (

 OnIncomingAudioVideoCallReceived);

 }

 private void OnIncomingAudioVideoCallReceived(object sender,

Available for

download on

Wrox.com

Available for

download on

Wrox.com

Handling Incoming Calls and Messages with UCMA ❘ 225

226 ❘ CHAPTER 8 TWO-PARTY CALL CONTROL WITH UCMA

 CallReceivedEventArgs < AudioVideoCall > e)
 {
 _avCall = e.Call;

 try
 {
 // Accept the incoming call.

 _avCall.BeginAccept(ar = >

 {

 try

 {

 _avCall.EndAccept(ar);

 _logger.Log(“Accepted incoming call.”);

 }

 catch (RealTimeException rtex)

 {

 _logger.Log(

 “Failed accepting incoming A/V call.”,

 rtex);

 }

 },

 null);

 }
 catch (InvalidOperationException ioex)
 {
 _logger.Log(“Failed accepting incoming A/V call.”,
 ioex);
 }
 }

 public void Stop()
 {
 // Terminate the A/V call if necessary.

 if (_avCall != null & &
 _avCall.State != CallState.Terminating & &
 _avCall.State != CallState.Terminated)
 {
 try
 {
 _avCall.BeginTerminate(ar = >
 {
 try
 {
 _avCall.EndTerminate(ar);
 }
 catch (RealTimeException rtex)
 {
 _logger.Log(“Failed terminating A/V call.”,
 rtex);
 }
 },

 null);
 }
 catch (InvalidOperationException ioex)
 {
 _logger.Log(“Failed terminating A/V call.”, ioex);
 }
 }
 }
 }
}

Code snippet TwoPartyCallControl\AcceptIncomingAudioCallSample.cs

 Registering for Incoming Calls

 When a new call arrives, in the form of a SIP INVITE message, at a Lync endpoint managed by a

UCMA application, the endpoint must have an event handler registered for incoming calls of that

modality in order to accept the call. If such an event handler is registered, the UCMA runtime will

invoke the handler and provide a reference to the Call object in the event arguments.

 If the endpoint has not been registered for incoming calls of the correct modality, UCMA will

decline the call without any notice to the application.

 Registering for Instant Messaging Calls

 To register an event handler for incoming calls to an endpoint, call the RegisterForIncomingCall

method. This method requires a type parameter, which should be the type of Call object the event

handler is meant for. It also takes the event handler itself as a parameter.

 The following snippet shows code that registers an event handler for instant messaging calls.

_appEndpoint.RegisterForIncomingCall < InstantMessagingCall > (
 OnIncomingInstantMessagingCallReceived);

 Registering for Audio/Video Calls

 Registering an event handler for audio/video calls is more or less the same as registering for instant

messaging calls, as the following code snippet illustrates.

_appEndpoint.RegisterForIncomingCall < AudioVideoCall > (
 OnIncomingAudioVideoCallReceived);

 Event Arguments in the Incoming Call Handler

 When an incoming call event is invoked, looking at some of the context of the incoming call can be

useful to help decide what to do with the call and whether to answer it.

 Some of this context is available through the event arguments in the incoming call event handler,

along with a reference to the Call object representing the incoming call.

 Table 8 - 1 shows some of the more frequently used properties and what purpose they serve.

Handling Incoming Calls and Messages with UCMA ❘ 227

228 ❘ CHAPTER 8 TWO-PARTY CALL CONTROL WITH UCMA

 By inspecting these properties and determining its behavior according to their contents, your

application can limit what types of calls it answers. For instance, an application can check the

 IsNewConversation property to allow new IM or audio calls, but not the addition of a new

modality to an existing conversation. Likewise, an application might only accept calls that have

been marked with a special type of MIME content in the SIP INVITE .

 TABLE 8 - 1 Incoming Call Context

 PROPERTY PURPOSE

 Call Holds a reference to the Call object representing the incoming call.

 CallToBeReplaced If the incoming call is for a supervised transfer (also known as a call

replacement), holds a reference to the Call object that is being

replaced by the new incoming call. (More details on this appear later

in the chapter.)

 CustomMimeParts If any custom MIME content is in the INVITE message, you can

access it here.

 DiversionContext Holds an object that contains information on each diversion the call

went through before reaching the endpoint.

 IsConferenceDialOut Tells whether the incoming call is a dial - out from a multi - point control

unit (MCU), which is discussed in Chapter 11.

 IsNewConversation True if the incoming INVITE message is starting an entirely new

conversation (as opposed to adding a new modality or replacing

another call, for example).

 RemoteParticipant Holds an object with details on the Lync endpoint on the other end of

the call.

 RingBackDisabled By default, when a SIP INVITE arrives for an endpoint that has

registered an event handler for that modality, UCMA will automatically

send

 180 Ringing messages at intervals until the call is answered, the

caller gives up, or a timeout expires. Set this property to true to

disable this behavior.

 ToastMessage Holds the toast message received with the incoming call, or null if

there is no toast message.

 TransferredBy If the incoming call was transferred to the endpoint, this property

holds the URI of the user that performed the transfer.

 Receiving an Incoming Call

 When receiving an incoming call, a UCMA application can deal with it in one of three general ways,

based on the attributes of the call and the condition of the application:

 Accept the call

 Decline the call

 Forward the call to another destination

 The following sections describe how to accomplish each of these with UCMA.

 Inspecting the Properties of Incoming Calls

 UCMA makes looking at the properties of an incoming call before accepting it quite easy. The event

arguments object for the incoming call event handler has a Call property that references the Call

object representing the incoming call. You can look at this (as well as the other event arguments) to

determine who is calling, what type of call it is, whether it is a transfer, and numerous other pieces

of information that may be helpful in determining what to do with the call.

➤

➤

➤

 DISABLING AUTOMATIC RINGING

 By default, UCMA automatically sends 180 Ringing messages on behalf of your

endpoint in response to an incoming call, for up to 10 minutes. If you prefer not to have

those sent automatically (or you want to be tricky and send your own 180 Ringing

messages manually) you can turn off this behavior by setting the RingBackDisabled

property on the event arguments of the incoming call handler to true .

 Accepting an Incoming Call

 The code to accept an incoming call in UCMA is every bit as simple as the code to initiate a

new outgoing call. Accepting a call requires a single asynchronous operation, represented by the

methods BeginAccept and EndAccept .

 When an application calls BeginAccept , the UCMA runtime responds to the INVITE message with

a 200 OK response to accept the call. The 200 OK will contain any SDP content that is necessary for

media negotiation. Essentially, the process is the same as the SIP handshake for an outgoing call,

except that the roles are reversed: UCMA is reacting to an incoming SIP INVITE message rather

than sending one.

 Figure 8 - 2 shows the sequence of messages involved when an application accepts an incoming call.

 BeginAccept can only be called on a Call object that is in the Incoming state;
calling the method in other situations will cause the Call to throw an exception.

Handling Incoming Calls and Messages with UCMA ❘ 229

230 ❘ CHAPTER 8 TWO-PARTY CALL CONTROL WITH UCMA

INVITE
1

2

3

4

5

100 Trying

Roger Proxy server

Ring, ring, ring...

Regina

Roger Proxy server Regina

Roger Proxy server Regina

Roger Proxy server

Roger Proxy server

INVITE

100 Trying

180 Ringing

Regina

Regina

Hi Roger, can you take a call? Here’s my

media info: blah blah blah

6

7

8

9

10

Roger Proxy server

Roger Proxy server

Roger

200 OK

ACK

Great, these media settings work for me.

180 Ringing

200 OK

ACK

Proxy server

Roger Proxy server

Roger Proxy server

Regina

Regina

Regina

Regina

Regina

Hi Regina, I can take the call. Here’s my

media info: blah blah blah

 FIGURE 8 - 2

 The following code snippet shows a typical example of the code to accept a call in UCMA.

private void OnIncomingAudioVideoCallReceived(object sender,
 CallReceivedEventArgs < AudioVideoCall > e)
{
 _avCall = e.Call;

 try
 {
 // Accept the incoming call.
 _avCall.BeginAccept(ar = >
 {
 try
 {
 _avCall.EndAccept(ar);

 _logger.Log(“Accepted incoming call.”);
 }
 catch (RealTimeException rtex)
 {
 _logger.Log(
 “Failed accepting incoming A/V call.”,
 rtex);
 }
 },
 null);
 }
 catch (InvalidOperationException ioex)
 {
 _logger.Log(“Failed accepting incoming A/V call.”,
 ioex);
 }
}

Code snippet TwoPartyCallControl\AcceptIncomingAudioCallSample.cs

 Declining an Incoming Call

 An endpoint does not need to answer every single incoming call. As a gesture of politeness, an

endpoint can let these rejected calls off easy by sending a SIP response to decline them. You can

think of this as SIP etiquette. After the calling endpoint receives a decline response, it ends the SIP

dialogue and goes about its business, or perhaps becomes moody and sulks if it has a problem with

rejection.

 To decline a call in UCMA, you can call the Decline method on the Call object. Decline only

works on calls that are currently incoming. The following code snippet illustrates this.

using System;
using System.Configuration;
using System.Threading;
using Microsoft.Rtc.Collaboration;
using Microsoft.Rtc.Collaboration.AudioVideo;

Available for

download on

Wrox.com

Available for

download on

Wrox.com

Available for

download on

Wrox.com

Available for

download on

Wrox.com

Handling Incoming Calls and Messages with UCMA ❘ 231

232 ❘ CHAPTER 8 TWO-PARTY CALL CONTROL WITH UCMA

using Microsoft.Rtc.Signaling;

namespace TwoPartyCallControl
{
 public class DeclineIncomingAudioCallSample : ISampleComponent
 {
 ApplicationEndpoint _appEndpoint;
 InstantMessagingCall _imCall;

 // A wait handle for startup and one for shutdown.
 // They are set to unsignaled to start.
 ManualResetEvent _startupWaitHandle =
 new ManualResetEvent(false);
 ManualResetEvent _shutdownWaitHandle =
 new ManualResetEvent(false);

 ILogger _logger;

 public DeclineIncomingAudioCallSample(
 ApplicationEndpoint endpoint,
 ILogger logger)
 {
 _appEndpoint = endpoint;
 _logger = logger;
 }

 public void Start()
 {
 // Register for incoming audio/video calls.
 _appEndpoint.RegisterForIncomingCall < InstantMessagingCall > (
 OnIncomingInstantMessagingCallReceived);
 _appEndpoint.RegisterForIncomingCall < AudioVideoCall > (
 OnIncomingAudioVideoCallReceived);
 }

 private void OnIncomingInstantMessagingCallReceived(
 object sender,
 CallReceivedEventArgs < InstantMessagingCall > e)
 {
 _imCall = e.Call;

 try
 {
 // Accept the incoming call.
 _imCall.BeginAccept(ar = >
 {
 try
 {
 _imCall.EndAccept(ar);

 _logger.Log(“Accepted incoming call.”);
 }
 catch (RealTimeException rtex)

 {
 _logger.Log(
 “Failed accepting incoming IM call.”,
 rtex);
 }
 },
 null);
 }
 catch (InvalidOperationException ioex)
 {
 _logger.Log(“Failed accepting incoming IM call.”, ioex);
 }
 }

 private void OnIncomingAudioVideoCallReceived(object sender,
 CallReceivedEventArgs < AudioVideoCall > e)
 {
 // Decline incoming A/V calls.

 try

 {

 e.Call.Decline();

 }

 catch (InvalidOperationException ioex)

 {

 _logger.Log(“Failed declining incoming call.”, ioex);

 }

 }

 public void Stop()
 {
 // Terminate the IM call if necessary.

 if (_imCall != null & &
 _imCall.State != CallState.Terminating & &
 _imCall.State != CallState.Terminated)
 {
 try
 {
 _imCall.BeginTerminate(ar = >
 {
 try
 {
 _imCall.EndTerminate(ar);
 }
 catch (RealTimeException rtex)
 {
 _logger.Log(“Failed terminating A/V call.”,
 rtex);
 }
 },
 null);
 }
 catch (InvalidOperationException ioex)

Handling Incoming Calls and Messages with UCMA ❘ 233

234 ❘ CHAPTER 8 TWO-PARTY CALL CONTROL WITH UCMA

 {
 _logger.Log(“Failed terminating A/V call.”, ioex);
 }
 }
 }
 }
}

 Code snippet TwoPartyCallControl\DeclineIncomingAudioCallSample.cs

Unlike nearly every other method in UCMA, the Decline method is synchronous.
There are no BeginDecline and EndDecline methods — only Decline .

 If an endpoint does not accept an incoming call and simply leaves it alone, it will simply continue

ringing. Depending on the limits set by the calling endpoint, this sad, futile ringing may go on for

30 seconds or more.

 When you call the Decline method to decline an incoming call, the endpoint receiving the call

sends a failure response to the originator of the call. The default response code is 603 Decline , but

you can pass an instance of CallDeclineOptions into the Decline method to specify the exact

response code to use. The following code sample shows this in action. If you substitute this code for

the contents of the incoming audio/video call handler in the class shown earlier, it will decline calls

with a 486 Busy Here response code instead of the default 603 .

// Decline incoming A/V calls with a 486 response code.

CallDeclineOptions options = new CallDeclineOptions()
{
 ResponseCode = ResponseCode.BusyHere
};

try
{
 e.Call.Decline(options);
}
catch (InvalidOperationException ioex)
{
 _logger.Log(“Failed declining incoming call.”, ioex);
}

 To set the response code you want to use, set the ResponseCode property of CallDeclineOptions

to an integer between 400 and 699 . This encompasses all the failure codes, but excludes non - failure

codes such as 200 OK .

 For the inveterate mischief - makers out there, that means you can ’ t call Decline with 200 OK as the

response code and wreak havoc in the Lync world. Sorry to disappoint you.

 Selectively Accepting Calls

 In some cases, declining incoming communications from certain contacts, or under certain

conditions, is necessary. A UCMA application can look at several pieces of information when

determining whether to accept a call.

 To fi lter out calls based on the originator, for example, you can inspect the RemoteParticipant

property on the event arguments.

 The following code snippet shows a sample class that you can use to restrict incoming calls to those

that come from the friendly authors of your favorite Unifi ed Communications development book.

The incoming call event handler inspects the URI of the remote participant and only accepts the call

if the SIP URI is contained in a list of authorized participants. Otherwise, it declines the call with a

 403 response code.

using System;
using System.Configuration;
using System.Threading;
using Microsoft.Rtc.Collaboration;
using Microsoft.Rtc.Collaboration.AudioVideo;
using Microsoft.Rtc.Signaling;
using System.Collections.Generic;

namespace TwoPartyCallControl
{
 public class SelectivelyAcceptCallsSample : ISampleComponent
 {
 ApplicationEndpoint _appEndpoint;
 AudioVideoCall _avCall;

 // A wait handle for startup and one for shutdown.
 // They are set to unsignaled to start.
 ManualResetEvent _startupWaitHandle =
 new ManualResetEvent(false);
 ManualResetEvent _shutdownWaitHandle =
 new ManualResetEvent(false);

 ILogger _logger;

 public SelectivelyAcceptCallsSample(
 ApplicationEndpoint endpoint,
 ILogger logger)
 {
 _appEndpoint = endpoint;
 _logger = logger;
 }

 public void Start()
 {
 // Register for incoming audio/video calls.
 _appEndpoint.RegisterForIncomingCall < AudioVideoCall > (
 OnIncomingAudioVideoCallReceived);
 }

 private void OnIncomingAudioVideoCallReceived(object sender,

Available for

download on

Wrox.com

Available for

download on

Wrox.com

Handling Incoming Calls and Messages with UCMA ❘ 235

236 ❘ CHAPTER 8 TWO-PARTY CALL CONTROL WITH UCMA

 CallReceivedEventArgs < AudioVideoCall > e)
 {
 // Build a list with the authorized URIs.
 List < string > authorizedSipUris = new List < string > ()
 {
 “sip:michaelg@fabrikam.com”,
 “sip:georged@fabrikam.com”
 };

 if (authorizedSipUris.Contains(e.RemoteParticipant.Uri))
 {
 _logger.Log(
 “Call is from an authorized URI. Accepting.”);

 AcceptCall(e.Call);
 }
 else
 {
 _logger.Log(
 “Call is not from an authorized URI. Declining.”);

 CallDeclineOptions options = new CallDeclineOptions()
 {
 ResponseCode = ResponseCode.Forbidden
 };

 e.Call.Decline(options);
 }
 }

 private void AcceptCall(AudioVideoCall call)
 {
 _avCall = call;

 try
 {
 // Accept the incoming call.
 _avCall.BeginAccept(ar = >
 {
 try
 {
 _avCall.EndAccept(ar);

 _logger.Log(“Accepted incoming call.”);
 }
 catch (RealTimeException rtex)
 {
 _logger.Log(
 “Failed accepting incoming A/V call.”
 , rtex);
 }
 },
 null);
 }

 catch (InvalidOperationException ioex)
 {
 _logger.Log(“Failed accepting incoming A/V call.”,
 ioex);
 }
 }

 public void Stop()
 {
 // Terminate the A/V call if necessary.

 if (_avCall != null & &
 _avCall.State != CallState.Terminating & &
 _avCall.State != CallState.Terminated)
 {
 try
 {
 _avCall.BeginTerminate(ar = >
 {
 try
 {
 _avCall.EndTerminate(ar);
 }
 catch (RealTimeException rtex)
 {
 _logger.Log(“Failed terminating A/V call.”,
 rtex);
 }
 },
 null);
 }
 catch (InvalidOperationException ioex)
 {
 _logger.Log(“Failed terminating A/V call.”, ioex);
 }
 }
 }
 }
}

Code snippet TwoPartyCallControl\SelectivelyAcceptCallsSample.cs

 Similarly, you can restrict calls based on such properties as the diversion context; the contact that

transferred the call to your endpoint, if any; or custom MIME content in the INVITE message. Keep

in mind that these headers may be relatively easy to fake, so if you want a high degree of security in

your call fi ltering mechanism, you should probably use other measures as well.

 Forwarding an Incoming Call to Another Endpoint

 Declining an incoming call is not the only way of warding it away from an endpoint. You can also

take the more subtle method of redirecting it to a different SIP URI, using the Forward method.

Handling Incoming Calls and Messages with UCMA ❘ 237

238 ❘ CHAPTER 8 TWO-PARTY CALL CONTROL WITH UCMA

 The following code shows the use of the Forward method.

using System;
using System.Configuration;
using System.Threading;
using Microsoft.Rtc.Collaboration;
using Microsoft.Rtc.Collaboration.AudioVideo;
using Microsoft.Rtc.Signaling;

namespace TwoPartyCallControl
{
 public class ForwardIncomingAudioCallSample : ISampleComponent
 {
 ApplicationEndpoint _appEndpoint;

 // A wait handle for startup and one for shutdown.
 // They are set to unsignaled to start.
 ManualResetEvent _startupWaitHandle =
 new ManualResetEvent(false);
 ManualResetEvent _shutdownWaitHandle =
 new ManualResetEvent(false);

 ILogger _logger;

 public ForwardIncomingAudioCallSample(
 ApplicationEndpoint endpoint,
 ILogger logger)
 {
 _appEndpoint = endpoint;
 _logger = logger;
 }

 public void Start()
 {
 // Register for incoming audio/video calls.
 _appEndpoint.RegisterForIncomingCall < AudioVideoCall > (
 OnIncomingAudioVideoCallReceived);
 }

 private void OnIncomingAudioVideoCallReceived(object sender,
 CallReceivedEventArgs < AudioVideoCall > e)
 {
 // Forward incoming A/V calls.
 try
 {
 _logger.Log(“Forwarding incoming call.”);

 e.Call.Forward(“sip:georged@fabrikam.com”);
 }

Available for

download on

Wrox.com

Available for

download on

Wrox.com

 Like Decline , the Forward method only works on calls in the Incoming state. Calling
it at other times causes the Call object to throw an InvalidOperationException .

 catch (InvalidOperationException ioex)
 {
 _logger.Log(“Failed forwarding incoming call.”, ioex);
 }
 }

 public void Stop()
 {
 // Nothing to do.
 }
 }
}

Code snippet TwoPartyCallControl\ForwardIncomingAudioCallSample.cs

 The fi rst parameter of Forward should be the SIP URI to which you want to redirect the incoming

call. An optional second parameter takes an instance of CallForwardOptions . This class is very

much like CallDeclineOptions and allows you to specify a response code which must be in the

300s. The default is 303 .

 Accepting a Transfer on a Connected Call

 Later this chapter shows you how to transfer an active call to another destination. For some UCMA

applications, though, accepting transfer messages from other endpoints may be important.

 To understand what accepting a transfer message means, understanding the basics of how a transfer

works in Lync is helpful. The transfer involves three endpoints, which, for clarity, we will call the

transferring endpoint, the transferred endpoint, and the transfer - to endpoint. Figure 8 - 3 shows how

a transfer occurs between these three characters. For simplicity, the proxy server is omitted in this

diagram, but keep in mind that each of these messages is being routed through the proxy server.

Blanche

1

2

3

Baris, I’am referring you to

Adela.

Hi Adela, Blanche sent

me to you.

I’m the transferred

endpoint.

I’m the transferring

endpoint. Baris and I

have been in a SIP

dialog and exchanging

media for a while, and I

need to transfer him to

Adela.

I’m the transfer-to

endpoint.

Blanche

Blanche

Boris

Boris

Boris

Boris

Adela

Adela

Adela

REFER

INVITE

FIGURE 8 - 3

Handling Incoming Calls and Messages with UCMA ❘ 239

240 ❘ CHAPTER 8 TWO-PARTY CALL CONTROL WITH UCMA

 The gist of it is that the transferring endpoint sends a SIP REFER message to the transferred

endpoint. This message says, in effect, “ Go and place a call to this other person now. ” On receiving

this message, the transferred endpoint places a new call to the transfer - to endpoint. After the call

connects to the transfer - to endpoint (or sometimes before), the transferred endpoint terminates the

call with the transferring endpoint and continues with the new call.

 Out of the box, so to speak, a UCMA application does not know how to play the role of transferred

endpoint. It will not accept REFER messages from other endpoints with which it has an active call.

However, with an event handler for the TransferReceived event and a few more strategically

placed lines of code, you can tell your application to accept these REFER messages and, after

receiving them, deal with them appropriately by placing a new call to the transfer - to endpoint.

 The following code sample shows a handler for the TransferReceived event that accepts the

incoming transfer request and calls another method to place the new outgoing call.

private void OnTransferReceived(object sender,
 AudioVideoCallTransferReceivedEventArgs e)
{
 // Unregister the event handlers.
 _avCall.TransferReceived -= OnTransferReceived;
 _avCall.Forwarded -= OnCallForwarded;

 // Accept the REFER request with no special headers.
 e.Accept(null);

 ...
}

 Code snippet TwoPartyCallControl\AcceptTransfersAndForwardsSample.cs

 If you use the Conversation object provided in the event arguments, UCMA will automatically

send notifi cations to the transferring endpoint to update it on the progress of the transfer.

If you want to do this yourself, you can disable the automatic notifi cations by setting the

 ImplicitNotificationsDisabled property on the event arguments to true .

 Handling the Accepted Transfer

 On the surface you may think all you need to do with an incoming transfer request is call e.Accept

in the event handler. If you do this by itself, your application will accept the transfer request from

the transferring endpoint, but will make no attempt to place the new call to the transfer - to endpoint.

You also need code to explicitly place a call to the SIP URI to which your call is being transferred.

 The following code snippet shows an event handler that includes code for initiating a new call to the

transfer - to endpoint.

private void OnTransferReceived(object sender,
 AudioVideoCallTransferReceivedEventArgs e)
{
 // Unregister the event handlers.

Available for

download on

Wrox.com

Available for

download on

Wrox.com

Available for

download on

Wrox.com

Available for

download on

Wrox.com

 _avCall.TransferReceived -= OnTransferReceived;
 _avCall.Forwarded -= OnCallForwarded;

 // Accept the REFER request with no special headers.
 e.Accept(null);

 // Create a new A/V call with the transfer-to URI using the
 // pre-initialized Conversation object.
 AudioVideoCall newCall = new AudioVideoCall(e.NewConversation);

 try
 {
 // Establish the call to the transfer-to endpoint.
 newCall.BeginEstablish(e.TransferDestination, null,
 ar = >
 {
 try
 {
 newCall.EndEstablish(ar);
 }
 catch (RealTimeException rtex)
 {
 _logger.Log(“Failed establishing new call “ +
 “following transfer.”, rtex);
 }
 },
 null
);
 }
 catch (InvalidOperationException ioex)
 {
 _logger.Log(“Failed establishing new call following transfer.”,
 ioex);
 }
}

Code snippet TwoPartyCallControl\AcceptTransfersAndForwardsSample.cs

 Accepting a Forward on an Outgoing Call

 To handle a redirect response properly on an outgoing call, a UCMA application must register

a handler for the Forwarded event on the Call object. Within the event handler, it must call the

 Accept method on the event arguments and then place a call to the new destination.

 The following code snippet illustrates this.

private void OnCallForwarded(object sender,
 CallForwardReceivedEventArgs e)
{
 // Unregister the event handlers.
 _avCall.TransferReceived -= OnTransferReceived;

Available for

download on

Wrox.com

Available for

download on

Wrox.com

Handling Incoming Calls and Messages with UCMA ❘ 241

242 ❘ CHAPTER 8 TWO-PARTY CALL CONTROL WITH UCMA

 _avCall.Forwarded -= OnCallForwarded;

 // Accept the forward response from the remote endpoint.
 e.Accept();

 // Change the destination to the new URI.
 _destinationSipUri = e.ForwardDestination;

 // Establish a new call to the forwarding destination.
 EstablishCall();
}

Code snippet TwoPartyCallControl\AcceptTransfersAndForwardsSample.cs

 The application can alternatively call the Decline method in the event arguments to refuse the

redirect.

 TRANSFERRING AN ACTIVE CALL

 A successful transfer involves three participants and a long sequence of SIP messages. With

UCMA, you can complete this entire procedure with two methods: BeginTransfer and

 EndTransfer .

 If you want the 10 - second overview of how to execute a transfer in UCMA, you can take a look at the

following code snippet, which shows how to transfer an active audio/video call to another SIP URI.

try
{
 _avCall.BeginTransfer(_destinationSipUri,
 ar = >
 {
 try
 {
 _avCall.EndTransfer(ar);
 }
 catch (RealTimeException rtex)
 {
 _logger.Log(“Failed transferring call.”, rtex);
 }
 },
 null);
}
catch (InvalidOperationException ioex)
{
 _logger.Log(“Failed transferring call.”, ioex);
}

 Code snippet TwoPartyCallControl\TransferCallSample.cs

Available for

download on

Wrox.com

Available for

download on

Wrox.com

 Although you can transfer calls to your heart ’ s content using nothing but this code, having at least

a general sense of the SIP backdrop to this magical duo of methods pays off. The following sections

describe the steps in this process and explain some of the options you can specify when executing a

transfer.

 The SIP Anatomy of a Transfer

 A transfer on a Lync call starts with a SIP REFER message. The transferring endpoint sends the

 REFER message to the transferred endpoint while the two endpoints are participating in a call.

 The SIP REFER Message

 A REFER message generally looks something like this:

REFER sip:michaelg@fabrikam.com;opaque=user:epid:
 HDBxNZHKnV2aRq0Ta5HnuAAA;gruu SIP/2.0
From: < sip:outbound.sample@fabrikam.com > ;epid=AE4D66EAD4;tag=814461b8ad
To: < sip:michaelg@fabrikam.com > ;epid=330747cef7;tag=1bf0083fdf
CSeq: 1 REFER
Call-ID: f5c43ce0489e4874a65a1f2a32fa77f9
MAX-FORWARDS: 70
VIA: SIP/2.0/TLS 192.168.0.40:54520;branch=z9hG4bKd6f84186
ROUTE: < sip:CS-SE.fabrikam.com:5061;transport=tls;opaque=state:T:F;lr >
CONTACT: < sip:ts.fabrikam.com@fabrikam.com;gruu;opaque=srvr:
 outbound.sample:jRw31iBwA16ogIm8sXN68AAA > ;automata;
 actor=”attendant”;text;audio;video;image
CONTENT-LENGTH: 0
EXPIRES: 600
REFER-TO: < sip:administrator@fabrikam.com >
REFERRED-BY: < sip:outbound.sample@fabrikam.com > ;ms-identity=”
 MIH5BgkqhkiG9w0BBwKggeswgegCAQExCzAJBgUrDgMCGgUAMAsGCSq
 GSIb3DQEHATGByDCBxQIBATAjMBUxEzARBgNVBAMTCkZhYn
 Jpa2FtQ0ECCmEG7CcAAAAAAAYwCQYFKw4DAhoFADANBgkqhk
 iG9w0BAQEFAASBgD0VRH/QXh3spnYML3i9/n+PLRWBWlUqLl
 +I21mZWB4mO1NJ/lPb4J1RMcY/rk9WaPCeQ06j210jWqKwmGw
 JzkGjtDG+9PdhmDHLxm92z6kKhzRG0Cd+HqVRz/Dccx1hzbx
 fjQ6dk97VTARmI5qXfHyae88agW8RbhHCeCSfTyjd:
 Mon, 25 Oct 2010 03:11:14 GMT”;ms-identity-info=”
 sip:TS.fabrikam.com:12384;transport=Tls”;
 ms-identity-alg=rsa-sha1
SUPPORTED: ms-dialog-route-set-update
SUPPORTED: gruu-10
USER-AGENT: RTCC/4.0.0.0 maximillian
P-ASSERTED-IDENTITY: “Outbound” < sip:outbound.sample@fabrikam.com >
Message-Body: –

 The From header holds the URI of the transferring user, and the To header holds the URI of the

transferred user. The transfer destination is sent in the Refer - To header.

Transferring an Active Call ❘ 243

244 ❘ CHAPTER 8 TWO-PARTY CALL CONTROL WITH UCMA

 Steps in a SIP Transfer

 When it receives the REFER message, the transferred endpoint generally accepts it with a 200 OK .

If for one reason or another it is not allowing transfers, it may decline the REFER with a failure

response.

 At this point, the transferred endpoint initiates a new SIP dialog with the transfer - to endpoint. The

identity of the transferring endpoint is shown in the new INVITE message in the Transferred - By

header.

 If the transfer is being performed as an unattended transfer (see the next section, “ Types of

Transfers ”), the transferred endpoint also ends the original call immediately by sending a BYE

message. Otherwise, it continues communicating with the transferring endpoint, reporting the

status of the new call with NOTIFY messages, and terminates the original call only when the new

call is accepted and connects successfully. This allows the transferring endpoint to “ rescue ” the

transferred endpoint if it never connects to the transfer - to endpoint.

 Types of Transfers

 Lync, and by extension UCMA, allows three different types of transfers, shown in the following list:

 Unattended transfer (also known as “ blind ” or “ cold ” transfer)

 Attended transfer (also known as “ warm ” transfer)

 Supervised transfer (or “ call replacement ”)

 The sequence of events in each type of transfer is different. The next few sections cover each type in

detail.

 Unattended Transfers

 In an unattended transfer, the transferring endpoint washes its hands of the call as soon as it

initiates the transfer and the transferred endpoint accepts the REFER message. The transferring

endpoint does not receive any updates on the progress of the transfer, and has no way to

reconnect to the transferred endpoint if the transfer - to endpoint does not answer or

is unavailable.

 Blind transfers have a bit of a stigma around them, because they are often associated with dismal

customer service experiences. For instance, if you think back to the time you called to return that

defective electronic toothpick dispenser, and the agent who answered after 10 minutes told you

to hold on a second and then transferred you to 1 - 800 - U - R - IDIOT, that was a blind transfer. In

UCMA development, moreover, you usually want to confi rm that a transfer has connected before

abandoning the initial call. However, in some instances simply passing along the call to another

destination is best.

 Figure 8 - 4 illustrates an unattended transfer in action.

➤

➤

➤

 Attended Transfers

 An attended transfer involves the transferring endpoint a bit more in the whole transfer process.

In this type of transfer, the original call between the transferring and transferred endpoints

remains in the Transferring state while the transferred endpoint is placing the new call to the

transfer - to endpoint. Meanwhile, the transferred endpoint reports the progress of the transfer

to the transferring endpoint in SIP NOTIFY messages.

 Figure 8 - 5 shows the steps in an attended transfer.

Blanche

1

2

3

4

5

6

Baris, I’am referring you to

Adela.

Blanche

Blanche

Boris

Boris

Boris

Boris

Adela

Adela

Adela

REFER

Talk to you later.

Blanche Boris Adela

BYE

Okay, talk to you later.

Blanche Boris Adela

Blanche Boris Adela

200 OK

202 Accepted

Hi Adela, Blanche sent

me to you.

Ok, got it.

INVITE

FIGURE 8 - 4

Transferring an Active Call ❘ 245

246 ❘ CHAPTER 8 TWO-PARTY CALL CONTROL WITH UCMA

AdelaBlanche

1

2

3

4

5

6

BorisBaris, I’m referring

to Adela.

AdelaBlanche Boris

AdelaBlanche Boris

REFER

202 Accepted

AdelaBlanche Boris

INVITE

AdelaBlanche Boris

NOTIFY 100 Trying, 180 Ringing, etc

AdelaBlanche Boris

200 OK 100 Trying, 180 Ringing, etc

Okay, got it.

Okay, I placed the call.

I’m going to tell Blanche

what’s going on as l try

to get through to Adela.

7

8

9

10

11

12

Great!

AdelaBlanche Boris

NOTIFY

AdelaBlanche Boris

2000 K

AdelaBlanche Boris

200 OK

AdelaBlanche Boris

BYE

AdelaBlanche Boris

200 OK

AdelaBlanche Boris

ACK

Adela accepted the call.

Don’t need you

anymore…

Okay…

 FIGURE 8 - 5

 Attended transfer is the default when you do not specify a transfer type using the

 CallTransferOptions class.

 Supervised Transfers

 The supervised transfer is the least intuitive of the transfer types. It is also referred to as call

replacement , because the transferred call takes the place of another already established call. The

fi rst call is transferred to the remote participant on the second call and replaces the second call, in

effect bridging the remote participants on the two calls together.

 In a supervised transfer, the SIP REFER message includes a Replaces component in the

 Refer - To header, which identifi es the call that should be replaced by the call being transferred.

This information is copied into a Replaces header in the INVITE message, and when the transfer - to

endpoint receives the INVITE , it uses this new incoming call as the continuation of the call that is to

be replaced.

 Essentially, call replacement allows an endpoint that is on a call with Percival and on another call

with Victoria to slot Percival into its own place in the call with Victoria. Figure 8 - 6 illustrates this.

1

2

3

4

5

6

7

Percival Lucy Victoria

Percival Lucy Victoria

Percival Lucy Victoria

Percival Lucy Victoria

INVITE

100 Trying, 180 Ringing, 200 OK

ACK

Percival Lucy Victoria

Percival

Lucy

Victoria

Percival Lucy Victoria

I’m on a call with

Percival, and I want to

perform a supervised

transfer to Victoria.

First I’ll call Victoria

myself.

I’m stepping aside so

Percival can take my

place.

REFER

INVITE (with Replaces header)

 FIGURE 8 - 6

Transferring an Active Call ❘ 247

248 ❘ CHAPTER 8 TWO-PARTY CALL CONTROL WITH UCMA

 UCMA applications can use call replacement as a simple way to broker a call between two other

endpoints.

 Initiating a Transfer with BeginTransfer

 The same method, BeginTransfer , can be used to initiate any of the types of transfer described in

the previous section. The transfer type is specifi ed in an instance of CallTransferOptions , which

can be passed in as a parameter to BeginTransfer . UCMA handles the intricacies of each transfer

type behind the scenes. If no options are specifi ed, UCMA performs an attended transfer by default.

 The following sections illustrate how each type of transfer can be initiated in code.

 Initiating an Unattended Transfer

 The following code snippet shows the PerformUnattendedTransfer method, which uses the

 CallTransferOptions class to “ blind transfer ” a call.

private void PerformUnattendedTransfer()
{
 CallTransferOptions options =
 new CallTransferOptions(CallTransferType.Unattended);

 try

Available for

download on

Wrox.com

Available for

download on

Wrox.com

8

9

10

11

Percival took Lucy’s

place on the call.

Percival

Lucy

Victoria

100 Trying, 180 Ringing, 2000 K

Percival

Lucy

Victoria

ACK

Percival

Lucy

Victoria
NOTIFY

Percival

Lucy

VictoriaBYE No one needs me

anymore…

FIGURE 8-6 (continued)

 {
 _avCall.BeginTransfer(_destinationSipUri, options,
 ar = >
 {
 try
 {
 _avCall.EndTransfer(ar);
 }
 catch (RealTimeException rtex)
 {
 _logger.Log(“Failed transferring call.”, rtex);
 }
 },
 null);
 }
 catch (InvalidOperationException ioex)
 {
 _logger.Log(“Failed transferring call.”, ioex);
 }
}

Code snippet TwoPartyCallControl\TransferCallSample.cs

 Initiating an Attended Transfer

 The following code snippet shows an attended transfer. Because this transfer type is the default,

specifying it explicitly in code is not necessary, although you can if you choose.

private void PerformAttendedTransfer()
{
 try
 {
 _avCall.BeginTransfer(_destinationSipUri,
 ar = >
 {
 try
 {
 _avCall.EndTransfer(ar);
 }
 catch (RealTimeException rtex)
 {
 _logger.Log(“Failed transferring call.”, rtex);
 }
 },
 null);
 }
 catch (InvalidOperationException ioex)
 {
 _logger.Log(“Failed transferring call.”, ioex);
 }
}

Code snippet TwoPartyCallControl\TransferCallSample.cs

Available for

download on

Wrox.com

Available for

download on

Wrox.com

Transferring an Active Call ❘ 249

250 ❘ CHAPTER 8 TWO-PARTY CALL CONTROL WITH UCMA

 Replacing a Call with a Supervised Transfer

 The following code snippet shows a supervised transfer. The application fi rst creates a new

outbound call to the transfer destination, then calls BeginTransfer on the original incoming call,

passing in the new outbound call as the fi rst parameter. UCMA transfers the original call to the

remote participant on the new call, replacing that call.

private void PerformSupervisedTransfer()
{
 ConversationSettings settings = new ConversationSettings()
 {
 Subject = “Supervised transfer”
 };

 Conversation newConversation = new Conversation(_appEndpoint,
 settings);

 AudioVideoCall newCall = new AudioVideoCall(newConversation);

 try
 {
 newCall.BeginEstablish(_destinationSipUri, null,
 ar = >
 {
 try
 {
 newCall.EndEstablish(ar);

 ReplaceNewCallWithIncomingCall(newCall);
 }
 catch (RealTimeException rtex)
 {
 _logger.Log(“Failed establishing second call.”,
 rtex);
 }
 },
 null
);
 }
 catch (InvalidOperationException ioex)
 {
 _logger.Log(“Failed establishing second call.”, ioex);
 }
}

private void ReplaceNewCallWithIncomingCall(AudioVideoCall newCall)
{
 // Transfer the original incoming call,
 // replacing the new call to the destination URI.
 try
 {
 _avCall.BeginTransfer(newCall,
 ar = >
 {

Available for

download on

Wrox.com

Available for

download on

Wrox.com

 try
 {
 _avCall.EndTransfer(ar);

 _logger.Log(“Successfully replaced call.”);
 }
 catch (RealTimeException rtex)
 {
 _logger.Log(“Failed replacing call.”, rtex);
 }
 },
 null
);
 }
 catch (InvalidOperationException ioex)
 {
 _logger.Log(“Failed replacing call.”, ioex);
 }
}

 Code snippet TwoPartyCallControl\TransferCallSample.cs

 Recovering from a Failed Transfer

 If you are performing an attended transfer or supervised transfer, recovering the original call if your

transfer fails is possible.

 An easy way to get a transfer to fail is to specify a nonexistent SIP URI as the transfer destination in

your test application. If you watch the resulting wreck in the Lync client, you will notice that when

the transfer fails (and the asynchronous operation in the UCMA code ends with an exception), the

original Lync conversation window is still there, but the call is on hold. When an application calls

 BeginTransfer and UCMA sends the REFER message to initiate the transfer, the original call is

automatically placed on hold. To recover the original call after the transfer failure, all the application

must do is take that call off of hold, and it can go about its merry way.

 The following code shows an example of how to do this by adding code to retrieve the original

call from hold in the catch block after the EndTransfer method is called. Chapter 12 covers the

 BeginRetrieve method and handling call hold states are discussed in more depth.

private void PerformAttendedTransfer()
{
 try
 {
 _avCall.BeginTransfer(_destinationSipUri,
 transferResult = >
 {
 try
 {
 _avCall.EndTransfer(transferResult);
 }
 catch (RealTimeException rtex)

Available for

download on

Wrox.com

Available for

download on

Wrox.com

Transferring an Active Call ❘ 251

252 ❘ CHAPTER 8 TWO-PARTY CALL CONTROL WITH UCMA

 {
 _logger.Log(“Failed transferring call; “ +
 “retrieving it.”, rtex);

 RetrieveCallAfterTransferFailure();
 }
 },
 null);
 }
 catch (InvalidOperationException ioex)
 {
 _logger.Log(“Failed transferring call.”, ioex);
 }
}

private void RetrieveCallAfterTransferFailure()
{
 // Take the call off of hold after a transfer fails.

 try
 {
 _avCall.Flow.BeginRetrieve(retrieveResult = >
 {
 try
 {
 _avCall.Flow.EndRetrieve(retrieveResult);

 _logger.Log(“Successfully retrieved call.”);
 }
 catch (RealTimeException rtex)
 {
 _logger.Log(“Failed retrieving call.”, rtex);
 }
 },
 null);
 }
 catch (InvalidOperationException ioex)
 {
 _logger.Log(“Failed retrieving call.”, ioex);
 }
}

 Code snippet TwoPartyCallControl\RecoverFailedTransferSample.cs

 PARKING AND RETRIEVING CALLS

 Some private branch exchange (PBX) systems, the phone systems used internally within a business,

have a handy feature known as call parking . On these systems, if you are on a call and need to pass

it along to someone, but you are not sure exactly where to transfer it, you can “ park ” the call on an

unused extension, which anyone on the PBX can dial to “ retrieve ” it later.

 The Call Park Server

 Lync Server allows you to mimic the call parking functionality that is often found in PBX

systems. If you have a call park server installed in your environment, you can use methods on the

 AudioVideoCall class to park and retrieve calls in your application.

 Parking a Call

 When you call the BeginPark method on an AudioVideoCall , the remote endpoint is disconnected

from your application and “ parked. ” The EndPark method returns a CallParkResponseData

object; its Orbit property holds a CallOrbit object, which you can think of as the “ bookmark ” for

the parked call. You will need the call orbit information to retrieve the call later.

 Retrieving a Parked Call

 To retrieve the parked call, create an entirely new AudioVideoCall and call BeginEstablish ,

passing in the CallOrbit object. If necessary, you can reconstruct the CallOrbit object using the

orbit number or the orbit number and URI from the original object. This can be helpful if the call

was originally parked by an endpoint not owned by your application.

 The application will place a new call to the remote endpoint, retrieving the specifi ed parked call.

 MEDIA AND MESSAGES ON AN ACTIVE CALL

 Establishing calls is all well and good, but a SIP dialog is not much use by itself unless you do

something after it is established. Usually, this “ something ” is a type of media transfer. Managing

the media transfer is the responsibility of the MediaFlow class and its modality - specifi c subclasses.

Through these classes, UCMA allows you to manipulate the media in certain straightforward

ways. Through the Call class itself, it also allows you to send and receive individual SIP

messages on an existing SIP dialog.

 Managing and manipulating audio media is a complex topic and involves quite a number of helper

classes provided by UCMA. Chapter 12 covers audio media control in depth. The next few sections

briefl y describe some of the other media and messaging operations you can perform on active calls

with UCMA.

 Flow Classes for Media Management

 The MediaFlow class and its subclasses (fl ows for short) represent the media session on an active

call. UCMA has a set of classes called media providers that handle the sending and receiving of

media; these classes are mostly internal and under normal circumstances a UCMA application does

not need to deal with them directly. The media providers create fl ows to represent individual media

sessions. One fl ow corresponds to a single media type on a single call. UCMA applications can

interact with fl ow objects to control media settings and behavior.

Media and Messages on an Active Call ❘ 253

254 ❘ CHAPTER 8 TWO-PARTY CALL CONTROL WITH UCMA

 Sending Messages to a Remote Participant Using
InstantMessagingFlow

 After a SIP dialog is established, the participating endpoints can continue sending SIP messages

back and forth to convey information or control the call state. Although the UCMA runtime takes

care of some of these for you without assistance, you are also perfectly free to send and receive

messages manually.

 Instant messaging calls, in fact, use SIP messages for media transfer. In this case, the messaging is

managed by the InstantMessagingFlow object, so that you do not need to worry about formatting

the SIP messages yourself.

 On an instant messaging call, each individual instant message is transferred via SIP by means of the

somewhat redundantly named MESSAGE message. A typical MESSAGE message looks like this:

MESSAGE sip:michaelg@fabrikam.com;opaque=user:epid:
 HDBxNZHKnV2aRq0Ta5HnuAAA;gruu SIP/2.0
From: < sip:outbound.sample@fabrikam.com > ;epid=C15B31BE9F;tag=8c4d16b3d2
To: < sip:michaelg@fabrikam.com > ;epid=330747cef7;tag=568d26fb18
CSeq: 5 MESSAGE
Call-ID: 806dcacf-aa7e-4c30-85fa-824081b74c26
MAX-FORWARDS: 70
VIA: SIP/2.0/TLS 192.168.0.40:54394;branch=z9hG4bKa5262eb5
ROUTE: < sip:CS-SE.fabrikam.com:5061;transport=tls;
 opaque=state:T:F:Eu;lr >
CONTACT: < sip:ts.fabrikam.com@fabrikam.com;gruu;opaque=srvr:
 outbound.sample:jRw31iBwA16ogIm~CA
 8sXN68AAA > ;automata;actor=”attendant”;text;audio;video;image
CONTENT-LENGTH: 38
SUPPORTED: ms-dialog-route-set-update
SUPPORTED: gruu-10
USER-AGENT: RTCC/4.0.0.0 maximillian
CONTENT-TYPE: text/plain; charset=utf-8
Message-Body: Jackdaws love my big sphinx of quartz.

 To send a message on an instant messaging call, you can use the BeginSendMessage and

 EndSendMessage methods on the InstantMessagingFlow . You can also receive notifi cations of

incoming instant messages by registering an event handler for the MessageReceived event on the

 InstantMessagingFlow .

 The following class demonstrates how to send and receive instant messages on an active instant

messaging call. It initiates a new outbound instant messaging call to a specifi ed SIP URI and sends

It is possible to create new media types with customized media providers and
media fl ows. This is only necessary in very advanced scenarios and is outside the
scope of this book.

an initial message. It then waits for incoming messages, and repeats them back, replacing the letter

 “ e ” with the number “ 3. ”

using System;
using System.Configuration;
using System.Threading;
using Microsoft.Rtc.Collaboration;
using Microsoft.Rtc.Collaboration.AudioVideo;
using Microsoft.Rtc.Signaling;

namespace TwoPartyCallControl
{
 public class SendInstantMessageSample : ISampleComponent
 {
 ApplicationEndpoint _appEndpoint;
 InstantMessagingCall _imCall;
 string _destinationSipUri;

 // A wait handle for startup and one for shutdown.
 // They are set to unsignaled to start.
 ManualResetEvent _startupWaitHandle =
 new ManualResetEvent(false);
 ManualResetEvent _shutdownWaitHandle =
 new ManualResetEvent(false);

 ILogger _logger;

 public SendInstantMessageSample(ApplicationEndpoint endpoint,
 ILogger logger)
 {
 _appEndpoint = endpoint;
 _logger = logger;
 }

 public void Start()
 {
 Console.Write(“Enter destination URI: “);
 _destinationSipUri = Console.ReadLine();

 EstablishCall();
 }

 private void EstablishCall()
 {
 // Create a new Conversation.
 Conversation conversation = new Conversation(_appEndpoint);

 // Create a new IM call.
 _imCall = new InstantMessagingCall(conversation);

 try
 {
 // Establish the IM call.

Available for

download on

Wrox.com

Available for

download on

Wrox.com

Media and Messages on an Active Call ❘ 255

256 ❘ CHAPTER 8 TWO-PARTY CALL CONTROL WITH UCMA

 _imCall.BeginEstablish(_destinationSipUri,
 new CallEstablishOptions(),
 result = >
 {
 try
 {
 // Finish the asynchronous operation.
 _imCall.EndEstablish(result);

 _imCall.Flow.MessageReceived +=
 new EventHandler <
 InstantMessageReceivedEventArgs > (
 OnMessageReceived);

 SendMessage(“Jackdaws love my “ +
 “big sphinx of quartz.”);
 }
 catch (RealTimeException ex)
 {
 // Catch and log exceptions.
 _logger.Log(“Failed establishing IM call”,
 ex);
 }
 },
 null
);
 }
 catch (InvalidOperationException ioex)
 {
 _logger.Log(“Failed establishing IM call”, ioex);
 }
 }

 private void OnMessageReceived(object sender,
 InstantMessageReceivedEventArgs e)
 {
 InstantMessagingFlow flow = sender as InstantMessagingFlow;

 if (e.HasTextBody)
 {
 SendMessage(e.TextBody.Replace(“e”, “3”));
 }
 }

 private void SendMessage(string message)
 {
 try
 {
 _imCall.Flow.BeginSendInstantMessage(message,
 ar = >
 {
 try
 {

 _imCall.Flow.EndSendInstantMessage(ar);
 }
 catch (RealTimeException rtex)
 {
 _logger.Log(“Failed sending IM.”, rtex);
 }
 },
 null
);
 }
 catch (InvalidOperationException ioex)
 {
 _logger.Log(“Failed sending IM.”, ioex);
 }
 }

 public void Stop()
 {
 // Terminate the IM call if necessary.

 if (_imCall.State != CallState.Terminating & &
 _imCall.State != CallState.Terminated & &
 _imCall.State != CallState.Idle)
 {
 try
 {
 _imCall.BeginTerminate(ar = >
 {
 try
 {
 _imCall.EndTerminate(ar);
 }
 catch (RealTimeException rtex)
 {
 _logger.Log(“Failed terminating IM call.”,
 rtex);
 }
 },
 null);
 }
 catch (InvalidOperationException ioex)
 {
 _logger.Log(“Failed terminating IM call.”, ioex);
 }
 }
 }
 }
}

Code snippet TwoPartyCallControl\SendInstantMessageSample.cs

Media and Messages on an Active Call ❘ 257

258 ❘ CHAPTER 8 TWO-PARTY CALL CONTROL WITH UCMA

 Manipulating Audio Media Using AudioVideoFlow

 On an audio/video call, the AudioVideoFlow object handles the media stream. Properties and

methods with this class give you some control over the media, and there are also several helper

classes that can be attached to an AudioVideoFlow object to manipulate the audio on a call.

Chapter 12 covers various possibilities in detail.

 MONITORING CALL STATES

 The Call object in UCMA exposes a number of events that allow applications to monitor the state

of the call and its media fl ow, as well as the participants on the call. Applications can watch changes

in these states in order to time call control actions, and they can also be useful in following the

progress of a call for debugging purposes.

 SENDING SIP INFO MESSAGES

 For some advanced call control scenarios, you may need to send a specifi c type of

SIP message, such as an INFO message, manually in your code.

 The AudioVideoCall class provides a method, BeginSendMessage , which

you can use to do this. In the parameters, you specify the type of SIP message,

along with the content for the message body. You can also pass in an instance of

 CallSendMessageRequestOptions to specify custom SIP headers.

When creating a new application, it is often a good practice to monitor the state
of each call and write any state changes to a log or to the console. This can be
extremely handy in fi guring out what is happening when a call seems to be
behaving oddly or is disconnecting prematurely.

 Receiving Updates on Call State Changes

 The StateChanged event on the Call object is invoked by UCMA whenever the State property of

the Call changes. Table 8 - 2 lists the call states and their meanings.

 In an event handler for the StateChanged event, a UCMA application can access both the previous

state and the new state of the call. The following code shows an event handler that waits for an

audio call to be established and then transfers it to another destination.

private void OnCallStateChanged(object sender,
 CallStateChangedEventArgs e)
{
 _logger.Log(“Call state changed to {0}”, e.State);

 // Check the new state of the call.
 if (e.State == CallState.Established)
 {
 AudioVideoCall call = (AudioVideoCall)sender;

 // If the call is established,
 // transfer it to the destination.
 call.BeginTransfer(_destinationSipUri,
 OnTransferCompleted, call);
 }
}

 Receiving Updates on Flow State Changes

 The StateChanged event on a MediaFlow object is invoked whenever the fl ow changes state. You

can subscribe to this event to monitor changes in media transfer.

 Table 8 - 3 lists media fl ow states and their meanings.

 TABLE 8 - 2: Call States

 STATE NAME MEANING

 Idle The call has been initialized as an outgoing call but has not been initiated

(the INVITE has not yet been sent).

 Incoming The call is an incoming call that has not yet been accepted.

 Establishing The local endpoint is in the process of establishing the call with the remote

endpoint.

 Established The SIP handshake has succeeded and the call is established with a remote

endpoint.

 Transferring The local endpoint is sending a REFER message and the call is still in the

process of being transferred.

 Parking The local endpoint is in the process of parking the call.

 Terminating The call is in the process of being terminated through a SIP BYE message.

 Terminated The call has been terminated and is no longer active.

Monitoring Call States ❘ 259

260 ❘ CHAPTER 8 TWO-PARTY CALL CONTROL WITH UCMA

 Receiving Quality of Service Data

 The AudioVideoCall class has an event, MediaTroubleshootingDataReported , which allows

UCMA applications to subscribe to quality of experience data reported by Lync Server. These data

are provided as raw XML and are intended for debugging purposes. They are generally reported

when the call terminates.

 Chapter 13 describes how to use the quality of experience data reported through this event to assess

the various factors that affect audio quality on Lync calls.

 RETRIEVING INFORMATION ON REMOTE PARTICIPANTS

 A two - party call has only one participant, which is either the endpoint your application has called

or the endpoint that has called your application, so it is generally fairly obvious who is on the other

end of the call. At times, though, looking up the identity or properties of the remote endpoint can be

useful. The Call object provides a RemoteParticipant property for precisely this purpose.

 The RemoteParticipant property holds a ParticipantEndpoint object with details on the remote

endpoint. The ParticipantEndpoint object, in turn, has a Participant property, which holds

a Participant object. The Participant object has information on the Lync user , whereas the

 ParticipantEndpoint object has information on the user agent , or endpoint.

 You can see this for yourself by comparing the contents of ParticipantEndpoint.Uri and

 Participant.Uri . The former has a URI specifi c to the individual endpoint, whereas the latter has

a SIP URI for the user, not tied to any one endpoint.

 The following code shows an incoming audio call event handler that looks at the properties of the

remote participant to determine whether the caller has a phone URI.

private void OnIncomingAudioVideoCallReceived(object sender,
 CallReceivedEventArgs < AudioVideoCall > e)
{
 // Only accept calls from callers with phone URIs.
 if (!string.IsNullOrEmpty(e.RemoteParticipant.PhoneUri))
 {
 e.Call.BeginAccept(OnAcceptCompleted, null);
 }
 else

 TABLE 8 - 3: Media Flow States

 STATE NAME MEANING

 Idle The media fl ow has not begun yet.

 Active The fl ow is active and media is being exchanged.

 Terminated The fl ow has been terminated and media is no longer being sent back and forth.

 {
 e.Call.Decline();
 }
}

 The Call object also has a property called RemoteEndpointProperties , which holds information

on the remote endpoint specifi c to the call. This includes information on whether the remote

endpoint supports transfers and various other capabilities.

 The following code snippet accesses RemoteEndpointProperties in order to determine whether the

remote endpoint on a call accepts transfers before proceeding to transfer the call.

// Only transfer the call if the remote participant
// supports transfers. Otherwise, hang up in disgust.
if (_avCall.RemoteEndpointProperties.AllowTransfer)
{
 _avCall.BeginTransfer(“sip:michaelg@fabrikam.com”,
 OnTransferCompleted, null);
}
else
{
 _avCall.BeginTerminate(OnTerminateCompleted, null);
}

 SUMMARY

 In this chapter, you have seen how to initiate, accept, transfer, and terminate the various types of

two - party calls. You have also learned about some other properties of the ubiquitous Conversation

and Call classes. Understanding these topics is critical in building nearly any effective UCMA

application.

 The next chapter gives you a thorough introduction to another core area of UCMA — the APIs for

publishing and querying presence information.

Summary ❘ 261

Presence with UCMA

 WHAT ’ S IN THIS CHAPTER?

 Querying a user ’ s presence

 Subscribing to a user ’ s presence

 Publishing presence information automatically

 Publishing presence information on demand

 Publishing an “ always - on ” presence for an application

 Using the information from presence notifi cations

 Unifi ed Communications Managed API (UCMA) 3.0 allows you to retrieve and publish

presence information in your applications with a minimal amount of code. Applications can

retrieve presence on a one - time basis or create an ongoing presence subscription and can

publish presence details for themselves in a number of ways. This chapter discusses the various

methods of publishing, retrieving, and parsing presence information using UCMA.

 A number of reasons exist as to why manipulating presence information is useful for Unifi ed

Communications applications, including the following:

 Some applications need to work with presence on behalf of individual users. A web client

is an example; it needs to display the contact list that belongs to the user who is signed in.

 An application that provides a service may need to publish presence information to

indicate to potential users whether it is available, what communication modalities it

supports, and so forth.

 Some communication applications need to take action on the basis of other users ’ presence

information. A contact center application, for instance, can perform “ look - ahead routing ”

or “ presence - based routing ” by directing incoming calls only to agents who are in an

available state.

➤

➤

➤

➤

➤

➤

➤

➤

➤

 9

D
o

264 ❘ CHAPTER 9 PRESENCE WITH UCMA

 UCMA makes each of these purposes simple to achieve by adding a layer of abstraction on top of

the SIP messaging that makes presence work in Lync, and allowing developers to query, publish, and

subscribe to presence with one asynchronous operation.

 In the previous version of UCMA, although the SIP messaging was handled by
the UCMA runtime, developers had to manipulate presence data in XML form.
UCMA 3.0 adds data classes that allow developers to easily build the most
common types of presence data without working directly with XML.

 The two samples from which most of the sample code in this chapter is drawn will help you

to survive in an imaginary Unifi ed Communications world that is dominated by intrigue and

espionage. PresenceSpy keeps tabs on the availability changes of one or more users and reports

back to you on their movements at the end of a monitoring session. As a countermeasure,

 PresenceCounterIntelligence publishes random presence changes for one or more users. Both

sample applications are available on this book ’ s website at www.wrox.com .

 RETRIEVING PRESENCE INFORMATION FOR
A REMOTE ENDPOINT

 UCMA applications have two options for getting presence information about another user or application.

(Incidentally, any entity that has presence information managed by Lync is known in Lync lingo

as a presentity .) Option one is to make a one - time request for whatever presence information the

application needs. This is called a presence query and is illustrated in Figure 9 - 1.

UCMA Application

Lync Server

Lync Server

UCMA Application

1

2

Hey, Lync, what’s

Julian’s presence?

Julian is in Away state,

with a note of “I want to

be alone”

 FIGURE 9 - 1

http://www.wrox.com

 Presence queries are usually the best option for an application that needs to make a one - off decision

based on a user ’ s presence, but is not monitoring that user on a regular basis, or a service that needs

to provide presence information in response to a specifi c request from a client.

 Another option is to create a presence subscription . This means that the application asks Lync Server to

notify it whenever new presence information is published for any of the users whom it is monitoring,

as shown in Figure 9 - 2. The users whose presence the application subscribed to are referred to as the

 subscription targets .

UCMA Application

Lync Server

Lync Server

UCMA Application

1

2

Hey, Lync, can you

keep me updated on

Julian’s presence?

Sure. Right now, Julian

is in Busy state. His

contact card information

is blah blah blah. . .

Lync Server

UCMA Application

3

Update: Julain is now in

an Available state with a

note of “Good morning

everyone!!!!*

time passes. . .

 FIGURE 9 - 2

 Presence subscriptions make the most sense for applications such as web - based clients that act on

behalf of a number of users and need to have up - to - date information on the presence of everyone in

a user ’ s contact list. They are also often a good choice for applications that frequently refer to the

presence of a group of users, such as a pool of customer service agents, to make routing decisions or

control other behavior.

 In either case, UCMA allows you to specify the presence categories you need. Presence categories,

which are discussed in more detail in Chapter 6, distinguish the different types of information

that Lync endpoints can publish with the enhanced presence model, such as availability, notes,

contact information, phone information, and location. Creating custom presence categories is also

possible — with a bit of work.

Retrieving Presence Information for a Remote Endpoint ❘ 265

266 ❘ CHAPTER 9 PRESENCE WITH UCMA

 Querying a User ’ s Presence

 If an ongoing subscription to a user ’ s presence is not necessary, an application can retrieve the user ’ s

presence on a one - time basis using a presence query.

 The ApplicationEndpoint and UserEndpoint classes both have a PresenceServices

property. This property holds a reference to an ApplicationEndpointPresenceServices

or UserEndpointPresenceServices object, which gives developers access to some presence

operations for an endpoint. The BeginPresenceQuery method on this object initiates a

presence query to retrieve presence information for one or more users.

 The users ’ SIP URIs are passed in as the fi rst parameter, in the form of an enumerable collection of

strings. The second parameter is an array of strings that represent the presence categories to query;

see the “ Parsing Presence Information ” section later in this chapter for the possible choices.

 An application can receive the presence information after the query completes in two ways:

 First, and most simply, the application can store the return value of EndPresenceQuery ,

which is an enumerable collection of RemotePresentityNotification objects.

 Alternatively, it can provide an event handler as the third parameter of BeginPresenceQuery ;

this event handler is invoked when the query results become available. This is handy if a

presence notifi cation event handler already exists elsewhere in the class that is used for presence

subscriptions. The subscriptions and queries can happily share the same event handler with

hardly any drama.

 The following code snippet shows a method that initiates a presence query and handles the results

returned by the EndPresenceQuery method.

private void HandlePresenceQueryInstantMessage(
 InstantMessagingCall call, string toastMessage)
{

 // Extract the SIP URI from the toast message
 // by removing the text before “sip:”.
 int sipUriStartPosition = toastMessage.IndexOf(“sip:”,
 StringComparison.OrdinalIgnoreCase);
 string sipUriToQuery = toastMessage.Remove(0,
 sipUriStartPosition);

 try
 {
 // Accept the incoming IM call containing the query command.
 IAsyncResult acceptCallAsyncResult =
 call.BeginAccept(
 ar =>
 {
 try
 {
 call.EndAccept(ar);
 }

➤

➤

Available for

download on

Wrox.com

Available for

download on

Wrox.com

 catch (RealTimeException ex)
 {
 _logger.Log(“Failed accepting call.”, ex);
 }
 },
 null);

 // Initiate the presence query for the state category only.
 _appEndpoint.PresenceServices.BeginPresenceQuery(
 new List<string>() { sipUriToQuery },
 new string[] { “state” },
 null,
 ar =>
 {
 try
 {
 // Retrieve the results of the query.
 IEnumerable<RemotePresentityNotification>
 notifications =
 _appEndpoint.PresenceServices.
 EndPresenceQuery(ar);

 // Make sure the call has finished connecting.
 acceptCallAsyncResult.AsyncWaitHandle.WaitOne();

 // Grab the first notification in the results.
 RemotePresentityNotification notification =
 notifications.FirstOrDefault();

 // Send an IM with the availability state name.
 SendMessageToInstantMessagingCallAndTerminate(
 notification.AggregatedPresenceState.
 Availability.ToString(),
 call);
 }
 catch (RealTimeException ex)
 {
 _logger.Log(“Presence query failed.”, ex);
 }
 },
 null);

 }
 catch (InvalidOperationException ex)
 {
 _logger.Log(“Failed accepting call and querying presence.”,
 ex);
 }

}

 Code snippet PresenceSpy\PresenceSpyUserAgent.cs

Retrieving Presence Information for a Remote Endpoint ❘ 267

268 ❘ CHAPTER 9 PRESENCE WITH UCMA

 Subscribing to Continuous Presence Updates Using
RemotePresenceView

 The RemotePresenceView class, new to UCMA 3.0, handles a single presence subscription on

one or more remote users. It is associated with a single endpoint (either ApplicationEndpoint or

 UserEndpoint) and reports new presence notifi cations by invoking an event handler.

 Creating and Registering a Presence Subscription

 To create a presence subscription, fi rst instantiate a RemotePresenceView object, passing in a

reference to the endpoint in the constructor, as shown in the following snippet:

// Create a remote presence view.
_ presenceView = new RemotePresenceView(_endpoint);

 Code snippet PresenceSpy\PresenceSpySession.cs

 Next, register an event handler for the PresenceNotificationReceived event on the Remote

PresenceView object. The UCMA runtime will trigger this event any time the endpoint receives a new

notifi cation for one of its presence subscription targets. The event will also fi re when the subscription

is fi rst established to report the current presence information for each subscription target.

Available for

download on

Wrox.com

Available for

download on

Wrox.com

 Always subscribe to the PresenceNotificationReceived event before starting
the presence subscription. When the subscription request is sent to Lync Server,
the server responds with an initial notifi cation containing the current presence
information for the subscription targets. If you have not already registered an
event handler, your application may miss this initial notifi cation or any other
notifi cations that arrive very soon after the subscription starts.

 The following code snippet illustrates registering an event handler to receive incoming presence

notifi cations.

// Handle presence notification events.
presenceView.PresenceNotificationReceived +=
 new EventHandler < RemotePresentitiesNotificationEventArgs > (
 OnPresenceNotificationReceived);

 Code snippet PresenceSpy\PresenceSpySession.cs

 After an event handler is in place, start the presence subscription by calling StartSubscribing

ToPresentities and passing in the presence targets (each one represented by a RemotePresentity

SubscriptionTarget object) as an enumerable collection, as shown in the following code snippet.

This is a synchronous method, and so it does not require a callback delegate or another method call

to fi nish the operation.

Available for

download on

Wrox.com

Available for

download on

Wrox.com

// Create a list with only one subscription target.
List<RemotePresentitySubscriptionTarget> targets =
 new List < RemotePresentitySubscriptionTarget>();
targets.Add(new RemotePresentitySubscriptionTarget(_sipUri));

// Initiate the presence subscription.
_ presenceView.StartSubscribingToPresentities(targets);

 Code snippet PresenceSpy\PresenceSpySession.cs

 When the application calls StartSubscribingToPresentities , the endpoint sends a SIP SUBSCRIBE

message to Lync Server. The SUBSCRIBE message tells Lync Server to begin notifying the endpoint about

new presence updates from the specifi ed users in the specifi ed categories. A typical message looks like

the following. Both the To and From header contain the SIP URI of the subscribing endpoint, which

makes sense as the message is handled by the Lync Front End Server and is not routed to any other

users. The identity of the subscription target and the list of categories to which the endpoint wishes to

subscribe are contained in an XML document in the message body. The URI of the subscription target

is highlighted in the following code.

SUBSCRIBE sip:outbound.sample@fabrikam.com SIP/2.0
From: “Outbound”<sip:outbound.sample@fabrikam.com:13415;transport=Tls;
 ms-opaque=eddb24eaed385b26>;
 epid=68D3BA0FB8;tag=cf2482c9d5
To: <sip:outbound.sample@fabrikam.com>
CSeq: 4 SUBSCRIBE
Call-ID: e0dd562b219b413387106112f23ddd02
MAX-FORWARDS: 70
VIA: SIP/2.0/TLS 192.168.0.40:4317;branch=z9hG4bK613625f7
CONTACT: <sip:ts.fabrikam.com@fabrikam.com;gruu;opaque=srvr:
outbound.sample:jRw31iBwA16ogIm8sXN68AAA>;automata;
 actor=”attendant”;text;audio;video;image
CONTENT-LENGTH: 517
EVENT: presence
SUPPORTED: ms-dialog-route-set-update
SUPPORTED: com.microsoft.autoextend
SUPPORTED: ms-piggyback-first-notify
SUPPORTED: ms-benotify
SUPPORTED: eventlist
SUPPORTED: gruu-10
USER-AGENT: RTCC/4.0.0.0 PresenceSpy
CONTENT-TYPE: application/msrtc-adrl-categorylist+xml
REQUIRE: adhoclist,categorylist
Accept: application/msrtc-event-categories+xml,application/xpidf+xml,
 application/rlmi+xml, text/xml+msrtc.pidf,
 application/pidf+xml, multipart/related
Message-Body: <batchSub
 xmlns:xsi=”http://www.w3.org/2001/XMLSchema-instance”
 xmlns:xsd=”http://www.w3.org/2001/XMLSchema”
 xmlns=”http://schemas.microsoft.com/2006/01/sip/batch-subscribe”>
 <action name=”subscribe”><adhocList>
 <resource uri=“sip:michaelg@fabrikam.com” /></adhocList>
 <categoryList xmlns=”http://schemas.microsoft.com/2006/

Available for

download on

Wrox.com

Available for

download on

Wrox.com

Retrieving Presence Information for a Remote Endpoint ❘ 269

270 ❘ CHAPTER 9 PRESENCE WITH UCMA

09/sip/categorylist” > < category name=”contactCard” / >
<category name=”state” / > <category name=”note” / >
<category name=”services” / > < category name=”calendarData” / >
 < /categoryList> < /action > < /batchSub >

 A few things are worth noting here. One is that the To header in the message does not contain

the SIP URI of the subscription target; it contains the SIP URI of the user who is initiating the

subscription. The SUBSCRIBE request itself is sent to the Lync Server and is not routed to any of the

subscription targets. The URIs of the targets are sent in the message body, which contains an XML

document with all the information necessary for Lync Server to process the presence subscription.

The presence categories to which the user is subscribing are also contained in the XML document

within the < categoryList > element.

 After Lync Server has created the presence subscription, it responds with a 200 OK message. The

body of this response includes initial presence information on each of the subscription targets.

Here is an example:

SIP/2.0 200 OK
From: “Outbound”<sip:outbound.sample@fabrikam.com:13415;transport=Tls;
 ms-opaque=eddb24eaed385b26>;epid=68D3BA0FB8;tag=cf2482c9d5
To: <sip:outbound.sample@fabrikam.com>;tag=BB410080
CSeq: 4 SUBSCRIBE
Call-ID: e0dd562b219b413387106112f23ddd02
Contact: <sip:CS-SE.fabrikam.com:5061;transport=tls>
Content-Length: 2953
Via: SIP/2.0/TLS 192.168.0.40:4317;branch=z9hG4bK613625f7;
 ms-received-port=4317;ms-received-cid=1D0300
Expires: 33264
Require: eventlist
Content-Type: multipart/related; type=”application/rlmi+xml”;
 start=resourceList;
 boundary=fd7523dcba4842cf81d23498435ad925
Event: presence
subscription-state: active;expires=33264
ms-piggyback-cseq: 1
Supported: ms-benotify, ms-piggyback-first-notify
Message-Body:
--fd7523dcba4842cf81d23498435ad925
Content-Transfer-Encoding: binary
Content-ID: resourceList
Content-Type: application/rlmi+xml
<list xmlns=”urn:ietf:params:xml:ns:rlmi”
 uri=”sip:outbound.sample@fabrikam.com” version=”0”
 fullState=”false”/>
--fd7523dcba4842cf81d23498435ad925
Content-Transfer-Encoding: binary
Content-Type: application/msrtc-event-categories+xml
<categories xmlns=”http://schemas.microsoft.com/2006/09/sip/categories”
 uri=”sip:michaelg@fabrikam.com”>
<category name=”calendarData” instance=”1440520487”
 publishTime=”2010-11-20T21:20:07.490”>
<calendarData xmlns=”http://schemas.microsoft.com/
 2006/09/sip/calendarData” mailboxID=”michaelg@fabrikam.com”>

 freeBusy startTime=”2010-11-19T08:00:00Z” granularity=”PT15M”
 encodingVersion=”1”>AAAAAAAAAAAAAAAAAAAA
 AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
 AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
 AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA</freeBusy>
 </calendarData>
</category>
<category name=”contactCard” instance=”0”
 publishTime=”2010-11-11T21:12:55.053”>
<contactCard xmlns=”http://schemas.microsoft.com/2006
 /09/sip/contactcard” >
<identity >
<name >
<displayName >
Michael Greenlee</displayName>
</name>
<email >
michaelg@fabrikam.com</email>
</identity>
</contactCard>
</category>
<category name=”contactCard” instance=”4”
 publishTime=”2010-11-20T21:19:59.480”>
<contactCard xmlns=”http://schemas.microsoft.com/2006/
 09/sip/contactcard” isUCEnabled=”true”>
 </contactCard>
</category>
<category name=”note”/>
<category name=”state” instance=”1”
 publishTime=”2010-11-21T02:31:15.890”>
<state xsi:type=”aggregateState” xmlns:xsi=”http://www.w3.org/2001/
 XMLSchema-instance” xmlns=”http://schemas.microsoft.com/
 2006/09/sip/state”>
 <availability>3500</availability><delimiter xmlns=”http://schemas.microsoft.
 com/2006/09/sip/commontypes” />
 <device>computer</device>
 <end xmlns=”http://schemas.microsoft.com/2006/
 09/sip/commontypes” /></state>
</category>
<category name=”services” instance=”0”
 publishTime=”2010-11-21T02:31:15.890”>
<services xmlns=”http://schemas.microsoft.com/2006/09/sip/service”>
 <service uri=”sip:michaelg@fabrikam.com”><capabilities>
 <text render=”true” capture=”true”
 deviceAvailability=”3500” />
 <gifInk render=”true” capture=”false”
 deviceAvailability=”3500” /><isfInk
 render=”true” capture=”false”
 deviceAvailability=”3500” /><applicationSharing
 render=”true” capture=”true” deviceAvailability=”3500” />
 <voice render=”true” capture=”true”
 deviceAvailability=”3500” /><video render=”true”
 capture=”true” deviceAvailability=”3500” />
 <contentWhiteboard render=”true”
 capture=”true” deviceAvailability=”3500” />

Retrieving Presence Information for a Remote Endpoint ❘ 271

272 ❘ CHAPTER 9 PRESENCE WITH UCMA

 <contentPoll render=”true” capture=”true”
 deviceAvailability=”3500” />
 <contentPowerPoint render=”true”
 capture=”true” deviceAvailability=”3500” />
 <contentNativeFile render=”true”
 capture=”true” deviceAvailability=”3500” />
 </capabilities></service></services>
</category>
</categories>

--fd7523dcba4842cf81d23498435ad925--

 This initial notifi cation gives the UCMA application baseline information for each of the

subscription targets to which it can apply subsequent updates.

 Whenever an update occurs for one of the targets, Lync Server sends a SIP BENOTIFY message to the

application. Later sections in this chapter discuss how to parse the information contained in these

presence notifi cations.

 Limitations on Presence Subscriptions

 Lync Server limits the number of users who can subscribe to each presentity ’ s presence to 200. In

other words, if everyone in a company tries to subscribe to the CEO ’ s presence, Lync Server will

only allow the fi rst 200 to initiate subscriptions.

 This is problematic in a couple of cases. One is that certain services may need to receive presence

updates on large numbers of contacts, regardless of how many other users are subscribing to their

presence. The other problem is that a UCMA service application may be in the contact list of a very

large number of users, quickly putting the number of subscribers over the limit of 200.

 To solve the fi rst problem, the RemotePresenceView class supports a “ backup ” mode of receiving

presence updates using polling. In this mode, rather than initiating a subscription with Lync Server,

it automatically queries the presence of each target at regular intervals. This gets around Lync

Server ’ s limit on the number of simultaneous presence subscribers.

 By default, RemotePresenceView downgrades to the polling method if Lync Server rejects the initial

 SUBSCRIBE request. You can also tell RemotePresenceView to use polling from the outset using

a RemotePresenceViewSettings object when creating an instance of RemotePresenceView .

Set the SubscriptionMode on the RemotePresenceViewSettings object to determine which

mode the endpoint uses to retrieve presence information. You can also set the polling interval using

the PollingInterval property on RemotePresenceViewSettings . The following code snippet

illustrates this:

// Set the presence view to poll every 30 seconds.
RemotePresenceViewSettings settings =
 new RemotePresenceViewSettings();
settings.SubscriptionMode =
 RemotePresenceViewSubscriptionMode.Polling;
settings.PollingInterval = new TimeSpan(0, 0, 30);

// Create a remote presence view.
_presenceView = new RemotePresenceView(_endpoint, settings);

 To be notifi ed when UCMA falls back on the polling method of receiving presence updates,

subscribe to the SubscriptionStateChanged event on RemotePresenceView . The following code

snippet contains a sample event handler for this event:

private void OnSubscriptionStateChanged(object sender,
 RemoteSubscriptionStateChangedEventArgs e)
{
 foreach (KeyValuePair < RealTimeAddress,
 RemotePresentityStateChange > pair
 in e.SubscriptionStateChanges)
 {
 Console.WriteLine(
 “Subscription for {0} changed to {1} state”,
 pair.Key.Uri, pair.Value.State);
 }

}

 For the second issue (dealing with the large numbers of users subscribing to a UCMA application ’ s

presence) UCMA allows you to mark an application endpoint as an “ automaton ” in the contact card

presence category. This tells Lync Server that this presentity always has the same presence state, so

users who subscribe to its presence do not need to receive updates. Consequently, the application will

always appear as available in everyone ’ s contact list. This option is discussed later in this chapter.

 Parsing Presence Information

 When a UCMA application receives a presence update notifi cation, the new presence information

is wrapped in PresenceCategory objects. Each PresenceCategory object corresponds to a single

 < category > element in the presence XML document, and the UCMA application has the option of

reading the XML directly.

 UCMA 3.0, however, also provides some category classes that derive from PresenceCategory and have

strongly typed properties. With these classes, such as PresenceState and ContactCard , retrieving most

of the commonly needed bits of presence information without writing XML - parsing code is possible.

 The RemotePresentityNotification class, which contains all the presence category data for a

single notifi cation, gives access to the raw XML data through PresenceCategory objects and also

has properties that hold the strongly typed presence category objects. This allows developers to

choose which method they prefer.

 In the previous version of UCMA, presence updates were provided only in the
form of raw XML. This made interpreting the presence updates somewhat
burdensome. UCMA 3.0 introduced strongly typed presence category classes to
make this process easier so developers can focus on solving business problems
instead of writing XML parsing code.

 Six presence categories are built into Lync, as shown in Table 9 - 1. By default, endpoints subscribe to

updates in the fi rst fi ve categories.

Retrieving Presence Information for a Remote Endpoint ❘ 273

274 ❘ CHAPTER 9 PRESENCE WITH UCMA

 CATEGORY PURPOSE

 State Indicates how available the user is for communications, and whether the user is in

a call or conference.

 contactCard Contains contact details for the user.

 calendarData Contains data from Exchange on the user ’ s availability during the day .

 services Indicates which capabilities, such as video, audio, or instant messaging, a user

currently supports.

 note Holds a plain - text status note, which is usually entered by the user in Communicator.

 routing Holds information about how calls for this user should be routed.

TABLE 9-1: Built-in Presence Categories

 The State Category

 The primary purpose of the information in the state category is to help users assess whether another

contact is available to talk. It consists of two primary pieces of information: an integer availability

value, which gives a numeric representation of how available the contact is currently (and also

controls the color of the contact ’ s “ presence light ” in Lync), and an activity token, which gives more

detail on what the contact is currently doing and is the source of the text (“ Available, ” “ In a Call, ”

or “ In a Meeting, ” for instance) that appears next to a Lync presence icon in client applications.

 UCMA applications cannot query or subscribe to the routing category for
remote endpoints.

 NAMES FOR THE LITTLE COLORED THING THAT SHOWS LYNC PRESENCE

 There is a long tradition of confusion concerning what to call the colored icon that

shows the presence state of a Lync contact. The following list shows some of the

prevailing choices:

 Presence icon (the most boring)

 Presence bubble (a holdover from Offi ce Communications Server, in which

the icon was circular)

 Presence light

 Presence chiclet

 Presenticon

 Tetrathorpe

 Actually, we just made up those last two. We hope they catch on. (Read Chapter 12

to learn the defi nition of octothorpe .)

➤

➤

➤

➤

➤

➤

 Availability values are generally between 3000 and 18500. Each range of values (an availability class)

corresponds to one of the presence icons used in the Lync presence controls, as shown in Table 9 - 2.

 RANGE OF VALUES CLASS NAME PRESENCE ICON

 3000 – 4499 Online Green

 4500 – 5999 IdleOnline Green/Yellow

 6000 – 7499 Busy Red

 7500 – 8999 IdleBusy Red/Yellow

 9000 – 11999 DoNotDisturb Dark Red with Dash

 12000 – 14999 BeRightBack Yellow

 1500 – 17999 Away Yellow

 > 18000 Ol ine Gray

TABLE 9-2: Availability Classes

 Activity tokens usually correspond to ranges of availability values as well. However, which activity

tokens go with which availability values varies depending on the type of presence state.

 Four types of presence state exist. When endpoints publish state information, they publish one or more

of these four types, which are user state, machine state, calendar state, and phone state. Table 9 - 3

shows the types of state information.

 STATE TYPE PURPOSE

 User state Holds state information manually chosen by the user, such as through the

presence control on the Lync client.

 Machine state Holds state information determined by the current state of the device; for

instance, whether the user has moved the mouse or typed anything recently.

 Calendar state Holds state information based on the user ’ s Exchange calendar information; for

instance, if the user has a meeting scheduled for the current time, the endpoint

may publish calendar state data showing this.

 Phone state Holds state information based on whether any phone calls or conferences are

currently active at the endpoint.

TABLE 9-3: Types of State Information

 Lync Server receives the various pieces of state information from all endpoints where a given user is

signed in and uses a set of rules to combine them into a single block of state information, which it

then provides as aggregate state to any endpoints that request that user ’ s presence. This process of

combining the various state publications from one or more endpoints is called presence aggregation .

Retrieving Presence Information for a Remote Endpoint ❘ 275

276 ❘ CHAPTER 9 PRESENCE WITH UCMA

 Aggregate presence state is available through the AggregatedPresenceState property on a

 RemotePresentityNotification object, as shown in the following code snippet, which retrieves

the availability value and activity token string from a new presence notifi cation. The availability

value is translated into one of the values of the PresenceAvailability enumeration, whereas the

activity token is turned into a PresenceActivity object, which contains the name of the activity in

string form along with some other details.

// Get the new availability value.
PresenceAvailability newAvailability =
 notification.AggregatedPresenceState.Availability;

// Get the new activity token.
string newActivityToken =
 notification.AggregatedPresenceState.Activity.ActivityToken;

 Code snippet PresenceSpy\PresenceSpySession.cs

 The Contact Card Category

 The contact card category holds contact information and other personal details for a user. Contact card

information can be accessed through the ContactCard property on a RemotePresentityNotification

object. This property contains a reference to a ContactCard object, which holds the various contact card

fi elds in string properties.

 As an example, the following code extracts a contact ’ s display name and email address from a

presence notifi cation.

string displayName = notification.ContactCard.DisplayName;
string email = notification.ContactCard.EmailAddress;

 The Note Category

 The note category holds the text that a user enters in the Lync client or in an out - of - offi ce message.

 Both of these types of note are accessible through properties on the

 RemotePresentityNotification class. The PersonalNote property holds the note (if any) that

the user has entered in the Lync client, and the OutOfOfficeNote property holds any out - of - offi ce

message that is currently in effect for the user. In both cases, the note is represented by an instance

of the Note class, which holds the actual message in string format in its Message property.

 The following code snippet shows how an application might access the text of the personal note in a

presence notifi cation.

// Get the new note.
stringnewNote =
 notification.PersonalNote.Message;

 The Services Category

 The services category holds information about a user ’ s current communication capabilities. If the user

is logged in at multiple endpoints, the capabilities across the different endpoints are combined.

Available for

download on

Wrox.com

Available for

download on

Wrox.com

 Applications can access service information through the ServiceCapabilities property on the

 RemotePresentityNotification class, as shown in the following code snippet.

// Determine whether the user can handle audio and app sharing.
bool capableOfTakingSupportCalls =
 notification.ServiceCapabilities.AudioEnabled ==
 ServiceCapabilitySupport.Enabled &&
 notification.ServiceCapabilities.ApplicationSharingEnabled ==
 ServiceCapabilitySupport.Enabled;

 The ServiceCapabilites property contains a reference to an instance of the Services class. This

class has properties that indicate whether the user in question can support audio, video, application

sharing, and instant messaging.

 The Services class also has a property called ServiceList , which contains a list of Service

Capability objects. Each of these objects represents a single capability of the user, and contains

information on the availability state of the device that gives the user this capability. More

capabilities exist than the four mentioned earlier; for example, users can have capabilities such as

 contentWhiteboard or gifInk .

 Table 9 - 4 shows some of the capabilities that can appear in this list.

 CAPABILITY NAME DESCRIPTION

 text Indicates that the endpoint can send and receive messages in text form.

 voice Indicates that the endpoint can participate in audio calls.

 video Indicates that the endpoint can participate in video calls.

 calendar Indicates that the endpoint can publish information from an Exchange

calendar.

 remoteCallControl Indicates that the endpoint can perform remote call control operations.

 CCCP Indicates that the endpoint can handle Centralized Conference Control

Protocol (CCCP) commands.

 gifInk Indicates that the endpoint can handle ink messages.

 isfInk Indicates that the endpoint can handle ink messages.

 applicationSharing Indicates that this endpoint can participate in application sharing calls.

 contentWhiteboard Indicates that the endpoint can handle whiteboard sharing sessions.

 contentPowerPoint Indicates that this endpoint can handle shared PowerPoint content.

 contentNativeFile Indicates that this endpoint can handle sharing arbitrary fi le content.

 contentPoll Indicates that this endpoint can participate in polls.

TABLE 9-4: Service Capabilities

Retrieving Presence Information for a Remote Endpoint ❘ 277

278 ❘ CHAPTER 9 PRESENCE WITH UCMA

 The following code snippet demonstrates how to use the ServiceCapability objects in the

 ServiceList property to determine the availability of a user ’ s instant messaging device.

// Check that the user’s IM device is in an available state.
ServiceCapability imDeviceServiceCapability =
 notification.ServiceCapabilities.ServiceList.FirstOrDefault(s =>
 s.CapabilityType == “text”);
bool imDeviceReady = imDeviceServiceCapability != null &&
 imDeviceServiceCapability.DeviceAvailability ==
 PresenceAvailability.Online;

 The Calendar Data Category

 The calendar data category stores information that comes from a user ’ s Exchange calendar. This is

the information that enables you, for example, to see when someone is scheduled to be free in the

Lync client.

 Unlike the other presence categories, the calendar data category does not have a strongly typed class

in UCMA 3.0. Applications that need to access the data from this presence category must parse the

XML data manually.

 PARSING PRESENCECATEGORYWITHMETADATA OBJECTS

 If you fi nd yourself in possession of a PresenceCategoryWithMetaData object

that contains presence data you would have liked to read using one of the strongly

typed presence category classes, all is not lost. Assuming you know the category

of the information contained in the presence data, you can effect this magical

transformation by passing the PresenceCategoryWithMetaData object into the

constructor for the strongly typed presence class. The following code snippet shows

how this works.

// Turn the wild, untamed presence state data into a tidy
// PresenceState object.
PresenceState stronglyTypedState =
 new PresenceState(mysteriousPresenceCategoryWithMetaData);

 PUBLISHING PRESENCE FOR THE LOCAL ENDPOINT

 The LocalOwnerPresence property on a UserEndpoint or ApplicationEndpoint exposes methods

for publishing presence information. The process for publishing presence is slightly different

depending on whether the endpoint is a user endpoint or an application endpoint: User endpoints

can rely on the grammar - based method of publication, in which instance IDs and container IDs are

automatically generated by Lync, whereas application endpoints must always supply these explicitly.

This section describes both approaches in detail.

 Presence containers, which are discussed in more depth in Chapter 10, are access control containers

into which different types or amounts of presence information can be published, to control which

other users have access to which information. When an endpoint publishes presence information,

it publishes separate category items for each container that will hold the information. For instance,

calendar information might be published to the Friends and Family, Workgroup, and Colleagues

containers. User endpoints, when publishing presence, can simply provide the category data

once, and the presence grammar will determine which containers should receive which pieces of

information. Application endpoints, on the other hand, need to publish the category data once for

each container, providing the ID of the container with each piece of category data.

 Likewise, instance IDs, which uniquely identify a single presence publication, are automatically

generated with the grammar - based publication method, but application endpoints must provide

them manually. The instance ID is the same for each piece of presence category data published

in one batch, so one publication might, for example, contain a userState category and a note

category with container ID 400, and a userState category with container ID 300, all with an

instance ID of 244.

 Publishing Presence with a Presence Grammar

 User endpoints can use the overload of LocalOwnerPresence.BeginPublishPresence that takes

a collection of PresenceCategory objects as its fi rst parameter. The objects in the collection can

be instances of either the strongly typed presence category classes (such as PresenceState) or the

 PresenceCategory class itself (to publish presence information in raw XML form). The latter is

necessary to publish presence information of a category that does not have a strongly typed class

(such as the routing category, which contains information on call forwarding, team ring, and other

such options).

 The PublishRandomStateAndNote method, shown next, from the PresenceCounterIntelligence

sample application, demonstrates the grammar - based method of publishing presence using the

 BeginPublishPresence method.

private void PublishRandomStateAndNote()
{
 _timer.Change(Timeout.Infinite, Timeout.Infinite);

 PresenceState newState = GetRandomNonStandardPresenceState();
 Note newNote = new Note(GetRandomNoteMessage());

 List<PresenceCategory> categories = new List<PresenceCategory>()
 {
 newState,
 newNote

Available for

download on

Wrox.com

Available for

download on

Wrox.com

 A UCMA endpoint can only publish presence information that belongs to
the Lync user it represents. An application that needs to publish presence
information for multiple users must create an endpoint for each user.

Publishing Presence for the Local Endpoint ❘ 279

280 ❘ CHAPTER 9 PRESENCE WITH UCMA

 };
 try
 {
 _endpoint.LocalOwnerPresence.BeginPublishPresence(
 categories,
 ar =>
 {
 try
 {
 _endpoint.PresenceServices.EndUpdatePresenceState(
 ar);

 _logger.Log(“Published presence with state {0} “ +
 “and note {1}.”,
 newState.Availability, newNote.Message);
 _timer.Change(GetRandomWaitMilliseconds(),
 GetRandomWaitMilliseconds());
 }
 catch (RealTimeException ex)
 {
 _logger.Log(“Failed publishing presence.”, ex);
 }
 },
 null);
 }
 catch (InvalidOperationException ex)
 {
 _logger.Log(“Failed publishing presence.”, ex);
 }

}

 Code snippet PresenceCounterIntelligence\PresencePublishingSession.cs

 AN EVEN EASIER WAY TO PUBLISH USER ENDPOINT STATE DATA

 If your application needs to publish only state information for a user (for example,

to mark a user as Busy) without any of the other categories, today is your lucky day.

A method available in UCMA 3.0 makes these presence publications even easier

than publishing presence with the BeginPublishPresence method.

 The object referenced by the PresenceServices property on UserEndpoint has a

method called BeginUpdatePresenceState . By calling this method, with an instance

of PresenceState as the fi rst parameter, you can publish a new state for the end-

point without bothering with creating a collection of PresenceCategory objects.

 The PublishRandomState method (shown next) in the sample application illustrates

this approach.

 Publishing Presence Without a Presence Grammar

 Application endpoints do not have the luxury of using grammar - based presence publication. Instead,

they must explicitly specify indicate which containers presence information should be published to,

and must provide instance IDs when publishing presence information.

 To provide these additional details when publishing presence using an application endpoint, pass

instances of PresenceCategoryWithMetaData to LocalOwnerPresence.BeginPublishPresence .

Each PresenceCategoryWithMetaData object wraps a single PresenceCategory instance (or an

instance of one of the stronglytyped subclasses) along with an instance ID and container ID.

 The following code snippet shows what the PublishRandomStateAndNote method would look like

with non – grammar - based presence publication.

private void PublishRandomState()
{
 _timer.Change(Timeout.Infinite, Timeout.Infinite);

 PresenceState newState = GetRandomStandardPresenceState();

 try
 {
 _endpoint.PresenceServices.BeginUpdatePresenceState(
 newState,
 ar =>
 {
 try
 {
 _endpoint.PresenceServices.
 EndUpdatePresenceState(ar);

 _logger.Log(“Updated presence state to {0}.”,
 newState.Availability);
 _timer.Change(GetRandomWaitMilliseconds(),
 GetRandomWaitMilliseconds());
 }
 catch (RealTimeException ex)
 {
 _logger.Log(“Failed updating presence state.”
 , ex);
 }
 },
 null);
 }
 catch (InvalidOperationException ex)
 {
 _logger.Log(“Failed updating presence state.”, ex);
 }

}

Publishing Presence for the Local Endpoint ❘ 281

282 ❘ CHAPTER 9 PRESENCE WITH UCMA

private void PublishRandomStateAndNoteWithMetaData()
{
 _timer.Change(Timeout.Infinite, Timeout.Infinite);

 PresenceState newState = GetRandomNonStandardPresenceState();
 Note newNote = new Note(GetRandomNoteMessage());

 // Create some presence category items with metadata.
 // Include the state and note data for friends/family only,
 // and just the state for workgroup and colleague contatcts.
 PresenceCategoryWithMetaData stateWithMetaDataForFriends =
 new PresenceCategoryWithMetaData(244, 400, newState);
 PresenceCategoryWithMetaData noteWithMetaDataForFriends =
 new PresenceCategoryWithMetaData(244, 400, newNote);
 PresenceCategoryWithMetaData stateWithMetaDataForWorkgroup =
 new PresenceCategoryWithMetaData(244, 300, newState);
 PresenceCategoryWithMetaData stateWithMetaDataForColleagues =
 new PresenceCategoryWithMetaData(244, 200, newState);

 List<PresenceCategoryWithMetaData> categories =
 new List<PresenceCategoryWithMetaData>()
 {
 stateWithMetaDataForFriends,
 noteWithMetaDataForFriends,
 stateWithMetaDataForWorkgroup,
 stateWithMetaDataForColleagues
 };

 try
 {
 _endpoint.LocalOwnerPresence.BeginPublishPresence(
 categories,
 ar =>
 {
 try
 {
 _endpoint.PresenceServices.EndUpdatePresenceState(
 ar);

 _logger.Log(“Published presence with state {0} “ +
 “and note {1}.”,
 newState.Availability, newNote.Message);
 _timer.Change(GetRandomWaitMilliseconds(),
 GetRandomWaitMilliseconds());
 }
 catch (RealTimeException ex)
 {
 _logger.Log(“Failed publishing presence.”, ex);
 }
 },
 null);
 }
 catch (InvalidOperationException ex)
 {

Available for

download on

Wrox.com

Available for

download on

Wrox.com

 _logger.Log(“Failed publishing presence.”, ex);
 }

}

 Code snippet PresenceCounterIntelligence\PresencePublishingSession.cs

 RETRIEVING PRESENCE INFORMATION FOR
THE LOCAL ENDPOINT

 Before an application publishes presence information with an endpoint, the recommendation is that

the application subscribe to local presence notifi cations for that endpoint using the BeginSubscribe

method on the object referenced by the LocalOwnerPresence property. Unlike the presence

subscriptions managed by instances of RemotePresenceView , the local presence subscription is for

notifi cations about the endpoint ’ s own presence. Table 9 - 5 shows the various types of information

that an application can receive when the local presence subscription is active.

 EVENT NAME TYPE OF INFORMATION

 ContainerNotificationReceived Information on container membership for this user, if

applicable.

 DelegateNotificationReceived Information on this user ’ s delegates, if applicable.

 PresenceNotificationReceived Details of this user ’ s presence information.

 SubscriberNotificationReceived Notifi cation of a new subscription to this user ’ s presence

from a remote user.

TABLE 9-5: Local Owner Presence Notifi cations

 The PresenceCounterIntelligence application subscribes to local owner presence for each user

endpoint before using it to publish fake presence updates. The following code snippet shows the

method in which the application initiates this subscription.

private void SubscribeToLocalPresence()
{
 _endpoint.LocalOwnerPresence.PresenceNotificationReceived +=
 new EventHandler<LocalPresentityNotificationEventArgs>(
 OnLocalPresenceNotificationReceived);

 try
 {
 // Subscribe to local presence notifications.
 _endpoint.LocalOwnerPresence.BeginSubscribe(ar =>
 {
 try
 {

Available for

download on

Wrox.com

Available for

download on

Wrox.com

Retrieving Presence Information for the Local Endpoint ❘ 283

284 ❘ CHAPTER 9 PRESENCE WITH UCMA

 _endpoint.LocalOwnerPresence.EndSubscribe(ar);

 _timer = new Timer(OnTimerElapsed, null,
 GetRandomWaitMilliseconds(),
 GetRandomWaitMilliseconds());
 }
 catch (RealTimeException ex)
 {
 _logger.Log(“Failed subscribing to local owner presence”
 , ex);
 }
 },
 null
);
 }
 catch (InvalidOperationException ex)
 {
 _logger.Log(“Failed subscribing to local owner presence”, ex);
 }

}

 Code snippet PresenceCounterIntelligence\PresencePublishingSession.cs

 On receiving the notifi cations, the sample application simply logs them. The possibilities, however,

abound.

 WHEN PRESENCE MUST BE REPUBLISHED

 Endpoints need to refresh their registrations with Lync Server every so often, and

once in a while the server will notify the endpoint that it needs to republish its

presence information. Typically, this happens because for some reason the endpoint

could not register with the same registrar as before, and needs to publish its presence

information to the new registrar.

 To handle this situation, applications should subscribe to the RepublishingRequired

event on each UserEndpoint or ApplicationEndpoint and publish its presence

again in the event handler, particularly if the published presence information is crucial

to the application ’ s function.

 MAKING AN APPLICATION AN AUTOMATON

 With a few exceptions, the types of UCMA services that use application endpoints, such as “ bots ”

and call routing applications, are meant to be always online and available. For applications like

these, changing presence is completely unnecessary; they should always appear as “ Available. ”

 Because a limit exists on how many users can subscribe to presence updates for each endpoint, and

because UCMA services may very well be used by many users, Lync allows services like these to

identify themselves as “ automatons, ” meaning their presence is not expected to change. Other users

will not expect to receive presence updates for automatons, and will simply use the initial presence

value or poll for any changes.

 An attribute on the XML element for the contactCard category identifi es a presentity as an

automaton. You can control this using the IsAutomatedService property on the ContactCard

class, which is set to true for automatons.

 Publishing an Always - On Presence

 UCMA 3.0 provides an easy way to publish an always - online presence state for an application when

fi rst establishing the endpoint. The following code snippet illustrates how to set an application

endpoint to publish an always - online presence state using ApplicationEndpointSettings . The

code fi rst enables automatic presence publication for the endpoint, then sets the service capabilities

of the endpoint, and then initializes and establishes the endpoint with those settings.

The state information published by the application endpoint when automatic
presence publication is turned on is accessible through the PresenceState
.PersistentOnline static property, in case for some reason you ever need to
publish it after establishing the endpoint.

 // Set up the automatic presence publishing settings for the endpoint
ApplicationEndpointSettings settings =
 args.ApplicationEndpointSettings;
settings.AutomaticPresencePublicationEnabled = true;
settings.Presence.PresentityType = “automaton”;

// Set the capabilities to be published for the endpoint
PreferredServiceCapabilities capabilities =
 settings.Presence.PreferredServiceCapabilities;
capabilities.InstantMessagingSupport = CapabilitySupport.Supported;
capabilities.AudioSupport = CapabilitySupport.UnSupported;
capabilities.ApplicationSharingSupport = CapabilitySupport.UnSupported;
capabilities.VideoSupport = CapabilitySupport.UnSupported;

_appEndpoint = new ApplicationEndpoint(_collaborationPlatform,
 settings);

_appEndpoint.BeginEstablish(OnApplicationEndpointEstablishCompleted,

 null);

 Code snippet PresenceSpy\PresenceSpyUserAgent.cs

 When ApplicationEndpointSettings.AutomaticPresencePublicationEnabled is set to true, the

application endpoint will automatically publish presence upon startup with the automaton attribute

set to true on the contactCard category, and with the state category indicating persistent availability.

Available for

download on

Wrox.com

Available for

download on

Wrox.com

Making an Application an Automaton ❘ 285

286 ❘ CHAPTER 9 PRESENCE WITH UCMA

 Automatic Presence Publication for User Endpoints

 Not to be outdone, the UserEndpoint class also has an automatic presence publication capability.

The syntax is much the same as it is for ApplicationEndpoint , but for UserEndpoint it only

sets the user ’ s initial presence and does not leave the user in an “ always - on ” presence state. The

following excerpt, from the PresenceCounterIntelligence sample application, demonstrates

how it works.

UserEndpointSettings settings = new UserEndpointSettings(
 _sipUri,
 _proxyServerFqdn,
 TlsPort
);

// Start out by automatically publishing Available presence.
settings.AutomaticPresencePublicationEnabled = true;
settings.Presence.UserPresenceState = PresenceState.UserAvailable;

_endpoint = new UserEndpoint(_platform, settings);

 SUMMARY

 In this chapter, you have seen how applications can retrieve and interpret presence data published by

other users, and how they can publish presence information themselves, either when registering with

Lync Server or on demand.

 The next chapter covers another element of the collaboration capabilities in UCMA 3.0: the contact

list APIs. Using these APIs, an application can access or modify the contact list of a Lync user.

Contact and Group Services
in UCMA

 WHAT ’ S IN THIS CHAPTER?

 Querying a contact list

 Adding, updating, and deleting contacts

 Adding, updating, and deleting groups

 Modifying access control settings

 The contact list feature in Microsoft Lync Server 2010 allows each user to maintain a set of

contacts, organized into groups, on the server so as to have access to it wherever the user logs

in to Lync. When the Lync client connects to the server, it queries for contact list information,

and then subscribes to the presence of all the contacts. Users can then make changes to their

contact lists through Lync and can also modify access control settings for each contact.

 UCMA provides an API for these same capabilities, through the ContactGroupServices

class. This class is available through a property on UserEndpoint . Lync only maintains

contacts for full - fl edged users who are associated with a User object in Active Directory, so

the ApplicationEndpoint class is left out of the running in this instance and does not have

the ContactGroupServices property.

 This is a sore point with the ApplicationEndpoint , so not bringing it up in conversation is best.

 To help put the contact and group operations in context, this chapter shows code from

a companion sample application, which is available on the website for this book. The sample

application uses UCMA to perform a task that administrators who are deploying Lync for

the fi rst time often ask about: giving users in each department an initial contact list that

contains the other users in that department.

 All the code snippets in the following sections are taken directly from the sample application.

➤

➤

➤

➤

 10

D
o

288 ❘ CHAPTER 10 CONTACT AND GROUP SERVICES IN UCMA

 MANIPULATING CONTACTS IN THE CONTACT LIST

 The fi rst and most obvious task that you can accomplish with the contact list API in UCMA

is adding, changing, or deleting contacts. The ContactGroupServices class has asynchronous

methods to perform each of these tasks.

 Querying a user ’ s contact list is a bit less self - explanatory, because you do not simply call a method

that performs the query. Instead, the application must initiate a contact and group subscription.

After the subscription is initiated, the application receives a notifi cation containing all current

contacts and groups, and any changes that occur while the subscription is active will also generate

notifi cations.

 Subscribing to contacts before making any contact list changes is important for two reasons: One

is that another endpoint could be making changes at the same time; another is that the subscription

will allow the application to see the IDs that are assigned by Lync Server to any groups the

application creates.

 Querying a List of Contacts

 To retrieve the full list of contacts and groups for a user, fi rst attach an event handler to the

 NotificationReceived event on the ContactGroupServices instance, as shown in the

following code snippet.

ContactGroupServices cgs = _userEndpoint.ContactGroupServices;
cgs.NotificationReceived +=
 new EventHandler < ContactGroupNotificationEventArgs > (
 cgs_NotificationReceived);

 Code snippet ContactGroupMover\ContactGroupExporter.cs

Attaching this event handler before initiating a contact list subscription is important, because the

event handler will be invoked almost immediately after the subscription starts.

 After hooking up the event handler, call the BeginSubscribe method on ContactGroupServices .

This method begins the process of subscribing to the user ’ s contact list as an asynchronous

operation. In the callback method for BeginSubscribe , call the EndSubscribe method to

fi nish the asynchronous operation. Handle exceptions in whatever way you prefer.

 The following code snippet shows how to initiate a contact list subscription.

try
{
 cgs.BeginSubscribe(ar = >
 {
 try
 {
 cgs.EndSubscribe(ar);
 }
 catch (RealTimeException rtex)
 {

Available for

download on

Wrox.com

Available for

download on

Wrox.com

Available for

download on

Wrox.com

Available for

download on

Wrox.com

 Console.WriteLine(rtex);
 }

 },
 null
);
}
catch (InvalidOperationException ioex)
{
 Console.WriteLine(ioex);
}

 Code snippet ContactGroupMover\ContactGroupExporter.cs

 After the application subscribes to the user ’ s contact list on Lync Server, the server sends an initial

notifi cation with the entire list of contacts and groups. The code in the event handler must process

this information.

 To identify the initial notifi cation with the full list of contacts, check that e.IsFullNotification

is set to true . The contacts and groups will be contained in e.Contacts and e.Groups ,

respectively. The following code snippet shows an excerpt from a notifi cation handler that

processes a full notifi cation.

private void OnNotificationReceived(object sender,
 ContactGroupNotificationEventArgs e)
{
 Console.WriteLine(“Received a contact update.”);

 if (e.IsFullNotification)
 {
 _userEndpoint.ContactGroupServices.NotificationReceived -=
 OnNotificationReceived;

 ContactList list = new ContactList();
 list.Contacts = new List < ContactInfo > ();
 list.Groups = new List < GroupInfo > ();

 foreach (NotificationItem < Contact > item in e.Contacts)
 {
 Contact contact = item.Item;

 list.Contacts.Add(new ContactInfo()
 {
 Data = contact.ContactData,
 Name = contact.Name,
 GroupIds = contact.GroupIds,
 Extension = contact.ContactExtension,
 Uri = contact.Uri
 }
);
 }

 foreach (NotificationItem < Group > item in e.Groups)

Available for

download on

Wrox.com

Available for

download on

Wrox.com

Manipulating Contacts in the Contact List ❘ 289

290 ❘ CHAPTER 10 CONTACT AND GROUP SERVICES IN UCMA

 {
 Group group = item.Item;

 list.Groups.Add(new GroupInfo()
 {
 Data = group.GroupData,
 Name = group.Name,
 Id = group.GroupId
 }
);
 }

 XmlSerializer serializer = new XmlSerializer(typeof(ContactList));
 StreamWriter writer = File.CreateText(_filePath);
 serializer.Serialize(writer, list);

 try
 {
 _userEndpoint.ContactGroupServices.BeginUnsubscribe(ar = >
 {
 try
 {
 _userEndpoint.ContactGroupServices.EndUnsubscribe(ar);
 }
 catch (RealTimeException rtex)
 {
 Console.WriteLine(rtex);
 }
 finally
 {
 _waitHandle.Set();
 }
 }, null);
 }
 catch (InvalidOperationException ioex)
 {
 Console.WriteLine(ioex);

 _waitHandle.Set();
 }
 }
}

 Code snippet ContactGroupMover\ContactGroupDeleter.cs

 If the application will be performing further contact list operations, or if it makes ongoing use

of contact and group information, then keeping the subscription active and processing any

additional notifi cations that arrive is a good idea. These will contain information on any changes

that are made to the contact list.

 Unsubscribing from contact list notifi cations is equally simple and can be done with the

 BeginUnsubscribe and EndUnsubscribe methods on the ContactGroupServices class. Remember

to unregister the event handler for NotificationReceived as well. The following code snippet

shows how to unsubscribe from contact list notifi cations.

try
{
 _userEndpoint.ContactGroupServices.BeginUnsubscribe(ar = >
 {
 try
 {
 _userEndpoint.ContactGroupServices.EndUnsubscribe(ar);
 }
 catch (RealTimeException rtex)
 {
 Console.WriteLine(rtex);
 }
 finally
 {
 ...
 }
 }, null);
}
catch (InvalidOperationException ioex)
{
 Console.WriteLine(ioex);

 ...
}

 Code snippet ContactGroupMover\ContactGroupExporter.cs

 The ContactGroupExporter class in the companion application for this chapter shows all the

steps involved in obtaining a user ’ s contact list from Lync Server. This class takes a UserEndpoint

and a fi le path as parameters, subscribes to the user ’ s contact list, and exports the resulting

information as an XML fi le.

 The following code shows the ContactGroupExporter class in its entirety.

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using Microsoft.Rtc.Collaboration;
using System.Threading;
using Microsoft.Rtc.Collaboration.ContactsGroups;
using Microsoft.Rtc.Signaling;
using System.Collections.ObjectModel;
using Microsoft.Rtc.Collaboration.Presence;
using System.Xml.Serialization;
using System.IO;

namespace ContactGroupMover
{
 internal class ContactGroupExporter
 {
 UserEndpoint _userEndpoint;
 string _filePath;

Available for

download on

Wrox.com

Available for

download on

Wrox.com

Available for

download on

Wrox.com

Available for

download on

Wrox.com

Manipulating Contacts in the Contact List ❘ 291

292 ❘ CHAPTER 10 CONTACT AND GROUP SERVICES IN UCMA

 ManualResetEvent _waitHandle = new ManualResetEvent(true);
 Collection < Contact > _contacts;
 Collection < Group > _groups;
 int i = 0;

 internal WaitHandle WaitHandle
 {
 get { return _waitHandle; }
 }

 internal ContactGroupExporter(UserEndpoint endpoint,
 string filePath)
 {
 _userEndpoint = endpoint;
 _filePath = filePath;
 }

 internal void Export()
 {
 _waitHandle.Reset();

 ContactGroupServices cgs =
 _userEndpoint.ContactGroupServices;
 cgs.NotificationReceived +=
 new EventHandler < ContactGroupNotificationEventArgs > (
 OnNotificationReceived);

 try
 {
 cgs.BeginSubscribe(ar = >
 {
 try
 {
 cgs.EndSubscribe(ar);
 }
 catch (RealTimeException rtex)
 {
 Console.WriteLine(rtex);
 }

 },
 null
);
 }
 catch (InvalidOperationException ioex)
 {
 Console.WriteLine(ioex);
 }
 }

 private void OnNotificationReceived(object sender,
 ContactGroupNotificationEventArgs e)
 {
 Console.WriteLine(“Received a contact update.”);

 if (e.IsFullNotification)

 {
 _userEndpoint.ContactGroupServices.NotificationReceived
 -= OnNotificationReceived;

 ContactList list = new ContactList();
 list.Contacts = new List < ContactInfo > ();
 list.Groups = new List < GroupInfo > ();

 foreach (NotificationItem < Contact > item in e.Contacts)
 {
 Contact contact = item.Item;

 list.Contacts.Add(new ContactInfo()
 {
 Data = contact.ContactData,
 Name = contact.Name,
 GroupIds = contact.GroupIds,
 Extension = contact.ContactExtension,
 Uri = contact.Uri
 }
);
 }

 foreach (NotificationItem < Group > item in e.Groups)
 {
 Group group = item.Item;

 list.Groups.Add(new GroupInfo()
 {
 Data = group.GroupData,
 Name = group.Name,
 Id = group.GroupId
 }
);
 }

 XmlSerializer serializer =
 new XmlSerializer(typeof(ContactList));
 StreamWriter writer = File.CreateText(_filePath);
 serializer.Serialize(writer, list);

 try
 {
 _userEndpoint.ContactGroupServices.
 BeginUnsubscribe(ar = >
 {
 try
 {
 _userEndpoint.ContactGroupServices.
 EndUnsubscribe(ar);
 }
 catch (RealTimeException rtex)
 {
 Console.WriteLine(rtex);

Manipulating Contacts in the Contact List ❘ 293

294 ❘ CHAPTER 10 CONTACT AND GROUP SERVICES IN UCMA

 }
 finally
 {
 _waitHandle.Set();
 }
 }, null);
 }
 catch (InvalidOperationException ioex)
 {
 Console.WriteLine(ioex);

 _waitHandle.Set();
 }
 }
 }
 }
}

 Code snippet ContactGroupMover\ContactGroupExporter.cs

 Adding a Contact to the List

 To add a contact to a user ’ s contact list, use the BeginAddContact and EndAddContact methods on

the ContactGroupServices class. The fi rst parameter for BeginAddContact is the SIP URI of the

user who is to be added to the contact list.

 To specify additional information on the new contact, such as the contact ’ s name, groups, or access

control containers, create an instance of ContactAddOptions and pass it in as the second parameter

to BeginAddContact .

 The following excerpt from the ContactGroupImporter class in the sample application shows

how to add a new contact:

private void AddContact(ContactInfo contactToAdd)
{
 UpdateContactGroupIds(contactToAdd);

 try
 {
 ContactAddOptions addOptions =

 new ContactAddOptions()

 {

 ContactData = contactToAdd.Data,

 ContactExtension = contactToAdd.Extension,

 ContactName = contactToAdd.Name

 };

 addOptions.GroupIds.AddRange(contactToAdd.GroupIds); _

 contactGroupServices.BeginAddContact(

 contactToAdd.Uri,

 addOptions,

 OnContactAddCompleted,

 null

);

Available for

download on

Wrox.com

Available for

download on

Wrox.com

 }
 catch (InvalidOperationException ioex)
 {
 Console.WriteLine(ioex);
 }
}

private void OnContactAddCompleted(IAsyncResult result)
{
 try
 {
 _ contactGroupServices.EndAddContact(result);

 long remainingCount =
 Interlocked.Decrement(ref
 _contactCountLeftToAddOrModify);

 if (remainingCount == 0)
 {
 // All done.
 _waitHandle.Set();
 }
 }
 catch (RealTimeException rtex)
 {
 Console.WriteLine(rtex);
 }
}

 Code snippet ContactGroupMover\ContactGroupImporter.cs

 Modifying an Existing Contact

 The most common reason for modifying a contact in a user ’ s contact list is to change the

groups to which the contact belongs.

 To change properties of a contact on the server, retrieving a cached record for the contact

fi rst using the BeginGetCachedContact and EndGetCachedContact methods is necessary.

 BeginGetCachedContact takes the SIP URI of the desired contact as its fi rst parameter, and

 EndGetCachedContact returns a Contact object that contains the properties of the contact

based on the most recent update from the server.

 After changing the properties of the contact on the Contact object, call BeginUpdateContact ,

passing in the modifi ed Contact object as the fi rst parameter. Call EndUpdateContact to

complete the asynchronous operation.

 The following code snippet illustrates updating a contact on the server:

private void UpdateContact(ContactInfo contactToUpdate)
{
 UpdateContactGroupIds(contactToUpdate);

 try

Available for

download on

Wrox.com

Available for

download on

Wrox.com

Manipulating Contacts in the Contact List ❘ 295

296 ❘ CHAPTER 10 CONTACT AND GROUP SERVICES IN UCMA

 {
 // In order to update the contact,
 // it’s necessary first to get the
 // cached contact from ContactGroupServices,
 // and make the changes to that object.

 _contactGroupServices.BeginGetCachedContact(

 contactToUpdate.Uri,

 OnGetContactCompleted,

 contactToUpdate

);

 }
 catch (InvalidOperationException ioex)
 {
 Console.WriteLine(ioex);
 }
}

private void OnGetContactCompleted(IAsyncResult result)
{
 ContactInfo newContactInfo =
 (ContactInfo)result.AsyncState;

 try
 {
 Contact contactObject =

 _contactGroupServices.EndGetCachedContact(result);

 try
 {
 contactObject.ContactData = newContactInfo.Data;

 contactObject.ContactExtension = newContactInfo.Extension;

 contactObject.Name = newContactInfo.Name;

 contactObject.GroupIds = newContactInfo.GroupIds;

 _contactGroupServices.BeginUpdateContact(

 contactObject,

 OnUpdateContactCompleted,

 contactObject

);

 }
 catch (InvalidOperationException ioex)
 {
 Console.WriteLine(ioex);
 }
 }
 catch (RealTimeException rtex)
 {
 Console.WriteLine(rtex);
 }
}

private void OnUpdateContactCompleted(IAsyncResult result)
{

 Contact contact =
 (Contact)result.AsyncState;

 try
 {
 _contactGroupServices.EndUpdateContact(result);

 ...
 }
 catch (RealTimeException rtex)
 {
 Console.WriteLine(rtex);
 }
}

 Code snippet ContactGroupMover\ContactGroupImporter.cs

 Deleting a Contact

 Deleting a specifi c contact is quite simple with the BeginDeleteContact and EndDeleteContact

methods. BeginDeleteContact takes the SIP URI of the contact that is to be deleted as its

fi rst parameter.

 The following code snippet from the sample application illustrates deleting a contact.

private void DeleteContact(Contact contactToRemove)
{
 try
 {
 _contactGroupServices.BeginDeleteContact(

 contactToRemove.Uri ,

 ar = >
 {
 try
 {
 _contactGroupServices.EndDeleteContact(ar);

 Interlocked.Decrement(ref _contactsToDelete);

 CheckForCompletion();
 }
 catch (RealTimeException rtex)
 {
 Console.WriteLine(rtex);
 }
 },
 null
);
 }
 catch (InvalidOperationException ioex)
 {
 Console.WriteLine(ioex);
 }
}

 Code snippet ContactGroupMover\ContactGroupDeleter.cs

Available for

download on

Wrox.com

Available for

download on

Wrox.com

Manipulating Contacts in the Contact List ❘ 297

298 ❘ CHAPTER 10 CONTACT AND GROUP SERVICES IN UCMA

 MANIPULATING GROUPS IN THE CONTACT LIST

 If you paid close attention during the previous section, you can probably take an excellent guess at

how to add, update, and delete contact groups through UCMA.

 Adding a Group to the List

 To add a new group to a user ’ s contact list, call BeginAddGroup and EndAddGroup on

 ContactGroupServices . The fi rst parameter of BeginAddGroup is the name of the group;

the second is group data.

 The following code snippet, from the sample application, shows how to add a group.

private void AddGroup(GroupInfo groupToAdd)
{
 try
 {
 _contactGroupServices.BeginAddGroup(

 groupToAdd.Name,

 groupToAdd.Data,

 OnGroupAddCompleted,

 groupToAdd

);

 }
 catch (InvalidOperationException ioex)
 {
 Console.WriteLine(ioex);
 }
}

private void OnGroupAddCompleted(IAsyncResult result)
{
 try
 {
 _contactGroupServices.EndAddGroup(result);

 }
 catch (RealTimeException rtex)
 {
 Console.WriteLine(rtex);
 }
}

Code snippet ContactGroupMover\ContactGroupImporter.cs

 When the group is added to the contact list, an ID will be assigned to it. Unfortunately, the

 EndAddGroup method does not return this ID or any other information on the group, so the best

way to determine the ID of the added group is to wait for a contact list change notifi cation and

check the information in the notifi cation.

 The following code snippet is an excerpt from the sample application that inspects contact list change

notifi cations after the initial notifi cation in order to fi nd out the IDs assigned to added groups.

Available for

download on

Wrox.com

Available for

download on

Wrox.com

void OnNotificationReceived(object sender, ContactGroupNotificationEventArgs e)
{
 Console.WriteLine(“Received a contact update.”);

 if (e.IsFullNotification)
 {
 ...
 }
 else
 {
 HandleAddedGroupNotification(e);
 }
}

private void HandleAddedGroupNotification(ContactGroupNotificationEventArgs e)
{
 IEnumerable < Group > addedGroups =
 e.Groups.Where(g = > g.Operation == PublishOperation.Add).Select(n = >
 n.Item);

 foreach (Group group in addedGroups)
 {
 GroupInfo importedGroupInfo = _importedList.Groups.FirstOrDefault(
 g = > g.Name == group.Name);

 if (importedGroupInfo != null)
 {
 // Store the ID of the added group that
 // matches the ID it had when it was imported.
 _addedGroupsByImportedGroupId.Add(importedGroupInfo.Id,
 group.GroupId);

 int groupsLeftToAdd =
 Interlocked.Decrement(ref _groupCountLeftToAdd);

 if (groupsLeftToAdd == 0)
 {
 // We don’t need any more notifications,
 // so unsubscribe.
 _contactGroupServices.NotificationReceived -=
 OnNotificationReceived;

 AddContacts();
 }
 }
 }
}

 Code snippet ContactGroupMover\ContactGroupExporter.cs

 Modifying an Existing Group

 Modifying groups is perhaps the least useful ContactGroupServices operation, but it may come in

handy if an application needs to rename existing groups without deleting and re - adding them.

Available for

download on

Wrox.com

Available for

download on

Wrox.com

Manipulating Groups in the Contact List ❘ 299

300 ❘ CHAPTER 10 CONTACT AND GROUP SERVICES IN UCMA

 To update a group, call BeginUpdateGroup , passing in the Group object with the desired changes.

Call EndUpdateGroup to fi nish the asynchronous operation.

 The following code snippet shows how to update a contact group.

try
{
 _ contactGroupServices.BeginUpdateGroup(

 group,

 ar = >
 {
 try
 {
 _contactGroupServices.EndUpdateGroup(ar);

 }
 catch (RealTimeException rtex)
 {
 Console.WriteLine(rtex);
 }
 },
 null
);
}
catch (InvalidOperationException ioex)
{
 Console.WriteLine(ioex);
}

 Deleting a Group

 Like deleting a contact from a user ’ s contact list, deleting a group is quite simple. To delete a

group, call BeginDeleteGroup and EndDeleteGroup on ContactGroupServices , as shown

in the following code snippet.

private void DeleteGroup(Group groupToRemove)
{
 try
 {
 _contactGroupServices.BeginDeleteGroup(

 groupToRemove.GroupId,

 OnGroupDeleteCompleted,

 groupToRemove

);

 }
 catch (InvalidOperationException ioex)
 {
 Console.WriteLine(ioex);
 }
}

private void OnGroupDeleteCompleted(IAsyncResult result)
{
 try

Available for

download on

Wrox.com

Available for

download on

Wrox.com

 {
 _contactGroupServices.EndDeleteGroup(result);

 ...
 }
 catch (RealTimeException rtex)
 {
 Console.WriteLine(rtex);
 }
}

 Code snippet ContactGroupMover\ContactGroupDeleter.cs

 MANIPULATING PRESENCE ACCESS CONTROL
USING CONTAINERS

 Presence containers, discussed in the previous chapter, are access control containers that allow Lync

users to restrict items of presence information to certain other users or categories of users.

 The previous chapter described how to publish presence information to specifi c containers. This

section explains the other side of the coin: how to control which users have access to which

presence containers.

 Three categories of container membership exist that you can add to or remove from a presence

container. Table 10 - 1 shows these categories.

 TABLE 10 - 1: Categories of Presence Container Membership

 MEMBERSHIP CATEGORY DEFINITION

 Source network The source of the contact — whether the contact is within the same

enterprise, a federated contact, or from the public Internet.

 SIP domain The SIP domain associated with the contact; for example, wrox.com.

 SIP URI The SIP URI of an individual contact; for example, sip:bartholomew@wrox.com

 Unlike the other contact operations described in this chapter, changing presence container

membership does not involve the ContactGroupServices class. Instead, the LocalOwnerPresence

class, described in the previous chapter, is responsible for container membership operations. This

means that application endpoints as well as user endpoints can make changes to

container memberships.

 The LocalOwnerPresence class has an event, ContainerNotificationReceived , that is invoked

whenever the endpoint receives an update to container membership from Lync Server. The following

code snippet shows an event handler that stores the container membership data from an initial

container notifi cation.

Manipulating Presence Access Control Using Containers ❘ 301

302 ❘ CHAPTER 10 CONTACT AND GROUP SERVICES IN UCMA

void OnContainerNotificationReceived(object sender,
 ContainerNotificationEventArgs e)
{
 // Unsubscribe from the event so that only the initial
 // notification comes in.
 _userEndpoint.LocalOwnerPresence.ContainerNotificationReceived -=
 OnContainerNotificationReceived;

 // Initialize a data object to store the details.
 _membershipDetailsFromServer = new ContainerMembershipDetails();
 _membershipDetailsFromServer.Containers = new List < ContainerInfo > ();

 foreach (ContainerMembership membership in
 e.ContainerList)
 {
 ContainerInfo info = new ContainerInfo()
 {
 ContainerId = membership.ContainerId,
 SipDomains = new List < string > (),
 SipUris = new List < string > ()
 };

 // The source networks are stored in the ContainerMembership as
 // a flags enumeration.
 if ((membership.AllowedSourceNetworks & SourceNetwork.SameEnterprise) ==
 SourceNetwork.SameEnterprise)
 {
 info.SameEnterprise = true;
 }
 if ((membership.AllowedSourceNetworks & SourceNetwork.Federated) ==
 SourceNetwork.Federated)
 {
 info.Federated = true;
 }
 if ((membership.AllowedSourceNetworks & SourceNetwork.PublicCloud) ==
 SourceNetwork.PublicCloud)
 {
 info.PublicCloud = true;
 }

 foreach (string sipDomain in membership.AllowedSipDomains)
 {
 info.SipDomains.Add(sipDomain);
 }

 foreach (RealTimeAddress address in membership.AllowedSubscribers)
 {
 info.SipUris.Add(address.Uri);
 }

 _membershipDetailsFromServer.Containers.Add(info);
 }

 ...
}

 Code snippet ContactGroupMover\ContainerMembershipHandler.cs

Available for

download on

Wrox.com

Available for

download on

Wrox.com

 Adding Contacts to Presence Containers

 The BeginUpdateContainerMembership method on the LocalOwnerPresence instance initiates an

update to the membership of one or more presence containers. Its fi rst parameter is a collection of

 ContainerUpdateOperation objects. Each ContainerUpdateOperation object represents changes

(either additions or deletions) for a single presence container.

 To indicate what additions should be made to a presence container, call the AddSourceNetwork ,

 AddSipDomain , or AddSipUri method on the ContainerUpdateOperation object.

 When the updates have been prepared, call BeginUpdateContainerMembership , passing in the

collection of updates.

 Removing Contacts from Presence Containers

 To indicate deletions that should be made to the membership of a presence container,

call the DeleteSourceNetwork , DeleteSipDomain , or DeleteSipUri method on the

 ContainerUpdateOperation object.

 The following code snippet shows how container membership updates are prepared and

then submitted using the BeginUpdateContainerMembership method.

List < ContainerUpdateOperation > updates =
 new List < ContainerUpdateOperation > ();

foreach (ContainerInfo container in importedDetails.Containers)
{
 ContainerInfo containerFromServer =
 _membershipDetailsFromServer.Containers.FirstOrDefault(
 c = > c.ContainerId == container.ContainerId);

 if (container.Equals(containerFromServer))
 {
 // No need for an update.
 continue;
 }

 ContainerUpdateOperation update =
 new ContainerUpdateOperation(container.ContainerId);

 if (container.SameEnterprise)
 {
 update.AddSourceNetwork(SourceNetwork.SameEnterprise);
 }
 else if (containerFromServer.SameEnterprise)
 {
 update.DeleteSourceNetwork(SourceNetwork.SameEnterprise);
 }

 if (container.Federated)
 {
 update.AddSourceNetwork(SourceNetwork.Federated);

Available for

download on

Wrox.com

Available for

download on

Wrox.com

Manipulating Presence Access Control Using Containers ❘ 303

304 ❘ CHAPTER 10 CONTACT AND GROUP SERVICES IN UCMA

 }
 else if (containerFromServer.Federated)
 {
 update.DeleteSourceNetwork(SourceNetwork.Federated);
 }

 if (container.PublicCloud)
 {
 update.AddSourceNetwork(SourceNetwork.PublicCloud);
 }
 else if (containerFromServer.PublicCloud)
 {
 update.DeleteSourceNetwork(SourceNetwork.PublicCloud);
 }

 if (containerFromServer != null)
 {
 IEnumerable < string > domainsToRemove =
 containerFromServer.SipDomains.Except(container.SipDomains);

 foreach (string domain in domainsToRemove)
 {
 update.DeleteDomain(domain);
 }
 }

 if (containerFromServer != null)
 {
 IEnumerable < string > urisToRemove =
 containerFromServer.SipUris.Except(container.SipUris);

 foreach (string uri in urisToRemove)
 {
 update.DeleteUri(uri);
 }
 }

 IEnumerable < string > domainsToAdd =
 container.SipDomains.Except(containerFromServer.SipDomains);

 foreach (string domain in domainsToAdd)
 {
 update.AddDomain(domain);
 }

 IEnumerable < string > urisToAdd =
 container.SipUris.Except(containerFromServer.SipUris);

 foreach (string uri in urisToAdd)
 {
 update.AddUri(uri);
 }

 updates.Add(update);

}

try
{
 _userEndpoint.LocalOwnerPresence.BeginUpdateContainerMembership(
 updates,
 ar = >
 {
 try
 {
 _userEndpoint.LocalOwnerPresence.EndUpdateContainerMembership(ar);
 }
 catch (RealTimeException rtex)
 {
 Console.WriteLine(rtex);
 }
 finally
 {
 Unsubscribe();
 }
 },
 null
);
}
catch (InvalidOperationException ioex)
{
 Console.WriteLine(ioex);
 Unsubscribe();
}

 Code snippet ContactGroupMover\ContainerMembershipHandler.cs

 SUMMARY

 In this chapter, you have seen how to use UCMA to retrieve and manipulate a Lync user ’ s contact

list, as well as make changes to presence container membership for access control.

 The next chapter introduces the conferencing capabilities in UCMA, along with the many

scenarios (some of them well outside the boundaries of traditional telephone conferencing)

that they make possible.

Summary ❘ 305

Conference Services in UCMA

 WHAT ’ S IN THIS CHAPTER?

 Creating and confi guring Lync conferences

 Adding participants to a conference

 Controlling conferences with commands

 Providing services with trusted conference participants

 In the simplest terms, a conference in Lync is a conversation that can include more than two

participants. In a two - party conversation, the two participants can send media directly to each

other. When a third participant comes into the picture, things quickly become complicated, because

each one needs to receive media from all the others, and all participants need to be updated on any

changes to the state of the conversation (such as one of the participants hanging up).

 To coordinate all of these things, Lync brings in a handful of special server roles. The fi rst is

the conference focus , which is essentially a SIP traffi c cop. The conference focus keeps track

of the condition of the conference, who has access, who has joined, and so forth. The others

are multipoint control units (MCUs), which are responsible for receiving media from all the

conference participants, mixing it together, and sending it back out to each participant, so that

everyone can hear (or see, or receive instant messages from, or share screens with) everyone else.

A separate MCU exists for each modality; for instance, a conference that supports both instant

messaging and audio must involve the instant messaging MCU and the audio/video MCU.

 The most obvious use for a Lync conference is to allow more than two people to have a

conversation. Note that one or more of the participants can be endpoints managed by a server

application. These endpoints can manage, monitor, record, or provide extra services to a

conference.

 In some cases, however, only two human participants may be in the conference. This is common

in applications that serve contact centers, help desks, or other teams that depend on advanced

telephony capabilities. The conference in these situations allows a server application to participate

in the conversation and send and receive media along with the two human participants.

➤

➤

➤

➤

 11

D
o

308 ❘ CHAPTER 11 CONFERENCE SERVICES IN UCMA

 These less obvious uses in areas other than conventional “ conference calls ” make conferences one

of the most important tools in designing and building UCMA applications. At the same time, the

way in which Lync manages conferences (and UCMA interacts with them) can be complex and at

times confusing. Because of this, working with conferences in UCMA often presents challenges

for developers. This chapter attempts to clarify how all the pieces involved in UCMA conference

management fi t together, while explaining the various UCMA conferencing operations and how to

use them in custom Lync applications.

 SETTING UP A CONFERENCE WITH UCMA

 The fi rst step in working with a conference in UCMA is to create the conference.

 One of the most important points to remember when using the UCMA conference APIs is that

although UCMA applications can create, control, join, and invite other users to a conference, the

conference itself is not hosted by the UCMA application. The conference focus and the MCUs,

which handle SIP signaling and media for the conference, respectively, are separate Lync services

that are usually on a completely different server from the UCMA application. The UCMA

application is only a participant in the conference, although it can be a conference owner or leader

or even a “ trusted participant ” with special privileges (which are discussed later in the chapter).

 This idea is a common source of confusion, so it bears reiterating in the form of diagrams. In Figure 11 - 1,

a UCMA application has created a Lync audio conference and has invited two other participants.

Each conference participant has its own separate SIP signaling session with the conference focus,

while the audio media fl ows through the audio/video MCU. After the conference is in progress,

the UCMA application does not have an active SIP session with the other conference participants.

Instead, it communicates with them through the intermediaries of the focus and the MCU.

UCMA Application

m
ed

ia

media

m
edia

signalingsignaling

si
g
na

lin
g

Conference Participant

Conference Participant

Focus

A/V MCU

 FIGURE 11 - 1

 Later sections return to this point in more detail. For now, be sure to keep it in mind as you read.

 To be precise, the application does have a SIP signaling session with each MCU as
well, which it uses to join the modality managed by that MCU in the conference.
But the main signaling for the conference occurs with the conference focus.

 So, when it needs to start a conference, the UCMA application must tell Lync Server to create one.

The two ways in which it can go about this are to either explicitly “ schedule ” a conference with

Lync Server, specifying options and an end time for the conference, or to create a conference “ ad

hoc ” with some default options.

 Using Scheduled Versus Ad - Hoc Conferences

 To understand the difference between scheduled and ad - hoc conferences, think about the various

options you have if you want to arrange a conference call through Lync. If you know that you will

be having a conference call at a specifi c time, you can set up a conference in advance for that time

through the Lync Outlook add - in. This is the equivalent of a scheduled conference.

 If, on the other hand, you have just received an irate e - mail from a key customer whose shipment

has not arrived, and you must simultaneously chew out everyone in the shipping department, you

can simply invite the whole group to a new conversation. Lync will set up an audio conference for

you on the spot, and you can leave it to the shipping folks to argue among themselves on how your

customer ’ s Christmas gifts were mistakenly sent to Rome, Italy, instead of Rome, Wisconsin. In

UCMA, this would be an ad - hoc conference.

 Scheduling a Conference Using ConferenceServices

 To schedule a conference, call BeginScheduleConference on the ConferenceServices

class. Each endpoint has an instance of ConferenceServices , which is accessible through a

 ConferenceServices property on the endpoint. As its fi rst parameter, BeginScheduleConference

takes a ConferenceScheduleInformation object; this object holds details (such as access settings,

participants, and modalities) on the conference that is to be scheduled.

 Specifying Settings Using ConferenceScheduleInformation

 One of the primary reasons for scheduling a conference using ConferenceServices instead of using

an ad - hoc conference is to exert more control over the behavior of the conference in areas such as

access control. The ConferenceScheduleInformation class allows you to specify these settings

when scheduling a conference.

 Table 11 - 1 shows the various properties of ConferenceScheduleInformation that control the

behavior of the conference. This chapter covers some of these properties in more detail later.

Setting Up a Conference with UCMA ❘ 309

310 ❘ CHAPTER 11 CONFERENCE SERVICES IN UCMA

 TABLE 11 - 1: ConferenceScheduleInformation Properties

 PROPERTY DESCRIPTION

 AccessLevel Determines what types of participants are admitted into the

conference.

 AttendanceAnnouncements

Status

 Controls whether the conference automatically makes

announcements when participants join or leave the conference.

 AutomaticLeaderAssignment Determines which types of participants, if any, are automatically

made into conference leaders on joining the conference.

 ConferenceId Indicates the unique ID of the conference.

 Description Contains a text description of the conference.

 ExpiryTime Indicates the time after which the conference may be deleted.

The default is 8 hours after the conference is scheduled.

 IsPasscodeOptional If this is set to true , applications can elect not to prompt

anonymous participants for the conference passcode.

 LobbyBypass Controls whether certain participants can bypass the “ lobby ”

and be placed directly into the conference.

 Mcus Controls which MCUs the conference uses, and thus which

modalities it supports.

 OrganizerData A string property for arbitrary XML data used by the conference

organizer.

 ParticipantData Same as the preceding property, except that the XML data is

sent to participants when they join the conference.

 Participants Contains information on authorized participants and their roles.

Depending on the AccessLevel setting, some participants

who are not in this list may also be admitted to the conference.

 Passcode Contains the passcode for the conference. Anonymous

participants normally must enter this code to join the conference.

 PhoneAccessEnabled If this is true , participants can join the conference from a PSTN

phone.

 Subject Contains a text subject for the conference. The subject will

appear in the popup for the incoming conference invitation in the

Lync client, as well as in the title bar of the conversation window.

 Version Contains a numeric revision number for the conference

information.

 Setting Access Control and Roles on a Conference

 By specifying access control settings, applications can determine which users are admitted directly

into a conference and which users must be approved fi rst by a conference leader. Users who must be

approved by a conference leader before being admitted are held in the conference lobby , where they

hear hold music and cannot hear other conference participants or be heard, until they are either

admitted or removed from the conference altogether.

 Several forms of access control are available for conferences. The AccessLevel property on the

 ConferenceScheduleInformation object indicates generally which types of users may join

the conference. Table 11 - 2 shows the options for the AccessLevel property and what they mean.

 CONFERENCE SCHEDULING TEMPLATES

 Lync 2010 introduced a new feature in conference scheduling called scheduling

templates. In a nutshell, the Lync administrator can confi gure a template with

default settings. Users can then schedule conferences with this administrator - supplied

template if they do not want to bother specifying their own settings.

 The constructor for ConferenceScheduleInformation has an overload that

takes a value from the SchedulingTemplate enumeration as its only parameter.

Normally, a UCMA application supplies its own conference settings, so the default

value (if you do not pass in this parameter) is OrganizerSupplied . If for some

reason an application needs to schedule a conference with the administrator -

 supplied scheduling template, use this overload of the constructor and pass in

 SchedulingTemplate.AdministratorSupplied . In this case, Lync will use the

settings from the administrator - supplied template and the application will not be

able to supply any settings of its own.

 TABLE 11 - 2: Conference Access Level Options

 ACCESSLEVEL VALUE DESCRIPTION

 Locked No one can join the conference at all except for the organizer. Anyone

else who tries to join will be held in the conference lobby. Anyone who

is already in the conference will be able to stay, so this setting can

be useful if you want to prevent anyone who is not already in from

joining — perhaps to punish people who are late, or protect your

quick pre - meeting gossip session.

 Invited Only users who have been specifi cally invited can join; others must

wait in the conference lobby. Users can be pre - invited through the

 Participants property on ConferenceScheduleInformation , or

a conference leader can invite them during the conference.

continues

Setting Up a Conference with UCMA ❘ 311

312 ❘ CHAPTER 11 CONFERENCE SERVICES IN UCMA

 Providing a list of specifi c participants, along with their roles in the conference, is also possible

through the Participants property on the ConferenceScheduleInformation class. This property

contains a list of ConferenceParticipantInformation objects, each of which represents a single

invited conference participant. The ConferenceParticipantInformation object identifi es a

participant as either a conference attendee or a conference leader, which determines whether

the participant can perform conference control commands, such as locking the conference or

removing users, while joined to the conference.

 The following code snippet shows how to add a participant to the Participants collection for a

conference that is to be scheduled.

// Add Galahad to the list of conference participants as an attendee.
scheduleInfo.Participants.Add(
 new ConferenceParticipantInformation(“sip:galahad@wrox.com”,
 ConferencingRole.Attendee));

 To add a participant as a conference leader, simply change the second parameter in the constructor

to ConferencingRole.Leader .

 Last but not least, an application can specify whether PSTN users can join the conference, and what

they must do to join. In order for PSTN users to join the conference at all, the PhoneAccessEnabled

property must be set to true when the conference is being scheduled. Normally, these users are

placed in the conference lobby until a conference leader approves them to join; however, the

application can set the LobbyBypass property on the ConferenceScheduleInformation object to

 LobbyBypass.EnabledForGatewayParticipants to allow participants joining through a PSTN

gateway to be placed directly into the conference.

 ACCESSLEVEL VALUE DESCRIPTION

 SameEnterprise Users from the same company as the organizer can join the

conference, whereas others will be placed in the lobby.

 Everyone Any user, whether from the same company, a federated organization,

or anonymous, will be able to join the conference.

 None This value means that the access level type is not set.

TABLE 11-2 (continued)

 Participants can only join a conference through the PSTN if the necessary
infrastructure components are present in the Lync environment to enable PSTN
connectivity. Enabling phone access in a conference will have no effect if the
application is deployed in an environment with no Mediation Server or
PSTN gateway.

 In any conference where the possibility exists for anonymous users to join, specifying a passcode in

the Passcode property of the ConferenceScheduleInformation object is necessary. Anonymous

users will then be prompted for the passcode when joining the conference. Some conference services,

such as the Conferencing Auto - Attendant, will skip asking anonymous users for the passcode if the

 IsPasscodeOptional property is set to true .

 The following code shows a ConferenceScheduleInformation object for a conference that is open

to anyone within the same enterprise; others will be placed in the lobby. PSTN participants may join if they

know the passcode, 123 . PSTN participants who enter the passcode correctly will be able to skip the lobby.

ConferenceScheduleInformation scheduleInfo = new ConferenceScheduleInformation();
scheduleInfo.AccessLevel = ConferenceAccessLevel.SameEnterprise;
scheduleInfo.PhoneAccessEnabled = true;
scheduleInfo.Passcode = “123”;
scheduleInfo.LobbyBypass = LobbyBypass.EnabledForGatewayParticipants;

 Specifying a Conference ID

 Ordinarily, when a UCMA application schedules a conference, the conference is assigned a

conference ID automatically. You can retrieve this conference ID through the ConferenceId

property on the resulting Conference object. In some cases, however, having the application know

the conference ID before the conference is scheduled is useful so that the application can provide the

ID to other components. In these cases, the application can set the conference ID when creating the

 ConferenceScheduleInformation object.

 The conference ID must fi t a special format, and so the easiest way to generate valid IDs is to use

the ConferenceServices.GenerateConferenceId static method. The following code snippet

illustrates how to generate and set a conference ID in this manner.

// Generate a valid conference ID.
string generatedConferenceId = ConferenceServices.GenerateConferenceId();

// Use the conference ID for some other purpose ahead of time...
DoSomethingWithTheConferenceId(generatedConferenceId);

// Use the new conference ID to create the scheduling information.
ConferenceScheduleInformation scheduleInfo = new ConferenceScheduleInformation();
scheduleInfo.ConferenceId = generatedConferenceId;

// Schedule the conference, and so forth.

 Scheduling a Conference Using BeginScheduleConference

 After the ConferenceScheduleInformation object is created, schedule the conference using

the BeginScheduleConference method on the ConferenceServices object that belongs to the

endpoint. This begins the asynchronous operation to schedule the conference with Lync Server.

 In the callback method, the application should call EndScheduleConference . This method returns

a Conference object with details of the conference that has been scheduled. The Conference class

has read - only properties (such as AccessLevel) that contain the conference settings specifi ed in the

 ConferenceScheduleInformation . It also has several more properties (shown in Table 11 - 3) with

details such as the conference URI that can be used to join the conference. Saving this Conference

object somewhere after scheduling a conference so that the application has the information it needs

to join the conference or invite other users to the conference later is a good idea.

Setting Up a Conference with UCMA ❘ 313

314 ❘ CHAPTER 11 CONFERENCE SERVICES IN UCMA

 TABLE 11 - 3: Conference Properties

 PROPERTY DESCRIPTION

 ConferenceUri The URI of the conference focus. This is the URI to which Lync endpoints

can send an INVITE message to join the conference.

 PhoneInformation An object that contains details for PSTN access to the conference,

including access numbers, the conference ID that PSTN users must enter

to identify the conference, and alternative access numbers with covered

regions and languages.

 WebUrl The URL that users can use to join the conference via the web.

 The following code illustrates how an application can schedule a conference using

 ConferenceServices and retrieve the conference URI and other access details from the resulting

 Conference object.

private void ScheduleConference()
{
 try
 {
 // Create conference scheduling details for the conference.
 ConferenceScheduleInformation scheduleInfo =
 new ConferenceScheduleInformation();

 // Restrict the conference to invited users only.
 scheduleInfo.AccessLevel = ConferenceAccessLevel.Invited;

 // Don’t automatically assign a leader.
 scheduleInfo.AutomaticLeaderAssignment =
 AutomaticLeaderAssignment.Disabled;

 // Add the A/V and IM MCUs.
 scheduleInfo.Mcus.Add(
 new ConferenceMcuInformation(McuType.AudioVideo));
 scheduleInfo.Mcus.Add(
 new ConferenceMcuInformation(McuType.InstantMessaging));

 // Add the caller as a participant.
 scheduleInfo.Participants.Add(
 new ConferenceParticipantInformation(
 _incomingAvCall.RemoteEndpoint.Participant.Uri,
 ConferencingRole.Attendee));

 // Set a subject for the conference.
 scheduleInfo.Subject = “Call Controller Session”;

 // Schedule the conference.
 _endpoint.ConferenceServices.BeginScheduleConference(scheduleInfo,
 OnConferenceScheduleCompleted, null);
 }

Available for

download on

Wrox.com

Available for

download on

Wrox.com

 catch (InvalidOperationException ioex)
 {
 _logger.Log(“Failed scheduling conference.”, ioex);
 }
}

private void OnConferenceScheduleCompleted(IAsyncResult result)
{
 try
 {
 _conference =
 _endpoint.ConferenceServices.EndScheduleConference(result);

 _logger.Log(“Conference scheduled with URI {0} and web URL {1}”,
 _conference.ConferenceUri,
 _conference.WebUrl);

 JoinConference();
 }
 catch (RealTimeException rtex)
 {
 _logger.Log(“Failed scheduling conference.”, rtex);
 }
}

 Code snippet CallController\CallControllerSession.cs

 INVITING PARTICIPANTS TO A CONFERENCE

 A Lync conference with only one participant is not particularly useful and can get quite lonely for

the solitary UCMA application. With conference invitations, an application can easily provide other

Lync users with the information they need to join the conference. For PSTN users, applications can

tell the audio/video MCU to place an outbound call to a telephone number, bringing that number

into the conference if the call is answered.

 This section explains how conference invitations work and describes how to use them in a UCMA

application.

 Understanding the SIP Anatomy of a Conference Invitation

 In SIP terms, inviting a Lync user to a conference is a multistep process. It involves at least three

distinct SIP dialogs:

 Dialog between the inviter and the invitee, where the inviter provides the conference join

information to the invitee.

 Dialog between the invitee and the conference focus, where the invitee joins the conference

and gets conference information.

 Dialog between the invitee and the MCU, establishing a call of that modality between the invitee

and MCU. (If the conference has multiple MCUs, this step will be repeated for each MCU.)

➤

➤

➤

Inviting Participants to a Conference ❘ 315

316 ❘ CHAPTER 11 CONFERENCE SERVICES IN UCMA

 The most important point to note here is that the inviter is only involved in the fi rst step, and

after that the invitee itself is responsible for establishing communication with the Lync Server

components that are managing the conference. Take a look at Figure 11 - 2 for the play - by - play.

INVITE1

2

3

4

5

I want to invite you to this conference about

duck racing. Here’s the URI where you can

 join.

Awesome. See you there!

200 OK

BYE

INVITE

I’m joining the conference

focus first using the

conference URI that I got. Focus

MCU

Focus

MCU

Focus

MCU

Now I’m joining the MCU.

INVITE

200 Invite dialog

created

 FIGURE 11 - 2

 To deliver the conference invitation, the inviting user sends a special sort of SIP INVITE message to

the user who is being invited. Instead of Session Description Protocol (SDP) content, this INVITE

message has an XML document with conference details as its body. The invitee sends a 200 OK

acknowledging this INVITE , and as soon as the SIP handshake has fi nished it immediately ends the

SIP dialog with a BYE message. No media negotiation occurs, because no media is involved.

 Here is an example of this initial INVITE message:

INVITE sip:adamb@fabrikam.com SIP/2.0
From: “Outbound” < sip:outbound.sample@fabrikam.com > ;epid=B19FF086A2;tag=ce3cf06e2d
To: < sip:adamb@fabrikam.com >
CSeq: 10 INVITE
Call-ID: d39d8ad1-3ee8-4368-a47e-7bab825f1979
MAX-FORWARDS: 70
VIA: SIP/2.0/TLS 192.168.0.40:56775;branch=z9hG4bK45e83544
CONTACT: < sip:ts.fabrikam.com@fabrikam.com;gruu;opaque=srvr:outbound.sample:
 jRw31iBwA16ogIm8sXN68AAA > ;automata;actor=”attendant”;
 text;audio;video;image
CONTENT-LENGTH: 241
SUPPORTED: ms-dialog-route-set-update
SUPPORTED: 100rel
SUPPORTED: gruu-10
USER-AGENT: RTCC/4.0.0.0 CallController
CONTENT-TYPE: application/ms-conf-invite+xml
ALLOW: ACK
Ms-Conversation-ID: 038f28d4fc984f74b9ff15022e669764
Allow: CANCEL,BYE,INVITE,PRACK,UPDATE
Message-Body: < Conferencing version=”2.0” >
 < focus-uri > sip:outbound.sample@fabrikam.com;gruu;opaque=app:conf:focus:id:MIMC4N1L
 < /focus-uri >
 < subject / >
 < audio available=”true” / >
 < im available=”false” >
 < first-im / >
 < /im >
 < /Conferencing >

 Notice the XML message body, which contains the SIP URI at which the invited user can contact

the conference focus, along with some other details.

 On receiving the message with the conference invitation, a Lync endpoint generally handles it by

contacting the conference focus, using the conference URI included in the invitation. This INVITE

message looks similar to the following:

INVITE sip:outbound.sample@fabrikam.com;gruu;opaque=app:conf:focus:id:MIMC4N1L
 SIP/2.0
From: < sip:adamb@fabrikam.com > ;tag=4ba7e31721;epid=aed0816a53
To: < sip:outbound.sample@fabrikam.com;gruu;opaque=app:conf:focus:id:MIMC4N1L >
CSeq: 1 INVITE
Call-ID: 9f70b5bbe25a4f7b9a8eed2064f89599
Via: SIP/2.0/TLS 192.168.0.20:62970
Max-Forwards: 70
Contact: < sip:adamb@fabrikam.com;opaque=user:epid:_bwZkhZM7Vq2VYySC_x9JQAA;gruu >

Inviting Participants to a Conference ❘ 317

318 ❘ CHAPTER 11 CONFERENCE SERVICES IN UCMA

User-Agent: UCCAPI/4.0.7577.0 OC/4.0.7577.0 (Microsoft Lync 2010)
Supported: ms-dialog-route-set-update
Supported: timer
Supported: histinfo
Supported: ms-safe-transfer
Supported: ms-sender
Supported: ms-early-media
ms-keep-alive: UAC;hop-hop=yes
Allow: INVITE, BYE, ACK, CANCEL, INFO, UPDATE, REFER, NOTIFY, BENOTIFY, OPTIONS
ms-subnet: 192.168.0.0
Proxy-Authorization: TLS-DSK qop=”auth”, realm=”SIP Communications Service”,
 opaque=”8ED7A1D7”, targetname=”CS-SE.fabrikam.com”,
 crand=”00bf43f6”, cnum=”39”,
 response=”cdbac682e708cbd2ce16322047da7a064fe25200”
Content-Type: application/cccp+xml
Content-Length: 953
Message-Body: < ?xml version=”1.0”? >
 < request xmlns=”urn:ietf:params:xml:ns:cccp” xmlns:mscp=”
 http://schemas.microsoft.com/rtc/2005/08/cccpextensions”
 C3PVersion=”1” to=”sip:outbound.sample@fabrikam.com;
 gruu;opaque=app:conf:focus:id:MIMC4N1L”
 from=”sip:adamb@fabrikam.com” requestId=”0” >
 < addUser > < conferenceKeys confEntity=”sip:outbound.sample@fabrikam.com;gruu;
 opaque=app:conf:focus:id:MIMC4N1L”/ > < ci:user
 xmlns:ci=”urn:ietf:params:xml:ns:conference-info” entity=”
 sip:adamb@fabrikam.com” > < ci:roles > < ci:entry > attendee < /ci:entry >
 < /ci:roles > < ci:endpoint entity=”{A958BD03-1340-48ED-A2D8-8DE597E97DE6}”
 xmlns:msci=”http://schemas.microsoft.com/rtc/2005/08/confinfoextensions” >
 < msci:clientInfo > < cis:separator xmlns:cis=”urn:ietf:params:xml:ns:
 conference-info-separator” > < /cis:separator > < msci2:lobby-capable
 xmlns:msci2=”http://schemas.microsoft.com/rtc/2008/12/confinfoextensions” >
 true < /msci2:lobby-capable > < /msci:clientInfo > < /ci:endpoint > < /ci:user >
 < /addUser > < /request >

 This second INVITE initiates a SIP handshake between the invitee and the conference focus. The

content type of the message body in this case is application/cccp+xml , which identifi es this as a

 Centralized Conference Control Protocol (CCCP, or C3P) message. In this case, the message is an

 addUser request from the user who is trying to join the conference. After the handshake completes

successfully, the invitee is joined to the conference. Here is the response from the conference focus

to the addUser request:

SIP/2.0 200 Invite dialog created
From: “Adam Barr” < sip:adamb@fabrikam.com > ;tag=4ba7e31721;epid=aed0816a53
To: < sip:outbound.sample@fabrikam.com;gruu;opaque=app:conf:focus:id:MIMC4N1L > ;
 tag=BE0B0080
CSeq: 1 INVITE
Call-ID: 9f70b5bbe25a4f7b9a8eed2064f89599
ms-keep-alive: UAS; tcp=no; hop-hop=yes; end-end=no; timeout=300
Record-Route: < sip:CS-SE.fabrikam.com:5061;transport=tls;opaque=state:
 T:F:Ci.R1353c11;lr;ms-route-sig=dzWuxbD3PmHOGqYhrrNSnK
 dwQZd1BMkU1MP9cVfHM46Fgax9vaaJOOVQAA >
Authentication-Info: TLS-DSK qop=”auth”, opaque=”8ED7A1D7”, srand=”B8ACF915”,
 snum=”51”, rspauth=”17d9f63da197a604e25563a62f5b911a355e7859”,

 targetname=”CS-SE.fabrikam.com”, realm=”SIP Communications Service”,
 version=4
Content-Length: 500
Via: SIP/2.0/TLS 192.168.0.20:62970;ms-received-port=62970;ms-received-cid=1353C00
Allow: INVITE, BYE, ACK, CANCEL, INFO, UPDATE
Contact: < sip:outbound.sample@fabrikam.com;gruu;opaque=app:conf:focus:id:MIMC4N1L >
 ;isfocus
Content-Type: application/cccp+xml
Session-Expires: 7200;refresher=uac
Require: timer
Supported: timer
Message-Body: < response xmlns=”urn:ietf:params:xml:ns:cccp” xmlns:ci=”
 urn:ietf:params:xml:ns:conference-info” requestId=”0” C3PVersion=”1”
 from=”sip:outbound.sample@fabrikam.com;gruu;opaque=app:conf:focus:id:
 MIMC4N1L” to=”sip:adamb@fabrikam.com” code=”success” >
 < addUser >
 < conferenceKeys confEntity=”sip:outbound.sample@fabrikam.com;gruu;
 opaque=app:conf:focus:id:MIMC4N1L”/ >
 < ci:user entity=”sip:adamb@fabrikam.com” >
 < ci:roles >
 < ci:entry > attendee < /ci:entry >
 < /ci:roles >
 < /ci:user >
 < /addUser >
 < /response >

 Finally, the invitee sends an INVITE message to each of the MCUs, establishing a Lync call with

each. Here is part of a SIP INVITE to the audio/video MCU:

INVITE sip:outbound.sample@fabrikam.com;gruu;opaque=app:conf:
 audio-video:id:9F8DDEK3 SIP/2.0
From: < sip:administrator@fabrikam.com > ;tag=6f86cc820b;epid=8eb2b9887c
To: < sip:outbound.sample@fabrikam.com;gruu;opaque=app:conf:audio-video:id:9F8DDEK3 >
CSeq: 1 INVITE
Call-ID: b37ca01fdc8f4396bc76465802b00354
Via: SIP/2.0/TLS 192.168.0.40:56842
Max-Forwards: 70
Contact: < sip:administrator@fabrikam.com;opaque=user:epid:h8Imu_x-s1GhF1VFS0UgtQAA
 ;gruu >
User-Agent: UCCAPI/4.0.7577.0 OC/4.0.7577.0 (Microsoft Lync 2010)
Supported: ms-dialog-route-set-update
Ms-Conversation-ID: a24ad16ad7304806acdfc52b53e594b8
Subject: Call Controller Session
Supported: timer
Supported: histinfo
Supported: ms-safe-transfer
Supported: ms-sender
Supported: ms-early-media
Supported: 100rel
ms-keep-alive: UAC;hop-hop=yes
Allow: INVITE, BYE, ACK, CANCEL, INFO, UPDATE, REFER, NOTIFY, BENOTIFY, OPTIONS
ms-subnet: 192.168.0.0
Accept-Language: en-US
ms-endpoint-location-data: NetworkScope;ms-media-location-type=Intranet

Inviting Participants to a Conference ❘ 319

320 ❘ CHAPTER 11 CONFERENCE SERVICES IN UCMA

P-Preferred-Identity: < sip:administrator@fabrikam.com >
Supported: replaces
Supported: ms-conf-invite
Proxy-Authorization: TLS-DSK qop=”auth”, realm=”SIP Communications Service”,
 opaque=”53EFA60D”, targetname=”CS-SE.fabrikam.com”, crand=”eb7267f3”,
 cnum=”46”, response=”f6dee046ed0e90590f3eea417093725fee265d9d”
Content-Type: multipart/alternative;boundary=”----=_NextPart_000_001B_01CBB580.
 7BEF6900”
Content-Length: 3318
Message-Body: ------=_NextPart_000_001B_01CBB580.7BEF6900
Content-Type: application/sdp
Content-Transfer-Encoding: 7bit
Content-ID: < d109e8e8d6304cbaa203dbee85e40f80@fabrikam.com >
Content-Disposition: session; handling=optional; ms-proxy-2007fallback
v=0
o=- 0 0 IN IP4 192.168.0.40
s=session
c=IN IP4 192.168.0.40
b=CT:99980
t=0 0
m=audio 32882 RTP/SAVP 114 9 112 111 0 8 116 115 4 97 13 118 101
a=candidate:JZ8OXUUogdyo695Mmoj+SDCe6PzN4TIr4tcUUZS4BiM 1 PypC1fAlEb6jVK814pJzYQ
 UDP 0.830 67.104.203.240 3354
a=candidate:JZ8OXUUogdyo695Mmoj+SDCe6PzN4TIr4tcUUZS4BiM 2 PypC1fAlEb6jVK814pJzYQ
 UDP 0.830 67.104.203.240 3355
...

 After the call is established between the invitee and the MCU, media can fl ow back and forth

between the invitee and other conference participants via the MCU. The Lync client shows when a

conference participant has successfully established communication with the MCU by lighting up the

appropriate modality icon (phone, speech bubble, arrows, and so on) next to that participant ’ s name

in the conference roster.

 Inviting Participants Using a ConferenceInvitation Object

 The ConferenceInvitation object in UCMA handles sending a single conference invitation to a

single Lync user. The BeginDeliver method of ConferenceInvitation essentially takes care of

the fi rst of the three SIP dialogs described in the previous section: It provides the conference join

information to the user to whom it is directed. The asynchronous operation fi nishes after the user

has accepted the invitation, and it is then up to the invited user to join the conference.

 The fact that a conference invitation has been delivered successfully does not
guarantee that the invited user will join the conference. Even if the invitee accepts
the invitation, it may experience a connectivity problem, for example, and fail to
join. If your application needs to do something when the invited user actually joins
the conference successfully, you must monitor the conference roster as described
in the later section “ Monitor Conference Events. ”

 Creating a ConferenceInvitation Object

 The ConferenceInvitation object picks up the information it needs about the conference from the

 Conversation object that is passed in to the constructor, as shown in the following code.

ConferenceInvitation inv = new ConferenceInvitation(conferenceConversation);

 Alternatively, specify a conference ID and media types manually by including a

 ConferenceInvitationSettings object, as the following code illustrates.

ConferenceInvitationSettings settings = new ConferenceInvitationSettings();
settings.ConferenceUri = generatedConferenceId;
settings.AvailableMediaTypes.Add(MediaType.Message);

ConferenceInvitation inv =
 new ConferenceInvitation(conferenceConversation, settings);

 Sending a Conference Invitation Using BeginDeliver

 After the ConferenceInvitation object is initialized, send the invitation by calling

 ConferenceInvitation.BeginDeliver . The fi rst parameter of BeginDeliver should be the SIP

URI of the Lync user who is to be invited.

 Each ConferenceInvitation object can only be used to invite a single user to the
conference. Calling BeginDeliver again with a different SIP URI will result in an
exception.

 The following code snippet shows a method that delivers conference invitations to a single Lync user.

private void InviteCallRecipient()
{
 ConferenceInvitation invitation =
 new ConferenceInvitation(_conferenceConversation);

 try
 {
 invitation.BeginDeliver(_callRecipientUri,
 deliverResult = >
 {
 try
 {
 invitation.EndDeliver(deliverResult);
 }
 catch (RealTimeException rtex)
 {
 _logger.Log(“Failed inviting call recipient.”,
 rtex);
 }
 }, null);
 }

Available for

download on

Wrox.com

Available for

download on

Wrox.com

Inviting Participants to a Conference ❘ 321

322 ❘ CHAPTER 11 CONFERENCE SERVICES IN UCMA

 catch (InvalidOperationException ioex)
 {
 _logger.Log(“Failed inviting call recipient.”, ioex);
 }
}

 Code snippet CallController\CallControllerSession.cs

 ACCEPTING AN INCOMING CONFERENCE INVITATION

 Occasionally, a UCMA application must be designed to handle being invited to

a conference. As an example, a conference recording application might register

a contact that Lync users can invite to their conferences in order to have them

recorded. By handling the ConferenceInvitationReceived event, an application

can be notifi ed of incoming conference invitations and can accept or decline them.

The conference join information is provided to the application in the form of a

 ConferenceInvitation object.

 For instant messaging conferences, UCMA provides an event on the

 ConferenceInvitation class called AutoAcceptNeeded , which fi res when an

invitation has been pending for long enough that it would be automatically accepted

by the Lync client. (For an example of this, watch the behavior of the Lync client

when an incoming instant message goes unanswered.) This event is mainly useful for

middle - tier applications that provide a client interface for Lync users; the application

can automatically accept the incoming conference invitation if the user has not

already done so. Using some sort of synchronization mechanism is important so that

the application does not accept the invitation on one thread at the same time that

user input causes it to accept the invitation on another thread.

 There is also a property on the ConferenceInvitation class,

 IsImmediateAutoAcceptNeeded , which is set to true in cases where the invitation

should be accepted immediately by the application without prompting the user

(where applicable).

 The following code snippet shows an event handler for

 ConferenceInvitationReceived that handles incoming conference invitations by

accepting them, unless the application is shutting down, in which case it declines

incoming invitations.

private void OnConferenceInvitationReceived(object sender,
 ConferenceInvitationReceivedEventArgs e)
{
 ConferenceInvitation invitation = e.Invitation;

 lock (_sessionsSyncObject)
 {
 if (_draining)
 {
 // Don’t accept invitations when shutting down.

 Inviting Participants Using Audio MCU Dial - Out

 The ConferenceInvitation method of adding conference participants does not work very well

with PSTN contacts, because telephones do not speak SIP, and so, as Figure 11 - 3 shows, they do not

have any particularly good way to receive the conference information and communicate with the

conference focus.

 invitation.Decline();
 }
 else if (invitation.AvailableMediaTypes.Contains(
 “message”))
 {
 // Accept only invitations for conferences that
 // include the instant messaging modality.
 ConferenceMonitorSession session =
 new ConferenceMonitorSession(invitation,
 _logger);
 session.StateChanged += OnSessionStateChanged;

 _sessions.Add(session);

 session.Start();
 }
 else
 {
 // Decline the invitation if the IM modality is
 // not included.
 invitation.Decline();
 }
 }
}

 Code snippet ConferenceMonitor\ConferenceMonitorUserAgent.cs

1

I want to invite tel: +12015551212 to my

conference about making paper snowflakes.

 Here’s the URI where you can join.

INVITE

Mediation Server +1 (201) 555-1212

Just as well; I didn’t really

want to make paper

snowflakes anyway.

Umm, sorry, there’s

no way to say that to

a telephone.

2

Mediation Server +1 (201) 555-1212

 FIGURE 11 - 3

Inviting Participants to a Conference ❘ 323

324 ❘ CHAPTER 11 CONFERENCE SERVICES IN UCMA

 Because plenty of reasons exist as to why one might want to invite someone to a conference through

a PSTN phone (for example, an employee on the road using a mobile phone), the audio/video MCU

has the ability to call a contact directly to bring it into the conference ’ s audio MCU session. UCMA

applications can tell the audio/video MCU to do this by calling the BeginDialOut method on the

 AudioVideoMcuSession object associated with the conference. The AudioVideoMcuSession object,

which later sections cover in more detail, is accessible through the AudioVideoMcuSession property

on the ConferenceSession class.

 The BeginDialOut method causes UCMA to send a command to the audio/video MCU, telling it to

dial out to the specifi ed URI.

 Adding PSTN Participants Using BeginDialOut Method

 The following code snippet shows how to add a PSTN participant to a conference by having the

MCU dial out.

private void DialOut(string sipUri)
{
 try
 {
 ConferenceSession confSession =
 _conferenceConversation.ConferenceSession;
 AudioVideoMcuSession mcuSession =
 confSession.AudioVideoMcuSession;

 // Send the dial out command to the MCU.
 mcuSession.BeginDialOut(sipUri,
 dialOutResult = >
 {
 try
 {
 mcuSession.EndDialOut(dialOutResult);
 }
 catch (RealTimeException rtex)
 {
 _logger.Log(“Failed dialing out from MCU.”, rtex);
 }
 },
 null);
 }
 catch (InvalidOperationException ioex)
 {
 _logger.Log(“Failed dialing out from MCU.”, ioex);
 }
}

 Code snippet CallController\CallControllerSession.cs

 The fi rst parameter of the BeginDialOut method is the URI (usually a “ tel ” URI) of the destination.

Specifying options using the McuDialOutOptions or AudioVideoMcuDialOutOptions classes as

additional parameters is also possible.

Available for

download on

Wrox.com

Available for

download on

Wrox.com

 Handling Dial - Outs to the Lync Client

 Although PSTN phones can ’ t handle conference invitations and need to be coddled with a personal

call from the MCU instead, the Lync client objects to audio/video MCU dial - outs. In a peculiar display

of passive - aggressive behavior, it rejects the dial - out call, grabs the conference URI, and turns around

and calls into the conference itself, picking up from step 2 in the process described earlier in “ The SIP

Anatomy of a Conference Invitation. ” Because of this, using the ConferenceInvitation class with

Lync contacts whenever possible, and reserving MCU dial - outs for PSTN participants, is generally

better. If you do need to dial out to a Lync user for some reason, expect slightly odd behavior: The

dial - out operation will fail with an exception, but the invited user will join the conference anyway.

 Transferring a Call into the Conference

 In addition to dialing out to bring new participants into a conference, the MCU has the ability to

transfer an existing call to the MCU in order to seamlessly bring the remote participant from a two -

 party call into the conference.

 As an alternative to inviting a user to the conference directly, an application can place a new

outbound two - party call to the user, and after the call is established it can direct the MCU to

transfer the two - party call into the conference. This can be particularly useful as a way of bringing

incoming calls to the application into a conference, as shown in the following code sample.

private void TransferIncomingCallIntoConference()
{
 try
 {
 AudioVideoMcuSession avMcu =
 _conferenceConversation.ConferenceSession.AudioVideoMcuSession;

 // The incoming call has already been accepted. Now, direct
 // the MCU to transfer it into the conference.
 avMcu.BeginTransfer(_incomingAvCall, null,
 transferResult = >
 {

Available for

download on

Wrox.com

Available for

download on

Wrox.com

 “ TEL ” URI

 The “ tel ” URI scheme, for telephone numbers, is described in RFC 3966. Lync

allows endpoints to place calls to PSTN numbers through the mediation server

using “ tel ” URIs, although Lync expresses phone numbers internally in a slightly

different format, like the following:

sip:+12015551212@wrox.com;user=phone

 This type of phone URI is what typically appears in UCMA properties as the SIP

URI of a Lync conversation participant that is connected through the mediation

server.

Inviting Participants to a Conference ❘ 325

326 ❘ CHAPTER 11 CONFERENCE SERVICES IN UCMA

 try
 {
 avMcu.EndTransfer(transferResult);

 InviteCallRecipient();
 }
 catch (RealTimeException rtex)
 {
 _logger.Log(
 “Failed transferring call into conference.”,
 rtex);
 }
 }, null);
 }
 catch (InvalidOperationException ioex)
 {
 _logger.Log(“Failed transferring call into conference.”, ioex);
 }
}

 Code snippet CallController\CallControllerSession.cs

 ESCALATING AN INSTANT MESSAGE CALL TO A CONFERENCE

 Instant messaging calls cannot be transferred, but another way exists to turn a

two - party IM call into a conference. This is the BeginEscalateToConference

method on the Conversation class. This method, when called on a Conversation

object that already has an active IM call associated with it, will seamlessly bring

the participants on that call into a conference.

 To perform an escalation, fi rst join a conference using the same Conversation

object by calling Conversation.ConferenceSession.BeginJoin . After this

is done, call Conversation.BeginEscalateToConference to bring the call

participants into the newly joined conference. When the operation completes, the

call will have been converted into a conference.

 BeginEscalateToConference does not work with audio calls, but the

 BeginTransfer method on AudioVideoMcuSession generally serves well enough

for those cases.

 JOINING A CONFERENCE

 To join a Lync conference, an endpoint must establish two or more signaling sessions: one with the

conference focus, and one with each MCU. In UCMA, all of these signaling sessions are tied to a

single instance of the Conversation class, and the details of the SIP messages are hidden so that

developers can write code on the level of Conversation and Call objects.

 Managing Conference Communication Using the
ConferenceSession Object

 The ConferenceSession class encapsulates all communication with the conference focus. Each

 Conversation object comes with a ConferenceSession instance already attached to it, and

developers can call the BeginJoin method on ConferenceSession in order to have the endpoint

that owns the Conversation join a conference.

 If the Conversation object involved has come from a conference invitation that the application

has accepted, or if a conference URI is provided as the fi rst parameter to BeginJoin , the UCMA

endpoint joins the existing conference. Otherwise, it joins an ad - hoc conference , as described later

in this chapter.

 The following code shows an example of how to use the ConferenceSession.BeginJoin method.

In this case, the application is joining a conference for which it has received an invitation.

private void JoinConference()
{
 _conferenceConversation = _invitation.Conversation;

 try
 {
 _conferenceConversation.ConferenceSession.BeginJoin(
 new ConferenceJoinOptions(),
 joinResult = >
 {
 try
 {
 _conferenceConversation.ConferenceSession.
 EndJoin(
 joinResult);

 JoinInstantMessagingMcu();
 }
 catch (RealTimeException rtex)
 {
 _logger.Log(“Failed joining conference.”,
 rtex);
 }
 },
 null);
 }
 catch (InvalidOperationException ioex)
 {
 _logger.Log(“Failed joining conference.”, ioex);
 }
}

 Code snippet ConferenceMonitor\ConferenceMonitorSession.cs

Available for

download on

Wrox.com

Available for

download on

Wrox.com

Joining a Conference ❘ 327

328 ❘ CHAPTER 11 CONFERENCE SERVICES IN UCMA

 After a UCMA endpoint has joined a conference through a Conversation , it appears in the

conference roster. However, it isn ’ t able to send or receive any media until it establishes communication

with the MCUs. (In the Lync client, it would show up in the list of conference participants, but none

of the modality icons next to it, such as the phone and the speech bubble, would be highlighted.) To

connect to the MCUs, the application must establish a call within the Conversation for each modality

it is going to join.

 Clarifying a few points here is important, because handling conferences in UCMA can be a bit

confusing at fi rst. Each Conversation object in UCMA really always represents a communication

session between two parties, as shown in Figure 11 - 4. The “ local ” end of this communication session

is always one of the endpoints controlled by the application. The conversation can have multiple

modalities, with each modality being represented by a separate signaling session and a separate

media stream (as shown in the diagram), but those separate sessions are tied together, share the same

conversation ID, and involve the same two participants.

Conversation ID a1dcdb2a-c2ce-

4d8f-92a9-8c3d73b42e40
Call ID db2f9b10-a041-4b7-a6d6-

c685c07034ac (audio)

Call ID e34384eb-711c-4c45-9e32-

a97e4eed8b8b (instant messaging)

UCMA Application
Remote Participant

 FIGURE 11 - 4

 When an endpoint managed by a UCMA application joins a conference, the Conversation object

is still, under the covers, handling a two - party communication session. In this case, however, the

communication is between the UCMA endpoint and the conference, and shown in Figure 11 - 5. Each

other conference participant has its own communication session with the conference focus and MCUs.

Conversation ID a1dcdb2a-c2ce-

4d8f-92a9-8c3d73b42e40
Call ID db2f9b10-a041-4b7-a6d6-

c685c07034ac (audio)

Call ID e34384eb-711c-4c45-9e32-

a97e4eed8b8b (instant messaging)

UCMA Application Conference Focus

and MCUs

Remote Participant

Remote Participant

Remote Participant

 FIGURE 11 - 5

 Thinking of the focus session and the MCU sessions as separate modalities in the conversation may be

helpful. The important thing to note, though, is that when a UCMA endpoint joins a conference, it is,

to put it in general terms, calling the conference rather than calling all the other participants at once.

 It ’ s very much like the experience of calling into a conference bridge from a PSTN telephone. You

place a call to a conference number, and then other participants also dial into the number, at which

point you can hear one another.

 Going back to the subject of establishing calls, after an endpoint has joined a conference through

 Conversation.ConferenceSession.BeginJoin , it must establish at least one call within the same

 Conversation in order to send and receive media. When it does this, it is essentially “ calling in ”

to that MCU. Because, at this point, UCMA already knows the SIP URIs it needs to call from the

conference focus, no need exists to specify a SIP URI in the Call.BeginEstablish method. The

following code sample shows this in action with a call to the instant messaging MCU.

private void JoinInstantMessagingMcu()
{
 try
 {
 _imCall = new InstantMessagingCall(
 _conferenceConversation);

 _imCall.BeginEstablish(establishResult = >
 {
 try
 {
 _imCall.EndEstablish(establishResult);

 SubscribeToEvents();
 this.State =
 ConferenceMonitorSessionState.Started;
 }
 catch (RealTimeException rtex)
 {
 _logger.Log(“Failed establishing IM call.”,
 rtex);
 }
 }, null);
 }
 catch (InvalidOperationException ioex)
 {
 _logger.Log(“Failed establishing IM call.”,
 ioex);
 }
}

 Code snippet ConferenceMonitor\ConferenceMonitorSession.cs

Available for

download on

Wrox.com

Available for

download on

Wrox.com

 Technically, the focus and the various MCUs have different SIP URIs, but they
are all part of a single conference, and so for purposes of explanation thinking of
them as one conversation participant makes sense.

Joining a Conference ❘ 329

330 ❘ CHAPTER 11 CONFERENCE SERVICES IN UCMA

 A behind - the - scenes look at the messaging involved in this operation would show that the endpoint

fi rst establishes a SIP session with the conference focus, then another SIP session with the IM

MCU. Figure 11 - 6 offers a visualization of these different signaling sessions and where the other

participants come into the picture.

UCMA Application

Focus

IM MCU

 FIGURE 11 - 6

 Specifying Conference Joining Details with the
ConferenceJoinOptionsClass

 The primary piece of information that is needed to join a conference is the conference URI. In

some cases, though, an application must specify other settings when joining a conference. UCMA

applications can use the ConferenceJoinOptions class to set these options.

 The most common use of ConferenceJoinOptions is to indicate that an application should join a

conference as a trusted participant. Trusted participants in conferences are discussed later in this

chapter. The other options that ConferenceJoinOptions controls have to do with the conference

lobby, where participants that have not been authorized to join the conference are kept until a

conference leader admits them or ejects them.

 Joining an Ad - Hoc Conference

 Often, an application needs to start up a conference on the fl y and can manage with a default set

of options. In these cases, UCMA applications can use an ad - hoc conference . Instead of scheduling

a conference, obtaining the new conference ’ s URI, creating a new Conversation object, and then

calling Conversation.ConferenceSession.BeginJoin with that conference URI, the application

can call Conversation.ConferenceSession.BeginJoin on a new Conversation without any

conference URI. UCMA will automatically schedule a new conference with an expiry time eight

hours ahead and with all possible MCUs, and join this new conference, all in one operation.

 The following code sample shows how to perform an ad - hoc conference join.

// Create an entirely new conversation.
_conferenceConversation = new Conversation(_endpoint);

// Start an ad hoc conference join with the conversation.
_conferenceConversation.ConferenceSession.BeginJoin(
 new ConferenceJoinOptions(),
 joinResult = >
 {
 try
 {
 _conferenceConversation.ConferenceSession.EndJoin(
 joinResult);

 JoinAudioVideoMcu();
 }
 catch (RealTimeException rtex)
 {
 _logger.Log(“Failed joining conference.”, rtex);
 }
 }, null);

 BEGINJOIN AND THE CONFERENCE LOBBY

 If an endpoint belonging to a UCMA application is joining a conference where

it is not an invited participant (or a trusted participant), it will be placed in

the conference lobby. The State property of both the Conversation and

 ConferenceSession objects will change to InLobby , and the asynchronous

conference join operation will not complete until the endpoint is admitted or denied

access. This means that if a callback was passed into BeginJoin , or the code is

waiting on the wait handle of the IAsyncResult returned by BeginJoin , these will

wait until the endpoint is out of the lobby.

 PROVIDING SERVICES WITH TRUSTED CONFERENCE
PARTICIPANTS

 At times, a UCMA application must provide some type of service to other participants on

a conference or a call. This service might be a feature controlled by the participants (such as a

conference attendant that allows PSTN participants to mute themselves by dialing a tone on the

Providing Services with Trusted Conference Participants ❘ 331

332 ❘ CHAPTER 11 CONFERENCE SERVICES IN UCMA

phone keypad) or might even be invisible to the participants (as in call monitoring systems that

randomly record a percentage of calls or allow supervisors to listen in silently).

 To support scenarios like these, UCMA allows application endpoints to join a conference in a

special mode which makes them trusted conference participants . This trusted mode has two main

effects:

 The participant can perform special privileged operations, such as modifying audio MCU

routing settings, or sending conference commands on behalf of other users.

 The participant is not visible to other participants in the conference roster.

 These two things allow applications to control conferences in useful ways without the application

being visible as a (potentially confusing) conference participant.

➤

➤

 User endpoints, shady characters that they are, cannot join conferences in trusted
mode.

 If you think about it, user endpoints really get the short end of the stick in UCMA.
Application endpoints get to have all the fun impersonating other identities, while
user endpoints are the ones that are not trusted.

 Joining a conference in trusted mode is as simple as setting the JoinMode property on an instance of

 ConferenceJoinOptions , which can then be passed into BeginJoin as a parameter. For a trusted

join, the JoinMode property should be set to TrustedParticipant .

 The next few sections describe some of the more common uses of trusted conference participants.

Chapter 12 describes some of the capabilities of trusted participants in more detail.

 USING TRUSTED JOIN TO PROVIDE SERVICES ON TWO - PARTY CALLS

 Although plenty of opportunities exist for putting trusted participants to use in

conferences, it may not be immediately obvious that this feature can also be useful

when only two participants are involved. In certain more complex scenarios, such

as in contact centers, various special services need to be available for audio calls

and other communications. These might include recording, reporting on - call

statistics such as average handle time, and silent monitoring by supervisors, among

other things.

 With a normal two - party Lync call, providing these services is not possible

for a UCMA application. Chapter 12 discusses this conundrum in more detail

in the sections on the BackToBackCall , but in a nutshell, the reason is that a

 Avoiding Problems with the Trusted Conference Join Feature

 Developers should know about two things that are not immediately obvious about trusted

conference participants when using the trusted join feature.

 One is that instant messages from trusted participants exhibit some strange behavior. Generally,

instant messages from a trusted participant “ expose ” the participant, making the participant ’ s name

suddenly appear in the roster — unless no instant messages have been sent in the conference, in

which case the instant messages from the trusted participant may simply not appear.

UCMA application has neither visibility nor control of a call in which it is not a

participant, as illustrated in Figure 11 - 7.

 One solution is to set up a two - party call in a case like this as a conference with

three participants: the two original participants, plus the UCMA application as

a trusted participant. Because the application is a trusted participant, it doesn ’ t

appear in the roster, and it seems to the two other participants as if they are on

a two - party call. Meanwhile, the application has complete freedom to control or

monitor the conference because it is a participant.

UCMA Application

The application can’t

reach these sessions.

Focus

A/V MCU

 FIGURE 11 - 7

Providing Services with Trusted Conference Participants ❘ 333

334 ❘ CHAPTER 11 CONFERENCE SERVICES IN UCMA

 Because of this, not using trusted participants to send instant messages is best. If an application

needs to join a conference as a trusted participant and also send instant messages into the

conference, it can join the conference twice, using two separate calls with different identities, one

trusted and one not.

 Secondly, note that when joining a conference multiple times from the same endpoint (such as to

provide multiple services to a call) a conference will only allow each user to join the conference

once. In other words, a single SIP URI cannot be in the conference twice.

 You can circumvent this limitation in two ways. One is that the AudioVideoCallEstablishOptions

class has a property, UseGeneratedIdentityForTrustedConference , which causes UCMA to

automatically generate a fake identity that it uses for the call. This only applies to calls that are

established for a conference, but it allows the UCMA endpoint to join the conference multiple times

using multiple AudioVideoCall objects on one Conversation . This is the only case in which a

 Conversation object can share multiple calls of the same modality.

 The other option is to use separate Conversation objects, and impersonate a different SIP URI on

each one. This can be a fake SIP URI; for instance, a call that will be used for playing hold music

could have an impersonated identity of holdmusic@ yourdomain .com .

 Using the Trusted Join Feature to Provide Common Services

 The trusted join feature is excellent for providing a variety of services to calls and conferences. Some

of the more common uses include:

 Recording a call or conference without a visible recorder participant

 Playing announcements on conferences, by attaching either a Player object or a

 SpeechSynthesisConnector to the AudioVideoCall that is joined to the conference

 Tracking call statistics, such as how long a call or conference is active and how long each

participant is present

 Playing hold music

 Changing audio routing settings so that certain participants cannot hear certain others

 Chapter 12 describes many of the media control features mentioned here in much more detail.

 CONTROLLING CONFERENCE ATTENDANCE
WITH CONFERENCE COMMANDS

 Conference leaders, the conference organizer, and trusted participants can send commands to the

conference focus to control the conference and its participants. In UCMA, these commands can

be sent through the ConferenceSession class.

➤

➤

➤

➤

➤

 Terminating a Conference

 To terminate a conference immediately and remove all participants, call the

 BeginTerminateConference method on ConferenceSession . The following code shows how to

terminate a conference using this method.

private void TerminateConference()
{
 try
 {
 ConferenceSession confSession =
 _conferenceConversation.ConferenceSession;

 confSession.BeginTerminateConference(
 terminateResult = >
 {
 try
 {
 confSession.EndTerminateConference(terminateResult);
 }
 catch (RealTimeException rtex)
 {
 _logger.Log(“Failed terminating conference.”, rtex);
 }
 },
 null);
 }
 catch (InvalidOperationException ioex)
 {
 _logger.Log(“Failed terminating conference.”, ioex);
 }
}

 Code snippet CallController\CallControllerSession.cs

 Note that calling BeginTerminateConference on the ConferenceSession class is different from

calling BeginTerminate on the Conversation class and has entirely different effects. Calling

 Conversation.BeginTerminate simply ends the communication between the UCMA endpoint and

the conference, whereas ConferenceSession.BeginTerminateConference shuts down the whole

conference. See Figure 11 - 8 for an illustration of the differences.

Available for

download on

Wrox.com

Available for

download on

Wrox.com

 A UCMA application can only send these conference control commands if it is
acting as a conference leader or if it is a trusted participant. If it is merely an
attendee, the commands will return an error.

Controlling Conference Attendance with Conference Commands ❘ 335

336 ❘ CHAPTER 11 CONFERENCE SERVICES IN UCMA

terminate

UCMA Application

UCMA Application

Terminate Conversation

Terminate Conference

Focus

A/V MCU

terminate

terminate

terminate

 FIGURE 11 - 8

 Ejecting a Conference Participant

 One never knows when a previously friendly and docile conference participant may take on a

nasty disposition and begin acting troublesome. For such situations, the BeginEject method of

 ConferenceSession is invaluable. It directs the conference focus to remove a specifi c participant

from the conference.

 The following code shows the usage of BeginEject .

private void Eject(string sipUri)
{
 try
 {
 ConferenceSession confSession =
 _conferenceConversation.ConferenceSession;

 // Get a list of conference participant endpoints.
 Collection < ParticipantEndpoint > participants =
 confSession.GetRemoteParticipantEndpoints();

 // Look for the specified participant in the list.
 ParticipantEndpoint endpointToEject =
 participants.FirstOrDefault(p = > p.Participant.Uri == sipUri);

 if (endpointToEject != null)
 {
 // Get the ConversationParticipant object to pass to
 // BeginEject.
 ConversationParticipant participantToEject =
 endpointToEject.Participant;

 // Eject the participant.
 confSession.BeginEject(participantToEject,
 ejectResult = >
 {
 try
 {
 confSession.EndEject(ejectResult);

 // See you later!
 }
 catch (RealTimeException rtex)
 {
 _logger.Log(“Failed ejecting participant.”, rtex);
 }
 },
 null);
 }
 }
 catch (InvalidOperationException ioex)
 {
 _logger.Log(“Failed ejecting participant.”, ioex);
 }
}

 Code snippet CallController\CallControllerSession.cs

Available for

download on

Wrox.com

Available for

download on

Wrox.com

You can also have a participant ejected from a specifi c MCU only by calling the
 BeginEject method on the corresponding McuSession class.

Controlling Conference Attendance with Conference Commands ❘ 337

338 ❘ CHAPTER 11 CONFERENCE SERVICES IN UCMA

 Locking or Unlocking a Conference

 Locking a conference prevents any new participants from joining besides the organizer. To

tell the conference focus to lock the conference, call the BeginLockConference method on

 ConferenceSession , as shown in the following code.

private void LockConference()
{
 try
 {
 ConferenceSession confSession =
 _conferenceConversation.ConferenceSession;

 confSession.BeginLockConference(
 lockResult = >
 {
 try
 {
 confSession.EndLockConference(lockResult);
 }
 catch (RealTimeException rtex)
 {
 _logger.Log(“Failed locking conference.”, rtex);
 }
 },
 null);
 }
 catch (InvalidOperationException ioex)
 {
 _logger.Log(“Failed locking conference.”, ioex);
 }
}

 Code snippet CallController\CallControllerSession.cs

 To unlock a conference, call the BeginUnlockConference method, as shown in the following code.

private void UnlockConference()
{
 try
 {
 ConferenceSession confSession =
 _conferenceConversation.ConferenceSession;

 confSession.BeginUnlockConference(
 unlockResult = >
 {
 try
 {
 confSession.EndUnlockConference(unlockResult);
 }
 catch (RealTimeException rtex)

Available for

download on

Wrox.com

Available for

download on

Wrox.com

Available for

download on

Wrox.com

Available for

download on

Wrox.com

 {
 _logger.Log(“Failed unlocking conference.”, rtex);
 }
 },
 null);
 }
 catch (InvalidOperationException ioex)
 {
 _logger.Log(“Failed unlocking conference.”, ioex);
 }
}

 Code snippet CallController\CallControllerSession.cs

 Modifying Conference Confi guration or Participants ’ Roles

 The settings for a conference and the roles of participants can be set in the

 ConferenceScheduleInformation class when a conference is fi rst being scheduled. If a

change becomes necessary, however, or if the conference was originally created as an ad - hoc

conference, the BeginModifyRole and BeginModifyConferenceConfiguration methods of the

 ConferenceSession class can come in handy.

 Call BeginModifyConferenceConfiguration to change the access level, lobby bypass setting, or

automatic leader assignment policy for the conference. Each of these settings has the same effect

that it has when set in ConferenceScheduleInformation .

 Call BeginModifyRole to change a conference participant from an attendee to a leader or vice

versa. This method takes a ConversationParticipant object as its fi rst parameter, much like

 BeginEject . The second parameter is the new role that will be assigned to the participant.

 MANAGING ACCESS WITH THE CONFERENCE LOBBY

 The conference lobby is a new concept in Lync Server 2010. Prior to Lync (in Offi ce

Communications Server 2007 R2 and earlier versions) users who tried to join a conference to which

they had not been invited or from which they were excluded by the conference ’ s access level were

simply blocked from joining. This created some diffi culties in managing conference attendance: No

way existed to see users who were trying to join and decide whether or not to admit them. All users

had to be authorized before they could join at all.

 The conference lobby allows users to join the conference and be held in a virtual “ waiting room ”

where they cannot hear other participants or be heard. Conference leaders can see who is in the

lobby and can admit those participants to the conference or deny them entry and remove them

altogether. Essentially, users can be “ screened ” as they are trying to join rather than in advance.

 UCMA applications, when acting as conference leaders or as trusted participants, can also watch

for lobby participants and can admit or reject them.

Managing Access with the Conference Lobby ❘ 339

340 ❘ CHAPTER 11 CONFERENCE SERVICES IN UCMA

 Requiring Participants to Enter Via the Lobby

 The lobby only comes into play when a user joins a conference but has not yet been authorized to do

so. If the user is included through the access level (for instance, if the conference has an access level

of SameEnterprise and the user is from the same organization) or if the user has been explicitly

specifi ed as a conference participant, he or she can skip the lobby and join the conference directly.

So, to require certain participants to join via the lobby and be screened, ensure that the conference ’ s

access level is set at a restrictive - enough level to exclude those participants from being admitted

immediately.

 To watch for new lobby participants, subscribe to the LobbyParticipantAttendanceChanged event

on the Conversation class, as shown here:

_conferenceConversation.LobbyParticipantAttendanceChanged +=
 OnLobbyParticipantsChanged;

 Code snippet CallController\CallControllerSession.cs

 When a user attempts to join the conference and is placed in the lobby, this event handler will be

invoked. The application can then admit or reject the new lobby participants.

Available for

download on

Wrox.com

Available for

download on

Wrox.com

 An application can join a conference without lobby management capabilities if
the CanManageLobby property on ConferenceJoinOptions is set to false . The
default is true .

 Allowing Participants into the Conference from the Lobby

 Applications can admit or reject lobby participants using the LobbyManager class. Each

 ConferenceSession instance has an instance of this class, which can be accessed through the

 LobbyManager property.

 To admit a lobby participant into the conference, call BeginAdmitLobbyParticipants

on LobbyManager . The fi rst parameter should be an enumerable collection of

 ConversationParticipant objects. These can be retrieved either from the event arguments of the

 LobbyParticipantAttendanceChanged event, or from the GetLobbyParticipants method of the

 Conversation class.

 The following code sample shows the usage of BeginAdmitLobbyParticipants .

private void OnLobbyParticipantsChanged(object sender,
 LobbyParticipantAttendanceChangedEventArgs e)
{
 LobbyManager lobbyManager =
 _conferenceConversation.ConferenceSession.LobbyManager;

 // Wait for one second and then admit the added lobby participants.

Available for

download on

Wrox.com

Available for

download on

Wrox.com

 Thread.Sleep(1000);

 try
 {
 lobbyManager.BeginAdmitLobbyParticipants(e.Added,
 admitResult = >
 {
 try
 {
 lobbyManager.EndAdmitLobbyParticipants(admitResult);
 }
 catch (RealTimeException rtex)
 {
 _logger.Log(“Failed admitting lobby participants.”,
 rtex);
 }
 },
 null);
 }
 catch (InvalidOperationException ioex)
 {
 _logger.Log(“Failed admitting lobby participants.”, ioex);
 }
}

 Code snippet CallController\CallControllerSession.cs

 To reject and remove lobby participants, follow the same procedure, but use the

 BeginDenyLobbyParticipants method.

 CONTROLLING MEDIA USING THE MCUSESSION CLASSES

 The multipoint control units, or MCUs, control the fl ow of media in a conference. By sending

messages that contain commands to the MCU, a UCMA application can perform actions in a

conference that affect the handling of media.

 Although the MCU ultimately handles media commands in a conference, the
messages are directed to the conference focus, which then forwards them to
the appropriate MCU.

 In audio conferences, a need often exists for an application to mute one or more of the participants;

the mute command is therefore one of the most useful MCU commands. The audio/video MCU is

also capable of placing outbound calls to potential conference participants, as well as transferring

calls that have already been established into the conference, which can be useful as a method of

turning a two - party audio call into a conference. These last two capabilities are discussed earlier in

this chapter.

Controlling Media Using the McuSession Classes ❘ 341

342 ❘ CHAPTER 11 CONFERENCE SERVICES IN UCMA

 Receiving Instant Messages in a Conference

 Developers who are beginning to work with Lync conferences in UCMA might be surprised not to

fi nd a MessageReceived event on the InstantMessagingMcuSession class, and might wonder how

to receive incoming instant messages in a conference (if it includes the IM modality).

 Actually, receiving instant messages from a conference is no different from receiving

instant messages in an ordinary two - party call. The application can subscribe to the

 MessageReceived event on the InstantMessagingFlow just as it would for a two - party call. (The

 InstantMessagingFlow it should use is the one from the instant messaging call that the application

has established for the conference.)

 Remember that this call is actually a two - party call between the application and the instant

messaging MCU. Any new instant messages in the conference will fi nd their way to the application

through the dialog between the application and the MCU.

 Muting a Participant

 Anyone who has ever led or participated in a Lync conference has had occasion to use the mute

feature. For participants, being able to prevent other participants from hearing chewing sounds, off -

 color remarks, or traffi c is handy. Conference leaders, meanwhile, can exert their power over fellow

participants by silencing heavy breathing or contrary opinions.

 UCMA applications can mute themselves or other participants in an audio conference in much

the same way, by sending a mute command to the audio/video MCU. To have the MCU mute

a participant, call BeginMute on the AudioVideoMcuSession object associated with the

conference. The fi rst parameter of BeginMute is a ParticipantEndpoint object, which identifi es

the participant that should be muted. Generally, the easiest way to retrieve this object is to call

 GetRemoteParticipantEndpoints on the AudioVideoMcuSession object, which will return a

collection of ParticipantEndpoint objects. The matching ParticipantEndpoint can then be

retrieved from the collection by SIP URI.

 If the application needs to mute itself, call GetLocalParticipantEndpoints
instead of GetRemoteParticipantEndpoints to get a collection that includes
the local endpoint.

 The following code sample demonstrates muting a participant through the audio/video MCU. It fi rst

retrieves the collection of ParticipantEndpoint objects from the AudioVideoMcuSession object

and takes the fi rst one that matches the provided SIP URI. It then passes this ParticipantEndpoint

instance into the AudioVideoMcuSession.BeginMute method.

private void Mute(string sipUri)
{
 try
 {
 ConferenceSession confSession =
 _conferenceConversation.ConferenceSession;

Available for

download on

Wrox.com

Available for

download on

Wrox.com

 AudioVideoMcuSession mcuSession =
 confSession.AudioVideoMcuSession;

 // Get a list of conference participant endpoints.
 Collection < ParticipantEndpoint > participants =
 confSession.AudioVideoMcuSession.GetRemoteParticipantEndpoints();

 // Look for the specified participant in the list.
 ParticipantEndpoint endpointToMute =
 participants.FirstOrDefault(p = > p.Participant.Uri == sipUri);

 if (endpointToMute != null)
 {
 // Eject the participant.
 mcuSession.BeginMute(endpointToMute,
 muteResult = >
 {
 try
 {
 mcuSession.EndMute(muteResult);
 }
 catch (RealTimeException rtex)
 {
 _logger.Log(“Failed muting participant.”, rtex);
 }
 },
 null);
 }
 }
 catch (InvalidOperationException ioex)
 {
 _logger.Log(“Failed muting participant.”, ioex);
 }
}

 Code snippet CallController\CallControllerSession.cs

 Unmuting a participant is equally easy. To do this, call BeginUnmute on AudioVideoMcuSession ,

passing in a ParticipantEndpoint object as with BeginMute .

private void Unmute(string sipUri)
{
 try
 {
 ConferenceSession confSession =
 _conferenceConversation.ConferenceSession;
 AudioVideoMcuSession mcuSession =
 confSession.AudioVideoMcuSession;

 // Get a list of conference participant endpoints.
 Collection < ParticipantEndpoint > participants =
 confSession.AudioVideoMcuSession.GetRemoteParticipantEndpoints();

Available for

download on

Wrox.com

Available for

download on

Wrox.com

Controlling Media Using the McuSession Classes ❘ 343

344 ❘ CHAPTER 11 CONFERENCE SERVICES IN UCMA

 // Look for the specified participant in the list.
 ParticipantEndpoint endpointToUnmute =
 participants.FirstOrDefault(p = > p.Participant.Uri == sipUri);

 if (endpointToUnmute != null)
 {
 // Eject the participant.
 mcuSession.BeginUnmute(endpointToUnmute,
 unmuteResult = >
 {
 try
 {
 mcuSession.EndUnmute(unmuteResult);
 }
 catch (RealTimeException rtex)
 {
 _logger.Log(“Failed unmuting participant.”, rtex);
 }
 },
 null);
 }
 }
 catch (InvalidOperationException ioex)
 {
 _logger.Log(“Failed unmuting participant.”, ioex);
 }
}

 Code snippet CallController\CallControllerSession.cs

 MONITORING CONFERENCE EVENTS

 UCMA applications that work with Lync conferences generally need to monitor some of the

conference events in order to keep up with state and participant changes. Because participants

join the conference focus and the MCU sessions separately, the ConferenceSession class and the

 McuSession class have separate events to report participant changes. By subscribing to these events,

applications can be notifi ed when users join the conference focus and when they begin participating

in the various media sessions. Applications can also subscribe to conference state change events to

keep track of changes in the condition of the conference.

 One of the slightly counterintuitive points about inviting Lync users to a
conference is that the invitation process itself does not give the application any
feedback on whether the invited user actually joins the conference. It is possible
(although discouraged) for a Lync endpoint to accept a conference invitation but
not make any effort to join the conference at all. This is one of the reasons why
it is important for applications that work with Lync conferences to monitor
conference participation changes.

Monitoring Conference Events ❘ 345

 Receiving Notifi cations of Conference Participant Changes

 Subscribing to notifi cations of participant changes from the conference focus is not particularly

complicated. The ConferenceSession class, which more or less handles the application ’ s

interaction with the conference focus, has a ParticipantEndpointAttendanceChanged event that

fi res whenever anyone joins or leaves the conference focus. An application can subscribe to this

event as shown in the following code snippet:

confSession.ParticipantEndpointAttendanceChanged +=
 OnConferenceAttendanceChanged;

 In the event handler, the event argument class has two properties, Joined and Left , which contain all

the participants who have either joined or left, respectively. The list of participants in each is in the form

of a collection of key/value pairs, with the key being a ParticipantEndpoint object and the value being

a ConferenceParticipantEndpointProperties object. The former has details on the participant such

as the SIP URI; the latter has information specifi c to the conference, such as the participant ’ s role and

whether he or she is in the lobby.

 The following code shows a handler for the ConferenceSession.ParticipantEndpoint

AttendanceChanged event that writes to the log each time a user joins or leaves the conference.

private void OnConferenceAttendanceChanged(object sender,
 ParticipantEndpointAttendanceChangedEventArgs <
 ConferenceParticipantEndpointProperties > e)
{
 foreach (KeyValuePair < ParticipantEndpoint,
 ConferenceParticipantEndpointProperties >
 pair in e.Joined)
 {
 _logger.Log(
 string.Format(“{0} joined the conference.”,
 pair.Key.Participant.Uri));
 }

 foreach (KeyValuePair < ParticipantEndpoint,
 ConferenceParticipantEndpointProperties >
 pair in e.Left)
 {
 _logger.Log(
 string.Format(“{0} left the conference.”,
 pair.Key.Participant.Uri));
 }
}

 Code snippet ConferenceMonitor\ConferenceMonitorSession.cs

 Receiving Notifi cations of Media Participant Changes

 The participation change events on the McuSession classes are nearly identical to the ones on the

 ConferenceSession class. The following code snippet shows how an application can subscribe to

this event on an InstantMessagingMcuSession object.

Available for

download on

Wrox.com

Available for

download on

Wrox.com

346 ❘ CHAPTER 11 CONFERENCE SERVICES IN UCMA

mcuSession.ParticipantEndpointAttendanceChanged +=
 OnMcuAttendanceChanged;

 The following code shows an example of an event handler for this event. Again, everything is

much the same as for the ConferenceSession.ParticipantEndpointAttendanceChanged event,

except that there is a different object with MCU - related properties as the value component of the

key/value pairs.

private void OnMcuAttendanceChanged(object sender,
 ParticipantEndpointAttendanceChangedEventArgs <
 InstantMessagingMcuParticipantEndpointProperties > e)
{
 foreach (KeyValuePair < ParticipantEndpoint,
 InstantMessagingMcuParticipantEndpointProperties >
 pair in e.Joined)
 {
 _logger.Log(
 string.Format(“{0} joined the IM MCU.”,
 pair.Key.Participant.Uri));
 }

 foreach (KeyValuePair < ParticipantEndpoint,
 InstantMessagingMcuParticipantEndpointProperties >
 pair in e.Left)
 {
 _logger.Log(
 string.Format(“{0} left the IM MCU.”,
 pair.Key.Participant.Uri));
 }
}

 Code snippet ConferenceMonitor\ConferenceMonitorSession.cs

 These MCU participation change events are invoked when a Lync user joins an MCU session

associated with a particular conference. This happens after (usually almost immediately after) the

user joins the conference focus. Applications may need to monitor these events to know when a user

who has been invited to the conference is actually able to receive media, or when to perform MCU

actions on the user, like muting the user or modifying MCU audio routes (as discussed in Chapter

12). These actions will fail if the user has not yet connected to the relevant MCU.

 Tracking Conference States

 Applications can monitor the current state of the connection to a conference using the State

property on ConferenceSession . Note that these states are not the state of the conference itself,

but of the signaling session with the conference. By monitoring this property, applications can be

notifi ed when an endpoint has lost connectivity with a conference and is reconnecting, when a

conference session has terminated, or when an endpoint is being held in the conference lobby.

 Each McuSession class also has a State property that applications can use to monitor the condition

of each media session. For instance, the State property on an McuSession object changing

Available for

download on

Wrox.com

Available for

download on

Wrox.com

Monitoring Conference Events ❘ 347

to Retrying indicates that a connectivity problem has occurred and the endpoint is trying to

reestablish the connection with the MCU.

 WORKING WITH THE CONVERSATION CONTEXT CHANNEL

 You learned in Chapter 4 how to use the Lync Extensibility Window context to

host a Silverlight application in the Lync conversation window. In a conference

scheduling and management application similar to the sample application included

with this chapter, you can use such a Silverlight application to provide additional

call control and monitoring capabilities to presenters in the conference.

 The ConversationContextChannel class introduced in UCMA 3.0 provides the

functionality to establish a context channel with a Silverlight application hosted in

the Lync conversation window. The Conversation class in the Lync API exposes

a BeginSendContextData method and ContextDataReceived event to allow the

conversation to interact with the UCMA 3.0 application via the context channel.

 Establishing a Context Channel

 To establish a context channel between the UCMA application and an existing

conversation, create an instance of the ConversationContextChannel class and

specify the conversation and participant to establish the channel with.

 After creating the context channel, wire up its StateChanged and DataReceived

events to track when the state of the context channel changes, and when

the UCMA application receives contextual data across the channel from the

conversation.

 Before establishing the context channel, create an instance of

 ConversationContextChannelEstablishOptions to specify the name of the

contextual application and conversation to send the context to — this ensures that

the context data is sent to the correct Lync conversation window.

 Finally, call the ConversationContextChannel.BeginEstablish method to begin

establishing the context channel.

// Create a new context channel with the remote endpoint.
// Create a new context channel with the remote endpoint.
ConversationContextChannel contextChannel =
 new ConversationContextChannel(
 _conferenceConversation,
 participantEndpoint);

// Subscribe to incoming data from the channel.
contextChannel.DataReceived += OnContextChannelDataReceived;

try
{

Available for

download on

Wrox.com

Available for

download on

Wrox.com

continues

348 ❘ CHAPTER 11 CONFERENCE SERVICES IN UCMA

 var options =
 new ConversationContextChannelEstablishOptions();
 options.ApplicationName = “Fabrikam Agent Dashboard”;
 options.RemoteConversationId =
 _conferenceConversation.Id;

 // Establish the context channel.
 contextChannel.BeginEstablish(
 new Guid(“DF518B8D-068D-4CB7-B42B-078E8BDEBBE4”),
 options,
 establishResult = >
 {
 try
 {
 contextChannel.EndEstablish(establishResult);

 // Send some initial context...
 }
 catch (RealTimeException rtex)
 {
 _logger.Log(“Failed opening context channel.”
 , rtex);
 }
 },
 null);
}
catch (InvalidOperationException ioex)
{
 _logger.Log(“Failed opening context channel.”, ioex);
}

 Code snippet CallController\CallControllerSession.cs

 Sending Context from the UCMA Application

 After the context channel is established, you can send context data to the

conversation on the other side of the context channel. Use the BeginSendData

method of the ConversationContextChannel class to send context data to the

conversation.

 To send context data to the conversation, you must specify the MIME type of

the context and an encoded byte array containing the context data to send. The

encoded context data can ’ t be larger than 4kB.

 You can send the context data as a simple string; however, you should encapsulate

the context data in a custom class that you serialize and send as XML. The

application on the other side of the context channel can deserialize the XML and

process the contained object in order to take action on the context data.

(continued)

Monitoring Conference Events ❘ 349

var initialContext = new InitialContextItem()
{
 CustomerId = “4815162342”,
 CustomerName = “Dharma”,
 CustomerSipUri =
 _incomingAvCall.RemoteEndpoint.Participant.Uri
};

var serializedContext = SerializationHelper.SerializeObject <
 InitialContextItem > (initialContext);

contextChannel.BeginSendData(
 new System.Net.Mime.ContentType(“text/plain”),
 new System.Text.UTF8Encoding().
 GetBytes(serializedContext),
 sendDataResult = >
 {
 try
 {
 _logger.Log(“Initial context sent: {0}”,
 serializedContext);
 contextChannel.EndSendData(sendDataResult);
 }
 catch (RealTimeException)
 {
 throw;
 }
 },
 null);

 Processing Context in the Silverlight Application

 With the context channel established between the UCMA application and the

Silverlight application running in the Lync conversation window, the Silverlight

application can process any context sent by the UCMA application, and also send

context back to the UCMA application.

 In order for the Silverlight application to process context from the UCMA

application, it needs to handle the ContextDataReceived event of the

 Conversation class — you can wire it up in the Loaded event of the Silverlight

application.

void Page_Loaded(object sender, RoutedEventArgs e)
{
 _lyncClient = LyncClient.GetClient();
 _self = _lyncClient.Self;

 _conversation = LyncClient.GetHostingConversation()
 as Conversation;

 if (_conversation != null)

continues

350 ❘ CHAPTER 11 CONFERENCE SERVICES IN UCMA

 {
 _conversation.InitialContextReceived +=
 new EventHandler < InitialContextEventArgs >
(Conversation_InitialContextReceived);
 _conversation.ContextDataReceived +=
 new EventHandler < ContextEventArgs >
(Conversation_ContextDataReceived);
 }
}

 In the handler for the InitialContextReceived event, use the instance of

 InitialContextEventArgs to retrieve the context data sent by the UCMA

application. This is transmitted as a string, so your application needs to know

the correct way to handle this data; for example, if an XML string containing a

serialized instance of a class comes across the context channel.

void Conversation_InitialContextReceived(object sender,
 InitialContextEventArgs e)
{
 var initialContext = SerializationHelper.
 DeserializeObject < InitialContextItem > (
 e.ApplicationData);

 if (initialContext != null)
 {
 _customerSipUri = initialContext.CustomerSipUri;

 Dispatcher.BeginInvoke(
 new Action(() = >
 {
 tbCustomerId.Text = initialContext.CustomerId;
 tbCustomerName.Text =
 initialContext.CustomerName;
 }));
 }
}

 The Silverlight application can use the ContextDataReceived event to handle

recurring context data from the UCMA application.

void Conversation_ContextDataReceived(object sender,
 ContextEventArgs e)
{
 // do something with the context data in e.ContextData
}

 The Silverlight application can also send context back to the Silverlight application

using the BeginSendContextData method of the Conversation class.

 When sending context, you need to specify the GUID representing the contextual

application to send context to, a string representing the type of context to send,

(continued)

Monitoring Conference Events ❘ 351

and the context itself. For example, you can serialize an instance of a custom

 CallControlAction class that allows you to take an action on a participant in

the conference and send the context to the UCMA application, which in turn

deserializes it and takes action.

private void btnMute_Click(object sender, RoutedEventArgs e)
{
 var callControlActionItem = new CallControlActionItem()
 {
 Action = CallControlAction.Mute,
 SipUri = _customerSipUri
 };

 SendContextData(callControlActionItem);
}

private void SendContextData(
 CallControlActionItem callControlActionItem)
{
 if (_conversation != null)
 {
 _conversation.BeginSendContextData(
 _applicationGuid,
 “text/plain”,
 SerializationHelper.SerializeObject <
 CallControlActionItem > (
 callControlActionItem),
 result = > { _conversation.EndSendContextData(
 result); },
 null);
 }
}

 Receiving Context Data in the UCMA Application

 The DataReceived event of the ConversationContextChannel class is raised

when the UCMA application receives context data from the Silverlight application

across the context channel.

 The application can retrieve the context data using the instance of

 ConversationContextChannelDataReceivedEventArgs in the event handler.

After retrieving the context data, the UCMA application can process it and take

the corresponding action.

private void OnContextChannelDataReceived(object sender,
 ConversationContextChannelDataReceivedEventArgs e)
{
 var callControlActionItems =
 SerializationHelper.DeserializeObject <
 CallControlActionItem >

continues

352 ❘ CHAPTER 11 CONFERENCE SERVICES IN UCMA

 SUMMARY

 In this chapter, you have learned how to create conferences using UCMA, join those conferences

from UCMA endpoints, and invite other users to conferences. In addition, you have seen how

UCMA applications can exert control over conferences by sending commands to the conference

focus and MCUs, and by acting as trusted participants.

 The next chapter expands on some of the concepts introduced in this chapter and Chapter 8 by

introducing the media control features in UCMA. In combination with the concepts in the last few

chapters, the media control APIs make building complex voice applications such as automatic call

distributors, auto - attendants, and call recording systems possible.

(e.ContentDescription.ToString());

 _logger.Log(“Action: {0} SIP URI: {1}”,
 callControlActionItems.Action,
 callControlActionItems.SipUri);

}

(continued)

Advanced Media Control
in UCMA

 WHAT ’ S IN THIS CHAPTER?

 Playing music, sounds, or speech on calls

 Recording call audio

 Recognizing speech input

 Playing and recognizing dual - tone multi - frequency (DTMF) tones

 Changing hold or mute state of a call

 Maintaining control over calls between other parties

 Controlling conference audio

 Creating “ sub - conferences ” within a conference

 Of all the new functionality in this latest release of UCMA, the added media control

capabilities generate perhaps the most excitement, and with good reason. Although they

may seem obscure and complicated, features such as back - to - back calls and manual audio

routing in conferences allow unifi ed communications developers to replicate in Lync Server

environments what were once exclusive and expensive features of high - end contact center and

PBX platforms. A few examples are:

 Silent monitoring of calls by a supervisor.

 Playing customized hold music and messages to waiting callers.

 Providing messages or voice menus to only one conference participant (such as the

organizer or leader).

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

 12

D
o

354 ❘ CHAPTER 12 ADVANCED MEDIA CONTROL IN UCMA

 Managing a two - party call between two other users, or tracking it for billing purposes.

 “ Whisper ” mode where two participants in a conference can have a private conversation

that others cannot overhear.

 Playing strange noises that others cannot hear to specifi c conference participants until they

think they are crazy (“ Did anyone else hear that? No, I defi nitely heard a frog noise! ”).

On second thought, you might not want to try that last item.

 PLAYING OR RECOGNIZING DTMF TONES

 Dual - tone multi - frequency (or DTMF) tones are those lovely sounds that are produced when you

push the buttons on your phone keypad. In addition to allowing you to dial calls, they have many

varied uses, including navigating phone menus, annoying telemarketers, and annoying your sister.

Thanks to the ToneController class in UCMA, using them for fun and profi t in Lync Server

applications is also possible.

 Attaching the ToneController

 A ToneController instance can handle both sending and receiving DTMF tones on a single audio

call. Before it can do either of these, it must be attached to the call ’ s AudioVideoFlow , as shown in

the following code:

// Create a new ToneController.
_toneController = new ToneController();

// Attach it to the flow of an existing audio call.
_toneController.AttachFlow(_avCall.Flow);

 Code snippet AdvancedMediaControl\ToneControllerSample.cs

 Sending DTMF Tones

 Once attached, the ToneController can send DTMF tones into the audio call. The Send method

tells it to play a specifi c tone, which you can specify either as an integer or using the ToneId

enumeration. A second, optional parameter specifi es the volume as a percentage of the maximum.

The following code demonstrates the Send method by sending the tones 4, #, and 7 in sequence.

// Send the 4 tone.
toneController.Send(4);

// Send the pound tone.
toneController.Send(ToneId.Pound);

// Send the 7 tone at 80% of max volume.
toneController.Send(ToneId.Tone7, 80);

 Code snippet AdvancedMediaControl\ToneControllerSample.cs

➤

➤

➤

Available for

download on

Wrox.com

Available for

download on

Wrox.com

Available for

download on

Wrox.com

Available for

download on

Wrox.com

 Receiving DTMF Tones

 To have the ToneController recognize incoming DTMF tones, you can attach an event handler to

its ToneReceived event, as shown in the following:

toneController.ToneReceived +=
 new EventHandler < ToneControllerEventArgs > (OnToneReceived);

private void OnToneReceived(object sender, ToneControllerEventArgs e)
{
 ToneController toneController =
 sender as ToneController;

 // Calculate a tone two notes above,
 // looping around to the bottom if necessary.
 int playbackTone = e.Tone + 2;
 if (playbackTone > 15)
 {
 playbackTone -= 16;
 }

 // Play back the higher tone.
 toneController.Send(e.Tone + 2);
}

 Code snippet AdvancedMediaControl\ToneControllerSample.cs

On receiving any DTMF tone, the code shown here will send back a tone two notes higher, enabling

callers to play beautiful DTMF duets with the UCMA application.

 Detecting Fax Tones

 Intelligent though it is, the ToneController does not speak Fax. However, it does expose an

event, IncomingFaxDetected , which you can use to determine when incoming tones on an audio

call are not ordinary DTMF tones at all, but part of an attempt to fax something to your UCMA

application. The following code shows how to subscribe to this event.

toneController.IncomingFaxDetected +=
 new EventHandler < IncomingFaxDetectedEventArgs > (OnIncomingFaxDetected);

 Code snippet AdvancedMediaControl\ToneControllerSample.cs

 Unfortunately, you can ’ t do much with the incoming fax from a UCMA application, but this event

at least makes it possible to recognize the nature of the strange sounds on the call, and perhaps

Available for

download on

Wrox.com

Available for

download on

Wrox.com

The pound sign (#) is also called an octothorpe. This piece of information makes
excellent fodder for small talk at parties.

Playing or Recognizing DTMF Tones ❘ 355

356 ❘ CHAPTER 12 ADVANCED MEDIA CONTROL IN UCMA

 PLAYING MUSIC, SOUNDS, OR SPEECH

 Given that humans have been communicating by speech since long before the computer keyboard

made its appearance; there is something very natural about having a computer talk to you. It should

therefore come as no surprise that Lync Server can be extended to create services that talk to you on

audio calls. Moreover, it can play music and sounds just as well as any touch - screen MP3 player.

 The two classes that make all of this magic possible are Player and SpeechSynthesisConnector .

The Player class loads in an audio fi le in WMA format and plays it into the audio stream of

one or more audio calls, even repeating it over and over automatically if you so desire. The

 SpeechSynthesisConnector class connects to one or more AudioVideoFlow instances and exposes

a stream into which audio can be fed from a SpeechSynthesizer object, which generates the text -

 to - speech audio.

 Playing Music and Sounds with the Player Class

 Three pieces fi t together to make audio playback happen on a call:

 The media source

 The Player object

 The AudioVideoFlow for the call

A single Player instance can play the same audio at the same time to multiple fl ows. This is useful

when an application needs to play hold music to multiple callers. Likewise, playing the same audio

to several calls independently is also possible by using multiple Player instances with a single media

source. This may be necessary if the timing of a message or sound will be different depending on the

call, such as with on - hold messages that repeat after a certain number of seconds of wait time.

➤

➤

➤

 HOW LYNC SERVER SENDS DTMF TONES

 The three generally accepted ways of sending DTMF tones on a VoIP call are:

 In - band — The tone sounds are included directly in (uncompressed) RTP

audio. This does not work if the audio is compressed.

 RFC 2833 — The tones are sent in a special type of event within the RTP.

 SIP INFO — Tones are sent as individual SIP INFO messages, not in the

RTP stream.

Lync Server uses the second method, which can be useful to know when debugging

issues with DTMF tones. If you are having trouble sending or receiving tones on

PSTN calls, you may want to look at the confi guration of your media gateway or

SIP trunk, because it could be set to use one of the other two methods.

➤

➤

➤

redirect it to a real fax machine that can properly receive the fax. It also makes it easier for contact

center or reporting applications to exclude fax calls from statistics.

 The Media Source

 Although the Player class can use any subclass of MediaSource as the source of the audio, UCMA

only includes a single implementation, WmaFileSource . As the name suggests, this class takes audio

from a WMA fi le based on a path provided in the constructor.

 The fi rst step in creating a media source is to instantiate it with a fi le path. Keep in mind that the

path will be relative to the working directory of the UCMA application.

 Before the media source can be used with a Player instance, it must be prepared in an

asynchronous operation with the BeginPrepareSource method. It can be prepared in one of two

modes: buffered mode or unbuffered mode. In buffered mode, the media source caches the audio

after it has been encoded into a given audio codec, so that the encoding does not need to be repeated

every time the audio is played to a call. This can improve the performance of the application,

particularly if there is a lot of audio playback.

 It is important to note that, when prepared in buffered mode, the media source
will not pick up any changes to the underlying media fi le. Buffered mode is only
appropriate if the content of the media fi le generally does not change.

 The following code creates a new WmaFileSource instance using a WMA fi le in the working

directory and prepares it in buffered mode. When the asynchronous operation completes, it calls

another method (defi ned elsewhere in the class) to create the Player .

WmaFileSource fileSource = new WmaFileSource(“music.wma”);
fileSource.BeginPrepareSource(MediaSourceOpenMode.Buffered,
 ar = >
 {
 try
 {
 fileSource.EndPrepareSource(ar);

 CreatePlayer(fileSource);
 }
 catch (RealTimeException rtex)
 {
 Console.WriteLine(rtex);
 }
 },
 null);

 Code snippet AdvancedMediaControl\PlayerSample.cs

 After the media source is ready, you can use it to create one or more Player classes.

Available for

download on

Wrox.com

Available for

download on

Wrox.com

Playing Music, Sounds, or Speech ❘ 357

358 ❘ CHAPTER 12 ADVANCED MEDIA CONTROL IN UCMA

 Creating and Preparing the Player Instance

 Setting up an instance of Player is straightforward. The basic setup requires only two lines of code — one

to create the Player instance and another to set the media source it will use:

Player player = new Player();
player.SetSource(fileSource);

 Code snippet AdvancedMediaControl\PlayerSample.cs

At this point, the Player is ready to be attached to an AudioVideoFlow to send audio to a call.

Available for

download on

Wrox.com

Available for

download on

Wrox.com

 The AttachFlow method on the Player attaches an AudioVideoFlow to the Player so that the

audio from the Player will go to that call. This method can be called multiple times to attach more

than one fl ow to a Player . (No, that ’ s not why it ’ s called the Player class.) Keep in mind that if the

playback of the audio has already started when the fl ow is attached, only the audio from that point

forward will go to the call. So if you attach the fl ow when the Player is halfway through that stirring

rendition of “ Twinkle, Twinkle, Little Star, ” the caller may miss some of the good parts. Sorry.

 A corresponding DetachFlow method exists for when one of the Player ’ s attached fl ows has

terminated or no longer needs the services of the Player . Detaching the fl ows of calls that

have terminated is important, so that those resources can be garbage collected.

 Yes, sometimes it ’ s best for a Player to let go.

 UNATTACHED PLAYERS

 Like the proverbial tree in the forest, if a Player plays audio in a UCMA

application, but no AudioVideoFlows are attached to hear it, does it actually make

a sound?

 As a matter of fact, this is controlled by the mode of the Player . The Player

class has two modes that control its behavior when it is not attached to any

 AudioVideoFlows . The default is automatic mode, in which playback of

the audio will stop automatically if the Player is no longer attached to any

 AudioVideoFlows . In some cases, however, having the Player continue to play even

if no AudioVideoFlows are attached to receive the audio is necessary. In this case,

you can set the Player to manual mode by means of the SetMode method.

player.SetMode(PlayerMode.Manual);

 Code snippet AdvancedMediaControl\PlayerSample.cs

A Mode property is also on the Player class, but it is read - only, so using the

 SetMode method to change the mode of the Player is necessary.

Available for

download on

Wrox.com

Available for

download on

Wrox.com

 Starting the Player and Controlling Playback

 Starting and stopping playback is as easy as calling the Start or Stop method on the Player

class. The following code shows how you might use a single Player referenced in an instance

variable to play audio to any calls that come in to the endpoint. The code attaches an event handler

to the AudioVideoFlow.StateChanged event, which it uses to detach the fl ow from the Player

when the call terminates, and then accepts the call. After the call is accepted, it attaches the call ’ s

 AudioVideoFlow to the Player instance and starts the Player if it is not already playing.

private void OnAudioVideoCallReceived(object sender,
 CallReceivedEventArgs < AudioVideoCall > args)
{
 try
 {
 _logger.Log(“Accepting call.”);

 // Accept the call.
 args.Call.BeginAccept(
 ar = >
 {
 try
 {
 // Attach an event handler to monitor audio flow state.
 args.Call.Flow.StateChanged += new
 EventHandler < MediaFlowStateChangedEventArgs > (
 Flow_StateChanged);

 args.Call.EndAccept(ar);

 _logger.Log(“Accepted call.”);

 AttachToPlayer(args.Call.Flow);
 }
 catch (RealTimeException ex)
 {
 _logger.Log(“Failed to accept call.”, ex);
 }
 },
 null);
 }
 catch (InvalidOperationException ex)
 {
 _logger.Log(“Failed to accept call.”, ex);
 }
}

private void AttachToPlayer(AudioVideoFlow flow)
{
 try
 {
 // Attach the flow to the player.
 _player.AttachFlow(flow);

 _logger.Log(“Attached flow to the player.”);
 }

Available for

download on

Wrox.com

Available for

download on

Wrox.com

Playing Music, Sounds, or Speech ❘ 359

360 ❘ CHAPTER 12 ADVANCED MEDIA CONTROL IN UCMA

 catch (OperationFailureException ofex)
 {
 _logger.Log(“Failed to attach flow to player.”, ofex);
 }
 catch (InvalidOperationException ioex)
 {
 _logger.Log(“Failed to attach flow to player.”, ioex);
 }

 // Start the player if it is not already started.
 if (_player.State != PlayerState.Started)
 {
 try
 {
 _player.Start();
 }
 catch (OperationFailureException ofex)
 {
 _logger.Log(“Failed to start player.”, ofex);
 }
 catch (InvalidOperationException ioex)
 {
 _logger.Log(“Failed to start player.”, ioex);
 }
 }
}

private void Flow_StateChanged(object sender, MediaFlowStateChangedEventArgs e)
{
 AudioVideoFlow flow = sender as AudioVideoFlow;

 if (e.State == MediaFlowState.Terminated)
 {
 // Detach the flow from the player if
 // the flow has terminated.
 _player.DetachFlow(flow);

 // Remove the event handler for the flow.
 flow.StateChanged -= Flow_StateChanged;
 }
}

 Code snippet AdvancedMediaControl\PlayerSample.cs

 A number of other options are available for controlling playback. One is that the Player has a

 PlaybackSpeed property that you can use to set the Player to play the audio faster or slower than

normal speed. For example, add the following code snippet to the CreatePlayer method to tell the

 Player to play its audio 75 percent faster than normal.

// Make people in the recording sound like chipmunks.
_player.PlaybackSpeed = PlaybackSpeed.OneAndThreeQuarters;

 Code snippet AdvancedMediaControl\PlayerSample.cs

Available for

download on

Wrox.com

Available for

download on

Wrox.com

 Pausing playback using the Pause method and then resuming it later from the same point by calling

 Start again is also possible, as shown in the following code snippet:

// Pause the player temporarily.
_player.Pause();

// Do some things....
Thread.Sleep(1000);

// Resume playback from where it left off.
_player.Start();

 Code snippet AdvancedMediaControl\PlayerSample.cs

 Finally, the Skip method causes the Player to skip forward or backward a specifi ed number of

milliseconds in the media source. For example, the following code shows an event handler for the

 ToneReceived event on a ToneController , which might appear in a personal assistant application that

plays back recorded voice mail messages. If the application receives the tone corresponding to 4 on the

phone keypad, it skips backward by one second; if it receives the 6 tone, it skips forward one second.

void OnToneReceived(object sender, ToneControllerEventArgs e)
{
 if (e.Tone == (int)ToneId.Tone4)
 {
 // Skip backward.
 _player.Skip(-1000);
 }
 else if (e.Tone == (int)ToneId.Tone6)
 {
 // Skip forward.
 _player.Skip(1000);
 }
}

 Code snippet AdvancedMediaControl\PlayerSample.cs

 Playing Continuous Hold Music

 One of the more common uses of the Player class is to play a continuous loop of hold music to

multiple calls. In this case, having the Player simply repeat the audio over and over regardless of

how many AudioVideoFlow s are attached to it may be desirable.

 The following code sample shows one way of accomplishing this. The CreatePlayer method creates

a new instance of Player and supplies it with a media source, then switches the Player to manual

mode, which will prevent it from automatically stopping playback if the last AudioVideoFlow is

detached or terminated. Next, it attaches an event handler to the StateChanged event. When the

 Player changes to the Stopped state, the event handler immediately starts it again. When

the application is ready to shut down the hold music, the event handler can be removed so that the

 Player stops without being restarted.

Available for

download on

Wrox.com

Available for

download on

Wrox.com

Available for

download on

Wrox.com

Available for

download on

Wrox.com

Playing Music, Sounds, or Speech ❘ 361

362 ❘ CHAPTER 12 ADVANCED MEDIA CONTROL IN UCMA

private void CreatePlayer(WmaFileSource fileSource)
{
 _player = new Player();
 _player.SetSource(fileSource);
 _player.SetMode(PlayerMode.Manual);
 _player.StateChanged += new
 EventHandler < PlayerStateChangedEventArgs > (OnPlayerStateChanged);
 _player.Start();
}

private void OnPlayerStateChanged(object sender, PlayerStateChangedEventArgs e)
{
 if (e.State == PlayerState.Stopped)
 {
 _player.Start();
 }
}

 Text - to - Speech with the SpeechSynthesisConnector

 The SpeechSynthesisConnector class allows audio from an instance of SpeechSynthesizer (from

the foreign Microsoft.Speech namespace) to be pumped into the AudioVideoFlow of an active

audio call. It does this by exposing a stream to which the output from the SpeechSynthesizer can

be directed.

 The SpeechSynthesisConnector , unlike the Player , can only be attached to a single

 AudioVideoFlow . After it is attached, it must be started before the speech synthesis begins, and

stopped after the speech has fi nished.

 The following code shows a class that uses a SpeechSynthesizer with a

 SpeechSynthesisConnector to speak a welcome message into all incoming calls.

using System;
using Microsoft.Rtc.Collaboration;
using Microsoft.Rtc.Collaboration.AudioVideo;
using Microsoft.Rtc.Signaling;
using Microsoft.Speech.AudioFormat;
using Microsoft.Speech.Synthesis;

namespace AdvancedMediaControl
{
 public class SpeechSynthesisSample : ISampleComponent
 {
 ApplicationEndpoint _endpoint;
 ILogger _logger;

 internal SpeechSynthesisSample(ApplicationEndpoint endpoint,
 ILogger logger)
 {
 _endpoint = endpoint;
 _logger = logger;

Available for

download on

Wrox.com

Available for

download on

Wrox.com

 }

 public void Start()
 {
 _endpoint.RegisterForIncomingCall < AudioVideoCall > (
 OnAudioVideoCallReceived);
 }

 private void OnAudioVideoCallReceived(object sender,
 CallReceivedEventArgs < AudioVideoCall > args)
 {
 try
 {
 _logger.Log(“Accepting call.”);

 // Accept the call.
 args.Call.BeginAccept(
 ar = >
 {
 try
 {
 // Attach an event handler to monitor
 // flow state.
 args.Call.Flow.StateChanged += new
 EventHandler <
 MediaFlowStateChangedEventArgs > (
 Flow_StateChanged);

 args.Call.EndAccept(ar);

 _logger.Log(“Accepted call.”);

 SpeakMessage(args.Call.Flow, string.Format(
 “Hello, {0}. Thanks for calling. “ +
 “Your SIP URI is {1}”,
 args.Call.RemoteEndpoint.
 Participant.DisplayName,
 args.Call.RemoteEndpoint.
 Participant.Uri));

 }
 catch (RealTimeException ex)
 {
 _logger.Log(“Failed to accept call.”, ex);
 }
 },
 null);
 }
 catch (InvalidOperationException ex)
 {
 _logger.Log(“Failed to accept call.”, ex);
 }
 }

 private void SpeakMessage(AudioVideoFlow flow, string message)

Playing Music, Sounds, or Speech ❘ 363

364 ❘ CHAPTER 12 ADVANCED MEDIA CONTROL IN UCMA

 {
 SpeechSynthesizer synth = new SpeechSynthesizer();
 SpeechAudioFormatInfo formatInfo =
 new SpeechAudioFormatInfo(16000,
 AudioBitsPerSample.Sixteen,
 Microsoft.Speech.AudioFormat.AudioChannel.Mono);
 SpeechSynthesisConnector connector =
 new SpeechSynthesisConnector();

 synth.SetOutputToAudioStream(connector.Stream, formatInfo);

 connector.AttachFlow(flow);
 connector.Start();

 synth.SpeakCompleted += new
 EventHandler < SpeakCompletedEventArgs > (
 (sender, args) = >
 {
 connector.Stop();
 synth.Dispose();
 });

 synth.SpeakAsync(message);
 }

 private void Flow_StateChanged(object sender,
 MediaFlowStateChangedEventArgs e)
 {
 AudioVideoFlow flow = sender as AudioVideoFlow;

 if (e.State == MediaFlowState.Terminated)
 {
 if (flow.SpeechSynthesisConnector != null)
 {
 flow.SpeechSynthesisConnector.DetachFlow();
 }

 // Remove the event handler for the flow.
 flow.StateChanged -= Flow_StateChanged;
 }
 }

 public void Stop()
 {
 _endpoint.UnregisterForIncomingCall < AudioVideoCall > (
 OnAudioVideoCallReceived);
 }
 }
}

 Code snippet AdvancedMediaControl\SpeechSynthesisSample.cs

 The code attaches an event handler to each call, which it uses to detach the SpeechSynthesisConnector

after the call has fi nished. It creates the SpeechSynthesizer and SpeechSynthesisConnector , and

sets the output from the synthesizer to the stream exposed by the connector, also supplying a defi nition of

the audio format.

 Next, it attaches the connector to the AudioVideoFlow and starts the connector. To perform the

speaking as an asynchronous operation, it fi rst attaches an event handler, using a lambda expression

for convenience. It then tells the SpeechSynthesizer to speak the message.

 RECORDING CALLS AND CONFERENCES

 Because many organizations have auditing and monitoring requirements, recording is one of the

most compelling features of UCMA for developers building new communications solutions. Thanks

to the UCMA Recorder class, capturing audio from a call is extremely simple.

 The code in this section shows the relevant methods from an application that receives incoming calls

and immediately begins recording them. It also listens for the pound tone, which causes it to pause

the recording, or if it is already paused, to start the recording again. It saves all recordings in WMA

format to the path C:\recordings\ , using the call ID as the name of the fi le.

private void OnAudioVideoCallReceived(object sender,
 CallReceivedEventArgs < AudioVideoCall > args)
{
 try
 {
 _logger.Log(“Accepting call.”);

 // Accept the call.
 args.Call.BeginAccept(
 ar = >
 {
 try
 {
 // Attach an event handler to monitor audio flow state.
 args.Call.Flow.StateChanged += new
 EventHandler < MediaFlowStateChangedEventArgs > (
 Flow_StateChanged);

 args.Call.EndAccept(ar);

 _logger.Log(“Accepted call.”);

 // Create a new recorder.
 Recorder recorder = new Recorder();

 // Use the call ID as the filename and create a media sink.
 string fileName = string.Format(“C:\\recordings\\{0}.wma”,
 args.Call.CallId);
 WmaFileSink fileSink = new WmaFileSink(fileName);

 // Set the recorder to use the media sink and attach

Available for

download on

Wrox.com

Available for

download on

Wrox.com

Recording Calls and Conferences ❘ 365

366 ❘ CHAPTER 12 ADVANCED MEDIA CONTROL IN UCMA

 // it to the flow.
 recorder.SetSink(fileSink);
 recorder.AttachFlow(args.Call.Flow);

 _logger.Log(“Prepared and attached recorder.”);

 // Start recording.
 recorder.Start();

 _logger.Log(“Started recording.”);

 // Attach a tone controller to listen for the # tone.
 ToneController toneController = new ToneController();
 toneController.ToneReceived += new
 EventHandler < ToneControllerEventArgs > (
 toneController_ToneReceived);
 toneController.AttachFlow(args.Call.Flow);

 _logger.Log(“Attached tone controller.”);
 }
 catch (RealTimeException ex)
 {
 _logger.Log(“Failed to accept call.”, ex);
 }
 },
 null);
 }
 catch (InvalidOperationException ex)
 {
 _logger.Log(“Failed to accept call.”, ex);
 }
}

void OnToneReceived(object sender, ToneControllerEventArgs e)
{
 ToneController toneController = sender as ToneController;

 // If the # key is recognized, switch the state
 // of the recorder.
 if (e.Tone == (int)ToneId.Pound)
 {
 Recorder recorder = toneController.AudioVideoFlow.Recorder;

 if (recorder.State == RecorderState.Started)
 {
 recorder.Pause();
 _logger.Log(“Paused recording.”);
 }
 else
 {
 recorder.Start();
 _logger.Log(“Started recording.”);
 }
 }

}

private void Flow_StateChanged(object sender, MediaFlowStateChangedEventArgs e)
{
 AudioVideoFlow flow = sender as AudioVideoFlow;

 if (e.State == MediaFlowState.Terminated)
 {
 // Clean up the recorder and tone controller.
 if (flow.Recorder != null)
 {
 flow.Recorder.DetachFlow();
 _logger.Log(“Detached recorder.”);
 }

 if (flow.ToneController != null)
 {
 flow.ToneController.DetachFlow();
 _logger.Log(“Detached tone controller.”);
 }

 // Remove the event handler for the flow.
 flow.StateChanged -= Flow_StateChanged;
 }
}

 Code snippet AdvancedMediaControl\RecorderSample.cs

 Like the Player , SpeechSynthesisConnector , and ToneController , the Recorder must be

attached to an AudioVideoFlow to function. It also needs a MediaSink instance associated with it.

The MediaSink receives the output of the recorder. The only MediaSink instance that comes with

UCMA is the WmaFileSink , which outputs the media to a WMA fi le at a supplied path.

 Starting, Stopping, and Pausing Recording

 Starting the recording is as easy as calling the Start method on the Recorder object. Calling the

 Stop method ends the recording and causes the fi le to be written out. If you call the Start method

again after calling Stop , the Recorder will begin an entirely new recording.

 To temporarily pause the recording without ending it altogether, you can use the Pause method.

Calling the Start method while the Recorder is paused will resume the recording at the point

where it left off.

 The Pause method is new in UCMA 3.0. In the previous version of the API, no
way existed to stop and resume during a single recording. The only option was
to make multiple recordings in separate fi les.

Recording Calls and Conferences ❘ 367

368 ❘ CHAPTER 12 ADVANCED MEDIA CONTROL IN UCMA

 Recording a Conference

 You can only attach the Recorder to a single AudioVideoFlow , but recording multiple people at

once by attaching the Recorder to an AudioVideoFlow that is associated with a call to a conference

is possible (and common). The Recorder will pick up all the mixed audio coming from the audio/

video multipoint control unit (MCU).

 Detecting Speech on a Call

 No one wants to listen to a recording of a call with long silences, and thankfully, the Recorder

class in UCMA 3.0 makes this unnecessary by providing an event, VoiceActivityChanged , that

is triggered whenever someone starts or stops speaking. You can think of it as the equivalent of the

little curvy lines that appear next to the phone icon in Lync when someone on an audio conference

is speaking.

 The following code shows an event handler for the VoiceActivityChanged event that uses the voice

activity state to pause the recording when no one on the call is speaking.

// Subscribe to voice activity changes.
recorder.VoiceActivityChanged +=
 new EventHandler < VoiceActivityChangedEventArgs > (OnVoiceActivityChanged);

...

private void OnVoiceActivityChanged(object sender, VoiceActivityChangedEventArgs e)
{
 Recorder recorder = sender as Recorder;

 if (e.IsVoice & & recorder.State == RecorderState.Paused)
 {
 // If the recorder is paused and someone
 // speaks, start recording.
 recorder.Start();
 }
 else if (!e.IsVoice & & recorder.State == RecorderState.Started)
 {
 // If the recorder is going and no one
 // is talking, pause it.
 recorder.Pause();
 }
}

 Code snippet AdvancedMediaControl\RecorderVoiceActivitySample.cs

 RECOGNIZING SPEECH

 To anyone steeped in the wonders of modern technology, the ToneController , which recognizes

those tones that allow you to play “ Mary Had a Little Lamb ” on your phone keypad, and to

 “ push one for customer service ” when you call your local bank branch, may seem a bit pass é .

Available for

download on

Wrox.com

Available for

download on

Wrox.com

Thankfully, UCMA provides for recognition of much more than tones in the form of the

 SpeechRecognitionConnector . This delightful class exposes an audio stream that you can feed

into the SpeechRecognitionEngine in the Microsoft.Speech namespace, allowing applications to

recognize spoken commands and statements.

 Unfortunately, the RotaryPhonePulseController class never made it into
UCMA, which may be another indication that it ’ s time to get rid of that old rotary
phone from 1953 — just a thought.

 The following code shows a class, SpeechRecognitionSample , which takes an AudioVideoCall

in the Incoming state, answers it, and then uses the SpeechRecognitionConnector and

 SpeechRecognitionEngine to listen for the words “ yes, ” “ no, ” “ hello, ” and “ goodbye. ” When it

hears any of those words, it writes the word out to the log and stops listening.

 When the AudioVideoFlow terminates, the class calls the Dispose method on

the SpeechRecognitionConnector , the SpeechRecognitionEngine , and the

 SpeechRecognitionStream to release unmanaged resources.

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using Microsoft.Rtc.Collaboration.AudioVideo;
using Microsoft.Speech.Recognition;
using Microsoft.Rtc.Collaboration;
using Microsoft.Rtc.Signaling;
using Microsoft.Speech.AudioFormat;

namespace AdvancedMediaControl
{
 public class SpeechRecognitionSample : ISampleComponent
 {
 private ApplicationEndpoint _endpoint;
 private AudioVideoCall _call;
 private ILogger _logger;
 private SpeechRecognitionStream _stream;
 private SpeechRecognitionConnector _connector;
 private SpeechRecognitionEngine _engine;

 internal SpeechRecognitionSample(ApplicationEndpoint endpoint,
 ILogger logger)
 {
 _endpoint = endpoint;
 _logger = logger;
 }

 public void Start()
 {

Available for

download on

Wrox.com

Available for

download on

Wrox.com

Recognizing Speech ❘ 369

370 ❘ CHAPTER 12 ADVANCED MEDIA CONTROL IN UCMA

 _endpoint.RegisterForIncomingCall < AudioVideoCall > (
 OnAudioVideoCallReceived);
 }

 private void OnAudioVideoCallReceived(object sender,
 CallReceivedEventArgs < AudioVideoCall > args)
 {
 _call = args.Call;

 try
 {
 _logger.Log(“Accepting call.”);

 // Accept the call.
 _call.BeginAccept(OnAcceptCompleted, null);
 }
 catch (InvalidOperationException ex)
 {
 _logger.Log(“Failed to accept call.”, ex);
 }
 }

 private void OnAcceptCompleted(IAsyncResult result)
 {
 try
 {
 _call.EndAccept(result);

 _logger.Log(“Accepted call.”);

 // Attach an event handler to detect the
 // flow termation.
 _call.Flow.StateChanged += new
 EventHandler < MediaFlowStateChangedEventArgs > (
 OnFlowStateChanged);

 // Create a new connector and engine.
 _connector = new SpeechRecognitionConnector();
 _engine = new SpeechRecognitionEngine();

 // Build a grammar for the engine based on
 // a list of recognized words, and load the grammar.
 Choices choices = new Choices(
 new string[] { “yes”, “no”, “hello”, “goodbye” }
);
 Grammar grammar = new Grammar(new
 GrammarBuilder(choices));
 _engine.LoadGrammarCompleted += new
 EventHandler < LoadGrammarCompletedEventArgs > (
 OnLoadGrammarCompleted);
 _engine.LoadGrammarAsync(grammar);
 }
 catch (RealTimeException ex)
 {
 _logger.Log(“Failed to accept call.”, ex);

 }
 }

 void OnLoadGrammarCompleted(object sender,
 LoadGrammarCompletedEventArgs e)
 {
 // When the grammar is loaded, attach the
 // connector to the flow and start it.
 _connector.AttachFlow(_call.Flow);
 _stream = _connector.Start();

 // Provide the audio stream from the connector to
 // the recognition engine, along with format details.
 SpeechAudioFormatInfo audioFormat =
 new SpeechAudioFormatInfo(16000,
 AudioBitsPerSample.Sixteen,
 Microsoft.Speech.AudioFormat.AudioChannel.Mono);
 _engine.SetInputToAudioStream(_stream, audioFormat);

 // Begin recognition.
 _engine.RecognizeCompleted += new
 EventHandler < RecognizeCompletedEventArgs > (
 OnRecognizeCompleted);
 _engine.RecognizeAsync(RecognizeMode.Single);
 }

 void OnRecognizeCompleted(object sender,
 RecognizeCompletedEventArgs e)
 {
 // Log the recognized word.
 _logger.Log(“Recognized {0}”, e.Result.Text);
 }

 void OnFlowStateChanged(object sender,
 MediaFlowStateChangedEventArgs e)
 {
 if (e.State == MediaFlowState.Terminated)
 {
 // These resources need to be released to prevent
 // memory leaks.
 if (_connector != null)
 {
 _connector.Stop();
 if (_connector.AudioVideoFlow != null)
 {
 _connector.DetachFlow();
 }
 _connector.Dispose();
 }
 if (_stream != null)
 {
 _stream.Dispose();
 }
 if (_engine != null)

Recognizing Speech ❘ 371

372 ❘ CHAPTER 12 ADVANCED MEDIA CONTROL IN UCMA

 {
 _engine.Dispose();
 }
 }
 }

 public void Stop()
 {
 _endpoint.UnregisterForIncomingCall < AudioVideoCall > (
 OnAudioVideoCallReceived);
 }
 }
}

 Code snippet AdvancedMediaControl\SpeechRecognitionSample.cs

 The SpeechRecognitionConnector , like the Recorder , may only be attached to one AudioVideoFlow

at a time.

 SPEECHRECOGNITIONCONNECTOR OR WORKFLOW SDK?

 In most cases, using the UCMA Workfl ow software development kit (SDK) to build

an application or component that uses speech recognition is easier than building

the same components using the SpeechRecognitionConnector. This is especially

true for interactive voice response (IVR) systems, which take different paths of

execution based on spoken responses to questions. For a comprehensive overview

of the UCMA Workfl ow SDK, see Chapter 14.

 For some scenarios, however, the Workfl ow SDK is not appropriate. For

instance, a server application that listens for specifi c voice commands in an

audio conference would be quite diffi cult to build with the Workfl ow SDK.

Using a SpeechRecognitionConnector to provide the conference audio to a

 SpeechRecognitionEngine would be simpler.

 CONTROLLING HOLD AND MUTE STATES

 Through the AudioVideoFlow class, UCMA applications can manipulate the mute or hold status

of active audio calls. This is chiefl y useful on two - party calls when the application is sending or

receiving audio from a remote endpoint, using one of the classes described in previous sections.

 Holding or Retrieving an Audio Call

 You can put an audio call on hold in a UCMA application using the BeginHold and EndHold

methods on the AudioVideoFlow . You must specify the type of hold, which can be any of the

following:

 None — The call is put on hold, but audio continues fl owing back and forth.

 BothEndpoints — The call is put on hold and audio stops fl owing.

 RemoteEndpoint — The call is put on hold and any audio coming from the remote endpoint

is ignored. Audio continues fl owing to the remote endpoint from the application.

 RemoteEndpointMusicOnHold — Same as the preceding point, and the remote endpoint is

specifi cally told to expect hold music. The application must supply the music itself, usually

by using a Player object.

The BothEndpoints option has the same effect as putting a call on hold in Lync. The others still

put the call on hold, causing the hold indicator to appear if the remote participant is using Lync, but

change the audio in different ways.

 The following code puts an audio call on hold, muting both endpoints:

try
{
 audioVideoCall.Flow.BeginHold(HoldType.BothEndpoints,
 ar = >
 {
 try
 {
 audioVideoCall.Flow.EndHold(ar);
 }
 catch (RealTimeException ex)
 {
 _logger.Log(“Failed holding call.”, ex);
 }
 },
 null
);
}
catch (InvalidOperationException ex)
{
 _logger.Log(“Failed holding call.”, ex);
}

 Code snippet AdvancedMediaControl\HoldMuteSample.cs

 To take a call off of hold, use the BeginRetrieve and EndRetrieve methods, as shown in the

following code sample.

try
{
 audioVideoCall.Flow.BeginRetrieve(
 ar = >
 {
 try
 {
 audioVideoCall.Flow.EndRetrieve(ar);
 }
 catch (RealTimeException ex)

➤

➤

➤

➤

Available for

download on

Wrox.com

Available for

download on

Wrox.com

Available for

download on

Wrox.com

Available for

download on

Wrox.com

Controlling Hold and Mute States ❘ 373

374 ❘ CHAPTER 12 ADVANCED MEDIA CONTROL IN UCMA

 {
 _logger.Log(“Failed retrieving call.”, ex);
 }
 },
 null
);
}
catch (InvalidOperationException ex)
{
 _logger.Log(“Failed retrieving call.”, ex);
}

 Code snippet AdvancedMediaControl\HoldMuteSample.cs

Don ’ t be fooled by the naming — the EndHold method does not take a call off of
hold. Its purpose is to end the asynchronous operation that puts a call on hold.
Use BeginRetrieve / EndRetrieve to take a call off of hold.

 Muting or Unmuting the Audio Flow

 If you want to interrupt the fl ow of audio on a call without actually putting it on hold, you can

simply mute the audio using the AudioControl class, which is accessible in the Audio property on

the AudioVideoFlow . The Mute method (one of the few in UCMA 3.0 that is not asynchronous)

stops audio from fl owing in the direction you specify. The mute direction can be any of the following:

 None (no change)

 Send

 Receive

 SendReceive (both send and receive)

 The direction you specify is the one that is muted. For instance, the following code will stop sending

outbound audio.

// Mute the outgoing audio.
audioVideoCall.Flow.Audio.Mute(MuteDirection.Send);

Code snippet AdvancedMediaControl\HoldMuteSample.cs

 You can reverse the mute with the Unmute method. As with Mute , you must specify the direction

that is to be unmuted, as shown in the following.

// Unmute the outgoing audio.
audioVideoCall.Flow.Audio.Unmute(MuteDirection.Send);

Code snippet AdvancedMediaControl\HoldMuteSample.cs

➤

➤

➤

➤

Available for

download on

Wrox.com

Available for

download on

Wrox.com

Available for

download on

Wrox.com

Available for

download on

Wrox.com

 Finally, you can determine the current mute state by examining the DirectionMuted property:

// Unmute the audio if it is muted.
if (audioVideoCall.Flow.Audio.DirectionMuted != MuteDirection.None)
{
 audioVideoCall.Flow.Audio.Unmute(MuteDirection.SendReceive);
}

Code snippet AdvancedMediaControl\HoldMuteSample.cs

Available for

download on

Wrox.com

Available for

download on

Wrox.com

Note that calling Mute with a direction of None does not unmute the audio; it has
no effect at all. To unmute, you need to actually call the Unmute method.

 STAYING ON THE SIGNALING PATH WITH BACK - TO - BACK CALLS

 At fi rst glance, you might think that the term back - to - back call refers to those annoying situations

where someone schedules an important call with you for 1:00 p.m. to 2:00 p.m., and someone

else schedules an equally important call for 2:00 p.m. to 3:00 p.m., leaving you no time for an

afternoon nap under your desk. As a matter of fact, the BackToBackCall class in UCMA has nothing

whatsoever to do with overscheduling, and because its function (mediating the SIP messaging between

two remote endpoints) is a bit abstract and diffi cult to fathom, this section takes some time to explain

what a back - to - back call does and why a unifi ed communications developer might want to use one.

 The Straight and Narrow Signaling Path

 Write an application in UCMA that takes an incoming call and transfers it to another user is quite

easy. The code to handle the incoming call might look something like the following:

private void OnAudioVideoCallReceived(object sender,
 CallReceivedEventArgs < AudioVideoCall > args)
{
 _logger.Log(“Accepting call...”);

 AudioVideoCall incomingCall = args.Call;

 incomingCall.StateChanged += new
 EventHandler < CallStateChangedEventArgs > (OnCallStateChanged);

 try
 {
 incomingCall.BeginAccept(
 ar = >
 {
 try
 {
 incomingCall.EndAccept(ar);
 }
 catch (RealTimeException ex)
 {

Staying on the Signaling Path with Back-to-Back Calls ❘ 375

376 ❘ CHAPTER 12 ADVANCED MEDIA CONTROL IN UCMA

 _logger.Log(“Failed accepting call.”);
 }

 _logger.Log(“Accepted call.”);

 _logger.Log(“Transferring call...”);

 try
 {
 incomingCall.BeginTransfer(“sip:galahad@wrox.com”,
 OnTransferCompleted, incomingCall);
 }
 catch (InvalidOperationException ioex)
 {
 _logger.Log(“Failed initiating transfer.”, ioex);
 }
 },
 null
);
 }
 catch (InvalidOperationException ioex)
 {
 _logger.Log(“Failed initiating accept.”);
 }
}

private void OnCallStateChanged(object sender, CallStateChangedEventArgs e)
{
 _logger.Log(“Call state changed from {0} to {1}.”, e.PreviousState, e.State);
}

private void OnTransferCompleted(IAsyncResult result)
{
 AudioVideoCall incomingCall =
 result.AsyncState as AudioVideoCall;

 try
 {
 incomingCall.EndTransfer(result);
 }
 catch (RealTimeException ex)
 {
 _logger.Log(“Failed transferring call.”, ex);
 }
}

This incoming call event handler accepts every incoming audio/video call and immediately transfers

it to sip:galahad@wrox.com . If you were to watch the status of the AudioVideoCall object during

this process, you would see it go through the following statuses in quick succession:

 Incoming

 Establishing

 Established

➤

➤

➤

 Transferring

 Terminating

 Terminated

In other words, as soon as the transfer is successfully transferred to the other endpoint, the original

call terminates. The application is not a participant on the new call. It has been left out.

 Figure 12 - 1 shows the sequence of events. The call from the fi rst user, Frederick, goes to the

application, which accepts the call and refers Frederick to Galahad. Frederick accordingly places a new

call to Galahad, and as soon as this call connects, the call with the application terminates. This means

that the application has no control over the call between Frederick and Galahad; the SIP messages go

directly between their two endpoints, and the application is not on the signaling path at all.

➤

➤

➤

Frederick UCMA App

1

2

3

4

5

Galahad

Frederick UCMA App Galahad

Frederick UCMA App Galahad

Frederick UCMA App Galahad

UCMA App

Frederick Galahad

I’m left out of this

conversation.

SIP

SIP

SIP

SIP

SIP

Hi, can we talk?

Yes.

Okay.

Actually, you should

go talk to Galahad.

Hi Galahad. Can

we talk?

 FIGURE 12 - 1

Staying on the Signaling Path with Back-to-Back Calls ❘ 377

378 ❘ CHAPTER 12 ADVANCED MEDIA CONTROL IN UCMA

 If the aim of the application is merely to bounce the call over to another endpoint and forget about

it, this is not necessarily a problem. Several situations can occur, though, in which an application

might need to stay in the middle of a two - party call between two other endpoints:

 A call billing application might need to keep track of when the call ends so it knows the

amount that should be invoiced.

 A web - based call control application might need to terminate, transfer, or otherwise manipulate

calls after connecting them when the user issues commands through the web interface.

 A helpdesk might want to mask the identity of the individual phone representative that

answers a helpdesk call.

 A contact center or other application might need to manage a call internally as a conference to allow

for multiple participants, while making it appear as a normal two - party call to the caller

The BackToBackCall class makes all of these scenarios possible by keeping the application on the

signaling path for the call.

 How the Back - to - Back Call Works

 In SIP terms, the BackToBackCall allows a UCMA application to act as a back - to - back user agent

(often abbreviated B2BUA). A back - to - back user agent mediates SIP messages between two other

endpoints, while allowing the media streams to fl ow directly back and forth between the endpoints.

Figure 12 - 2 gives a visualization of how this works.

➤

➤

➤

Frederick Galahad

I think that my

media is going to

the UCMA app.

I think that my

media is going to

the UCMA app.

UCMA App

RTP (media)

SIPSIP

 FIGURE 12 - 2

 If you dissect a back-to-back call, you fi nd that it is actually made up of two distinct SIP dialogs

(often referred to as the call legs): one between the fi rst endpoint and the application, and another

between the application and the second endpoint. Both remote endpoints (Frederick and Galahad in

Figure 12 - 2) are sending SIP messages to the application, and from the perspective of those two user

agents they are both on calls with the application itself.

 However, when an application that is acting as a back - to - back user agent constructs the Session

Description Protocol (SDP) information to negotiate the media delivery for the two calls, it does

something tricky. Instead of providing its own IP address to Frederick and Galahad when telling

them where to send the RTP stream carrying the audio for the call, it gives Frederick ’ s IP address

to Galahad and gives Galahad ’ s IP address to Frederick! The result is that Frederick thinks he is in

an audio call with the application, but his audio is actually going to Galahad, while Galahad also

thinks he is in an audio call with the application, and his audio is going to Frederick. Figure 12 - 3

shows how this plays out on a back - to - back call.

Frederick

192.168.100.1

UCMA App

192.168.100.260

1

2

3

4

5

6

Galahad

192.168.100.6

Hi application, can we talk?

(By the way, my IP address for

audio media is 192.168.100.1.)

Hi Galahad, can we talk?

My IP address for audio is

192.168.100.1.

Sure. I’ll send the audio to you

at 192.168.100.1. Send audio for

me to 192.168.100.6, please.

I’m still waiting

for a response.

Ha, fooled again.

SIP

Frederick

192.168.100.1

UCMA App

192.168.100.260

Galahad

192.168.100.6

SIP SIP

Frederick

192.168.100.1

UCMA App

192.168.100.260

Galahad

192.168.100.6

SIP SIP

Frederick

192.168.100.1

UCMA App

192.168.100.260

Galahad

192.168.100.6

SIPSIP

Frederick

192.168.100.1

UCMA App

192.168.100.260

Galahad

192.168.100.6

Frederick

192.168.100.1

UCMA App

192.168.100.260

Galahad

192.168.100.6

SIPSIP

Sure, Frederick. My IP address

for audio is 192.168.100.6.

Great. I’ll send the audio to

192.168.100.6.

RTP (media)

SIP SIP

Frederick and I both

think we’re talking to

the UCMA app.

I’m still in control of

the SIP signaling.

 FIGURE 12 - 3

Staying on the Signaling Path with Back-to-Back Calls ❘ 379

380 ❘ CHAPTER 12 ADVANCED MEDIA CONTROL IN UCMA

 The whole arrangement seems eerily reminiscent of a bad romantic comedy where the heroine

wants to set up her two friends, Joe and Jane, who hate each other, so she creates a fake secret

admirer for each of them, sends each one love letters from the imaginary admirer for a while until

they are hooked, and then arranges for Joe and Jane both to meet their “ secret lovers ” at the same

place.

 The BackToBackCall class, however, actually works in real life.

 Initiating a Back - to - Back Call

 A back - to - back call requires two call legs, in one of two confi gurations:

 An idle call and an incoming call

 Two idle calls

Establishing a back - to - back call in either case involves creating a new BackToBackCall

instance, and providing the Call objects for the two call legs. A BackToBackCallSettings

object wraps each of the Call objects. It also has a property for a SIP URI so that the destination

can be specifi ed if the Call object is in the Idle state. The following code snippet shows this in

action.

BackToBackCallSettings settings1 = new BackToBackCallSettings(incomingCallLeg);
BackToBackCallSettings settings2 = new BackToBackCallSettings(outgoingCallLeg,
 “sip:galahad@wrox.com”);

BackToBackCall b2bCall = new BackToBackCall(settings1, settings2);

 At this point, the back - to - back call is ready to be established asynchronously with the

 BeginEstablish method. The code to establish a back - to - back call looks almost identical to the

code for establishing an ordinary two - party call:

try
{
 _logger.Log(“Establishing back to back call...”);

 b2bCall.BeginEstablish(
 ar = >
 {
 try
 {
 b2bCall.EndEstablish(ar);

 _logger.Log(“Established back to back call.”);
 }
 catch (RealTimeException ex)
 {
 _logger.Log(“Failed establishing a back to back call.”, ex);

➤

➤

 }
 },
 null);
}
catch (InvalidOperationException ioex)
{
 _logger.Log(“Failed initiating a back to back call.”, ioex);
}

Behind the scenes, UCMA mediates the SIP messaging between the two endpoints and sets them up

to send the media directly to each other.

 Back-to-Back with an Incoming and an Outgoing Call

 The back - to - back call is useful for services such as “ hunt groups ” or automatic call distributors

that take inbound calls and seamlessly connect them to individual agents for answering. With a

back - to - back call, the application can keep the identity of the individual who answers the call concealed

and can perform call control operations, such as terminating or transferring the call.

 The following code shows an incoming call event handler that connects an incoming call to an agent

using a back - to - back call.

private void OnAudioVideoCallReceived(object sender,
 CallReceivedEventArgs < AudioVideoCall > args)
{
 _logger.Log(“Incoming call.”);

 AudioVideoCall incomingCall = args.Call;

 // Create a new call leg for the agent.
 Conversation agentCallLegConversation = new Conversation(_endpoint);
 AudioVideoCall agentCallLeg = new AudioVideoCall(agentCallLegConversation);

 // The incoming call will serve as the other call leg.
 AudioVideoCall incomingCallLeg = args.Call;

 // Create the settings for the back to back call.
 BackToBackCallSettings settings1 = new BackToBackCallSettings(incomingCallLeg);
 BackToBackCallSettings settings2 = new BackToBackCallSettings(agentCallLeg,
 _destinationSipUri);

 // Create and establish the back to back call.
 BackToBackCall b2bCall = new BackToBackCall(settings1, settings2);

 try
 {
 _logger.Log(“Establishing back to back call...”);

 b2bCall.BeginEstablish(
 ar = >

Available for

download on

Wrox.com

Available for

download on

Wrox.com

Staying on the Signaling Path with Back-to-Back Calls ❘ 381

382 ❘ CHAPTER 12 ADVANCED MEDIA CONTROL IN UCMA

 {
 try
 {
 b2bCall.EndEstablish(ar);

 _logger.Log(“Established back to back call.”);
 }
 catch (RealTimeException ex)
 {
 _logger.Log(“Failed establishing a back to back call.”, ex);
 }
 },
 null);
 }
 catch (InvalidOperationException ioex)
 {
 _logger.Log(“Failed initiating a back to back call.”, ioex);
 }
}

Code snippet AdvancedMediaControl\BackToBackIncomingOutgoingSample.cs

 Back-to-Back with a Call That Is Already Established

 Establishing a back - to - back call becomes a bit more diffi cult when one of the call legs is a call that

is already established. This is often the case, for example, in helpdesk or call center applications,

where some initial processing may be done on a call before it is routed to an agent. In these

applications, the application typically accepts the call and either plays a message, places it into

an interactive voice response (IVR) menu, or collects information in some other manner. When

this is done, the call generally needs to be routed to an agent. Another common scenario occurs

in outbound dialing campaigns or “ click - to - call ” applications where both ends of the call must be

established by the application. Unfortunately, an established call cannot be used as a call leg for a

back - to - back call. A call routing trick known as the “ self - transfer ” helps with this conundrum. In

UCMA, a self - transfer looks more or less like the following code:

_call.BeginTransfer(_call, OnSelfTransferCompleted, null);

Essentially, it is a call replacement (or “ supervised ”) transfer in which the call being transferred and

the call being replaced are the same call. In something rather like a SIP enactment of a snake biting

its own tail, the application transfers a call to itself, causing the remote party to “ restart ” the call

from the beginning as an incoming call. Figure 12 - 4 shows the steps in a self - transfer.

 Because this new call is in the Incoming state, the back - to - back call can use it as one of its call legs.

 An important advantage of the self - transfer is that the Call object for the new incoming

call exposes a reference to the old (replaced) call. The application can store state from the

communication session with the caller in the ApplicationContext property on the original call

and can then access it after the self - transfer. This allows for continuity even though the incoming

call is, in SIP terms, an entirely new signaling session.

Frederick UCMA App

1

2

3

4

5

Frederick UCMA App

Frederick UCMA App

Frederick UCMA App

Frederick UCMA App

SIP

RTP

RTP

SIP
SIP
RTP

SIP
SIP
RTP

Frederick, please

replace this call with a

new call to me.

Hi application, can we

talk? This is a

replacement of call #1.

Okay.

Okay.

SIP

RTP

 FIGURE 12 - 4

 The following code shows this technique in action. In a very simplifi ed version of a helpdesk

application, the code answers new incoming calls and passes them to a new instance of the

 CallSession or ConferenceCallSession class for handling. The CallSession class listens for

the pound tone, and when the caller presses it, it stores a SIP address for an agent in an instance

variable and self - transfers the call.

 Meanwhile, when the application receives a call that is replacing another call, it checks the

 ApplicationContext property on the replaced call to see whether it contains a reference to a

Staying on the Signaling Path with Back-to-Back Calls ❘ 383

384 ❘ CHAPTER 12 ADVANCED MEDIA CONTROL IN UCMA

 CallSession instance. If so, it passes the new call into that CallSession object, allowing it to

resume where it left off and create a back - to - back call with the responding agent.

 Here is the incoming call handler:

private void OnAudioVideoCallReceived(object sender,
 CallReceivedEventArgs < AudioVideoCall > args)
{
 _logger.Log(“Incoming call.”);

 AudioVideoCall incomingCall = args.Call;

 if (args.CallToBeReplaced == null)
 {
 _logger.Log(“Receiving new call...”);

 if (_useConference)
 {
 // Create a new ConferenceCallSession to handle the call.
 ConferenceCallSession newSession = new ConferenceCallSession(args.Call,
 _destinationSipUri, _logger);
 newSession.Start();
 }
 else
 {
 // Create a new CallSession to handle the call.
 CallSession newSession = new CallSession(args.Call,
 _destinationSipUri, _logger);
 newSession.Start();
 }
 }
 else
 {
 if (args.CallToBeReplaced.ApplicationContext is CallSession)
 {
 // This is a self-transfer from a CallSession.
 // Let the CallSession pick up where it left off.
 _logger.Log(“Receiving self-transfer...”);
 CallSession originalCallSession =
 (CallSession)args.CallToBeReplaced.ApplicationContext;
 originalCallSession.HandleSelfTransfer(args.Call);
 }
 else if (args.CallToBeReplaced.ApplicationContext is ConferenceCallSession)
 {
 // This is a self-transfer from a CallSession.
 // Let the CallSession pick up where it left off.
 _logger.Log(“Receiving self-transfer...”);
 ConferenceCallSession originalCallSession =
 (ConferenceCallSession)args.CallToBeReplaced.ApplicationContext;
 originalCallSession.HandleSelfTransfer(args.Call);
 }
 else
 {

Available for

download on

Wrox.com

Available for

download on

Wrox.com

 // This is not a proper self-transfer; decline.
 args.Call.Decline();
 _logger.Log(“Declined invalid transfer.”);
 }
 }
}

Code snippet AdvancedMediaControl\BackToBackEstablishedSample.cs

 The following code demonstrates the CallSession class.

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using Microsoft.Rtc.Collaboration.AudioVideo;
using Microsoft.Rtc.Collaboration;
using Microsoft.Rtc.Signaling;

namespace AdvancedMediaControl
{
 internal class CallSession
 {
 AudioVideoCall _call;
 ILogger _logger;
 ToneController _toneController;
 string _agentSipUri;

 internal CallSession(AudioVideoCall call,
 string agentSipUri,
 ILogger logger)
 {
 _call = call;
 _agentSipUri = agentSipUri;
 _logger = logger;
 }

 internal void Start()
 {
 _call.StateChanged +=
 new EventHandler < CallStateChangedEventArgs >
 (OnCallStateChanged);

 // Accept the incoming call.
 try
 {
 _logger.Log(“Accepting call...”);

 _call.BeginAccept(
 ar = >
 {
 try
 {

Available for

download on

Wrox.com

Available for

download on

Wrox.com

Staying on the Signaling Path with Back-to-Back Calls ❘ 385

386 ❘ CHAPTER 12 ADVANCED MEDIA CONTROL IN UCMA

 _call.EndAccept(ar);

 _logger.Log(“Accepted call.”);

 // Attach a tone controller.
 _toneController = new ToneController();
 _toneController.ToneReceived += new
 EventHandler < ToneControllerEventArgs >
 (OnToneReceived);
 _toneController.AttachFlow(_call.Flow);

 // Other things could happen here,
 // such as an IVR.

 _logger.Log(“Attached tone controller.”);
 }
 catch (RealTimeException ex)
 {
 _logger.Log(“Failed accepting call.”, ex);
 }
 },
 null
);
 }
 catch (InvalidOperationException ex)
 {
 _logger.Log(“Failed accepting call.”, ex);
 }
 }

 internal void HandleSelfTransfer(AudioVideoCall call)
 {
 // The incoming call will serve as the first call leg.
 AudioVideoCall incomingCallLeg = call;

 // Create a second call leg for the agent.
 Conversation agentCallLegConversation =
 new Conversation(call.Conversation.Endpoint);
 AudioVideoCall agentCallLeg =
 new AudioVideoCall(agentCallLegConversation);

 // Create the settings for the back to back call,
 // using the SIP URI previously stored for the agent.
 BackToBackCallSettings settings1 =
 new BackToBackCallSettings(incomingCallLeg);
 BackToBackCallSettings settings2 =
 new BackToBackCallSettings(agentCallLeg, _agentSipUri);

 // Create and establish the back to back call.
 BackToBackCall b2bCall =
 new BackToBackCall(settings1, settings2);

 try
 {

 _logger.Log(“Establishing back to back call...”);

 b2bCall.BeginEstablish(
 ar = >
 {
 try
 {
 b2bCall.EndEstablish(ar);

 _logger.Log(“Established back to back.”);
 }
 catch (RealTimeException ex)
 {
 _logger.Log(
 “Failed establishing back to back.”,
 ex);
 }
 },
 null);
 }
 catch (InvalidOperationException ioex)
 {
 _logger.Log(“Failed initiating a back to back call.”,
 ioex);
 }
 }

 private void OnToneReceived(object sender,
 ToneControllerEventArgs e)
 {
 if (e.Tone == (int)ToneId.Pound)
 {
 // Store this class as the application context for the
 // call so it can be retrieved after the transfer.
 _call.ApplicationContext = this;

 // Self-transfer the call.
 try
 {
 _logger.Log(“Self-transferring call...”);

 _call.BeginTransfer(_call,
 ar = >
 {
 try
 {
 _call.EndTransfer(ar);

 _logger.Log(
 “Completed self-transfer.”);
 }
 catch (RealTimeException ex)
 {

Staying on the Signaling Path with Back-to-Back Calls ❘ 387

388 ❘ CHAPTER 12 ADVANCED MEDIA CONTROL IN UCMA

 _logger.Log(“Self-transfer failed.”,
 ex);
 }
 },
 null
);
 }
 catch (InvalidOperationException ex)
 {
 _logger.Log(“Failed initiating self-transfer.”,
 ex);
 }
 }
 }

 private void OnCallStateChanged(object sender,
 CallStateChangedEventArgs e)
 {
 _logger.Log(“Call state changed from {0} to {1}.”,
 e.PreviousState, e.State);
 }
 }
}

 Code snippet AdvancedMediaControl\CallSession.cs

 Back - to - Back Calls with Conferences

 Back - to - back calls are equally useful with conferences. Using a back - to - back call, a UCMA

application can essentially broker a connection between a remote user agent and the conference,

retaining control over the SIP signaling on that connection. This allows for several useful scenarios,

such as:

 Joining a user to a conference invisibly

 Seamlessly transferring a remote user from a conference into a two - party call

 Allowing domain users to join a conference anonymously

 When building UCMA applications that deal with conferences, keeping in mind that the application

does not manage the conference itself is important. The conference focus and multipoint control

units (MCUs) are located elsewhere, generally on another server. (Refer to Chapter 11 for more

details on how Lync Server conferences work.)

 When a UCMA application joins an ad hoc conference or a conference that it has scheduled, it

becomes one of the participants in that conference. Assuming it joins as a conference leader or as

a trusted participant, it can control the conference by sending commands to the conference focus

or to an MCU, but it is not in the signaling path of the SIP sessions between the other conference

participants and the focus and MCUs. Figure 12 - 5 illustrates this confi guration. Not being on

the signaling path of those calls from the other participants into the conference, the application

cannot exert any control over the SIP messaging in order to, for instance, make them join as trusted

participants.

➤

➤

➤

 A back - to - back call can resolve this problem. Using a back - to - back call, the application can mediate

calls from remote endpoints into the conference it has created, retaining control over the SIP

signaling.

 The following code illustrates this with a modifi ed version of the CallSession class from the

previous section. This ConferenceCallSession class serves the same purpose as CallSession ,

but instead of connecting the caller with a single agent via a back - to - back call, it connects the caller

with a conference that could contain multiple agents, or even services provided by the application.

(Methods that are unchanged have been omitted.)

internal class ConferenceCallSession
{
 ...

 internal void HandleSelfTransfer(AudioVideoCall call)
 {
 // The incoming call will serve as the first call leg.
 AudioVideoCall incomingCallLeg = call;

 // Create a second call leg for the call into the conference.
 Conversation conferenceCallLegConversation =
 new Conversation(call.Conversation.Endpoint);

 // Use a fake SIP URI when joining the conference.

Available for

download on

Wrox.com

Available for

download on

Wrox.com

UCMA App

A/V MCU

RTP

SIP

RTP
SIP

SIP

RTP

SIP
RTP

 FIGURE 12 - 5

Staying on the Signaling Path with Back-to-Back Calls ❘ 389

390 ❘ CHAPTER 12 ADVANCED MEDIA CONTROL IN UCMA

 conferenceCallLegConversation.Impersonate(“sip:customer@fabrikam.com”,
 null, null);

 // Join the conference as a normal participant.
 ConferenceJoinOptions joinOptions = new ConferenceJoinOptions()
 {
 JoinMode = JoinMode.Default
 };

 // Join the ad hoc conference, creating the SIP dialog
 // with the new conference focus.
 try
 {
 conferenceCallLegConversation.ConferenceSession.BeginJoin(
 joinOptions,
 ar = >
 {
 try
 {
 conferenceCallLegConversation.ConferenceSession.EndJoin(
 ar);

 // Create an AudioVideoCall for the call to the A/V MCU.
 AudioVideoCall conferenceCallLeg =
 new AudioVideoCall(conferenceCallLegConversation);

 InitiateBackToBackCall(incomingCallLeg, conferenceCallLeg);
 }
 catch (RealTimeException ex)
 {
 _logger.Log(“Failed joining ad hoc conference.”, ex);
 }
 },
 null
);
 }
 catch (InvalidOperationException ex)
 {
 _logger.Log(“Failed joining ad hoc conference.”, ex);
 }
 }

 private void InitiateBackToBackCall(AudioVideoCall incomingCallLeg,
 AudioVideoCall conferenceCallLeg)
 {
 // Create the settings for the back to back call.
 // There’s no need to provide a SIP URI for the outgoing call
 // since the conversation is already associated with the conference.
 BackToBackCallSettings settings1 = new BackToBackCallSettings(
 incomingCallLeg);
 BackToBackCallSettings settings2 = new BackToBackCallSettings(
 conferenceCallLeg);

 // Create and establish the back to back call.

Controlling Who Can Hear What ❘ 391

 BackToBackCall b2bCall = new BackToBackCall(settings1, settings2);

 try
 {
 _logger.Log(“Establishing back to back call...”);

 b2bCall.BeginEstablish(
 ar = >
 {
 try
 {
 b2bCall.EndEstablish(ar);

 _logger.Log(“Established back to back call.”);
 }
 catch (RealTimeException ex)
 {
 _logger.Log(“Failed establishing a back to back call.”,
 ex);
 }
 },
 null);
 }
 catch (InvalidOperationException ioex)
 {
 _logger.Log(“Failed initiating a back to back call.”, ioex);
 }
 }

 ...
}

 Code snippet AdvancedMediaControl\ConferenceCallSession.cs

 The back - to - back call works in much the same way as it does with two - party calls; in fact, the

SIP session with the audio/video MCU is really just a type of two - party call, albeit one in which

the audio from the remote end is mixed from a number of other conference participants. The only

signifi cant code difference is that the application doesn ’ t need to supply a SIP URI for the outgoing

call leg, because the conference is already associated with the Conversation object, and so UCMA

can fi gure out the SIP URI it needs to call on its own.

 CONTROLLING WHO CAN HEAR WHAT

 A conventional audio conference attempts to simulate being in the same room as the other

conference participants; all the conference participants can hear one another equally. In a Lync

Server audio conference, the audio/video MCU accomplishes this by taking all the incoming audio

streams from the various participants and mixing them, creating an outgoing audio stream for each

participant that combines the incoming audio from all other participants. Figure 12 - 6 shows this

mixing in action.

392 ❘ CHAPTER 12 ADVANCED MEDIA CONTROL IN UCMA

 Sometimes, though, an application needs to exert fi ner - grained control over the routing of audio

between a group of endpoints. For instance, a supervisor may need to listen to calls without being

heard, perhaps occasionally saying something to an employee that the customer cannot hear, or an

application may need to play hold music to the participants on a call while also preventing them

from hearing each other.

 Even though these situations don ’ t quite fi t the profi le of an ordinary conference call, by bringing all

the endpoints into a Lync Server audio conference, the application can use the audio/video MCU ’ s

mixing capabilities to manage who should hear what.

 UCMA 3.0 gives developers two ways of changing the audio mixing performed by the MCU:

 UCMA applications can send a command to the MCU telling it to remove a specifi c

participant from the default audio routing, meaning that it will no longer get the standard

mix of audio from all other participants.

 Applications can specify custom audio routing for any call to the MCU they control.

 Adding or Removing Participants from the Default Audio Mix

 By default, the audio/video MCU sends each conference participant an audio stream that combines

the audio from every other participant, as shown earlier in Figure 12 - 6. To provide the MCU with

customized audio routing rules for a given participant, you must fi rst remove that participant from

the default audio routing.

 Removing a participant from the default audio routing has two effects:

 Audio from the removed participant is no longer sent to other participants.

 The removed participant no longer receives any audio from any other participants.

➤

➤

➤

➤

A/V MCU

 FIGURE 12 - 6

Controlling Who Can Hear What ❘ 393

You can manually defi ne audio routes for a participant who has been removed from the default

routing, but until these manual routes are in place, the removed participant will effectively be

isolated from the rest of the audio conference, as shown in Figure 12 - 7.

A/V MCU
I’ve been removed

from the default

audio mix.

 FIGURE 12 - 7

 Removing a Participant from the Default Routing

 To remove a participant from the default audio routing, call the

 BeginRemoveFromDefaultAudioRouting method. This causes your application to send a special

command to the audio/video MCU. Only trusted conference participants are authorized to send

this command; if the application sends the command as an ordinary conference leader, it gets an

error message in response. In this way, the command to remove a participant from default audio

routing is different from the various other MCU commands applications can send. It ’ s also not an

operation that conference leaders can perform through Lync.

 The following code demonstrates removing participants from the default audio routing using the

 BeginRemoveFromDefaultAudioRouting method. It gets a collection containing references to all

participants in the audio portion of the conference, and removes each one from the default audio

routing for 60 seconds.

// Get a handle to the MCU session.
AudioVideoMcuSession mcuSession =
 conferenceConversation.ConferenceSession.AudioVideoMcuSession;

// Get a collection of the endpoints participating in the conference.
Collection < ParticipantEndpoint > participants =
 mcuSession.GetRemoteParticipantEndpoints();

// Set the duration of the removal to 60 seconds.

Available for

download on

Wrox.com

Available for

download on

Wrox.com

394 ❘ CHAPTER 12 ADVANCED MEDIA CONTROL IN UCMA

// The participants will be returned to default routing after then.
RemoveFromDefaultRoutingOptions options = new RemoveFromDefaultRoutingOptions()
{
 Duration = new TimeSpan(0, 1, 0)
};

foreach (ParticipantEndpoint participant in participants)
{
 try
 {
 // Remove each participant from the default audio routing.
 mcuSession.BeginRemoveFromDefaultRouting(participant, options,
 ar = >
 {
 try
 {
 mcuSession.EndRemoveFromDefaultRouting(ar);

 _logger.Log(
 “Removed participant {0} from default audio routing.”,
 participant.Participant.Uri);
 }
 catch (RealTimeException ex)
 {
 _logger.Log(
 “Failed removing participant from default audio routing.”,
 ex);
 }
 },
 null
);
 }
 catch (InvalidOperationException ex)
 {
 _logger.Log(“Failed removing participant from default audio routing.”, ex);
 }
}

 Code snippet AdvancedMediaControl\RemoveFromDefaultRoutingSample.cs

 The effect of this code will be to prevent every conference participant from hearing or being

heard by any other participant for one minute — perhaps a useful effect if you need to defuse an

argument on a conference call. In practice, it is not much different from muting each conference

participant, except that they will not appear as muted in the conference roster. However, you can

combine it with manual audio routes, as described shortly, to create more complex audio routing

arrangements.

 Keep in mind that an application can join the same conference several times by using different

 Conversation instances. To call BeginRemoveFromDefaultAudioRouting , the application must

use a Conversation with which it has joined as a trusted participant. The following code

illustrates this.

Controlling Who Can Hear What ❘ 395

// Create two conversations: one for normal join, the other for trusted join.
Conversation joinedAsNormalParticipantConversation = new Conversation(
 _appEndpoint);
Conversation joinedAsTrustedParticipantConversation = new Conversation(
 _appEndpoint);

// Join the conference normally on the first conversation.
ConferenceJoinOptions normalOptions = new ConferenceJoinOptions()
{
 JoinMode = JoinMode.Default
};

try
{
 joinedAsNormalParticipantConversation.ConferenceSession.BeginJoin(
 normalOptions, OnNormalJoinCompleted, null);
}
catch (InvalidOperationException ex)
{
 _logger.Log(“Failed joining conference.”, ex);
}

// Join as a trusted participant on the second conversation.
ConferenceJoinOptions trustedOptions = new ConferenceJoinOptions()
{
 JoinMode = JoinMode.TrustedParticipant
};

try
{
 joinedAsTrustedParticipantConversation.ConferenceSession.BeginJoin(
 trustedOptions, OnTrustedJoinCompleted, null);
}
catch (InvalidOperationException ex)
{
 _logger.Log(“Failed joining conference.”, ex);
}

// This will throw an exception.
 joinedAsNormalParticipantConversation .ConferenceSession.
 AudioVideoMcuSession.BeginRemoveFromDefaultRouting(
 endpointToRemove, OnRemoveComplete, null);

// This will work fine.
 joinedAsTrustedParticipantConversation .ConferenceSession.
 AudioVideoMcuSession.BeginRemoveFromDefaultRouting(
 endpointToRemove, OnRemoveComplete, null);

Because of this, any call managed by your application that needs custom audio routing must be

joined to the conference using the trusted participant join mode.

 Removing a Call from Default Audio Routing Automatically

 Many cases exist in which an endpoint participating in a conference should be excluded from the

default audio mixing from the very beginning. For instance, supervisors who are silently monitoring

396 ❘ CHAPTER 12 ADVANCED MEDIA CONTROL IN UCMA

conversations do not need to be put into the default audio routing at all when fi rst joining the

conference. UCMA 3.0 allows you to specify when establishing a new call to an audio conference

that the endpoint involved should be excluded from the default audio routing. To do this, create a

 CallEstablishOptions instance for the call, set CallEstablishOptions

.AudioVideoMcuDialInOptions.RemoveFromDefaultRouting to true , and pass the

 CallEstablishOptions object as a parameter to the BeginEstablish method, as shown in the

following code snippet.

// Specify that the call should be excluded
// from default audio routing.
AudioVideoCallEstablishOptions options = new AudioVideoCallEstablishOptions();
options.AudioVideoMcuDialInOptions.RemoveFromDefaultRouting = true;

// Establish the call using the CallEstablishOptions.
_call.BeginEstablish(options, OnEstablishCompleted, null);

As with BeginRemoveFromDefaultAudioRouting , this approach will only work if your application

has joined the conference as a trusted participant on the conversation it is using for this call.

 You can use a similar property on the McuDialOutOptions class, which defi nes options for an

audio/video MCU dial - out, to keep new participants out of the default audio routing when dialing

out to them directly from the MCU.

// Specify that the call should be excluded
// from default audio routing.
McuDialOutOptions options = new McuDialOutOptions();
options.RemoveFromDefaultRouting = true;

// Dial out using the McuDialOutOptions.
_mcuSesson.BeginDialOut(destinationUri, options, OnDialOutCompleted, null);

 Adding a Participant Back into the Default Audio Routing

 To return a participant back to the default audio routing, you can use the

 BeginAddToDefaultAudioRouting method. An endpoint that is added back to the default audio

routing can once again hear and be heard by other participants in the audio conference. No way

exists to specify a duration when adding a participant to the default audio routing, as there is when

removing a participant.

 The following code adds back a single participant who has previously been removed from default

audio routing.

try
{
 // Add each participant to the default audio routing.
 mcuSession.BeginAddToDefaultRouting(participant,
 ar = >
 {
 try
 {

Available for

download on

Wrox.com

Available for

download on

Wrox.com

Controlling Who Can Hear What ❘ 397

 mcuSession.EndAddToDefaultRouting(ar);

 _logger.Log(“Added participant {0} to default audio routing.”,
 participant.Participant.Uri);
 }
 catch (RealTimeException ex)
 {
 _logger.Log(
 “Failed adding participant to default audio routing.”, ex);
 }
 },
 null
);
}
catch (InvalidOperationException ex)
{
 _logger.Log(
 “Failed adding participant to default audio routing.”, ex);
}

 Code snippet AdvancedMediaControl\RemoveFromDefaultRoutingSample.cs

If the application has defi ned any custom audio routes for the participant, those
must also be removed, as described in the next section. Adding a participant
back into the default audio mix does not automatically clean up the manual
audio routes.

 Creating Custom MCU Audio Routes

 Lync Server allows a trusted participant in an audio conference to supply a set of specifi c audio

routing rules that the MCU will use to mix audio for that participant endpoint. These rules can

control the mixing of both the outgoing audio from the endpoint and the incoming audio to the

endpoint from other participants.

 UCMA 3.0 provides access to these manual audio routes through the AudioVideoMcuRouting

class. An AudioVideoMcuRouting object belongs to a single AudioVideoCall and can be referenced

through the AudioVideoCall.AudioVideoMcuRouting property. It can only be used with an

 AudioVideoCall that is associated with a conference; it will not work with two - party calls.

 Each modifi cation of an audio routing rule is represented by an instance of AudioRoute

. AudioRoute has two subclasses: IncomingAudioRoute is for changing the routing from other

conference participants to the local participant; OutgoingAudioRoute is for changing the routing

from the local participant to other conference participants.

 Figure 12 - 8 illustrates the effect of a manual audio route. In the fi rst section of the diagram,

Guinevere has been removed from the default audio mix and cannot hear or be heard by the other

participants, Dudley and Vernon. Note that Guinevere is a trusted conference participant, so she

will not appear to the other participants in the conference roster.

398 ❘ CHAPTER 12 ADVANCED MEDIA CONTROL IN UCMA

 In the second section, an outgoing audio route has been added from her to Dudley, meaning that

Dudley can hear Guinevere, but Guinevere cannot hear Dudley.

 In the third section, an incoming audio route has also been added to Guinevere from Dudley. Now

Guinevere and Dudley can hear each other, but Vernon still cannot hear Guinevere and Guinevere

cannot hear Vernon.

A/V MCU

1

I’m a trusted

participant, and

I’ve been removed

from the default

audio mix.

DudleyGuinevere

trusted

Vernon

A/V MCU

2

DudleyGuinevere

trusted

Vernon

A/V MCU

3

DudleyGuinevere

trusted

Vernon

 FIGURE 12 - 8

Controlling Who Can Hear What ❘ 399

 Adding Manual Audio Routes

 If long class names were less of a nuisance, calling the AudioRoute classes

 IncomingAudioRouteOperation and OutgoingAudioRouteOperation might have been more

accurate, because they actually represent commands to the audio/video MCU to either add or

remove incoming or outgoing audio routing rules. The following code initializes the AudioRoute

objects to add incoming and outgoing routes to Dudley ’ s endpoint in an audio conference.

private void AddRoutesToAndFromDudley(AudioVideoCall callToConference)
{
 AudioVideoMcuSession mcuSession =
 callToTheConference.Conversation.ConferenceSession.AudioVideoMcuSession;

 // Find the ParticipantEndpoint object that represents Dudley.
 ParticipantEndpoint dudleyParticipantEndpoint =
 mcuSession.GetRemoteParticipantEndpoints().FirstOrDefault(p = >
 p.Participant.Uri == “sip:dudley@wrox.com”);

 if (dudleyParticipantEndpoint == null)
 {
 _logger.Log(“Dudley not found in the conference.”);
 return;
 }

 // Create an outgoing route to Dudley.
 OutgoingAudioRoute outgoingRoute =
 new OutgoingAudioRoute(dudleyParticipantEndpoint);
 outgoingRoute.Operation = RouteUpdateOperation.Add;

 // Create an incoming route from Dudley.
 IncomingAudioRoute incomingRoute =
 new IncomingAudioRoute(dudleyParticipantEndpoint);
 incomingRoute.Operation = RouteUpdateOperation.Add;

 // Still need to send the routes to the MCU...
}

 To actually send the audio routing updates to the MCU, you must call the BeginUpdateAudioRoutes

method on the audio call ’ s AudioVideoMcuRouting class, as shown next.

private void AddRoutesToAndFromDudley(AudioVideoCall callToTheConference)
{
 AudioVideoMcuSession mcuSession =
 callToTheConference.Conversation.ConferenceSession.AudioVideoMcuSession;

 // Find the ParticipantEndpoint object that represents Dudley.

Available for

download on

Wrox.com

Available for

download on

Wrox.com

 If more than one conference participant provides manual audio routes, there can
be routes that are redundant. For example, if Dudley adds an outgoing route to
Guinevere, the effect is the same as if Guinevere adds an incoming route from
Dudley.

400 ❘ CHAPTER 12 ADVANCED MEDIA CONTROL IN UCMA

 ParticipantEndpoint dudleyParticipantEndpoint =
 mcuSession.GetRemoteParticipantEndpoints().FirstOrDefault(p = >
 p.Participant.Uri == _dudleySipUri);

 if (dudleyParticipantEndpoint == null)
 {
 _logger.Log(“Dudley not found in the conference.”);
 return;
 }

 // Create an outgoing route to Dudley.
 OutgoingAudioRoute outgoingRoute =
 new OutgoingAudioRoute(dudleyParticipantEndpoint);
 outgoingRoute.Operation = RouteUpdateOperation.Add;

 // Create an incoming route from Dudley.
 IncomingAudioRoute incomingRoute =
 new IncomingAudioRoute(dudleyParticipantEndpoint);
 incomingRoute.Operation = RouteUpdateOperation.Add;

 try

 {

 // Send the audio route updates to the MCU.

 callToTheConference.AudioVideoMcuRouting.BeginUpdateAudioRoutes(

 new List<OutgoingAudioRoute>() { outgoingRoute },

 new List<IncomingAudioRoute>() { incomingRoute },

 ar =>

 {

 try

 {

 callToTheConference.AudioVideoMcuRouting.EndUpdateAudioRoutes(

 ar);

 }

 catch (RealTimeException ex)

 {

 _logger.Log(“Failed updating audio routes.”, ex);

 }

 },

 null

);

 }

 catch (InvalidOperationException ex)

 {

 _logger.Log(“Failed updating audio routes.”, ex);

 }

}

 Code snippet AdvancedMediaControl\ManualAudioRoutesSample.cs

Making the update through a command on the AudioVideoMcuSession object is not possible; the

updates are specifi c to a single AudioVideoCall .

Controlling Who Can Hear What ❘ 401

 Removing Manual Audio Routes

 If you need to remove the manual audio routes — before returning the endpoint to the default audio

mix, for instance — you can simply change the Operation property on the AudioRoute objects, like so:

// Remove the outgoing route to Dudley.
OutgoingAudioRoute outgoingRoute =
 new OutgoingAudioRoute(dudleyParticipantEndpoint);
outgoingRoute.Operation = RouteUpdateOperation.Remove;

// Remove the incoming route from Dudley.
IncomingAudioRoute incomingRoute =
 new IncomingAudioRoute(dudleyParticipantEndpoint);
incomingRoute.Operation = RouteUpdateOperation.Remove;

try
{
 // Send the audio route updates to the MCU.
 callToTheConference.AudioVideoMcuRouting.BeginUpdateAudioRoutes(
 new List < OutgoingAudioRoute > () { outgoingRoute },
 new List < IncomingAudioRoute > () { incomingRoute },
 ar = >
 {
 try
 {
 callToTheConference.AudioVideoMcuRouting.EndUpdateAudioRoutes(ar);
 }
 catch (RealTimeException ex)
 {
 _logger.Log(“Failed updating audio routes.”, ex);
 }
 },
 null
);
}
catch (InvalidOperationException ex)
{
 _logger.Log(“Failed updating audio routes.”, ex);
}

 Code snippet AdvancedMediaControl\ManualAudioRoutesSample.cs

 You should explicitly remove any custom audio routes when returning an endpoint to the default

audio routing. They will not be removed automatically.

Available for

download on

Wrox.com

Available for

download on

Wrox.com

 For convenience, you may want to store the IncomingAudioRoute and
 OutgoingAudioRoute objects somewhere after you use them to add the custom
routing rules so that you can use them later when removing the routing rules
again, by fl ipping the Operation property on each one to Remove .

 Unfortunately, the AudioVideoMcuRouting class does not provide any way
to look up the routing rules currently active on the MCU, so maintaining this
information locally is easiest.

402 ❘ CHAPTER 12 ADVANCED MEDIA CONTROL IN UCMA

 Manipulating Audio Routing for Remote Participants

 Because the manual audio route updates are sent to the MCU through the AudioVideoMcuRouting

instance, which belongs to a local AudioVideoCall , an application can only modify the audio

routing rules for local participants. In other words, it needs to control the call between that

participant and the audio/video MCU. For a reminder of how this works, take a look at Figure 12 - 9.

UCMA App

A/V MCU

RTP

SIP

RTP

I can only control this

call that I’m on with

the A/V MCU.

SIP

SIP

RTP

SIP
RTP

 FIGURE 12 - 9

 A UCMA application that joins a conference has its own audio call with the audio/video MCU that

controls the conference. The other conference participants have their own calls with the audio/video

MCU, which the UCMA application does not control.

 You may be wondering whether a certain class from earlier in this chapter could be applied

here. If so, your suspicions are correct. This is a perfect mission for the BackToBackCall class.

Using a BackToBackCall , the UCMA application can broker the calls between remote participants

and the audio/video MCU, and can then continue to rule over the SIP signaling on those calls

with an iron fi st — or at least specify manual audio routing rules for them. Figure 12 - 10 shows how

a number of participants can all be connected with the audio conference through back - to - back calls.

Controlling Who Can Hear What ❘ 403

 Keep in mind that the participants must still join the conference as trusted participants in order to

have manual audio routes specifi ed. This means that the call leg that connects to the conference

must be joined to the conference with the join mode set to TrustedParticipant . Otherwise, the

audio routing changes will not work.

 The following code shows an incoming audio call handler that allows supervisors to silently and

invisibly monitor a specifi c participant in a conference. The code creates a back - to - back call using

the incoming call and a new call to the audio conference. On the outgoing call leg, it uses the

identity of the original caller to join the conference, but joins as a trusted participant. It then adds

an incoming audio route from the monitored participant to the supervisor. The effect is that the

supervisor can hear only the monitored participant and cannot be heard or seen in the roster by any

participants.

private void OnAudioVideoCallReceived(object sender,
 CallReceivedEventArgs < AudioVideoCall > args)
{
 AudioVideoCall incomingAudioCall = args.Call;

 // Create a new conversation for the call leg to the conference.
 Conversation conferenceLegConversation = new Conversation(_endpoint);

 // Impersonate the calling user when joining the conference.
 conferenceLegConversation.Impersonate(args.Call.RemoteEndpoint.Participant.Uri,
 args.Call.RemoteEndpoint.Participant.PhoneUri,

Available for

download on

Wrox.com

Available for

download on

Wrox.com

UCMA App

I’m managing three

diferent back-to-back

calls.

A/V MCU
RTP

SIP

SIP

RTP

SIPSIP

SIP

SIP

RTP

 FIGURE 12 - 10

404 ❘ CHAPTER 12 ADVANCED MEDIA CONTROL IN UCMA

 args.Call.RemoteEndpoint.Participant.DisplayName);

 // Must be a trusted participant for manual audio routes.
 ConferenceJoinOptions joinOptions = new ConferenceJoinOptions()
 {
 JoinMode = JoinMode.TrustedParticipant
 };

 try
 {
 // Join the conference.
 conferenceLegConversation.ConferenceSession.BeginJoin(_conferenceUri,
 joinOptions,
 joinResult = >
 {
 try
 {
 conferenceLegConversation.ConferenceSession.EndJoin(
 joinResult);

 // Create the audio call for the outgoing call leg.
 AudioVideoCall conferenceCallLeg =
 new AudioVideoCall(conferenceLegConversation);

 BackToBackCallSettings incomingCallSettings =
 new BackToBackCallSettings(incomingAudioCall);
 BackToBackCallSettings outgoingCallSettings =
 new BackToBackCallSettings(conferenceCallLeg);

 // Remove the enpdoint from the default routing initially.
 AudioVideoCallEstablishOptions options = new
 AudioVideoCallEstablishOptions();
 options.AudioVideoMcuDialInOptions.RemoveFromDefaultRouting =
 true;

 outgoingCallSettings.CallEstablishOptions = options;

 // Initialize a back to back call.
 BackToBackCall b2bCall =
 new BackToBackCall(incomingCallSettings,
 outgoingCallSettings);

 EstablishBackToBackCall(b2bCall);
 }
 catch (RealTimeException ex)
 {
 _logger.Log(“Failed joining conference.”, ex);
 }
 },
 null
);
 }
 catch (InvalidOperationException ex)
 {

Controlling Who Can Hear What ❘ 405

 _logger.Log(“Failed joining conference.”, ex);
 }
}

private void EstablishBackToBackCall(BackToBackCall b2bCall)
{
 try
 {
 // Begin establishing the back to back call.
 b2bCall.BeginEstablish(
 establishResult = >
 {
 try
 {
 b2bCall.EndEstablish(establishResult);

 // Create an incoming route from the participant
 // that is being monitored to this endpoint.
 IncomingAudioRoute incomingRoute =
 new IncomingAudioRoute(_participantToMonitor);
 incomingRoute.Operation = RouteUpdateOperation.Add;

 AudioVideoCall conferenceCallLeg =
 b2bCall.Call2 as AudioVideoCall;

 try
 {
 // Update the audio routing with the new incoming route.
 conferenceCallLeg.AudioVideoMcuRouting.
 BeginUpdateAudioRoutes(
 null,
 new List < IncomingAudioRoute > () { incomingRoute },
 routeResult = >
 {
 try
 {
 conferenceCallLeg.AudioVideoMcuRouting.
 EndUpdateAudioRoutes(routeResult);
 }
 catch (RealTimeException ex)
 {
 _logger.Log(“Failed updating audio routes.”,
 ex);
 }
 },
 null
);
 }
 catch (InvalidOperationException ex)
 {
 _logger.Log(“Failed updating audio routes.”, ex);
 }
 }
 catch (RealTimeException ex)

406 ❘ CHAPTER 12 ADVANCED MEDIA CONTROL IN UCMA

 {
 _logger.Log(“Failed establishing call.”, ex);
 }
 },
 null
);
 }
 catch (InvalidOperationException ex)
 {
 _logger.Log(“Failed establishing call.”, ex);
 }
}

Code snippet AdvancedMediaControl\ManualAudioRoutesBackToBackSample.cs

 You can join as many users as necessary to the conference through back - to - back calls in your

application, as long as the application uses a different SIP URI each time it joins.

 SUMMARY

 In this chapter you have seen the many options UCMA provides for controlling media on audio

calls. This advanced functionality allows developers to create complex communication management

services such as automatic call distributors and virtual assistants.

 In building and deploying such complex applications, developers inevitably run into confusing errors

and challenging debugging situations. The asynchronous nature of UCMA and its dependencies

on an intricate server infrastructure only compound the diffi culty. The next chapter presents some

techniques to aid troubleshooting and debugging, as well as some common problems that developers

run into with UC development.

Debugging UCMA Applications

 WHAT ’ S IN THIS CHAPTER?

 Using Lync Server Debugging Tools

 Interpreting SIP Message Logs

 Using Quality of Experience Metrics

 Troubleshooting Common UCMA Issues

 Two factors make troubleshooting a particularly important topic for UCMA development.

One is that because UCMA takes the low - level work of managing connections and Session

Initiation Protocol (SIP) messaging away from the developer, putting together a working

application often takes very little time. Another is that because UCMA applications have

so many dependencies on the surrounding Lync and network infrastructure, many possible

sources of trouble exist outside of the application ’ s own code. Because of these two factors

together, UCMA developers can expect to spend a large percentage of their time on

troubleshooting, and must be relatively profi cient in digging out the causes of problems even

when they arise from the environment rather than the application itself.

 Building simple UCMA applications without any knowledge of SIP or of Lync Server

infrastructure and confi guration is quite possible. However, the authors believe that, in order

to be successful at developing full UCMA applications meant for production use, developers

must understand at least the basics of what is going on “ under the covers. ” This chapter,

therefore, has two aims: one is to detail the best practices for creating stable UCMA code

that is easy to debug and for troubleshooting some of the most common issues that UCMA

applications experience; the other is to show what in the process causes these issues and what

they look like at the level of SIP signaling, so that developers have the necessary tools to debug

more obscure issues on their own.

➤

➤

➤

➤

 13

D
o

408 ❘ CHAPTER 13 DEBUGGING UCMA APPLICATIONS

 USING LOGS AND SERVER TRACES

 The fi rst line of defense in the UCMA developer ’ s debugging arsenal is the venerable OCSLogger

.exe tool, still named for Lync ’ s predecessor, Offi ce Communications Server. This tool controls the

collection of the various logs generated by Lync Server. A second source of logs is the Lync client,

which you can set to write log messages both to the Windows Event Log and to a separate plain - text

log fi le.

 Using Lync Server Logs

 The main benefi t of Lync server logs in troubleshooting issues with UCMA applications is that

the server logs can show the SIP messages that are sent back and forth between the application ’ s

endpoints and other Lync endpoints. Looking at the fl ow of SIP messages can often elucidate

problems that would otherwise be completely bewildering. These problems may be environmental

(issues with the confi guration of Lync Server or the application server, for example) or in the code of

the application (incorrect use of UCMA).

 Getting into the habit of collecting logs from the Lync front - end server whenever troubleshooting an

issue with a UCMA application, after verifying that it does not stem from an obvious code problem,

is a good idea. This section explains how to collect these logs with the OCSLogger tool and how to

read the logs for information that can help with debugging and troubleshooting.

 On many SIP - based communication platforms, it is common to use a network
sniffer such as Wireshark to gather information for troubleshooting. Because
Lync uses transport - layer security (TLS) by default, network sniffers are usually
not useful.

 If you want to use Wireshark or another sniffer to examine SIP traffi c, it is
possible to switch the Lync client to use TCP rather than TLS. To do this, go
to the Options dialog box, Personal section, and clicking the Advanced button.
In the resulting dialog box, it is possible to make manual changes to the server
settings, including using TCP instead of TLS.

 Collecting Logs with the Logging Tool

 On any Lync server, the default install location for the logging tool is Program Files\Common

Files\Micrsosoft Lync Server 2010\Tracing\OCSLogger.exe . When opened, the logging tool

displays the window shown in Figure 13 - 1. The options in the Components list will vary depending

on the server where the tool is running.

 Before starting the logging, fi rst choose one or more types of activity to log using the Components

list. Generally, the most useful items to select when debugging UCMA applications are SIPStack,

Collaboration, and S4 (or the latter two on application servers, where SIPStack is generally not

available).

 FIGURE 13 - 1

 To select an item in the Components list, click it once to select it and then click
it again to mark the checkbox. The items are not marked with a check on the
fi rst click, which can be confusing.

 For each item in the Components list, setting additional logging options using the Level and Flags

settings is also possible. For the most part, the defaults are fi ne when doing UCMA troubleshooting.

Depending on the amount of traffi c on the server, increasing the maximum size of the log fi le may

be helpful.

 To begin logging, click Start Logging at the bottom of the window. While logging is active, perform

whatever operation needs to be logged, and then click Stop Logging to end the logging session.

Using Logs and Server Traces ❘ 409

410 ❘ CHAPTER 13 DEBUGGING UCMA APPLICATIONS

 Viewing Lync Server Logs

 Two options are available for reading through Lync Server logs after collecting them. The fi rst is to

output the log details to a text fi le, which you can then search for specifi c information. To do this,

click View Log Files at the bottom of the OCSLogger window. A dialog box appears with a list of

the components for which logs were collected, as shown in Figure 13 - 2. Select the ones that should

appear in the text fi le, and click View. The generated log fi le will open automatically in Notepad.

 FIGURE 13 - 2

 Although Notepad can be quite adequate for browsing small log fi les or for searching for specifi c

items, following the sequence of events in a longer log fi le simply by reading through the generated

text can be quite challenging. Where a more readable view is necessary, the Snooper.exe tool can

be invaluable.

 Snooper is included in a package of tools known as the Microsoft Lync Server 2010 Resource

Kit Tools. The Resource Kit Tools are available for download on Microsoft ’ s website at

 www.microsoft.com/downloads/en/details.aspx?FamilyID=80cc5ce7-970d-4fd2-8731-

d5d7d0829266 . After the Resource Kit Tools are installed, you can open a log in Snooper

automatically by clicking Analyze Log Files in the OCSLogger window.

 Snooper displays log data in a more graphical form, as shown in Figure 13 - 3. It breaks down the log

messages into a list, showing individual SIP messages or events along with the timestamp and From

and To addresses, if applicable. Clicking on an item in the list causes the full contents of the message

or event to be shown in the pane on the right - hand side. In addition, when a message that is part

of a larger SIP dialog is selected in the list, other messages related to that dialog are highlighted, so

that you can more easily follow the full sequence of events without being distracted by unrelated

messages.

 FIGURE 13 - 3

 Whenever possible, the authors recommend viewing log data in Snooper rather than trying to sift

through the logs in text format in Notepad.

 Interpreting SIP Messages in Server Logs

 Particularly where troubleshooting is concerned, we believe that the best way to learn is by doing.

For learning how to read the logs of SIP messages between servers, no substitute exists for simply

reading lots of logs. This section, however, aims to accelerate this process a bit by presenting log

fi les that show some common scenarios and walking through the SIP messages step by step.

 Rest assured that after you have gained a basic level of familiarity with interpreting the SIP

messaging in Lync server logs, it will be one of the most useful tools in troubleshooting Lync issues.

 The following samples use scenarios from the sample applications used in earlier chapters.

Using Logs and Server Traces ❘ 411

412 ❘ CHAPTER 13 DEBUGGING UCMA APPLICATIONS

 Reading SIP Requests

 The SIP messages contained in logs can, at a fi rst glance, look overwhelmingly complicated.

Understanding the purpose of the different pieces is helpful. Take a look at the following message,

which is a typical request message; this one is for an INVITE request.

TL_INFO(TF_PROTOCOL) [1]0B1C.0134::02/26/2011-19:06:25.589.00012892
(SIPStack,SIPAdminLog::TraceProtocolRecord:SIPAdminLog.cpp(125))
$$begin_record
Trace-Correlation-Id: 2287832666
Instance-Id: 00026800
Direction: incoming
Peer: ts.fabrikam.com:31732
Message-Type: request
Start-Line: INVITE sip:michaelg@fabrikam.com SIP/2.0
From: “Outbound” < sip:outbound.sample@fabrikam.com > ;epid=531E0B2242;
tag=125787b6d0
To: < sip:michaelg@fabrikam.com >
CSeq: 3 INVITE
Call-ID: 4a8b77c4-4be2-4403-896a-94e1c7e6a9c3
MAX-FORWARDS: 70
VIA: SIP/2.0/TLS 192.168.0.40:31732;branch=z9hG4bK83dda982
CONTACT: < sip:ts.fabrikam.com@fabrikam.com;gruu;
opaque=srvr:outbound.sample:jRw31iBwA16ogIm8sXN68AAA > ;
automata;actor=”attendant”;text;audio;video;image
CONTENT-LENGTH: 146
EXPIRES: 600
PRIORITY: Normal
SUPPORTED: ms-dialog-route-set-update
SUPPORTED: timer
SUPPORTED: ms-delayed-accept
SUPPORTED: ms-sender
SUPPORTED: gruu-10
USER-AGENT: RTCC/4.0.0.0 maximillian
CONTENT-TYPE: application/sdp
ALLOW: ACK
P-ASSERTED-IDENTITY: “Outbound” < sip:outbound.sample@fabrikam.com >
Content-ID: f2952165-0d4c-40df-84b2-20fa019f156b
Ms-Conversation-ID: fcce26bdf97845d4b4762abc08559857
Session-Expires: 1800
Min-SE: 90
Allow: CANCEL,BYE,INVITE,MESSAGE,INFO,SERVICE,
OPTIONS,BENOTIFY,NOTIFY,UPDATE
Message-Body: v=0
o=- 835763695 835763695 IN IP4 67.104.203.240
s=session
t=0 0
m=message 5060 sip null
a=accept-types:text/plain application/ms-imdn+xml
$$end_record

 The fi rst few lines identify it as a SIP message and indicate the beginning of the message record.

Most importantly, they also show the date and time stamp, as shown in the following snippet.

TL_INFO(TF_PROTOCOL) [1]0B1C.0134:: 02/26/2011-19:06:25.589.00012892
(SIPStack,SIPAdminLog::TraceProtocolRecord:SIPAdminLog.cpp(125))
$$begin_record

 The next few lines contain some background information on the message. Again, several simple

pieces of information are in here that can come in handy. The Direction line indicates whether the

message came into the server where the log was run, or was sent out from it. The Peer line shows

the address and port that the message came from or was sent to, and the Message - Type line

shows whether this message is a request or a response.

Trace-Correlation-Id: 2287832666
Instance-Id: 00026800
 Direction: incoming

 Peer: ts.fabrikam.com:31732

 Message-Type: request

 The Start - Line label indicates the beginning of the actual SIP message. Everything following this,

up to $$end_record at the bottom of the log record, is part of the SIP message itself.

 In a request, the fi rst line of the message contains the method name (in this case, INVITE), the

destination of the message, and the protocol, as shown in the following snippet.

INVITE sip:michaelg@fabrikam.com SIP/2.0

 Table 13 - 1 shows SIP methods and in which cases you will most commonly see them.

 TABLE 13 - 1: SIP Methods and UCMA Operations

 METHOD RELEVANT UCMA OPERATIONS

 INVITE Establishing a call

 Sending a conference invitation

 Connecting to a conference focus

 Connecting to a multipoint control unit (MCU)

 BYE Ending a call

 REFER Transferring a call

 SUBSCRIBE Subscribing to presence

 Watching a transfer ’ s progress in an attended transfer

 REGISTER Establishing an endpoint

 NOTIFY Receiving presence updates

 BENOTIFY Receiving updates on a transfer in progress

 INFO Sending conference control commands

 SERVICE Publishing presence

Using Logs and Server Traces ❘ 413

414 ❘ CHAPTER 13 DEBUGGING UCMA APPLICATIONS

 The next two headers are fairly self - explanatory: From identifi es the source of the message, and To

identifi es the destination.

From: “Outbound” < sip:outbound.sample@fabrikam.com > ;epid=531E0B2242;
tag=125787b6d0
To: < sip:michaelg@fabrikam.com >

 The extra stuff on the end of the SIP URI in the From header helps identify this specifi c endpoint —

keep in mind that a user can be signed in at multiple endpoints using the same SIP URI.

 The CSeq header gives a sequence number for the request; for example, 3 INVITE means that this is

the third INVITE sent by the endpoint.

CSeq: 3 INVITE

 The next header, Call - ID , uniquely identifi es this particular call or SIP dialog. This header maps to

the CallId property on the Call class.

Call-ID: 4a8b77c4-4be2-4403-896a-94e1c7e6a9c3

 Further along in the headers is the Ms - Conversation - ID header, which corresponds to the Id

property on the Conversation class. This ID ties together messages from the same conversation,

whether it includes one or more calls.

Ms-Conversation-ID: fcce26bdf97845d4b4762abc08559857

 The message has quite a few other headers, but going into detail on each one is not necessary,

because many of them are less useful in troubleshooting.

 The body of the message, however, is often worth examining. The CONTENT - TYPE header identifi es

what is contained in the body. In this case, for example, application/sdp identifi es the message

body as information in Session Description Protocol (SDP), which is used for media negotiation:

CONTENT-TYPE: application/sdp

 Before delving in to the various types of content that can be found in SIP message bodies, it is worth

mentioning a few points about the structure of SIP responses.

 Reading SIP Responses

 A response to a SIP request looks relatively similar in structure to a SIP request, but a few key

differences exist. The following is a typical SIP response, a 100 Trying response to an INVITE .

TL_INFO(TF_PROTOCOL) [1]0B1C.0134::02/26/2011-19:06:25.600.000128b0
(SIPStack,SIPAdminLog::TraceProtocolRecord:SIPAdminLog.cpp(125))
$$begin_record
Trace-Correlation-Id: 2287832666
Instance-Id: 00026801
Direction: outgoing;source=”local”
Peer: ts.fabrikam.com:31732

Message-Type: response
Start-Line: SIP/2.0 100 Trying
From: “Outbound” < sip:outbound.sample@fabrikam.com > ;epid=531E0B2242;
tag=125787b6d0
To: < sip:michaelg@fabrikam.com >
CSeq: 3 INVITE
Call-ID: 4a8b77c4-4be2-4403-896a-94e1c7e6a9c3
Via: SIP/2.0/TLS 192.168.0.40:31732;branch=z9hG4bK83dda982;
ms-received-port=31732;ms-received-cid=B0FC00
Server: http%3A%2F%2Fwww.microsoft.com%2FLCS%2FDefaultRouting
Content-Length: 0
Message-Body: –
$$end_record

 The start line of a SIP response is slightly different from the start line of a request, beginning with

 SIP/2.0 to identify the protocol, and then the response code, 100 Trying . Another important point

to note is that the From and To headers refl ect the source and destination of the request , not this

response. In this case, for example, the response itself is going from sip:michaelg@fabrikam.com

back to sip:outbound.sample@fabrikam.com , but the From header shows sip:outbound.sample

@fabrikam.com because that is the source of the original request.

 Responses, like requests, can have a message body, or, as in this case, the body can be empty.

 Reading a Session Description Protocol Message Body

 Session Description Protocol, commonly known as SDP, is defi ned in RFC (Request for Comments)

4566 from the Internet Engineering Task Force (IETF). Lync uses SDP to communicate information

about how media can be sent and received while establishing a call. An elementary understanding of

SDP can be helpful for troubleshooting problems with media, such as:

 Calls failing after the recipient picks up

 Calls with no audio

 One - way audio

 Instant messages not reaching their destination after a call is established

 This section explains what the various sections of a typical SDP message mean. You can fi nd

further details in Microsoft ’ s protocol document at http://msdn.microsoft.com/en-us/library/

cc245962%28v=prot.10%29.aspx .

 The subsequent explanations refer to the following sample SDP message from an audio call:

v=0
o=- 1 0 IN IP4 192.168.0.40
s=session
c=IN IP4 192.168.0.40
b=CT:3000000
t=0 0
m=audio 14594 RTP/SAVP 112 111 0 8 116 4 13 118 97 101
c=IN IP4 192.168.0.40
a=rtcp:14595
a=candidate:2qSHSQ/8dAz9eZzHkU3Sw5fnzGo2G2pII+qAvnEYCcY

➤

➤

➤

➤

Using Logs and Server Traces ❘ 415

416 ❘ CHAPTER 13 DEBUGGING UCMA APPLICATIONS

1 z0V7tDyAvVsb7AdLZk3x7g UDP 0.840 192.168.0.40 14594
a=candidate:2qSHSQ/8dAz9eZzHkU3Sw5fnzGo2G2pII+qAvnEYCcY
2 z0V7tDyAvVsb7AdLZk3x7g UDP 0.840 192.168.0.40 14595
a=label:main-audio
a=cryptoscale:1 client AES_CM_128_HMAC_SHA1_80
inline:bOBFVN0YiwxaDRVdMCRYkyOxwRqSIcnhEzvkqXQ5|2^31|1:1
a=crypto:2 AES_CM_128_HMAC_SHA1_80 inline:
CxmLl7y+FaMLXhjYA6AfKXJfu3nRTnP
vprl46Lwr|2^31|1:1
a=crypto:3 AES_CM_128_HMAC_SHA1_80 inline:
LAWG4gX4qhf51ajsGZMQo0BlEZ+b32rbpQsNO5hm|2^31
a=rtpmap:112 G7221/16000
a=fmtp:112 bitrate=24000
a=rtpmap:111 SIREN/16000
a=fmtp:111 bitrate=16000
a=rtpmap:0 PCMU/8000
a=rtpmap:8 PCMA/8000
a=rtpmap:116 AAL2-G726-32/8000
a=rtpmap:4 G723/8000
a=rtpmap:13 CN/8000
a=rtpmap:118 CN/16000
a=rtpmap:97 RED/8000
a=rtpmap:101 telephone-event/8000
a=fmtp:101 0-16,36
--27chH1tS8EX9p0ksH4Kw2mgfokIFmrGh

 The fi rst few lines of the message are not particularly important for troubleshooting, and mostly

contain boilerplate items like the version of SDP (always 0) and the IP address from which the

message originates:

v=0
o=- 1 0 IN IP4 192.168.0.40
s=session
c=IN IP4 192.168.0.40
b=CT:3000000
t=0 0

 The next line, beginning with m= , identifi es a media type, in this case audio :

m=audio 14594 RTP/SAVP 112 111 0 8 116 4 13 118 97 101

 After the media type is a port number, followed by the protocol. For audio calls, this is usually RTP/

SAVP , which denotes Secure Real - time Transport Protocol, or SRTP. This means that media streams

for this call are encrypted. RTP/AVP denotes ordinary (unencrypted) Real - time Transport Protocol.

 Instant message calls use a value of message for the media type, and sip for the protocol, because

the media (in this case, text) is conveyed using additional SIP messages. The message excerpt below

illustrates this: It indicates that IM messages will be conveyed via SIP messages on port 5060.

m=message 5060 sip null

 The next item of interest (in audio calls only) is the section containing media candidates . Media

candidates offer options for locations where media can be routed and are used in the media

negotiation process:

a=candidate:2qSHSQ/8dAz9eZzHkU3Sw5fnzGo2G2pII+qAvnEYCcY
1 z0V7tDyAvVsb7AdLZk3x7g UDP 0.840 192.168.0.40 14594
a=candidate:2qSHSQ/8dAz9eZzHkU3Sw5fnzGo2G2pII+qAvnEYCcY
2 z0V7tDyAvVsb7AdLZk3x7g UDP 0.840 192.168.0.40 14595

 The last few items on each media candidate line show the protocol (TCP or UDP), IP address, and

port where media can be routed. For the call to succeed, at least one of these must be reachable

from the remote endpoint. In this example, for instance, both media candidates contain internal

IP addresses that would not be routable from the public Internet. Sometimes, because of DNS

confi guration issues, contacts outside the local network will be given media candidates that are not

routable from the public Internet, leading to call failures. Troubleshooting these issues is outside the

scope of this book, but you can identify them through a quick look at the media candidates.

 Using Lync Client Logs

 To enable logging in the Lync client, open the Options window in Lync, go to the General section

if it is not already selected, and select “ Turn on Logging in Lync ” and “ Turn on Windows Event

Logging for Lync. ” Figure 13 - 4 shows the Options window with these two options selected.

FIGURE 13 - 4

Using Logs and Server Traces ❘ 417

418 ❘ CHAPTER 13 DEBUGGING UCMA APPLICATIONS

 After Lync client logging is enabled, Lync will write trace fi les within the %userprofi le% \Tracing

directory.

 The easiest of these fi les to use are the ones with a .uccapilog extension. Open these fi les in a text

editor to see log entries from the Lync client, including SIP messages sent and received. Most of

the time, you can fi nd this same information more easily in the Lync server logs, but occasionally the

client logs can be handy in fi guring out what messages are reaching the Lync client and at what time.

 USING QUALITY OF EXPERIENCE METRICS IN UCMA

 Because the audio on a Lync call must be processed and transmitted in real time, performance

issues either on the client or the server side can lead to degradation in the audio quality. Although

most of the time these effects, when they appear, are simply annoying, they can occasionally make

conversation impossible.

 Troubleshooting audio quality problems within a Lync server environment is not usually a developer

responsibility and is beyond the scope of this book. However, statistics on audio quality and

network conditions during calls can be helpful in backing up reports of audio issues with concrete

data, or in identifying the source at a high level. In addition, in deploying UCMA applications,

collecting statistics on call quality to ensure that the environment can support the expected load

without audio degradation can sometimes be helpful.

 For these purposes, UCMA offers a way for applications to receive reports of audio quality metrics

on the termination of each audio call.

 To receive quality of experience data, an application can subscribe to the

 MediaTroubleshootingDataReported event on the AudioVideoCall class. The event handler

is invoked when the call terminates, and the event arguments include the quality of experience

data in the (QualityOfExperienceContent property). To use the quality of experience data, the

application must parse the XML in the quality of experience document to retrieve the specifi c

statistics that it needs.

 The following code shows how to retrieve the quality of experience XML from the event arguments.

This XML document can then be read for details on the audio quality on the call.

private void OnMediaTroubleshootingDataReported(
 object sender,
 MediaTroubleshootingDataReportedEventArgs e)
{
 if (e.QualityOfExperienceContent != null & &
 e.QualityOfExperienceContent.GetBody() != null)
 {
 byte[] qoeContent = e.QualityOfExperienceContent.GetBody();

 System.Text.ASCIIEncoding enc = new ASCIIEncoding();
 string qoeString = enc.GetString(qoeContent);

 Console.WriteLine(“QoE metrics: {0}”,
 qoeString);
 }
}

Troubleshooting Common UCMA Issues ❘ 419

 TROUBLESHOOTING COMMON UCMA ISSUES

 A large share of the issues developers encounter when testing or deploying their UCMA applications

are the result of a few underlying causes. Understanding these underlying problems can save

developers a good deal of frustration, especially when starting out in UCMA development. This

section covers several of these common problems and their solutions.

 Troubleshooting TLS Exceptions

 Almost every developer starting out with UCMA has encountered and been bewildered by a

 TlsException . This exception indicates that UCMA is having trouble with transport layer security

(TLS), which the majority of UCMA applications use to communicate with other Lync servers in a

secure manner.

 Lync makes extensive use of mutual transport - layer security (MTLS) in establishing secure

connections between Lync servers. Each server authenticates itself to the other using private key

certifi cates. In the case of a UCMA application, this

means that the Lync front - end server verifi es the identity

of the UCMA application server and the application

server also checks the identity of the front - end server.

 Most often, a TlsException occurs because of a problem

with the certifi cates that Lync uses for MTLS. The next

few sections cover the typical causes of such certifi cate

problems.

 Fixing TLS Exceptions in Visual Studio

 New UCMA developers most commonly encounter their

fi rst TlsException when debugging UCMA applications

in Visual Studio. The reason is usually that the Visual

Studio process does not have the necessary permissions

to access the private key certifi cate that UCMA needs to

authenticate itself to the Lync front - end server. The

solution to a TlsException in this case is to close Visual

Studio and reopen it with administrator privileges.

You can do this by right - clicking in Visual Studio and

selecting Run As Administrator from the menu, as

shown in Figure 13 - 5.

 Handling TLS Exceptions When Running an Application

 TLS exceptions occur because an application that is trying to connect to Lync Server using TLS

either does not supply a certifi cate for the collaboration platform or supplies a certifi cate that is not

trusted by Lync Server. This can happen for a number of reasons:

 No TLS certifi cate is installed on the application server.

 A TLS certifi cate is installed, but it does not have the correct subject name (the fully quali-

fi ed domain name of the application server).

➤

➤

 FIGURE 13 - 5

420 ❘ CHAPTER 13 DEBUGGING UCMA APPLICATIONS

 A TLS certifi cate exists, but it is not issued by a certifi cation authority (CA) that is trusted

by Lync.

 The TLS certifi cate installed on the Lync Front End Server is not issued by a CA that is

trusted by the application server.

 The UCMA application is running under a user account that does not have permission to

access the certifi cate private key.

 The UCMA application is not retrieving the certifi cate correctly from the certifi cate store.

 When an application is throwing a TlsException on startup, fi rst check that it is running with the

proper credentials. Running the application as an administrator is a quick way to check whether

permissions are the problem. The later section “ Resolving Certifi cate Permission Issues ” discusses

how to fi x TLS exceptions that are caused by insuffi cient permissions.

 If this does not seem to be the issue, quickly verifying that a TLS certifi cate is installed on the server

whose subject name is the FQDN of the server is worth the time. To do this, follow these steps:

 1. Open Microsoft Management Console (MMC) by clicking Start ➪ Run and entering

 mmc.exe .

 2. When MMC opens, choose File ➪ Add/Remove Snap - in. Select Certifi cates, as shown in

Figure 13 - 6, and click Add to add the Certifi cates snap - in.

 3. On the Select Computer dialog box that appears, choose Computer account, click Next,

and then click Finish.

 4. Click OK to exit the Add/Remove Snap - ins dialog box.

➤

➤

➤

➤

 FIGURE 13 - 6

Troubleshooting Common UCMA Issues ❘ 421

 5. After the Certifi cates snap - in loads, expand the items on the left side of the window to

locate the Certifi cates folder within the Personal folder, as shown in Figure 13 - 7, and verify

that the TLS certifi cate is present.

FIGURE 13 - 7

 The later section “ Fixing Certifi cate Setup Problems ” details what to do if the certifi cate is not

present or is not confi gured properly.

 Resolving Certifi cate Permission Issues

 To use the TLS certifi cate on the application server, a UCMA application must be running with

a Windows identity that has permission to access the certifi cate ’ s private key. If the application is

running using a service account, granting that service account access to the private key may be

necessary.

 To do this, follow these steps:

 1. Open MMC by clicking Start ➪ Run and entering mmc.exe .

 2. Add the Certifi cates snap - in as described in the “ Handling TLS Exceptions When Running

an Application ” section and fi nd the TLS certifi cate within the Personal folder — the

subject name will match the FQDN of the application server.

422 ❘ CHAPTER 13 DEBUGGING UCMA APPLICATIONS

 3. Right - click on the certifi cate and choose All Tasks ➪ Manage Private Keys, as shown in

Figure 13 - 8.

 The resulting window allows you to change permissions for the certifi cate private keys.

 4. To grant the service account permission to access the private key, click Add, enter the

username, click OK, and select the Read permission for the newly added user under

the Allow column.

 CERTIFICATE PERMISSIONS AND IIS

 For a UCMA application using TLS to run successfully in Internet Information

Services (IIS), the application pool must be using an identity that has access to the

certifi cate private key. To fi nd out what identity the application pool is using, or

to change it, select the application pool in the Application Pools section of the IIS

Manager console, and click Advanced Settings on the right side of the window.

FIGURE 13 - 8

Troubleshooting Common UCMA Issues ❘ 423

 Fixing Certifi cate Setup Problems

 If a TLS certifi cate is installed on the application server and the UCMA application has access to

it, but it is still not working, check that the certifi cate is set up correctly. Its subject name must be

the fully qualifi ed domain name (FQDN) of the application server. Typos in the subject name are

a common source of problems. The certifi cate should be installed in the local computer certifi cate

store, and must have a private key. Verify that all of these are the case if a UCMA application does

not seem to be retrieving the certifi cate.

 Certifi cate subject names are not case - sensitive (nor are SIP URIs). This means
that there is usually no need to worry about case differences in subject names
when troubleshooting. However, it is important to ensure that any application
code that looks up the certifi cates is also not case - sensitive.

 The certifi cate used by a UCMA application must also be designated for both client authentication

and server authentication. Recall from Chapter 6 that a Lync endpoint acts as both a user agent

client and a user agent server. In both cases, it needs to be able to prove its identity.

 Troubleshooting “ The Connection Was Forcibly Closed by the Remote Host ”

 On occasion, an application will fail to start and will throw a ConnectionFailureException with

the message “ The connection was forcibly closed by the remote host. ” Though not a TLS exception,

this exception is generally caused by a certifi cate trust problem.

 Typically, this type of error occurs when the UCMA application has found a certifi cate to use for

TLS, but the Lync front - end server does not accept the certifi cate for authentication. If this error

occurs, verify that the subject name of the certifi cate matches the fully qualifi ed domain name

(FQDN) of the application server. If the application server is part of a trusted application pool,

the pool FQDN must also be a subject alternate name. The certifi cate must also be issued by a

certifi cation authority that is trusted by the front - end server.

 Handling a “ Failed to Listen On Port Specifi ed ” Error

 When a UCMA application is provisioned in Active Directory using the Lync PowerShell cmdlets,

as discussed in Chapter 7, it is assigned a listening port. Lync Server uses this listening port to send

SIP messages to the application. When the application starts up a collaboration platform, it reserves

that listening port so that it can receive incoming messages from the Lync front - end server. If for

whatever reason it cannot reserve this port, it will fail with an exception that says “ Failed to listen

on port or address specifi ed. ” These exceptions are quite common and, although frustrating, are

usually quite easy to fi x.

424 ❘ CHAPTER 13 DEBUGGING UCMA APPLICATIONS

 Fixing Port Confl icts

 By far the most common reason why an application cannot use its listening port is that another

instance of the application on the same server has already reserved it. When an error of this kind

occurs, the fi rst thing to check is that the UCMA application is not already running, either as a

console application, a Windows service, or in some other form. Check processes run by other users

on the same server by going to Task Manager, switching to the Processes tab, and clicking “ Show

processes from all users. ”

 Eliminating Port Confl icts When Using IIS

 Sorting out listening port confl icts can be particularly dicey if the UCMA code is hosted by Internet

Information Services (IIS). This is because of the way in which IIS recycles worker processes by

default. To help minimize downtime when, for instance, updates to a website are being deployed, IIS

creates a new worker process, waits for it to start up, and then shuts down the old worker process.

 For UCMA applications, this situation creates problems, because only one instance of the

application can use the listening port. When updates to the application are deployed, the new

instance generally fails to start because the listening

port is already reserved by the old instance.

 To fi x this problem, changing IIS ’ s recycling

behavior for the application pool in which the

UCMA application is running is necessary. To do

this, follow these steps:

 1. Open IIS, go to the Application Pools

section of the control panel, and select the

appropriate application pool.

 2. Click Advanced Settings on the right side of

the window to open the settings dialog box.

 3. Scroll down to the Recycling section,

and set the Disable Overlapped Recycle

property to True.

 4. Click OK to save the settings. After

saving, you can now deploy changes to the

application without encountering problems

at startup.

 Figure 13 - 9 shows the application pool settings

dialog box with overlapped recycling disabled.

 Resolving Problems with Auto - Provisioning

 The auto - provisioning method of retrieving collaboration platform and endpoint settings requires

a few items to be in place that are not required to create a collaboration platform and endpoint by

 FIGURE 13 - 9

Troubleshooting Common UCMA Issues ❘ 425

manually specifying provisioning settings. If application startup fails with auto - provisioning but

works fi ne when you specify the settings manually, these dependencies are prime suspects.

 Checking Management Store Replication

 Auto - provisioning depends on a local management store, which is replicated from the central

management store. If this management store replication is not in place, auto - provisioning

will not work properly. If an application fails at startup with an exception when using

auto - provisioning, check that management store replication is enabled using the Get -

 CsManagementStoreReplicationStatus PowerShell cmdlet.

 See Chapter 7 for instructions on using the Get - CsManagementStoreReplicationStatus cmdlet as

well as how to enable replication if it is not already enabled.

 Checking Service Account Group Membership

 If on startup an application using auto - provisioning complains about not having access to the

 “ xds ” database, you must add the Windows identity that is being used to run the application to

the group on the local computer called RTC Component Local Group. Alternatively, you can

run the application using a local administrator account.

 Troubleshooting Incoming Calls

 Occasionally, a UCMA application that has just been deployed seems not to receive its incoming

calls. Calls to an endpoint owned by the application ring endlessly, but the incoming call event

handler is not invoked. This is one of the most frustrating problems to encounter in application

deployment.

 Thankfully, more often than not the problem stems from one of two causes: Either the application is

listening on the wrong port, or a fi rewall or other application is blocking incoming communications

on the listening port so that they do not reach the application.

 Identifying Listening Port Problems

 The simplest explanation for calls that do not reach the application is that the application has the

listening port wrong. Whenever Lync Server tries to route a SIP INVITE to the application, it will

send it to the application server on the listening port that was assigned to that application during

provisioning. If the application starts its collaboration platform using manual settings, and provides

a different listening port with the settings, the application will not receive any of these messages

from Lync Server.

 Consequently, the fi rst thing to check if your application uses manual settings and is not receiving

calls is that the listening port assigned to the application matches the listening port specifi ed in the

 ServerPlatformSettings object that is used by the collaboration platform. For instructions on

confi guring the listening port and other provisioning settings, see Chapter 7.

 Identifying Firewall Issues

 Even if the application is using the correct listening port, the possibility exists for an overzealous

fi rewall (or some other application) to interfere with the messages coming in on that port. When

426 ❘ CHAPTER 13 DEBUGGING UCMA APPLICATIONS

calls are not reaching your application, check that a fi rewall is not blocking incoming connections

on the application ’ s listening port. If the server is already protected by another fi rewall, turning off

Windows Firewall often solves the problem.

 Make sure that your server is adequately protected — don ’ t remove necessary
fi rewall protection simply to get a UCMA application working.

 Troubleshooting Transfers

 Transfers in Lync are relatively complex operations, and as such they can go wrong in a number of

different places. Describing every possible cause of a failed transfer in this chapter is not feasible,

but this section explains some of the most common causes and how to solve them.

 The most important point to consider when investigating a transfer failure is that, in order to

complete the transfer, the transferee (the transferred endpoint) must place a new call to the transfer

destination . Accordingly, the transferee must be able to reach the transfer destination, taking into

account things like dial plans, external access policies, and so forth. It does not help if the transferor

can route a call to the transfer destination; if the transferee cannot, then the transfer will fail.

 To discover issues with call routing from the transferred endpoint to the transfer destination, run

OCSLogger during the transfer and inspect the SIP messages. Look for the REFER message from the

transferor to the transferee, which will indicate the beginning of the transfer operation, and then

fi nd the INVITE message from the transferee to the transfer destination. This SIP dialog between the

transferee and the transfer destination must succeed for the transfer to complete. An error response,

such as a 404 or 504, generally indicates why the transfer is failing.

 Solving Issues with Referenced Assemblies

 For a UCMA application to run, either the UCMA SDK or the UCMA runtime (available for download

at www.microsoft.com/downloads/en/details.aspx?FamilyID=418cc593-f31e-48be-957c-

d3c9020c6b01) must be installed on the server where the application is running. For applications

that use speech recognition or speech synthesis, including UCMA Workfl ow applications, language

packs are also necessary. You can download them at www.microsoft.com/downloads/en/details

.aspx?FamilyID=47ffd4e5-e682-4228-8058-dd895252a3c3 & displaylang=en .

 If these prerequisites are installed, but the UCMA application seems not to be fi nding them, check

the target platform to which the application is being compiled. This must be set to x64 or Any CPU.

If the target platform is set to x86, the application will look for nonexistent 32 - bit versions of the

referenced assemblies, often leading to an extremely frustrating session of troubleshooting.

 INSPECTING SIP RESPONSES IN CODE

 Most of the time, letting UCMA handle the SIP messaging without trying to intervene is best. Once

in a while, however, looking at the details of a SIP response message and taking action depending

on its contents may be useful.

 Most of the End MethodName methods in UCMA return an instance of the SipResponseData class.

This object has properties that correspond to the various SIP headers discussed earlier in this

chapter, as well as to other components of the message such as the response code. The following

code shows an example of inspecting the SIP response data from a UCMA operation and taking

action on the basis of the contents:

SipResponseData response =
 _appEndpoint.EndEstablish(result);

if (response.ResponseCode == ResponseCode.NotFound)
{
 // Handle a not found response.
}
else if (response.ResponseCode ==
 ResponseCode.NotAcceptableHere)
{
 // Handle a not acceptable here response.
}

 For debugging and for handling specifi c error conditions, having access to these particulars of the

response can be handy.

 SUMMARY

 This chapter has covered some of the highlights of effective troubleshooting of problems with

UCMA applications. A good deal more information is available on this topic, but the material in

this chapter should serve as a foundation for additional learning, much of which you can gain

only through experience.

 The next chapter offers an introduction to UCMA ’ s cousin API, UCMA Workfl ow.

Inspecting SIP Responses in Code ❘ 427

Building Communications-
Enabled Business Processes
with the UCMA 3.0
Workfl ow SDK

 WHAT ’ S IN THIS CHAPTER?

 Building communications workfl ows with the UCMA 3.0

Workfl ow SDK

 Working with workfl ow activities, communications events, and

communications commands

 Building workfl ow activity prompts

 Constructing grammars to validate input from the caller

 Processing the output of a communications workfl ow

 Building custom workfl ow activities

 The Unifi ed Communications Managed API (UCMA) 3.0 Workfl ow software development kit

(SDK) is used to build communications - enabled workfl ow solutions such as Interactive Voice

Response (IVR) systems and personal virtual assistants. In a call center scenario, the UCMA

3.0 Workfl ow SDK can be used to build an IVR that captures information from the caller

before the call center software connects him or her with an agent possessing the necessary skills

to assist them. The UCMA 3.0 Workfl ow SDK can also be used to build a personal virtual

assistant such as a conference room reservation system. Employees call into the conference

room reservation system, authenticate using their PIN, specify the building they would like

➤

➤

➤

➤

➤

➤

 14

D
o

430 ❘ CHAPTER 14 BUILDING COMMUNICATIONS-ENABLED BUSINESS PROCESSES

to fi nd a conference room in, and let the system fi nd available conference rooms for them to choose

from and reserve.

 Using the UCMA 3.0 Workfl ow SDK, you can visually construct communications - enabled workfl ows

by dragging workfl ow activities onto a design service; arranging, confi guring, and connecting them

to form the workfl ow solution. Workfl ows can be constructed to accept audio or instant message

calls, or both. In the case of audio calls, input from the user can be in the form of Dual - Tone

Multi - Frequency (DTMF) tones, speech recognition, or both. The text - to - speech engine, available

in 26 different languages, is used to convert text to prompts that the caller hears during different

activities of the workfl ow. Professionally recorded audio prompts can also be substituted to give

the IVR a more polished feel.

 The UCMA 3.0 Workfl ow SDK consists of a collection of communications - enabled Windows

Workfl ow 3.0 activities. Under the covers, all of the workfl ow activities are implemented using

UCMA. You can use custom UCMA code to replicate any of the functionality in the UCMA 3.0

Workfl ow SDK workfl ow activities or even build your own custom activities.

 In this chapter, you learn how to build communications workfl ow solutions with the UCMA 3.0

Workfl ow SDK. You also learn how to build custom communications workfl ow activities, host

a UCMA 3.0 Workfl ow SDK communications workfl ow in a Windows Service, and initiate and

collect the output of a communications workfl ow from a UCMA application.

 SETTING UP YOUR DEVELOPMENT ENVIRONMENT

 Microsoft has made a set of virtual machines (VMs) available for companies and developers to

evaluate Microsoft Lync Server 2010. All the VMs are based on Windows Server 2008 R2 64 - bit

Standard Edition. One of the VMs is confi gured as a development machine; you can use these VMs

for your development, or you can build your own Microsoft Lync Server 2010 VM environment.

You can download these VMs at Microsoft.com.

 If you are working in your own Lync Server environment — or building a new one from scratch —

 you must install the UCMA 3.0 SDK on your development server and confi gure it to host a UCMA

3.0 Trusted Application Pool. Chapter 7 has detailed instructions for installing the UCMA 3.0 SDK

and creating a Trusted Application Pool.

 Requirements for Developing with the UCMA 3.0 Workfl ow SDK

 The UCMA 3.0 Workfl ow SDK includes Visual Studio project templates that you can use to create

inbound and outbound communications workfl ow projects. You can also install additional language

packs to allow the communications workfl ow to provide speech recognition and text - to - speech

capabilities in different languages.

 Visual Studio Support

 You can use Visual Studio 2008 SP1 or Visual Studio 2010 targeting .NET Framework 3.5 to build

UCMA 3.0 Workfl ow SDK applications. You can ’ t develop UCMA 3.0 workfl ows that target the

.NET Framework 4.0.

 Windows Workfl ow Foundation Support

 The UCMA 3.0 Workfl ow SDK is largely unchanged from the 2.0 version, so it will not work with

Windows Workfl ow Foundation 4.0. However, you can use workfl ow activities from Windows

Workfl ow Foundation 3.0 and 3.5 when developing communications workfl ows with the UCMA

3.0 Workfl ow SDK.

 Installing the UCMA 3.0 Workfl ow SDK

 The UCMA 3.0 Workfl ow SDK is installed as part of the UCMA 3.0 SDK installation process. The

UCMA 3.0 SDK can only be installed on 64 - bit versions of Windows Server.

 The UCMA 3.0 Workfl ow SDK is installed to C:\Program Files\Microsoft UCMA 3.0\SDK\

Workflow . You can fi nd the necessary assemblies, SDK documentation, and sample applications

in this folder.

 Assemblies

 If you ’ re not creating your Visual Studio project from one of the Communications Workfl ow

project templates, you can reference Microsoft.Rtc.Workflow.dll from C:\Program Files\

Microsoft UCMA 3.0\SDK\Workflow\Bin , or directly from the GAC.

 Visual Studio Project Templates

 When creating a new project in Visual Studio, the New Project dialog allows you to choose the

version of the .NET Framework that your application should target. You simply change the target

to .NET Framework 3.0 or 3.5 and click on the Communications Workfl ow section.

 You can use the following Visual Studio project

templates to create communications workfl ow

applications with the UCMA 3.0 Workfl ow SDK,

as shown in Figure 14 - 1:

 Inbound Sequential Workfl ow Console

Application

 Outbound Sequential Workfl ow Console Application

 A communications workfl ow created using the Inbound Sequential Workfl ow Console Application

project template handles incoming audio and instant message calls. This is suitable for a personal

virtual assistant scenario; for example, an employee calling in to reserve a conference room using a

voice - enabled conference room scheduler.

 On the other hand, a communications workfl ow created using the Outbound Sequential Workfl ow

Console Application project template will initiate audio or instant message calls to users. You can

use these types of communications workfl ows in a customer service scenario, where you would

follow up with customers and ask them to take a short survey about their experience.

➤

➤

 FIGURE 14 - 1

Setting Up Your Development Environment ❘ 431

432 ❘ CHAPTER 14 BUILDING COMMUNICATIONS-ENABLED BUSINESS PROCESSES

 Installing Additional Language Packs

 After installing the UCMA 3.0 SDK, you can install additional language packs that your

communications workfl ow application can use to provide speech recognition and text - to - speech

functionality in a particular locale.

 Separate downloads are available for speech recognition and text - to - speech language packs. The

text - to - speech packs are often referred to by the character name; for example, Helen for en - US.

 Language packs are available for the locales listed in Table 14 - 1.

 In the companion project available with this chapter, the code created in
 Program.cs by the Visual Studio project template is encapsulated into a new
class called WorkflowInitiator . The Program class is responsible for calling
into the WorkflowInitiator class to start the workfl ow. Separating the
workfl ow startup logic into the WorkflowInitiator class allows you to start
the workfl ow from a project other than a console application; for example, a
Windows Service. Later in this chapter, you learn how to deploy a UCMA 3.0
Workfl ow SDK communications workfl ow into a Windows Service.

 LOCALE LANGUAGE (COUNTRY) VOICE NAME

 ca - ES Catalan (Spain) Herena

 da - DK Danish (Denmark) Helle

 de - DE German (Germany) Hedda

 en - AU English (Australia) Hayley

 en - CA English (Canada) Heather

 en - GB English (United Kingdon) Hazel

 en - IN English (India) Heera

 en - US English (United States) Helen

 es - ES Spanish (Spain) Helena

 es - MX Spanish (Mexico) Hilda

 fi - FI Finnish (Finland) Heidi

 fr - CA French (Canada) Harmonie

 fr - FR French (France) Hostense

 it - IT Italian (Italy) Lucia

TABLE 14-1: UCMA 3.0 Language Packs

 CREATING YOUR FIRST COMMUNICATIONS WORKFLOW

 The code accompanying this chapter contains a simple Help Desk communications workfl ow

application that demonstrates using the UCMA 3.0 Workfl ow SDK to build an inbound audio -

 enabled communications workfl ow.

 In this workfl ow, an employee calls in and authenticates by entering his PIN number. The workfl ow

then retrieves a list of open Help Desk tickets that were created by the caller and prompts him to

choose one. The workfl ow checks to see whether the Help Desk support agent assigned to the ticket

is available, and transfers the call to the agent. In this chapter, you learn how this communications

workfl ow was constructed. You can download the completed code at www.wrox.com.

 Creating a New Communications Workfl ow Project

 Now you will learn how to create a new Inbound Sequential Workfl ow project using the Visual

Studio project template available with the UCMA 3.0 Workfl ow SDK. After creating the

 LOCALE LANGUAGE (COUNTRY) VOICE NAME

 ja - JP Japanese (Japan) Haruka

 ko - KR Korean (Korea) Heami

 nb - NO Norwegian (Norway) Hulda

 nl - NL Dutch (The Netherlands) Hanna

 pl - PL Polish (Poland) Paulina

 pt - BR Portuguese (Brazil) Heloisa

 pt - PT Portuguese (Portugal) Helia

 ru - RU Russian (Russia) Elena

 sv - SE Swedish (Sweden) Hedvig

 zh - CN Chinese (China) HuiHui

 zh - HK Chinese (Hong Kong SAR) HunYee

 zh - TW Chinese (Taiwan) HanHan

 You may have noticed that the majority of the language pack voice names start
with the letter H. This is in reference to the underlying technology: HMM - based
Speech Synthesis. HMM stands for Hidden Markov Model, which is a form of
a Bayesian learning network commonly used for pattern recognition. After the
network is trained for a specifi c language, it can be used for speech recognition.

Creating Your First Communications Workfl ow ❘ 433

http://www.wrox.com

434 ❘ CHAPTER 14 BUILDING COMMUNICATIONS-ENABLED BUSINESS PROCESSES

communications workfl ow project, you will see how the workfl ow accepts and disconnects the

incoming call, arranges workfl ow activities into a communications sequence, and handles global

communications commands and events.

 To create a new communications workfl ow project, open Visual Studio 2010 and create a new

Inbound Sequential Workfl ow Console Application project (this project template is available in the

Communications Workfl ow Installed Templates section under C# or VB.NET). Make sure you

target .NET Framework 3.5 or you won ’ t see the project template in the New Project dialog.

 The Inbound Sequential Workfl ow Console Application Visual Studio project template hosts the

UCMA 3.0 Workfl ow SDK workfl ow in a console application, providing you with a convenient way

to develop and test the workfl ow. Later in this chapter, you learn how to host a communications

workfl ow in a Windows Service.

 You are fi rst prompted to choose a language for the workfl ow; any language packs that you have

installed in your development environment will be available for you to choose from, as shown in

Figure 14 - 2. You can choose only one language for the workfl ow.

 Workflow1.xoml opens in the workfl ow designer after you create the project. You can see the

activities that were automatically added to the workfl ow in Figure 14 - 3.

 FIGURE 14 - 2

 FIGURE 14 - 3

 You can also see the code - behind of the workfl ow by opening Workflow1.xoml.cs .The code - behind

of the workfl ow typically contains event handlers for the various workfl ow activities and other

business logic on which the workfl ow relies.

 Before you starting adding activities to the workfl ow, notice that it only consists of an AcceptCall activity

and a CommunicationsSequence activity, which contains a DisconnectCall activity. If you were to run

this workfl ow and call into it, it would pick up the call and hang up immediately.

 Accepting and Disconnecting Audio Calls and Instant Messages

 The AcceptCall activity is the fi rst workfl ow activity in an inbound communications workfl ow; it

is responsible for accepting the incoming audio or instant message call and passing the workfl ow

execution fl ow on to the CommunicationsSequence activity.

 The DisconnectCall activity will disconnect the current audio or instant message call, ending the

workfl ow execution.

 Communications Sequences

 The CommunicationsSequence activity acts as a container for workfl ow activities; the workfl ow

activities in a CommunicationSequence activity are executed in sequence. This activity is created by

default when you create a communications workfl ow project and cannot be deleted.

 A UCMA 3.0 Workfl ow SDK communications workfl ow is obviously intended to handle multiple

concurrent calls. The CommunicationsSequence activity knows which call to execute the workfl ow

sequence for based on its CallProvider property, which is set by default to an instance of the

 AcceptCall activity representing a call into the workfl ow as shown in Figure 14 - 4.

 A communications workfl ow must have at least one CommunicationSequence activity. Using

multiple CommunicationSequence activities in a communications workfl ow allows you to separate

specifi c pieces of the workfl ow logic.

 The CommunicationsSequence activity also provides scope for communications events

and commands. You can access the communications events and commands for a

 CommunicationsSequence activity by choosing View Commands or View CommunicationsEvents

from the context menu of the activity, as shown in Figure 14 - 5.

 Instead of continuing to distinguish between the two, the term call is used
interchangeably to refer to either an audio or instant message conversation.

 FIGURE 14 - 4
 FIGURE 14 - 5

 Commands

 Commands provide a global mechanism for handling commands from the caller at any point in the

communications sequence. A command can be something as simple as the caller saying “ Help ” or

pressing 0 to get help during the workfl ow. Commands can also be used to recognize specifi c words

from callers regardless of where they are in the workfl ow sequence; for example, by listening for

profanity to recognize whether the caller is upset or frustrated.

Creating Your First Communications Workfl ow ❘ 435

436 ❘ CHAPTER 14 BUILDING COMMUNICATIONS-ENABLED BUSINESS PROCESSES

 You can access the Commands activity by selecting View Commands from the context menu of the

 CommunicationsSequence activity shown in Figure 14 - 5. This opens the Commands activity in the

designer as shown in Figure 14 - 6.

 You can drag activities into the Commands activity and build a simple communications sequence of

workfl ow activities that execute when the specifi c command is prompted.

 For example, you can drag a SpeechHelpCommand activity into the Commands activity, as shown in

Figure 14 - 7, and add workfl ow activities that execute when the Help command triggers.

 FIGURE 14 - 6

 FIGURE 14 - 7

 The following command activities are available in the UCMA 3.0

Workfl ow SDK:

 SpeechCommand

 SpeechHelpCommand

 SpeechRepeatCommand

 You learn more about these activities later in this chapter.

 Communications Events

 Communications events enable the workfl ow to react to global

events, such as the caller entering incorrect input several times.

You can access the CommunicationsEvents activity by selecting

View CommunicationsEvents from the context menu of the

 CommunicationsSequence activity. A CallDisconnected event is

added by default to the CommunicationsEvents , as shown in

Figure 14 - 8, to perform logic that handles disconnecting the call.

➤

➤

➤

 FIGURE 14 - 8

 You can drag other activities into the CommunicationsEvents

activity and build a simple communications sequence of

workfl ow activities that execute when the specifi c

event fi res. For example, you can drag a ConsecutiveNo

RecognitionsSpeechEvent activity into the Communications

Events activity, as shown in Figure 14 - 9, and add workfl ow

activities to transfer callers to a customer agent when they

provide invalid input a confi gurable number of consecutive

times during the workfl ow.

 The following communications event activities are available in

the UCMA 3.0 Workfl ow SDK:

 CallDisconnectedEvent

 CallOnHoldEvent

 CallOnHoldTimeoutEvent

 CallRetrievedEvent

 ConsecutiveNoInputsSpeechEvent

 ConsecutiveSilencesSpeechEvent

 ConsecutiveNoRecognitionsSpeechEvent

 ConsecutiveNoInputsInstantMessagingEvent

 ConsecutiveSilencesInstantMessagingEvent

 ConsecutiveNoRecognitionsInstantMessagingEvent

 You learn more about these activities later in this chapter.

 Starting the Communications Workfl ow

 Open WorkflowInitiator.cs . The code starts the UCMA CollaborationPlatform and creates

an ApplicationEndpoint on which the application can receive calls. When the endpoint receives

the call, it executes the handler for the specifi c type of call and starts the workfl ow. You ’ re already

familiar with most of this code from the Chapter 7, so this section will focus instead on confi guring

the endpoint to handle calls and starting the communications workfl ow.

 The WorkflowInitiator class in the Help Desk IVR project isn ’ t created by default as part of the

Visual Studio project template for an inbound or outbound communications workfl ow. Moving

this logic into its own class and simply calling into it from the console application ’ s Main method is

helpful. This allows you to separate the workfl ow startup code in such a way that it can be called by

a Windows Service (or other host process) project that references the workfl ow project.

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

 FIGURE 14 - 9

Creating Your First Communications Workfl ow ❘ 437

438 ❘ CHAPTER 14 BUILDING COMMUNICATIONS-ENABLED BUSINESS PROCESSES

 Initializing the Communications Workfl ow

 Before wiring up the workfl ow to accept and handle calls, the code in the project template initializes

the Windows Workfl ow Foundation workfl ow runtime and confi gures it to run the UCMA 3.0

Workfl ow SDK services that the communications workfl ow will use.

 The code fi rst creates an instance of System.Workflow.Runtime representing an instance of the

Windows Workfl ow Foundation runtime to be used as a runtime engine for workfl ows.

 Two UCMA 3.0 Workfl ow SDK services are then added to the workfl ow runtime: Communications

WorkflowRuntimeService and TrackingDataWorkflowRuntimeService .

 The workfl ow runtime is then started by calling StartRuntime() :

_workflowRuntime = new WorkflowRuntime();
_workflowRuntime.AddService(new CommunicationsWorkflowRuntimeService());
_workflowRuntime.AddService(new TrackingDataWorkflowRuntimeService());
_workflowRuntime.StartRuntime();

 Code snippet HelpDeskIVR\Workfl owInitiator.cs

 CommunicationsWorkflowRuntimeService allows the workfl ow runtime to control the underlying

UCMA call and endpoint objects. TrackingDataWorkflowRuntimeService allows the workfl ow

runtime to track the usage of various activities within the workfl ow.

 Wiring Up AudioVideoCallReceived and InstantMessagingCallReceived

 After the collaboration platform startup process is completed and the application endpoint setting

confi gured, use the RegisterForIncomingCall < T > method on ApplicationEndpoint to register

for an incoming call. To register for an AudioVideoCall , specify that as the type of call and provide

a delegate to execute when a call of that type is received:

_endpoint.RegisterForIncomingCall < AudioVideoCall > (AudioVideoCallReceived);

 Code snippet HelpDeskIVR\Workfl owInitiator.cs

Available for

download on

Wrox.com

Available for

download on

Wrox.com

Available for

download on

Wrox.com

Available for

download on

Wrox.com

 USING AUTO PROVISIONING IN THE WORKFLOW STARTUP CODE

 The Visual Studio project templates for inbound and outbound communications

workfl ows are unchanged from the UCMA 2.0 Workfl ow SDK, so they don ’ t

take advantage of the new Auto Provisioning functionality in UCMA 3.0. A

recommendation is that you replace the startup code that is created by default as part

of the Visual Studio project template and replace it with the code from Chapter 7.

 Refer to the companion project available with this chapter for an example of

integrating the workfl ow startup code with the collaboration platform startup code

that takes advantage of Auto Provisioning.

The handler accepts two parameters: the sender and an instance of CallReceivedEventArgs < T > :

private static void AudioVideoCallReceived(object sender,
CallReceivedEventArgs < AudioVideoCall > e)

 Code snippet HelpDeskIVR\Workfl owInitiator.cs

You can also use a lambda expression instead of specifying a separate handler:

_endpoint.RegisterForIncomingCall < AudioVideoCall > (
 (s, e) = >
 {
 // Insert code to run when the AudioVideoCall is received
 });

 To register for an incoming instant message, specify InstantMessagingCall as the type of call:

_endpoint.RegisterForIncomingCall < InstantMessagingCall >
 (InstantMessagingCallReceived);

Provide a handler to execute when the endpoint receives an instant messaging call:

private static void InstantMessagingCallReceived(object sender,
CallReceivedEventArgs < InstantMessagingCall > e)

 Starting the Communications Workfl ow Runtime Service and Loading the
Workfl ow Instance

 The instance of CallReceivedEventArgs in the call received handler contains the UCMA Call

object representing the incoming call that will be attached to the instance of the communications

workfl ow.

 The StartWorkflow function creates an instance of the workfl ow and then initializes the

 CommunicationsWorkflowRuntimeService for the instance, as shown in the following:

WorkflowInstance workflowInstance =
 _workflowRuntime.CreateWorkflow(typeof(Workflow1));
var communicationsWorkflowRuntimeService = (CommunicationsWorkflowRuntimeService)
 workflowRuntime.GetService(typeof(CommunicationsWorkflowRuntimeService));

 Code snippet HelpDeskIVR\Workfl owInitiator.cs

 As shown in the following code, EnqueueCall is called on the CommunicationsWorkflow

RuntimeService instance to attach the call to the instance of the workfl ow. SetEndpoint is then

called to attach the workfl ow instance to the application endpoint. Finally, SetWorkflowCulture

is called to set the language that the workfl ow will use (the language is chosen when initially

creating the workfl ow project. The workfl ow engine now begins processing the activities in the

communications sequence.

Available for

download on

Wrox.com

Available for

download on

Wrox.com

Available for

download on

Wrox.com

Available for

download on

Wrox.com

Creating Your First Communications Workfl ow ❘ 439

440 ❘ CHAPTER 14 BUILDING COMMUNICATIONS-ENABLED BUSINESS PROCESSES

communicationsWorkflowRuntimeService.EnqueueCall
 (workflowInstance.InstanceId, call);
communicationsWorkflowRuntimeService.SetEndpoint
 (workflowInstance.InstanceId, _endpoint);
communicationsWorkflowRuntimeService.SetWorkflowCulture
 (workflowInstance.InstanceId, new CultureInfo(“en-US”));

 Code snippet HelpDeskIVR\Workfl owInitiator.cs

The call is terminated if an error occurs during this process. The error - handling code in the

 StartWorkflow function block is skipped for brevity.

 Trusted Application and Trusted Application Endpoint

 As with a UCMA application running in a console application or Windows Service, a UCMA 3.0

Workfl ow SDK workfl ow must be associated with a trusted application endpoint, which in turn is

associated with a trusted application.

 The trusted application endpoint is the contact that users will call from Microsoft Lync; for example,

users would call the Help Desk at sip:helpdesk@fabrikam.com . A phone number can also be exposed

so that users can call the Help Desk from a device such as a mobile phone or other non - Lync device.

 In the companion Help Desk IVR project, the app.config fi le contains two confi guration keys:

 ApplicationId and TrustedContactURI , representing the trusted application and trusted

application endpoint.

 Refer to Chapter 7 for instructions on how to create a trusted application and trusted application

endpoint.

 WORKING WITH COMMUNICATIONS WORKFLOW ACTIVITIES

 At the core of any communications workfl ow is the ability to communicate with callers and

get information from them. The UCMA 3.0 Workfl ow SDK includes a collection of Windows

Workfl ow Foundation 3.0 – and 3.5 – compatible workfl ow activities that you can add to a

communications workfl ow. These activities are accessible via the Visual Studio Toolbox in the

Unifi ed Communications Workfl ow section. The toolbox also contains Windows Workfl ow v3.0

and Windows Workfl ow v3.5 sections, which contain more general workfl ow activities that you can

add to a communications workfl ow.

 This chapter focuses on using speech - enabled workfl ow activities. However, the following sections

also describe the equivalent instant messaging activities where applicable and draw parallels

between using both types.

 Interacting with Callers with Statement Activities

 You can use statement activities to send audio or instant message prompts to the caller during the

execution of the communications workfl ow. Statements activities are one - way; they don ’ t accept any

input from the caller.

Available for

download on

Wrox.com

Available for

download on

Wrox.com

Available for

download on

Wrox.com

Available for

download on

Wrox.com

 SpeechStatement Activity

 You can use the SpeechStatement activity to allow the communications

workfl ow to synthesize and read a prompt to the caller, or to play a

professionally recorded prompt. This activity doesn ’ t accept any input

from the caller; the workfl ow runtime will immediately move on to

processing the next activity in the communications sequence.

 Drag a SpeechStatement activity into the communications sequence in

the workfl ow designer surface. As you can see in Figure 14 - 10, a yellow

exclamation mark is on the top right of the activity.

 The yellow exclamation mark indicates that the workfl ow activity is

missing a piece of information necessary for it to execute. When you

hover over the exclamation mark, you see the following message:

 “ Please specify the main prompt used by this activity. The main prompt

is used on the fi rst turn. ”

 Open the properties of the SpeechStatement activity and set the

value of the MainPrompt property to “ Welcome to the Help

Desk ” as shown in Figure 14 - 11.

 Notice that the yellow exclamation mark no longer appears on

the SpeechStatement activity. When the workfl ow runtime gets

to this activity, it uses the text - to - speech engine in the en - US

language back to synthesize the text of the MainPrompt property

and read it back to the caller.

 InstantMessagingStatement Activity

 The InstantMessagingStatement activity is identical to the SpeechStatement activity except that it

communicates with the caller via instant messaging. It also contains a MainPrompt property that you

must set to the text that will be sent to the caller when the workfl ow runtime executes the activity.

 Querying Callers with Question/Answer Activities

 The usefulness of a communications workfl ow would be very limited if it weren ’ t for the ability to

collect input from the caller. The SpeechQuestionAnswer and InstantMessagingQuestionAnswer

activities are used to gather speech and instant messaging input from the caller.

 This section starts by providing a high - level overview of these activities. Later in this chapter,

you learn how to confi gure more advanced properties of the activities, such as speech and DTMF

grammars to enable them to accept complex input from the caller.

 InstantMessagingQuestionAnswer Activity

 You can use the InstantMessagingQuestionAnswer to prompt the caller for input via instant message.

Other than the obvious, the only difference between this activity and the SpeechQuestionAnswer activity

is that it doesn ’ t expose some of the same timeout properties that the SpeechQuestionAnswer

activity does.

 FIGURE 14 - 10

 FIGURE 14 - 11

Working with Communications Workfl ow Activities ❘ 441

442 ❘ CHAPTER 14 BUILDING COMMUNICATIONS-ENABLED BUSINESS PROCESSES

 The reason for this is that detecting the end of an instant messaging communication — the caller

presses Enter or clicks Send — is a lot simpler for the workfl ow runtime than detecting the end of

speech input from the caller.

 SpeechQuestionAnswer Activity and Its Properties

 You use the SpeechQuestionAnswer activity to prompt the caller for input.

Drag a SpeechQuestionAnswer activity onto the design surface; you will notice

again that a yellow exclamation mark is visible on the top right of the activity, as

shown in Figure 14 - 12. You need to set the MainPrompt property of the activity

and defi ne the grammars that it will use to validate input. You learn more

about grammars later in this chapter.

 Open and explore the properties of the SpeechQuestion

Answer activity, as shown in Figure 14 - 13.

 Prompts

 The SpeechQuestionAnswer activity has a number of

prompt properties that you can confi gure. In this section, you

learn how to set these prompts in the property dialog of the

activity. Later in this chapter, you learn to set these prompts

dynamically in code or confi gure them to use professionally

recorded audio prompts.

 MainPrompt : Set the value of the MainPrompt

property to the text that the activity will read to

the caller when the activity executes; for example,

 Please enter your PIN code .

 NoRecognitionPrompt : Set the value of

the NoRecognitionPrompt property to the prompt that the activity will play when it can ’ t

recognize the input provided by the caller. Input is not recognized by the activity when it

doesn ’ t match the rules specifi ed in the ExpectedDtmfInputs , ExpectedSpeechInputs ,

 DtmfGrammars , or Grammars properties of the activity.

 EscalatedNoRecognition : If you set a value for the EscalatedNoRecognitionPrompt

property, the activity will play the prompt when the caller enters invalid input two or

more times.

 SilencePrompt : Set the value of the SilencePrompt property to a prompt to play if the

timeout set in the activity ’ s InitialSilenceTimeout property has elapsed without

the caller providing any input.

 EscalatedSilencePrompt : If you set a value for the EscalatedSilencePrompt property,

the activity will play the prompt when the user stays silent two or more times in a row.

 HelpPrompt : Set the value of the HelpPrompt property to a prompt to play if the user input

matches the grammar specifi ed by the Help command in scope to the communications

sequence. You learn how to confi gure the workfl ow Help command later in this chapter.

➤

➤

➤

➤

➤

➤

 FIGURE 14 - 12

 FIGURE 14 - 13

 RepeatPrompt : Set the value of the RepeatPrompt property to a prompt to play if the

user input matches the grammar specifi ed by the Repeat command in scope to the

communications sequence. You learn how to confi gure the workfl ow Repeat command later

in this chapter.

 Timeouts

 The SpeechQuestionAnswer activity has a number of timeout properties that you can confi gure.

➤

 CompleteTimeout : This property refers to the length of silent time required following user

input before the recognizer fi nalizes the result. This is set by default to 00:00:00.5000000 ;

however, increasing this to 00:00:01 or more gives the caller more time when providing

more complex input.

 IncompleteTimeout : This property refers to the length of time after user input that

recognition is complete. This is set by default to 00:00:01 ; you can experiment with this

value and increase it if appropriate depending on the input that the SpeechQuestionAnswer

activity is expecting.

 InitialSilenceTimeout : This property refers to the length of time before which the user

has to provide input or recognition fails. This is set by default to 00:00:03 ; which is enough

for most cases.

 CanBargeIn

 Setting CanBargeIn to True indicates that the caller can start providing input to the activity before

the activity has completed playing the prompt. For example, if the activity is listing a number of

choices for the caller to pick from, the caller would be able to say or input his choice before all

of them have been provided. Conversely, setting CanBargeIn to False ensures that recognition does

not start until the end of the prompt.

 ExpectedSpeechInputs and ExpectedDTMFInputs

 You can confi gure the SpeechQuestionAnswer activity to accept both speech and DTMF input

from the caller. When the input that the activity expects is limited or simple, you can describe it in

the ExpectedDtmfInputs and ExpectedSpeechInputs of the property.

 Drag another SpeechQuestionAnswer activity onto the design surface to prompt the user for the

action he would like to take. Set the MainPrompt to: Please say or enter 1 to check on the

status of a Help Desk ticket, or say or enter 2 to speak with a Help Desk agent .

 Editing the ExpectedDtmfInputs or ExpectedSpeechInputs properties in the properties dialog of

the SpeechQuestionAnswer activity brings up a string collection editor in which you can enter a set

of strings that the activity will expect.

➤

➤

➤

You may fi nd that the default value of some of the timeout properties might be
too short for practical use. Recommended values are described next.

Working with Communications Workfl ow Activities ❘ 443

444 ❘ CHAPTER 14 BUILDING COMMUNICATIONS-ENABLED BUSINESS PROCESSES

 To provide the values for the expected DTMF inputs, enter each on a separate line, as shown in

Figure 14 - 14.

 If you only want the caller to say the number of the choice, set the value of the ExpectedSpeechInputs

property to the same value as the ExpectedDtmfInputs property. Otherwise, edit the expected speech

inputs property of the activity to enter the appropriate string that the speech recognition engine will

attempt to match against, as shown in Figure 14 - 15.

 FIGURE 14 - 14 FIGURE 14 - 15

 Note that the accuracy of speech recognition may suffer if your strings are complex; you might

want to adjust your prompt to something like, Please say Ticket or enter 1 to check on

the status of a Help Desk ticket, or say Agent or enter 2 to speak with a Help

Desk agent .

 GETTING THE OUTPUT OF A SPEECHQUESTIONANSWER ACTIVITY

 You can get the output of a SpeechQuestionAnswer activity using its

 RecognitionResult property:

this.ChooseTask.RecognitionResult.Text.Replace(“ “, String.Empty)

 The resulting text must be cleaned up by removing blank spaces.

 Other Communications Workfl ow Activities

 The Unifi ed Communications Workfl ow section of the Toolbox contains several other

workfl ow activities that you can use in a communications workfl ow. Two of the more commonly

used activities are GetPresence and BlindTransfer ; consult the UCMA 3.0 Workfl ow SDK

documentation for information about other activities.

 The GetPresence Activity

 You use the GetPresence activity to get the presence of a contact or multiple

contacts with specifi ed SIP URIs, as shown in Figure 14 - 16.
 FIGURE 14 - 16

 As shown in the following code, you can specify the Targets property in the property dialog

of the activity or set its value in the code - behind of the workfl ow by setting the property to a

 List < RealTimeAddress > . Make sure to add a using statement for Microsoft.Rtc.Signaling to

be able to use RealTimeAddress in your code.

this.GetAgentPresence.Targets.Add(
 new RealTimeAddress(this.TicketAssignedTo));

 Code snippet HelpDeskIVR\Workfl ow1.xoml.cs

Available for

download on

Wrox.com

Available for

download on

Wrox.com

The GetPresence activity doesn ’ t have an event handler or code - behind in
which you can set the Targets property. Instead, set the value of the Targets
property in the ExecuteCode event handler of the Code activity available with
Windows Workfl ow Foundation 3.0. Make sure to set the Targets property of
the GetPresence activity before it is executed.

 Use the Results property of the GetPresence activity to get the presence of the SIP URIs specifi ed

in the Targets property. Results returns a Dictionary < RealTimeAddress, PresenceResult > .

You will most likely execute some branching logic based on the results of this operation. Make sure

to add a using statement for Microsoft.Rtc.Workflow.Common to be able to use PresenceResult .

 The BlindTransfer Activity

 The BlindTransfer activity, shown in Figure 14 - 17, performs a blind

transfer to the contact specifi ed in its CalledParty property.

 In a blind transfer, the workfl ow runtime will hand off call control back to the

Microsoft Lync Server 2010 infrastructure and disconnect itself from the call.

The drawback of this approach is that, as the developer, you won ’ t be able to take any action based

on the result of the transfer; for example, the called party didn ’ t pick up.

 Later in this chapter, you learn how to use custom UCMA code to perform an attended call transfer,

only handing off call control when the called party has picked up the call.

 Adding Windows Workfl ow Foundation Activities

 The Windows Workfl ow v3.0 section in the Toolbox contains several activities that you may fi nd

useful when building communications workfl ows. This section describes how you can use the Code

and IfElse activities to interact with the UCMA 3.0 Workfl ow SDK activities in a communications

workfl ow. Consult the Windows Workfl ow Foundation documentation for information about the

other workfl ow activities.

 The Code Activity

 Use the Code activity, shown in Figure 14 - 18, to execute custom code at any

time during the workfl ow. The most common use case for the Code activity is

to perform pre - and post - processing for the other UCMA 3.0 Workfl ow SDK

 FIGURE 14 - 17

 FIGURE 14 - 18

Working with Communications Workfl ow Activities ❘ 445

446 ❘ CHAPTER 14 BUILDING COMMUNICATIONS-ENABLED BUSINESS PROCESSES

activities in the workfl ow; for example, to set the Targets property of a GetPresence activity and

retrieve its results afterwards.

 Double - click the Code activity in the workfl ow designer to generate its ExecuteCode event handler

in the code - behind of the workfl ow.

 The IfElse Activity

 Use the IfElse activity, as shown in

Figure 14 - 19, to perform conditional

branching during the workfl ow. For example,

different workfl ow logic will execute

depending on the user ’ s choice: check on

the status of a ticket, or speak to an agent.

 There are two ways to defi ne a condition for

the IfElse activity: using a declarative rule

condition or using a code condition . When

using a declarative rule condition to validate an IfElse activity, you have to specify a validation

expression in the Rule Condition Editor window. The rule is stored in the workfl ow markup, not in

the code - behind fi le. On the other hand, when using a code condition, you specify a function in the

workfl ow ’ s code - behind whose purpose is to return true or false values indicating the validity of

the condition. Unlike with a declarative rule condition, you can put a breakpoint in the function and

debug it as the workfl ow is running. If the condition logic defi ned in a code condition is reusable,

you can apply it to other IfElse activities in the workfl ow.

 Setting a Declarative Rule Condition

 In the properties dialog of the IfElse activity, set the value of

the Condition property to Declarative Rule Condition ,

as shown in Figure 14 - 20, and give the condition a name. Edit

the Expression property to write the condition.

 In the Rule Condition Editor window, enter the following

code, which describes the condition for the rule to be true.

Check the RecognitionResult property of the ChooseOption

SpeechQuestionAnswer activity and create a condition based

on the caller ’ s input. The condition is true if the caller enters

 “ 1 ” or says “ ticket. ”

this.ChooseOption.RecognitionResult.Text.Replace(“ “, string.Empty) == “1”
|| this.ChooseOption.RecognitionResult.Text.Replace
 (“ “, string.Empty).ToLower() == “ticket”

 Code snippet HelpDeskIVR\Workfl ow1.rules

Available for

download on

Wrox.com

Available for

download on

Wrox.com

 FIGURE 14 - 19

 FIGURE 14 - 20

 The Rule Condition Editor will validate your code before saving it (see Figure 14 - 21).

 FIGURE 14 - 21

 Setting a Code Condition

 To confi gure the IfElse activity to use a code condition instead of a declarative rule condition,

create a function in the workfl ow ’ s code - behind with the following signature:

private void ConditionName(object sender, ConditionalEventArgs e)

For example, the following code condition function checks to see whether the agent assigned to the

selected ticket is online:

private void IsAgentOnlineCondition(object sender, ConditionalEventArgs e)
{
 if (this.GetAgentPresence.Results
 [new RealTimeAddress(this.TicketAssignedTo)].PresenceStatus
 == PresenceAvailability.Online)
 {
 e.Result = true;
 }
 else
 {
 e.Result = false;
 }
}

 Code snippet HelpDeskIVR\Workfl ow1.xoml.cs

In the property dialog of the IfElse activity, change the condition

type to a code condition and select IsAgentOnlineCondition as

the condition to use, as shown in Figure 14 - 22.

Available for

download on

Wrox.com

Available for

download on

Wrox.com

 FIGURE 14 - 22

Working with Communications Workfl ow Activities ❘ 447

448 ❘ CHAPTER 14 BUILDING COMMUNICATIONS-ENABLED BUSINESS PROCESSES

 USING PROMPTS TO CREATE A NATURAL DIALOG WITH
THE CALLER

 An IVR system is commonly used to collect information from callers before connecting them to an

agent. Information collected from the caller is used to provide context to the agent such as the caller ’ s

account number and what he is calling about. IVRs are also extensively used for self service; for

example, to retrieve information about an airline ’ s arrivals and departures, or to provide access to

the caller ’ s bank or credit card account information. In both scenarios, the goal is to ensure customer

satisfaction by servicing the caller ’ s request accurately, and in the shortest amount of time possible.

Well - constructed IVR prompts help create a natural dialog with callers, enabling them to effectively

interact with and navigate through the IVR.

 You learned earlier how to set the various prompt properties of the SpeechStatement and

 SpeechQuestionAnwer activities in their properties dialog. Although these prompts are suitable for

 “ Hello World ” applications, you will fi nd that to create natural - sounding prompts, you will want to

construct them dynamically. Instead of welcoming the caller with a simple “ Hello, ” wouldn ’ t it be

much more personal to say, “ Good morning, George ” ?

 In this section, you learn how to use the PromptBuilder to build prompts dynamically. Sometimes, the

text - to - speech engine needs a gentle nudge in the right direction in order to properly synthesize text such

as a date; you will learn how to use speech hints to guide it during synthesis. If you don ’ t want to use

speech synthesis, this section shows you how to integrate professionally recorded prompts into your IVR.

 Building Prompts Dynamically

 You are limited to static prompts when setting an activity ’ s prompts in the workfl ow designer. Static

prompts are rarely enough for a communications workfl ow to provide a natural and personalized

dialog with the caller. To achieve that, you need to set the text of the prompt at runtime, for

example, when personalizing the prompt to include the caller ’ s name. This section describes using

the TurnStarting event handler of the SpeechStatement or SpeechQuestionAnswer activities to

construct their prompts at runtime.

 The TurnStarting Event Handler

 When the workfl ow engine processes a SpeechStatement or SpeechQuestionAnswer activity, it is

said to take a turn through the activity. Both the SpeechStatement and SpeechQuestionAnswer

activities expose a TurnStarting event handler that executes before the workfl ow engine processes

the activity. This provides a perfect extensibility point for setting the activity ’ s prompts at runtime.

 If your condition code is the slightest bit complex, the author recommends using a
code condition instead of a declarative rule condition. Not only are debugging and
testing the condition easier when you can step through it in the code - behind of the
workfl ow, but they also help to keep your business logic organized in one place.

 You generate the TurnStarting event handler for a Speech

Statement or SpeechQuestionAnswer activity by right - clicking

the activity in the workfl ow designer and choosing Generate

Handlers. Open the activity ’ s Properties dialog; you will see the

event handler name as the value of the TurnStarting property,

as shown in Figure 14 - 23.

 The handler is generated in the workfl ow ’ s code - behind. You can

now set the activity ’ s various prompts in the handler body; for

example, use AppendText to set the MainPrompt of the Welcome

SpeechStatement activity:

private void Welcome_TurnStarting(object sender,
 Microsoft.Rtc.Workflow.Activities.SpeechTurnStartingEventArgs e)
{
 this.CallerUri =
communicationsSequenceActivity1.CallProvider.Call.RemoteEndpoint.Participant.Uri;

 this.Welcome.MainPrompt.ClearContent();
 this.Welcome.MainPrompt.AppendText(
 “Welcome {0}. I can help you manage your Help Desk tickets”,
 GetUserDisplayName(this.CallerUri));
}

 Code snippet HelpDeskIVR\Workfl ow1.xoml.cs

In this example, set MainPrompt to greet the caller by name — you can implement a function to

get the caller ’ s display name from Active Directory to provide a personalized greeting. AppendText

has several overloads that enable you to customize how the text is synthesized by the text - to - speech

engine. You can set the synthesized text ’ s emphasis, the rate or speech at which it is played by the

workfl ow engine, and its volume.

 Before setting an activity ’ s prompts in the TurnStarting handler, call ClearContent on the

prompt to clear its value. The workfl ow engine can take several turns through a SpeechStatement

or SpeechQuestionAnswer activity. If you don ’ t clear the prompt, the TurnStarting handler will

simply keep appending text to the prompt: “ Hello George. Hello George. Hello George. ”

Available for

download on

Wrox.com

Available for

download on

Wrox.com

 FIGURE 14 - 23

 Getting the Caller ’ s Identity in the TurnStarting Handler

 The TurnStarting handler of the WelcomeSpeechStatement activity is a great place to capture the

identity of the caller. You can use the caller ’ s URI to look up his name in Active Directory and greet

him by name.

If you set the value of a prompt both in the activity ’ s Properties dialog and
its TurnStarting handler, the workfl ow will use both. Make sure to use
 ClearContent to ensure that only the text you set in the TurnStarting handler
is appended to the prompt.

Using Prompts to Create a Natural Dialog with the Caller ❘ 449

450 ❘ CHAPTER 14 BUILDING COMMUNICATIONS-ENABLED BUSINESS PROCESSES

 The caller ’ s URI is available from the Uri property of the Participant object on the Call ’ s

endpoint:

this.CallerUri =
communicationsSequenceActivity1.CallProvider.Call.RemoteEndpoint.Participant.Uri;

 Code snippet HelpDeskIVR\Workfl ow1.xoml.cs

 Now that you know the caller ’ s URI, you can look up his display name in Active Directory using

this function:

private string GetUserDisplayName(string sipUri)
{
 try
 {
 DirectorySearcher ds = new DirectorySearcher();

 ds.SearchRoot = new DirectoryEntry(“”);
 ds.Filter = string.Format(“msrtcsip-primaryuseraddress={0}”, sipUri);
 ds.PropertyNamesOnly = false;
 ds.ServerTimeLimit = new TimeSpan(0, 10, 0);

 SearchResult result = ds.FindOne();

 string userPrincipalName = result.Properties[“displayName”][0].ToString();
 return userPrincipalName;
 }
 catch (Exception)
 {
 return String.Empty;
 }
}

 Code snippet HelpDeskIVR\Workfl ow1.xoml.cs

 Make sure you reference System.DirectoryServices.dll and add a using statement for System.

DirectoryServices .

 Using the PromptBuilder Class to Construct Prompts

 Use the PromptBuilder class to construct a complex prompt piece by piece just as you would use a

 StringBuilder to construct a string by appending strings to it. You ’ re already using the PromptBuilder

behind the scenes when calling AppendText or AppendBreak (or any of the other append functions on a

prompt). The only difference is that using the PromptBuilder class, you construct the prompt fi rst, and

then attach it to the activity.

 Take a look at an example of setting the NoRecognitionPrompt of the EnterPIN activity using

a PromptBuilder . First, clear the prompt. Create an instance of PromptBuilder and append the

no - recognition prompt text to it. After appending a medium - length break, append the text of

the MainPrompt , essentially repeating the instructions to the caller.

Available for

download on

Wrox.com

Available for

download on

Wrox.com

Available for

download on

Wrox.com

Available for

download on

Wrox.com

 After the PromptBuilder has been constructed, call AppendPromptBuilder on the

 NoRecognitionPrompt of the EnterPIN activity and pass in the PromptBuilder instance as a

parameter:

this.EnterPIN.Prompts.NoRecognitionPrompt.ClearContent();

var noRecPrompt = new PromptBuilder();
noRecPrompt.AppendText(“Sorry, I didn’t get that”);
noRecPrompt.AppendBreak(PromptBreak.Medium);
noRecPrompt.AppendText(this.EnterPIN.MainPrompt.ToString());
this.EnterPIN.Prompts.NoRecognitionPrompt.AppendPromptBuilder(noRecPrompt);

 Code snippet HelpDeskIVR\Workfl ow1.xoml.cs

 Using Speech Hints to Improve Speech Synthesis

 You can use speech hints to give the text - to - speech engine a hint on how the text should be

synthesized. For example, if you append a date to a prompt, the text - to - speech engine will attempt

to synthesize it phonetically unless you let it know that the text represents a date.

 In the Help Desk IVR example, the IVR lists the Help Desk tickets created by the caller and the

date they were created on. To present the choices to the caller, the MainPrompt of the ChooseTicket

activity is constructed in a for loop in its TurnStarting handler. The loop iterates through the

tickets created by the caller and appends the MainPrompt with the Description and DateCreated

of the ticket. Use AppendTextWithHint to specify a SayAs hint; in this case using SayAs.Date to

instruct the text - to - speech engine to synthesize the text as a date:

private void ChooseTicket_TurnStarting(object sender,
 Microsoft.Rtc.Workflow.Activities.SpeechTurnStartingEventArgs e)
{
 this.ChooseTicket.MainPrompt.ClearContent();
 this.ChooseTicket.MainPrompt.AppendText(
 “Please choose one of the following open tickets:”);
 this.ChooseTicket.MainPrompt.AppendBreak(PromptBreak.Medium);

 foreach (var ticket in _tickets)
 {

 this.ChooseTicket.MainPrompt.AppendText(“Ticket “ + ticket.Id);
 this.ChooseTicket.MainPrompt.AppendBreak(PromptBreak.Small);
 this.ChooseTicket.MainPrompt.AppendText(ticket.Description);
 this.ChooseTicket.MainPrompt.AppendBreak(PromptBreak.Small);
 this.ChooseTicket.MainPrompt.AppendText(“created on”);
 this.ChooseTicket.MainPrompt.AppendTextWithHint(
 ticket.DateCreated.ToShortDateString(), SayAs.Date);
 this.ChooseTicket.MainPrompt.AppendBreak(PromptBreak.Medium);
 }
}

 Code snippet HelpDeskIVR\Workfl ow1.xoml.cs

Available for

download on

Wrox.com

Available for

download on

Wrox.com

Available for

download on

Wrox.com

Available for

download on

Wrox.com

Using Prompts to Create a Natural Dialog with the Caller ❘ 451

452 ❘ CHAPTER 14 BUILDING COMMUNICATIONS-ENABLED BUSINESS PROCESSES

 The SayAs enum is available in the Microsoft.Speech.Synthesis namespace and contains the

following values:

 SpellOut

 NumberOrdinal

 NumberCardinal

 Date

 DayMonthYear

 MonthDayYear

 YearMonthDay

 YearMonth

 MonthYear

 MonthDay

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

 DayMonth

 Year

 Month

 Day

 Time

 Time24

 Time12

 Telephone

 Currency

 Text

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

Using AppendTextWithHint in conjunction with the Microsoft.Speech.Synthesis.SayAs

enum gives you the ability to ensure that text is synthesized in the manner that you intend it to be; for

example, using SpellOut to spell out some text, or Time24 to synthesize the time in

24 - hour format.

 Other Prompt Customizations

 The PromptBuilder class (or default PromptBuilder exposed by the prompts of the

 SpeechStatement and SpeechQuestionAnswer activities) provides some more ways of customizing

your activities ’ prompts.

 Emphasis, Rate, and Volume

 You can use different overloads of AppendText to append text to a prompt with a specifi c emphasis

or at a certain rate or volume.

 If you want to emphasize a certain piece of text, choose one of the values of the Microsoft

.Speech.Synthesis.PromptEmphasis enum to override the default prompt emphasis:

 Strong

 Moderate

 Reduced

➤

➤

➤

 Choose one of the values of the Microsoft.Speech.Synthesis.PromptRate enum to tell the text -

 to - speech engine to synthesize the prompt text at a specifi c rate:

 ExtraFast

 Fast

 Medium

 Slow

 ExtraSlow

 To synthesize prompt text at a particular volume, use the Microsoft.Speech.SpeechSynthesis

.PromptVolume enum:

 ExtraSoft

 Soft

 Medium

 Loud

 ExtraLoud

 Prompt Styles

 Individual overloads of AppendText are available to synthesize text with a particular emphasis,

rate, or volume. However, you can combine any or all three into a PromptStyle defi nition and use

 StartStyle and EndStyle to defi ne bounds of for the style:

this.EnterPIN.Prompts.NoRecognitionPrompt.ClearContent();
var noRecPrompt = new PromptBuilder();
noRecPrompt.StartStyle(
 new PromptStyle()
 {
 Emphasis = PromptEmphasis.Strong,
 Rate = PromptRate.ExtraFast,
 Volume = PromptVolume.ExtraLoud
 });
this.EnterPIN.Prompts.NoRecognitionPrompt.AppendText(
 “Sorry, I did not hear that!”);
this.EnterPIN.Prompts.NoRecognitionPrompt.EndStyle();

 Sentences and Paragraphs

 If your workfl ow contains longer prompts, you can divide them into paragraphs and sentences using

 StartParagraph , StartSentence , EndParagraph , and EndSentence .

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

Using Prompts to Create a Natural Dialog with the Caller ❘ 453

454 ❘ CHAPTER 14 BUILDING COMMUNICATIONS-ENABLED BUSINESS PROCESSES

 Working with Professionally Recorded Prompts

 Professional IVR systems typically use professionally recorded audio prompts instead of relying

on synthesized text. Although audio prompts provide a much more polished — and human — feel

to the IVR, pre - recording every piece of text that you expect to use in your prompts might be

impossible. You might fi nd that you need to mix audio prompts with synthesized text to achieve the

result you need.

Audio prompts should be recorded using the WAV format.

 Adding Recorded Prompts to the Workfl ow Project

 Add individual .wav fi les of your recorded prompts into a folder in your Visual Studio workfl ow

project; for example, audioprompts . For it to be accessible by the workfl ow runtime, set the Build

Action on each fi le to Content, and Copy to Output Directory to Copy Always.

 Constructing Audio Prompts

 Incorporating audio prompts into your activities is really simple; just call AppendAudio on a prompt

or PromptBuilder instance and provide the path to the recording to use:

this.Welcome.Prompts.MainPrompt.AppendAudio(@”audioprompts\welcome.wav”);

 WORKING WITH GRAMMARS

 If the input expected by a SpeechQuestionAnswer activity is too complex (or you just don ’ t know it

at design time) to be described in the ExpectedDtmfInputs or ExpectedSpeechInputs properties,

you can specify a grammar against which the input will be validated. When you know in advance

the various combinations of input that needs to be validated, you can defi ne the validation rules in a

GRXML grammar fi le. If the input you need to validate is more complex, you can use the objects in

the Microsoft.Speech.Recognition.SrgsGrammar namespace to create a grammar dynamically

at runtime.

 Using GRXML Grammars to Validate Input

 In the Help Desk IVR, the caller ’ s PIN is a fi ve - digit number. Before incurring the processing

cost of validating the PIN against a back - end system, the workfl ow can at least verify that it is

in the correct format. You can use a GRXML grammar to defi ne the rules for validating a

fi ve - digit number.

 Building a Simple Grammar File

 A GRXML fi le is just an XML fi le that references the http://www.w3.org/2001/06/grammar

namespace. The fi le contains rules that collectively defi ne the grammar. You can use a grammar to

validate both DTMF and voice input — the caller can say her PIN or enter it using the Lync keypad:

 < grammar xmlns=”http://www.w3.org/2001/06/grammar”
 version=”1.0”
 tag-format=”properties-ms/1.0”
 xml:lang=”en-US”
 root=”validPIN” >
 < rule id=”digit” scope=”public” >
 < one-of >
 < item > 0 < /item >
 < item > 1 < /item >
 < item > 2 < /item >
 < item > 3 < /item >
 < item > 4 < /item >
 < item > 5 < /item >
 < item > 6 < /item >
 < item > 7 < /item >
 < item > 8 < /item >
 < item > 9 < /item >
 < /one-of >
 < /rule >
 < rule id=”validPIN” scope=”public” >
 < one-of >
 < item repeat=”5” >
 < ruleref uri=”#digit”/ >
 < /item >
 < /one-of >
 < /rule >
 < /grammar >

 Code snippet HelpDeskIVR\PINGrammar.grxml

Available for

download on

Wrox.com

Available for

download on

Wrox.com

 Creating Rules

 The PIN grammar contains two rules: digit and validPIN . The digit rule specifi es that in

order for the input that the rule processes to be considered valid, it needs to be < one - of > the

listed < item > s.

 The validPIN rule references the digit rule and specifi es that valid input should consist of a

sequence of fi ve items that satisfy the digit rule. For example, 123e5 would be considered invalid,

whereas 12345 would be considered valid input.

To specify that a grammar should only be used to validate DTMF or Voice
input, set its mode attribute; for example, mode= “ dtmf “ or mode= “ voice “ .

Working with Grammars ❘ 455

456 ❘ CHAPTER 14 BUILDING COMMUNICATIONS-ENABLED BUSINESS PROCESSES

 Specifying a Default Rule

 The rule specifi ed in the grammar ’ s root is the rule that is used to process input. As you can see

in the example of the PIN grammar, the root rule can reference other rules in the grammar.

 Associating a Grammar File with a Workfl ow Activity

 To associate a GRXML grammar with a workfl ow activity, set the DtmfGrammars or Grammars

property of the activity, as shown in Figure 14 - 24.

 In order for it to be accessible by the workfl ow runtime, set the Build Action on each grammar fi le

packaged with the workfl ow to Content, and Copy to Output Directory to Copy Always, as shown

in Figure 14 - 25.

 FIGURE 14 - 24

 FIGURE 14 - 25

 Building Grammars Dynamically in Code

 In the Help Desk IVR, the ChooseTicket activity in the workfl ow doesn ’ t know until runtime

how many open tickets are available for the caller. If the caller only has two open tickets, an input

of three when prompted to choose the ticket should be considered invalid. The ability to set the

expected inputs for the activity at design time — or use a GRXML grammar — isn ’ t suffi cient to

validate the caller ’ s input in this case. You must construct a grammar dynamically based on the

number of open tickets.

 Before creating the new grammar, clear out the activity ’ s ExpectedDtmfInputs and Expected

SpeechInputs properties.

 The number of choices to present to the caller is the number of open tickets from the caller. Create a

 string[] of choices based on the IDs of the open tickets.

 Create an instance of the SrgsDocument class to defi ne the grammar. Add a new rule to the

grammar by creating a new SrgsRule . Similarly to how you defi ned a < one - of > rule declaratively

in the GRXML fi le, you can create that rule in code by creating an instance of SrgsOneOf and

providing the string[] of choices, and adding it to the rule.

 Add the rule to the grammar ’ s Rules collection and then set it as the grammar ’ s Root rule.

 Finally, clear the activity ’ s DtmfGrammars and Grammars collections and add the new grammar to

each collection, as shown in the following code.

 this.ChooseTicket.ExpectedDtmfInputs = null;
this.ChooseTicket.ExpectedSpeechInputs = null;

var choices = new string[_tickets.Count];
choices = (from t in _tickets select t.Id.ToString()).ToArray();

var grammar = new SrgsDocument();

var rule = new SrgsRule(“Items”);
var oneOf = new SrgsOneOf(choices);
rule.Elements.Add(oneOf);
grammar.Rules.Add(rule);
grammar.Root = rule;

this.ChooseTicket.DtmfGrammars.Clear();
this.ChooseTicket.DtmfGrammars.Add(new Grammar(grammar));
this.ChooseTicket.Grammars.Clear();
this.ChooseTicket.Grammars.Add(new Grammar(grammar));

 Code snippet HelpDeskIVR\Workfl ow1.xoml.cs

Available for

download on

Wrox.com

Available for

download on

Wrox.com

Remember that because this code might be executing in the Turn_Starting
handler of an activity, clearing these properties before setting them is important;
otherwise, the new grammar will be added again to the Grammars collection of
the activity every time the Turn_Starting handler executes.

You can also optionally specify the grammar ’ s mode by setting the Mode property
of the SrgsDocument to a value of the Microsoft.Speech.Recognition.
SrgsGrammar enum, for example:

grammar.Mode = SrgsGrammarMode.Dtmf;

Working with Grammars ❘ 457

458 ❘ CHAPTER 14 BUILDING COMMUNICATIONS-ENABLED BUSINESS PROCESSES

 Other Tools to Build GRXML Grammars

 Unfortunately, the UCMA 3.0 Workfl ow SDK doesn ’ t contain any tools specifi cally intended for

authoring GRXML grammars. Developers familiar with Microsoft Speech Server 2007 will recall

that it contains tools for authoring GRXML grammars. Many IVR developers still rely on the tools

available with Speech Server 2007 to author GRXML grammars intended for use in a UCMA 3.0

Workfl ow SDK communications workfl ow.

 The sample applications installed as part of the UCMA 3.0 Workfl ow SDK contain some helpful

examples of more complex GRXML grammars. You can fi nd these sample applications at

 C:\Program Files\Microsoft UCMA 3.0\SDK\Workflow\Sample Applications .

 The Microsoft Speech Platform SDK installed as part of the UCMA 3.0 SDK also contains very

helpful sample GRXML grammars. You can fi nd these at C:\Program Files\Microsoft Speech

Platform SDK\Samples\Sample Grammars .

 COMMUNICATIONS EVENTS AND COMMANDS

 Communications events and commands add another dimension to a communications workfl ow in

that they provide a global way to handle workfl ow events and react to workfl ow commands from

the caller. Events and commands are scoped to a communications sequence; you can access them

from the context menu of the CommunicationsSequence activity by selecting View Commands or

View CommunicationsEvents.

 Handling Global Workfl ow Events

 The metaphor for integrating communications event activities into your workfl ow is the same

regardless of the activity. Open the CommunicationsEvents activity of the communications

sequence by selecting View CommunicationsEvents from the context menu of the

 CommunicationsSequence activity. Drag an event activity into the CommunicationsEvents activity

and confi gure its properties if applicable. Finally, create the workfl ow activities that will execute

with the event is triggered.

 ConsecutiveNoRecognitionsSpeechEvent

 Use the ConsecutiveNoRecognitionsSpeechEvent activity to defi ne a workfl ow sequence that

executes when the caller ’ s input into a SpeechQuestionAnswer activity isn ’ t recognized after a

confi gurable number of attempts. For example, in the Help

Desk IVR, you might want to transfer the caller to an agent

if she enters an invalid PIN three times.

 Drag a ConsecutiveNoRecognitionsSpeechEvent

activity into the CommunicationsEvents activity.

Open the properties of the activity and set the

value of MaximumNoRecognitions to 3, as shown

in Figure 14 - 26. FIGURE 14 - 26

 Drag a SpeechStatement activity into the ConsecutiveNo

RecognitionsSpeechEvent activity, as shown in Figure 14 - 27, to let

the caller know that he is going to be transferred to an agent. Set the

 MainPrompt property of the SpeechStatement activity to: It looks

like you need help, let me transfer you to an agent .

 Drag a BlindTransfer activity into the CommunicationsEvents

activity, as shown in Figure 14 - 27, to perform a blind transfer of the

call to an agent.

 In a real IVR system, you will want to do something more sophisticated

than blindly transferring the call to someone; for example, forward the

call to an Automatic Call Distributor that will queue the call and wait

for an available agent.

 Other Communications Event Activities

 Here are the other communications event activities and the confi gurable properties you can set

for each.

 CallDisconnectedEvent : A CallDisconnectedEvent activity is added by default to every

workfl ow. Use this activity to execute custom logic after the caller disconnects the call.

 CallOnHoldEvent : The CallOnHoldEvent activity executes when the caller is placed

on hold.

 CallOnHoldTimeoutEvent : The CallOnHoldTimeoutEvent activity executes when the

caller has been on holder for longer than the time specifi ed in the CallOnHoldTimeout

property.

 CallRetrievedEvent : The CallRetrievedEvent activity executes when the caller is

taken off hold.

 ConsecutiveSilencesSpeechEvent : The ConsecutiveSilencesSpeechEvent

activity executes when the caller is silent a number of times in a row specifi ed in

the MaximumSilences property. When no input is provided within the time specifi ed

in the InitialSilenceTimeout of a SpeechQuestionAnswer activity, it is treated

as silence.

 ConsecutiveNoInputsSpeechEvent : The ConsecutiveNoInputsSpeechEvent activity

executes when the caller fails to provide input a number of times in a row specifi ed in the

 MaximumNoInputs property.

 Each no - recognition or silence event counts as a no - input event. The ConsecutiveNoInputs

SpeechEvent activity is thus able to handle a mix of no - recognition and silence events and act

accordingly.

 For example, set the MaximumNoInputs property of the ConsecutiveNoInputsSpeechEvent activity

to 3. Set the MaximumNoRecognitions property of the ConsecutiveNoRecognitionsSpeechEvent

activity to 3, and set the MaximumSilences property of the ConsecutiveSilencesSpeechEvent activity

to 3, as well.

➤

➤

➤

➤

➤

➤

 FIGURE 14 - 27

Communications Events and Commands ❘ 459

460 ❘ CHAPTER 14 BUILDING COMMUNICATIONS-ENABLED BUSINESS PROCESSES

 Consider the following input sequence from the caller in response to the EnterPIN activity

(see Table 14 - 2):

 SEQUENCE DESCRIPTION

 Prompt Please enter your PIN.

 Caller Response Silence

 Prompt Sorry, I did not hear that. Please enter your PIN.

 Caller Response 123e4

 Prompt I didn ’ t get that. Please enter your PIN.

 Caller Response Silence

TABLE 14-2: User Prompt Sequence

 At this point, neither the ConsecutiveNoRecognitionsSpeechEvent nor ConsecutiveSilences

SpeechEvent activities have reached the threshold defi ned in the MaximumNoRecognitions and

 MaximumSilences properties, respectively. However, in this sequence, three no - inputs have occurred.

This causes the ConsecutiveNoInputsSpeechEvent activity to execute.

 These event activities function identically to their speech counterparts:

 ConsecutiveSilencesInstantMessagingEvent

 ConsecutiveNoRecognitionsInstantMessagingEvent

 ConsecutiveNoInputsInstantMessagingEvent

 Implementing Global Workfl ow Commands

 Workfl ow commands provide a global mechanism for a communications workfl ow to process commands

from the user such as “ Help ,” or “ Operator. ” The SpeechHelpCommand and SpeechRepeatCommand are

closely tied to the HelpPrompt and RepeatPrompt prompt properties of the SpeechQuestionAnswer

activity. They trigger those prompts to play on the SpeechQuestionAnswer activity that the caller is

currently on. The SpeechCommand is a more powerful workfl ow command since a caller can trigger it

regardless of the SpeechQuestionAnswer activity that he is on.

 To add workfl ow commands to the Commands activity of the communications sequence, open the

 Commands activity by selecting View Commands from the context menu of the CommunicationsSequence

activity. Drag a command activity into the Commands activity and confi gure its properties if applicable.

Finally, create the workfl ow activities that will execute when the caller triggers the command.

 SpeechHelpCommand

 The SpeechHelpCommand activity is used to provide the caller with a mechanism to request help

during the workfl ow. Set the ExpectedDtmfInputs and ExpectedSpeechInputs properties of

➤

➤

➤

 SpeechHelpCommand activity. When the workfl ow is processing any SpeechQuestionAnswer

activity in the workfl ow, if the user provides input that matches the grammars defi ned for the

 SpeechHelpCommand , the caller will hear the RepeatPrompt of that activity.

 Drag a SpeechHelpCommand activity into the Commands activity as shown in Figure 14 - 28.

 Open the Properties of the SpeechHelpCommand activity and set its ExpectedDtmfInputs to “ 0 ”

and ExpectedSpeechInputs to “ Help ” as shown in Figure 14 - 29. When the caller enters 0 or says

Help, he will hear the RepeatPrompt of the activity he is on.

 You can drag other workfl ow activities into the SpeechHelpCommandActivity ; for example, to

acknowledge to the caller that he asked for help, as shown in Figure 14 - 30.

 FIGURE 14 - 28 FIGURE 14 - 29 FIGURE 14 - 30

 More importantly, set the value for HelpPrompt for the various activities in the workfl ow so that

they are equipped to handle the Help command. For example, set the HelpPrompt of the EnterPIN

activity to: I need your PIN so I can log you in to the Help Desk . A good technique is

to append some text to the activity ’ s HelpPrompt , and then append the value of the MainPrompt ,

effectively offering some explanation to the caller and then repeating the instructions.

 SpeechRepeatCommand

 The SpeechRepeatCommand activity is almost identical to the SpeechHelpCommand , except that

it is tied to the RepeatPrompt of SpeechQuestionAnswer activities in the workfl ow. Defi ne the

 ExpectedDtmfInputs and ExpectedSpeechInputs properties of the activity. When the caller provides

input that matches those grammars, they will hear the RepeatPrompt of the activity he is on.

 SpeechCommand

 The SpeechCommand activity is a very fl exible command activity that you can confi gure via its

 ExpectedDtmfInputs and ExpectedSpeechInputs properties to recognize and act upon specifi c

input from the caller.

Communications Events and Commands ❘ 461

462 ❘ CHAPTER 14 BUILDING COMMUNICATIONS-ENABLED BUSINESS PROCESSES

 A frustrated caller might begin to repeatedly say, “ Operator ” or “ Agent. ” Confi guring a

 SpeechCommand to recognize this and act on it is critical to providing a good experience for the

caller, perhaps transferring him to a priority customer service queue with a shorter hold time.

 CALLING UCMA CODE FROM A COMMUNICATIONS WORKFLOW

 When working with the UCMA 3.0 Workfl ow SDK, you will quickly realize that the built - in workfl ow

activities are only enough for basic communications scenarios. For example, it ’ s unlikely that you will

ever use the BlindTransfer activity in a production IVR application. When transferring a call, you

will typically want to perform an attended transfer, where the application only disconnects from the

call after the called party picks up. No built - in workfl ow activity to perform an attended transfer exists.

However, there is nothing stopping you from including custom UCMA code to perform an attended

transfer in your workfl ow solution.

 When the caller chooses a ticket in the Help Desk IVR application, instead of performing a blind

transfer of the call to the agent that the ticket is assigned to, the application should perform an

attended transfer of the call to the agent. This section describes how to use a Code activity to call

custom UCMA code that performs an attended transfer of the call to the agent.

 In an attended transfer, the original call is only disconnected when the called party picks up the

call. This allows you to add some business logic to the call transfer process to deal with any errors

that may occur during the transfer, or if the person who the call is being transferred to declines the

call or doesn ’ t pick up within a set amount of time.

 Creating a Code Activity to Perform the Attended Transfer

 To perform an attended call transfer, you need to write UCMA code to impersonate the caller,

create a new call, and then transfer the call. You can implement this logic in a Code activity.

 Add a Code activity, as shown in Figure 14 - 31, that will contain the code used to perform the

attended call transfer.

 FIGURE 14 - 31

 In the ExecuteCode handler of the Code activity, get a handle to the conversation endpoint and

create a new Conversation on the endpoint, as shown in the following code. You will use this new

 Conversation object to establish a new AudioVideo call to the agent that the ticket is assigned to.

private void TransferToAgent_ExecuteCode(object sender, EventArgs e)
{
 // Get the local endpoint
 var endpoint =
 communicationsSequenceActivity1.CallProvider.Call.Conversation.Endpoint;

 // Create a new conversation on the endpoint
 var conversation = new Conversation(endpoint);

...
}

 Code snippet HelpDeskIVR\Workfl ow1.xoml.cs

 Impersonating the Caller

 When you transfer the call to the agent, it will appear to come from the URI of the trusted

application endpoint by default, as shown in the following code. However, you can use

impersonation so that the call appears to come from the person who initially called into the Help

Desk IVR.

...

// Impersonate the caller
conversation.Impersonate(
 communicationsSequenceActivity1.CallProvider
 .Call.RemoteEndpoint.Participant.Uri,
 null,
 null);

...

 Code snippet HelpDeskIVR\Workfl ow1.xoml.cs

 Call the Impersonate method on the Conversation object and provide the SIP URI of the contact

to impersonate. In this case, use the SIP URI of the person who called the Help Desk IVR.

 Creating a New AudioVideo Call

 You ’ re now ready to write the logic to transfer the call to the agent that the ticket is assigned to.

Create a new AudioVideoCall on the Conversation instance as shown in the following code.

 This code chains the calls to the AudioVideoCall ’ s BeginEstablish and EndEstablish methods

to run the code synchronously. If you run this code asynchronously, the workfl ow runtime will

Available for

download on

Wrox.com

Available for

download on

Wrox.com

Available for

download on

Wrox.com

Available for

download on

Wrox.com

Calling UCMA Code from a Communications Workfl ow ❘ 463

464 ❘ CHAPTER 14 BUILDING COMMUNICATIONS-ENABLED BUSINESS PROCESSES

continue to execute and may reach the workfl ow ’ s DisconnectCall activity before beginning the

call transfer process.

 The BeginEstablish method accepts a destination SIP URI and an instance of AudioVideoCall

EstablishOptions . Use the MaximumEstablishTime property of AudioVideoCallEstablish

Options to specify that the call should be established within 60 seconds.

...

// Create a new AudioVideoCall
var avCall = new AudioVideoCall(conversation);

try
{
 // Establish the call synchronously
 avCall.EndEstablish(
 avCall.BeginEstablish(
 this.TicketAssignedTo,
 new AudioVideoCallEstablishOptions()
 {
 MaximumEstablishTime = new TimeSpan(0, 0, 60)
 },
 null,
 null));
}
catch (RealTimeException exEstablish)
{
 throw exEstablish;
}

...

 Code snippet HelpDeskIVR\Workfl ow1.xoml.cs

 Transferring the Call

 With the new AudioVideo call established, you can now perform an attended transfer of the

original call to the agent. The original call is the call that was initially made by the caller to the

Help Desk IVR. Get a reference to the original call via the Call property of the CallProvider in

the communications sequence activity, and cast it to an AudioVideoCall object.

 Call BeginTransfer synchronously, specifying the call to replace and an instance of

 CallTransferOptions that indicates that the transfer type is CallTransferType.Attended :

...

try
{

 var initialCall =
 communicationsSequenceActivity1.CallProvider.Call

Available for

download on

Wrox.com

Available for

download on

Wrox.com

Available for

download on

Wrox.com

Available for

download on

Wrox.com

as AudioVideoCall;

 initialCall.EndTransfer(
 initialCall.BeginTransfer(
 avCall,
 new CallTransferOptions(CallTransferType.Attended),
 null,
 null));
}
catch (OperationFailureException ofe)
{
 Console.WriteLine
(“The agent declined or did not answer the call: {0}”,
 ofe.Message);

}
catch (RealTimeException exTransfer)
{
 throw exTransfer;
}

...

 Code snippet HelpDeskIVR\Workfl ow1.xoml.cs

 Catch the OperationFailureException when transferring the call. This exception is thrown if the

person to whom the call was transferred declines or doesn ’ t answer the call.

 BUILDING YOUR OWN WORKFLOW ACTIVITIES

 You can build your own Windows Workfl ow Foundation activities to use in your communications

workfl ow solution; for example, an activity that sends an email to a user given her address, or

an activity that looks up the Active Directory display name for a user given her SIP URI. In this

section, you learn how to create a custom workfl ow activity to perform an attended call transfer.

 The UCMA 3.0 Workfl ow SDK activities use classes from the Microsoft.Speech
namespace to perform speech synthesis and text - to - speech processing. In UCMA, the
 Player and Recorder classes in the Microsoft.Rtc.Collaboration namespace
are used to play and record media from various sources. The Player and Recorder
classes implement optimizations for working with real - time media; however,
the classes in the Microsoft.Speech namespace don ’ t implement these
optimizations. When building applications with the UCMA 3.0 Workfl ow
SDK activities designed for audio calls, you may notice some media - related
performance issues since the activities have to use the un - optimized classes in
the Microsoft.Speech namespace to handle media. If you are concerned about
audio performance under high load, you can consider creating custom workfl ow
activities that play audio fi les on a call using the Player class. This will allow
you to take full advantage of the optimizations for real - time media.

Building Your Own Workfl ow Activities ❘ 465

466 ❘ CHAPTER 14 BUILDING COMMUNICATIONS-ENABLED BUSINESS PROCESSES

 Creating the Custom Activity

 If you are building custom activities that you intend to use across multiple communications

workfl ow solutions, you will typically put them in their own assembly. In this example, create the

custom workfl ow activity directly in the communications workfl ow project for simplicity.

 Add a new activity to the Visual Studio project. You can fi nd the Activity project item type in the

Workfl ow section of the Add New Item dialog, as shown in Figure 14 - 32. Call the new activity

 AttendedTransferActivity.cs .

 FIGURE 14 - 32

 This creates a workfl ow activity of type System.Workflow.Activities.SequenceActivity . This

type of activity is similar to the CommunicationsSequence activity in that it can contain other

activities. This isn ’ t the desired type of activity for the attended call transfer call activity; change the

type of the activity to System.Workflow.ComponentModel.Activity .

 Double - click AttendedTransferActivity.cs in the Solution Explorer window

to open the activity in design view, as shown in Figure 14 - 33.

 Defi ning the Custom Activity ’ s Properties

 When working with the other workfl ow activities in the UCMA 3.0 Workfl ow SDK, you saw that

they expose properties that you can set in the workfl ow designer or in the code - behind. The custom

workfl ow activity that you will be building will expose a CalledParty property that you can set to

 FIGURE 14 - 33

specify the contact that the activity will perform an attended transfer to. This section describes how

to defi ne the CalledParty and other properties of the custom workfl ow activity.

 Switch the code view of the activity. You need to defi ne the properties of the custom activity that

you can set in the workfl ow designer. For example, the SIP URI of the contact to perform an

attended transfer to should be a parameter of the custom activity.

 Defi ne a CalledParty dependency property in the custom activity. Dependency properties are

commonly used in Silverlight and WPF to defi ne properties that will be used in data binding.

Later when you add the AttendedTransfer activity to the design surface of the communications

workfl ow, you will be able to set its CalledParty property in its Properties dialog and bind it to a

variable in the workfl ow project.

 A dependency property defi nition should also include a property accessor to get and set the values

of the property. The CalledParty property accessor is decorated with a [ValidationOption

(ValidationOption.Required)] attribute to indicate that it is required:

public static DependencyProperty CalledPartyProperty =
 DependencyProperty.Register(
 “CalledParty”,
 typeof(string),
 typeof(AttendedTransferActivity));

[ValidationOption(ValidationOption.Required)]
public string CalledParty
{
 get
 {
 return (string)base.GetValue(CalledPartyProperty);
 }
 set
 {
 base.SetValue(CalledPartyProperty, value);
 }
}

 Code snippet HelpDeskIVR\AttendedTransferActivity.cs

 Also defi ne a dependency property called WorkflowCall representing the initial call that was

made into the workfl ow, as shown in the following code. The Call provides access to several items

required by the code to perform an attended transfer: the endpoint, the SIP URI of the caller, and

the call itself.

public static DependencyProperty WorkflowCallProperty =
 DependencyProperty.Register(
 “WorkflowCall”,
 typeof(Call),
 typeof(AttendedTransferActivity));

[ValidationOption(ValidationOption.Required)]
public Call WorkflowCall

Available for

download on

Wrox.com

Available for

download on

Wrox.com

Available for

download on

Wrox.com

Available for

download on

Wrox.com

Building Your Own Workfl ow Activities ❘ 467

468 ❘ CHAPTER 14 BUILDING COMMUNICATIONS-ENABLED BUSINESS PROCESSES

{
 get
 {
 return (Call)base.GetValue(WorkflowCallProperty);
 }
 set
 {
 base.SetValue(WorkflowCallProperty, value);
 }
}

 Code snippet HelpDeskIVR\AttendedTransferActivity.cs

 Implementing the Activity Logic

 Having defi ned the properties of the custom activity that you can set in the workfl ow designer or

in the code - behind, you can now implement the code that will execute when the activity is processed

by the workfl ow runtime. To do this, you will override the Execute method of the System.Workflow

.Activities.SequenceActivity class and provide the code implementation to perform the

attended call transfer.

 Implement the workfl ow logic in the overridden Execute method as shown in the following code.

The method returns a value of the System.Workflow.ComponentModel.ActivityExecution

Status enum representing the execution status of the workfl ow.

 This code is almost identical to the attended transfer code from the previous exception; the

only different is that it references the CalledParty and WorkflowCall dependency properties

of the activity instead of referencing a module level variable for the SIP URI and properties of

 communicationsSequenceActivity1 directly.

 If the code throws an exception, the function returns ActivityExecutionStatus.Faulting ,

otherwise it returns ActivityExecutionStatus.Closed , indicating success.

protected override ActivityExecutionStatus
 Execute(ActivityExecutionContext executionContext)
{
 try
 {
 // Get the local endpoint
 var endpoint = this.WorkflowCall.Conversation.Endpoint;

 // Create a new conversation on the endpoint
 var conversation = new Conversation(endpoint);

 // Impersonate the caller
 conversation.Impersonate(
 this.WorkflowCall.RemoteEndpoint.Participant.Uri,
 null,
 null);

 // Create a new AudioVideoCall

Available for

download on

Wrox.com

Available for

download on

Wrox.com

 var avCall = new AudioVideoCall(conversation);

 try
 {
 // Establish the call synchronously
 avCall.EndEstablish(
 avCall.BeginEstablish(
 this.CalledParty,
 new AudioVideoCallEstablishOptions()
 {
 MaximumEstablishTime = new TimeSpan(0, 0, 60)
 },
 null,
 null));
 }
 catch (RealTimeException exEstablish)
 {
 throw exEstablish;
 }

 try
 {
 var initialCall = this.WorkflowCall as AudioVideoCall;

 initialCall.EndTransfer(
 initialCall.BeginTransfer(
 avCall,
 new CallTransferOptions(CallTransferType.Attended),
 null,
 null));
 }
 catch (OperationFailureException ofe)
 {
 Console.WriteLine(
 “The agent declined or did not answer the call: {0}”,
 ofe.Message);

 }
 catch (RealTimeException exTransfer)
 {
 throw exTransfer;
 }
 }
 catch (Exception)
 {
 return ActivityExecutionStatus.Faulting;
 }

 return ActivityExecutionStatus.Closed;
}

 Code snippet HelpDeskIVR\AttendedTransferActivity.cs

Building Your Own Workfl ow Activities ❘ 469

470 ❘ CHAPTER 14 BUILDING COMMUNICATIONS-ENABLED BUSINESS PROCESSES

 Adding the Custom Activity to the Workfl ow

 The custom activity is now ready to be used in a communications workfl ow project. If you are

building a library of custom workfl ow activities, it is better to place them in their own assembly and

reference that assembly from your communications workfl ow project. The custom activities will

appear in the Visual Studio Toolbox so that you can add them to the communications workfl ow.

 In this example, the custom activity is defi ned directly in the

communications workfl ow project and will be available in the

Toolbox after compiling the project. Compile the project. You

should now see the AttendedTransfer activity in the Visual

Studio Toolbox, as shown in Figure 14 - 34.

 Drag an AttendedTransfer activity onto the

workfl ow design surface, as shown in Figure 14 - 35.

You can disable the Code activity that you previously

used to perform the attended call transfer.

 Open the Properties dialog of the AttendedTransfer

activity to set the values of the CallParty and

 WorkflowCall properties of the activity, as shown in

Figure 14 - 36. Because these properties are defi ned as

dependency properties, you can bind them to other

variables in the communications workfl ow.

 Bind the CalledParty property of the

 AttendedTransfer activity to the TicketAssignedTo

property of the communications workfl ow, as shown

in Figure 14 - 37.

 FIGURE 14 - 34

 FIGURE 14 - 35

 FIGURE 14 - 36

 FIGURE 14 - 37

 Bind the WorkflowCall property of the AttendedTransfer activity to the Call property of the

 CallProvider instance exposed by communicationsSequenceActivity1 , as shown in Figure 14 - 38.

 FIGURE 14 - 38

 The AttendedTransfer custom workfl ow activity now completely encapsulates the functionality to

perform an attended call transfer.

 DEPLOYING A COMMUNICATIONS WORKFLOW IN A
WINDOWS SERVICE

 In a production environment, you will typically deploy a UCMA 3.0 Workfl ow SDK

communications workfl ow as part of a Windows Service. Running the workfl ow in a Windows

Service provides the support for the long - running process that the communications workfl ow is

intended to be, as well as the tools necessary to manage the lifecycle of the service.

 In this section, you learn how to create a Windows Service project intended to host the UCMA

3.0 Workfl ow SDK communications workfl ow. You also learn how to start and stop the

communications workfl ow from the Windows Service project, and also how to install and confi gure

the Windows Service on a Windows server.

 Adding a Windows Service Project to the Solution

 In this section, you will add a Windows Service project to the solution containing your

communications workfl ow. The service will reference the workfl ow project and is responsible for

starting and stopping the workfl ow.

 From the Visual Studio Solution Explorer window, right - click the solution and choose Add ➪ New

Project. In the Add New Project dialog window, under Visual C#, select Windows, and choose

Windows Service to create a new Windows Service project and add it to the solution. Give the new

project the name HelpDeskIVR.Service.

Deploying a Communications Workfl ow in a Windows Service ❘ 471

472 ❘ CHAPTER 14 BUILDING COMMUNICATIONS-ENABLED BUSINESS PROCESSES

 Add a project reference from the HelpDeskIVR.Service project to the HelpDeskIVR project. This

will allow you to call into the workfl ow project ’ s WorkflowInitiator class to start and stop the

communications workfl ow.

 Setting the Current Directory for the Windows Service

 When you package fi les such as grammars and audio prompts with the communications workfl ow

as Content / Copy Always, the Windows Service hosting the workfl ow expects to fi nd these fi les in

the same location as the service ’ s compiled executable.

 However, if you don ’ t set the service ’ s current directory, this location defaults to C:\Windows\

System32 . The Windows Service obviously won ’ t fi nd these fi les in C:\Windows\System32 . Use

 SetCurrentDirectory to instruct the service to use the directory that it is installed in as its current

directory. Open Program.cs in the Windows Service project and add the following code snippet to

the body of the Main function to set the current directory of the service.

Directory.SetCurrentDirectory(System.AppDomain.CurrentDomain.BaseDirectory);

Code snippet HelpDeskIVR.Service\Program.cs

 Use System.IO.Directory.SetCurrentDirectory to set the current directory of the Windows

Service, where System.AppDomain.CurrentDomain.BaseDirectory is the directory where the

Windows Service executable is running from.

Available for

download on

Wrox.com

Available for

download on

Wrox.com

When you reference the workfl ow project from the Windows Service project,
some fi les from the workfl ow project are not copied automatically into the
output of the Windows Service project; for example, the app.config fi le, or
recorded prompt fi les. You need to create a copy of these fi les in the Windows
Service project. Alternatively, you can create them as Solution Items and then
add them as linked items to both the communications workfl ow project and the
Windows Service project.

 Starting and Stopping the Communications Workfl ow
from the Windows Service

 When deploying a communications workfl ow inside a Windows Service, the communications workfl ow

should start when the service starts and stop when the service stops. The HelpDeskIVR.Service project

references the HelpDeskIVR project, allowing the service to call methods in the WorkflowInitiator

class of the workfl ow project to start and stop the communications workfl ow. This section describes

how the Windows Service starts and stops the communications workfl ow.

 Open Service1.cs in the Windows Service project and add a using statement to the top of the

class defi nition to reference the communications workfl ow project namespace.

 Create a module - level variable representing an instance of the WorkflowInitiator class from

the HelpDeskIVR project. You will use this to start and stop the communications workfl ow from

within the OnStart and OnStop methods in Service1 . In the OnStart method, create an instance

of the WorkflowInitiator class and call Initialize to initialize and start the communications

workfl ow. In the OnStop method, call Cleanup on the instance of WorkflowInitiator to stop

the communications workfl ow and tear down the corresponding UCMA application endpoint and

collaboration platform, as shown in the following code.

public partial class Service1 : ServiceBase
{
 WorkflowInitiator _initiator;

 public Service1()
 {
 InitializeComponent();
 }

 protected override void OnStart(string[] args)
 {
 _initiator = new WorkflowInitiator();
 _initiator.Initialize();
 }

 protected override void OnStop()
 {
 _initiator.Cleanup();
 }
}

 Code snippet HelpDeskIVR.Service\Service1.cs

 Adding an Installer to the Windows Service

 You can add an installer class to a Windows Service project

to package directly into the project information about how

to confi gure and run the service. This information is then

available to a service installation utility such as InstallUtil

.exe when installing the service. This section describes

adding an installer class to the Windows Service project

to set the display name when the service is listed in the Server

Manager and to defi ne the security context under which

the service will run.

 Open Service1 in design view, right - click on the design surface

and select Add Installer. This adds an installer item called

 ProjectInstaller to the project. As shown in Figure 14 - 39,

 ServiceInstaller and ServiceProcessInstaller installation

components are automatically added to the design surface.

 Open the properties of serviceInstaller1 ; here you can set the

service ’ s display name, as shown in Figure 14 - 40.

Available for

download on

Wrox.com

Available for

download on

Wrox.com

 FIGURE 14 - 39

 FIGURE 14 - 40

Deploying a Communications Workfl ow in a Windows Service ❘ 473

474 ❘ CHAPTER 14 BUILDING COMMUNICATIONS-ENABLED BUSINESS PROCESSES

 Open the properties of serviceProcessInstaller1 ; here you

can set the security context in which the service will run, as

shown in Figure 14 - 41.

 You can set Account to one of the following:

 LocalService

 NetworkService

 LocalSystem

 User

Set the value of the Account property to User . You will most likely want to run the service under

a specifi c account identity. You confi gure that as part of the service installation process or in the

Server Manager after installing the service.

 Installing the Windows Service Using InstallUtil

 You ’ re now ready to deploy the Windows Service so that you can manage it from the Server

Manager.

 Compile the Windows Service project and copy the project output to a folder on the server where

you will confi gure the service to run from. For example, create a folder at C:\HelpDeskIVR on

the server and copy all the contents of ...\HelpDeskIVR.Service\bin\Release from your

development environment into C:\HelpDeskIVR on the server . Any fi les that you marked as

Content / Copy Always will automatically be copied into the Windows Service project output

directory when you compile it; for example, your grammar fi les and audio prompts.

 Use the InstallUtil utility to install the Windows Service; you can fi nd InstallUtil.exe in

the .NET 2.0 installation directory; for example, C:\Windows\Microsoft.NET\Framework\

v2.0.50727 or C:\Windows\Microsoft.NET\Framework64\v2.0.50727 .

➤

➤

➤

➤

 FIGURE 14 - 41

Use the appropriate version of InstallUtil to install the service as a 32 - or 64 - bit
service. Be sure to set the Platform Target of your communications workfl ow and
Windows Service projects appropriately.

 Assuming that the Help Desk IVR service executable is at C:\HelpDeskIVR\HelpDeskIVR

.Service.exe , use the following command to install the Windows Service:

InstallUtil.exe
C:\HelpDeskIVR\HelpDeskIVR.Service.exe

 As shown in Figure 14 - 42, you are immediately prompted to set the account identity that the service

will run under. Enter the credentials that the service will use.

 After the installation is completed, an installation log fi le is created in the service directory. The fi le

contains details of about the events that occurred during the installation process.

 Use the /u switch to uninstall the service, for example:

InstallUtil.exe /u
C:\HelpDeskIVR\HelpDeskIVR.Service.exe

 Confi guring and Starting the Service

 If the service installation succeeded, you will

see the service listed in the Services Control

Manager in the Server Manager, as shown in

Figure 14 - 43. Here you can confi gure which

account to use as the identity of the service

and also start and stop the service.

 Because the service StartType was set to Manual in the service installer, the Help Desk IVR service

isn ’ t started by default. Start the service. If any errors occur during startup, you will be able to see

them in the server ’ s Event Viewer.

 FIGURE 14 - 42

 FIGURE 14 - 43

To debug a Windows Service, you must attach to its process from Visual Studio.
Note than when you use this technique you can ’ t debug any logic in the service ’ s
 OnStart method.

Deploying a Communications Workfl ow in a Windows Service ❘ 475

476 ❘ CHAPTER 14 BUILDING COMMUNICATIONS-ENABLED BUSINESS PROCESSES

 HOSTING A COMMUNICATIONS WORKFLOW
IN A UCMA APPLICATION

 A complex communications - enabled application such as a Contact Center or Automatic Call

Distributor will usually include one or more workfl ow components. In a call center, the caller is

routed through an IVR to capture the reason for their call; for example, a New Order. The output

from the IVR is captured and the caller is placed on hold while an agent with the right skills

becomes available. Unlike the simple examples in this chapter where the workfl ow begins with an

 AcceptCall activity and ends with a DisconnectCall activity, the communications workfl ow is

only a small part of the overall application. In this section, you learn how to integrate a UCMA 3.0

Workfl ow SDK communications workfl ow into a UCMA application.

 Integrating a Communications Workfl ow XOML
Into a UCMA Application

 The code accompanying this chapter includes a console - based UCMA application that accepts

an incoming audio call, walks the user through a very simple workfl ow to gather some input,

and displays the selected caller input in the console application. Although this is a very simplistic

example, it demonstrates the ability to integrate a sequential workfl ow XOML into a UCMA

application, start the workfl ow, and use the output of the workfl ow in the UCMA application.

 Adding a Sequential Workfl ow to a UCMA Application

 When you create a UCMA 3.0 Workfl ow SDK communications workfl ow project, it automatically

includes a sequential workfl ow project time (a XOML fi le and its code - behind). You won ’ t be able

to add this project item type to a console application project, so you have to create it in another

project and copy it into the console application project. After adding the XOML and its rules and

code - behind fi le to your project, adjust the namespace of the fi le to match your project.

 Also add the following references:

 Microsoft.Rtc.Workflow

 Microsoft.Speech

 System.Workflow.Activities

 System.Workflow.ComponentModel

 System.Workflow.Runtime

 System.WorkflowServices

 Confi guring the Workfl ow ’ s Call Provider

 When integrating a UCMA 3.0 Workfl ow SDK communications workfl ow into a UCMA

application, the UCMA application becomes responsible for accepting and disconnecting the call

from the user. The AcceptCall and DisconnectCall activities in the communications workfl ow

are no longer required. Deleting these activities from the communications workfl ow also means

that the CommunicationsSequence activity in the workfl ow needs a new call provider. This section

➤

➤

➤

➤

➤

➤

describes deleting the AcceptCall and DisconnectCall activities from the communications

workfl ow and exposing a new CallProvider property that you can set when starting the workfl ow

from the UCMA application.

 Delete the AcceptCall and DisconnectCall activities from the workfl ow

so that it looks like the workfl ow shown in Figure 14 - 44. The console

application that hosts the workfl ow, not the workfl ow itself, will be

responsible for connecting and disconnecting the call.

 You can see in Figure 14 - 44 that the CommunicationsSequence activity has

a red warning exclamation mark on it. The CallProvider property of the

 CommunicationsSequence activity was set to the AcceptCall activity that no

longer exists in the workfl ow.

 Add a public property of type CallProvider to the workfl ow ’ s code - behind

class. You will pass a value into the workfl ow instance for the call provider

that the workfl ow will use:

public CallProvider CallProvider { get; set; }

 Code snippet GetInputFromCaller\GetCallerChoice.xoml.cs

 In the workfl ow designer, set the

 CallProvider property of the

 CommunicationsSequence activity to

the CallProvider property from the

workfl ow ’ s code - behind as shown in

Figure 14 - 45.

 Implementing the Workfl ow Logic

 A typical use case for hosting a UCMA 3.0

SDK Workfl ow communications workfl ow

in a UCMA application is to gather some

input from the caller — such as their account

number and reason for their call — and then

connect them with an agent to help them. The

output from the communications workfl ow

can be used to provide the agent with some

information about the customer; for example, if the customer provided an account number, the

customer ’ s account is loaded in the CRM system running on the agent ’ s desktop.

 This section describes a simple example of collecting input from the caller and then exposing it as

output from the communications workfl ow, thereby making it available to the UCMA application

that is hosting the communications workfl ow.

 Add a SpeechQuestionAnswer activity to the workfl ow and confi gure its ExpectedDtmfInputs

and ExpectedSpeechInputs properties to prompt the caller to choose option 1, 2, or 3 (see the

following code). In the Turn_Starting handler of the activity, build a prompt to ask the user to

choose one of the options.

Available for

download on

Wrox.com

Available for

download on

Wrox.com

 FIGURE 14 - 44

 FIGURE 14 - 45

Hosting a Communications Workfl ow in a UCMA Application ❘ 477

478 ❘ CHAPTER 14 BUILDING COMMUNICATIONS-ENABLED BUSINESS PROCESSES

private void ChooseOption_TurnStarting(object sender,
 Microsoft.Rtc.Workflow.Activities.SpeechTurnStartingEventArgs e)
{
 this.ChooseOption.MainPrompt.ClearContent();
 this.ChooseOption.MainPrompt.AppendText(“Please say or choose option”);
 this.ChooseOption.MainPrompt.AppendTextWithHint(“1”, SayAs.NumberCardinal);
 this.ChooseOption.MainPrompt.AppendTextWithHint(“2”, SayAs.NumberCardinal);
 this.ChooseOption.MainPrompt.AppendText(“or”);
 this.ChooseOption.MainPrompt.AppendTextWithHint(“3”, SayAs.NumberCardinal);
}

 Code snippet GetInputFromCaller\GetCallerChoice.xoml.cs

 Add a Code activity to capture the caller ’ s choice and record it in a module - level variable. Because it

is marked as public, the SelectedOption property will automatically be exposed in the workfl ow ’ s

output parameter collection:

public string SelectedOption { get; set; }

private void SetSelectedOption_ExecuteCode(object sender, EventArgs e)
{
 if (this.ChooseOption.RecognitionResult != null)
 {
 this.SelectedOption =
 this.ChooseOption.RecognitionResult.Text.Replace
(“ “, string.Empty);
 }
}

 Code snippet GetInputFromCaller\GetCallerChoice.xoml.cs

 Creating a Generic Workfl ow Initiator

 You can use a generic workfl ow initiator in your UCMA application to start various workfl ows.

The workfl ow initiator is responsible for initializing the workfl ow runtime and starting the

appropriate workfl ow with the specifi ed arguments.

 Initializing the Workfl ow Runtime

 You can maintain one instance of the WorkflowInitiator class in your UCMA application

and use it to start workfl ows as needed. In the constructor of the WorkflowInitiator class,

initialize the workfl ow runtime. Wire up an event handler for the WorkflowCompleted event of the

 WorkflowRuntime . You will use the event handler to capture the output of the workfl ow:

public WorkflowRuntime WorkflowRuntime { get; set; }

public WorkflowInitiator()
{
 this.WorkflowRuntime = new WorkflowRuntime();
 this.WorkflowRuntime.AddService(new CommunicationsWorkflowRuntimeService());

Available for

download on

Wrox.com

Available for

download on

Wrox.com

Available for

download on

Wrox.com

Available for

download on

Wrox.com

Available for

download on

Wrox.com

Available for

download on

Wrox.com

 this.WorkflowRuntime.AddService(new TrackingDataWorkflowRuntimeService());
 this.WorkflowRuntime.StartRuntime();
}

 Code snippet GetInputFromCaller\Workfl owInitiator.cs

 Starting a Workfl ow from the Workfl ow Initiator

 The WorkflowInitiator class exposes a StartWorkflow method that accepts the following

parameters:

 localEndPoint : The application endpoint for the UCMA application.

 call : The call to start the workfl ow on.

 requestData : An instance of SipRequestData that contains information about the

incoming SIP request. This is available from the CallReceivedEventArgs from the call

made to the UCMA application.

 workflowType : The type of the workfl ow to start.

 namedArgumentValues : A Dictionary < string, object > of parameters to pass into the

workfl ow instance.

 This is similar to the workfl ow startup code that you ’ re already familiar with. The code creates a

new CallProvider on the Call instance and adds it to the workfl ows arguments. This matches up

to the public property of the workfl ow called CallProvider and will be set as the call provider for

the workfl ow ’ s CommunicationsSequence activity.

 The workfl ow instance is then created using an overload of the CreateWorkflow function that

accepts a list of arguments and values to provide to the workfl ow. In this example, you ’ re only

passing in the call provider that the workfl ow will use. However, you can pass in any other

information to the workfl ow, such as the values for prompts that some of the workfl ow ’ s activities

will use.

public Guid StartWorkflow(
 LocalEndpoint localEndpoint,
 Call call,
 SipRequestData requestData,
 Type workflowType,
 Dictionary < string, object > namedArgumentValues)
{
var callProvider = new CallProvider(call, new CultureInfo(“en-US”));
namedArgumentValues.Add(“CallProvider”, callProvider);

 var workflowInstance = this.WorkflowRuntime.CreateWorkflow
(workflowType, namedArgumentValues);

 var communicationsWorkflowRuntimeService =
 (CommunicationsWorkflowRuntimeService)
 this.WorkflowRuntime.GetService

➤

➤

➤

➤

➤

Available for

download on

Wrox.com

Available for

download on

Wrox.com

Hosting a Communications Workfl ow in a UCMA Application ❘ 479

480 ❘ CHAPTER 14 BUILDING COMMUNICATIONS-ENABLED BUSINESS PROCESSES

 (typeof(CommunicationsWorkflowRuntimeService));

 var dataTrackingService =
 (TrackingDataWorkflowRuntimeService)
 this.WorkflowRuntime.GetService
 (typeof(TrackingDataWorkflowRuntimeService));

 communicationsWorkflowRuntimeService.SetEndpoint
 (workflowInstance.InstanceId, localEndpoint);

 communicationsWorkflowRuntimeService.SetWorkflowCulture
 (workflowInstance.InstanceId, new CultureInfo(“en-US”));

 workflowInstance.Start();
 return workflowInstance.InstanceId;
}

 Code snippet GetInputFromCaller\Program.cs

 Starting a Workfl ow from the UCMA Application

 A UCMA application typically implements an AudioVideoCallReceived event handler that executes

when the trusted application endpoint associated with the application receives a call. With a call now

established with the user, you can use the methods exposed by the workfl ow ’ s WorkflowInitiator

class to start the UCMA 3.0 Workfl ow SDK communications workfl ow from the UCMA application.

 Starting the Workfl ow using the Workfl owInitiator

 To start the workfl ow, you need to provide values for any required input parameters, and wire up an

event handler that will execute when the workfl ow completes executing. If any output is available

from the workfl ow, you can collect it in that event handler. Next you will start the communications

workfl ow from the UCMA application.

 Create an instance of the WorkflowInitiator class and a Dictionary < string, object > of input

parameters to provide to the workfl ow.

 Wire up an event handler for the WorkflowCompleted event of the WorfklowRuntime — you will

use this to access the output parameters collection of the workfl ow.

 Call StartWorkflow to start a specifi c workfl ow type by providing the typeof the workfl ow to

start. The StartWorkflow function returns a Guid representing the instance ID of the workfl ow

that was just started. Store this Guid in a Dictionary < Guid, string > , which will be used to store

the output from the specifi c workfl ow instance.

var workflowInitiator = new WorkflowInitiator();
workflowInitiator.WorkflowRuntime.WorkflowCompleted +=
 new EventHandler < WorkflowCompletedEventArgs >
(WorkflowRuntime_WorkflowCompleted);

Available for

download on

Wrox.com

Available for

download on

Wrox.com

var namedArgumentValues = new Dictionary < string, object > ();

Guid instanceId =
 workflowInitiator.StartWorkflow(
 _applicationEndpoint,
 e.Call,
 e.RequestData,
 typeof(GetCallerChoice),
 namedArgumentValues);

_workflowOutput.Add(instanceId, string.Empty);

 Code snippet GetInputFromCaller\Program.cs

 Capturing the Output of the Workfl ow

 The WorkflowCompleted event of the WorkflowRuntime fi res when the workfl ow is completed. You

can capture the output of the workfl ow in the event handler.

 Any public property exposed by the workfl ow is returned in the OutputParameters object of type

 Dictionary < string, object > that is exposed by WorkflowCompletedEventArgs .

 Get the instance ID of the workfl ow that was just completed by getting a reference to the

 WorkflowInstance in the WorkflowCompletedEventArgs and querying its InstanceId property.

The OutputParameters object contains the SelectedOption representing the caller ’ s choice.

static void WorkflowRuntime_WorkflowCompleted(object sender,
WorkflowCompletedEventArgs e)
{
 Console.WriteLine(“Workflow instance {0} completed”,
 e.WorkflowInstance.InstanceId);

 _workflowOutput[e.WorkflowInstance.InstanceId] =
 e.OutputParameters[“SelectedOption”].ToString();

 Console.WriteLine(“You selected option: {0}”,
 e.OutputParameters[“SelectedOption”].ToString());
}

 Code snippet GetInputFromCaller\Program.cs

 In a real application, you will take a specifi c action based on the caller ’ s selection, such as

transferring him to an agent queue based on his choice. In this example, simply write the output of

the workfl ow to the console.

 Because your application will most likely be handling multiple concurrent calls from users, you

need to be able to match up the workfl ow instance to a specifi c call. This simple example uses a

 Dictionary < Guid, string > to match the workfl ow instance ID to the output of the workfl ow.

Available for

download on

Wrox.com

Available for

download on

Wrox.com

Hosting a Communications Workfl ow in a UCMA Application ❘ 481

482 ❘ CHAPTER 14 BUILDING COMMUNICATIONS-ENABLED BUSINESS PROCESSES

 SUMMARY

 The UCMA 3.0 Workfl ow SDK gives you the tools to build communications - enabled workfl ow

solutions such as IVRs and personal virtual assistants. Use the different available prompts to

create a natural dialog with the caller. Communications events and commands allow you to build

functionality into the workfl ow to handle global events and also commands from the caller, such

as asking for help. You can call UCMA code from within the workfl ow and even build your own

custom workfl ow activities to use in your communications workfl ows.

483

INDEX

Symbols

(pound sign), octothorpe, 355

32-bit

InstallUtil, 474

Lync UI Suppression

mode, 105

64-bit

InstallUtil, 474

Lync UI Suppression mode,

105–106

UCMA, 172

100 Trying, 152, 217,

414–415

180 Ringing, 152, 217–218

183 Session Progress, 152

200 OK, 152, 234

ACK, 219

INVITE, 221–223, 317

Lync Server, 270

SDP, 218

202 Accepted, 152

301 Moved Permanently,

152

302 Moved Temporarily, 152

400 Bad Request, 152

401 Unauthorized, 152

403 Forbidden, 152

404 Not Found, 152

407 Proxy Authentication

Required, 152

408 Temporarily

Unavailable, 152

481 Call/Transaction Does

Not Exist, 152

486 Busy Here, 152, 234

488 Not Acceptable Here,

153

500 Server Internal

Error, 153

503 Service Unavailable,

153

504 Server Timeout, 153

603 Decline, 153, 234

A

AcceptanceState, 57

AcceptCall, 434, 476–477

access control, presence, 163

containers, 301–305

AccessLevel, 310, 311–315

AccountId, 85

ACK, 151, 219

Action, 133

ActionAvailabilityChanged,

133

Active, 57, 61, 260

Active Directory, 20, 172, 287

email, 71

RTCComponentsUniversal

Services, 170

RTCUniversalServer

Admins, 179, 206

URI, 450

ActiveAudioDevice, 141

ActiveVideoDevice, 141

ActiveX, 16

activities, 440–448

Activity, 68

ActivityId, 68, 73

ActivityStatus, 18

Add, 71–72

Add Reference, 185

AddConversation, 115

AddSipDomain, 303

AddSipUri, 303

ad-hoc conferences, 309, 327,

330–331

AdvancedSearch, 28–29

Agent Dashboard, 8, 92

aggregate state, 275–276

AggregatedPresenceState,

276

All Tasks, 422

always-on presence, 285

App.config, 192, 197

%AppData%, 98

AppendAudio, 454

_appEndPoint, 192

AppendText, 452

AppendTextWithHint, 451, 452

ApplicationContext, 382,

383–384

ApplicationData, 33, 48, 83,

95

ApplicationEndpoint,

154–156, 164

automatons, 286

ConferenceServices, 160

LocalOwnerPresence, 278

PresenceServices, 266

RepublishingRequired,

284

StateChanged, 192

UCMA, 201–203

ApplicationEndpoint

Settings, 192, 285

ApplicationEndpointStarter,

187, 195

ApplicationEndpointStarter

.cs, 185

484

ApplicationEndpoint

.StateChanged, 193

ApplicationId, 33, 48, 83, 95,

180, 440

trusted application endpoints,

182

applicationId, 199

ApplicationProvisioner.exe,

172

ApplicationRegistration, 86,

87, 97

application/sdp, 414

ApplicationSharing, 50

applicationSharing, 277

Application_Startup, 154

applicationUserAgent, 199

App.xaml.cs, 154

Assemblies, 13, 41

asyncCallback, 190

asynchronous programming,

165–167, 190–191, 320

AsyncState, 54

AttendanceAnnouncements

Status, 310

attended transfers, 245–247, 249,

462–463

AttendedTransfer, 467

AttendedTransferActivity

.cs, 466

Audio, 50, 52

Audio Video modality, 130

Connected, 137

ConversationManager,

127–129

Lync UI Suppression mode,

126–142

AudioChannel, 130

AudioChannel.BeginSendDtmf,

137

AudioChannel.BeginStart, 134

AudioChannel.StateChanged,

135, 136

audioprompts, 454

AudioRoute, 401

AudioRoute.AudioRoute, 397

AudioVideoCall, 157, 213,

219–223, 253

AudioVideoMcuRouting,

402

AudioVideoMcuSession,

400

CallProvider, 464

INVITE, 220–223

MediaTroubleshootingData

Reported, 260, 418

SpeechSynthesisConnector,

334

ToastMessage, 224

UCMA Workfl ow SDK,

463–464

AudioVideoCallEstablish, 464

AudioVideoCallReceived,

438–439, 480

AudioVideoFlow, 258, 368,

372–375

AudioVideoFlows, 358

AudioVideoFlow.StateChanged,

359

AudioVideoMcuDialOutOptions,

324

AudioVideoMcuRouting, 397,

399–400, 402

AudioVideoMcuSession, 324,

326, 343, 400

AudioVideoPark, 253

AutoAcceptNeeded, 322

auto-fi ll, 180

AutomaticLeaderAssignment,

310

AutomaticPresencePublication

Enabled, 201, 203

Automation, 47, 53–54, 82, 104

_automation, 53

Automation.

BeginStartConversation,

113

Automation.

GetConversationWindow,

99

AutomationModalities, 50

AutomationModalitySettings,

48–50

automatons

ApplicationEndpoint, 286

contactCard, 285

Lync, 5

UCMA

presence, 284–286

trusted applications,

198–201

UserEndpoint, 286

auto-provisioning, 175, 424–425

AutoTerminateOnIdle, 57, 129

Availability, 68, 73

AVModality, 130

AVModality.Accept, 141

AVModality.BeginConnect, 141

AVModality.BeginDisconnect,

131

AVModality.BeginHold, 136

AVModality.BeginRetrieve,

137

AVModality.Reject, 142

Away, 275

B

B2BUA. See back-to-back user

agent

back-to-back calls, 380–382

MCUs, 388

SDP, 378–379

SIP, 378

UCMA, 375–391

back-to-back user agent (B2BUA),

378

BackToBackCall, 332, 375–391,

402

BackToBackCallSettings, 380

backup mode, 272

Begin, 190

BeginAccept, 229

BeginAddContact, 294

BeginAddGroup, 70–71, 298

BeginAddToDefaultAudio

Routing, 396–397

BeginAdmitLobbyParticipants,

340–341

BeginConnect, 130

BeginDeleteContact, 297

BeginDeleteGroup, 300

BeginDeliver, 320, 321–322

BeginDenyLobbyParticipants,

341

BeginDialOut, 323–325

ApplicationEndpoint.StateChanged – BeginDialOut

485

BeginDrain, 204–205

BeginEject, 336–337

BeginEscalateToConference,

326

BeginEstablish, 165, 213, 223,

396

AudioVideoCall, 253,

463–464

back-to-back calls, 380

SIP, 215

two-party call control,

214–224

BeginGetCachedContact, 295

BeginInitialize, 106

BeginJoin, 327, 331

BeginLockConference, 338

BeginModifyConference

Configuration, 339

BeginModifyRole, 339

BeginMute, 342, 343

BeginOpenExtensibility

Window, 99

BeginPark, 253

BeginPrepareSource, 357

BeginPresenceQuery, 266

BeginPublishContact

Information, 74

BeginPublishPresence, 279

BeginRemoveContactFrom

AllGroups, 72

BeginRemoveFromDefault

AudioRouting, 393–395

BeginRemoveGroup, 71

BeginRetrieve, 373

BeginScheduleConference,

313–315

BeginSendContextData, 89–90

BeginSendData, 348–349

BeginSendInitialContext,

90–91

BeginSignIn, 43

BeginStartConversation, 48,

53–54, 62

BeginStartup, 190

BeginSubscribe, 288

BeginTerminate, 205

BeginTerminateConference,

335–336

BeginTransfer, 248–251, 326, 464

BeginUnlockConference,

338–339

BeginUnsubscribe, 290

BeginUpdateAudioRoutes,

399–400

BeginUpdateContact, 295

BeginUpdateContainer

Membership, 303

BeginUpdateGroup, 300

BENOTIFY, 151, 272, 413

BeRightBack, 275

BlindTransfer, 445

Booleans, 107

BothEndPoints, 373

Busy, 275

BYE, 151, 317, 413

C

C3P. See Centralized Conference

Control Protocol

CA. See certifi cate authority

calendar, 277, 278

Calendar state, 163, 275

calendarCard, 274

calendarData, 162

Call, 159, 228, 229

BackToBackCallSettings,

380

CallProvider, 479

CallReceivedEventArgs,

439

Conversation, 157, 212–213

Decline, 231–234

Forward, 237–239

Forwarded, 241–242

RemoteEndpointProperties,

260

RemoteParticipant,

260–261

State, 258

StateChanged, 258

call(s). See also specifi c call types

legs, 378

parking

AudioVideoPark, 253

UCMA, 252–258

replacement, 247–248

states, 258–260

callback, 43

callbacks, 166–167

endpoint termination,

194–195

EndScheduleConference,

313

Call.BeginEstablish, 329

CallControlAction, 351

CallDeclineOptions, 234, 239

CallDisconnectedEvent,

437, 459

CalledParty, 466–467

CallEstablishOptions, 215,

224, 396

CallForwardOptions, 239

Call-ID, 414

CallOnHoldEvent, 437, 459

CallOnHoldTimeoutEvent,

437, 459

CallOrbit, 253

CallParkOrbit, 58

CallParkResponseData, 253

CallProvider, 435, 464,

477, 479

CallReceivedEvent, 459

CallReceivedEventArgs, 439

CallRetrievedEvent, 437

CallSendMessageRequest

Options, 258

CallSession, 383–388

CallToBePlaced, 228

CallTransferOptions, 247,

248–249, 464

CanBargeIn, 443

CANCEL, 151

CanInvoke, 116, 133, 137

categories, presence, 265, 274

<category>, 273

<categoryList>, 270

CCCP. See Centralized Conference

Control Protocol

CCCP, 277

central management store, 175

Centralized Conference Control

Protocol (C3P), 15, 160

Centralized Conference Control

Protocol (CCCP), 318

certifi cates

case-sensitivity, 423

BeginDrain – certifi cates

486

certifi cates (continued)

TLS, 419–423

FQDN, 423

permissions, 421–422

ToUpper, 188

UCMA, 170, 175

helper, 186–188

trusted applications,

178–179

certifi cate authority (CA), 420

CertificateHelper.cs, 187

ChannelAction, 134

ChannelState.Connecting, 135

ChooseOption, 446

Cleanup, 473

ClearContent, 449

ClientNotFoundException, 113

ClientPlatformSettings,

154, 172

ClientState, 44–45

ClientStateChangedEventArgs,

45

ClientState.Unitialized, 107

Code, 445–446, 478

code condition, 446, 447–448

CollaborationPlatform, 175,

198, 437

_collaborationPlatform,

190

ProvisionedApplication

PlatformSettings, 199

UCMA, 154–156, 172, 184

_collaborationPlatform, 190

Commands, 435–436

CommunicationsEvents,

436–437, 458

CommunicationsSequence, 434,

435, 476–477

CommunicationsWorkflow

RuntimeService, 439

Communicator.exe, 106

CompleteTimeout, 443

Components list, 409

conference calls

AccessLevel, 311–315

ad-hoc, 309, 327

joining, 330–331

commands, 334–339

ejecting participants, 336–337

IM, 326, 342

inviting participants, 315–331

joining, 326–331

locking/unlocking, 338–339

Lync, 3

Lync clients, 325

Lync Server, 316

MCUs, 307–309, 325

media, MCUs, 341–344

modifying confi guration, 339

monitoring events, 344–352

muting participants, 342–344

participant roles, 339

scheduled, 309

SIP, 160–161, 315–320

State, 346–347

terminating, 335–336

transferring calls, 325–326

trusted conference

participants, 331–334

UCMA, 307–352

URI, 327

conference focus, 307

conference lobby, 311, 331,

339–341

ConferenceAccepting

Participant, 57

ConferenceAccessInformation,

58

ConferenceCallSession, 383,

388–391

ConferenceDisclaimer, 58

ConferenceDisclaimer

Accepted, 58

ConferenceEscalation

Progress, 58

ConferenceEscalationResult,

58

ConferenceId, 310, 313

ConferenceInvitation, 160,

320–323

ConferenceInvitation

Received, 322

ConferenceInvitation

Settings, 321

ConferenceInviter

RepresatationInfo, 57

ConferenceJoinOptions, 330

ConferenceParticipant

Information, 312

ConferenceSchedule

Information, 309–310, 311,

312, 313, 339

ConferenceServices, 160,

309–311, 314

ConferenceServices

.GenerateConferenceId,

313

ConferenceSession, 160,

327–330

BeginEject, 336–337

BeginLockConference, 338

BeginTerminateConference,

335–336

conference call events, 344

Conversation, 158, 327

State, 346–347

ConferenceTerminateOnLeave,

58

ConferenceUri, 314

ConferencingFirstInstant

Message, 58

ConferencingInvitedModes, 58

ConferencingLocked, 58

ConferencingRole.leader, 312

ConferencingUri, 57

Connected, 137

“The connection was forcibly

closed by the remote host,”

423

ConnectionFailureException,

207, 423

ConsecutiveNoInputsInstant

MessagingEvent, 437, 460

ConsecutiveNoInputs

SpeechEvent, 437, 459

ConsecutiveNoRecognitions

InstantMessagingEvent,

437, 460

ConsecutiveNoRecognitions

SpeechEvent, 437,

458–459

ConsecutiveSilences

InstantMessaging

Event, 437, 460

certifi cates – ConsecutiveSilencesInstantMessagingEvent

487

ConsecutiveSilences

SpeechEvent, 437, 459

Contact, 71, 75

contact group operations, 164

contact lists, 164, 287–305

contacts

adding, 294–295

deleting, 297

moving, 295–297

groups

adding, 298–299

deleting, 300–301

modifying, 299–300

Lync, 11–12, 22–25

Lync Server, 289

queries, 288–294

ContactAdded, 71–72

ContactCard, 16–18, 21–22, 276

ContextualInformation,

83

control templates, 35

IsAutomatedService, 285

TargetType, 36

contactCard, 162, 274, 285

ContactCardStyle, 37

ContactCollection, 72

ContactGroupExporter,

291–294

ContactGroupImporter,

294–295

ContactGroupServices, 164,

287–305

ContactInformationChanged,

69, 75

ContactInformationType,

67, 68, 69–70

ContactLayoutView, 23

ContactList, 22–25, 48

ContactManager, 65–70

BeginRemoveContact

FromAllGroups, 72

GroupAdded, 70–71

GroupRemoved, 71

ContactManager.Get

ContactByUri, 116

ContactRemoved, 72

ContactSearch, 26

ContactSearchInputBox, 27–29

ContactSearchResultList,

27–29

ContactSubscription

RefreshRate, 68–69

ContactType, 68

container IDs, 278

ContainerNotification

Received, 283, 301

ContainerUpdateOperation,

303

contentNativeFile, 277

contentPoll, 277

contentPowerPoint, 277

CONTENT-TYPE, 414

contentWhiteboard, 277

contextData, 48

ContextDataReceived, 349, 350

contextual conversations

CRM, 78

Launch Link, 7

Lync, 6–7, 31–34, 77–101

Lync Extensibility Window, 7,

95–96, 347

Silverlight, 96–97

ContextualInformation,

34, 83

ContextualLink, 33, 49

Control Panel, 3

control templates, 35

controls:, 15

Conversation, 58–61

BeginEscalateTo

Conference, 326

BeginRemoveFromDefault

AudioRouting, 393–395

Call, 157, 212–213

CanInvoke, 116

ConferenceSession,

158, 327

ContextDataReceived, 349

ConversationManager

EventArgs, 115

ConversationWindow, 54

endpoints, 328

GetApplicationData,

96, 98

Id, 414

Impersonate, 214, 463

Loaded, 96

LobbyParticipant

AttendanceChanged, 340

ConversationAction.Add

Particpant, 116

ConversationAdded, 55, 87, 99,

141

Conversation.BeginSend

ContextData, 90

Conversation.Conference

Session.BeginJoin, 329, 331

ConversationContextChannel,

347–352

BeginSendData, 348–349

MIME, 348

Silverlight, 349–351

UCMA, 351–352

ConversationContextLink

Clicked, 87, 88–89

ConversationContextualInfo,

32–33, 78, 82, 83, 95

ConversationId, 119

ConversationManager, 54–61

AddConversation, 115

Audio Video modality,

127–129

ConversationAdded, 87

ConversationManager

.Conversation, 126

ConversationManager

.ConversationAdded, 141

ConversationManagerEvent

Args, 115

Conversation.Participant

Added, 61

ConversationProperty, 57–58

ConversationRemoved, 55, 126

ConversationRemoved

Notification, 125

ConversationSettings, 224

ConversationState

.Terminated, 125, 126

ConversationWindow, 53, 54,

61–75, 118

InstantMessage

Notification, 123

Silverlight IM Client, 123,

124–125

ConsecutiveSilencesSpeechEvent – ConversationWindow

488

CreateApplication

Registration, 86

CreatePlayer, 360, 361

CreateSubscription, 67

CreateWorkflow, 479

Credential, 203

credentials

Lync Managed API, 42–44

LyncClient.BeginSignIn,

110

CredentialRequested, 106, 111

CRM. See Customer Relationship

Management

CSeq, 414

CustomContactList, 22–25, 48

Customer Relationship

Management (CRM), 5, 6,

11–12, 78. See also Fabrikam

CRM

CustomMimeParts, 224, 228

CustomStatusId, 74

D

DataGrid, 17

DataObjectForFileTransfer, 49

DataTemplate, 25

debugging, 184, 258

UCMA, 169, 407–427

declarative rule condition,

446–447

Decline, 231–234

DefaultContextPackage, 93, 97

DefaultNote, 68

DelegateNotification

Received, 283

DeleteSipDomain, 303

DeleteSipUri, 303

DeleteSourceNetwork, 303

Description, 310

Desktop, 15

DeviceManager, 141

Dictionary<Automation

ModalitySettings, object>,

48

digit, 455

Direction, 119, 413

DirectionMuted, 375

DisconnectCall, 435, 476–477

Dispatcher.ShutdownStarted,

112

DisplayName, 18, 68, 182

DisplayPhoto, 74

DiversionContext, 228

Dock, 63

domainAndUsername, 43

DoNotDisturb, 275

DTMF. See dual-tone

multi-frequency

DtmfGrammars, 442, 456

dual-tone multi-frequency

(DTMF), 9, 137, 354–356,

430

E

e.Contacts, 289

e.Groups, 289

e.IsFullNotification, 289

email, 71

EnableCsTopology, 176

End, 190, 191

EndAccept, 229

EndAddContact, 294

EndAddGroup, 70–71, 298

EndDeleteContact, 297

EndDeleteGroup, 300

EndDrain, 205

EndEstablish, 165, 193,

463–464

EndGetCachedContact, 295

EndHold, 374

EndParagraph, 453

EndPark, 253

endpoints

Conversation, 328

impersonation, 213–214

local, 278–284

LocalOwnerPresence, 279

PSTN, 325

remote, 264–278

SIP, 330

SIP URI, 414

termination, callbacks,

194–195

trusted application

CollaborationPlatform,

198

creating, 182

deleting, 183–184

UCMA, 199–201

UCMA Workfl ow SDK,

440

viewing, 182–183

trusted conference

participants, 332

UCMA, 154–156, 169,

199–201, 279, 328, 332

endpoints.txt, 183

EndpointSubtype, 202

EndpointType, 202

EndpointUserAgent, 201, 203

EndPresenceQuery, 266

$$end_record, 413

EndRemoveGroup, 71

EndRetrieve, 373

EndScheduleConference, 313

EndSentence, 453

EndShutdown, 195

EndStartConversation, 54

EndStyle, 453

EndSubscribe, 288

EndUnsubscribe, 290

EndUpdateContact, 295

EndUpdateGroup, 300

enhanced presence, 161–164

EscalatedNoRecognition, 442

EscalatedSilencePrompt, 442

Established, 259

EstablishEndpoint, 191–192

Establishing, 259

Event Viewer, 475

Everyone, 312

exception handling, 167–169

ExecuteCode, 445, 446

ExpectedDtmfInputs, 442,

443–444, 461, 477

ExpectedSpeechInputs, 442,

443–444, 461, 477

ExpiryTime, 310

Expression Blend, 12, 34–38

extensibility points, 4

Extensibility Window. See Lync

Extensibility Window

CreateApplicationRegistration – Extensibility Window

489

ExtensibilityWindowSize,

93

Extensible Messaging and Presence

Protocol (XMPP), 161

ExternalURL, 93

F

Fabrikam CRM, 154

AccountId, 85

Launch Link, 93–94

Silverlight, 92, 96

WPF, 78

“Failed to listen on port specifi ed,”

423–424

FileHistoryLink, 49

FileIsShared, 49, 52

FilePathToTransfer, 49, 52

FileTransfer, 50

fi rewalls, 425–426

FirstInstantMessage, 49

500 Server Internal

Error, 153

503 Service Unavailable,

153

504 Server Timeout, 153

FocusWindow, 62

FollowUp, 57

Forward, 237–239

Forwarded, 241–242

400 Bad Request, 152

401 Unauthorized, 152

403 Forbidden, 152

404 Not Found, 152

407 Proxy Authentication

Required, 152

408 Temporarily Unavailable,

152

481 Call/Transaction Does

Not Exist, 152

486 Busy Here, 152, 234

488 Not Acceptable Here,

153

FQDN. See fully qualifi ed domain

name

fully qualifi ed domain name

(FQDN), 169, 208, 423

G

GetApplicationData, 96, 98

GetClient, 42

GetContactByUri, 71

Get-CsManagementStoreStatus,

177

Get-CsService, 176

Get-CsSite, 176

Get-CsTopology, 177

Get-CsTrustedApplication,

181, 182

Get-CsTrustedApplication

Endpoint, 182–183

GetLocalCertificate, 187

GetLocalParticipant

Endpoints, 342

GetPresence, 444–445, 446

GetRemoteParticpant

Endpoints, 342

gifInk, 277

Globally Routable User Agent URI

(GRUU), 175, 189

grammars

presence, 279–283

UCMA Workfl ow SDK,

454–458

Grammars, 442, 456

Group, 71–72, 300

GroupAdded, 66, 70–71

GroupRemoved, 66, 71

groups

auto-provisioning, 425

contact operations, 164

Groups, 66–67

GroupViewBySetting, 23

GRUU. See Globally Routable

User Agent URI

GRXML grammar, 454–458

GUID, 79, 96, 99

H

Hashtable, 154

Height, 64

HelpPrompt, 442

Hidden, 19

Hidden Markov Model (HMM),

433

HKEY_CURRENT_USER\Software\

Microsoft\Communicator\

ContextPackages, 80

HMM. See Hidden Markov Model

HomePageUrl, 68

HoverAction, 21

I

IAsyncResult, 43–44, 54, 166,

190, 331

Id, 57, 414

Identity, 181–184

Idle, 259, 260

IdleBusy, 275

IdleOnline, 275

IETF. See Internet Engineering

Task Force

IFElse, 446

IIS. See Internet Information

Services

ILogger, 186

IM. See instant messaging

IMessenger, 4, 39–40, 103

Impersonate, 214, 463

impersonation, endpoints,

213–214

ImplicitNotification

Disabled, 240

Importance, 57

Inactive, 57, 136

Inbound Sequential Workfl ow

Console Application, 431

Incoming, 259, 382

incoming calls

back-to-back calls, 381–382

fi rewalls, 425–426

INVITE, 227

troubleshooting, 425–426

UCMA, 225–242

IncomingAudioRoute, 397, 401

IncomingAudioRouteOperation,

399

IncomingFaxDetected, 355

IncompleteTimeout, 443

ExtensibilityWindowSize – IncompleteTimeout

490

INFO, 151, 413

InitialContextEventArgs, 350

InitialContextReceived,

87–88, 350

Initialize, 473

InitialSilenceTimeout, 443

InLobby, 331

Install Registration, 81, 86, 92–97

InstallLink, 81, 93

InstallUtil, 474–475

instance IDs, 278, 279

Instant Message modality,

113–126, 141

instant messaging (IM), 326, 342

InstantMessageModality, 117,

121, 122

InstantmessageModality, 124

InstantMessageModality

.BeginSendMessage, 121

InstantMessageModality

.BeginSetComposing, 121

InstantMessageNotification,

119, 121, 122, 123, 124

InstantMessageReceived,

117, 124

InstantMessaging, 50

InstantMessagingCall,

157, 213

InstantMessaging

CallReceived, 438–439

InstantMessagingFlow,

254–258, 342

InstantMessagingMcuSession,

342

InstantMessagingQuestion

Answer, 441–442

InstantMessagingStatement,

441

InSuppressedMode, 107

interactive voice response (IVR), 2,

8–9, 156, 382, 448

InternalURL, 93

Internet Engineering Task Force

(IETF), 415

Internet Explorer, 16

Internet Information Services (IIS),

7, 422, 424

InvalidOperationException,

238

INVITE, 151, 217

AudioVideoCall, 220–223

CustomMimeParts, 224

incoming calls, 227

MCUs, 319

MIME, 237

100 Trying, 217, 414–415

Replaces, 247

SDP, 221, 317

SIP, 317, 412, 413, 425

Transferred-By, 244

200 OK, 221–223, 317

XML, 317

Invited, 311

Inviter, 58

Invoke-CsManagementStore

ReplicationStatus, 178

IsAutomatedService, 285

IsAvailable, 133

IsBeingRecorded, 58

IsConferenceDialOut, 228

IsDefaultRoutingEndpoint,

201

IsExpanded, 22

isfInk, 277

IsImmediateAutoAcceptNeeded,

322

IsNewConversation, 228

IsPasscodeOptional, 310, 313

IsTypingChanged, 117, 122

IsUsbConversation, 57

ItemSource, 19, 24

IVR. See interactive voice

response

K

Key, 36

L

lambda expressions, 166–167

language packs, 432–433

Large, 19

Launch Link, 6, 78, 79, 81–85,

93–94

contextual conversations, 7

Install Registration, 86

Lync Extensibility Window,

93–94

Runtime Registration, 86

Left, 64

lib, 13

ListBox, 17, 19, 25

List<string>, 19, 24

LiveMeeting, 3

load balancing, 170

Loaded, 62, 85, 96

LobbyBypass, 310

LobbyBypass.Enabled

ForGatewayParticipants,

312

LobbyManager, 340

LobbyParticipantAttendance

Changed, 340

local endpoints, 278–284

local presence, 164

localEndPoint, 479

LocalOwnerPresence, 278, 279,

283, 301, 303

LocalService, 474

LocalSystem, 474

Location, 74

LocationName, 68

Locked, 311

logging

Lync clients, 417–418

Lync Server, 408–417

UCMA, 186–188

Lync, 4–5, 11–38

Assemblies, 13

automatons, 5

clients

Booleans, 107

conference calls, 325

logging, 417–418

Lync UI Suppression

mode, 106–113

conference calls, 3

contact lists, 11–12, 22–25

contextual conversations, 6–7,

31–34, 77–101

controls, 4

conversation window, 61–65

CRM, 5, 11–12

Expression Blend, 12, 34–38

extensibility points, 4

INFO – Lync

491

IMessenger, 4

installation, 13–15

Launch Link, 6

Lync SDK, 4

Lync UI Suppression mode, 5

“My” controls, 29–30

My Sites, 3

references, 15

requirements, 12–13

SDK, 2, 13

Agent Dashboard, 8

Lync, 4

Silverlight, 3

WPF, 3

Silverlight, 11–12, 38

Silverlight Tools for Visual

Studio, 13

subscriptions, 5

UCC, 4

Visual Studio, 12

WPF, 11–12, 38

XAML namespaces, 14, 15

Lync Central Management Store,

171–172

Lync Extensibility Window, 6, 79

ApplicationRegistration,

97

contextual conversations, 7,

95–96, 347

Install Registration, 92–97

Launch Link, 93–94

Runtime Registration, 97–99

security, 99–100

Silverlight, 78, 91–100

Lync Managed API, 40–44, 103

communications clients,

39–76

contacts, 65–70

conversations, 46–65

Lync Outlook ad-in, 309

Lync Powershell cmdlets, 176

Lync Server, 1–9, 103

200 OK, 270

BENOTIFY, 272

collaboration, 161

conference calls, 316

contact list, 289

Control Panel, 3

core components, installation,

175

enhanced presence, 161–164

logging, 408–417

SIP, 411–417

PBX, 2

PowerShell, 3

Silverlight, 3

SIP, 149–153

SUBSCRIBE, 270, 272

User, 172

Lync Server Management Shell, 3,

21, 175–177, 179–180

Lync Silverlight Application,

13–14

ActiveX, 16

Lync UI Suppression mode,

103–143

Audio Video Modality,

126–142

Automation, 104

confi guration, 105–106

DTMF tones, 137

Instant Message modality,

113–126

Lync, 5

Lync client process,

106–113

Lync Managed API, 40

Silverlight, 5

64-bit, 105–106

32-bit, 105

Lync Web App, 3, 147

LyncClient, 42, 44–45, 106

BeginSignIn, 43

ConversationManager, 55

DeviceManager, 141

Self, 73

StateChanged, 106

_lyncClient, 42

LyncClient.BeginInitialize,

107

LyncClient.BeginShutdown,

112–113

LyncClient.BeginSignIn, 109,

110, 111

LyncClient.Credentials

Requested, 112

LyncClient.GetAutomation,

113

LyncClient.GetHosting

Conversation(), 96

LyncClient.StateChanged, 112

M

m=, 416

Machine state, 163, 275

Mainpage.xaml.cs, 85

MainPrompt, 441, 442

Manage Private Keys, 422

management store, 177–179, 425

matter, 8–9

m=audio, 221

MaximumEstablishTime, 464

MaximumNoOutputs, 459

MaximumNoRecognitions, 459

MaximumSilences, 459

MaxRegisterRetries, 202, 203

MaxResults, 26

McuDialOutOptions, 324, 396

MCUs. See multipoint control

units

Mcus, 310

McuSession, 160, 337, 344

media

candidates, 417

conference calls, MCUs,

341–344

control, 353–406

negotiation, 217

transfer, 253–258

MediaFlow, 159, 259

MediaProvider, 159

MediaSource, 357

MediaTroubleshootingData

Reported, 260, 418

MESSAGE, 151

Message, 276

message, 416

MessageReceived, 342

Message-Type, 413

Microsoft Installer (MSI), 13

Microsoft Management Console

(MMC), 420

Lync Central Management Store – Microsoft Management Console (MMC)

492

Microsoft Team Foundation

Server, 13

Microsoft.Lync.Controls

.dll, 15

Microsoft.Lync.Controls

.Framework.dll, 15

Microsoft.Lync.Model

.ContactSubscription, 67

Microsoft.Lync.Model

.ConversationManager, 54

Microsoft.Lync.Model.dll, 15

Microsoft.Lync.Model.Lync

Client, 42

Microsoft.Lync.Model.Self,

73

Microsoft.Lync.Utilities

.dll, 15

Microsoft.Office.Uc.dll, 15

Microsoft.Speech.Synthesis,

452

MIME, 215, 228, 237, 348

MMC. See Microsoft Management

Console

Modalities, 56, 121

Modality, 117

ModalityAction, 133

Modality.ActionAvailability

ChangedEvent, 133

ModalityActionAvailability

ChangedEventArgs, 133

ModalityDisconnectReason,

131–132, 142

ModalityStateChanged, 132

ModalityStateChanged

EventArgs.NewState, 132

Model-View-ViewModel

(MVVM), 109

Ms-Conversation-ID, 414

MSI. See Microsoft Installer

MTLS. See mutual transport-layer

security

multi-modal communication, 212

multipoint control units (MCUs),

161, 228

back-to-back calls, 388

call transferring, 325

conference calls, 307–309,

325, 341–344

custom audio routes, 397–399

IM, 342

INVITE, 319

manual audio routes,

399–401

Recorder, 368

SIP URI, 329

UCMA, 392

mute, 372–375

Mute, 375

mutual transport-layer security

(MTLS), 170, 419

MVVM. See Model-View-

ViewModel

MVVMLight, 109, 119

“My” controls, 29–30

My Sites, 3

MyNoteBox, 29

MyPresenceChooser, 29

MyStatusArea, 30

N

Name, 17, 81, 93

namedArgumentValues, 479

NeedsAttention, 62

NeedsSizeChanged, 62

.NET, 112, 156, 173

network sniffers, 408

NetworkService, 474

new matter intake, 8–9

New-CsTrustedApplication,

179, 180

New-CsTrustedApplication

Computer, 207

New-CsTrustedApplication

Endpoint, 179, 182

New-CsTrustedApplication

Pool, 176

NewState, 45

None, 312

NoRecognitionPrompt, 442

NotAcceptableHere, 142

Note, 276

note, 162, 274

Notepad, 410

Notification_InstantMessage

Composing, 121, 123

NotificationReceived, 288, 290

Notified, 141

NOTIFY, 151, 244, 413

O

ObservableCollection

<string>, 63, 114

OCSLogger.exe, 408

octothorpe, 355

Offer/Answer, 217

Offi ce Communications Server, 2

Offline, 275

OldState, 45

OnApplicationEndpoint

EstablishCompleted, 193,

196

OnApplicationStartup

Completed, 193

OnDrainingComplete, 205

100 Trying, 152, 217, 414–415

180 Ringing, 152, 217–218

183 Session Progress, 152

OneLine, 23

OnHold, 136

Online, 275

OnPlatformShutdownCompleted,

196

OnPlatformStartupCompleted,

191

OnSearchStateChanged, 28

OnStop, 473

Operation, 401

OperationFailureException,

465

OPTIONS, 151

Orbit, 253

OrganizerData, 310

outbound calls

back-to-back calls, 381–382

UCMA, 209–224

Outbound Sequential Workfl ow

Console Application, 431

OutgoingAudioRoute,

397, 401

Outlook, 6, 78, 309

OutlookEntryId, 49

OutOfOfficeNote, 68, 276

Microsoft Team Foundation Server – OutOfOi ceNote

493

P

PackageRegistration_Launch

.reg, 80

Page, 121

Panel, 63

Parameters, 81, 93

ParentWindow, 49

Parked, 57

Parking, 259

Participant, 59, 450

ParticipantAdded, 56, 59–60,

115, 117

ParticipantCollectionChanged

EventArgs, 59

ParticipantData, 310

ParticipantEndpoint,

BeginMute, 342, 343

ParticipantEndpoint

AttendanceChanged, 345

ParticipantEndpont.Uri, 260

ParticipantRemoved, 56,

59–60

Participants, 56, 310, 312

Participant.Uri, 260

Passcode, 310, 312

password, 43

Path, 81, 94

PBX. See private branch

exchange

Peer, 413

People Options button, 116

PerformApplicationStartup

Logic(), 111–112

PerformAttendedTransfer,

249

PerformSupervisedTransfer,

250–251

PerformUnattendedTransfer,

248–249

permissions, 170

provisioning, 206

TLS, 208, 421–422

PersonalNote, 68, 74, 276

Phone state, 163, 275

PhoneAccessEnabled, 310

PhoneInformation, 314

Photo, 68

PhotoDisplayMode, 19, 23, 30

PhotoUrl, 74

PlaybackSpeed, 360

Player, 356–362

SpeechSynthesisConnector,

334

PollingInterval, 272

Port, 180

PowerShell, 3, 20, 175–177, 206

presence

access control, 163

presence containers,

301–305

aggregation, 162–163,

275–276

always-on, 285

categories, 265, 274

containers, 163, 279

adding contacts, 303

presence access control,

301–305

removing contacts,

303–305

enhanced, 161–164

grammars, 279–283

local, 164

parsing, 273–278

queries, 163–164, 264–267

remote, 164

SIP, 161

subscriptions, 163–164, 265,

268

UCMA, 161–164, 263–286

automatons, 284–286

Presence, 202, 204

PresenceActivity, 276

PresenceAvailability, 276

PresenceBasedScreening

Disabled, 202, 204

PresenceCategory, 273, 279

PresenceCategoryWith

Metadata, 278

PresenceCounterIntelligence,

264, 279, 283

PresenceIndicator, 14,

16–18, 17, 21

ContactLayoutView, 23

MyStatusArea, 30

PhotoDisplayMode, 19, 23

PresenceNotification

Received, 268, 283

PresenceServices, 266

PresenceSpy, 264

PresenceState.

PersistentOnline, 285

presentity, 264

PreviousConversation, 49

PrimaryEmailAddress, 68

private branch exchange (PBX),

2, 252

private keys, 422

project templates, Visual Studio,

13–14

Expression Blend, 35

manual setup, 15

UCMA Workfl ow SDK,

431–432, 438

ProjectInstaller, 473

PromptBuilder, 450–451, 454

PromptStyle, 453

Properties, 56

PropertyChanged, 60

ProvisionedApplication

PlatformSettings, 199

ProvisionedApplication

Settings, 208

provisioning

auto-provisioning, 175,

424–425

permissions, 206

UCMA, 171–184

PSTN, 312–313, 323–325

PublishableContact

InformationType,

73–74

PublishRandomStateAndNote,

279

Q

QualityOfExperienceContent,

418

queries

contact lists, 288–294

presence, 163–164, 264–267

UCMA Workfl ow SDK,

441–444

PackageRegistration_Launch.reg – queries

494

R

RealTimeException, 167, 191

Receive, 374

RecognitionResult, 446

Recorder, 365–367, 368

Reestablishing, 156

REFER, 151, 240, 243–244, 247,

413

referenced assemblies, 426

Refer-To, 247

REGISTER, 151, 413

RegisterForApplication

EndpointSettings,

199–200

RegisterForIncomingCall, 227

registration, SIP, 149

remote endpoints, 264–278

remote participants

audio routing, 402–406

UCMA, 260–261

remote presence, 164

remoteCallControl, 277

RemoteEndpoint, 373

RemoteEndpointMusicOnHold,

373

RemoteEndpointProperties,

260

RemoteParticipant, 228, 235,

260–261

RemotePresenceView, 164, 268,

272, 283

RemotePresenceViewSettings,

272

RemotePresentity

Notification, 266, 276,

277

RemotePresentitySubscription

Target, 268

Remove, 72, 401

Remove-CsTrustedApplication,

183

Remove-CsTrustedApplication

Endpoint, 184

RepeatPrompt, 443

Replaced, 57

Replaces, 247

Reply by IM, 6, 78

RepresentedBy, 57

RepublishingRequired, 284

Request for Comments (RFC), 415

Request-CsCertificate, 179

requestData, 479

ResizeWindow, 62

Resource dictionary, 36

Resource Kit Tools, 410

ResponseCode, 234

Results, 27, 29, 445

Retrieve, 137

RFC. See Request for Comments

RFC 2833, 356

RFC 3966, 325

RingBackDisabled, 228

routing, 162, 274

RTCComponentsUniversal

Services, 170

RTCUniversalServerAdmins,

179, 206

RTP, 159

RTP/AVP, 416

Rule Condition Editor, 446–447

running instance, 41–44

Runtime Registration, 85–91,

97–99

S

SameEnterprise, 312

SaysAs, 452

scheduled conference calls, 309

SDK. See software development

kit; Unifi ed Communications

Managed Workfl ow SDK

SDP. See Session Description

Protocol

SearchState, 27

SearchType, 26, 27

Secure Real-time Transport

Protocol (SRTP), 416

security. See also transport layer

security

Lync Extensibility Window,

99–100

SelectedContactUri, 24

SelectedContactUris, 48

SelectedOption, 478

SelectedTabIndex, 22

SelectionChanged, 25

Self, 73–76

SelfParticpant, 57

self-transfer, 382

Send, 374

SendDtmf, 137

SendEmailButton, 31

SendFileButton, 31

SendFirstInstantMessage

Immediately, 49

SendReceive, 137, 138, 374

ServerPlatformSettings, 154,

189–190

SERVICE, 151, 413

ServiceCapabilities, 277

ServiceCapability, 277, 278

ServiceInstaller, 473

ServiceList, 277, 278

ServiceProcessInstaller, 473

Services, 162, 274, 276–277

Services Control Manager, 475

Session Description Protocol

(SDP), 159, 217

application/sdp, 414

back-to-back calls, 378–379

INVITE, 221, 317

SIP, 415–417

200 OK, 218

Session Initiation Protocol (SIP), 17

back-to-back calls, 378

BeginEstablish, 215

BYE, 317

conference calls, 160–161,

315–320

ConferenceInvitation, 320

endpoints, 330

GRUU, 189

INVITE, 317, 412, 425

Lync Server, 149–150

logging, 411–417

methods, 150–153

proxy, 149–150

responses, 150–153

.NET, 156

network sniffers, 408

presence, 161

REFER, 243–244

registration, 149

RealTimeException – Session Initiation Protocol (SIP)

495

SDP, 415–417

UCMA, 148–164, 264, 407,

427

URI, 189

endpoints, 414

MCUs, 329

Set-CsCertificate, 179

Set-CsClientPolicy, 27

SetExtensibilityWindow

Properties, 86

SetWorkflowCulture, 439

SharedDesktop, 48, 51–52

ShareDesktopButton, 31

SharedMonitor, 48

SharedProcess, 48

SharedWindow, 48

Show Participant List, 116

ShowContactBrief, 21

ShowContactDetails, 21

ShowFrequentContacts, 23

ShowFriendlyName, 23

ShowPivotBar, 23–24

ShutDown, 194

SignInAttemptNotification,

109–110

SilencePrompt, 442

Silverlight

ContextDataReceived, 350

contextual conversations,

96–97

ConversationContext

Channel, 349–351

Fabrikam CRM, 92, 96

Lync, 11–12, 38

Lync Extensibility Window,

78, 91–100

Lync SDK, 3

Lync Server, 3

Lync UI Suppression mode, 5

Visual Studio, 12

Silverlight IM Client, 114

ConversationWindow, 123,

124–125

Instant Message modality, 117

MVVMLight, 119

Page, 121

ParticipantAdded, 115

StateChanged, 115

Silverlight Tools for Visual Studio,

13

SingleClickAction, 21

SIP. See Session Initiation Protocol

SIP INFO, 356

SipAddress, 182

SipResponseData, 427

SIP/SIMPLE, 161

64-bit

InstallUtil, 474

Lync UI Suppression mode,

105–106

UCMA, 172

603 Decline, 153, 234

Skip, 361

Small, 19

Snooper.exe, 410

software development kit (SDK),

Lync, 2, 13

Agent Dashboard, 8

Lync, 4

Silverlight, 3

WPF, 3

Solution Explorer, 185, 466

Source, 16–18

SpeechCommand, 436, 461–462

SpeechHelpCommand, 436,

460–461

SpeechQuestionAnswer,

442–444, 448, 477

SpeechRecognitionConnector,

369–372

SpeechRepeatCommand, 436, 461

SpeechStatement, 441, 448

SpeechSynthesisConnector,

334, 362–365

SpeechSynthesizer, 362–365

SRTP. See Secure Real-time

Transport Protocol

Start, 188, 195, 199, 359, 367

Start Logging, 409

StartAudioCallButton, 30

StartConferenceBy

CallingMeAt, 49

StartInstantMessagingButton,

30, 37

Start-Line, 413

StartParagraph, 453

StartSentence, 453

StartStyle, 453

StartSubscribingTo

Presentities, 268–269

StartType, 475

StartVideoCallButton, 31

StartWorkflow, 439, 440

State, 57, 162, 274–276

Call, 258

conference calls, 346–347

ConferenceSession,

346–347

LyncClient, 44

state, 190

StateChanged, 60–61

ApplicationEndpoint, 192

Call, 258

ClientStateChanged

EventArgs, 45

LyncClient, 45, 106

MediaFlow, 259

Player, 361

Silverlight IM Client, 115

VideoWindow, 138

statement activities, 440–441

Stop, 359

Stop Logging, 409

Stopped, 361

Style, 36

Subject, 49, 57, 83, 95, 310

SUBSCRIBE, 151, 270, 272, 413

Subscribe, 67

SubscriberNotification

Receiver, 283

subscriptions

Lync, 5

presence, 163–164, 265, 268

targets, 164, 265, 269

SubscriptionMode, 272

supervised transfers, 247–248,

250–251

System.Configuration, 185

T

Targets, 445, 446

TargetType, 36

“tel” URI, 325

Set-CsCertifi cate – “tel” URI

496

templates, 35, 311. See also project

templates

Terminated, 57, 61, 259, 260

Terminating, 259

test harness, 184–198

Text, 18, 124

text, 277

TextBlock, 18

32-bit

InstallUtil, 474

Lync UI Suppression mode,

105

301 Moved Permanently, 152

302 Moved Temporarily, 152

thumbnailPhoto, 20

timeouts, 443

TLS. See transport layer security

TlsException, 170, 184,

419–423

tlsPort, 192

ToastMessage, 223, 224, 228

ToastString, 49

ToneController, 354–356, 361

ToneReceived, 355, 361

Top, 64

Topology.xml, 177

ToUpper, 188

transfer destination, 426

transferees, 426

TransferReceived, 240

TransferredBy, 57, 228, 244

Transferring, 259

transferring calls

conference calls, 325–326

MCUs, 325

troubleshooting, 426

UCMA, 239–253

transport layer security (TLS),

154, 170

CA, 420

certifi cates, 419–423

FQDN, 423

permissions, 421–422

FQDN, 208

IIS, 422

network sniffers, 408

permissions, 208

troubleshooting, 208, 419–423

UCMA/Visual Studio, 184

Visual Studio, 208

troubleshooting

auto-provisioning, 424–425

incoming calls, 425–426

TLS, 208, 419–423

transferring calls, 426

trusted applications, 206–207

UCMA, 205–208

trusted applications

CollaborationPlatform,

175

deleting, 183–184

endpoints

CollaborationPlatform,

198

creating, 182

UCMA, 199–201

UCMA Workfl ow SDK,

440

viewing, 182–183

Lync Server Management

Shell, 179–180

PowerShell, 175–177, 206

troubleshooting, 206–207

UCMA, 171, 172–184,

199–201

automatons, 198–201

central management store,

175

certifi cates, 178–179

management store,

177–179

Windows Server, 172

viewing, 181–182

Trusted Application Pool, 430

trusted conference participants,

331–334

TrustedApplicationPoolFqdn,

180, 182

TrustedContactURI, 440

TrustedParticipant, 403

TryGetContact, 72

TurnStarting, 448–450

Turn_Starting, 457, 477

200 OK, 152, 234

ACK, 219

INVITE, 221–223, 317

Lync Server, 270

SDP, 218

202 Accepted, 152

TwoLines, 23

-Type, 179

U

UAC. See user agent client

UAS. See user agent server

UAs. See user agents

UCC. See Unifi ed Communications

Client

.uccapilog, 418

UCMA. See Unifi ed

Communications Managed

API

UCMA Workfl ow SDK. See

Unifi ed Communications

Managed Workfl ow SDK

UcmaSdkSetup.exe, 173

UI Suppression mode. See Lync UI

Suppression mode

UISuppressionMode, 105–106

unattended transfers, 244–245,

248–249

Undock, 63

UnhandledExceptionManager,

168

UnhandledThreadPool

Exception, 168

Unifi ed Communications Client

(UCC), 4, 39–40, 103

Unifi ed Communications Managed

API (UCMA), 2, 7–9, 37,

145–170

Active Directory, 172

Agent Dashboard, 8

ApplicationEndpoint,

201–203

asynchronous programming,

165–167, 190–191

back-to-back calls, 375–391

call parking, 252–258

call states, 258–260

callbacks, 166–167

certifi cates, 170, 175,

186–188

templates – Unifi ed Communications Managed API (UCMA)

497

ClientPlatformSettings,

172

client-side, 147

CollaborationPlatform,

154–156, 172, 184

conference calls, 307–352

contact group operations, 164

contact lists, 164, 287–305

ContactGroupServices,

287–305

ConversationContext

Channel, 351–352

ConversationSettings,

224

debugging, 169, 407–427

deployment, 169–170

development practices,

164–169

DTMF, 354–356

endpoints, 154–156, 169, 279,

328, 332

exception handling, 167–169

IIS, 7

incoming calls, 225–242

installation, 173–174

lambda expressions, 166–167

load balancing, 170

logging, 186–188

MCUs, 392

media

control, 353–406

transfer, 253–258

.NET, 173

outbound calls, 209–224

permissions, 170

presence, 161–164, 263–286

automatons, 284–286

local endpoints, 278–284

remote endpoints,

264–278

ProvisionedApplication

Settings, 208

provisioning, 171–184

quality of experience metrics,

418

Recorder, 365–367

remote participants, 260–261

server-side, 147

SIP, 148–164, 264, 407, 427

64-bit, 172

SpeechRecognition

Connector, 369–372

SpeechSynthesisConnector,

362–365

SpeechSynthesizer,

362–365

Start, 188

startup/shut down, 184–198

test harness, 184–198

ToneController, 354–356

transferring calls, 239–253

troubleshooting, 205–208

Trusted Application Pool,

430

trusted applications, 171,

172–184

automatons, 198–201

central management store,

175

certifi cates, 178–179

endpoints, 199–201

management store,

177–179

Windows Server, 172

two-party call control,

209–261

UserEndpoint, 203–204

Visual Studio, 172

TLS, 184

VoiceActivityChanged,

368

wait handles, 195–197

WCF, 7

Windows Service, 7

Unifi ed Communications Managed

Workfl ow SDK (UCMA

Workfl ow SDK), 7–9,

429–482

activities, 440–448

attended transfers, 462–463

AudioVideoCall, 463–464

AudioVideoCallReceived,

438–439, 480

Commands, 435–436

communications workfl ow,

476–481

CommunicationsEvents,

436–437

development environment,

430–440

DTMF, 9, 430

grammars, 454–458

initializing, 438

installation, 431–437

InstantMessagingCall

Received, 438–439

IVR, 8–9

language packs, 432–433

prompts, 448–454

queries, 441–444

SpeechRecognition

Connector, 372

statement activities,

440–441

trusted application endpoints,

440

Visual Studio, 430

Visual Studio project

templates, 431–432, 438

VMs, 430

Windows Service, 471–475

Windows Workfl ow SDK

Foundation, 431,

445–448

UpToDate, 177, 178

URI

Active Directory, 450

conference calls, 327

ConferenceSchedule

Information, 313

ConferenceServices,

314

SIP, 189

endpoints, 414

MCUs, 329

Source, 17

subscription targets, 269

“tel,” 325

Uri, 450

User, 172, 287, 474

user agent client (UAC), 148

user agent server (UAS), 148

user agents (UAs), 148

B2BUA, 378

Unifi ed Communications Managed Workfl ow SDK (UCMA Workfl ow SDK) – user agents (UAs)

498

User state, 163, 275

UseRegistration, 192, 202

UserEndpoint, 154–156, 155

automatons, 286

ConferenceServices, 160

ContactGroupExporter,

291

LocalOwnerPresence, 278

PresenceServices, 266

RepublishingRequired,

284

UCMA, 203–204

userUri, 43

V

validPIN, 455

-Verbose, 179

VerifyAndIgnore, 168

Version, 310

Video, 50, 52

video, 277

VideoChannel, 130

VideoChannel.BeginStart, 138

VideoChannel.Capture

VideoWindow, 138

VideoChannel.Render

VideoWindow, 138

VideoWindow, 104, 138, 139

View Log Files, 410

virtual machines (VMs), 430

Visual Studio, 12

Lync Managed API, 41

project templates, 13–14

Expression Blend, 35

manual setup, 15

UCMA Workfl ow SDK,

431–432, 438

TLS, 208

UCMA, 184

TlsException, 419

UCMA, 172

TLS, 184

UCMA Workfl ow SDK, 430

VMs. See virtual machines

voice, 277

VoiceActivityChanged, 368

VoIP, 356

W

wait handles, 195–197

WCF. See Workfl ow

Communication Foundation

WebUrl, 314

Width, 64

WindowInteropHelper, 62

Windows Forms, 172

Windows Forms Panel, 139

Windows Media Format Runtime,

173

Windows Presentation Foundation

(WPF)

Desktop, 15

Dispatcher.

ShutdownStarted, 112

Fabrikam CRM, 78

Lync, 11–12, 38

Lync conversation window,

61–65

Lync Managed API, 40

Lync SDK, 3

Windows Registry, Install

Registration, 86

Windows Registry Editor, 80

Windows Server, 172

Windows Service, 7, 471–475

Windows Workfl ow SDK

Foundation, 431, 445–448

WindowsFormsHost, 62, 63,

139

Wireshark, 408

WmaFileSource, 357

Workfl ow Communication

Foundation (WCF), 7, 143

WorkflowCall, 467

WorkflowCompleted, 481

WorkflowInitiator, 432, 473,

478–481

WorkflowInitiator.cs, 437

WorkflowRuntime, 478–479,

481

workflowType, 479

WPF. See Windows Presentation

Foundation

X

XAML

binding, 17

namespaces, 14, 15

XML

INVITE, 317

QualityOfExperience

Content, 418

XMPP. See Extensible Messaging

and Presence Protocol

XOML, 476–478

User state – XOML

	WroxBooks
	Professional Unified Communications Development with Microsoft® Lync™ Server 2010
	Contents
	Introduction
	Chapter 1: Building Communications Solutions with Microsoft Lync Server 2010
	Lync Product Overview
	Building Communications Applications with the Lync SDK
	Integrating Lync Functionality into Your Applications Using the Lync Controls
	Integrating Communications into Your Applications Using the Lync API
	Working with Lync UI Suppression
	Adding Context to Conversations

	Building Communications Solutions with the Unified Communications Managed API SDK
	Building Communications Solutions with UCMA
	Building Workflow Solutions with the UCMA Workflow SDK

	Summary

	Chapter 2: Integrating Microsoft Lync Functionality into Your Applications
	Setting Up Your Development Environment
	Requirements for Developing with the Lync Controls
	Installing the Lync Controls

	Working with the Lync Controls
	Displaying Presence
	Working with Contact Lists
	Searching for Contacts
	Displaying Information about the Current User
	Starting Conversations
	Starting Contextual Conversations from the Lync Controls

	Extending the Lync Controls with Expression Blend 4
	Creating a Copy of the Control Template
	Examining the Control Template
	Modifying the Control Template

	Summary

	Chapter 3: Building Communications Clients with the Microsoft Lync 2010 Managed API
	Getting Started with the Lync 2010 Managed API
	Setting Up Your Development Environment
	Interacting with the Running Instance of the Lync Client
	Managing the Lifecycle of the Lync Client

	Working with Conversations
	Starting Conversations with Automation
	Getting Started with the ConversationManager
	Docking the Lync Conversation Window in a WPF Application

	Working with Contacts and Groups
	Getting Started with the ContactManager
	Adding and Removing Groups
	Adding and Removing Contacts

	Interacting with the Self Contact
	Publishing Self Presence Items
	Subscribing to Self Presence Events

	Summary

	Chapter 4: Adding Context to Conversations
	Launching Applications from Lync Conversations
	Registering a Contextual Application Package for Launch Link Context
	Setting Conversation Contextual Info for Launch Link Context
	Registering a Contextual Application Package for Lync Launch Link Context at Runtime Using Runtime Registration

	Hosting Silverlight Applications in the Lync Conversation Extensibility Window
	Working with Lync Extensibility Window Context Using Install Registration
	Working with Lync Extensibility Window Context at Runtime Using Runtime Registration
	Security Requirements for Lync Extensibility Window Context
	Install Registration, Runtime Registration, or Both?

	Summary

	Chapter 5: Building Custom Communications Clients with Lync UI Suppression
	Working with Lync UI Suppression
	Configuring Lync UI Suppression
	Interacting with the Lync Client Process

	Working with the Instant Message Modality
	Creating a New Conversation and Adding Participants
	Sending Instant Messages
	Receiving Instant Messages
	Terminating Instant Message Conversations

	Working with the AudioVideo Modality
	Starting Audio and Video Conversations
	Handling Incoming Audio and Video Conversations

	Summary

	Chapter 6: Introduction to the Unified Communications Managed API
	What Is a UCMA Application?
	What Does UCMA Do?
	Server-side Uses
	Client-side Uses
	Integration with Non-Microsoft SIP Platforms

	Session Initiation Protocol in Brief
	SIP User Agents
	SIP Proxies and Registrars
	SIP Methods and Responses
	How Is Lync Server Different from Other Platforms?

	UCMA Basic Concepts
	The Collaboration Platform
	Endpoints
	Conversations and Calls
	Conferencing
	Enhanced Presence
	Automatic Presence Publishing in UCMA
	Local Presence and Remote Presence
	Contact List and Contact Group Operations in UCMA

	UCMA Development Practices
	Asynchronous Programming
	Exception Handling

	Deploying a UCMA Application
	Where to Deploy
	Deployment Tips
	Load-Balanced Applications

	Summary

	Chapter 7: Starting Up and Shutting Down a UCMA Application
	Provisioning an Application
	Creating a Trusted Application Pool
	Creating a Trusted Application

	Starting Up and Shutting Down with Explicit Settings
	A UCMA Test Harness
	Building the Test Harness Class
	Building the Console Application
	Running the Test Harness

	Loading Trusted Application Settings Automatically
	Starting a Collaboration Platform with ProvisionedApplicationPlatformSettings
	Discovering Application Endpoints Automatically

	Preparing Endpoints for an Application
	Using ApplicationEndpoint for Services
	Using UserEndpoint for Clients

	Shutting Down Without Dropping Calls
	Troubleshooting Startup and Provisioning
	Troubleshooting a Trusted Service
	Troubleshooting Errors on Startup

	Summary

	Chapter 8: Two-Party Call Control with UCMA
	Placing Outbound Calls with UCMA
	Preparing an Outbound Call Using UCMA Objects
	Establishing a Two-Party Call with BeginEstablish

	Handling Incoming Calls and Messages with UCMA
	Registering for Incoming Calls
	Receiving an Incoming Call
	Forwarding an Incoming Call to Another Endpoint
	Accepting a Transfer on a Connected Call
	Handling the Accepted Transfer
	Accepting a Forward on an Outgoing Call

	Transferring an Active Call
	The SIP Anatomy of a Transfer
	Types of Transfers
	Initiating a Transfer with BeginTransfer
	Recovering from a Failed Transfer

	Parking and Retrieving Calls
	The Call Park Server
	Parking a Call
	Retrieving a Parked Call

	Media and Messages on an Active Call
	Flow Classes for Media Management
	Sending Messages to a Remote Participant Using InstantMessagingFlow
	Manipulating Audio Media Using AudioVideoFlow

	Monitoring Call States
	Receiving Updates on Call State Changes
	Receiving Updates on Flow State Changes
	Receiving Quality of Service Data

	Retrieving Information on Remote Participants
	Summary

	Chapter 9: Presence with UCMA
	Retrieving Presence Information for a Remote Endpoint
	Querying a User's Presence
	Subscribing to Continuous Presence Updates Using RemotePresenceView
	Parsing Presence Information

	Publishing Presence for the Local Endpoint
	Publishing Presence with a Presence Grammar
	Publishing Presence Without a Presence Grammar

	Retrieving Presence Information for the Local Endpoint
	Making an Application an Automaton
	Publishing an Always-On Presence
	Automatic Presence Publication for User Endpoints

	Summary

	Chapter 10: Contact and Group Services In UCMA
	Manipulating Contacts in the Contact List
	Querying a List of Contacts
	Adding a Contact to the List
	Modifying an Existing Contact
	Deleting a Contact

	Manipulating Groups in the Contact List
	Adding a Group to the List
	Modifying an Existing Group
	Deleting a Group

	Manipulating Presence Access Control Using Containers
	Adding Contacts to Presence Containers
	Removing Contacts from Presence Containers

	Summary

	Chapter 11: Conference Services in UCMA
	Setting Up a Conference with UCMA
	Using Scheduled Versus Ad-Hoc Conferences
	Scheduling a Conference Using ConferenceServices

	Inviting Participants to a Conference
	Understanding the SIP Anatomy of a Conference Invitation
	Inviting Participants Using a ConferenceInvitation Object
	Inviting Participants Using Audio MCU Dial-Out
	Transferring a Call into the Conference

	Joining a Conference
	Managing Conference Communication Using the ConferenceSession Object
	Specifying Conference Joining Details with the ConferenceJoinOptionsClass
	Joining an Ad-Hoc Conference

	Providing Services with Trusted Conference Participants
	Avoiding Problems with the Trusted Conference Join Feature
	Using the Trusted Join Feature to Provide Common Services

	Controlling Conference Attendance with Conference Commands
	Terminating a Conference
	Ejecting a Conference Participant
	Locking or Unlocking a Conference
	Modifying Conference Configuration or Participants' Roles

	Managing Access with the Conference Lobby
	Requiring Participants to Enter Via the Lobby
	Allowing Participants into the Conference from the Lobby

	Controlling Media Using the McuSession Classes
	Receiving Instant Messages in a Conference
	Muting a Participant

	Monitoring Conference Events
	Receiving Notifications of Conference Participant Changes
	Receiving Notifications of Media Participant Changes
	Tracking Conference States

	Summary

	Chapter 12: Advanced Media Control in UCMA
	Playing or Recognizing DTMF Tones
	Attaching the ToneController
	Sending DTMF Tones
	Receiving DTMF Tones
	Detecting Fax Tones

	Playing Music, Sounds, or Speech
	Playing Music and Sounds with the Player Class
	Text-to-Speech with the SpeechSynthesisConnector

	Recording Calls and Conferences
	Starting, Stopping, and Pausing Recording
	Recording a Conference
	Detecting Speech on a Call

	Recognizing Speech
	Controlling Hold and Mute States
	Holding or Retrieving an Audio Call
	Muting or Unmuting the Audio Flow

	Staying on the Signaling Path with Back-to-Back Calls
	The Straight and Narrow Signaling Path
	How the Back-to-Back Call Works
	Initiating a Back-to-Back Call
	Back-to-Back Calls with Conferences

	Controlling Who Can Hear What
	Adding or Removing Participants from the Default Audio Mix
	Creating Custom MCU Audio Routes

	Summary

	Chapter 13: Debugging UCMA Applications
	Using Logs and Server Traces
	Using Lync Server Logs
	Interpreting SIP Messages in Server Logs
	Using Lync Client Logs

	Using Quality of Experience Metrics in UCMA
	Troubleshooting Common UCMA Issues
	Troubleshooting TLS Exceptions
	Handling a "Failed to Listen On Port Specified" Error
	Resolving Problems with Auto-Provisioning
	Troubleshooting Incoming Calls
	Troubleshooting Transfers
	Solving Issues with Referenced Assemblies

	Inspecting SIP Responses in Code
	Summary

	Chapter 14: Building Communications-Enabled Business Processes with the UCMA 3.0 Workflow SDK
	Setting Up Your Development Environment
	Requirements for Developing with the UCMA 3.0 Workflow SDK
	Installing the UCMA 3.0 Workflow SDK

	Creating your First Communications Workflow
	Creating a New Communications Workflow Project
	Starting the Communications Workflow

	Working with Communications Workflow Activities
	Interacting with Callers with Statement Activities
	Querying Callers with Question/Answer Activities
	Other Communications Workflow Activities
	Adding Windows Workflow Foundation Activities

	Using Prompts to Create a Natural Dialog with the Caller
	Building Prompts Dynamically
	Working with Professionally Recorded Prompts

	Working with Grammars
	Using GRXML Grammars to Validate Input
	Building Grammars Dynamically in Code
	Other Tools to Build GRXML Grammars

	Communications Events and Commands
	Handling Global Workflow Events
	Implementing Global Workflow Commands

	Calling UCMA Code from a Communications Workflow
	Creating a Code Activity to Perform the Attended Transfer
	Impersonating the Caller
	Creating a New AudioVideo Call
	Transferring the Call

	Building Your Own Workflow Activities
	Creating the Custom Activity
	Defining the Custom Activity's Properties
	Implementing the Activity Logic
	Adding the Custom Activity to the Workflow

	Deploying a Communications Workflow in a Windows Service
	Adding a Windows Service Project to the Solution
	Setting the Current Directory for the Windows Service
	Starting and Stopping the Communications Workflow from the Windows Service
	Adding an Installer to the Windows Service
	Installing the Windows Service Using InstallUtil
	Configuring and Starting the Service

	Hosting a Communications Workflow in a UCMA Application
	Integrating a Communications Workflow XOML Into a UCMA Application
	Creating a Generic Workflow Initiator
	Starting a Workflow from the UCMA Application

	Summary

	Index

