
www.allitebooks.com

http:///
http://www.allitebooks.org


Programming Microsoft® 

Dynamics™ NAV 2009

Develop and maintain high performance NAV 

applications to meet changing business needs with 

improved agility and enhanced flexibility

David Studebaker

 BIRMINGHAM - MUMBAI

www.allitebooks.com

http:///
http://www.allitebooks.org


Programming Microsoft® Dynamics™ NAV 2009™ NAV 2009 NAV 2009

Copyright © 2009 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval 
system, or transmitted in any form or by any means, without the prior written 
permission of the publisher, except in the case of brief quotations embedded in 
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy 
of the information presented. However, the information contained in this book 
is sold without warranty, either express or implied. Neither the author nor Packt 
Publishing, and its dealers and distributors will be held liable for any damages 
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the 
companies and products mentioned in this book by the appropriate use of capitals. 
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: November 2009

Production Reference: 1271009

Published by Packt Publishing Ltd. 
32 Lincoln Road 
Olton 
Birmingham, B27 6PA, UK.

ISBN 978-1-847196-52-1

www.packtpub.com 

Cover Image by Faiz Fattohi (faizfattohi@gmail.com)

www.allitebooks.com

http:///
http://www.allitebooks.org


Credits

Author

David Studebaker

Reviewers

Mark J. Brummel 

Steven Renders 

Acquisition Editor

Douglas Paterson

Development Editor

Ved Prakash Jha

Technical Editors

Aanchal Kumar

Charumathi Sankaran

Copy Editor

Sanchari Mukherjee

Indexer

Rekha Nair

Editorial Team Leader

Gagandeep Singh

Project Team Leader

Lata Basantani

Project Coordinator

Joel Goveya

Proofreaders

Claire Cresswell-Lane

Erica Mukherjee

Graphics

Nilesh Mohite

Production Coordinator 

Aparna Bhagat 

Cover Work

Aparna Bhagat

www.allitebooks.com

http:///
http://www.allitebooks.org


About the Author

David Studebaker is Chief Technical Oficer and the owner of Liberty Grove 
Software, Inc., with his partner Karen Studebaker. Liberty Grove Software, a 
Microsoft Partner, provides development, consulting, training, and upgrade services 
for Microsoft Dynamics NAV resellers and irms using Dynamics NAV internally. 

David has been recognized by Microsoft as a Certiied Professional for NAV in all 
areas—Development, Applications, and Installation & Coniguration. He has been 
honored as a Lead Certiied Microsoft Trainer for NAV. He has been programming 
since 1962 and developing in C/AL since 1996. David has been an active participant 
in each step of computing technology—from the early mainframes to today's 
technology, from binary assembly language coding to today's C/AL and C#.

David's special achievements include the development of the very irst production 
SPOOLing system in 1967. Application areas in which David has worked include 
manufacturing, distribution, retail, engineering, general accounting, association 
management, professional services billing, distribution/inventory management, 
freight carriage, data collection, and production management among others. 

David has had a wide range of development, consulting, sales, and management 
roles throughout his career. He has been partner or owner and manager of several 
software development businesses, while always maintaining a signiicant role as a 
business applications developer. 

David has a BS in Mechanical Engineering from Purdue University and an MBA 
from the University of Chicago. He has been writing for publication since his 
undergraduate college days. David has been a member of the Association for 
Computing Machinery since 1963 and was a founding oficer of two local chapters  
of the ACM.

www.allitebooks.com

http:///
http://www.allitebooks.org


Acknowledgement

I would like to especially thank my partner in life and at work, Karen Studebaker, 
for her unlagging support and encouragement in all ways since those early days 
at Purdue. No one could have a more wonderful partner or spouse. I would like to 
acknowledge the guidance and love that I received from my parents as well as the 
enthusiastic support and love of my wonderful children and other family members. 
Finally, though there are far too many individuals to list, whatever I have been able 
to accomplish would not have been possible without the help of many, many friends, 
mentors, and associates along the way. Life would be very poor without all the kind 
and generous folks I have met. I also wish to thank the great people at Microsoft and 
Packt who assisted me with their contributions and advice throughout the creation of 
this book. May you enjoy this book and ind it useful.

A special thanks to these helpful people at Microsoft:

Microsoft Technical Reviewers: 

Overall Coordination—Michael Nielsen, Director of Engineering, Microsoft 
Dynamics NAV.

Chapter 1: A Short Tour through NAV 2009 - Esben Nyhuus Kristoffersen 

Chapter 2: Tables - Thomas Hejlsberg

Chapter 3: Data Types and Fields for Data Storage and Processing - Thomas Hejlsberg

Chapter 4: Pages—Tools for Data Display - Esben Nyhuus Kristoffersen

Chapter 5: Reports - Yuri Belenky

Chapter 6: Introduction to C/SIDE and C/AL - Lars Hammer

Chapter 7: Intermediate C/AL - Lars Hammer

Chapter 8: Advanced NAV Development Tools - Lars Hammer, Hans Kierulff 

Chapter 9: Extend, Integrate, and Design—into the Future - Christian Abeln,  
Bardur Knudsen

Dynamics NAV Help documentation: Paul Chapman, Dynamics NAV 2009 
Documentation Manager, and his team, including Jill Frank, Søren Groes-Petersen, 
John Swymer, and Bob Papsdorf

Dynamics NAV UX Guide: Hans Roed Mark, UX Manager, Microsoft Dynamics User 
Experience Team

www.allitebooks.com

http:///
http://www.allitebooks.org


About the Reviewers

Mark J. Brummel is an all-round Microsoft Dynamics NAV specialist. He started 
in 1997 as an end user but quickly moved to the other side of the table. During 
ten years, he has worked for resellers where designing and maintaining add-on 
systems was his specialization. Some of these add-on systems exceed the standard 
product where it comes to size and complexity. In addition, coaching colleagues 
and troubleshooting 'impossible' problems is his passion and part of day to day 
work. Mark has trained most of the experienced NAV developers for the NAV 2009 
product in The Netherlands and Belgium. Today he is working freelance, is hired by 
almost every NAV reseller in the Benelux area, and is also frequently asked to help 
out in escalated implementations by end users. Mark is an associate in the Liberty 
Grove Software network and a business partner of SQL Perform Benelux. Mark was 
the irst to use the NAV 2009 (CTP3) product in a production system feeding back 
valuable information to Microsoft.

A special project and passion is performance tuning of the Dynamics NAV product 
on SQL Server. Since 2007, he is involved in the development of the 'SQL Perform 
Tools'. A specialist's toolset which allows both trend and escalation analysis of key 
elements for systems speed. As a unique specialist, he has done break-through 
research in improving the performance of Dynamics NAV on SQL Server.

In his free time, Mark maintains his blog on www.brummelds.com. This blog contains 
a wide range of articles about both the Microsoft Dynamics NAV and SQL Server 
product. He is also a frequent speaker at Microsoft events. In 2006, Mark was 
rewarded by Microsoft with the Most Valuable Professional award for his contribution 
to the online and ofline communities. In 2007, he also reviewed Programming 
Microsoft® Dynamics™ NAV.

Steven Renders is a Microsoft Certiied Trainer in Microsoft Dynamics NAV. He 
has more than 12 years of business and technical experience. He joined Plataan in 
2006, where he provides training and consultancy focused on Microsoft Dynamics 
NAV development, Microsoft SQL Server, Business Intelligence solutions, Microsoft 
SQL Server Reporting Services, and Database Performance Tuning. He is also an 
expert on Dynamics NAV 2009, on which he has already delivered many training 
sessions. Steven has also developed content for Microsoft Learning.

www.allitebooks.com

http:///
http://www.allitebooks.org


Foreword

Since the irst version of Dynamics NAV, simplicity has always been the biggest asset 
of the product, and the goal has always been that it should be easy to learn, easy to 
use, and easy to develop. For the NAV developers, this has been accomplished by 
limiting the number of concepts they have to learn.

The irst is to use the concepts which are well known from real life, for example, 
Form, Page, Table, and Report. The next is to introduce a programming language 
C/AL, which is targeted at writing business logic and not device drivers. The 
third is to add an integrated development environment, which removes the need 
for "plumbing" logic, which typically pollutes the code in a normal development 
environment. The fourth is to add automatic transaction and error handling, which 
saves the developers a lot of time since they don't have to write "clean up" code. The 
ifth and probably most important, is to reuse code constructs across the application, 
so that once you have learned one subsystem, it is easy to understand and master the 
rest. The latter is the secret sauce of NAV and what makes it possible to master doing 
customization across the whole NAV application.

This is, in very few words, what David's book is all about and what Dynamics NAV 
is all about.

Michael Nielsen, 
Director of Engineering, 
Microsoft Dynamics NAV

www.allitebooks.com

http:///
http://www.allitebooks.org


www.allitebooks.com

http:///
http://www.allitebooks.org


Table of Contents

Preface 1

Chapter 1: A Short Tour through NAV 2009 13

NAV 2009: An ERP system 14

Financial Management 16

Manufacturing 16

Supply Chain Management (SCM) 17

Business intelligence and reporting 18

Relationship Management (RM) 18

Human Resource management 19

Project management 19

Significant changes in NAV 2009 19

Two-tier versus three-tier 20

Role Tailored Client 21

SSRS-compatible report viewer 21

Web services 21

NAV 2009: A set of building blocks and development tools 21

NAV object types 22

The C/SIDE Integrated Development Environment 22

Object Designer tool icons 24

NAV object and system elements 25

NAV functional terminology 28

User interfaces 29

An introduction to development 31

Our scenario for development exercises 31

Getting started with application design 32
Application tables 32

Designing a simple table 32

Creating a simple table 33

Field numbering 34

www.allitebooks.com

http:///
http://www.allitebooks.org


Table of Contents

[ ii ]

Pages/Forms 36

Keyboard shortcuts 49

Run a table 50

Reports 50

Creating a List format report 52

Codeunits 58

MenuSuites 59

Dataports 59

XMLports 60

Integration tools 61

Backups and documentation 62

Summary 63

Review questions 64

Chapter 2: Tables 67

Overview of tables 67

Components of a table 68

Table naming 69

Table numbering 69

Table properties 70

Table triggers 72

Keys 74

SumIndexFields 77

Field Groups 78

Expanding our sample application 82

Creating and modifying tables 82
Assigning a TableRelation property 87

Creating Forms for testing 87

Adding Secondary keys 95

Adding some activity-tracking tables 96

New tables 98

Keys and SumIndexFields in our examples 103

Types of tables 107

Wholly modifiable tables 107
Master 107

Journal 108

Template 109

Ledger 110

Reference 112

Register 114

Posted Document  114

Setup  116

Temporary 117

http:///


Table of Contents

[ iii ]

Content-modifiable tables 117
System 117

Read-Only tables 119
Virtual 119

Summary 121

Review questions 122

Chapter 3: Data Types and Fields for Data Storage  

and Processing 125

Basic definitions 125

Fields 126

Field properties 126

Field numbering 132
Changing the data type of a field 134

Field triggers 135

Data structure examples 136

Variable naming 137

Data types 138

Fundamental data types 138
Numeric data 138

String data 139

Date/Time data 139

Complex data types 141
Data structure 141

Objects 142

Automation 142

Input/Output 142

DateFormula 143

References and other 149

Data type usage 150

FieldClass property options 152

Filtering 158

Defining filter syntax and values 158
Filtering on equality and inequality 159

Filtering by ranges 160

Filtering with Boolean operators 161

Filtering with wildcards 161

Filtering with combinations 162

Experimenting with filters 163

Accessing filter controls 172

Summary 175

Review questions 176

http:///


Table of Contents

[ iv ]

Chapter 4: Pages—Tools for Data Display 179

What is a page? 180

Controls 180

Bound and unbound 180

Pages—a stroll through the gallery 181

A sample RoleTailored Client page 182

Types of pages 187

List page 187

Card page 188

Document page 188
FastTab 189

List+ page 191

Journal/Worksheet page 191

Confirmation (Dialog) page 192

Request page 192

Navigate page 193

Departments page 194

Role Center page 196

Page parts 197
FactBoxes 198

Page names 199

Accessing the Page Designer 200

What makes up a page? 201
Page properties 202

Types of page controls 205

Inheritance 211

Page control details 211
Container controls 211

Group controls 212

Field controls 214

Using page controls in a Card page 218

Page Part controls 224
Creating a Card Part FactBox 226

Page Control triggers 228

Adding more List pages to our ICAN application 229

Creating a simple list page 230

Creating related List and Card pages 231

Learning more about pages 234

UX (User Experience) Guidelines 234

Creative plagiarism 235

http:///


Table of Contents

[ v ]

Experimenting with page controls and control properties 235

Help searching 236

Experimentation 236

Testing 238

Design 238

Summary 239

Review questions 240

Chapter 5: Reports 243

What is a report? 244

Two NAV report designers 244

A hybrid report designer 247

NAV report—look and feel 247

NAV report types 248

Report types summarized 253

Report naming 253

Report components overview 254

The components of a report description  255

Report Data Flow 256

The elements of a report 259

Report properties 260

Report triggers  263

Data Items  264

Data item properties 264

Data item triggers 269

Data item Sections  270

Creating RTC reports via the Classic Report Wizard 271
Learn by experimentation 279

Runtime formatting 280

Inheritance 281

Other ways to create RTC reports 281

Modify an existing RTC report 282
The Visual Studio Report Designer layout screen 284

Report Items 286

Make the report changes 288

Request Page  300

Processing-Only reports 304
Creating a report from scratch 305

Creative report plagiarism 306

Summary 307

Review questions 308

http:///


Table of Contents

[ vi ]

Chapter 6: Introduction to C/SIDE and C/AL 311

Essential navigation 312

Object Designer 312
Starting a new object 313

Some designer navigation pointers 319

Exporting objects 320

Importing objects 322

Text objects 324

Object number licensing 324

Some useful practices 325

Changing data definitions 326

Saving and compiling 326

Some C/AL naming conventions 328

Variables 329
Global identifiers 329

Local identifiers 330

Special working storage variables 331

A definition of programming in C/SIDE 334

Functions 335

Basic C/AL syntax 343
Assignment and punctuation 343

Wildcards 344

Expressions 345

Operators 346

Some basic C/AL 350

MESSAGE, ERROR, CONFIRM, and STRMENU functions 350
MESSAGE function 350

ERROR function 351

CONFIRM function 352

STRMENU function 354

SETCURRENTKEY function 355

SETRANGE function 356

GET function 356

FIND  357
FIND ([Which]) options and the SQL Server alternates 358

BEGIN–END compound statement 360

IF–THEN–ELSE statement 361

Indenting code 362

Some simple coding modifications 363

Adding a validation to a table 363

Adding code to enhance a report 368

Summary 375

Review questions 376

http:///


Table of Contents

[ vii ]

Chapter 7: Intermediate C/AL 379

Some C/AL development tools 379

C/AL Symbol Menu 380

Internal documentation 381

Computation and Validation utility functions 384

TESTFIELD 384

FIELDERROR 385

VALIDATE 386

ROUND 387

TODAY, TIME, and CURRENTDATETIME functions 388

WORKDATE function 389

Data conversion functions 390

FORMAT function 390

EVALUATE function 391

DATE functions 391

DATE2DMY function 391

DATE2DWY function 392

DMY2DATE and DWY2DATE functions 392

CALCDATE function 393

FlowField-SumIndexField functions 394

CALCFIELDS function 395

CALCSUMS function 396

CALCFIELDS and CALCSUMS comparison 396

Flow control 397

REPEAT–UNTIL control structure 397

WHILE–DO control structure 397

CASE–ELSE statement 398

WITH–DO statement 400

QUIT, BREAK, EXIT, SKIP, and SHOWOUTPUT functions 401
QUIT function 401

BREAK function 402

EXIT function 402

SKIP function 402

SHOWOUTPUT function 403

Input and Output functions 403

NEXT function with FIND or FINDSET 403

INSERT function 404

MODIFY function 405
Rec and xRec 405

DELETE function 405

MODIFYALL function 406

DELETEALL function 406

http:///


Table of Contents

[ viii ]

Filtering 407

SETRANGE function 408

SETFILTER function 408

COPYFILTER and COPYFILTERS functions 409

GETFILTER and GETFILTERS functions 409

MARK function 409

CLEARMARKS function 410

MARKEDONLY function 410

RESET function 410
Filter Groups 410

InterObject communication 411

Communication via data 411

Communication through function parameters 411

Communication via object calls 412

Using the new knowledge 412

A development challenge for you 413
Creating more ICAN test data 413

Developing the Donor Recognition Status report 419

Summary 433

Review questions 434

Chapter 8: Advanced NAV Development Tools 437

NAV process flow 438

Data preparation 439

Transactions entry 439

Testing and Posting the Journal batch 440

Accessing the data 440

Ongoing maintenance 441

Role Center pages 441

Role Center structure 442
Role Center activities page 444

Cue Groups and Cues 445

Cue source table 446

Cue Group Actions 449

System Part 451

Page Part 452

Navigation Pane and Action Menus 455

Departments 461
MenuSuite levels 462

MenuSuite structure 462
MenuSuite development 463

MenuSuite transformation 466

Configuration and personalization 467

http:///


Table of Contents

[ ix ]

Creating new C/AL routines 468

Callable functions 469

Codeunit 358 – Date Filter-Calc 470

Codeunit 359 – Period Form Management 471

Codeunit 365 – Format Address 473

Codeunit 396 – NoSeriesManagement 474

Codeunit 397 – Mail 475

Codeunit 408 – Dimension Management 475

Codeunit 412 – Common Dialog Management 476

Sampling of function models to review 477

Codeunit 228 – Test Report-Print 478

Codeunit 229 – print documents 478

Other objects to review 479

Management codeunits 479

Documenting modifications 480

Multi-language system 481

Multi-currency system 482

Code analysis and debugging tools 483

Developer's Toolkit 483
Relations to Tables 484

Relations from Objects 486

Source Access 486

Where Used 486

Trying it out 488

Working in exported text code 491

Using Navigate 493
Testing with Navigate 493

The C/SIDE Debugger 497

The C/SIDE Code Coverage tool 498

Client Monitor 498

Debugging NAV in Visual Studio 499

Dialog function debugging techniques 500
Debugging with MESSAGE 500

Debugging with CONFIRM 500

Debugging with DIALOG 500

Debugging with text output 501

Debugging with ERROR 501

C/SIDE test driven development 502

Summary 504

Review questions 505

http:///


Table of Contents

[ x ]

Chapter 9: Extend, Integrate, and Design—into the Future 507

Interfaces 507

XMLports 508

XMLport components 510
XMLport properties 510

XMLport triggers 514

XMLport data lines 514

XMLport line properties 520

Element or attribute 523

XMLport line triggers 524

XMLport Request Page 526

Advanced interface tools 527

Automation Controller 528

NAV Communication Component 528

Linked Server Data Sources 529

C/OCX 529

C/FRONT 529

NAV Application Server (NAS) 529

Client Add-ins 530

Client Add-in definition 530

Client Add-in construction 531

Client Add-in comments 534

Web services 534

Exposing a web service 536

Publishing a web service 537

Determining what was published 538

Customizing Help 542

NAV development projects 544

Knowledge is key 545

Different approaches for different scopes 545

Advantages of designing new functionality 545

Modifying an existing functional area 546

NAV development time planning 547

Data-focused design 547

Determining the data needs 548

Defining the needed data views 548

Designing the data tables 548

Designing the user data access interface 548

Designing the data validation 549

Data design review and revision 549

http:///


Table of Contents

[ xi ]

Designing the Posting processes 550

Designing the supporting processes 550

Double-check everything 550

Design for efficiency 551

Disk I/O 551

Locking 552

Design for updating 553

Customization project recommendations 554
One change at a time 554

Testing thoroughly 555

Plan for upgrading 559

Benefits of upgrading 560

Coding considerations 560
Careful naming 561

Good documentation 561

Low-impact coding 562

The upgrade process 563
Upgrade executables only 563

Full upgrade 564

Supporting material 565

Sure Step 565

RIM 565

Other reference material 566

Into the future... 568

Summary 569

Review questions 570

Answers 573

Chapter 1 573

Chapter 2 574

Chapter 3 574

Chapter 4 575

Chapter 5 575

Chapter 6 576

Chapter 7 576

Chapter 8 577

Chapter 9 577

Index 579

www.allitebooks.com

http:///
http://www.allitebooks.org


http:///


Preface

To exist is to change, to change is to mature, to mature is to go on creating oneself 
endlessly—Henri Bergson

By choosing to study C/AL and C/SIDE for NAV 2009, you are once again choosing 
to embrace change. The knowledge you gain here about these tools can be applied 
for your and others' beneit. The information in this book will shorten your learning 
curve on how to program for the NAV 2009 ERP system using the C/AL language, 
the C/SIDE integrated development environment, and all the new capabilities 
therein.

By embarking on the study of NAV and C/AL, you are joining a high-quality, 
worldwide group of experienced developers. There is a collegial community of 
C/AL developers on the Web who readily and frequently share their knowledge. 
There are formal and informal organizations of NAV-focused users, developers, 
and vendor irms both on the Web and in various geographic locations. The NAV 
product is one of the best on the market and it continues to grow and prosper. 
Welcome aboard and enjoy the journey.

A business history timeline
The current version of Microsoft Dynamics NAV is the result of much inspiration 
and hard work along with some good fortune and excellent management decision 
making over the last quarter century or so.

http:///


Preface

[ 2 ]

The beginning
Three college friends, Jesper Balser, Torben Wind, and Peter Bang, from Denmark 
Technical University (DTU) founded their computer software business in 1984 
when they were in their early twenties. That business was Personal Computing & 
Consulting (PC & C) and its irst product was called PC Plus.

Single user PC Plus
PC Plus was released in 1985 with a primary goal of ease of use. An early employee 
said its functional design was inspired by the combination of a manual ledger 
journal, an Epson FX 80 printer, and a Canon calculator. Incidentally, Peter Bang is 
the grandson of one of the founders of Bang & Olufsen, the manufacturer of home 
entertainment systems par excellence.

PC Plus was PC DOS-based, a single user system. PC Plus' design features included 
the following:

• An interface resembling the use of documents and calculators

• Online help

• Good exception handling

• Minimal computer resources required

The PC Plus product was marketed through dealers in Denmark and Norway.

Multi-user Navigator
In 1987, PC & C released a new product, the multi-user Navigator and a new 
corporate name, Navision. Navigator was quite a technological leap forward.  
It included:

•	 Client/Server technology

• Relational database

• Transaction-based processing

• Version management

• High-speed OLAP capabilities (SIFT technology)

• A screen painter tool

• A programmable report writer

http:///


Preface

[ 3 ]

In 1990, Navision was expanding its marketing and dealer recruitment efforts into 
Germany, Spain, and the United Kingdom. Moreover, in 1990, V3 of Navigator was 
released. Navigator V3 was still a character-based system, albeit a very sophisticated 
one. If you had an opportunity to study Navigator V3.x, you would instantly 
recognize the roots of today's NAV product. By this time, the product included:

• A design based on object-oriented concepts

• Integrated 4GL Table, Form, and Report Design tools (the IDE)

• Structured exception handling

• Built-in resource management

• The original programming language that became C/AL

• Function libraries

• The concept of regional or country-based localization

When Navigator V3.5 was released, it also included support for multiple platforms 
and multiple databases. Navigator V3.5 would run on both Unix and Windows NT 
networks. It supported Oracle and Informix databases as well as the one that was 
developed in-house.

At about this time, several major strategic efforts were initiated. On the technical 
side, the decision was make to develop a GUI-based product. The irst prototype of 
Navision Financials (for Windows) was shown in 1992. At about the same time, a 
relationship was established that would take Navision into distribution in the United 
States. The initial release in the US in 1995 was V3.5 of the character-based product, 
rechristened Avista for US distribution.

Navision Financials for Windows
In 1995, Navision Financials V1.0 for Microsoft Windows was released. This 
product had many (but not all) of the features of Navigator V3.5. It was designed 
for complete look and feel compatibility with Windows 95. There was an effort to 
provide the ease of use and lexibility of development of Microsoft Access. The new 
Navision Financials was very compatible with Microsoft Ofice and was thus sold 
as "being familiar to any Ofice user". Like any V1.0 product, it was fairly quickly 
followed by a V1.1 that worked much better.

In the next few years, Navision continued to be improved and enhanced. Major new 
functionalities were added:

•	 Contact Relation Management (CRM)

• Manufacturing (ERP)

• Advanced Distribution (including Warehouse Management)

http:///


Preface

[ 4 ]

Various Microsoft certiications were obtained, providing muscle to the marketing 
efforts. Geographic and dealer base expansion continued apace. By 2000, according 
to the Navision Annual Report of that year, the product was represented by nearly 
1,000 dealers (Navision Solution Centers) in 24 countries and used by 41,000 
customers located in 108 countries.

Growth and mergers
In 2000, Navision Software A/S and its primary Danish competitor, Damgaard A/S, 
merged. Product development and new releases continued for the primary products 
of both original irms (Navision and Axapta). In 2002, the now much larger Navision 
Software, with all its products (Navision, Axapta, and the smaller, older C5 and 
XAL) was purchased by Microsoft, becoming part of the Microsoft Business Systems 
division along with the previously purchased Great Plains Software business and  
its several product lines. Since that time, one of the major challenges for Microsoft 
has been to meld these previously competitive businesses into a coherent whole.  
One aspect of that effort was to rename all the products as Dynamics software,  
with Navision being renamed to Dynamics NAV.

Fortunately for those who have been working with Navision, Microsoft has not only 
continued to invest in the product, but has increased the investment. This promises 
to be the case for the foreseeable future.

Continuous enhancement
As early as 2003, research began with the Dynamics NAV development team planning 
moves to further enhance NAV, taking advantage of various parts of the Microsoft 
product line. Goals were deined to increase integration with products such as 
Microsoft Ofice and Microsoft Outlook. Goals were also set to leverage the functional 
capabilities of Visual Studio and SQL Server, among others. All the while, there has 
been a determination not to lose the strengths and lexibility of the base product.

This was a massive change that required almost a complete rewrite of the underlying 
code, the foundation that's normally not visible to the outside world. To accomplish 
that while not destroying the basic user interface, the business application model, or 
the development environment, was a major effort. The irst public views of this new 
version of the system, a year or two later, were not greeted with universal enthusiasm 
from the NAV technical community. But the Dynamics NAV development persevered 
and Microsoft continued supporting the investment, until NAV 2009 was released in 
late 2008. With the addition of Service Pack 1 in mid-2009, the biggest hurdles to the 
new technologies have been cleared. More new capabilities and features are yet to 
come, taking advantage of all these efforts.

http:///


Preface

[ 5 ]

The new product will take ever-increasing advantage of SQL Server technologies. 
Development will become more and more integrated with Visual Studio and be more 
and more .NET compliant. The product is becoming more open and, at the same 
time, more sophisticated, supporting features like Web Services access, integration 
of third-party controls, RDLC reporting, and so on. In our industry, it would be 
appropriate to say To survive is to change. Change and survive are part of what 
Dynamics NAV does very well.

C/AL's roots
One of the irst questions often asked by developers and development managers 
new to C/AL is What other language is it like? The proper response is "Pascal". If the 
questioner is not familiar with Pascal, the next best response would be "C" or "C#".

At the time the three founders of Navision were attending classes at Denmark 
Technical University (DTU), Pascal was in wide use as a preferred language not 
only in computer courses, but in other courses where computers were tools and 
software had to be written for data analysis. Some of the strengths of Pascal as a tool 
in an educational environment also served to make it a good model for Navision's 
business applications development.

Perhaps coincidentally (perhaps not) at DTU in this same time period, a Pascal 
compiler called Blue Label Pascal was developed by Anders Hejlsberg. That compiler 
became the basis for what was Borland's Turbo Pascal, which was the "every man's 
compiler" of the 1980s because of its low price. Anders went with his Pascal compiler 
to Borland. While he was there, Turbo Pascal morphed into the Delphi language and 
IDE tool set under his guidance.

Anders later left Borland and joined Microsoft, where he led the C# design team. 
Much of the NAV-related development at Microsoft is now being done in C#. So 
the Pascal-C/AL-DTU connection has come full circle, only now it appears to be 
C#-C/AL. Keeping it in the family, Anders' brother, Thomas Hejlsberg also works 
at Microsoft on NAV and AX at the campus in Copenhagen. Each in their own way, 
Anders and Thomas continue to make signiicant contributions to Dynamics NAV.

In a discussion about C/AL and C/SIDE, Michael Nielsen of Navision and 
Microsoft, who developed the original C/AL compiler, runtime, and IDE, said that 
the design criteria were to provide an environment that could be used without:

• Dealing with memory and other resource handling

• Thinking about exception handling and state

• Thinking about database transactions and rollbacks

• Knowing about set operations (SQL)

• Knowing about OLAP (SIFT)

http:///


Preface

[ 6 ]

Paraphrasing some of Michael's additional comments, the language and IDE design 
was to:

• Allow the developer to focus on design, not coding, but still  
allow lexibility

• Provide a syntax based on Pascal stripped of complexities, especially 
relating to memory management

• Provide a limited set of predeined object types, reducing the complexity 
and learning curve

• Implement database versioning for a consistent and reliable view of  
the database

• Make the developer and the end user more at home by borrowing a  
large number of concepts from Ofice, Windows, Access, and other 
Microsoft products

Michael is still working as part of the Microsoft team in Denmark on new capabilities 
for NAV; this is another example of how, once part of the NAV community, most of 
us want to stay part of that community.

What you should know
This book will not teach you programming from scratch, nor will it tutor you  
in business principles. To get the maximum out of this book, you should come 
prepared with some signiicant experience and knowledge. You will beneit most  
if you already have the following attributes:

• Experienced developer

• Know more than one programming language

• IDE experience

• Knowledgeable about business applications

• Good at self-directed study

If you have those attributes, then by careful reading and performance of the 
suggested exercises in this book, you should signiicantly reduce the time it will take 
you to become productive with C/AL and NAV. Those who don't have all these 
attributes, but want to learn about the development technology of Dynamics NAV, 
can still gain a great deal by studying Chapter 1 in detail and other chapters as the 
topics appear to apply to their situation.

http:///


Preface

[ 7 ]

This book's illustrations are from the W1 Cronus database V2009 SP1.

Hopefully this book will smooth the path to change and shine a little light on some 
of the challenges and the opportunities alike. Your task is to take advantage of this 
opportunity to learn, to change, and then use your new skills productively.

What this book covers
Chapter 1, A Short Tour through NAV 2009, covers basic deinitions as they pertain to 
NAV and C/SIDE. In addition, an introduction to eight types of NAV objects, Page 
and Report Creation Wizards, and tools that we use to integrate NAV with external 
entities is provided. There is a brief discussion of how backups and documentation 
are handled in C/SIDE.

Chapter 2, Tables, focuses on the top level of NAV data structure: tables and their 
structures. You will work your way through hands-on creation of a number of tables 
in support of an example application. We will review most types of tables found in 
the out of the box NAV application.

In Chapter 3, Data Types and Fields for Data Storage and Processing, you will learn 
about the basic building blocks of NAV data structure, ields and their attributes, 
data ields that are available, and ield structure elements (properties, triggers) 
for each type of ield. This chapter covers the broad range of Data Type options as 
well as Field Classes. We will also discuss the concept of iltering and how it can be 
considered as you design your database structure.

In Chapter 4, Pages—Tools for Data Display, we will review different types of pages, 
work with some of these, and review all the controls that can be used in pages.  
You will learn to use the Page Wizard and have a good introduction to the Page 
Designer. You will expand your example system, creating a number of forms for  
data maintenance and inquiry.

In Chapter 5, Reports, we will learn about the structural and layout aspects of NAV 
Report objects using both the Classic Report Designer and the Visual Studio Report 
Designer. In addition, you will be experimenting with some of the tools and continue 
to expand your example application.

Chapter 6, Introduction to C/SIDE and C/AL, will help you learn about the general 
Object Designer Navigation as well as more speciic Navision individual (Table, 
Form/Page, Report) Designers. This chapter also covers variables of various types 
created and controlled by the developer or by the system, basic C/AL syntax and 
some essential C/AL functions.

http:///


Preface

[ 8 ]

Chapter 7, Intermediate C/AL, covers a number of practical tools and topics regarding 
C/AL coding and development. You will learn about the C/AL Symbol Menu and 
how it assists in development. This chapter also discusses various Computation, 
Validation and Data Conversion functions, Dates, FlowFields and SIFT, Processing 
Flow Control, Input-Output, and Filtering functions.

In Chapter 8, Advanced NAV Development Tools, we will review some of most 
important elements of the Role Tailored User Experience, in particular Role Center 
Page construction. In addition, we will cover a number of tools and techniques 
aimed at making the life of a NAV developer easier and more eficient. 

Chapter 9, Extend, Integrate, and Design—into the Future, covers a variety of interfaces, 
with special emphasis on XMLports and Web Services. It also discusses designing 
NAV modiications, creating a new functional area, or enhancing an existing 
functional area. Finally, this chapter provides tips for design eficiency, updating  
and upgrading the system, all with the goal of helping you to be a more productive 
NAV developer.

What you need for this book
You will need some basic tools, including at least the following:

1. A license and database that you can use for development 
experimentation. An ideal license is a full Developer's license. If the 
license only contains the Form/Page, Report, and Table Designer 
capabilities, you will still be able to do many of the exercises, but you  
will not have access to the inner workings of Form/Pages and Tables.

2. The best database for your development testing and study will be a copy 
of the NAV Cronus demo/test database, but you may want to have a 
copy of a production database at hand for examination as well. This 
book's illustrations are from the W1 Cronus database for V2009 SP1.

If you have access to other NAV manuals, training materials, websites, and 
experienced associates, those will obviously be of beneit as well. But they are  
not required for your time with this book to be a worthwhile investment.

http:///


Preface

[ 9 ]

Who this book is for
• The business applications software designer/developer who:

Wants to become productive in NAV C/SIDE-C/AL 
development as quickly as possible

Understands business applications and the associated software

Has signiicant programming experience
Has access to NAV including at least the Designer granules 
and a standard Cronus demo database

Is willing to do the exercises to get hands-on experience

• The Reseller manager or executive who wants a concise, in-depth view of 
NAV's development environment and tool set

• The technically knowledgeable manager or executive of a irm using 
NAV who is about to embark on a signiicant NAV enhancement project

• The technically knowledgeable manager or executive of a irm 
considering purchase of NAV as a highly customizable business 
applications platform

• The reader of this book:

Does not need to be expert in object-oriented programming

Does not need to have previous experience with NAV

Conventions
In this book, you will ind a number of styles of text that distinguish between 
different kinds of information. Here are some examples of these styles, and an 
explanation of their meaning.

Code words in text are shown as follows: "Transactions are entered into a Journal 
table; data is preliminarily validated as it is entered, master and auxiliary data tables 
are referenced as appropriate."

A block of code is set as follows: 

http://localhost:7047/DynamicsNAV/WS/Services
http://Isaac:7047/DynamicsNAV/WS/CRONUS_International_Ltd/Services 

New terms and important words are shown in bold. Words that you see on the 
screen, in menus or dialog boxes for example, appear in the text like this: "clicking  
on the Next button moves you to the next screen".

°
°
°
°
°

°
°

www.allitebooks.com

http:///
http://www.allitebooks.org


Preface

[ 10 ]

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about 
this book—what you liked or may have disliked. Reader feedback is important for  
us to develop titles that you really get the most out of. 

To send us general feedback, simply send an email to feedback@packtpub.com, and 
mention the book title via the subject of your message.

If there is a book that you need and would like to see us publish, please send  
us a note in the SUGGEST A TITLE form on www.packtpub.com or email  
suggest@packtpub.com.

If there is a topic that you have expertise in and you are interested in either writing 
or contributing to a book on, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to 
help you to get the most from your purchase.

Downloading the example code for the book

Visit http://www.packtpub.com/files/code/6521_Code.zip to 
directly download the example code.

The downloadable iles contain instructions on how to use them.

http:///


Preface

[ 11 ]

Errata
Although we have taken every care to ensure the accuracy of our content,  
mistakes do happen. If you ind a mistake in one of our books—maybe a mistake  
in the text or the code—we would be grateful if you would report this to us. By  
doing so, you can save other readers from frustration, and help us to improve 
subsequent versions of this book. If you ind any errata, please report them by 
visiting http://www.packtpub.com/support, selecting your book, clicking on 
the let us know link, and entering the details of your errata. Once your errata are 
veriied, your submission will be accepted and the errata added to any list of  
existing errata. Any existing errata can be viewed by selecting your title from 
http://www.packtpub.com/support.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media. 
At Packt, we take the protection of our copyright and licenses very seriously. If you 
come across any illegal copies of our works, in any form, on the Internet, please 
provide us with the location address or web site name immediately so that we can 
pursue a remedy. 

Please contact us at copyright@packtpub.com with a link to the suspected  
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you 
valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with 
any aspect of the book, and we will do our best to address it.

http:///


http:///


A Short Tour through  

NAV 2009

The toughest thing about being a success is that you've got to keep on being a 
success—Irving Berlin

Microsoft Dynamics NAV (including the earlier Navision generation) has been 
a successful product line for over two decades. During the 2008-2009 iscal year, 
Microsoft Dynamics NAV crossed the milestone of more than 1,250,000 installed 
users, a major achievement for any application software.

At the end of calendar 2008, Microsoft Dynamics NAV 2009 was released—a major 
new version of the product. While this new version contains the same business 
application functionality as the previous release (V5 Service Pack 1), it is based on a 
completely new infrastructure and presents a dramatically different face, the Role 
Tailored Client, to users. Our focus in this book is the NAV 2009 system, including 
the new three tier Role Tailored Client.

In this chapter, we will take a short tour through NAV 2009. Our path will be along 
the following trail:

NAV 2009 from a functional point of view as an ERP system

What's new in NAV 2009

Deinitions of terms as used in NAV
The C/SIDE development environment and tools

A development introduction to the various NAV object types

Other useful NAV development information

•
•
•
•
•
•

http:///


A Short Tour through NAV 2009

[ 14 ]

Your goal in this chapter is to gain a reasonably complete, "big picture" 
understanding of NAV. When you complete this chapter, you should be able to 
communicate to a business manager or owner about the capabilities NAV can 
provide to help them manage their irm. This will also give you a context for what 
follows in this book.

A product as complex and lexible as NAV can be considered from several points of 
view. One can study the NAV application software package as a set of application 
functions designed to help a business manage information about operations and 
inances. One can also look at NAV as a stack of building blocks from which to 
extend or build applications—and the tools with which to do the construction.

In NAV 2009, which has two quite different user interface options available, one 
must consider how the user interface affects both the application design and the 
presentation to the user. This requirement overlaps both the application viewpoint 
and the construction viewpoint.

You should know the different object types that make up a NAV system and the 
purposes of each. You should also have at least a basic idea of the tools that are 
available to you, in order to enhance (small changes) or extend (big changes) an 
NAV system. In the case of NAV, the Integrated Development Environment (IDE) 
includes essentially all of the tools needed for NAV application development. Later 
in this book, we will discuss where the IDE can be supplemented.

Prior versions of NAV were two-tier systems. One of the tiers was the database 
server, the other tier was the client. As the traditional two-tier NAV Client (now 
referred to as the Classic Client) is still an integral part of the system, we will cover 
the aspects of where it must be used for development and support. All development 
and much of the system administration uses the Classic Client. So, even though our 
focus is on developing for the Role Tailored Client (aka "the RTC"), many of the 
images scattered throughout this book will be of Classic Client displays. In brief, the 
RTC is for users, and as a developer, you will generally use the Classic Client for 
your work.

NAV 2009: An ERP system
If you look at NAV 2009 from the point of view of a irm using NAV to help run its 
business, you will see it as an integrated set of business applications software.

Microsoft Dynamics NAV is generally characterized as an ERP System. ERP stands 
for Enterprise Resource Planning. An ERP system is a set of integrated application 
software components designed to track and coordinate a wide variety of business 
activities, especially those involving products, orders, production and inances. An 
ERP system will typically include the following:

http:///


Chapter 1

[ 15 ]

Basic accounting functions (for example, general ledger, accounts payable, 
accounts receivable)

Order processing and inventory (for example, sales orders, purchase orders, 
shipping, inventory, receiving)

Relationship management (for example, vendors, customers, prospects, 
employees, contractors, and so on)

Planning (for example MRP, sales forecasting, production forecasting)

Other critical business areas (for example, manufacturing, warehouse 
management, ixed assets)

The integration of an ERP system is supported by a common database, by an "enter 
once, use everywhere" data philosophy, by a modular software design, and with 
data extraction and analysis tools. The following image is a view of an ERP system 
from the highest level:

Accounting

Inventory

Manufacturing Supply Chain

CRM

ERP System

Users

HR

The design of Microsoft Dynamics NAV addresses all the points in the above 
description and more. The NAV ERP system includes integrated modules covering 
the breadth of business functions for a wide range of business types. These modules 
share a common database and, where appropriate, share common data.

In the NAV system, there is a considerable overlap of components across application 
areas, with individual functions showing up in multiple different "modules". For 
example, in NAV, Inventory is identiied as part of Financial management, but it is 
also, obviously, an integral part of Manufacturing, Supply Chain, and others.

•
•
•
•
•

http:///


A Short Tour through NAV 2009

[ 16 ]

The particular grouping of individual functions into modules that follows is based 
on Microsoft marketing materials. Some of these assignments are a bit arbitrary. 
What's important is for you to obtain a reasonable understanding of the overall set 
of application components that make up the NAV ERP system. In several of the 
following groupings, menu screenshots are included as examples. These are from  
the Role Tailored Client Departments menu screen.

Financial Management
Financial Management is the foundation of any ERP system. No matter what the 
business is, the money must be kept lowing, and the low of money must be tracked. 
The tools which help to manage the capital resources of the business are included 
in NAV's Financial Management module. These include all or part of the following 
application functions:

General Ledger—managing the overall inances of the irm
Accounts receivable—tracking the incoming revenue

Accounts payable—tracking the outgoing funds

Analytical accounting—analyzing the various lows of funds
Cash management and banking—managing the inventory of money

Inventory and ixed assets—managing the inventories of goods  
and equipment

Multi-Currency and Multi-Language—supporting international  
business activities

Manufacturing
NAV Manufacturing is general purpose enough to be appropriate for Make to 
Stock (MTS), Make to Order (MTO), and variations such as Assemble to Order, 
and so on. While off-the-shelf NAV is not particularly suitable for most process 
manufacturing and high-volume assembly line operations, there are third party 
add-on and add-in enhancements available for these. As with most of the NAV 
application functions, manufacturing can be installed in parts or as a whole, 
and can be used in a simplistic fashion or in a more sophisticated manner. NAV 
Manufacturing includes the following functions:

•
•
•
•
•
•
•

http:///


Chapter 1

[ 17 ]

Product design (BOMs and Routings)—managing the structure of product 
components and the low of manufacturing processes
Capacity and supply requirements planning—tracking the intangible and 
tangible manufacturing resources

Production scheduling (ininite and inite),execution, and tracking—tracking 
the planned use manufacturing resources, both on an unconstrained and 
constrained basis

Supply Chain Management (SCM)
Obviously, some of the functions categorized as part of NAV Supply Chain 
Management (for example sales, purchasing, and so on) are actively used in almost 
every NAV implementation. As a whole, these constitute the base components of a 
system appropriate for a distribution operation. The Supply Chain applications in 
NAV include parts of the following applications: 

Sales order processing and pricing—supporting the heart of every  
business—entering, pricing, and processing sales orders

Purchasing (including Requisitions)—planning, entering, pricing, and 
processing purchase orders

Inventory management—managing inventories of goods and materials

Warehouse management including receiving and shipping—managing the 
receipt, storage, retrieval, and shipment of material and goods in warehouses

•
•
•

•
•
•
•

http:///


A Short Tour through NAV 2009

[ 18 ]

Business intelligence and reporting
Although Microsoft marketing materials identify Business Intelligence (BI)  
and reporting as though it were a separate module within NAV, it's dificult to 
physically identify it as such. Most of the components that are used for BI and 
reporting purposes are (appropriately) scattered throughout various applicationout various application 
areas. In the words of one Microsoft document, "Business Intelligence is a strategy, "Business Intelligence is a strategy, 
not a product." Functions within NAV that support a Business Intelligence strategy 
include the following:

Standard Reports—distributed ready-to-use by end users

Report wizards—tools to create simple reports or foundations for  
complex reports

Account schedules and analysis reports—a very specialized report writer for 
General Ledger data

Analysis by dimensions—a capability embedded in many of the other tools

Interfaces into Microsoft Ofice including Excel—communications of data 
either into NAV or out of NAV

SQL server reporting services compatible report viewer—provides the ability 
to present NAV data in a variety of textual and graphic formats, includes 
user interactive capabilities

Interface capabilities such as Automation Controllers and web  
services—technologies to support interfaces between NAV 2009  
and external software products

NAV Business Analytics—an OLAP cube based data analysis tool option

Relationship Management (RM)
NAV's Relationship Management (RM) functionality is deinitely the "little brother" 
(or, if you prefer, "little sister") to the fully featured standalone Microsoft CRM 
system. The big advantage of RM is its tight integration with NAV customer and 
sales data.

Also falling under the heading of Customer Relationship module is the NAV Service 
Management (SM) functionality. While the RM component shows up in the menu 
as part of sales and marketing, the SM component is identiied as an independent 
function in the menu structure.

(RM) Marketing campaigns—plan and manage promotions

(RM) Customer activity tracking—analyze Customer orders

(RM) To do lists—manage what's to be done and track what's been done

•
•
•
•
•
•

•

•

•
•
•

http:///


Chapter 1

[ 19 ]

(SM) Service contracts—support service business operations

(SM) Labor and part consumption tracking—track the resources consumed 
by the service business

(SM) Planning and dispatching—managing service calls

Human Resource management
NAV Human Resources (HR) is a small module, but relates to a critical component 
of the business, the people. Basic employee data can be stored and reported via the 
master table (in fact, one could use HR to manage data about individual contractors 
in addition to employees). A wide variety of individual employee attributes can be 
tracked by use of dimensions ields.

Employee tracking—maintain basic employee description data

Skills inventory—inventory of the capabilities of employees

Absence tracking—maintain basic attendance information

EEOC statistics—tracking government required employee attribute data

Project management
The NAV Project management module consists of the jobs functionality supported 
by the resources functionality. Projects can be short or long term. They can be 
external (that is billable) or internal. This module is often used by third parties as 
the base for vertical market add-ons (for example, for construction or job oriented 
manufacturing). This application area includes parts or all of the following functions:

Budgeting and cost tracking—managing project inances
Scheduling—planning project activities

Resource requirements and usage tracking—managing people  
and equipment

Project accounting—tracking the results

Significant changes in NAV 2009
Even though the NAV 2009 release doesn't contain any signiicant changes in the 
business application functionality, the changes in the infrastructure are major. We 
will discuss those briely now and in detail in the later chapters.

•
•
•

•
•
•
•

•
•
•
•

www.allitebooks.com

http:///
http://www.allitebooks.org


A Short Tour through NAV 2009

[ 20 ]

Two-tier versus three-tier
The two-tier (Classic Client) system has all the business logic in the client (irst tier) 
and the database management in the database (second tier). The database can either 
be the Classic C/SIDE database or a SQL Server database. This is the mode of all 
NAV releases until Version 2009. The three-tier system, new with NAV 2009, has 
the Role Tailored Client as the irst tier (minimal logic), the NAV Service Tier as the 
second tier (where all the business logic now resides), and the SQL Server database 
as the third tier.

Both the two-tier and the three-tier conigurations are shown in the following image. 
In both cases, the database is SQL Server (a stand-alone two-tier coniguration could 
have a Classic NAV database server). The server tier performs the same role in both 
instances. For the two-tier coniguration, the Classic Clients handle authentication, 
object management, presentation/rending, and the processing of all code, triggers, 
and validation.

For the three-tier coniguration, the Role Tailored Clients are limited to some  
state tracking, simple data type validation and, of course, all the presentation  
and rendering for the new user interface. The NAV Service tier (NAV Servers) 
handles authentication, object management, the processing of all code, triggers  
and validation, plus offers web services support.

The following image illustrates a possible coniguration of the NAV 2009 system. 
It has both the two-tier and three-tier options running in parallel. The three-tier 
option has multiple NAV Servers installed for capacity reasons (one NAV Server is 
projected to handle 40 to 60 users). Finally, the NAV Service tier is providing web 
services to support Internet-based access to the system from mobile devices.

Two Tier

Classic

Clients

Three Tier

Role

Tailored

Clients

NAV

Servers

Web

based Device
SQL Server

http:///


Chapter 1

[ 21 ]

Role Tailored Client
The new Role Tailored Client (RTC) is quite different in look and feel from the 
Classic Client. The RTC brings with it a completely new approach to designing and 
coding for the user interface. As the name implies, the orientation of the new client  
is to present a user interface that focuses on the speciic role of the individual user. 
We will spend quite a bit of time studying the design and development for the  
new client.

SSRS-compatible report viewer
The new RTC supports reporting through the use of Visual Studio report designer 
and a Report Renderer/Viewer that replicates much of the functionality of SQL 
Server Reporting Services. RTC reports provide a host of new capabilities. RTC 
reports can be dynamically sorted in review (on-screen) mode, include graphics and 
expand (detail)/collapse (summary) displays, have drill-down and drill-through 
capabilities, and generate PDF or .xls (that is, Excel) iles. We will spend quite a bit 
of time in Chapter 5, Reports, studying the Reporting Services for NAV 2009.

Web services
Web services is a new major feature of the NAV 2009 three-tier implementation. 
There isn't much to learn within NAV about web services because the 
implementation design is incredibly simple. Publishing a page or codeunit as  
a web service only requires a single record entry in the appropriate table.

Web services is very powerful, because it allows us to take advantage of the  
NAV Service Tier and expose NAV business logic, user authentication, and data 
access/validation to external processes. It is the new API for any application that  
has the ability to consume web services provided by another application.

NAV 2009: A set of building blocks and 

development tools
If you look at NAV 2009 from the point of view of a developer, you may see it as 
a set of customizable off-the-shelf program objects (the building blocks) plus the 
IDE which allows you to modify those objects and create new ones (the C/SIDE 
development tools).

http:///


A Short Tour through NAV 2009

[ 22 ]

The NAV 2009 system is an object-based system, consisting of several thousand 
application objects, the building blocks, made up of the eight different object types 
available in NAV. NAV does not have all of the features of an object-oriented system. 
A full-featured object-oriented system would allow the deinition and creation of 
new object types, while NAV only allows for the creation and modiication of the 
predeined object types. 

NAV object types
Let's start with some basic deinitions of the object types that are part of NAV:

Table: Tables are the deiners and containers of data.
Form: Forms are the screen display constructs for the Classic Client  
user interface.

Page: Pages are the screen display constructs for the Role Tailored Client user 
interface. Pages are designed and rendered (displayed) using technology that 
is new to NAV 2009.

Report: Reports allow the display of data to the user in "hardcopy" format, 
either onscreen (preview mode) or via a printer device. Report objects can also 
update data in processes with or without accompanying data display output.

Dataport: Dataports allow the importing and exporting of data from/to 
external iles in the Classic Client.
XMLport: XMLports are similar to Dataports. In the Classic Client, XMLports 
are speciic only to XML iles and XML formatted data. In the Role Tailored 
Client, XMLports handle the tasks of both XMLports and Dataports.

Codeunit: Codeunits are containers for code, always structured in code 
segments called functions.

MenuSuite: MenuSuites contain menus which refer in turn to other types of 
objects. MenuSuites are structured differently from other objects, especially 
since they cannot contain any code or logic. In the Role Tailored Client, 
MenuSuites are translated into Navigation Pane menu entries.

The C/SIDE Integrated Development  

Environment
NAV includes a full set of software development tools. All NAV development  
tools are accessed through the C/SIDE Integrated Development Environment.  
This environment and its full complement of tools are generally just referred to as 
C/SIDE. C/SIDE includes the C/AL compiler. All NAV programming uses C/AL. 
No NAV development can be done without using C/SIDE.

•
•
•

•

•
•

•
•

http:///


Chapter 1

[ 23 ]

The C/SIDE Integrated Development Environment is referred to as the Object 
Designer within NAV. It is accessed through the Tools | Object Designer menu 
option as shown in the following screenshot:

The language in which NAV is coded is C/AL. A sample of some C/AL code is 
shown as follows. C/AL syntax has considerable similarity to Pascal. As with any 
programming language, readability is enhanced by careful programmer attention to 
structure, logical variable naming, process low consistent with that of the code in the 
base product and good documentation both inside and outside of the code.

IF "No." = '' THEN BEGIN

 SalesSetup.GET;

 SalesSetup.TESTFIELD("Customer Nos.");

 NoSeriesMgt.InitSeries(SalesSetup."Customer Nos.",xRec."No. 
Series",0D,"No.","No. Series");

END;

IF "Invoice Disc. Code" = '' THEN

 "Invoice Disc. Code" := "No.";

IF NOT InsertFromContact THEN

 UpdateContFromCust.OnInsert(Rec);

DimMgt.UpdateDefaultDim(

 DATABASE::Customer,"No.",

 "Global Dimension 1 Code","Global Dimension 2 Code");

http:///


A Short Tour through NAV 2009

[ 24 ]

A large portion of the NAV system is deined by tabular entries, properties, and 
references. This doesn't reduce the requirement for the developer to understand 
the code, but it does allow some very signiicant applications development work 
to be done on a more of a point-and-choose or ill-in-the-blank approach than 
the traditional "grind it out" approach to coding. As we may mention more than 
once in this book, NAV gives developers the ability to focus on design rather 
than code. Much of the time, the effort required to create a new NAV application 
or modiication will be heavily weighted on the side of design time, rather than 
technical development time. This long term goal for systems development tools has 
always been true for NAV. As the tools mature, NAV development continues to be 
more and more heavily weighted to design time rather than coding time. 

Object Designer tool icons
The following screenshot shows a list of Object Designer tool icons. These Object 
Designer icons are shown isolated in the screenshot and then described briely in  
the following table. Some of these icons apply to actions that are only for objects 
which run in the Classic Client, some are for objects for both clients. Where 
appropriate, the terminology in these descriptions will be explained later in this 
book. Additional information is available in the C/SIDE Help iles and the  
Microsoft NAV documentation.

The following table lists the speciic development tools used for each object type. 
Also, as shown in this table, some objects are limited to being used in the Classic 
Client, some are limited to being used in the RTC environment, some are used in 
both, and some are interpreted differently depending on the environment in which  
they are invoked.

http:///


Chapter 1

[ 25 ]

Object Type Design Tool User Interface Comments

Table Table Designer Classic and RTC

Form Form Designer Classic

Page Page Designer RTC

Report Report Designer
Classic (and 
RTC)

If a report is run from the RTC but 
doesn't have an RTC compatible 
layout, NAV will run it under a 
temporary instance of the Classic 
Client

Report Designer 
(data deinition) 
+ Visual Studio 
(user interface)

RTC

Dataport
Dataport 
Designer

Classic

XMLPort
XMLport 
Designer

Classic and RTC
For the RTC, Dataport functionality 
is handled through appropriately 
deined XMLports

Codeunit
IDE code editor 
for the C/AL 
language

Classic and RTC

MenuSuite 
Navigation Pane 
Designer

Classic and RTC
Much of the navigation in the RTC 
is done via Role Center pages rather 
than menus

NAV object and system elements
Let's take a look at the following:

Database: NAV has two physical database options. One is the C/SIDE 
Database Server; the other is the Microsoft SQL Server. The C/SIDE Database 
Server, formerly known as the "Native" database, only supports the two-tier 
client. The NAV 2009 three-tier functionality is only compatible with a SQL 
Server implementation. You won't be surprised to know that one or two 
product versions in the future, the only database option will be SQL Server.

At the basic application or code design levels, you don't care which database 
is being used. For sophisticated or high data volume applications you care a 
great deal about the underlying database strengths, weaknesses and features.

•

http:///


A Short Tour through NAV 2009

[ 26 ]

Properties: These are the attributes of the element (for example object, data 
ield, or control) that deine some aspect of its behavior or use. For example, 
attributes such as display length, font type or size, and if the elements are 
either editable or viewable.

Fields: These are the individual data items, deined either in a table or in the 
working storage of an object. 

Records: These are groups of ields (data items) that are handled as a unit 
in most Input/Output operations. The table data consists of rows of records 
with columns consisting of ields.
Controls: These are containers for constants and data. A control corresponds 
to a User Interface element on a form/page or a report. The visible displays 
in reports and forms consist primarily of controls.

Triggers: The generic deinition is a mechanism that initiates (ires) an action 
when an event occurs and is communicated to the application object. A 
trigger is either empty or contains code that is executed when the associated 
event ires the trigger. Each object type has its own set of predeined triggers. 
The event trigger name begins with the word "On" such as OnInsert, 
OnOpenPage, and OnNextRecord. NAV triggers have some similarities to 
those in SQL, but they are not the same. NAV triggers are locations within 
the various objects where a developer can place comments or C/AL code.

When you look at the C/AL code of an object in its Designer, the following 
have a physical resemblance to the NAV event based triggers:

Documentation which can contain comments only, no 
executable code. Every object type except MenuSuite has a single 
Documentation section at the beginning.

Functions which can be deined by the developer. They represent 
callable routines that can be accessed from other C/AL code 
either inside or outside the object where the called function 
resides. Many functions are provided as part of the standard 
product. As a developer, you may add your own custom 
functions as needed.

Object numbers and ield numbers: The object numbers from 1 (one) to 
50,000 and in the 99,000,000 (99 million) range are reserved for use by NAV 
as part of the base product. Objects in this number range can be modiied or 
deleted, but not created with a developer's license. Field numbers are often 
assigned in ranges matching the related object numbers (that is starting with 
1 for ields relating to objects numbered 1 to 50,000, starting with 99,000,000 
for ields in objects in the 99,000,000 and up number range). Object and 
ield numbers from 50,001 to 99,999 are generally available to the rest of 
us for assignment as part of customizations developed in the ield using 

•

•
•

•

•

•
°

°

•

http:///


Chapter 1

[ 27 ]

a normal development license. But object numbers from 90,000 to 99,999 
should not be used for permanent objects as those numbers are often used 
in training materials. Microsoft allocates other ranges of object and ield 
numbers to Independent Software Vendor (ISV) developers for their add-on 
enhancements. Some of these (in the 14,000,000 range in North America, other 
ranges for other geographic regions) can be accessed, modiied, or deleted, 
but not created using a normal development license. Others (such as in the 
37,000,000 range) can be executed, but not viewed or modiied with a typical 
development license. The following table summarizes the content as:

Object Number range Usage

1 – 9,999 Base-application objects

10,000 – 49,999 Country-speciic objects
50,000 – 99,999 Customer-speciic objects
100,000 – 98,999,999 Partner-created objects

Above 98,999,999 Microsoft territory

Work Date: This is a date controlled by the operator that is used as the 
default date for many transaction entries. The System Date is the date 
recognized by Windows. The Work Date that can be adjusted at any time 
by the user, is speciic to the workstation, and can be set to any point in the 
future or the past. This is very convenient for procedures such as ending 
Sales Order entry for one calendar day at the end of the irst shift, and then 
entering Sales Orders by the second shift dated to the next calendar day.  
You set the Work Date in the Classic Client by selecting Tools | Work Date 
(see following screenshot).

•

http:///


A Short Tour through NAV 2009

[ 28 ]

In the Role Tailored Client, you can set the Work Date by selecting  
Microsoft Dynamics NAV | Set Work Date, and then entering a date  
(see following screenshot).

License: A data ile supplied by Microsoft that allows a speciic level of 
access to speciic object number ranges. NAV licenses are very clever 
constructs which allow distribution of a complete system, all objects, 
modules, and features (including development) while constraining exactly 
what is accessible and how it can be accessed. Each license feature has 
its price. Microsoft Partners have access to "full development" licenses to 
provide support and customization services for their clients. End-user irms 
can also purchase licenses allowing them developer access to NAV.

NAV functional terminology
For various application functions, NAV uses terminology that is more akin  
to accounting terms than to traditional data processing terminology. Some  
examples are:

Journal: A table of transaction entries, each of which represents an event, an 
entity, or an action to be processed. There are General Journals for general 
accounting entries, Item Journals for changes in inventory, and so on.

Ledger: A detailed history of transaction entries that have been processed. 
For example, General Ledger, a Customer Ledger, a Vendor Ledger, an Item 
Ledger, and so on. Some Ledgers have subordinate detail ledgers, typically 
providing a greater level of date plus quantity and/or value detail.

•

•

•

http:///


Chapter 1

[ 29 ]

Posting: The process by which entries in a Journal are validated, and then 
entered into one or more Ledgers.

Batch: A group of one or more Journal entries that were posted in one group.

Register: An audit trail showing a history, by Entry No. ranges, of the 
Journal Batches that have been posted.

Document: A formatted report such as an Invoice, a Purchase Order, or a 
Check, typically one page for each primary transaction.

User interfaces
The terms two-tier versus three-tier and Classic Client versus Role Tailored Client 
have come up several times already in our discussion of NAV 2009. Let's initially 
focus on the user look and feel differences, and what that means to you when 
designing an application.

Following is a sample of what the Classic Client (two-tier) user interface looks 
like. Note that if the login were for a user with limited access privileges, only the 
permitted menu options would be displayed. Nevertheless, the basic structure of the 
display is oriented around the structure of the database and the traditional technician 
viewpoint of how the system works.

•
•
•
•

www.allitebooks.com

http:///
http://www.allitebooks.org


A Short Tour through NAV 2009

[ 30 ]

Now let's take a look at the appearance of the Role Tailored Client. The same 
comment applies about the system displaying only the permitted functions. 
However, the basic structure of the display here is oriented around a deinition of the 
Role (and therefore the tasks) of the speciic user who has logged in. Someone whose 
role centers around Order Entry will see a different RTC home page than the user 
whose Role centers around Invoicing, even though both are primarily focused in 
what we used to think of more globally as Sales & Receivables.

Obviously the user look and feel has changed dramatically from the Classic Client to 
the RTC. The design approach for our enhancements must follow the new RTC style. 
In some ways this will be a more challenging task, especially for those of us who are 
purely technical developers without much knowledge of the individual user's point 
of view.

In order to do a good job of itting the system to a particular customer, we must have a 
good understanding of the duties performed by different roles within that customer's 
organization. This means we need more diagnostic effort at the frontend of our 
system design and implementation planning. Perhaps we should always have done 
that, but since our design model was based on how our product worked, rather than 
how the customer's operation worked, we could get away with doing less. No more. 
It's not within the scope of this book to discuss that diagnostic effort in any detail. 
Nevertheless, it is very important that it be done and done well. In this book, we will 
concentrate on how to address the requirements for Roles once they are deined.

http:///


Chapter 1

[ 31 ]

An introduction to development
As part of our study of NAV development tools and techniques, we are going to  
do some exercises here and there. There's no better way to learn than to try out the 
tools in an environment where you can't break anything important. We're going  
to do development work for a simple system. As discussed earlier, we will access  
C/SIDE through the Tools | Object Designer menu option, as shown in the 
following screenshot:

Our scenario for development exercises
Our organization is a small, not-for-proit one. The name is ICAN, which stands  
for International Community And Neighbors. We collect materials, mostly food, 
from those who can afford to share and distribute it to those who have dificulty 
providing for themselves or their families. A large company has supplied us with  
a small computer network and a three-user Microsoft Dynamics NAV 2009 system.

We need to track the donations which come in. They may be items, money, or some 
type of in-kind services. If they are items, we will need to inventory them. We also 
need to track donors, volunteers, and the people on our "help list" (our clients). 
A variety of reports and inquiries will be needed. As with any application, new 
requirements are likely to arise as time goes by. And, in this case, since the purpose of 
our scenario is to act as a laboratory for experimenting with NAV development tasks, 
new requirements will arise so that we can do additional experiments.

http:///


A Short Tour through NAV 2009

[ 32 ]

Getting started with application design
Our design for the ICAN application will start with the initial design of a Donor 
table, a Donor Card Page, a Donor List Page, and a Donor List Report. Along the 
way, we will review the basics of each of these NAV object types.

Application tables
Table objects are the foundation of every NAV application. Every project should start 
by designing the tables. Tables contain the deinitions of the data structures, the data 
relationships within and between the tables, as well as many of the data constraints 
and validations.

The coded logic in a table triggers not only provides the basic control for the insertion, 
modiication, and deletion of records, but also embodies many of the business rules for 
an application. Such logic isn't just at the record level but also at the ield level. When 
we embed a large part of the application data handling logic within the tables, it makes 
the application easier to develop, debug, support, modify, and upgrade.

Designing a simple table
Let's create a simple Donor table for our NAV Donor application. First, we will 
inspect existing deinitions for tables containing name and address information. 
Basic inspection is done by clicking on the Tables button in the Object Designer, 
then highlighting the desired table and clicking the Design button. Good examples 
are the Customer table (table object 18) and the Vendor table (table object 23).

We see some ield name and deinition patterns that we will generally copy on the 
basis of "consistency is good". One exception to the copying will be the Primary Key 
ield. In the other tables, that ield is No., but we will use Donor ID, just to make all 
our examples stand out from views of standard code.

The Donor table will contain the following data ields:

Field names Deinitions
Donor ID 20 character text (code)

Name 50 character text

Address 50 character text

Address 2 50 character text

City 30 character text

State/Province 10 character text

Post Code 20 character text (code) 

Country/Region Code 10 character text (code)

http:///


Chapter 1

[ 33 ]

In the preceding data ield list, three of the ields are deined as Code ields, rather 
than Text ields. This is because these will be referenced by or will reference to other 
data tables. Using Code ields limits the contents to a subset of the ASCII character set, 
making it easier to constrain entries to a range of values. Code ields will be discussed 
in more detail in Chapter 3, Data Types and Fields for Data Storage and Processing.

The Donor ID will be a unique identiier for our Donor record as it will also be 
referenced by other subordinate tables. The Post Code and Country/Region Code 
will reference other existing tables for validation. We choose the name, size, and data 
deinition of these last two ields based on inspecting the equivalent ield deinitions 
in the Customer and Vendor tables.

We will have to design and deine any referenced validation tables before we can 
eventually complete the deinition of the Donor table. But our goal at the moment  
is just to get started.

Creating a simple table
Open the Object Designer, click on Table (in the left column of buttons) and click 
on New (in the bottom row of buttons). Enter the irst ield name (Donor ID) in the 
Field Name column and then enter the data type in the Data Type column. For those 
data types where length is appropriate, enter the maximum length in the Length 
column (for example text ields require lengths, date or numeric ields do not). Enter 
Description data as desired; these are only for display here as internal documentation.

As you can see in the following screenshot (and will have noticed already if you are 
following along in your system), when you enter a Text data type, the ield length 
will default to 30 characters. This is simply an 'ease-of-use' default, which you 
should override as appropriate for your design. The 30 character Text default and 
10 character Code default are used because this matches many standard application 
data ields of those data types.

http:///


A Short Tour through NAV 2009

[ 34 ]

Field numbering
The question often arises as to what ield numbering scheme to use. Various systems 
follow a variety of standard practices, but in NAV, when you are creating a new 
table from scratch, it is a good idea to increment the Field No. by 10, as you can see 
in the preceding screenshot. The default increment for Field No. is 1. For a group 
of ields (such as an address block) where you are certain you will never add any 
intervening ields, you could leave the increment at 1, but there is no cost for using 
the larger increment. 

The numeric sequence of ields determines the default sequence in which data 
ields will display in a wide variety of situations, especially in the Classic Client. An 
example would be the order of the ields in any list presented to the user for setting 
up data ilters in the Classic Client. This default sequence can only be changed by 
renumbering the ields. The compiler references each ield by its Field No. not by 
its Field Name, so the renumbering of ields can be dificult once you have created 
other routines that reference back to these ields. At that point, it is generally better  
to simply add new ields where you can it them without any renumbering.

General rule: Once a design has started to mature, don't 
renumber data ields.

In fact, it can be irritatingly painful to renumber ields at any point after a table has 
been deined and saved. In addition to the ield numbers controlling the sequence of 
presentation of ields, the ield numbers control bulk data transfer (those transfers 
that operate at the record level rather than explicitly ield to ield transfer—for 
example the TRANSFERFIELD instruction). In a record-level transfer, data is 
transferred from each ield in the source record to the ield of the same number  
in the target record.

Obviously, it's a good idea to deine an overall standard for ield numbering as  
you start. Doing so makes it easier to plan your ield numbering scheme for each 
table. Your design will be clearer for you and your user, if you are methodical  
about your design planning before you begin writing code (try to avoid the  
Ready-Fire-Aim school of system development). The increment of Field No.  
by 10 allows you to insert new ields in their logical sequence as the design matures. 
While it is not required to have the data ields appear in any particular order, it is 
frequently convenient for testing and often clariies some of the user interactions.

http:///


Chapter 1

[ 35 ]

When you have completed this irst table, your deinition should look like the 
following screenshot:

At this point, you can exit and save your Donor Table. The easiest way to do this is to 
simply press Esc until you are asked to save your changes.

When you respond by clicking on Yes, you will be asked for the object number and 
name you wish to assign. In a normal development situation, you will plan ahead 
what Object Number and descriptive Object Name you want to use. 

In this case, we will use table Object No. 50000 and name it Donor. We are using 
50000 as our Table Number just because it is the irst (lowest) number available to  
us for a custom table through our Table Designer granule license.

http:///


A Short Tour through NAV 2009

[ 36 ]

Note that NAV likes to compile any object as it is saved, so the Compiled option is 
automatically checked. A compiled object is one that can be executed. If the object we 
were working on was not ready to be compiled without error, we could unselect the 
Compiled option in the Save As window, as shown in the preceding screenshot.

Be careful, as uncompiled objects will not be considered by C/SIDE when 
changes are made to other objects. Until you have compiled an object, it 
is a "work in progress", not an operable routine. There is a Compiled lag 
on every object that gives its compilation status. Even when you have 
compiled an object, you have not conirmed that all is well. You may 
have made changes that affect other objects which reference the modiied 
object. As a matter of good work habit, recompile all objects before you 
end work for the day.

Pages/Forms
Pages are for the Role Tailored Client. Forms are for the Classic Client. If you are in 
the challenging position of maintaining a dual personality system (that is, running 
both clients), you will be forced to maintain equivalent versions of both Pages and 
Forms. We aren't going to address that situation in depth in this book as we are not 
going to cover the design and development of Forms in detail. In this book, we will 
focus on Pages and cover Forms just enough so that you can create a few to use as 
maintenance and debugging tools.

If you also need in-depth exposure to the world of developing for the 
Classic Client, you should refer to Programming Microsoft Dynamics 
NAV, Packt Publishing, (visit www.packtpub.com) about NAV 
development for the Classic Client. That book is based on NAV V5.0 
SP1, but is fully applicable to NAV 2009 Classic Client development.

Pages fulill several basic purposes. They provide views of data or processes 
designed for on-screen display only. They provide key points of user data entry into 
the system. They also act as containers for action items (menu options). The irst page 
with which a user will come in contact is a Role Center Page. The Role Center Page 
provides the user with a view of work tasks to be done. The Role Center Page should 
be tailored to the job duties of each user, so there will be a variety of Role Center 
Page formats for any irm.

http:///


Chapter 1

[ 37 ]

There are several basic types of display/entry pages in NAV:

List pages

Card pages

Document pages

Journal/Worksheet pages

There are also page parts (they look and program like a page, but don't stand alone) 
as well as user interfaces that appear as pages, but are not Page objects. The latter 
user interfaces are generated by various dialog functions.

•
•
•
•

http:///


A Short Tour through NAV 2009

[ 38 ]

List pages
List pages display a simple list of any number of records in a single table. The 
Customer List page in the following screenshot shows a subset of the data for each 
customer displayed. The Master record list shows ields intended to make it easy to 
ind a speciic entry. List pages/forms often do not allow entry or editing of the data. 
Journal/Worksheet pages look like List pages, but are intended for data entry.

Card pages
Card pages display one record at a time. These are generally used for the entry or 
display of individual table records. Examples of frequently accessed card pages 
include Customer Card for customer data, Item Card for inventory items, and  
G/L Account Card for general ledger accounts.

Card pages often have FastTabs (multiple pages with each tab focusing on a different 
set of related customer data). FastTabs can be expanded or collapsed dynamically, 
allowing the speciic data visible at any time to be controlled by the user.

http:///


Chapter 1

[ 39 ]

Card pages for Master records display all the required data entry ields. Typically, 
they also display summary data about related activity so that the Card page can be 
used as the primary inquiry point for Master records. The following screenshot is a 
sample of a standard Customer Card:

Document pages
Another page style within NAV consists of what looks like a Card page plus a List 
page. An example is the Sales Order page as shown in the following screenshot. 
In this example, the upper portion of the page is in the style of a Card page with 
several tabs showing Sales Order data ields that have a single occurrence on the 
page (in other words, do not occur in a repeating column). The lower portion of the 
Document page is in the style of a List page showing a list of all the line items on the 
Sales Order (all ields are in repeating columns).

www.allitebooks.com

http:///
http://www.allitebooks.org


A Short Tour through NAV 2009

[ 40 ]

Line items may include product to be shipped, special charges, comments, and other 
pertinent order details. The information to the right of the data entry is related data 
and computations that have been retrieved and formatted. On top of the page, the 
information is for the Ordering customer and the bottom right contains information 
for the item on the selected line.

Journal/Worksheet pages
Journal and Worksheet pages look very much like List pages. They display a list of 
records in the body of the page. Many have a section at the bottom that shows details 
about the selected line and/or totals for the displayed data. These pages may also 
include a Filter pane and perhaps a FactBox. The biggest difference between Journal/
Worksheet pages and basic List pages is that Journal and Worksheet pages are 
designed to be used for data entry. An example of a Worksheet page, the Requisition 
Worksheet in Purchasing, is shown in the following screenshot. This Worksheet 
assists the user in determining and deining what purchases should be made.

http:///


Chapter 1

[ 41 ]

Standard elements of pages
A page consists of Page properties and triggers, Controls, Control properties and 
triggers. Data controls generally are either labels displaying constant text or graphics, 
or containers that display data or other controls. Controls can also be elements such 
as buttons, action items, and page parts. While there are a few instances where you 
must include C/AL code within page or page control triggers, in general it is good 
practice to minimize the amount of code embedded within pages. Most of the time, 
any data-related C/AL code can (and should) be located within the table object 
rather than the page object.

Creating a Card page
Let us try creating a Card page and a List page for the table we created earlier. The 
NAV IDE contains object generation tools (Wizards) to help you create relatively 
fully formed Classic Client forms and reports. Creating pages and reports for 
the Role Tailored Client is less about Wizards and more about actually using the 
Designer tools, but the Wizards are still very useful.

http:///


A Short Tour through NAV 2009

[ 42 ]

Open the Object Designer, click on Page and then click on New. The Page Wizard's 
screen will appear. Enter the name (Donor) or number (50000) of the Table with 
which  the page is to be associated (bound). Choose the option Create a page using  
a wizard:. Choose Card as shown in the following screenshot. Click on OK.

Next, you will encounter the following Card Page Wizard screen:

http:///


Chapter 1

[ 43 ]

As this is our irst Page creation effort, we will keep it simple. We will accept the 
single suggested FastTab of General and click on Next to proceed. That will take  
us to the following screen. 

Now it's time to add all the data ields for our Donor table to the page. Click on the 
button shown in the following image. That will move all of the Available Fields to 
the Field Order window. 

Now click on the Finish button. The Page wizard will close and you will be looking 
at the Page Designer form showing the generated page code, as shown in the 
following screenshot.

http:///


A Short Tour through NAV 2009

[ 44 ]

Place your cursor on the irst blank line at the bottom of the list of control deinitions. 
Right-click and select Properties to open the Page-Properties screen as shown 
below (you could also press Shift + F4 or click on the Properties icon at the top of the 
screen). Type the page name to be displayed "Donor Card" into the Caption ield,  
it will default into the MLCaption ield too, as follows: 

Escape from that screen, and Escape from the Page Designer screen.

A Save Changes form will be displayed, just like the one we saw when we inished 
deining our Donor table. We have the same task now as we did then, to assign an 
ID (object number) and Name. Let's make this Page number 50000 and call it Donor 
Card. Leave the Compiled checkbox checked and click on OK so that the Page 
will be compiled (and error checked). Assuming you haven't received any error 
messages, you have now created your irst NAV 2009 page object. Congratulations!

If you are doing your work with the original release of NAV 2009, you have to test 
a new card page by running it from the system Run option. From the Start menu, 
select Run. In the command box, enter the following: 

Dynamicsnav:////runpage?page=50000

If you are using NAV 2009 SP1 or later, you can test your page by simply highlighting 
it and clicking on the Run button at the bottom of the Object Designer screen (the Run 
button is programmed to automatically submit that long command to the system).

This will invoke the Role Tailored Client, open it up, and call up your new page 
50000. You should see a screen that looks like this.

http:///


Chapter 1

[ 45 ]

Experiment a little. Expand the card page to full screen. Enter some Donor data for 
two or three donors (hint: click on the Actions icon at the top of the page and choose 
the New option). You might want to open the page with the Page Designer using the 
Design button, add one of the data ields so it will appear a second time on the card. 
This time, change the Caption ield for that data item. Save and compile. Run a test. 
Before you quit experimenting, go back and remove any extras that you had added, 
so that later your Donor Card will be what we created initially.

You could create a second copy of the page so that you could experiment, then 
discard it later. First, open Page 50000 in Design mode. Then click on File | Save 
As and save the page object as Page number 50090 with a different name such as 
Test Donor Card. Compile it, then make whatever changes you want, deleting the 
experimental page when you are done experimenting. 

When you begin testing, you will ind that a lot of features have been created 
automatically as part of the Card page, but you are still very limited in what you 
can do. For example, without a properly set up List Page, it's harder to move around 
in your table and quickly ind different Donors, especially if there are more than 
just a few records in the table. This dificulty would be even more signiicant for 
your users. That's why List pages are the primary data navigation interface in the 
application system. So let's create a List page for our Donor table.

Creating a List page
The process of creating a Donor List page is essentially the same as the one we 
just went through for the Donor Card page. Open the Object Designer, click on 
Page, and then click on New. The Page Wizard's irst screen will appear. Enter the 
name (Donor) or number (50000) of the table with which you want the page to be 
associated. Choose the option Create a page using a wizard:. Choose List and click 
on OK.

http:///


A Short Tour through NAV 2009

[ 46 ]

You will see a List Page Wizard form that looks just like the second screen you 
encountered when you were creating a Card page. Unlike the Card page, we will use 
the single ield selection button (>) to choose just the four individual ields we want 
to appear in our List page. The image below shows which ields to choose.

Now click on the Finish button. The Page wizard will close and you will be looking 
at the Page Designer form showing the generated material.

Place your cursor on the irst blank line at the bottom of the list of ields, right-click, 
then select Properties. Type the page name to be displayed "Donor List" in the 
Caption ield, it will default into the MLCaption ield too. In that same property 
list, in the CardFormID ield, enter the name (or ID number) of the Card page that 
should be used to display any entry that will be displayed on this List page. In this 
case, that will be Donor Card.

http:///


Chapter 1

[ 47 ]

After you've made your property entries, the Page Properties form will look like the 
following screenshot:

In the Classic Client, the Card form is the irst point of contact with the information 
in a table. When you invoke the List form from the Card form, a property on the 
table determines what List form is activated. In the RTC, the List page is the irst 
point of contact with the information in a table. When you invoke the Card page 
from the List page, the CardFormID property determines what Card page to activate.

We can always return to the created page in the Page Designer and easily add ields 
we left off or remove something we decide is not needed. In addition, NAV list 
pages include a feature that allows you to have some ield columns with the Visible 
property set to FALSE initially. This property is ield speciic, controls whether the 
column for a data ield displays on screen or not, and can be personalized by users.

In order to save and compile the new page, just press Esc key and respond with 
Yes to the Save Changes form. Enter the Page number (ID) you want to assign (use 
50001) and name (use Donor List). If you reused the Page object number 50000, you 
would have overwritten the Card page you created earlier.

http:///


A Short Tour through NAV 2009

[ 48 ]

At this point, we have a data structure (Table 50000—Donor), a page to enter and 
maintain data, (Page 50000—Donor Card) and a page to display or inquire into a list 
of data (Page 50001—Donor List). Let us use our Donor List and Donor Card to enter 
some data into our table, edit it, and review it.

In a full application, we would be accessing our pages from a Role Center page. But 
for now, we will just test our pages directly through the Run option. This will invoke 
the Role Tailored Client, open it up and call up page 50001. You should see a screen 
that looks like this:

Notice the New command icon that has been included on the Action pane for your 
new page. That was provided automatically, without you needing to code it. Very 
convenient. Click on New. Your Donor Card page will open up in Add mode. Now 
is a good time to create some elementary test data. Enter the data for a Donor. Click 
on OK. Your new Donor record is displayed in the Donor List page. Hopefully 
you're having a good time, after all, success is enjoyable, even in small amounts.

Click on New again. Enter another Donor test record. This time, instead of clicking 
on the OK button, click on the option symbol (the inverted triangle) at the right of 
the button. You will see that you have two entry completion options.

http:///


Chapter 1

[ 49 ]

If you simply click on OK or you press Ctrl + Enter, the control will return to the 
list page. But if you click on the OK & New option, the record just entered will be 
saved and you will return to an empty New Card page ready for the next record to 
be entered. Obviously, this second option is handy for situations requiring repetitive 
data entry.

After you have entered two or three Donor entries, go back to the Donor List page. 
Highlight one of the Donor entries, then double-click it. You will end up back in the 
Donor Card page in Edit mode with the highlighted Donor record loaded, ready to 
be changed. Change it and then click on OK. You return to the Donor List page with  
the Donor record updated with your changes similar to what's shown in the 
following screenshot:

Keyboard shortcuts
Before we move on to creating a simple report, let's take a quick look at the list of 
keyboard shortcuts that are available in NAV 2009. From the RTC, call up Microsoft 
Dynamics Help. Use Search to ind Keyboard Shortcuts. This will give you a list of 
the many keyboard shortcuts that are available within the Role Tailored Client.

www.allitebooks.com

http:///
http://www.allitebooks.org


A Short Tour through NAV 2009

[ 50 ]

Change focus to the Classic Client, where you've been doing your development 
work. Access the Help menu option in the header. Choose Overview of F Keys.  
This will display a list of the common keyboard shortcuts used within the Classic 
Client. You will see that this list of shortcuts is totally different from the one in the 
RTC (and much shorter). This is because there was a Microsoft product management 
decision to have NAV keyboard shortcuts more like those in Microsoft Excel. You 
have the challenge of remembering two sets of shortcuts in the same system and 
using the right ones at the right time.

Run a table
Hopefully, you are beginning to get a feeling for the ease of use and power of  
C/SIDE and NAV. Let's return to the Object Designer in the Classic Client. You've 
been viewing the Donors through the normal pages in the same manner as would a 
user, through the application Pages. As you have access to the Object Designer, you 
can also inspect, even manipulate data directly within the table. Simply access the 
Table Designer again, highlight the Donor table (50000) and Run the table.

Running a table creates a default Classic Client form that includes all the displayable 
ields in the table. Now you can see the same Donor records you just entered. 
Dependent on the speciic design of the table (about which you will learn more  
in subsequent chapters), you can freely modify the contents of the table.

Reports
Report objects can be used for several purposes, sometimes more than one purpose 
at a time. One purpose is the display of data. This can be on-screen (called Preview 
mode) or output to a printer device driver (Print mode). The displayed data may be 
read from the database, or may be the result of signiicant processing. As you would 
expect, a report may be extracting data from a single table (for example, a list of 
customers) or a combination of several tables (for example, a sales analysis report).

http:///


Chapter 1

[ 51 ]

Other report objects have the purpose of only processing data, without any display 
formatted output of the processed results. Typically, such reports are referred to as 
batch processing reports. Reports can also be used as containers for program logic to 
be called from other objects or executed as an intermediate step in some sequence of 
processes. Normally, this task would be handled by Codeunit objects, but you can 
also use report objects if you want to.

Report formats are limited to a combination of your imagination, your budget, and 
the capabilities of NAV reporting. NAV reporting is very powerful and lexible in 
terms of what data can be reported, plus the various types of iltering and combining 
can be done. In the Classic Client, NAV reporting is relatively limited in terms of 
formatting. However, reports designed to be run in the Role Tailored Client use 
RDLC capabilities similar to those available from SQL Server Reporting Services. 
Consequently, they have a great deal of lexibility.

One standard way to create a new Role Tailored Client report is to create a report 
for the Classic Client, and then "transform" it (an embedded process that converts 
an object for the RTC) and then reformat it for the RTC. It may seem a roundabout 
method, but, depending on the report, it's sometimes the easiest approach. If it so 
happens that you prefer to only create the report in the Classic Client format, the 
RTC will run that one too, but without any of the new RTC report features.

Common report formats in NAV (both clients) include document style (for example 
Invoices or Purchase Orders), list style (for example, Customer List, Inventory Item 
List, Aged Accounts Receivable), and label format style (for example, a page of name 
and address labels). There is only one Report object. It can contain formatting layout 
information for only the Classic Client or for both the Classic and Role Tailored 
Clients. From a practical point of view, if you are going to run a report only from 
the RTC, the Classic Client format information can be very minimal (that is not 
particularly useful for Classic Client reporting).

A signiicant aspect of the NAV report object is the built-in "read-then-process" 
looping structure, which automates the sequence of "read a record, process the 
record, then read the next record". When manually creating or enhancing reports, 
you can deine one data structure as subordinate to another, thus creating nested 
read-then-process loops. This type of predeined structure has its good points and 
bad points. The good points usually relate to how easy it is to do the kind of things 
it is designed for and the bad points relate to how hard it is to do something that the 
structure doesn't anticipate. We will cover both sides of discussion when we cover 
Reports in detail in Chapter 5, Reports.

We've taken a quick look at normal RTC data entry and viewing and we've looked 
at how the data is deined in the table. We will now look at how that data might be 
extracted and reported.

http:///


A Short Tour through NAV 2009

[ 52 ]

Creating a List format report
First, we will create a simple list format report based on our Donor table. We will 
use the Report Wizard. The Report Wizard is quite useful for simple reports. The 
Report Wizard and Report Designer tools are available to anyone who has a license 
containing the Report Designer granule.

When you are doing more complex reports, it is often only modestly helpful to start 
with the Report Wizard. For one thing, the Report Wizard only deals with a single 
input table. However, even with complex reports, sometimes it is a good idea to 
create a limited test version of some aspect of a larger report. Then you may create 
your full report without use of the Wizard, but using the Report Wizard generated 
code as your model for some aspect of layout or group totaling.

Open the Object Designer, click on Report, and then click on New. The Report 
Wizard's irst screen will appear. Enter the name (Donor) or number (50000) of the 
table with which you want the report to be associated. Choose the option Create a 
report using a wizard. This time choose a Tabular-Type Report Wizard to create a 
Donor List. Then click on OK, as shown in the following screenshot:

Next, you will be presented with the window shown in the following screenshot for 
choosing what data ields you want on your report. This is very much like what we 
saw earlier in the Page Wizard. The order in which you place the ields in the Field 
Order column, top to bottom (as shown in the following screenshot), will be the 
order in which they appear on your report, left to right.

http:///


Chapter 1

[ 53 ]

You can preview your report in the Classic report viewer during the process of its 
creation, to see if you are getting the layout you want. Often you will perform quite 
a bit of manual formatting after you inish with the Wizard. As the report preview 
function utilizes the driver for the current default printer for formatting, make sure 
you have a default printer active and available before you attempt to preview  
an NAV report.

After you have chosen the ields you want on your report (some are suggested in 
the preceding screenshot), click on Next. This will bring up a screen allowing you to 
predeine a processing/printing sequence for this report. You can select from any of 
the deined keys. At the moment our Donor table only has one key so let's choose the 
No, I don't want a special sorting of my data. As you will see later, that will generate  
a report where you can choose the sort sequence for each run. Click on Next.

Now you can choose a List Style or a Document Style layout. Click on each one of them 
to get an idea of the difference. If you like, Preview the report in process for each of 
these options chosen. Note that when you Run a report (and previewing it, is running 
it), the irst thing you see is called the Report request screen. A default Report request 
screen from the Donor List report would look like the following screenshot:

http:///


A Short Tour through NAV 2009

[ 54 ]

The Report request screen is where the user enters any variable information, data 
ilters, page, printer setups, and desired sort order to control each report run. If no 
key is selected for the report, the Sort button will appear at the bottom right of the 
screen. This allows the user to choose which data key will apply to a report run. 
The user can also choose to Print the report (output to a physical device or PDF ile) 
or Preview it (output to the screen). To start with, just click on Preview to see your 
current layout.

Once you are satisied with the layout, click on Finish. You will now be in the Report 
Designer, ready to make manual changes. Exit the Report Designer by pressing the 
close-window icon, saying Yes, you do want to save changes. Save your new report 
as ID 50000 and Name "Donor List". Run your new report, using the Object Designer 
Run button. It should look much like the following:

Our next step is to transform the Classic Client report layout into an RTC (RDLC) 
report layout. Highlight Report 5000 and click on Design. Then click on  
Tools | Create Layout Suggestion (see the following screenshot).

http:///


Chapter 1

[ 55 ]

Your system will whirr and hum and buzz and a display similar to the following  
will appear:

http:///


A Short Tour through NAV 2009

[ 56 ]

You have been transported along with your transformed report layout into 
the Microsoft Visual Studio Report Layout tool. This tool gives you access to a 
considerable variety of graphical effects, interactive reporting functions, and other 
capabilities. We will explore these in detail in Chapter 5, Reports.

While you could make many different changes to this layout, for now just exit Visual 
Studio via the Esc key. As you exit Visual Studio, you will be presented with the 
following question on screen:

Click on Yes, which will take you back to the Classic Report Designer. Exit from  
the Report Designer, saving your revised report the same way you saved the  
original earlier.

By the way, if you had made changes to your layout and saved them, then later 
invoked the Create Layout Suggestion again, that would overwrite your layout, 
changes, and all. After the irst time, access to this tool for a report should be via 
View | Layout.

In order to test the new RTC version of the Donor List report, simply highlight the 
report line in the Object Designer and click on Run. The RTC Report Request Screen 
will display, looking like the following screenshot:

http:///


Chapter 1

[ 57 ]

Preview the report. It should look very similar to the following screenshot:

As you can see, the Classic Client report and the RTC report look similar, but not the 
same. The goal with the new client was not to replicate the old client, but to provide 
similar functionality so that almost all capabilities were retained, but with many new 
capabilities being available.

There is a lot more to learn about the design, creation, modiication, and control of 
Reports. All we have done so far is scratch the surface. But if you're following along 
in your own system, especially if you've done a little experimenting of your own 
along the way, you now have a pretty good overview of what it feels like to begin 
developing in NAV 2009.

We are done with our introduction to development for now. We will continue with 
our introductory review of NAV's object types.

http:///


A Short Tour through NAV 2009

[ 58 ]

Codeunits
A codeunit is a container for "chunks" of C/AL code to be run "inline" or called 
from other objects. These "chunks" of code are properly called Functions. As we said 
earlier that you could use a Report object as a container for code segments (that is, 
functions), why do we need codeunits? One reason is that early in the life of C/SIDE, 
only codeunits could be used in this way. Somewhere along the line, the C/SIDE 
developers decided to relax that particular constraint. However, from a system-
design point of view, there are very good reasons to use codeunits as the primary 
containers for functions.

The most important reason to put all callable functions within codeunits is that 
codeunits can be exposed as Web Services. This allows the functions within a 
codeunit which has been published as a Web Service to be invoked by external 
routines operating outside of NAV. Only codeunits and pages can be exposed as 
Web Services.

A second important reason for using codeunits for callable functions is that the 
Microsoft provided NAV license speciically limits access to the C/AL code within 
codeunits differently than that within reports. The C/AL code within a report can  
be accessed with a "lower level" license than is required to access the C/AL code in  
a codeunit. If your customer has license rights to the Report Designer, they can 
access C/AL code within Report objects. A large percentage of installations have 
Report Designer license privileges. But they cannot access C/AL code within 
codeunit objects unless they have access to a more expensive license with Developer 
privileges (that is Application Builder or Solution Developer). As a result, C/AL 
code within codeunits is more secure from casual changes than is C/AL code within 
report objects.

A third reason is that the codeunits are better suited structurally to contain only 
functions. Even though functions could be placed in other object types, the other 
object types have superstructures that relate to their designed primary use for forms, 
reports, and so on. The use of such an object primarily as a repository for functions 
designed to be called from other objects creates code that is often more dificult to 
interpret, use, and maintain.

Codeunits act only as a container for C/AL coded functions. They have no auxiliary 
functions, no method of user interaction, and no pre-deined processing. If you are 
creating one or two functions that are closely related to the primary activity of a 
particular report, but these functions are needed from both within and outside of  
the report, then, by all means, include the functions in the report. Otherwise, use  
a Codeunit.

http:///


Chapter 1

[ 59 ]

There are several codeunits delivered as part of the standard NAV product, which 
are really function libraries. These codeunits consist totally of utility routines, 
generally organized on some functional basis (for example, associated with 
Dimensions or with some aspect of Manufacturing or some aspect of Warehouse 
management). Some developers create their own libraries of favorite special 
functions and include such a "function library" codeunit in systems on which  
they work.

If a Codeunit is structured very simply and can operate in a stand-alone mode, it is 
feasible to test it in the same way one would test a Report or a Page. Highlight the 
Codeunit and click on the Run button. The codeunit will run for a single cycle.

MenuSuites
MenuSuites are the objects that are displayed in the Classic Client as User Menus. 
They differ considerably from the other object types we have discussed earlier. 
MenuSuites have a completely different structure; they are also maintained 
differently. In older versions of NAV, menus were constructed as versions of 
Form objects. With the release of Version 4.0, MenuSuites were offered as a way 
of providing a User Interface essentially similar to that found in the Outlook 
Navigation panel. This is the way they appear in the Classic client. MenuSuites 
are also maintainable in a limited way by the end user without any special license 
requirements. In addition, MenuSuites have the advantage of only showing the 
menu items that the user has permissions to access.

MenuSuite entries do not have maintainable properties or contain triggers. Within 
MenuSuites, NAV developers lost the ability to embed C/AL code within the menus. 
The only customizations that can be done with MenuSuites is to add, delete, or edit 
menu entries.

In the Role Tailored Client the data in the MenuSuites object is presented in the 
Department Menus. As you might expect, the presentation of the information is 
different in the RTC. In a later chapter, we will discuss more about how to work 
with MenuSuites and how to work around some of the constraints. The Role Center 
provides us with a number of new capabilities in that regard.

Dataports
Dataports exist as separate object types only in the two-tier (Classic) client. In the 
Role Tailored Client, the functions handled by Dataports in the Classic Client are 
handled by XMLports.

http:///


A Short Tour through NAV 2009

[ 60 ]

Dataports are specialized objects designed to export and import data between  
the two-tier NAV database (whether Classic or SQL Server) and external text  
iles. Dataports allow for a limited set of external data formats, generally focused 
around what are commonly referred to as "comma separated value" (also known  
as "comma-delimited" or csv) iles. The delimiters don't actually have to be commas, 
that's just the common name for this ile structure.

Dataports can contain C/AL logic that applies to either the importing or the 
exporting process (or both). The internal structure of a dataport object is somewhat 
similar to that of a report object combined with a table object. Dataports are driven 
by an internal read-then-process loop similar to that in reports. Dataports contain 
ield deinitions that relate to the speciic data being processed.

Dataports are relatively simple and quite lexible tools for importing and exporting 
data. The data format structure can be designed into the dataport as along with logic 
for accommodating editing, validating, combining, iltering, and so on of the data as 
it passes through the dataport. Dataports can be accessed directly from a menu entry, 
in the same fashion as forms and reports in the Classic Client.

XMLports
At irst glance, XMLports are for importing and exporting data, similar to the 
Dataports. But XMLports differ considerably in their operation, setup, and primary 
intended usage.

In the two-tier client, XMLport objects can only be used for XML-formatted data. 
They must be "ired off" by C/AL code resident in some other object type (in other 
words, a Classic Client XMLport cannot be run from the Object Designer and cannot 
be run directly through a menu entry).

In the three-tier client, XMLports now handle both XML structured data and other 
text data that was previously handled by Dataports. The description of a Dataport's 
functionality now applies to the three-tier client XMLport. The three-tier client 
XMLport can be run directly from a menu entry.

XML stands for eXtensible Markup Language. XML is a markup language much like 
HTML. XML was designed to describe data so that it would be easier to exchange 
data between dissimilar systems, for example, between your NAV ERP system and 
your accounting irm's inancial analysis and tax preparation system.

http:///


Chapter 1

[ 61 ]

XML is designed to be extensible, which means that you can create or extend 
the deinition as long as you communicate the revised XML format to your 
correspondents. There is a standard set of syntax rules to which XML formats must 
conform. XML is becoming more and more important because most new software 
uses XML. For example, the new versions of Microsoft Ofice are quite XML 
"friendly". All web services communications are in the form of an exchange of  
XML structured data.

Integration tools
NAV's integration tools are designed to allow direct input and output between NAV 
databases and external, non-NAV routines. However, they do not allow access to 
C/AL-based logic. The internal business rules or data validation rules that would 
normally be enforced by C/AL code or trigger actions or various properties do not 
come into play when the data access is by means of one of the following integration 
tools. Therefore, you must be very careful in their use.

N/ODBC: NAV provides the standard ODBC interface between external 
applications (such as Word, Excel, Delphi, Access, and so on) and the Classic 
NAV database. This is a separately licensed granule. N/ODBC does not 
work with the SQL Server database.

C/OCX: This provides the ability to use OCXs to interface with the NAV 
database. This is also a separately licensed granule.

C/FRONT: This provides the ability to access the NAV database directly 
from code written in languages other than C/AL. Earlier, this type of 
interface was primarily coded in C, but beginning with V4.0 SP1, we now 
have the ability to interface from various .NET languages. In future versions, 
this capability is likely to expand. This too is a separately licensed granule.

Automation: This allows access to registered automation controller libraries 
within Windows from in-line C/AL code (for example, C/AL code can 
directly push data into a Word document template or an Excel spreadsheet 
template from C/AL). Automation controllers cannot be used to add 
graphical elements to NAV but they can contain graphical user interfaces that 
operate outside of NAV. When it is feasible to use an automation controller 
for interfacing externally, this is a simple and lexible way to expand the 
capabilities of your NAV system.

Web services: This functionality is described in brief earlier and in much 
more detail later. Web services are an industry standard API to NAV tables 
(through published pages) and functions (through published codeunits).

•

•
•

•

•

http:///


A Short Tour through NAV 2009

[ 62 ]

Backups and documentation
As with any system where you can do development work, careful attention to 
documentation and backing up your work is very important. C/SIDE provides  
a variety of techniques for handling each of these tasks.

When you are working within the Object Designer, you can back up individual 
objects of any type or groups of objects by exporting them. These exported object 
iles can be imported in total, selectively in groups or individually, one object at a 
time. to recover the original version of one or more objects.

When objects are exported to text iles, you can use a standard text editor to read 
or even change them. If, for example, you wanted to change all the instances of the 
ield name Customer to Patient, you might export all the objects to text and execute 
a mass "Find and Replace". You won't be surprised to ind out that making such code 
changes in a text copy of an object is subject to a high probability of error, as you 
won't have any of the many safety features of the C/SIDE editor keeping you from 
hurting yourself.

You can also use the NAV Backup function to create backup iles containing just 
system objects or including data (a typical full system backup). A developer would 
typically use backup only as an easy way to get a complete snapshot of all the 
objects in a system. Backup iles cannot be interrogated as to the detail of their 
contents, nor can selective restoration can be done. So, for incremental development 
backups, object exporting is the tool of choice. As NAV data is relational and highly 
integrated, it would generally not be good practice to attempt to backup and restore 
single data tables.

Internal documentation (that is, inside C/SIDE, not in external documents) of object 
changes can be done in three areas. First is the Object Version List, a ield attached 
to every object, visible in the Object Designer screen. Whenever a change is made 
in an object, a notation should be added to the Version List. The second area for 
documentation is the Documentation section that appears in most object types.  
The third area you can place documentation is inline with modiied C/AL code.

In every object type except MenuSuites, there is a Documentation section at the top 
of the object. The Documentation section is the recommended location for noting a 
relatively complete description of any changes that have been made to the object. 
Then, depending on the type of object and the nature of the speciic changes, you 
should also consider annotating each change everywhere it affects the code, so the 
changes can be easily identiied as such by the next developer looking at this object.

http:///


Chapter 1

[ 63 ]

In short, everything applies that you have learned earlier about good backup 
practices and good documentation practices, when doing development in NAV  
C/SIDE. This holds true whether the development is new work or modiication  
of existing logic.

Summary
In this chapter, we covered some basic deinitions of terms related to NAV and 
C/SIDE. We reviewed the two-tier and the three-tier coniguration options. Then 
we followed with the introduction of eight types of NAV objects (Tables, Pages/
Forms, Reports, Codeunits, MenuSuites, Dataports, and XMLports). We also had 
an introduction to Page and Report Creation through review and hands-on use 
with the beginning of a NAV application for the ICAN not-for-proit organization. 
Finally, we looked briely at the tools that we use to integrate with external entities 
and we discussed how different types of backups and documentation are handled in 
C/SIDE. Now that we have covered these basics in general terms, let's dive into the 
detail of the primary object types.

In the next chapter, we will focus on Tables, the foundation of an NAV system.

http:///


A Short Tour through NAV 2009

[ 64 ]

Review questions
1. Microsoft Dynamics NAV 2009 is an ERP system. ERP stands for Extended 

Report Processor. True or False? 

2. Which of the following are true about Dynamics NAV 2009? Choose three:

a. It has two clients, a Role Tailored Client and a Classic Client

b. It supports two databases, the Classic Database and  
Microsoft SQL Server

c. Role Tailored Client reporting primarily uses Excel for formatting

d. Support for Web Services is integrated as a standard feature

3. NAV 2009 is a full object-oriented system. True or False? 

4. Which of the following choices are object types included in NAV 2009? 
Choose two:

a. Report, Dataport, Page, Codeunit

b. Report, XMLport, Form, SQL Server

c. PDF, XMLport, Report, Form

d. XMLport, Form, Table, MenuSuite

5. Development for NAV 2009 can all be done from within the C/SIDE 
environment. True or False? 

6. All NAV objects except XMLports can contain C/AL code. True or False? 

7. Licenses control not only what functions users have access to, but also what 
objects and object number ranges developers have access to. True or False? 

8. The Classic Client is tied to the two tier system and the Role Tailored Client 
is tied to the three tier system. True or False? 

9. NAV 2009 uses Journal tables for transaction data. Ledger tables are used at 
times for temporary work tables and at other times for permanent, Posted 
data storage. True or False? 

10. Classic Clients run only Forms and the Role Tailored Clients run only Pages. 
True or False? 

http:///


Chapter 1

[ 65 ]

11. Which of the following have Wizards to help initiate the design of the object? 
Choose three:

a. MenuSuites

b. Reports

c. Pages

d. Forms

12. Keyboard shortcuts in the Role Tailored Client are a superset of those in the 
Classic Client. True or False? 

13. A Visual Studio compatible report layout tool is an important part of the 
NAV 2009 development toolset. True or False? 

14. Reports, Forms, Pages, Dataports and Codeunits can all be run directly from 
the Object Designer screen for testing. MenuSuites, Tables, and XMLports 
cannot be. True or False?

http:///


http:///


Tables

Design builds the bridge between the black box of technology and everyday 
practice—Gui Bonsiepe

The basic building blocks of any system are data deinitions. In NAV, the data 
deinitions are made up of tables. Within these tables individual data ields exist. 
Whether you are working on a new add-on or a tightly integrated modiication,  
the irst level of detailed design for a NAV application must be the data structure.

In NAV, the table deinition can encompass much more than traditional data ields  
and keys. The table deinition should also include a signiicant portion of the  
data validation rules, processing rules, business rules, and logic to ensure  
referential integrity.

In this chapter, we will learn how to design and construct NAV tables. We  
will review the various choices available and how these choices can affect  
the subsequent phases of design and development.

Overview of tables
A table provides the basic deinition for data in NAV. It is important to understand 
the distinction between the table (deinition and container) and the data (the 
contents). The table deinition describes the data structure, validation rules, storage, 
and retrieval of the data stored in the table. The data is the raw material that 
originates (directly or indirectly) from the user activities and subsequently resides 
in the table. For example, in the Permissions setup, the data is formally referred to 
as Table Data. The table is not the data, it is the deinition of data. However, we 
commonly refer to the data and the table as if they were one and the same. This is  
the terminology we will generally use in this book.

http:///


Tables

[ 68 ]

Tables are the critical foundation blocks of NAV applications. All permanent data 
must be stored in a table. As much as possible, key system design components 
should be embedded in the tables. This means fully utilizing the capability of NAV 
table objects to contain code, properties, and so on, which will deine their content 
and processing parameters.

You should include code that controls what happens when new records are added, 
changed, or deleted, as well as how data is validated. All of these should be a part of 
the table. To a great extent, the table object should include the functions commonly 
used in various processes to manipulate the table and its data, whether for database 
maintenance or in support of business logic.

We will soon explore these capabilities more completely through examples and 
analysis of the structure of table objects. You will ind that this approach has a 
number of advantages:

Centralization of rules for data constraints

Clarity of design

More eficient development of logic
Increased ease of debugging

Easier upgrading

Components of a table
A table is made up of Fields, Properties, Triggers (some of which may contain C/AL 
code), Keys, and SumIndexes. A table deinition which takes full advantage of these 
tools reduces the effort required to construct the other parts of the application. In 
turn, this will have a considerable impact on the processing speed, eficiency, and 
lexibility of the application. These components can be combined to implement many 
of the business rules of the application, as well as the rules for data validation.

A table can have:

Up to 500 ields
A deined record size of up to 4 KB (up to 8 KB for SQL Server)
Up to 40 different keys

•
•
•
•
•

•
•
•

http:///


Chapter 2

[ 69 ]

Table naming
There are standardized naming conventions deined for NAV. Your modiication 
will it better within the structure of NAV if you follow these conventions. In all  
of these cases, the names for tables and other objects should be as descriptive  
as possible, while keeping to a reasonable length. This is one way to make your  
work self-documenting (which, of course, reduces the required amount of  
auxiliary documentation).

Table names should always be singular. The table containing customers should 
not be named Customers, but Customer. The table we created for our International 
Community And Neighbors NAV enhancement was named Donor, even though  
it contains data on many donors.

In general, you should always name a table so it is easy to identify the relationship 
between the table and the data it contains. Consistent with the principle of being as 
descriptive as possible, two tables containing the transactions on which a document 
page is based should normally be referred to as a Header table (for the main portion 
of the page) and a Line table (for the line detail portion of the page). As an example, 
the tables underlying a Sales Order page are the Sales Header and the Sales Line 
tables. The Sales Header table contains all the data that occurs only once for a 
Sales Order, while the Sales Line table contains the multiple lines from the order. 
Additional information on table naming can be found in the Terminology Handbook for 
C/SIDE from Microsoft. Other important table design standards information can be 
found in the online Help iles of NAV, and in the C/AL Programming Guide, also  
from Microsoft.

Table numbering
There are no hard and fast rules for table numbering, except that you must only use 
the table object numbers which you are licensed to use. If all you have is the rights 
to the Table Designer, you are only allowed to create tables numbered from 50000 to 
50009. If you need more table objects, you can purchase table objects numbered up  
to 99999. ISVs can purchase access to tables in other number ranges. 

If you are creating several related tables, ideally you should assign them related 
numbers in sequential order. But there are no particular limitations to assigning  
table numbers as long as it makes sense to you. In general, let common sense be  
your guide to assigning table numbers.

http:///


Tables

[ 70 ]

Table properties
You can access the properties of a table while viewing the table in Design mode, 
highlighting the irst blank ield line (the one below all the ields), and clicking on  
the Properties icon or pressing Shift + F4 as shown in the following screenshot: 

You can also perform a similar operation via Edit | Select Object, and then  
pressing Shift + F4.

This will take you to the Table - Properties display. The following screenshot is 
the Table - Properties display for the Item table in the demonstration company 
database, Cronus, which is included in each copy of NAV.

http:///


Chapter 2

[ 71 ]

The contents of the screenshot are as follows:

ID: This is the object number of the table.

Name: This is used as the default caption when data from this table  
is displayed.

Caption: This contains the caption deined for the currently selected 
language. The default language for NAV is US English.

CaptionML: This deines the MultiLanguage caption for the table. For an 
extended discussion on the language capabilities of NAV, refer to the section 
MultiLanguage Functionality in the online Microsoft Dynamics NAV 2009 
Developer Help.

The online Microsoft Dynamics NAV 2009 Developer Help combines 
information that was previously in the online C/SIDE Help and the 
hardcopy of Application Designer's Guide. It is available from the Classic 
Client Help | C/SIDE Reference Guide and the MSDN Library.

Description: This is an optional use property for your documentation.

DataPerCompany: This lets you deine whether or not the data in this table 
is segregated by company (the default), or whether it is common (shared) 
across all of the companies in the database. The names of tables within  
SQL Server (not within NAV) are affected by this choice.

Permissions: This allows you to grant users of this table different levels of 
access (r=read, i=insert, m=modify, d=delete) to the table data in other table 
objects. For example, users of the Customer table are allowed to read (that is 
view) the data in the Cust. Ledger Entry table.

LookupFormID: This allows you to deine what Form/Page is the default for 
looking up data in this table.

DrillDownFormID: This allows you to deine what Form/Page is the default 
for drilling down into data that is summarized in this table.

The LookupFormID and DrillDownFormID properties refer to Forms 
when the Classic Client is running, but they refer to Pages when the Role 
Tailored Client is running.

DataCaptionFields: This allows you to deine speciic ields whose contents 
will be displayed as part of the caption. For the Customer table, the No. and 
the Name will be displayed in the caption banner at the top of a Form/Page 
showing a customer record.

•
•
•
•

•
•

•

•
•

•

http:///


Tables

[ 72 ]

PasteIsValid: This determines if the users are allowed to paste data into  
the table

LinkedObject: This lets you link the table to a SQL Server object. This feature 
allows the connection, for data access or maintenance, to a non-NAV system 
or an independent NAV system. For example, a LinkedObject could be an 
independently hosted and maintained special purpose database, and thus 
ofload that processing from the main NAV system. Many other uses  
are also feasible.

As a developer, it is most likely that you will continually deal with the ID, Name, 
LookupFormID, and DrillDownFormID properties, and occasionally with the 
Caption, CaptionML, DataCaption, and Permissions properties. You will rarely  
deal with the others.

Table triggers
The irst Table section is the Documentation section. This section serves only the 
purpose of being a place to put whatever documentation you require. No C/AL code 
is executed in a Documentation section. There are no syntax or format rules here, 
even though there are recommendations in the Microsoft C/AL Programming Guide.

Every change to an object should be briely documented in the Documentation 
section. The use of a standard format for such entries makes it easier to create them 
as well as understand them two years later.

The Documentation section has the same appearance as the triggers that appear in a 
Table deinition. There are four Table triggers, each of which can contain C/AL code, 
shown in the following screenshot:

The code contained in a trigger is executed prior to the event represented by the 
trigger. In other words, the code in the OnInsert()trigger is executed before the 
record is inserted into the table. This allows the developer a inal opportunity to 
perform validations and to enforce data structures such as referential integrity.  

•
•

http:///


Chapter 2

[ 73 ]

You can even abort the intended action if data inconsistencies or conlicts are found. 
The triggers shown in the previous screenshot work in the following manner. These 
triggers are automatically invoked when record processing occurs as the result of 
User Interface action. When table data changes occur as the result of C/AL code 
instruction or data imports, the triggers are not automatically invoked, but  
they will be dependent on instruction from the code.

OnInsert(): This is executed when a new record is to be inserted in  
the table through the User Inteface. (In general, new records are added when 
the last ield of the Primary Key is completed and focus leaves that ield. See 
the DelayedInsert property in the chapter on Pages for an exception). 

OnModify(): This is executed when any ield other than a Primary Key ield 
in a record is changed, determined by the xRec (before record) copy being 
different from the Rec (current record) copy. During your development 
work, if you need to see what the before value of a record or ield is, you can 
always reference the contents of xRec and compare that to the equivalent 
portion of Rec, the current value in memory.

OnDelete(): This is executed before a record is to be deleted from the table

OnRename(): This is executed when some portion of the Primary Key of the 
record is about to be changed. Changing any portion (that is, the contents of 
any ield) of the Primary Key is considered a Rename action. This maintains 
referential integrity. Unlike most systems, NAV allows the Primary Key of 
any master record to be changed and automatically maintains all the affected 
references from other records.

It is interesting to note that there is an apparent inconsistency in the handling of 
data integrity by NAV. On one hand, the Rename trigger automatically maintains 
referential integrity by changing all the references back to a record whose Primary 
Key is changed (renamed). However, if you deleted that record, NAV doesn't do 
anything to maintain referential integrity. In other words, child records could be 
orphaned by a deletion, and left without any parent record. As the developer, you 
are responsible for ensuring this aspect of referential integrity on your own.

When you write C/AL code that updates a table within some other object (for 
example, a Codeunit, a Report, and so on.), you can control whether or not the 
applicable table update trigger ires (executes). For example, if you were adding  
a record to our Donor table and used the following C/AL code, the OnInsert() 
trigger would ire.

Donor.INSERT(TRUE);

•

•

•
•

http:///


Tables

[ 74 ]

However, if you use either of the following C/AL code options instead, the 
OnInsert() trigger would not ire and none of the attendant logic would be executed.

Donor.INSERT(FALSE);

or

Donor.INSERT;

Default logic such as enforcing Primary Key uniqueness will still happen whether or 
not the OnInsert() trigger is ired.

Keys
Table keys are used to identify records, and to speed up iltering and sorting. Having 
too few keys may result in painfully slow inquiries and reports. However, each key 
incurs a processing cost, because the index containing the key must be updated every 
time information in the record's key ields change. Key cost is measured in terms of 
increased index maintenance processing. The determination of the proper number 
and design of keys for a table requires a thorough understanding of the types and 
frequencies of inquiries, reports, and other processing for that table.

Every NAV table must have at least one key—the Primary Key. The Primary Key 
is always the irst key in the key list. By default, the Primary Key is made up of the 
irst ield deined in the table. In many of the Reference (for example, LookUp) tables 
there is only one ield in the Primary Key and the only key is the Primary Key. An 
example is shown by the Payment Terms table in the following screenshots:

http:///


Chapter 2

[ 75 ]

The Primary Key must have a unique value in each table record. You can change 
the Primary Key to be any ield, or combination of ields up to 20 ields, but the 
uniqueness requirement must be met. It will automatically be enforced by NAV, 
in other words, NAV will not allow you to add a record in a table with a duplicate 
Primary Key.

If you look at the Primary Keys in the supplied tables, you will note that many of 
them consist of or terminate in a Line No., an Entry No., or some other data ield 
whose contents serve to make the key unique. For example, the Cust. Ledger Entry 
table in the following screenshot uses the Entry No. alone as the Primary Key. It is a 
NAV standard that Entry No. ields contain a value that is unique for each record. 

http:///


Tables

[ 76 ]

The Primary Key of the Sales Line table shown in the following screenshot is made 
up of multiple ields, with the Line No. of each entry as the terminating key ield. In 
NAV, Line No. ields are assigned a unique number within the associated document. 
The Line No. combined with the preceding ields in the Primary Key (usually 
including ields such as Document Type and Document No.) makes each Primary 
Key entry unique. This is handled by C/AL code within the standard product and  
is not an inherent framework feature.

All keys except the Primary Key are secondary keys. There are no uniqueness 
constraints on secondary keys. There is also no requirement to have any secondary 
keys. If you want a particular secondary key not to have duplicate values, you must 
code the logic to check for duplication before completing the new entry.

The maximum number of ields that can be used in any one key is 20. At the same 
time, the total number of different ields that can be used in all of the keys cannot 
exceed 20. If the Primary Key includes three ields (as in the preceding screenshot), 
then the secondary keys can utilize up to seventeen other ields (20 minus 3) in 
various combinations, plus any or all of the ields in the Primary Key. If the Primary 
Key has 20 ields then the secondary keys can only consist of different groupings 
and sequences of these 20 ields. The 20 ield constraint results from the fact that all 
secondary keys have the Primary Key ields appended, behind the scenes, to the end 
of the key.

http:///


Chapter 2

[ 77 ]

Some other signiicant key attributes include Keyscan and SQL  
Server-speciic properties.

Key scan be enabled or disabled. Disabled keys are not automatically 
updated until they are enabled again. You can either enable or disable keys 
manually from the Table Designer key viewing screen or through program 
control. There is a Key Group property that can be set up by the developer 
to allow users to manually enable and disable groups of keys at one time 
(that is by Key Group). A Key Group could be a "group" of just one key. 
NAV 2009 provides functions to allow Key Groups to be disabled or enabled 
in code. This can be very useful for managing keys that are only needed for 
particular, infrequently used reports. For example, if a key or set of keys 
that is only used for monthly reports is disabled during the month, no index 
maintenance processing will be required. Then, at the end of month, the 
key(s) can be enabled and the necessary index recreation processing be done 
as part of the monthly batch.

As Microsoft strongly encourages more and more of NAV installations to be 
based on SQL Server, as opposed to the native C/SIDE database, more SQL 
Server-speciic parameters are being added to NAV. If you are developing 
modiications for a single installation that is using SQL Server, you would be 
wise to tailor what you do to SQL Server. Otherwise, while there are still two 
database options, you should design your enhancements so that they will 
work well on both database options. When a design choice needs to be made, 
the choice should obviously be made in favor of the better design for the SQL 
Server database. The key properties can be accessed by highlighting a key in 
the Keys form, then clicking on the Properties icon or pressing Shift + F4.

SumIndexFields
Since the origination of NAV as Navision, one of its unique capabilities has been 
the SIFT feature. SIFT stands for SumIndexField Technology. SumIndexFields are 
decimal ields attached to a table key deinition. These ields serve as the basis for 
FlowFields (automatically accumulating totals) and are unique to NAV. This feature 
allows NAV to provide almost instantaneous responses to user inquiries for summed 
data related to the SumIndexFields.

SumIndexFields are accumulated sums of individual ields (for example, columns). 
In the C/SIDE database, these are maintained automatically by NAV during updates 
of the data. As the totals are pre-calculated, they provide high-speed access to 
inquiries. In the NAV 2009 SQL Server database version, SIFT values are calculated 
on demand through the use of SQL Indexed Views. Future versions may handle  
this differently.

•

•

http:///


Tables

[ 78 ]

If, for example, users wanted to know the total of the Amount values in a 
Ledger table, the Amount ield could be attached to any (or all) keys. FlowFields 
can be deined in another table as display ields that take the advantage of the 
SumIndexFields to give the users rapid response to Ledger Amount inquires relating 
to those keys.

In a typical system, thousands or even hundreds of thousands of records might have 
to be processed to give such results. Obviously, this could be very time consuming. 
In NAV, using the C/SIDE database, as few as two records need to be accessed to 
provide the requested results. In the C/SIDE database, SumIndexFields are stored as 
part of the key structure. This makes them very quick to access for calculation, and 
relatively quick to access for updating.

Because the SIFT functionality is not natively built into SQL Server, FlowField 
inquiries require more processing when using the SQL Server. However, they  
still provide the same logical advantages. The use of Indexed Views also gives  
very fast results.

In general, excessive use of keys or SIFT ields can negatively affect system 
performance for two reasons. The irst, which we already discussed, is the index 
maintenance processing load. The second is the table locking interference that can 
occur when multiple threads are requesting update access to a set of records that 
affect SIFT values. Conversely, the lack of necessary keys or SIFT deinitions can also 
cause performance problems. In a nutshell, you should be careful in your design of 
keys and SIFT ields. We will discuss FlowFields in more detail in a later chapter.

Field Groups
When a user begins to enter a data element in a ield where the choices are 
constrained (for example an Item No., a Salesperson Code, a Unit of Measure code, a 
Customer No., and so on), good design dictates that the system will help the user by 
displaying the universe of acceptable choices. Put simply, when you try to enter such 
data, a lookup list of choices will be displayed.

In the Classic Client, the identiication of the lookup form is deined by the contents 
of the LookUpFormID property. The form is a separately designed form object, 
just like all other forms. In the Role Tailored Client, the lookup page is generated 
dynamically (on the ly) when its display is requested by the user's effort to enter 
data in a ield that references a table. The format of the lookup page is a basic list 
format (more on that in the chapter on Pages). The ields that are included in that 
page are either deined by default, or by an entry in the Field Groups table.

http:///


Chapter 2

[ 79 ]

The Field Groups table is a component of the NAV table deinition in the same way 
that the Keys table is a component of the NAV table deinition. In fact, the Field 
Groups table is accessed very similar to the Keys, via View | Field Groups as shown 
in the following screenshot.

If we look at the Field Groups for Table 27—Item, we see the following:

http:///


Tables

[ 80 ]

The lookup page (also referred to as the DropDown) created by this particular Field 
Group is shown in the following screenshot on the Sales Order page containing ields 
such as No. and Descripton, in the same sequence as in the Field Group deinition.

If no Field Group is deined for a table, the system defaults to using the Primary Key 
plus the Description ield.

Since Field Groups can be modiied, they provide another opportunity for an 
enhanced user interface. As you can see in the preceding screenshot, the standard 
structure for the ields in a Field Group is to have the Primary Key appear irst. The 
user can choose any of the displayed ields to be the default ilter column, the defacto 
lookup ield.

As a system option, the Lookup/DropDown feature provides a ind-as-you-type 
capability, where the set of displayed choices ilters and re-displays dynamically as 
the user types, character by character. The ilter applies to the default ilter column. 
The disadvantage of this feature is the potential for the repetitive iltering to burden 
system hardware resources.

Whatever ield is used for the lookup, the referential ield deined in the page 
determines what data ield contents are copied into the target table. In the preceding 
image example, the reference table/ield is the Item table/ield "No." and the target 
table/ield is the Sales Line table/ield "No."

As developers, we can change the order of appearance of the ields in the DropDown 
page. We can also change what ields are displayed, and add or delet ields by 
changing the contents of the Field Group. For example, we could add a capability to 
our page that mimics the standard Alternate Search capability of the Classic Client 
(where if the match for an Item No. isn't found in the No. ield, the system will look 
for a match in the deined Alternate Search ield). 

http:///


Chapter 2

[ 81 ]

Consider this situation: The customer has a system design where the Item No. 
contains a basic, hard to remember, sequentially assigned code to uniquely identify 
each item. But the Search Description ield contains a product description that is 
relatively easy for the users to remember. When the user types, the ind-as-you-
type feature helps them focus and ind the speciic Item No. to be entered for the 
order. In order to support this, we simply need to add the Search Description ield 
to the Field Group for the Item table as the irst ield in the sequence. The following 
screenshot shows that change in the Item Field Group table.

The effect of this change can be seen in the following screenshot which shows the 
revised DropDown page. The user has begun entry in the No. ield, but the lookup is 
focused on the newly added Search Description ield. Find-as-you-type has iltered 
the displayed items down to just those that match the data string entered so far.

http:///


Tables

[ 82 ]

The result of our change is to allow the user to lookup items by their Search 
Description, rather than by the less memorable Item No. Obviously, any of the  
ields in the Item table could have been used, including custom ields added for  
this implementation.

Expanding our sample application
Before moving on, we need to expand the design of our ICAN application. Our base 
Donor table design has to be enhanced, both by adding and changing some ields. 
We also need to add some reference tables.

Some of our design decisions here will be rather arbitrary. While we want to work 
with a realistic design, our primary goal is to create a design that we can use as a 
learning tool. We want to deine data structures that can serve as a logical base for 
several typical application functions. If you see some capabilities missing and you 
want to add them, you should feel free to do so. Adjust these examples as you wish 
in order to make them more meaningful to you.

Creating and modifying tables
In Chapter 1, we created a Donor table for our ICAN application. At that time, we 
included the minimum ields to give us something to start with. Now, let's add a few 
more data ields to the Donor table and create an additional reference table. Then, we 
will revise our Donor table to refer to this new table.

Our new data ields are shown in the following table:

Field no. Field name Description

1000 Phone No. Telephone number

1010 Alt. Phone No. Alternate telephone number

1020 E-mail Primary email address

1030 Donor Type Choose one entry from a maintainable list, which will 
initially include Individual/Family, Business, and 
Institution

1040 Contact Method Choose from a predeined list of options: Mail, Phone, 
Email

1050 Solicitation OK A Boolean Yes/No entry

1060 Recognition Level Based on the last year's donations, an option of 
Friend, Benefactor, Patron, or Leader

1070 Max Recognition 
Level

The highest recognition level achieved; an option of 
Friend, Benefactor, Patron, or Leader

http:///


Chapter 2

[ 83 ]

Field no. Field name Description

1080 Matching Gift Donor If this Donor is employed by a irm with a Matching 
Gift policy, this will have the Donor No. of that Donor

1090 Newsletter A Boolean Yes/No entry

1100 Date Added The date this Donor entry was added

1110 Status Option of Active or Inactive

1120 Alpha Name Name entered to support desired alpha sort order

1130 Volunteer Boolean

As these are new data ields describing the Donor, we will assign ield numbers in 
a new range (1000 and up). Before Phone No., we will leave numbering space for 
additional Donor descriptive ields to be inserted later, if any are needed. 

Your task at this point is to open up your NAV, get to the Object Designer | Tables 
and ind your Donor table (number 50000, remember?). Highlight the Donor table 
and click on the Design button. When you are done, the bottom part of your Donor 
table should look similar to the following screenshot:

http:///


Tables

[ 84 ]

Next, we need to ill in the OptionString and Caption for the four Option ields. 
Highlight the Recognition Level ield, and then click on the Properties icon or press 
Shift + F4. Enter the OptionString as shown in the next screenshot; don't forget the 
leading space followed by a comma to get a blank option. Copy and paste the same 
information into the OptionCaption property. The OptionCaptionML property 
will be automatically illed in. The resulting properties should look similar to the 
following screenshot:

The same change, of the same OptionString, should be applied to the Max. 
Recognition Level ield.

http:///


Chapter 2

[ 85 ]

Now, similarly, enter the OptionString of Inactive, Active for the Status ield. We  
are not going to have a blank option here, as we will let the default Status be Inactive 
(a design decision). Your resulting Status ield Option properties should look like the 
following screenshot:

Next we want to deine the reference table we are going to tie to the Donor Type 
ield. We will keep this table very simple, just containing Code as the unique key 
ield and a text Description. You should create a new table, deine the two ields,  
and save this as Table 50001 Donor Type, shown as in the following screenshot:

http:///


Tables

[ 86 ]

The next step is to use the Page Designer to create a List page for this table (Page 
50002—Donor Types). You should be able to move through this pretty quickly. Click 
on Pages, click on New, enter 50001 in the Table ield, then choose the Create a 
blank page of type: option, and inally choose List. Populate the page with all (both) 
the ields from your Donor Type table. Your designed page should look like the 
following screenshot: 

Exit the Page Designer, saving the page as number 50002, named Donor Types. Test 
the page by running it from the Object Designer's Run button. This will invoke the 
Role Tailored Client (if it is not already running), then call up your new page 50002.

Return to the Donor Type table, set the Table - Properties of LookupFormID and 
DrillDownFormID to the new page we have just created. As a reminder, you will use 
Design to open the table deinition, focus on the empty line below the Description 
ield, and either click on the Properties icon or press Shift + F4. In the values for the 
two FormID Properties, you can enter either your Page name (Donor Types) or the 
Form/Page Object Number (50002). Either one will work and gives the result shown 
in the following screenshot. Then, exit and save the table as compiled.

http:///


Chapter 2

[ 87 ]

Assigning a TableRelation property
Finally, open the Donor table again. This time highlight the Donor Type ield and 
access its Properties screen. Highlight the TableRelation property and click on the 
ellipsis button (the three dots). You will see the Table Relation screen with four 
columns. The middle two columns are headed "Table" and "Field". In the top line, 
the Table column, enter 50001 (the table number) or Donor Type (the table name). In 
the same line, the Field column, click on the ellipsis button (...) and choose Code. Exit 
the Table Relation screen (by pressing the Esc key) and you will return to the Donor 
Type - Properties page that looks as shown in the following screenshot. Exit and 
save the modiied table.

Creating Forms for testing
Until now, we have ignored the possibility that we might need forms to make some 
of our testing easier. Now we've reached the point in our system development 
process when it would be useful to have forms for the tables we have created.

http:///


Tables

[ 88 ]

Creating forms is quite easy, especially when the details of the layout are not critical. 
When you are creating forms for production use by users it is likely that layout will 
be important, but when the forms are just for use in entering and viewing test data, 
layout is generally not critical.

The process you follow to create a form using the Form Designer Wizard is similar 
to the irst part of creating a page. The second part of the process, the placement of 
ields, is done outside the Wizard for a page, but for forms that is also done within 
the Wizard.

Creating a Card form
Open the Object Designer, click on Form, and then click on New. The Form Wizard's 
irst screen will appear. Enter the name (Donor) or number (50000) of the table with 
which you want the form to be associated (bound). Choose the option Create a form 
using a wizard:. Choose Card-Type Form. Then click on OK.

The resulting screen allows us the option of creating a plain form (no tabs) or a 
tabbed form with one or more tabs. We can name the tabs on this screen. As this 
form is just for our use in testing, and because all of our table ields will it on one 
tab, choose the No, I want a plain form option, and then click on Next.

The next step is to choose what ields will appear on our new form and how  
they will be placed. In this instance, we're going to use all the ields and simply  
put them into two columns.

The left column in the next screen, headed Available Fields, lists all the ields from 
the source table that have not yet been chosen for the Form object. The right column, 
headed Field Order, lists all the ields that have been chosen, in the order in which 
they will appear on the Form.

http:///


Chapter 2

[ 89 ]

In the following screenshot, you can see that we've selected all of the ields and split 
the columns between contact information and the control/tracking information. It's 
not a very elegant design, but it will suit our simple needs. Put all the ields in the 
table on the form.

At any point during your work you can take a sneak peek at what you are creating 
(that is, click on the Preview button). When you've got all the ields on your new 
form and you're satisied with the layout, click on Finish. You will see a screenshot 
like the following, showing this generated form object in the Form Designer.

http:///


Tables

[ 90 ]

We're now through with the Form Wizard and have transitioned into the Form 
Designer.  As this form is just for our use in testing, we're going to leave our form  
as is. If you later want to experiment with other layouts, this would be good way  
to practice using some of the C/SIDE tools.

If we wanted to modify the form manually because we were designing for 
production use by end users, we could do that now. Even if we did want to make 
some manual changes, it would be a good idea, before proceeding further, to irst 
save what we've done thus far. We do that much the same as we did when we saved 
our table and various pages earlier. Press Esc and respond with Yes to the Do you 
want to save the changes to the Form query.

Now enter the Form number (ID) you want to assign (50000) and name (Donor 
Card). We're using the number 50000 so that the Donor Card form will have the 
same object number as the Donor Card page. As mentioned earlier, that will allow 
whichever client is running to ind the appropriate object for data display. After 
you've got the form saved, we will make the Donor List form.

Creating List Forms
Just as for the Card form, we will use the Form Wizard to create a tabular Donor List 
form. Open the Object Designer, click on Form, and click on New. Once again, the 
Form Wizard's irst screen will appear. Enter the name (Donor) or number (50000) of 
the table with which you want the form to be associated. Choose the Create a form 
using a wizard option. This time choose the option to create a Tabular-Type Form. 
Then click on OK. The Tabular-Type Form Wizard will appear as shown in the 
following screenshot:

http:///


Chapter 2

[ 91 ]

Now you have the opportunity to choose which data ields will appear on each line 
of the tabular display. When List forms are designed for some type of referential 
lookup, generally they don't contain all of the data ields available, especially when 
working with a larger table. However, as we are making this form for our use in 
testing, we will include all of the ields in the table. Note that the Form Wizard 
functions essentially the same for Tabular forms, as it does for Card forms.

Remember we can always return to the created form and easily add the ields we left 
off, or remove something we decide is no longer needed. Also, NAV forms include 
a feature which allows you to have some ield columns identiied as Not Visible by 
default. This property is ield speciic and controls whether the column for a data 
ield displays on screen or not.

As with the Card form, at any point during your work, you can take a sneak peek at 
what you are creating (click on the Preview button). If you feel like experimenting, 
you could move ields on and off the form, or put ields in a different order. If you 
do experiment, use Preview to check the effects of your various actions. If your form 
gets hopelessly confused (which happens to all of us sometimes), just press Esc, be 
careful not to save the results, and then start over. When you've got all the desired 
ields on your new form and are satisied with the layout, click on the Finish button. 
We're now done with the Form Wizard for our new List form and have transitioned 
into the Form Designer as shown in the following screenshot:

http:///


Tables

[ 92 ]

If we wanted to modify the form manually, we could do that now. As before, just 
press the Esc key and respond with Yes to the Do you want to save the changes 
to the Form query. Enter the Form number (ID) you want to assign (50001) and 
name (Donor List). If you reused the Form object number 50000, you would have 
overwritten the Card form you created earlier.

At this point, we have a data structure (Table 50000 – Donor), a form and page to 
enter and maintain data (Form 50000 – Donor Card), and a form and page to display 
or inquire into a list of data (Form 50001 – Donor List). To check out how your forms 
look, simply run them directly from the Object Designer.

Our inal test form at this point will be a list form for the Donor Types table. The 
process to create a Donor Types list form is exactly the same as it was for the Donor 
List form, except that we select the Donor Type table as the source table at the 
beginning. Briely, the steps are:

Go to Object Designer | Form | New

Enter Donor Type for the table and choose Tabular-type Form, and then  
click on Next

Include all the ields and exit the Wizard, saving your form as 50002,  
Donor Types

Test your new form 50002 by running it using the Run button running it by using the 
Run button.

The ZUP file
On a tabular form, even the non-programmer user can change the Visible property 
of each column to create a customized version. This user customization is tied to 
the individual user login and recorded in the user's ZUP ile. ZUP iles record user 
speciic system state information so it can be retrieved when appropriate. Use of the 
ZUP ile in this manner applies to the Classic Client, not to the Role-Tailored Client. 
In the Role-Tailored Client, user customization (aka tailoring) information is stored 
in tables within the database.

In addition to user screen changes, the ZUP ile records the identity of the most 
recent record in focus for each screen, the contents of report selection criteria, request 
form ield contents, and a variety of other information. When the user returns to a 
screen or report, either in the same session or after a logout and return, the data in 
the ZUP ile helps to restore the state of various user settings. This feature is very 
convenient for the user.

ZUP iles are not used to store the tailoring that users do to pages within the  
Role-Tailored Client. Those changes are recorded as metadata (data about data) 
within the database. We will review that part of NAV in the chapter on Pages.

•
•
•

http:///


Chapter 2

[ 93 ]

Testing a TableRelation property
Just before we started creating our forms for testing, we had assigned a 
TableRelation property in the Donor table. To check that the TableRelation is 
working properly, run the Donor table (that is, highlight the table name and click on 
the Run button) and scroll to the right until you have the cursor in the Donor Type 
ield. You could also run the Donor List form and have almost exactly the same view 
of the data. This is because the Run of a table creates a temporary list form which 
includes all the ields in the table; basically the same as the form we created using  
the Form Wizard.

If all has gone according to plan, the Donor Type ield will display a Lookup button 
(the upward pointing arrow button). If you click on that button or press F6, you 
should invoke Form 50002—Donor Types, which you have just created.

While you are in that form, go ahead and make some entries like the examples 
shown in the following screenshot:

Another Donor Table ield that we can further deine at this point is Solicitation 
OK, a simple Boolean ield. Normally, Boolean ields default to No (False) and we 
want Solicitation OK to default to Yes (True). In other words, we are going to be 
optimistic when we enter a new Donor and assume that, most of the time, we will 
have permission to solicit them for future donations.

Setting the default for a ield to a speciic value simply requires setting the InitValue 
property to the desired value. In this case, that value is set to Yes. Using the Table 
Designer, design the Donor table, access the Properties screen for the Solicitation 
OK ield. After you have illed in the value, exit the Properties screen, exit the Table 
Designer, and save the changes.

http:///


Tables

[ 94 ]

The result looks like the following screenshot:

If you want to test what you've just done, you should add a new donor and see if the 
Solicitation OK ield (which will appear as a blank for No or a checkmark for Yes) 
defaults to Yes.

After you've completed a successful test of the Solicitation OK ield, make the same 
change to the InitValue property for the other two Boolean ields in the Donor table. 
Those are the Newsletter and Volunteer ields.

http:///


Chapter 2

[ 95 ]

Adding Secondary keys
Let us add a couple of additional keys to our Donor table. Our original Donor table 
has a Primary Key consisting of just the Donor ID. You might ind it useful to be  
able to view the Donor list geographically or alphabetically. To make that change, 
you will have to access the window for maintenance of a table's key by selecting 
View, then Keys from the menu bar at the top of the screen, as shown in the 
following screenshot:

Once you have displayed Keys, you can then change the existing keys or add new 
ones. In order to add a new key, highlight the irst blank line (or press F3 to create  
an additional blank line above an existing key) and then click the ellipsis button  
(the one with three dots) to access the screen that will allow you to select a series  
of ields for your key.

http:///


Tables

[ 96 ]

You can also use the lookup arrow if you want to enter a single key ield or want to 
enter several key ields one at a time. However, the end result will be the same. You 
should choose the tool option (ellipsis or arrow) that is easier for you to use. The 
ields will control the sort order of the table on this screen—for example, the top  
ield is the most important, the next ield is the second most important, and so on. 
When you exit this screen, make sure that you click OK otherwise your changes  
will be discarded. 

For a good geographical Key, you might choose Country/Region Code, State/
Province, or City, and for an alphabetical key you should choose Alpha Name, the 
ield we created for this purpose. As these are secondary keys, you do not have to 
worry about duplicate entries. And remember, the Primary Key is automatically 
and invisibly appended to each secondary key. If the purpose of the key is only to 
provide a sort sequence for display or reporting, you can set the Maintain SQLIndex 
property to Unchecked (that is No), as the sorting will be provided by SQL Server  
on the ly. The index does not need to be maintained, thus providing more  
eficient processing.

In the chapter on Pages, we will create a new version of the Donor page which will 
show the new ields we have just added. For the time being, you can experiment 
updating the Donor table by using the Run button from the Object Designer. Don't 
forget to experiment with the sort feature by clicking on the Sort icon or pressing 
Shift + F8. In the later chapters, we will add C/AL code to both Table and Field 
triggers, explore SumIndexFields and other features, and build a more fully  
featured application.

Adding some activity-tracking tables
Our ICAN organization is a well organized and productive group. We track 
information about our donors and clients. We track the gifts we receive and the 
assistance that has been provided. We keep a record of requests for help that haven't 
been met as well as gifts we've received that haven't yet been allocated to meet a 
need. We also manage our campaigns of solicitation, send out a regular newsletter, 
and seek out volunteers for speciic projects.

http:///


Chapter 2

[ 97 ]

We aren't going to cover all these features and functions in the following detailed 
exercises. However, it's always good to have a fuller view of the system on which 
you are working, even if you are only working on one or two components. In 
this case, the parts of the system not covered in detail in our exercises will be 
opportunities for you to extend your studies and practice on your own.

Of course, any system development should start with a Design Document that 
completely spells out the goals and the functional design details. The Microsoft 
Dynamics Sure Step project methodology is a very useful toolset to utilize for project 
management. Neither system design nor project management will be covered in this 
book, but when you begin working on production projects, both these areas will be 
critical to your success.

Based on these requirements, we need to expand our application design. So far we 
have deined a minimal Donor table, one reference table (Donor Type), and created 
forms and pages for each of them. Ideally, you have also entered some test data  
and then added a few additional ields to the Donor table (which we will not add  
to our forms).

Now we will add some more reference tables, plus add a couple of Ledger (activity 
history) tables relating to Donor activities. Following that, we will also create some 
forms and pages to utilize our new data structures.

Our ICAN application will now include the following tables:

Donor: A master list of all donors

Donor Type: A reference list of possible types of donors

Client: A master list of all clients

Gift Ledger: A detailed history of all the gifts received and allocated

Campaign: A master list of campaigns of solicitation

Aid Request Ledger: A master list of requests for aid received from and 
granted to our clients

Gift Categories: A reference list of descriptive categories of gifts

Remember, the purpose of this example system is for you to follow along in a  
hands-on basis within our system. You might want to try different data structures 
and other object features. For example, you could add functionality to track 
volunteer activity, perhaps even detailing the type of activity.

For the best learning experience, you should be creating each of these objects in your 
development system to learn by experimenting. In the course of these exercises, it 
will be good if you make some mistakes and see some new error messages. That's 
part of the learning experience. A test system is the best place to learn from mistakes 
at the minimum cost. 

•
•
•
•
•
•
•

http:///


Tables

[ 98 ]

New tables
We will add one more reference table, which will contain the possible Gift Category 
for the donations received, as shown in the following screenshot:

We also need master tables for Clients and Campaigns. We'll start by creating a 
Client master table (Table 50004) that looks like the following:

If you examine the Client table, you will see that every ield has the same Field No. 
and speciications as one of the Donor table ields. Both tables describe individuals in 
our community. We can observ that from time to time, those who were generous in 
their giving fell on hard times and applied for assistance. Conversely, those who had 
been helped often became donors when they had something to share.

From a design point of view, we wanted to make it technically easy to copy data 
from one of these master tables to the other. Designing the matching ields to have 
the same Field No. and other speciications will make such copying easy.

http:///


Chapter 2

[ 99 ]

Our Campaign master table has a relatively simple structure. If your creative juices 
are lowing and you wish to add additional functionality, this table is a good place  
to do that.

When we create our new table and attempt to save it as with the name Campaign, we 
ind out that NAV already has a table by that name. NAV does not allow duplicate 
object names for objects of the same type. The error message is:

We will change the name for this table to ICAN Campaign and rename our new table 
deinition. At a minimum, the new table should contain ields similar to those in the 
following screenshot:

Finally, we need two more tables. In order to track the history of gifts and pledges 
received, we need a ledger table. We need the same type of table to track the history 
of the requests for assistance and the grants of such requests. For these, we will 
create a Gift Ledger table and an Aid Ledger table.

http:///


Tables

[ 100 ]

The Gift Ledger should look like the following screenshot:

In a fully featured production system, we would need to deal with the issue of 
tracking the actual conversion of pledge promises into tangible gifts. If pledges were 
made but not fulilled, we would want to have processes by which we followed 
this up. We aren't going to take our example system to that level of completeness 
however. This is a good example of a capability that you might want to add to the 
design on your own.

The Aid Ledger table deinition should be similar to that shown in the  
following screenshot:

http:///


Chapter 2

[ 101 ]

In order to operate these tables in a relational fashion, the references to other related 
tables must be deined. In each case, the Donor ID ield must refer to the Donor 
table and the Category ield must refer to the Gift Category table. The following 
screenshot shows the forms involved in deining the Category ield reference in the 
Gift Ledger table.

Similarly, you need to add a TableRelation property to the Donor ID ield, pointing 
to the Donor table. Other ields for which table relations should be deined for the 
Gift Ledger table are as follows: 

ICAN Campaign to the ICAN Campaign table—to track what brought in  
this gift

Matching Donor ID to the Donor table—for gifts where an employer matches 
employee contributions

•
•

http:///


Tables

[ 102 ]

Fields in the Aid Ledger table for which table relations should be deined are:

Category to the Gift Category table

Client ID to the Client table

Gift Source Entry No. to the Gift table—that can match the use of speciic 
gifts when appropriate to do so

In addition to the information that is required to tie each entry back to the related 
master table (Donor ID and Client ID respectively) and the data we are tracking for 
ledger purposes (for example, type of activity, value, and so on), we also include the 
Description ield.

Based on the principles of relational database normalization, it might be 
reasonable to suggest that the Description ield should not be duplicated 
into these ledger records. Even more vivid examples of non-normalized 
tables are the Sales Order Header and Sales Order Line tables. These have 
a lot more ields duplicated from the source tables. There is a considerable 
number of instances in NAV (and other similar systems) where 
duplicating data into related iles is the better design decision.
There are two primary reasons for this. First, this approach allows the 
user to tailor the data each time it is used. In this case, it might mean 
that the description of the volunteer activity could be edited to provide 
more speciic detail of what was done. Second, it allows easier and faster 
processing of the table data in question. In this case, if you want to sort 
the data in the Description ield for reporting purposes, you should 
have the Description in the table; if you want to ilter out and review 
only entries with certain key words in the Description, you should also 
have the Description in the table. Obviously, there are quite a number of 
advantages to putting ease of access and processing eficiency ahead of 
the principles of database normalization.

We have not yet discussed how we will get data into ledger tables through NAV 
standard processing. We will deal with that later. To start with, for initial test data 
entry, we will simply use default tabular forms that will take us through our irst few 
testing steps. This is one way to tiptoe into a full system development effort. It allows 
us to validate our base table/data design (our foundation) before we spend too much 
effort on building production system functions and user interfaces.

On this basis, we need to now create forms for all the tables for which we have not 
already created forms. Note that we are creating forms, not pages. We will create 
pages for the users of our production system, but right now we're just creating tools 
for our use as developers in order to enter test data.

•
•
•

http:///


Chapter 2

[ 103 ]

For the purpose of test data entry, when we get to that point, you should now create 
List forms for the following tables using the Form Wizard:

Client Master table

Campaign Master table

Gift Ledger table

Gift Category reference table

Aid Request Ledger table

Keys and SumIndexFields in our examples
The following screenshot displays the Keys (only one was initially deined, and that 
one by default) for our Gift Ledger:

As we want to have a quick and easy access to the total Estimated Value of gifts and 
pledges as well by various groupings as the volunteer Hours contributed, we must 
deine these ields as being SumIndexFields associated with the appropriate keys, as 
shown in the following screenshot:

This activates NAV's SIFT (Sum Index Flow Technology) feature for those keys and 
SumIndexFields. What we have deined will allow us to access Estimated Value or 
Hours by Donor or by Campaign. We could do the same thing for any key structure 
that we want to deine and maintain. Our example also illustrates it does not matter 
in what sequence the SumIndexFields appear.

•
•
•
•
•

http:///


Tables

[ 104 ]

Some criteria that do matter are the number of SumIndexFields and the relationship 
of a SumIndexField with the key to which it is associated. More SumIndexFields 
equals more processing required to maintain them. The ields in the SIFT key that 
provide the greatest number of unique values for the data should be closest to the 
left (beginning) of the key for better performance.

If the MaintainSIFTIndex is not checked, then SQL Server will calculate the SIFT 
total on demand by passing the base data. This is a good choice for a SIFT total that 
will be used only occasionally. 

There is a processing cost for every additional key or SumIndexField. 
Each must either be maintained every time their table is updated or 
they must be constructed when there is a request for data retrieval in 
which they are involved.

Table integration
Now that we have put together the supporting tables, we can update the Donor  
table to integrate with these and begin to take advantage of the structure that we  
are building.

http:///


Chapter 2

[ 105 ]

In the preceding screenshot, the Description column for the objects entered 
contains a Version tracking code. A Description value of PN.01, PN.02, and so on 
indicates that a ield was added in modiication one and then added or changed in 
modiication two. The goal is to keep track of the circumstances under which the 
object is modiied, and to identify what the current update level is for each object. In 
this case, we have chosen a version code consisting of PN (for Programming NAV) 
and a two-digit number referring to a modiication instance when the object  
is created or changed.

You can make up your own version identiication codes, but you should be 
consistent in their use. You may prefer to follow the general conventions used by 
Microsoft in the product by assigning a sequence of major and minor codes  
to identify the organization, the subsystem, and the modiication version. Version 
codes should be tied to comments inside the objects and should allow you to 
maintain external documentation describing the purpose of various modiications 
and enhancements.

Our two new ields in the preceding screenshot are FlowFields. Now let us take a  
quick look at each of them individually. The following screenshot shows the 
Properties for the Estimated Gift Value FlowField.

http:///


Tables

[ 106 ]

The following screenshot illustrates how a FlowField is deined. When you click 
on the CalcFormula property, an ellipsis icon will appear and clicking on it will 
give you the Calculation Formula screen. In the following screenshot, you can see 
how the values appearing in the preceding screenshot CalcFormula property were 
originally deined.

In the following screenshot, the Hours Volunteered FlowField is shown:

Each of these FlowFields is a Sum and each of them is the sum of the data WHERE 
(Donor ID = FIELD(Donor ID). In other words, this is a summation of all the 
applicable data belonging to the Donor being processed.

The other properties that you should note here are the DecimalPlaces and 
BlankNumbers properties. They have been set to control the display of the data, so 
that it will appear in a format other than that which would result from the default 
values. You should adjust them to whatever values your subjective sense of visual 
design dictates. But remember, consistency with other parts of the system should be 
an overriding criterion for the design of an enhancement.

http:///


Chapter 2

[ 107 ]

Types of tables
For our discussion, we will break the table types into three groups. As a developer, 
you can change the deinition and the contents of the irst group (that is Wholly 
Modiiable Tables). You cannot change the deinition of the second group, but you 
can change the contents (that is content-modiiable Tables). The third group can be 
accessed for information, but neither the deinition nor the data within is modiiable 
(that is, these tables are read-only tables).

Wholly modifiable tables
The following are the tables in the Wholly Modiiable Tables group:

Master
The Master table type contains primary data (such as Customers, Vendors, Items, 
Employees, and so on.). These are the tables that should be designed irst. If you 
consider the data deinition as the foundation of the system, the Master tables are the 
footings providing a stable base for that foundation. When working on a modiication, 
any necessary changes to Master tables should be deined irst. Master tables always 
use card forms/pages as their primary user input method. The Customer table is a 
Master table. A Customer record is shown in the following screenshot:

http:///


Tables

[ 108 ]

The preceding screenshot shows how the Card page segregates the data into 
categories on different FastTabs (for example, General, Communications, Invoicing, 
and so on.) and includes primary data ields (for example, No., Name, Address), 
reference  ields (for example, Salesperson Code, Responsibility Center), and a 
FlowField (for example, Balance (LCY)).

Journal
The Journal table type contains unposted activity detail, data that other systems 
refer to as "transactions". Journals are where most repetitive data entry occurs. The 
standard system design has all Journal tables matched with corresponding Template 
tables (that is a Template table for each Journal table). The standard system includes 
journals for Sales, Cash Receipts, General Journal entries, Physical Inventory, 
Purchases, Fixed Assets, and Warehouse Activity, among others.

The transactions in a Journal can be segregated into batches for entry, edit review, 
and processing purposes. Journal tables always use list pages as their primary user 
input method. The following screenshots shows two Journal Entry screens. They 
both use the General Journal table, but appear quite different from each other,  
with different pages and different templates (templates are explained in the 
following section).

http:///


Chapter 2

[ 109 ]

Comparing the preceding and following screenshots, the differences not only 
represent what ields are made visible, but also the logic that applies to data entry.

Template
The Template table type operates behind the scenes, providing control information 
for a Journal, which operates in the foreground. By use of a Template, multiple 
instances of a Journal can be tailored for different purposes. Control information 
contained by a Template includes the following:

The default type of accounts to be affected (for example, Customer, Vendor, 
Bank , General Ledger)

The speciic account numbers to be used as defaults, including  
balancing accounts

What transaction numbering series will be used

Default encoding to be applied to transactions for this Journal (for example, 
Source Code, Reason Code)

Speciic Pages and Reports to be used for data entry and processing of both 
edits and posting runs

•
•
•
•
•

http:///


Tables

[ 110 ]

As an example, General Journal Templates allow the General Journal table to be 
tailored in order to display ields and perform validations that are speciic to the entry 
of particular transaction categories, for example, Cash Receipts, Payments, Purchases, 
Sales, and other transaction entry types. Template tables always use tabular pages for 
user input. The following screenshot shows a listing of the various General Journal 
Templates deined in the Cronus International Ltd. demonstration database.

Ledger
The Ledger table type contains posted activity detail, the data other systems call 
history. The basic data low is from a Journal through a Posting routine and into a 
Ledger. A distinct advantage of the way NAV Ledgers are designed is the fact that 
they allow the retention of all detail indeinitely.

While there are protocols and supporting routines to allow compression of the 
Ledger data (that is summarization), as long as your system has suficient disk space, 
you can (and should) always keep the full historical detail of all activity. This allows 
users to have total lexibility for historical data analysis.

Most other systems require some type of periodic summarization of data  
(for example, by accounting period, by month, by year). That summarization  
into periodic totals (sometimes called buckets) constrains the ways in which 
historical data analysis can be done. By allowing the retention of historical data in 
full detail, the NAV System Designer is allowed to be less visionary, because future 
analytical functionality can still take advantage of this detail. User views of Ledger 
data are generally through use of List pages. In the end, the NAV approach of  
long-term data retention in complete detail lets users get as much value out of their 
data as possible.

http:///


Chapter 2

[ 111 ]

Ledger data is considered accounting data in NAV. That means you are not allowed 
to directly enter the data into a Ledger, but must "Post" to a Ledger. Although you 
can physically force data into a Ledger with your Developer tools, you should not 
do so. As it is accounting data, it also means that you are not allowed to delete 
data from a Ledger table; you can compress or summarize data using the provided 
compression routines, thus eliminating a level of detail, but you cannot eliminate 
anything that would affect accounting totals for money or quantities.

The following screenshots show a Customer Ledger Entries list (inancially oriented 
data) and an Item Ledger Entries list (quantity-oriented data). In each case, the data 
represents historical activity detail with accounting signiicance. There are other data 
ields in addition to those shown in the following screenshots. The ields shown are 
typical and representative. The users can utilize page-customization tools (which we 
will discuss in the chapter on Pages) in order to change personalized page displays 
in a wide variety of ways. Here is the Customer Ledger Entries list screenshot:

The following is a screenshot of the Item Ledger Entries list:

http:///


Tables

[ 112 ]

In the Customer Ledger Entries page, you can see critical information such 
as Posting Date (the effective accounting date), Document Type (the type of 
transaction), Customer No., the Original and Remaining Amount of the transaction, 
and (if it were visible, which it is not) Entry No., which uniquely identiies each 
record. The Open entries are those where the transaction amount has not been fully 
applied, such as an Invoice amount not fully paid or a Payment amount not fully 
consumed by Invoices.

In the Item Ledger Entries page, you can see similar information pertinent to 
inventory transactions. As previously described, Posting Date, Entry Type, and 
Item No., as well as the assigned Location for the Item, control the meaning of 
each transaction. Item Ledger Entries are expressed both in Quantity and Amount 
(Value). Open entries here are tied to the Remaining Quantity, such as, material that 
has been received but not yet fully shipped out. In other words, the Open entries 
represent current inventory.

Reference
The Reference table type contains lists of codes as well as other validation and 
interpretation reference data that is used (referred to) by many other table types. 
Reference table examples are postal zone codes, country codes, currency codes, 
exchange rates, and so on. Reference tables are often accessed under the Setup  
menu options as they must be set up prior to being used for reference purposes  
by other tables.

The following screenshots show some sample reference tables for Locations, 
Countries, and Payment Terms. Each table contains data elements that are 
appropriate to its use as a reference table, plus, in some cases, ields that control the 
effect of referencing a particular entry. These data elements are usually entered as a 
part of a setup process and then updated occasionally as appropriate—that is, they 
generally do not contain data originating from system activity.

http:///


Chapter 2

[ 113 ]

The Location List in the preceding screenshot is a simple validation list of the 
Locations for this implementation. Usually, they represent physical sites, but 
depending on the implementation, they can also be used simply to segregate types 
of inventory. For example, locations could be Refrigerated versus Unrefrigerated or 
there could be a location for Failed Inspection.

The Countries/Regions list in the preceding screenshot acts as validation data, 
controlling what Country Code is acceptable. It also provides control information for 
the mailing Address Format (general organization address) and the Contact Address 
Format (for the individual).

The Payment Terms table shown in the following screenshot provides a list of 
payment terms codes along with a set of parameters that allows the system to 
calculate speciic terms. In this set of data, for example, the 1M (8D) code will  
yield payment terms of 1 month with a discount of 2% applied for payments 
processed within 8 days of the invoice date. In another instance, 14D payment  
terms will calculate the payment as due in 14 days from the date of invoice with  
no discount available.

http:///


Tables

[ 114 ]

Register
The Register table type contains a record of the range of transaction ID numbers for 
each batch of posted Ledger entries. Register data provides an audit of the physical 
timing and sequence of postings. This, combined with the full detail retained in 
the Ledger, makes NAV a very auditable system, that is, you can see exactly what 
activity was done and when it was done.

Another NAV feature, the Navigate function, which we will discuss in detail later, 
also provides a very useful auditing tool. The Navigate function allows the user 
(who may be a developer doing testing) to highlight a single Ledger entry and ind 
all the other Ledger entries and related records that resulted from the posting that 
created that highlighted entry. The user views the Register through a tabular page, 
as shown in the following screenshot. You can see that each Register entry has the 
Creation Date, Source Code, Journal Batch Name, and the identifying Entry No. 
range for all the entries in that batch.

Posted Document 
The Posted Document type contains the posted copies of the original documents for 
a variety of data types such as Sales Invoices, Purchase Invoices, Sales Shipments, 
and Purchase Receipts. Posted Documents are designed to provide an easy reference 
to the historical data in a format similar to what one would normally store in paper 
iles. A Posted Document looks very similar to the original source document. In 
essence, a posted invoice will look very similar to the original Sales Order or Sales 
Invoice. The Posted Documents are included in the Navigate function. 

The following screenshots show a Sales Order before Posting and the resulting 
Posted Sales Invoice document. Both documents are in a Header/Detail format, 
where the information in the Header applies to the whole order and the information 
in the Detail is speciic to the individual Order Line. As part of the Sales Order page, 
there is information displayed to the right of the actual order. This is designed to 
make life easier for the user by giving clues to the related data which is available 
without a separate lookup action.

http:///


Chapter 2

[ 115 ]

First, we see the Sales Order document ready to be Posted.

The following screenshot is that of the Sales Invoice document after the Sales Order 
has been posted.

http:///


Tables

[ 116 ]

Setup 
The Setup table type contains system or functional application control information. 
There is one Setup table per functional application area, for example, one for Sales 
& Receivables, one for Purchases & Payables, one for General Ledger, one for 
Inventory, and so on. Setup tables contain only a single record. As a Setup table only 
has a single record, it can have a null value Primary Key ield (this is the way all of 
the standard NAV Setup tables are designed).

http:///


Chapter 2

[ 117 ]

Temporary
The Temporary table type is used within objects to hold temporary copies of data. 
A Temporary table is deined within an object as a variable using a permanent table 
as the template. That means a Temporary table will have exactly the same data 
structure as the permanent table after which it is modeled, but with a limited subset 
of other attributes.

Temporary tables are created empty when the parent object execution initiates, and 
they disappear along with their data when the parent object execution terminates 
(that is, when the Temporary table variable goes out of scope). The data in a 
Temporary table resides in the client system and not in the system database. This 
provides faster processing because all processing is local.

Temporary tables are not directly visible or accessible to users. They cannot directly 
be the target of a report object, but can be the primary source table for forms and 
pages. Temporary tables are intended to be work areas and as such, are containers 
of data. The deinition of a Temporary table can only be changed by changing the 
deinition of the permanent table on which it has been modeled.

Content-modifiable tables
There is only one table type included in the content-modiiable table group.

System
The System table type contains user-maintainable information that pertains to the 
management or administration of the NAV application system. System tables are 
created by NAV. You cannot create System tables as they affect the underlying  
NAV executables. However, with full developer license rights, you can modify  
these System tables to extend their usage. With full system permissions, you can  
also change the data in System tables.

An example is the User table, which contains user login information. This particular 
System table is often modiied to deine special user access routing or processing 
limitations. Other System tables contain data on report-to-printer routing 
assignments, transaction numbers to be assigned, batch job scheduling, and so on. 
The following are examples of System tables in which deinition and content can be 
modiied. The irst six relate to system security functions:

1. User: The table of identiied users and their login password for the Database 
Server access method

2. Member Of: This contains User Security Role information

http:///


Tables

[ 118 ]

3. User Role: This contains the deined User Security Roles available. Each User 
Role is made up of a group of individual object permissions : Read, Insert, 
Modify, Delete, and Execute permissions.

4. Permission: The table deining what individual User roles are allowed to do, 
based on object permission assignments

5. Windows Access Control: The table of the Security roles that are assigned to 
each Windows Login

6. Windows Login: The table for Windows Logins that have been created for 
this database

The following tables are used to track a variety of system data or control structures:

Company: The companies in this database. Most NAV data is automatically 
segregated by Company

Database Key Groups: This deines all of the key groups that have been set 
up to allow enabling and disabling table keys

Chart: This deines all of the chart parts that have been set up for use in 
constructing pages

Web Service: This lists the pages and code units that have been published as 
web services

Proile: This contains a list of all the active proiles and their associated Role 
Center pages

User Personalization: This contains information about user personalization 
that has occurred

The following tables contain information about various system internals. Their 
explanation is outside the scope of this book:

User Menu Level

Send-to Program

Style Sheet

User Default Style Sheet

Record Link

Object Tracking

Object Metadata

Proile Metadata

User Metadata

•
•
•
•
•
•

•
•
•
•
•
•
•
•
•

http:///


Chapter 2

[ 119 ]

Read-Only tables
There is only one table type included in the read-only table group.

Virtual
The Virtual table type is computed at runtime by the system. A Virtual table contains 
data and is accessed like other tables, but you cannot modify either the deinition or 
the contents of a Virtual table. Some of these tables (such as the Database File, File, 
and Drive tables) provide access to information about the computing environment. 
Other Virtual tables (such as Table Information, Field, and Monitor tables) provide 
information about the internal structure and operating activities of your database.

Some virtual tables (such as Date and Integer) provide tools that can be used in your 
application routines. The Date table provides a list of calendar periods (such as days, 
weeks, months, quarters, and years) to make it much easier to manage various types 
of accounting and managerial data handling. The Integer table provides a list of 
integers from -1,000,000,000 to +1,000,000,000. As you explore standard NAV reports, 
you will frequently see the Integer table being used to supply a sequential count in 
order to facilitate a reporting sequence.

You cannot see these tables presented in the List of Table objects, but can only 
access them as targets for Forms/Pages, Reports, or Variables in C/AL code. The 
knowledge of the existence, contents, and usage of these Virtual tables is not useful 
to an end user. However, as a developer, you will regularly use some of the Virtual 
tables. You may ind educational value in studying the structure and contents of 
these tables, as well as be able to create valuable tools with your knowledge of and 
accessing of one or more Virtual tables.

http:///


Tables

[ 120 ]

The following screenshot shows a list of many Virtual and System tables:

http:///


Chapter 2

[ 121 ]

Summary
In this chapter, we have focused on the top level of NAV data structure: tables and 
their internal structure. We worked our way through the hands-on creation of a 
number of tables and their data deinitions in support of our ICAN application.  
We briely discussed Field Groups and how they are used.

We also reviewed most of the types of tables found in the out of the box NAV 
application. Finally, we identiied the essential table structure elements including 
Properties, Object Numbers, Triggers, Keys, and SumIndexFields.

In the next chapter, we will dig deeper into the NAV data structure to understand 
how ields and their attributes are assembled to make up the tables. We will also 
focus more deeply on what can be done with Triggers. Then, we will explore using 
tables in other object types, heading towards obtaining a full toolkit to perform  
NAV development.

http:///


Tables

[ 122 ]

Review questions
1. Which of the following is a correct description of a table in NAV 2009? 

Choose three:

a. A NAV table is the deinition of data structure
b. A NAV table contains data but is not data

c. A NAV table can contain C/AL code

d. A NAV table only incidentally affects the business rules  
of a system

2. There is no practical limit to the number of ields or the total records size in a 
table? True or False? 

3. Table numbers intended to be used for customized table objects should only 
range between 50000 to 59999. True or False?

4. Which of the following are Table triggers?

a. OnInsert

b. OnChange

c. OnDelete

d. OnRename

5. Under some circumstances, the primary key in a NAV table does not require 
unique entries. True or False? 

6. NAV table design in the product always insures referential integrity for all 
parent—child table relationships. True or False? 

7. Keys can be enabled or disabled in executable code. This is sometimes very 
valuable for managing system performance. True or False? 

8. SumIndexFields, FlowFields, and SIFT are all closely related terms.  
True or False? 

9. Field Groups deined in tables provide the structure for DropDown displays 
used in data entry pages. Field Groups can be modiied. True or False? 

10. Even though the target development is the Role Tailored Client, sometimes  
it is useful to create Classic Client forms for various testing purposes.  
True or False?

http:///


Chapter 2

[ 123 ]

11. Whether the user is working in the Role Tailored Client or the Classic  
Client, all status and user tailoring information is retained in the ZUP ile. 
True or False? 

12. Which of the following tables can be modiied by Partner developers? 
Choose three. 

a. Customer

b. Date

c. User

d. Item Ledger Entry

13. Reports cannot use temporary tables as Data Items. True or False? 

14. Tables can be created or deleted dynamically similar to the way that iles 
external to the database can be created or deleted dynamically. True or False? 

15. SQL Server for NAV has been enhanced to include native support for SIFT 
functionality. True or False? 

16. The NAV database design is not a fully normalized design. Even though 
more data storage may be consumed, this approach adds to the eficiency  
of processing. True or False? 

http:///


http:///


Data Types and Fields for 

Data Storage and Processing

Technical skill is mastery of complexity, while creativity is mastery of  
simplicity—E. Christopher Zeeman

The unavoidable price of reliability is simplicity—C.A.R. Hoare

The design of an application starts at the simplest level, with the data. The data 
design greatly depends on the types of data your development tool set allows you 
to use. Since NAV is designed speciically to develop inancially-oriented business 
applications, NAV data types are inancially and business oriented.

In this chapter, we will cover data types that you are most likely to use, plus several 
less frequently used. We will cover many of the ield properties with emphasis on 
ield classes—a key property which affects whether the contents of the ield are data 
or information to be interpreted.

Basic definitions
Let's deine some basic NAV terminologies to get started:

Data type: This describes/deines what kind of data can be held in this 
storage element, whether it be numeric (for example, integer or decimal), 
text, binary, time, date, Boolean, and so forth. The data type deines the 
constraints placed on what the contents of a data element can be, determines 
the functions in which that data element can be used (not all of the data 
types are supported by all functions), and deines what the results of certain 
functions will be.

Fundamental (Simple) data type: This has a simple structure consisting of a 
single value at one time, for example, a number, string of text, or a character.

•

•

http:///


Data Types and Fields for Data Storage and Processing

[ 126 ]

Complex data type: This has a structure made up of or relating to simple 
data types, for example, records, program objects such as Forms/Pages 
or Reports, BLOBs, DateFormulas, an external ile, an indirect reference 
variable, and so on.

Data Element: An instance of a data type which may be a Constant or  
a Variable.

Constant: This is a data element explicitly speciied in the code by value, not 
modiiable 'on the ly', and known in some circles as 'hard wired' data. All of 
the simple data types can be represented by constants. Examples are 'MAIN', 
12.34, and '+01-312-444-5555'.

Variable: This is a data element that can have a value assigned to it 
dynamically, as the program runs. Except for special cases, a variable  
will be of a single, unchanging, speciic data type.

Fields
A ield is the basic element of data deinition in NAV—the "atom" in the structure 
of a system. The elemental deinition of a ield consists of its number, its description 
(name), its data type, and, of course, any parameters required for its particular  
data type. A ield is also deined by its properties and the C/AL code contained  
in its triggers.

Field properties
The speciic properties that can be deined for a ield depend on the data type. There 
are a minimum set of universal properties. We will review those irst. Then we will 
review the rest of the more frequently used properties, both those that are data 
dependent and those that are not. You can check out the remaining properties by 
using C/Side Reference Guide Help from within the Table Designer.

You can access the properties of a ield while viewing the table in Design mode, 
highlighting the ield, and then clicking on the Properties icon or pressing  
Shift + F4. All of the property screenshots in this section were obtained this way  
for ields within the standard Customer table. As we review various ield properties, 
you will learn more if you follow along in your NAV system using the Object 
Designer. Explore different properties and the values they can have. Use the Help 
functions liberally to review the help for various properties.

The property value which is enclosed in < > (less than and greater than brackets)  
is the default value for that property. When you set a property to any other value, 
< and > should not be present unless they are supposed to be a part of the property 
value (for example, as part of a Text string value).

•

•
•

•

http:///


Chapter 3

[ 127 ]

All of the ields, of any data type, have the following properties:

Field No.: The identiier for the ield within the containing table object
Name: The label by which C/AL code references the ield. A name can 
consist of up to 30 characters, including special characters. The name can 
be changed at any time and NAV will automatically ripple that change 
throughout the system. Changing names that are in use in C/AL code can 
cause problems with some functions such as web services and GETFILTERS 
where the reference is based on the ield name rather than the ield number. 
The name is used as the default caption when data from this table is 
displayed and no Caption has been deined.
Caption: This contains the deined caption for the currently-selected 
language. It will always be one of the deined multi-language captions. The 
default language for a NAV installation is determined by the combination  
of a set of built-in rules and the languages available in the installation.

CaptionML: This deines the MultiLanguage caption for the table.
Description: This is an optional use property, for your internal 
documentation only.

Data Type: This deines what type of data format applies to this ield (for 
example, Integer, Date, Code, Text, Decimal, Option, Boolean, and so on)

Enabled: This determines whether or not the ield is activated for data 
handling. The property defaults to <Yes> and is rarely changed.

The following screenshot shows the BLOB properties for the Picture ield in the 
Customer table:

•
•

•

•
•
•
•

http:///


Data Types and Fields for Data Storage and Processing

[ 128 ]

This set of properties, for ields of the BLOB data type, is the simplest set of ield 
properties. After the properties that are shared by all of the data types, appear the 
BLOB-speciic properties—SubType, Owner, and Compressed.

SubType: This deines the type of data stored in the BLOB and sets a ilter 
in the import/export function for the ield. The three sub-type choices are 
Bitmap (for bitmap graphics), Memo (for text data), and User-Deined  
(for anything else). User-Deined is the default value.
Owner: The usage is not deined.
Compressed: This deines whether the data stored in the BLOB is stored in 
a compressed format. This format is not supported by the C/SIDE database. 
There is no documentation on how or when compression is used.

The properties of Code and Text data type ields are quite similar to one another. 

•

•
•

http:///


Chapter 3

[ 129 ]

The following are some common properties between the two as shown in the 
preceding screenshot: 

DataLength: This speciies how many characters long the data ield is.
InitValue: This is the value that the system will supply as a default when  
the system initializes the ield.
AltSearchField: This allows the deinition of a single alternative ield in the 
same table to be searched for a match if no other match is found on a lookup 
of this data item. For example, you might want to allow customers to be 
looked up either by their Customer No. or by their Phone No. In that case, 
in the No. ield's properties, you would supply the Phone No. ield name in 
the AltSearchField ield. Then, when a user searches in the No. ield, NAV 
will irst look for a match in the No. ield and if it is not found there, it will 
search the Phone No. ield for a match. The use of this property can save 
you a lot of coding, but make sure both the original and alternate search 
ields have high placement in a key so the lookup will be speedy (optimum 
placement in a key is as the irst element). In the preceding image, the No. 
ield AltSearchField property value is Search Name. AltSearchField does not 
appear to work in the Role Tailored Client. It can be simulated by use of Field 
Groups, which we will discuss later in this chapter and subsequently.

Caption Class: This defaults to empty. According to the documentation  
(see C/Side NAV 2009 Developer Help), this property controls the contents 
of the caption associated with a ield. This is used, for example, to allow 
user deinition of ields like the Dimensions to have captions such as Job and 
Department. This can also be used to assist in the translation of captions for a 
multi-language user interface and to support the RTC version of Matrix page 
column headings.

Editable: This is set to No when you don't want to allow a ield to be edited, 
such as if it is a computed or assigned value ield that the user should  
not change.

NotBlank, Numeric, CharAllowed, DateFormula, and ValuesAllowed: All 
these allow placing you to place constraints on the speciic data that can be 
entered into this ield.
SQL Data Type: This applies to Code ields only. SQL Data Type allows 
deining what data will be allowed in this particular Code ield and how it 
will be sorted and displayed. Options are Varchar, Integer, Variant, and 
BigInteger. Varchar causes all of the data to be treated as text. Integer 
(and presumably BigInteger) allows only numeric data to be entered. 
Variant allows the full set of Code permitted data and causes numeric data 
to sort after alphanumeric data. In general, once set, this property should not 
be changed.

•
•
•

•

•

•

•

http:///


Data Types and Fields for Data Storage and Processing

[ 130 ]

TableRelation: This property is used to specify that the data ield relates to 
data in a particular table. The related table ield must be in a Primary Key. 
The relationship can be conditional and/or iltered. The relationship can be 
used for validation, lookups, and data-change propagation.

ValidateTableRelation: If TableRelation is speciied, set this to Yes in order 
to validate the relation when data is entered or changed.

TestTableRelation: An infrequently used property which only controls 
whether or not the relationship should be tested during a database  
integrity test.

ExtendedDataType: This property allows the optional designation of an 
extended data type which automatically receives special formatting and 
validation, commonly as an email address, a URL, or a phone number. An 
action icon is also added next to the ield, as shown in the following image 
where there are three ields with ExtendedDataType deined.

Let us take a look at the properties of two more data types, Decimal and Integer. 
You should explore them in detail on your own as well. Speciic properties related 
to the basic numeric content of these data types are as follows and are shown in the 
following screenshot:

DecimalPlaces: This sets the number of decimal places in a Decimal  
data item.

BlankNumbers, BlankZero, and SignDisplacement: All these can be used to 
inluence the formatting and display of the data in the ield.
MinValue and MaxValue: These can constrain the range of data values 
allowed. The range available depends on the ield data type.
AutoIncrement: This allows setting up of one ield in a table to automatically 
increment for each record entered. When used, which is not often, it is almost 
always to support the automatic updating of a ield used as the last ield in a 
Primary Key, which enables the creation of a unique key. Use of this feature 
does not ensure a contiguous number sequence. Under some circumstances, 
use of this feature can lead to table locking conlicts. The automatic 
functionality should not be overridden in code.

•

•
•

•

•
•
•
•

http:///


Chapter 3

[ 131 ]

The properties for an Option data type, shown in the following screenshot, are like 
those of the other numeric data types. This is logical since an Option is stored as an 
integer. They also include data type-speciic properties.

OptionString: This spells out the text interpretations for the stored integer 
values contained in Option data type ields.

•

http:///


Data Types and Fields for Data Storage and Processing

[ 132 ]

OptionCaption and OptionCaptionML: These serve the same captioning 
and multi-language purposes as other caption properties.

Field numbering
The number of each ield within its parent table object is the unique identiier that 
NAV uses internally to identify that ield. You can easily change a ield number 
when you are initially deining a table layout. But after you have a number of other 
objects (for example, pages, reports, or codeunits) referencing the ields in a table,  
it becomes challenging, and often almost impossible, to change the numbers of  
one or more ields. Therefore, you should plan ahead to minimize any need to  
re-number ields.

•

http:///


Chapter 3

[ 133 ]

You should also be cautioned that, although you can physically delete a ield and 
then re-use its ield number for a different purpose, doing so is likely to cause you 
much grief. 

You cannot re-number or delete a ield that has data present in the 
database. You cannot reduce the deined size of a ield to less than the 
largest size of data already present in that ield. These limits are the 
compiler working to protect you and your database.

You should be careful about the ield numbers assigned if you are going to use the 
Classic Client. In that client, the numeric sequence of ields within the table controls 
the sequence of the ield names when they are displayed in ield selection lists to 
users. These ield selection lists are presented when a user constructs a data Filter, 
chooses the Page or Report Request Page ield selection option, or views a table in a 
default display. If the ields in a table are not in a relatively logical sequence, or ields 
with a similar purpose are not grouped, the system will be harder to understand 
and therefore, harder to use. This is not true in the Role Tailored Client, where the 
equivalent displays are in alphabetical sequence based on the ield names.

Unfortunately, the above criticism could be made about the ield sequence structure 
of some of the standard system's principle master tables (for example, Customer, 
Vendor, and Item). This has happened over a decade of changes and functional 
expansion. During that period of system design change, the original ield numbers 
have largely remained unchanged in support of backward compatibility. At the 
same time, new related ields have been added in less than ideal related ield number 
sequences. The result is a list of ields presented to the users in a sequence that 
follows very few logical rules.

For the new ields that you add to tables, which are a part of the standard NAV 
product, the new ield numbers must be in the 50,000 to 99,999 number range,  
unless you have been explicitly licensed for another number range. Field numbers 
for ields in new tables that you create may be anything from 1 to 999,999,999 
(without the commas).

When ields appear in several related tables (for example, journal and ledger), 
the same ield number should be assigned to each of the tables. Not only is this 
consistent approach easier for user reference and maintenance, but it also supports 
the TRANSFERFIELDS function, which allows copying data from one record instance 
to another record instance, even when associated with a different table. The record to 
record mapping for the copy is based on the ield numbers; hence, the importance of 
using the same number for the same ield in different tables.

http:///


Data Types and Fields for Data Storage and Processing

[ 134 ]

The key to avoiding either re-numbering ields or presenting ield 
lists in a hard to use sequence is to plan ahead and number the ields 
properly from the beginning. One aid is to leave frequent gaps in ield 
number sequences within a table, to allow the easy insertion of new 
ields numbered adjacent to related, previously existent ields.

Changing the data type of a field
What if we wish to change the data type of a ield? For example, perhaps we had 
originally designed the Postal Zone ield as an Integer to only handle ive digit US 
zip codes, which are numeric. Then later we decide to generalize and allow postal 
codes for all countries. In that case, we must change our data ield from integer to 
code, which allows all of the numerals and upper case letters.

How do we solve the data deinition—data content inconsistency caused by the 
change? We have a couple of choices. The irst option, which could work in our 
ICAN database because we have very little data and it's just test data, is simply to 
delete the existing data, proceed with our change, and then restore the data through 
keyboard entry. In a few instances, for example, Code to Text, the data types are 
compatible and the change is trivial. But when dealing with a non-compatible  
data type change and a signiicant volume of production data (more typical), you 
must take a more conservative approach. In this case, more conservative means  
more work.

Let us look at the steps required for a common example of changing the data type 
because of a design change. We will assume that the ield 70 Post Code was deined 
as data type Integer and we need to change it to data type Code, Length 20. The 
steps are as follows:

1. Make sure there is a good, restorable backup of the data to be changed.

2. Create a new, temporary ield 90000 named Temp Post Code, data type 
Code, and Length 20. Any allowable ield number and unique name  
would work.

3. Copy the data from the original ield 110 Post Code into the new temporary 
ield 90000, deleting the data from ield 110 as you go, using a Processing 
Only report object created just for this purpose.

4. Redeine ield 110 to new data type.

5. Copy the data from the temporary ield 90000 back into the redeined ield 
110, deleting the data from ield 90000, using a second Processing Only 
report object created just for this purpose.

6. Delete the temporary ield 90000.

http:///


Chapter 3

[ 135 ]

If we had to renumber the ields, we would have to essentially do the same thing as 
just described, for each ield. Whenever you attempt a change and see a message like 
the following, you will have to utilize the procedure just described:

It's a lot of work to make a minor change in a table, especially if this is the result 
of inadequate design planning. Hopefully, this convinces you of the importance of 
carefully considering how you deine ields and ield numbers at the beginning. 

By the way, this process of moving data in and out of temporary ields is exactly the 
process that Upgrade Data Conversions go through to change the ield structure of 
a table in the database to support added capabilities of the new version. A logically 
similar process is used to split or delete tables during an Upgrade Data Conversion.

Field triggers
To see what ield triggers are, let us look at our Table 50000 Donor. Open the table in 
the Design mode, highlight the Donor ID ield, and press F9. The window shown in 
the following screenshot will appear:

http:///


Data Types and Fields for Data Storage and Processing

[ 136 ]

Each of the ield has two triggers—the OnValidate() trigger and the OnLookup() 
trigger—which function as follows:

OnValidate(): The C/AL code in this trigger is executed whenever an entry 
is made by the user. It can also be executed under program control through 
use of the VALIDATE function (which we will be discussing later).

OnLookup(): The C/AL code in this trigger is executed in place of the 
system's default Lookup behavior, even if the C/AL code is only a comment. 
Lookup behavior can be triggered by pressing F6 (in Classic Client), or F4 or 
Ctrl+U (in RTC) or by clicking on the lookup arrow in a ield as shown in the 
following RTC screenshot:

If the ield's TableRelation property refers to a table, then the default  
behavior is to display a drop-down list to allow selection of an entry to be 
stored in this ield. The list will be based on the Field Groups deined for the 
table. You may choose to override that behavior by coding different behavior 
for a special case.

Be careful with the OnLookup() trigger. Any entry whatsoever in the 
body of an OnLookup() trigger will eliminate the default behavior. This 
is true even if the entry is only a comment and there is no executable 
code present. A comment line could make an intended default lookup 
fail. Conversely, you could include a comment line to make sure that no 
OnLookup occurs, if that is your goal.

Data structure examples
Some of the good examples of tables in the standard product to review for particular 
features are:

Table 18—Customer, for a variety of data types and Field Classes. This table 
contains some fairly complex examples of C/AL code in the table Triggers.  
A wide variety of ield property variations can be seen in this table as well.
Table 50—Accounting Period, has a couple of very simple examples of Field 
OnValidate trigger C/AL code. For slightly more complex examples, take a 
look at Table 167—Job. For much more complex examples, you can look at 
almost all of the primary master tables such as Customer, Vendor, Item, and 
so on.

You can ind all the tables at Tools | Object Designer, by clicking on Tables.

•

•

•

•

http:///


Chapter 3

[ 137 ]

Variable naming
Variables in NAV can either be global (with a scope across the breadth of an object) 
or local (with a scope only within a single function). Variable names should be 
unique within the sphere of their scope. There must not be any duplication between 
global and local names. Even though the same local name can be used in more than 
one function within the same object, doing so may confuse the compiler and will 
almost certainly confuse the developer that follows you. Therefore, you should make 
your working variable names unique within the object. In addition, performance can 
be impacted by declaring complex data types (such as records) locally as this will 
introduce overhead on each call.

Uniqueness includes not duplicating reserved words or system variables. Refer to 
the C/AL Reserved Words list for a reasonably complete list. A good guideline is to 
avoid using, as a variable name, any word that appears as an UPPER CASE word in 
either the C/SIDE Help or any of the published NAV technical documentation. For 
example, you shouldn't use the word Page as a variable name.

Variable names in NAV are not case sensitive. There is a 30-character length limit on 
variable names. Variable names can contain all ASCII characters except for control 
characters (ASCII values 0 to 31 and 255) and the asterisk (*, ASCII value 42), as well 
as some Unicode characters used in languages other than English. Characters outside 
the standard ASCII set may display differently on different systems.

Note that the compiler won't tell you an asterisk cannot be used in a variable name. 
It is also a good idea to avoid using the question mark (?, ASCII value 63). This is 
because both the asterisk and the question mark can be used as wildcards  in many 
expressions, especially iltering. We'll discuss more about this later in the book.

Unless the variable name is enclosed in double quotes, the irst character of a variable 
name must be a letter A to Z (upper or lower case) or an underscore (_, ASCII value 
95). Alphabets other than the 26-character English alphabet may interpret the ASCII 
values to characters other than A to Z, and may include additional characters  
beyond 26. The variable name can be followed by any combination of the legal 
characters. If you use any characters other than the alphabet, numerals, and 
underscore, you must surround your variable name with double quotes each time 
you use it in C/AL code (for example, "Cust List", which contains an embedded 
space, or "No.", which contains a period). While the Developer Help doesn't tell you 
that you can't use a double quote character within a variable name, common sense 
and the compiler tell you not to do so.

http:///


Data Types and Fields for Data Storage and Processing

[ 138 ]

Data types
We are going to segregate the data types into relatively obvious groupings. Overall, 
we will irst look at Fundamental (that is, simple) data types, then Complex data 
types. Within fundamental data types, we will consider Numeric, String, and Time 
data types, while in complex data types, we will look at data items, data structures, 
objects, automation, input/output, references, and others.

Fundamental data types
Fundamental data types are the basics from which the complex data types are 
formed. They are grouped into Numeric, String, and Date/Time data types.

Numeric data
Just like other systems, NAV allows several numeric data types. The speciications 
for each of the data types are somewhat dependent on the underlying database 
in use. Our target database is SQL Server, the only database compatible with the 
Role Tailored Client environment. For more details on the SQL Server-speciic 
representations of various data elements, you should refer to the C/SIDE Reference 
Guide online help. The various numeric data types are as follows:

Integer: An integer number ranging from -2,147,483,648 to +2,147,483,647

Decimal: A decimal number in the range of +/- 999,999,999,999,999.99. 
Although it is possible to construct larger numbers, errors such as overlow, 
truncation, or loss of precision might occur. In addition, there is no facility to 
display or edit larger numbers.

Option: A special instance of an integer, stored as an integer number ranging 
from 0 to +2,147,483,547. An option is normally represented in the body 
of your C/AL code as an option string. You can compare an option to an 
integer in C/AL rather than using the option string, but that is not a good 
practice because it eliminates the self-documenting aspect of an option ield.
An option string is a set of choices listed in a comma-separated string, one 
of which is chosen and stored as the current option. The currently selected 
choice within the set of options is stored as the ordinal position of that  
option within the set. For example, selection of an entry from the option 
string of red, yellow, blue would result in the storing of 0 (red), 1 (yellow), 
and 2 (blue). If red were selected, 0 would be stored in the variable; and if 
blue were selected, 2 would be stored. Quite often, an option string starts 
with a blank to allow an effective choice of "none chosen".

•
•

•

http:///


Chapter 3

[ 139 ]

Boolean: These are stored as 1 or 0, programmatically referred to as True or 
False, but sometimes referred to in properties as Yes or No. Boolean variables 

may be displayed as Yes or No,  or blank, and sometimes as True or False.

Binary: This is just what its name indicates, binary data. Binary data was 
supported in previous versions but not in the NAV 2009 Role Tailored Client.

BigInteger: 8-byte Integer as opposed to the 4 bytes of Integer. BigIntegers 
are for very big numbers (from -263 to 263-1).

Char: A numeric code between 0 and 256 representing an ASCII character. 
To some extent, Char variables can operate either as text or as numbers. 
Numeric operations can be done on Char variables. Char variables can 
also be deined with character values. Char variables cannot be deined as 
permanent variables in a table, but only as working storage variables within 
C/AL objects.

String data
The following are the data types included in String data:

Text: This contains any string of alphanumeric characters. In a table, a Text 
variable can be from 1 to 250 characters long; in working storage within an 
object a Text variable can be from 1 to 1024 characters long (storage in the 
database may differ). But when calculating the 'length' of a record for design 
purposes (relative to the maximum record length of 4096 characters), the full 
deined ield length should be counted.
Code: This contains any string of alphanumeric characters ranging from 1 to 
250. All of the letters are automatically converted to uppercase when entered. 

Date/Time data
The following are the data types included in Date/Time data:

Date: This contains an integer number, which is interpreted as a date ranging 
from January 1, 1754 (in SQL Server) to December 31, 9999. A 0D (numeral 
zero, letter D) represents an undeined date which is interpreted as January 1, 
1753 in SQL Server.

A date constant can be written as a letter D preceded by either six digits in 
the format MMDDYY or eight digits as MMDDYYYY (where M = month,  
D = day and Y = year). For example, 011911D or 01192011D both represent 
January 19, 2011. Later, in DateFormula, we will ind D interpreted as day, 
but here the trailing D is interpreted as the date (data type) constant. When 
the year is expressed as YY rather than YYYY, the century portion (in this 
case, 20) is supplied based on the century portion of the system date.

•

•
•
•

•

•

•

http:///


Data Types and Fields for Data Storage and Processing

[ 140 ]

NAV also deines a special date called a "Closing" date, which represents  
the point in time between one day and the next. The purpose of a closing  
date is to provide a point at the end of a day, after all of the real date- and 
time-sensitive activity is recorded—the point when accounting "closing" 
entries can be recorded.

Closing entries are recorded, in effect, at the stroke of midnight between  
two dates—this is the date of closing of accounting books, designed so  
that one can include or not include, at the user's option, closing entries in 
various reports. When sorted by date, the closing date entries will get sorted 
after all normal entries for a day. For example, the normal date entry for  
December 31, 2009 would display as 12/31/09 (depending on your date  
format masking), and the closing date entry would display as C12/31/09.  
All of the C12/31/09 ledger entries would appear after all normal 12/31/09 
ledger entries. The following screenshot shows some 2009 closing date  
entries mixed with normal entries from December 2009 and January 2010:

http:///


Chapter 3

[ 141 ]

Time: This contains an integer number, which is interpreted on a 24-hour 
clock, in milliseconds, from 00:00:00 to 23:59:59:999. A 0T (numeral zero, 
letter T) represents an undeined time.
DateTime: This represents a combined Date and Time, stored in 
Coordinated Universal Time (UTC) and always displays local time (that is, 
the local time on your system). DateTime ields do not support NAV "Closing 
Date". DateTime is helpful for an application that must support multiple 
time zones simultaneously. DateTime values can range from January 1, 1754 
00:00:00.000 to December 31, 9999 23:59:59.999 (don't test with dates late in 
9999 as an intended advance to the year 10000 won't work). An undeined or 
blank DateTime is stored as January 1, 1753, 00:00:00.000. 

Duration: This represents the positive or negative difference between two 
DateTime values, in milliseconds, stored as a BigInteger.

Complex data types
There are a variety of complex data types. Each consists of multiple data elements. 
For ease of reference, we will categorize them into several groups of similar types.

Data structure
The following data types are in the data structure group:

File: This refers to any standard Windows ile outside the NAV database. 
There is a reasonably complete set of functions to allow creating, deleting, 
opening, closing, reading, writing, and copying (among other things) data 
iles. For example, you could create your own NAV routines in C/AL  
to import or export data from a ile that had been created by some  
other application.

When interfacing with external iles in the three-tier system, you must 
carefully plan where the external iles are placed for access, because the 
ile read/write processing will occur on the middle tier server system, 
not on the user's workstation.

Record: This refers to a single line of data within a NAV table. Quite often, 
multiple instances of a Record variable (that is, table) are deined to support a 
validation process, allowing access to different records (that is, rows) within 
the table, within the same function. The working storage variable for  
a table will be data type Record.

•

•

•

•

•

http:///


Data Types and Fields for Data Storage and Processing

[ 142 ]

Objects
Page, Form, Report, Dataport, Codeunit, and XMLPort each represent an object 
of the type Page, Form, Report, Dataport, Codeunit, and XMLPort, respectively. 
Object data types are used when there is a need for reference to an object or some 
portion of an object from within another object. Examples are the cases where one 
object invokes another (for example, calling a Report object from a Form or Page 
object or from another Report object) or where one object is taking advantage of data 
validation logic that is coded as a function in a Table object or a Codeunit object.

Automation
The following are Automation data types:

OCX: This allows the deinition of a variable that represents and allows 
access to an ActiveX or OCX custom control. Such a control is typically 
another external application object, small or large, which you can then  
invoke from your NAV object.

Automation: This allows the deinition of a variable that you may access 
similarly to an OCX, but is more likely to be a completely independent 
application. The application must act as an Automation Server and must 
be registered with the NAV client or server calling it. For example, you can 
interface from NAV into the various Microsoft Ofice products (Word, Excel, 
and so on) by deining them in Automation variables.

Input/Output
The following are the data types in Input/Output:

Dialog: This allows the deinition of a simple user interface window without 
the use of a Page object. Typically, dialog windows are used to communicate 
processing progress or to allow a brief user response to a go/no-go question, 
though this latter use could result in bad performance due to locking. There 
are other user communication tools as well, but they do not use a dialog  
data item.

InStream and Outstream: These are variables that allow reading from and 
writing to external iles, BLOBS, and objects of the Automation and OCX  
data types.

•

•

•

•

http:///


Chapter 3

[ 143 ]

DateFormula
DateFormula provides the storage of a simple, but clever, set of constructs to support 
the calculation of runtime-sensitive dates. A DateFormula is a combination of:

Numeric multipliers (for example, 1, 2, 3, 4, and so on)

Alpha time units (all must be upper case)

D for a day

W for a week

WD for day of the week, that is day 1 through day 7 (either in 
the future or in the past, not today), Monday is day 1, Sunday  
is day 7

M for calendar month

P for accounting period

Y for year

CM for current month, CY for current year, CP for current 
period, CW for current week

Math symbols

+ (plus) as in CM + 10D means the Current Month end plus  
10 Days or the 10th of next month

– (minus) as in –WD3 means the date of the previous 
Wednesday 

Positional notation (D15 means the 15th of the month and 15D means  
15 days)

Payment Terms for Invoices make very productive use of DateFormula. All 
DateFormula results are expressed as a date based on a reference date. The  
default reference date is the system date, not the Work Date.

Here are some sample DateFormulas and their interpretations (displayed dates are 
based on the US calendar) with a reference date of July 9, 2010, a Friday:

CM = the last day of Current Month, 07/31/10

CM + 10D = the 10th of next month, 08/10/10

WD6 = the next sixth day of week, 07/10/10

WD5 = the next ifth day of week, 07/16/10
CM – M + D = the end of the current month minus one month plus one day, 
07/01/10

CM – 5M = the end of the current month minus ive months, 02/28/10

•
•

°
°
°

°
°
°
°

•
°

°
•

•
•
•
•
•
•

http:///


Data Types and Fields for Data Storage and Processing

[ 144 ]

Let us take the opportunity to use the DateFormula data type to learn a few 
NAV development basics. We will do so by experimenting with some hands-on 
evaluations of several DateFormula values. We will create a table to calculate dates 
using DateFormula and Reference Dates.

First, create a table using the Table Designer as you did in earlier instances. Go to 
Tools | Object Designer | Tables. Click on the New button and deine the ields as 
in the following screenshot. Save it as Table 60000, named Date Formula Test. After 
you are done with this test, we will save this table for some later testing.

Now we will add some simple C/AL code to our table so that when we enter or 
change either the Reference Date or the DateFormula data, we can calculate a new 
result date.

First, access the new table via the Design button, then go to the global variables 
deinition form through the View menu option, the sub-option Globals, and inally 
choose the Functions tab. Type in our new function name as CalculateNewDate on 
the irst blank line as shown in the following screenshot and then exit (by means of 
Esc key) from this form back to the list of data ields:

http:///


Chapter 3

[ 145 ]

From the Table Designer form displaying the list of data ields, either press F9 or 
click on the C/AL Code icon: 

This will take you to the following screen, where you will see all of the ield triggers, 
plus the trigger for the new function that you just deined. The table triggers are not 
visible, unless we scroll up to show them.

As our goal this time is to focus on experimenting with the DateFormula, we will not 
go much into detail about the logic we are creating. Hopefully, your past experience 
will allow you to understand the essence of the code.

We are going to create the logic within our new function, CalculateNewDate(), to 
evaluate and store a Date Result based on the DateFormula and Reference Date that 
we enter into the table.

http:///


Data Types and Fields for Data Storage and Processing

[ 146 ]

Just copy the C/AL code exactly as shown in the following screenshot, exit, compile, 
and save your table.

When you close and save the table, if you get an error message of any type, you 
probably have not copied the C/AL code exactly as it is shown in the screenshot.

This code will cause the function CalculateNewDate() to be called any time an 
entry is made in either the Reference Date for Calculation or the Date Formula to 
test ields. The result will be placed in the Date Result ield. The use of an integer 
value in the redundantly named Primary Key ield allows you to enter several 
records into the table (by numbering them 1, 2, 3, and so forth) and also allows you 
to compare the results of date calculations by using several different formulae.

Let us try a few examples. We will access the table via the Run button. Enter a 
Primary Key value of 1 (that is, one).

In Reference Date for Calculation, enter the letter T for today (either uppercase 
or lowercase), the system date. The same date will appear in the Date Result ield, 
because at this point there is no Date Formula entered. Now enter 1D (numeral 1 
followed by the letter D, upper case or lower case, C/SIDE will take care of making 
it upper case) in the Date Formula to test ield. You will see the Date Result ield 
contents are changed to be one day beyond the date in the Reference Date for 
Calculation ield.

http:///


Chapter 3

[ 147 ]

Let us enter another line. Start with a numeral 2 in the PrimaryKey ield. Again, 
enter the letter T to insert the system date (that is, Today) in the Reference Date for 
Calculation ield and just enter the letter W in the Date Formula to test ield. You 
will get an error message telling you that your formulas should include a number. 
Make the system happy and enter 1W. You will see a date in the Date Result ield 
one week beyond your system date.

Set the system's Work Date to a date about in the middle of a month. Start another 
line with the number 3 as the Primary Key, followed by a W (for Work Date) in 
the Reference Date for Calculation ield. Enter cm (or CM or cM or Cm, it doesn't 
matter) in the Date Formula to test ield. Your result date will be the last day of your 
Work Date month. Now enter another line using the Work Date, but enter a formula 
of –cm (the same as before, but with a minus sign). This time your result date will be 
the irst day of your Work Date month.

Enter another line with a new Primary Key. Skip over the Reference Date for 
Calculation ield and just enter 1D in the Date Formula to test ield. What happens? 
You get an error message. NAV cannot deal with making a calculation without a 
Reference Date. If we put this function into production, we might enhance our code 
to check for a Reference Date before calculating. We could default an empty date to 
the System Date or the Work Date and avoid this particular error.

http:///


Data Types and Fields for Data Storage and Processing

[ 148 ]

The following screenshot shows different sample calculations. Build on these and 
experiment on your own. You can create a variety of different algebraic formulae 
and get some very interesting results. One NAV user has due dates on Invoices on 
10th of the next month. The Invoices are dated at various times during the month 
than they are actually printed. But by using the DateFormula of CM + 10D, the due 
date is always the 10th of the next month.

Don't forget to test with WD (weekday), P (period), Q (quarter), and Y (year). 

While we used DateFormula as the basis for the work we just completed, you've 
accomplished a lot more than simply learning about that one data type.

You created a new table just for the purpose of experimenting with a C/AL 
feature that you might use. This is a technique that comes in handy when 
you are learning a new feature, trying to decide how it works or how you 
might use it.

We put some critical logic in the table. When data is entered in one area, the 
entry is validated and, if valid, the deined processing is done instantly.
We created a common routine as a new function. That function is then called 
from multiple places to which it applies.

•

•
•

http:///


Chapter 3

[ 149 ]

We did our entire test with a table object and a default tabular form that is 
automatically generated when you Run a table. We didn't have to create 
much of a supporting structure to do our testing. Of course, when you are 
designing a change to a complicated existing structure, it is likely that you 
will have a more complicated testing scenario. And when you are developing 
for the RoleTailored Client, you will do your testing in that environment. 
Even so, you may start your testing within the Classic Client development 
environment. One of your goals will always be to simplify your testing 
scenarios, both to minimize the setup effort and to keep your test narrowly 
focused on the speciic issue.
We saw how NAV tools make a variety of relative date calculations easy. 
These are very useful in business applications, many aspects of which are 
date centered.

References and other
The following data types are used for advanced functionality in NAV, typically 
supporting some type of interface with an external object.

RecordID: This contains the object number and Primary Key of a table.

RecordRef: This identiies a row in a table, that is, a record. It can be used  
to obtain information about the table, the record, the ilters, and the ields  
in the record.

FieldRef: This identiies a ield in a table and, thereby, allows access to the 
contents of that ield.
KeyRef: This identiies a key in a table and the ields it contains.

RecordRef, FieldRef, and KeyRef are used to support logic which can 
run on tables that are unknown at design time. 

Variant: This deines variables typically used for interfacing with 
Automation and OCX objects. Variant variables can contain data of a number 
of other data types.

TableFilter: This deines variables used only by the permissions table related 
to security functions. 

Action: This identiies the return Action from a Form.RUNMODAL or  
Page.RUNMODAL function. It has optional values of OK, Cancel, LookupOK, 
LookupCancel, Yes, No, Close, FormHelp, RunObject, and RunSystem.

•

•

•
•

•
•

•

•
•

http:///


Data Types and Fields for Data Storage and Processing

[ 150 ]

Transaction Type: This has optional values of UpdateNoLocks, Update, 
Snapshot, Browse, and Report which describe SQL Server basic transaction 
type options. This relates to the Report property of the same name. 
The options are designed to allow manual optimization of SQL Server 
performance for a particular operation design.

BLOB: This can contain either a graphic in the form of a bitmap, specially 
formatted text, or other developer-deined binary data up to 2 GB in size. The 
term BLOB stands for Binary Large OBject. BLOBs can only be included in 
tables, not used to deine working storage Variable.
BigText: This can contain large chunks of text up to 2 GB in size. BigText 
variables can only be deined in the working storage within an object, but 
not included in tables. BigText variables cannot be directly displayed or seen 
in the debugger. There is a group of functions that can be used to handle 
BigText data (for example, to move it to or from a BLOB, to read or write 
BigText data, to ind a substring, to move data back and forth between 
BigText and normal Text variables, and so on).

If you wish to handle text strings in a single data element greater 
than 250 characters in length, you can use a combination of BLOB 
and BigText variables.

GUID: This is used to assign a unique identifying number to any database 
object. GUID stands for Globally Unique Identiier, a 16-byte binary data 
type that is used for the unique global identiication of records, objects, and 
so on. The GUID is generated by an algorithm developed by Microsoft.

Data type usage
Some data types can be used to deine the data stored in tables or in working storage 
data deinitions (that is, within a Global or Local data deinition within an object). 
A couple of data types can only be used to deine table stored data, but not working 
storage data. A much larger set of data types can only be used for working storage 
data deinitions. 

•

•

•

•

http:///


Chapter 3

[ 151 ]

The list in the following screenshot shows which data types can be used for table 
(persisted) data and which ones for working storage (variable) data:

http:///


Data Types and Fields for Data Storage and Processing

[ 152 ]

FieldClass property options
Each data ield has a FieldClass property. We will cover most of the ield properties in 
the next chapter, but FieldClass has as much affect on the content and usage of a data 
ield as does the data type, in some instances maybe even more. For that reason, we 
will discuss FieldClass options now, as a follow-on to our discussion on data types.

Normal: The FieldClass containing all of the 'normal' data—data that will be 
typically be stored in the parent table. If the FieldClass is normal, then the 
ield contains just what you would expect, based on the data type and all  
the descriptions.

FlowField: The FlowField is an important and controlling property of a 
ield. FlowFields do not contain data in the conventional sense. They are 
virtual ield. A FlowField contains the deinition of how to calculate the data 
that it represents at run time. Depending on the CalcFormula Method, this 
could be a value, a reference lookup, or a Boolean. When the CalcFormula 
Method is Sum, this FieldClass connects a data ield to a previously deined 
SumIndexField in a table.

A FlowField value is always 0, unless something happens to cause it to  
be calculated. If the FlowField is displayed directly on a form/page,  
then it is calculated automatically on initial display. FlowFields are also  
automatically calculated when they are the subject of predeined ilters as 
part of the properties of a data item in an object (this will be explained in 
more detail in the chapters covering Reports and Dataports/XMLports). 
In all other cases, a FlowField must be forced to calculate using the C/AL 
<Record>.CALCFIELDS function. This is also true if the underlying data is 
changed after the initial display of a form/page (that is, the FlowField must 
be recalculated to take the change into account).

Because a FlowField does not contain actual data, it cannot be used 
as a ield in a key, that is, you cannot sort on a FlowField. You also 
cannot deine a FlowField that is based on another FlowField.

When a data item has its FieldClass set to FlowField, another directly  
associated property becomes available: CalcFormula (conversely, the  
AltSearchField, AutoIncrement, and TestTableRelation properties  
disappear from view when FieldClass is set to FlowField). The CalcFormula 
is the place where you can deine the formula for calculating the FlowField. 
This formula consists of ive components as follows:

•

•

http:///


Chapter 3

[ 153 ]

1. FlowField type (aka Method)

2. Sign control (aka Reverse Sign)

3. Table

4. Field

5. Table Filter

On the CalcFormula property line, there is an ellipsis button displayed.  
Clicking on that button will bring up a form similar to the  
following screenshot:

The following screenshot shows seven FlowField types:

http:///


Data Types and Fields for Data Storage and Processing

[ 154 ]

The explanation of the seven FlowFields is given in the following table:

FlowField 
type

Field data 
type

Description (in all cases, it applies to the speciied set 
within a speciic column in a table—ield)

Sum Decimal The sum total

Average Decimal The average value (the sum divided by the count)

Exist Boolean Yes or No, does an entry exist?

Count Integer The number of entries that exist

Min Any The smallest value of any entry

Max Any The largest value of any entry

Lookup Any The value of the speciied entry

The Reverse Sign control allows you to change the displayed sign of the 
result for FlowField types Sum and Average only; the underlying data  
is not changed.

Table and Field allow you to deine the Table and the Field within that table 
to which your Calculation Formula will apply. When you make the entries  
in your Calculation Formula screen, there is no validation checking by the 
compiler that you have chosen an eligible table–ield combination. That 
checking doesn't occur until run time. Therefore, when you are creating  
a new FlowField, you should test it as soon as you get it deined.
The last, but by no means the least signiicant, component of the FlowField 
calculation formula is the Table Filter. When you click on the ellipsis in the 
table ilter ield, the window shown in the following screenshot will appear:

http:///


Chapter 3

[ 155 ]

When you click on the Field column, you will be invited to select a ield from 
the table that was entered into the Table ield earlier. The Type ield choice 
will determine the type of ilter. The Value ield will have the ilter rules  
you deine on this line, which must be consistent with the Type choice. The 
explanation is given in the following table:

Filter 
type

Value Filtering action
OnlyMax- 
Limit

Values- 
Filter

Const A constant which 
will be deined in the 
Value ield

Uses the constant to ilter for 
equally valued entries

Filter A ilter which will be 
spelled out as a literal 
in the Value ield

Applies the ilter expression 
from the Value ield

Field A ield from the table 
within which the 
FlowField exists

Uses the contents of the speciied 
ield to ilter for equally valued 
entries

False False

If the speciied ield is 
a FlowFilter and the 
OnlyMaxLimit parameter is 
True, then the FlowFilter range 
will be applied on the basis of 
only having a Max-Limit, that 
is, having no bottom limit. This 
is useful for the date ilters for 
Balance Sheet data.

(See Balance at Date ield in the  
G/L Account table for an 
example)

True False

Causes the contents of the 
speciied ield to be interpreted 
as a ilter
(See Balance at Date ield in 
the G/L Account table for an 
example)

True or 
False

True

FlowFilters: These do not contain permanent data. They contain ilters on  
a per user basis, with the information stored in that user's instance of the 
code being executed. A FlowFilter ield allows a ilter to be entered at a 
parent record level by the user (for example, G/L Account) and applied 
(through the use of FlowField formulas, for example) to constrain what  
child data (for example, G/L Entry records) is selected.

•

http:///


Data Types and Fields for Data Storage and Processing

[ 156 ]

A FlowFilter allows you to provide lexible data selection functions to the 
users in a way that is simple to understand. The user does not need to have 
a full understanding of the data structure to apply iltering in intuitive ways, 
not just to the primary data table, but also to the subordinate data. Based  
on your C/AL code design, FlowFilters can be used to apply iltering on 
more than one subordinate table. Of course, it is your responsibility as the 
developer to make good use of this tool. As with many C/AL capabilities,  
a good way to learn more is by studying standard code.

A number of good examples on the use of FlowFilters can be found in the 
Customer (Table 18) and Item (Table 27) tables. In the Customer table, some 
of the FlowFields using FlowFilters are Balance, Balance (LCY), Net Change, 
Net Change (LCY), Sales (LCY), and Proit (LCY). The Sales (LCY) FlowField 
FlowFilter usage is shown in the following screenshot:

Similarly constructed FlowFields using FlowFilters in the Item table include 
Inventory, Net Invoiced Qty. Net Change, Purchases (Qty.), and a whole host  
of other ields.

http:///


Chapter 3

[ 157 ]

Throughout the standard code, there are a number of FlowFilters that appear in 
most of the master table deinitions. These are the Date Filter and Global Dimension 
Filters (global dimensions are user-deined codes that facilitate the segregation of 
accounting data by meaningful business break-outs such as divisions, departments, 
projects, customer type, and so on). Other FlowFilters that are widely used in the 
standard code, for example, related to Inventory activity, are Location Filter, Lot No. 
Filter, Serial No. Filter, and Bin Filter.

The properties deined for FlowFilter ields, such as Date Filter in the following 
screenshot, are similar to those of Normal data ields. Take a look at the Date Filter 
ield (a Date FlowFilter ield) and the Global Dimension 1 Filter ield (a Code 
FlowFilter ield) in the Customer table. The Date Filter ield property looks similar 
to a Normal FieldClass ield.

The Global Dimension 1 Filter ield property values are different than those of the 
Date Filter because of the data type and its attributes rather than the fact that this is  
a FlowFilter ield.

http:///


Data Types and Fields for Data Storage and Processing

[ 158 ]

Filtering
As mentioned earlier, iltering is one of the powerful tools within NAV. Filtering 
is the application of deined limits on the data that is to be considered in a process. 
Filter structures can be applied in at least three different ways, depending on the 
design of the process. The irst way is for the developer to fully deine the ilter 
structure and the value of the ilter. This might be done in a report designed to show 
only information on a selected group of customers; for example, those with an open 
balance on account. The Customer table would be iltered to report only customers 
who have an outstanding balance greater than zero.

The second way is for the developer to deine the ilter structure, but allow the user 
to ill in the speciic value to be applied. This approach would be appropriate in an 
accounting report that was to be tied to speciic accounting periods. The user would 
be allowed to deine what period(s) was (were) to be considered for each report run.

The third way is the ad hoc deinition of a ilter structure and value by the user. This 
approach is often used for general analysis of ledger data where the developer wants 
to give the user total lexibility in how they slice and dice the available data.

It is quite common within the standard NAV applications and in the course of 
enhancements to use a combination of the different iltering types. For example, the 
report just mentioned that lists only customers with an open Balance on Account  
(via a developer-deined ilter) could also allow the user to deine additional ilter 
criteria. Perhaps, the user wants to see only Euro currency-based customers, so 
would ilter on the Customer Currency Code ield.

Filters are an integral part of FlowFields and FlowFilters, two of the three Field 
Classes. These lexible and powerful tools allow the NAV designer to create pages, 
reports, and other processes that can be used under a wide variety of circumstances. 
In most of the systems, user inquiries (pages/forms and reports) and processes need 
to be quite speciic to different data types and ranges. The NAV C/AL toolset allows 
you to create relatively generic user inquiries and processes, and then allow the user 
to apply iltering to it their speciic needs. Note that the user sees FlowFilters referred 
to as Limit Totals onscreen and both terms are in the user Help.

Defining filter syntax and values
Let us go over some common ways in which we can deine ilter values and syntax. 
Remember, when you apply a ilter, you will only view or process records where the 
iltered data ield satisies the limits deined by the ilter.

http:///


Chapter 3

[ 159 ]

Application of ilters and ranges may give varying results depending 
on Windows settings or the SQL Server collation setup.

Filtering on equality and inequality
In general, ilters for relative equality or inequality values follow mathematical 
notation practices.

Either an equal (=) sign or the absence of that sign ilters for data "equal to" 
the ilter value:

Data type - description Example ilters
Integer =200

Integer 200

Text Chicago

Text " (two single quote marks)

A greater than (>) sign ilters for data greater than the ilter value:

Data Type - description Example ilters
Integer >200

Date >10/06/09 or >10062009 or >10.06.09 or >10-06-09 
(NAV is very lexible relative to date entry formatting)

Decimal >450.50

A less than (<) sign ilters for data less than the ilter value:

Data Type - description Example ilters
Integer <150

Date <10/07/10

The equal sign can be combined with the greater than (>=) or less than (<=) 
signs to ilter for data "greater than or equal to" OR "less than or equal to" the 
ilter value:

Data Type - description Example ilters
Integer <=100

Date <=1/1/10

Date >=1/1/09

Text >= Grade B

•

•

•

•

http:///


Data Types and Fields for Data Storage and Processing

[ 160 ]

Not equal is represented by the combination of the "less than" (<) symbol plus 
the "greater than" (>) symbol to ilter for data not equal to the ilter value:

Data Type - description Example ilters
Integer <>1

Date <>12/31/09

Boolean <>yes (an awkward way of stating "No")

Filtering by ranges
NAV has very lexible range iltering capabilities.

Ranges are deined by an expression containing two dots in a row (in other 
words ".."). Ranges are inclusive, that is the maximum and minimum values 
are included within the range. Ranges have three variations. The irst is the 
from-to version which includes both a bottom end or minimum of the range 
and a top end or maximum:

Data Type - description Example ilters
Integer 1..10

Date 5/1/09..5/31/09

Text Jones..Smith

Decimal 100.01..199.99

The second range variation consists of the range operator (the two dots "..") 
plus a range maximum. This means "give me all the values from the lowest 
possible value up to and including the range maximum". This is generally the 
same as using the less than or equal to (<=) format:

Data Type - description Example ilters
Integer ..10 (Gives the same results as <=10)

Date ..12/31/09

Decimal ..99.99

The third range variation consists of a lower limit (minimum) value followed 
by the range operator (".."):

Data Type - description Example ilters
Integer 100.. (Gives the same results as >=100)

Date 1/1/09..

Decimal 100000.00..

•

•

•

•

http:///


Chapter 3

[ 161 ]

Filtering with Boolean operators

Filtering with Boolean operators is powerful, but must be done carefully and  
tested carefully.

There are two Boolean operators. The operators are the ampersand  
sign (&) representing the logical AND operation and the pipe symbol (|)  
representing the logical OR operation. AND (&) operators are calculated 
before OR (|) operators.

The OR operator is used to create a discontinuous set of allowed values:

Data Type - description Example ilters
Integer 5|10|15|20 (This will give you matches on all four of 

the stated values, but only on those values.) 

Date 10/1/09|11/1/09|12/1/09 (This ilter will pass through 
records dated on the irst date of the three months)

The AND operator can generally only be used in combination with other 
iltering operators:

Data Type - description Example ilters
Integer (>=100) & (<=1000) (Gives the same result as the 

range 100..1000)

Date C12-31-08 & C12-31-09 (data for the closing dates 
for two years)

Boolean <>Yes & >12-31-09

Filtering with wildcards
There are three wildcard characters that can be used within ilter constructs. 
Wild cards only apply to string data. Although some limits on the use 
of wildcards are deined in the Help, the speciics of what constitutes a 
wildcard are not clearly deined.
Asterisk (*) represents any character and any number of characters:

Data Type – description Example Filters

Text *st* (Includes all data containing the lowercase 
letters 'st')

Text st* (Includes only the data starting with the 
lowercase letters 'st')

Text *st (Includes only the data ending with the 
lowercase letters 'st')

•

•

•

•

•

http:///


Data Types and Fields for Data Storage and Processing

[ 162 ]

Question mark (?) represents any character, but only one character:

Data Type - description Example ilters
Text ?st? (Includes all data which is four characters long with 

the middle two characters being the lowercase letters 'st')

Text ????st (Includes all data which is exactly six characters 
long ending with the lowercase letters 'st')

At symbol (@) eliminates case sensitivity for the value following it. The @ is 
often used in combination with the asterisk to make the ilter value satisfy a 
wider range of data:

Data Type - description Example ilters
Text *@st* (Includes all data containing any of the strings 'st', 

'St', 'ST' or 'sT')

Text @*st* (Gives the same results as the previous example)

Filtering with combinations
Many of these ilter constructs can be used in combination. Be sure to thoroughly 
test your creations before inlicting them on unsuspecting users. It is relatively easy 
to create a ilter, which on initial thought seems logical, but won't work the way you 
thought it would. In addition, the C/AL compiler routine which interprets ilters is 
not perfect. It can get confused or just fail.

Be very cautious about using combinations that contain wildcards, especially (but 
not limited to) those expressions containing both wildcards and Boolean operators. 
Be very cautious about constructing ilters based on exclusions. Generally, the 
limited "inclusive" approach works better. For example, you might want to print a 
Customer list excluding all Customers for the Salespeople with codes of JR and MD.

You might try to create a ilter on Salesperson Code such as <> (JR & MD). The  
C/SIDE routine that checks ilters will not accept that as a valid entry. The same goes 
for the attempt to put in two separate ilter entries as (only one ilter string is allowed 
per data ield). See if you can igure out what will work properly before you read on.

Let us assume all our Salesperson Codes are just two characters long. You could 
create a ilter on the Salesperson Code in the page (..JQ) | (JP..MC) | (ME..). This 
translates to all of the Customers having either a Salesperson Code less than or equal 
to JQ or (the pipe symbol: |) from JP to MC or greater than or equal to ME. In other 
words, all the two character codes except JR and MD. While that rather complicated 
solution works, so does the much simpler and more general (<>JR) & (<>MD).

•

•

http:///


Chapter 3

[ 163 ]

Experimenting with filters
Now it's time for you to do some creative experimenting with ilters. We want to 
accomplish several things through our experimentation. Our irst purpose is to get 
more comfortable with how ilters are entered. Secondly, we want to see the effects 
of different types of ilter structures and combinations. If we had a database with a 
large volume of data, we could also test the speed of iltering on ields in keys and  
on ields not in keys. But the amount of data in the Cronus database is small and  
our computers are very fast, so any speed differences will be dificult to see.

We could experiment on any report that allows iltering. To give us some options 
for our experimentation, we will use the Customer/Item List. This will report 
which Customer purchased what Items. The Customer/Item List can be accessed 
on the Departments menu via Sales & Marketing | Sales | Reports | Customer | 
Customer/Item Sales. 

When you initially run the Customer/Item Sales, you will see just three data ields 
listed for entry of ilters on the Customer table as shown in the following screenshot:

http:///


Data Types and Fields for Data Storage and Processing

[ 164 ]

There are also three data ields listed for the entry of ilters on the Value Entry table 
as shown in the following screenshot (which has both FastTabs expanded so you can 
see all the predeined ilter entry options):

http:///


Chapter 3

[ 165 ]

In each case, these are the ields that the developer determined should be emphasized. 
If you run the report without any ilters at all, using the standard Cronus data, the 
contents of the irst page of the report will resemble the following screenshot:

http:///


Data Types and Fields for Data Storage and Processing

[ 166 ]

If you want to print information only for customers whose names begin with the 
letter A, your ilter will be very simple, similar to the following screenshot:

The resulting report will be similar to the following screenshot, showing only the 
data for the two customers on ile whose names begin with the letter A.

http:///


Chapter 3

[ 167 ]

If you want to expand the customer ields to which you can apply ilters, you can 
access the full list of other ields in the customer table. First, click on the Add Filter 
button as shown (actually, you could skip this step):

http:///


Data Types and Fields for Data Storage and Processing

[ 168 ]

Then click on the dropdown list symbol next to the ield that displays in response 
to your previous click, unless, of course, that ield is the one you wanted (the same 
dropdown symbol appears next to all ilter ield options):

Next, you will see an extended list of table ields available for iltering: 

Finally, if the total set of ields available is longer than this display allows, there is an 
Additional Columns entry at the end of this list. Clicking on that entry will lead you 
to a scrollable list of the rest of the ields in the table on which ilters can be applied. 
Notice that, unlike previous versions of NAV, such lists are now in alphabetical 
order, based on the ield names.

http:///


Chapter 3

[ 169 ]

http:///


Data Types and Fields for Data Storage and Processing

[ 170 ]

From these lists we can choose one or more ields and then enter ilters on those 
ields. If we chose Territory Code, for example, then the Request Page would look 
similar to the following screenshot. And if we clicked on the lookup arrow in the 
Filter column, a screen would pop-up allowing us to choose data items from the 
related table, in this case, Territories.

This particular Request Page has FastTabs for each of the two primary tables in the 
report. Click on the Value Entry FastTab to ilter on the item-related data. If we ilter 
on the Item No. for Item No's that contain the letter W, the report will be similar to 
the following screenshot:

http:///


Chapter 3

[ 171 ]

If we want to see all of the items containing either the letter W or the letter S, our 
ilter would be *W* | *S*. If you made the ilter W | S, then you would get only 
entries equal exactly to W or to S because we didn't use any wildcards.

You should go back over the various types of ilters we discussed and try them all. 
Then you should try some combinations. Get creative! Try some things that may or 
may not work and see what happens. Explore a variety of reports or list pages in 
the system by applying ilters to see what happens. A good page on which to apply 
ilters is the Customer List (Sales & Marketing menu | Sales | Customers). This is a 
safe learning experience (you can't hurt anything or anyone).

http:///


Data Types and Fields for Data Storage and Processing

[ 172 ]

Accessing filter controls
The NAV User Interface has two very different approaches to setting up iltering; 
one for the Classic Client and the other for the RoleTailored Client. Because you will 
be developing and doing some basic testing in the Classic Client, we will cover that 
approach. Because you will be targeting most of your development for use in the 
RoleTailored Client, you need to be totally comfortable iltering there. 

Classic Client filter access
There are four buttons at the top of the screen that relate to iltering, plus one for 
choosing the active key. Depending on the display on your system, they will look 
like those in the following screenshot:

From left to right, they are as follows:

Field Filter (F7): Highlight a ield, press F7 (or select View | Field Filter), 
and the data in that ield will appear in a display ready for you to deine a 
ilter on that data ield. You can edit the ilter in any way before you click  
on OK.

Table Filter (Ctrl+F7): Press the Ctrl key and F7 simultaneously (or select 
View | Table Filter). You will be presented with a page that allows you 
to choose any number of ields in the left column and, in the right column, 
enter ilters to apply to those ields. Each of these individual ilters is a Field 
Filter—the same as would have been applied using the Field Filter option just 
described. The ilters for the individual ields are "ANDed" together (that is, 
they all apply simultaneously). If you invoke the Table Filter page when any 
Field Filters are already applied, they will be displayed.

Flow Filter (Shift+F7): Press the Shift key and F7 simultaneously (or select 
View | Flow Filter). You will be presented with a page that allows you to 
choose any number of ields in the left column and in the right column, enter 
ilters to use with those ields. On initial display, it will show all the Flow 
Filter ields available. For any Flow Filter ield, you can enter a ilter, which 
will then be applied to the underlying data for FlowFields whose deinition 
includes a constraint by that particular Flow Filter ield. 
You can also use this page to enter Field Filters, but you will not be able to 
see the ield ilters that are already in effect via this page. To remove Flow  
Filters, you must call up this page and manually remove the ilters, by  
deleting the ilter lines or at least the ilter values.

•

•

•

http:///


Chapter 3

[ 173 ]

Show All (Shift+Ctrl+F7): This will remove all Field Filters, but will not 
remove any Flow Filters.

Sort (Shift+F8): This allows you (or your user) to choose which key is active 
on a displayed data list (unless the underlying C/AL code overrules). By 
properly choosing a key that contains the ield on which you wish to ilter, 
you can signiicantly affect the speed of the iltering process. Of course, this  
is true for iltering processes coded in C/AL as well.

When you are viewing a form and want to check if the ilters are in effect, check the 
bottom of the screen for the word FILTER as shown in the next screenshot:

In a page, refer to the Filter Pane for the current ilter status.

RoleTailored Client filter access
The basic logic of iltering within the RoleTailored Client is the same as that in  
the Classic Client. However, the method of accessing ields to use in iltering  
is quite different. The appearance of the ilter deinition page segments is  
completely different. 

When a page such as the Customer List is opened, the ilter section at the top of the 
page looks like the following screenshot. On the upper right corner is a place to enter 
single-ield ilters. This is the Type to (aka Quick) ilter, essentially equivalent to the 
Field Filter in the Classic Client. The ields shown as available for iltering are the 
same as the visible columns showing in the List. On the left is a Sorting ield which 
allows the choice of keys followed by a control to allow the choice of Ascending or 
Descending for the sort.

If you click on the chevron button in the far right-upper corner to expand the Filter 
Pane, the result will look similar to the following screenshot. The ilter display now 
includes an additional iltering deinition ield, in this case identiied as allowing 
entry of Limit totals to ilters.

•
•

http:///


Data Types and Fields for Data Storage and Processing

[ 174 ]

If you go to the Filter Pane header line (where it has the name of the Page) and click 
on the drop-down symbol, you will see a set of selection options (the ilter menu) like 
the following screenshot shows. The Advanced ilter provides for the entry of multiple 
ield ilters (essentially the same as the Classic Client Table Filter). The Limit Totals 
ilter provides for the entry of FlowFilter related constraints (essentially the same as  
the Classic Client Flow Filter entry). This is also one place you can clear ilters of all 
types (you can simply enter Ctrl+Shift+A as indicated in the ilter menu). Choosing  
the Change sorting option simply puts focus on the key ield in the Sorting part.

If, as shown by the checkmarks in the preceding screenshot, you have selected 
both Advanced ilter and Limit totals, your Filter Pane will look somewhat like the 
following screenshot. It will display both the Show results ilter section (Advanced 
ilter) and the Limit totals to ilter section (Limit totals ilter). If ilters have been 
entered, they will show here.

For all practical purposes, there are no limits (other than logical ones) to the number 
or combinations of ilters that you can apply to a particular list display in NAV.

Find-As-You-Type filtering
Field Groups (described in Chapter 2, Tables) also provide a form of iltering, known 
as Find-as-you-type iltering. Find-as-you-type (aka ilter-as-you-type) works for 
user entries into ields which have a TableRelation deined. 

http:///


Chapter 3

[ 175 ]

The ind-as-you-type capability is not enabled by default, so it must be  
enabled by the system administrator adding the following line into the 
customsettings.config ile:

<add key="FilterAsYouTypeAutomaticLookupEnabled" value="true"></add>

See the C/SIDE Help for additional information in the Coniguring the Role 
Tailored Client Help.

When enabled, ind-as-you-type operates by displaying a drop down list iltered 
by what characters the user has typed thus far. The ields displayed are determined 
either by default or by the Field Groups deined for the referenced table. The iltered 
(aka search) ield can be selected from the displayed columns by using the arrows 
keys to scroll left or right through the columns in the drop down list. When the user 
sees the entry they want to use, they can highlight and select it.

Summary
In this chapter, we focused on the basic building blocks of NAV data structure, ields, 
and their attributes. We reviewed the types of data ields, properties, and trigger 
elements for each type of ield. Then, we walked through a number of examples to 
illustrate most of these elements, though we have postponed exploring triggers until 
we had enough knowledge of C/AL coding techniques to make that worthwhile.

The data type and FieldClass determine what kind of data can be stored in a ield. 
When you combine the table structure with properly designed ields, the essence 
of your application system design is deined. In this chapter, we covered the broad 
range of data type options as well as the Field Classes.

We also considered some examples of different types and classes and discussed  
how they are used in an application. We dug into the date calculation tool that gives 
C/AL an edge in business applications. We also discussed iltering in some detail, 
how iltering is considered as we design our database structure, and how the users 
will access data. Finally, more of our NAV application was constructed with some 
features worth emulating in your own future designs.

In the next chapter, we will look at Pages in more detail and see how we can design 
Pages to take advantage of the data structures we have now put in place. 

http:///


Data Types and Fields for Data Storage and Processing

[ 176 ]

Review questions
1. A C/AL Name can be up to 50 characters long. True or False? 

2. A C/AL Caption is used to support the multi-language feature of NAV.  
True or False?

3. The Table Relation property deines the reference of a data ield to a table. 
The related table data ield must be: (choose one)

a. In any key in the related table

b. Deined in the related table, but not in a key
c. In the Primary Key in the related table

d. The irst ield in the primary key in the related table

4. The new ExtededDataType property supports designation of any one of 
three of the following data types, displaying an appropriate action icon. 
Choose three:

a. Email address

b. Website URL

c. GPS location

d. Telephone number

e. Country

5. Field numbers can readily be changed at any time. True or False?

6. Data can be easily moved from one data type to another: (choose one)

a. Never

b. Sometimes

c. Always

7. Which of the following are complex data types? Choose three.

a. Records

b. Strings of text

c. DateFormula

d. DateTime data

e. Objects

http:///


Chapter 3

[ 177 ]

8. Every table must have a Primary Key. A Primary Key entry can be deined as 
unique or duplicates allowed, based on a table property. True or False?

9. FlowFilter data is not stored in the database. True or False?

10. Filters should not use wildcard characters because the results are 
unpredictable. True or False (False—wildcards are a valuable tool).

11. Which three of the following are legal ilter expressions? 
a. Chicago AND Berlin OR London 

b. (=1) AND (>=10)

c. (JQ) | (JP..MC) | (ME..)

d. a*..A*

e. 10-1-10..1/31/11 

http:///


http:///


Pages—Tools for  

Data Display

We must welcome the future, remembering that soon it will be the past; and we must 
respect the past, remembering that it was once all that was humanly possible 
—George Santayana

Pages are NAV 2009's new method of structuring information for presentation to its 
users. The previous versions of NAV used forms for screen displays. Forms were 
designed by irst positioning all the controls in speciic locations on the screen, and 
then providing the user with a very modest amount of lexibility for personalizing 
the layout. Pages are designed by deining the order of presentation of the elements 
within a portion of the display, allowing the page rendering routines to handle 
most of the control-positioning decisions. Once a page is rendered ("painted" on the 
display), the user has a great deal of lexibility for personalization in order to deine 
what is displayed and how it is organized in the display. As pages are rendered 
external to applications, rendering routines can be created for display formats other 
than the common video display. Display targets can be browser-based, SharePoint, 
mobile devices, Windows Presentation Foundation (WPF), and so on. Pages are not 
compatible with the Classic Client.

There are several signiicant implications of the new user interface of Dynamics NAV 
2009. In the past, the relative rigidity of the interface resulted in screen designs that 
were tied to the underlying data structures. This was true whether or not it resulted 
in a good design from the user's point of view. Part of that was simply due to the 
tendencies of the programmer/designer. Now, because of the lexibility, tailorability, 
variety of components, and the page/display rendering tools used, pages allow for a 
much more task-oriented design speciic to each user's personal task set.

http:///


Pages—Tools for Data Display

[ 180 ]

If the user interface brings attention to itself rather than the data, or makes it harder 
for the user to see critical patterns and trends in the data, then we don't have a good 
design. Page technology provides a much wider variety of ways to present data to it 
the user's needs. As always, the designer/developer has the responsibility of using 
the tools to their best effect.

In this chapter, we will explore the various types of pages that NAV offers you.  
We will review many of the options for formatting, data access, and tailoring your 
pages. We will also learn about the Page Designer tools and the inner structures  
of pages.

What is a page?
Pages serve the purpose of both input and output. Pages are views of data or process 
information designed only for on-screen display. Pages can also be user data-entry 
vehicles. There are several types of pages, including Card, Card Part, List, List Part, 
List+, Role Center, Departments, Document, Journal/Worksheet, and NavigatePage 
(also used to create Wizard pages). Cards, Lists, List+, and Documents can be used 
both for inquiry and data entry.

Controls
Controls are the objects that display information on pages. This information  
can be data from the database, static material, pictures, or the results of a C/AL 
expression. Container controls, such as Groups and FastTabs, can contain other  
controls. Group controls make it easy for the developer to handle a set of contained 
controls as a group. A FastTabs control does the same, but it also makes it easy  
for the user to consider a set of controls as a group. The user can make all the 
controls on a FastTab visible or invisible by expanding or collapsing the FastTab.  
The user also has the option to show or not to show a particular FastTab as a part  
of the page customizing capability.

Bound and unbound
Pages can be created as bound (tightly associated with a speciic table), or unbound 
(not associated with a table). Typically, a card or a list page will be bound, but  
role center pages will be unbound. Other instances of unbound pages are rare.  
An example of an unbound page is Page 476—Copy Tax Setup. 

http:///


Chapter 4

[ 181 ]

Controls on an unbound page are generally also unbound. When a page is bound to 
a table, it is easy to tie the controls on the page to ields in the table. A bound page 
can also have unbound controls, that is, controls displaying computational results 
or values entered into working storage variables. Either category of page—bound 
or unbound—can have bound controls (that is, controls referring to tables other 
than the one to which the page is bound). Unbound pages are generally used for 
displaying information or processing status.

Pages—a stroll through the gallery
When you look at a page as a user with a developer's knowledge, the page type 
will be obvious most of the time. The speciic layout and features of the page object 
available to you as a developer will offer many choices. Some pages require many 
design decisions, some require only a few. C/SIDE allows you to create pages with 
vastly different "look and feel" attributes. The standard NAV application only uses a 
few of the possibilities, and closely follows a set of Graphical User Interface (GUI) 
guidelines that provide consistency throughout the system. Those guidelines are 
described in an interactive document named Microsoft Dynamics NAV 2009 User 
Experience Guidelines (UX Guide for short). You should obtain a copy of this guide 
and study it.

Good design practice dictates that enhancements should integrate seamlessly unless 
there is an overwhelming justiication for being different. In general, your new pages 
should have the same look and feel as the pages in the out of the box product. When 
you add changes to pages, to the extent the new functionality allows, the changes 
should have the same look and feel as the original page. This consistency makes 
support, maintenance, and training more eficient.

There will be instances where you will need to provide a signiicantly different page 
layout in order to address a special requirement. Perhaps, you need to provide two 
or more tabular displays on the same page. Maybe you need to use a special symbol 
to warn of a critical situation, or you need to create a screen layout for a display 
device that is signiicantly different from a standard desktop video display. In such 
cases, remember that the look and feel of the basic NAV pages has withstood the test 
of time for both usability and (reasonably) good taste. Even when you are going to be 
different, continue to be guided by the environment and context in which your new 
work will operate.

Before we begin reviewing the page types available in the NAV 2009 RoleTailored 
Client (familiarly known as the RTC), let's look at the general screen layout of the 
RTC. We'll identify the components that surround the core page structure and then 
review each page type that presents content to the user.

http:///


Pages—Tools for Data Display

[ 182 ]

The general layout shown in the following screenshot includes a list page at its core.

A sample RoleTailored Client page
Let's take a look at what makes up a typical Role Tailored Client page.

In the RTC, travel buttons serve the same purpose that they serve in Internet 
Explorer—to move backward or forward through the previously displayed pages.

The title bar displays the information deined in the applicable page properties.

http:///


Chapter 4

[ 183 ]

The address bar displays the navigation path that led to the current display. It can be 
seen in the following screenshot:

If you click on one of the right-facing arrowheads in the address bar, the appropriate 
child menu options will be displayed in a drop-down list (see the following 
screenshot). In this instance, you can see that the list of options subordinate to Sales 
Orders is displayed both in the drop-down menu from the address bar, and in the 
detailed list of options in the navigation pane.

When you click on the address bar, the format of the display changes to a standard 
path format. The following screenshot shows an example of how the image changed 
after clicking on the address bar. That path can be copied, pasted, and thus reused in 
the same fashion as any Windows Explorer address path.

The command bar provides access to a standard set of menu options, which varies 
slightly based on what is in the content area.

http:///


Pages—Tools for Data Display

[ 184 ]

The left-most menu in the command bar is accessed by clicking on the button labeled 
Microsoft Dynamics NAV. It provides access (as shown in the next screenshot) to 
some basic administration functions, as shown in the next screenshot.

The center portion of the command bar can have one, two, or three menu buttons, 
depending on what the content area contains. The option choices in these menus  
also depend on the content area.

In the three screenshots that follow, you can see the menu options for the three  
menu buttons of the preceding screenshot, as they appear in the Customer List.  
The next image shows the Actions menu list:

http:///


Chapter 4

[ 185 ]

The following screenshot shows the options under Related Information:

The following screenshot shows the menu options under Reports of the Customer  
List page:

http:///


Pages—Tools for Data Display

[ 186 ]

The right end of the command bar contains the Customize and Help menu buttons. 
The contents of the Customize menu are also dependent on what is in the content 
area. An example of the Customize menu is shown in the following screenshot:

The Filter Pane is where the user can enter the various types of data ilters and the 
sort key choice to be applied to the page display. Filters can be either data (row) 
ilters or low ilters. Data ilters are displayed in the Show results - Where section, 
and low ilters are displayed in the Limit totals to section of the Filter Pane.

The Action Pane contains the commands that are most frequently used by the user. 
It provides the key section of role tailoring for the RoleTailored Client. These same 
commands will be duplicated in other menu locations, but are in the Action Pane  
for quick and easy access.

The Navigation Pane is similar to those in other Microsoft products, but with speciic 
attributes consistent with the design philosophy of the RoleTailored Client. The 
standard Navigation Pane contains menu options based on the active Role Center 
(tied to the user's login). It also contains activity buttons, at least the Home and 
Department buttons.

The status bar shows the name of the active company, the work date, and the current 
user ID. If you click on the company name, you can change companies. If you click 
on the work date, you can change it.

The content area is the focus of this display. It may be a list page, or a card page, or a 
transaction-oriented page. It is the content.

The FactBox Pane appears on list and card structured pages. FactBoxes provide  
no-click access to related information about the data in focus.

http:///


Chapter 4

[ 187 ]

Types of pages
Let's briely review the types of pages that we typically use in an application. Then we 
will create several examples for our ICAN system. From an application design point of 
view, we need to consider which page type to use under what circumstances.

List page
List pages display a list of any number of records (rows) at one time, one line per 
record, with each displayed data ield shown as a column. For Reference table 
maintenance and inquiry, List pages are used. When a List page is initially selected, 
typically it is not editable. When you double-click on an entry in the viewing List, an 
editable Card page is generally displayed. In some cases, the List page itself becomes 
edit enabled. List pages are also used to show a list of master records in order to 
allow the user to compare records, or to easily choose one master record on which to 
focus. List pages may also contain a Filter pane. Speciic List pages, such as Ledger 
Entries, allow editing of some ields (such as Invoice Due Dates). The menu options 
in the navigation pane target list pages (that is, not card pages, reports, and so on.).

The following screenshot shows a typical list page—the Customer list.

http:///


Pages—Tools for Data Display

[ 188 ]

Card page
Card pages display and allow updating of a single record. A Card page is generally 
used for master tables and setup data. Complex cards can contain a number of 
FastTabs and may include display data from subordinate tables. A Card page should 
not include a list-formatted display (such as the one shown in a List page or the 
ListPart subpage shown in a Document page) on any of its FastTabs.

Document page
Document (task) pages have at least two FastTabs in a header/detail format. The 
FastTab at the top contains the header ields, followed by a FastTab containing 
multiple records in a list style format; for example, the format used in Sales Orders 
and Invoices, Purchase Orders and Invoices, Production Orders, and so on. This page 
type is appropriate whenever you have a parent record tied to a subordinate or child 
set of data in a one-to-many relationship.

http:///


Chapter 4

[ 189 ]

FastTab
FastTabs are the collapsible/expandable replacements for traditional forms tabs. 
FastTabs typically represent subject areas on a Card page or a Document page (such 
as a Sales Order). Important ields can be promoted to display on a FastTab when the 
tab is collapsed, allowing the user to see the needed data with minimal effort. A Sales 
Order example is shown in the following screenshot, with some FastTabs collapsed 
and some expanded. On several of the collapsed FastTabs, some promoted key ields 
are displayed. Such ield displays disappear from the FastTab line when the FastTab 
is expanded. 

http:///


Pages—Tools for Data Display

[ 190 ]

A Document page may have additional FastTabs with data ields and a FactBox 
pane. The following screenshot shows a Production Order document page, which 
has the requisite FastTab for header information (the General FastTab), a detailed 
FastTab (Lines) where multiple records can be displayed in list format, followed by 
two more FastTabs containing additional data (Schedule and Posting):

http:///


Chapter 4

[ 191 ]

List+ page
A List+ page is similar to a Document page, as it will have at least one FastTab with 
ields and one FastTab at the bottom with a list page (grid) format. But a List+ page 
may have more than one FastTab with ields and one or more FastTabs with a list 
page format, while a Document page can only have a single list page style grid.

Journal/Worksheet page
Journal/Worksheet pages are widely used as transaction-entry pages. This page 
format consists of a list style section (such as multiple records or line by line) in the 
content area, followed by a section containing either additional line detail ields or 
totals. Data is entered into a Journal/Worksheet either manually or by a batch process.

The following screenshot shows a Sales Journal page.

All of the page types discussed so far are bound pages associated with tables.  
These bound pages display the data from those tables. Such pages, when  
properly designed, are one of the best ways for the easy and eficient use of  
a NAV application.

http:///


Pages—Tools for Data Display

[ 192 ]

Confirmation (Dialog) page
This is a simple display page embedded in a process; it is used to communicate with 
a user/operator. A sample Dialog page is as follows:

Request page
This is a relatively simple page consisting of several tabs which allow information  
to be entered to control the execution of a report object. A sample Request page for 
the Customer/Item Sales report is shown in the following screenshot:

http:///


Chapter 4

[ 193 ]

Navigate page
One of the early unique features of NAV (then Navision), the Navigate function is 
implemented using the NavigatePage page type.

This is a somewhat confusing set of terminology. The page that 
implements the Navigate function is internally identiied and structured 
as a NavigatePage page type. The NavigatePage page type is also used 
to implement Wizards.

The Navigate page allows the user to view the summary of the number and type  
of posted entries having the same document number or posting date as a related 
entry or user-entered value. Navigate is a terriic tool for tracking down related 
entries. It can be productively used by a user, an auditor, or even a developer. A 
sample Navigate page is shown in the following screenshot:

http:///


Pages—Tools for Data Display

[ 194 ]

An unusual page feature of the Navigate page is the use of standard tabs (at the 
bottom of the page display) rather than FastTabs.

The NavigatePage page type is also used as the basis for Wizard pages within NAV. 
Some Wizard page examples are pages: 5077—Create Interaction, 5097—Create To-
do, and 5126—Create Opportunity. A Wizard page (Page 5097—Create Interaction) 
is shown in the following screenshot:

Departments page
The Departments page is a one-of-a-kind, system-generated page. You will never 
create a Departments page, but you will need to add most new pages that you create 
to the Departments page. The look and feel of the Departments page cannot be 
restructured by the developer or personalized by the administrator or user (though 
individual entries can be added, changed, deleted, or made invisible). But the visible 
contents will be controlled based on the permissions of the user.

http:///


Chapter 4

[ 195 ]

The Departments page is sort of a "site map" to the NAV system for the user. When 
you add new pages to the Departments page, NAV UX design guidelines encourage 
the entry of duplicate links within whichever sections the user might consider 
looking for that page. An example of the Departments page is as shown in the 
following screenshot:

http:///


Pages—Tools for Data Display

[ 196 ]

Clicking on Manufacturing | Capacities in the Departments primary menu results 
in the following Departments submenu. A brief study of this menu and others like 
it reinforces the guideline advice encouraging duplicate entries wherever it appears 
that they might be useful.

Role Center page
Each user's assigned Role Center page is the location in which they land when 
irst entering NAV 2009. Role Center pages can be modiied by the developer or 
personalized by the administrator, super user, or user. The purpose of a Role Center 
page is to provide a task-oriented home base which provides only the information 
that the user typically needs in order to do his/her job. All common tasks should  
be one or, at most, two clicks away. Twenty-one Role Center pages for roles such  
as Bookkeeper, Sales Manager, and Production Planner are part of the standard 
system distribution.

http:///


Chapter 4

[ 197 ]

Central to the Role Center page is the Activities part. The Activities part provides 
the user a visual overview of their primary tasks. Central to the Activities part are 
the cues. Each cue represents a iltered list of documents in a particular state, thus 
indicating the amount of work to be done.

The following screenshot shows a Role Center page for an order processor:

Page parts
A number of the pages we have reviewed are made up of multiple panes with each 
pane including special purpose parts. In order to complete our review of pages, let's 
look at a number of available component page part building blocks.

http:///


Pages—Tools for Data Display

[ 198 ]

Several types of page parts compute the displayed data on the ly, taking 
advantage of low ields. As a developer, you need to be careful about 
overuse of such resource-intensive displays. Too much of this good thing 
may cause performance problems.

FactBoxes
FactBoxes are the components that appear within the FactBox pane. A variety of  
such components are available as part of the standard product. FactBoxes can be 
Card Parts, List Parts, Chart Parts, Notes, Outlook, and Record Links among others. 
Notes, Outlook, and Record Links are System Parts and cannot be modiied. All the 
others can be enhanced from the standard instances, or new ones may be created 
from scratch.

Card parts and List parts
Card parts are used for FactBoxes that don't require a list. Card parts display ields 
or perhaps a picture control. An example of the Customer Statistics FactBox card 
part is as shown in the following screenshot:

List parts are used for FactBoxes that require a list. A list is deined as columns of 
repeated data. The UX Guidelines indicate that a list part should be limited to two 
columns. Even the standard product doesn't always follow the guidelines. An example 
of the three-column My Customers FactBox list part (Page 9150) is as follows:

http:///


Chapter 4

[ 199 ]

Chart pane
A Chart pane displays data from a list in graphic form. The list is generally not 
displayed. Some Chart panes require range parameters, others do not (they default  
to a deined data range). Most of the charts are two-dimensional, but a sampling of 
three-dimensional, dynamic charts is distributed with the system. A sample chart pane 
is shown in the following screenshot, which shows a factbox containing a chartpart:

Page names
Card pages are named in a similar manner as the table with which they are 
associated, plus the word "Card". Examples include Customer table and Customer 
Card, Item table and Item Card, Vendor table and Vendor Card, and so on.

The single-record Setup tables that are used for unique setup and control information 
throughout NAV are named after their functional area plus the word "Setup". 
The associated Card page should also be (and generally is) named similarly to the 
table. For example, General Ledger Setup table and General Ledger Setup page, 
Manufacturing Setup table and Manufacturing Setup page, and so on.

Journal entry (worksheet) pages are given names tied to their purpose, plus the word 
"Journal". In the standard product, several Journal pages for different purposes may 
be associated with the same table. For example, the Sales Journal, Cash Receipts 
Journal, Purchases Journal, and Payments Journal are all associated to the General 
Journal Line table (that is different pages, but same table).

List pages are named similarly to the table with which they are associated. The 
List pages which are simple non-editable lists have the word "list" associated with 
the table name. Examples are Customer List, Item List, and Vendor List. In each 
of these instances, the table also has an associated card page. Where the table has 
no associated card page, the list pages are named after the tables, but in the plural 
format. Examples include Customer Ledger Entry table and Customer Ledger 
Entries, Item Ledger Entry table and Item Ledger Entries, BOM Ledger Entry table 
and BOM Ledger Entries, Country table and Countries page, Resource Cost table  
and Resource Costs page.

http:///


Pages—Tools for Data Display

[ 200 ]

If there is a Header and Line table associated with a data category such as Sales 
Orders, the related page and subpage ideally should be named to maintain the 
relationship between the tables and the pages. However, in some cases, it is better to 
tie the page names directly to the function they perform rather than the underlying 
tables. An example is the two pages making up the display called by the Sales Order 
menu entry—the Sales Order page is tied to the Sales Header table, and the Sales 
Order Subform page is tied to the Sales Line table. The same tables are involved 
for the Sales Invoice page and Sales Invoice Subform page. The occasional lapse of 
NAV 2009 object terminology into using "form", as in Sales Invoice Subform, rather 
than always using "page" appears to be the inevitable consequence of supporting the 
option of having both forms and pages operational.

Sometimes, while naming pages, you will have a conlict between naming based 
on the associated tables and naming based on the use of the data. For example, 
the menu entry Contacts invokes a Main page/Subpage named Contact Card and 
Contact Card Subform. The respective tables are the Contact table and the Contact 
Proile Answer table. The context usage should take precedence in the page naming.

Accessing the Page Designer
The Page Designer is accessed through Tools | Object Designer | Page. The 
Page Designer can be opened either with a new page using the New button or on 
an existing page using the Design button (more detail on this process will follow 
shortly). Once the Page Designer is open, a row of control icons appears at the top  
of your screen. The following table explains the icons:

http:///


Chapter 4

[ 201 ]

These are the same icon controls that apply to the Form Designer. 
However, Find, Toolbox, Color, and Font tools do not apply to Page 
Designer work.

At various points during the creation and maintenance of a page, you can use the 
other icons (Properties, Field Menu, C/AL Symbol Menu, and C/AL Code), their 
keystroke shortcuts, or in some cases, their right-click menu shortcuts, in order to 
access these Page Designer functions.

What makes up a page?
All pages are made up of certain common components. How are these components 
assembled to create the different page types? The basic elements of a page object  
are the page triggers and properties, plus the controls with their control triggers  
and properties.

The following screenshot shows the page triggers. We will not spend much time on 
page triggers because it is generally bad practice to insert any C/AL code in pages. 
You probably wonder, "Why triggers exist if we shouldn't use them?". The answer is 
that they exist for use in the cases where page-resident code is absolutely needed to 
accomplish some display or processing logic. As NAV has changed over the years, 
the need to use page-resident code has reduced signiicantly. The only time you 
should insert code in a page is if:

You can ind an example of the same thing in standard code
There just isn't any other rational way to meet the user interface goal

•
•

http:///


Pages—Tools for Data Display

[ 202 ]

Even the irst example may not be adequate justiication because some standard 
code in pages is there for historical compatibility or upgrade reasons. The correct 
approach is to put your logic within the tables or, if absolutely necessary, call  
well-organized functions deined in a Codeunit.

Page properties
The following screenshot shows the Page - Properties screen. We will step through 
the list briely, but you should actually go to the Page - Properties screen and invoke 
"help" for each ield.

http:///


Chapter 4

[ 203 ]

In order to illustrate page properties, we will look at the properties of the Donor 
List page that we created earlier. Many of the properties are still in their default 
condition. The following are the properties with which we are most likely to  
be concerned:

ID: The unique object number of the page.

Name: The unique name by which this page is referenced in C/AL code.

Caption and CaptionML: The page name to be displayed, depending on the 
language option in use.

Editable: This determines whether or not the controls in the page can be 
edited (assuming the table's Editable properties are also set to Yes). If this 
property is set to Yes, the control passes on to the Editable property on the 
individual controls.

•
•
•
•

http:///


Pages—Tools for Data Display

[ 204 ]

Description: For internal documentation only.

Permissions: This is used to instruct the system to allow the users of this 
page to have certain levels of access (r=read, i=insert, m=modify, d=delete)  
to the TableData in the speciied table objects. For example, users of  
page 499 – Available – Sales Lines are allowed to only read or modify the 
data in the Sales Line table. Anytime you are deining special permissions  
be careful to test with an end-user license.

PageType: Speciies how this page will be displayed, using one of the 
available nine page types (Card, List, RoleCenter, CardPart, ListPart, 
NavigatePage, Document, Worksheet, ListPlus, ConirmationDialog).
CardFormID: The ID of the Card page that should be launched when the 
user double-clicks on an entry in this list. This is only used on List pages.

SourceTable: The name of the table to which the page is bound. It must be 
illed in if this is a bound page.
SourceTableView: This can be utilized automatically and without exception 
in order to apply certain ilters or open the page with a default key other than 
the Primary Key.

DelayedInsert: This delays the insertion of a new record until the user moves 
focus away from the new line being entered. If this value is no, then a new 
record will automatically be inserted into the table as soon as the primary 
key ields have been completed. This property is generally set to yes when 
AutoSplitKey (see below) is set to yes. It allows complex new data records to 
be entered with all of the necessary ields completed.
MultipleNewLines: When set to yes, it allows the insertion of multiple new 
lines between existing records. However, it defaults to no, which prevents 
users from inserting new lines between records.

AutoSplitKey: This allows for the automatic assignment of a primary key, 
provided the last ield in the primary key is an integer (there are exceptions 
to this, but we won't worry about them in this book). This feature enables 
each new entry to be assigned a key so it will remain sequenced in the 
table following the record appearing above it. Note that AutoSplitKey and 
DelayedInsert are generally used jointly.

•
•

•

•
•
•

•

•

•

http:///


Chapter 4

[ 205 ]

On a new entry at the end of a list of entries, the trailing integer portion of the 
primary key, often named Line No., is automatically incremented by 10,000 
(the increment value cannot be changed). When an entry is inserted between 
two previously existing entries, their current key-terminating integer values 
are summed and divided by two (hence the term AutoSplitKey) with the  
resultant key value being used for the new entry. As 10,000 can only be  
divided by two and rounded to a non-zero integer result 13 times, only  
13 new entries can be inserted between two previously recorded entries by 
the AutoSplitKey function.

SourceTableTemporary: Allows use of a temporary table as the SourceTable 
for the page. This can be very useful in an instance where there is a  
need to display data based on the structure of a table, but not using the  
data as it persists in the database. Examples of such an application are  
Page 634—Chart of Accounts Overview and Page 6510—Item Tracking  
Lines. Note that the temporary instance of the source table is empty when  
the page opens up, so your code must populate it.

Types of page controls
Next we will discuss some of the different controls that can appear on pages. 
Controls on pages serve a variety of purposes. Some controls are containers for 
constants, some for data, some deine the organization of other controls. Some 
controls deine actions to be performed.

One of the attributes that makes designing NAV 2009 pages different from previous 
versions of NAV is that you can deine what information is displayed and the 
sequence order of the elements, but not the detailed screen layout. As a consequence 
we don't work in a WYSIWYG design environment, but in a Page Designer 
worksheet environment. A beneit of this is the ability to have the deinition work 
with display targets other than standard workstations, leaving the actual rendering 
to be target speciic.

•

http:///


Pages—Tools for Data Display

[ 206 ]

The following screenshot from the Page Designer shows some of the controls on the 
Customer Card (Page 21). The Name is the internal reference name of the object. The 
Caption is what will appear on screen. In this case, all captions are defaulted to what 
was deined in the table. Type and SubType deine how this control is interpreted 
by the Role-Tailored Client. Finally, SourceExpr deines the source of the data and  
all table ields.

To a large extent, the structure deined by controls is shown by the indenting of lines. 
In the preceding screenshot, the primary structure is based on the container control. 
All of the other controls you can see are indented within the container. The next level 
of structure is the General group control. Indented under this control are a set of 
data ield controls. Following them are the Communication group and the Invoicing 
group. The corresponding screen display matching the preceding screenshot is  
as follows:

http:///


Chapter 4

[ 207 ]

As you can see, the General group control deines the General FastTab. The 
Communication group control that followed deines the next FastTab, and so on.

Another group of controls are those that provide action instructions. In NAV 
2009, action menus and icons can be found in several locations. First, there is the 
ubiquitous lightning bolt Actions menu and its companion menus in the command 
bar, as shown in the following screenshot:

http:///


Pages—Tools for Data Display

[ 208 ]

The Action Designer, where these actions are deined, is accessed from the Page 
Designer form, by focusing on the irst blank line below the controls, then clicking 
on View and selecting Actions. If you do that for the Customer Card page, you will 
see a list of actions in the Action Designer, as shown in the following screenshot:

Second, the Action Pane contains access to most frequently used tasks, based on the 
user proile and sits atop many pages. Following is an Action Pane screenshot:

http:///


Chapter 4

[ 209 ]

Actions that are already included in the command bar actions list can be promoted to 
the Action Pane by changing two settings. 

First, set the Promoted property to Yes. Second, set the PromotedCategory property 
to deine where the action is to be displayed. See the preceding screenshot for 
example settings.

http:///


Pages—Tools for Data Display

[ 210 ]

Third, is the Navigation Pane on the left side of the RTC display. It is a container 
of action controls. The Navigation Pane is actually part of the Role Center. The 
following screenshot displays the action (menu) items of the Home activity button 
for this Role Center. The action entries are deined using the Action Designer within 
each Role Center page.

The Home and Departments activity buttons are always present. The Departments 
button provides access to all the entries from the MenuSuite (that is, all the assigned 
permissions allow).

Fourth and last, the Role Center page is dedicated to providing a home for 
conveniently located action controls.

It should be obvious that one of the key design criteria for the NAV 2009 
RoleTailored Client was to make it easy for a user to have access to the actions they 
need, in order to get their job done. Our job as developers is to take full advantage of 
all of these options, in order to make life easier for the user. In general, it's better to 
go overboard in providing access to useful capabilities, than to be too conservative. 
"Conservative" means making the user search for the right tool or use several steps 
in order to get to it. The challenge is to not clutter up the irst-level display with too 
many things, but still have all of the important user tools only one click away.

http:///


Chapter 4

[ 211 ]

Inheritance
One of the attributes of an object oriented system is the inheritance of properties. 
While NAV is more properly described as object based rather than object oriented, 
the properties that affect data validation are inherited. In addition, properties such as 
decimal formatting are also inherited. If the property is explicitly deined in the table, 
it cannot be less restrictively deined elsewhere.

Controls that are bound to a table ield will inherit the settings of the properties  
that are common to both. This basic concept applies on inheritance of data 
properties—beginning from ields in tables to pages and reports, and then from 
pages and reports to controls within pages and reports. Inherited property settings 
that involve data validation cannot be overridden, but all of the others can be 
changed. This is another instance where it is generally best to deine the properties in 
the table, for consistency and ease of maintenance, rather than deining them for each 
instance of use in a page or a report.

Page control details
There are ive primary types of page controls—Container, Group, Field, Part, and 
Action. Container, Group, and Field controls are used in the body, the content  
area of data displaying pages. Part controls are used to deine FactBoxes. Finally, 
Action controls are used to deine menus, icons, and buttons—anything within  
the RoleTailored Client that allows the user to invoke an action. We'll discuss the 
content area controls irst.

Container controls
Container controls can be of subtypes such as ContentArea, FactBoxArea, or 
RoleCenterArea. Container controls deine the root-level primary structures within 
a page. All of the page types start with a Container control. The RoleCenterArea 
Container control can only be used on a RoleCenter pagetype. A page can only have 
one content area and one Factbox Area.

http:///


Pages—Tools for Data Display

[ 212 ]

Group controls
Group controls provide the next level of structure within a page. Group controls are 
the home for ields. Almost every page has at least one Group control.

Several of the Group control properties are particularly signiicant because of their 
effect on all the ields within the group.

Visible: It can be TRUE or FALSE, and defaults to TRUE. The Visible 
property can be assigned a Boolean expression, which can be evaluated 
during processing. This allows for the possibility of turning on or turning  
off the visibility of a group of ields during processing, based on some 
variable condition.

Editable: It can be TRUE or FALSE, and defaults to TRUE. The Editable 
property can be assigned a Boolean expression which can be evaluated 
during processing in the same manner as the Visible property.

Enabled: It can be TRUE or FALSE, defaults to empty, which acts as TRUE. 
The Enabled property can be assigned a Boolean expression, which can  
be evaluated during processing in the same manner as the Visible and 
Editable properties.

GroupType: It will be one of the four choices—Group, Repeater, Cues, or 
FixedLayout. The GroupType property is also visible on the Page Designer 
screen in the column headed SubType (see the preceding screenshot).

Group is used in Card type pages as the structure for ields, 
which are then displayed in the sequence they hold within  
the group

Repeater is used in List type pages as the structure for ields, 
which are then displayed as repeated rows of those ields
CueGroup is used for Role Center pages as the structure for 
the actions that are the primary focus of a user's work day. 
Cue groups are found in page parts, typically having the word 
"Activities" in their name. The page parts are included in 
RoleCenter page deinitions. The following screenshot shows a 
Cue group deined in the Page Designer:

•

•

•

•

°

°
°

http:///


Chapter 4

[ 213 ]

The above cue group is displayed in the RTC as follows:

FixedLayout is used at the bottom of certain List pages, 
following a Repeater group. The FixedLayout group typically 
contains total or additional line-related detail ields. Many of 
the Journal pages, such as Page 39 - General Journal, Page 40 
- Item Journal, and Page 201 - Job Journal have FixedLayout 
groups. The Item Journal FixedLayout group only shows the 
item description, which is also available in a column, but it 
could easily display a ield that was not otherwise visible.  
A FixedLayout group can also show a lookup or calculated 
value like many of the Statistics pages do (for example,  
Page 151 – Customer Statistics, Page 152 – Vendor Statistics).

°

http:///


Pages—Tools for Data Display

[ 214 ]

IndentationColumnName and IndentationControls: These allow a group 
to be deined in which ields will be indented, as shown in the following 
screenshot of the chart of the Accounts page. Examples of pages that utilize 
the indentation properties include Page 16 – Chart of Accounts and  
Page 18 – G/L Account List.

FreezeColumnID: It freezes the identiied column and all of the columns 
to the left of it, so that they remain in a ixed position while the columns 
to the right can scroll horizontally. This is like freezing a pane in an Excel 
worksheet. A similar effect can be applied by a user tailoring their display.

ShowAsTree: It works in concert with the indentation properties. ShowAsTree 
allows an indentation to be expanded or collapsed dynamically by the user 
for easier viewing. Examples are Page 583 - XBRL Taxonomy Lines, Page 634 
- Chart of Accounts Overview, and Page 5522 – Order Planning.

Field controls
All of the ield controls appear in a common format in the Page Designer. The 
SubType column is not used for ield controls. The SourceExpr column identiies  
the data ield within the associated table.

•

•

•

http:///


Chapter 4

[ 215 ]

All the ield control properties are listed for each ield, whether or not they apply. It 
may seem quite obvious, but properties only apply to the data type for which they 
make sense. For example, the DecimalPlaces property only applies to ields where 
the data type is decimal.

http:///


Pages—Tools for Data Display

[ 216 ]

We'll review some of the ield control properties which are more frequently used  
to control some aspect of a particular ield, or are more signiicant in terms of  
their effect:

Visible, Enabled, and Editable: They have the same functionality as the 
identically named group controls, but these only apply to individual ields. 
If the group control is set to FALSE, either statically (in the control deinition 
within the page) or dynamically by an expression evaluated during 
processing, the Group control's FALSE condition will take precedence over 
the equivalent Field control setting. Precedence applies in the same way at 
the next, higher levels of identically named properties at the Page level, and 
then at the table level. For example, if a data ield is set to Non-Editable in 
the table, that setting will take precedence (overrides) over other settings in a 
page, control group, or control.

HideValue: It allows the value of a ield to be optionally displayed or 
hidden, based on an expression that evaluates to TRUE or FALSE.

MultiLine: This should be set to TRUE in order to allow the ield to display 
multiple lines of text.

OptionCaption and OptionCaptionML: They set the text string options that 
are displayed to the user. For display purposes, the captions that are set as 
page ield properties will override those deined in the equivalent table ield 
property. The default captions are those deined in the table.
DecimalPlaces: It applies to decimal ields only. If the number of decimal 
places deined in the page is smaller than that deined in the table, the 
display is rounded accordingly. If the ield deinition is the smaller number, 
it controls the display.

Importance: This controls the display of a ield. In the current 
implementation, this property only applies to Card and CardPart pages. 
Importance can be set to Standard (the default), Promoted, or Additional:

Standard: It is the normal display. Implementations of the 
rendering routines for future targets may utilize this differently.

Promoted: If the property is set to Promoted and the page is  
on a collapsed FastTab, then the ield will be displayed on  
the FastTab line. If the page is expanded, the ield will  
display normally.

•

•
•
•

•

•

°
°

http:///


Chapter 4

[ 217 ]

Additional: If the property is set to Additional and the FastTab 
is collapsed, there is no effect on the display. If the FastTab is 
expanded, then the user can determine whether or not the ield 
is displayed by clicking on the Show More Fields or Show 
Fewer Fields display control in the lower-right corner of the 
page (see the following screenshots).

Clicking on the button shown in the preceding screenshot will display the  
additional ield(s), and change the button's caption to that shown in the  
following screenshot:

ExtendedDatatype: It allows a text ield to be categorized as a special data 
type. The default value is None. If ExtendedDatatype is selected, it can be 
any one of the following:

Phone No.

URL

E-Mail

Ratio: For a processing progress bar display

Masked: Fills the ield as shown in the following screenshot, 
in order to mask the actual entry. The number of masking 
characters displayed is independent of the actual ield contents. 
The contents of a masked ield cannot be copied.

If ExtendedDatatype is Phone No., URL, or E-Mail, an active icon is  
displayed on the page following the text ield providing access to call the 
phone number, access the URL in a browser, or invoke the email client  
(see the following screenshot for an example of an email ield). Setting  
ExtendedDatatype will also deine the validation that will automatically  
be applied to the ield.

°

•

°
°
°
°
°

http:///


Pages—Tools for Data Display

[ 218 ]

Using page controls in a Card page
The best way to get familiar with properties of the various controls is to work with 
them. In Chapter 1, A Short Tour through NAV 2009, we created basic card and list 
pages for our Donor table as it existed at that time. Since then, our Donor table has 
been enhanced considerably. Therefore, we'll begin experimenting by creating a new 
replacement Donor card.

First, we'll create a card layout that simply contains all the ields in the Donor table. 
Just as we did in Chapter 1, open the Object Designer, click on Page and then click 
on New. The Page Wizard's screen will appear. Enter the name (Donor) or table 
number (50000). Choose the Create a page using a wizard: option, then choose Card. 
Click on OK and you are presented with the Card Page Wizard ready for you to 
lay out a new Card page. As you can see in the following screenshot, the Wizard 
defaults to a single FastTab of General. You can change the name of the FastTab and 
add new ones, but the Wizard requires you to have at least one FastTab deined.

http:///


Chapter 4

[ 219 ]

We're going to design our Donor Card with four FastTabs, modeled after the 
Customer and Vendor Card pages. Our FastTabs are General, Communications, 
Status, and Activity, as shown in the next screenshot:

Now, click on the Next button and you will see the following screen:

http:///


Pages—Tools for Data Display

[ 220 ]

The Donor table ields are listed in the left display, available for selection and 
placement in the right display panel. There is a separate right side display for each 
tab of the page we are designing. The next two screenshots show the Wizard display 
for the General and Activity tabs after we have selected ields for those.

The order in which the ields are listed in the Field Order display is the order  
in which they will appear in the generated page (split into two equal-sized  
columns, sequenced top to bottom in the irst column, then top to bottom in  
the second column).

http:///


Chapter 4

[ 221 ]

Once we have completed selecting ields and assigning them to tabs, we can click 
on the Finish button and generate the page code. A screen like the one in the next 
screenshot will be displayed. Note that the use of the Wizard is a one-way path;  
we cannot return from the code in order to modify it with the Wizard. Once we  
have generated our page object, any additional changes must be made in the  
Page Designer.

Press the Esc key to close the Page Designer screen. A "save changes" form will be 
displayed. Enter 50000 for the ID number and a name of Donor Card. The Page caption 
will default to the page name. Leave the compiled checkbox checked, and click on OK. 
It is likely that you will see a screen that resembles the following screenshot:

http:///


Pages—Tools for Data Display

[ 222 ]

Click on Yes. When the object has been compiled and saved, we have a new Donor 
Card page, which we should now test. If your system has the original release of 
NAV 2009 installed, you must test the new page by running it from the system's Run 
option. From the Start menu, select Run. In the command box, enter the following:

Dynamicsnav:////runpage?page=50000

This will invoke the Role-Tailored Client, open it, and call up your new page 50000. 
If you have NAV 2009 SP1 (Service Pack 1) installed, you can just highlight the page 
in the Object Designer and click on the Run button (this is the last time we'll concern 
ourselves with testing by "Run from the Start button", but please note that using the 
Run button will default to the last company opened in the RTC). In either case, you 
should see a screen that looks like this:

If you haven't entered much test data, many ields may be blank. You may also have 
to expand one or more of the FastTabs in order to have this appearance. Enter at least 
a couple of test records before proceeding to the next task.

http:///


Chapter 4

[ 223 ]

Now let's change the Importance property for a few ields to see the effect it has 
on our page. Open Page 50000, Donor Card, in the Page Designer by highlighting 
Page 50000 in the Object Designer and clicking on the Design button. Highlight 
each of the four ields, access the Field Properties form, and change the Importance 
property as follows:

Date Added: Change Importance to Additional

Donor Type: Change Importance to Promoted

Status: Change Importance to Promoted

Recognition Level: Change Importance to Promoted

Now exit from the page, save, compile, and run the page. View the page with the 
General FastTab expanded, and all the other FastTabs collapsed. You should see a 
page similar to the following screenshot:

You can see the promoted ields on a FastTab when it is collapsed. When the FastTab 
is expanded, the promoted ields will display in the same manner as the standard 
Importance ields. Note also that the Date Added ield is not visible in the General 
FastTab—instead, the Show more ields option is displayed.

•
•
•
•

http:///


Pages—Tools for Data Display

[ 224 ]

If you click on Show more ields, the ields with the Additional Importance value 
will then be displayed, and the option will change to Show fewer ields (see the 
following screenshot). Another signiicant change that occurs in the display (from 
the preceding to the following screenshots) is that the column placement of the City 
ield changes between the irst and second columns. This is due to the fact that many 
aspects of information placement on the screen are dynamically determined by NAV, 
not by information provided by the developer.

Page Part controls
Page Parts are used for FactBoxes and SubPages. Many of the properties of Page Parts 
are familiar to other NAV components, and operate essentially the same way in a Page 
Part as they operate elsewhere. Those "typical" properties include ID, Name, Visible, 
Enabled, Editable, Caption, CaptionML, ToolTip, ToolTipML, and Description.

Other properties are speciic to Page Part controls:
SubFormView: It deines the table view that applies to the named subpage 
(see WhseMovLines Part in Page 7315 – Warehouse Movement). Note that 
this property applies to a subpage even though its name is SubFormView.

SubFormLink: It deines the ield(s) that links to the subpage and the link 
(based on a constant, a ilter, or another ield).
ProviderID: It contains the ID of another Page Part control within the current 
page. This enables you to link one part to another. For example, Page 42 
- Sales Order uses this property in order to update the Sales Line FactBox 
by creating a ProviderID link to the SalesLines FastTab. Other pages with 
similar links include Page 41 - Sales Quote as well as Pages 43, 44, 50, 507, 
and 5768.

•

•
•

http:///


Chapter 4

[ 225 ]

PartType: It deines the type of part to be displayed in a FactBox. There  
are three options. Each option also requires another related property to  
be deined:

PartType Option Required property

Page PagePartID

System SystemPartID

Chart ChartPartID

PagePartID: It must contain the page object ID of a FactBox part, if the 
PartTypeOption is set to Page. Standard FactBoxes are in the page object 
number range of 9080 to 9125 in the initial release of NAV 2009.

SystemPartID: This must contain the name of a predeined system part if 
the PartTypeOption is set to System. Available choices are Outlook, Notes, 
MyNotes, and RecordLinks.

ChartPartID: It must contain a chart ID if the PartTypeOption is set to Chart. 
The Chart ID is a link to the selected entry in the Chart table (table number 
2000000078—see following screenshot).

•

•

•

•

http:///


Pages—Tools for Data Display

[ 226 ]

Creating a Card Part FactBox
The creation of a Card Part page to be used as a FactBox is a simple variation of 
creating a general purpose Card page. Open the Object Designer, click on Page, and 
then click on New. The Page Wizard's screen will appear. Enter the name (Donor) 
or table number (50000). Choose the Create a page using a wizard: option, and then 
choose Card Part. Click on OK, and you will be presented with the Card Part page 
Wizard ready for you to lay out a new Card Part.

The Wizard will display the same two-panel form we saw when creating the Card 
page earlier. The list of available ields will be in the left panel with the ields that 
have been selected shown in the right panel. Select ields from the left column, using 
the single > key (use the following screenshot as a guide for which ields to select).

Save the new FactBox as Page 50080 – Donor Activity FactBox. If you reopen your 
saved page, you should see the following screenshot:

The caption defaults to the page name, in this case Donor Activity FactBox, so let's 
change the page caption to just Donor Activity. Highlight the new page 50080, and 
click on the Design button. Focus on the irst blank line at the bottom of the Page 
Designer screen, and access the Page Property screen. Enter Donor Activity in the 
Caption property ield, exit, save, and compile the page.

Now, let's modify our original Donor List page in order to take advantage of the 
FactBox we just created—Design Page 50001 – Donor List. Following the ield 
controls that are already in the list page, add a new Container control line of subtype 
FactBoxArea using the left arrow key to move the indent left two columns. Below the 
new Container line, add a Part control. Your Page Designer screen should look like 
the following screenshot:

http:///


Chapter 4

[ 227 ]

Access the Properties form for the Part control. The PartType property should 
already have defaulted to Page. Set the PagePartID to 50080 (or the name you chose 
for your FactBox). Then, lastly, deine the ield link between the FactBox page and 
the List page. In this case, the link will be based on the Donor ID ield in each of the 
two related pages, as shown in the following screenshot:

http:///


Pages—Tools for Data Display

[ 228 ]

Save and compile your modiied Donor List page 50001. Now test using the Run 
button. Your result should be very similar to the following screenshot:

The FactBox area and FactBoxes are added to other types of pages in the same way as 
what you just did for your List page.

You can have many more FactBoxes tied to a content page than will logically be 
displayed at one time. In such an instance, you will choose one to three FactBoxes 
to be initially visible, with all of the others not visible. Users can then change the 
visibility properties through the personalization tools.

Since FactBoxes are references to other data, frequently including 
FlowFields, they usually must be updated when the primary page display 
contents change. For this reason, too many FactBoxes associated with a 
page can result in performance degradation.

Page Control triggers
The following screenshot shows Page Control triggers. There are four triggers  
for each ield control. Container, Group, and Part controls do not have  
associated triggers.

http:///


Chapter 4

[ 229 ]

The guideline for the use of these triggers is the same as the one for Page triggers—if 
there is a choice, don't put C/AL code in a Control trigger. It is always a good policy 
not to put code in pages, even though NAV doesn't always follow that advice.

There may be occasions where you must put code in a Control trigger but don't 
choose to do so just because it's the easy way out. Not only will this make your code 
easier to upgrade in the future, but it will also make it easier to debug and easier for 
the developer following you to decipher your changes. 

Adding more List pages to our ICAN  

application
Before we move on to less-structured activities, let's create the minimum necessary 
List pages for our International Community and Neighbors (ICAN) application. 
We originally created List pages for the Donor table and the Donor Type table. In 
addition, we just enhanced the Donor table List page by adding a FactBox. Now, we 
will create basic List pages (and one Card page) for the remaining application tables 
that have been deined so far. In addition to needing these for the ICAN application, 
we'll see how easy it is to develop basic List and Card pages. The following shows 
the application tables, the new page object name, and number assignments.

Table no. Table name Page no. Page name

50002 Gift Category 50003 Gift Categories

50004 Client 50004 Clients (List page)

50004 Client 50005 Client Card

50005 ICAN Campaign 50006 ICAN Campaigns

50006 Gift Ledger 50007 Gift Ledger Entries

50007 Aid Ledger 50008 Aid Ledger Entries

http:///


Pages—Tools for Data Display

[ 230 ]

Creating a simple list page
Let's step quickly through the creation of Page 50003 – Gift Categories:

1. In order to access the Page Designer and create a new blank page bound to 
the Gift Category table, go to Tools | Object Designer | Page, click on the 
New button, enter the table number 50002 (simply because it's easier to type 
the number than the name, if you know it). Choose the option Create a page 
using a wizard:, and select List.

2. Choose both of the available ields. You can choose them individually with 
the single > button, or choose all of the ields at once, by using the >> button.

3. Click on the Finish button which will display the generated page in the Page 
Designer (see the following screenshot).

4. Exit the Page Designer, after saving the new page as 50003 – Gift Categories.

5. Test the new page using the Object Designer | Run function.

The page you created in the Page Designer should look like the following, before it is 
saved and named.

http:///


Chapter 4

[ 231 ]

The following screenshot shows what you should see when you run the new page 
50003 for a test:

Now, you should try creating the list and card page for the client table on your own. 
After you have attempted that, read the following to see if you did it the same way.

Creating related List and Card pages
We won't go through the basic detail of creating the list page 50004 - Clients for 
the client table, as it can be done in the same way as creating the Gift Categories list 
page that we have just completed. Some options for creativity (and learning) exist in 
this task. You can simply select all of the ields, as we did previously. If you do that, 
you might want to limit the ields that are displayed by default to just the Client ID, 
Name, City, and Type (for example). If you want to limit what ields are displayed, 
you should set the ield control property of Visible to FALSE for all the other ields. 
Those ields will still be available to users, who may change the property in their 
display in order to make them visible. Another option, of course, is just to have only 
the minimum necessary ields included in the List page. That's reasonable because 
we will also have a Card page connected with all of the ields on it.

http:///


Pages—Tools for Data Display

[ 232 ]

In a simple case, creating the Card page is almost the same as creating the List page, 
except for any extra FastTabs or special ield properties that we might want to set. 
For our application, we'll keep it simple because there are not enough ields in the 
client record to justify having separate FastTabs. After we inish creating our Client 
Card page, there will be one additional step to set a property in the client's list page.

Let's step quickly through the creation of Page 50005 – Client Card as follows:

1. In order to access the Page Designer and create a new blank page bound 
to the client table, go to Tools | Object Designer | Page, click on the New 
button, and enter the table number as 50004 or the name as Client. Choose 
the option Create a page using a wizard: and select Card.

2. Keep the default General tab assignment and click on the Next button.

3. Use the >> button to add all the client table ields to the Client card layout.
4. Click on Finish to exit the Wizard and enter the Page Designer.

5. Exit the Page Designer, saving your new page as 50005 – Client Card.

6. Test your new page using the Object Designer | Run function.

After you have named and saved your new Card page and run it for a test, it is likely 
that it will come up blank. Click on the New icon and enter some test data. As we 
have not set up a relationship for the Type ield, or a default for the Date Added 
ield, or any other data entry aids, you'll have to simply key in everything. When you 
are inished, click on OK—then, in the View mode, your new Client Card should 
look something like the following screenshot.

The inal step is to create a logical connection between the list page and the card 
page. Highlight page 50004 – Clients and click on Design. Go to the irst blank line 
following the ield controls and bring up the Page Properties form. Change the 
property CardFormID to Client Card (or to 50004, same result). Save and compile 
your Clients page.

http:///


Chapter 4

[ 233 ]

In order to test the result, run page 50004 – Clients.  Your list page should run, 
showing whatever ields you decided should be present and visible.  If you have 
previously entered any Client test data, it should be visible like the record in the 
screenshot following.

If you have test data, double click on it and, if you were successful in creating the 
List page - Card page connection, the record will be displayed in the Client Card  
as shown in the following screenshot:

If you clicked on the New icon instead, the Card page should appear blank, ready for 
you to enter data for a new client.

http:///


Pages—Tools for Data Display

[ 234 ]

With all the experience you have gained by this point, it should be easy for you to 
proceed and create the remaining three list pages for our application. You should  
do that now.

Learning more about pages
Descriptions follow of several excellent ways for you to learn more about pages, how 
they work and how to put them together.

UX (User Experience) Guidelines
The User Experience (UX) Guidelines documents developed by Microsoft are 
available for download from various Internet locations. Search for UX Guidelines  
for NAV. Created in the form of a standalone interactive set of documents, the  
UX Guidelines serve both as a summary tutorial to the construction of pages and  
as recommendations for good design practices. Topics covered include the  
following list:

Design principles for great user experiences

Customization, coniguration, and personalization
The Navigation windows of the Role Center and Departments

Task windows including Cards, Documents, Journals/Worksheets, and Lists

Dialog pages: Conirmation, navigate, and request
How to design most Microsoft Dynamics NAV 2009 User Interface elements

User interface components

User interface text design and guidelines

User interaction via the mouse and keyboard

Dos and don'ts

Terminology

This document is a great starting place for anyone wanting good foundation 
information for understanding and designing NAV 2009 pages.

•
•
•
•
•
•
•
•
•
•
•

http:///


Chapter 4

[ 235 ]

Creative plagiarism
When you want to create new functionality that you haven't developed recently  
(or at all), start with a simple test example. Better yet, ind another object that has 
that capability and study it. In many lines of work, the term plagiarism is a nasty 
term. But when it comes to modifying a system such as NAV, plagiarism is a very 
effective research and design tool.

There is an old saying: "Plagiarism is the sincerest form of lattery". When designing 
modiications for NAV, the more appropriate saying might be: "Plagiarism is the 
quickest route to a solution that works". Especially if you like to learn by exploring 
(a very good way to learn more about how NAV works), you should allocate some 
study time for simply exploring the NAV Cronus demo system.

Deine what you want to do. Search through the Cronus demonstration system  
(or an available production system) in order to ind one or more pages that have the 
feature you want to emulate (or a similar one). If there are both complex and simple 
instances of pages that contain this feature, concentrate your research on the simple 
one irst. Make a test copy of the page and dig into it.

Your best guide will be an existing object that does something which is much like 
what you want to do. One of your goals should be to identify pages that represent 
good models to study further. At the extreme, you might plagiarize these (though a 
better phrase—"use them as models for your development work"). At the minimum, 
you will learn more about how the expert developers at NAV design their pages.

Experimenting with page controls and 

control properties
If you have followed along with the exercises so far in this book, it's time for you to 
do some experimenting on your own. No matter how much information someone 
else describes, there is no substitute for a personal, hands-on experience. You will 
combine things in a new way from what was described here. You will either discover 
a new capability that you would not have learned otherwise, or you will have 
an interesting problem to solve. Either way, the result will be signiicantly more 
knowledge about the tools that NAV C/SIDE provides.

There are at least two good ways to experiment with NAV pages. One is to start with 
an existing, working page and change it in various ways to see what happens. The 
other is to start with a blank slate (that is a new, empty page) and experiment in that 
less cluttered environment. We'll go over a few examples of each here, and then you 
should go off exploring on your own for a while.

http:///


Pages—Tools for Data Display

[ 236 ]

Don't forget to make liberal use of the Help information while you are 
experimenting. Almost all of the available documentation is in the help iles that 
are built into the product. Some of the help material is a bit sparse, but it is being 
updated on a frequent basis. In fact, if you ind something missing or something that 
you think is incorrect, please use the Documentation Feedback function that is built 
into the NAV help system. The product team responsible for help pay close attention 
to the feedback they receive and use it to improve the product. Thus, we all beneit.

Help searching
Some help ile search functions are not documented. You can search on a partial 
string by using the asterisk wildcard (that is, walk* will ind Walkthroughs).  
You can search a phrase by enclosing it in double quotes (that is, "page properties" 
will work). A question mark can be used as a single character wildcard, multiple 
question marks will equate to the same number of characters as the number of 
question marks.

Experimentation
Let's start with the blank slate approach, because that allows us to focus on speciic 
features and functions. As we've already gone through the mechanical procedures 
of creating a new page of the card and list types using the Page Designer to add 
controls and modify control properties, we won't detail those steps here. But as you 
move the focus of your experimentation from one feature to another, you may want 
to review what we covered in that area in this chapter.

Let's walk through some examples of experiments you might do in order to start, 
and then build on as you get more adventuresome:

1. Create a list page for the client table with three or four ields.
2. Change the Visible property of a ield, by setting it to False.

3. Save and run the page (number it in a range that you know is all test material).

4. Conirm that the page looks as what you expected. Go into Edit mode on the 
page. See if the ield is still invisible.

5. Use the page Personalization feature (the Customize icon on the upper-right 
corner of the page) in order to add the invisible ield, perhaps also to remove 
a ield that was originally visible. Exit Personalization. View the page in 
various modes ( such as View, Edit, New).

6. Go back into the Page Designer and design the page again.

7. One or two at a time, experiment with setting the Editable, Caption, 
ToolTip, and other control properties.

http:///


Chapter 4

[ 237 ]

8.  Don't just focus on text ields. Experiment with integer, decimal, and option 
ields as well. Create a text ield that's 200 characters long. Try out the 
MultiLine property.

9.  After you get comfortable with the effect of changing individual properties, 
you may want to change multiple properties at a time in order to see how 
they interact.

When you feel that you have thoroughly explored individual ield properties in a 
list, try similar tests in a card page. You will ind that some of the properties have 
one effect in a list, while they may have a different (or no) effect in the context of a 
card (or vice-versa). Test enough to ind out. If you have some "Aha!" experiences,  
it means that you are really learning.

The next logical step is to begin experimenting with the group level controls. 
Add one or two to your page, then begin setting the properties for that control, 
again experimenting with only one or two at a time, in order to understand very 
speciically what each one does. Do some experimenting to ind out which properties 
at the group level override the properties at the ield level, and which do not.

Once you've done group controls, do part controls. Build some FactBoxes using a 
variety of the different components that are available. Use the System components 
and some ChartParts as well. There is a wealth of pre-built parts that come with the 
system. Even if the parts that are supplied aren't exactly right for your application, 
they can often be used as a model for the construction of custom parts. Remember 
that using a model can signiicantly reduce both the design and the debugging work 
when doing custom development.

After you feel you have a grasp of the different types of controls in the context of 
cards and lists, maybe it's time to check out some of the other page types. Some of 
those won't require too much in the way of new concepts. Examples of these are the 
List+, List Parts, Card Parts, and, to a lesser extent, even the Document pages.

It may be at this point that you decide to learn by studying samples of the page 
objects that are part of the standard product. One way to start that is by copying 
an object, such as Page 22 – Customer List, and then begin to analyze how it is put 
together, in order to present the user experience that it presents. Again, you can 
tweak various controls and control properties in order to see how that affects the 
page. Remember, you should be working on a copy, not the original!

You can also copy Page 21 – Customer Card, connect your Customer List copy to 
your Customer Card copy and extend your experimenting to the related page pair. 
Obviously, there is no end to the possibilities of exploring and learning, except for 
your available time and interest level.

http:///


Pages—Tools for Data Display

[ 238 ]

Testing
What we did before you started your experimentation are normal development 
activities. It's also normal during the development of a new feature to do some 
experimental testing like you've been doing. A point you must remember is that 
you should test and retest thoroughly. Make backup copies of your work every 
time you get a new set of changes working relatively well. While it is exceedingly 
rare for the NAV database to be corrupted, it is not all that unusual for something 
you are performing in a test mode to confuse C/SIDE to the point that it crashes. 
If that happens, any unsaved changes will be lost. Therefore, after each change, or 
controlled group of changes, you should save your work. In fact, if you are doing 
complicated things, it is not a bad idea to have a second backup copy of your object 
that you refresh after every hour or two of development effort.

Your testing should include everyday items as well as the complicated ones, which 
are absorbing most of your time. Check out your work from the user's point of 
view, not just the technician's viewpoint. Whenever possible, the C/AL Testability 
toolset should be used to create and run test scripts. This toolset allows you to create 
repeatable (that is regression) tests relatively easily which can be used again the next 
time the software is modiied.

Design
Whether you are making modiications to Order Entry or Journal Entry pages, or 
creating brand new pages, you need to keep the touch typist's needs in mind. Many 
NAV pages can be designed so that no mouse action is required; that is, everything 
can be done from the keyboard. If volume data entry is involved, it's good to have 
that goal in mind.

Use shortcut keys for frequently used functions. Whenever there is a standard 
shortcut key deined in the out of the box product, use the same shortcut for your 
modiications (a list of all of the shortcuts is available in the system Help). Group 
information on pages similar to the way it will be entered from the source material. 
It is a good idea to spend time with users reviewing the page before locking in a inal 
page design. If necessary, you may want to develop two pages for a particular table, 
one laid out for ease of use in inquiry purposes, and another laid out for ease of use 
in volume data entry.

http:///


Chapter 4

[ 239 ]

Wherever it is feasible and rational to do so, make your new pages similar in layout 
and navigation to the pages delivered in the standard NAV product. These generally 
conform to Windows' design standards and the standards, which are the result of 
considerable research. As someone has spent a lot of money on that human interface 
research, it's usually safer to follow the Windows and NAV standards than to  
follow one's own intuition. Following the standards makes upgrades easier,  
training cheaper, and requires less support.

The exceptions come, of course, when your client says: "this is the way I want it 
done". Even then, you may want to work on changing the client's opinion. There is 
no doubt that training is easier and error rates are lower when the different parts 
of a system are consistent in their operation. Users are often challenged by the 
complications of a system with the sophistication of Dynamics NAV. It is not really 
fair to make their job even more dificult. In fact, your job is to make the user's job 
easier and more effective.

Summary
At this point, you should be feeling relatively comfortable in the navigation of NAV 
and with the use of the Object Designer. You should be able to use the Page Wizard 
Designer in an advanced beginner mode. Hopefully, you have taken full advantage 
of the various opportunities to create tables and pages, both with our recipes and 
experimentally on your own.

We have reviewed different types of pages and worked with some of them. We have 
reviewed all of the controls that can be used in pages and have worked with several 
of them. We also lightly reviewed page and control triggers. We've acquired a good 
introduction to the Page Designer and signiicant insight into the structure of some 
types of pages.

With the knowledge gained, we have expanded our ICAN application system, 
creating a number of pages for data maintenance and inquiry, as well as 
experimented with a number of controls and pages.

In the next chapter, we will learn our way around the NAV Report Designer. We will 
dig into the various triggers and controls that make up reports. We will also create a 
number of reports to better understand what makes them tick and what we can do 
within the constraints of the Report Designer tool.

http:///


Pages—Tools for Data Display

[ 240 ]

Review questions
1. Once a Page has been developed and Tailored for implementation, the user 

has very little lexibility in the layout of the Page. True or False?
2. The Address Bar in the Role Tailored Client simply displays the navigation 

path leading to the current display. It cannot be used directly to navigate to 
another display. True or False? 

3. Actions appear on the Role Center screen in several places. Choose three: 

a. Address Bar

b. Action Pane

c. Filter Pane

d. Navigation Pane

e. Command Bar

4. The Filter Pane includes "Show results – Where" and "Limit totals to" options. 
True or False? 

5. RTC Navigation Pane entries always invoke which one of the following  
page types? 

a. Card

b. Document

c. List

d. Journal/Worksheet

6. All page design and development is done within the C/SIDE Page Designer. 
True or False? 

7. Two Activity Buttons are always present in the Navigation Pane. Which two? 

a. Posted Documents

b. Departments

c. Financial Management

d. Home

http:///


Chapter 4

[ 241 ]

8. Inheritance is the passing of property deinition defaults from one level of 
object to another. If a ield property is explicitly deined in a table, it cannot 
be less restrictively deined for that ield displayed on a page. True or False? 

9. Which of the following are true about the control property Importance? 

a. Applies only to Card and CardPart pages

b. Cannot affect FastTab displays

c. Has three possible values: Standard, Promoted, and Additional

d. Applies to Decimal ields only

10. Generally, all of the development work for a Card or List page can be done 
using the appropriate Wizard. True or False? 

11. FactBoxes are delivered as part of the standard product. They cannot be 
modiied nor can new FactBoxes be created. True or False? 12. 

http:///


http:///


Reports

Making the simple complicated is commonplace; making the complicated simple, 
awesomely simple, that's creativity—Charles Mingus

Design is directed toward human beings. To design is to solve human problems by 
identifying them and executing the best solution—Ivan Chermayeff

Some consider the library of reports, provided as part of the standard NAV product 
distribution from Microsoft, to be relatively simple in design and limited in its 
features. Other people feel that the provided reports satisfy most needs because  
they are simple. Their basic structure is easy to use, and made much more powerful 
and lexible through the multiplier of NAV's iltering and SIFT capabilities. Some  
say that the simplicity of the standard product provides more opportunities for 
creative enhancement.

The fact remains that NAV's standard reports are basic. In order to obtain more 
complex or more sophisticated reports, we must use the Report Designer features 
that are part of the product. Through creative use of these features, many different 
types of complex report logic may be implemented. You can also use NAV reports  
to feed processed data to other reporting tools such as Excel or "third-party" 
reporting products.

In this chapter, we will review different types of reports and the components that 
make up reports. We'll look in detail at the triggers, properties, and controls that are 
part of NAV reports. We will study the Report Designer tools that are a combination 
of pure NAV (the C/SIDE Report Designer) and the Visual Studio Report Designer 
that is tightly integrated into NAV 2009. We'll create some reports with these Report 
Designer tools. We'll also modify a report or two using the Report Designer. We'll 
examine the data low of a standard report and the concept of reports used for 
processing only (with no printed or displayed output).

http:///


Reports

[ 244 ]

What is a report?
A report is a vehicle for organizing, processing, and displaying data in a format 
suitable for outputting. In the past, reports went to hardcopy devices (for example 
printers). Reporting technology is now more general purpose and lexible. Reports 
may be displayed on-screen in preview mode rather than being printed, or output 
to another device (for example, disk storage in PDF format), but with the same 
formatting as though they were printed. In fact, all of the report screenshots in this 
book were taken from reports generated in preview mode.

Once generated, the data contents of a report are static. Part of the new lexibility 
of NAV 2009 is the capability to output reports in preview mode, which have 
interactive capabilities. However, those capabilities only affect the presentation of 
the data, not the data included in the report dataset. Examples include dynamic 
sorting and show or hide data (expand or collapse). Even so, all speciication of the 
data selection criteria for a report must be done at the beginning, before the report 
is generated. NAV 2009 also allows dynamic functionality for drill down into the 
underlying data, drill through to a page, and even drill through into another report.

In NAV, report objects can also be classiied as processing only by setting the 
correct report property (that is, by setting the ProcessingOnly property to Yes). A 
ProcessingOnly report will display no data to the user in the traditional reporting 
manner, but will simply process and update data in the tables. A report can add, 
change, or delete data in tables, whether the report is ProcessingOnly or a normal 
printing report.

In general, reports are associated with one or more tables. A report can be created 
without being externally associated with any table, but that is an exception, not a 
rule. Even if a report is associated with a particular table, it can freely access and 
display data from other referenced tables.

Two NAV report designers
NAV 2009 report design uses a pair of Report Designer tools. The irst is the Report 
Designer that is part of the C/SIDE development environment. The second is the 
Visual Studio Report Designer. For simplicity, we will refer to these as C/SIDE RD 
and VS RD in this chapter.

The C/SIDE RD is the only tool needed to create reports for the Classic Client. If a 
NAV 2009 system is using only the Classic Client, then only reports created using the 
C/SIDE RD can be run. However, when using the RoleTailored Client, both C/SIDE 
RD and VS RD reports can be run. The RTC runs C/SIDE RD reports by invoking a 

http:///


Chapter 5

[ 245 ]

temporary instance of the Classic Client, running the report, and then closing down 
the Classic Client instance (no additional license slots are used). In this book, we will 
focus totally on the design of reports for the RoleTailored Client using the VS RD.

The typical report development process for an RTC report begins by doing 
foundation work in the C/SIDE RD. That's where all the data structure, working 
data elements, data low, and C/AL logic are deined. The only way to create or 
modify report objects is to start in the C/SIDE RD. Once all of the elements are 
in place, the development work proceeds to the VS RD where the layout and 
presentation work is done, including any desired dynamic options.

The following low chart provides a conceptual view of the creation of a new report 
using the two different Report Design approaches—one for the Classic Client and the 
other for the RoleTailored Client. The functions in the center and left chart paths are 
those done in the C/SIDE RD (steps 1 through 7). Those in the right set of the chart 
are the ones done in the VS RD (steps 4 and 6 through 10). Steps 1, 2, 3, and 5 are 
essentially the same (but not quite) regardless of the target client. Step 4 is done in 
the C/SIDE RD Sections Designer for both clients, but what you do is quite different 
in each case.

As you can see, many of the functions are the same regardless of the target client. 
Most of those are done within the Classic Report Designer. Therefore, the accurate 
claim for NAV 2009 that, even though the layout function uses Visual Studio Report 
Designer, a large part of the report design is still done within the traditional NAV 
Report Designer.

For the experienced NAV Classic Client developer who is moving to RTC projects, 
the biggest challenges will be to learn exactly which tasks are done using which 
development tool, and to learn the intricacies of the Visual Studio Report Designer 
layout tools. Those intricacies include understanding just how the VS RD features 
interact with the NAV data structures and the C/SIDE RD deinitions.

This chart shows the general low of NAV report design in order to make it easier 
to understand which functions are done in which of the Report Design tools, and 
allows comparison of the Classic and RoleTailored design processes. In practice,  
the actual low will depend on the speciics of a particular report.

It's feasible for a simple C/SIDE report to be entirely generated by the Wizard, but 
that is generally not true for a VS RD report. It's important to note that some of 
the steps deined in the chart can be performed in a different sequence than that is 
shown, and some can be repeated in an iterative fashion. Nevertheless, the chart that 
follows is a good introductory guide to NAV Report Design.

http:///


Reports

[ 246 ]

Terminology for the following chart: Working Data is all the non-database data 
needed to process the report; Report Data is what will be displayed in the report.

Start New

Report

Define

DataItems

Define

Working

Data

Define

Layout in

Sections

Add all

Report Data

to Sections

Define C/AL

Logic

Create

Request

Form

Compile

and Save

Create Layout

Suggestion in

VS

Refine

Layout in

VS

Define

Dynamic

Options in VS

Create

Request

Page

Save,

Compile and

Save

Test11

8

9

7

6

5

3

1

2

4

10

http:///


Chapter 5

[ 247 ]

A hybrid report designer
The Report Designer toolset in NAV 2009 represents a set of compromises tied  
back to some initial NAV 2009 product feature goals. One product feature goal  
was to retain the ability of developers of developers to do their to do their work 
within C/SIDE, thus avoiding scrapping more than a decade of knowledge and 
experience. A second product feature goal was to provide a much more fully 
featured set of reporting capabilities.

After much thought and experimentation, the decision was made to create a toolset 
that would target report generation using the functionality of SQL Server Reporting 
Services (SSRS). The method of accomplishing that was to "glue together" the data 
and logic deinition parts of the C/SIDE Report Designer to the layout parts of Visual 
Studio Report Designer, in order to create a hybrid.

When a report is designed, VS RD builds a deinition of the report layout in the 
XML-structured Report Deinition Language Client-side (RDLC). When you exit 
VS RD, the latest copy of the RDLC code is stored in the current C/SIDE Report 
object. When you exit the Report Designer and save your Report object, the C/SIDE 
RD saves the combined set of report deinition information, C/SIDE and RDLC, in 
the database. If you export a report object in text format, you will be able to see the 
two separate sets of report deinition. The XML-structured RDLC is quite obvious 
(beginning with the heading RDLDATA). We will discuss exporting objects in more 
detail in Chapter 8, Advanced NAV Development Tools.

NAV report—look and feel
NAV allows you to create reports of many different kinds with vastly different  
"look and feel" attributes. The consistency of report look and feel does not have the 
same level of design importance as the consistency of look and feel for pages does. 
The standard NAV application only uses a few of the possible report styles, most  
of which are in a relatively "plain-Jane" format.

While good design practice dictates that enhancements should integrate seamlessly 
unless there is an overwhelming justiication for being different, there are many 
opportunities for providing replacement or additional reporting capabilities. The 
tools that are available within NAV for accessing and manipulating data in textual 
format are very powerful. Unlike the previous versions of NAV, this new version 
includes a reasonable set of graphical reporting capabilities. And, of course, there is 
always the option to output report results to another processing/presentation tool 
such as Excel.

http:///


Reports

[ 248 ]

NAV report types
The following are the types of reports:

List: This is a formatted list of data. A sample list report in the  
standard system is the Customer – Order Detail list shown in the  
following screenshot:

•

http:///


Chapter 5

[ 249 ]

Document: This is formatted along the lines of a pre-printed form, where 
a page (or several pages) represents a complete, self-contained report. 
Examples are Customer Invoice, Packing List (even though it's called a list, 
it's a document report), Purchase Order, and Accounts Payable check.

The following screenshot is a Customer Sales-Invoice document report:

•

http:///


Reports

[ 250 ]

The List and Document report types are deined based on their layout. The next three 
report types are deined based on their usage rather than their layout.

Transaction: These reports provide a list of ledger entries for a particular 
Master table. For example, a Transaction list of Item Ledger entries for all of 
the items matching a particular criteria, or a list of General Ledger entries for 
some speciic accounts, as shown in the following screenshot:

•

http:///


Chapter 5

[ 251 ]

Test: These reports are printed from Journal tables prior to posting the 
transactions. Test reports are used to pre-validate data before posting.

The following screenshot is a Test report for a General Journal batch:

•

http:///


Reports

[ 252 ]

The following screenshot is for another General Journal batch, containing only  
one transaction, but with multiple problems, as indicated by the warning  
messages displayed:

Posting: This is a report printed as an audit trail as part of a "Post and Print" 
process. The printing of these reports is actually controlled by the user's 
choice of either a Posting Only option or a Post and Print option. The Post 
portions of both the options work in a similar manner. The Post and Print 
option runs a report that is selected in the application setup. The default 
setup uses the same report that one would use as a transaction history report. 
This means that such a posting audit trail report, which is often needed by 
accountants, can be regenerated completely and accurately at any time.

•

http:///


Chapter 5

[ 253 ]

Report types summarized
The following table contains a list of the basic different NAV report types.

Type Description

List Used to list volumes of like data in a tabular format, such as Sales Order 
Lines, a list of Customers, or a list of General Ledger Entries. 

Document Used in "record-per-page header" + "line item detail" situations, such 
as a Sales Invoice, a Purchase Order, a Manufacturing Work Order, or a 
Customer Statement.

Transaction Generally a list of transactions in a nested list format, such as a list of 
General Ledger Entries grouped by GL Account, Physical Inventory 
Journal Entries by grouped Item, or Salesperson To-Do List by Salesperson.

Test Printed in list format as a prevalidation test and data review, prior to a 
Journal Posting run. A Test Report option can be found on any Journal 
page such as General Journal, Item Journal, or the Jobs Journal. Test reports 
show errors that must be corrected prior to posting.

Posting Printed in list format as a record of which data transactions were posted 
into permanent status (that is, moved from a journal to a ledger). A posting 
report can be archived at the time of original generation or regenerated as 
an audit trail of posting activity.

There are other standard reports which don't it within any of the above categories. 
Of course, many custom reports are also variations on or combinations of standard 
report structures.

Report naming
Simple reports are often named the same as the table with which they are primarily 
associated, plus a word or two describing the basic purpose of the report. The report 
type examples that we've already looked at illustrate this: General Journal–Test, G/L 
Register, and Customer Order–Detail.

http:///


Reports

[ 254 ]

Common key report purpose names include the words Journal, Register, List, Test, 
and Statistics.

The naming of reports can have a conlict between naming based on the associated 
tables and naming based on the use of the data. Just as with pages, the usage context 
should take precedence in naming reports. One requirement for names is that they 
must be unique; no duplicate names are allowed for a single object type.

Report components overview
What we generally refer to as the report or report object is technically referred to as a 
Report Description. The Report Description is the information describing the layout 
for the planned output and processing logic to be followed when processing the 
data. Report Descriptions are stored in the database in the same way as other table or 
form/page descriptions.

As with pages, we will use the term "report" whether we mean the output, the 
description, or the object. Reports share some attributes with pages including 
aspects of the designer, features of various controls, some triggers, and even some 
of the properties. Where those parallels exist, we should take notice of them. The 
consistency of any toolset, including NAV, makes it easier to learn and to use. This 
applies to developers as well as to the users.

The overall structure of an NAV RTC Report consists of the following elements.  
Any particular report may utilize only a small number of the possible elements  
(for example, Section Triggers are not used by the RTC), but many different 
combinations are feasible and logical.

Report Properties

Report Triggers

Data Items 

Data Item Properties

Data Item Triggers

Data Item Sections

Section Triggers

Data Field Controls

Visual Studio Layout

VS Controls

VS Control Properties

•

•

•

°

°

°

°

°

•

°

°

http:///


Chapter 5

[ 255 ]

Request Page 

Request Page Properties

Request Page Triggers

Request Page Controls

Request Page Control Properties

Request Page Control Triggers

The components of a report description 
A report description consists of a number of primary components, each of which 
in turn is made up of secondary components. The primary components Report 
Properties and Triggers and Data Item Properties and Triggers deine the data 
low and overall logic for processing the data. These are all designed in the C/SIDE 
Report Designer.

A subordinate set of primary components, Data Field Controls and Working 
Storage, are deined within the DataItem Sections, which are also designed in  
the C/SIDE Report Designer.

Data Fields are deined in this book as the ields contained in the 
DataItems (that is application tables). Working Storage (also referred to 
as Working Data) ields are deined in this book as the data elements that 
are created within a report (or other object) for use in that object. Working 
Storage data elements are not permanently stored in the database.

These components constitute the data elements that will be made available to the 
Visual Studio Report Designer (VS RD).

The VS RD cannot access any data elements that have not been deined 
within the Report Sections (each of which must be associated with  
a DataItem).

The Report Layout is designed in the VS RD using the data elements made available 
to the VS RD by the C/SIDE RD, deined in the DataItem Sections. The Report 
Layout includes the Page Header, Body, and Page Footer. In most cases, the Body  
of the report is based on a layout table.

•

°

°

°

°

°

http:///


Reports

[ 256 ]

Note that the VS RD layout table is a data grid used for layout purposes 
and is not the same as a table of data stored in the NAV database. This 
terminology is confusing. When the NAV Help iles regarding reports 
refer to a table, you will have to read very carefully to determine which 
meaning for "table" is intended.

Within the Report Body, there can be none, one, or more Detail rows. There can 
also be Header and Footer rows. The Detail rows are the deinition of the primary, 
repeating data display. A report layout may also include one or more Group rows, 
used to group and total data that is displayed in the Detail row(s).

All of the report formatting is controlled in the Report Layout. The Font, ield 
positioning, visibility options (including expand/collapse sections), dynamic sorting, 
and graphics are all deined as part of the Report Layout. The same is true for 
pagination control, headings and footers, some totaling, column-width control,  
and a number of other display details.

Of course, if the display target changes dramatically in the future versions of NAV, 
for example, from a desktop workstation display to a browser supporting cellular 
phone, then the appearance of the Report Layout will change dramatically as well. 
One of the advantages of SSRS is to support such a level of lexibility. But, if you 
expect that degree of variability in output devices, you will have design accordingly.

There is another primary functional component of a report description, the Request 
Page. It displays as a page when a report is invoked. The purpose of the Report 
Request Page is to allow users to enter information to control the report. Control 
information entered through a Request Page may include ilters, control dates, other 
control parameters, and speciications as well as deining which available formatting 
or processing options to use for this instance of the report (that is for this run). The 
Request Page appears once at the beginning of a report at run time.

Report Data Flow
One of the principal advantages of the NAV report is its built-in data low structure. 
At the beginning of any report, you must deine the data item(s), the tables that the 
report will process. It is possible to create a working report that has no data items, but 
that situation normally calls for a codeunit to be used. There are rare exceptions to 
this, such as a report created for the purposes of processing only, perhaps to control 
branching or choice of objects to be run subsequently. In that case, you might have 
no data item, just a set of logic whose data low is totally self-controlled. Normally 
in a report, NAV automatically creates a data low process for each data item. This 
automatically created data low provides speciic triggers and processing events: 

http:///


Chapter 5

[ 257 ]

1. Preceding the data

2. For each record of the data

3. Following the end of the data

The underlying "black-box" report logic (the part we can't see or affect) loops through 
the named tables, reading and processing one record at a time. That low is automatic, 
that is we don't have to program it. Therefore, any time we need a process that steps 
through a set of data one record at a time, it is quite likely we will use a report object.

If you've ever worked with some of the legacy report writers or the RPG 
programming language, it is likely that you will recognize this looping behavior. 
That recognition may allow you to understand how to take advantage of NAV 
reports more quickly.

The reference to a database table in a report is referred to as a Data Item. One of the 
capabilities of the report data low structure is the ability to nest data items. If Data 
Item 2 is nested within Data Item 1 and related to Data Item 1, then for each record 
in Data Item 1, all of the related records in Data Item 2 will be processed. The next 
screenshot shows the data item deinition screen.

This example uses tables from our ICAN system. The design is for a report to list 
all the Gifts by Donor for each Donor Type. Thus Donor Type is the primary table 
(DataItem1). For each Donor Type, we want to list all the Donors that have given 
Gifts to ICAN (DataItem2). And for each Donor of each Donor Type, we want to  
list their Gifts which are recorded in the Gift Ledger (DataItem3).

On the Data Item screen, we initially enter the table name Donor, as you see in the 
following screenshot. The Data Item Name, to which the C/AL code will refer, is 
DataItem1 in our example here. When we enter the second table, Donor, then we 
click on the right arrow at the bottom of the screen. That will cause the selected data 
item to be indented relative to the data item above (the "superior" data item). That 
causes the nesting of the processing of the indented data item within the processing 
of the superior data item.

In this instance, we have renamed the Data Items just for the purpose of our 
example, in order to illustrate data low within a report. The normal default behavior 
would be for the Name in the right column to default to the table name shown in the 
left column (for example, the Name for Donor would be displayed as <Donor> by 
default). This default Data Item Name would only need to be changed if the same 
table appeared twice within the Data Item list. For the second instance of Donor,  
for example, you could simply give it the Name Donor2.

http:///


Reports

[ 258 ]

For each record in the superior data item, the indented data item will be fully 
processed. Which records are actually processed in the indented table will depend on 
the ilters, and the deined relationships between the superior and indented tables. 
In other words, the visible indentation is only part of the necessary deinition. We'll 
review the rest of it shortly.

For our example, we enter a third table, Gift Ledger, and enter our example name  
of DataItem3.

The following chart shows the data low for this Data Item structure. The chart boxes 
are intended to show the nesting that results from the indenting of the Data Items in 
the preceding screenshot. The Donor Data Item is indented under the Donor Type 
Data Item. That means for every processed Donor Type record, all of the selected 
Donor records will be processed. That same logic applies to the Donor records and 
Gift Ledger records (that is, for each Donor record processed, all selected Gift records 
are processed).

Data Item 1

Pre-process

Data Item 1

Post-process

Data Item 1 processing Loop

Data Item 2

Pre-process

Data Item 1

record read and

process

Data Item 2

Post-process

Data Item 2 processing Loop

Data Item 2

record read and

process

Data Item 3

Pre-process

Data Item 3

Post-process

Data Item 3 processing Loop

Data Item 3

record read and

process

http:///


Chapter 5

[ 259 ]

The blocks visually illustrate how the data item nesting controls the data low.  
As you can see, the full range of processing for DataItem2 occurs for each DataItem1 
record. In turn, the full range of processing for DataItem3 occurs for each  
DataItem2 record.

In Classic Client reporting, the formatting and output for each record processed 
happened in sequence as the last step in processing that record. In other words, once 
a record was read and processed, it was rendered for output presentation before the 
next record was read.

In the NAV 2009 Role Tailored Client, report processing occurs in two separate steps, 
the irst tied primarily to what has been designed in the Classic RD, the second tied 
to what has been designed in the VS RD. The processing of data represented in the 
preceding image occurs in the irst step, yielding a complete dataset containing all 
the data that is to be rendered for output.

This intermediate dataset is a lattened version of the hierarchically structured 
dataset represented in the Classic RD. Each record in the new dataset contains all 
the ields from the sections (parent, child, grandchild, and so on) "de-normalized" 
into a completely lat data structure. This structure also includes Grouping, Filtering, 
Formatting, MultiLanguage, and other control information required to allow the 
Visual Studio Report Viewer to properly render the deined report.

That lattened dataset is then handed off to the Visual Studio Microsoft Report 
Viewer. The Microsoft Report Viewer provides the new NAV 2009 reporting 
capabilities such as various types of graphics, interactive sorting and expand/
collapse sections, output to PDF and Excel, and other advanced reporting features 
based on RDLC created by the VS RD design work.

The elements of a report
Earlier we reviewed a list of the elements of a Report object. Now we're going to 
learn about each of those elements. Our goal here is to understand how the pieces  
of the report puzzle it together to form a useful, coherent whole. Following that,  
we will do some development work for our ICAN system to apply some of what 
we've reviewed.

http:///


Reports

[ 260 ]

Report properties
The Classic RD Report Properties are shown in the following screenshot. Some 
of these properties have essentially the same purpose as those in pages and other 
objects. Many of these Report Property settings only apply to Classic reports and  
are replaced by equivalent Report Properties in the Visual Studio RD.

ID: The unique report object number.

Name: The name by which this report is referred to within C/AL code.

Caption: The name that is displayed for this report; Caption defaults  
to Name.

CaptionML: The Caption translation for a deined alternative language.
ShowPrintStatus: If this property is set to Yes and the ProcessingOnly 
property is set to No, then a Report Progress window, including a Cancel 
button, is displayed. When ProcessingOnly is set to Yes, if you want a 
Report Progress Window, you must create your own dialog box.

•

•

•

•

•

http:///


Chapter 5

[ 261 ]

UseReqForm: Determines if a Request Page should be displayed to allow 
the user the choice of Sort Sequence and entry of ilters and other requested 
control information.

UseSystemPrinter: Determines if the default printer for the report should  
be the deined system printer, or if NAV should check for a setup-deined 
User/Report printer deinition.
ProcessingOnly: This should be set to Yes when the report object is being 
used only to process data and no report output is to be generated. If this 
property is set to Yes, then that overrides any other property selections  
that would apply in a report-generating situation.

TransactionType: This can be in one of four basic options: Browse, 
Snapshot, UpdateNoLocks, and Update. These control the record locking 
behavior to be applied in this report. The default is UpdateNoLocks. This 
property is generally only used by advanced developers.

Description: This is for internal documentation; it is not used often.

TopMargin, BottomMargin, LeftMargin, RightMargin: Does not apply to  
an RTC report. There are applicable VS RD properties.

HorzGrid, VertGrid: Does not apply to an RTC report. VS RD layout has its 
own grid for control positioning.

Permissions: This provides report-speciic setting of permissions, which are 
the rights to access data, subdivided into Read, Insert, Modify, and Delete. 
This allows the developer to deine report and processing permissions that 
override the user-by-user permissions security setup.

The following printer-speciic properties do not apply to an RTC report. Several can 
be overridden by user selections made at run time.

Orientation: There is an applicable VS RD property

PaperSize: There is an applicable VS RD property

PaperSourceFirstPage, PaperSourceOtherPages: This is controlled in Page 
Setup for RTC reports

DeviceFontName: This is controlled by the Report Viewer

•

•

•

•

•

•

•

•

•

•

•

•

http:///


Reports

[ 262 ]

The Visual Studio RD Report Properties are shown in the following screnshot:

http:///


Chapter 5

[ 263 ]

Report triggers 
The following screenshot shows the Report triggers available in a report:

Documentation(): Documentation is technically not a trigger, but a section 
which serves only the purpose of containing whatever documentation you 
care to put there. No C/AL code is in a Documentation section. You have no 
format restrictions, other than common sense and your deined practices.
OnInitReport(): It executes once when the report is opened.

OnPreReport(): It executes once after the Request Page completes. All the 
Data Item processing follows this trigger.

OnPostReport() If the report is completed normally, this trigger executes 
once at the end of all of the other report processing. All the Data Item 
processing precedes this trigger.

OnCreateHyperlink(): It does not apply to an RTC report.

OnHyperlink(): It does not apply to an RTC report.

There are general explanations of Report Triggers in the online C/SIDE Reference 
Guide (Help); you should also review those explanations.

•

•

•

•

•

•

http:///


Reports

[ 264 ]

Data Items 
The following screenshot is very similar to the example we looked at when we 
reviewed Data Item Flow. This time though, we allowed the Name assigned to the 
Data Items to default. As a result, the names are assigned equal to the DataItems  
they refer.

Good reasons for changing the assigned names include making them shorter for ease 
of coding or making them unique, which is required when the same table is referred to 
multiple times in a report. For example, suppose you were creating a report that was 
to list irst Open Sales Orders, then Open Sales Invoices, and then Open Sales Credit 
Memos. As all the three of these data sets are in the same two tables (Sales Header 
and Sales Line), you might create a report with Data Item names of SalesHeader1, 
SalesHeader2, and SalesHeader3, all referencing Sales Header Data Items.

Data item properties
The following screenshots show the properties of the three Data Items in the 
previous screenshot. The irst one shows the Donor Type—Properties:

http:///


Chapter 5

[ 265 ]

The following screenshot shows Donor—Properties:

The screenshot that follows shows the Gift Ledger—Properties:

http:///


Reports

[ 266 ]

These are the descriptions of each of the properties mentioned:

DataItemIndent: This shows the position of the referenced Data Item in the 
hierarchical structure of the report. A value of 0 (zero) indicates that this 
Data Item is at the top of the hierarchy. Any other value indicates the subject 
Data Item is subordinate to (that is nested within) the preceding Data Item. 
In other words, a higher valued DataItemIndent property is subordinate 
to any Data Item with a lower valued DataItemIndent (for example, a 
DataItemIndent of 1 is subordinate to 0).

If we look at the DataItemIndent property listed in each of the three  
preceding screenshots, we see that Donor Type has a DataItemIndent=0, 
Donor has a DataItemIndent=1, and Gift Ledger has a DataItemIndent=2. 
Referring back to the earlier discussion about data low, we see that the  
speciied Donor table data will be processed through for each record  
processed in the Donor Type table, and the speciied Gift Ledger table data 
will be processed through for each record processed in the Donor table.

DataItemTable: This is the name of the database table assigned to this  
Data Item.

DataItemTableView: This is the deinition of the ixed limits to be applied  
to the Data Item (the key, ascending or descending sequence, and what ilters 
to apply to this ield). If you don't deine a key, then the users can choose  
the key they want. This allows control of the data sequence to be used  
during processing.

If you deine a key in the Data Item properties and, in the ReqFilterFields 
property, you do not specify any Filter Field names to be displayed, this 
Data Item will not have a tab displayed as part of the Request Page. That 
will stop the user from iltering this Data Item, unless you provide the 
capability in C/AL code.

DataItemLinkReference: This names the Data Item in the hierarchy above 
the Data Item to which this one is linked. The linked Data Item can also 
be referred to as the parent Data Item. As you can see, this property is 
Undeined for Donor Type, because Donor Type is at the top of the Data Item 
hierarchy for this report.

DataItemLink: This identiies the ield-to-ield linkage between this Data 
Item and its parent Data Item. That linkage acts as a ilter because only those 
records in this table will be processed that have a value that matches with the 
linked ield in the parent data item. In our sample, the Donor Data Item does 
not have a DataItemLink speciied.

•

•

•

•

•

http:///


Chapter 5

[ 267 ]

If this is not changed, no ield linkage ilter will be applied and all of the 
records in the Donor table will be processed for each record processed in its 
parent table that is the Donor Type table. In order to correct this, so that only 
Donors of the proper type are processed subordinate to each Donor Type, the 
DataItemLink needs to be changed to deine the linkage.
The following screenshot shows the screen where the DataItem Link  
is deined:

The next screenshot shows the Donor—Properties screen after the DataItem Link 
has been deined. Deining the DataItemLink in this way will cause the Donor table 
to be iltered by the active Donor Type Code for each loop through the Donor Type 
table. This will group Donors by Donor Type for report processing.

•

http:///


Reports

[ 268 ]

NewPagePerGroup, NewPagePerRecord: Does not apply to an RTC report. 
There are replacement VS RD properties.

ReqFilterHeader, ReqFilterHeadingML: Does not apply to an RTC report. 
There are replacement VS RD properties.

ReqFilterFields: This property allows you to choose certain ields to be 
named in the Report Request Page, to make it easier for the user to access 
them as ilter ields. So long as the Report Request Page is activated for a 
Data Item, the user can choose any available ield in the table for iltering, 
regardless of what is speciied here. Note the earlier comments for the 
DataItemTableView property are relative to this property. A screenshot  
of a sample Report Request page follows:

TotalFields, GroupTotalFields: Does not apply to an RTC report. Built-in VS 
RD functions are to be used instead.

•

•

•

•

http:///


Chapter 5

[ 269 ]

CalcFields: This names the FlowFields that are to be calculated for each 
record processed. As FlowFields do not contain data, they have to be 
calculated to be used. When a FlowField is displayed on a page, NAV 
automatically does the calculation. When a FlowField is to be used in a 
report, you must instigate the calculation. That can either be done here  
in this property or explicitly within C/AL code.

MaxIteration: This can be used to limit the number of iterations (that 
is loops) the report will make through this Data Item to a predeined 
maximum. An example would be to set this to 7 for processing with the 
virtual Date table to process one week's worth of data.

DataItemVarName: This contains the name shown in the right column of  
the Data Item screen, the name by which this table is referenced in this 
report's C/AL code.

PrintOnlyIfDetail: This should only be used if this Data Item has a child 
Data Item, that is one indented/nested below it. If PrintOnlyIfDetail is Yes, 
then sections associated with this Data Item will only print when data is 
processed for the child Data Item.

This property is set to Yes only for the Donor Data Item (see the immediate 
previous screenshot). That is done so that if there is no Gift Ledger for a 
particular Donor, the Donor will not print. If we wanted to print only Donor 
Types that have Donors, we could also set the PrintOnlyIfDetail property  
to Yes for the Donor Type Data Item.

Data item triggers
Each Data item has the following triggers available:

Documentation() is actually the same instance of this section that showed 
when we looked at the report triggers. There is only one Documentation in 
any object.

•

•

•

•

•

•

http:///


Reports

[ 270 ]

The data item triggers are where the bulk of the low logic is placed for  
any report. Additionally, developer deined functions may be freely and 
voluminously added, but, for the most part, they will be called from within 
these three triggers.

OnPreDataItem() is the logical place for any preprocessing to take place that 
couldn't be handled in report or data item properties or in the two report 
preprocessing triggers.

OnAfterGetRecord() is the data "read/process loop". Code placed here 
has full access to the data of each record, one record at a time. This trigger is 
repetitively processed until the logical end of table is reached for this table. 
This is where you would likely look at data in the related tables. This trigger 
is represented on our report Data Flow diagram as any one of the boxes 
labeled data item processing Loop.

OnPostDataItem() executes after all the records in this data item are 
processed, unless the report is terminated by means of a User Cancel or 
execution of a C/AL BREAK or QUIT function, or by an error.

Data item Sections 
Earlier in our discussion on reports, we referred to the primary components of a 
report. The Triggers and Properties we have reviewed so far are the data processing 
components. Next in the report processing sequence are Sections. In Classic RD 
reports, Sections are the output layout and formatting components. In RTC reports, 
Sections have a much more limited, but still critically important, role.

In the process of creating the initial report design, you may be entering data either 
completely manually as we've done in our example work, or you may use the Classic 
Report Wizard. If you use the Wizard, you will end up with Sections deined suitable 
for Classic Client Report processing. 

Those Sections may be only rough draft equivalents of what you may want your 
inal report to look like, but they are a suitable starting place for the Classic RD 
layout work, if that were the tool you were going to use. If you are creating your 
report completely manually, that is by not using the Wizard, you may also ind it 
appropriate to deine Sections to the point that the Classic Client could print a basic, 
readable report.

In our case, we are focusing our production report development effort on the 
RoleTailored Client, so we will invest minimal effort on Classic Client compatible 
report layouts. We might do just enough to allow test report runs for data 
examination purposes and logic low debugging. However, creating basic Section 
layouts provides us with another beneit relative to our VS RD layout work, 

•

•

•

http:///


Chapter 5

[ 271 ]

especially if we can create them using the Report Wizard, because all the ields  
to be used by VS RD must be speciied in the Sections. 

Creating RTC reports via the Classic Report 

Wizard
Let's look at the RTC report development low again. The preceding image is very 
similar to the one we studied earlier in this chapter, but this lowchart only shows 
the steps that are pertinent to VS RD.

Start New

Report

Define

DataItems

Define

Working

Data

Add all

Report Data

to Sections

Define C/AL

Logic

Create Layout

Suggestion in

VS

Refine

Layout in

VS

Define

Dynamic

Options in VS

Create

Request

Page

Save,

Compile and

Save

Test11

8

9

7

6

5

3

1

2

4

10

Edit Layout

in VS

http:///


Reports

[ 272 ]

In Step 6 of this low, there is an option to Create Layout Suggestion in the Visual 
Studio Report Designer as shown in the following screenshot:

When you choose Create Layout Suggestion, the C/SIDE Report Designer will 
invoke a process that transforms the layout in Sections to a layout in the Visual 
Studio Report Designer. If a VS RD layout previously existed, the newly created 
layout will overwrite it. Therefore, this option will normally be used only once,  
in the initial stages of report design. 

Let's experiment by using the Report Wizard to create a simple report listing the gifts 
received by ICAN. We will access the Report Wizard in the Object Designer. Click on 
Reports | New, then ill in the Wizard screen as shown in the following image. 

http:///


Chapter 5

[ 273 ]

Then click on OK and choose ields to display in the report as shown in the  
following screenshot. 

Click on Next, then choose the sorting order (that is index or key) that starts with 
Donor ID. Click on Next again and choose to Group the data by Donor ID. Click  
on Next again and choose to create totals for the Estimated Value ield. One more, 
click on Next and choose the List Style for the report, then click on Finish. At this 
point, you will have generated a Classic Client report using the Report Wizard. If 
you View | Sections, you should see a C/SIDE report layout that looks much like  
the following screenshot. 

http:///


Reports

[ 274 ]

Let's save our newly generated report so that, if we need to, we can come back to this 
point as a checkpoint. Click on File | Save As and assign the report to ID 50002 with 
the Name of Gifts by Donor.

Now click on Tools | Create Layout Suggestion. The process of transforming the 
Classic Report Layout to a Visual Studio Report Designer Layout will take a few 
seconds. When the report layout transformation process completes, you should  
see a screen that looks very similar to the following screenshot.

The primary data layout portion of the same VS RD screen is shown in the  
next image.

http:///


Chapter 5

[ 275 ]

Compare this to the Classic RD data layout we just looked at a couple of steps ago. 
You will see some similarities and some considerable differences. 

Without doing anything else, let's save the VS RD layout we just created for the 
RoleTailored Client, then run both versions of the report to see the differences in the 
generated results. To save the VS RD layout, start by simply exiting the VS Report 
Designer. Once the VS RD screen closes, you will see the following question.

Respond by clicking Yes. Then, when you exit the Classic Report Designer, you will 
see this question.

Respond by clicking Yes. You will then be presented with the following message.

http:///


Reports

[ 276 ]

Again, click on Yes. If there were an error in the RDLC created within the VS RD 
(such as an incorrect variable name used), an error message similar to the following 
would display.

Since, hopefully, we didn't get such an error message, we can proceed to test both the 
Classic Client and the RoleTailored Client versions of our generated report.

We can test the Classic Client (or C/SIDE RD) version of Report 50002 from the same 
Object Designer screen where we did our initial design work. Highlight the line for 
Report 50002 and click on the Run button. You should see the following screen:

If we were running this as users, we might want to make a selection of speciic 
Donors here on which to report. As we are just testing, simply click on Preview to 
see our report onscreen. The report will then appear, looking like the following:

http:///


Chapter 5

[ 277 ]

As you can see, with minimum development effort (and a minimum of technical 
knowledge), we have designed and created a report listing Gifts by Donor with 
subtotals by Donor. The report has proper page and column headings. Not only that, 
but the report was initiated with a Request Form allowing application of ilters.

http:///


Reports

[ 278 ]

Close the Classic Client report; now let's run the RTC version. Just like we could do 
with Pages, we will run our Report test from the Windows Run option. Click on Run 
and enter the command to run Report 50002, as shown in the next screenshot.

Click on OK. If the RoleTailored Client is not active, after a short pause, it will be 
activated. Then the Request Page will appear. Compare the look and contents of  
this Request Page with the one we saw previously for the Classic Client.

As before, click on Preview and view the report. Of course, this time we're looking at 
the RTC version.

http:///


Chapter 5

[ 279 ]

As you see, the generated layout in the RTC is very similar to the Classic version. 
There are some differences in the headings, date formatting, and ield alignment 
among others, but the essence of the report is the same.

This method of automatic transformation is very useful for getting an initial base for 
a new report or, obviously, for the complete generation process for a simple report 
where the requirements for layout are not too restrictive.

Learn by experimentation
One of the most important learning tools you have available is experimentation. 
This is one of the areas where experimentation will be extremely valuable 
and informative. It will be very good for you to know which types of report 
transformations work well and which do not. The best way to ind out is by 
experimentation. You should create test Classic reports, using a variety of the Report 
Wizard options, then transform those to RTC reports and examine the results.

http:///


Reports

[ 280 ]

You should also work on test copies of some of the standard reports that are part 
of the NAV system. Make sure you are working on test copies, not the originals! 
Open the test copy of a report in Design mode, then Create Layout Suggestion. This 
will wipe out the VS RD layout that came with the report from Microsoft, hence 
the emphasis on using test copies. You will ind that some reports will transform 
fairly well and some not well at all. The more you test, the better you will be able 
to determine which RTC report designs can be generated using this approach, and 
which ones will need to have most or all of their layout design work done manually 
within the VS RD.

Runtime formatting
When NAV prints a report (to screen, to hardcopy, or to PDF), NAV will format 
using the printer driver for the currently assigned printer. If you change the target 
printer for a report, the output results may change depending on the attributes of  
the drivers.

When you preview a report in the RTC, by default, it will be displayed in an 
interactive preview mode. This mode will allow you to access all of the dynamic 
functions designed into the report, functions such as sorting, toggling for expand/
collapse display, and drilling into the report. However, it may not look like the 
hardcopy, if you print it. If you click on the Print Layout button (pointed to by the 
cursor icon in the following screenshot), then the printer layout version of the report 
will be displayed.

In most cases, the display on screen in Preview – Print Layout mode will accurately 
represent how the report will appear when actually printed. In some cases though, 
NAV's output generation on screen differs considerably from the hardcopy version. 
This appears to most likely occur when the selected printer is either an impact 
printer (such as a dot matrix) or a special-purpose printer (for example, a  
barcode label printer). 

http:///


Chapter 5

[ 281 ]

Inheritance
Inheritance operates for data displayed through report controls just as it does for 
page controls, but is obviously limited to print-applicable properties. Properties, 
such as decimal formatting, are inherited. Remember, if the property is explicitly 
deined in the table, it cannot be less restrictively deined elsewhere. This is one 
reason why it's so important to focus on table design as the foundation of the system.

Other ways to create RTC reports
In the example we've gone through to create an RTC report, we generated everything 
using the Report Wizard and the automatic report transformation tools. There are  
at least two other ways to create RTC reports. They are probably obvious, but let's 
list them:

Use the Report Wizard to create the basic report. Then use the Classic RD to 
modify the Sections, followed by transforming the sections into the VS RD 
Layout. If you are going to use any data in your inal report other than that 
inserted in sections by the Report Wizard, you will have to include that data 
in a section. For example, if you want to have some heading ields such as a 
display of the Filters applied to the report, you will have to add those ields 
to the sections before moving on to work in the VS RD.

Create the Classic RD without use of the Report Wizard, in other words, 
manually design the Data Items and manually insert all data elements into 
the Sections. If you are not going to run this report as a Classic Client report 
at all (that is, have no concern about its appearance in the Classic Client 
environment), this is perfectly acceptable. In this case, it doesn't matter how 
the Sections are structured or where the data elements appear in the Sections. 
What matters is that all of the data elements needed by the VS RD are 
deined in the Sections Designer. Of course, if you want the transformation 
of the Sections to create a useful VS RD layout, then you should layout the 
Sections accordingly.

A very important item to remember is that even though Sections created for 
use in the Classic Client have triggers and those triggers may contain code, the 
transformation tool will discard that code in the process of creating the VS RD 
Layout deinition. If the Classic Client version of a report has any code embedded 
in the Sections, it must be removed and redesigned to operate inline within the 
processing of the Data Items or as part of RDLC property based logic. If a report is  
to operate in both Classic and RTC environments, you must be careful that  
such code will work in both without conlict.

•

•

http:///


Reports

[ 282 ]

Modify an existing RTC report
Not surprisingly, when we modify an existing report, the path into the Visual Studio 
Report Designer is different than when we are creating a report for the irst time. 
Let's make some modiications to the last report we created, the simple list of Gifts 
by Donor, Report 50002.

The irst step is to open the report in Design mode in the Classic RD. You  
should know the route there by now, but just in case, it's Tools | Object Designer 
| Reports | highlight Report 50002 | Design. The report will open in the Classic 
Report Designer.

Assuming that we don't need to keep the Classic version of the report up to date, the 
only reason we have to do anything within the Classic RD is to update the Sections 
for any additional required data elements. Before we can judge what additional  
data we might need, obviously we need to decide what we're doing.

Let's do the following:

Count the number of donations

Add the ICAN Campaign data ield to the report lines with a heading of 
"ICAN Campaign"

Add an interactive expand/collapse feature

Add interactive sorts by Date and by Amount

Add a Report Page option to optionally include/exclude gift of  
Services entries

Before you get started with this effort, you should enter enough test data into the 
Gift Ledger table to make your testing meaningful. As the system is in the testing 
stage, it's reasonable to simply Run the Gift Ledger table directly from the Object 
Designer. This will give you a basic form showing all the data ields. That form is  
a good way to enter test data.

We can guess that the interactive functions will not require any additional data 
ields. Adding the ICAN Campaign data ield to the report lines will obviously 
require deining that data element in sections, so that it will be available to the VS 
RD. The same can be said for adding a heading ield showing the user ilter applied 
to the report.

Adding a donation count could be done by adding the count to the Classic report 
(that is to Sections). Or perhaps we can ind a record Count function in the VS RD 
that will do the job without a new ield. We'll try the latter approach irst, then, if we 
need to do so, we will come back and make additional changes to the data deinition.

•

•

•

•

•

http:///


Chapter 5

[ 283 ]

Adding the ICAN Campaign ield to Sections is very simple. With the report open 
to the DataItem screen in the Report Designer, click on View | Sections. That will 
display the following screen:

Click on the Field Menu, shown in the following image:

This will open a form listing all the ields in the Gift Ledger table. Highlight the 
desired ield, ICAN Campaign, then click on one of the Sections to show a locating 
crosshairs. Click again to drop the ield at the desired spot. It makes sense to put the 
new ield on the same line with the other data ields, but that's not required.

Adding the data ield this way will also add a header label ield for ICAN Campaign. 
It can be moved or left where it landed. Position will not matter to the VS RD when 
we are simply adding the ield as a modiication to the RTC report. It would matter 
only if we were to go through the transformation process again (that is, choosing the 
Tools | Create Layout Suggestion option).

http:///


Reports

[ 284 ]

The next modiication step is to proceed to the Visual Studio Report Designer. If 
we used the same access method as before, we would create a new VS RD layout, 
wiping out the previous layout. In this particular case, that might not matter much, 
but generally that wouldn't be a good idea. We can access the VS RD layout  
non-destructively for the purpose of enhancement via View | Layout.

That will bring us back to the VS RD layout looking just like it did when we saved it 
earlier. The only change to the VS RD information so far is in the Data Sources panel, 
which will contain the two ields we just added to Sections. Before we continue to 
make our modiications to the VS RD layout, let's study the structure and contents  
of the VS RD layout.

The Visual Studio Report Designer layout screen
Some of the primary parts of the VS RD layout screen are shown in the annotated 
screenshot following. This is the VS RD layout for Report 103 – Customer Register.

Toolbox Tab: The source of the various data control types can be obtained 
for "drag and drop" insertion into the layout grid.

•

http:///


Chapter 5

[ 285 ]

Data Sources: This panel shows all of the data elements that are available to 
this report. All data elements that are shown here must have been previously 
deined in the Classic RD Sections Designer for this report. That is the only 
source of data for the VS RD.

Table Elements: This column is displayed only when one of the data 
elements in the report body has been highlighted. These icons represent the 
different types of reporting table elements (that is lines) that are present. 
Note that "table" here refers to a data display grid in the layout tool, not a 
NAV data table.

Table Elements—icons and purpose
The following list shows the individual Table Element icons and a description of the 
purpose of each Table Element type:

Page Header: This section's content appears at the top of pages, depending 
on how properties have been deined.
Body Section: The Body section usually contains a layout table. The layout 
table is a grid format, which contains the deinition of the data that is  
to be printed repeatedly based on the dataset passed in from the NAV  
report processing.

Element Properties: This panel shows the properties for the highlighted 
report element. It could be the properties for the overall Report, for the  
Page Header, for a Table Element, for an individual Data Control.

•

•

•

•

•

http:///


Reports

[ 286 ]

Property Pages Button: Selecting this button will display the Property  
Pages for the highlighted report element. This is an easier to read display  
of element properties, displaying a more complete set than that shown in the 
Element Properties panel. The Property Pages for the Report Properties for 
Report 103 is shown in the following image.

Page Footer: This section's content appears at the bottom of pages, 
depending on how properties have been deined.

Report Items
SSRS Reports designed in Visual Studio have a number of Report Items available, 
all accessible from the VS RD Toolbox as shown in the screenshot following (note 
that the very similar term "ReportItems" is the name of a collection of text boxes 
that can be displayed on a report). Most of these items are not utilized when reports 
layouts are transformed automatically. But, with thoughtful design work, they are 
available to the developer to create useful, sophisticated outputs as part of NAV 
enhancements. There are some instances of creative use of new SSRS reporting 
capabilities in the standard reports. For example, Report 111 – Customer – Top 10 
List offers a choice of graphic displays as well as the option to sort the report on  
any of several columns of data, when in interactive preview mode.

•

•

http:///


Chapter 5

[ 287 ]

Among the features that are new to NAV 2009 reporting are the following:

Interactively hide or show data, expand or collapse details, sort data,  
change iltering
Display multiple formats as charts as well as images

Standard output to PDF and Excel formats

Drill down to underlying data, drill through to pages and other reports

A snapshot follows of the Toolbox from which Report Items can be selected, for 
drag-and-drop addition to a VS RD layout.

An excellent method of learning about the properties for each Report Item 
is to view the Help for that Report Item. The easiest way to view the Help 
for a Report Item is to display the properties form for that item, then click 
on the Help button on that form.

One way to view the Properties form for each of the Report Items, once you are in 
the VS RD layout screen, is to highlight a Report Item of the type of interest, right 
click on it and then select Properties. If you are interested in what properties are 
available for a Report Item which is not part of the layout you are viewing, you can 
drag and drop the Report Item to your report layout, examine the properties form, 
then delete the Report Item from the VS RD layout.

Studying the properties for Report Items (and all of the other components of a 
NAV system) is highly recommended for the developer who really wants to dig in 
and learn about the inner workings of the system. Combining that technique with 
experimentation and studying the makeup of objects in the standard product are 
very effective ways to become more knowledgeable about design and development 
options for NAV 2009.

•

•

•

•

http:///


Reports

[ 288 ]

Among the new features in NAV 2009 are properties that can be assigned 
values based on expressions. The values of the expressions can then be changed 
dynamically at run time, thus allowing properties to be changed on the ly. In 
previous versions of NAV, a more limited variation of this capability to dynamically 
change property values was provided through functions such as Visible, Editable, 
and UpdateFontBold. These functions are not supported in the RTC, but have been 
replaced by the ability to assign an expression to the property. Examples are the 
Visible property in Pages and the Hidden property in various Report Items (or even 
the SHOWOUTPUT function used in RD Sections). In fact, almost all Report Items 
can be assigned values based on expressions. Determining how these will behave in 
a particular situation is a perfect example of where you must let existing designs and 
your testing be your guide.

Make the report changes
Having reviewed the VS RD in some detail, let's begin the task of making the 
changes we deined earlier.

First, we will add the ICAN Campaign column to each data line. In the VS RD 
showing the original VS RD layout for Report 50002, right-click on the top line of the 
last data column. Ignore the three very small columns at the right end of the data 
line. These are Hidden Fields which we will explain later. You will see the following:

Then choose the option to Insert Column to the Right. That will (surprise!)  
insert another column—to the right. Now expand the Data Sources, so that you  
can access the ields we added earlier to the Classic Sections Designer. Those  
ields are Gift_Ledger__ICAN_Campaign_ (data) and Gift_Ledger_ICAN__
Campaign_Caption (header).

http:///


Chapter 5

[ 289 ]

Grab, drag-and-drop the data ield into the new column, third row (table detail row). 
Grab, drag-and-drop the caption ield into the new column, top row (table header 
row). Save, save, compile, and test. Depending on your data, the new column on 
your report may look similar to the following:

http:///


Reports

[ 290 ]

If so, then you need to change the properties of the data ield so that the full data 
contents can be displayed. Return to the VS RD, highlight the ield containing 
Gift_Ledger__ICAN_Campaign_. Conirm that the property Layout | CanGrow is 
False, rather than True. This will keep the data ield from wrapping to the next line 
when it exceeds the width of the available space. Instead, it will be truncated when it 
exceeds the available space (obviously, you may prefer different behavior in different 
situations). The other change required in this case is to revise the Size | Width 
property to a larger number. After those changes are made, the next test gives the 
following results for a sample of the ICAN Campaign column of data.

Our second change is to add a Gift count to each total line. As all we need to do in 
this case is to count the detail lines printed, we should check if we can use a function 
which is built into the VS RD. We can count the lines if we can count the instances  
of one of the data elements, such as the Donor ID. Let's go exploring to see if we  
can ind the tools and the technique to accomplish our goal.

We will start our exploration by investigating how a report transformation generated 
total has been created. Right click on the textbox containing the Estimated Value total 
(shown in the following screenshot):

Then click on the Properties option. As shown in the following screenshot, the  
Value ield contains =Sum(Fields!Gift_Ledger__Estimated_Value_.Value), 
which is not listed in the Data Sources window. But, as Gift_Ledger__Estimated_
Value_.Value is one of the items in the Data Sources window, it seems reasonable 
to assume that =Sum is a VS RD function and that we might ind a Count function if  
we keep looking.

http:///


Chapter 5

[ 291 ]

As we've determined that the Value ield contains an expression, let's go back to the 
text box, right-click again, and choose Expression…. That will open the following 
form, where we can see the tools that are used to construct an expression like the  
one that sums the total gift amounts.

.

http:///


Reports

[ 292 ]

Our task now is to ind a count function (or equivalent). We can continue our 
exploring, but let's move to a blank instance of the Edit Expression form, so we don't 
accidentally change the existing, working expression. Close the Edit Expression form 
for the Gift_Ledger_Estimated_Value and open an Edit Expression form for the 
Textbox in the same row, but in the column containing the Donor ID ield (that is,  
the next column to the right in our example).

With that empty Edit Expression form open, if we can ind a count function, perhaps 
we can build an expression to give us our desired result. Using the very practical 
"peek and poke" method (that is, clicking on various ields to see what we can ind), 
we uncover the following.

 

There's the Count function we were hoping to ind (along with quite a few other 
functions we can use in future situations). Double-click on the Count function or 
click on the Paste button, and the Count function will be pasted into the workspace 
above. Looking at the expression for the Estimated Value total, we can guess that 
now we want to identify what to count, in this case the Donor ID instance. If we click 
on the left pane, Fields (DataSet_Result), then we will see a list of all of the available 
data ields. Included in those is Gift_Ledger__Donor_ID, as shown in the following 
screenshot. The wavy line under the Count function in the workspace simply 
indicates that we don't have a complete operable expression deined yet.

http:///


Chapter 5

[ 293 ]

Double-click on the ield Gift_Ledger__Donor_ID (or highlight and click on Paste). 
The ield name will appear in the Edit Expression workspace after the Count 
function. You will likely still see the wavy underline, indicating you're still not quite 
done. If you look at the expression for the Sum, you will see that it begins with 
an equals sign (=) and the ield name is enclosed in parentheses. Let's make those 
additional changes. The inal expression should look like the following:

http:///


Reports

[ 294 ]

Once you have that, you can close the Edit Expression form. You may notice at this 
point that the font for the new Count expression is different from (for example, 
larger) the other ields. If you want all of the fonts to be the same, obviously, you will 
need to change the font property of the new ield to match the old ields. Once that is 
done, exit and save the VS RD layout changes, save and compile the report, and test 
it. You should now see a count of the gifts for each donor on the group total lines, 
looking something like the following:

If this were to be a production report to be given to a client, it is likely that we would 
work on the layout some more, perhaps more clearly identifying the gift count total. 
But we certainly have achieved our original goal of obtaining and printing the count.

http:///


Chapter 5

[ 295 ]

Some interactive report capabilities
Our third change is to add some interactive capabilities to our report. We want the 
report to display in either a summary or detail format, and we want to allow sorting 
the detail into different sequences. Return again to the VS RD layout, focused on 
Report 50002.

Let's allow the users to sort on the gift amount or on the campaign. And, to provide 
full lexibility, let's also allow sorting on the gift date. Right-click on the heading  
for the column on which we wish to control the sort, and display the properties 
form—let's start with gift amount. Click on the Interactive Sort tab. Click on the 
option Add an interactive sort action to this textbox. Then choose the ield on  
which the sort should occur. In this case, that's the =Fields!Gift_Ledger__Estimated 
Value_.Value:

http:///


Reports

[ 296 ]

Click on OK, and then perform a similar set of actions on the layout table column 
for the ICAN Campaign and Date ields. Once you've done that, exit VS RD, saving 
the changes, then save, compile and test the changed report design. You should see 
a report, the top of which looks something like the following. There will be pairs of 
up/down arrowheads that can be used for sort control. The last one of them used will 
show just the option not invoked (that is, only an up or a down arrowhead, not both).

The work required to implement our other interactive capability, Expand/Collapse 
Detail, is very similar to what we just did for the interactive sorting. Once again 
return to the VS RD for the layout of Report 50002. This time click on one of the 
layout table ields, so that the Table Element icons are visible. Then right click on  
the Table Detail icon. 

 

http:///


Chapter 5

[ 297 ]

Choose Properties, this time you will not get a Properties form, but will use the VS 
Property window (which defaults to the lower right panel of the layout screen, but 
is movable anywhere within the VS RD frame). Find the Visibility property group, 
expand it so that you can see the Toggle Item property. Click on the selection caret 
at the right end of the property space and choose the ield with which you would 
like to control the Expand/Collapse option. The Gift_Ledger_DateCaption ield is a 
good choice, because it is the topmost left ield, so the Expand/Collapse option will 
be quite visible to the user there. After you exit, save, compile, and run the report. 
You will see the Expand/Collapse icon in the top left of the report, as shown in the 
following screenshot, where the detail data is expanded (that is visible):

http:///


Reports

[ 298 ]

In the next screenshot, the detail data is collapsed (that is, hidden):

As you can see, the Expand/Collapse icon will be either plus or minus, depending 
on whether the related data is currently visible (plus) or hidden (minus). You should 
also experiment with using this feature to make columns on a report be visible or 
hidden, at the user's option.

Page Header fields
Fields that are displayed in the Page Header or Page Footer sections of the VS RD 
cannot contain variable data. As a result, a couple of different approaches are used  
to be able to display "normal" report headings that do contain variable data.

One approach is the use of Hidden Fields. In the following screenshot at the point 
of the cursor arrow, three Hidden Fields are present, which were all created as part 
of the automatic transformation process of Create Layout Suggestion. These ields 
are essentially similar to other VS RD data ields, except they are set to not be visible, 
and are only used to manage data rather than display it directly.

http:///


Chapter 5

[ 299 ]

Hidden Fields that are created by the Report Transformation process 
are set to red by default (and by convention). Hidden Fields that are 
created in the C/SIDE RD to hold special data or logic should be set to 
yellow (see the Help titled "How to: Add and Identify Hidden Fields"). 
This color coding makes the hidden ields' purpose easier to identify for 
software maintenance.

Another approach takes advantage of the ReportItems collection. This is particularly 
useful for Page Header and Page Footer. The ReportItems collection contains all 
of the elements that are in the report Body. You can put a ield on the report Body, 
make it invisible, then reference it from the header or footer via the ReportItems 
collection. In the layout generated by the Create Layout Suggestion transformation, 
this is the way the Report Caption, Company Name and Page Number information  
is displayed.

In this screenshot, the leftmost of these ields handles the Company Name, the 
second handles the Report Caption, the third handles the Page No. The ields deined 
in the Page Header then refer to the Hidden Field textboxes, thus overcoming the 
limitation on displaying variable data from Data Sources.

http:///


Reports

[ 300 ]

The second method of handling header information is to include it as an independent 
textbox within the body section. The standard reports often use this technique, as 
shown in the next screenshot from Report 108, Customer - Order Detail. There are 
two such textboxes in this report, both designed to display the ilters that have been 
applied to a particular instance of the report execution:

Request Page 
A Request Page is a page that is executed at the beginning of a report. Its presence 
or absence is under developer control. A Request Page looks similar to the following 
screenshot based on one of the standard system reports, the Customer – Order Detail 
report, Report 108.

http:///


Chapter 5

[ 301 ]

There are three FastTabs in this page. The Customer and Sales Order Line FastTab 
are tied to the data tables associated with this report. These FastTabs allow the  
user to deine both data ilters and Flow Filters to control the report processing.  
The Options FastTab exists, because the software developer decided to allow  
some additional user options for this report.

As our example report only has one table, the default Request Page for it has only 
one FastTab. As we have not deined any of the processing options that would 
require user input before the report is generated, we have no Options FastTab  
(see following screenshot).

http:///


Reports

[ 302 ]

Our inal enhancement of our Gifts by Donor report will be to add the option to 
allow the user to choose whether or not the report detail will include Gifts with  
a Category of SERVICES.

There is some very simple C/AL programming needed to support providing the 
user with this option: 

1. Open Report 50002 in the Classic RD.

2. Access the C/AL Globals form from View | C/AL Globals.

3. Add a new variable to the C/AL Globals as shown in the  
following screenshot.

http:///


Chapter 5

[ 303 ]

4. Exit the C/AL Globals form. Then click on the Gift Ledger DataItem and press 
F9. That will take us into the C/AL Editor. Add a line of C/AL code which 
will skip all Gift Ledger entries where the Category is 'SERVICES', unless the 
PrintServices variable is set to TRUE (see the following screenshot):

Finally, we need to design a Request Page that will display our Options FastTab 
along with the FastTab for ilters on the Gift Ledger entries. Our Request Page design 
follows along the basic lines of the pages we created in Chapter 4, Pages—Tools for 
Data Display. The irst line is a simple Container deinition. The second line is a Type 
Group line, SubType Group, with a Caption of Options. The third line is Type 
Field with a SourceExpr equal to Global Variable (PrintServices) that we deined 
a moment ago. The Caption for this third line is the screen label we want for the 
variable, so that the user will understand the option available to them. If there were 
additional variables to be entered by the user, there would need to be additional 
ield lines similar to the one in this page design. The page design is shown in the 
following screenshot:

http:///


Reports

[ 304 ]

When this is all done, the modiied report, complete with the new Request Page 
design, should be saved and compiled, then Run for a test. Your result should look 
similar to the following screenshot. When you run the report with the Print Gifts of 
Services? option checked, the SERVICES entries should be printed. When the option 
is not checked, those entries should not be printed.

Processing-Only reports
One of the report properties we reviewed earlier was ProcessingOnly. If that 
property is set to Yes, then the report object will not output a report, but will  
simply do the processing you program it to do. The beauty of this capability is that 
you can use the built-in processing loop of the NAV report object along with its 
sorting and iltering capabilities to create a variety of data updating routines with  
a minimum of programming. Use of report objects also gives you access to the 
Request Page to allow user input and guidance for the run. You could create the 
same functionality using codeunit objects and programming all of the loops, the 
iltering, the user-interface Request Page, and so on yourself. But with a  
Processing-Only Report, NAV takes the load off you.

When running a Processing-Only object, at the beginning you see very little 
difference as a user. You see that there is no visible output at the end of processing, 
of course. However, at the beginning, the Processing-Only Request Page looks very 
much as it would for a printing report, except that the Print and Preview choices are 
not available. Everything else looks the same.

http:///


Chapter 5

[ 305 ]

Creating a report from scratch
Even when you're going to create a report that cannot be done with the Report 
Wizard, it's still a good idea to use the Report Wizard as a starting point, if feasible. 
Choose the primary table in terms of data low and layout, then rough out the report 
using the Wizard. Once that is done, begin modifying the report using the Designer, 
in order to add parent and child data items, additional total levels, and so on.

If your inal target report is to be an Invoice format, for example, you could begin 
the report development by using the Wizard to lay out the Invoice Detail line. 
You would then use the Designer to create the Invoice Header sections and the 
appropriate Footer sections.

A good designer deines the goal before starting development. To work the other 
way around is known as the "Ready, Fire, Aim" approach. Obviously, the irst step is 
to deine the need the report is to satisfy, and what data should be displayed in order 
to meet that need.

A wide variety of design decisions must be made, including factors such as the 
reporting sequence (that is the key to be used), what subtotals and totals should be 
calculated, what format will be easiest to use, and so on. The totaling requirements 
are often the determinant of what key will be appropriate.

A part of the design and development process is testing. Quite often, when a 
report is developed, there isn't a lot of meaningful test data available. Frequently, 
therefore, another task is to design and create quality test data. Testing should be 
done incrementally as individual changes are made. If too many changes are made 
without an intermediate test, it may be dificult to identify the source of problems. 
It is a good idea to compare the generated result to your original layout and identify 
what remains to be done. It's also always useful at this point to also compare the 
printout of the generated report to the sections, to see what controls were used for 
each of the displayed ields. From that information, you can begin to plan how you 
want to manually change the sections to make the inal report look like your original 
design layout.

A key point is to realize that even though the Wizards are of limited capability, they 
still can be used to make the work a lot easier. This is especially true for relatively 
straightforward reports. There will certainly be occasions when using the Report 
Wizard is simply not useful. In that case, you will begin with a totally blank slate. 
There will also be cases where you start with the Wizard's output and strip out some 
of what the Wizard puts in. The reason for using the Wizard is not the high quality of 
what it generates (it's adequate, but not very elegant), but for the time it saves you.

http:///


Reports

[ 306 ]

Creative report plagiarism
Just as we discussed in the chapter on pages, when you want to create a new report 
of a type that you haven't done recently (or at all), it's a good idea to ind another 
report that is similar in an important way and study it. At the minimum, you will 
learn how the NAV developers solved a data low or totaling or iltering challenge. 
In the best case, you will ind a model that you can follow closely, respectfully 
plagiarizing a working solution, thus saving yourself much time and effort.

Often, it is useful to look at two or three of the standard NAV reports for similar 
functions to see how they are constructed. There is no sense in re-inventing the 
wheel (recreating the design for a report of a particular type) when someone else has 
not only invented a version of it already, but provided you with the plans and given 
you the ability to examine the C/AL code and the complete structure of the existing 
report object.

When it comes to modifying a system such as NAV, plagiarism is a very effective 
research and design tool. In the case of reports, your search for a model may be 
based on any of the several key elements. You might be looking for a particular data 
low approach and ind that the NAV developers used the Integer table for some 
Data Items (as many reports do).

You may need a way to provide some creative iltering similar to what is done in 
an area of the standard product. You might want to provide user options to print 
either detail or a couple of different levels of totaling, with a layout that looks good 
no matter which choice the user makes. You might be dealing with all three of these 
design needs in the same report. In such a case, it is likely that you are using multiple 
NAV reports as your models, one for this feature, another for that feature, and  
so forth.

If you have a complicated, application-speciic report to create, you may not be  
able to directly model your report on a model that already exists. But, often you  
can still ind ideas in standard reports that you can apply to your new design.  
You will almost always be better off using a model rather than inventing a totally 
new approach.

If your design concept is too big a leap from what has been done previously, you will 
ind the tools available have built-in constraints, which make it dificult to achieve 
your goal. In other words, generally you should build on the obvious strengths of 
C/AL. Creating entirely new approaches may be very satisfying (when it works),  
but too often it doesn't work well and costs a lot.

http:///


Chapter 5

[ 307 ]

Summary
In this chapter, we focused on the structural and layout aspects of NAV Report 
objects. We studied the primary structural components, data and format, along 
with the Request Page. We also experimented with some of the tools and modestly 
expanded our ICAN application.

In the next chapter, we are going to begin exploring the key tools that pull the  
other pieces together, the C/SIDE development environment, and the C/AL 
programming language.

http:///


Reports

[ 308 ]

Review questions
1. Reports are ixed displays of data extracted from the system, designed only 

for hardcopy output. True or False? 

2. Data from tables can be deined either in Sections in the Classic Report 
Designer or in the Data Sources area of the Visual Studio Report Designer. 
True or False? 

3. Within the Visual Studio Report Designer, you can deine calculations on 
table data or can deine literals for display on a report. True or False?

4. Visual Studio RTC reports only allow one header section and one footer 
section. True or False? 

5. By convention, hidden ields in report layouts are color coded. Which two 
colors are used and what do they indicate? 

a. Blue—indicating they were created by the Report Transformation 
process

b. Red—indicating they were created by the Report Transformation 
process

c. Yellow—indicating they were created by the developer to hold 
special data or logic

d. Green—indicating that they can be visible or invisible at the  
user's option

6. In Classic reports, C/AL code can be embedded in Sections. In RTC reports, 
hidden ields provide many similar capabilities. True or False?

7. Which two of these choices describe some (not all) of the steps involved in 
deining a new RTC report?

a. Deine DataItems, deine Working Data, deine C/AL logic
b. Deine Sections Layout, deine data in Sections, deine  

C/AL logic

c. Create VS Layout, deine VS Dynamic Options, create Request Page
d. Create Request Form, create VS Layout, deine DataItems

http:///


Chapter 5

[ 309 ]

8. NAV 2009 provides the ability to output to what targets? Choose three:

a. Web pages

b. PDF iles
c. Word iles
d. Excel iles
e. Installed printers

9. NAV Report data low includes a structure that provides for "child" 
DataItems to be fully processed for each record processed in the "parent" 
DataItem. What is the visible indication that this structure exists in a report 
DataItem Design form? Choose one. 

a. Nesting

b. Indentation

c. Linking

10. A report that only does processing and generates no printed output can be 
deined. True or False?

http:///


http:///


Introduction to  

C/SIDE and C/AL

A special kind of beauty exists which is born in language, of language, and for 
language—Gaston Bachelard 

In the preceding chapters, we introduced the basic building block objects of NAV 
tables, pages, and reports. In each of these, we reviewed the triggers within various 
areas such as the overall object, controls, data items, the Request Page, and so on.  
The purpose of each trigger is to be a container in which C/AL code can reside.  
The triggers are "ired", that is invoked or executed, when certain predeined  
events occur.

In this chapter, we're going to begin learning more about the C/AL programming 
language. We'll start with the basics, but we won't spend a lot of time on those. Many 
things you already know from programming in other languages apply to C/AL. In 
addition, many of the basic deinitions can be found in the online C/AL Reference 
Guide that is part of the NAV 2009 Help (as well as in the MSDN Library sections in 
Microsoft Dynamics NAV).

The goal of this chapter is to help you in learning to navigate, productively use the 
C/SIDE development environment, and to be comfortable in C/AL. We'll focus on 
the tools and processes that you will use most often. You will also learn concepts that 
you can apply in more complex tasks down the road.

As with most of the programming languages, you have considerable lexibility for 
deining your own model for your code structure. However, when you are inserting 
new code within existing code, there's a strong argument for utilizing the model and 
the structure that already exists in the original code. When you feel compelled to 
improve on the model of the existing code, do so in small increments and take into 
account the effect of your changes on upgradability.

http:///


Introduction to C/SIDE and C/AL

[ 312 ]

Essential navigation
All of the development for NAV normally takes place within the C/SIDE 
environment with extension, as you saw in Chapter 5, Reports, into the Visual Studio 
Report Designer. The only exception to using C/SIDE is the possibility of doing 
development in Text mode using a text editor or the Developer's Toolkit. That 
approach is generally only appropriate for simple modiications to existing objects. 
In general, the recommendation is "stick with C/SIDE".

As an Integrated Development Environment, C/SIDE provides you with a 
reasonably full set of tools for your C/AL development work. By design, C/SIDE is 
not nearly as fully featured as Microsoft's Visual Studio, but the features it has are 
quite useful. C/SIDE includes a smart editor (it knows C/AL, though sometimes not 
as much as you would like), the one and only C/AL compiler, integration with the 
application database, and tools to export and import objects both in compiled format 
and as formatted text iles.

We'll explore each of these C/SIDE areas in turn. Let's start with an overview of the 
Object Designer.

Object Designer
All the NAV object development work starts from within the C/SIDE Object 
Designer. The Object Designer is accessed by selecting Tools | Object Designer  
or by pressing Shift+F12 keys, as shown in the following screenshot:

http:///


Chapter 6

[ 313 ]

The type of object on which you're going to work is chosen by clicking on one of the 
buttons on the left side of the Object Designer screen. The choices match the eight 
object types Table, Form, Report, Dataport, XMLport, Codeunit, MenuSuite, and 
Page. When you click on one of these, the Object Designer screen display is iltered 
to show only that object type. There is also an All button, which allows objects of all 
types to be displayed on screen.

No matter which object type has been chosen, the same four buttons appear at 
the bottom of the screen: New, Design, Run, and Help. But, depending on which 
object type is chosen, the effect of selecting one of these options changes. When you 
select Design, you will open the object that is currently highlighted in a Designer 
speciically tailored to work on that object type. When you select Run, you will be 
requesting the execution of the currently highlighted object. The results of that, of 
course, will depend on the internal design of that particular object. When you select 
Help, the C/SIDE Help screen will display, positioned at the general Object Designer 
Help for Developing Objects.

Starting a new object
When you select New, the screen you see will depend on what type of object has 
focus at the time you make the New selection. In each case, you will have the 
opportunity to begin creating a new object and you will be presented with the 
Designer for that particular object type.

The New Designer screens for each of the object types are discussed in the  
following sections.

Table Designer
The Table Designer screen is shown in the following screenshot:

The Table Designer invites you to begin deining data ields. All the  
associated C/AL code will be embedded in the underlying triggers and  
developer-deined functions.

http:///


Introduction to C/SIDE and C/AL

[ 314 ]

Page Designer
For Page Designer, the irst screen is as follows:

Any New Page effort begins with the choice of using the Wizard. If you choose not 
to use the Wizard and want to begin designing your page from scratch, you will 
select the Create blank page option and then will see the following screen, which is 
your page layout screen:

If you choose not to use the Wizard (that is choose Create), you will see a Page 
Designer form like the above image. If you use the Wizard, it will walk you through 
deining FastTabs and assigning ields to those tabs. When you inish with the 
Wizard, you will be dropped into the Page Designer with your page well on the  
way to completion.

http:///


Chapter 6

[ 315 ]

Report Designer
For New Report, the following screen is displayed:

Just like with a new page, a New Report effort begins with the choice of using the 
Wizard. If you wish not to use the Wizard and want to begin designing your report 
from scratch, you will select the Create a blank report option. You'll then see the 
following screen where you can begin by deining the primary DataItem for  
your report:

http:///


Introduction to C/SIDE and C/AL

[ 316 ]

XMLport Designer
In previous versions of NAV, Dataports were used to import or export text iles and 
XMLports were used only for XML ile imports and exports. In NAV 2009, while 
Dataports are still used for the Classic Client, XMLports handle the task of importing 
and exporting both XML iles and text iles.

The XMLport Designer is as seen in the following screenshot:

There is no Wizard for XMLports. When you click on New, you proceed directly to 
the XMLport Designer screen.

XMLports are tools for deining and processing text-based data structures, including 
those which are deined in XML format. XML is a set of data formatting rules for 
dissimilar applications to exchange data. XML-structured iles have become an 
essential component of business data systems.

Even though XML is becoming more and more important for inter-system data 
exchanges, NAV applications also often must deal with data structures such as .csv 
iles. The Classic Client uses Dataport objects to handle text ile structures other than 
XML iles. With RTC, Dataports are obsolete and we now use XMLports for all types 
of text iles.

Once you become comfortable using C/SIDE and C/AL, we will learn more about 
XMLports both for XML iles and for other text ile formats. In the previous versions 
of NAV, XMLports had to be executed from other code (preferably Codeunits) 
as they cannot be run directly, but that is no longer true for the NAV 2009 RTC. 
XMLports can now be run directly from menu entries as well as from other objects. 
XMLport objects can also be passed as parameters to web services in a Codeunit 
function, thus supporting the easy passing of information such as a list of customers 
or inventory items.

http:///


Chapter 6

[ 317 ]

Codeunit Designer
The Codeunit Designer is shown in the following screenshot:

Codeunits have no superstructure or surrounding framework around the single code 
OnRun trigger. Codeunits are primarily a shell in which you can place your own 
functions and code so that it can be called from other objects.

MenuSuite Designer
MenuSuites and XMLports were introduced in version 4.0 of NAV. The initial screen 
that comes up when you ask for a new MenuSuite, asks you to choose which Client 
type and what MenuSuite Design Level you are preparing to create. The following 
screenshot shows all 14 available Design Level values:

http:///


Introduction to C/SIDE and C/AL

[ 318 ]

When one of those design levels has been used (created as a MenuSuite option), 
that design level will not appear in this list the next time New is selected for the 
MenuSuite Designer. MenuSuites can only exist at the 14 levels shown. Only one 
instance of each level is supported. Once you have chosen a level to create, NAV 
shifts to the MenuSuite Designer mode, which looks similar to a MenuSuite in 
production mode except for the heading at the top. The following screenshot  
shows a navigation pane (the MenuSuite displayed) ready for production use:

The following screenshot shows the same navigation pane in Designer mode:

http:///


Chapter 6

[ 319 ]

As you can see, the main visible differences are the change in the heading to indicate 
what MenuSuite level is being designed (Company in this case) and the chevrons to 
the left of each menu bar icon.

Pressing the Alt+F12 keys or selecting Tools | Navigation Pane Designer will also 
take you into the navigation pane (MenuSuite) Designer. The only way to exit the 
Navigation Pane Designer is by pressing the Esc key with focus on the navigation 
pane or by right-clicking on the Navigation Pane Designer heading and selecting 
the Close Navigation Pane Designer option. There are a number of basic look and 
feel differences between the MenuSuite Designer and the other object designers. 
Some of these are simply due to the ways MenuSuites are different from other NAV 
objects and some are undoubtedly due to design decisions made by the Microsoft 
developers of the tool.

We will discuss more about what you can do with MenuSuite development in a  
later chapter.

Some designer navigation pointers
In many places in the various designers, standard NAV data entry keyboard 
shortcuts apply. For example:

F3 to create a new empty entry.

F4 to delete the highlighted entry.

F8 to copy the entry from the same column on the preceding record.

F5 to access the C/AL Symbol Menu, which shows you a symbol table for the 
object on which you are working. This isn't just any old symbol table; this is 
a programmer's assistant. We'll dig into how this works after we learn more 
about C/AL.

F9 to access underlying C/AL code.

These last two (F5 and F9) are particularly useful because sometimes the icons that 
you might normally use to access these areas disappear (a long-standing system 
idiosyncrasy). The disappearing icons are disconcerting, but only a minor problem  
if you remember F5 and F9.

F11 to do an on-the-ly compile (very useful for error checking code as you 
write it).

Shift+F4 to access properties.

Ctrl+Alt+F1 to bring up a Help screen showing all the available Function 
Key actions.

•

•

•

•

•

•

•

•

http:///


Introduction to C/SIDE and C/AL

[ 320 ]

Ctrl+X, Ctrl+C, and Ctrl+V in normal Windows mode for deletion (or cut), 
copy, and paste, respectively.

You can cut, copy, and paste C/AL code, even functions, relatively freely 
within an object, from object to object, or to a text-friendly tool (for example, 
Word, or Excel text editor) much as if you were using a text editor. The source 
and target objects don't need to be of the same type.

Ctrl+F8 while highlighting any data record to zoom in on a display of the 
contents of all the ields in that record. This works for users and their data  
as well as for developers.

When you are in a list of items that cannot be modiied, for example, the C/AL 
Symbol Menu or a Zoom display on a record, you can focus on a column, click on a 
letter, and jump to the next ield in sequence in the column starting with that letter. 
This works in a number of places where search is not supported, so it acts somewhat 
like a search substitute. As it applies only to the irst letter in the entry, this search 
capability is limited.

The easiest way to copy a complete object in order to create a new version is to:

1. Open the object in Design mode.

2. Click on File | Save As object, assign a new object number, and change the 
object name (no duplicate object names are allowed). A quick (mouseless) 
way to do a Save As is pressing Alt+F and Alt+A keys—continuously 
holding down the Alt key while pressing irst F and then A.

Don't ever delete an object or a ield numbered in a range where your 
license doesn't allow creation of an object. If you don't have a compiled 
(for example, fob) back-up copy of what you've deleted available for 
import (that is, the entire object), you will lose the ability to replace the 
deleted item. 

If you want to use an object or ield number for a different purpose than the standard 
system assignment (not a good idea), make the change in place. Don't try a delete 
followed by add; it won't work.

Exporting objects
Object Export can be accessed for backup or distribution purposes via File | Export. 
Choosing this option, after highlighting the objects to be exported, brings up a 
standard Windows ile-dialog screen with the ile type options of .fob (NAV object), 
.txt, or .xml as shown in the following screenshot:

•

•

http:///


Chapter 6

[ 321 ]

The safer, more general purpose format for exporting is as a compiled object,  
created with a ile extension of .fob. But the alternative is available to export an 
object as a text ile with a ile extension of .txt or an XML structured text ile  
with a ile extension of .xml. The only object types whose content will export in 
an XML format are Forms, Reports, and Pages. An exported text ile is the only 
way to use an external tool such as a third-party text editor to do before and after 
comparisons of objects or to search objects for the occurrences of strings (such as 
variable names). Such a ile can also be used with a source-control tool such as 
Microsoft Visual SourceSafe.

A compiled object can be shipped to another system as a patch to install with little 
fear that it will be corrupted midstream. The system administrator at the other 
system simply has to import the new object with some directions from you. Exported 
compiled objects also make excellent backups. Before changing or importing any 
working production objects, it's always a good idea to export a copy of the "before" 
object images into a .fob ile. It should also be labeled so you can easily ind it for 
retrieval. Any number of objects can be exported into a single .fob ile. You can later 
selectively import any one or several of the individual objects from that group .fob.

A full developer's license is required to export or import objects in 
the .txt format.

http:///


Introduction to C/SIDE and C/AL

[ 322 ]

Importing objects
Object Import is accessed through File | Import in the Object Designer. The 
import process is more complicated than the export process because there are 
more possibilities and decisions that are to be made. As we've already mentioned 
exporting text, XML, and compiled versions of an object, your assumption that we 
can import all three formats as well would be correct. The difference is that when 
you import a compiled version of an object, the Object Designer allows decisions 
about importing and provides some information to help you make them.

When you import a text version of an object, whether .txt or .xml, the 
new version is brought in regardless of what it overwrites and regardless 
of whether or not the incoming object can actually be compiled. The object 
imported from a text ile is not compiled. In other words, by importing 
a text-formatted object, you could actually replace a perfectly good, 
modiied production object with some trash that only had a passing 
resemblance to a functioning text object. It is best if text-formatted objects 
are never used when sending objects to an end user for installation.

Never import a text object unless you have a current backup of all the 
objects that might be replaced.

When you import a compiled object from a .fob ile, you will get one of two decision 
message screens, depending on what the Object Designer Import inds when it 
checks for existing objects. If there are no existing objects that the import logic 
identiies as matching and modiied, then you will see the following dialog:

The safest thing to do is always open the Import Worksheet by clicking on the No 
button. Then examine what you see there before proceeding with the import.

If the .fob ile you are importing is found to have objects that could be in conlict 
with existing objects that have been previously modiied, then you will see the 
following dialog:

http:///


Chapter 6

[ 323 ]

Of course you can always click on Cancel and simply exit the operation. Normally, 
you will click on OK to open Import Worksheet and examine the contents.

An example of what you might see in Import Worksheet is shown in the  
following screenshot:

While all of the information presented is useful at one time or another, usually you 
can focus on just a few ields. The basic question, on an object-by-object basis, is 
"Do I want to replace the old version of this object with the new copy?" In the case 
of tables, import also allows you to merge the incoming and existing table versions. 
Only very sophisticated developers should attempt to use this feature and then only 
if absolutely sure of the contents of the two table versions to be merged. The rest of 
us should always either choose the Import Action Replace or Skip (or Create, if it is 
a new object). This latter statement applies to all of the object types.

http:///


Introduction to C/SIDE and C/AL

[ 324 ]

At the bottom of the preceding screenshot, you can see the comparison of the 
Existing object and the New object information. You must use this information 
to decide whether or not to accept the import of this object (that is, take an action 
of Create or Replace or action of Skip). More information on using the Import 
Worksheet and the meaning of various warnings and actions can be found in  
C/SIDE Reference Guide Help under Import Worksheet.

Text objects
A text version of an object is especially useful for a few speciic development tasks. 
C/AL code or expressions can be placed in a number of different nooks and crannies 
of objects. In addition, sometimes object behavior is controlled by Properties. 
Consequently, it's not always easy to igure out just how an existing object is 
accomplishing its tasks. But an object exported to text has all its code and properties 
lattened out where you can use your favorite text editor to search and view. Text 
copies of two versions of an object can easily be compared in a text editor. Text objects 
can be stored and managed in a source code library. In addition, a few tasks, such as 
re-numbering an object, can be done more easily in the text copy than within C/SIDE.

Object number licensing
In Chapter 1, A Short Tour through NAV 2009, we reviewed some object numbering 
practices followed in NAV. The object number range for general purpose custom 
objects (those not part of an add-on) starts at 50000. If your client has purchased 
the license rights to Table Designer, the rights to 10 table objects are included, 
numbered 50000 to 50009. With Page Designer come the rights to either 10 or 100 
page objects, numbered 50000 to 50009 (or 50099), depending on the system license 
level (Business Essentials or Advanced Management).

With Report Designer and Dataport Designer come the rights to 100 report objects 
and 100 Dataport objects, respectively, each numbered 50000 to 50099. With the 
XMLport Designer come the rights to 100 XMLport objects, numbered 50000 to 
50099. With the Application Builder come the rights to 100 Codeunit objects, 
numbered 50000 to 50099. Otherwise, Codeunit objects must be licensed individually 
or in groups of 100. As a part of the standard system, the customer has access to the 
MenuSuite Designer, not to add new levels, but just to modify the company level.

If you are creating an add-on that will be distributed widely, you can apply to 
Microsoft for a range of object numbers that will be reserved for your add-on's 
objects. Some such ranges allow developers from other organizations to have 
modiication access to your enhancement. Other ranges require a special license 
to view or modify your code, thus providing more security against unauthorized 
changes or copying.

http:///


Chapter 6

[ 325 ]

Some useful practices
Liberally make backups of objects on which you are working. Always make a 
backup of the object before you start changing it. Do the same regularly during the 
development process. In addition to power outages and the occasional system crash, 
once in a while you may do something as a developer that upsets C/SIDE and it  
will go away without saving your work. If your project involves several developers, 
you may want to utilize a source control system that tracks versioning and has a 
check-out, check-in facility for objects.

Use F11 to test-compile frequently. You will ind errors more easily this way.  
Not all errors will be discovered just by compiling. Thorough testing is always  
a requirement.

When developing pages or reports, use the Alt+F, R or Alt+F, Ctrl+R keys to do test 
runs of the objects relatively frequently; whenever you reach a stage where you have 
a working copy, save it.

Never design a modiication that places data directly in or changes data directly  
in a Ledger table without going through the standard Posting routines. It's tempting 
to, but doing so is an almost sure path to unhappiness. If you are creating a new 
Ledger for your application, for the sake of consistency with the NAV standard  
low, design your process with a Journal table and a Posting process. Do the same  
for new Registers, Posted Document tables, and other tables normally updated  
during Posting.

If at all possible, try to avoid importing modiications into a production system when 
there are users logged-in to the system. If a logged-in user has an object active that is 
being modiied, they will continue working with the old version until they exit and 
re-enter. Production use of the obsolete object version may possibly cause confusion 
or even more serious problems.

Always test modiications in a reasonably current copy of the production system. 
Do your inal testing by using real data (or at least realistic data) and a copy of the 
customer's production license. As a rule, you should never develop or test in the live 
production system. Always work in a copy. Otherwise, the price of a mistake, even a 
simple typo, can be enormous.

If you wish to reduce the likelihood that a change to a production system is 
incompatible with the rest of the system, recompile all of the objects in the system 
after importing changes into your test copy of the production system. You must 
have all referenced Automation or OCX components registered in your system for 
this to work well. Note that, the systems in which developers have left inoperable 
or obsolete "temporary" objects (that is, systems that have not had proper 
"housekeeping"), you may uncover serious problems this way, so be prepared.

http:///


Introduction to C/SIDE and C/AL

[ 326 ]

Changing data definitions
The integration of the development environment with the application database is 
particularly handy when you are making changes to an application that is already 
in production use. C/SIDE is good about not letting you make changes that are 
inconsistent with existing data. For example, let's presume you have a text ield that 
is deined as 30 characters long and there is already data in that ield in the database, 
one instance of which is longer than 20 characters. If you attempt to change the 
deinition of that ield to 20 characters long, you will get an error message when 
you try to save and compile the table object. You will not be able to force the change 
until you adjust either the data in the database or you adjust the change so that it is 
compatible with all of the existing data.

Saving and compiling
Whenever you exit the Designer for an object, if you have changed anything, by 
default, NAV wants to save and compile the object on which you were working.  
You will see a dialog similar to the following screenshot:

If you want to save the changed material under a new object number while  
retaining the original object, you must Cancel this option and exit the Designer by 
using the File | Save As option. If your object under development is at one of those 
in-between stages where it won't compile, you can deselect the Compiled checkbox 
and just save it by clicking on the Save button without compiling it. 

You should not complete a development session without getting an  
error-free compilation. Even if big changes are made in small increments, 
this will not be dificult most of the time. Exceptions should be rare.

http:///


Chapter 6

[ 327 ]

On occasion, you may make changes that you think will affect other objects. In 
that case, from the Object Designer screen, you can select a group of objects to be 
compiled. One relatively easy way to do that is to mark each of the objects to be 
compiled, then use the View | Marked Only function to select just those marked 
objects. That allows them to be compiled en masse. Marking an object is done by 
putting focus on the object and pressing the Ctrl+F1 keys. The marked object is  
then identiied with a bullet in the left screen column for that object's row. 

See the four marked objects in the following screenshot: 

Selecting View | Marked Only yields the following screenshot:

http:///


Introduction to C/SIDE and C/AL

[ 328 ]

Select all the entries (using Ctrl+A keys is one way to do this), press F11, and 
respond Yes to the question Do you want to compile the selected objects? Once the 
compilation of all the selected objects is completed, you will get a message indicating 
how many of the objects had compilation errors. After you respond to that message, 
only the objects with errors will remain marked. As the Marked Only ilter will be 
on, just those objects that need attention will be shown on the screen. If you had 
simply compiled a highlighted selection of objects (not marked), those with errors 
will be marked so that you can use the Marked Only ilter to select the ones  
needing attention. 

Some C/AL naming conventions
In the previous chapters, we discussed naming conventions for tables, pages, and 
reports. In general, the naming guidelines for NAV objects and C/AL encourage 
consistency, common sense, and intelligibility. You should use meaningful names. 
These make the system more intuitive to the users and more self-documenting. 

When naming internal variables, try to keep the names as self-documenting as 
possible. Make sure you differentiate between similar, but different, values such as 
Cost (cost from the vendor) and Amount (selling price to the customer). Embedded 
spaces, periods, or other special characters should be avoided (even though you will 
ind some violations of this in the product). If you want to use special characters for 
the beneit of the user, put them in the caption, not in the name. If possible, stick to 
letters and numbers.

There are a number of reasons to keep variable names simple. Other software 
products with which you may interface may have limitations on variable names. 
Some special characters have special meaning to other software or in another human 
language. In NAV, ? and * are wildcards and, therefore, must be avoided in variable 
names. $ has special meaning in other software. SQL Server adds its own special 
characters to NAV names and the resultant combinations can get quite confusing 
(not just to you but to the software). The same can be said for the names constructed 
by the internal RDLC generator.

When you are deining multiple instances of a table, either differentiate clearly 
by name (for example, Item and NewItem) or by a sufix number (for example, 
Item1, Item2, Item3). In the very common situation where a name is a compound 
combination of words, begin each abbreviated word with a capital letter (for 
example, NewCustBalDue).

http:///


Chapter 6

[ 329 ]

Avoid creating variable names that are common words that might be reserved words 
(for example, Page, Column, Number, and Integer). C/SIDE will not warn you that 
you have done so and you may ind your logic and the automatic logic working at 
very mysterious cross purposes. Do not start variables with a sufix "x", which is 
used in some automatically created variables (such as xRec). Make sure that you 
clearly differentiate between internal variable names and those originating in tables. 
Sometimes C/SIDE will allow you to have a global name, local name, and/or record 
variable name, all with the same literal name. If you do this, you are practically 
guaranteeing a variable misidentiication bug where the compiler uses a different 
variable than what you intended to be referenced.

When deining a temporary table, preface the name logically, for example with Temp. 
In general, use meaningful names that help in identifying the type and purpose of 
the item being named. When naming a new function, you should be reasonably 
descriptive. Don't name two functions located in different objects with same name.  
It will be too easy to get confused later.

In short, be careful, be consistent, be clear, and use common sense.

Variables
As we've gone through examples showing various aspects of C/SIDE and C/AL, 
we've seen and referred to variables in a number of situations. Some of the following 
is obvious, but for clarity's sake we'll summarize here.

In Chapter 3, Fields, we reviewed various data types for variables deined within 
objects (referred to in Chapter 3 as working storage data). Working Storage consists 
of all the variables that are deined for use within an object, but whose contents 
disappear when the object closes. Working Storage data types discussed in Chapter 
3 are those that can be deined in either the C/AL Global Variables or C/AL Local 
Variables tabs. Variables can also be deined several other places in an NAV object.

Global identifiers
Global variables are deined on the C/AL Globals form, in the Variables tab.

Global Text Constants are deined on the Text Constants tab section of the C/AL 
Globals form. The primary purpose of the Text Constants area is to allow easier 
translation of messages from one language to another. By putting all message text 
in this one place in each object, a standardized process can be deined for language 
translation. There is a good explanation in the C/SIDE Reference Guide Help on 
how to create Text Constants.

http:///


Introduction to C/SIDE and C/AL

[ 330 ]

Global Functions are deined on the Functions tab of the C/AL Globals form.

The following screenshot shows C/AL Globals form:

Local identifiers
Local identiiers only exist deined within the range of a trigger. This is true whether 
the trigger is a developer-deined function or one of the default system triggers or 
standard application-supplied functions.

Function local identifiers
Function local identiiers are deined on one or another of the tabs on the C/AL 
Locals form that we use for deining a function. 

Parameters and Return Value are deined on their respective tabs.

The Variables and Text Constants tabs for C/AL Locals are exactly similar in use to 
the C/AL Globals tabs.

The C/AL Locals form can be seen in the following screenshot:

Other local identifiers
Trigger local variables are also deined on one or another of the tabs on the C/AL 
Locals form. The difference between trigger Local Variables and those for a function 
is that the irst two tabs, Parameters and Return Value, are disabled for triggers that 
are not deined as functions. In a future version of NAV, these disabled tabs may 
disappear. The use of the Variables and Text Constants tabs are exactly the same for 
triggers as for functions. When you are working within a trigger, you can access the 
local variables through the menu option View | C/AL Locals.

http:///


Chapter 6

[ 331 ]

Special working storage variables
Some working storage variables have additional attributes to be considered.

Temporary tables
Temporary tables were discussed in Chapter 2, Tables. Now let's take a quick look 
at how one is deined. Deining a Global Temporary table begins just like any 
other Global Variable deinition of the Record data type. With an object open in the 
Designer, select View | C/AL Globals, enter a variable name, data type of Record, 
and choose the table whose deinition is to be replicated for this temporary table as 
the Subtype. With focus on the new Record variable, click on the Properties icon  
(or press the Shift+F4 keys). Set the Temporary property to Yes. That's it. You've 
deined a temporary table like the one in the following image.

You can use the temporary table just as though it were a permanent table with some 
speciic differences:

The table contains only the data you add to it during this instance of the 
object in which it resides.

You cannot change any aspect of the deinition of the table, except by 
changing the permanent table (which was its template) using the Table 
Designer, then recompiling the object containing the associated  
temporary table.

•

•

http:///


Introduction to C/SIDE and C/AL

[ 332 ]

Processing for a temporary table is done wholly in the NAV Server system  
in a user speciic instance of the business logic. It is, therefore, inherently 
single user.

A properly utilized temporary table reduces network trafic. It is often much 
faster than processing the same data in a permanent, database-resident table. 

Sometimes it is a good idea to copy database table data into a 
temporary table for repetitive processing within an object. This can give 
you a signiicant speed advantage for a particular task. Occasionally 
data can be updated using this approach, then lushed back out to the 
database table at the end of processing.

When using temporary tables, you need to be careful that references 
from C/AL code in the temporary table (such as data validations) don't 
inappropriately modify permanent data elsewhere in the database.

Arrays
Arrays of up to 10 dimensions containing up to a total of 1,000,000 elements in a 
single variable can be created in an NAV object. Deining an array is done simply by 
setting the Dimensions property of a variable to something other than the default 
<Undeined>. An example is shown in the following screenshot:

•

•

http:///


Chapter 6

[ 333 ]

The semicolon separates the dimensions of the array. The numbers indicate the 
maximum sizes of the dimensions. This example is a two-dimensional array which 
has three rows of 99 elements each. An array variable like TotalArray is referred to  
in C/AL as follows:

The 15th entry in the irst row is TotalArray[1,15]
The last entry in the last row is TotalArray[3,99]

An array of a complex data type such as a record may behave differently than a 
single instance of the data type, especially when passed as a parameter to a function. 
In such a case, make sure the code is especially thoroughly tested so that you aren't 
surprised by unexpected results.

Initialization
When an object is initiated, the irst time we reference a variable within the object, 
that variable is automatically initialized. Booleans are set to false. Numeric variables 
are set to zero. Text and code data types are set to the empty string. Dates are set to 
0D (the undeined date) and Times are set to 0T (the undeined time). The system 
also automatically initializes all system-deined variables.

Of course, once the object is active, you can do whatever additional initialization 
you wish. And if you wish to initialize variables at intermediate points during 
processing, you can use any of several approaches. Initialize a Record variable  
(for example, the TempGift temporary table deined in the preceding example)  
with the INIT function in a statement in the form:

TempGift.INIT;

In that case, all the ields, except those in the Primary Key, are set either to their 
InitValue property value or to their data type default value. Primary Key ields  
must be explicitly set by C/AL code.

For other types of data, you can initialize ields with the CLEAR or CLEARALL) function 
in a statement in the following form:

CLEAR(TotalArray[1,1]);

CLEAR(TotalArray);

CLEAR("Shipment Code");

The irst example would clear a single element of the array, the irst element in the 
irst row. As this variable is a Decimal data type, the element would be set to 0.0 
when cleared. The second example would clear the entire array. In the third example, 
a variable deined as a Code data type would simply be set to an empty string.

•

•

http:///


Introduction to C/SIDE and C/AL

[ 334 ]

System-defined variables
NAV also provides you with some variables automatically. Which variables are 
provided is dependent on the object in which you are operating. Descriptions of 
these can be found in the Help titled "System-deined Variables".

A definition of programming in C/SIDE
Many of the things that we do during development in C/SIDE might not be  
called programming by some because it doesn't involve writing C/AL code 
statements. But so long as these activities contribute to the deinition of the object 
and affect the processing that occurs, we'll include them in our broad deinition of 
C/SIDE programming.

These activities include setting properties at the object and Data Item levels, creating 
Request pages in Reports, deining Controls and their properties, deining Report 
Sections and their properties, creating Source Expressions, deining Functions, and, 
of course, writing C/AL statements in all the places that you can put C/AL. Our 
study will include C/SIDE programming primarily as it relates to tables, reports,  
and codeunits.

We will touch on C/SIDE programming for pages and XMLports. In the case of  
RTC reports, C/AL statements can reside only in the components that are developed 
within the Classic RD and not within Sections or Controls. As no coding can be  
done within MenuSuites, we will omit those objects from the programming part 
of our discussions. Because Dataports are not supported by the RTC, we will also 
bypass Dataports.

NAV objects are generally consistent in structure, just as you would expect. Most 
have some kind of properties and triggers. Pages and reports have controls, though 
the tools that deine the controls in each are considerably different. Reports and 
Dataports, have very similar built-in data item looping logic. XMLports also have 
data item looping logic but structured differently from reports and Dataports. All the 
object types that we are considering can contain C/AL code in one or more places. 
All of these can have functions deined that can then be called either internally or 
externally, though good coding design says that any functions that are designed as 
"library" functions should be placed in a Codeunit.

Don't forget, your fundamental coding work should focus on tables as 
much as possible, as tables are the foundation of the NAV system.

http:///


Chapter 6

[ 335 ]

Functions
A function is a deined set of logic that performs a speciic task. Similar to many 
other programming languages, C/AL includes a set of pre-written functions that are 
available to you to perform quite a wide variety of different tasks. The underlying 
logic for some of these functions is hidden, invisible, and not modiiable. These 
functions are supplied as part of the complete development toolset that includes  
the C/AL programming language. Some simple examples:

DATE2DMY: Supply a date and, depending on how you call this function, it 
will return the integer value of the day, the month, or the year of that date.

STRPOS: Supply a string variable and a string constant; the function will 
return the position of the irst instance of that constant within the variable,  
or a zero if the constant is not present in the string contained in the variable.

GET: Supply a value and a table, and the function will read the record in the 
table with a Primary Key equal to the supplied value, if one exists.

INSERT: Add a record to a table.

MESSAGE: Supply a string and optional variables; this function will display a 
message to the operator.

Such functions are the heart of the C/SIDE-C/AL tools. There are over 100 of 
them. On the whole, they are designed around the essential purpose of an NAV 
system: business and inancial applications data processing. These functions are 
not modiiable; they operate according to their predeined rules. For development 
purposes, they act as language components.

A trigger is a combination of a deined event and a function that is performed when 
the event occurs. In the case of the built-in functions, NAV supplies the logic and 
the processing/syntax rules. In the case of triggers, as the developer, you supply the 
logic to enhance or even create the processing rules.

In addition to the pre-written "language component" functions, there are a large 
number of pre-written "application component" functions. The difference between 
these is that the code implementing the latter is visible and modiiable, though one 
should be extremely cautious about making such modiications. 

•

•

•

•

•

http:///


Introduction to C/SIDE and C/AL

[ 336 ]

An example of an application component function might be one to handle the task of 
processing a Customer Shipping Address to eliminate empty lines and standardize 
the layout based on user-deined setup parameters. This function would logically 
be placed in a Codeunit and thus made available to any routine that needs this 
capability. In fact, this function exists. It is called SalesHeaderShipTo and is located 
in the Format Address Codeunit. You can explore the following Codeunits for some 
functions you might ind useful to use or from which to borrow logic. This is not an 
all-inclusive list, as there are many functions in other Codeunits which you may ind 
useful in some future development project.

Some Codeunits containing functions you may ind useful, either directly or as 
templates, are shown in the following table:

Object number Name

1 ApplicationManagement

356 DateComprMgt

358 DateFilter-Calc

359 PeriodFormManagement

365 Format Address

397 Mail

412 Common Dialog Management

5052 AttachmentManagement

5054 WordManagement

6224 XML/COM Management

The pre-written application functions generally have been provided to address the 
needs of the NAV developers working at Microsoft. But you can use them too. Your 
challenge will be to ind out that they exist and to understand how they work. There 
is very little documentation of these "application component" functions.

One signiicant aspect of these application functions is the fact that they are written 
in C/AL and their construction is totally exposed. In theory, they can be modiied, 
though that is not advisable. If you decide to change one of these functions, you 
should make sure your change is compatible with all existing uses of that function.

http:///


Chapter 6

[ 337 ]

A useful "trick" to ind all the locations of use for a function (if you aren't 
using the better option of the Developer's Toolkit for Microsoft Dynamics 
NAV) is to add a dummy calling parameter to the function (temporarily) 
and then compile all objects in the system. You will get errors in all 
objects that call the changed function (don't forget about having all 
Automation and OCX functions registered before compiling and don't 
forget to remove the dummy calling parameter when you're done with 
testing). This technique works not only for Microsoft created functions, 
but also for functions created as part of a customization or add-on.

We can also create our own functions for any needed purpose. There are several 
reasons for creating new functions. The most common reason is to create a single, 
standardized instance of the logic to perform a speciic task. Just about any time 
you need to use the same logic in more than one place, you should be considering 
creating a callable function. If you need to create a customized variation on one of 
NAV's existing functions, rather than change the original function, you should copy 
the original into your own codeunit and modify it there, as needed.

Another occasion when you should be creating functions is when you're modifying 
standard NAV processes. Whenever more than one line of code is needed for the 
modiication, it may be a good idea to create the modiication as a function. Thus the 
modiication to the standard process can be limited to a call to the new function. 

Though that approach is a great concept, it's often dificult to implement in practice. 
If, for example, you're not just adding logic but want to revise the way existing logic 
works, sometimes it's confusing to implement the change through just a call and an 
external (to the mainline process) function. Perhaps a more realistic approach is to 
set the threshold at a higher level such as 10 lines or 25 lines of new or changed code 
before creating such a function.

If a new function will be used in several objects, then it should be housed in an 
external (that is, modiication-speciic) codeunit. If it is only for use in a single object, 
then the new function can be resident in that object. This latter option allows direct 
access to the global variables within the object being modiied.

Let's take a quick look at how a function can be created. We're going to add a new 
codeunit to our C/AL application, Codeunit 50000. As this is where we will put any 
callable functions that we need for our Donor-oriented application, we will simply 
call it Donor Management. In that Codeunit, we're going to create a function to 
calculate a new date based on a given date. If that seems familiar, it's the same thing 
we did in Chapter 3, Data Types and Fields for Data Storage and Processing, to illustrate 
how a DateFormula data type works. This time, our focus is going to be on the 
creation of the function.

http:///


Introduction to C/SIDE and C/AL

[ 338 ]

Our irst step is to copy Table 60000, which we created for testing, and then save it as 
table 60001. As a reminder, we do that by opening Table 60000 in the Table Designer, 
then selecting File | Save As, changing the object number to 60001 and the Name to 
Date Formula Test-2 (see the following screenshot), and then exiting and compiling.

Once that's done, change the Version List to show that this table has been modiied. 
If you used the coding of PN for Programming NAV and .06 for a Chapter 6  
change, then the Version List change would be to add PN.06 to whatever was  
there previously.

We create our new Codeunit by simply clicking on the Codeunit button, then on the 
New button, and then choosing File | Save As, and entering the Object ID of 50000 
and Name as Donor Management.

http:///


Chapter 6

[ 339 ]

Now comes the hard part—designing our new function. When we had the function 
operating as a local function inside the table where it was called, we didn't have to 
worry much about passing data back and forth. We simply used the data ields that 
were already present in the table and treated them as global variables (which, in 
effect, they were). Now that our function will be external to the object from which it's 
called, we have to pass data values back and forth. Here's the basic calling structure 
of our function: 

Output = Function (Input Parameter1, Input Parameter2)

In other words, we need to feed two values into our new callable function and accept 
one value back on completion of the function's processing.

Our irst step is to click on View | C/AL Globals, then the Functions tab. 
Enter the name of the new function following the guidelines for good names, 
(ApplyDateFormula), and then click on the Locals button. This will allow us to 
deine all the variables that will be local to the new function. The irst tab on the 
Locals screen is Parameters, our input variables.

In keeping with good naming practice, we will deine two input parameters, as 
shown in the following screenshot:

http:///


Introduction to C/SIDE and C/AL

[ 340 ]

An important note regarding the Var column in the leftmost column of 
the Parameters tab form: 

If we checkmark the Var column, then the parameter is passed by 
reference to the original calling routine's copy of that variable. That 
means, when the called function (in this case, the function in the 
Codeunit) changes the value of an input parameter, the original variable 
value in the calling object gets changed. As we've speciied the input 
parameter passing here with the Var column unchecked, changes in the 
value of that input parameter will be local to the copy of the data passed 
in to this function and will not affect the calling routine. Checking the Var 
column on one or more parameters is a way to effectively have more than 
one result passed back to the calling routine. Parameter passing with the 
Var column checked is also faster, especially when passing complex data 
types (for example, records).

Select the Return Value tab and deine our output variable as shown in the  
following screenshot:

Once we complete the deinition of our function and its local variables, we can exit 
by using the Esc key and the results will be saved. One way to view the effect of 
what we have just deined is to view the C/AL Symbol Menu. From the Codeunit 
Designer screen, with your new Codeunit 50000 in view and your cursor placed in 
the code area for our new function, click on View | C/AL Symbol Menu (or just 
press F5) and you will see the following image:

http:///


Chapter 6

[ 341 ]

You can see that our ApplyDateFormula function has been deined with two 
parameters and a result. Now press Esc or select OK, move your cursor to the OnRun 
trigger code area and again press F5 to view the C/AL Symbol Menu. You won't 
see the two parameters and result. Why? Because those are local variables, which 
only exist in the context of the function and are not visible outside the function. We'll 
make more use of the C/AL Symbol Menu a little later, as it is a very valuable C/AL 
development tool. But right now we need to inish our new function and integrate it 
with our test Table 60001.

Move your cursor back to the code area for your new function. Then click on the 
menu item Window | Object Designer | Table button, then on Table 60001 | 
Design, and press F9. That should take you to the C/AL Code screen for Table 
60001. Highlight and cut the code line from the local CalculateNewDate function. 
Admittedly, this will not be a particularly eficient process this time, but hopefully it 
will make the connection between the two instances of functions easier to envision. 
Using the Window menu, move back to our Codeunit function and paste the line of 
code we just cut from Table 60001. You should see the following on screen:

http:///


Introduction to C/SIDE and C/AL

[ 342 ]

Edit that line of code so the variable names match those shown in our function 
trigger above. This should give you the following display:

Press F11 to check to see if you have a clean compile. If you get an error, do the 
traditional programmer thing. Find it, ix it, recompile. Repeat until you get a clean 
compile. Then exit and Save your modiied Codeunit 50000.

Finally, we must return to our test Table 60001, to complete the changes necessary to 
use the external function rather than the internal function. The two lines of code that 
called the internal function CalculateNewDate must be changed to call the external 
function. The syntax for that call is: 

Global/LocalVariable := 

 Local/GlobalObjectName.FunctionName(Parameter1,Parameter2,…). 

Based on that, the new line of code should be: 

"Date Result" := DonorMgt.ApplyDateFormula("Date Formula to test", 

  "Reference Date for Calculation");

Copy that line of code in place of the old function calls as shown in the following 
screenshot. To inish your housekeeping for this change, you should go to View | 
Globals | Functions tab and delete the now unused local function. Now go to the 
Variables tab of all functions needing to use a function from the Donor Management 
Codeunit and add the variable locally as shown in the following screenshot (it's 
always good practice to deine variables as local unless global access is required):

http:///


Chapter 6

[ 343 ]

If all has gone well, you should be able to save and compile this modiied table. 
When that step works successfully, then Run the table and experiment with different 
Reference Dates and Date Formulas, just as you did back in Chapter 3, Data Types  
and Fields for Data Storage and Processing. You should get the same results for the  
same entries.

You might ask "Why couldn't I just replace the logical statement in the existing local 
function with a call to the new external function?" The answer is "You could". The 
primary reason for not doing that is the fact that the program would then be making 
a two-level call, possibly a less eficient procedure. On the other hand, having a 
single localized external call might create a structure that is easier to understand or 
easier to maintain. Plus this approach follows the guideline of using local variables 
whenever feasible. The choice is subjective. Such a decision comes down to a matter 
of identifying the best criteria on which to judge the available design options, then 
applying those criteria.

You should now have a good feeling for the basics of constructing both internal  
and external functions and some of the optional design features available to you  
for building functions.

Basic C/AL syntax
C/AL syntax is relatively simple and straightforward. The basic structure of most 
C/AL statements is essentially similar to what you learned with other programming 
languages. C/AL is modeled on Pascal and tends to use many of the same special 
characters in the same fashion as does Pascal. Some examples are discussed in the 
following sections.

Assignment and punctuation
Assignment is represented with a colon followed by an equal sign, the combination 
being treated as a single symbol. The evaluated value of the expression is to the right 
of the assignment symbol is assigned to the variable on the left side.

ClientRec."Phone No." := '312-555-1212';

All statements are terminated with a semi-colon (see the preceding line as an example) 
in the same manner as in Pascal. Multiple statements can be placed on a single 
program line, but that makes your code hard for human beings to read.

http:///


Introduction to C/SIDE and C/AL

[ 344 ]

Fully qualiied data ields are prefaced with the name of the record variable of which 
they are a part (see the preceding code line as an example where the record variable 
is named ClientRec). Essentially, the same rule applies to fully qualiied function 
references; the function name is prefaced with the name of the object in which they 
are deined.

Single quotes are used to surround string literals (see the preceding code line for a 
phone number string).

Double quotes are used to surround an identiier (for example, variable and 
function name) that contains any characters other than numerals or upper and lower 
case letters. For example, the Phone No. ield name in the preceding code line is 
constructed as "Phone No." because it contains a space and a period). Other examples 
would be "Post Code"(contains a space), "E-Mail" (contains a dash), and "No." 
(contains a period).

Parentheses are used much the same as in other languages, to indicate sets of 
expressions to be interpreted according to their parenthetical groupings.

Brackets [ ] are used to indicate the presence of subscripts for indexing of array 
variables. On occasion, a text string can be treated as an array of characters and you 
can use subscripts with the string name to access individual character positions 
within the string, but not beyond the terminating character at the end of the string. 
For example, Address[1] represents the irst or leftmost character in the Address 
variable contents.

Statements can be continued on multiple lines without any special punctuation. As 
the C/AL code editor limits lines to 132 characters long, this capability is often used. 
The following example shows two instances that are interpreted exactly in the same 
manner by the compiler:

ClientRec."Phone No." := '312' + '-' + '555' + '-' + '1212';

ClientRec."Phone No." := '312' +

  '-' + '555' +

  '-' + '1212';

Wildcards
A Wildcard is a character that can be used in place of one or many other characters. 
There are three characters identiied wild cards in C/AL. They are the question mark 
(?), the asterisk (*) and the 'at' symbol (@). 

The question mark is a wildcard representing one character. If you search in NAV 
for a match for the string a??ke, you will be rewarded with results such as the 
following: appke, aaake, abake, adeke, afike, azoke, a37ke, a%#ke, and many  
more possibilities.

http:///


Chapter 6

[ 345 ]

The asterisk is a wildcard representing a string of zero or more characters. If you 
search a ield in NAV for the string a* you will get all the instances with strings 
starting with the letter a. If you search for the string a*e, you will get all the strings 
that start with the letter a and end with the letter e and have anything in between, 
including all the possibilities shown for our ? search. 

The 'at' symbol (@) is a limited functionality wild card. It is used as a modiier to a 
search or ilter rather than a character replacement like ? and *. It causes the case of 
the characters in the subject data to be ignored (that is, either upper or lower case 
matches will be successful). For example, if you search for @aB, then ab, AB, aB and 
Ab all will be included in the results.

Be very cautious when using wildcards in your code. They can lead to unexpected 
results, especially when data encoding rules change and, on some occasions, can 
cause severe performance degradation. 

Expressions
Expressions in C/AL are made up of four elements: constants, variables, operators, 
and functions. Actually you could include a ifth element, expressions, because an 
expression may include a subordinate expression within it. As you become more 
experienced in coding C/AL, you will ind that the capability of nesting expressions 
can be both a blessing and a curse, depending on the speciic use and "readability"  
of the result.

You can create complex statements that will conditionally perform important control 
actions. These allow you to create a code statement that operates in much the way 
that a person would think about the task. You can also create complex statements 
that are very dificult for a human to understand. These are tough to debug and 
sometimes almost impossible to deal with in a modiication.

One of your responsibilities over the time will be to learn to tell the difference so  
that you can write code that makes sense in operation, but is also easy to read  
and understand.

According to the C/SIDE Reference Guide Help, a C/AL Expression is a group 
of characters (data values, variables, arrays, operators, and functions) that can be 
evaluated with the result having an associated data type. We just looked at two code 
statements that accomplish the same result, namely that of assigning a literal string 
to a text data ield. In each of these, the right side of the assignment symbol (that is, 
to the right of := ) is an expression. These statements are repeated below:

ClientRec."Phone No." := '312-555-1212';

ClientRec."Phone No." := '312' + '-' + '555' + '-' + '1212';

http:///


Introduction to C/SIDE and C/AL

[ 346 ]

Operators
Now to review C/AL operators grouped by category. Depending on the data types 
you are using with a particular operator, you may need to know the type conversion 
rules (that is, what the allowed combinations of operator and data types are in an 
expression). The C/SIDE Reference Guide Help provides good information on type 
conversion rules. Search for the phrase Type Conversion.

Before we review the operators that can be categorized, let's discuss some operators 
that don't it well in any of the categories. These include the following:

Other Operators

Symbol Evaluation

Member of:

Fields in Records

Controls in Forms

Controls in Reports

Functions in Objects

Grouping of elements

Indexing

Scope

Range

.

( )

[ ]

::

..

The symbol represented by a single dot or period doesn't have a given 
name in the NAV documentation, so we'll call it the Member symbol or 
Dot operator (as it is referred to in the MSDN Visual Basic Developer 
documentation). It indicates that a ield is a member of a table (TableName.
FieldName) or that a control is a member of a page (PageName.ControlName) 
or report (ReportName.ControlName) or that a function is a member of an 
object (Objectname.FunctionName).

Parentheses ( ) and Brackets [ ] could be considered operators based on the 
effect their use has on the results of an expression. We discussed their use in 
the context of parenthetical grouping and indexing earlier. Parentheses are 
also used to enclose the parameters in a function call: 

Objectname.FunctionName(Param1,Param2,Param3);

The Scope operator is a two character sequence "::", two colons in a row. The 
Scope operator is used to allow C/AL code to refer to a speciic Option value 
using the text descriptive value rather than the integer value that is actually 
stored in the database. For example, in our C/AL database Donor table, we 
have an Option ield deined that is called Status with Option string values 
of Inactive and Active. Those values would be stored as integers 0 and 
1, but we would like to use the strings to refer to them in code, so that our 

•

•

•

http:///


Chapter 6

[ 347 ]

code would be more self-documenting. The Scope operator allows us to refer 
to Status::Inactive (rather than 0) and Status::Active (rather than 1). 
These constructs are translated by the compiler to 0 and 1, respectively. If 
you want to type fewer characters when entering code, just enter enough of 
the Option string value to be unique, then let the compiler automatically ill 
in the rest when you next save and compile the object.

The Range operator is a two character sequence "..", two dots in a row. This 
operator is very widely used in NAV, not only in C/AL code (including 
CASE statements and IN expressions), but also in ilters entered by users. The 
English lower case alphabet can be represented by the range a..z; the set 
of single digit numbers by the range -9..9 (that is, minus 9 dot dot 9); all the 
entries starting with the letter "a" (lower case) by a..a*. Don't underestimate 
the power of the range operator. For more information on iltering syntax, 
refer to the Microsoft Dynamics Classic NAV Help's Entering Criteria in  
Filters section.

Arithmetic operators and functions
The Arithmetic operators include the following:

Arithmetic Operators

Symbol Action Data Types

+

-

*

/

Addition

Subtraction

Multiplication

Division

Integer Division (provides

only the integer portion of

the quotient of a division

calculation)

Modulus (provides only

the integer remainder of a

division calculation)

Numeric

Numeric

Numeric

Numeric

Numeric, Date,

Time

Numeric, String

(concatenation),

Date, Time

DIV

MOD

As you can see in the Data Types column, these operators can be used on various 
data types. Numeric includes Integer, Decimal, Boolean, and Character data types. 
Text and Code are both String data. 

Sample statements using DIV and MOD follow where BigNumber is an integer 
containing 200:

DIVIntegerValue := BigNumber DIV 60;

•

http:///


Introduction to C/SIDE and C/AL

[ 348 ]

The contents of DIVIntegerValue after executing the preceding statement  
would be 3.

MODIntegerValue := BigNumber MOD 60;

The contents of MODIntegerValue after executing the preceding statement  
would be 20.

The syntax for these DIV and MOD statements is:

IntegerQuotient := IntegerDividend DIV IntegerDivisor;

IntegerModulus := IntegerDividend MOD IntegerDivisor;

Boolean operators
Boolean operators only operate on expressions that can be evaluated as Boolean. 
They are as follows:

Boolean Operators

Symbol Evaluation

NOT

AND

OR

XOR

Logical NOT

Logical AND

Logical OR

Exclusive Logical OR

The result of an expression based on a Boolean operator will also be Boolean.

Relational operators and functions

The Relational operators are listed in the following screenshot. Each of these is used 
in an expression of the format:

Expression RelationalOperator Expression

For example: (Variable1 + 97) > ((Variable2 * 14.5) / 57.332)

Relational Operators

Symbol Evaluation

<

>

<=

>=

=

<>

IN

Less than

Greater than

Less than or Equal to

Greater than or Equal to

Equal to

Not Equal to

IN Valueset

We will spend a little extra time on the IN operator, because this can be very handy 
and is not documented elsewhere. The term Valueset in the Evaluation column for 
IN refers to a list of deined values. It would be reasonable to deine a Valueset as a 

http:///


Chapter 6

[ 349 ]

container of a deined set of individual values, or expressions, or other Valuesets. 
Some examples of IN as used in the standard NAV product code are as follows:

GLEntry."Posting Date" IN [0D,WORKDATE]

Description[I+2] IN ['0'..'9']

"Gen. Posting Type" IN ["Gen. Posting Type"::Purchase,

                        "Gen. Posting Type"::Sale]

SearchString IN ['','=><']

No[i] IN ['0'..'9']

"FA Posting Date" IN [01010001D..12319998D]

Here is another example of what IN used in an expression might look like:

TestString IN ['a'..'d','j','q','l'..'p'];

If the value of TestString were a or m, then this expression would evaluate to TRUE 
(Yes). If the value of TestString were z, then this expression would evaluate to 
FALSE (No).

Precedence of operators
When expressions are evaluated by the C/AL compiler, the parsing routines use a 
predeined precedence hierarchy to determine what operators to evaluate irst, what 
to evaluate second, and so forth. That precedence hierarchy is provided in the  
C/SIDE Reference Guide, but for convenience the information, it is repeated here:

Sequence Symbols

C/AL Operator Precedence Hierarchy

1

2

3

4

5

6

.

[ ]

( )

::

NOT

+

-

*

/

DIV

MOD

AND

XOR

+

-

OR

>

<

>=

<=

<>

IN

..

Member (Fields in Records, etc)

Indexing

Parenthetical Grouping

Scope

Unary instances of:

Logical Not

Positive valve

Negating value

Multiplication

Division

Integer division

Modulus

Logical AND

Logical Exclusive OR

Addition or Concatenation

Subtraction

Logical OR

Greater than

Less than

Greater than or equal to

Less than or equal to

Not equal to

IN Valueset

Range

http:///


Introduction to C/SIDE and C/AL

[ 350 ]

Some basic C/AL
It's time for us to learn some more of the standard functions provided for our 
convenience by C/SIDE. We will focus on those most frequently found useful.

MESSAGE, ERROR, CONFIRM, and STRMENU 

functions
There is a group of functions in C/AL called dialog functions. The purpose of these 
functions is to allow for communications (that is, dialog) between the system and 
the user. There are eleven different dialog functions available. At least three of those 
are easy to use as tools in testing and debugging. In order to make it easier for us to 
proceed with our next level of C/AL development work, we're going to take time 
now to learn about those three dialog functions.

In each of these functions, data values can be inserted through use of a substitution 

string. The substitution string is the % (percent sign) character followed by the 
number 1 through 10, located within a message text string. That could look like  
the following: 

MESSAGE('A message + a data element to display = %1',OrderAmount);

If the OrderAmount value was $100.53, the output from the preceding would be:

A message + a data element to display = $100.53

You can have up to ten substitution strings in one dialog function. In all cases, the 
use of substitution strings and their associated display values is optional. You can 
also use any one of the dialog functions simply to display a completely predeined 
text message with nothing variable. Use of a Text Constant (accessed through View 
| C/AL Globals in the Text Constants tab) is recommended as it makes maintenance 
and multilanguage enabling easier.

MESSAGE function
MESSAGE is the most commonly used dialog function. It is easy to use for the 
display of transient data and can be placed almost anywhere in your C/AL code. 
All it requires of the user is acknowledgement that the message has been read. 
The disadvantage of messages is that they are not displayed until either the object 
completes its run or pauses for some other external action. Plus, if you should 
inadvertently create a situation that generates hundreds or thousands of messages, 
there is no graceful way to terminate their display once they begin displaying.

http:///


Chapter 6

[ 351 ]

It's common to use MESSAGE as the poor man's trace tool. You can program the 
display of messages to only occur under particular circumstances and use them to 
view either the low of processing (by outputting simple unique codes from different 
points in your logic) or to view the contents of particular data elements through 
multiple processing cycles.

MESSAGE has the following syntax: MESSAGE (String [, Value1] , ...]), where 
there are as many ValueX entries as there are %X substitution strings (up to ten).

Here is a sample debugging message:

MESSAGE('Loop %1, Item No. %2',LoopCounter,"Item No.");

The output would look like the following (when the counter was 12 and the  
Item No. was I0123):

ERROR function
ERROR is formatted almost exactly like MESSAGE. Of course the function name is 
different and the behavior is different. When an ERROR function is executed, the 
execution of the current process terminates, the message is immediately displayed 
and the database remains unchanged as though the process calling the ERROR 
function had not run at all.

Sometimes you can use the ERROR function in combination with the 
MESSAGE function to assist in repetitive testing. MESSAGE functions can 
be placed in code to show what is happening with an ERROR function 
placed just prior to where the process would normally complete. 
Because the ERROR function rolls back all database changes, this 
technique allows you to run through multiple tests against the same 
data without any time-consuming backup and restoration of your test 
data. This isn't likely to be an original intended purpose of this function, 
but it turns out to be a very useful one.

http:///


Introduction to C/SIDE and C/AL

[ 352 ]

ERROR has the following syntax:

ERROR (String [, Value1] ,...]) where there are as many ValueX entries as there 
are %X substitution strings (up to nine).

If the preceding MESSAGE was an ERROR function instead, the code line would be:

ERROR('Loop %1, Item No. %2',LoopCounter,"Item No.");

The output would look like the following screenshot:

Except for the big X in a bold red circle, you couldn't tell this was an ERROR message, 
although your process would terminate, which would be a clue. You could increase 
the ease of ERROR message recognition by including the word ERROR in your 
message, like the following: 

Even in the best of circumstances, it is dificult for the system to communicate  
clearly with the users. Sometimes our tools, in their effort to be lexible, make it too 
easy for developers to take the easy way out and communicate poorly or not at all.  
In fact, an ERROR statement of the form ERROR('') will terminate the run and roll 
back all data processing without even displaying any message at all. An important 
part of your job, as a developer, is to ensure that your system communicates clearly 
and completely.

CONFIRM function
A third dialog function is the CONFIRM function. A CONFIRM function call causes 
processing to stop while the user responds to the dialog. In a CONFIRM, you would 
likely include a question in your text because the function provides Yes and No 
button options. The application logic can then be conditioned on the user's response.

http:///


Chapter 6

[ 353 ]

You can also use CONFIRM as a debugging tool to control the path the processing will 
take. Display the status of data or processing low and then allow the operator to 
make a choice (Yes or No) that will inluence what happens next. This is exactly what 
CONFIRM is designed for in normal processing. But execution of a CONFIRM function 
will also cause any pending MESSAGE outputs to be displayed before the CONFIRM 
function displays. Consequently, combined with MESSAGE and ERROR, creative use  
of CONFIRM can add to your debugging/diagnostic toolkit.

CONFIRM has the following syntax:

BooleanValue :=  CONFIRM(String [, Default]  [, Value1]  ,...) 

where Default choice is TRUE or FALSE and there are as many ValueX entries as 
there are %X substitution strings (up to ten).

If you just code CONFIRM(String), the Default choice will be False. Note that True 
and False appear onscreen as Yes and No (a feature that is consistent throughout 
NAV for C/AL Boolean values but not for RDLC report controls—see C/Side 
Reference Guide Help's How to: Change the Printed Values of Boolean Variables).

A CONFIRM function call with a similar content to the preceding examples might look 
like this for the code and the display:

CONFIRM('Loop %1, Item No. %2\OK to continue?',

 TRUE,LoopCounter,"Item No.");

In typical usage, the CONFIRM function is part of, or is referred to, by a conditional 
statement that uses the Boolean value returned by the CONFIRM function.

An additional feature is the use of the backslash (\) which forces a new line in the 
displayed message. This works throughout NAV screen display functions; to display 
a backslash, you must put two of them in your message text string, that is, \\.

http:///


Introduction to C/SIDE and C/AL

[ 354 ]

STRMENU function
A fourth dialog function is the STRMENU function. A STRMENU function call also 
causes processing to stop while the user responds to the dialog. The advantage of 
the STRMENU function is the ability to provide several choices, rather than just two. 
A common use is to provide an option menu in response to the user pressing a 
command button.

STRMENU has the following syntax:

IntegerValue := STRMENU(StringVariable of Options separated by commas 

[, OptionDefault][, Instruction])

where the OptionDefault is an integer representing which of the options 
will be selected by default when the menu displays. If you do not provide an 
OptionDefault, the irst option listed will be used as the default. Instruction  
is a text string which will be display above the list of options.

If the user responds Cancel or presses the Esc key, the value returned by the  
function is 0.

Use of the STRMENU function eliminates the need to use a Page object when asking 
the user to select from a limited set of options. The STRMENU can also be utilized from 
within a report or Codeunit when calling a Page would restrict processing choices.

If you phrase your instruction as a question rather than just explanation, then you 
can use STRMENU as a multiple choice inquiry to the user.

Here is an example of STRMENU with the instruction phrased as a question:

OptionNo := STRMENU('Red,Yellow,Stripes,Green,Blue,I do not know',6,

                     'Which of these is not like the others?');

http:///


Chapter 6

[ 355 ]

Setting the default to 6 caused the sixth option (I do not know) to be the active 
selection when the menu is displayed.

SETCURRENTKEY function
The SETCURRENTKEY function behaves considerably differently when using the 
C/SIDE database than when using the SQL Server database. The explanation 
that follows focuses on the C/SIDE database behavior so that you will have more 
understanding of how the underlying database affects table processing. 

When running on the Classic database, the SETCURRENTKEY function allows you to 
select the speciic key to be used for subsequent processing, thus deining the sort 
order to be used. The syntax is:

[BooleanValue :=] Record.SETCURRENTKEY(FieldName1,[FieldName2], ... )

                          

The BooleanValue is optional. If you do not specify it and no matching key is 
found, a runtime error will occur. This may not be a bad thing, as generally your 
key speciication in code is ixed (not variable) and you would want to know during 
initial testing that you had not speciied an existing key. In addition, if keys are later 
changed or disabled, you will want to make sure that either you have allowed for 
that in your error handling or that you have designed runtime error handling to 
identify a problem and stop processing until it is corrected.

If the key structure you specify is a partial structure, for example, only one ield, 
and that structure matches multiple keys (that is, there are multiple keys that start 
with that ield), C/AL may not select the key you intended. Therefore, you should 
provide a complete key speciication.

When NAV is running on SQL Server, SETCURRENTKEY only determines the order 
in which the data will be presented to the processing, but the actual key choice for 
executing the query on the database is made by the SQL Server Query Analyzer. 
For this reason, it is very important in a SQL Server environment to make sure that 
the data and resources the Query Analyzer uses are well maintained. This includes 
maintaining the statistics that are used by the Query Analyzer to choose the best  
key, as well as making sure eficient key options have been deined. The indexes that 
are deined in SQL Server do not have to be the same as those deined in the C/AL 
table deinition (for example, you can add additional keys in SQL Server and not in 
the C/AL, you can disable keys in SQL Server but leave enabled in C/AL, and so 
on.), but it is good practice over the long term to keep them the same. Even when  
the differences operate without problem, the mismatch between the application 
system and the underlying database system makes maintenance and upgrades  
more challenging.

http:///


Introduction to C/SIDE and C/AL

[ 356 ]

SETRANGE function
The SETRANGE function provides the ability to set a simple range ilter on a ield. 
SETRANGE syntax is as follows:

Record.SETRANGE(FieldName [,From-Value] [,To-Value]);

Prior to applying its range ilter, the SETRANGE function removes any ilters that were 
previously set for the deined ield (iltering functions are deined in more detail in 
the next Chapter). If SETRANGE is executed without any From or To values, it will 
clear all the ilters on the ield. This is a common use of SETRANGE.

If SETRANGE is executed with only one value, that one value will act as 
both the From and To values.

Some examples of the SETRANGE function in code are as follows:

Filter to get only donors with ID from 100 through 499 or from the variable values 
LowVal through HiVal:

Donor.SETRANGE("Donor ID",100,499);

Donor.SETRANGE("Donor ID",LowVal,HiVal);

Clear the ilters on Donor ID:

Donor.SETRANGE("Donor ID");

Filter to allow all Donors added up through the end of a particular Campaign, that 
is, using the ield "CAN Campaign"."End Date":

Donor.SETRANGE("Date Added",0D,"CAN Campaign"."End Date");

GET function
GET is the basic data retrieval function in C/AL. GET retrieves a single record, based 
on the Primary Key only. GET has the following syntax:

[BooleanValue :=] Record.GET ( [KeyFieldValue1] 

                             [,KeyFieldValue2] ,...)

The parameter(s) for the GET function are the Primary Key value (or values, if the 
Primary Key consists of more than one ield).

http:///


Chapter 6

[ 357 ]

Assigning the GET function result to BooleanValue is optional. If the GET function is 
not successful, that is, no record is found, and the statement is not handled by an IF 
statement, passed as a parameter or assigned to a Boolean variable, the process will 
terminate with a runtime error. Typically, therefore, the GET function is encased in  
an IF statement structured something like the following:

IF Customer.GET(NewCustNo) THEN ...

GET data retrieval is not constrained by ilters. If there is a matching 
record in the table, GET will retrieve it.

FIND 
The FIND family of functions is the general purpose data retrieval function in C/AL. 
It is much more lexible than GET, therefore more widely used. GET has the advantage 
of being faster as it operates only on an uniltered direct access via the Primary Key, 
looking for a single uniquely keyed entry. The general purpose FIND function has the 
following syntax:

[BooleanValue :=] RecordName.FIND ( [Which] ).

The SQL Server speciic members of the FIND family have slightly different syntaxes, 
as we shall see shortly.

Just as with the GET function, assigning the FIND function result to a Boolean value is 
optional. But in almost all of the cases, FIND is embedded in a condition that controls 
subsequent processing appropriately. Either way, it is important to structure your 
code to handle the instance where the FIND is not successful.

FIND differs from GET in several important ways:

FIND operates under the limits of whatever ilters are applied on the  
subject ield.
FIND presents the data in the sequence of the key which is currently selected.

When used in the context of the Classic C/SIDE database, FIND uses the key 
which is currently selected for the actual data reads. When FIND is used with 
SQL Server, the index used for the data reading is controlled by the SQL 
Server Query Analyzer, unless index hinting is turned on.

There are versions of the FIND function designed speciically for use with 
the SQL Server database. This allows C/AL coding to be optimized for SQL 
Server compatibility. 

•

•

•

•

http:///


Introduction to C/SIDE and C/AL

[ 358 ]

Following are the various forms of FIND:

FIND('-'): Finds the irst record in a table that satisies the deined ilter and 
current key. Generally not an eficient option for SQL Server as it reads a set 
of records when many times only a single record is needed.

FINDFIRST: Finds the irst record in a table that satisies the deined ilter 
and deined key choice. Conceptually equivalent to the FIND('-') but much 
better for SQL Server as it reads a single record, not a set of records.

FIND('+'): Finds the last record in a table that satisies the deined ilter and 
deined key choice. Often not an eficient option for SQL Server as it reads a 
set of records when many times only a single record is needed. The exception 
is when a table is to be processed in reverse order. Then it is appropriate to 
use FIND('+') with SQL Server.

FINDLAST: Finds the last record in a table that satisies the deined ilter and 
current key. Conceptually equivalent to the FIND('+') but often much better 
for SQL Server as it reads a single record, not a set of records.

FINDSET: The eficient way to read a set of records from SQL Server for 
sequential forward processing. FINDSET allows deining the standard size 
of the read record cache as a setup parameter, but normally defaults to 
reading 50 records (table rows) for the irst server call. The syntax includes 
two optional parameters: FINDSET([ForUpdate][, UpdateKey]). The irst 
parameter controls whether or not the read is in preparation for an update 
and the second parameter is TRUE when the irst parameter is TRUE and the 
update is of key ields.

FIND ([Which]) options and the SQL Server 

alternates
Let's review the options of the FIND function using the syntax:

[BooleanValue :=] RecordName.FIND ( [Which] ).

The [Which] parameter allows the speciication of which record is searched  
for relative to the deined key values. The deined key values are the set of  
values currently in the ields of the active key in the memory-resident record  
of table RecordName. 

The following irst table lists the Which parameter options and prerequisites. The 
second table lists the FIND options which are speciic to SQL Server. In both cases, 
the results are always relative to the selected set (that is, they respect applied ilters).

•

•

•

•

•

http:///


Chapter 6

[ 359 ]

FIND

"which"

parameter

FIND action

Search and primary

key value prerequisite

before FIND

Search and primary

key value prerequisite

before FIND

=

>

<

>=

<=

-

+

Match the search key values exactly

Read the next record with key values larger

than the search key values

Read the next record with key values

smaller than the search key values

Read the first record found with key values

equal to or larger than the search key values

Read the next record with key values equal

to or smaller than the search key values

Read the first record in the selected set. If

used with SQL Server, reads a set of records

Read the last record in the selected set. If

used with SQL Server, reads a set of records

All must be specified

All must be specified

All must be specified

All must be specified

All must be specified

All must be specified

All must be specified

All must be specified

No requirement

No requirement

SQL Server

FIND option
FIND action

FINDFIRST

FINDLAST

FINDSET

Read the first record in a table based on the

current key and filter. Used only for access

to a single record, not in a read loop.

Read the last record in a table based on the

current key and filter. Used only for access

to a single record, not in a read loop.

Read the record set specified. Syntax is

Set = and = if

a key field is to be updated

ForUpdate True UpdateKey True

Set = if data to be updatedForUpdate True

Record.FINDSET([ForUpdate][,UpdateKey])

If no parameter specified, both default to False

The FIND('-') function is quite often used with the C/SIDE database as the irst 
step in the course of reading a set of data, for example, reading all the sales invoices 
for a single customer. In such a case, the NEXT function is used to trigger all the data 
reads after the sequence is initiated with a FIND('-'). For a SQL Server installation, 
FINDSET should be used rather than FIND('-'). FINDSET only works for reading 
forward, not in reverse.

Chapter 11, Optimizing for SQL Server, of the course materials for 
Microsoft Course 80055, C/SIDE Solution Development In Microsoft 
Dynamics® NAV contains an extended description of the various 
uses of the FINDSET command.

http:///


Introduction to C/SIDE and C/AL

[ 360 ]

The typical C/SIDE database read loop is as follows:

IF MyData.FIND('-') THEN

 REPEAT

 Processing logic here 

UNTIL MyData.NEXT = 0;

The same processing logic optimized for SQL Server is as follows:

IF MyData.FINDSET THEN

 REPEAT

 Processing logic here 

UNTIL MyData.NEXT = 0;

We will discuss the REPEAT–UNTIL control structure in more detail in the next 
chapter. Essentially, it does what it says; "repeat the following logic until the deined 
condition is true". In the case of the FIND–NEXT read loop, the NEXT function provides 
both the deinition of how the read loop will advance through the table and provides 
the exiting condition.

When DataTable.NEXT = 0, that means there are no more records to be read. We 
have reached the end of the data, based on the ilters and other conditions that  
apply to our reading process.

The speciic syntax of the NEXT function is DataTable.NEXT(Step). DataTable 
is the name of the table being read. Step deines the number of records NAV will 
move ahead (or back) per read. The default Step is 1, meaning NAV moves ahead 
one record at a time, reading every record. A Step of 0 works the same as a step of 
1. If the Step were 2, NAV would move ahead two records at a time and the process 
would only be presented with every other record. 

Step can also be negative, in which case NAV moves backwards through the  
table. This would allow you to do a FIND('+') for the end of the table, then a 
NEXT(-1) to read backwards through the data. This is very useful if, for example, 
you need to read a table sorted by date and want to access the most recent entries 
irst. FIND('+') is the appropriate function to use for either database when the 
objective is to read backwards from the end of the data set.

BEGIN–END compound statement
In C/AL, there are instances where the syntax rules only allow for use of a single 
statement. But your design may require the execution of several code statements. 

C/AL provides at least two ways to address this need. One method is to have the 
single statement as a call to a function that contains multiple statements. 

http:///


Chapter 6

[ 361 ]

However, inline coding is often more eficient to run and signiicantly easier to 
understand. So C/AL provides a syntax structure to deine a Compound Statement 
or Block of code. A compound statement containing any number of statements can 
be used in place of a single code statement.

A compound statement is enclosed by the reserved words BEGIN and END. The 
compound statement structure looks like this:

BEGIN

   <Statement 1>;

   <Statement 2>;

   ..

   <Statement n>;

END

IF–THEN–ELSE statement
IF is the basic conditional statement of most programming languages. It operates 
in C/AL similar to other languages. The basic structure is: IF a conditional 
expression is true, THEN execute Statement-1 ELSE (if condition not true)  
execute Statement-2. The ELSE portion is optional. The syntax is:

IF <Condition> THEN <Statement-1> [ ELSE <Statement-2> ]

Note that the statements within the IF do not have terminating semicolons unless 
they are contained in a BEGIN – END framework. As with other languages, IF 
statements can be nested so that you have conditionals dependent on the evaluation 
of other conditionals. Obviously one needs to take care with such constructs, as it 
is easy to end up with convoluted code structures that are dificult to debug and 
dificult for the next developer that works on this system to understand. In the next 
chapter, we will review the CASE statement which can make some complicated 
conditionals much easier to understand.

As you work with NAV C/AL code, you will see that often the <Condition> is 
really an expression built around a standard C/AL function. This approach is 
often used when the standard syntax for the function is Boolean value, function 
expression. Some examples are as follows:

IF Customer.FIND('-') THEN... ELSE...

IF CONFIRM('OK to update?',TRUE) THEN... ELSE...

IF TempData.INSERT THEN... ELSE...

IF Customer.CALCFIELDS(Balance,Balance(LCY)) THEN... 

•

•

•

•

http:///


Introduction to C/SIDE and C/AL

[ 362 ]

Indenting code
As we have just discussed BEGIN–END compound statements and IF conditional 
statements, which also are compound (that is, containing multiple expressions),  
this seems a good time to discuss indenting code.

In C/AL, the standard practice for indenting subordinate, contained, or continued 
lines is relatively simple. Always indent such lines by two characters except where 
there are left and right parentheses to be aligned. 

To indent a block of code by two characters at a time, select it and click on 

the Tab key. To remove the indentation one character at a time, select the 

code and click on Shift+Tab.

In the following examples, the parentheses are not required in the simplest instances, 
but they don't cause any problem and can make the code easier to read. 

Some examples are:

IF (A <> B) THEN

   A := A + Count1

ELSE

   B := B + Count2;

Or:

IF (A <> B)

THEN

   A := A + Count1;

Or:

IF (A <> B)

THEN BEGIN

   A := A + Oount1;

   B := A + Count2;

   IF C > (A * B) THEN

     C := A * B;

END

ELSE

   B := B + Count2;

http:///


Chapter 6

[ 363 ]

Some simple coding modifications
We're going to actually add some C/AL code to objects we've created for our  
ICAN application. 

Adding a validation to a table
Let's start with some code in a Validation trigger of our Table 50000—Donor. When 
a record is added or updated, if the Post Code ield is changed, we would like to 
update the appropriate address information. 

As we modeled the address ields for our Donor record on the standard Customer 
table, let's irst look at the Customer table to see how Post Code validation is handled 
there. We can access that code through the Table Designer. Object Designer | 
Table| select Table 18—Customer | Design | select Field 91—Post Code | F9 is 
the route there. What we see in the standard code is the following:

Looking at this C/AL code, we can see that the OnValidate trigger (as well as the 
OnLookup trigger) contains calls to function routines in another object identiied 
as PostCode. To ind out what object PostCode actually is, we need to look in the 
Global working storage area.

http:///


Introduction to C/SIDE and C/AL

[ 364 ]

Now we see that PostCode is a reference to the Record (that is, table) Post Code. 
This is sort of like a treasure hunt at a birthday party. Now we follow that clue to the 
next stop, the Post Code table and the ValidatePostCode function that is used in the 
Customer Post Code validation triggers. To learn as much as we can about how this 
function works, how we should call it, and what information is available from the 
Post Code table (table 225), we will look at several things:

The Post Code table ield list
The C/AL code for the functions in which we are interested

The list of functions available in the Post Code table

The calling and return parameters for the ValidatePostCode function

Screenshots for all those areas are as follows:

First, the ield list in Table 225—Post Code:

Next, the C/AL code for the ValidatePostCode function:

•

•

•

•

http:///


Chapter 6

[ 365 ]

Now, the list of callable functions available within the Post Code table:

Finally, a look at the calling Parameters for the ValidatePostCode function:

Followed by this, image of the Return Value for the ValidatePostCode function:

Doing some analysis of what we have uncovered, we can conclude the following:

The Post Code table in the standard product only contains the Post Code 
and the related City (as City and Search City). There is no ield for State/
Province/Region/Country. Therefore, if we wanted that data to be available 
as part of a Post Code validation as well, we would have to customize the 
Post Code table and its functions accordingly. Such a modiication would 
generally not be a good idea due to the variety of address structures that 
exist across the globe.

•

http:///


Introduction to C/SIDE and C/AL

[ 366 ]

The ValidatePostCode function call uses two calling Parameters, one for the 
City ield and one for the Post Code ield. There is no Return Value. The 
function avoids the need for a Return Value by passing both the Parameters 
"by Reference" (not "by Value") as you can tell by the checkmark in the Var 
column. As a result, the function simply updates the Parameter City in the 
function code, which is referencing the actual data element in the object 
where the call originated. This interpretation is reinforced by studying the 
ValidatePostCode function C/AL code as well.

At the moment, we don't want to modify the Post Code table and functions, we 
conclude that we can accomplish our goal by simply copying the code from the Post 
Code OnValidate trigger in the Customer table into the equivalent trigger in our 
Donor table. As long we are doing that, we might as well copy the code for the Post 
Code OnLookUp trigger also. The result looks like the following screenshot:

If you press F11 at this point, you will get an error message indicating that the 
variable PostCode has not been deined.

•

http:///


Chapter 6

[ 367 ]

Obviously we need to attend to this. The answer is shown in the next screenshot in 
the form of the PostCode Global Variable deinition (inserted following the previous 
Record variable, keeping like variable types together). 

After you save this change (simply moving focus from the new line of code to 
another line on the form or closing the form), press F11 again. You should get no 
reaction other than a brief cursor blink when the object is compiled. The proper test 
is to run Page 50001—Donor List, select the Action menu option to add a new Donor, 
enter at least the Donor ID, then click on the Post Code ield and choose an entry 
from the Post Code table. The result should be the population of the Post Code ield 
and the City ield.

We've accomplished our goal. The way we've done it may seem disappointing to 
a programmer. It didn't feel like we really designed a solution or wrote any code. 
To some extent that's a correct evaluation. What we did was consider where else in 
NAV the same problem may have been addressed. We found that solution, igured 
out how it worked, then cloned it into our object, and AHA! We were done.

Obviously this approach doesn't work every time. But every time it does work is  
a small triumph of eficiency. The structure of the solution is totally consistent 
with the standard product, we have reused existing code constructs, and we have 
minimized the debugging effort and chances of production problems. In addition, 
our modiications are likely to work well even if the standard base application 
function changes in a future version. 

http:///


Introduction to C/SIDE and C/AL

[ 368 ]

Adding code to enhance a report
Our organization, ICAN, has decided to value Gifts of Services in order to satisfy 
some reporting requirements of a large foundation that we hope may provide grants 
for operating funds. So far, all that is tracked is the hours of service. As this is a 
demonstration system, not a full-scale production system, we're going to keep the 
design simple. 

To accomplish the goal, we will do two things. One is to add logic and a reporting 
column to Report 50002—Gifts by Donor to show the calculated value of Gifts of 
Services Hours. The other is to set up a new table to contain the rate values. 

To calculate a inancial value, we need to have a value per hour to use in our 
calculation. For that purpose (and others that may arise), we will create a new ICAN 
Rate table and List page for data maintenance. The only data in our new table at 
this point will be a rate per hour for Gifts of Services, but we will design our code 
to allow for future expansion of the table's usage. Obviously a more sophisticated 
solution might value a gift of lawn mowing at a different hourly rate than a gift of 
computer repair services (for example).

The ICAN Rate table will be a simple table with a structure of ields consisting of 
Code (the Primary Key), Description, and Rate. The resulting table deinition looks 
like the following:

Next, we need to build a List page to view and maintain the new ICAN Rate table. 
Since we've been through this process before (Chapter 4, Pages—Tools for Data 
Display), we'll just show the result in the Page Designer.

http:///


Chapter 6

[ 369 ]

Once we save, compile, and run this Page, the List for the ICAN Rate table will 
display. Initially, there will be no data in the table, so the irst action is to add a 
record with a Code of SERVICES. Once that is done, the ICAN Rate List should  
look similar to the following screenshot (especially if your rate happens to be  
12.00 per hour).

Now that we have the preparatory work done, we can make the report changes that 
are the primary goal for this modiication. Working with Report 50002—Gifts by 
Donor, we need to do the following:

Add access to the new ICAN Rate table

Read the correct record in ICAN Rate table

Add logic to calculate the value of Services (applying this only to  
SERVICES Gifts)

Depending on how we want to report the results, we could add a new column to the 
report for the Est. Value of Services or we could print the new calculated value in the 
same column as now contains the Est. Value for non-services gifts. As we've already 
had the experience of adding a column to this report in Chapter 5, Reports, we will 
start with the easier approach of using the existing column.

•

•

•

http:///


Introduction to C/SIDE and C/AL

[ 370 ]

We begin by adding a Decimal Global Variable to the Report for the Services Rate 
value. Note that the other Global Variables already there were created by the Report 
Wizard when we originally generated this report.

Now let's add a Local Variable to the report OnInitReport trigger to allow access 
to the ICAN Rate table. We use a Local Variable for a couple of good reasons. First, 
as a general rule, code should use local variables whenever possible. Second, in the 
new NAV 2009 environment, it's more eficient for a record variable to be local (less 
internal processing is required that way). We use the OnInitReport trigger because it 
will allow reading the ICAN Rate table to occur at the earliest possible point after  
the object is instantiated.

Return to the Report Designer DataItem deinition screen. Focus on the irst blank 
line and access the C/AL Editor (by pressing F9) showing the report triggers. Focus 
on the OnInitReport trigger and click on View | C/AL Locals. Now click on the 
Variables tab and deine the local variable for ICANRate with a result like that  
in the next image:

http:///


Chapter 6

[ 371 ]

The next step is to create the logic to read the record from the ICAN Rate table. As 
that read only needs to happen once (only one record has a rate for SERVICES), it 
should be done at the beginning of the report, in a trigger that is only executed once. 
That's why we are using the OnInitReport trigger. Because we are using a SQL 
Server database, we want to use an eficient SQL Server method to read that record. 
With only one record, obviously any of the FIND options would work, but if we 
want to use a FIND option, we should use FINDFIRST. However, as the simple 
table design will force there to be only one record with a Code of SERVICES, we can 
use the GET function. 

A successful read is followed by storing the Rate data in the ServicesRate global 
variable. That code is shown in the next screenshot. The code shown embeds the GET 
function in an error checking IF statement. If you don't want to generate your own 
error message, you can simply use the following code and let the system supply the 
error message if no SERVICES record is found:

ICANRate.GET('SERVICES');

The last development work we need to do is to code the logic that will calculate  
the value of Services for all such records. As we are not updating the data table, we 
can use the internal record as temporary storage for the results of our calculation.  
We will use the same ield that holds value for material gifts. Pseudo-logic for the 
code is:

IF this is a SERVICES record, then calculate Estimated Value = Hours * 
Rate.

http:///


Introduction to C/SIDE and C/AL

[ 372 ]

That should be simple, a single IF statement. We can take advantage of tools built 
into C/SIDE to make our C/AL coding easier. For each data variable that we need in 
our code, we can look up the variable in the C/AL Symbol Menu (accessed through 
the F5 key), double-click on the variable, and it will be pasted into our C/AL code 
line at the point where the cursor is. The irst example for this statement is illustrated 
in the following image where the variable "Gift Ledger".Category has just been 
pasted into our code line:

We are only computing estimated values for Services records, so that the IF 
statement checks for Category equal to 'SERVICES'. 

We use the same technique as we did a moment ago to paste in the target ield for 
our calculation, "Gift Ledger"."Estimated Value". 

http:///


Chapter 6

[ 373 ]

Next, we enter the assignment operator (:=) and paste in the "Gift Ledger".Hours 
ield followed by the * operator. Finally, we go back to the C/AL Symbol Menu to 
help us inish our calculation statement, accessing the ServicesRate ield from the 
global variables.

http:///


Introduction to C/SIDE and C/AL

[ 374 ]

The inal code looks like the following:

At this point, we might notice that many of the data ields are referencing "Gift 
Ledger" ields and, as Gift Ledger is the default record reference in this Gift 
Ledger—OnAfterGetRecord() trigger, we don't have to have those explicit 
qualiiers. They don't hurt anything, but they may make the code harder for you to 
read (this is a subjective judgment). If you remove those qualiiers, the inal code will 
look like the following (and work exactly the same as the code with qualiiers).

Now that we've completed our initial set of report modiications, it's time to test.  
Exit and save, compiling the report. Then use the Run command to test. Remember 
to select the option to print Services entries.

After you have a working report at this level, you might want to do some more 
advanced work on your own. Perhaps the Services values should be in a separate 
column? Maybe you should add a report option that prints only Services gifts, just 
as you now can print everything except Services gifts? Looking at the report which 
shows value of services but not the rate or the hours on which that value is based, 
perhaps those pieces of information should also be printed? 

If you want a good test of what you have learned about Reports to this point, all 
those changes would be good ones with which to experiment. If you are feeling 
particularly brave, you might want to add a Services Rate ield to the Category  
table rather than the Rate table, so that there could be multiple kinds of Services  
with different rates. But if you do that, then you may need to redesign the places 
where we have used the literal 'SERVICES' to select particular data in or out of 
processing. It's interesting how quickly a few small changes can expand the scope  
of work signiicantly. Nevertheless, making some additional modiications to allow 
for multiple rates for gifts of Services would be good practice.

http:///


Chapter 6

[ 375 ]

In almost every modiication, there are a number of different ways to accomplish 
essentially the same result. Some of those paths would be signiicantly different to 
the developer, but nearly indistinguishable to the user. Some might not even matter 
to the next developer who has to work on this report.

What is important is that the result works reliably, provides the desired output, 
operates with reasonable speed, and does not cost too much to create or  
maintain. If all those goals are met, most of the other differences are generally  
not particularly important.

Summary

Thought is the blossom; language the bud; action the fruit behind it 
—Ralph Waldo Emerson

In this chapter, we covered topics including Object Designer navigation, as  
well as more speciic navigation of individual Object (Table, Page, Report, and  
so on) Designers.

We covered a number of C/AL language areas in relative detail including functions 
and how they may be used, variables of various types (both development and 
system), basic C/AL syntax, and discussion of C/AL expressions and operators. Some 
of the essential C/AL functions that we covered included dialogs for communication 
with the user, SETRANGE iltering, GET and FIND, and related functions, BEGIN–END for 
code structures, plus IF–THEN for basic process low control.

Finally, we got some hands-on experience by adding validation code to a table and 
adding code to enhance a generated report.

In the next chapter, we will expand our exploration and practice in the use of the 
tools of C/AL.

http:///


Introduction to C/SIDE and C/AL

[ 376 ]

Review questions
1. All NAV objects can contain C/AL code. True or False? 

2. All NAV object development work starts from the Object Designer.  
True or False? 

3. Choose two object types that have Wizards to "jump start"  
their development: 

a. Pages

b. XMLports

c. Tables

d. Reports

4. If an object type has a Wizard, you must start with the Wizard before 
proceeding to the object Designer form. True or False? 

5. Objects can be exported in several formats. Choose three:

a. fob

b. text

c. .NET

d. XML

e. gif

6. Which object export format should be used to transmit updates to  
client sites? 

a. fob

b. text

c. .NET

7. Object numbers and names are so lexible that you can (and should) choose 
your own approach to numbering and naming. True or False? 

8. Whenever possible, the controlling logic for managing data should be 
resident within the tables. True or False? 

http:///


Chapter 6

[ 377 ]

9. One setting deines how parameters are passed to functions, whether a 
parameter is passed by reference or by value. Choose that setting identity:

a. DataType

b. Subtype

c. Var

d. Value

10. When an ERROR statement is executed, the user is given the choice to 
terminate processing, causing rollback, or to ignore the error and continue 
processing. True or False? 

11. Choice of the proper version of the FIND statement can make a signiicant 
difference in processing speed. True or False? 

12. When a function is needed for a customization, it is always better to create 
your own within your custom code that to call an existing function that exists 
in standard code. True or False?

http:///


http:///


Intermediate C/AL

If you always do what you always did, you always get what you always got—Anon

You think you know when you can learn, are more sure when you can write, even 
more when you can teach, but certain when you can program—Alan Perlis

In the last chapter, we learned enough C/AL to create a basic operational set of 
code. In this chapter, we will learn more about C/AL functions and pick up a few 
good habits along the way. The C/AL functions represent a signiicant portion of 
knowledge that you will need on a day-to-day basis, as you are getting started as  
a professional NAV 2009 Developer.

Our goal is to understand more complex C/AL statement types, to be able to 
competently manage I/O, to create moderately complex program logic structures, 
and to understand data iltering and sorting as handled in NAV and C/AL. Since the 
functions and features in C/AL are designed for business and inancial applications, 
you can do a surprising amount of work with a relatively small number of  
language constructs.

Keep in mind that anything discussed in this chapter will not relate directly to those 
portions of NAV objects which contain no C/AL (for example, MenuSuites and 
Visual Studio Report Designer report layouts).

Some C/AL development tools
All NAV development is done in C/AL and all C/AL development is done in  
C/SIDE. As an Integrated Development Environment, C/SIDE contains a number  
of tools designed to make our C/AL development effort easier. Among these is the 
C/AL Symbol Menu which we had utilized in our report modiications at the end  
of the previous chapter.

http:///


Intermediate C/AL

[ 380 ]

C/AL Symbol Menu
When you are in one of the Object Designers, the C/AL Symbol Menu is accessed 
from either the menu option View | C/AL Symbol Menu or by pressing F5. The 
default three-column display has variables and function categories in the left column. 
If the entry in the left column is a system function or a variable of function type,  
then the center column contains subcategories for the highlighted left-column entry. 
The right column contains the set of functions that are a part of the highlighted 
center-column entry. In a few cases (such as BLOB ields), there is additional 
information displayed in the columns further to the right. These columns are 
accessed through the arrows displayed just below the rightmost display column,  
as shown in the following screenshot:

The C/AL Symbol Menu is a very useful multi-purpose tool for the developer. You 
can use it as a quick reference to see what C/AL functions are available to you, to 
access Help on those functions, and to view what other systems would refer to as the 
Symbol Table. You can also use the C/AL Symbol Menu to paste variable names or 
mini code structures into your code.

The reference use is very helpful when you are starting as a C/AL developer. It is a 
guide to the inventory of available code tools with some especially handy features. 

The irst one is the general syntax for the highlighted function shown at the bottom 
left of the screen, as shown in the previous screenshot. You have also quick and 
focused access to C/SIDE Reference Guide Help. When you focus on an entry in 
the right (third) column and press F1, you will be taken directly to the Help for that 
function. If focus is in the left or centre column, pressing F1 may just bring up the 
general C/SIDE Reference Guide Help rather than a speciic entry. 

The second use of the C/AL Symbol Menu is as a symbol table. The symbol table 
for your object is visible in the left column of the C/AL Symbol Menu display. 
The displayed symbol set (that is, variable set) is context sensitive. It will include 

http:///


Chapter 7

[ 381 ]

all system-deined symbols, all your Global symbols, and Local symbols from 
the function that had focus at the time you had accessed the C/AL Symbol Menu. 
Though it would be useful, there is no way within the Symbol Menu to see all Local 
variables in one view. The Local symbols will be at the top of the list, but you have 
to know the name of the irst Global symbol to determine the scope of a particular 
variable (that is, if it appears in the symbol list before the irst Global, it's a Local 
variable, otherwise it's Global).

The third use for the C/AL Symbol Menu is as a code template with a paste function 
enabled. This function will be enabled if you have accessed the C/AL Symbol Menu 
from the C/AL Editor. Paste is initiated by pressing either the Apply button or the 
OK button. In both the cases, the element with focus will be pasted into your code. 
Apply will leave the Symbol Menu open and OK will close it (double-clicking on the 
element has the same effect as clicking on OK). 

If the element with focus is a simple variable, then that variable will be pasted into 
your code. If the element is a function whose syntax appears at the lower left of the 
screen, the result of the paste action (that is, Apply or OK or double-click) depends on 
whether or not Paste Arguments (just below the leftmost column) is checked or not. 
If the Paste Arguments checkbox is not selected, then only the function itself will be 
pasted into your code. If the Paste Arguments checkbox is selected (as shown in the 
preceding screenshot), then the complete syntax string, as shown, will be pasted into 
your code. This can be a very convenient way to create a template to help you enter 
the correct parameters with the correct syntactical punctuation more quickly.

When you are in the C/AL Symbol Menu, you can focus on a column, click on a 
letter and jump to the next ield in sequence in the column starting with that letter. 
This acts as a limited Search substitute, sort of an assisted browse.

Internal documentation
When you are creating or modifying software, you should always document 
what you have done. It is often dificult for developers to spend much time (that 
is, money) on documentation because most of them never enjoy doing it and the 
beneits are uncertain. A reasonable goal is to provide enough documentation so that 
a smart person following you can understand the reasons for what you have done. 
If you choose good variable names, the C/AL code will tend to be self-documenting. 
If you lay out your code neatly, by using indentation consistently and localizing 
logical elements in functions, then the low of your code should be easy to read. 
Nevertheless, you should add comments to describe the functional reason for the 
change. It doesn't matter how easy it is to follow the logic if you don't know the 
business reason for what's being done.

http:///


Intermediate C/AL

[ 382 ]

In case of a brand-new function, a simple statement of purpose is all that is 
necessary. In case of a modiication, it is extremely useful to have comments 
providing a functional deinition of what the change is intended to accomplish, as 
well a description of what has been changed. If there is good external documentation 
of the change, the comments in the code should ideally refer back to this external 
documentation. In any case, the primary focus should be on the functional reason for 
the change, not just the technical reason. Any good programmer can study the code 
and understand what changed, but without the documentation describing why the 
change was made, the next person's task will be made much more dificult.

In the following example, the documentation is for a brand-new report. The 
comments are in the Documentation section, where there are no format rules, 
except for those you impose. This is a new report, which we created in a previous 
chapter. The comment is coded to indicate the organization making the change (we 
are crediting our book topic as "Programming NAV") and a sequence number for 
this change. In this case, we are using a two digit number (06) for the change, plus 
the version number of the change, 00, hence PN.06.00, followed by the initials of the 
developer (DAS) and the date of the change as shown in the following screenshot.

You can make up your own standard format that will identify the source and date 
of the work, but do have a standard and use it. When you add a new data element 
to an existing table, the Description property should receive the same modiication 
identiier that you would place in the code comments.

When you make a subsequent change to an object, you should document that 
change in the Documentation trigger and also in the code, as described earlier. Inline 
comments can be done in two ways. The most visible way is to use a // character 
sequence (two forward slashes). The text that follows the slashes on that line will 
be treated as a comment by the compiler, that is, it will be ignored. If the comment 
spans two physical lines, the second portion of the comment must also be preceded 
by two forward slashes.

http:///


Chapter 7

[ 383 ]

In the following screenshot we have used // to place comments inline in code to 
identify a change:

Here we have made the modiication version number 01, resulting in a change 
version code of PN.06.01. In the following code, modiications are highlighted by 
bracketing the additional code with comment lines containing the modiication 
identiier, and start and end indicators. The NAV-published standards do not 
include the dashed lines, as shown here, but doing something like that often makes 
it easier to spot modiications when you are scanning code rapidly. You can create 
your own standards, but be consistent in whatever style you use.

The second way to place a comment within code is to surround the comment with 
a matched pair of braces { }. As braces are less visible than the slashes, you should 
always use // when your comment is relatively long. If you want to use { }, it's a 
good idea to insert a // comment at the beginning and end of the material inside  
the braces, to make the existence of the comments more readily identiiable.  
For example:

{//PN.06.02 start deletion -------------

//PN.06.02 replace validation with a call to an external function

...miscellaneous C/AL validation code

//PN.06.02 end deletion ------------- }

When you delete code, you should always leave original statements in place, but 
commented out so that it is inoperative (an exception to this may apply if a source 
code control system is in use which tracks all changes). When you change the 
existing code, you should leave the original code in place, but commented out,  
with the new version being inserted as shown in the following screenshot: 

http:///


Intermediate C/AL

[ 384 ]

Don't forget to update the external version numbers located in the Version List ield 
on the Object Designer screen.

From previous experience, you know that it is not the format of the internal 
documentation that is critical. What is critical is that the documentation exists in 
a consistent and reliable fashion which accurately describes the changes that have 
occurred. The ideal situation is to also have external documentation which deines 
at least the original requirements, validation speciications, and recommended 
operating procedures. 

Computation and Validation utility  

functions
C/AL includes a number of utility functions designed to facilitate data computations 
and validation or initializing of ield contents. The following are some of the 
Validation utility functions:

TESTFIELD

FIELDERROR

VALIDATE

ROUND

TODAY, TIME, and CURRENTDATETIME functions

WORKDATE functions

TESTFIELD
The TESTFIELD function is widely used in standard NAV code. With TESTFIELD, 
you can test a variable value and, if the test fails, issue an error message in a single 
statement. The syntax is as follows:

Record.TESTFIELD (Field, [Value] )

If a Value is speciied and the ield does not contain that value, an error condition is 
raised (that is, the process terminates) and the associated error message is issued. If 
no Value is speciied, the condition evaluated is to compare the ield contents to zero 
or blank. If no Value is speciied and the ield is zero or blank, then that is an error.

The advantage of TESTFIELD is ease of use and consistency in code. The 
disadvantage is that the error message, although not as hard to understand as  
some others, is not as informative as you might provide as a careful developer.

•
•
•
•
•
•

http:///


Chapter 7

[ 385 ]

The following screenshot of TESTFIELD usage is from Table 27—Item. This code 
checks to make sure the ield "Qty. per Unit of Measure" is equal to 1.

An example of the error message generated when the Item"Qty. per Unit of 
Measure" is not equal to 1 follows:

FIELDERROR
Another function very similar to the TESTFIELD function is the FIELDERROR function. 
But where TESTFIELD performs a test and terminates with either an error or an OK 
result, FIELDERROR presumes that the test was already performed and the ield failed 
the test. The FIELDERROR is designed to display an error message, and then trigger a 
runtime error, thus terminating the process. The syntax is as follows:

TableName.FIELDERROR(FieldName[,OptionalMsgText]);

If you include your own message text, for example, deining a Text Constant and 
using it in code:

Text004    the E-mail address format is not correct

Donor.FIELDERROR("E-mail",Text004);

You will see an error message from FIELDERROR similar to the following image:

http:///


Intermediate C/AL

[ 386 ]

The error message begins with the name of the ield, which is the FieldName 
parameter in the function call (in this case E-mail), followed by your speciied 
MsgText (the E-mail address format is not correct), which is in turn followed by the 
word "in", the qualiied name of the irst table ield (Donor.Donor ID) and the value 
in that ield (1098). The Refresh referred to by the instructions means the F5 key.

We use a Text Constant ield, rather than an embedded text literal, so that the code 
can be multilingual. 

If you don't include your own message text, your function call will look like this:

Donor.FIELDERROR("Donor Type");

If you don't specify your own message text, the default message comes in two 
lavors. The irst instance is the case where the referenced ield is not empty, such  
as in the following screenshot. In this case, the content of the ield is BUSINESS. 

The error message logic presumes that the error is due to a wrong value.

Following is another instance of a FIELDERROR function call with no message  
text supplied. In this case the ield was empty. The resulting error message logic 
presumes that the error is the due to empty ield, shown in the following screenshot:

VALIDATE
The syntax of the VALIDATE function is as follows:

Record.VALIDATE ( Field [, Value] )

VALIDATE will ire the OnValidate trigger of Record.Field. If you have speciied a 
Value, then that Value is assigned to the ield and the ield validations are invoked. 

If you don't specify a Value, then the ield validations are invoked using the ield 
value that already exists in the ield. This function allows you to easily centralize 
your code design around the table, a deinite advantage and one of NAV's strengths.

For example, if we were to code changing the Item "Base Unit of Measure" to 
another unit of measure, the code should make sure the change is valid. We should 
get an error if the new unit of measure has any quantity other than 1. 

http:///


Chapter 7

[ 387 ]

Making the unit of measure change with a simple assignment statement would not 
catch a quantity error.

Item."Base Unit of Measure" := NewUnitOfMeasure;

If this were coded with a simple VALIDATE, the assigned value would be checked and 
the error caught.

Item."Base Unit of Measure" := NewUnitOfMeasure;

Item.VALIDATE("Base Unit of Measure");

The simpler code, which does both the assignment and validation in a single 
statement is:

Item.VALIDATE("Base Unit of Measure",NewUnitOfMeasure);

ROUND
The ROUND function allows you to control the rounding precision for a decimal 
expression. The syntax for the ROUND function is as follows:

DecimalResult := ROUND (Number [, Precision] [, Direction] )

where Number is what is being rounded, Precision spells out the number of digits 
of decimal precision, and Direction indicates whether to round up, round down, or 
round to the nearest number. More speciically, some examples of Precision values 
are as follows:

Precision value Rounding effect

100 To a multiple of 100

1 To an integer value

.01 To two decimal places (the US default)

0.01 Same as .01

.0001 To four decimal places

As noted, if no Precision value is speciied, the US Localization will default to two 
decimal places, the standard for US currency. Default options in other localizations 
may differ.

http:///


Intermediate C/AL

[ 388 ]

The options available for the Direction value are shown in the following table:

Direction value 
(a text value)

Rounding effect

'=' Round to the nearest 
(mathematically correct)

'>' Round up

'<' Round down

The following statement:

DecimalValue := ROUND (1234.56789,0.001,'<')

would result in a DecimalValue containing 1234.567, whereas the statements:

DecimalValue := ROUND (1234.56789,0.001,'=')

DecimalValue := ROUND (1234.56789,0.001,'>')

would each result in a DecimalValue containing 1234.568.

TODAY, TIME, and CURRENTDATETIME 

functions
TODAY retrieves the current system date as set in the operating system. TIME 
retrieves the current system time as set in the operating system. CURRENTDATETIME 
retrieves the current date and time in the DATETIME format, which is stored in UTC 
international time and then displayed in local time. The syntax is as follows:

DateField := TODAY;

TimeField := TIME;

DateTimeField := CURRENTDATETIME;

These are useful for date- and time-stamping transactions or for illing in default 
values in ields of the appropriate data type. For data entry purposes, the current 
system date can be entered by simply typing a letter T or the word TODAY in the 
date entry ield (this is not a case-sensitive entry). NAV will automatically convert 
that entry to the current system date.

The NAV C/SIDE Server uses the date of January 1, 0000 as the earliest date (0D) 
and subsequent dates through December 31, 9999. The Microsoft Dynamics NAV 
undeined time (0T) is represented by the same value as an undeined date (0D). The 
undeined date in the RTC is represented by the earliest valid DATETIME in SQL 
Server, which is January 1,17 53 00:00:00:000. 

http:///


Chapter 7

[ 389 ]

In order to assure compatibility with previous versions, NAV 2009 supports the date 
January 1, 0000, then the date range from January 1, 1753 through December 31, 9999. 
If a date greater January 1, 0000, but less than January 1, 1753 inadvertently shows 
up in the RTC, a runtime error will occur. 

WORKDATE function
A useful feature of NAV is the Work Date. Many standard NAV routines default 
dates to Work Date rather than to the system date. When a user logs into the system, 
the Work Date is initially set equal to the System Date. But at any time, the operator 
can set the Work Date to any date by accessing Set Work Date… from the Microsoft 
Dynamics NAV menu (as shown in the next screenshot) and then entering the 
desired new Work Date.

The following screenshot shows the Set Work Date screen:

The syntax for using the WorkDate function in C/AL is as follows:

DateField := WORKDATE;

http:///


Intermediate C/AL

[ 390 ]

For data entry purposes, the current system date can be entered by the operator 
simply typing a letter w or W or the word WORKDATE in the date entry ield.  
NAV will automatically convert that entry to the current Work Date.

Data conversion functions
Some data type conversions are handled in the normal process low by NAV without 
any particular attention on part of the Developer (for example, Code to Text, Char 
to Text). Some data type conversions can only be handled through C/AL functions. 
Formatting is included as a data type conversion.

FORMAT function
The FORMAT function provides for the conversion of an expression of any data type 
(for example, integer, decimal, date, option, time, Boolean) into a formatted 
string. The syntax is as follows:

StringField := FORMAT( ExpressionToFormat [, OutputLength] 

    [, FormatString or FormatNumber])

The formatted output of the ExpressionToFormat will be assigned to the output 
StringField. The optional parameters control the conversion according to a 
complex set of rules. These rules can be found in the C/SIDE Reference Guide Help 
ile for the FORMAT function. Whenever possible, you should always apply FORMAT in 
its simpler form. The best way to determine the likely results of a FORMAT expression 
is to test it through a range of the values to be formatted. Make sure that you include 
the extremes of the range of possible values in your testing.

The optional OutputLength parameter can be zero (which is the default), a positive 
integer, or a negative integer. The typical OutputLength value is either zero, in 
which case, the deined format is fully applied, or it is a igure designed to control 
the maximum character length of the formatted string result.

The last optional parameter has two totally separate sets of choices. One set, 
represented by an integer FormatNumber, allows the choice of a particular predeined 
(that is, standard) format, of which there are four to nine choices depending on the 
ExpressionToFormat data type. The other set of choices allows you to build your 
own format expression. 

The C/SIDE Reference Guide Help information for the FORMAT property provides a 
relatively complete description of the available tools from which you can build your 
own format expression. The FORMAT property Help also provides a complete list of 
the predeined format choices as well as a good list of example sample formats and 
the resulting formatted data.

http:///


Chapter 7

[ 391 ]

Note that a FORMAT function which cannot be executed will result in a run-time error 
that will terminate execution of the process. Thus, to avoid production crashes, you 
will want to place a high importance on thoroughly testing any code where FORMAT 
is used.

EVALUATE function
The EVALUATE function is essentially the reverse of the FORMAT function. It allows 
you to convert a string ield into the deined data type. The syntax of the EVALUATE 
function is as follows:

[ BooleanField := ] EVALUATE ( ResultField, StringToBeConverted [, 9]

The handling of a run-time error can be done by specifying BooleanField or 
including EVALUATE in an expression which will deal with an error (such as an IF 
statement). The ResultField data type will determine what data conversion the 
EVALUATE function will attempt. The data type of the ResultField must be one of 
the following: integer, Boolean, date, time, code, option, text constant, or GUID. 
The format of the data in StringToBeConverted must be compatible with the data 
type of ResultField otherwise a run-time error will occur. 

The optional parameter, number 9, only applies for XMLport data exporting. Use 
of the optional number 9 parameter will convert C/SIDE format data types into 
XML standard data types. This is used to deal with the fact that several equivalent 
C/SIDE-XML data types are represented differently at the base system level (that is, 
"under the covers"). The C/SIDE data types include decimal, Boolean, datetime, date, 
time, integer and duration.

DATE functions
In order to convert numeric data to Date data types and Dates to numeric data,  
C/AL uses a series of DATE functions.

DATE2DMY function
DATE2DMY allows you to extract the sections of a date (Day, Month, and Year) from a 
Date ield. The syntax is as follows:

IntegerVariable := DATE2DMY ( DateField, ExtractionChoice )

http:///


Intermediate C/AL

[ 392 ]

The ields IntegerVariable and DateField are just as their names imply. The 
ExtractionChoice parameter allows you to choose which value (Day, Month, or 
Year) will be assigned to the IntegerVariable. The following table provides the 
DATE2DMY extraction choices:

DATE2DMY extraction choice Integer value result

1 2 digit day (1 – 31)

2 2 digit month (1 – 12)

3 4 digit year

DATE2DWY function
DATE2DWY allows you to extract the sections of a date (Day of the week, Week of the 
year, and Year) from a Date ield. The syntax is as follows:

IntegerVariable := DATE2DWY ( DateField, ExtractionChoice )

The ields IntegerVariable and DateField are just as their names imply. The 
ExtractionChoice parameter allows you to choose which value (Day, Week, or 
Year) will be assigned to the IntegerVariable. 

The following table provides the DATE2DWY extraction choices:

DATE2DWY extraction choice Integer value result

1 2 digit day (1 – 7 for Monday 
– Sunday)

2 2 digit week (1 – 53)

3 4 digit year

DMY2DATE and DWY2DATE functions
DMY2DATE allows you to create a date from integer values (or defaults) representing 
the day of the month, month of the year, and the four-digit year. If an optional 
parameter (Month or Year) is not speciied, the corresponding value from the system 
date is used. The syntax is as follows:

DateVariable := DMY2DATE ( DayValue [, MonthValue] [, YearValue] )

The only way to have the function use Work Date values for Month and Year is to 
extract those values and then use them explicitly. An example is as follows:

DateVariable := DMY2DATE(22,DATE2MDY(WORKDATE,2),DATE2MDY(WORKDATE,3))

http:///


Chapter 7

[ 393 ]

This example also illustrates how expressions can be built up of nested 
expressions and functions. We have WorkDate within DATE2MDY 
within DMY2DATE.

DWY2DATE operates similarly to DMY2DATE; allowing you to create a date from integer 
values representing the day of the week (1 to 7, that is, Monday to Sunday), week of 
the year (from 1 to 53), and the four-digit year. The syntax is as follows:

DateVariable := DWY2DATE ( DayValue [, WeekValue] [, YearValue] )

An interesting result can occur for week 53 because it can span two years. In that case 
the year of the result will vary depending on the day of the week in the parameters 
(that is, the year of the result may differ from the year speciied in the parameters).

CALCDATE function
CALCDATE allows you to calculate a date value assigned to a Date data type variable 
based on a Date Expression applied to a Base or Reference Date. If you don't specify 
a BaseDateValue, the current system date is used as the default date. Otherwise, the 
BaseDateValue can be supplied either in the form of a variable of data type Date or 
as a Date constant.

The syntax for CALCDATE is as follows:

DateVariable := CALCDATE ( DateExpression [, BaseDateValue])

There are a number of ways in which you can build a DateExpression. The rules 
for the CALCDATE function DateExpression are similar to the rules for DateFormula 
described in Chapter 3.

If there is a CW, CM, CP, CQ, or CY (Current Week, Current Month, Current Period, 
Current Quarter, Current Year) parameter in an expression, then they will be 
evaluated based on the BaseDateValue. If you have more than one of these in  
your expression, the results are unpredictable.

If your Date Expression is stored in a DateFormula variable (or a Text or Code 
variable with the DateFormula property set to Yes), then the Date Expression will 
be language independent. If you create your own Date Expression in the form of a 
string constant within your inline C/AL code, surrounding the constant with < > 
delimiters as part of the string, that will make the constant language independent. 
Otherwise, the Date Expression constant will be language dependent.

http:///


Intermediate C/AL

[ 394 ]

Regardless of how you have constructed your DateExpression, it is important 
to test it carefully and thoroughly before moving on. Incorrect syntax will result 
in a runtime error. One easy way to test is by using a Report whose sole task is to 
evaluate your expression and display the result. If you want to try different Base 
Dates, you can use the Request Page, accept the Base Date as input, then calculate 
and display the DateVariable in the OnValidate trigger.

Some sample CALCDATE expression evaluations are as follows:

('<CM>',031010D) will yield 03/31/2010, that is, the last day of the Current 
Month for the date 3/10/2010.

('<-WD2>',031011D) will yield 03/08/2011, that is, the WeekDay #2  
(the prior Tuesday) before the date 3/10/2011.

('<CM+1D>',BaseDate) where BaseDate equals 03/10/10, will yield 
04/01/2010, that is, the last day of the month of the Base Date plus one  
day (the irst day of the month following the Base Date).

FlowField-SumIndexField functions
In the chapter on Fields, we discussed SumIndexFields and FlowFields. To recap 
briely, SumIndexFields are deined in the screen where keys are deined. They 
allow very rapid calculation of values in iltered data. In most of the systems, the 
calculation of most types of group totals, periodic totals, and such, required passing 
all of the data to be totaled. SIFT technology allows a NAV system to respond almost 
instantly with such totals in any area where the SumIndexField was deined. In fact, 
use of SIFT totals combined with NAV's retention of detailed data supports totally 
lexible ad hoc queries of the form "What were our sales for red widgets between the 
dates of November 15th through December 24th?" And the answer is returned fast! 
SumIndexFields are the basis of FlowFields which have a Method of Sum or Average; 
such a FlowField must refer to a data element that is deined as a SumIndexField.

SumIndexFields are the basis of FlowFields; a FlowField must refer to a data 
element that is deined as a SumIndexField. When you access a record that 
has a SumIndexField deined, there is no visible evidence of the data sum that 
SumIndexField represents. When you access a record that contains FlowFields, 
the FlowFields are empty virtual data elements until they are calculated. When 
a FlowField is displayed in a page, it is automatically calculated by NAV; the 
developer doesn't need to do so. But in any other scenario, the developer is 
responsible for calculating FlowFields before they are used.

•
•
•

http:///


Chapter 7

[ 395 ]

FlowFields are one of the key (all puns intended) areas where NAV systems are 
subject to signiicant processing bottlenecks, especially in SQL Server systems. In 
versions older than V5.0 SP1, the data used to calculate FlowFields (that is, the 
SumIndexFields) was maintained in separate tables. It was critical to minimize the 
number of FlowFields, to optimize the design of indexes used to maintain and access 
them, and to frequently optimize the operational indexes within SQL Server.

Beginning with V5.0 SP1 and NAV 2009, the FlowFields are now calculated with 
a SQL Server feature called "Indexed Views". This feature eliminates the need for 
the separate indexes to support FlowFields and is therefore much more eficient 
and easier to maintain. (For additional information, look up SIFT in the C/SIDE 
Reference Guide Help, especially SIFT and Microsoft Dynamics NAV with 
Microsoft SQL Server.) 

Even with the improved SQL Server SIFT design, it is still critical that the Keys 
used for SumIndexField deinition are designed with eficient processing in mind. 
Sometimes, as part of a performance tuning effort, it's necessary to revise or add  
new keys to improve FlowField performance. Note that even though you can 
manage indexes in SQL Server independent of the NAV key deinitions, doing  
so will make your system more dificult to support in the long run because the  
SQL Server resident changes aren't visible within NAV.

In addition to being careful about the SIFT–key structure design, it is also 
important not to deine any SumIndexFields that are not necessary. Each additional 
SumIndexField adds additional processing requirements and thus adds to the 
processing load of the system.

CALCFIELDS function
The syntax for CALCFIELDS is as follows:

[BooleanField := ] Record.CALCFIELDS ( FlowField1 [, FlowField2] ,…)

Executing the CALCFIELDS function will cause all the speciied FlowFields to be 
calculated (that is, updated). Speciication of the BooleanField allows you to handle 
any run-time error that may occur. Any runtime errors for CALCFIELDS usually result 
from a coding error or a change in a table key structure.

The FlowField calculation takes into account the ilters (including FlowFilters) that 
are currently applied to the Record. After the CALCFIELDS execution, the included 
FlowFields can be used similarly to any other data ields. The CALCFIELDS must be 
executed for each cycle through the subject table.

Whenever the contents of a BLOB ield are to be used, CALCFIELDS is used to load the 
contents of the BLOB ield from the database into memory.

http:///


Intermediate C/AL

[ 396 ]

CALCSUMS function
The CALCSUMS function is conceptually similar to CALCFIELDS. But the CALCFIELDS 
operates on FlowFields and CALCSUMS differs by operating directly on the record and 
ield where the SumIndexFields are deined. That difference means that you must 
specify the proper key plus any ilters to apply when using CALCSUMS (the applicable 
key and ilters to apply are already deined in the properties for FlowFields).

The syntax for CALCSUMS is as follows:

[ BooleanField := ] Record.CALCSUMS ( SIFTField1 [,SIFTField2] ,…)

Prior to this statement, you must have speciied a key that has the SIFTFields 
deined. Before executing the CALCSUMS function, you also need to specify any  
ilters that you want to apply to the Record from which the sums are to be 
calculated. The SIFTField calculations take into account the ilters that are currently 
applied to the Record, but those ilters must apply to key ields associated with the 
chosen SIFTfield.

Executing the CALCSUMS function will cause all the speciied SIFTField totals to be 
calculated. Speciication of the BooleanField allows you to handle any runtime 
error that may occur. Runtime errors for CALCSUMS usually result from a coding  
error or a change in a table key structure.

Before the execution of CALCSUMS, SIFTFields contain only the data from the 
individual record that was read. After the CALCSUMS execution, the included 
SIFTFields contain the totals that were calculated by the CALCSUMS function (these 
totals only affect the data in memory, not that on the disk). These totals can then be 
used the same as data in any ield, but if you want to access the individual record's 
original data for that ield, you must either save a copy of the record before executing 
the CALCSUMS or you must re-read the record. The CALCSUMS must be executed for 
each read cycle through the subject table.

CALCFIELDS and CALCSUMS  

comparison
In the Sales Header record, there are FlowFields deined for Amount and "Amount 
Including VAT". These FlowFields are all based on Sums of entries in the Sales Line 
table. The CalcFormula for Amount is Sum("Sales Line".Amount WHERE (Document 
Type=FIELD(Document Type),Document No.=FIELD(No.))). To calculate a 
TotalOrderAmount value while referencing the Sales Header table, the code can  
be as simple as:

TotalOrderAmount := "Sales Header".CALCFIELDS (Amount);

http:///


Chapter 7

[ 397 ]

To calculate the same value from code directly referencing the Sales Line table, 
the required code is similar to the following (assuming a Sales Header record has 
already been read):

"Sales Line".SETRANGE("Document Type","Sales Header"."Document Type");

"Sales Line".SETRANGE("Document No.","Sales Header"."No.");

CALCSUMS(Amount);

TotalOrderAmount := Amount;

Flow control
The structures deined for low control are discussed in the following subsections:

REPEAT–UNTIL control structure
REPEAT–UNTIL allows you to create a repetitive code loop REPEATing a block of  
code UNTIL a speciic conditional expression evaluates to TRUE. In that sense, 
REPEAT–UNTIL deines a block of code, operating like the BEGIN–END compound 
statement structure which we covered in the previous chapter. In this case, the REPEAT 
tells the system to keep reprocessing the block of code, while the UNTIL serves as the 
exit doorman, checking if the conditions for ending the processing are true. Because 
the exit condition is not evaluated until the end of the loop, a REPEAT–UNTIL structure 
will always process at least once through the contained code.

REPEAT–UNTIL is very important in NAV because it is frequently part of the data 
input cycle with the FIND-NEXT structure, which will be covered shortly.

An example of the REPEAT–UNTIL structure to process data in a 10-element array is  
as follows:

LoopCount := 0;

REPEAT

 LoopCount := LoopCount + 1;

 TotCustSales := TotCustSales + CustSales[LoopCount];

UNTIL LoopCount = 10;  

WHILE–DO control structure
A WHILE–DO control structure allows you to create a repetitive code loop DOing a 
block of code WHILE a speciic conditional expression evaluates to TRUE. WHILE–DO 
is different from REPEAT–UNTIL, both in the possible need for a BEGIN–END structure 
to deine a block of code and in the timing of the evaluation of the exit condition.

http:///


Intermediate C/AL

[ 398 ]

The syntax of the WHILE–DO control structure is as follows:

WHILE <Condition> DO <Statement>

The Condition can be any Boolean expression which evaluates to TRUE or FALSE. 
The Statement can be a simple statement or the most complex possible compound 
BEGIN–END statement. Most WHILE–DO loops will contain a BEGIN–END block of code. 
The Condition will be evaluated at the beginning of the loop. When it evaluates  
to FALSE, the loop will terminate, meaning that a WHILE–DO loop can be exited 
without processing.

An example of the WHILE-DO structure to process data in a 10-element array is  
as follows:

LoopCount := 0;

WHILE LoopCount < 10

DO BEGIN 

 LoopCount := LoopCount + 1;

 TotCustSales := TotCustSales + CustSales[LoopCount];

END; 

As, in many cases, the WHILE-DO is slower than REPEAT-UNTIL, only use WHILE-DO 
when the application logic demands it.

CASE–ELSE statement
The CASE–ELSE statement is a conditional expression very similar to IF–THEN–ELSE 
except that it allows for more than two choices of outcomes for the evaluation of the 
controlling expression. The syntax of the CASE–ELSE statement is as follows:

CASE <ExpressionToBeEvaluated> OF

 <Value Set 1> : <Action Statement 1>;

 <Value Set 2> : <Action Statement 2>;

 <Value Set 3> : <Action Statement 3>;

 ...

 ...

 <Value Set n> : <Action Statement n>;

 [ELSE <Action Statement n + 1>;

END;

The ExpressionToBeEvaluated must not be a record. The data type of the Value 
Set must be compatible with (that is, able to be automatically converted to) the data 
type of the ExpressionToBeEvaluated. Each Value Set must be an expression, a set 
of values or a range of values. The following example illustrates a typical instance of 
a CASE–ELSE statement:

http:///


Chapter 7

[ 399 ]

 CASE Customer."Salesperson Code" OF

 '2','5','9': Customer."Territory Code" := 'EAST';

 '6'..'8': Customer."Territory Code" := 'WEST';

 '3': Customer."Territory Code" := 'NORTH';

 '1'..'4': Customer."Territory Code" := 'SOUTH';

 ELSE Customer."Territory Code" := 'FOREIGN';

 END;

In this example, you can see several alternatives for the Value Set. The irst line 
(EAST) Value Set is a list of values. If "Salesperson Code" is equal to '2' or '5' or 
'9', the value EAST will be assigned to Customer."Territory Code". The second 
line (WEST) Value Set is a range, any value from '6' through '8'. The third line 
(NORTH) Value Set is just a single value ('3'). Looking at the bulk of standard code, 
you will see that the single value is the norm for CASE structures. The fourth line 
(SOUTH) Value Set is again a range ('1'..'4'). If nothing in any Value Set matches 
ExpressionToBeEvaluated, then the ELSE clause will be executed.

An example of an IF–THEN-ELSE statement equivalent to the preceding CASE-ELSE 
statement is as follows:

 IF Customer."Salesperson Code" IN ['2','5','9'] THEN 

  Customer."Territory Code" := 'EAST'

 ELSE IF Customer."Salesperson Code" IN ['6'..'8'] THEN 

   Customer."Territory Code" := 'WEST'

 ELSE IF Customer."Salesperson Code" = '3' THEN 

    Customer."Territory Code" := 'NORTH'

  ELSE IF Customer."Salesperson Code" IN ['1'..'4'] THEN 

     Customer."Territory Code" := 'SOUTH'

  ELSE Customer."Territory Code" := 'FOREIGN';

The following is a more creative, and somewhat less intuitive example of the  
CASE–ELSE statement. In this instance, ExpressionToBeEvaluated is a simple 
TRUE and the Value Set statements are all conditional expressions. The irst line 
containing a Value Set expression that evaluates to TRUE will be the line whose 
Action Statement is executed. The rules of execution and low in this instance  
are same as the previous example.

 CASE TRUE OF

 Salesline.Quantity < 0:

 BEGIN

  CLEAR(Salesline."Line Discount %");

  CredTot := CredTot - Salesline.Quantity;

 END;

 Salesline.Quantity > QtyBreak[1]: 

  Salesline."Line Discount %" := DiscLevel[1];

http:///


Intermediate C/AL

[ 400 ]

 Salesline.Quantity > QtyBreak[2]: 

  Salesline."Line Discount %" := DiscLevel[2];

 Salesline.Quantity > QtyBreak[3]: 

  Salesline."Line Discount %" := DiscLevel[3];

 Salesline.Quantity > QtyBreak[4]: 

  Salesline."Line Discount %" := DiscLevel[4];

 ELSE

  CLEAR(Salesline."Line Discount %");

 END;

WITH–DO statement
When you are writing code referring to ields within a record, the most speciic 
syntax for ield references is the fully qualiied reference. When referring to the  
ield City in the record Customer, use the reference Customer.City.

In many C/AL instances, the record name qualiier is implicit, that is, the compiler 
assumes a default record qualiier based on context within the code. This happens 
automatically for variables within a page that is bounded to a table. The bound table 
becomes the implicit record qualiier for ields referenced in the Page object. In a 
Table object, the table is the implicit record qualiier for ields referenced in the  
C/AL internal to that object. In Report and XMLport objects, the Data Item record 
is the implicit record qualiier for the ields referenced within Data Item-speciic 
triggers (for example, OnAfterGetRecord, OnAfterImportRecord, and so on).

In all other C/AL code, the only way to have an implicit record qualiier is to use  
the WITH–DO statement. WITH–DO is widely used in the base product in Codeunits  
and processing Reports. The WITH–DO syntax is as follows:

WITH <RecordQualifier> DO <Statement>

Typically, the DO portion of this statement will be followed by a BEGIN–END code 
block, that is, the Statement will be a compound statement. The scope of the  
WITH–DO statement is terminated by the end of the DO statement. 

When you execute a WITH–DO statement, RecordQualifier becomes the implicit 
record qualiier used by the compiler until the end of the statement or until it is 
overridden by a nested WITH–DO statement. Where fully qualiied syntax would 
require the following form:

Customer.Address := '189 Maple Avenue';

Customer.City := 'Chicago';

http:///


Chapter 7

[ 401 ]

the WITH–DO syntax takes advantage of the implicit record qualiication making the 
code easier to write, and hopefully easier to read, for example:

WITH Customer DO

BEGIN 

 Address := '189 Maple Avenue';

 City := 'Chicago';

END;

Nested WITH–DO statements are valid, but not used. They are also not recommended 
because they can easily confuse the developer, resulting in bugs. The same comments 
apply to nesting a WITH–DO statement within a function where there is an automatic 
implicit record qualiier, such as in a table, bound Page, report, or Dataport. Of 
course, wherever the references to other record variables occur within the scope of 
a WITH–DO, you must include the speciic qualiiers. This is particularly important 
when there are variables with the same name (for example, City) in multiple tables 
that might be referenced in the same set of C/AL logic.

Some developers maintain that it is always better to use fully qualiied variable 
names to reduce the possibility of inadvertent reference errors. This approach 
also eliminates any possible misinterpretation of variable references by the next 
developer maintaining the code.

QUIT, BREAK, EXIT, SKIP, and SHOWOUTPUT 

functions
There is a group of C/AL functions that can be used to control the low and affect 
the processing under different circumstances. Each acts to interrupt low in different 
places and with different results. To get a full appreciation for how these functions 
are used, you need to review them in place in code in NAV 2009. Focus on the irst 
four and only check out SHOWOUTPUT in the Classic reports so you can better 
understand the equivalent functionality in RTC reports.

QUIT function
The QUIT function is the ultimate processing interrupt for Report, Dataport, or 
XMLport objects. When a QUIT is executed, processing immediately terminates  
even for the OnPostObject triggers. QUIT is often used in reports to terminate 
processing when the report logic determines that no useful output will be generated 
by further processing. 

http:///


Intermediate C/AL

[ 402 ]

The syntax of the QUIT function is as follows:

CurrReport.QUIT;

CurrDataport.QUIT;

CurrXMLport.QUIT;

BREAK function
The effect of a BREAK function depends on the context in which it executes. If the 
BREAK is within a loop structure such as a WHILE–DO or REPEAT–UNTIL loop, BREAK 
exits the loop as if the loop exit condition had been satisied except the exit is at the 
point of the BREAK. If the BREAK function is not in a loop, then its execution will exit 
the host trigger. BREAK can only be used in Data Item triggers in Reports, Dataports, 
and XMLports. BREAK is often used to break or terminate the sequence of processing 
one segment of a report while allowing the overall processing to continue.

The BREAK syntax is one of the following:

CurrReport.BREAK;

CurrDataport.BREAK;

CurrXMLport.BREAK;

EXIT function
EXIT is used to end the processing within a C/AL trigger. EXIT works the same 
whether it is executed within a loop or not. EXIT can be used simply to end the 
processing of the trigger or to pass a return parameter from a local function. If EXIT 
is used without a return value then a default return value of zero is returned. The 
syntax for EXIT is as follows:

EXIT([<ReturnValue>])

EXIT could be considered as an acceptable substitute for the dreaded GOTO. EXIT is 
frequently used in functions to pass back a return value.

SKIP function
When executed, the SKIP function will skip the remainder of the processing in the 
current cycle in the current trigger. Unlike BREAK, it does not terminate processing 
in the trigger. It can be used only in the OnAfterGetRecord trigger of a Report, 
Dataport, or XMLport object. In many reports, when the results of processing in 
the OnAfterGetRecord trigger are determined not to be useful for output, the 
SKIP function is used to terminate just that single iteration of the trigger without 
interfering with any other processing.

http:///


Chapter 7

[ 403 ]

The SKIP syntax is one of the following:

CurrReport.SKIP;
CurrDataport.SKIP;
CurrXMLport.SKIP;

SHOWOUTPUT function
SHOWOUTPUT can be used only in the OnPreSection trigger of Classic Report objects. 
SHOWOUTPUT has no direct corresponding function in VS RD Reports. To replicate 
similar capabilities in VS RD Reports, see the C/SIDE Reference Guide Help for 
How to: Apply Conditional Visibility Controls.

Input and Output functions
In the previous chapter, we learned about the basics of the FIND function. We learned 
about FIND('-') to read the beginning of the selected records for the Classic Client, 
FINDSET to read a selected set of records and FIND('+') to begin reading at the far 
end of the selected records for both clients. Now we will review additional functions 
that are generally used with FIND functions in typical production code. While 
designing the code by using the MODIFY and DELETE record functions, you need 
to consider the possible interactions with other users on the system. There might 
be someone else modifying and deleting records in the same table in which your 
application is working.

You may want to utilize the LOCKTABLE function to gain total control of the data 
briely, while updating the data. You can ind more information on LOCKTABLE in 
the online C/AL Reference Guide Help. Be aware that LOCKTABLE performs quite 
differently in the C/SIDE database from how it performs in the SQL Server database. 
While the C/SIDE database only supported table locking, the SQL Server database 
supports Record Level Locking. There are a number of factors that you should 
consider when coding data locking in your processes. It is worthwhile reading all of 
the C/AL Reference Guide material found by a Search on LOCKTABLE, particularly 
Locking in Microsoft SQL Server.

NEXT function with FIND or FINDSET
The syntax deined for the NEXT function is as follows:

IntegerValue := Record.NEXT ( ReadStepSize )

The full assignment statement format is rarely used to set an IntegerValue. 
In addition, there is no documentation for a non-zero IntegerValue. When 
IntegerValue goes to zero, it means that the read loop has reached the end  
of the selected record set.

http:///


Intermediate C/AL

[ 404 ]

If the ReadStepSize value is negative, the table will be read in reverse; if that value 
is positive (the default), then the table will be read forward. The size of the value in 
ReadStepSize controls which records should be read. For example, if ReadStepSize 
is 2 or -2, then every second record will be read. If ReadStepSize is 10 or -10, then 
every tenth record will be read. The default value is zero, in which case every record 
will be read (the same as if it were 1 or +1) and the read direction will be forward.

In a typical data input loop, the irst read is a FIND or FINDSET function followed 
by a REPEAT–UNTIL loop. The exit condition is a NEXT expression similar to UNTIL 
Record.NEXT = 0;. The C/AL for FINDSET and FIND(-) are structured the same.

The full C/AL syntax would look like the following:

IF CustRec.FIND('-') THEN

REPEAT

 Block of C/AL logic

UNTIL CustRec.NEXT = 0;

INSERT function
The purpose of the INSERT function is to insert (that is, add) records into the table. 
The syntax for the INSERT function is as follows:

[BooleanValue :=] Record.INSERT ( [ TriggerControlBoolean ] )

If BooleanValue is not used and the INSERT function fails (for example, if inserting 
would result in a duplicate Primary Key), then the process will terminate with 
an error. Most of the time, a detected error should be handled in code rather than 
allowing process termination.

The TriggerControlBoolean value, a TRUE or FALSE entry, controls whether or  
not the table's OnInsert trigger ires when the INSERT occurs. The default value  
is FALSE. If you let the default FALSE control, you run the risk of not performing  
error checking that the table's designer assumed would be run when a new record 
was added.

If you are reading a table and you need to also INSERT records into that 
table, the INSERTs should be done to a separate instance of the table, using 
either a global or local variable. Otherwise, you run the risk of reading your 
new records as part of your processing (normally a very confusing action) 
and the risk of changing the sequence of your processing unexpectedly due 
to the introduction of new records into your data set.

http:///


Chapter 7

[ 405 ]

MODIFY function
The purpose of the MODIFY function is to modify (that is, update) the existing data 
records. The syntax for MODIFY is as follows:

[BooleanValue :=] Record.MODIFY ( [ TriggerControlBoolean ] )

If BooleanValue is not used and MODIFY fails (for example, if another process 
changes the record after it was read by this process), then the process will terminate 
with an error statement. Any detected error should either be handled or should 
terminate the process. The TriggerControlBoolean value is a TRUE or FALSE entry, 
which controls whether or not the table's OnModify trigger ires when this MODIFY 
occurs. The default value is FALSE.

MODIFY cannot be used to cause a change in a Primary Key ield. In that case, the 
RENAME function must be used. 

Rec and xRec
In Table and Page objects, the system automatically provides you with the system 
variables Rec and xRec. After a record has been updated by MODIFY, Rec represents 
the current record data in process and xRec represents the record data before it was 
modiied. By comparing ield values in Rec and xRec, you can determine if changes 
have been made to the record in the current process cycle. Rec and xRec records have 
all the same ields in the same structure as the table to which they relate.

DELETE function
The purpose of the DELETE function is to delete existing data records. The syntax for 
DELETE is as follows:

[BooleanValue :=] Record.DELETE ( [ TriggerControlBoolean ] )

If the BooleanValue is not used and DELETE fails, the process will terminate with an 
error statement. You should handle any detected error or terminate the process, as 
appropriate, under the control of your C/AL code.

The TriggerControlBoolean value is a TRUE or FALSE entry, which controls 
whether or not the table's OnDelete trigger ires when this DELETE occurs. The 
default value is FALSE. If you let the default FALSE prevail, you run the risk of not 
performing error checking that the table's designer assumed would be run when a 
record was deleted.

http:///


Intermediate C/AL

[ 406 ]

MODIFYALL function
MODIFYALL is the high-volume version of the MODIFY function. If you have a group of 
records in which you wish to modify one ield in all of them to the same new value, 
you should use MODIFYALL. MODIFYALL is controlled by the ilters that apply at the 
time of invoking. MODIFYALL does not do any error checking, such as checking for an 
empty set or enforcing referential integrity.

The other choice for doing a mass modiication would be to have a FIND–NEXT loop 
in which you modiied each record one at a time. The advantage of MODIFYALL is  
that it allows the system to optimize processing for the volume update.

The syntax for MODIFYALL is as follows:

Record.MODIFYALL (FieldToBeModified,NewValue  
[,TriggerControlBoolean ] )

The TriggerControlBoolean value is a TRUE or FALSE entry, which controls 
whether or not the table's OnModify trigger ires when this MODIFY occurs. The 
default value is FALSE. 

In a typical situation, a ilter or series of ilters would be applied to a table followed 
by the MODIFYALL function. A simple example where we are going to reassign all the 
Territory Codes for a particular Salesperson to NORTH is as follows:

CustRec.SETRANGE("Salesperson Code",'DAS');

CustRec.MODIFYALL("Territory Code",'NORTH',TRUE);

DELETEALL function
DELETEALL is the high volume version of the DELETE function. If you have a group  
of records that you wish delete, use DELETEALL. The other choice would be to have  
a FIND-NEXT loop in which you delete each record one at a time. The advantage  
of the DELETEALL is that it allows the system to optimize processing for the  
volume deletion. 

The syntax for DELETEALL is as follows:

Record.DELETEALL ( [,TriggerControlBoolean] )

The TriggerControlBoolean value is a TRUE or FALSE entry that controls whether 
or not the table's OnDelete trigger ires when this DELETE occurs. The default value is 
FALSE. If the TriggerControlBoolean value is TRUE, then the OnDelete trigger will 
ire for each record deleted. In that case, there is no speed advantage for DELETEALL 
versus the use of a FIND–DELETE–NEXT loop.

http:///


Chapter 7

[ 407 ]

In a typical situation, a ilter or series of ilters would be applied to a table followed 
by the DELETEALL function, similar to the preceding example. Like MODIFYALL, 
DELETEALL respects the ilters that have been set and does not do any referential 
integrity error checking.

Filtering
We have talked about the fact that the iltering capabilities built into NAV provide 
a signiicant additional level of power to the system. This power is available 
to the users and to the developer as well. It is true that other systems provide 
iltering of data for inquiry, reporting, or analysis. But a few other systems have 
iltering implemented as pervasively as does NAV nor do they have it tied to the 
detailed retention of historical data. The result of NAV's features is that even the 
most elementary implementation of NAV includes very powerful data analysis 
capabilities for end user use.

You as the developer should appreciate the fact that you cannot anticipate every 
need of any user, let alone anticipate every need of every user. For that reason, you 
should give the user as much freedom as you can. Wherever feasible, the user should 
be given the opportunity to apply their own ilters so that they can determine the 
optimum selection of data for their particular situation. On the other hand, freedom, 
here as everywhere, is a double-edged sword. With the freedom to decide just how 
to segment one's data, comes the responsibility for iguring out what constitutes a 
good segmentation to address the problem at hand. 

As you, the experienced systems designer and developer, presumably have 
considerable insight into good ways to analyze and present the data, it may be best 
for you to provide some predeined selections. In some cases, the data structure 
means a very limited set of options make sense (maybe just one). As a result, you 
should often provide one or more speciic accesses to data (pages and/or reports), 
but then, if possible, also allow more sophisticated user access to manipulate the  
data creatively on their own.

When applying ilters by using any of the options, be very conscious of the table 
key that will be active when the ilter takes effect. In a table containing a lot of 
data, iltering on a ield that is not represented very high in the currently active key 
may result in a poor (or very poor) response time for the user. In the same vein, in 
a system suffering from a poor response time during processing, you should irst 
investigate the relationships of active keys to applied ilters.

http:///


Intermediate C/AL

[ 408 ]

SETRANGE function
SETRANGE allows you to set a simple range ilter on your data. The syntax is  
as follows:

Record.SETRANGE (Field [,LowValue] [,HighValue] );

If both the optional parameters are omitted, any iltering that was previously applied 
to Record.Field will be cleared. In fact, this is the recommended way for clearing 
ilters on a single ield. 

If only one parameter is speciied, it becomes both the high and low range values. In 
other words, you will be iltering on a single value in this ield. If you specify both 
a low- and high-range value, the ilter will be logically the same as: LowValue less 
than or equal to Field less than or equal to HighValue. If you happen to specify 
a HighValue that is less than the LowValue, you will exclude all data, resulting in 
selecting an empty set.

SETFILTER function
SETFILTER allows you to apply any Filter expression that could be created manually, 
including various combinations of ranges, C/AL operators, and even wild cards. 
SETFILTER syntax is as follows:

Record.SETFILTER ( Field, FilterString [, FilterValue1], . . . ] );

FilterString can be a literal such as '1000..20000' or 'A*|B*|C*'. Optionally, 
you can use variable tokens in the form of %1, %2, %3, and so forth, representing 
variables (but not operators) FilterValue1, FilterValue2, and so forth to be 
substituted in the ilter string at runtime. This construct allows you to create ilters 
whose data values can be deined dynamically at runtime. A new SETFILTER cancels 
any previous iltering on the ield prior to setting the new ilter.

A pair of SETFILTER examples follow:

CustRec.SETFILTER("Salesperson Code",'KKS'|'RAM'|'CDS');

CustRec.SETFILTER("Salesperson Code",'%1|%2|%3',SPC1,SPC2,SPC3);

If SPC1 equals' KKS', SPC2 equals 'RAM', and SPC3 equals 'CDS', these two examples 
would have the same result. Obviously the second option allows lexibility not 
provided by the irst option.

http:///


Chapter 7

[ 409 ]

COPYFILTER and COPYFILTERS functions
These functions allow copying the ilters of a single ield or all the ilters on a record 
(table) and applying those ilters to another record. The syntaxes follow:

FromRecord.COPYFILTER(FromField, ToRecord.ToField)

ToRecord.COPYFILTERS(FromRecord)

Note that the COPYFILTER structure begins with the FromRecord variable while that 
of COPYFILTERS begins with the ToRecord variable.

GETFILTER and GETFILTERS functions
These functions allow you to retrieve the ilters on a single ield or all the ilters on a 
record (table) and assign the result to a text variable. The syntaxes are as follows:

ResultString := FilteredRecord.GETFILTER(FilteredField)

ResultString := FilteredRecord.GETFILTERS

The text contents of the ResultString will contain an identiier for each iltered ield 
and the currently applied value of the ilter. GETFILTERS is often used to retrieve the 
ilters on a table and print them as part of a report heading. The ResultString will 
look similar to the following:

Customer:: No.: 10000..999999, Balance: >0

MARK function
A mark on a record is an indicator that disappears when the current session ends 
and which is only visible to the process, that is, setting the mark. The MARK function 
sets the, mark. The syntax is as follows:

[BooleanValue := ] Record.MARK ( [SetMarkBoolean] )

If the optional BooleanValue and assignment operator (:=) is present, the MARK 
function will give you the current Mark status (TRUE or FALSE) of the Record. If the 
Optional SetMarkBoolean parameter is present, the Record will be Marked (or 
unmarked) according to that value (TRUE or FALSE). The default for SetMarkBoolean 
is FALSE. The MARK functions are a little tricky to use, so it should be used carefully 
and only when a simpler solution is not readily available. MARKing records can 
cause signiicant performance problems, so use this feature sparingly.

http:///


Intermediate C/AL

[ 410 ]

CLEARMARKS function
CLEARMARKS clears all the marks from the speciied record (that is, from the particular 
instance of the table in this instance of the object). The syntax is as follows:

Record.CLEARMARKS

MARKEDONLY function
MARKEDONLY is a special iltering function that can apply a mark-based ilter.

The syntax for MARKEDONLY is as follows:

[BooleanValue := ] Record.MARKEDONLY ( [SeeMarkedRecordsOnlyBoolean] )

If the optional BooleanValue parameter is deined, it will be assigned a value TRUE 
or FALSE to tell you whether or not the special MARKEDONLY ilter is active. Omitting 
the BooleanValue parameter, MARKEDONLY will set the special ilter depending on the 
value of SeeMarkedRecordsOnlyBoolean. If that value is TRUE, it will ilter to show 
only marked records; if that value is FALSE, it will remove the marked ilter and 
show all records. Though it may not seem logical, there is no option to see only the 
unmarked records. The default value for SeeMarkedRecordsOnlyBoolean is FALSE. 

RESET function
This function allows you to RESET (that is, clear) all ilters that are currently applied 
to a record. The syntax is as follows:

FilteredRecord.RESET;

RESET also sets the current key back to the Primary Key, removes any marks, and 
clears all internal variables in the current instance of the record.

Filter Groups
Filter Groups are (not surprisingly) groups of ilters that are applied. Filter Groups 
are numbered from 0 to 255. Several of the Filter Groups are utilized by NAV for 
internal usage. You should be careful not to use these groups most of the time. See 
the C/SIDE Reference Guide Help for FILTERGROUP for more information.

The FILTERGROUP function is used to change or determine the current active 
iltergroup. Its syntax is:

[CurrentFilterGroup] := Record,FILTERGROUP([NewFilterGroupNo])

http:///


Chapter 7

[ 411 ]

Using just the Record,FILTERGROUP([NewFilterGroupNo]) portion sets the active 
Filter Group.

You can change the active Filter Group to which ilter commands will apply until the 
next Filter Group change. When ilters are applied, the combination of all ilters set 
in all groups is applied. One use of a Filter Group would be to assign a ilter which 
the user cannot see is present or change. The code could change the Filter Group, 
set a special ilter, and then return the active Filter Group to its original state. This 
could be used to apply special application-speciic permissions to a particular system 
function, such as iltering out access to the business owner's expense accounts to 
anyone expect the outside auditor.

InterObject communication
There are several ways for communicating information between objects during  
NAV processing.

Communication via data
The most widely used and simplest communication method is through data tables. 
For example, the table No. Series is the central control for all document numbers. 
Each object that assigns numbers to a document (for example, Order, Invoice, 
Shipment, and so on) accesses the No. Series table for the next number to use, and 
then updates the No. Series table so that the next object needing to assign a number 
to the same type of document will have the updated information.

Communication through function parameters
When an object calls a function in another object, information is generally passed 
through the calling and return parameters. The calling and return parameter 
speciications were deined when the function was originally coded. The generic 
syntax for a function call is as follows:

[ReturnValue := ] FunctionName ( [ Parameter1 ] [ ,Parameter2 ] ,…)

The rules for including or omitting the various optional ields are speciic to the local 
variables deined for each individual function. As a developer, when you design 
the function, you deine the rules and thereby determine just how communications 
with the function will be handled. It is obviously important to deine complete and 
consistent parameter passing rules prior to beginning a development project.

http:///


Intermediate C/AL

[ 412 ]

Communication via object calls
Sometimes you need to create an object which in turn calls other objects. You may 
simply want to allow the user to be able to run a series of processes and reports 
but only enter the controlling parameters once. Your user interface object is to be 
responsible for invoking the subordinate objects after having communicated setup 
and ilter parameters. 

There is a signiicant set of standard functions designed for various modes 
and circumstances of invoking other objects. Examples of these functions are 
SETTABLEVIEW, SETRECORD, and GETRECORD (there are others as well). There are  
also instances where you will need to build your own data passing function.

In order to properly manage these relatively complex processes, you need to be 
familiar with the various versions of RUN and RUNMODAL functions. You will also need 
to understand the meaning and effect of a single instance or multiple instances of an 
object. Briely, key differences between invoking a page/form or report object from 
within another object via RUN versus RUNMODAL are as follows:

RUN will clear the instance of the invoked object every time the object 
completes, which means that all of the internal variables are initialized. 
This clearing behavior does not apply to a codeunit object; state will be 
maintained across multiple calls to RUN.

RUNMODAL does not clear the instance of the invoked object, so internal global 
variables are not re-initialized each time the object is called. The object can be 
re-initialized by using CLEAR(Object).

RUNMODAL does not allow any other object to be active in the same user 
session while it is running, whereas RUN does.

Covering these topics in more detail is too advanced for this book, but once you have 
mastered the material covered here, you should study the information in the C/SIDE 
Reference Guide Help and reference manuals relative to this topic.

Using the new knowledge
It's time to use some of the knowledge that we have gained in this and preceding 
chapters. We'll do that in a practical manner by further developing the ICAN system.

•

•

•

http:///


Chapter 7

[ 413 ]

A development challenge for you
We are going to create a new report on giving by Donors. One of the ways that  
ICAN rewards Donors each year is by giving them a status Recognition Level based 
on the amount they have donated in the previous year. One measurement the Fund 
Raising Manager uses is to evaluate the YTD level of giving of each Donor relative  
to their Recognition Level achieved the previous year. Our new report will assist in 
that review.

Our irst task is to create a rough report layout for concept purposes. 

This layout is a starting point for creating a irst version of the report. This is a 
version that, once we've got the basics working, we will enhance on our own for a 
later self-directed exercise. 

Creating more ICAN test data
In our speciic case, we are working with a testing database which just has a few 
records in it that we've created along the way. For this report, we would like to 
have a larger set of Gift Ledger data, but without the pain of manually entering a 
signiicant volume of test data. Therefore, our irst step will be to create a Processing 
Report that will read the existing Gift Ledger, then copy those records several times 
back into the same table, thus giving us a larger volume of test data. After we've 
cloned the initial data, if we wish to provide more variety to the contents of various 
data ields, it will be much easier to step through the Gift Ledger and make changes.

"Donor Giving" report design
The design we will use is relatively simple. First, we will read the existing data into 
a temporary table. Then we will copy that data back into the permanent table in the 
database as many times as it takes to create the desired data volume. 

http:///


Intermediate C/AL

[ 414 ]

We will deine two Data Items. One will be the Gift Ledger table. Our code will let 
the Report Read loop walk us through the existing data which we will copy into the 
temporary table. For the second Data Item, we will use the system table Integer. This 
table is simply the sequence of numbers 1, 2, 3, 4, and so on. Based on the size of the 
incoming dataset and the desired size of the dataset to be created, we will ilter the 
Integer table to the number of data copies we want to create. If you have the urge to 
work on creating this on your own before we work on it together, now is the time to 
go do that.

Beginning development
The irst thing to do is start up a new blank report and deine the DataItems. An 
aspect of this routine that is different from previous ones that we have reviewed is 
that the second DataItem is not subordinate to the irst DataItem. In other words, the 
processing low for this routine will be to step all the way through the Gift Ledger 
table, then step through the deined portion of the Integer table. 

As soon as we get our DataItems deined, we should save and compile the shell of 
the new report, assigning it to Report ID 50003 with the Name of Create Gift Test 
Data. Then, as our development efforts move along, we will save and compile on a 
regular basis. This is the safest way to check our work and to back it up in case  
C/SIDE should terminate unexpectedly.

Eliminating the Request form/page
Because this is (probably) a one-time use routine which we will run within the 
Classic Client (that is, under developer control), we will set it up so it doesn't display 
any Request screen options at all. We can do this by specifying the sort keys to be 
used in the Data Items. 

http:///


Chapter 7

[ 415 ]

The Integer table has only one ield. That ield, Number, is also its key.

The inal piece of eliminating the Request Form/Page is to set the appropriate option 
in the Report Properties, UseReqForm, to No. We will also set the ProcessingOnly 
option to Yes as shown below: 

http:///


Intermediate C/AL

[ 416 ]

Working storage definition
As we know we want to use a temporary table to store a copy of the data because it 
exists before our processing. Our Global Variable is TempGiftLedger. Once deined, 
we access its properties and set the Temporary property to Yes.

Following the deinition of the temporary table, we consider what other Global 
Variables we may need. At this point we realize that we will need at least  
the following: 

A count of the output records we want to generate 

An integer that represents how many times we will need to copy the input 
dataset to generate the target number of output records

Noting that the Primary Key for the output table is Entry No., we will deine 
an integer variable to increment and assign as Entry No. to the next record 
being written out

Those are deined as shown in the the following C/AL Globals screenshot:

•
•
•

http:///


Chapter 7

[ 417 ]

Defining the C/AL code
Based on the fact that this is a one-time use process, we will simply deine the 
minimum number of new output records that we want to generate. The following 
screenshot shows it being deined as quantity 100. If this routine is to be used 
multiple times or as a model, then this quantity should be entered through a Request 
Option Form/Page, not speciied in the code. If you want to create a set of Gift 
Ledger test data that is different than 100 more than the original set, you should 
change this number accordingly.

The irst step in processing is to copy all of the Gift Ledger records from the 
permanent table into the temporary table. We will take advantage of the Data Item 
read loop to read the Gift Ledger. In the OnAfterGetRecord trigger, we simply 
assign in the incoming record to the TempGiftLedger record. In a rather inelegant 
piece of code, we save the Entry No. of each record as it passes by, so that we will 
have the number for the last record when we exit the loop.

When the incoming Gift Ledger has been completely passed, control will pass to the 
OnPostDataItem trigger. There we will calculate the number of copies of the input 
data to write out to give us at least the number of additional records we speciied. 
This calculation could have been more sophisticated (by using both DIV and MOD) to 
give us an exact number, but then the output loop would have to break in the middle 
of a data pass. 

If the number of records in the Gift Ledger is 12 and the target OutputRecCnt is  
100, then this formula would be interpreted as 100 DIV 12 = 8 = NumberOfCopies. 
This calculation could have just as easily been placed at the OnPreDataItem  
trigger; it doesn't matter where in the datalow as the values used don't change 
during processing. 

http:///


Intermediate C/AL

[ 418 ]

The simpler approach is illustrated, but after the initial version of this object is 
working, it would be a good exercise for you to enhance the code to output the  
exact number of additional records speciied by OutputRecCnt. 

Once the original data has been stored, we can now move to the reading/processing 
loop we've designed to be driven by the System table, Integer. The irst step is to 
set the limit on the Integer table based on the NumberOfCopies igure we calculated 
previously. That limit is set by doing a SETRANGE on the Integer key ield, Number, to 
be one more than the DIV value of NumberOfCopies. Our cycle through the Integer 
table will be a simple counting of 1, 2, 3, 4, …NumberOfCopies+1. 

In each loop through Integer, we want to write out a full copy of the Gift Ledger 
data stored in our temporary table, TempGiftLedger. That process requires use of a 
basic FIND–NEXT loop to process the temporary table. The processing loop consists 
of copying the saved record to the output record, updating the Entry No. ield and 
INSERTing the new data in the permanent table as shown in the following image.

During the debugging of a process like this one, it's often very helpful to have 
some information display during the processing to let us know what's happening. 
The CONFIRM statement that has been commented out (preceded with two slashes) 
provides just such tracking information. This particular statement, if activated, 
would show which Integer loop was just processed and what the number of records 
are in the original Gift Ledger table. In this case, the developer response to the 
CONFIRM statement wouldn't matter. Processing continues. But it would obviously be 
easy to extend this code to allow the developer to terminate processing at this point 
as an option. Note that the CONFIRM statement, as coded, requires a Boolean variable 
(here that is the variable OK) which needs to be deined in the Local (or, if necessary, 
Global) variables.

http:///


Chapter 7

[ 419 ]

If we were to modify this object to allow the user to enter the OutputRecCnt value, 
we would create a Request Options Page for that entry, as illustrated in the following 
Page Designer screenshot:

Developing the Donor Recognition Status report
As with other production reports, it makes sense to start this process by using the 
Report Designer Wizard. 

http:///


Intermediate C/AL

[ 420 ]

Using the Report Wizard
Our new report will be based on the Donor table and we choose to create a  
tabular-type Report using the Wizard. By using the original report design layout 
as our guide, we can choose the matching data ields from the Donor table. The 
following screenshot illustrates that set of choices:

As we proceed from the preceding screen by clicking on Next >, we choose to have 
our data sorted by Donor, not to be Grouped, to have a List Style report, then Finish 
the Wizard processing. As soon as we get into the Report Designer, we open up the 
Section Designer (View | Sections) to see something like the following image. We 
have a good start on a layout that agrees with our original Word document rough 
draft layout.

http:///


Chapter 7

[ 421 ]

Beginning the C/AL coding for the report
With a reasonable layout beginning in hand, we can now start on the construction 
of the C/AL side of the report. These tasks may not be done in a particularly logical 
order other than the sequence in which we think about what is needed. 

The irst thing that catches our attention is the need for places to store the ive levels 
of totals that we are going to offer at the end of our report. We want three columns of 
information in those totals, the Description of each possible value for the Recognition 
Level data element, the count of the number of gifts received at each Level and the 
total value of the gifts received at each Level. 

There are several ways in which we could design the data structure and supporting 
logic to collect our data for these totals. Let's choose a simple method, deining 
three Global variables, each deined with the Dimensions property set to 5 (ive), 
the number of total lines we need. Each of these variables will now be a one by 
ive array. Each element will need to be referenced with the variable named in 
subscripted format (for example, RecogLevel[1] for the irst member of the array). 

The result is the deinition of the three dimensioned variables (RecogLevel, 
RecogCnt,and RecogAmt) that we know we need.

http:///


Intermediate C/AL

[ 422 ]

Simply because it helps us keep track of what we're doing, next we write the code 
to load the RecogLevel description array. Because the Recognition Level ield in the 
Donor table is an Option ield, we check that Option deinition to determine what 
the available values are for the Recognition Level. We load the RecogLevel array 
variables with those values, as shown in the following image. This C/AL code is 
placed in the OnPreDataItem trigger because it only needs to be executed once.

If we wanted to be more clever (and more general), we would write code to loop 
through the Recognition Level options, by using the FORMAT function to create the 
text strings to be stored. This approach would continue working if the set of deined 
options were later changed, plus it will support multilanguage use. You might want 
to try this approach as a self-directed exercise.

Retrofitting date filtering capability
One of our original report design goals is to allow this report to apply date ilters 
on the data. As we start considering the next step of the coding, that of reading the 
Donor records and calculating the Gift totals (the Estimated Gift Value ield), we 
realize that we don't have a way to ilter the subordinate Gift Ledger table through 
the Donor table. We could calculate the totals by directly accessing the Gift Ledger, 
but we prefer the approach that is more like standard NAV structure. That involves 
accessing the Customer Ledger through the Customer table. 

http:///


Chapter 7

[ 423 ]

To support this type of iltering, we need to add a Date Filter ield of FieldClass 
FlowFilter to the Donor table as shown in the next screenshot:

http:///


Intermediate C/AL

[ 424 ]

Then we need to add the Date Filter ield to the Donor."Estimated Gift Value" 
FlowField deinition. This allows a Date Filter value to be applied to the calculation 
of the Estimated Gift Value. The result is an Estimated Gift Value for the deined 
period of time.

Finally, we need to add the "Gift Ledger".Date ield, on which the Date Filter is 
to be applied, to the key that the Estimated Value SIFT total is tied.

http:///


Chapter 7

[ 425 ]

Adding code for CALCFIELDS processing
We return to the C/AL coding for our report, speciically to the CALCFIELDS line 
of code for which we just did a lot of preparation. One tool that makes writing 
C/AL code much easier is the C/AL Symbol Menu. In this case, we want to do 
the CALCFIELDS on the gift value ield in the Donor record. By using the C/AL 
Symbol Menu, we can just point and click to get the right ield name and spelling. 
The ield name is always pasted in fully qualiied (in this case that would be 
Donor."Estimated Gift Value"). In situations where the full qualiication (that is, 
table name qualiier) isn't required, you can edit the pasted valued down to just the 
ield name (in this case "Estimated Gift Value").

As we complete the CALCFIELDS line of code, we realize that we need to calculate  
the values that are going to make up the date ilter that will limit the Gift Ledger 
entries to be included in the calculated values. As the date ilter values only 
need to be calculated once for the report, we decide we can put that code in the 
OnPreDataItem trigger.

http:///


Intermediate C/AL

[ 426 ]

This report is going to be based on annual giving data, that is, from January 1 to 
December 31. We will use the Work Date as the source of the year. That way, the user 
can just change the Work Date to report the analysis based on a different calendar 
year, but by default it will be based on the year of the current Work Date. The C/AL 
code in the following screenshot shows various Date Functions being used to build 
the StartDate and EndDate values. Then the Date() Filter can be assigned the 
date range values. StartDate and EndDate will also need to be deined as Date 
variables in C/AL Globals. 

If you want to allow for the incredibly small probability that the WORKDATE could 
change between the two lines of code in which it is used, a "for sure" version of the 
EndDate calculation would be:

EndDate := DMY2DATE(31,12,DATE2DMY(StartDate,3));

Adding code to print addresses
Looking back at our draft report layout, we see that our report includes printing 
addresses. Address lines one and two are simple, but the third line of the address 
information is a build up of three ields from the data record. As is often the case, 
there are multiple ways to handle this. The following code allows for any of the 
ields to be blank and still build a properly formatted third address line.

http:///


Chapter 7

[ 427 ]

To calculate the number of cash gifts in the desired date range, we decide to take 
the direct approach of counting the number of records in the properly iltered Gift 
Ledger. We deine a C/AL Local (to the Donor - OnAfterGetRecord() trigger) for the 
Gift Ledger and apply the ilters for the Donor, Gifts only, the Date range, and a Gift 
value greater than zero (as the non-cash gifts don't have an Estimated Gift Value). 

We can code to calculate the record count and add that to the appropriate totals 
array entry, using the Donor record's Recognition Level option value to create 
the proper subscript. Because the irst option value in an option ield is stored as 
0 (zero), we add 1 (one) to the option to get a usable subscript. We calculated the 
"Estimated Gift Value" FlowField earlier in our code. Now we add it to the 
RecogTot["Recognition Level" + 1) array element in the same manner.

We should be done, or at least nearly done, with the C/AL coding. We have to turn 
our attention to the Sections of this report. Remember that all data elements that are 
going to be available for use by the Visual Studio Report Designer must be deined in 
the Sections Designer of the Classic Report Designer. All the ields that are deined in 
the Sections at this point are those that were created by the Report Designer Wizard. 

There are a number of ields that we want to report which are not yet deined in 
Sections. Those include the additional two address lines and all the total lines. So 
our next step is to add those as Controls in the Section Designer. Even though we are 
not designing our report with the goal of running it in the Classic Client, it's almost 
as easy in this instance to add the remaining ields laid out so that they will give an 
acceptable report result for the Classic Client as well as for the Role Tailored Client. 

http:///


Intermediate C/AL

[ 428 ]

One feature of using the Sections Designer that will prove handy here is the ability 
to add a Data Item Footer Section to the report. The Header Section was created by 
the Wizard, but as we didn't specify any totaling by the Wizard, a Footer Section was 
not created. You can create a Data Item Footer Section within the Section Designer 
by selecting Edit | New, specifying the lowest level Data Item (in this case Donor, 
the only Data Item), and choosing the Footer option. That will add a Donor Footer 
as you see in the next image. Once the new Footer Section exists, Label Controls can 
be added for the three total columns, accompanied by appropriately placed Textbox 
Controls for our totaling array data elements. The Label Controls will need their 
Caption properties deined and the Textbox Controls will need their SourceExpr 
properties deined properly. After the basic report has been successfully tested, you 
may want to return and do some more formatting. More likely, you will focus that 
formatting effort on the VS RD layout because that is where the capability exists to 
create a much better looking report and that is where you plan to run the report for 
production use.

http:///


Chapter 7

[ 429 ]

Just for review purposes, we'll take a quick look at the list of variables that we have 
deined as C/AL Globals and Locals. The Globals are shown following screenshot:

Then the Local variable that was deined for the OnAfterGetRecord trigger:

http:///


Intermediate C/AL

[ 430 ]

Once again, as we've done on a regular basis during the construction of our report, 
we will save and compile. But this time, we are going to Run and Preview the report 
using the Run button on the Object Designer Form. The resulting output should look 
similar to the following:

http:///


Chapter 7

[ 431 ]

Now that we have a basic working report in the Classic Client, let's transform the 
report for our target production environment, the Role Tailored Client. Once again, 
highlight the report object, Design it, then select Tools | Create Layout Suggestion. 
After a few moments of processing, we should see our report layout presented in the 
VS RD, looking much like the following screenshot.

Later, when your time permits, you can come back and work on making it more 
lexible and more attractive, perhaps adding some new data elements or graphical 
features. But now, we just want to test our new report in the RTC. We exit, save, save 
again, and compile. Use the Windows Run command:

DynamicsNAV:////runreport?report=50004. 

http:///


Intermediate C/AL

[ 432 ]

The result of the RTC test of our new report, shown in the following image, looks 
very much like the Classic Client test. But now it's time for your creativity to be 
applied. You should look for ways to make this a better report and, in the process, 
learn more about C/AL coding and VS RD report development.

http:///


Chapter 7

[ 433 ]

Summary
In this chapter, we covered a number of practical tools and topics regarding  
C/AL coding and development. We started with reviewing methods and then we 
dived into a long list of functions that you will need on a frequent basis.

We began this chapter by covering development assisted by use of the C/AL 
Symbol Menu, followed by a discussion of development documentation. Then we 
covered a variety of selected data-centric functions, including some for computation 
and validation, data conversion, and date handling. Next, we reviewed functions 
that affect the low of logic and the low of data, including FlowFields and SIFT, 
Processing Flow Control, Input and Output, and Filtering.

In the next chapter, we will move from the details of the functions to the broader 
view of C/AL development including models of code usage in the standard product 
code, integration into the standard NAV code, and some debugging techniques.

http:///


Intermediate C/AL

[ 434 ]

Review questions
1. The C/AL Symbol Menu can be used for several of the following purposes. 

Choose three:

a. Find applicable functions

b. Paste highlighted entries directly into code

c. Test coded functions

d. Use entries as a template for function syntax and arguments

e. Translate text constants into a support language

2. Documentation cannot be integrated into in-line C/AL code. True or False? 

3. The TESTFIELD function can be used to assign new values to a variable. True 
or False? 

4. The VALIDATE function can be used to assign new values to a variable. True 
or False? 

5. The WORKDATE value can be set to a different value from the System Date. 
True or False? 

6. Which three of the following are valid date related NAV functions? 

a. DATE2DWY

b. CALCDATE

c. DMY2DATE

d. DATE2NUM

7. A FlowField requires two of the following. Which two? 

a. A record key

b. SQL Server database

c. A SumIndexField

d. A Decimal variable

8. Which of the following is not a valid C/AL low control combination? 
Choose one: 

a. REPEAT - UNTIL

b. DO - UNTIL

c. CASE - ELSE

d. IF - THEN

http:///


Chapter 7

[ 435 ]

9. Which of the following functions should be used within an 
OnAfterGetRecord trigger to end processing just for a single iteration  
of the trigger? Choose one:

a. EXIT

b. BREAK

c. QUIT 

d. SKIP

10. Which of the following formats of MODIFY will cause the table's OnModify 
trigger to ire? Choose one:

a. MODIFY

b. MODIFY(TRUE)

11. SETRANGE is often used to clear all iltering from a single ield. True or False? 
12. RESET is used to clear the current sort key setting from a record.  

True or False?

http:///


http:///


Advanced NAV  

Development Tools
The universe is full of magical things, patiently waiting for our wits to  
grow sharper—Eden Phillpotts

The only way of discovering the limits of the possible is to venture a little way past 
them into the impossible—Arthur C. Clarke

Having studied the foundation basics of C/AL, followed by a review of intermediate 
functions and structures, it's time to get into more advanced topics. As NAV is so 
lexible and suitable for addressing many different problem types, advanced NAV 
topics range far and wide.

We have three key goals in this chapter. One is to gain an overall view of NAV as 
an application software system. We're not going to study its functional operation, 
but gain a basic understanding of the process low of the system. We also want 
to have a good understanding of the structural "style" of the software, so that our 
enhancements are designed for a better it.

The second goal is to review some of the higher level components of the NAV system 
that are available as resources to us, as designers and developers, allowing us to 
accomplish more at less cost. These resources include standard objects that we can 
call, features that we can build on, and tools that allow us to build or integrate totally 
new functionality.

The third goal of this chapter is to learn about many of the debugging tools and 
techniques available to the NAV developer. As it has been pointed out, "Without 
programmers, there are no bugs." As we are all developers and therefore a primary 
source of bugs, we need to be knowledgeable about the tools we can use to stamp 
out those bugs. Fortunately, NAV has a good arsenal of such tools.

http:///


Advanced NAV Development Tools

[ 438 ]

NAV process flow
Primary data such as sales orders, purchase orders, production orders, inancial 
transactions, job transactions, and so on low through the NAV system as follows:

Initial Setup: Entry of essential Master data, reference data, control and 
setup data. Much of this preparation is done when the system (or a new 
application) is irst set up for production use.
Transaction Entry: Transactions are entered into a Journal table; data is 
preliminarily validated as it is entered, master and auxiliary data tables 
are referenced as appropriate. Entry can be manual keying, an automated 
transaction generation process, or an import function which brings 
transaction data in from another system.

Validate: Provide for additional test validations of data prior to submitting 
the batch to Posting.

Post: Post the Journal Batch, completing transaction data validation, adding  
entries as appropriate to one or more Ledgers, including perhaps a register 
and a document history.

Utilize: Access the data via Forms and/or Reports of various types as 
appropriate. At this point, total lexibility exists. Whatever tools are 
available and are appropriate for users' needs should be used. There are 
some very good tools built into NAV for data manipulation, extraction, and 
presentation. In the past, these capabilities were considered good enough to 
be widely accepted as full Online Analytical Processing (OLAP) tools.

Maintenance: Continue maintenance of Master data, reference data, and 
setup and control data, as appropriate. The loop returns to the beginning  
of this data low sequence.

Master &

Reference

Data

Posting

Data Entry

Transaction

Journal
Test Report

Posting Report

Ledger Register

•

•

•
•

•

•

http:///


Chapter 8

[ 439 ]

The preceding image provides a simpliied picture of the low of application data 
through a NAV system. Many of the transactions types have additional reporting, 
more ledgers to update, or even auxiliary processing. However, this is the basic data 
low followed whenever a Journal and Ledger table are involved.

Data preparation
Prepare all the Master data, reference data, and control and setup data. Much of this 
preparation is done initially, when an application is irst set up for production usage.

Naturally, this data must be maintained as new Master data becomes available, as 
various system operating parameters change, and so on. The standard approach 
for NAV data entry allows records to be entered that have just enough information 
to deine the primary key ields, but not necessarily enough to support processing. 
This allows a great deal of lexibility in the timing and responsibility for entry and 
completeness of new data.

This system design philosophy allows initial and incomplete data entry by one 
person, with validation and completion to be handled later by someone else. For 
example, a sales person might initialize a new customer entry with name, address, 
and phone number, saving the entry with just the data entered to which they have 
access. At this point, there is not enough information recorded to process orders for 
this new customer. 

At a later time, someone in the accounting department can set up posting groups, 
payment terms, and other control data that should not be controlled by the sales 
department. This additional data may make the new customer record ready 
for production use. As in many instances data comes into an organization on a 
piecemeal basis, the NAV approach allows the system to be updated on an equally 
piecemeal basis providing a lexible user friendliness many accounting-oriented 
systems lack.

Transactions entry
Transactions are entered into a Journal table; data is preliminarily validated as it is 
entered, master and auxiliary data tables are referenced as appropriate.

NAV uses a relational database design approach that could be referred to as 
a "rational normalization". NAV resists being constrained by the concept of a 
normalized data structure, where any data element appears only once. The NAV 
data structure is normalized so long as that principle doesn't get in the way of 
processing speed. Where processing speed or ease of use for the user is improved  
by duplicating data across tables, NAV does so.

http:///


Advanced NAV Development Tools

[ 440 ]

At the point where Journal transactions are entered, a considerable amount of data 
validation takes place. Most, if not all, of the validation that can be done is done 
when a Journal entry is made. These validations are based on the combination of the 
individual transaction data plus the related Master records and associated reference 
tables (for example lookups, application or system setup parameters, and so on). 
Here also you ind the philosophy of allowing entries, which are incomplete and not 
totally ready for processing, to be made.

Testing and Posting the Journal batch
Any additional validations that need to be done to ensure the integrity and 
completeness of the transaction data prior to being Posted are done either in pre-
Post routines or directly in the course of the Posting processes. The actual Posting of 
the Journal batch occurs when the transaction data has been completely validated. 
Depending on the speciic application function, when Journal transactions don't 
pass muster during this inal validation stage, either the individual transaction is 
bypassed while acceptable transactions are Posted, or the entire Journal Batch is 
rejected until the identiied problem is resolved.

The Posting process adds entries as appropriate to one or more Ledgers and 
sometimes a document history. When a Journal Entry is Posted to a Ledger, it 
becomes a part of the permanent accounting record. Most data cannot be changed  
or deleted once it is resident in a Ledger except by a subsequent Posting process.

During the Posting process, Register tables are also updated showing what 
transaction entries (by ID number) were posted when and in what batches. This  
adds to the transparency of the NAV application system for audits and analysis.

In general, NAV follows the standard accounting practice of requiring Ledger 
corrections to be made by Posting reversing entries, rather than deletion of  
problem entries. The overall result is that NAV is a very auditable system, a key 
requirement for a variety of government, legal, and certiication requirements for 
information systems.

Accessing the data
The data in a NAV system can be accessed via Pages and/or Reports of various 
types as appropriate, providing total lexibility. Whatever tools are available to the 
developer or the user, and are appropriate, should be used. There are some very 
good tools in NAV for data manipulation, extraction, and presentation. Among 
other things, these include the SIFT/Flowield functionality, the pervasive iltering 
capability (including the ability to apply ilters to subordinate data structures), and 
the Navigate function. NAV 2009 added the ability to create page parts for graphing, 

http:///


Chapter 8

[ 441 ]

with a wide variety of predeined graph page parts included as part of the standard 
distribution. You can create your own chart parts as well, but that discussion is 
outside the scope of this book. There is an extended discussion and some tools 
available in the NAV Blog community. 

There are a number of methods by which data can be pushed or pulled from an NAV 
database for processing and presentation outside NAV. Several are discussed briely 
in Chapter 9, Extend, Integrate, and Design—into the Future. These allow use of more 
sophisticated graphical displays, or the use of other specialized data analysis tools 
such as Microsoft Excel or various Business Intelligence (BI) tools.

Ongoing maintenance
As with any database-oriented application software, ongoing maintenance of Master 
data, reference data, and setup and control data is required, as appropriate. Of 
course at this point, the cycle of processing returns to the irst step of the data  
low sequence, Data Preparation.

Role Center pages
One of the key additions to Dynamics NAV in the NAV 2009 version is the concept 
of a Role Tailored user experience centered around user function deined Role 
Centers. The intent of the Role Tailored approach is to provide a single point of 
access into the system for each user. That point of access (the Role Center) focuses  
on the tasks that deine users' jobs throughout the day, while providing easy access  
to other permitted functions only a click or two away. 

Included in the NAV system as distributed by Microsoft are 21 different Role Center 
pages, identiied for user roles such as Bookkeeper, Sales Manager, Shop Supervisor, 
Purchasing Agent, and so on. One of the critical tasks of implementing a new system 
will be to analyze the work low and responsibilities of the system's intended users 
and conigure Role Centers to it the users.

In many cases, the supplied Role Centers can be used out of the box or with minimal 
coniguration. On occasion, it will be necessary for you to create new Role Centers. 
Even then, most of the time, you will be able to begin your job with a copy of an 
existing Role Center Page, which you will then modify as required. In any of these 
cases, it is important to understand the structure of the Role Center Page and how it 
is built.

http:///


Advanced NAV Development Tools

[ 442 ]

Role Center structure
The following screenshot shows the Small Business Owner RC (aka President – Small 
Business) Role Center Page (Page 9020) with labels identifying the various pieces we 
deal with as developers.

http:///


Chapter 8

[ 443 ]

A general representation of the structure of a Role Center Page is shown in the 
following outline:

Role Center Page

Properties

Controls

Group

Properties

Part

Container

Activity Page

C/AL Code

Cue Group

Cue

Cue table

Cue Group Actions

System Part (for example, Outlook, MyNotes)

Page Part (for example, My Customers, My Items)

Page Part supporting table

Navigation Pane

Action Menus

Triggers

In order to understand the construction of a Role Center Page, we will dissect Page 
9020, Small Business Owner RC. Our goal will be to understand what the component 
parts are and how they it together. We want to be prepared to either modify an 
existing Role Center or create a new one by through either "clone and modify" or 
building from scratch. Our irst step is to ind Page 9020 in the Page section of the 
Object Designer and design the page to see the following screenshot:

http:///


Advanced NAV Development Tools

[ 444 ]

This picture of a page should look pretty familiar, as it is similar in overall structure 
to the pages we've designed previously. There is a Container control of SubType 
RoleCenterArea. This is required for a Role Center page. There are two Group 
Controls which represent the two columns (left and right) of the Role Center page 
display. Each group contains several parts, each of which shows up individually in 
the Role Center display.

Let's take a look at the properties for the Role Center page. As we did previously, we 
access the page Properties by highlighting the irst blank line on the Page Designer 
form (that is the line below all of the deined controls), then click on the Properties 
icon, or right-click and choose the Properties option, or, click on View | Properties 
or press Shift + F4. The Properties for the Role Center page, in this case the Small 
Business Owner Role Center, will be displayed as shown in the following screenshot. 
The only things different at this level from a Card page is that the PageType is 
RoleCenter, and there is no Source Table.

Role Center activities page
As the Group Control has no underlying code or settings to consider, the irst 
Control to examine is the irst Part Control. Examining the Properties for that 
Control, we see the information shown in the following screenshot. The PagePartId 
refers to the Page object Small Business Owner Act.

http:///


Chapter 8

[ 445 ]

Cue Groups and Cues
If we shift our focus to the referenced page: Page 9073 – Small Business Owner 
Act, and design the page, we see the layout shown in the following screenshot. 
Comparing the controls we see in that layout to those of the Role Center screenshot, 
we can clearly see this Page Part is the source of the material in the Role Activities 
section of the Role Center Page. There are four CueGroup Controls—Sales, 
Purchase, Receivables and Payables. Within each CueGroup, there are the Field 
Controls for the individual Cues.

http:///


Advanced NAV Development Tools

[ 446 ]

An individual Cue is displayed as an iconic shortcut to a iltered list. The size of 
the stack of papers in the Cue icon represents the number of records in that list. 
The actual number of entries is also displayed as part of the icon (see the Released 
Purchase Orders example in following screenshot). The purpose of a Cue is to 
provide a focus on and easy access to a speciic user task. The set of Cues is intended 
to represent the full set of primary activities for a user, their Role.

Cue source table
When we take a look at the Properties of the Small Business Owner Act. Page (see the 
following screenshot), we see this is a PageType of CardPart tied to SourceTable SB 
Owner Cue:

Following the designated path, we Design the referenced table, SB Owner Cue. 
What we see there (see the following screenshot) is a simply structured table, with 

http:///


Chapter 8

[ 447 ]

an integer ield for each of the Cues that were displayed in the Role Center we are 
analyzing. There is also a key ield and two ields identiied as Date Filters:

When we display the properties of one of these integer ields, the ield named 
Released Sales Quotes, we ind it is a FlowField providing a Count of the Sales 
Quotes with a Status equal to Released. In fact, if we inspect each of the other 
integer ields in this table, we will ind a similar FlowField setup. Each is deined  
to it the speciic Cue to which it's tied. It is obvious, thinking about what the  
Cues show and how FlowFields work, that this is a fairly simple, direct method  
of providing the information necessary to support Cue displays.

http:///


Advanced NAV Development Tools

[ 448 ]

As a conirmation of our analysis, we can Run the SB Owner Cue table to view the 
data there. There is one record with the Integer FlowFields we saw in Design mode. 
The Counts that are displayed match those that are shown in the Role Center display. 
As this table is designed to contain only a single record, the key ield is blank. And, 
in addition to the FlowFields, there are also a couple of FlowFilter ields used in the 
deinition of the date based FlowFields.

There is very little C/AL code underlying all of these Role Center components. One 
exception is a small amount of code—the irst time the Role Center is displayed, the 
supporting data record will be initialized. That simple code is shown in the following 
screenshot. There is also occasional ilter setting code in some page parts, most of it 
associated with the WORKDATE or the USERID.

http:///


Chapter 8

[ 449 ]

At this point, we step back to look at the bigger picture of Role Center support 
objects. The following screenshot shows the list of tables that serve the same 
purpose as Table 9060 - SB Owner Cue. Each of these Cue tables contains a series of 
FlowFields that support the Cues in the associated Role Center. As there are 21 Role 
Centers deined in the standard product distribution and fewer than 21 Cue tables, 
obviously, some of the Role Centers rely on the same Cue tables (in other words, 
some Cue sets appear on more than one Role Center page).

Cue Group Actions
Another set of Role Center page components that we need to analyze are the Cue 
Group Actions. While the Cues are the primary tasks that are presented to the user, 
the Cue Group Actions are a related secondary set of tasks. Cue Group Actions are 
deined in the Role Center in essentially the same way as Actions are deined in other  
page types.

http:///


Advanced NAV Development Tools

[ 450 ]

As the name implies, Cue Group Actions are associated with a Control with the 
SubType CueGroup. If you right click on the CueGroup Control, one of the options 
available is Actions (as shown in the following screenshot):

When you choose Actions, the Action Designer form is displayed. In this case, it 
shows the two CueGroup actions that are deined and which display for the Sales 
CueGroup in the Role Center page that we are analyzing. The Action Designer form 
is where we deine the actions that we want available for a particular CueGroup in 
the Role Center.

http:///


Chapter 8

[ 451 ]

System Part
Now that we have thoroughly covered the components of the Role Activities portion 
of the Role Center page, let's take a look at the other components.

Returning to Page 9020 in the Page Designer, we examine the Properties of the next 
Part Control. Looking at this control's properties, we can see that this has a PartType 
of System and a SystemPartID of Outlook. That makes it easy to see that this Page 
Part is the one that incorporates a formatted display of the users' Outlook data into 
the Role Center.

http:///


Advanced NAV Development Tools

[ 452 ]

Page Part
Look at the Properties of the irst Control in the second group, as shown in the 
following screenshot. In this case, the PartType is Page and the PagePartID is 
MyCustomers, which is Page 9150. This is obviously tied to the My Customers  
part of the Role Center page.

Looking at Page 9150 in the Page Designer, and speciically at the Page Properties 
of that page, we see what is shown in the following screenshot. The page has a 
PageType of ListPart and a SourceTable of My Customer.

http:///


Chapter 8

[ 453 ]

The My Customer source table is about as simple as a table can be (see the following 
Table Designer screenshot). It contains only the ID of the User who "owns" the 
customer along with the Customer No. As the key to this table is the combination 
of the two ields, any customer can be associated with any number of users, in other 
words several users could be watching over a particularly important customer.

http:///


Advanced NAV Development Tools

[ 454 ]

There is a small amount of C/AL code in Page 9150 to support the iltering and 
reading of the data. In the OnOpenPage trigger, there is a SETRANGE function call to 
ilter the customer records to be displayed. There is also a small amount of code  
to load data.

Inspecting the next two controls in Page 9020 (the Role Center page), we see 
two more very similar constructs—one for My Vendors and one for My Items. 
Continuing on to the last Control in Page 9020, we see another PartType of System, 
in this case one for the SystemPartID of MyNotes.

http:///


Chapter 8

[ 455 ]

Navigation Pane and Action Menus
The last major component of the Role Center Page is the Navigation Pane plus the 
Action Menus. While on-screen there are four identiiable sections of the Role Center 
Page that provide lists of actions, that is menus, all the four are deined in the same 
area of the Page Designer—the Action Designer.

We will examine the four sections for Actions from right to left, top down, across the 
Role Center Page. The irst two, Reports and Actions, are in the Command bar area.

The following two screenshots are the visible Reports action menu and the 
underlying controls for that menu, displayed in the Action Designer.

http:///


Advanced NAV Development Tools

[ 456 ]

It is easy to compare the menu items in the page screenshot to the Captions in the 
Action Designer screenshot and see that these are different looks at the same material 
(outside look versus inside look). The Action Designer screenshot also shows the 
options that are available in the Action Designer lines. In this example, we're looking 
at instances of Reports, ActionItems, HomeItems, and ActivityButtons.

The Action Designer is accessed from the Page Designer form by focusing on the 
irst blank line below the controls, then clicking on View, and selecting Actions.

http:///


Chapter 8

[ 457 ]

The speciic action for each line is deined in the properties for that line (see the 
following screenshot for the properties of the irst Action line in the Reports  
action menu):

There is also a trigger for each action line, but this is misleading, because no code is 
allowed in action triggers in Role Center pages.

http:///


Advanced NAV Development Tools

[ 458 ]

The following screenshot is of the external view of the active Role Center  
Actions menu:

http:///


Chapter 8

[ 459 ]

The following screenshot shows the Action Designer contents for the same Role 
Center Actions menu. It is easy to compare the menu item descriptions in the page 
screenshot of the Actions menu to the Captions you see in the Action Designer.

http:///


Advanced NAV Development Tools

[ 460 ]

Turning our attention to the Navigation Pane, it has two main areas. The irst area, 
at the top, is the Home button where the HomeItems are displayed. The comparative 
screenshots for the Home area action items follow.

The next screenshot is the user view:

Following is the developer view: 

http:///


Chapter 8

[ 461 ]

If you are doing development work on a Role Center, you can run the Role Center as 
a page from the C/SIDE Object Designer in the same way as other pages. However, 
the Role Center page will launch as a task page on top of whatever Role Center 
is conigured for the active user. The Navigation Pane of the Role Center being 
modiied will not be active and can't be tested with this approach. In order to test 
all of the aspects of the Role Center page, you must launch it as the assigned Role 
Center for the active user.

When you click on the small triangle to the left of the Home actions, the sub-home 
action items are displayed (see the following screenshot). These may come from 
items that were deined in the Action Designer form, or from an automatic merge of 
the items in the Cue Groups of the associated Role Center Page. In this screenshot, 
the child action items displayed are all automatically merged Cues, thus providing 
access to the associated lists either from the Cues or from the Home section of the 
Role Center Navigation Pane.

Departments
In the Navigation Pane, there are always at least two Activity buttons—Home and 
Departments. The links and pages available via the Departments Activity button 
are dependent on the MenuSuite. MenuSuites automatically adapt to show only the 
functions currently enabled by the active license and the user's permissions. Let's 
take a look at how the MenuSuite is constructed and how MenuSuite maintenance  
is accomplished.

http:///


Advanced NAV Development Tools

[ 462 ]

MenuSuite levels
There are 15 levels of menu objects. They go from level 1 to 15, 1 being a "lower" level 
than level 2, and so on. The set of menus that is displayed is built up by irst using 
the lowest level, then amending that by applying the next higher level, and so forth 
until all of the deined levels have been applied. Wherever a higher level redeines a 
lower level, the higher level deinition is king.

The available menu levels are MBS, Region, Country, Add-on 1 through  
Add-on 10, Partner, and Company. The lowest level that can be modiied in Design 
mode without a special license is the Partner Level (you can open lower levels, 
but you cannot save changes). The lower levels are reserved to the NAV corporate 
developers and the ISVs who create add-ons. The following screenshot shows a 
menu suite with the original Microsoft master MenuSuite object (the MBS level), a 
regional localization object (Region), and then the entries created from those two 
entries for the Departments button by MenuSuite transformation:

MenuSuite structure
The menu that you see when you enter NAV is a roll-up of the contents of all of the 
menu objects, iltered based on your license and your assigned permissions. Each level 
has the ability to override the lower levels for any entry with the same GUID number. 

Globally Unique Identiier (GUID) numbers are unique numbers 
which can be used for the identiication of database objects, data 
records, and so on. The value of each GUID is generated by a 
Microsoft developed algorithm. The standard GUID representation 
is {12345678-1234-1234-1234-1234567890AB}.

http:///


Chapter 8

[ 463 ]

A changed menu entry description is a second, higher level entry overriding the 
lower level entry. The lower level entry isn't really changed. A deleted lower level 
entry is not really deleted. Its display is blocked by the existence of a higher level 
entry indicating the effective deletion. 

Changes that are made to one MenuSuite object level are stored as the differences 
between the effective result and the entries in the lower level objects. On the whole, 
this doesn't really make any difference in how you maintain entries, but if you export 
menu objects to text and study them, it may help explain some of what you see there 
and what happens when changes are made to MenuSuite entries.

MenuSuite development
Developer access to the MenuSuite for modiication is through Tools | Object 
Designer | MenuSuite in a fashion essentially similar to accessing other NAV 
objects for development purposes.

http:///


Advanced NAV Development Tools

[ 464 ]

Exiting the MenuSuite Designer is done by executing a right-click on the open 
MenuSuite object heading. You will see the Close Navigation Pane Designer option 
as shown in the following screenshot (Navigation Pane Designer is an alternate 
name for the MenuSuite Designer). Click on that option to close the Designer. You 
will have the usual opportunity to respond to Do you want to save the changes…

Once you have opened the MenuSuite Designer at the desired level (typically Partner 
or Company), your next step is to create menu modiications. As mentioned earlier 
in this book, the development tools for MenuSuites are quite different from those 
of other NAV objects. In order to access the development options for a MenuSuite, 
highlight an item (for example, a menu or menu entry) while in the MenuSuite 
Designer, and right-click. If you highlight a menu, you will see the display shown  
in the following screenshot:

http:///


Chapter 8

[ 465 ]

If you select the Create Menu option, you will see the form in the following 
screenshot. This allows you to create a new Menu (for example, a set of Actions).  
For example, you might want to create a new menu which allows access only to  
a limited set of inquiry pages:

In this form, you can enter whatever you want the new menu's caption to be, as well 
as choose a bitmap to be displayed as the icon at the left of the caption string, when 
the MenuSuite is displayed in the Classic client.

If you highlight a menu entry and right-click, you will see the option list shown in 
the following screenshot:

http:///


Advanced NAV Development Tools

[ 466 ]

The options shown on this menu are the total set of options available for a MenuSuite 
item. The irst set of options allow you to create, delete, or rename items. The Move 
Up and Down are the principal positioning tools. If you click on Properties for a 
MenuSuite entry, you will see a display like that in the following screenshot:

The only object types allowed are Table, Form (which the RTC interprets as Page), 
Report, Dataport (which the RTC interprets as XMLport), and Codeunit. Once 
you have chosen an object type, you can specify the particular object of that type 
to be executed and what the captions are to be. And that's all that you can do in a 
MenuSuite as a developer.

If you are creating a new menu which will contain items that exist in other menus, 
you can populate it very quickly and easily. First, you create the new menu, and  
then just copy and paste desired menu items from other menus.

There is no allowance for any type of embedded C/AL code in a MenuSuite item 
to handle control, iltering, special validation, or other logic. You cannot invoke 
a speciic function within an object. If you want to include any such customized 
capability, you must put that logic in an object such as a processing only report 
dedicated to handle the control task. Your MenuSuite item can then execute that 
control object which will apply your enhanced control logic, and will then invoke 
another object.

MenuSuite transformation
After you have made modiications to the MenuSuite, you must massage it through 
a process called transformation in order to convert the MenuSuite to Departments 
button Actions. The Transformation process is described in detail in the C/SIDE 
Reference Guide Help in "Transforming MenuSuite Objects" and "How to: Transform 
MenuSuite Objects". You may also want to refer to "How to: Create and Modify a 
MenuSuite Object".

http:///


Chapter 8

[ 467 ]

It would be a good idea to experiment with adding new MenuSuite entries, changing 
or deleting existing entries, and reorganizing MenuSuite entries. View the results 
in the Classic Client, then transform the MenuSuite and view the results in the Role 
Tailored Client. Only through this process of hands-on experimentation will you 
gain a good understanding of how various changes will affect the Navigation Pane 
Departments Actions appearance.

Configuration and personalization
At this point, we have covered most of the development based aspects of creating or 
maintaining a Role Center. In NAV 2009, once a Role Center has been deined, the 
implementer or a super user can conigure the Role Center. Coniguring the Role 
Center means deining which of the components that the Developer included will 
actually be presented and, in many cases, how they will be laid out on the screen.  
A Conigured Role Center applies to all users assigned to that Role Center.

The coniguration can only be changed by someone identiied as the Owner of  
the Role Center and only when the Role Center in opened in Coniguration mode. 
One Role Center is identiied as the Default. The default Role Center will be used 
whenever a user logs into the system that has not been speciically assigned to 
another Role Center. The C/SIDE Help provides good information on coniguring 
a Role Center. The Dynamics NAV Help accessible from the Role Tailored Client 
for Customizing Pages provides good information for a user to tailor their pages 
(terminology check: tailor=personalize=customize, the term may vary).

The Developer creates the overall boundaries of the Role Center toolset, but 
ultimately each user decides what parts of that toolset its their needs best. Once 
the Developer has deined a full set of tools for a Role, the Implementer or System 
Administrator chooses a subset and arrangement for a site-speciic Coniguration. 
Then each user can further subset and arrange the Role Center page layout to suit 
their personal needs, re-choosing and rearranging at will. 

http:///


Advanced NAV Development Tools

[ 468 ]

The following screenshot of the Proile List (accessible via Departments | 
Administration | Application Setup | Role Tailored Client | Lists) shows a  
Role Center with the Owner identiied and another Role Center set as the default 
Role Center:

Creating new C/AL routines
Now that you have a good overall picture of how you enable users to access the tools 
you create you are ready to start creating your own NAV C/AL routines. But irst it 
is important that you learn your way around the NAV C/AL code in the standard 
product irst. You may recall the advice in a previous chapter that the new code you 
create should be visually and logically compatible with what already exists. If you 
think of your new code as a guest being hosted by the original system, you will be 
doing what any thoughtful guest does—itting smoothly into the host's environment.

http:///


Chapter 8

[ 469 ]

An equally important aspect of becoming familiar with the existing code is to 
increase the likelihood that you can take advantage of the features and components 
of the standard product to address some of your application requirements. There are 
at least two groups of material that you can use.

One group is the Callable Functions that are used liberally throughout NAV. There 
is no documentation for most of those functions, so you must either learn about them 
here or by doing your homework (that is by studying NAV code). The second group 
includes many code snippets that you can copy when you face a problem similar to 
something the NAV developers have already addressed.

The code snippets differ from the callable functions in two ways. First, they are not 
structured as coherent and callable entities. Second, they are likely to only apply to 
your problem as a model, code that must be modiied to it the situation (for example 
changing variable names, adding or removing constraints, and so on).

In the following sections, we will look at some of those code structures. We will also 
discuss techniques for working with the code, for debugging, and as a developer, 
taking advantage of the strengths of the C/SIDE and NAV environment. Following 
this chapter, you should have enough tools in your NAV toolkit to begin working on 
basic development projects.

Callable functions
There are many callable functions in the standard NAV product. Most of these are 
designed to handle a very speciic set of data or conditions and have no general-
purpose use (for example the routines for updating Check Ledger entries during a 
posting process are likely to apply only to that speciic function). If you are making 
modiications to a particular application area within NAV, you may ind functions 
that you can utilize, either as they already exist or as models for new similar 
functions which you create.

There are functions within NAV that are relatively general purpose. They either 
act on data that is common in many different situations (for example dates) or they 
perform processing tasks that are common to many situations (for example provide 
access to an external ile). We will review a number of such functions you may ind 
usable at some point. If nothing else, they are useful as study guides for "here is how 
NAV does it". Example functions follow.

http:///


Advanced NAV Development Tools

[ 470 ]

Codeunit 358 – Date Filter-Calc
This codeunit contains two functions you could use in your code to create ilters 
based on the Accounting Period Calendar. The irst is CreateFiscalYearFilter 
that has the following syntax:

CreateFiscalYearFilter.DateFilterCalc

       (Filter,Name,BaseDate,NextStep)

The calling parameters are Filter (text, length 30), Name (text, length 30), BaseDate 
(date), and NextStep (integer).

The second such function is CreateAccountingPeriodFilter that has the  
following syntax:

CreateAccountingPeriodFilter.DateFilterCalc

          (Filter,Name,BaseDate,NextStep)

The calling parameters are Filter (text, length 30), Name (text, length 30), BaseDate 
(date), and NextStep (integer).

In the following code screenshot from Page 151 – Customer Statistics, you can see 
how NAV calls these functions. Page 152 – Vendor Statistics, Page 223 – Resource 
Statistics, and a number of other Master table statistics forms also use this set  
of functions.

In the next code screenshot, NAV uses the ilters stored in the CustDateFilter array 
to constrain the calculation of a series of FlowFields for the Customer Statistics page.

http:///


Chapter 8

[ 471 ]

When one of these functions is called, the Filter and Name ields are updated within 
the function, so you can use them effectively as return parameters, allowing the 
function to return a workable ilter and a name for that ilter. The ilter is calculated 
from the BaseDate and NextStep you supply.

The returned ilter is supplied back in the format of a range ilter string, 
'startdate..enddate' (for example 01/01/10..12/31/10). If you call 
CreateFiscalYear, the Filter will be for the range of a iscal year, as deined by 
the system's Accounting Period table. If you call CreateAccountingPeriodFilter, 
the Filter will be for the range of a iscal period, as deined by the same table.

The dates of the Period or Year ilter returned are tied to the BaseDate parameter, 
which can be any legal date. The NextStep parameter says which period or year to 
use, depending on which function is called. A NextStep = 0 says use the period or 
year containing the BaseDate, NextStep = 1 says use the next period or year into the 
future, and NextStep = -2 says use the period or year before last (that is, step back 
two periods or years).

The Name value returned is also derived from the Accounting Period table. If 
the call is to the CreateAccountingPeriodFilter, then Name will contain the 
appropriate Accounting Period Name. If the call is to the CreateFiscalYearFilter, 
then Name will contain 'Fiscal Year yyyy', where yyyy will be the four-digit 
numeric year.

Codeunit 359 – Period Form Management
This codeunit contains three functions that can be used for date handling. They are 
FindDate, NextDate, and CreatePeriodFormat:

FindDate function

Calling Parameters (SearchString (text, length 3),  
CalendarRecord (Date table), PeriodType (Option, integer))

Returns DateFound Boolean

FindDate(SearchString,CalendarRec,PeriodType)

This function is often used in pages to assist with the date calculation. The purpose 
of this function is to ind a date in the CalendarRecord table based on the parameters 
passed in. The search starts with an initial record in the CalendarRecord table. If you 
pass in a record that has already been initialized (that is you positioned the table to 
some date), then that will be the base date, otherwise the Work Date will be used.

•
°
°

http:///


Advanced NAV Development Tools

[ 472 ]

The PeriodType is an Option ield with the option value choices of 'day, week, 
month, quarter, year, accounting period'. For ease of coding, you could call the 
function with the integer equivalent (0, 1, 2, 3, 4, 5) or set up your own equivalent 
Option variable.

In general, it's a much better practice to set up an Option variable because the 
Option strings make the code self-documenting. Just using the Option integer values 
doesn't offer the next reader of your code to easily understand what's happening. 
In addition, if you only use the integer values and a change to the Option choices 
happens later, the integers might not represent the same Option choices (typically 
not a problem, but possible and not worth risking).

Finally, the SearchString allows you to pass in a logical control string containing =, 
>, <, <=, >=, and so on. FindDate will ind the irst date starting with the initialized 
CalendarRecord date that satisies the SearchString logic instruction and its the 
PeriodType deined. For example, if the PeriodType is day and the date 01/25/10 is 
used along with the SearchString of >, then the date 01/26/10 will be returned in 
the CalendarRecord.

NextDate function

Calling Parameters (NextStep (integer), CalendarRecord (Date 
table), PeriodType (Option, integer))

Returns NextStep integer 
NextDate(NextStep,CalendarRec,PeriodType)

NextDate will ind the next date record in the CalendarRecord table that satisies 
the calling parameters. The CalendarRecord and PeriodType calling parameters for 
FindDate have the same deinition as they do for the FindDate function. However, 
for this function to be really useful, the CalendarRecord must be initialized before 
calling NextDate—otherwise, the function will calculate the appropriate next date 
from day 0. The NextStep parameter allows you to deine the number of periods of 
PeriodType to move, so as to obtain the desired next date. For example, if you start 
with a CalendarRecord table positioned on 01/25/10, a PeriodType of quarter 
(that is 3), and a NextStep of 2, the NextDate will move forward two quarters and 
return with CalendarRecord focused on Quarter, 7/1/10 to 9/30/10.

CreatePeriodFormat function

Calling Parameters (PeriodType (Option, integer),  
DateData (date))

Returns FormattedPeriod (Text, length 10) 
FormattedDate := CreatePeriodFormat(PeriodType,DateData)

•
°
°

•
°
°

http:///


Chapter 8

[ 473 ]

CreatePeriodFormat simply allows you to supply a date and specify which of  
its format options you want via the PeriodType. The function's return value is a  
ten-character formatted text value—for example mm/dd/yy or ww/yyyy or mon 
yyyy or qtr/yyyy or yyyy.

Codeunit 365 – Format Address
The functions in the Format Address codeunit, as the name suggests, serve the 
purpose of formatting addresses. The address data in any master record (Customer, 
Vendor, Sales Order Sell-to, Sales Order Ship-to, Employee, and so on.) may contain 
embedded blank lines, for example, the Address 2 line may be empty. When you 
print out the address information on a document or report, it will look better if there 
are no blank lines. These functions take care of that.

In addition, NAV provides setup options for multiple formats of City – Post Code 
– County – Country combinations. The Format Address functions also take care of 
formatting your addresses according to what was chosen in the setup or has been 
deined in the Countries/Regions form for different Postal areas.

There are over 50 data-speciic functions in the Format Address codeunit. These  
data-speciic functions allow you to pass a record parameter for the record containing 
the raw address data (such as a Customer record, a Vendor Record, a Sales Order,  
and so on.). These function calls also require a parameter of a one-dimensional Text 
array with 8 elements of length 90. Each function extracts the address data from 
its speciic master record and stores it in the array. The function passes that data 
to a general-purpose function, which does the actual work of re-sequencing and 
compressing the data according to the various setup rules.

The following is an example of function call format for these functions for Company 
and the Sales Ship-to addresses. In each case AddressArray is Text, Length 90, and 
one-dimensional with 8 elements.

"Format Address".Company(AddressArray,CompanyRec);

"Format Address".SalesHeaderShipTo(AddressArray,SalesHeaderRec);

The result of the function's processing is returned in the AddressArray parameter.

In addition to the data-speciic functions in the Format Address codeunit, you 
can also directly utilize the more general-purpose functions contained therein and 
called by the data-speciic functions. If you added a new address structure as part 
of an enhancement, you probably want to create your own data-speciic address 
formatting function in your own codeunit. But you might as well design your 
function to call the general purpose functions that already exist (and are debugged).

http:///


Advanced NAV Development Tools

[ 474 ]

The primary general-purpose address formatting function (and the one you are most 
likely to call directly) is FormatAddr. This is the function that does most of the work 
in this codeunit. The syntax for the FormatAddr function is as follows:

FormatAddr(AddressArray,Name,Name2,ContactName,Address1,Address2,

         City,PostCode,County,CountyCode)

The calling parameters of AddressArray, Name, Name2 and ContactName are all text, 
length 90. Address1, Address2, City, and County are all text, length 50. PostCode 
and CountryCode are code, length 20 and length 10, respectively.

Your data is passed into the function in the individual Address ields. The results are 
passed back in the AddressArray parameter for you to use.

There are two other functions in the Format Address codeunit that can be called 
directly. They are FormatPostCodeCity and GeneratePostCodeCity. The 
FormatPostCodeCity function serves the purpose of inding the applicable 
setup rule for PostCode + City + County + Country formatting. It then calls the 
GeneratePostCodeCity function, which does the actual formatting.

If you are going to use functions from Codeunit 365, take care to truly understand 
how they operate. In this case, as well as all others, study a function and test with it 
before assuming you understand how it works. There is no documentation for these 
functions, so their proper use is totally up to you.

Codeunit 396 – NoSeriesManagement
Throughout NAV, master records (for example Customer, Vendor, Item, and so on.) 
and activity documents (Sales Order, Purchase Order, Warehouse Transfer Orders, 
and so on) are controlled by the unique identifying number assigned to each one. 
This unique identifying number is assigned through a call to a function within the 
NoSeriesManagement codeunit. That function is InitSeries. The calling format for 
InitSeries is as follows:

NoSeriesManagement.InitSeries(WhichNumberSeriesToUse,
 LastDataRecNumberSeriesCode, SeriesDateToApply, NumberToUse, 
NumberSeriesUsed)

The parameter WhichNumberSeriesToUse is generally deined on a 
Numbers Tab in the Setup record for the applicable application area. The 
LastDataRecNumberSeriesCode tells the function what Number Series was used 
for the previous record in this table. The SeriesDateToApply parameter allows the 
function to assign ID numbers in a date-dependent fashion. The NumberToUse and 
the NumberSeriesUsed are return parameters.

http:///


Chapter 8

[ 475 ]

The following screenshots show examples for irst, Table 18 - Customer and second 
Table 36 - Sales Header.

With the exception of GetNextNo (used in assigning unique identifying numbers 
to each of a series of transactions), you are not likely to use other functions in the 
NoSeriesManagement codeunit. The other functions are principally used either by 
the InitSeries function or other NAV routines whose job it is to maintain Number 
Series control information and data.

Codeunit 397 – Mail
This codeunit contains a series of functions for interfacing with Microsoft Outlook 
as an Automation Controller. As the complexity of both Automation Controllers and 
the APIs for various products, including Outlook, are beyond the scope of this book, 
we will not cover the functions of this codeunit in any detail. Sufice it to say that if 
you are going to create code that deals with Outlook in any way, you should start 
with this codeunit either for functions you can use directly or as a model for what 
you need to do.

If you need an SMTP interface for an Email interface, you should use codeunit 400 
– SMTP Mail.

Codeunit 408 – Dimension Management
The Dimension Management codeunit is of general interest because dimensions 
are so widely used (and useful) throughout NAV. Dimensions are a user-deinable 
categorization of the data. There are two Global Dimensions, which are carried as 
values in the primary data records. Any dimensioned data can also have up to six 
additional categorizations (Shortcut Dimensions), which are stored in subordinate 
tables. Each dimension can have any number of possible values. More detailed 
information about Dimensions in NAV is available in the Help, and in the training 
documentation about the functional application. A good place to start is the 
Dimension Table Help.

http:///


Advanced NAV Development Tools

[ 476 ]

When you move, process, post, delete, or otherwise manipulate many different types 
of NAV data, you must also deal with the associated Dimensions data. The functions 
in Codeunit 408 support that activity. You would be wise not to be creative in your 
use of the Dimension Management functions, but simply ind and study existing 
code for a situation similar to the one on which you are working.

If you are manipulating standard system records (records that are part of the system 
as delivered from Microsoft), then you will call functions in Codeunit 408 directly, 
perhaps even cloning existing code from another routine for your calling routines. 
If you are creating new tables that contain Dimensions, you may need to create 
your own Dimensions handling functions in your codeunit. In this case, you should 
model your new functions on Codeunit 408 code. Take note that, in most of NAV, 
posting of Dimensions initially uses a temporary table, in order to avoid degrading 
performance by locking critical Dimensions tables. You should follow this approach 
with your design.

Codeunit 412 – Common Dialog Management
The Common Dialog Management codeunit contains just one function, the OpenFile 
function. This function provides the system's access to the OCX module for the 
Microsoft Common Dialog Control, which is a standard part of Windows. The 
Common Dialog Control provides a user interface function for accessing external iles. 

The following screenshot shows the type of screen that appears when the Common 
Dialog Control is executed:

http:///


Chapter 8

[ 477 ]

The code that invoked this dialog is as follows:

CDM.OpenFile('Import Member List','',4,'*.csv|*.csv|*.txt|*.txt',0);

The syntax for the OpenFile function is as follows:

 OpenFile (ScreenTitle,DefaultFileName,FileTypeOption,

 FileTypeFilterString,Action)

The calling parameters are ScreenTitle (text, length 50), DefaultFileName 
(text, length 250), FileTypeOption (option choices of ' ', Excel, Word, Custom), 
FileTypeFilterString (text, length 250), and Action (option choices of Integer, 
Open, Save).

In this instance, the ScreenTitle is deined, the DefaultFileName is omitted, 
there is a FileTypeOption of Custom, which allows the FileTypeFilterString 
to be speciied for *.csv and *.txt (see Files of type in preceding screenshot), and 
an Action of 0 (zero), which deines what action button (Open or Save) will be 
displayed (Open is chosen here).

The syntax rule for the FilterTypeFilterString is a string sequence consisting 
of the Filter Type description, followed by a pipe symbol, which in turn is followed 
by the Filter Mask. Each subsequent ilter option description+mask sequence is 
separated from the preceding one by another pipe symbol.

The default ilter options in Codeunit 412 are deined as Text strings, as shown in the 
following screenshot: 

Sampling of function models to review
It is very helpful when you're creating new code to have a model that works, which 
you can study (or clone). This is especially true in NAV where there is little or no 
"how to" documentation available for many different functions. One of the more 
challenging aspects of learning to develop in the NAV environment is learning how 
to address the wide variety of common issues in the "NAV way". The "NAV way" is 
most beneicial, because there is no better place to learn the strengths and the subtle 
features of the product than to study the code written by the developers who are  
part of the inner circle.

http:///


Advanced NAV Development Tools

[ 478 ]

A selection of objects containing functions you may ind useful as models follows. 
You certainly will ind these useful for study. Here is how "it's" done in NAV  
("it" obviously varies depending on the function's purpose). When you build  
your function modeled on NAV functions, the new code should reside in a customer 
licensed codeunit.

It is not good practice to add custom functions to the standard 
NAV Codeunits. Keeping customizations well segregated in clearly 
identiied custom objects makes both maintenance and upgrades easier.

Codeunit 228 – Test Report-Print
This codeunit contains a series of functions to invoke the printing of various Test 
Reports. These functions are called from various data entry forms, typically Journal 
forms. You can use these functions as models for any situation where you want to 
allow the user to print a test report from a form/page menu or command button.

Although all of the functions in this codeunit are used to print Test Reports, there 
isn't any reason you couldn't use the same logic structure for any type of report. 
The basic logic structure is to create an instance of the table of interest, apply any 
of the desired ilters to that table instance, execute other appropriate setups for the 
particular report, and then call the report with a code line similar to the following:

REPORT.RUN(ReportID,TRUE,FALSE,DataRecName)

The irst Boolean option will enable the Report Request form/page if TRUE. The 
second Boolean function chooses to print the report on the system printer (TRUE)  
or the printer deined through the Printer Selection table (FALSE).

Use of the RUN function will invoke a new instance of the report object. In cases 
where a new instance is not desired, RUNMODAL is used.

Codeunit 229 – print documents
This codeunit is very similar to Codeunit 228 in its internal logic structure. It contains 
a series of functions for invoking the printing of document formatted reports. A 
document report in NAV is formatted such that a page is the basic unit (for example 
invoices, orders, statements, checks). For those documents printed from the Sales 
Header or Purchase Header, a basic "calculate discounts" function is called from 
Codeunit 229 for the header record prior to calling the report object which will  
print the chosen document. 

http:///


Chapter 8

[ 479 ]

In some cases, there are several reports (in this case, documents) all generated from 
the same table, for example the Sales Quote, Sales Order, Sales Invoice and Sales 
Credit Memo all of which are from Tables 36 – Sales Header and 37 – Sales Line. For 
such situations, the function has a common set of pre-processing logic followed by a 
CASE statement to choose the proper report object call. In the case where there is only 
one report-table combination (for example, Bank Checks), the function is simpler ,but 
still basically, has the same structure (just without the CASE statement).

Other objects to review
Other Codeunits, that you should review for an insight into how NAV manages 
certain activities and interfaces, are:

Codeunit 1 – Application Management: A library of utility functions widely 
used in the system

Codeunits 11, 12, 13, 21, 22, 23, 80, 81, 82, 90, 91, 92 - the Posting sequences 
for Sales, Purchases, General Ledger, Item Ledger; these control the posting 
of journal data into the various ledgers

Codeunit 419 – 3-tier Management: Functions speciic to three-tier operation
Codeunits 800, 801, 802 – Online Map interfacing

Codeunit 5054 – Word Management: Interfaces to Microsoft Word

Codeunit 5063 – Archive Management: Storing copies of processed documents

Codeunits 5300 thru 5314 – Outlook interfacing

Codeunits 5813 thru 5819 – Undo functions

Table 330 – Currency Exchange Rate: Contains some of the key currency 
conversion functions

Table 370 – Excel Buffer: Excel interfacing

Page 344 – Navigate: Home of the unique and powerful Navigate feature

Management codeunits
There are approximately 100 codeunits with the word "Management" as part  
of their description name. Each of these codeunits contains functions in which the  
purpose is the management of some speciic aspect of NAV data. Many are very 
speciic to a narrow range of data. Some are more general, because they contain 
functions you can reuse in another application area (for example, Codeunit  
396 – NoSeriesManagement). 

•
•

•
•
•
•
•
•
•
•
•

http:///


Advanced NAV Development Tools

[ 480 ]

When you are working on an enhancement in a particular functional area, it is 
extremely important to check the Management codeunits utilized in that area. 

You may be able to use some functions directly. This will have the beneit of 
reducing the code you have to create and debug. Of course, when a new version 
is released, you will have to check to see if the functions on which you relied have 
changed in a way that affects your code.

If you can't use the existing material as is, you may ind functions you can use as 
models for tasks in the area of your enhancement. And, even if that is not true, by 
researching and studying the existing code, you will learn more about how data is 
structured and processes low in the standard system.

Documenting modifications
We have discussed many of the good documentation practices that you should 
follow, when modifying an NAV system. We will briely review those here.

Identify and document your modiications. Assign a unique project ID and use it for 
version tags and all internal documentation tags. Assign a speciic number range for 
any new objects.

Wrap your customizations in code with tagged comments. Place an identifying 
"Modiication starts here" comment before any modiication and a "Modiication 
ends here" comment at the end. Retain any replaced code inside comments. 
Depending on the amount of replaced or deleted code, it should be commented  
out with either slashes or braces (// or { }).

No matter how much or what type of standard NAV C/AL code is 
affected, the original code should remain intact as comments.

Always include explanatory documentation in the Documentation Trigger of 
modiied objects. In the case of changes that can't be documented in-line such as 
changes to properties, the Documentation Trigger may be the only place you can 
easily create a documentation trail describing the changes.

If your modiication requires a signiicant number of lines of new code or code that 
can be called from more than one place, you should strongly consider putting the 
body of the modiication into a separate new codeunit (or codeunits) or at least in 
a new separate function (or functions). This approach allows you to minimize the 
footprint of your modiications within the standard code. That will make support, 
maintenance, and upgrading easier.

http:///


Chapter 8

[ 481 ]

Where feasible to do so, create new versions of standard objects and modify those 
rather than modifying the original object. This works well for many reports and 
some pages, but often doesn't work well for tables, codeunits, and many pages.

Maintain an external document that describes the purpose of the modiication 
and a list of what objects were affected. Ideally this documentation should begin 
with a Change Request or Modiication Speciication and then be expanded as the 
work proceeds. The description should be relatively detailed and written, so that 
knowledgeable users (as well as trained C/AL developers) can understand what 
has been done and why. When you have to work hard to understand the reason for 
a code structure in the standard product, it should make you appreciate why you 
should document well to make your work easier for others to understand. 

Multi-language system
The NAV system is designed as a multi-language system, meaning it can interface 
with users in more languages than just English. The base product is distributed 
with American English as the primary language, but each local version comes with 
one or more other languages ready for use. As the system can be set up to operate 
from a single database displaying user interfaces in several different languages, 
NAV is particularly suitable for irms operating from a central system serving users 
in multiple countries. NAV is used by businesses all over the world, operating in 
dozens of different languages. It is important to note that when the application 
language is changed, that has no affect on the data in the database and, in fact,  
does not multi-language enable the data.

The basic elements that support the multi-language feature include:

Multi-Language Captioning properties (for example, CaptionML) 
supporting deinition of alternative language captions for all ields, button 
labels, titles, and so on.

Application Management codeunit logic that allows language choice  
on login.

fin.stx iles supplied by NAV, which are language speciic and contain  
texts used by C/SIDE for various menus such as File, Edit, View, Tools, 
and so on. (fin.stx cannot be modiied except by the Microsoft NAV 
Development Team).

The Text Constants property ConstantValueML supporting deinition of 
alternative language messages.

•

•
•

•

http:///


Advanced NAV Development Tools

[ 482 ]

Before embarking on creating modiications that need to be multi-language enabled, 
be sure to review all the available documentation on the topic. It would also be wise 
to do some small scale testing to ensure you understand what is required, and that 
your approach will work (of course, this is always a good idea for any potentially 
signiicant compatibility issue).

Multi-currency system
NAV was one of the irst ERP systems to fully implement a multi-currency system. 
Transactions can start in one currency and inish in another. For example, you can 
create the order in US dollars and accept payment for the invoice in Euros. For this 
reason, where there are money values, they are generally stored in the local currency 
(for example LCY) as deined in setup. However, there is a set of currency conversion 
tools built into the applications and there are standard (by practice) code structures 
to support and utilize those tools. Two examples of code segments from the Sales 
Line table illustrating handling of money ields follow:

In both cases, there's a function call to ROUND and use of the currency speciic 
Currency. "Amount Rounding Precision" control value.

As you can see, before creating any modiication that has money ields, you must 
familiarize yourself with the NAV currency conversion feature and the code that 
supports it. A good place to start is the C/AL code within Table 37 - Sales Line,  
Table 39 - Purchase Line, and Table 330 – Currency Exchange Rate.

http:///


Chapter 8

[ 483 ]

Code analysis and debugging tools
The NAV tools and techniques that you use to determine what code to modify and 
to help you debug modiications are essentially the same. The goal in the irst case is 
to focus on your modiications, so that you have the minimum effect on the standard 
code. This results in multiple beneits. Smaller pieces of well focused code are easier 
to debug, easier to document, easier to maintain, and easier to upgrade.

As of NAV's relatively tight structure and unique combination of features, it is not 
unusual to spend signiicantly more time in determining the right way to make a 
modiication than it actually takes to code the modiication. Obviously this depends 
on the type of modiication being made. Unfortunately, the lack of documentation 
regarding the internals of NAV also contributes to an extended analysis time 
required to design modiications. The following sections review some of the tools 
and techniques you can use to analyze and test.

Developer's Toolkit
To paraphrase the introduction in the NAV Developer's Toolkit documentation, 
the Toolkit is designed to help you analyze the source code. This makes it easier 
to design and develop application customizations and to perform updates. The 
Developer's Toolkit is not part of the standard product distribution, but is available 
to all Microsoft Partners for NAV for download from the Partner website. While 
it takes a few minutes to set up the Developer's Toolkit for the database on which 
you will be working, the investment is worthwhile. Follow the instructions in the 
Developer's Toolkit manual for creating and loading your Toolkit database. The  
Help iles in the Developer's Toolkit are also useful. As of late 2009, the current NAV 
Developer's Toolkit is V3.00. V3.00 does not deal with the new features of NAV 2009 
associated with the Role Tailored Client or three tier functionality.

The NAV Developer's Toolkit has two major categories of tools—the Compare and 
Merge Tools, and the Source Analyzer:

The Compare and Merge Tools are useful anytime you want to compare a 
production database's objects to an unmodiied set of objects to identify what 
has been changed. This might be in the process of upgrading the database to 
a new version or simply to better understand the contents of a database when 
you are about to embark on a new modiication adventure.

•

http:///


Advanced NAV Development Tools

[ 484 ]

The Source Analyzer tools are the more general purpose set of tools. 
Once you have loaded the source information for all your objects into the 
Developer's Tools database, you will be able to quickly generate a variety of 
useful code analyses. The starting point for your code analyses will be the 
Object Administrator view as shown in the following screenshot:

When you get to this point, it's worthwhile experimenting with various menu 
options for each of the object types to get comfortable with the environment and how 
the tools work. Not only are there several tool options, but multiple viewing options. 
Some will be more useful than others depending on the speciics of the modiication 
task you are addressing as well as your working habits. 

Relations to Tables
With rare exceptions, table relations are deined between tables. The Toolkit allows 
you to select an object and request analysis of the deined relations between elements 
in that object and various tables. As a test of how the Relations to Tables analysis 
works, we will expand our Table entry in the Object Administrator to show all the 
tables. Then we will choose the Location table, right-click, and choose the option to 
view its Relations to other Tables with the result shown in the following screenshot:

•

http:///


Chapter 8

[ 485 ]

If we want to see more detail, we can right-click on the Location table name in the 
right window, choose the Expand All option, and see the results as shown in the 
following screenshot:

http:///


Advanced NAV Development Tools

[ 486 ]

This shows us the Relations to Tables, with the relating (from) ield and the related 
(to) ield both showing in each line.

Relations from Objects
If you are checking to see what objects have a relationship pointing back to a 
particular table (the inverse of what we just looked at), you can ind that out in 
essentially the same fashion. Right-click on the table of interest and choose the 
Relations from Objects option. If you wanted to see both sets of relationships in the 
same display, you can right-click on the table name in the right window and choose 
the Relation to Tables option. 

At that point your display will show both sets of relationships as shown in the 
following screenshot for the table Reservation Entry:

Source Access
On any of these screens you could select one of the relationships and drill down 
further into the detail of the underlying C/AL code. There is a search tool, the 
Source Finder. When you highlight one of the identiied relationships and access  
the Code Viewer, the Toolkit will show you the object code where the relationship  
is deined.

Where Used
The Developer's Toolkit contains other tools that are also quite valuable to you as 
a developer. The idea of Where Used is fairly simple: list all the places where an 
element is used within the total library of source information. There are two different 
types of Where Used.

http:///


Chapter 8

[ 487 ]

The Toolkit's irst type of Where Used is powerful because it can search for 
uses of whole tables or key sequences or individual ields. Many developers 
also use other tools (primarily developer's text editors) to accomplish some 
of this. However, the Developer's Toolkit is speciically designed for use with 
C/AL and C/SIDE.

The second type of "Where Used" is Where Used With. This version of the 
Toolkit Where Used tool allows you to focus the search. Selecting the Where 
Used With Options brings up the screen in the following screenshot. As you 
can see, the degree of control you have over the search is extensive.

Screenshots of the other three tabs of the Where Used With Options form follow:

•

•

http:///


Advanced NAV Development Tools

[ 488 ]

Trying it out
To really appreciate the capabilities and lexibilities of the Developer's Toolkit, 
you must work with it to address a real-life task. For example, what if your irm 
was in a market where the merger of irms was a frequent occurrence? In order to 
manage this, the manager of accounting might decide that the system needs to be 
able to merge the data for two customers, including accounting and sales history 
under a single customer number. If you do that, you must irst ind all the instances 
of the Customer No. referenced in keys of other tables. The tool to do this in the 
Developer's Toolkit is the Source Finder.

Calling up the Source Finder, irst you Reset all ields by clearing them. Then  
enter the name of the ield you are looking for, in this case that is Customer No.,  
as shown in the following screenshot:

http:///


Chapter 8

[ 489 ]

Now specify you are only looking for information contained in Tables, as shown in 
the following screenshot:

Next, specify that the search should only be in Keys, as shown in the  
following screenshot: 

http:///


Advanced NAV Development Tools

[ 490 ]

Your initial results will look like those in the following screenshot:

This data can be further constrained through the use of Filters (for example to ind 
only Key 1 entries) and can be sorted by clicking on a column head.

Of course, as mentioned earlier, it will help you to experiment along the way. Don't 
make the mistake of thinking the Developer's Toolkit is the only tool you need to  
use.  At the same time, don't make the mistake of ignoring this tool just because it 
won't do everything.

http:///


Chapter 8

[ 491 ]

Working in exported text code
As mentioned a little earlier, some developers export objects into text iles, then use a 
text editor to manipulate them. Let us take a look at an object that has been exported 
into text and imported into a text editor.

We will use one of the tables that are part of our ICAN development, the Donor Type 
table, 50001 as shown in the following screenshot:

The general structure of all exported objects is similar, with differences that you 
would expect for the different objects. For example, Table objects have no Sections, 
but Report objects do. You can also see here that this particular table contains no  
C/AL-coded logic, as those statements would be quoted in the text listing.

http:///


Advanced NAV Development Tools

[ 492 ]

You can see by looking at this table object text screenshot that you could easily search 
for instances of the string Code throughout the text export of the entire system, but 
it would be more dificult to look for references to the Donor Type form/page, 
Form50002. And, while you can ind the instances of Code with your text editor, 
it would be quite dificult to differentiate those instances that relate to the Donor 
Type table from those in any other table. This includes those that have nothing to do 
with our ICAN system enhancement, as well as those simply deined in an object as 
Global Variables. However, the Developer's Toolkit can make that differentiation.

If you were determined to use a text editor to ind all instances of  
"Donor Type".Code, you could do the following:

Rename the ield in question to something unique. C/SIDE will rename all the 
references to this ield. Then export all the sources to text followed by using your text 
editor (or even Microsoft Word) to ind the unique name. You must either remember 
to return the ield in the database to the original name or you must be working in a 
temporary "work copy" of the database, which you will shortly discard. Otherwise, 
you will have quite a mess.

One task that needs to be done occasionally is to renumber an object or to change 
a reference inside an object that refers to a no longer existing element. The C/SIDE 
editor may not let you do that easily, or in some cases, not at all. In such a case, the 
best answer is to export the object into text, make the change there and then import it 
back in as modiied. Be careful though. When you import a text object, C/SIDE does 
not check to see if you are overwriting another instance of that object number. C/SIDE 
makes that check when you import a fob (that is a compiled object) and warns you. If 
you must do renumbering, you should check the NAV forums on the Internet for the 
renumbering tools that are available there.

Theoretically, you could write all of your C/AL code with a text editor and then import 
the result. Given the dificulty of such a task and the usefulness of the tools embedded 
in C/SIDE, such an approach would be foolish. However, there are occasions when it 
is very helpful to simply view an object "lattened out" in text format. In a report where 
you may have overlapping logic in multiple data items and in several control triggers 
as well, the only way to see all the logic at once is in text format.

You can use any text editor you like, Notepad or Word or one of the visual 
programming editors; the exported object is just text. You need to cope with the fact 
that when you export a large number of objects in one pass, they all end up in the 
same text ile. That makes the exported ile relatively dificult to use. The solution is 
to split that ile into individual text iles, named logically, one for each NAV object. 
There are several freeware tools to do just that, available from the NAV forums on  
the Internet.

http:///


Chapter 8

[ 493 ]

Two excellent NAV forums are www.mibuso.com and 
www.dynamicsuser.net.

Using Navigate
Navigate is an often under-appreciated tool both for the user and for the developer. 
Our focus is on its value to the developer. You might enhance your extension of the 
NAV system by expanding the coverage of the Navigate function.

Testing with Navigate
Navigate (Page 344) searches for and displays the number and types of all the 
associated entries for a particular posting transaction. The term "associated", in this 
case, is deined as those entries having the same Document Number and Posting Date.

Navigate can be called from the Navigate action, which appears on each screen 
that displays any of the entries that a Navigate might ind and display. It can also 
be called directly from various Navigate entries in Action lists. These are generally 
located within History menu groups as shown in the following screenshot:

http:///


Advanced NAV Development Tools

[ 494 ]

If you invoke the Navigate page using the menu action item, you must enter the 
Posting Date and Document Number for the entries you wish to ind. Alternately, 
you can enter a Business Contact Type (Vendor or Customer), a Business Contact 
No. (Vendor No. or Customer No.), and optionally, an External Document No. 
There are occasions when this option is useful, but the Posting Date + Document 
No. option is much more frequently useful.

Instead of seeking out a Navigate page and entering the critical data ields, it is much 
easier to call Navigate from a Navigate action on a page showing data. In this case, 
you just highlight a record and click on Navigate to search for all the related entries. 
In the following example, the irst General Ledger Entry displayed is highlighted.

After clicking on the Navigate action, the Navigate page will pop up, illed in, with 
the completed search, and will look similar to the following screenshot:

http:///


Chapter 8

[ 495 ]

Had we accessed the Navigate page through one of the menu entries, we would 
have illed in the Document No. and Posting Date ields and clicked on Find. As 
you can see here, the Navigate form shows a list of related, posted entries including 
the one we highlighted to invoke the Navigate function. If you click on one of the 
items in the Table Name list at the bottom of the page, you will see an appropriately 
formatted display of the chosen entries. 

http:///


Advanced NAV Development Tools

[ 496 ]

For the G/L Entry table in this form, you would see a result like the following 
screenshot. Note that all the G/L Entry are displayed for same Posting Date and 
Document No., matching those speciied at the top of the Navigate page.

You may ask "Why is this application page being discussed in a section about C/AL 
debugging?" The answer is: "When you have to test, you need to check the results. 
When it is easier to do a thorough check of your test results, your testing will go 
faster and be of higher quality". Whenever you make a modiication that will affect 
any data that could be displayed through the use of Navigate, it will quickly become 
one of your favorite testing tools.

Modifying for Navigate
If your modiication creates a new table that will contain posted data and the records 
contain both Document No. and Posting Date ields, you can include this new table 
in the Navigate function.

The C/AL Code for Posting Date + Document No. Navigate functionality is 
found in the FindRecords function trigger of Page 344 – Navigate. The following 
screenshot illustrates the segment of the Navigate CASE statement code for the  
Check Ledger Entry table:

http:///


Chapter 8

[ 497 ]

The code checks READPERMISSION. If that is enabled for this table, then the 
appropriate iltering is applied. Next, there is a call to the InsertIntoDocEntry 
function, which ills the temporary table that is displayed in the Navigate page. 
If you wish to add a new table to the Navigate function, you must replicate this 
code for your new table. In addition, you must add the code that will call up the 
appropriate page to display the records that Navigate inds. This code should be 
inserted in the ShowRecords function trigger of the Navigate page, similar to the 
lines in the following screenshot:

Making a change like this, when appropriate, will not only provide a powerful tool 
for your users, but will also provide a powerful tool for you as a developer.

The C/SIDE Debugger
C/SIDE has a built-in Debugger which runs in the Classic Client environment. It  
is very helpful in tracking down the location of bugs in logic and processes. There  
are two basic usages of the available debugger. The irst is identiication of the 
location of a run-time error. This is fairly simple process, accomplished by setting  
the debugger (from the Tools Menu) to Active with the Break on Triggers option 
turned off, as shown in the following screenshot. When the run-time error occurs,  
the debugger will be activated and displayed exactly where the error is occurring.

The second option is the support of traditional tracing of logic. Use of the Debugger 
for this purpose is hard work. It requires that you, the developer, have irmly in 
mind how the code logic is supposed to work, what the values of variables should  
be under all conditions, and the ability to discern when the code is not working  
as intended.

The Debugger allows you to see what code is being executed, either on a step-by-step 
basis (by pressing F8) or trigger by trigger (by pressing F5). You can set your own 
Breakpoint ((by presing F9), points at which the Debugger will break the execution 
so you can examine the status of the system. The method by which execution is 
halted in the Debugger doesn't matter (so long as it is not by a run-time error); you 
have a myriad of tools with which to examine the status of the system at that point.

http:///


Advanced NAV Development Tools

[ 498 ]

In spite of its limitations, the C/SIDE Debugger is quite a useful tool and it is the 
only debugger that works in C/SIDE. Learning to use the C/SIDE Debugger will 
pay off. The best way to learn it is through hands-on practice. The Debugger is 
documented reasonably well in the C/SIDE Reference Guide Help. Beyond studying 
that documentation, the best way to learn more about the C/SIDE debugger is to 
experiment with its use.

The C/SIDE Code Coverage tool
Code Coverage is another "Classic Client only" debugging tool. Code Coverage 
tracks code as it is executed and logs it for your review and analysis. Code Coverage 
is accessed from the Tools | Debugger option. When you invoke Code Coverage, it 
simply opens the Code Coverage form. Start Code Coverage by clicking on Start, and 
stop it by returning to the form via the Windows menu option, as the Code Coverage 
form will remain open while it is running. The C/SIDE Reference Guide provides 
some information on how to interpret the information collected.

Just like the C/SIDE Debugger, there is no substitute for experimenting to learn 
more about using Code Coverage. Code Coverage is a tool for gathering a volume of 
data about the path taken by the code while performing a task or series of tasks. This 
is very useful for two different purposes. One is simply to determine what code is 
being executed. But this tracking is done in high speed with a log ile, whereas if you 
do the same thing in the debugger, the process is excruciatingly slow and you have 
to log the data manually.

The second use is to identify the volume of use of routines. By knowing how 
often a routine is executed within a particular process, you can make an informed 
judgement about what routines are using up the most processing time. That, in turn, 
allows you to focus any speed-up efforts on the code that is used the most. This 
approach will help you to realize the most beneit for your code acceleration work.

Client Monitor
Client Monitor is a performance analysis tool. It can be very effectively used in 
combination with Code Coverage to identify what is happening, in what sequence, 
how it is happening and how long it is taking. Before you start Client Monitor, there 
are several settings you can adjust to control its behavior, some speciic to the SQL 
Server environment.

http:///


Chapter 8

[ 499 ]

Client Monitor is accessed from Tools | Client Monitor. Client Monitor helps 
identify the code that is taking the major share of the processing time so that you 
can focus on code design optimization efforts. In the SQL Server environment, 
Client Monitor will help to see what calls are being made by SQL Server and clearly 
identify problems with improperly deined or chosen indexes and ilters.

If you are familiar with T-SQL and SQL Server calls, the Client Monitor output will 
be even more meaningful to you. In fact, you may decide to combine these tools with 
the SQL Server Error Log for a more in-depth analysis of speed or locking problems. 
Look at the Performance Troubleshooting Guide from Microsoft for additional 
information and guidance. This manual also contains instructions on how to use 
Excel pivot tables for analyzing the output from Client Monitor.

Debugging NAV in Visual Studio
Debugging code running in the Role Tailored Client requires using Visual Studio 
based debugging tools. The VS debugging function setup is described in relatively 
complete detail in the C/SIDE Reference Guide Help entitled "Walkthrough: 
Debugging an Action on a Page". It is also is described in one of the several excellent 
NAV blogs on the Net. As of the time of this writing, there are some confusing 
sections in this help, so we'll briely review the basic steps.

The irst step in setting up VS debugging for NAV is to enable debugging via a 
setting in the Customsettings.conig ile that controls various actions of the NAV 
Server. This ile's location and the setting to change are described in the Help. After 
you change this setting, you need to Stop and Start the NAV Server Service before 
the change will take effect.

After the VS debugger has been enabled, each time you start up the RTC, all the C# 
code for all of the NAV objects will be generated and stored. The storage location 
for the C# code will vary depending on your system setup (OS version and perhaps 
other factors) – the original Help overlooks this variability. Look for a directory 
containing the string ...\60\Server\MicrosoftDynamicsNav\Server\source\... 
The source directory will contain subdirectories of Codeunit, Page, Record, Report, 
XMLport. Each directory contains a full set of appropriate iles with a .cs extension 
containing the generated C# code. If you are familiar with C#, you may ind it useful 
to study this code.

Visual Studio must then be attached to NAV Server Service before a breakpoint 
can be set. The referenced Walkthrough uses an example for breakpoint setting 
of creating a Codeunit with an easily identiiable piece of code. The point is to be 
able to identify a good spot in the C# code to set your breakpoint so that you can 
productively use the VS Debugger.

http:///


Advanced NAV Development Tools

[ 500 ]

Dialog function debugging techniques
In previous chapters, we have discussed some other simple debugging techniques 
that you can productively use when developing in C/AL and C/SIDE. Sometimes 
these simpler methods are more productive than the more sophisticated tools, 
because you can set up and test quickly, resolve the issue (or answer a question), and 
move on. All the simpler methods involve using one of the C/AL DIALOG functions 
such as MESSAGE, CONFIRM, DIALOG, or ERROR. All of these have the advantage of 
working well in the RTC environment. If you need detailed RTC performance 
information, the Code Coverage and Client Monitor tools do not work with the 
RTC. In that case, you should use one of the following tools/techniques to provide 
performance data (until a better method is provided by Microsoft).

Debugging with MESSAGE
The simplest debug method is to insert MESSAGE statements at key points in your 
logic. It is very simple and, if structured properly, provides you a simple "trace" of 
the code logic path. You can number your messages to differentiate them and display 
any data (in small amounts) as part of a message.

The disadvantage is that MESSAGE statements do not display until processing either 
terminates or is interrupted for user interaction. If you force a user interaction at 
some point, then your accumulated messages will appear prior to the interaction. 
The simplest way to force user interaction is a CONFIRM message in the format  
as follows:

IF CONFIRM ('Test 1',TRUE) THEN;

Debugging with CONFIRM
If you want to do a simple trace but want every message to be displayed as it is 
generated (that is have the tracking process move at a very measured pace), you 
could use CONFIRM statements for all the messages. You will then have to respond to 
each one before your program will move on, but sometimes that is what you want.

Debugging with DIALOG
Another tool that is useful for certain kinds of progress tracking is the DIALOG 
function. This function is usually set up to display a window containing a small 
number of variable values. As processing progresses, the values are displayed in  
real time. This can be useful in several ways. A couple of examples follow:

http:///


Chapter 8

[ 501 ]

Simply tracking progress of processing through a volume of data. This is 
the same reason you would provide a DIALOG display for the beneit of the 
user. The act of displaying does slow down processing somewhat. During 
debugging that may or may not matter. In production it is often a concern, so 
you may want to update the DIALOG display occasionally, not on every record.

Displaying indicators when processing reaches certain stages. This can be 
used as a very basic trace with the indicators showing the path taken so you 
may gauge the relative speed of progress through several steps. For example, 
you might have a six-step process to analyze. You could deine six tracking 
variables and display all of them in the DIALOG. 

In this case, each tracking variable is initialized with values that are dependent 
on what you are tracking, but generally each would be different (for example, 
A1, B2000, C300000, and so on.). At each step of your process, you would up-
date the contents and display the current state of one or all of the variables. This 
can be a very visual and intuitive guide for how your process is operating.

Debugging with text output
You can build a very handy debugging tool by outputting the values of critical 
variables or other informative indicators of progress either to an external text ile  
or to a table created for this purpose. This approach allows you to run a considerable 
volume of test data through the system, tracking some important elements while 
collecting data on the variable values, progress through various sections of code,  
and so on. You can even timestamp your output records so that you can use  
this method to look for processing speed problems (a very minimalist code  
coverage replacement).

Following the test run, you can analyze the results of your test more quickly than if 
you were using displayed information. You can focus on just the items that appear 
most informative and ignore the rest. This type of debugging is fairly easy to set up 
and to reine, as you identify the variables or code segments of most interest. This 
approach can be combined with the following approach using the ERROR statement if 
you output to an external text ile, then close it before invoking the ERROR statement, 
so that its contents are retained following the termination of the test run.

Debugging with ERROR
One of the challenges of testing is maintaining repeatability. Quite often you need 
to test several times using the same data, but the test changes the data. If you have 
a small database, you can always back up the database and start with a fresh copy 
each time. But that can be ineficient and, if the database is large, impractical. One 
alternative is to conclude your test with an ERROR function. This allows you to test 
and retest with exactly the same data.

•

•

http:///


Advanced NAV Development Tools

[ 502 ]

The ERROR function forces a run-time error status, which means the database is not 
updated (it is rolled back to the status at the beginning of the process). This works 
well when your debugging information is provided by using the Debugger or by use 
of any of the DIALOG functions just mentioned prior to the execution of the ERROR 
function. If you are using MESSAGE to generate debugging information, you could 
execute a CONFIRM immediately prior to the ERROR statement and be assured that 
all of the messages are displayed. Obviously this method won't work well when 
your testing validation is dependent on checking results using Navigate or your test 
is a multi-step process such as order entry, review, and posting. But in applicable 
situations, it is a very handy technique for repeating a test with minimal effort.

When testing the posting of an item, it can be useful to place the test-concluding 
ERROR function just before the point in the applicable Posting codeunit where the 
process would otherwise be completed successfully. 

C/SIDE test driven development
New in NAV 2009 SP1 is a C/AL Testability feature set designed to support C/AL 
development to be test driven. Test-driven development is an approach where the 
application tests are deined prior to the development of the application code. In an 
ideal situation, the code supporting application tests is written prior to, or at least at 
the same time as, the code implementing the target application function written.

The C/AL Testability feature provides two more types of Codeunits—Test 
Codeunits and Test Running Codeunits. Test Codeunits contain Test methods,  
C/AL code to support Test methods. Test Runner Codeunits are used to invoke Test 
Codeunits, thus providing test execution management, automation and integration. 
Test Runner Codeunits have two special triggers, each of which run in separate 
transactions, so the test execution state and results can be tracked.

OnBeforeTestRun is called before each test. It allows deining, via a Boolean, 
whether or not the test should be executed.

OnAfterTestRun is called when each test completes and the test results are 
available. This allows the test results to be logged, or otherwise processed  
via C/AL code.

Among the ultimate goals of the C/AL Testability feature are:

The ability to run suites of application tests automated and regressively:

Automated means that a deined series of tests could be run and 
results recorded, all without user intervention.

Regressively means that the test can be run repeatedly as part of 
a new testing pass to make sure that features previously tested 
are still in working order.

•
•

•
°
°

http:///


Chapter 8

[ 503 ]

The ability to design tests in an "atomic" way, matching the granularity 
of the application code. In this way, the test functions can be focused and 
simpliied. This in turn allows for relatively easy construction of a suite 
of tests and, in some cases, reuse of test codeunits (or at least reuse of the 
structure of previously created Test Codeunits).

The ability to develop and run the Test and Test Runner Codeunits within 
the familiar C/SIDE environment. The code for developing these testing 
codeunits is C/AL.

Once the testing codeunits have been developed, the actual testing process 
should be simple and fast in order to run and evaluate results.

Both positive and negative testing are supported. Positive testing is that where you 
look for a speciic result, a correct answer. Negative testing is where you check that 
errors are presented when expected, especially when data or parameters are out of 
range. The testing structure is designed to support the logging of test results, both 
failures and success, to tables for review, reporting and analysis.

A function property deines functions within Test Codeunits to be either Test or 
TestHandler or Normal. Another function property, TestMethodType, allows 
the deinition of a variety of Test Function types to be deined. TestMethodType 
property options include the following which are designed to handle User Interface 
events without the need for a person to intervene:

CatchMessage—catches and handles the MESSAGE statement 

ConirmDialogHandler—catches and handles CONFIRM dialogs
StrMenuHandler—catches and handles STRMENU menu dialogs

FormRunHandler—catches and handles Forms/Pages that are executed  
via RUN

FormRunModalHandler—catches and handles Forms/Pages that are 
executed via RUNMODAL

ReportHandler—handles reports

Use of the C/SIDE Test Driven Development approach will work along the 
following lines:

Deine an application function speciication
Deine the application technical speciication
Deine the testing technical speciication including both Positive and 
Negative tests

•

•

•

•
•
•
•
•
•

•
•
•

http:///


Advanced NAV Development Tools

[ 504 ]

Develop Test and Test Running codeunits (frequently only one or a few Test 
Running codeunits will be required)

Develop Application objects

As soon as feasible, begin running Application object tests by means of  
the Test Running codeunits, and logging test results for historical and 
analytical purposes

Continue the development—testing cycle, updating the tests and the 
application as appropriate throughout the process

At the end of successful completion of development and testing, retain all the 
Test and TestRunning codeunits for use in regression testing the next time 
the application must be modiied or upgraded

Summary
In this chapter, we reviewed a number of tools and techniques aimed at making 
your life as a developer in the NAV environment easier and more eficient. Many 
of these topics require more study and some hands-on practice by you. Among the 
topics we covered were functions that you can use "as is" and functions that you can 
use as models for your own code. We reviewed some guidelines for documenting 
your modiications and briely discussed dealing with Multi-Language and Multi-
Currency compatibility. Finally, we reviewed a host of handy code analysis and 
debugging techniques including use of the Developer Toolkit, working in objects 
exported as text, using Navigate, using the Debuggers and associated tools, and 
some handy tips on other creative techniques.

By this point in the book, we have covered many of the core elements of NAV 
development. You should be just about ready to begin your own development project.

In the next chapter, we are going to consider a number of other important NAV 
design and development concepts, as well as features and tools for integrating  
and extending NAV.

•
•
•

•
•

http:///


Chapter 8

[ 505 ]

Review questions
1. In NAV, data can be entered into Journals, edited and then Posted to the 

Ledgers or, if the user is very careful, can be entered directly into the Ledger. 
True or False?

2. Role Center pages can contain actions in the Cue Groups, in the Navigation 
Pane, and in the Action Menus. True or False? 

3. The Action items for the Departments button come from what source? 
Choose one: 

a. Action Menu entries

b. Cue Group deinitions
c. MenuSuite objects

d. Navigation Pane objects

4. Custom C/AL code is not allowed to call functions that exist in the base 
Microsoft created NAV objects. True or False? 

5. Which one of the following is a library of functions for various purposes 
widely used throughout the NAV system? Choose 1. 

a. Codeunit 412—Common Dialog Management

b. Codeunit 408—Dimension Management

c. Codeunit 396—NoSeriesManagement

d. Codeunit 1—Application Management

6. NAV's multi-language capability allows for an installation to have multiple 
languages active at one time. True or False? 

7. Each of the following fully support NAV 2009 RTC development and 
debugging. Individually, identify True or False:

a. The NAV Developer's Toolkit—True or False? 

b. The C/SIDE Debugger—True or False? 

c. The C/SIDE Code Coverage Tool—True or False? 

d. The Client Monitor—True or False? 

http:///


Advanced NAV Development Tools

[ 506 ]

8. The Navigate feature can be used for which of the following? Choose three:

a. Auditing by a professional accountant

b. User analysis of data processing

c. Reversing posting errors

d. Debugging

9. You can enhance the Navigate function to include new tables that have been 
added to the system as part of an enhancement. True or False? 

10. The primary underlying code for NAV 2009 is C#. True or False? 

11. Once a Role Center layout has been deined by the Developer, it cannot be 
changed by the users. True or False? 

12. The external Microsoft application that is always integrated into a Role 
Center is which of the following? Choose one:

a. Excel

b. Outlook

c. Word

d. Exchange

http:///


Extend, Integrate, and 

Design—into the Future

Prediction is very dificult, especially if it's about the future—Niels Bohr 
The best way to predict the future is to create it—Peter Drucker 

One of the challenges with any signiicant, useful tool is to learn how to use it in 
many situations, how to take advantage of its strengths to solve new problems, 
and how to smoothly integrate it into the environment in which it must operate. 
Fortunately, the designers of Dynamics NAV have, from the inception, understood 
that our system does not operate in a vacuum, but must interact and integrate with 
other systems. 

As new versions of NAV are released, new capabilities for extending and integrating 
NAV are added to allow us to build new functionality that is a combination of the 
strengths of NAV and the capabilities of other tools and systems. In this chapter, 
we will look at how your NAV processes can interface with outside data sources 
and how the outside world (systems and users) can interface with and utilize NAV 
data and objects. We will also look at the NAV tools and capabilities that help us to 
integrate NAV with a variety of non-NAV systems.

Interfaces
Some NAV systems must communicate with other software or even with hardware. 
Sometimes that communication is Inside-Out (that is, initiated by NAV), sometimes 
it is Outside-In (that is, initiated by the outside connection). It's not unusual for 
system-to-system communications to be a two-way street, a meeting of peers. To 
supply, receive, or exchange information with other systems (hardware or software), 
we need at least a basic understanding of the interface tools that are part of NAV.

http:///


Extend, Integrate, and Design—into the Future

[ 508 ]

It is critical to understand that, because of NAV's unique data structures 
(particularly FlowFields), it is very risky for an external system to 
access NAV data directly without using C/AL based routines as an 
intermediary.

XMLports
XML is eXtensible Markup Language, a structured text format developed 
speciically to describe data to be shared by dissimilar systems. XML has become  
the default standard for communications between systems. To make handling  
XML-formatted data simpler and more error resistant, NAV has XMLports, a data 
import/export function that processes XML-formatted data. Use of XMLports allows 
the setup of XML-based communication with another system.

In addition to XML-formatted data, XMLports can also handle a wide variety of 
other text ile formats. In Classic Client implementations of NAV (all versions), there 
is a separate Dataport object for handling non-XML text data and XMLports are 
limited to XML data. In the RTC environment, XMLports are the general purpose 
text data import / export tool. 

Debugging of XMLports in the RTC environment requires use of the 
Visual Studio debugger.

XML data is text based, with each piece of information structured in one of two  
basic formats:

1. <StartTag>data value</EndTag> (an Element format)

2. <Data Item Name = "data value"> (an Attribute format)

An Attribute must always be enclosed in quotation marks. Single or double quotes 
can be used for an Attribute. Elements are considered more general purpose than 
attributes, probably because they are easier to parse and generate simpler data 
structures when there are multiple entries created for one level. In general, it is 
good practice to use Elements for the core information being communicated and use 
Attributes for peripheral or descriptive information. Some references suggest that 
Elements should be used for data, Attributes for Metadata. Complex data structures 
are built up of combinations of these two formats. 

http:///


Chapter 9

[ 509 ]

For example:

<Table='Sample XML format'>

   <Record>

      <Data Item 1>12345</Data Item 1>

      <Data Item 2>23456</Data Item 2>

   </Record>

   <Record>

      <Data Item 1>987</Data Item 1>

   </Record>

   <Record>

      <Data Item 1>22233</Data Item 1>

      <Data Item 2>7766</Data Item 2>

   </Record>

</Table>

In this case, we have a set of data identiied as a Table named 'Sample XML format', 
containing three Records, each Record containing data in one or two ields named 
Data Item 1 and Data Item 2. The data is in a clearly structured text format so it can 
be read and processed by any system that is prepared to read this particular XML 
format. If the ield tags are well designed, the data is easily interpretable by humans 
as well. The key to successful exchange of data using XML is simply the sharing  
and common interpretation of the format between the transmitter and recipient of 
the information.

XML is a standard format in the sense that the data structure options are clearly 
deined. But it is very lexible in the sense that the identifying tag names in <> 
brackets and the related data structures that can be deined and handled are totally 
open ended. The speciic structure and the labels are whatever the communicating 
parties decide they should be. The "rules" of XML only determine how the basic 
syntax shall operate. 

XML data structures can be as simple as a lat ile consisting of a set of identically 
formatted records or as complex as an order structure with headers containing a 
variety of data items, combined with associated detail lines containing their own 
variety of data items. If necessary for the application being addressed, an XML  
data structure can be even much more complicated.

http:///


Extend, Integrate, and Design—into the Future

[ 510 ]

XMLport components
Although in theory XMLports can operate in both an import and an export mode, in 
practice, individual XMLport objects tend to be dedicated to either import or export. 
In general, this allows the internal logic to be simpler. XMLports consist of fewer 
components than Reports do, even though the general process of looping through 
and processing data is conceptually similar. 

The components of XMLports are as follows:

XMLport properties

XMLport triggers

XMLport lines (elements, attributes) aka nodes

Node properties (aka ield properties)
Node triggers

Request Page

Properties

Triggers

Controls

Properties

Triggers

XMLport properties
XMLport properties are shown in the following screenshot of the Properties of the 
XMLport object 5050:

•
•
•

°
°

•
°
°
°

°
°

http:///


Chapter 9

[ 511 ]

Descriptions of the individual properties follow:

ID: The unique XMLport object number.

Name: The name by which this XMLport is referred to within C/AL code.

Caption: The name that is displayed for this XMLport; it defaults to the 
contents of the Name property.

CaptionML: The Caption translation for a deined alternative language.
Direction: This deines whether this XMLport can only Import, Export, or 
<Both>; the default is <Both>.

DefaultFieldsValidation: This deines the default value (Yes or No) for 
the FieldValidate property for individual XMLport data ields. The default 
for this ield is Yes, which would in turn set the default for individual ield 
FieldValidate properties to Yes.

•
•
•
•
•
•

http:///


Extend, Integrate, and Design—into the Future

[ 512 ]

Encoding: This deines the character encoding option to be used, UTF-8 or 
UTF-16. UTF-16 is the default. This is inserted into the heading of the  
XML document.

XMLVersionNo: This deines to which version of XML the document 
conforms, Version 1.0 or 1.1. The default is Version 1.0. This is inserted  
into the heading of the XML document.

Format/Evaluate: This can be C/SIDE Format/Evaluate or XML Format 
Evaluate. This property deines whether the external text data is (for imports) 
or will be (for exports) XML data types or C/SIDE data types. Default 
processing for all ields in each case will be appropriate to the deined data 
type. If the external data does not it in either of these categories, then the 
XML data ields must be processed through a temporary table.
The temporary table processing approach reads the external data into text 
data ields with data conversion logic done in C/AL into data types that  
can then be stored in the NAV database. Additional information on this is 
available in the online C/SIDE Reference Guide (that is, the Help iles).  
The default value for this property is C/SIDE Format/Evaluate.

UseDefaultNamespace and DefaultNamespace: These properties are 
provided to support compatibility with other systems which require the XML 
document to be in a speciic namespace. UseDefaultNamespace defaults to 
No. A default namespace in the form of URN (Uniform Resource Name or, 
in this case, a Namespace Identiier) concluding with the object number of 
the XMLport is supplied for the DefaultNamespace property.

InlineSchema: This property defaults to No. An inline schema allows the 
XML schema document (an XSD) to be embedded within the XML document. 
This can be used by setting the property to Yes when exporting an XML 
document, which will add the schema to that exported document.

UseLax: This property defaults to No. Some systems may add information 
to the XML document, which is not deined in the XSD schema used by the 
XMLport. When this property is set to Yes, that extraneous material will be 
ignored, rather than resulting in an error.

Format: This property has the options of XML, Variable Text or Fixed Text. It 
defaults to XML. This property controls the import/export data format that 
the XMLport will process. Choosing XML means that the processing will 
only deal with a properly formatted XML ile. Choosing Variable Text means 
that the processing will only deal with a ile formatted with delimiters set 
up as deined in the FieldDelimiter, FieldSeparator, RecordSeparator, and 
TableSeparator properties (such as CSV iles). Choosing Fixed Text means 
that the each individual element and attribute must have its Width property 
set to a value greater than 0 (zero) and the data to be processed must be 
formatted accordingly.

•

•

•

•

•

•

•

http:///


Chapter 9

[ 513 ]

FileName: This can be illed with the predeined path and name of a speciic 
external text data ile to be either the source (for Import) or target (for 
Export) for the run of the XMLport or this property can be set dynamically. 
Only one ile at a time can be opened, but the ile in use can be changed 
during the execution of the XMLport (not often done).

FieldDelimiter: This applies to Variable Text format external iles only. It 
defaults to <">—double quote, the standard for so-called "comma-delimited" 
text iles. This property supplies the string that will be used as the starting 
delimiter for each data ield in the text ile. If this is an Import, then the 
XMLport will look for this string, then use the string following as data until 
the next FieldDelimiter string is found, terminating the data string. If this 
is an Export, the XMLport will insert this string at the beginning and end of 
each data ield contents string.
FieldSeparator: This applies to VariableText format external iles only. 
Defaults to <,>—a comma, the standard for so-called "comma delimited" 
text iles. This property supplies the string that will be used as the delimiter 
between each data ield in the text ile (looked for on Imports or inserted  
on Exports).

RecordSeparator: This deines the string that will be used as the delimiter at 
the end of each data record in the text ile. If this is an Import, the XMLport 
will look for this string to mark the end of each data record. If this is an Export, 
the XMLport will append this string at the end of each data record output. The 
default is <<NewLine>>, which represents any combination of CR (carriage 
return—ASCII value 13) and LF (line feed—ASCII value 10) characters.

DataItemSeparator: This deines the string that will be used as the delimiter 
at the end of each Data Item (for example, each text ile). The default is 
<<NewLine><NewLine>>. 

UseRequestForm: This determines whether a Request Page should be 
displayed to allow the user choice of Sort Sequence, entry of ilters, and other 
requested control information. The options are Yes and No. The default is 
<Yes>. An XMLport Request Page only has the OK and Cancel options.

TransactionType: This property identiies the XMLport processing Server 
Transaction Type as Browse, Snapshot, UpdateNoLocks, or Update. This is 
an advanced and seldom-used property. For more information, you can refer 
to the C/SIDE Reference Guide Help iles and SQL Server documentation.
Permissions: This property provides report-speciic setting of permissions, 
which are rights to access data, subdivided into Read, Insert, Modify, and 
Delete. This allows the developer to deine permissions that override the 
user-by-user permissions security setup.

•

•

•

•

•

•

•

•

http:///


Extend, Integrate, and Design—into the Future

[ 514 ]

XMLport triggers
The XMLport has a limited set of triggers as shown in the following screenshot:

The XMLport trigger descriptions are as follows:

Documentation() is for your documentation comments.

OnInitXMLport() is executed once when the XMLport is loaded.

OnPreXMLport() is executed once after the table views and ilters have been 
set. Those can be reset here.

OnPostXMLport() is executed once after all the data is processed, if the 
XMLport completes normally.

XMLport data lines
An XMLport can contain any number of data lines. The data lines are laid out in a 
strict hierarchical structure, with the elements and attributes mapping exactly, one 
for one, in the order of the data ields in the external text ile, the XML document. 

Let's create an XMLport to export Donor data from our ICAN application for use in 
another system. The irst step is to deine an XMLport line for the Donor table, then 
lines for each of the data ields we want to include. The initial design will look like 
the following screenshot:

•
•
•
•

http:///


Chapter 9

[ 515 ]

This doesn't include everything we want to include, but let's save what we've created 
so far.

When we try to save our XMLport, we get an error message.

http:///


Extend, Integrate, and Design—into the Future

[ 516 ]

Based on that error message, we conclude that we need to remove the embedded 
blanks from the Node Names, so that Address 2 becomes Address2. We do that and 
save again. This time we get a different error message.

This time it's a little harder to igure out the problem. Based on experience with 
other situations in NAV and elsewhere, we guess that the compiler is objecting 
to names that have special characters. So let's change Country/RegionCode to 
CountryRegionCode. This time it works. We assign the XMLport to 50000 named 
Donor Export.

Now let's proceed to add the other ields that we want. That includes the Country 
Name, which we'll get from the Country table and the Estimated Gift Value from the 
Donor table. This time, we'll make our names a little more readable by replacing the 
spaces with underscores. We will also add a header element that will help to identify 
our XML list, which requires indenting the rest of the elements on one level to be 
nested within the header element.

http:///


Chapter 9

[ 517 ]

In order for the Country Name ield to be properly selected, we need to set the 
LinkTable and LinkFields properties for the Country table in order to link its  
Code ield to the Country/Region Code in the Donor table.

The actual Country Name is then referenced from the Country/Region table. Its 
indention level is one more than the parent element so that it is nested within the 
parent (see the following screenshot).

http:///


Extend, Integrate, and Design—into the Future

[ 518 ]

The last data line in the sample (Sales, referencing a FlowField) has the 
AutoCalcField property set to Yes (the default) so that the FlowField will be 
calculated before it is output (see the following screenshot):

The XML document output from this sample XMLport is shown in the following 
screenshot. Note that the XML document is headed with a line showing the XML 
version and encoding type. That is followed by the heading element, and then  
the selected data.

http:///


Chapter 9

[ 519 ]

XMLports cannot run directly from a Navigation Pane action command, but can be 
run from actions on a page. You can choose to either run the XMLport by means of 
a properly constructed codeunit or directly from the page action. You need to keep 
in mind that RTC processes run on the NAV Service Tier. Any local storage device 
references will refer to the disks on the NAV Server. 

When run from another object, XMLports are run from C/AL code that calls the 
XMLport and streams data either to or from an XML document ile. This code is 
typically written in a Codeunit but can be placed in any object that can contain  
C/AL code.

The example process following is the minimum amount of code required to execute 
an exporting XMLport. The code is as follows:

XMLfile.CREATE('C:\DonorExport.xml');

XMLfile.CREATEOUTSTREAM(OutStreamObj);

XMLPORT.EXPORT(50000,OutStreamObj);

XMLfile.CLOSE;

ToFile := 'TargetFile.xml';

IF ISSERVICETIER THEN

  DOWNLOAD('C:\DonorExport.xml','Downloading file...','C:','',ToFile);

Three variables are required to support the preceding code. In this example, the 
variables are deined as Globals, as shown in the following screenshot:

The code purpose is explained, line by line, as follows:

Line 1: Creates the data ile to contain the XML document. The variable 
OutStreamObj is deined as  OutStream data type.

Line 2: Creates an OutputStream.

Line 3: Executes the speciic XMLport.

Line 4: Closes the text data ile.
Line 5: Initializes the target ile name on the client workstation.
Line 6: Checks to see if this logic is running on a NAV Service Tier; if so, then 
uses the DOWNLOAD function to move the exported XML data to the client 
computer system.

•
•
•
•
•
•

http:///


Extend, Integrate, and Design—into the Future

[ 520 ]

An equivalent Codeunit designed to execute an importing XMLport would look very 
similar with the following differences:

The InStreamObj variable would be deined as the InStream data type

The ISSERVICETIER function would be at the start and would UPLOAD the 
ile to be imported

XMLport line properties
The XMLport line properties which are active on a line depend on the contents 
of SourceType property. The irst four properties listed are common to all three 
SourceType values (Text, Table, or Field) and the other properties speciic to each 
are listed below the screenshots showing all the properties for each SourceType.

Indentation: This indicates at what subordinate level in the hierarchy of the 
XMLport this entry exists. Indentation 0 is the primary level, parent to all 
higher numbered levels. Indentation 1 is a child of indentation 0, indentation 
2 is a child of 1, and so forth. Only one Indentation 0 is allowed in an 
XMLport (that is, only one primary table).

NodeName: This deines the Node Name that will be used in the XML 
document to open and close the data associated with this level. If the 
NodeName is Customer, then the starting and ending node names will be 
<Customer> and </Customer>. No spaces are allowed in a NodeName; you 
can use underscores, dashes, and periods but not other special characters.

NodeType: This deines if this data item is an Element or an Attribute.

SourceType: This deines the type of data this ield corresponds to in the 
NAV database. The choices are Text, Table, and Field. Text means that the 
value in the SourceField property will act as a Global variable and, typically 
must be dealt with by embedded C/AL code. Table means that the value in 
the SourceField property will refer to an NAV table. Field means that the 
value in the SourceField property will refer to an NAV ield within a parent 
table previously deined as an element.

•
•

•

•

•
•

http:///


Chapter 9

[ 521 ]

SourceType as Text
The following screenshot shows the properties for SourceType as Text:

The description of the Text-speciic properties is as follows:
TextType: This deines the NAV Data Type as Text or BigText. Text is  
the default

VariableName: This contains the name of the Global variable, which can be 
referenced by C/AL code

The Width, MinOccurs, and MaxOccurs properties are discussed later in  
this chapter.

SourceType as Table
The following screenshot shows the properties for SourceType as Table:

•
•

http:///


Extend, Integrate, and Design—into the Future

[ 522 ]

The description of the table-speciic properties is as follows:

SourceTable: This deines the NAV table being referenced.
VariableName: This deines the name to be used in C/AL code for the NAV 
table. Essentially, this is a deinition of a Global variable.
SourceTableView: This enables the developer to deine a view by choosing a 
key and sort order or by applying ilters on the table.
ReqFilterHeading and ReqFilterHeadingML: These ields allow the 
deinition of the name of the Request Page ilter deinition tab that applies to 
this table.

CalcFields: This lists the FlowFields in the table that are to be  
automatically calculated.

ReqFilterFields: This lists the ields that will initially display on the Request 
page ilter deinition tab.
LinkTable: This allows the linking of a ield in a higher-level item to a key 
ield in a lower-level item. If, for example, you were exporting all of the 
Purchase Orders for a Vendor, you might Link the Buy-From Vendor No. in 
a Purchase Header to the No. in a Vendor record. The LinkTable in this case 
would be Vendor and LinkField would be No.; therefore LinkTable and 
LinkFields work together. Use of the LinkTable and LinkFields operates the 
same as applying a ilter on the higher-level table data so that only records 
relating to the deined lower-level table and ield are processed. See the 
online C/SIDE Reference Guide Help for more detail.

LinkTableForceInsert: This can be set to force insertion of the linked table 
data and execution of the related OnAfterInitRecord() trigger. This 
property is tied to the LinkTable and LinkFields properties. It also applies to 
Import.

LinkFields: This deines the ields involved in a table + ield linkage.
Temporary: This defaults to No. If this property is set to Yes, it allows the 
creation of a Temporary table in working storage. Data imported into this 
table can then be evaluated, edited, and manipulated before being written 
out to the database. This Temporary table has the same capabilities and 
limitations as a Temporary table deined as a Global variable.

The Width, MinOccurs, and MaxOccurs properties are discussed later in  
this chapter.

•
•
•
•

•
•
•

•

•
•

http:///


Chapter 9

[ 523 ]

SourceType as Field
The following screenshot shows the properties for SourceType as Field:

The description of the Field-speciic properties is as follows:

SourceField: This deines the data ield being referenced. It may be a ield in 
any deined table.
FieldValidate: This applies to Import only. If this property is Yes, then 
whenever the ield is imported into the database, the OnValidate() trigger 
of the ield will be executed.
AutoCalcField: This applies to Export and FlowField Data ields only. If this 
property is set to Yes, the ield will be calculated before it is retrieved from 
the database. Otherwise, a FlowField would export as an empty ield.

The details of the Width, MinOccurs, and MaxOccurs properties follow in the  
next section.

Element or attribute
An Element data item may appear many times but an Attribute data item may only 
appear (at most) once; the occurrence control properties differ based on the TagType.

•
•

•

http:///


Extend, Integrate, and Design—into the Future

[ 524 ]

NodeType as an Element
The Element-speciic properties are as follows:

Width: When the XMLport Format property is Fixed Text, then this ield is 
used to deine the ixed width of this element's ield.
MinOccurs: This deines the minimum number of times this data item can 
occur in the XML document. This property can be Zero or Once (the default).

MaxOccurs: This deines the maximum number of times this data item can 
occur in the XML document. This property can be Once or Unbounded. 
Unbounded (the default) means any number of times.

TagType as an Attribute
The Attribute-speciic property is as follows:

Occurrence: This is either Required (the default) or Optional, depending on 
the text ile being imported

XMLport line triggers
The XMLport line triggers are shown in the following screenshot:

The triggers appearing for the XMLport data line depend on the values of the 
DataType ield. As you can see in the preceding screenshot, there are different 
triggers depending whether DataType is Text, Table or Field.

•
•
•

•

http:///


Chapter 9

[ 525 ]

DataType as Text
The triggers for DataType as Text are:

Export::onBeforePassVariable(), for Export only. This trigger is typically 
used for manipulation of the text variable.

Import::OnAfterAssignVariable(), for Import only. This trigger gives 
you access to the imported value in text format.

DataType as Table
The triggers for DataType as Table are as follows:

Import::OnAfterInsertRecord(), for Import only: This trigger is typically 
used when the data is being imported into Temporary tables. This is where 
you would put the C/AL code to build and insert records for the permanent 
database table(s).

Export::OnPreXMLItem(), for Export only: This trigger is typically used 
for setting ilters and initializaing before inding and processing the irst 
database record.

Export::OnAfterGetRecord(), for Export only: This trigger allows access 
to the data after the record is retrieved from the NAV database. This trigger 
is typically used to allow manipulation of table ields being exported and 
calculated depending on record contents.

Import::OnAfterInitRecord(), for Import only: This trigger is typically 
used to check whether or not a record should be processed further or to 
manipulate the data.

Import::OnBeforeInsertRecord(), for Import only: This is another place 
where you can manipulate data before it is inserted into the target table. This 
trigger is executed after the OnAfterInitRecord() trigger.

DataType as Field
The  triggers for DataType as Field are as follows:

Import::OnAfterAssignField(), for Import only. This trigger provides 
access to the imported data value for evaluation or manipulation before 
outputting to the database.

Export::OnBeforePassField(), for Export only. This trigger provides 
access to the data ield value just before the data is exported.

•
•

•

•

•

•

•

•

•

http:///


Extend, Integrate, and Design—into the Future

[ 526 ]

XMLport Request Page
XMPorts can also have a Request Page to allow the user to enter Option control 
information and ilter the data being processed. Default ilter ields that will appear 
on the Request Page are deined in the Properties form for the table XMLport Line 
(see the following screenshot for the Donor table line properties).

Any desired options that are to be available to the user as part of the Request Page 
must be deined in the Request Options Page Designer. This Designer is accessed 
from the XMLport Designer through View | Request Page. The deinition of the 
contents and layout of the Request Options Page is done essentially the same way as 
other pages are done. To support the control deinition in the following screenshot, 
a Global Variable was deined with a DataType of Text, named ReqOptData (in this 
case, a generic example ield).

http:///


Chapter 9

[ 527 ]

From the XMLport Request Page deinitions shown in the two preceding screenshots, 
the actual Request Page is displayed as shown in the following screenshot. As with 
any other ilter setup screen, the user has complete control of what ields are used for 
iltering and what ilters are applied.

Advanced interface tools
NAV has a number of other methods of interfacing with the world outside its 
database. We will review those very briely here. To learn more about these, you 
should begin by reviewing the applicable material in the online C/SIDE Reference 
Guide Help material plus any documentation available with the software 
distribution. You should also study sample code, especially that in the standard 
system as represented by the Cronus Demonstration Database. And, of course, you 
should take advantage of any other resources available including the NAV-oriented 
Internet forums.

http:///


Extend, Integrate, and Design—into the Future

[ 528 ]

Automation Controller
One option for NAV interfacing is by connection to COM Automation servers. A 
key group of Automation servers are the Microsoft Ofice products. Automation 
components can be instantiated, accessed, and manipulated from within NAV 
objects using C/AL code. Data can be transferred back and forth between the  
NAV database and COM Automation components.

Limitations include the fact that only non-visual controls are supported via this 
interface. You cannot use an Automation Controller deined COM component as a 
control on an NAV Page object. In NAV 2009, the Client Add-in feature, discussed 
later in this chapter, provides this capability through another integration interface  
(a signiicant enhancement). An Automation Controller deined COM component 
can have its own window providing an interactive graphical user interface. 

Some common uses of Automation Controller interfaces are to:

Populate Word template documents to create more attractive 
communications with customers, vendors, and prospects (for example, past 
due notices, purchase orders, promotional letters)

Move data to Excel spreadsheets for manipulation (for example, last year's 
sales data to create this year's projections)

Move data to and from Excel spreadsheets for manipulation (for example, 
last year's inancial results out and next year's budgets back in)
Use Excel's graphing capabilities to enhance management reports

Access to and use of ActiveX Data Objects (ADO) Library objects to support 
access to and from external databases and their associated systems

NAV Communication Component
The NAV Communication Component is an automation server that provides a 
consistent Application Programming Interface (API) communications bus adapter. 
Adapters for use with Microsoft Message Queue, Socket, and Named Pipe transport 
mechanisms are supplied with NAV. Adapters for other transport mechanisms can 
be added.

The NAV Communication Component enables input/output data-streaming 
communication with external services. Function calls can be done on either a 
synchronous or an asynchronous basis. The details on NAV Communication 
Component are available in the Help ile, devguide.chm. 

•

•
•
•
•

http:///


Chapter 9

[ 529 ]

Linked Server Data Sources
The two table properties, LinkedObject and LinkedInTransaction, are available 
for the SQL Server NAV database. Use of these properties in the prescribed fashion 
allows data access, including views, in linked server data sources such as Excel, 
Access, another instance of SQL Server, and even an Oracle database. For additional 
information, see the online C/SIDE Reference Guide Help section on Linked Objects.

C/OCX
NAV interfaces with properly installed and registered Custom Controls (that is, .ocx 
routines) through the C/OCX interface granule. The interface and limitations are 
similar to those available for Automation Server Controls. Using C/OCX is one way, 
generally a relatively economical way, to interface between NAV and various other 
software products or hardware products. An excellent example would be to use 
Microsoft Common Dialog Control to invoke the standard File Open/Save dialog  
for user convenience.

C/FRONT
C/FRONT is a programming interface that supports connection between C 
language-compatible software and the NAV database. C/FRONT provides a 
library of functions callable from C programs. These functions provide access to all 
aspects of the NAV database with the goal of providing a tool to integrate external 
applications with NAV. There is a separate manual called C/FRONT Reference Guide.

C/FRONT has continuously been enhanced to provide its API access to languages 
other than C and C++. Earlier, C/FRONT was made usable by additional languages 
such as Visual Basic and C#. Now, it can be used by any .NET language.

The addition of the Web Services interface capability will take over many of the uses 
of C/FRONT for integration.

NAV Application Server (NAS)
The NAV Application Server is a middle-tier server that runs as a service. It is 
essentially an automated user client. Because NAS was created primarily using 
components from the standard NAV C/SIDE client module, NAS can access all  
of NAV's business rules. 

Whenever feasible, in NAV 2009, the Web Services functionality 
should be used rather than NAS. 

http:///


Extend, Integrate, and Design—into the Future

[ 530 ]

NAS is a very powerful tool, but it can run only NAV Report and Codeunit objects 
and only those that do not invoke a graphical user interface of any type. Any error 
messages that are generated by an NAS process are logged in the Event Viewer or 
written to a ile deined when NAS is started from a command line.

NAS operates essentially the same as any other NAV C/SIDE client (except for 
being automated). It processes all requests in its queue one at a time, in the same 
manner as the GUI client. Therefore, as a developer, you need to limit the number of 
concurrent calls to an NAS instance as the queue should remain short to allow timely 
communications between interfaces. If necessary, additional NAV Application Servers 
can be added to the system coniguration (with appropriate license purchases).

Client Add-ins
One of the major new capabilities released in NAV 2009 Service Pack 1 is the Client 
Add-in feature. In brief, Client Add-in allows the developer to extend the Role 
Tailored Client through the integration of foreign (that is, non-NAV) controls. 
Previously, any extension to NAV that could be done was more of a "paste-on"  
(for example, COM and OCX), rather than fully integrated as are Client Add-ins.

Client Add-in definition
A Client Add-in is a Microsoft .NET assembly (a collection of functionality built and 
deployed as a unit) that allows us to add custom functionality to the Role Tailored 
Client. The Client Add-in (aka Client Extensibility) feature is an API that supports 
the integration of add-ins which we can construct. Contrary to the limitations on 
other integration options, Client Add-ins can be graphical and appear on the RTC 
display as part of or mingled with the native NAV controls. 

Some simple examples of how Client Add-ins might be used to extend  
RTC UI behavior:

A standard appearing NAV text control that offers a special behavior when 
you double click it. 

Increase the font size on a display

Change the active sort key on a lookup list display between 
Code and Description

Simply expand to show extended text

A dashboard made up of several dials showing the percentage of some 
resources relative to target limits or goals. These dials could support click 
and drill into the underlying NAV detail data.

•
°
°
°

•

http:///


Chapter 9

[ 531 ]

An integrated sales call mapping function which integrates the process of 
choosing customers in an area on which to call, displays those customer 
locations on a map and creates a sequenced call list with pertinent sales  
data from the NAV database.

Interactive visualization of a worklow or low of goods in a process, perhaps 
showing the number of entries at each state in the process, then allowing 
iltering to entries related only to the current User.

All these are hypothetical examples and may be tasks better accomplished in some 
other way. The point here is that when it comes to using the brand new and very 
lexible NAV feature, let your imagination go (with appropriate budgetary limits,  
of course).

Client Add-in construction
In many instances, Client Add-ins will be created and packaged by Partners 
specializing in their creation. But, on occasion, you may want to create a simple, 
special purpose add-in for a particular customer enhancement.

As you would expect when working with an API, there is a certain prescribed 
structure that you must use to create a Client Add-in interfacing with the RTC. 
However, so long as the code within the add-in is a well-behaved .NET code, there 
is a great deal of lexibility in the structure and purpose of the code and functionality 
within the add-in. The control can be one you create, a standard WinForms control  
or one that you've acquired from a third party.

Once you know what the control is that you're going to use, you need to build 
the add-in structure which envelopes the control. The most logical toolsets for 
building add-ins are any version of Visual Studio 2005 or 2008, or one of the free 
downloadable tools such as Visual Studio Express for C#.

Let's look at an overview of the construction process for an add-in.

1. Deine a class library containing all the classes which must be referenced by 
the control.

2. Declare a new class in the assembly namespace of your choice 
for the add-in control. This may be derived from a base class like 
StringControlAddInBaase. Alternatively a combination of interfaces 
can be used (for example, IStringControlAddInDefinition and 
IEventControlAddInDefinition).

•

•

http:///


Extend, Integrate, and Design—into the Future

[ 532 ]

3. Implement the CreateControl method and deine (or include) the 
functionality. Using this method you can subscribe to events of the control 
and handle them. Based on the business scenarios that you implement, 
you can raise the ControlAddIn trigger in C/AL code by calling the 
RaiseControlAddInEvent method in the StringControlAddInBase or by 
executing a corresponding event in IEventControlAddInDefinition. You 
would typically pass a message ID of your choice along with the data you want 
to send with the event (of type string for the StringControlAddInBase).

4. Sign the assembly using the strong name key (third-party controls may have 
to undergo a separate signing step).

5. Build the solution and copy the general add-in assembly to each client 
workstation to the proper location.

6. Register the add-in within NAV in the Client Add-in table  
(Table 2000000069).

7. Add the add-in control to a ield control on a page using the ControlAddIn 
property. Bind the control through the SourceExpr property as you are used 
to doing with other ields on pages.

8. If the Add-in provides information through eventing (that is, communicating 
an event), implement the data handling code to the OnControlAddIn trigger.

Now let's walk through each of the above steps in abbreviated form. We're not  
going to actually build a Client Add-in as good examples of that are available in 
the online C/SIDE Reference Guide Help and in one or more of the NAV team 
blogs on the Internet. Note that there may be variations on each of the following 
illustrations—these are generic, not speciic code to be copied as is.

1. Deine a class library:
using System;

using System.ComponentModel;

using System.Collections.Generic;

using System.Linq;

using System.Text;

using System.Drawing;

using System.Windows.Forms;

using Microsoft.Dynamics.Framework.UI.Extensibility;

using Microsoft.Dynamics.Framework.UI.Extensibility.WinForms;

2. Declare a new class for the add-in:

Namespace MyAddinsAssembly

[ControlAddInExport("MyCompany.MyProduct.NewAddin")]

[Description("This is my new Client Add-in")]

public class MyNewAddin : StringControlAddInBase

http:///


Chapter 9

[ 533 ]

The values MyCompany.MyProduct.NewAddin, the quoted description and 
MyNewAddin are developer deined names. .NET naming conventions should 
be followed as good practice. The MyCompany.MyProduct.NewAddin name 
will be used to Register the control in NAV. Instead of the convenience base 
class StringControlAddInBase, you can use the base class WinFormsCon-
trolAddInBase together with a combination of interfaces for data  
binding and eventing, based on your requirements. Supported right now are 
the IStringControlAddInDefintion, IObjectControlAddInDefinition, 
and IEventControlAddInDefinition.

3. Deine the code to implement the instantiation of the new control.
4. Sign the add-in assembly by using the development environment tools for 

that purpose. This also needs to be done for third party controls which have 
not previously been signed as this process assigns a unique public key by 
which NAV can identify and access the add-in within its resident assembly.

5. Build the solution and copy the assembly to the proper client workstation 
location. The default directory is C:\Program Files\Microsoft Dynamics 
NAV\60\RoleTailored Client\Add-ins, The add-in assembly will consist 
of one or more Microsoft .NET Framework-based .dll iles (more than  
one control add-in can be contained in a single .dll ile). The assembly ile(s) 
can be put in the add-in directory or a sub-directory (for more structured 
organization).

6. Obtain the public key, open NAV, and enter the registration data into the 
Client Add-in table (Table 2000000069) using the name that was assigned 
as part of the class deinition. There is a Registration Tool available in a 
NAV blog to facilitate the key identiication and registration process at 
http://blogs.msdn.com/cabeln (this same blog has much additional high 
quality information about the Client Add-in feature). Or you can run Table 
2000000069 and manually enter at least the two required ields, the Name of 
the add-in and the assigned Public Key Token. The other two ields in the 
Client Add-in table, Version and Description, are optional.

7. Set up the appropriate ield(s) in a NAV page to properly access the 
capabilities of your new add-in when the page is invoked during  
application processing. 

8. Implement necessary data-handling code to the OnControlAddIn trigger. 
Typically there will be some C/AL code required for data communication 
between the NAV control and the add-in.

9. Test the newly integrated Client Add-in.

http:///


Extend, Integrate, and Design—into the Future

[ 534 ]

Client Add-in comments
Obviously, in order to take advantage of the Client Add-in capabilities, you will need 
to development some minimal Visual Studio development skills and probably some 
C# programming skills. 

Care will have to be taken when designing add-ins that their User Interface style 
complements, rather than clashing with, the UI standards of the NAV RTC.

Client Add-ins are a major extension of the lexibility and capability of the Dynamics 
NAV system. This feature will allow ISVs to create and sell libraries of new controls 
and new control based micro-applications. It will allow vertically focused Partners 
to create of versions of NAV that are much more tailored to their speciic industries. 
This feature will allow the integration of third party products, software, and 
hardware, at an entirely new level. 

In short, the Client Add-in feature is terriic. Learn it, use it, and both you and your 
users will beneit.

Web services
Web services are an industry standard API deined by the W3C (World Wide Web 
Consortium), the group who develop and promote Web protocols and guidelines. 
Web services allow different software applications to interoperate using standard 
interface speciications along with standard communications services and protocols. 
In plain English, when NAV publishes some web services, those functions can be 
accessed and utilized by properly programmed software residing anywhere on the 
Web. The software does not need to be directly compatible with C/SIDE or even 
.NET, it just needs to obey web services conventions and have security access to  
the NAV Web Services.

There are many different types of web services and many different applications. 
Some of the primary beneits of using web services are:

It's a widely accepted and widely used standard

It's lexible, for example, web services communicates data via XML
It's as reliable and simple

The tools used on each end of the communications just need to talk to one 
another, they don't need to be members of the same "family"

It allows access over a network, including the Internet

•
•
•
•
•

http:///


Chapter 9

[ 535 ]

Some speciic beneits of NAV Web Services are:

Very simple to publish (that is, to expose a web service to a consuming 
program outside of NAV)

Provides easy access to NAV data while respecting and enforcing NAV rules 
and logic

Provides access to NAV business logic

Uses code and design that already exists

Uses Windows Authentication and respects NAV data constraints

Supports SSL

Examples of the types of situations where NAV Web Services might be used include:

Any of the wide variety of things that ield sales people might want to do
Check customer order status

Enter orders

Check inventory availability

Check sales commissions

Any of the wide variety of things that ield service people might want to do
Enter service activity report

Enter parts replaced

Enter job time information

Trigger service call billing

Request next call assignment

Time and expense entry

Physical inventory of goods or assets from mobile devices

Any remote access, limited functionality application

There are several factors that should be considered in judging the appropriateness of 
an application being considered for web services integration. Some of these are:

The degree to which the functionality of the standard RTC interface is 
needed. Web services application should not try to replicate what would 
normally be done with a full client, but should be used for limited,  
focused functionality.

•
•
•
•
•
•

•
°
°
°
°

•
°
°
°
°
°

•
•
•

•

http:///


Extend, Integrate, and Design—into the Future

[ 536 ]

The amount of data to be exchanged. Generally, web services are used 
remotely. Even if it is used locally, there are additional levels of security 
handshaking and inter-system communications required. Web services 
should be used for low data volume applications.

How public is the user set. For security reasons, the user set for direct 
connection to your NAV system should generally be limited to known users, 
not the general public. Web services should not be used to provide Internet 
exposure to your NAV system, but rather for intranet access.

As web services are intended for use for low-intensity users, there are separate 
license options available with lower costs per user than the full client. This  
can make the cost of providing web services-based access to customers quite 
reasonable, especially if by doing so, you increase the level of customer service  
and (of course) proits.

Exposing a web service
Two types of NAV objects can be published as Web services, Pages, and Codeunits. 
The essential purposes are:

Pages provide access to the associated primary table. Use Card Pages for 
table access unless you have a speciic reason for using another page type. 
Codeunits provide access to the functions contained within each Codeunit. 

Terminology alert: Application function = object method 
= NAV function.

When a page has no special constraints, either via properties or permissions, there 
will normally be eight methods available. They are:

1. Create: Create a single record (similar to a NAV INSERT).

2. CreateMultiple: Create a set of records (passed argument must be  
an array).

3. Read: Read a single record (similar to a NAV GET).

4. ReadMultiple: Read a iltered set of records, paged. Page size is a parameter.
5. Update: Update a single record (similar to a NAV MODIFY).

6. UpdateMultiple: Update a set of records (passed argument must be  
an array).

7. Delete: Delete a single record.

8. IsUpdated: Check if the record has been updated since it was read.

•

•

•
•

http:///


Chapter 9

[ 537 ]

Whatever constraints have been set in the page that you have published will be 
inherited by the associated web services. For example, if you publish a page that has 
the Editable property set to No, then only the Read, ReadMultiple, and IsUpdated 
methods will be available as web services. The other ive methods will have been 
suppressed by virtue of the Editable = No property.

Publishing a web service
Publishing a web service is one of the easiest things you will ever do in NAV. 
There are two options, one within the Classic Client, the other from within the Role 
Tailored Client. From within the Classic Client, you access the web services form 
on the Administration Menu of the Navigation Pane through Navigation Pane | 
Administration | IT Administration | General Setup | Web Services. The web 
services form will display as shown in the following screenshot.

The irst column allows you to specify whether the object is a Codeunit or Page. That 
is followed by the Object ID and then the Service Name. The Service Name defaults 
to the Object Name but can be overridden. Finally, the Published Boolean lag must 
be set to on. At that point the web services for that object have been published.

http:///


Extend, Integrate, and Design—into the Future

[ 538 ]

From within the RTC, the process is essentially the same. The point of access is the 
Departments menu through Navigation Pane | Departments | Administration | 
IT Administration | General | Web Services. The web services page displays as 
shown in the following screenshot. The contents and usage of each of the data ields 
are the same as those we just reviewed for the Classic Client.

Determining what was published
Once an object has been published, you may want to see exactly what is available 
as a web service. As these are web services, intended to be accessed from the Web, 
that's exactly where we'll go to see what other software will see.

In the address bar of our browser, we will enter the following (all as one string):

http://<Server>:<WebServicePort>/<ServerInstance>/WS/ 
    <CompanyName>/services

The various elements enclosed in < > in this address will be replaced with the values, 
which can be found in the CustomSettings.config ile. In a default installation,  
this ile is located in the directory C:\Program Files\Microsoft Dynamics 
NAV\60\Service 

http:///


Chapter 9

[ 539 ]

Example URL addresses are: 

http://localhost:7047/DynamicsNAV/WS/Services

http://Isaac:7047/DynamicsNAV/WS/CRONUS_International_Ltd/Services 

The company name is optional and case-sensitive. The terminating period 
in the company name is also optional.

When the correct address string is entered, your browser will display a screen similar 
to the following image. This image is in an XML format of a data structure called 
WSDL, Web Services Description Language:

In this case, we can see that we have two Services available:  
Codeunit/Donor_Export and Page/Donor.

To see the methods (that is, functions) that have been exposed as web services by 
publishing these two objects, we can enter other similar URLs in our browser address 
bar. To see the web services exposed by our codeunit, we change the URL used 
earlier to replace the word Services with Codeunit/Donor_Export. If we hadn't 
included the optional company name earlier, we do have to include that in this URL. 
The revised URL gives us the information shown in the following screenshot. When 
this display comes up initially, all the XML sections are expanded. 

http:///


Extend, Integrate, and Design—into the Future

[ 540 ]

The following display has all of the sections collapsed to make the information  
easier to read:

Our Donor Export has two functions in it, ApplyDateFormula and 
TestForWebService. Both of those are visible here as methods. Each method  
also has a Result, which contains whatever information the method returns  
back to the calling routine.

To see the web services exposed by our page, we put the string Page/Donor 
following the company name in the URL. The revised URL gives us the following 
information onscreen. Once again, the XML sections have been collapsed for  
easier reading.

http:///


Chapter 9

[ 541 ]

In this screenshot, you can see the eight data access methods that we reviewed earlier 
along with the associated Results.

The actual consumption (meaning "use of") of a web service is also fairly simple, but 
that process occurs in another application developed with another, non-NAV 2009, 
toolset. As our focus here is strictly the NAV 2009 side of the equation, we're not 
going to dig into the technical aspects of the web service consumption process. There 
are a number of relatively detailed examples in the Internet blogs about NAV  
and in the C/SIDE Reference Guide Help about routines that consume NAV 2009 
web services. 

Tools that can be used to consume NAV Web Services include, among many  
others, Microsoft InfoPath, Microsoft Excel, Microsoft Sharepoint, applications 
written in C#, other .NET languages, open source PHP, and a myriad of other 
application development tools. Remember, web services are a standard interface  
for dissimilar systems.

http:///


Extend, Integrate, and Design—into the Future

[ 542 ]

While it is technically feasible to publish any of the pages and codeunits that make 
up NAV 2009 (some marketing literature mentions something akin to that), many of 
those object would not be particularly useful published as web services. A variety 
of reasons exist for that including duplications and access constraints (such as not 
editable, and so on), which narrow a functionality to be useful and others.

As with any other enhancement to the system functionality, serious thought needs 
to be given to the design of what data is to be exchanged and what functions within 
NAV 2009 should be invoked for the application to work properly. In many cases, 
you will want to provide some simple routines to perform standard NAV processing 
or validation tasks without exposing the full complexity of NAV internals as  
web services.

Perhaps you will want to provide just two or three functions from a Codeunit that 
contains 30 or 50 functions. Or you would want to expose a function that is contained 
within a Report object. In each of these instances and others, it will be necessary to 
create a basic library of C/AL functions that can be published as web services.

Use of web services carries with it some additional issues that must be dealt with 
in any production environment. In additional to the basic application functionality, 
you will have to plan for security, access, and communications issues. These are also 
outside the scope of this text, but nevertheless, critical to the implementation of a 
successful application solution. 

Customizing Help
One of the several auxiliary toolkits that's available to help you deliver better 
solutions to clients is the Microsoft Dynamics NAV Help Toolkit. Once installed  
on your development system, this toolkit allows you to create customized Help  
for the application customizations that you deliver.

Part of the Help Toolkit is the Help Toolkit Help Guide. Once you have downloaded 
and unzipped the Help Toolkit, you will ind it useful to immediately ind the ile 
NAV_HelpGuide.chm and double-click on it to see the Help contents. In this Help 
ile are instructions on installing and using the Help Toolkit. Reading through the 
installation instructions, perhaps even printing them off for ready reference, will 
make installing the toolkit much easier.

A sample display of a portion of the Table of Contents of the Help Toolkit is shown 
in the image following. The Getting Started section contains the installation and 
setup instructions. You can see that the following sections include a great deal of 
information on the actual tasks involved in creating customized Help for your 
customized application. 

http:///


Chapter 9

[ 543 ]

Before you begin your irst Help customization effort, you should use the 
information in this guide as a tutorial. A good place to start is the section entitled 
Walkthrough: Creating and Building a New Help Project. 

Developing customized Help is similar in many ways to developing customizations 
to the application software. In most of the cases, the top-level style of new material 
should be essentially similar to the original product material. If the customizations 
are too different from the base material, it will create additional operational 
challenges for the users and thus training and support challenges for the Partner.

http:///


Extend, Integrate, and Design—into the Future

[ 544 ]

Help customizations should be designed to make it as easy as possible to port them 
to new versions of the product when upgrading occurs. Again, very similar to the 
software development, whenever possible, Help revisions should be done on a  
copy of the original Help topic, leaving the original unchanged. For example, if  
the Customer Card is modiied, make the Help changes in a copy of the Customer 
Card Help. 

By taking advantage of the Help Toolkit, you have additional abilities to make your 
extensions and customization of the NAV system more completely and invisibly 
integrated into the product. This makes it easier for your users and therefore easier 
for you.

NAV development projects
When you start a new project, the goals and constraints for the project must be 
deined. The degree to which you meet these will be a signiicant part of the  
measure of your success. Some examples:

What are the functional requirements and what lexibility exists within these?
What are the user interface standards?

What are the coding standards?

What are the calendar and inancial budgets?
What existing capabilities within NAV will be used?

Now that you understand the basic workings of the NAV C/SIDE development 
environment and C/AL, we'll review the process of software design for NAV 
enhancements and modiications. Designing for NAV requires more forethought 
and knowledge of the operating details of the application than was needed with 
traditional models of ERP systems. 

New material should be as compatible and as consistent with the original as 
possible. After you are done, it should be dificult (or impossible) for a new user to 
tell what's original and what's a modiication. As we discussed previously, when 
the modiications don't look the same or don't work in the same fashion as the base 
product, it often increases training time, decreases user eficiency, and requires more 
support. Thus, even though you may feel you have a "better way", be very cautious 
about applying it.

•
•
•
•
•

http:///


Chapter 9

[ 545 ]

Knowledge is key
In order to respect the existing system being modiied, you have to understand and 
appreciate the overall structure and design philosophy of that system. As we have 
seen, NAV has unique data structure tools (SIFT and FlowFields), quite a number of 
NAV-speciic decimal and date functions, which make it easier to program business 
applications, and a data structure (journal, ledger, and so on), which is inherently an 
accounting structure. The learning curve to become expert in the way NAV works 
is signiicant, both because of the differences between NAV and other business 
software packages, and because there is very little product design documentation. 

Different approaches for different scopes
When you embark on a new project, you should consider whether you are creating 
software for a new functional area or creating a wholly integrated change of existing 
NAV functionality, that is, a modiication. This is signiicant because different 
approaches are appropriate and feasible for different scopes of work. If you are 
adding an entry to the main Navigation Page or at the top level of one of the primary 
Action menus, then your work is likely a new functional area. If there is no action 
entry involved in your enhancement, then it is probably not a new functional area. 
We'll briely discuss some of the issues that make working on these two task types 
different from one another.

Advantages of designing new functionality
When creating a new functionality, you typically have more leeway in the design of 
your data structure, pages, reporting, processing low, and user interface subtleties 
than you do when you are enhancing existing functionality. That doesn't eliminate 
the importance for consistency with the design of the original system.

Menu structure, page structure, invoking of reports, indeed, the whole user 
experience needs to be designed and implemented in a manner consistent with the 
out of the box product. When you don't maintain consistency, training requirements, 
error rates, and overall user frustration may all be increased. Signiicant user 
interface differences from one portion of the system to another often result in  
extra challenge and expense.

New functionality will likely have a representation of new instances of most types 
of NAV objects, almost certainly including one or more tables, reports, and pages 
alongwith a menu entry or two. You may have XMLports and other external 
interfaces as well. Some developers ind developing new functionality an easier  
task than modifying existing functionality. There are several reasons for this. 

http:///


Extend, Integrate, and Design—into the Future

[ 546 ]

First, you have more freedom in your user interface design. Second, much of what 
you are creating involves completely new objects. Creating a new object can be easier 
because you don't have to study, understand, and integrate with all the complexities 
of an existing object. Even documenting a new object is easier because you can put 
most, if not all, of your internal documentation comments in one place, rather than 
having to identify and comment individual modiications.

Third, adding new objects generally makes upgrading easier. A new object can 
often be moved to an upgraded version with little or no change. In fact, this aspect 
of system maintainability sometimes justiies utilizing new objects for modiications 
even when they are not otherwise required. 

The possibility of easier upgrading should not be interpreted to mean that custom 
objects don't need to be carefully examined during an upgrade. There is always the 
possibility that the data structure or low on which the modiication design was built 
has been changed in the new version. In that case, the custom object will need to be 
revised just as would the embedded customization.

Modifying an existing functional area
When you are modifying existing functionality, you should operate with a very light 
touch, changing as little as possible to accomplish your goals. Your new code should 
look like NAV code and your user interface will work like the standard product 
interface. Naturally you will leave behind a well documented trail. Your new ields 
will it neatly and tightly on the pages. Your new feature will operate so similarly 
to existing standard NAV functions that little or no user training will be required 
except to inform users that the new feature exists and what it does.

In contrast to the pros and cons of creating a new functional area with your 
modiication, there is a different set of pros and cons when your modiication is 
localized and tightly integrated into existing NAV structure and code. Because your 
modiication should closely resemble the design and structure of what already exists, 
you don't have nearly as much creative freedom.

Modifying an existing function means you may not need to learn as much about 
optional approaches, that is, you have fewer choices. In addition, while you should 
be intimately familiar with the processes and logic in the parts of the system you 
are affecting, you can usually focus your study on a relatively small segment 
of the original system, thus reducing the breadth of your study of the existing 
system. Finally, when you are modifying an existing function, you have the distinct 
advantage of knowing that the foundation code and objects on which you are 
building are already debugged and working. You may need little or no change  
to user procedures and documentation.

http:///


Chapter 9

[ 547 ]

Testing can be easier in a smaller modiication. Often you will have your choice 
of testing using the Cronus demo database or using a test copy of the production 
database. Depending on exactly what your modiication does, you may be able to use 
existing setups, master table data, and perhaps even existing in-process transactions 
to test your modiication. As the creation of a consistent set of test data can be a very 
time-consuming process, this is a signiicant advantage.

Advantages of using a copy of the live database for testing include having a fully set 
up system that matches the customer's production environment as well as data that 
matches the real production world. This can make it quite a bit easier to compare 
new results to previous results and to spot speed bottlenecks that relate to historical 
data volumes. This applies to any type or scope of modiication. 

NAV development time planning
For many years, those responsible for software development technology have been 
promising to increase the ratio of design time and effort to the coding time and 
effort (that is, more time spent designing and less in coding). But very few systems 
or toolsets have fulilled that promise, particularly in the business application 
marketplace. In a majority of non-NAV customization projects, much more time and 
effort is spent writing and debugging code than in the design of that code.

The NAV structure, code functions, and IDE tools actually begin to fulill that 
long-delayed promise of signiicantly reducing the coding effort/design effort ratio. 
When working on a NAV modiication, it is not unusual to spend several hours 
studying existing code, testing logic, and low with a variety of data samples, before 
making a code change of just two, three, or four lines to effect a signiicant change.

This is due to the combination of the very tight code structure and the powerful 
set of language functions NAV provides. That's not to say that NAV is perfectly 
constructed and has no code could be improved. But if it were perfect, there 
wouldn't be much work left for us to do, would there?

Data-focused design
Any new application design must begin with certain basic analysis and design tasks. 
That is just as applicable when our design is for new functionality to be integrated 
into an existing standard software package such as NAV. 

What information must the new application functionality make available to the users 
in order to accomplish its goals? How do the users expect that data to be presented? 
What type of constraints exist due to practice or practicality? What actions are to be 
performed by the system when presented with the appropriate and expected data or 
user actions?

http:///


Extend, Integrate, and Design—into the Future

[ 548 ]

Determining the data needs
First, we must determine what underlying data is required. What will it take to 
construct the material the users need to see? What level of detail and in what 
structural format must the data be stored so that it may be satisfactorily retrieved? 
Having deined the data and other inputs that are required, we must deine the 
sources of all this material. Some may be input manually, some may be forwarded 
from other systems, some may be derived from historical accumulations of data, and 
some will be computed from combinations of all these, and more. In any case, every 
component of the information needed must have a clearly deined point of origin, 
schedule of arrival, and format.

Defining the needed data views
Deine how the data should be presented. How does it need to be "sliced and 
diced"? What levels of detail and summary? What sequences and segmentations? 
What visual formats? What media will be used? Will the users be local or remote? 
Of course, ultimately many other issues also need to be considered in the full 
design, including user interface speciications, data and access security, accounting 
standards and controls, and so on. 

Designing the data tables
Data table deinition includes the data ields, the keys to control the sequence of 
data access and to ensure rapid processing, frequently used totals (which are likely 
to be set up as SumIndex Fields), references to lookup tables for allowed values, 
and relationships to other primary data tables. It is important not to just deine 
the primary data tables (for example, those holding the data being processed in 
the course of business activity) but also to include any related lookup tables and 
controlling "setup" information tables. The design effort must also consider what 
"backward looking" references to these new tables will be added to the already 
existing portions of the system. These connections are often the inishing touch that 
makes the new functionality operate in a truly seamlessly integrated fashion with  
the original system.

Designing the user data access interface
Design the pages and reports to be used to display or interrogate the data. Deine 
what keys are to be used or available to the users. Deine what ields will be allowed 
to be visible, what are the totaling ields, how the totaling will be accomplished 
(for example, FlowFields, on-the-ly), and what dynamic display options will be 
available. Deine what type of iltering will be needed. Some iltering needs may be 

http:///


Chapter 9

[ 549 ]

beyond the ability of the built-in iltering function and may require auxiliary code 
functions. Determine whether external data analysis tools will be needed and will 
therefore need to be interfaced. Design considerations at this stage often result in 
returning to the previous data structure deinition stage to add additional data ields, 
keys, SIFT ields, or references to other tables.

Designing the data validation
Deine exactly how the data must be validated before it is accepted upon entry into 
a table. There are likely to be multiple levels of validation. There will be a minimum 
level, which deines the minimum set of information required before a new record 
is accepted. The minimum may be no more than an identifying number or it may 
include several data ields. At the least, it must include all the ields that make up  
the Primary Key to the table.

Subsequent levels of validation may exist relating to particular subsets of data, which 
are, in turn, tied to speciic optional uses of the table. For example, in the base NAV 
system, if the manufacturing functionality is not being used, the manufacturing-
related ields in the Item Master table do not need to be illed in. But if they are  
illed in, then they must satisfy certain validation criteria.

As mentioned earlier, the sum total of all the validations that are applied to data 
when it is entered into a table may not be suficient to completely validate the data. 
Depending on the use of the data, there may be additional validations performed 
during the processing, reporting, or inquiries.

Data design review and revision
Perform the above three steps for the permanent data (Masters and Ledgers) and 
then for the transactions (Journals). As a general rule, once all the supporting tables 
and references have been deined for the permanent data tables, there are not likely 
to be many, if any, such new deinitions required for the Journal tables. If any 
signiicant new supporting tables or new table relationships are identiied during the 
design of Journal tables, you should go back and re-examine the earlier deinitions. 
Why? Because there is a high likelihood that this new requirement should have been 
deined for the permanent data and was overlooked.

http:///


Extend, Integrate, and Design—into the Future

[ 550 ]

Designing the Posting processes
First deine the inal data validations, then deine and design all the ledger and 
auxiliary tables (for example, Registers, Posted Document tables, and so on). At this 
point, you are determining what the permanent content of the Posted data will be. If 
you identify any new supporting table or table reference requirements at this point, 
you should go back to the irst step to make sure that this requirement didn't need to 
be included at that earlier design deinition stage.

Whatever variations in data are permitted to be Posted must be assumed to be 
acceptable in the inal instance of the data. Any information or relationships that  
are necessary in the inal Posted data must be ensured before Posting is allowed  
to proceed.

Part of the Posting design is to determine whether data records will be accepted or 
rejected individually or in complete batches. If the latter happens, you must also 
deine what constitutes a batch; if the former, it is quite likely that the makeup of  
a Posting Batch will be lexible.

Designing the supporting processes
Design the processes necessary to validate, process, extract, and format data for the 
desired output. In earlier steps, these processes can be deined as "black boxes" with 
speciied inputs and required outputs, but without overdue regard for the details of 
the internal processes. That allows you to work on the several preceding deinition 
and design steps without being sidetracked into the inner workings of the output 
related processes.

These processes are the cogs and gears of the functional application. They are 
necessary, but often not pretty. By leaving design of these processes in the 
application design as late as possible, you increase the likelihood that you will be 
able to create common routines and to standardize how similar tasks are handled 
across a variety of parent processes. At this point, you may identify opportunities or 
requirements for improvement in material deined in a previous design step. In that 
case, you should return to that step relative to the newly identiied issue. In turn,  
you should also review the effect of such changes for each subsequent step's area  
of focus.

Double-check everything
Do one last review of all the deined reference, setup, and other control tables to 
make sure that the primary tables and all deined processes have all the information 
available when needed. This is a inal design quality control step.

http:///


Chapter 9

[ 551 ]

It is important to realize that returning to a previous step to address a previously 
unidentiied issue is not a failure of the process, it is a success. An appropriate quote 
used in one form or another by construction people the world over is Measure twice, 
cut once. It is much cheaper and more eficient to ind and ix design issues during 
the design phase rather than after the system is in testing or, worse yet, in production 
(it's quieter too).

Design for efficiency
Whenever you are designing a new modiication, you not only need to design to 
address the deined needs, but also to provide a solution that processes eficiently. 
An ineficient solution carries unnecessary ongoing costs. Many of the things that 
you can do to design an eficient solution are relatively simple.

Disk I/O
The slowest thing in any computer system is the disk I/O. Disk I/O almost always 
takes more time than any other system processing activity. Therefore, when you 
begin concentrating your design efforts on eficiency. Focus irst on minimizing  
the disk I/O.

The most critical elements are the design of the keys, the number of keys, the 
design of the SIFT ields, the number of SIFT ields, the design of the ilters, and 
the frequency of accesses of data (especially FlowFields). If your system is going to 
have ive or ten users, processing a couple of thousand order lines per day and is not 
heavily modiied, you probably won't have much trouble. But if you are installing 
a system with one or more of the following attributes, any of which can have a 
signiicant effect on the amount of disk I/O, you will need to be very careful with 
your design and implementation.

Critical attributes:

Large number of users

High transaction volumes

Large stored data volumes

Signiicant modiications

Very complex business rules

•
°
°
°
°

•

http:///


Extend, Integrate, and Design—into the Future

[ 552 ]

Locking
One important aspect of the design of an integrated system such as NAV that is often 
overlooked until it rears its ugly head after the system goes into production, is the 
issue of "Locking". Locking occurs when one process has control of a data element, 
record, or group of records (in other words, part or all of a table) for the purpose of 
updating the data within the range of the locked data and, at the same time, another 
process requests the use of some portion of that data but inds it to be locked by the 
irst process.

In the worst case, a "deadlock", there is a design law; each process has data locked 
that the other process needs and neither process can proceed. One of your jobs, as a 
developer or system implementer, is to minimize the locking problems and eliminate 
any deadlocks.

Locking interference between processes in an asynchronous processing environment 
is inevitable. There are always going to be points in the system where one process 
instance locks out another one momentarily. The secret to success is to minimize 
the frequency of these and the time length of each lock. Locking becomes a 
problem when the locks are held too long and the other locked-out processes are 
unreasonably delayed.

You might ask What is an unreasonably delay? For the most of the part, a delay 
becomes unreasonable when the users can tell that it's happening. If the users 
see stopped processes or simply experience counter-intuitive processing time 
lengths (that is, a process that seems like it should take 10 seconds actually takes 
two minutes), then the delays will seem unreasonable. Of course, the ultimate 
unreasonable delay is the one that does not allow the work to get done in the 
available time.

The obvious question is how to avoid locking problems. The best solution is simply 
to speed up the processing. That will reduce the number of lock conlicts that arise. 
Important recommendations for speed include:

Restricting the number of active keys

Restricting the number of active SIFT ields, eliminating them when feasible
Carefully reviewing the keys, not necessarily using the  
"factory default" options

Making sure that all disk accessing code is SQL Server optimized

•
•
•
•

http:///


Chapter 9

[ 553 ]

Some additional steps that can be taken to minimize locking problems are:

Always process tables in the same relative order.

When a common set of tables will be accessed and updated, lock a "standard" 
master table irst (for example, when working on Orders, always lock the 
Order Header table irst).
Process data in small quantities (for example, process 10 records or one 
order, then COMMIT, which releases the lock). This approach should be very, 
very cautiously applied.

In long process loops, process a SLEEP command in combination with an 
appropriate COMMIT command to allow other processes to gain control (see 
the preceding caution).

Shift long-running processes to off-hours.

You should also refer to the relevant documentation in the C/SIDE Reference Guide 
and the applicable NAV SQL Server documents. 

Design for updating
One must differentiate between "updating" a system and "upgrading" a system. 
In general, most of the NAV development work we will do is modifying 
individual NAV systems to provide tailored functions for end-user irms. Some 
of those modiications will be created as part of an initial system coniguration 
and implementation, that is, before the NAV system is in production use. Other 
such modiications will be targeted at a system that is being used for day to day 
production. All these cases are "Updating".

Upgrading is when you implement a new version of the base C/AL application code 
and port all the previously existing modiications into that new version. We will 
cover issues involved in upgrading later.

Any time you are updating a production system by applying modiications to it, 
a considerable amount of care is required. Many of the disciplines that should be 
followed in such an instance are the same for an NAV system as with any other 
production application system. But some of the disciplines are speciic to NAV and 
the C/SIDE environment. We'll review a representative list of both the types.

•
•

•

•

•

http:///


Extend, Integrate, and Design—into the Future

[ 554 ]

Customization project recommendations
Some of these recommendations may seem patently obvious. That might be a 
measure of your experience and your own common sense. Even so, it is surprising 
that a number of projects go sour because one (or many) of the following suggestions 
are not considered in the process of developing modiications:

One modiication at a time
Designing thoroughly before coding

Designing the testing in parallel with the modiication
Using the C/AL Testability feature extensively

Multi-stage testing:

Cronus for individual objects

Special test database for functional tests

Copy of production database for inal testing as appropriate
Setups and implementation

Testing full features:

User interface tests

System load tests

User Training

Documenting and delivering

Following up and moving on

One change at a time
It is very important that changes made to the objects should be made in a very  
well organized and tightly controlled manner. In most situations, only one  
developer at a time will make changes to an object. If an object needs to be changed 
for multiple purposes, the irst set of changes should be fully tested (at least  
through development testing) before the object is released to be modiied for a 
second purpose.

If the project in hand is so large and complex or deadlines are so tight that this 
approach is not feasible, then you should consider use of a software development 
version control system such as Microsoft's Visual SourceSafe. Because version control 
systems don't interface smoothly with C/SIDE, some signiicant effort is required  
to use such a tool with NAV development, but sometimes the beneits are worth  
the effort.

•
•
•
•
•

°
°
°
°

•
°
°
°

•
•

http:///


Chapter 9

[ 555 ]

Similarly, as a developer working on a system, you should only be working on one 
functional change at a time. As a developer, you might be working on changes in 
two different systems in parallel, but you shouldn't be working on multiple changes 
in a single system in parallel. It's challenging enough to keep all the aspects of a 
single modiication to a system under control without having incomplete pieces  
of several tasks, all loating around in the same system.

If multiple changes need to be made simultaneously to a single system, one approach 
is to assign multiple developers, each with their own individual components to 
address. Another approach is for each developer to work on their own copy of the 
development database, with a project librarian assigned to resolve overlapping 
updates. This is one area where we should learn from the past. In mainframe 
development environments, having multiple developers working on the same system 
at the same time was common. Then the coordination problems were addressed and 
well-documented in professional literature. Similar solutions would still apply.

Testing thoroughly
As you know, there is no substitute for complete and thorough testing. Fortunately, 
NAV provides some useful tools to help you to be more eficient than you might be 
in some other environment. 

Now that NAV has the C/AL Testability Tools, all testing should utilize 
those tools to the greatest extent possible.

Database testing approaches
If your modiications are not tied to previous modiications and speciic customer 
data, then you may be able to use the Cronus database as a test platform. This 
works well when your target is a database that is not heavily modiied in the area 
on which you are currently working. As the Cronus database is small, you will not 
get lost in deep piles of data. Most of the master tables are populated, so you don't 
have to create and populate this information. Setups are done and generally contain 
reasonably generic information.

If you are operating with an unmodiied version of Cronus, you have the advantage 
that your test is not affected by other pre-existing modiications. The disadvantage, 
of course, is that you are not testing in a wholly realistic situation. Because the data 
volume in Cronus is so small, you will generally not detect a potential performance 
problem when testing in a Cronus database.

http:///


Extend, Integrate, and Design—into the Future

[ 556 ]

Even when your modiication is targeted at a highly modiied system where those 
other modiications will affect what you are doing, it's often useful to test a version 
of your modiication initially in Cronus. This may allow you to determine if your 
change has internal integrity before you move on to testing in the context of the fully 
modiied copy of the production system.

If the target database for your modiications is an active customer database, then 
there is no substitute for doing complete and inal testing in a copy of the production 
database. You should also be using a copy of the customer's license. This way, you 
will be testing the compatibility of your work with the production setup, the full set 
of existing modiications, and of course, live data content and volumes. The only 
way to get a good feeling for possible performance issues is to test in a copy of the 
production database.

Testing in production
While it is always a good idea to thoroughly test before adding your changes to the 
production system. Sometimes, you can safely do your testing inside the production 
environment. If the modiications consist of functions that do not change any data 
and can be tested without affecting any ongoing production activity, it may be 
feasible to test within the production system.

Examples of modiications that may be able to be tested in the live production system 
can range from a simple inquiry page or a new analysis report or export of data that 
is to be processed outside the system to a completely new subsystem that does not 
change any existing data. There are also situations where the only changes to the 
existing system are the addition of ields to existing tables. In such a case, you may 
be able to test just a part of the modiication outside production (we'll discuss that 
mode of testing a little later), and then implement the table changes to complete the 
rest of the testing in the context of the production system. 

Using a testing database
From a testing point of view, the most realistic testing environment is a copy of 
actual production database. There are often good excuses about why it is just too 
dificult to test using a copy of the actual production database.

Don't give in to excuses—use a testing database!

http:///


Chapter 9

[ 557 ]

Remember, when you implement your modiications, they are going to receive the 
"test of ire" in the environment of production. You need to do everything within 
reason to assure success. Let's review some of the potential problems involved in 
testing with a copy of the production database and how to cope with them:

It's too big—is not a good argument relative to disk space. With USB disk 
drives available for less than $0.15 US per GB, you can easily afford to have 
plenty of spare disk space.

It's too big—is a better argument if you are doing ile processing of some of 
the larger iles (for example, Item Ledger, Value Entry, and so on). But NAV's 
iltering capabilities are so strong that you should relatively easily be able to 
carve out manageable size test data groups with which to work.

There's no data that's useful—might be true. But it would be just as true for 
a test database, probably even more so, unless it were created expressly for 
this set of tests. By deinition, whatever data is in a copy of the production 
database is what you will encounter when you eventually implement the 
enhancements on which you are working. If you build useful test data within 
the context of a copy of the production database, your tests will be much 
more realistic and, therefore, of better quality. In addition, the act of building 
workable test data will help to deine what will be needed to set up the 
production system to utilize the new enhancements.

Production data will get in the way—may be true. If this is especially true, then 
perhaps the database must be preprocessed in some way to begin testing or 
testing must begin with some other database, Cronus or a special testing-only 
mockup. As stated earlier, all the issues that exist in the production database 
must be dealt with when you put the enhancements into production. 
Therefore, you should test in that environment. The meeting and overcoming 
of challenges will prepare you for doing a better job at the critical time of 
going live with the newly modiied objects.
We need to test repeatedly from the same baseline or We must do regression 
testing—both are good points, but don't have much to do with what type 
of database you're using for the testing. Both the cases are addressed by 
properly managing the setup of your test data and keeping incremental 
backups of your pre-test and post-test data at every step of the way. In 
addition, the C/AL Testability Tools are explicitly designed to support 
regression testing. 

Disk space is not a valid excuse for not making every possible useful intermediate 
stage backup. Staying organized and making lots of backups may be time consuming, 
but done well and done correctly, it is less expensive to restore from a backup than 
to recover from being disorganized or having to redo the job. Most of all, doing the 
testing job well is much less expensive than implementing a buggy modiication.

•

•

•

•

•

http:///


Extend, Integrate, and Design—into the Future

[ 558 ]

Testing techniques
As you are an experienced developer, you are already familiar with good testing 
practice. Even so, it never hurts to be reminded about some of the more critical habits 
to maintain.

First, any modiication greater than trivial should be tested in one way or another 
by at least two people. The people assigned should not be a part of the team who 
created the design or code of the modiication. It would be best if one of the testers 
is a sharp user because users seem to have a knack (for obvious reasons) of relating 
how the modiication acts compared to how the rest of the system operates relative 
to the realities of the day-to-day work.

One of the testing goals is to supply unexpected data and make sure that the 
modiication can deal with it properly. Unfortunately, those who were involved 
in creating the design will have a very dificult time being creative in supplying 
the unexpected. Users often enter data the designer or programmer didn't expect. 
For that reason, testing by experienced users is good. Another goal this approach 
addresses is that of obtaining meaningful feedback on the user interface before 
stepping into production.

The C/AL Testability Tools provide features to support testing how system 
functions deal with problem data. If possible, it would be very good to have users 
help to deine test data, then use the Testability Tools to assure the modiications 
properly handle the data.

Second, after you cover the mainstream issues (whatever it is that the modiication 
is intended to accomplish) you need to plan your testing to cover all boundary 
conditions. Boundary conditions are the data items that are exactly equal to the 
maximum or minimum or other range limit. More speciically, boundaries are the 
points at which input data values change from valid to invalid. Boundary condition 
checking in the code is where programmer logic often goes astray. Testing at these 
points is often very effective for uncovering data-related errors.

Deliverables
Create useful documentation and keep good records of the complete testing. Testing 
scripts, both human-oriented and C/AL Testability Tool-based, are an important 
part of the records to be kept. Retain these records for future reference. Identify 
the purpose of the modiications from a business point of view. Add a brief, but 
complete, technical explanation of what must be done from a functional design and 
coding point of view to accomplish the business purpose. Record briely the testing 
that was done. The scope of the record keeping should be directly proportional 
to the business value of the modiication being made and the potential cost of not 

http:///


Chapter 9

[ 559 ]

having good records. All such investments are a form of insurance and preventative 
medicine. You hope they won't be needed but you have to allow for the possibility 
they will be needed.

More complex modiications will be delivered and installed by experienced 
implementers, maybe even by the developers themselves. With NAV, small 
modiications may be transmitted electronically to the customer site for installation 
by a skilled super-user. Any time this is done, all the proper and normal actions 
must occur, including those actions regarding backup before importing changes, 
user instruction (preferably written) on what to expect from the change, and written 
instruction on how to correctly apply the change. As a responsible developer, 
whenever you supply objects for installation by others, you must make sure that you 
always supply .fob format iles (compiled objects), not text objects. This is because 
the import process for text objects simply does not have the same safeguards as does 
the import process for compiled objects.

Finishing the project
Bring projects to conclusion, don't let them drag on through inaction and 
inattention—open issues get forgotten and then don't get addressed. Get it done, 
wrap it up, and then review what went well and what didn't, both for remediation 
and for application to future projects. 

Set up ongoing support services as appropriate and move on to the next project. 
With the lexibility of the Role Tailored Client allowing page layout changes by 
both super users (coniguration) and users (personalization), the challenge of User 
support has increased. No longer can the support person expect to know what 
display the user is viewing today. 

Consequently, support services are almost certainly going to require an ability for 
the support person to view the user's display. Without that, it will be much more 
dificult, time consuming, and frustrating for the support personnel <--> user 
communication to take place. In many instances, this capability will have to be 
added to the Partner's support organization tool set and practices. There may be 
communications and security issues that need to be addressed at both the support 
service and the user site.

Plan for upgrading
The ability to upgrade a customized system is a very important feature of NAV. Most 
complex corporate systems are very dificult to customize at the database-structure 
and process-low levels. NAV readily offers this capability. This is a signiicant 
difference between NAV and the competitive products in the market.

http:///


Extend, Integrate, and Design—into the Future

[ 560 ]

Beyond the ability to customize is the ability to upgrade a customized system. While 
not a trivial task, at least it is possible with NAV. For other such systems, the only 
reasonable path to an upgrade is often to discard the old version and re-implement 
with the new version, recreating all customizations.

You may say, Why should a developer care about upgrades? There are at least two good 
reasons you should care about upgrades. First, because your design and coding 
of your modiications can have a considerable impact on the amount of effort 
require to upgrade a system. Second, because as a skilled developer doing NAV 
customizations, you might well be asked to be involved in an upgrade project. Since 
the ability to upgrade is important and because you are likely to be involved one 
way or another, we will review a number of factors that relate to upgrades.

Benefits of upgrading
Just so we are on common ground about why upgrading is important to both 
the client and the MBS Partner, the following is a brief list of some of the beneits 
available when a system is upgraded:

Easier support of a more current version

Access to new features and capabilities

Continued access to ixes and regulatory updates
Improvements in speed, security, reliability, and user interface

Assured continuation of support availability

Compatibility with necessary infrastructure changes

Opportunity to do needed training, data cleaning, and process improvement

Opportunity to resolve old problems, to do postponed "housekeeping", 
create a known system reference point

This list is representative, not complete. Obviously, not every possible beneit will be 
realized in any one situation.

Coding considerations
The toughest part of an upgrade is porting code and data modiications from the 
older version of a system to the new version. Sometimes the challenges inherent 
in that process cannot be avoided. When the new version has major design or data 
structure changes in an area that you have customized, it is quite possible that your 
modiication structure will have to be re-designed and perhaps even be re-coded 
from scratch.

•
•
•
•
•
•
•
•

http:///


Chapter 9

[ 561 ]

On the other hand, a large portion of the Microsoft created changes in a new version 
of a product such as NAV are often relatively modest in terms of their effect on 
existing code, at least on the base logic. That means, if modiications are done 
properly, it's not too dificult to port custom code from the older version into the new 
version. By applying what some refer to as "low-impact coding" techniques, you can 
make the upgrade job easier and thereby less costly.

Careful naming
Most of the programming languages have Reserved Words. These are the words or 
phrases that are reserved for use by the system, generally because they are used by 
the compiler to reference predeined functions or system-maintained values. C/AL 
is no exception to this general rule. Only recently, due in part to the research for 
this book, a list of C/AL Reserved Words has been published as part of the NAV 
documentation. The list may still be incomplete, but, nevertheless, it should be 
referenced liberally.

If you choose a variable name which is the same as a C/AL Reserved Word, the 
compiler will generally recognize that fact. If, under some circumstance it does not, 
then it will provide unintended results. Such a possibility is slim, but it is relatively 
easy to avoid by prefacing all variable names with a two or three character string 
that will clearly identify the variable as part of your modiication. You must be 
careful with this technique when naming variables to be used in conjunction with 
Automation Controllers. C/SIDE creates some of its own Automation Controller 
related variables by combining your variable names with sufixes. The combined 
names are then truncated to 30 characters—the maximum limit allowed for a  
C/SIDE variable name. If the names you have created are too long, this sufixing 
plus truncating process may result in some duplicate names.

Confusion can also result in the case of global and local variables with the same 
name or working storage and table variables of the same name. Two actions can 
minimize the possibility. First, minimize the instances where two variables have 
the same name. Second, whenever there is a possibility of name confusion, variable 
names should be fully qualiied with the table name or the object name.

Good documentation
In the earlier chapters, we discussed some documentation practices that are good 
to follow when making C/AL modiications. The following is a brief list of few 
practices that should be used:

Identify every project with its own unique project tag

Use the project tag in all documentation relating to the modiication
•
•

http:///


Extend, Integrate, and Design—into the Future

[ 562 ]

Include a brief but complete description of the purpose of the modiication in 
a related Documentation() section (aka trigger)

Include a description of the related modiications to each object in the 
Documentation() trigger of that object, including changes to properties, 
Global and Local variables, functions, and so on

Add the project tag to the version code of all modiied objects
Bracket all C/AL code changes with inline comments so that they can be 
easily identiied
Retain all replaced code within comments, using // or { }

Identify all new table ields with the project tag

Low-impact coding
We have already discussed most of these practices in other chapters. Nevertheless, 
it is useful to review them relative to our focus here on coding to make it easier to 
upgrade. You won't be able to follow each and every one of these, but will have to 
choose the degree to which you can implement low-impact code and which options 
to choose:

As much as feasible, separate and isolate new code

Create functions for signiicant amounts of new code by using single code 
line function calls

Either add independent Codeunits as repositories of modiication  
functions or, if that is overkill, place the modiication functions within  
the modiied objects
If possible, add new data ields; don't change the usage of existing ields
When the functionality is new, add new tables rather than modifying  
existing tables

For minor changes, modify the existing pages, else copy and change the clone

Create and modify copies of reports and XMLports rather than modifying the 
original versions in place

Don't change ield names in objects, just change captions and labels  
if necessary

In any modiication, you will have conlicting priorities regarding doing today's job 
in the easiest and least expensive way versus doing the best you can do to plan for 
the future. The right decision is never a black and white choice, but must be guided 
by subjective guidelines as to which choice is really in the customer's best interest. 

•
•

•
•
•
•

•
•
•

•
•
•
•
•

http:///


Chapter 9

[ 563 ]

The upgrade process
We won't dwell here on the actual process of doing an upgrade except to describe the 
process at the highest level and the executables-only option.

Upgrade executables only
The executables are the programs that run under the operating system. They are 
individually visible in a disk directory and include .exe and .dll iles. Since the 
Navision Windows product was irst shipped in 1995, the executables delivered  
with each new version of NAV (or Navision) have been backward compatible with 
the previous versions of the objects. In other words, you could run any version of  
the database and objects under any subsequent version of the server and  
client executables.

This backward compatibility allows the option of upgrading only the executables 
for a client. This is a relatively simple process, which provides access to enhanced 
compatibility with infrastructure software (for example, Windows desktop and server 
software, and so on), provides access to added features relating to communications 
or interfacing, and often provides faster and more reliable processing. Upgrading the 
executables will also provide access to the C/AL features and user-accessible features 
that are part of the new version. Some folks use the term "Technical Upgrade" for the 
act of upgrading the executables.

The process of upgrading the executables just requires replacing all the iles related 
to the executables on the server and clients, typically through doing a standard 
installation from the distribution CD. This will include the server software, the  
client software, the executables, and libraries for auxiliary tools such as the 
Application Server, N/ODBC, and C/FRONT. Then convert the database to be 
compatible with the new version (preferably through a backup and restore into a 
new, empty database).

Remember, upgrading the executables is a one-way process. Once done, 
it cannot be undone.

Like any other change to the production system that affects the data, such an 
upgrade should be thoroughly tested before implementing it in production.

http:///


Extend, Integrate, and Design—into the Future

[ 564 ]

Full upgrade
A full upgrade includes the aforesaid executables upgrade, but that is the simplest 
part of the process. The full upgrade process consists of a clearly deined multi-step 
project, which is best handled by developers who are speciically experienced in the 
upgrade process. It is critical to keep in mind that the customer's business may be at 
stake based on how well and how smoothly an upgrade is carried out.

The following list is a summary of the steps involved in a full upgrade of an  
NAV system:

Identify all modiications, enhancements, and add-ons by comparing the full 
production set of objects against an unmodiied set of the same version of 
the objects as distributed by Microsoft. This is always done by exporting the 
objects to be compared into text iles, then importing the resulting text iles 
into a comparison tool. The comparison tools that are speciically designed 
to work with C/AL provide capabilities that general-purpose programmer 
editors don't have, though these can also be used. C/AL-oriented tools 
include the Developer's Toolkit from Microsoft or the Merge Tool found at 
www.mergetool.com.

Plan the upgrade based on which customizations need to be ported, which 
ones should be discarded because they have been superseded or made 
obsolete, which ones will need to be re-developed, what special data 
conversions and new setups and user training will be required, and what 
upgraded add-ons must be obtained. Identify any license issues.

Beginning with a current copy of the production database and a distribution 
of the new version, create a set of new version objects containing all the 
customizations, enhancements, and add-ons (as previously planned) that 
were contained in the old version.

Create modiications to the standard data conversion routines as necessary.
Convert a full set of (backup) production data, then combine it with the 
upgraded objects to create a testing database.

Work with experienced customer super users to set up, then test the 
upgraded system, identify any laws, and resolve them. In parallel,  
address any training requirements.

Continue testing until the system is certiied "ready to use" by both client and 
Partner test team members.

Do a inal production data conversion, using the inal upgraded object set to 
create a new production database for go-live use.

•

•

•

•
•
•

•
•

http:///


Chapter 9

[ 565 ]

A minimal upgrade will take two or three weeks, a lightly customized system may 
take a couple of months, and a highly customized system will take more than that.  
If multiple sites are involved, then it will signiicantly add to the complexity of  
the upgrade process—particularly those parts of the process where users are  
directly involved.

Supporting material
Part of the supporting material, relevant to NAV development, are the 
Implementation tools available from Microsoft. You should review them  
to know what they do and how to utilize them.

Sure Step
Sure Step is an implementation methodology developed by Microsoft to aid in  
the implementation of Microsoft Dynamics products in a standard, cost effective, 
reliable way. Sure Step consists of a combination of tools such as project management 
guides, "best practices" information, deployment, and migration templates, as well as 
product and industry speciic tools.

As of late 2009, in a commendable decision by Microsoft management, Sure Step 
was made available to all Dynamics Partners at no additional charge. All Partners 
should use Sure Step, even if for no more than access to the huge library of materials 
it contains. 

From the project manager's point of view, Sure Step is a standardized set of 
comprehensive, editable templates designed to help create a project plan and 
the important supporting documents. Sure Step collects a considerable amount 
of implementation experience, along with the related documents, into a tool set 
designed for customization to it each speciic project. As with all comprehensive 
general use tools, for any particular project there is a lot of material that won't apply. 
The important beneits are the completeness of the material combined with the 
structure that it provides so that implementation project processes can be repeatable 
and thus predictable. 

RIM
One of the time-consuming and moderately complex parts of implementing a new 
system, is the gathering and loading of data into the system. Generally, master tables 
such as Customers, Vendors, and Items must be loaded before you can even begin 
serious system testing and training. In general, this data is loaded for testing and 
training and at inal cutover for the production use.

http:///


Extend, Integrate, and Design—into the Future

[ 566 ]

In order to assist in this process, Microsoft provides a set of tools called the Rapid 
Implementation Methodology (RIM). This tool is available to all NAV Partners.  
The documentation for RIM is in the manual Dynamics NAV RIM Users Guide 2.0.  
As of this writing, Microsoft is in the process of developing documentation to 
support the integrated use of Sure Step and RIM. This will help users implement 
the RIM data migration tools in an optimized way in the context of a Sure Step 
structured project.

Basically RIM consists of a set of questionnaires, some industry-speciic data 
templates, and the associated Import and Export routines. The recommended process 
has initial data entry occurring in Excel spreadsheets, then exported to XML iles and 
imported into NAV for use. You should review these tools. Even if you ind the tools 
aren't the right answer for your situation, you will learn some useful techniques by 
studying them.

Other reference material
With every NAV system distribution there is an included set of reference guides. 
These are highly recommended. There are a number of other guides available, 
but sometimes you have to search for them. Some were distributed with previous 
versions of the product but not with the latest version. Some are posted at various 
locations on PartnerSource or another Microsoft website. Some may be available 
on one of the forums. Most are readily available to Partner development personnel, 
though that may be more by force of habit than as a policy.

In nearly every case you will ind these documents a very good starting place, but 
you will be required to go beyond what is documented, experimenting, and iguring 
out what is useful for you. If you are working with a single system, you are likely to 
narrow in on a few things. If you are working with different systems from time to 
time, then you may ind yourself working with one aspect of one tool this month  
and something entirely different next month.

Here is a list of some documentation you will be interested in (when you look for 
those with "Navision", they might have been changed to "Dynamics NAV"). A 
number of ilenames are included, especially when they are not easy to interpret. For 
example, names starting with w1 are from Worldwide product distribution. Because 
the focus on documentation in Dynamics NAV V2009 has changed from manuals to 
interactive Help, you may have to search for NAV V5 (or earlier) copies of many of 
these. Some of these will be (or were) part of the standard system distribution. Some 
have been distributed on a separate Tools CD, some are only available as downloads 
from PartnerSource.

Application Designer's Guide (the C/AL "bible" up through V5) 
—w1w1adg.pdf

•

http:///


Chapter 9

[ 567 ]

Terminology Handbook—w1w1term.pdf

Installation & System Management of Application Server for  
Microsoft Dynamics™ NAV—w1w1atas.pdf

Installation & System Management of C/SIDE Database Server for  
Microsoft Dynamics™ NAV—w1w1ism.pdf

Installation & System Management of SQL Server Option for the  
C/SIDE Client—w1w1sql.pdf

Microsoft Dynamics™ NAV ODBC Driver 5.0 Guide—part of the NAV 2009 
system distribution—w1w1nocbc.pdf

Making Database Backups in Microsoft Dynamics™ NAV—w1w1bkup.pdf

C/FRONT Reference Guide—part of the system distribution 
—w1w1cfront.pdf

Security Hardening Guide—part of the NAV 2009 system distribution

Navision Developer's Toolkit

NAV Tools CD:

Microsoft Business Solutions—Navision SQL Server Option 
Resource Kit—whitepaper

Performance Troubleshooting Guide for Microsoft Business 
Solutions—Navision—w1w1perftguide.pdf

Application Benchmark Toolkit

User Rights Setup

Microsoft Business Solutions—Database Resource Kit

C/AL Programming Guide 

Dynamics NAV RIM Users Guide 2.0

Microsoft Dynamics™ NAV Training Manuals and Videos (various topics)

Many whitepapers on speciic NAV (Navision) application and technical 
topics (even the old ones are useful)

There is other documentation that you will ind valuable as you move into 
specialized or advanced areas. But many of the preceding are general purpose and 
frequently helpful.

Last, but deinitely not least, become a regular visitor to websites for more information 
and advice on C/AL, NAV, and many more related and unrelated topics. The websites 
dynamicsuser.net and www.mibuso.com are especially comprehensive and well 
attended. Other, smaller or more specialized sites are also available.

•
•
•
•
•
•
•
•
•
•

°
°
°
°

•
•
•
•
•

http:///


Extend, Integrate, and Design—into the Future

[ 568 ]

An additional group of websites focused on NAV 2009 have come on the scene since 
2008. These are the weblogs of a variety of NAV experts and aicionados. Many of 
the bloggers are part of the NAV development team at Microsoft, some are by NAV 
MVPs and others are by those who simply want to share their knowledge of and 
affection for NAV with the rest of us.

Some of the ones available as of the writing of this book are:

Microsoft Dynamics NAV Team Blog: blogs.msdn.com/nav/

Clausl's Dynamics NAV Blog: blogs.msdn.com/clausl/

Christian's Blog: blogs.msdn.com/cabeln/

Freddy's Blog: blogs.msdn.com/freddyk/

Kine's info: msmvps.com/blogs/kine/

NAV Reporting: blogs.msdn.com/nav-reporting/

More such useful blogs appear fairly often. The author's irm has one planned for the 
near future to discuss all things about NAV.

Into the future...
As we've gone through our study of NAV 2009, you have seen a number of instances 
where Microsoft tools outside of the C/AL-C/SIDE environment have become an 
integral and necessary part of the NAV toolset. An immediately obvious example is 
the Visual Studio Report Designer layout tool. The second obvious example is the C# 
language. While it's not necessary to learn C# to development complete and complex 
application enhancements for NAV, it will certainly prove to be handy for a number 
of tasks. Examples of some C# oriented tasks are:

Debugging in Visual Studio

Creating new Client Add-ins

Creating web services consuming code

The future, the direction of the Microsoft Dynamics NAV product is obviously 
moving away from the insular, self-contained approach of the past. Product 
development changes are taking us down twin paths of both being more integrated 
with the Microsoft family of products and being a more open system. Here are a  
few changes that one might predict for Dynamics NAV in the foreseeable  
(or guessable) future: 

•
•
•
•
•
•

•
•
•

http:///


Chapter 9

[ 569 ]

Disclaimer: These are not announcements nor are they based 
on information from Microsoft. These are extrapolations based 
on extrapolations, guesses, and rumors.

A Sharepoint client

More support for various display devices or device types as rendering targets

Dropping the C/SIDE Server, focusing on SQL Server

Eventually dropping the Classic Client

More integration with the .NET/Visual Studio development environment

More integration with C#, at some point C/AL and C# code partially or 
completely interchangeable

Integration with "the Cloud"

More documentation integrated and online

Expansion of the web services functionality

Enhancement of the Client Add-in style capability to other parts of the 
system (that is, an "opening up" to more ways of integrating externally 
created material)

Expansion of the integration with Microsoft tools for Business Intelligence, 
Web based activities, and other areas

None of these future projections are sure things, but some of them are inevitable. 
The most signiicant point here is that as a NAV developer, you will want to expand 
your skills as time goes by. As soon as you feel comfortable in C/AL and C/SIDE 
development, you may want to develop some expertise in the use of Visual Studio 
and basic knowledge of C# programming. It doesn't appear that you should worry 
about getting bored in the near future. 

Summary
We have covered a lot of topics in this book with the goal of helping you to become 
productive in C/AL development. Hopefully that has happened much more quickly 
than if you hadn't invested your time here. From this point on, your assignments are 
to continue exploring and learning, enjoy NAV, C/SIDE, and C/AL, and to do your 
best in all things.

The nearest way to glory is to strive to be what you wish to be thought  
to be—Socrates

•
•
•
•
•
•
•
•
•
•

•

http:///


Extend, Integrate, and Design—into the Future

[ 570 ]

Review questions
1. Which of the following is not an option for integrating a NAV 2009 system 

and another external system? Choose one:

a. XMLports

b. Linked SQL Server databases

c. Text ile import and export
d. Email messages

2. In the Role Tailored Client, XMLports can be used to process XML formatted 
iles as well as other text ile formats. True or False? 

3. XML data iles are becoming obsolete and will soon be replaced by a more 
advanced data structure for interfacing systems. True or False? 

4. XMLports must be run from a Codeunit object in the Role Tailored Client. 
True or False? 

5. XMLports cannot contain C/AL code. All data manipulation must occur 
outside of the XMLport object. True or False? 

6. Which of the following are interface tools for NAV? Choose three:

a. C/OCX

b. C/AL

c. C/SIDE

d. C/FRONT

e. NAS

7. Which of the following is the Client Add-in feature? Choose one:

The ability to add a new client of your own design to NAV 2009

a. A tool to provide for extending the Role Tailored Client User 
Interface behavior

b. A special calculator feature for the RTC client

c. A new method for mapping Customers to Contacts

http:///


Chapter 9

[ 571 ]

8. Web services are an industry standard Application Programming Interface 
deined by the World Wide Web Consortium. True or False? 

9. Software external to NAV that accesses NAV Web Services must be dot NET 
compatible. True or False? 

10. The Help iles for NAV cannot be customized by Partner or ISV developers. 
True or False? 

11. When planning a new NAV development project, it is good to focus 
the design on the data structure, required data accesses, validation and 
maintenance. True or False? 

12. The developer cannot affect the way that "Locking" occurs in a NAV 
database. True or False? 

13. Customized NAV systems cannot be upgraded to new versions.  
True or False? 

14. Which of the following are good coding practices? Choose three:

a. Careful naming

b. Good documentation

c. Liberal use of wildcards

d. Design for ease of upgrading

http:///


http:///


Answers
The answers to all the review questions, given at the end of after every chapter, are 
listed here.

Chapter 1
1. False

2. a, b, d

3. False, it is an object-based system

4. a, d

5. True, though some development can be done within Visual Studio or another 
report layout tool, that development starts and ends within C/SIDE

6. False, all except MenuSuites

7. True

8. True, but both can be run in parallel

9. False, Ledger data is always permanent

10. True

11. b, c, d

12. False, though there is overlap, they are quite different

13. True

14. False, Tables can be run from the Object Designer screen

http:///


Answers

[ 574 ]

Chapter 2
1. a, b, c

2. False

3. False

4. a, c, d

5. False

6. False

7. True

8. True

9. True

10. True

11. False

12. a , c, d

13. True

14. False

15. False

16. True

Chapter 3
1. False, max is 30 characters

2. True

3. c

4. a, b, d

5. False

6. b

7. a, c, e

8. False, Primary Key entries must be unique

9. True

10. False, wildcards are a valuable tool

11. c, d, e

http:///


Appendix

[ 575 ]

Chapter 4
1. False

2. False

3. b, d, e

4. True

5. c

6. True

7. Home and Departments

8. True

9. a, c

10. False, in almost all instances you can only do basic layout in the Wizard and 
must do the rest of the development work within the Page Designer

11. False, this would be totally contrary to the design philosophy of NAV as a 
customizable system

Chapter 5
1. False, NAV 2009 reports can be displayed onscreen, and can have  

dynamic features such as sorting and sections which expand/collapse  
with a mouse click

2. False, the deinition must be done in the Sections area and will then appear in 
the Data Sources area, but cannot be added to the Data Sources area

3. True

4. True

5. b, c

6. True

7. a, c, data in Sections and Request Form apply to Classic Reports only

8. b, d, e

9. b

10. True

http:///


Answers

[ 576 ]

Chapter 6
1. False, MenuSuites, which become the Departments page, cannot contain  

C/AL code

2. True

3. a, b

4. False

5. a, b, d

6. a

7. False, numbering and naming are very important and must follow the 
standards set by NAV

8. True 

9. c

10. False

11. True

12. Usually False, though exceptions are always possible

Chapter 7
1. a, b, d

2. False

3. False

4. True

5. True

6. a, b, c

7. a, c

8. b, it should be a WHILE – DO

9. d

10. b

11. True

http:///


Appendix

[ 577 ]

Chapter 8
1. False, data should never be entered directly into a Ledger

2. True

3. c

4. False

5. d

6. True

7. Individual answers:

a. False

b. False

c. False

d. False

8. a, b, d

9. True

10. True

11. False

12. b

Chapter 9
1. d

2. True, in the RTC XMLports have taken over the Classic Client Dataport role

3. False, XML interfacing is becoming more common.

4. False, this was true for the Classic Client, but not for the RTC

5. False

6. a, d, e

7. b

8. True

9. False

10. False

11. True

12. False

13. False

14. a, b, d

http:///


http:///


Index

Symbols

*  161
?  162
@ symbol  162
 XML port triggers

about  514
Documentation()  514
OnInitXMLport()  514
OnPostXMLport()  514
OnPreXMLport()  514

A

accounting data  111
advanced interfaces tools

about  527
Automation Controller  528
C/FRONT  529
C/OCX  529
Linked Server Data Sources  529
NAV Application Server (NAS)  529
NAV Communication Component  528

API  528
application

activity tracking tables, adding  97
keys  95
reference table, adding  98, 102
SumIndexFields  103-106
tables, creating  82
tables, modifying  82

application design
all forms  41
Card pages  38
Card page, creating  41-45, 218
ield numbering  34-36

forms  36
list form, creating  45, 47
list format report, creating  52-57
List page, creating  45
main/sub forms  39
Pages  36
Pages, Card pages  38, 39
Pages, document pages  39
Pages, Journal and Worksheet pages  40
Pages, List pages  38
Pages, standard elements  41
Pages, types  37
reports  50, 51
tables  32
tables, creating  33-35
tables, designing  32, 33
tabular forms  38

Application Programming Interface. See  
API

automation, complex data types
automation data type  142
OCX  142

Automation Controller
about  528
use  528

B

backups  62
BEGIN-END function

about  360
compound statement  361

BI  18

Binary Large OBject. See  BLOB
BLOB  150

Business Intelligence. See  BI

http:///


[ 580 ]

C

C/AL
about  379, 384
C/AL Symbol Menu  380
data conversion functions  390
DATE functions  391
iltering functions  407
low control  397
FlowField  394
functions  350
INPUT functions  403
internal documentation  381-383
InterObject communication  411
naming convention  328, 329
SumIndexFields  394
syntax  343
Symbol Menu  380
validation utility functions  384

C/AL code modiications
about  363
report enhancing, by adding code  368-374
validation, adding to table  363-367

C/AL functions
about  354, 361
BEGIN-END function  360
code, indenting  362
CONFIRM function  352, 353
dialog functions  350
ERROR function  351, 352
FIND function  357
GET function  356
MESSAGE function  350
SETCURRENTKEY function  355
SETRANGE function  356

C/AL Symbol Menu
about  380
Global symbols  381
Local symbols  381
use  381

C/AL syntax
( ) operator  346
[ ] operator  346
about  343
arithmetic operator  347
assignment  343
expressions  345

operators  346
punctuation  343
Range operator  347
Scope operator  347
single dot operator  346
Wildcard character  344

C/FRONT  529
C/OCX  529
C/SIDE

accessing  23, 24
C/AL  23
data deinitions  326
essential practices  325
functions  335
navigating through  312
Object Designer  312
object numbering  324
programming  334
variables  329
database  25
Object designer tool icons  24, 25

C/SIDE Integrated Development  

Environment. See  C/SIDE
C/SIDE RD tool  245
CALCFIELDS function  396
CALCSUMS  396
CalculateNewDate() function  146
callable functions

about  469, 470
codeunit 358  470
codeunit 359  471, 472
codeunit 365  473, 474
codeunit 396  474, 475
codeunit 397  475
codeunit 408  475, 476
codeunit 412  476, 477

Card page  188
careful naming  561
Client Add-in feature

about  530
comments  534
creating  531-533
deining  530

Client Monitor tool  498
Code Coverage tool  498
code indenting  362
codeunit 1  479

http:///


[ 581 ]

codeunit 228  478
test reports, printing  478

codeunit 229
about  478
documents, printing  478

codeunit 358
about  470, 471
CreateAccountingPeriodFilter function  470
CreateFiscalYearFilter function  470

codeunit 359
about  471, 472
CreatePeriodFormat function  472
FindDate function  471
NextDate function  472

codeunit 365
about  473, 474
address, formatting  473, 474

codeunit 396
about  474, 475
unique identifying number  474, 475

codeunit 397
about  475
mails, managing  475

codeunit 408
about  475, 476
dimension, management  475, 476

codeunit 412
about  476, 477
Common Dialog, managing  476, 477

codeunit 419  479
codeunit 5054  479
codeunit 5063  479
codeunit 5300 thru 5314  479
codeunit 5813 thru 5819  479
codeunit 800  479
codeunit 801  479
codeunit 802  479
codeunit 81  479
codeunit 82  479
codeunit 90  479
codeunit 91  479
codeunit 92  479
codeunits

about  58, 59
advantages  58
need for  58

complex data types
about  141
Action  149
automation  142
BigText  150
BLOB  150
data structure  141
DateFormula  143
FieldRef  149
GUID  150
Input/Output  142
KeyRef  149
objects  142
RecordID  149
RecordRef  149
TableFilter  149
Transaction Type  150
Variant  149

components, XML ports
about  510
attribute  523, 525
data lines  514-519
element  523, 525
line properties  520, 523
line triggers  524, 525
NodeType, as an element  524
properties  510, 512
properties, deining  512
Request Page  526, 527
TagType, as an attribute  524
triggers  514

Conirmation(Dialog) page  192
CONFIRM function  352, 353
Content-modiiable tables

about  117
System table  117

controls  26
Control triggers  228

D

database
about  25
logical database  25
physical database  25

http:///


[ 582 ]

data conversion functions
EVALUATE  391
FORMAT  390

Data Fields  255
data focused design

about  547
data design sequence  549
data tables, deining  548
data validation, designing  549
posting processes, designing  550
rechecking  550
required data, determining  548
required data views, deining  548
small goals, deining  547
support processes, designing  550
user access interface, designing  548, 549

data focused design, new functionality
about  547
data sources, deining  548
data views, deining  548
required data, deining  548
small goals, deining  547

Data Item properties
CalcFields  269
DataItemIndent  266
DataItemLink  266, 267
DataItemLinkReference  266
DataItemTable  266
DataItemTableView  266
DataItemVarName  269
GroupTotalFields  268
MaxIteration  269
NewPagePerGroup  268
NewPagePerRecord  268
PrintOnlyIfDetail  269
ReqFilterFields  268
ReqFilterHeader  268
ReqFilterHeadingML  268
TotalFields  268

data item sections
run time formatting  280

Data item triggers
Documentation()   269
OnAfterGetRecord()   270
OnPostDataItem()   270
OnPreDataItem()   270

Dataports  59, 60
data structure, complex data types

ile  141
record  142

DataType as table
Export::OnAfterGetRecord()  525
Export::OnPreXMLItem()  525
Import::OnAfterInitRecord()  525
Import::OnAfterInsertRecord()   525
Import::OnBeforeInsertRecord()  525

data types
about  138
complex  141
fundamental  138
using  150, 151

Date/Time data, fundamental data types
date  139, 140
DateTime  141
duration  141
time  141

date constant  139
DateFormula, complex data types

alpha time units   143
examples  143
math symbols  143
numeric multipliers   143
positional notation   143
using  144-149

DATE functions
CALCDATE  393, 394
DATE2DMY  391
DATE2DWY  392
DMY2DATE  392, 393
DWY2DATE  392, 393

deadlock  552  552
Debugger  497
Department page  195, 196
design for updating

about  553
project recommendations, customizing  554

designing for eficiency
about  551
disk I/O  551
disk I/O, attributes  551
locking  552
locking problems, avoiding  552

http:///


[ 583 ]

Developer’s Toolkit
about  483, 484
Compare and Merge Tools  483
object relations  486
source access  486
Source Analyzer  484
table relations  484-486
testing  488-491
Where Used  487, 488

development challenge
donor recognition level, developing  419
ICAN test data, creating  413
task  413

development projects
creating  544
examples  544
existing functional area, modifying  546, 547
functional area, creating  545
new functionality design,  

advantages  545, 546
overall understanding  545
time allocation  547

development tools
Client Monitor  498, 499
implementation tool  565
reference material  566, 567

dialog form  192
dialog function, debugging

about  500
CONFIRM statements  500
DIALOG function  500, 501
ERROR function  501, 502
MESSAGE statements  500
techniques  500-502
text output  501

documentation
about  62
Documentation trigger  382
internal documentation  381-383

Document page
about  188
FastTabs  189, 190

document report
about  249, 253
Customer Sales-Invoice document  

report  249

donor recognition level, developing
about  420
C/AL coding, starting with  421, 422
CALCFIELDS processing, code addition  

425, 426
print addresses, adding code to  426-432
Report Wizard, using  420
retroitting date iltering  

capability  422, 424

E

Enterprise Resource Planning. See  ERP 
system

ERP system
about  14
BI  18
BI, functions  18
inancial management  16
inancial management, accounts payable  16
inancial management, accounts  

receivable  16
inancial management, analytical  

accounting  16
inancial management, cash management 

and banking  16
inancial management, General Ledger  16
inancial management, inventory and ixed 

assets  16
inancial management, Multi-Currency and 

Multi-Language  16
NAV Human Resource  

Management (HR)  19
NAV manufacturing  16
NAV manufacturing, capacity  17
NAV manufacturing, functions  17
NAV manufacturing, Product Design  17
NAV Project management  19
NAV Relational Management (RM)  18
NAV Supply Chain Management (SCM)  17
NAV Supply Chain Management (SCM), 

applications  17
reporting  18

ERP sysytem
components  15
integrating  15
viewing, from highest level  15, 16

http:///


[ 584 ]

ERROR function  351, 352
eXtensible Markup Language. See  XML 

ports
external interfaces

interface tools  527
XMLports  508

F

F11 key  325
FactBoxes, Page parts

about  198
Card parts  198
Chart pane  199
List parts  198

ield
about  126
class  152
data structure, examples  136
numbering  132
properties  126
triggers  135
variable, naming  137

ield, properties
accessing  126
AltSearchField  129
AutoIncrement  130
BlankNumbers  130
BlankZero  130
BLOB properties  128
BLOB properties, compressed  128
BLOB properties, owner  128
BLOB properties, SubType  128
caption  127
Caption Class  129
CaptionML  127
CharAllowed  129
DataLength  129
data type  127
DateFormula  129
DecimalPlaces  130
description  127
Editable  129
enabled  127
ExtendedDataType  130
Field No  127
InitValue  129

MaxValue  130
MinValue  130
name  127
NotBlank  129
Numeric  129
Option data type, OptionCaptionML  

property  132
Option data type, OptionCaption  

property  132
Option data type, OptionString  

property  131
SignDisplacement  130
SQL Data Type  129
TableRelation  130
TestTableRelation  130
ValidateTableRelation  130
ValuesAllowed  129

ield class
FlowField  152
FlowField, calculation formula  153
FlowField, table ilter  155
FlowField, types  153, 154
FlowFilters  155-159
Normal  152

ield numbering
about  133
Classic Client, using  133
data type, changing  134, 135
for new ields  133

ields  26
ields, page controls

DecimalPlaces property  216
editable property  216
ExtendedDatatype property  217
HideValue property  216
importance property  216, 217
MultiLine property  216
OptionCaptionML property  216
OptionCaption property  216
visible property XE   216

ield triggers
OnLookup() trigger  136
OnValidate() trigger  136

ilter controls, ilter values
Classic Client access  172
Classic Client access, Field Filter   172
Classic Client access, Flow Filter   172

http:///


[ 585 ]

Classic Client access, Show All   173
Classic Client access, Sort  173
Find-as-you-type iltering  174
RoleTailored Client access  173, 174

iltering
about  158, 159
CLEARMARKS function  410
COPYFILTER function  409
COPYFILTERS function  409
ilter values, deining  158, 159
functions  407
GETFILTER function  409
MARKEDONLY function  410
MARK function  409
RESET function  410
SETFILTER function  408
SETRANGE function  408
structure, deining  158, 159

iltering functions
about  407
CLEARMARKS function  410
COPYFILTER function  409
COPYFILTERS function  409
GETFILTER function  409
GETFILTERS function  409
MARKEDONLY function  410
MARK function  409
RESET function  410
RESET function, ilter groups  410, 411
SETFILTER function  408
SETRANG function  408

ilter syntax, deining. See  ilter values, 
deining

ilter values, deining
by ranges  160
combinations, using  162
ilter, experimenting with  163-171
ilter controls, accessing  172
on equality  160
on inequality  160
with Boolen operators  161
with wild cards  161, 162

FIND function
[Which] parameter  358, 359
about  357
FIND(‘+’)  358
FIND (‘-’)  358, 359

FINDFIRST  358
FINDLAST  358
FINDSET  358, 360
forms  358
GET function, differentiating between  357
SQL Server FIND option  359

Flow control
BREAK function  402
CASE - ELSE statement  398, 399
EXIT function  402
QUIT function  401
REPEAT - UNTIL control structure  397
SHOWOUTPUT function  403
SKIP function  402
WHILE - DO control structure  397, 398
WITH - DO statement  400

FlowFields function
CALCFIELDS  395
CALCSUMS  396

form controls
about  205
experimenting with  218
inheritance  211

forms
Card page, creating  88-90
creating  88
List page, creating  90-92
TableRelation property, testing  93, 94
ZUP ile  92

functional area
advantages  545
creating  545
data focused design  547
enhancing  546

functions
about  335, 336
Codeunits with functions  336
creating  337-342
DATE2DMY  335
designing  339
GET  335
INSERT  335
integrating  341-343
MESSAGE  335
new functions, need for  337
STRPOS  335
trigger  335

http:///


[ 586 ]

function terminology, NAV 2009
Batch  29
Document  29
Journal  28
Ledger  28
Posting  29
Register  29

fundamental data types
Date/Time data  139
numeric data  138
string data  139

G

GET function  356
global identiiers

about  329
global functions  330
global text constants   329

Globally Unique Identiier. See  GUID

Graphical User Interface. See  GUI
Group, page controls

editable property  212
enabled property  212
FreezeColumnID property  214
GroupType property  212, 213
IndentationColumnName property  214
IndentationControls property  214
ShowAsTree property  214
visible property  212

GUI  181
GUID  150

H

Help Toolkit
about  542
customizing  543, 544

I

ICAN, NAV development
about  31
application design  32

ICAN application
about  229
activity-tracking tables, adding  97

Card pages, creating  232, 233
forms, creating  87
page object name  229
reference tables, adding  98
related list, creating  231
secondary keys, adding  95, 96
simple list page, creating  230, 231
SumIndexFieldS  103, 104
tables  229
table, integrating  104-107
tables, creating  82
tables, modifying  82

ICAN test data, creating
C/AL code, deining  417-419
C/AL Globals screenshot  416
DataItem, deining  414
Donor Giving report design  414
new report, starting with  414
Request form/page, eliminating  414, 415

IDE  14
IF-THEN-ELSE statement  361

Independent Software Vendor. See  ISV
Input/Output, complex data types

dialog  142
InStream  143
Outstream  142

INPUT functions
DELETEALL  406
DELETE  405
INSERT  404
MODIFYALL  406
MODIFY  405
MODIFY, Rec  405
MODIFY, xRec.   405
NEXT  403

Integrated Development Environment. See  
IDE

integration tools
about  61
automation  61
C/FRONT  61
C/OCX  61
N/ODBC  61
web services  61

interfaces
about  507
advanced tools  527

http:///


[ 587 ]

interface tools
about  527
Automation Controller  528
C/FRONT  529
C/OCX  529
Linked Server Data Sources  529
NAV Application Server  529
NAV Communication Component  528

International Community and Neighbors. 

See  ICAN application
InterObject

communicating, via data  411
communicating, via function parameters  

411
communicating, via object calls  412
communicating, via RUN   412
communicating, via RUNMODAL  412
via data  411
via function parameters  411

ISV  27

J

Journal/Worksheet page
Sales Journal page  191

K

keys
about  74
adding  95
attributes  77
Primary Key  75, 76
secondary keys, adding  95, 96
SQL Serer-speciic properties  77

L

license  28
line properties, XML ports

about  520
indentation  520
NodeName  520
NodeType  520
SourceType  520
SourceType as Field  523
SourceType as Table  522
SourceType as text  521

line triggers, XML ports
about  524
DataType as ield  525
DataType as table  525
DataType as text  525

Linked Server Data Sources  529
List+ page  191
List page, application design

creating, steps  46-49
keyboard shortcuts  49
Run a table option  50

List pages  187
list report  248, 253
local variables

about  330
function local variables  330
trigger local variables  330

locking
about  552
avoiding  552
deadlock  552
problems, avoiding  552
problems, minimizing  553

M

management codeunits  479, 480
MenuSuites  59
MenuSuite structure

about  463
coniguring  467
development  463-466
personalizing  467, 468
transformation  467

MESSAGE functions  350

Microsoft Dynamics NAV. See   
NAV 2009

modiications
documenting  480, 481

multi-currency  482
multi-currency system  482
multi-language

about  481
features  481

multi-language system
about  481
features  481

http:///


[ 588 ]

N

NAV
advanced development  468
as ERP  482
Communication Component  528
debugging, in Visual Studio  499
development projects, creating  544
development time allocation  547
development with C/AL  379
iltering tool  158, 159
form  181
forms  179
Help Toolkit  542
interfaces  507
modiications, documenting  480, 481
NAVreport  244
new C/AL routines, creating  469
pages  179
processing low  438
Role Center pages  441
supporting material  565
tables  67
tools  483
variable, naming  137

NAV, terminologies
complex data type  126
constant  126
data element  126
data type  125
fundamental (simple) data type  125
variable  126

NAV 2009
about  14
C/SIDE  22
changes  19
Client Add-in feature  530
development tools, accessing  22
ERP system  14
function terminology  28
NAV 2009C/SIDE RD tool  244
NAV 2009Report Designer tools  244
NAV 2009Role Tailored Client  259
object types, deining  22
object types, Page  22
possible coniguration  20
prior versions  14

terminology  25, 26
user interface  29, 30

NAV 2009, as ERP system  14-19
NAV 2009, modiications

compatible Report Viewer  21
designing  544
functional area, creating  545
Role Tailored Client (RTC)  21, 30
two-tier versus three-tier  20
web services  21

NAV 2009 Object types
Codeunit  22, 58
Dataport  22, 59
deining  22
Form  22
MenuSuite  22, 59
Page  22
Report  22
Table  22
XMLports  22, 60

NAV application functionality
data design sequence  549
data tables, deining  548
data validation, designing  549
posting processes, designing  550
support processes, designing  550
user data access interface, deining  548

NAV Application Server (NAS)  529
NAV Communication Component  528
NAV development

about  31
ICAN application  31

NAV enhancement project
creating  544

Navigate page
about  193, 194
feature  194
using  194

Navigate tool
about  493
modifying  496, 497
testing with  493-496

NAV processing low
about  438
data, accessing  440
data, preparing  439
low data, accessing  440

http:///


[ 589 ]

initial setup  438
Journal Batch, posting  438, 440
Journal Batch, testing  440
maintenance  438-441
transaction entry  438
transactions, entering  439, 440
utilize  438
validate  438

NAV Report Designer
C/SIDE RD tool  245
lowchart  246
Working Storage  246

negative testing  503
new object, Object Designer

Codeunit Designer  317
MenuSuite Designer  317-319
Page Designer  314
Report Designer  315
Table Designer  313
XMLport Designer  316

numeric data, fundamental data types
bigInteger  139
binary  139
boolean  139
char  139
decimal  138
integer  138
option  139

O

object and ield numbers
about  26, 27
ranges  27

Object Designer
about  312, 313
compiling  326-328
designer navigation pointers  319, 320
new object, starting  313
objects, exporting  320, 321
objects, importing  322, 323
saving  326-328
text objects  324

object numbering  324
OLAP  438

Online Analytical Processing. See  OLAP
operators, C/AL syntax

arithmetic operator  347
boolean operator  348
precedence of operator  349
relational operator  348, 349

OUTPUT function. See  INPUT functions

P

page
about  179, 180, 234
bound  180
changes, adding  181
components  201, 202
components, controls  201
components, page trigger  201
components, properties  202, 203
Control triggers  228
controls  180, 205
designing  179
dialog page  192
Journal/Worksheet page  191
List+ page  191
List page  187
naming  199, 200
naming, Card page  199
naming, Journal/ Worksheet page  199
naming, List page  199
Page Designer, accessing  200
Page Parts  197
plagiarism  235
properties  203, 205
request page  192, 300
RTC  182
tabular  187
types  180, 187
unbound  180
User Experience (UX) Guidelines  234

page, properties
AutoSplitKey  204
Caption  203
CaptionML  203
CardFormID  204
DelayedInsert  204
Description  204
Editable  204

http:///


[ 590 ]

ID  203
MultipleNewLines  204
Name  203
PageType  204
Permissions  204
SourceTable  204
SourceTableTemporary  205
SourceTableView  204

page, types
card page  188
Conirmation (Dialog) page  192
Department page  195, 196
Document page  188
List pages  187
List pages, Customer list  187
Navigate page  193, 194
Request page  192
Role Center page  196

Page 344 - Navigate  479
page controls

about  205-209
blank slate approach  236, 237
Communication group  206
container  211
container, Fast Tabs  180
container, Groups  180
Departments buton  210
designing  238
experimenting with  235-239
ields  214, 215
General group control  206, 207
group  212
help, searching  236
Home button  210
inheritance  211
Invoicing group  206
Navigation Pane  210
Page Parts  224
testing  238
triggers  228, 229
types  211-224
using, in Card page  218-224

Page Parts, page controls
Card Part FactBox, creating  226-228
ChartPartID property  225

FactBoxes  198
PagePartID property  225
PartType property  225
ProviderID property  224
SubFormLink property  224
SubFormView property  224
SystemPartID property  225
typical properties  224
using  224

positive testing  503
posting reports  252, 253
programming, C/SIDE  334
project recommendations, customizing

about  554
Cronus database testing  555
deliverables  558
one at a time  554
project, inishing  559
testing  555
testing, in production  556
testing database, using  556, 557
testing in production  556
testing techniques  558

properties  26

Q

QUIT function  401

R

Rapid Implementation Methodology. See  
RIM

RDLC  247
Read-Only Tables

about  119
virtual  119

records  26
report components

overview  254
Report Description  255
report description  255

report data low
about  256-259
Data items  257
events  256

http:///


[ 591 ]

Report Deinition Language Client-side  247
Report Description, report components

Data item Properties and Triggers  255
Report Properties  255
Report Properties and Triggers  255

report elements
about  259
Data Item properties  264, 265
data item properties  264-269
Data items  264
Data Item Sections  270, 271
Data item triggers  269, 270
inheritance  281
Report Properties  260
Report triggers  263
request page  300
RTC reports, creating via Classical Report 

Wizard  271-279
run time formatting  280

Report Properties
BottomMargin  261
Caption  260
CaptionML  260
DeviceFontName  261
HorzGrid  261
ID  260
LeftMargin  261
Name  260
Orientation  261
PaperSize  261
PaperSourceFirstPage  261
Permissions  261
ProcessingOnly  261
RightMargin  261
ShowPrintStatus  260
TopMargin  261
TransactionType  261
UseReqForm  261
UseSystemPrinter  261
VertGrid  261

reports
about  243, 244
components  254
creating  305
creating, from scratch  305

creative report plagiarism  306
data low  256-259
document report  249, 253
elements  259
list reports  248, 253
naming  253
NAV reports, look and feel  247
posting report  253
posting reports  252
processing only reports  304
test reports  251, 253
transaction report  250, 253
types  248
types, summary  253

Report triggers
Documentation()  263
OnCreateHyperlink()  263
OnHyperlink()  263
OnInitReport()  263
OnPostReport()   263
OnPreReport()  263

Request page
about  192, 300
C/AL programming  302-304
FastTabs  301

RIM  566
Role Center page

about  441
Activities part  197
Action Menus  455-461
Department, MenuSuite levels  462
Departments button  461
for order processor  197
MenuSuite structure  462
Navigation Pane  455-461
page part  452-454
properties  444
purpose  196
structure  443
system part  451

Role Center page, structure
Activities Page  445
Cue Group actions  449, 450
Cue Groups  445
Cues  446

http:///


[ 592 ]

Cue source table  446-449
representation  443

Role Tailored Client. See  RTC
RTC

about  13, 181
Action Pane  186
Actions button  184
address bar  183
command bar  183-186
FactBox Pane  187
Filter Pane  186
Navigation Pane  186
Related Information button  185
Reports button  185
title bar  182
travel button  182

RTC reports
changes, making  288-294
creating, via Classical Report  

Wizard  271-279
creatings, ways  281
existing report, modifying  282, 283
experimentation  279
inheritance  281
Page Header ields  298-300
report capabilities  295-298
Report Items  286-288
run time formatting  280

RUN function  412
RUNMODAL function  412

S

SETCURRENTKEY function  355
SETRANGE function  356
SIFT  77, 78, 103
simple system administration  561

SQL Server Reporting Service. See  SSRS
SSRS  247
string data, fundamental data types

code  139
text  139

STRMENU function  354
SumIndex Fields  548

SumIndexField Technology. See  SIFT
supporting material

reference material  566-568
RIM  566
Sure Step method  565

Sure Step method  565
System table, Content-modiiable tables

Chart  118
Company  118
Database Key Groups  118
Member Of  117
Permission  118
Proile  118
system internals  118
user  117
User Personalization  118
User Role  118
Web Service  118
Windows Access Control  118
Windows Login  118

T

Table 330
about  479
currency conversion functions  479

Table 370  479
Table Elements, Visual Studio Report  

Designer (VS RD)
Body Section  285
Element Properties  285
Page Footer  286
Page Header  285
Property Pages Button  286

tables
about  68
activity-tracking tables, adding  97
advantages  68
Content-modiiable tables  117
creating  82-86
Field Groups  79-81
keys  74, 76
modifying  82-86, 93
naming conventions  69

http:///


[ 593 ]

numbering  69
overview  67, 68
properties  70, 72
Read-Only Tables  119
reference tables, adding  98-102
SIFT  77
SumIndexFields  77
TableRelation property, assigning  87
Totally modiiable tables  107
triggers  72, 73
types  107
Wholly modiiable tables  107

tables, properties
Caption  71
CaptionML  71
DataCaptionFields  71
DataPerCompany  71
Description  71
DrillDownFormID  71
ID  71
LinkedObject  72
LookupFormID  71
Name  71
PasteIsValid  72
Permissions  71

tabular  187
TagType as Attribute  524
TagType as Element  524
terminology, NAV

controls  26
database  25
ield numbers  26
ields  26
license  28
object numbers  26
properties  26
records  26
triggers  26
work date  27

terminology, NAV 2009
controls  26
database  25
ield numbers  27
ields  26
license  28

object numbers  27
properties  26
records  26
triggers  26
work date  27

test-driven development
feature goals  503
OnAfterTestRun  502
OnBeforeTestRun  502
TestMethodType property  503, 504

testing
about  555
Cronus database testing  555
database, using  556
deliverables  558
in production  556
production database, problems  557
project, inishing  559
techniques  558
testing database, using  556, 557

test report
about  251, 253
General Journal batch example  252

tools, NAV
Client Monitor  499
code analysis tools  483
Code Coverage tool  498
Debugger  497
debugging tools  483
Developer’s Toolkit  483
dialog function debugging  500
exported text code, working with  491, 492
Navigate  493
test-driven development  502

Totally modiiable tables
about  107
ledger  110
master tables  107
posted document  114
reference  112
setup  116
template  109
temporary  117

transaction report  250, 253

http:///


[ 594 ]

triggers
about  26
documentation triggers  26, 72
functions triggers  26
function triggers  26
OnDelete() trigger  73
OnInsert() trigger  73
OnModify() trigger  73
OnRename() trigger  73

U

Uniform Resource Name. See  URN
upgrading plan

about  559
advantages  560
beneits  560
executables, upgrading  563
full upgrade  564
good documentation  561
low impact coding  562
process  563
tips  560
tips, careful naming  561
tips, good documentation  561
tips, low impact coding  562

URN  512
User Experience (UX) Guidelines

about  234
topics  234

user interface  29, 30

V

ValidatePostCode function  366
validation utility functions

about  384
CURRENTDATETIME  388
Direction value  388
FIELDERROR  385, 386
precision values  387
ROUND  387
TESTFIELD  384
TIME  388
TODAY  388

VALIDATE  386
Work Date  389

variables
about  329
arrays  332
global identiiers  329
initialization  333
local variables  330
system deined variables  334
temporaray tables  331, 332
working storage variables  331

Visual Studio Report Designer (VS RD)
about  255
Data Sources  285
layout screen  284, 285
Report Layout  255
Table Elements  285
Toolbox Tab  284

W

web services
about  534
beneits  534, 535
exposing  536
factors  535, 536
published object, determining  538-542
publishing  537, 538
use  535

Web Services Description. See  WSDL
Wholly modiiable tables

Journal table  108, 109
Ledger table  110-112
master table  107, 108
Posted Document type  114, 115
Reference table  112, 113
Register table  114
Setup table  116
Template table  109, 110
Temporary table  117

wild cards  137

Windows Presentation Foundation. See  
WPF

work date  27, 28
Working Storage ields  255

http:///


[ 595 ]

working storage variables
arrays  332
initialization  333
system deined variables  334
temporaray tables  331

WPF  179
WSDL  539

X

XML port properties
about  510
Caption  511
CaptionML  511
DataItemSeparator  513
DefaultFieldsValidation  511
DefaultNamespace  512
Direction  511
Encoding  512
FieldDelimiter  513
FieldSeparator  513
FileName  513

Format  512
Format/Evaluate  512
ID  511
InlineSchema  512
Name  511
Permissions  513
RecordSeparator  513
TransactionType  513
UseDefaultNamespace  512
UseLax  512
UseRequestForm  513
XMLVersionNo  512

XMLports
about  60, 508, 509
components  510
debugging  508
formats  508

Z

ZUP ile  92

http:///


http:///


Thank you for buying  

Programming Microsoft® 

Dynamics™ NAV 2009

About Packt Publishing
Packt, pronounced 'packed', published its irst book "Mastering phpMyAdmin for Effective 
MySQL Management" in April 2004 and subsequently continued to specialize in publishing 
highly focused books on speciic technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting 
and customizing today's systems, applications, and frameworks. Our solution based books 
give you the knowledge and power to customize the software and technologies you're using 
to get the job done. Packt books are more speciic and less general than the IT books you have 
seen in the past. Our unique business model allows us to bring you more focused information, 
giving you more of what you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality, 
cutting-edge books for communities of developers, administrators, and newbies alike. For 
more information, please visit our website: www.packtpub.com.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals 
should be sent to author@packtpub.com. If your book idea is still at an early stage and you 
would like to discuss it irst before writing a formal book proposal, contact us; one of our 
commissioning editors will get in touch with you. 

We're not just looking for published authors; if you have strong technical skills but no writing 
experience, our experienced editors can help you develop a writing career, or simply get some 
additional reward for your expertise.

http:///


Implementing Microsoft 

Dynamics NAV 2009
ISBN: 978-1-847195-82-1            Paperback: 552  pages

Explore the new features of Microsoft Dynamics NAV 
2009, and implement the solution your business needs 

1. First book to show you how to implement 
Microsoft Dynamics NAV 2009 in your business 

2. Meet the new features in Dynamics NAV 2009 
that give your business the lexibility to adapt 
to new opportunities and growth 

3. Easy-to-read style, packed with hard-won 
practical advice 

3. Real-world examples with step-by-step 
explanations

Quality Assurance for Dynamics 

AX-Based ERP Solutions
ISBN: 978-1-847192-91-2            Paperback: 168 pages

Verifying Dynamics AX customization to the 
Microsoft IBI Standards

1. Learn rapidly how to test Dynamics AX 
applications

2. Verify Industry Builder Initiative (IBI) 
compliance of your ERP software

3. Readymade testing templates

4. Code, design, and test a quality Dynamics  
AX-based ERP solution

5. Customization best practices backed by theory

 

Please check www.PacktPub.com for information on our titles

http:///


SAP Business ONE 

Implementation
ISBN: 978-1-847196-38-5            Paperback: 320 pages

Bring the power of SAP Enterprise Resource Planning 
to your small-midsize business 

1. Get SAP B1 up and running quickly, optimize 
your business, inventory, and manage your 
warehouse

2. Understand how to run reports and take 
advantage of real-time information

3. Complete an express implementation from start 
to inish

4. Real-world examples with step-by-step 
explanations

Implementing SugarCRM
ISBN: 978-1-904811-68-8            Paperback: 328  pages

A step-by-step guide to using this powerful Open 
Source application in your business. 

1. Your complete guide to SugarCRM 
implementation – assess your needs, install the 
software, start using it, train users, integrate with 
existing systems

2. Covers both the free and commercial versions of 
SugarCRM – get maximum beneit from the free 
version before paying for add ons 

 

 

 

Please check www.PacktPub.com for information on our titles

http:///

	Programming Microsoft Dynamics NAV 2009
	Copyright
	Credits
	About the Author
	About the Reviewers
	Table of Contents
	Preface
	Chapter 1: A Short Tour through NAV 2009
	NAV 2009: An ERP system
	Financial Management
	Manufacturing
	Supply Chain Management (SCM)
	Business intelligence and reporting
	Relationship Management (RM)
	Human Resource management
	Project management

	Significant changes in NAV 2009
	Two-tier versus three-tier
	Role Tailored Client
	SSRS-compatible report viewer
	Web services

	NAV 2009: A set of building blocks and development tools
	NAV object types

	The C/SIDE Integrated Development Environment
	Object Designer tool icons
	NAV object and system elements
	NAV functional terminology

	User interfaces
	An introduction to development
	Our scenario for development exercises
	Getting started with application design
	Application tables
	Designing a simple table
	Creating a simple table
	Field numbering
	Pages/Forms
	Keyboard shortcuts
	Run a table
	Reports
	Creating a List format report


	Codeunits
	MenuSuites
	Dataports
	XMLports
	Integration tools
	Backups and documentation
	Summary
	Review questions

	Chapter 2: Tables
	Overview of tables
	Components of a table
	Table naming
	Table numbering
	Table properties
	Table triggers
	Keys
	SumIndexFields
	Field Groups

	Expanding our sample application
	Creating and modifying tables
	Assigning a TableRelation property
	Creating Forms for testing

	Adding Secondary keys
	Adding some activity-tracking tables
	New tables
	Keys and SumIndexFields in our examples

	Types of tables
	Wholly modifiable tables
	Master
	Journal
	Template
	Ledger
	Reference
	Register
	Posted Document 
	Setup 
	Temporary

	Content-modifiable tables
	System

	Read-Only tables
	Virtual


	Summary
	Review questions

	Chapter 3: Data Types and Fields for Data Storage and Processing
	Basic definitions
	Fields
	Field properties
	Field numbering
	Changing the data type of a field

	Field triggers
	Data structure examples
	Variable naming

	Data types
	Fundamental data types
	Numeric data
	String data
	Date/Time data

	Complex data types
	Data structure
	Objects
	Automation
	Input/Output
	DateFormula
	References and other

	Data type usage

	FieldClass property options
	Filtering
	Defining filter syntax and values
	Filtering on equality and inequality
	Filtering by ranges
	Filtering with Boolean operators
	Filtering with wildcards
	Filtering with combinations
	Experimenting with filters
	Accessing filter controls


	Summary
	Review questions

	Chapter 4: Pages—Tools for Data Display
	What is a page?
	Controls
	Bound and unbound

	Pages—a stroll through the gallery
	A sample RoleTailored Client page

	Types of pages
	List page
	Card page
	Document page
	FastTab

	List+ page
	Journal/Worksheet page
	Confirmation (Dialog) page
	Request page
	Navigate page
	Departments page
	Role Center page
	Page parts
	FactBoxes

	Page names
	Accessing the Page Designer
	What makes up a page?
	Page properties


	Types of page controls
	Inheritance
	Page control details
	Container controls
	Group controls
	Field controls

	Using page controls in a Card page
	Page Part controls
	Creating a Card Part FactBox
	Page Control triggers


	Adding more List pages to our ICAN application
	Creating a simple list page
	Creating related List and Card pages

	Learning more about pages
	UX (User Experience) Guidelines
	Creative plagiarism

	Experimenting with page controls and control properties
	Help searching
	Experimentation
	Testing
	Design

	Summary
	Review questions

	Chapter 5: Chapter 5: Reports
	What is a report?
	Two NAV report designers
	A hybrid report designer

	NAV report—look and feel
	NAV report types
	Report types summarized

	Report naming
	Report components overview
	The components of a report description 

	Report Data Flow
	The elements of a report
	Report properties
	Report triggers 
	Data Items 
	Data item properties
	Data item triggers
	Data item Sections 
	Creating RTC reports via the Classic Report Wizard
	Learn by experimentation
	Runtime formatting
	Inheritance

	Other ways to create RTC reports
	Modify an existing RTC report
	The Visual Studio Report Designer layout screen
	Report Items
	Make the report changes

	Request Page 

	Processing-Only reports
	Creating a report from scratch
	Creative report plagiarism

	Summary
	Review questions

	Chapter 6: Introduction to C/SIDE and C/AL
	Essential navigation
	Object Designer
	Starting a new object
	Some designer navigation pointers
	Exporting objects
	Importing objects
	Text objects

	Object number licensing
	Some useful practices
	Changing data definitions
	Saving and compiling
	Some C/AL naming conventions
	Variables
	Global identifiers
	Local identifiers
	Special working storage variables

	A definition of programming in C/SIDE
	Functions
	Basic C/AL syntax
	Assignment and punctuation
	Wildcards
	Expressions
	Operators


	Some basic C/AL
	MESSAGE, ERROR, CONFIRM, and STRMENU functions
	MESSAGE function
	ERROR function
	CONFIRM function
	STRMENU function

	SETCURRENTKEY function
	SETRANGE function
	GET function
	FIND 
	FIND ([Which]) options and the SQL Server alternates

	BEGIN–END compound statement
	IF–THEN–ELSE statement
	Indenting code

	Some simple coding modifications
	Adding a validation to a table
	Adding code to enhance a report

	Summary
	Review questions

	Chapter 7: Intermediate C/AL
	Some C/AL development tools
	C/AL Symbol Menu
	Internal documentation

	Computation and Validation utility functions
	TESTFIELD
	FIELDERROR
	VALIDATE
	ROUND
	TODAY, TIME, and CURRENTDATETIME functions
	WORKDATE function

	Data conversion functions
	FORMAT function
	EVALUATE function

	DATE functions
	DATE2DMY function
	DATE2DWY function
	MY2DATE and DWY2DATE functions
	CALCDATE function

	FlowField-SumIndexField functions
	CALCFIELDS function
	CALCSUMS function

	CALCFIELDS and CALCSUMS comparison
	Flow control
	REPEAT–UNTIL control structure
	WHILE–DO control structure
	CASE–ELSE statement
	WITH–DO statement
	QUIT, BREAK, EXIT, SKIP, and SHOWOUTPUT functions
	QUIT function
	BREAK function
	EXIT function
	SKIP function
	SHOWOUTPUT function


	Input and Output functions
	NEXT function with FIND or FINDSET
	INSERT function
	MODIFY function
	Rec and xRec

	DELETE function
	MODIFYALL function
	DELETEALL function

	Filtering
	SETRANGE function
	SETFILTER function
	COPYFILTER and COPYFILTERS functions
	GETFILTER and GETFILTERS functions
	MARK function
	CLEARMARKS function
	MARKEDONLY function
	RESET function
	Filter Groups


	InterObject communication
	Communication via data
	Communication through function parameters
	Communication via object calls

	Using the new knowledge
	A development challenge for you
	Creating more ICAN test data
	Developing the Donor Recognition Status report


	Summary
	Review questions

	Chapter 8: Advanced NAV Development Tools
	NAV process flow
	Data preparation
	Transactions entry
	Testing and Posting the Journal batch
	Accessing the data
	Ongoing maintenance

	Role Center pages
	Role Center structure
	Role Center activities page
	Cue Groups and Cues
	Cue source table
	Cue Group Actions

	System Part
	Page Part
	Navigation Pane and Action Menus
	Departments
	MenuSuite levels

	MenuSuite structure
	MenuSuite development
	MenuSuite transformation
	Configuration and personalization


	Creating new C/AL routines
	Callable functions
	Codeunit – 358 Date Filter-Calc
	Codeunit 359 – Period Form Management
	Codeunit 365 – Format Address
	Codeunit 396 – NoSeriesManagement
	Codeunit 397 – Mail
	Codeunit 408 – Dimension Management
	Codeunit 412 – Common Dialog Management

	Sampling of function models to review
	Codeunit 228 – Test Report-Print
	Codeunit 229 – print documents
	Other objects to review
	Management codeunits

	Documenting modifications
	Multi-language system
	Multi-currency system
	Code analysis and debugging tools
	Developer's Toolkit
	Relations to Tables
	Relations from Objects
	Source Access
	Where Used
	Trying it out

	Working in exported text code
	Using Navigate
	Testing with Navigate

	The C/SIDE Debugger
	The C/SIDE Code Coverage tool
	Client Monitor
	Debugging NAV in Visual Studio
	Dialog function debugging techniques
	Debugging with MESSAGE
	Debugging with CONFIRM
	Debugging with DIALOG
	Debugging with text output
	Debugging with ERROR

	C/SIDE test driven development

	Summary
	Review questions

	Chapter 9: Extend, Integrate, and Design—into the Future
	Interfaces
	XMLports
	XMLport components
	XMLport properties
	XMLport triggers
	XMLport data lines
	XMLport line properties
	Element or attribute
	XMLport line triggers
	XMLport Request Page


	Advanced interface tools
	Automation Controller
	NAV Communication Component
	Linked Server Data Sources
	C/OCX
	C/FRONT
	NAV Application Server (NAS)

	Client Add-ins
	Client Add-in definition
	Client Add-in construction
	Client Add-in comments


	Web services
	Exposing a web service
	Publishing a web service
	Determining what was published


	Customizing Help
	NAV development projects
	Knowledge is key
	Different approaches for different scopes
	Advantages of designing new functionality
	Modifying an existing functional area
	NAV development time planning

	Data-focused design
	Determining the data needs
	Defining the needed data views
	Designing the data tables
	Designing the user data access interface
	Designing the data validation
	Data design review and revision
	Designing the Posting processes
	Designing the supporting processes
	Double-check everything

	Design for efficiency
	Disk I/O
	Locking

	Design for updating
	Customization project recommendations
	One change at a time
	Testing thoroughly


	Plan for upgrading
	Benefits of upgrading
	Coding considerations
	Careful naming
	Good documentation
	Low-impact coding

	The upgrade process
	Upgrade executables only
	Full upgrade


	Supporting material
	Sure Step
	RIM
	Other reference material

	Into the future...
	Summary
	Review questions

	Answers
	Chapter 1
	Chapter 2
	Chapter 3
	Chapter 4
	Chapter 5
	Chapter 6
	Chapter 7
	Chapter 8
	Chapter 9

	Index


