
www.allitebooks.com

http://www.allitebooks.org

Prototyping Essentials
with Axure
Second Edition

A comprehensive strategy and planning guide for
the production of world-class UX artifacts such as
annotated wireframes, immersive prototypes, and
detailed documentation

Ezra Schwartz

Elizabeth Srail

BIRMINGHAM - MUMBAI

www.allitebooks.com

http://www.allitebooks.org

[FM-2]

Prototyping Essentials with Axure
Second Edition

Copyright © 2014 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the authors, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First Published: January 2012

Second Edition: May 2014

Production reference: 1200514

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-84969-832-0

www.packtpub.com

Cover Image by Anna-Marie White (anna-mariewhite@sbcglobal.net)

www.allitebooks.com

http://www.allitebooks.org

[FM-3]

Credits

Authors
Ezra Schwartz
Elizabeth Srail

Reviewers
Ben Judy
Sam Spicer
Jan Tomáš

Commissioning Editor
Martin Bell

Acquisition Editors
Sam Birch
Ellen Bishop
Wilson D'souza
Antony Lowe

Content Development Editor
Azharuddin Sheikh

Technical Editors
Pankaj Kadam
Rohit Kumar Singh
Ankita Jha

Project Coordinator
Venitha Cutinho

Copy Editors
Sarang Chari
Mradula Hegde
Sayanee Mukherjee
Deepa Nambiar
Karuna Narayanan
Alfida Paiva
Adithi Shetty
Stuti Srivastava

Proofreaders
Simran Bhogal
Mario Cecere
Ameesha Green
Sandra Hopper

Indexer
Hemangini Bari

Graphics
Sheetal Aute
Ronak Dhruv
Disha Haria
Yuvraj Mannari

Production Coordinator
Shantanu Zagade

Cover Work
Shantanu Zagade

www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

[FM-5]

Foreword

Axure RP 7 was one of the most significant product releases we've had to date. It
reminded me a lot of Version 2, which was released in late 2003. In Version 2, we
switched from an HTML-based editor to a diagram editor and laid the foundation
for prototype generation. We were able to build upon Version 2 for the following
10 years to add milestones such as the dynamic panel, conditional logic, and shared
projects. In Axure RP 7, we completely rearchitected the generated HTML with an
eye towards the next 10 years of software and user experience design.

We've been lucky to work with thousands of customers over the years and listen
to tens of thousands of feature requests and inquiries. Every request is tracked,
reviewed, and categorized. It's been interesting to see patterns naturally emerge
after each release, and this has helped us prioritize areas of focus for future releases.
Our customers have given us a unique view into how many organizations are doing
software design and development, and it's clear that user experience design has
never been more important.

It's essential to be able to test and iterate quickly on ideas early in the design process.
Once these ideas solidify, being able to truly experience the design as a designer,
stakeholder, or user can be invaluable. I think Axure RP 7 takes a solid step forward
in accomplishing these goals. The Shape widget in Axure RP 7 supports 17 events
compared to only three events in Version 6.5. There is a new Repeater widget that
is data-driven and supports sorting and filtering. We introduced Adaptive Views to
apply different styles, positions, and sizes to the widgets based on the browser size.

AxShare has also been upgraded to give designers and developers much more
flexibility. It is now possible to add custom JavaScript and HTML into hosted
projects. This opens the door to hand-coded interactions and custom elements.
It also makes it possible to integrate third-party solutions such as analytics and
user testing. You can also assign a custom domain directly to a project.

www.allitebooks.com

http://www.allitebooks.org

[FM-6]

There are currently over 80,000 licensed Axure RP customers, and we expect to reach
over 100,000 this year. It's a great feeling when you can count people like Elizabeth
and Ezra as customers and advocates. They are true leaders in the user experience
and Axure communities. With the help of customers like them, we're confident the
best is ahead.

Victor Hsu
Cofounder, Axure

www.allitebooks.com

http://www.allitebooks.org

[FM-7]

About the Author

Ezra Schwartz helps organizations realize their strategic vision for a world-class
user experience. As a principal experience architect, he holds lead positions in
mission-critical projects for global corporations. An advisor to management and
stakeholders, Ezra is an expert in transforming large-scale, data-driven systems
into mobile-first, device/OS-agnostic UX frameworks.

Ezra enjoys solving the numerous challenges involved in complex systems, the
organizations that build them, and the people who use them. He draws on his
wealth of experience from projects in the financial, education, aviation, healthcare,
telecom, publishing, research, manufacturing, and software industries. Ezra feels
very fortunate to be practicing in a domain that affords him the opportunities to
travel and associate with the exceptional cast of international experts he gets to
collaborate with. He values mentoring and giving back to his professional and
social communities.

Ezra is the founder and organizer of AxureWorld.org, a free community-driven
international conference dedicated to UX prototyping. He talks regularly about
UX at conferences and on his blog, www.artandtech.com.

www.allitebooks.com

http://www.allitebooks.org

[FM-8]

Acknowledgments

This book is dedicated to my mother, Eda.

To Tsippi and Shlomo Bobbe.

To my wife, Orit, who gave me her full support despite me braking a promise to
abstain from writing so soon after the previous book, and to my sons, Ben and Yoav,
who, during the writing of Axure RP 6 Prototyping Essentials, were already smarter
than me and now surpass me in height and strength as well. Some of the time that
went to writing and editing was family time—their time.

To my family: Julia, Hillel and Eitan Gauchman, Hedva Schwartz, Ruth and
Doron Blatt; and to my good friends: Lisa Comforty, Jim Carlton and Caroline
Harney, Christine and Scott Marriott, and Ayelet. To Alon Fishbach, and Barbara
Drapcho whose clarinet lessons taught me that in performing music, as opposed
to most things in life, I cannot "wing it" and to Alan Brazil for his high-fives
whenever we met on an early morning run.

To all the colleagues and friends who have contributed directly or indirectly to the
writing of this book, I wish I could mention all of you. I would like to extend special
thanks to Kalpana Aravabhumi, Sunni Barbera, Oren Beit-Arie, Kirk Billiter, Juli
Boice, Janet Borggren, Martin Boso, Mary Burton, Gary Duvall, Richard Douglass,
Mike Fleming, Chris Giesler, Jim Hobart, Victor Hsu, Allan Lawson, Ritch Macefield,
Alice O'Brien, Kristin Richey, Julie Robertson, Iram Saiyad, Derik Schneider, Paul
Sharer, Ginger Shepard, Sam Spicer, Andres Sulleiro, Arturo Ttovato, Kalyani
Tumuluri, Zack Webb, Cord Woodruff, Donny Young, Maxine Zats, and Lynn
Zealand for their tremendous support and encouragement.

I am tremendously grateful to my colleagues Sam Spicer, Ben Judy, and Jan Tomáš,
the technical reviewers in this book, for their contribution. Their detailed, honest,
knowledgeable, thoughtful, and generous comments helped make this a better book.

www.allitebooks.com

http://www.allitebooks.org

[FM-9]

I would also like to acknowledge a few remarkable fellow practitioners who
responded so generously to my request to share their expertise with the Axure
community: Ildikó Balla, Adam Basey, Svetlin Denkov, Gary Duvall, Suresh
Kandeeban, Ritch Macefield, Susan Grossman, and Shira Luk-Zilberman.
Thank you!

Last but not least, thanks to the people who are behind the scenes of this book. My
sincere gratitude to the editors and staff at Packt Publishing, and especially Ellen
Bishop, Venitha Cutinho, Wilson D'souza, Pankaj Kadam, and Azharuddin Sheikh
for their guidance, tremendous patience, and continuous encouragement throughout
this project. It has been a real pleasure collaborating with you on this book.

www.allitebooks.com

http://www.allitebooks.org

[FM-10]

About the Author

Elizabeth Srail has been creating and leading designs since 2001, and throughout
that time, she has learned that employing the lesson her parents taught her at a
young age, which is to "put yourself in that person's shoes", is the key to a successful
design. In an age where everyone is talking, mostly through social media, Elizabeth
has been listening. She takes what she hears from the users and stakeholders,
and removes or diminishes the problems these people face with designs that are
thoughtful, easy-to-use, fun, and pretty. She employs that same lesson when
managing others as well and believes that kindness is the greatest illustration
of strength.

In addition, Elizabeth has guided large organizations by educating leaders on
the nuances of the UX process and advising them on how best to implement this
practice into their current delivery methodology.

Elizabeth started using Axure in 2008 and was happy that Axure allowed her
to demonstrate her vision by creating interactivity without having to code and
without having to use words to sell her designs; the design and experience spoke
for themselves. She met Ezra in February 2009, and in the following years, they
collaborated on how best to optimize Axure, often discussing and debating the
evolution of the UX practice.

Elizabeth is a devoted practitioner and teacher of Ashtanga yoga. Practicing yoga has
allowed her to be more creative and handle the stressors of work with poise.

[FM-11]

Acknowledgments

First and foremost, I would like to thank my parents, Ruth and Ronald Srail, for
understanding the tremendous responsibility of parenting and for doing everything
they could to provide a safe, loving, and harmonious home for my sister and me.

I would like to thank my nephew who sat an entire Saturday with me while I edited
chapters. My niece was smart and went to a birthday party, but I have to thank her
as well. The two of you carry a sweetness that I hope you hold onto throughout
your life.

I also want to thank my friends who had to listen to me stress over this book,
especially my dear friends, Chris de Lizer and Abby Miller.

The majority of my Axure work has involved the use of Shared Projects, and thus,
I like to call my colleagues and collaborators "Axure Roommates". I have been very
lucky to share new Axure tricks with great roommates, and I made many friends
along the way: Josh Barr, Katrina Benco, Teryn Cleary, Jacqui de Borja, Kathy
Mirescu, Beth Roman, Rachel Siciliano, Laurie Tvedt, and Sarah Wallace. We
worked on rather grueling projects, but we all dived in and did the best we could.

Victor Hsu and Paul Sharer spent many Tuesdays with Ezra and me to walk us
through new features. They listened to our feedback when Axure 7 was in its
pre-beta stages. Thank you for taking the time, even when you were faced with
a major deadline!

Finally, many thanks to the editors and staff at Packt Publishing: Ellen Bishop,
Venitha Cutinho, Pankaj Kadam, and Azharuddin Sheikh. Your support, tremendous
patience, and hard work were always appreciated by Ezra and me throughout the
writing and editing process. In addition, we had technical reviewers who provided
very thoughtful and helpful feedback: Sam Spicer, Ben Judy, and Jan Tomáš.

[FM-12]

About the Reviewers

Ben Judy takes tech from frustrating to fun. His passion is to understand the needs
of people who use technology and design better systems that work well for humans.

He designed and built his first website in 1996. He began using Axure in 2006 to
create rapid prototypes for all manner of digital projects with a user-centered
design approach.

Ben has worked as a UX manager, contributor, contractor, and consultant with global
Fortune 500 companies, family-owned small businesses, and small start-up ventures.
Amid the complexity of collaborative software projects, Ben keeps his focus simple;
it's all about the user experience!

Ben lives near Dallas, Texas, with his wife, Kristen, and daughters, Ashley and
Emily—who keep him laughing and remind him of God's grace.

Sam Spicer is a digital design professional with 14 years of experience. Beginning
with front-end development, Sam progressed through his MS in Human-Computer
Interaction into the realm of Information Architecture in the early 2000s. Since then,
he's contributed to, and has also led, redesigns and replatforms for international
brands, ranging from e-commerce and financial services to the retail and food
industry. When he's not geeking out on some obscure experience or technical thing,
you can find him enjoying with his family, brewing beer, or otherwise getting into
some sort of trouble.

Sincere thanks to Ezra for allowing me to contribute to this effort,
which I've very much enjoyed and learned a great deal from.
Also, of course, an incredible thank you to my wife, Nikki, for
her support and partnership without which I'd never be able
to get anything accomplished!

[FM-13]

Jan Tomáš is the founder, consultant, and clown at CIRCUS DESIGN
(www.circusdesign.cz). His specialization deals with user research and
prototyping. He uses Axure RP on a daily basis for prototyping web and mobile
applications to communicate his designs with developers, managers, and other
stakeholders. Jan is also an active member of the User Experience community.
He organizes meetings, called UX Circus Show (www.uxcircus.cz), every
month to share knowledge and show that our work could be fun.

[FM-14]

www.PacktPub.com

Support files, eBooks, discount offers, and more
You might want to visit www.PacktPub.com for support files and downloads related to
your book.

Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at www.PacktPub.com and
as a print book customer, you are entitled to a discount on the eBook copy. Get in touch
with us at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up
for a range of free newsletters and receive exclusive discounts and offers on Packt books
and eBooks.

TM

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital
book library. Here, you can access, read and search across Packt's entire library of books.

Why subscribe?
• Fully searchable across every book published by Packt
• Copy and paste, print and bookmark content
• On demand and accessible via web browser

Free access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view nine entirely free books. Simply use your login credentials for
immediate access.

[FM-17]

For all in the Axure community who approach design
with an open mind and open heart.

 – Ezra Schwartz and Elizabeth Srail

Table of Contents
Preface 1
Chapter 1: Prototyping Fundamentals 5

The Times They Are A-Changin' 6
The Axure Option 9
UX Prototyping by UX Designers 12

Prototyping Interaction 14
Project-level Forecasting 16

A Weighted Risk Checklist for UX Projects 16
The Heuristics 17
The Score 18
Your Employment Type 19
The Client 20
UX Reporting To... 21
Enterprise Grade 22
New Product or a Redesign 23
Transactional 24
Responsive 25
Localization 26
Business Requirements Exist 26
UX Resources 27
Communication and Collaboration Tools 28
UX Documentation and Traceability 29

Axure Construction Strategy Checklist 31
Showcasing Opportunities 32
Considering Risks 33

Practical Axure 33
Small Projects 33
Web Applications and Portals 34
Heuristic Evaluation 36
User Validation 36
Deliverables – Prototypes and Specifications 37

www.allitebooks.com

http://www.allitebooks.org

Table of Contents

[ii]

Tips for Using Axure on Large-design Projects 39
UX and Stakeholders' Perspectives 39

Leadership 40
Project Management 41
Engineering 41
Visual Design 42
The UX Perspectives 43

The Axure Perspective 44
Summary 45

Chapter 2: Axure Basics – the User Interface 47
Getting Started 48

Axure File Formats 50
The RP File Format (Standalone Files) 50
The RPPRJ File Format (Team Project) 50
Team Projects 51

Environment 52
Customizing the Workspace 53
The Sitemap Pane 54
The Widgets Pane 56

Wireframe Widgets 57
Selecting a Widget Shape – Option 1 57
Selecting a Widget Shape – Option 2 58
Selecting a Widget Shape – Option 3 58
Shapes – Highlights 59
Form Fields – Highlights (New!) 59
Dynamic Panels – Highlights 60
The Repeater Widget (New!) 61

Style 61
Location and Size 63
Base Style 63
Font 67
Fills, Lines, + Borders 68
Alignment + Padding 70

The Design Area 72
Adaptive Views (New!) 73

Adding Adaptive Views 74
Adaptive View Definitions 75

The Page Properties Pane 75
Page Notes 76

Manage Notes 77
Page Interactions 78
Page Formatting 79
Sketch Effects 79
Flow Widgets 80

Table of Contents

[iii]

The Widget Interactions and Notes Pane 81
The Interactions Tab 82

Interactions 82
The Notes Tab 83
Note Sets 85

Grid and Guides 87
Setting Guides 87

The Masters Pane 89
Master Drop Behavior 90

Place Anywhere 91
Lock to Master Location 91
Break Away from Master 91

Usage Report 92
The Widget Manager Pane 92

Widgets Manager Functionality 93
Widgets Manager – Filter 94

Web Fonts Mappings (New!) 95
Step 1 – Assign/Tag the Font 96
Step 2 – The Web Font 96
Step 3 – Copy the Code into Axure 97

The Toolbars and the Menu Bar 99
The Generated Prototype 100
Summary 101

Chapter 3: Prototype Construction Basics 103
Aligning UX with Prototyping Principles 105
Getting Started with Prototyping in Axure 106

Key Design Activities 106
Assumptions and Disclaimers 108
Objectives and Artifacts 108
Naming Conventions, Labeling, and Unique IDs 110
The Farm2Table Sample Project in a Nutshell 111
Interactive Concept Models 111

The Axure Edge 113
On Capabilities and Requirements 113

Initial, High-level Requirements 114
Axure and Requirement Management 117
Use Cases 117

Use Case Diagram Page 118
Step 1 – Adding a Flow Page to the Sitemap 119
Step 2 – Creating the Use Case Diagram 121
Staying Organized with Sitemap Folders 126

Saving the Project File 127
Task Flow Diagram Pages 128

Table of Contents

[iv]

Task Flow Diagrams (Sans Visio) 129
Flow Diagram – New Subscription 129
Flow Diagram – Assemble My Weekly Box 132

Linking Use Cases to Flow Diagrams while Keeping
Your Naming Conventions Intact 133
Generating an HTML Prototype 137
The Sitemap Diagram 140

A Device/OS-agnostic UI Framework 142
First Wireframe – Produce [Visitor, User Not Logged In] 145

A Quick but Structured Construction Approach 146
Getting Started with Masters and Dynamic Panels 148

Global Elements as Masters 148
Axure Masters and Why to Use Them 149

The Global Navigation Bar 149
Adding Wireframe Pages 150
Creating Your First Master 150
Basic Interactions 152

Dynamic Panels to the Rescue 153
States Construction in a Dynamic Panel 156
Automatically Resizing a Dynamic Panel and Associated States 157

Adding Visual Effects 157
Adding Sketch Effects 159
Summary 160

Chapter 4: Creating Basic Interactions 161
Axure Interactions 161
Axure Events 163

Page-level Events 163
Widget-level Events 165

Axure Cases 168
Axure Actions 170
Things to Keep in Mind 172

Widgets, Events, and Context 172
Labeling 173

Example 1 – Controlling Styles 174
Step 1 – Navigation Bar Setup 175
Step 2 – Setting the Navigation to Reflect the Current Page 176
Step 3 – Setting the Remaining Tabs 178

Example 2 – Hide and Show 181
Construction Strategy 181
Step 1 – Assigning Styles to the LOG IN Tab 181
Step 2 – Creating the Login Layer 182

Table of Contents

[v]

Step 3 – Show or Hide the Login Panel 184
Example 3 – Utility Actions 186

Step 1 – the Lightbox Widget 186
Step 2 – Interaction 187

Summary 189
Chapter 5: Advanced Interactions 191

Conditions 192
IF-THEN-ELSE 194

A Basic Set 194
How Statements Relate to Each Other 196
AND and OR 196
Sandbox Files for Learning and Experimenting 198
Guided Example – Conditions 198
Step 1 – Defining the Interaction 199
Step 2 – Wireframe Construction 199
Step 3 – Setting the First Condition 200
Step 4 – Adding an Interaction to the Condition 202
Step 5 – Testing the Interaction 205
Step 6 – Tweak and Iterate 206

The Condition Builder in Detail 206
Guided Example – Higher Fidelity with Multiple Conditions 208

Troubleshooting Conditions 223
Raised Events 223

Guided Example 224
Step 1 – Creating a Raised Event on the Master 225
Step 2 – Applying an Interaction to Raised Events on a Page 227

Amplifying Raised Events in Nested Masters 229
Variables 234

Guided Example – Tracking Items in a Shopping Cart 235
Step 1 – Defining the Interaction 235
Step 2 – Constructing the Interaction 235
Step 3 – Introducing Variables 240

Variable Types 249
Global Variables 249

Axure's Built-in Variable 249
Create Your Own Variables 249

Special Variables 250
Usage Examples 251
Local Variables and Functions 251

Naming Variables 252
Pros and Cons of Using Variables 252
Summary 253

Table of Contents

[vi]

Chapter 6: Widget Libraries 255
When to Use a Widget Library 257
Library Types 258

Axure's Built-in Libraries 258
Axure and Community Libraries 258

Submitting a Widget Library 259
Create Your Own Widget Library 260
How to Create a Widget Library 260

Step 1 – Creating the Library File 260
Step 2 – Creating a Custom Widget 262
Step 3 – Refreshing a Library in the Project File 264

Managing Widget Libraries 264
Masters or External Widget Libraries? 265

Using RPLIB 266
Pros 266
Cons 266

Using Masters in an RP or RPPRJ file 266
Pros 267
Cons 267

When to Begin Creating Patterns 267
Wireframe Global Patterns 269

Summary 269
Chapter 7: Managing Prototype Change 271

From a Vision to Reality 272
The Change-readiness Checklist 273

Expectations, Paradigms, and Change 273
UX and Software Development Models 275

Traditional (Waterfall) 276
Agile 277

Estimating Axure Work 278
Where Does Time Go? 280
Account for Responsive Web Design (RWD) 282
Account for Refactoring an Axure File 282
More on Expectation Alignment 284

Construction for Change 285
Cascade Change and Rollback Change 286
Rollback Change with Team Project 286
Cascade Change with Masters and Libraries 288
Cascade Change with Custom Styles 288

Widget Properties' Cheat Sheets 288
Default Widget Styles 291
Local Changes with Style Painter 292
Alignment with the Project Style Guide and CSS 294

Table of Contents

[vii]

Have a Style Guide? 295
Axure Custom Styles 295
Impact of Alignment of the Prototype with Visual Design 301
Alignment with Existing Visual Design 302
The Page Style Editor 304

Guides 304
Global Guides 305
Page Guides 306
Grid 307

Summary 308
Chapter 8: UI Specifications 309

Importance of Collaboration 310
Aligning Expectations 311

The UI Specifications 312
Global Specifications 312
Generators and Outputs – Specifications and Prototypes 314
Customizing the Word Specifications Generator 317
Page Notes 318

One Note Section Versus Many 320
Annotation Fields 321
Annotation Views 322

Generating Specifications 323
The General Section 323
The Pages Section 324
The Masters Section 326
The Page Properties Section 329
The Screenshot Section 331
Adaptive Views 334
The Widget Tables Section 335
The Layout Section 337
The Word Template Section 338
Formatting-applied Word Styles 339

Quick Tips to Improve the Layout 341
Setting up the Wireframe with OnPageLoad 343

Summary 343
Chapter 9: Collaboration 345

Team Projects (Pro Version Only) 347
Understanding the Team Projects Environment 347
Understanding the Check Out/In Status 348
Setting Up a Shared Repository 349
Loading from a Shared Repository 358
The Team Menu 361

Table of Contents

[viii]

Creating and Loading 361
Updating the Entire File 361
Updating Single Page or Master 362
Managing Team Projects 363
Browse Team Projects History… 366
Repoint to Moved Shared Directory… 370
Clean Up Local Copy... and Dealing with a Working Copy Locked Alert 371

Best Practices for the UX Axure Teamwork 372
Attributes of the UX Team 372

axureShare – Axure's Cloud Solution for Sharing 374
Creating an axureShare Account 376

Feedback from Stakeholders – the Discussion Tab 376
Discussions Hosted on axureShare 377

Prototype ID and Other Features 378
Discussions Not Hosted on axureShare 385
Publishing to Axure Share 386

Summary 389
Appendix: Practitioners' Corner 391

Survey of Axure Users 391
Troubleshooting Interactions Checklists 393

The General Approach 394
Questions to Ask when Debugging 395
Common Hurdles 396

Construction Tutorials 397
Shira Luk-Zilberman – Simulating a Type-ahead Search Experience 398

Practitioner Profile 398
The Tutorial 398
1. Creating a Google-like Type-ahead Search Interface 400
2. Creating a Facebook-like Type-ahead Search Interface 415
3. Creating a LinkedIn-like Type-ahead Search Interface 418
Summary 428

Svetlin Denkov – Building a Form-factor Viewer/Emulator to
Support Effective RWD Demos on the Desktop 428

Practitioner Profile 428
The Tutorial 428
1. Setup and Assumptions 430
2. Constructing the Representation 432
3. Possible Limitations 439
Takeaways 440

Reusing Cases Across Different Widgets and Events 440
Practitioner Profile 440
The Tutorial 441
The Problem 444
The Solution 445
Discussion, Takeaways, and Next Steps 446

Table of Contents

[ix]

Marc-Oliver Gern – Using the Axure UI Kit, a Widget Library 448
Practitioner Profile 448
1. Ideate and Define 448
2. Build 449
3. Contextualize 451
4. Test 452
5. Iterate 452

Collaboration 452
Ildikó Balla – Collaboration in Small Teams 453

Practitioner Profile 453
Reflections on Team Projects 453

Susan Grossman – Enterprise Team Sharing 454
Practitioner Profile 455
Reflections on Team Projects 455
Why Have an Existing Online Product Outside the Firewall? 456
Process and Convention 456
Always Get the Latest 456
Size 457
Enterprise Naming Conventions 458
Names and Dynamics 458
Team Skillsets 459
Publishing and Prototyping Pages and Settings Updates 459
Setting Expectations 460
So What Are You Boarding/Framing/Prototyping? 460
Look And Feel (L&F) in Wires 461

Orbitz Worldwide – Axure As a Document Base 463
Practitioner Profiles 463
Background 465
Why Axure 466
Investigation and Implementation of Axure as a Document Base 467
Proof of Concept 467
Project Document Improvements with Axure 468
Lean-down Documentation 469
Effort/Estimation 469
Internal Documentation Process 470
Storing/Sharing Files 474
Demo to UX Team and Management 474
Training/Change Management 474
Axure Migration 475

Afterword 477
Index 479

Preface
Designing the user experience has never been more exciting and prototyping it has
never been more challenging. Prototyping is the single most cost-effective means to
track usability problems before you begin investing in visual design or coding, and
Axure RP 7 is the industry's foremost prototyping tool.

This detailed, practical primer on Axure 7.0 is a complete rewrite of the previous
edition due to the numerous new features in Axure 7.0. The demand for skilled
Axure professionals is high, and familiarity with Axure is an expected prerequisite
for UX designers worldwide. Short on jargon and high on methods and best
practices, packed with real-life scenarios and step-by-step guidance through
hands-on examples, this book will help you integrate Axure into your
UX workflow.

What this book covers
Chapter 1, Prototyping Fundamentals, covers the Axure option, project-level forecasting,
a weighted checklist for UX projects, Axure construction strategy checklist, its usage in
various project types, and tips for using Axure on large projects.

Chapter 2, Axure Basics – the User Interface, explains file formats and workspace.
It also covers the wireframe, Sitemap, Masters, Widgets, Widget Interactions and
Notes, Page Properties, and Widget Manager panes. It further explains adaptive
views, repeater, Web Fonts, toolbar, and menu bar.

Chapter 3, Prototype Construction Basics, covers device/OS-agnostic frameworks,
objectives and artifacts, naming and labeling conventions, requirements, use cases,
flow diagrams, navigation, masters, dynamic panels, and visual effects.

Chapter 4, Creating Basic Interactions, covers Axure interactions, events, cases,
and actions.

Chapter 5, Advanced Interactions, covers conditions, raised events, and variables.

www.allitebooks.com

http://www.allitebooks.org

Preface

[2]

Chapter 6, Widget Libraries, covers masters and widget libraries, built-in libraries,
community libraries, creating your own widget library, managing libraries,
and managing visual design patterns.

Chapter 7, Managing Prototype Change, covers change readiness checklist, estimating
your work, rollbacks with Team Projects, custom styles, style painter, alignment
with visual design, guides, and grids.

Chapter 8, UI Specifications, covers configuring page notes and annotation fields,
annotation strategy, and configuring specifications generators.

Chapter 9, Collaboration, covers team projects, best practices for teams, and AxShare.

Appendix, Practitioners' Corner, discusses a survey that was conducted among Axure
users, troubleshooting guidelines, and construction tutorials.

What you need for this book
To follow the demo project in this book and to experiment on your own, you will
need the following:

• Axure 7 is available for Windows and Mac. To experiment with Axure's
Team Project feature and with generating Word specifications, Axure 7
Pro is required. You can download a free, 30-day evaluation copy from
www.Axure.com, and the company is very generous in extending the
trial period. For latest list of system requirements to run Axure on either
platform, check out Axure's website.

• For specifications, MS Word 2000 or newer for Windows and MS Word 2004
or newer for Mac.

• Chrome, in both platforms, is the recommended browser. Firefox is fine
as well.

Who this book is for
This book is intended for:

• UX practitioners, business analysts, product managers, and others involved
in UX projects

• Consultants or in-house staff who work for agencies and corporations
• Individual practitioners or UX team members
• UX practitioners who seek to deliver a higher value in a fraction of the time

involved in wireframing and annotating with traditional techniques based
on drawing tools

Preface

[3]

• UX practitioners who want to dramatically improve their productivity and
skills with expertise in delivering rich, interactive prototypes and extensive
specifications instead of static documents

The book assumes that the user has either little or no familiarity with Axure. Perhaps
you are evaluating the tool for an upcoming project or are required to quickly get up
to speed in a project you just joined.

The book assumes familiarity with the principles of the user-centered
design methodology.

Conventions
In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows:
"By default, the .rp files are stored into the root Documents/Axure folder."

New terms and important words are shown in bold. Words that you see on the
screen, in menus or dialog boxes for example, appear in the text like this: "Once you
have installed Axure and launched it, you are presented with the Welcome to Axure
RP Pro 7.0 window."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or may have disliked. Reader feedback is important for
us to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com,
and mention the book title via the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

Preface

[4]

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the example code
You can download the demo files for this book at http://prototypingessentials.
weebly.com.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you would report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the errata submission form link,
and entering the details of your errata. Once your errata are verified, your submission
will be accepted and the errata will be uploaded on our website, or added to any list of
existing errata, under the Errata section of that title. Any existing errata can be viewed
by selecting your title from http://www.packtpub.com/support.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you
come across any illegal copies of our works, in any form, on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with
any aspect of the book

http://prototypingessentials.weebly.com
http://prototypingessentials.weebly.com
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata

Prototyping Fundamentals
"Come gather 'round people

Wherever you roam

And admit that the waters

Around you have grown

And accept it that soon

You'll be drenched to the bone

If your time to you

Is worth savin'

Then you better start swimmin'

Or you'll sink like a stone

For the times they are a-changin'."

 – Bob Dylan, from The Times They Are A-Changin'

Prototyping Fundamentals

[6]

The Times They Are A-Changin'
There is good news and not-so-good news to report on the state of things since the
publication of Axure 6 Prototyping Essentials, Ezra Schwartz, Packt Publishing. The
good news is that Axure now has over 80,000 licensed copies in 126 countries, and
over 1 million .rp files have been uploaded to AxShare in 2013 alone (including new
versions of the same file). The not-so-good news is that Responsive Web Design
(RWD), a development approach hatched by programmers for programmers, has
swiped the rug under the brief autonomy that User Experience (UX) designers had,
over the creation of rich, interactive HTML prototypes, which tools such as Axure
afforded without writing a single line of code. In RWD, developers solved a serious
problem that they had to deal with: how to effectively and efficiently deal with
multiple display sizes with a single code base. For designers, however, it became
a struggle to construct and document the interactive prototype for variable screen
sizes even in Axure. Increasingly, the task of building the prototypes appeared
to be shifting back to the developers.

What happened? A profound change in human-computer interaction is sweeping
the world, leaving in its wake injured giants of hardware and software, who less
than a decade ago, roamed undisturbed in an ecosystem dominated by Intel- and
MS Windows-driven desktops and laptops. The trigger was squeezed on June 9,
2007, with the introduction of the iPhone and again on April 10, 2010, with the
introduction of the iPad. Since then, iOS and Android devices moved to account
for the majority of devices sold worldwide.

That the world is rapidly turning mobile or that Intel and Microsoft lost their
dominance so quickly, is part of the transformations we are experiencing. For UX,
it is rather the emotional attachment that owners develop with their devices, which
drives their popularity. The devices facilitate experiences and connections with both
the real and virtual worlds through the mashing of personal and social, work and
leisure, content discovery and consumption, and entertainment and learning.

For decades, user interfaces were assembled out of a small and finite collection of
beloved widgets tied to a small and finite set of mouse and keyboard interactions.
These user interfaces were composed of a small and finite set of window types. The
majority of these interfaces were delivered to displays that increased incrementally
in size and resolution over time. Yet, it turned out that it is not so simple to slap
together a bunch of widgets on the screen.

Chapter 1

[7]

But the complexity of designing a good user interface just a few years ago, pales in
comparison to the present state of chaos; the number and flavor of user interface
widgets keeps exploding, as new means of interactions are being invented via
fingers, gestures, voice, eyes, and most recently, our brain.

Anywhere-Anytime used to be a favorite marketing catchphrase in the '90s, but
globalization and technology turned it into an Anywhere-Anytime-Any OS-Any
Device reality. Organizations are scrambling to adjust to this reality and for some,
it's a survival effort.

Designing acceptable and good experiences kept eluding the majority of software
of all types, regardless of the investment. After several decades of a slow and uphill
battle for recognition, business and engineering stakeholders are ceding to the
emerging UX profession. This is because good UX drives down the overall life cycle
costs, increases market share, and earns the user's satisfaction and loyalty. Simply
said, a bad user experience is bad for business.

However, guess who else is scrambling these days? We are! Just as UX has earned
a prime-time spot at the software development life-cycle table—prototyping the
experience for a device-agnostic world, has been snatched again by front-end
developers, who invented a practical technique to deal with the challenge. They
came up with a practical approach, while in UX circles, people were still debating
the merits of Visio and paper static prototyping.

We have a great deal of respect for front-end developers who, in our opinion, are
UX's best partners in evolving exceptional user experiences. Gary DuVall, lead
presentation layer architect, talks about the challenges of keeping up with the
constantly shifting technologies, and how front-end developers can greatly help UX
when developers and designers tightly collaborate. As an example, he mentioned a
project he worked on that experienced serious challenges with tables in a responsive
design. The research and experimentation lead by the presentation-layer team has
yielded a feasible approach that allowed the designers to use it to great success and
solve the design problem.

Prototyping Fundamentals

[8]

At the time of writing this book, RWD is the most practical, technical method to deliver
OS and device-agnostic experience to the Web. This explains its rapid propagation if
you are a developer, but for UX, there is a sense that designers are back where they
were a decade or so ago: front-end developers create prototypes and designers are
further removed from being able to experiment first-hand with interactivity.
The following diagram visualizes the two common models for UX prototyping:

Interactive

Prototype

A B

UX Designer

Front-end

Developer

UX Designer

Interactive

Prototype

Wireframes Wireframes

Image 1

• Option A: Complete dependency on front-end developers to express
interactivity ideas and accept the risk of becoming marginalized. In this
scenario (Image 1, A), UX creates static wireframes. The front-end developer
turns them into HTML. The concern is not only around the waste of time and
money this option can be, but also around issues that emerge in interpreting
the dynamics of the interaction.

• Option B: You can become a coder yourself. You can learn HTML, CSS, and
JavaScript, as it seems that there are no good UX tools to deal with RWD or
are there?

It is common to find ads that look for a UX designer who can: plan and conduct user
research, conceive and lead the design, create wireframes, build production grade
html-css-javascript prototypes, and write detailed documentation. In other words,
a one-person team that can do the work of several professionals, each with a specific
expertise, but get paid as an individual. This, in our opinion, reflects how deeply UX
is still misunderstood.

Chapter 1

[9]

We believe that the primary focus of UX designers must be set on conceiving,
experimenting with, and communicating UX. A tight collaboration with developers
and a solid understanding of the technologies that drive modern software
development, including HTML and CSS, is a must. UX practitioners should
not be treated as a "jack of all trades" because they then become expert in none.
Instead, UX designers need specialized and powerful tools to design UX.

The Axure Option
We propose a third option in which UX designers do not need to cede control over
rapid prototyping to front-end developers nor become coders. While the learning
curve of Axure 7 is somewhat more demanding, one can easily imagine and
materialize contemporary UX firsthand. In Axure 7, you can evolve from a concept,
to high-level wireframes, and then a detailed design in a responsive manner. If you
are a current user, there are some new capabilities that will require you to drop
familiar construction methods such as how you use dynamic panels.

Yet, and here we are talking from our experience; you will quickly adopt the new
capabilities because they are built into and extend the familiar framework. If you
are coding, Axure is surprisingly robust in its support for JavaScript and CSS. If you
don't care much about this fact, you can still create amazing responsive simulations
without having to code them.

"We shape our tools, and thereafter our tools shape us."

 – Marshal McLuhan

Marshal McLuhan's insight is especially intriguing in the context of tools that help
us conceptualize and express the user experience. Our motivation to write this book
has been shaped by personal experience with Axure. Early on, we were struck by
the freedom to design, test, iterate, and present fully clickable interactive, and now,
responsive, HTML prototypes of the experience we design. This is accomplished
without a front-end developer and yet, our energy is focused on the user and
the best UX instead of being thinned by struggling to learn a programming or
authoring language.

Both Elizabeth and I share an experience that many other Axure users had.
Within a few hours of launching Axure for the first time, we were able to create an
interactive prototype without coding. Since that day, we have rarely used Visio as a
wireframing tool. We also realized that in addition to being able to create interactive
prototypes, Axure can help us deal with a major chore—creating and updating the
user interface's UI specifications document.

Prototyping Fundamentals

[10]

If you ever created a specifications document in a traditional way using Visio,
Word, or InDesign and a screen capture utility, you would know the drill—a tedious,
time-consuming, and expensive process that involves adding footnote tags to Visio
wireframes, taking screenshots of these wireframes, saving them, importing them to
the specifications document, and finally, writing the relevant annotations.

However, iterative design is at the heart of the UX process, meaning that updates
are frequent and sometimes substantial. And so you have to retake screen captures,
name and save the image files, import the updated version to the document, and
update the annotations. Sometimes, changes to wireframes require a cascading
change in the order of annotations, which involves more work and potential errors.
The process needs to be repeated for each updated wireframe. Multiply the time
it takes by the number of modified wireframes in your project, and the magnitude
of the effort becomes clear and daunting—a real drain of time, money, and energy
which is bad for everyone involved in the project.

Axure's integrated specifications offered an innovative approach that had the
potential to greatly reduce the manual process through automation. Axure numbers
the annotations on the wireframes, takes the screenshots, and organizes the entire
content in a customizable layout. While configuring the UI specifications document
takes some experimentation, the effort pales in comparison to the manual process.
Moreover, once you are happy with the way the specifications generator works,
you no longer need to deal with it.

Since its introduction in Version 4.X, Axure's support for teams has evolved as an
important enhancement that helped cement its adaptation among UX professionals.
Any sizable project requires multiple UX resources, and collaboration is a critical
prerequisite, which Axure addressed with its Shared (now known as Team)
Projects feature.

Elizabeth and I share another experience with many users. As we started using
Axure, we occasionally stumbled on technical issues or had questions we could not
figure out. The company's responses were and continue to be prompt and detailed.
Files sent for checkup are reviewed, the issues are explained, and bug fixes are
promptly posted. This commitment and dedication to customer support has been,
and continues to be, the reason for the loyalty Axure users have for the company.

Chapter 1

[11]

Axure users also benefit from an incredibly helpful community of fellow users
worldwide on Axure's discussion forum (refer to http://www.axure.com/forum).
Typically, you can get a helpful response to your query within hours, and people are
generous with sharing their expertise. Over time, as users gain some expertise with
the tool, many enjoy being able to help others in the forum. Overall support is very
important when a tool becomes critical in our work, because it has a direct impact
on our livelihood. Support becomes a lifeline in times of crisis and the knowledge
of that such a level of support exists plays a major role in wining user-based loyalty
and tolerance.

Axure's value proposition continues to be strong and compelling, and its success
in convincing clients and team members to approve or adopt it goes back to times
when Axure was far less known among UX practitioners. This UX-centric integrated
environment for wireframing, prototyping, UI specifications, and collaboration also
carries a price tag. It is a small fraction of the cost and implementation complexities
of enterprise tools.

A few years ago, some clients raised a concern about the ability to find UX
resources who knew how to use Axure and some UX designers raised a concern
about switching from tools they were very familiar with to a new tool. Despite the
fact that these two concerns can potentially feed each other in a damaging loop,
which makes it difficult to affect change, Axure has captured a dominant position
in the UX industry despite numerous competitors.

External pressures also drive a change in attitudes and acceptance of the new
competitor. Indeed, the growth of Axure's popularity among UX designers
paralleled two important trends: the solidification of UX as an integrated part of
the overall development process and technological advances that afforded the
creation of rich user experiences. As more companies recognized the business value
of modern user experience, budgets opened up and with them, the demand for UX
professionals increased.

With this increase in demand came the pressures to deliver on time and budget,
both often aggressive to absurdity. At a certain point, overly ambitious schedules
create serious friction with the core principles of user-centered design, an inherently
time-consuming methodology, which calls for contextual research, iterative design,
and user validation. Many in the UX community realized that besides helping to
produce world-class deliverables on a tight schedule, Axure is also helping UX stay
profitable. This is because we can deliver a lot more value to our clients in less time,
with less resources, and less sweat.

www.allitebooks.com

http://www.allitebooks.org

Prototyping Fundamentals

[12]

Profit is always important because at the end of the day, design agencies and
independent consultants need to turn a profit in order to stay viable. In-house
UX departments also need to increase productivity and reduce costs to help their
company's bottom line. It is impossible to stay viable for long if you have to double
and triple your workload just to keep up with the pressure of constant updates to
a prototype and UI specifications. Axure helps maintain profitability because it is
relatively easy to master and it affords substantial efficiencies through a clever use
of customizable patterns, templates, and automation.

In conclusion, and reflecting back on McLuhan's observation mentioned earlier,
Axure is a tool that has been shaped by UX designers over the course of over a
decade. At the time of writing this edition of the book, it is widely used, with
tens of thousands of licensed copies running worldwide on Mac and Windows,
probably making Axure the de facto UX design tool in our industry.

In this chapter, we will introduce you to a simple planning and logistics
methodology that will make your life easier while working on projects.
We will cover the following topics:

• The A Weighted Risk Checklist for UX Projects section covers a diverse set of
variables over which you have little control at the start of a project, will help
you develop a predictive estimate of possible challenges and suggests actions
you can take to turn lemons into lemonade

• The Axure Construction Strategy Checklist section helps define your approach
to the construction of the Axure project file well before you even fire up
the software

• To remind you that UX projects are a collaborative effort, the stakeholders'
expectations list will help orient your position related to business, project
management and engineering stakeholders, as well as other design and
user experience practitioners

UX Prototyping by UX Designers
Our friend and a UX pro, Rich Macefield, told us about his amazing trip to Egypt,
where, instead of joining the crowds at the Great Pyramids of Giza, he visited the
site of smaller pyramids constructed around the 27th century BC. These pyramids
are considered the prototypes of the famous structures. Back in the 15th century,
Leon Battista Alberti described an event that took place in the first century BC. In his
classic text, On the Art of Building in Ten Books, Alberti mentions that Julius Caesar
"completely demolished a house on his estate in Nemi, because it did not totally
meet with his approval." and continues to recommend "…the time-honored custom,
practiced by the best builders, of preparing not only drawings and sketches, but also
models of wood or any other material…".

Chapter 1

[13]

One might think that, given his authority as the ruler of the Roman Empire, Julius
Caesar was perhaps abusing his powers by acting in a capricious, short-tempered
manner. We can also think about Caesar as a typical client, reacting somewhat badly
to a design that did not meet his requirements and specifications.

Two millennia later, this is another way to think about the event that has an
immediate relevance to us. The core of the problem is how to figure out what the
client wants, and deliver a product that meets those expectations. This is a problem
of communication, and UX designers face the challenge of resolving it satisfactorily
on each project they work on. Often, the client might have a clear idea in their head
of the exact way, the software should look and function. Sometimes the client has no
idea of how the structure should look or function, but has a need to have it in place
in order to fulfill a business requirement or some other pressing need.

From the early days of computer science, people found obvious parallels to physical
architecture and borrowed from it liberally—terms and titles such as architect, build,
configuration, and so on. Similarly, to architects and builders of physical structures,
we need to create a functional product, and face the challenges of tracking tight
budgets, adhering to schedules, and making our clients happy.

However, beyond borrowing terminology from architecture, aspects that relate to
engineering and process rigor take much longer to implement. For example, the use
of modeling for user interface and user experience design as we think about it today,
came quite late to the development life cycle. This perhaps explains why a very
high number of software or Web projects fare badly, but our cities are not littered
by the ruins of collapsed buildings. Compare a large architecture project set to build
a 100-storey skyscraper with a large enterprise software project. What are the odds
that both will be fully up and running within a couple of years? The odds are very
high for the skyscraper and far less for the software.

In other words, if we compare the rigor, efficiencies, and processes that translate a
cardboard model and blueprints into a skyscraper with the typical chaos of software
projects (perhaps with the exception of software for airplanes and such no-failure
uses), we probably have some ways to go; it is an evolutionary process.

The truth is that of the billions of private residences, public buildings, and industrial
structures that humans constructed on earth since moving out of caves, relatively
few ever benefited from the design of an architect. Not that these are necessarily
bad; in fact, many of the structures we see today evolved successfully over millennia.
People build their own homes—individually or as a communal effort. Read Donald
Harington's The Architecture of the Arkansas Ozarks for a wonderful account of such an
evolutionary process.

Prototyping Fundamentals

[14]

Alberti further writes: "Having constructed those models, it will be possible to examine
clearly and consider thoroughly relationship between the site and the surrounding
district, the shape of the area, the number and order of parts of a building...It will also
allow one to increase or decrease the size of those elements freely, to exchange them,
and make new proposals and alterations until everything fits together well and
meets with approval. Furthermore, it will provide a surer indication of the likely
costs—which is not unimportant—by allowing one to calculate costs".

It is fascinating to translate Alberti's writings about modeling for buildings to UX
prototyping for software. He is talking about the ability to articulate the layout,
hierarchy, organization, and order of entities. He further talks about the ability to
use the prototype for cost and effort estimation.

Another example of providing a client with wireframes and ensure its alignment
with the client's needs is mentioned in the book, Painting and Experience in 15th
century Italy, Michael Baxandall, Oxford University Press. Baxandall writes about the
15th century painter, Filippo Lippi. Back in 1457, Lippi was commissioned to paint a
triptych for Giovanni di Cosimo de' Medici, the Italian banker and patron of the arts.
In a letter to Giovanni, Filippo writes "...And to keep you informed, I send a drawing
of how the triptych is made of wood, and with its height and breadth".

Prototyping Interaction
So it turns out that we did not quite invent the prototyping wheel after all. The
value propositions, ROI calculations, and fancy technical terminology of prototyping
have been around for a couple of millennia, if not more. There are however, several
important differences that make prototyping rich user experience particularly
challenging for UX practitioners.

In the past, structures did not involve dynamic interaction with the occupant nor did
they need to shrink or expand at a whim. Buildings stood there, whether there was
an occupant or not. However, we are entering an age when, as you enter a building,
rooms could contextualize themselves instantly to reflect your preferences and
perhaps even adjust physically to reconfigure the space to your specific needs.

When it comes to prototyping a rich user experience, the complications come from
the need to demonstrate the following norms, among other things:

• Scenarios: The prototype needs to simulate the possible paths a user would
have on any given screen and the system's appropriate responses of the
actions that the user is taking. Often, the path could be conditional and take
several steps to complete in a coherent and satisfactory way. The arsenal of
interaction patterns that is available to UX designers today is significantly
richer than what was available a decade ago.

Chapter 1

[15]

• Multiple screen sizes: We must consider screen sizes, for example, small
for smartphones, medium for tablets, large for desktops, and extra large for
those large, high-definition screens. The user experience is influenced by
the size of the screen, although the user might expect the same content
and functionality regardless of the device in order to accomplish a task.

• Prototyping in-page data refresh: Back in the eighties, a prevalent workflow
for a given task in client-server software involved hopping from one window
to another. In the nineties, the common web navigation was hyperlinking
from one page to another, facilitating a similar goal. These days, the need to
negotiate multiple windows has been greatly diminished with asynchronous
in-page data updates, but the complexities of prototyping in-page data
refresh have increased.

• Personalized experience based on login: The prototype needs to simulate
how the system will render for different users based on the entitlements.
In the case of non-registered users, the site might display special offers to
entice the user to register. A registered user may get information based
on the preferences they have set in an earlier session and a paying user
needs access to additional content based on their past activity on the site.
Increasingly, we are asked to model all of these permutations.

• Scalability and future scope: Many applications are deployed in phases,
making it possible for the business to prioritize its investment in the project
based on strategic goals and practical, budgetary, and technical constraints.
The prototype, which often begins as a full-fledged visionary concept,
needs to be able to support graceful degradation or fall back on less-ambitious
capabilities of the present and scale in the future.

• Adaptability to localization: In a global economy, a common requirement is
to develop an application that can be easily localized to reflect the language
and cultural preferences of the local demographics of its users. The prototype
needs to demonstrate the ability to render in multiple languages.

• Exception handling: Following business rules helps dictate the logic
that drives user-system interaction. One of the toughest requirements to
prototype is how the application will respond when the rules for moving
through an interaction path are subject to exceptions. For example, sales
representatives want to increase the allowed discount on a product. Often,
the demand for overrides surfaces late in the design process as a result of a
push back from stakeholders who demand such capabilities.

Similar to architecture and construction, software is an evolving art and science.
However, unlike construction, many of the tools and methodologies are evolving at
such a rapid pace that it is very difficult to establish solid patterns of development.
While physical architecture and construction evolved over centuries and stayed
relevant for a long time, in technology, work created ten years ago is practically
ancient and moot today.

Prototyping Fundamentals

[16]

Project-level Forecasting
"It is possible to fail in many ways... while to succeed is possible only in one way."

 – Aristotle from the Nicomachean Ethics

Aristotle's observation predated by in some twenty-three hundred years Tolstoy's
famous maxim that states:

"Happy families are all alike; every unhappy family is unhappy in its own way."

The idea is now encapsulated by the Anna Karenina principle, which, loosely
speaking, describes an undertaking (say, UX project) in which an issue in any one
of a number of factors dooms it to failure. Consequently, a successful undertaking
(the same UX project) is the one where every major problem has been projected and
avoided; this is our goal.

A Weighted Risk Checklist for UX Projects
Before you embark on a UX project, you should carefully consider several heuristics
which will help you predict what lies ahead, how to take appropriate steps to take
advantage of the potential opportunities, and how to avoid potential pitfalls. These
heuristics share an important attribute—you have little or no control over them at the
start of the project, but you may be able to affect change as things move along.

The checklist we propose has the following benefits:

• The factors in this checklist are generic and relevant to any UX project.
• The value of each factor can only be one of two possible options.
• Each option is weighted.
• In each option pair, the Base option's weight equals 1.
• The risks are not bad or good; it is just that, a risk of the project that

will run over time and over budget because of complexities, churn,
miscommunication, and other factors that are relevant to the risk.

• Before you engage in the project and start it, you should know the value
for each factor.

• When you add up the numbers, the total score is a measure of your
forecasted risk. The higher the number, the higher the risk.

Chapter 1

[17]

The idea is not to prevent you from moving forward with the work. There are
additional factors to consider when it comes to that. There is a risk in anything
we do in life.

The Heuristics
The purpose of the following list is to get you ready and when possible, prepare. Feel
free to modify—add or remove—items as you see fit to your personal circumstance.
The key takeaway here is that you should have a list. It is a repeatable measure and
tool that helps you identify patterns so that you can develop the best practices from
one project to the next.

Consultant

Your Employment

Employee

Non-EnterpriseEnterprise

The Client

Transactional

New Redesign

New or Redesign

Yes No

Yes No

Mobile First

Localization

Yes No

Yes No

Business

Requirements Exist

UX Resources

YesNo

You+Team You

Communication &
Collaboration Tools

UX Documentation &
Traceability

Lame Modern

Detailed Light

Enterprise Grade

IT

UX Reporting to...

Business

Risk

The Project

TypicalHigh

Image 2

Prototyping Fundamentals

[18]

Heuristic Base Wt Higher Risk Wt
1 Your Employment Employee 1 Consultant 2
2 The Client Non-Enterprise 1 Enterprise 2
3 UX Reporting to... Business 1 Engineering 2
4 Enterprise Grade... No 1 Yes 2
5 New Product or a Redesign Redesign 1 New product 2
6 Transactional No 1 Yes 3
7 Responsive No 1 Yes 5
8 Localization No 0 Yes 1
9 Business Requirements Exist Yes 2 No 5
10 UX Resources You 1 UX team 2
11 Communication &

Collaboration Tools
G Docs
and similar.

1 MS based 1-3

12 UX Documentation &
Traceability

Light 1 Detailed 3-8

Min Possible 12 Max Possible 30-37

The Score
When you sum up the items in the preceding table, you will end up with a score that
is a predictor of what your scope will be. When you roll off the project, go over this
list again and compare the prediction to the reality that you experienced. It is a good
debriefing technique. The following table proposes a way to interpret the score:

Range Prediction about your experience with the project
0-8 Green (lowest risk)
8-17 Yellow
18-23 Orange
24-37 Red (highest risk)

If you have some experience with previous projects, think about them, score them,
and see to what degree the result fits your personal experience. We have tested this,
and it seems to work quite well.

Note that a stormy prediction can also be a very rewarding professional and personal
experience. Over the years, both Elizabeth and I had the opportunity to work on
projects that were challenging and yet the reward of colleagues and friendships,
the creativity, and satisfactions minimize the difficulties.

Chapter 1

[19]

The following is an expanded review of the heuristics. Feel free to send us a note and
share your personal insights.

Your Employment Type
The form of your engagement is at the core of your starting position in the project.
While there are infinite variations given one's seniority and role, the two most
common types of employment that frame your relationships with stakeholders can
be your ability to influence things and the well-being of your emotional investment.
The weighting of employment types is:

• You are a consultant of the company (Risk Weight = 2)
• You are an employee of the company (Risk Weight = 1)

Risk Factors for UX Consultants
The following are the risk factors for UX consultants:

• You probably don't really know anyone—who are real influencers and who
are puffed pretenders—friends or foes of or office politics? How strong is
your sponsor and how dependent are they on your success?

• You are an outsider and are being constantly evaluated at the start of the
project. Trivial misunderstandings may get blown out of proportion. Some
are hoping to see you make mistakes.

• You are not familiar with the culture and attitudes and need to be aware of
the possible gaps in the expectations of how things get done.

Of course, being an employee does not shield you from significant challenges. If you
are an employee, the preceding items may be relevant. However, for the purposes of
this evaluation, we assume that employees are insiders and are better-positioned
than consultants.

Opportunities
The following are some tips to find opportunities:

• Ask for an organization chart and explore the organization's intranet if it is
accessible to you. Study it. Review the CC fields in your e-mail and match
the names to the organization chart.

• Move as fast as possible to expand the circle of stakeholders who are aware
of your existence by arranging short discovery meetings. Ask about their
expectations and concerns and if relevant, continue to seek their input as
the project moves along.

Prototyping Fundamentals

[20]

The Client
UX projects in large and small organizations are often challenging from a UX
perspective due to the dynamics of influence and the need to handle stakeholders'
power plays that may hijack important aspects of the design. The savvy to successfully
oppose a dominant and powerful stakeholder comes naturally to few of us, but
typically, it takes experience and courage. The sheer size of enterprise projects
diminishes the influence of a single stakeholder over all. In a small company, any
person on the project carries a significant influence just because there are far fewer
competing voices. In both cases, we propose you read about group behavior in the
context of social psychology to understand group think and other situations. Remember
that in the end, you win some and you lose some. Weighting the options as follows:

• The customer is a large enterprise, a small company, or a startup
(Risk Weight = 2)

• The customer is a mid-size company or organization (Risk Weight = 1)

Risk Factors
The following are a few risk factors that should be taken into consideration:

• The larger the organization, the higher the probability that one hand does
not know or care about what the other hand is doing, thus leading to
fragmentation and political power play

• The larger the organization, the slower things move due to added layers
of hierarchy

• Busy decision makers may be too far removed from the project's nuts and
bolts, making review meetings with them susceptible to major setbacks and
blowouts due to miscommunication and misunderstandings

• Vertical silos are common in large organizations leading to misalignment and
miscommunication around various aspects of the project's priorities, goals,
and approach

• Small companies and startups can be chaotic and dominated by overloaded
stakeholders with strong personalities

Chapter 1

[21]

Opportunities
The following are some tips to find opportunities:

• In a large corporation/organization, you should master the operational
mechanics, such as the phone system, reserving conference rooms, and
online sessions, as fast as possible. You want to avoid a potential derailment
of important meetings just because you could not figure out how to dial-in,
reserve a room in advance, and so on. While this is an attitude you want to
adopt in any setting, smaller organizations tend to be less formal and bound
by procedure.

• Understand the organization, flow of work and responsibilities between
departments, as well as governance structures that have impact on UX.
Also make sure to understand processes such as change management
and change control.

UX Reporting To...
It is rare that UX has complete organizational autonomy and influence, a situation
that would be ideal. However, for most projects, UX is either sponsored by
marketing, sales or other business functions or by the engineering department.
Typically, UX projects are initiated by the business as part of a larger strategic goal.
The closer the relationship with the business, the easier it is to affect alignment of the
experience with these goals. The weighting for this category is:

• UX is reporting to Engineering (Risk Weight = 2)
• UX is reporting to Business (Risk Weight = 1)

Risk Factors
The following are a few risk factors that should be taken into consideration:

• Engineering sometimes lacks a complete or accurate insight into the entire set
of strategic and tactical business objectives that drive the project.

• In many organizations, Engineering is focused on the maintenance and
upkeep of software, which is an operational model that is radically different
from the software development mode. As a result, you might find yourself
trapped in what appears to be an unnecessarily slow and bureaucratic
environment that is not optimal for rapid, iterative development.

• It seems that there is an infinite number of development methodologies and
it is possible that unless you are with the same organization, you will have to
adapt the UX process to whichever methodology is used in the project.

www.allitebooks.com

http://www.allitebooks.org

Prototyping Fundamentals

[22]

• Projects often start with an enthusiastic embrace of some methodology,
such as a flavor of Agile, and degrade over time to a state of loose chaos.

Opportunities
The following are some tips to find opportunities:

• Since you typically have little control over whom you will report to at a given
project, it is important to stay apolitical and avoid falling into the camp trap
of assigning blame to one party or another. We are uniquely positioned to
bridge differences of opinion as long as we communicate clearly and to
the point.

• If you feel that the methodology enforced by engineering is compromising
UX, make sure to understand the constraints that are at the root of the matter.

• It is possible to come up with recommendations and workarounds that while
still a compromise, ends up working better overall.

Enterprise Grade
There are various definitions on the Web for the meaning of enterprise grade, and
some include buzzwords such as "mission critical" and so on. Size matters! The
larger the project, the higher the risks involved in a successful experience project.
Enterprise-grade projects are notoriously challenging due to the need to deal
with multiple tentacles of a complex organizational hierarchy. This hierarchy is
often spread across coasts and continents, its culture, silos of power, and legacy
constraints. The weighting of this category is:

• Enterprise-grade project (Risk Weight = 2)
• Non-Enterprise grade project (Risk Weight = 1)

Risk Factors
The following are a few risk factors that should be taken into consideration:

• An enterprise project means that UX is impacted in multiple dimensions
such as scope and phasing, complexity, number of stakeholders involved,
and resources.

• UX-specific dependencies are often not accounted for when the project road
map and project plans are created. Omissions include no or insufficient time
for adequate iterative review and revision cycles, prototype refactoring,
digestion of usability testing results, and so on.

Chapter 1

[23]

Opportunities
The following are some tips to find opportunities:

• It is sometimes difficult to remember, but every one wants to be part of a
success. Recognize the forces of groups and social psychology that are in
play and be a positive force in meetings. Be flexible when accepting critiques,
yet firm in defense of the user experience.

• People are hesitant to voice their opinions even if they object to
something. However, they need to hear alternatives. Try to be prepared
with design options.

• As little as two voices, yours and another stakeholder's, in support of your
idea can help you convince a larger group of your design direction despite
stronger opposition. Always support your design with relevant arguments
that stem from research, experience, public examples, and so on.

New Product or a Redesign
UX work typically involves a revamping of an existing product or the invention of a
new one from scratch. It is the latter that is more problematic because only high-level
concepts have been explored but not in great detail. Unfortunately, the devil, as the
beaten phrase goes, is in those details. The weighting for this category is:

• The project is for a new product (Risk Weight = 2)
• This is a redesign project (Risk Weight = 1)

Risk Factors
The following are a few risk factors that should be taken into consideration:

• There is a lot that is unknown and will be in flux throughout the duration of
a new product. Major changes might and will happen at unexpected times.

• Initial assumptions are likely to be blown away as the project evolves. Scope
creep is endemic.

• Stakeholders who don't have a clear vision or true understanding of the work
will introduce doubt, hesitance, and tangential alternatives that may derail
aspects of the design and sometimes, the entire project.

• Redesigns too have their potential risks, especially when the there are high
expectations for a contemporary, engaging user experience, which is greatly
limited by the constraints of backend legacy technologies.

Prototyping Fundamentals

[24]

Opportunities
The following are some tips to find opportunities:

• It is rare to be involved in the creation of a brand new product. Take time
to do the research and develop design principles and framework concepts
that best fit the experience for your new product. The more solid and
well-supported your approach is early on, the better your chance to
place UX as a key player in the project.

• Design is critical when shaping the requirements, but it is hard to design
with requirements that are being shaped and thus, often change. This is
a typical conundrum. So, while it is extremely challenging to work in an
environment that sometimes may feel like quicksand, remember that
it is difficult for everyone on the project. UX can help by proposing
rapid iteration on evolving concepts that help stakeholders arrive at
the requirements.

• Despite the fast action, always present your work in an organized and
prioritized way. Always tie your work products to your understanding
of the importance and priority or requirements.

Transactional
Transactions mean that something is moving from a source (sender) to a target
(receiver). The volume of transactions is a function of the number of sources and
targets and the frequency of transmission. In addition to front-end experiences, a
robust administrative interface must be provided as well, to facilitate the ability to
deal with settings, business rules, and exceptions. Often, the administrator interface
gets short changed at the start of the project because it is not customer facing, only to
emerge as a massive, complex undertaking, once the work on the customer frontend
winds down. The weighting for this category is:

• The project includes aspects of transaction management (Risk Weight = 3)
• No transactions are involved (Risk Weight = 1)

Risk Factors
The following are a few risk factors that should be taken into consideration:

• Transactional systems involve exception handling, which may complicate
UX. Often, the business requirements have gaps in these areas.

• Prototyping transactional systems that needs to afford work with a lot of
data is more time consuming; not only is it important to simulate screens
that show many transactions—accuracy of simulated data is important.
This means that we have to pay close attention to the flows and data
transformations from one screen to another.

Chapter 1

[25]

Opportunities
The following are some tips to find opportunities:

• Axure's new repeater has great potential in helping simulate
transactional data

• Transactional application can provide you with opportunities to design
very compelling work

Responsive
The term, "Mobile First", became popular in 2013 and is a strategic declaration
that organizations make. In these declarations, they express their commitment to
reaching their audience on tablets and smartphones, ahead of desktops. This can be
accomplished in several ways, including OS native apps. However, the proliferation
of operating systems and devices turns native apps into a very expensive proposition.
Responsive Web Design levels the playing field by eliminating the cost associated
with native apps. However, for UX, the risks and challenges are still significant, as the
experience needs to be optimized to the display size. The weighting for this category is:

• Yes (higher risk, Weight = 5)
• No (typical risk, Weight = 1)

Risk Factors
The following are a few risk factors that should be taken into consideration:

• With RWD, you must have the design for all sizes ready at the same time.
In other words, you cannot release a website that is only optimized for a
smartphone and wait for the desktop view.

• Each breakpoint size requires an optimization such that the user gets the
appropriate experience. Even when you are very efficient, it takes extra
time to consider the various layouts across all sizes.

• Stakeholder meetings, user validation, usability testing, and of course,
construction take more time because you need to go over multiple layouts.

Opportunities
The following are some tips to find opportunities:

• If you are new to RWD, this is the chance to learn!

Prototyping Fundamentals

[26]

• It is easier to affect change and help stakeholders empathize with users by
reminding everyone to look at their phones. Because desktop and mobile
experiences are so different, stakeholders, who may initially be oblivious to
the quality of the user experience on a desktop, get your point immediately
when smartphones and tablets are discussed.

Localization
When software needs to be translated to one or more languages, several layers of
complexity are added to the project, both on the design and the implementation
side. The weighting for this category is:

• Localization needed (Risk Weight = 1)
• No localization needed (Risk Weight = 0)

Risk Factors
The following are a few risk factors that should be taken into consideration:

• The design must support text directionality (left-right, right-left).
• The design must be flexible to support elegantly wider scripts, such as

French and German.
• While the first two should be evident and simple for any professional UX

designer, it is important to know about the customization and presentation
of content as soon as possible due to cultural or business needs in a particular
local, which may render key templates unusable and require extra work.

• There may be a need to factor in time for usability studies with users
overseas. Time zones, holidays, and other issues may introduce unexpected
delays in the execution of the testing program unless taken into consideration
early on in the planning phase.

Business Requirements Exist
Unless you are totally new to UX and are facing your first project, some flavor of this
heuristic is familiar. UX is supposed to follow business requirements. Without these
requirements, the work is unfocused, with a high probability of going nowhere.
The weighting for this category is:

• Requirements don't exist, are skeletal, and/or too general, or they are being
developed (Risk Weight = 5)

• Well-developed requirements exist, and they are well written
(Risk Weight = 2)

Chapter 1

[27]

Risk Factors
The following are a few risk factors that should be taken into consideration:

• Writing good business requirements is a skill and also an effort that requires
time. It is more common to find requirements that are vague, a compound of
several requirements where some don't even fit together, and so on. UX often
needs to drive the process of clarifying unclear or ambiguous requirements
but the process can be slow and lengthy.

• It is common to get business requirements that try to dictate the user
experience. You will have to educate and advocate for abstraction of the
requirements from the specifics of UX. Your job will be to demonstrate
how the requirements are fulfilled in detailed design.

• Another risk factor can be insufficient time in the project plan for creating
the requirements, digesting them, and iterating their implementation in UX.
The design is essentially due before or when the requirements are delivered.

Opportunities
The following are some tips to find opportunities:

• This is a tough spot to be in and we have been there numerous
times. Therefore, if you don't understand the requirement, ask for
a detailed explanation.

• Be organized. If requirements are not numbered, number them. If a bunch of
requirements are lumped together in a single blob, break it apart. Everyone
prefers order and organization over ambiguity and sloppiness. Make sure
that you approach this in a diplomatic manner as part of the UX process
and not as a critique of the person or group that created the requirements.

UX Resources
There is a famous saying that, "One woman can deliver a baby in nine months,
but nine women can not deliver a baby in one month". For some, working alone is
compelling for a variety of reasons. However, there is only so much we can do single
handedly and the larger the project, the larger the UX team. While your role in the
team depends on your experience, seniority, and several other factors, teamwork is
not trivial. The weighting for this category is:

• You are part of a larger UX team on the project (Risk Weight = 2)
• You are the only dedicated UX resource on the project (Risk Weight = 1)

Prototyping Fundamentals

[28]

Risk Factors
The following are a few risk factors that should be taken into consideration:

• You don't know anyone on the team, and for some, adjusting to team work
is difficult

• Skillsets, experience, and savvy can vary greatly
• The fact that not everyone on the team carries their weight, is not

immediately apparent, and can explode just when the team is overflowed
with stress and work

• It will require additional time and effort to align the work each team member
contributes, and often, time and energy are very scarce

Opportunities
The following are some tips to find opportunities:

• Having a team has its own benefits. You get to learn, mentor, or be a peer
of a colleague.

• There is a lot to learn from experiencing distributed work on multiple work
streams and dealing with the complexity of managing and orchestrating
timelines and efforts; they all merge at certain milestones.

• Extend your expertise in designing and applying global design patterns
that will serve the entire team.

Communication and Collaboration Tools
This heuristic deals with the seemingly mundane software that is used to support
the teams working on the project. In large budget projects, you will commonly
find that critically important and highly collaborative documents, such as business
requirements, are created in MS Word or Excel and distributed through a SharePoint
repository. Wikis are also popular despite their being hideously convoluted and
difficult to use. Similarly, UX work is expected to be created in a static wireframing
tool such as Visio as opposed to Axure. The weighting for this category is:

• Excel, Word, Visio, SharePoint, and Wikis are the primary methods of
documentation and content/project management (Risk Weight = 1-3)

• Collaborative software (not Wikis) is used (Risk Weight = 1)

Chapter 1

[29]

Risk Factors
The following are a few risk factors that should be taken into consideration:

• Inefficient communication leads to miscommunication, mistakes,
misunderstandings, and more serious problems.

• It is difficult to work collaboratively with multiple versions of documents
floating around in e-mails. Referential integrity becomes a risk when work
and review are done on the wrong/outdated copy of a document.

• Having to wait for another person or multiple people to finish work on a
document is frustrating and time consuming.

Opportunities
The following are some tips to find opportunities:

• It can be very difficult to get the organization to adopt new tools such as
Google Docs and similar ones, for a variety of reasons including concerns
about security and confidentiality. Make sure that you follow the internal
procedures and protocols.

• It may be possible to get the organization to let you use Google Docs or
some other collaborative tool just for UX. This will be a good opportunity
to facilitate reviews, both in person or remote.

UX Documentation and Traceability
In some circumstances, detailed specifications are acutely needed, when the coding
is done overseas and the organization is contractually committed to providing as
detailed instructions as possible to the developers who have only the documentation
to support their work. However, even in this case and in most others, the general
sentiment is that creating such detailed specifications is a massive and ineffective
waste of time.

The demand for traceability is less common, so if you are expected to show
specifically where each business requirement is fulfilled in UX, be aware that
this can be a massive, complex undertaking.

The combination of having to provide both detailed specifications as well as
traceability audits is severe in terms of time and resources and typically,
not well accounted for. The weighting for this category is:

• Detailed specs and UX traceability are required (Risk Weight = 3-8)
• Light annotation and no traceability (Risk Weight = 0)

Prototyping Fundamentals

[30]

Risk Factors
The following are a few risk factors that should be taken into consideration:

• Writing specs takes a lot of time. If this time is not accounted for, you have
a real problem.

• There is an expectation that the specifications will be delivered with
the requirements. This is a sad but common paradox in which, although
UX is being updated up to the last minute to accommodate new or
changing requirements, the writing of the specification is supposed
to happen automatically.

• Resist managing requirements in Axure at all costs (see the following
Opportunities section for an exception).

• Although Traceability may look like a chore, it is in your best interest to
have an efficient strategy to map each requirement to where it has been
implemented in the design. Some clients may require such inventory
as a condition for payment. However, even if they don't, it helps avoid
complications due to the requirements that were forgotten during the
design process and their unexpected reappearance breaks the design
and requires change.

Opportunities
The following are some tips to find opportunities:

• Well in advance and as early as possible, engage all relevant stakeholders in
an effort to develop the required annotation fields.

• Make sure that the metadata requirements are the minimum possible,
because each added field will mean input in multiple places and have a
compound impact on the time needed for writing the documentation.

• Also, collaborate on the format and organization of the specifications
document so that you minimize the tweaking of the Word output after
it has been generated.

• It may be possible to format an Excel spreadsheet in such a way that it
could be used in a repeater, thus affording a close tie between requirements,
diagrams, wireframes, and prototype. Handle these requirements with care
because they constantly change, and you don't want to lose time constantly
updating the Axure file.

Chapter 1

[31]

Axure Construction Strategy Checklist
There is no need to reinvent the wheel on each and every UX project, but we keep
doing this despite the fact that in principle, all projects share more things in common
than are unique to them. Before you embark on a UX project involving Axure (or any
prototyping tool, for that matter), you should carefully consider several factors that
will help you predict what lies ahead, how to take an appropriate approach to take
advantage of Axure's features, and how to avoid potential pitfalls downstream.

These considerations share an important attribute—you have quite a bit of control
over them at the start of the project. The checklist is driven by the deliverables you
are contracted for and are expected to deliver. Another benefit of this method is
cumulative; as you complete the project, make sure that you review your original
assumptions and decisions so that you can apply your learning in the next project.

The following table lists many of the important deliverables or work products for
which Axure can be used. The items on the list are classified as opportunities and
potential risks to be aware of. This is by no means an exhaustive list, and yet,
we feel that you could plug in any items that are relevant to you.

Category Deliverable/Work product Notes
1 Diagrams Discovery report Opportunity
2 Diagrams Personas/user types and tasks Opportunity
3 Diagrams Concept models Opportunity
4 Diagrams Use Case library Opportunity
5 Diagrams Task Flow library Opportunity
6 Diagrams Sitemap Opportunity
7 Wireframes/prototype A heuristic review of the current site Opportunity
8 Wireframes Wireframes Opportunity
9 Wireframes /prototype Pattern library Opportunity
10 Wireframes /prototype Vision prototype Risk
11 Wireframes /prototype Low fidelity prototype Opportunity
12 Wireframes /prototype High fidelity prototype Risk
13 Wireframes /prototype Usability testing prototype Risk
14 Documentation Light annotations (HTML) Opportunity
15 Documentation Detailed specifications (Word) Risk

www.allitebooks.com

http://www.allitebooks.org

Prototyping Fundamentals

[32]

Showcasing Opportunities
The following is a list of ideas for adding even more value to your work:

• Flows and diagrams: Create and aggregate all your abstractions in
Axure as opposed to creating them as discrete PDF documents in Visio or
OmniGraffle. While Axure's diagramming capabilities are not very robust,
what you lose in fine detailing of an individual diagram is gained by the
mere fact that they are always available during design and stakeholders'
meetings. We often find that while a significant amount of thought and effort
is invested early on in understanding and documenting flows, they end up
being buried somewhere on the network, quickly forgotten and never used.
As part of the Axure file, these diagramming can stay in sync with the work
as initial assumptions evolve.

• A heuristic review of the current site: One of the first steps before moving
to design the new site is a detailed analysis of the existing software. Using
Axure to reproduce highlights, insights, and reports of the current state is
fast and easy. The benefits are substantial. You can dissect and analyze
any aspect of the design in a structured way with the aid of custom
annotation fields.

• Pattern library: Axure's support for the creation and management of
widget libraries is ideal to help control the consistency of the interface
and interaction across the application. Additionally, the construction of
wireframes gets a significant productivity boost from reuse of these widgets
and masters.

• Interactive prototype: The most effective tool that UX designers have in
their arsenal is a simulation of the experience. Time and again, we have
witnessed the impact of walking stakeholders and users through a clickable
prototype. The speed with which such simulation can be placed in front of
stakeholders and users for validation of initial concepts provides you with
many opportunities to establish yourself. There is no need to have something
flashy or complete as long as the presentation is not sloppy.

• Documentation—light annotations: Perhaps, it is the propagation of
agile methodologies and a growing frustration with the expense and
ineffectiveness of detailed documentation that is never accurate and nobody
reads carefully; we are witnessing a general willingness by clients and
stakeholders to accept benefits of light annotations—brief and contextual
documentation that is generated with the HTML prototype. Instead of
reading through hundreds of pages of a document, UX guidance, details,
and descriptions are provided as companions to the visualization that,
within itself, contributes greatly to the understanding of the application.

Chapter 1

[33]

Considering Risks
Each of the following is a resource and time-consuming artifact in its own right.
Often, you may produce several of these throughout a project. This affects the
project's schedule and budget.

• Vision prototype: A vision prototype is a glamorous, early-stage artifact
that is often used to sell the project to leaders and investors. It is more often
than not an exercise in wishful thinking: significant changes happen when
detailed design and requirement work begins. Beware of an expectation
to use the vision prototype "as is" or an expectation to use it for generating
Word specifications. Refactoring is often needed and depending on the
complexity of the project, you might as well start from scratch.

• High fidelity prototype: The scope and depth of the prototyping effort
should be determined early on so that you are not spending valuable time
and energy on visualizing the entire application in great detail. A prototype,
even if it is a high-fidelity depiction, is just a sample of the complete product.

• Usability testing prototype: Make sure that the construction of the prototype
is guided by agreed-upon key flows that should be validated during usability
testing. Focus first on the interaction that maintains data and context across
the flows. Avoid the pressure and crisis of having to make significant
changes in order to create appropriate flows in a short time.

• Detailed specifications: If you need to deliver such a document, make sure
that you view the output early on and avoid a serious crisis if you wait until
the end of the project to generate the Word specifications.

Practical Axure
Some colleagues of ours swear by Axure and claim to do everything with it. The
rest of us typically fire it up when we are ready to wireframe. Frequent questions
are when to use Axure and for what kinds of projects or tasks it is suitable. In the
following sections, we discuss the aspects of Axure usage, which were motioned
earlier, in more detail.

Small Projects
Often, initial conversations around a project begin with "we need a simple website,
something very basic..." This later turns out to be not that simple or trivial at all.
Ideally, you want to discover this before the contract is signed.

Prototyping Fundamentals

[34]

We are not sure what a simple website is, but we know one when we use one. The
word "simple" is used on purpose, because a common understanding of "simple"
tends to focus instinctively on the most prominent functionality—the number of
pages involved. However, this can be a gravely misleading measure, and here
is why:

• Modern web applications have a relatively small number of page templates,
such as an overview, list, and details pages. Within each, however, the level
of transformation and complexity can be significant, and this is typically
hidden during early exploratory discussions.

• Content strategy is required to prioritize and organize content in a way
that is appropriate for a device. This means that for any given screen, the
content for a minimum three layouts should be considered. For some types
of applications, the increase in complexity can be exponential to ensure the
fidelity of multiple workflows and conditions across multiple screens.

• Another measure could be the number of audiences that the application will
serve. Does it need to dynamically change content and functionality based on
login? Are any types of registrations involved? Are there any transactions?
If the answer to all these questions is no and what you are looking at is
stringing a number of pages together with some global navigation, you
are most likely looking at a simple project.

However, as we said, there are certain simple sites. Is Axure the right tool for such
simple projects? One could argue that Axure is an overkill and that a tool such as
PowerPoint or Keynote will be more productive because you can concentrate on
the content and not lose energy on learning the prototyping tool. Additionally,
the deployment of simple websites today is most successful with platforms such
as WordPress or Squarespace. These enable a non-techie person to experiment
and create a highly sophisticated website using prebuilt and easily customizable
templates. For rapid visualization and brainstorming of ideas and approaches, using
Axure on a simple site can help keep the project from unnecessary complications and
help determine which technology and service to use.

Web Applications and Portals
This class of prototypes is probably the meat and potatoes for Axure use. While there
are many portal platforms, corporations often require custom development and
enhancements that meet their business needs. For many organizations, such projects
are viewed as transformative and strategic and are significant financial investments.
The following are some attributes that such projects have in common:

Chapter 1

[35]

• To secure the approval and go-ahead from corporate leaders, the initial
UX involvement may be limited to the creation of a highly polished vision
prototype. The UX footprint may be small in terms of the actual resources
involved but significant in terms of the impact on moving forward.

• The application involves multiple modules that oftentimes represent
discrete organizational business units. It is common for these business units
to be spread across the country or the world. Each business unit may have
its own rules, requirements, and supporting technologies. These need
to be streamlined and unified to make the integrated application work
as envisioned.

• If you are tasked with creating a high-fidelity prototype, keep organizational
complexity in mind. As much as possible, document your working
assumptions, the guidance and feedback of various stakeholders,
their priorities, and potential areas of friction.

• On the one hand, UX often enjoys a mandate to come up with an all-new,
efficient, and great design. Then there comes the push-back and sometimes
the blame: UX is too ambitious and risky and the UX team is ignorant of the
constraints of legacy and business rules. The ability to walk the fine balance
between pragmatic and aspirational is important, especially because UX
rarely gets enough time to gain deep knowledge of the business. And so,
we recommend that:

 ° Don't assume anything. Ask as many questions as you need to clarify
the terminology and processes you don't understand.

 ° Point out, early on, the potential gaps and implementation risks.
In Axure, annotate the risk field for relevant widgets and layout
regions you are concerned about, and go over those items during
the review sessions.

• You might truly say that more than just widgets and regions, the
documentation of risks related to business rules, which may affect interfaces,
is crucial too. We've mentioned that requirements should not necessarily
be managed in Axure. However, are references to risk, embedded in the
Axure annotations, appropriate? This is a chronic problem that deserves its
own book. However, our answer is no. The main concern is that it quickly
becomes impossible to track and update the requirements and the risks in
Axure, and you end up adding to the confusion.

• To handle the complexity and specific needs of each module, developing
such application requires a large team of business and technology
stakeholders; a larger UX team is required as well.

Prototyping Fundamentals

[36]

• Start using a team project early on and communicate a lot with the team
about establishing design patterns and other common elements. Balancing
the flexibility of work streams and their ability to address unique needs with
the overall consistency and integrity of the application is a major challenge,
and we will discuss some strategies to address it later in the book.

Heuristic Evaluation
A heuristic analysis of the existing user interface (current state) is often one of the
initial steps that UX designers perform at the inception of a redesign project. The
outcome can help decision makers determine the scope, budget, and timelines for
the project's future state, and also determine an opportunity to get the UX designer
familiar with the application and its user-experience issues.

You can very rapidly create a mini replica of the actual application by placing and
linking screen captures in Axure pages. Add more details, such as drop-down lists,
form fields, and action buttons over the appropriate places in the screen captures,
to create a hybrid of an image- and widget-based prototype. Add your comments in
relevant annotation fields and generate an HTML prototype and a Word document,
which you will use as you walk the stakeholders through the findings.

User Validation
A by-product of creating an interactive prototype in Axure is, of course, the fact
that you have a tremendous instrument to use in various user validation activities,
such as focus groups and usability tests (UT); this is a no-brainer. However, it
is important to include the refactoring work necessary to use the prototype for
such activities in the project's budget and timeline. This is especially important for
complex applications that adjust the user interface based on the user login. Here are
some points to keep in mind:

• Make sure that the scenarios planned for UT are actually built into the
prototype. Making the prototype work for unplanned scenarios may involve
considerable rework and modifications to the construction of the file.

• If the file is also intended to be used to create specifications, how will the
tweaks and added interactions needed to make the prototype work for UT
affect the generated specs?

Chapter 1

[37]

• Does it make sense to duplicate the current file and have a dedicated file
just for the purpose of UT? It really depends on where you are in terms of
construction. The benefit of developing the file separately is that you can
work quickly and tweak the construction without having to worry about the
specifications or impacting other sections of the project. On the other hand, it
means that any updates made to the production file will have to be updated
in the UT file.

Deliverables – Prototypes and Specifications
Are you contracted or expected to deliver only an interactive prototype or the
annotated specifications as well? The following list takes you through some
important pointers to consider. Don't worry about Axure terms and functionalities
you are not familiar with, since we will cover those later in the book.

• If specifications are in play, what are the expectations for the format and
delivery of those specifications? Is it, for example, an exhaustive Word
document or a light HTML-based annotated version of the prototype?

• Did you have an opportunity to discuss these flavors of documentation
with the relevant stakeholders (typically the development team) or are the
specifications mentioned casually and their scope only implied? If this is
the case, you should get explicit clarifications as early as possible.

• Ask for an example of a previous specifications document used by the
development team to get a sense of what is acceptable.

• If you are contracted to deliver an interactive prototype, what level of fidelity
is expected? Interactivity means different things to different stakeholders.
Their expectations are often shaped by past experiences, if any, with user
experience projects.

• If the application needs to support different types of user roles based on
login, are you expected to simulate the entire user experience for each of
these roles or just for a primary role? This point alone can make or break a
project because stakeholders may demand to see the differences in each role,
while you have budgeted and scheduled the work for simulating only one.

• Knowing in advance that various sections within wireframes are global, that
they will have to reflect user types, or have multiple states, implies the use
of masters and dynamic panels to reduce wireframe redundancy and other
construction inefficiencies. Use of masters also implies the possible use of
Raised Events.

Prototyping Fundamentals

[38]

• Demonstrating how the interface renders for different user types or for
different workflow paths is likely to involve the use of variables and
functions, and as mentioned earlier—the use of masters, dynamic panels,
and raised events. Knowing what is expected will help you acquire the
Axure skills that you need in advance.

• Are you expected to simulate features such as type-ahead or is it enough to
call out such behaviors in the annotations? It is not that difficult to build the
simulation in Axure, but is there value, and more importantly, the time and
budget allocated for constructing such common interactions?

• How much of the interface is expected to be prototyped, and how much can
be just defined by static wireframes?

• Often, the conversations around the scope of work occur before the actual
work has begun. It is a good idea to agree with stakeholders on the desired
wireframes, the complexity of each wireframe, and priority of the wireframes
and flows that will be simulated in detail and the ones that will be addressed
as static wireframes.

• Is the plan to quickly deliver a high-fidelity vision prototype first and once
the project gets a green light, use it for detailed design and specifications? If
this is the case, keep in mind that refactoring—the need to rebuild sections of
your Axure file—is likely to be required. There are several reasons for this:

 ° To begin with, the work on a vision prototype tends to be a very
high-level show off, with the best of all the possible-functionalities
and features in the world. Often, there may not be enough time or
details to validate that the proposed user experience can actually be
supported by the underlying business processes or technology. When
work on detailed design moves forward, many of the assumptions
that were made for the vision need to be scaled back in order to
meet the actual business requirements and technical constraints.

 ° One particular pitfall to watch for has to do with administration
screens. Most applications have some sort of administrative
functionalities that range in capabilities, from allowing a super
user to assign access permissions to other users to setting the values
of a wide range of defaults and other parameters. As very few users
will actually interact with this part of the application, it is often
dismissed casually in early conversation, only to resurface deep
within the project.

Create an inventory of all the modules and key screens of the application. With the
relevant stakeholders, agree which screens are in scope of what treatment. This will
be the blueprint for working on the prototype and for change management as a
result of scope realignment.

Chapter 1

[39]

Tips for Using Axure on Large-design
Projects
The following are some tips that should help you get the most out of using Axure on
a large project:

• Axure can promote, but not enforce, consistent design; ensuring a consistent
design still requires a governance process

• It is critical to construct wireframes properly and consistently across
all teams

• Create a naming convention for wireframes and dynamic panels; validate
proper naming during governance reviews

• Agree on a common structure/organization of wireframes and enforce that
organization across all teams

• Allow time to train new users on the finer points of using Axure
• At the beginning of the project, pilot a number of ways for using masters

and dynamic panels and then settle on a common approach; validate the
implementation during governance reviews

• Be sure to bake time into your project plan for maintenance of the Axure file
• Refactor the project file at strategic points, such as before major usability

tests, or before resuming work on the file following major de-scoping or
major design modifications. Other refactoring effort may be required:

 ° Between the completion of wireframes and writing the specifications
 ° After the completion of a release

• Plan on having one wireframe structure for prototypes and another
for specifications

UX and Stakeholders' Perspectives
In his classic movie Rashomon, Akira Kurosawa unfolds the details of an event by
telling the story from the perspectives of multiple characters, including a dead
person. Each character, who was also a direct witness to the event, recounts the story
by telling the narrative from their point of view. That same form of the event actually
happened is undisputed, but as it happens, the stories, while similar in structure, end
up contradicting each other.

Prototyping Fundamentals

[40]

User experience practitioners often find themselves in a Rashomon situation because
of UX's unique position at the intersection of business, engineering, people, and
systems. The success of the UX project rests on our ability to fuse the various entities
in a coherent and elegant way.

Our colleague, Sam Spicer, often speaks of empathy being vital to the role of UX.
Understanding the perspectives of the stakeholders we work with is important not
only for arriving at a good design but also for a strong collaborative environment
that can handle the stresses of constant change and fleeting schedules.

Leadership
Regardless of the organization's type or size, any successful commitment to high
standards of user experience and satisfaction must be driven from the top down.
Chief executives who take time to learn and understand the importance of UX are
the most important sponsors of our work in the organization. The commitment
will materialize in strategy, resources, and budgets. When such recognition comes
from the very top, the tendency is to discount the value of UX because many of the
deliverables are dismissed as soft and hard to measure.

Obviously, your interaction with the senior leadership is tied to variables such as
your seniority, the organization size, and the project you are involved with. Still,
the following situations are common:

• For small companies, the project is likely to be really important and top
leadership will take a close interest in it, sometimes too close. A desire to
direct or control the outcome and influence the design is not uncommon.
Such circumstances may get you stuck between the project's leadership and
the company leadership, which are often not the same group of individuals.
Your Axure file can become an invaluable asset to all as a live document that
captures key decisions around the experience. Consolidation of diagrams,
flows, wireframes, and relevant documentation makes it possible and easy
to access and present relevant support to a design decision.

• In a large organization, your contact with the senior leadership may be
limited only to those who are directly leading the project because there are
just way too many levels of hierarchy. Still, mission-critical projects are
visible at the executive suite because the organization needs it to succeed
and because it is expensive. Your work will be exposed to the scrutiny at the
highest stratospheres of the organization. Regardless of your audience, it is
important that the construction quality of your work is high, even when you
are only experimenting with high-level concepts.

Chapter 1

[41]

Project Management
Project managers are tasked with tracking the progress of projects and facilitate
solutions that help resolve roadblocks along the way. In many projects, UX does
not have the benefit of a dedicated project manager. This can lead to problems for
medium and large projects, such as:

• If a project manager is not budgeted to the project, it is a good idea to raise
this as a flag and take extra effort in developing a comprehensive, mid-level
plan yourself

• If a project manger is budgeted, make sure to jointly review the entire project
plan, ask questions, and flag dependencies such as where a projected UX
effort has not been considered

For example, many plans do not account for the time it takes to refactor the Axure
file from a vision prototype to detailed design prototype. Others don't take into
account the time it takes to iterate and revise the prototype. Sometimes, the time it
takes to arrange the logistics of usability tests such as recruiting is not considered.
The more time spent early on with the project manager as the plan is being
developed and revised, the better the project will track later on.

Engineering
One would not be blamed for thinking that developing the user experience and
software development are complementary processes. However, as we often find out,
there is a gap between UX and engineering. There are many reasons for the friction,
but a fundamental means to resolve these is communication.

It is surprising to hear stories about large projects where the interaction designer and
the developers only got together well after a splashy high-fidelity vision prototype,
commissioned by the business side of the organization, has been used to drive the
top management to move forward with the project.

The problem, from the perspective of the development team, is managing the
expectations of the top leadership that the new application will have a close
resemblance to the vision prototype and be in production in no time. If only life
was so simple. Engineering leaders often express concerns that UX does not always
take into account the constraints of available technology, impact of the new UX on
performance, scarceness of development resources available to the organization, or
the complexities involved in the accessibility and localization implementation of the
new UX.

www.allitebooks.com

http://www.allitebooks.org

Prototyping Fundamentals

[42]

These concerns are often valid and true. With Axure, however, UX has a tool that
helps improve communications via visualization of interactivity and integrated
annotations. Conversations, analysis, estimation, and adjustments can start early
on in the development life cycle and reduce the stress on the engineering team.

Visual Design
Visual design introduces some of the most daunting challenges for rapid prototyping
projects and a hidden iceberg for Axure prototypes. Why? This is because of a gap,
sometimes a serious one, that grows between the wireframe prototype and the
visual design.

This gap poses both UX and development risks because of the need to reconcile
between the two presentations of the same screens. Sooner or later, a refactoring of
the Axure prototype will be needed, especially if the intent is to keep using the file
throughout the entire life cycle of the product.

The two sets of wireframes are developed asynchronously. Normally, we start
with Axure wireframing as rough conceptual sketches that evolve through rapid
iteration. These wireframes address information architecture and actionable tasks
and the layouts are often tentative. With Axure, we can enhance these rough ideas
and evolve the concept as an interactive prototype that demonstrates the vision for
navigation and interaction patterns.

All this work, however compelling, tends to be in grayscale without visual design.
As user experience architects and designers, we want to isolate the feedback we
obtain from stakeholders and potential users. The conventional wisdom is that
adding visual design cues at such an early point is adding unnecessary noise to the
feedback. This is because people's response to colors and layouts are both extremely
subjective and strong, and the concern is that such feedback tends to push more
substantive issues to the background.

It is impossible to separate the visual design from the user experience. This
argument sounds especially compelling when it comes to the design of mobile
apps, where beauty is inherent to the design of the user experience.

What often happens is that at some point in the UX process, visual design gets
involved and the ugly duck emerges as a beautiful swan. Now, everyone needs to
start looking at the two sets of the design (wireframes and the visuals). Often, the
two sets will continue to evolve on separate tracks because while the work with
the visual designer takes place, the work on finalizing the Axure wireframes for
specifications continues.

Chapter 1

[43]

Sometimes, UX designers do not fully appreciate the complexities and challenges
that visual designers face. Busy and stressed by our own issues, it is tempting to
dump on the visual designer a great deal of information, often not fully baked,
and expect that the designer will get it somehow. However, it is often the case that
the visual designer has very little time to dive into the depth of the application.

The bottom line is that since you will know when the visual design phase is planned,
you should be able to build into the timeline time to refactor the prototype so that at
some point, the approved visual design is reflected in the wireframes, prototype,
and documentation.

The UX Perspectives
When individuals or organizations hire an architect, they are typically influenced
by that person's body of work. However, they are also certain that as a certified
architect, the person has formal educational and professional qualifications. The
clients and contractors who work with an architect also have a formal understanding
of the type of deliverables the architect needs to provide. There are also legal
and other regulations the architect must abide by. After all, you would not take
an uncertified architect to design a skyscraper or your home.

Hiring a qualified user experience practitioner, on the other hand, is somewhat like
rolling the dice despite the fact that the project's scope and complexity makes it like
a skyscraper in comparison. It is not quite clear to the client what exactly UX is.
Unlike architecture, anyone can call themselves an experienced architect as there is
no standard professional certification or accreditation that can serve as a lighthouse
to help a client choose. However, this, by no means, is a fault of our discipline.
Architecture has evolved over thousands of years, but the formalization of who
is a qualified architect is a relatively modern development.

As in any profession, there is the level competency and mastery of the technical
skills we bring to the table. For someone who is only versed and comfortable
with wireframing in Visio, developing an interactive prototype in Visio will be
a real challenge.

Of course, it is a lot easier to create such a prototype in Axure. However, should
you embrace this tool? It is best to avoid heated tool-camp loyalty arguments, as
the answer typically boils down to a strategic business and professional decision:

• Are you a single user? Perhaps an independent consultant or the single UX
practitioner in an organization? In this case, you need to consider the cost of
investing in the tool and the return on your investment.

• Think about the projects you have created so far with the tool/s you have.
Is there a gap you need to fill?

Prototyping Fundamentals

[44]

• Axure is becoming a good skill to master. Will learning the tool open up
new employment opportunities?

• What about the cloud-based services for which you pay a subscription?
Certainly, it is a good idea to review the option. However, the thing to
consider here is that many corporations may frown upon having their
most strategic plans placed on some cloud. Moreover, firewalls and other
security barriers may make it difficult for stakeholders to access the work.

• Are you a member of an interface design agency or an in-house design team?
• What are the challenges of running a shared Axure project?
• What kind of training is needed to level the team's prototyping skills?
• What are the project opportunities that open up with using shared projects,

efficiency, savings, and increased profits in terms of reusing the widget
libraries, masters, and generators?

The Axure Perspective
As users of software, we demand constant improvements. As professionals who
are involved in the process of making software, we can be more sympathetic to
the challenges and tradeoffs that Axure, the company, is facing:

• The more features and capabilities Axure supports (adaptive views,
advanced interactions, logic, variables, functions, and so on), the more
complex the tool becomes. In fact, we already find a demand in the market
for specialized Axure prototypes, people who can take Axure to the max
and create really powerful vision prototypes. Ironically, freeing ourselves
from dependencies on developers and the ability to quickly and easily
create an interactive prototype is exactly the goal that Axure sets out to
tackle, being a tool for non-developers. So, how can the company balance
these two extremes:

 ° Prototypes versus specifications: The demand for high-fidelity
vision prototypes is on the rise and is becoming a norm. The
turn-around times for such prototypes is shrinking, and they are
extremely influential in getting decision makers to give the green
light to ambitious development projects. However, turning a
vision prototype into a specification—a deliverable that is often
contracted for—is most likely to require refactoring. This effort can be
substantial and yet, often not planned for, budget or schedule wise.
Clearly, there are some challenges around reducing the gap between
prototype construction and specification generation. How will Axure
try to address this in the future?

Chapter 1

[45]

 ° The landscape of UX is rapidly changing. Apple, through iPhone
and iPad and its ongoing quest to integrate iOS, its mobile operating
system, with OS-X, its desktop operating system, is impacting
the user experience in profound ways. As a result, the syntax of
interaction patterns is evolving. New multifinger gestures are a good
example. How will Axure support the creation of prototypes for the
next generation of devices?

Summary
Our success as UX designers rests on our ability to synthesize and express the
many diverse, often conflicting inputs, we gather from sources such as business and
engineering stakeholders, user research, and data from analytics. At the end of the
day, our goal is to find the pragmatic balance, opportunities, and innovation for
the best user experience possible, regardless of the device or operating system that
drives that device. To help us conceive, visualize, communicate, and document our
vision, a specialized UX tool is invaluable.

Axure is considered by many to be the tool of choice for the UX industry worldwide
because the company works hard to evolve the tool so that it supports the escalating
demands on UX. The company listens closely to practitioners as it strives to balance
a rich feature-set with complexity and cost, and has proven repeatedly that it is the
right tool to help us in our demanding line of work.

The following chapters will introduce you to the wealth of features Axure offers in
the context of real-life circumstances. As you read the book and get a better sense
of how Axure might fit your needs, keep in mind that Axure is just a tool. There is
no substitute to rigor, collaboration, and iteration to achieve a successful prototype
that communicates our design for a product that will exceed the expectations of our
clients and their users. The next chapter provides a comprehensive guide to Axure's
user interface and various features.

Axure Basics – the User
Interface

"People should not worry so much about what they do but rather about what they
are. If they and their ways are good, then their deeds are radiant... for it is not our
works which sanctify us but we who sanctify our works."

 – Meister Eckhart

We rely on tools such as Axure to express our ideas and to hopefully push the
creative envelope. As mentioned in the previous chapter, Axure has made a lot of
positive changes in Version 7.0. Whether you are new to Axure or entering this new
version as a seasoned Axure user, it is imperative that you take some time before you
dive into it and discover its features and familiarize yourself with the nuances and
capabilities. Axure is powerful, but remember that the work will only be as good as
your attitude and commitment.

This chapter is designed to help you establish a solid familiarity with Axure
Pro's concepts and rich capabilities. Axure 7 for Windows and OS X are fully
compatible, so for the most part screenshots show the Mac OS. We will cover
the following topics:

• Getting started
• Environment
• Widgets
• Masters
• Widget Interactions and Notes
• Style
• Widget Manager
• Prototype

Axure Basics – the User Interface

[48]

Getting Started
Once you have installed Axure and launched it, you are presented with the Welcome
to Axure RP Pro 7.0 window as shown in the following screenshot:

Image 1

The Welcome to Axure RP Pro 7.0 splash window allows you to:

• Open recent files (Image 1, A).
• Create new RP files (B). An RP file is a local file, which we will discuss later

in this chapter.

Chapter 2

[49]

• See which version of Axure you are running (C). Typically, Axure releases
several updates during a version's life cycle. If you are part of a team, it is
recommended that all team members use the same version and point release.
If you are upgrading from an earlier version of Axure, keep a backup copy of
your files. Version 6 files opened and saved in Version 7 will not open back
in Version 6. By default, Axure 7.0 performs a push release. Once it runs, you
will be presented with the Check for Updates dialog, which is also available
in the Help menu. You can either update to the newer version or decline it.
Uncheck the Check for updates when Axure RP starts option (Image 2, A)
to disable the auto-check, as shown in the following screenshot:

Image 2

On Windows, Axure allows you to run multiple instances of
Axure with one open project per instance. The Mac version
runs a single instance per Axure version (for example, Axure
7 and Axure 6.5 open at the same time), with multiple files
opened per instance.

Axure Basics – the User Interface

[50]

Axure File Formats
There are three modes of prototype development workflows:

• The first is focused on the needs of a single designer, who is the sole author
of the prototype in Axure. Axure's RP file format is the default when you
create a new Axure project. This file is essentially stored on your hard drive.
By default, the .rp files are stored into the root Documents/Axure folder.

• The other workflow mode facilitates team collaboration, with built-in
features such as controlled check-ins and check-outs and version control.
Axure's RPPRJ file format offers so many benefits that a single practitioner
should seriously consider using this mode as well. This feature is available
only in the Axure Pro version.

• The last format is for custom widget libraries, and that format is a
RPLIB format.

The RP File Format (Standalone Files)
By default, the RP file is stored as a single file on your local drive, for example, My
Project.rp. This is identical to any other file-based application, such as Excel, Visio,
or Word. You do not have to use the default storage location and can dictate the
location for which you choose to save this RP file.

One of the challenges in UX projects is managing change. Rapid iteration is the
essence of prototyping, and so the RP file you are working on will evolve from day
to day. The need to revert to an older version—perhaps because you messed up
something or for some other reason—is highly likely. This is impossible if you use
the RP file (unless you keep a daily version of the file) and one of the reasons why we
recommend making it using the team project format, which supports version control.

The RPPRJ File Format (Team Project)
This is the appropriate format for a team of UX designers who are collaborating on a
UX project and desire version control. The feature is only available in the Axure Pro
version. Image 3 illustrates this model in which the project repository (A) is hosted
on a remote server or a shared directory on the network. Several UX designers (B)
and a business analyst (C) can access the file from their Mac or PC and collaborate
on the construction and annotations. The ability to distribute work among multiple
resources is very important, especially for large-enterprise projects. The topic of
collaboration is discussed at length in Chapter 9, Collaboration.

Chapter 2

[51]

The key features of this format are:

• Checkout/Checkin controls
• Ability to cancel checkouts, basically a form of undo, in case you mess up

something in the wireframe and choose to start over
• Version control and the ability to restore previous versions

Team Projects
Team projects can be created from a new file or from an existing RP file.

Before you can create a team project, you must first have a project on a SVN server or
on a network drive.

UX Designer

Business Analyst

UX Designer

UX Designer

Server

A

B

B

B

C

Image 3

Axure Basics – the User Interface

[52]

Environment
Axure's workspace is straightforward, as seen in the following screenshot:

Image 4

Your main wireframing construction space is the wireframe pane (Image 4, A), which
is at the center of the screen, flanked by supporting panes on the left and right, and at
the bottom:

Left panes:

• The Sitemap pane (B)
• The Widgets pane (C)
• The Masters pane (D)

Chapter 2

[53]

Right Panes:

• Widget Interactions and Notes (E)
• Widget Properties and Style (F)
• Widget Manager (G)

Bottom Pane:

• The Page Properties pane, which includes the Page Notes, Page Interactions,
and Page Style tabs (H)

The menu bar (I) , toolbar (J), and the format bar (K) complete the composition at
the top.

The preceding screenshot (Image 4) shows the Mac user interface.
The Windows version is similar with the exception of the toolbar.

Customizing the Workspace
You have some control over the arrangement of the workspace, which includes:

• Hide/Show individual panes: Use the View menu option (Image 5, A)
and click on the Panes option (B). You will see the panes listed. If you
accidentally remove a pane, simply go here to show it again.

Image 5

Axure Basics – the User Interface

[54]

• Detach Panes: The ability to detach panes and move them around is really
handy to use as the items in the pane grow large or if you simply desire
your working area to be larger. To detach the pane, click on the diagonal
arrow (Image 6, A). To remove a pane from the view, click on the X icon.

Image 6

You cannot change the default location of panes when they are in their
docked state. For example, the Sitemap pane is always parked on the
upper-left corner and cannot be placed in any other location.

The Sitemap Pane
The Sitemap pane is where the pages live, including wireframes and task flows.
Pages are the highest-level elements in Axure. When you launch Axure, it opens
a new, untitled document. The Sitemap pane of this new project has a default
structure that includes a page called Home and three child pages beneath it. You
do not have to keep or use these pages, but you can choose to use them as the
foundation for your project.

Chapter 2

[55]

In the Sitemap pane, you can:

• Create new pages (Image 7, A).
• (New!) Organize pages by creating a folder to house related wireframes (B).
• Change the order of pages (C) by moving them up and down using

the arrows.
• Nest pages to reflect a page hierarchy by changing their nesting level (D).

Note that by nesting one page under another, you are only creating a
visual representation.

• Delete pages (E).
• Search pages (F). For very large projects with many nested or child pages,

the search capability is a tremendous time saver. Click on the magnifying
glass icon to toggle the visibility of the search field, which appears below
the pane's rows of icons. Alternatively, right-click to view this functionality
as well.

Image 7

Axure Basics – the User Interface

[56]

The Widgets Pane
The widgets pane allows you to access Axure's built-in widgets collections, manage
and organize imported third party widget libraries, or manage your own custom
widgets collections. If you choose to use any of the flow widgets to create a task
flow, sitemap, and so on, this is the pane that allows you to do so. We will explain
that more in the Flow Widgets section. Just like many of the other panes, you can also
search for widgets by clicking on the search icon.

This widgets pane, as shown in the following screenshot, is grouped into three
categories: Common, Forms, and Menus and Table:

Image 8

• By default, the pane shows Axure's common set of wireframe widgets
(Image 8, A).

Chapter 2

[57]

• Use the Select Library drop-down menu (B) to switch between the
default widget collection, the flow widgets, and any libraries you may
have loaded into your Axure file (more about widget libraries, in
Chapter 6, Widget Libraries).

• Use the Options menu (C) to manage custom widget libraries.
• To search for widgets use the magnifying glass (D).

Wireframe Widgets
A wireframe is composed of a set of widgets. Once you drag-and-drop a widget onto
your wireframe, you can format it, annotate it, label it, and set an interaction to it.

Selecting a Widget Shape – Option 1
Drag a Rectangle widget onto your wire (Image 9, A). For round corners,
click-and-drag the yellow triangle on the upper-left corner (B), or type a number
into the Corner Radius field (C) under the Fills, Lines, + Borders section in the
Style tab of the Widget Properties and Style pane

To change the widget's shape, click on the little grey circle (D) on the upper-right
corner of the widget to see a graphical menu of shape options.

Image 9

Axure Basics – the User Interface

[58]

Selecting a Widget Shape – Option 2
Alternatively, right-click on the widget and use the Select Shape option (Image 10, A)
from the context menu to select a shape from the list (B).

Image 10

Selecting a Widget Shape – Option 3
The third method to change a widget's shape is available in the Properties tab of
the Widget Properties and Style pane. Click on the Select Shape drop-down
(Image 11, A) and select the shape you want from the visual menu (B).

Image 11

Chapter 2

[59]

Shapes – Highlights
The following are nice features that are in place for various widgets that we would
like to highlight:

• Text widgets, such as Paragraph, Label, and Headers can be assigned a style
on MouseOver and MouseDown, and for the widgets Selected or Disabled
(Image 12, A) states.

• Shapes can be set to autofit height and width to be as wide and/or tall as the
text in the shape (B). This is a new feature to Axure.

• The Paragraph widget contains the default Lorem Ipsum text (C), a nice
timesaver introduced in Axure 7.

Image 12

Form Fields – Highlights (New!)
Form fields, too, gained some enhancements in Axure 7:

• Text fields (Image 13, A) located in the Forms section of the Widgets pane
can be assigned a field type, such as e-mail, number, phone, URL, search,
and so on (B).

• Text fields and text areas can be assigned a hint (C)—text that is displayed
in the field and is dismissed when the user begins typing.

Axure Basics – the User Interface

[60]

• The hint can be assigned a custom style with Hint Style (D). To preview
the style, click and hold the rectangle on the upper-right corner of the
widget (D).

• In another helpful enhancement, Droplist widgets can be assigned a
custom height.

Image 13

Dynamic Panels – Highlights
This may be a new concept if you are new to Axure. Chapter 4, Creating Basic
Interactions, discusses dynamic panels in detail, but it is worthwhile to introduce this
widget type here. A dynamic panel is a container that holds other widgets that have
multiple states. The dynamic panel allows you to shuffle between the states:

• Dynamic panels have an option to fit to content. In other words, the content
will drive the size of the dynamic panel. This is checked by default.

• Dynamic panels can be set to 100 percent when generated in a browser. This
is great for carousels and for sites/pages that have images as a background.

Chapter 2

[61]

• If you are familiar with previous versions of Axure, you will find this
enhancement very valuable. All widgets can now be set to hidden without
having to create a dynamic panel! The following screenshot shows two of
multiple ways to do this: using the context menu (Image 14, A) or by checking
the Hidden box (B) in the Style section in the Widget Properties and Style
pane, as shown in the following screenshot:

Image 14

The Repeater Widget (New!)
The repeater widget can be used to display repeating patterns of text, images, and
links. Repeaters are good to use for the following UI patterns: product listing, contact
information, and data tables such as recent transactions. The repeater widget can
also be formatted. We discuss this powerful widget in more detail in the book and
there is a great example of using it to simulate a Type Ahead search in Appendix,
Practitioners' Corner.

Style
At its core, a wireframe is nothing but a framed rectangle with some boxes, interface
controls, and text. It can work perfectly when sketched on a napkin or an index card,
but this technique can get you only that far. With the evolution of user experience as
an established discipline, there has been a shift towards higher fidelity. Now, this does
not mean that the project/wireframe begins at high fidelity. In fact, we recommend
maturing the wireframes as the project matures or evolves. Large and complex projects
will allow the opportunity for the wireframes to become more high fidelity if the
project team has a desire for it. However, we think it is important to allow the visual
designers the opportunity to apply their creative stamp. Therefore, only small amounts
of color are good to use in order to show hierarchy and importance.

Axure Basics – the User Interface

[62]

The experience is determined as much by how the interface looks as by how it
behaves. On the one hand, user experience designers want to keep the discussion
subjective, focused on structure and flow. For this approach, sketchy styling can
help enforce the tentative aspect of an emerging design. On the other hand, user
experience designers have a vision or idea they want to communicate to the client. If
your idea does not come across as thoughtful (low fidelity), it can be misconstrued
as a half-baked idea and gets passed. Higher fidelity wireframes can help sell the
designs to higher management. Lastly, some user experience designers are at a
company where the brand guidelines are well established, so it may make sense
to work with the assets at the wireframing stage.

Whatever are the stylistic expressions appropriate for your project and design
philosophy, you can define the visual properties of widgets by using the Style tab.

Like the Widget Properties and Style tab, the Style tab is contextual to the selected
widget. This tab is divided into the following five collapsible sections (Image 15, A):

• Location + Size
• Base Style
• Font
• Fills, Lines, + Borders
• Alignment + Padding

Image 15

Most of the formatting attributes that appear in this tab are also available through
the Format Bar and the Context Menu (via right-click), but here you get a one-stop
access to all of the formatting under a single tab.

Chapter 2

[63]

Location and Size
The Location + Size section allows you to:

• Set the Left and Top position (Image 16, A)
• Set the size of the widget using the Height and Width (B)
• Rotation of a widget, and the text within the widget (C)
• Hide/show an individual widget (D)

Image 16

Base Style
An Axure style is a collection of formatting attributes that can be applied to the
shape and text components of a widget. Each widget type in Axure has a default
style, which determines how it appears when added to a wireframe and when it is
generated in the prototype.

Axure Basics – the User Interface

[64]

There are two methods to modify the style of a widget:

• Manually change various attributes of a selected individual widget using the
Style tab (shown in the previous image), Format bar, or the Context menu.
This can become slow and repetitive when you want to apply a consistent
look across a group of widgets.

• Apply/assign a style to a widget that can be assigned to multiple widgets or
text elements. To do this, use Widget Style Editor to apply many updates at
once. This will also ensure a consistent look across the wireframes.

The Style Editor – Default Styles
As we have mentioned, all widgets have a default style. Early on in a project, specific
styles may not yet be applied. However, you and/or the team may want to modify
the defaults styles to have a specific font or change the color of the text to be pewter
rather than black.

Change the default style of a widget. In the Style section, click on the Widget Style
Editor icon (Image 17, A) to bring the Widget Style Editor dialog.

Image 17

The Widget Defaults tab (Image 18, A) in the Widget Style Editor window lists all
the widgets and their default styles (B).

The defaults can be changed. In the example illustrated in Image 18, the defaults Font,
Typeface, and Font Color of the H1 widget were modified (C).

This means that when anyone on the team pulls in the H1 widget, the new style will
be applied.

Chapter 2

[65]

In the Axure Pro version, additionally, the Check Out or Check In option and the
status indicator (D) will be displayed.

Image 18

Axure Basics – the User Interface

[66]

The Style Editor Dialog – Custom Styles
Custom styles are an excellent tool to use once visual design patterns begin to
evolve. Examples of elements that are good candidates for customization are:
buttons (primary, secondary, tertiary), headers, background colors and textures
for page sections, error messaging, and so on. Let's walk through creating a
custom style:

1. In the Format bar, click on the Widget Style Editor icon (Image 19, A) to
launch the Widget Style Editor dialog.

2. Alternatively, click on the widget style editor icon (B) in the Style section of
the Widget Properties and Style pane.

Image 19

3. In the Widget Style Editor window (Image 20, A) , click on the Custom tab
(B) and create a new custom style by clicking on the green Plus sign (C).

4. Name the new custom style (D), and then modify the relevant properties you
want for this style (E).

Image 20

Chapter 2

[67]

5. Once added, custom styles can be immediately applied to any selected
widget (Image 21, A) through the Style drop-down list on the Format
bar (B) or in the Style section in the Widget Properties and Style pane (C).

Image 21

It is a good idea to set up your styles at the start of a project and
be diligent about assigning styles to your widgets and text (via the
dropdown). That way, if there is a change in style down the road, the
update will be easer to accommodate.
When naming the custom styles, be descriptive enough so that your
colleagues understand where to use the style.

Font
In this section, you can modify the font attributes of a single widget or multiple
selected widgets:

• Font family
• Font size
• Font styling, bold, italic, and underline
• Font color
• Toggle bullet list styling

The role of typography in your prototype cannot be underestimated. The typeface,
its size, styling, color, and spacing can make a sea of difference in how your work
will be perceived by stakeholders and end users. Axure supports Web Fonts which
we will describe later in the book.

Axure Basics – the User Interface

[68]

The following Image 22 visualizes the Font section (A), which becomes active when
a widget or multiple widgets are selected (B). Note that applying a font shadow is
actually in the section Fills, Lines, + Borders (C).

Image 22

Fills, Lines, + Borders
You can apply the following attributes to a single or multiple selected widgets:

• Set Fill Color (supports gradients and transparency/opacity)
• Set Line Color (supports gradients and transparency/opacity)
• Set Line Width/Weight
• Set Line Pattern, otherwise referred to as borders, (solid, dotted, and so on.)
• Set an Outer Shadow or Inner Shadow on a widget (new!)
• Set a Text Shadow (new!)
• Set the Corner Radius on a widget—a radius that rounds the corners. If you

want a square button, set the radius equal to 0 (new!)

Chapter 2

[69]

The following screenshot illustrates the use of the fills, lines, and borders functionality:

Image 23

Borders render within the dimensions of the widget for
accurate dimensions.

Outer and Inner Shadow
Shadows can add some amazing richness to a design. The following Image 24 shows
a Rectangle widget (A) to which both an outer shadow (B) and inner shadow (C)
have been applied. Clicking on the icons presents a menu with relevant settings (D).

Image 24

One of the properties of the inner shadow (Image 25, A) is Spread (B),
which provides an interesting combination of solids and shadow inner fills.

Axure Basics – the User Interface

[70]

The default value for Spread is zero (C). A spread with a value 10 is visualized in
(D), and with value 100, which appears as a solid fill, in (E).

Image 25

Alignment + Padding
There are instances when it makes sense to add a widget and then place a label or
header on top of it. However, oftentimes this is unnecessary because of the alignment
and padding feature. This section is closely associated with the Font section in that it
affords control over the text attributes in widgets. You can control:

• The horizontal and vertical alignment of text in relation to the widget:
 ° Left, center, and right
 ° Top, center, and bottom

• The left, top, right, and bottom padding of the text from the edge of a widget
• The line spacing of text lines in the widget

Chapter 2

[71]

The following example demonstrates the value of the Auto Width and Auto Height
options when applied to buttons:

1. Drag a Rectangle widget (Image 26, A) onto the wireframe pane. Right-click
on the widget and select Auto Fit Width (B) from the context menu. After
applying the autofit height, the widget shrinks to the size of the text (C).

Image 26

2. As you apply padding (Image 27, A) to the button (B), its size expands to
reflect only the padding. Add additional formatting as required.

Image 27

Axure Basics – the User Interface

[72]

3. Copy and paste the button created in step 1 (Image 28, A), and change the text
on the new button (B) to a longer string. Despite the longer text, it does not
wrap, but rather the button resizes with the text string while maintaining
the padding.

Image 28

This behavior is valuable especially when setting the value of text dynamically.

Line Spacing
This feature defines the height of each line, known as line-height in CSS, for those
who have used Adobe Photoshop or Adobe Illustrator. This is a very handy feature.

The Design Area
Now that you understand how to use the widgets, let's put them to use. Simply put,
the design area is your workspace where you build your wireframes. Each page
(wireframe) opens in its own tab. There are four types of wireframe items that open
in the design area:

• Pages, which can be managed and organized in the Sitemap pane
• Masters, which can be managed and organized in the Masters pane
• States of dynamic panels
• Repeater item/s

Tabs display the name of the opened wireframe (Image 29, A). You can change the
order in which the tabs appear by clicking-and-dragging a tab to the left or right.
The Tabs menu (B) lists all the open wireframes (C) and affords quick navigation
between tabs when many are open. Finally, you can close an individual tab by
clicking on the close icon (D).

Chapter 2

[73]

The tabs open from left to right, which means that the page or master you opened
most recently will be farthest to the left.

It is common to work with multiple open wireframes. Pretty quickly, you will find
yourself flipping through the tabs in search of the wireframe you want to focus on
next. To quickly clean up a cluttered design area, use Close All Tabs or Close Other
Tabs (E).

Image 29

Adaptive Views (New!)
Adaptive Views have been introduced in Axure 7 to help UX Designers who are
on Responsive Web Design (RWD) projects. Adaptive Views define breakpoints,
where you want your pages to switch to a different style or layout based on the size
of a target screen.

In a non-responsive project, all the wireframes are designed with a particular
target screen size in mind, such as a desktop or a smartphone, that adaptive views
provide. Without adaptive views, creating specialized instances of the wireframes
for a radically different screen size would involve a significant hit on productivity
and turnaround speed as all wireframes would need to be recreated and fitted
to the new target size. More significant changes to the functionality in one set
of wireframes would need to be manually applied to the other set of wireframes.
The more the size variations required, the more overwhelmingly difficult the task
of maintaining all wireframes in sync.

Axure Basics – the User Interface

[74]

Inheritance is the most importance concept behind adaptive views because it
addresses to a great degree the productivity aspect of managing multiple sets of
wireframes, each set optimized for a target screen size. In a nutshell, a widget in an
adaptive view inherits properties such as its location, size, and style from its parent
view. If you change the color of a button in a parent view, it will change the color
of the button in the child view. If you change a button in the child view, it will not
change that same button in the parent view. Axure also makes it possible to have
the changes applied from a child view across all views.

Adding Adaptive Views
You begin, of course, with a single view whose wireframes are constructed with a
target screen size in mind, such as desktop or smartphone (Image 30, A). This view is
referred to as Base. To add views that correspond to other target sizes, click on the
Manage Adaptive Views icon (B) or select Adaptive Views from the Project menu
and the Adaptive Views window (C) will appear. To add a view, click on the plus
icon (D). Presets (E) allows you to select the target display from the drop-down list
(F). Repeat the process as required to establish additional adaptive views. Axure
allows you to create custom display targets.

Image 30

Chapter 2

[75]

Adaptive View Definitions
The Adaptive Views window has the following set of fields (Image 31, A):

• Presets: These are preconfigured device display sizes listed by width
• Name: This is the label for the view
• Condition: The condition determines the transition to the breakpoint
• Width: If you want to define a custom view, use this to declare the width
• Height: If you want to define a custom view, use this to declare the height
• Inherit from: This specifies the parent view of this view

Image 31

The Page Properties Pane
This pane is where you go to document a page, set up page level interactions, and/or
apply page-level styling. This pane is divided into the following three tabs:

• Page Notes (Image 32, A): For annotating pages and masters in the writing
space that follows (B).

• Page Interactions (C): Creating cases is very similar to how you would create
them for widgets (D). The three common interactions at page level are the
OnPageLoad, OnWindowResize, and OnWindowScroll. Click on the More
Events link (E) to choose additional options from the menu (F).

Axure Basics – the User Interface

[76]

• Page Style (G): Apply formatting properties to pages.

Image 32

Page Notes
Axure provides an integrated wireframing and annotation environment. The
Page Notes tab is where you enter page level information, such as a description of
wireframe, entry and exit points, container size, and so on. This feature is relevant
for those who need to generate a UI specification document or HTML annotations to
it and can be very useful as a means to communicate important information about
the page to team members, or for a transition of work.

The text can be formatted in this section as well:

• Change the font and its color
• Make it bold, italic, and underline, by highlighting the section you want,

and applying the style from the Format bar

You cannot change the font size, create bullets, or change paragraph alignment.

Once you generate the HTML prototype, your notes, including their formatting, will
appear in the Notes tab, which is on the right-hand side of the Sitemap pane in the
browser by default.

Chapter 2

[77]

Manage Notes
Axure allows you to group notes in categories, which is important for clear and
well-organized documentation. Still the default category can serve as a "catch-all"
for page annotations.

The approach to adopt for your project depends on the complexity of the project,
the documentation output (HTML versus Microsoft Word / PDF), and stakeholder
expectations. It is a good idea to discuss and align expectations early to make sure
that your documentation is satisfactory and to avoid nasty and/or costly surprises.

The benefit of using just a single notes field is obviously simplicity, at least for you.
The drawback is that stakeholders may require varied content. In most projects you
are addressing an audience that has specific interest in only part of your description.
For example, developers might be interested in behavior patterns of the screen and
other technical information, while the business team is looking for the fulfillment of
the business requirements. If all your information is packed in a single field, readers
will have to weed through information that is irrelevant to them.

Since Axure lets you segment page level notes into several note sections and allows
you to control which notes to display to whom, it is a very viable option. Examples
of such categories include:

• Business Requirements Document (BRD) references
• Accessibility (WAI/Section 508) notes
• UX description
• Exceptions, Personalization, or Localization notes
• Private team communication

You control:

• The titles of notes section
• Inclusion of the notes in the HTML prototype
• Including on the notes in the Microsoft Word / PDF specification documents
• Selection of which note to include in the output
• Note order

To create or rename a page-note category, clicking on the Customize Notes… link
(Image 33, A) launches the Page Notes Fields window (B).

Axure Basics – the User Interface

[78]

Add new page note categories by clicking on the + icon. You can modify this name
as well. To delete a category, select it in the list and click on the X icon.

Image 33

In a team project, adding additional note categories impacts the entire
team as they all see them and may be required to fill them—additional
work that warrants discussing with your colleagues the workload impact
before you begin adding additional categories.

Page Interactions
This tab allows the UX designer to dictate what to show on the page when the
page is generated. This is an awesome feature because it affords an economy of
construction. For example, instead of creating a unique page that visualizes how
the page looks when a first-time visitor accesses it and another unique wireframe to
show the page after the user logs in, you can use a single page with dynamic panels.
Each state in the dynamic panels will correspond to a unique view.

Chapter 2

[79]

Say you specify an OnPageLoad event that fires when the browser loads the page.
The browser will then execute the actions that you specified for the event and
will render either the visitor page or the registered user page. We will cover
this technique later in Chapter 4, Creating Basic Interactions, and Chapter 5,
Advanced Interactions.

Page Formatting
Page formatting can be applied only to pages, and not to masters or dynamic panel
states. You can define the following attributes:

• Page alignment (left or centered) only applies to the browser
• Background color
• Background image, including horizontal and vertical alignment,

and repetition
• Horizontal alignment
• Vertical alignment
• Repeat droplist
• Sketch effects (which are described in the next section)
• Font color, font text, and line width

You can save a combination of these attributes as a custom style and apply
this custom style to other pages—a great time saver for ensuring consistency
across pages.

Sketch Effects
There is an amazingly compelling quality to the human touch, and in the context of
prototyping, Axure allows you to apply sketchy effects to your deliverable, which
lends them a handmade feel.

Axure Basics – the User Interface

[80]

Using the sketchy style during the early conceptualization phase can help you
communicate to the stakeholders and reviewers the fact that they are looking at
a conceptual wireframe or prototype. The following screenshot visualizes a
wireframe with 0 percent sketchiness (Image 34, A) and the same one with
100 percent sketchiness (B).

Image 34

Flow Widgets
Flow widgets are available in Axure 7 from the Widgets pane. To access the flow
widgets, click on the Select Library menu (Image 35, A) and select the Flow option
(B) to view the various widgets available in this built-in Axure library (C):

Image 35

Chapter 2

[81]

Flow diagrams are interesting because they are an abstraction of a flow, an algorithm
expressed not as a mathematical formula, but rather in concrete shapes, arrows, and
text. The phrase, "A picture is worth a thousand words", illustrates a general problem
with flow diagrams, however: Flow diagrams are often not very easy to understand,
and some complex flow diagrams sometimes require "a thousand words" to explain
exactly what is going on.

Whatever choices you make for creating flow diagrams for your project, Axure
can help you put them together in a compelling way. In addition to the geometric
shapes commonly used for diagramming, such as the diamond for decision points,
there are specialized shapes such as database and bracket, and most importantly,
the persona shape.

To use the connector line, click on the Connector Mode icon (Image 36, A) in the
Selection Mode icon group, as shown in the following screenshot:

Image 36

The Widget Interactions and Notes Pane
This pane facilitates two major prototyping aspects: interactivity and documentation.
The pane is contextual to a widget selection as it becomes active only when you have
a single widget selected. Once a widget is selected, the widget properties pane allows
you to define its behavior and attributes in the following two tabs:

• Interactions
• Notes

Axure Basics – the User Interface

[82]

The Interactions Tab
The effectiveness of simulating interactivity in UX projects cannot be exaggerated.
The reality is that most stakeholders have a hard time imagining how something
might work, even when they are presented with a sequence of static wireframes.

Less than a decade ago, desktop and web software had lent themselves easily to a
page-to-page sequencing because refreshing the entire page followed most actions.
It was easy to model these types of interaction flows with static wireframes. Modern
interfaces are remarkably dynamic; they respond to a growing array of direct user
manipulation including auditory commands and they often have smooth, engaging
visual animations and special effects. Data on various sections on the screen
seamlessly and fluidly updates in the background, independent of other sections
and without requiring a page refresh. This stuff is impossible to communicate
successfully with static wireframes.

For example, think about communicating even the simple mouse-over interaction,
where the user's mouse is hovering over a text. The styling changes from normal to
bold and underlined. Its color changes from dark gray to blue. After two milliseconds,
a small tooltip appears to the right of the hovered text. This is what you would have to
say if you are using a static wireframe or you would show the two states. Additionally,
you would have to mention that there is no mouseover in the mobile view and so on.

Now, imagine a stakeholder's meeting with high-level management to whom you
want to communicate your vision of the design. The most trivial of interaction
patterns requires so much explanation that it inevitably slows down the overall
delivery of the experience you envision. Alternatively, you can use an Axure
prototype to demonstrate the interaction by moving the mouse over the text:
the experience is communicated instantly.

Interactions
Interactions are an Axure term for a set of instructions you define to add
interactivity behaviors to the prototype. Interactions can be created in the Page
Properties pane, and, widget and master level interactions can be created in the
Widget Interactions and Notes pane.

Chapter 2

[83]

In a nutshell, there are two things you have to remember about widget interactions:

• They are contextual to the selected widget
• Each interaction is a self-contained unit, which is made of three components:

 ° Event: Each interaction is tied to a single event, for example, onClick
 ° Case: Each event can have one-to-many cases
 ° Action: Each case can have one-to-many actions

The actions available to any given widget may differ. We will discuss interactions in
depth in Chapter 4, Creating Basic Interactions.

The Notes Tab
Notes fields capture attributes associated with a selected widget. Axure comes with
a default set of fields, but most likely, you will end up with your own set—those that
best fit the needs of your project. The fields come in four data type flavors:

• Text fields: Use these to capture attributes such as description, default value,
and so on. This is the field we use most often.

• Select list fields: Use these for as many attributes as possible, to enforce
consistency of values and to save time while annotating, for example,
status, release version.

• Number fields: Use these when you want to enforce a numeric attribute.
However, we failed to find a good use for it. For normal attributes, such
as release or phase numbers, the Select list is probably more appropriate
because of the set values. However, Number fields are available in case you
desire to use them.

• Date fields: These are used for date-specific attributes. For example, you
can create a field called last updated and update the value after each edit to
the widget. This may sound like good and useful information to track, but
remember that the update is manual. You will have to remember to make
those updates for all widgets as you update them.

To customize the default notes fields, switch the Widget Interactions and Notes
pane to the Notes tab (Image 37, A) and click on the Customize link (B).

Axure Basics – the User Interface

[84]

The Widgets Notes Fields and Sets dialog (C) will open the Fields tab (D),
which lists the build-in set of fields that come with Axure (E). These fields
can be renamed, deleted, or used as is; it is up to you and the documentation
requirements of the project.

Image 37

Managing notes via the menu and icons set (Image 38, A) includes the ability to:

• Add a new custom field of the four possible field types.
• Set the order as you wish to view the notes.
• Remove any fields you do not wish to use. Axure will prompt you with a

warning (B) when you try to reduce the risk of unintentionally deleting a
field in which annotation have been created.

Chapter 2

[85]

Image 38

Discuss the optimal set of fields with your colleagues and stakeholders. If the
stakeholders have never worked with Axure before, they may have no idea of
Axure's capabilities.

There is no limit that we are aware of, to the number of note fields you can have, but
be practical. Remember that these are widget level fields and you will have tens, if
not, hundreds of widgets in your project that might require some annotation. The
more fields, the more effort to create and update the attribute data, especially as
requirements are likely to change often and at the last minute.

Note Sets
Annotation fields can be grouped into sets. These are very useful when the project
requires the use of many fields, and also when different types of users need to write
annotations. Either way, instead of scrolling down a long, sometimes confusing list
of fields, a smaller, more relevant set can be displayed.

Axure Basics – the User Interface

[86]

Some uses of sets are:

• Organizing business-related fields in one set and development fields
in another.

• In multi-release projects, organize by release-specific sets.
• With multiple workstreams, organize by workstream-specific and global sets.
• In multifunctional teams, organize by sets optimized for the requirements of

the particular discipline. For example, BAs populate functional requirements
in dedicated fields and designers in another set.

Configuring sets is easy once you have determined how to group the fields. In the
following example (Image 39), one set of fields is grouped under Mandatory—fields
that must be populated for each widget, and a group called Optional for the rest:

1. In the Sets tab (Image 39, A), click on the + icon (B) to add sets and name
them (C).

2. Click on the set you want to define and from Add drop-down list (D), select
the fields you want to associate with it from the complete list of fields (E).

Image 39

Chapter 2

[87]

3. Now, in addition to having the All Fields option, the drop-down list
(Image 40, B) now includes the set. Picking a set will remove all other
fields and displays in the Widget Interactions and Notes pane (A) only
the fields in that set.

Image 40

Be mindful of entering annotations in the correct set. The sets are not
contextual to the widgets, so switching between them is manual.

Grid and Guides
Grid and guides are standard features that we come to expect in any graphics
software since they provide a visual aid for alignment and composition.

Setting Guides
To access these features, right-click anywhere in the design area. You can also launch
it from the menu Arrange | Grids and Guides.

The Grid and Guides menu (Image 41, A) is divided into grid-related options (B),
guides-related options (C), and the Snap to Object feature (D).

If you use your keyboard arrows to move/align widgets, deselect the Snap to Object
option as the elements will not nudge.

Axure Basics – the User Interface

[88]

To control the snapping vertical and horizontal tolerance of widgets, select the
Object Snap Settings... from the menu, and switch to the Object Snap (E) tab
in the Grid Dialog pop up (F).

Image 41

Chapter 2

[89]

The Masters Pane
As the name suggests, a master is a single wireframe that can be reused on other
wireframes. When you edit the master wireframe, the change will instantly be
applied to all the instances of this master, effectively updating all the wireframes
where the master has been placed. There are several good reasons to incorporate
masters into your prototype construction as much as possible:

• Manage consistency of design patterns across the user interface.
• Save yourself enormous amounts of time by updating to the master

wireframe; Axure will reflect the change on all other relevant wireframes.
• Save more time, write your annotation once, and avoid extra work,

redundancy, and errors in the UI Specifications document in the output.
• Reduce the size of your Axure file as masters reduce the redundancy of

duplicated widgets.

Use the Masters pane to:

• Manage and organize the project's masters, including the option to add,
delete, rename, group in folders, change order, and so on.

• Select a master for editing.
• Set the behavior of masters on the pages they are placed on.
• Add or remove masters from pages.
• View usage report and see if a master is actually used in your prototype

or not.
• Search masters when you have many of them in your project file.

You can annotate a master at wireframe level. This is very
important because Axure lets you assign different behaviors to
the master instances across the prototype using Raised Events.
In previous Axure versions, master annotation was limited to
the master wireframe itself, making it difficult to document the
different behaviors of its instances. Annotating the instance at the
wireframe level solves this issue.

Axure Basics – the User Interface

[90]

The following screenshot illustrates the Masters pane context menu (Image 42, B)
when right-clicking on a master (A):

Image 42

The Add (C), Move (D), and Duplicate (E) submenus provide the expected options
for managing folders and masters within the Masters pane. The Drop Behavior (F)
provides controls over some settings of the master on the page. These settings are
explained in the following sections.

Master Drop Behavior
This feature allows you to determine how to apply a master instance to a
wireframe. The term, behavior, is somewhat confusing, but the actual options
are straightforward and useful. Additionally, the visual appearance of the master
is different:

• Place anywhere (Image 43, A)
• Lock to master location (B)
• Break away from master (C)

Chapter 2

[91]

Image 43

These three options are explained in the following sections.

Place Anywhere
This is the default master behavior: place an instance of the master anywhere
on a wireframe and across page, and the position of each instance (its x and y
coordinates), will be preserved even after you edit the master wireframe. In other
words, while the visual appearance of all instances of the master are identical,
each instance is allowed to have its own position on the page.

Lock to Master Location
This option will maintain the x and y position of every instance exactly as it is in the
master wireframe. For example, if the widget is at x=10 and y=10 in the master, that
is where the instance will be positioned when you pull it into your wireframe page.
The instance will stay locked to that position.

Break Away from Master
This option was known in earlier versions of Axure as the Flatten option, which
breaks away an instance, cuts the cord, so to speak, between the master and the
instance. From that point on, the instance is reduced to being a normal collection
of widgets. Changes made to the master wireframe will not cascade to the
disconnected instance.

Axure Basics – the User Interface

[92]

Usage Report
Axure offers a useful feature, the masters Usage Report. Right-click on a master in
the Masters pane and select Usage Report from the context menu. The Master Usage
Report dialog lists all the pages and other masters where a particular master is used.

The Usage Report is incredibly handy:

• The list will help you identify if the master is used on wireframes created by
other team members so you can contact them to discuss the changes

• The Usage Report allows you to understand the implication of the change if
the design is already in development

• If you are trying to delete a master, it will not allow you because it is attached
to a wireframe or is in a different master; run a Usage Report to find out
where it is

• If the list is empty, it means that the master is not used anywhere and so is a
candidate for deletion

The Widget Manager Pane
A wireframe is a collection of widgets, dynamic panels, and masters, although not
all of these elements are necessarily used on all wireframes. The number of widgets
on a wireframe can mushroom very quickly. Of course, you can visually scan the
wireframe and try to identify a widget, but it is inefficient. To get to a widget in a
dynamic panel, for example, you need to open the dynamic panel's state and hunt
for the widget in its states. The Widget Manager helps you find or search widgets,
and filter them; capabilities that greatly improve our work efficiency.

With the addition of Adaptive Views in Axure 7, inheritance makes it possible to use
a single widget across all or some of the views while changing some aspects of the
widget, so its appearance fits each view. Suppose you use three views, for desktop,
tablet, and smartphone. Axure does not create three separate widgets. Instead, a
single widget propagates to the views. If you decide that the widget is not needed on
the smartphone view and delete it, it will be removed from all views. It thus becomes
very important to know if a widget is on all or some of the views. The terms used for
this in Axure are placed and unplaced. In all, the Widget Manager pane is an easily
accessible interface for the complete inventory of widgets used, which is illustrated
as follows:

Chapter 2

[93]

Image 44

In this example, we see the contents of some Home page wireframe (Image 44, A).
Without actually seeing the wireframe itself, its entire inventory of widgets is listed
in the pane (B). Masters, dynamic panels, and widgets are easily identified by
their type.

Clicking on the Search icon (C) toggles the Search field (D), making it easy to look
for labeled widgets.

Clicking on the Filter icon (E) displays a set of filters that helps isolate widgets by
their type (F).

Widgets Manager Functionality
The functionality is contextual to the item that is selected in the list, which is
illustrated as follows:

• Add a state to a dynamic panel (Image 45, A)
• Duplicate a dynamic panel's state (new!) (B)
• Move items up or down, depending on their position (C)
• Delete an item from the list, which also deletes it from the wireframe (D)
• Filter the Widget Manager list (E)
• Search the Widget Manager list (F)

Axure Basics – the User Interface

[94]

• Previews the item upon hover (G) (new!)

Image 45

Widgets Manager – Filter
To view the filter list, click on the funnel icon as shown in the following screenshot
(Image 46, A):

Image 46

Chapter 2

[95]

You can apply filter using one of the following methods:

• Filter by item: Options are All Widgets, Dynamic Panels Only, Masters
Only, and Dynamic Panels or Masters

• Filter by name: Options are Named or Unnamed and Named Only
• Filter by place status: Options are Placed or Unplaced, Placed Only,

and Unplaced Only

Unplaced items are displayed in red, which insinuates that this is a bad thing. It is
your choice whether or not you want to have the widget display, so don't worry
about it. We prefer Axure put in red so that it will bring your attention to it and
then you can decide what you choose to do with it.

Web Fonts Mappings (New!)
For many years, typography on the web was notoriously bad because only a
very small set of fonts was guaranteed to load properly regardless of the browser,
operating system, or device used. We are finally reaching a point where the
technology is there to allow designers to harness the power and beauty of fonts
in order to improve the user experience.

Axure's support of Web Fonts is a boon for projects that intend to take advantage of
Google Fonts and other options.

How does this work? Axure's default font for widgets is Arial. If you assign a
widget to a proprietary font you have installed on your computer, and publish
the prototype to AxShare, stakeholders who don't have that font installed on their
system will see a substitute their browser rendered for the proprietary font. If you
assign the widget to a Web Font instead of a proprietary font, all viewers should see
it rendered on their browsers.

Axure Basics – the User Interface

[96]

The process for mapping fonts includes the following steps:

Step 1 – Assign/Tag the Font
In the Widget Style Editor pane, change the font associated with the widget type
from the default Arial to some other font, demonstrated as follows:

Image 47

In this example, we are modifying the H1 element. In the Widget Default tab
(Image 47, A), click on the H1 widget (B) and change its Font to Helvetica Neue
and Typeface to Light (C). Now, every H1 widget will use the Helvetica Neue
font with light typeface.

Step 2 – The Web Font
In this example, we chose to use a font called Lato (Image 48, B), from the Google
Fonts library (A) https://www.google.com/fonts#. Perform the following steps
to tell Axure where this font is:

1. From the list of styles, select Normal 400 (C).
2. Note that in the actual Google interface, the selection of styles is much larger.

Google provides code identifying this specific style's character set. The code
is embedded in a URL (D). Copy this URL.

Chapter 2

[97]

Image 48

Step 3 – Copy the Code into Axure
Perform the following steps to copy the code into Axure:

1. From the toolbar, click on the Publish icon and then click on the Generate
HTML Files… option to launch the Generate HTML window (Image 49, A).

2. When you first use the Web Fonts section (B). Click on the + icon (C) to add
the Lato front.

3. In the Name field (D), make sure to label the font clearly.

Axure Basics – the User Interface

[98]

4. Paste the URL copied from Google Fonts into the URL field (E). Your first
Web Font is now listed and referenced in your Axure file (F).

Image 49

Keep only the http portion of the Google URL, that is,
http://fonts.googleapis.com/css?family=Lato.

5. In the Font Mappings tab (Image 50, A), use the + icon to create a
new mapping.

6. In the left-hand side column, select the font you want to map from the
drop-down list. You can also specify a typeface, such as Normal, Bold,
or Italic (B). In our example, we have Helvetica Neue Regular.

Chapter 2

[99]

7. In the right-hand side column, enter the font-family. If you unchecked the
Choose a specific typeface option, add the font-weight and font-style (C).
In our example, we have Lato, 400, normal.

8. When you generate the prototype, the web font will appear on all the
widgets that use the font mapped to it.

Image 50

The Toolbars and the Menu Bar
The main difference between Axure for Mac (Image 51, A) and Windows 7 (F) is
caused by the way each operating system handles the menu bar and the toolbar.
On the Mac, if the Axure window is too narrow to display all the functions, clicking a
double right-arrow (B) displays the rest (C). To customize which items are displayed,
right-clicking anywhere on the toolbar displays a context menu (D) from which the
full options are available (E).

On Windows, the standard toolbars can be managed by clicking on the View menu
(G) and by selecting the toolbars to display (I) from the Toolbars submenu (H).

Axure Basics – the User Interface

[100]

The following screenshot visualizes the native treatment of Mac and Windows 7 of
the menu bar and toolbars:

Image 51

The Generated Prototype
Within the generated HTML prototype, there is a toolbar under the Sitemap tab
(Image 52, A) that allows you to do the following:

• Select the Adaptive View if your prototype is responsive (B)
• Toggle the display of footnotes (C)
• Highlight active elements (D)
• See the value of variables—this is really helpful for debugging (E)

Chapter 2

[101]

• Generate live URLs for the prototype with various options related to the
Sitemap pane (F)

• Search the sitemap (G)

Image 52

Summary
If you are new to Axure, we hope that this chapter helped you to get familiarized
with the tools' integrated environment and the capabilities. If you've been using
Axure for a while, we hope that this review helped close a few gaps and inform
you about some of the new and enhanced features. If you have not done so already,
we highly recommend visiting Axure's website. It offers a wealth of videos and
tutorials that will help you master the tool's rich feature set.

Many users, us included, were able to do productive work with Axure within hours
from downloading the trial version (offered for a 30-day evaluation). If you plan
to purchase Axure, we are confident that you will get a return on your investment
very quickly. Finally, if Axure becomes your primary prototyping tool, the more you
know about it, the more freedom you will have to express your ideas in a powerful
and compelling way.

In the next chapter, we lay down the foundations for best practice prototyping
construction. We cover the concepts of pages, masters, and dynamic panels,
as well as the methods for constructing scalable and reusable wireframes.

Prototype Construction
Basics

In the previous edition of the book, this chapter started with the following paragraph:

"User experience design is part art, part craftsmanship; the fusion of methodology
and patterns with creative problem solving. The prototype plays a major role in the
success of UX projects because it is simultaneously a concrete interactive preview
of both the vision for and the actuality of the application being designed. For the
UX designer, Axure offers the ability to deliver simulations of rich interactive user
experience, quickly, iteratively, and without having to know programming."

These statements still hold true and the only update here would be:

With the introduction of new features such as Adaptive Views and the Repeater
widget, Axure 7 offers UX designers the ability to deliver interactive simulations of
data-driven device/OS-agnostic user experience quickly, iteratively, and without
having to know programming. If you know something about programming, Axure
opens new and exciting possibilities.

Prior to Axure's ascent in the late 2000s, the cost of providing timely ("timely" is the
operative word here) interactive prototyping was prohibitive for many organizations
because most UX designers were not programmers, and were thus limited to
producing static wireframes in Visio or similar tools. Skilled developers had to be
engaged in order to convert the static wireframes into interactive JavaScript, dynamic
HTML, or Flash simulations. Axure and other tools made it increasingly possible
for designers to take control over simulating the interactive experience because no
programming was required.

However, since the rapid adoption of RWD in 2012, we have seen a return to
either using front-end developers to create prototypes or pressuring designers
to master code.

Prototype Construction Basics

[104]

Involving a developer—an intermediate—in the process of prototyping can be
problematic because the process is slower, expensive, and inefficient. Interactive
explorations that should help the designer shape the experience risk, turning into
mini-development efforts, which require the UX designer to invest significant
amounts of time to communicate interaction flows and the behavior of various
widgets to the developer, and later help debug the simulation. It is harder to rapidly
experiment with alternatives: once a prototype has been coded, it typically reflects
outdated versions of static wireframes, because while coding was taking place, the
wires were subject to one or more iteration cycles.

Adaptive Views is one of Axure 7's new features that is intended to help UX designers
create very sophisticated, interactive, and responsive prototypes without having to
code, or having to engage developers to create the simulation for them. With this
power comes a need for strategies, methods, techniques, and best practices. Applying
these consistently to prototype construction in Axure will help make the process more
predictive for you, and reduce unpleasant fallout caused by mistakes that could have
been avoided. There is no need to reinvent the wheel for each project.

In this chapter, we will cover the following topics:

• Alignment of UX principles with prototyping
 ° Strategy: user-centered design meets business needs
 ° Mobile first meets budget and timelines

• Communicating discovery
 ° Constructing use case and task flow diagrams based on information

gathered during discovery and from requirements

• Prototype construction (foundations)

 ° Establishing a naming convention scheme
 ° Basic wireframing aided by guides and grids
 ° Masters and dynamic panels
 ° Applying visual effects in response to mouse activity
 ° Applying the sketch effect

The previous topics will be intertwined because the prototyping construction process
is tightly coupled with the general practice of UX design, which is much broader
than the prototype. Remember that the prototype is only a manifestation of the
design—it is your primary communication artifact with your stakeholders.

Chapter 3

[105]

Remember that in this book, we focus on prototyping strategy
and construction, and not actual design. This is where you get
into the picture!

Aligning UX with Prototyping Principles
Imagining the user experience and prototyping it are tightly coupled, but the
skills and processes required for each do not necessarily correspond. The
fundamental methodology for conceiving a successful experience involves
planning, analysis, and synthesis of needs and constraints into a coherent and
consistent interaction-design system. Translating this method into an actual
prototype involves planning and hands-on use of Axure through rapid iterative
cycles of review, validation, and revision.

As a UX designer, you want maximal control over the few things you do have
control over, and such control is often a result of rigor and experience. Gaining
a broad industry experience takes time, so there is value in adopting a rigorous
approach, which can help even if your experience with a particular domain is
limited. The following are a few simple, project-agnostic guiding principles
to prototyping:

• Estimate, plan, and keep re-evaluating the prototyping and specifications
effort. Rapid prototyping does not mean one needs to plunge into Axure
and start wireframing immediately. Knowing where you are heading
construction-wise will go a long way in helping you deliver on the experience,
vision, schedule, and budget you committed to, and retain your sanity.

• Master the tools you are using, including Axure. The tools we master and
the quality of our craftsmanship help shape our deliverables, and in turn
increase the confidence of our clients and partners in our expertise and in
the vision we help shape.

• Just because you can do it in Axure, does not mean you have to. Be
strategic about the amount of low-level, high-fidelity details to which
you are committing to.

• Be device/OS agnostic. Unless you are dealing with a truly device-dedicated
unique project, make sure to come up with a device/OS-agnostic design.
Axure 7 supports RWD.

• KISS: keep it simple, stupid. Surprisingly, this rule is not as simple to
implement as it suggests, and more often than not, we tend to sink into
unnecessary complexity before realizing it. Remember that simplicity and
sophistication are not mutually exclusive, and your experience design and
construction methods can be elegantly simple and sophisticated.

Prototype Construction Basics

[106]

Throughout the book, we demonstrate the application of these principles in real-life
scenarios using this main demonstration project or sample snippets, which you can
view and download from AxShare (http://share.axure.com/). You will find that
though many of the ideas and best practices are presented in the context of Axure,
they are in fact tool agnostic and can help you in your work even if you use other
prototyping tools.

Getting Started with Prototyping in Axure
The book's main demonstration project, Farm2Table, is meant to walk you through
the major steps involved in the planning, construction, and iteration of a typical
e-commerce site. The choice of this subject matter was driven primarily by the many
opportunities to demonstrate numerous Axure features and techniques in the context
of an application that conceptually should be familiar to all readers, either from their
experience working on one or as consumers.

Size matters in projects, and yet, core activities such as discovery, user and
application research, requirements gathering, iterative design, and usability testing
are fundamental to user-centered design despite potentially profound difference in
scale and complexity of the projects or culture differences between organizations.

This sample project is a much simplified, abbreviated version of what happens
in reality, where the process involves rapid cycles of iterative design as we move
through the following phases:

• Concept development
• High-level design
• Detailed design

Key Design Activities
The overall development process is not homogeneous, covering the entire
spectrum from waterfall to agile. If you are a consultant, there is a high probability
that engineering methodologies used in each engagement will turn out to be
different from each other, sometimes drastically. Still, key design activities listed
in the following table should take place as the project evolves, regardless of the
development flavor of the day:

Chapter 3

[107]

Factors Concept development High-level design Detailed design
Activities Discovery activities:

• User research
(personas, user
types, roles, and
task flows)

• Competitive
research

• Stakeholder
Interviews

• Conceptual
experience
framework

• Design system for
RWD

• Content strategy
• Experience

framework
• Key wireframes

and interaction
patterns

• Iterative design
• Detailed

wireframes
• Documentation/

specifications

Things
to keep
in mind
about your
prototype

• Overall schedule
(key milestones
for what will be
tested and when,
refactoring or
rebuilding the
vision prototype
from scratch)

• Vision prototype
• Understand

expectations
around scope
of prototyping
fidelity and
documentation
details

• Naming
convention scheme

• Prototype plan
(what is going to
be simulated for
planned testing)

• Experiment,
socialize,
and agree on
documentation
depth and output
(light or heavy
specs, Word,
HTML, or both)

• Testing scenarios
• Pragmatic

interactivity

Any prototype should incorporate inputs from relevant users and stakeholders,
and these inputs should inform the design approach, including:

• Vision and expectations from leadership
• Directives and prioritization from stakeholders
• User research insights
• Direct and indirect feedback from intended users
• Content strategy
• Business requirements
• Technical considerations
• Usability tests to validate the design

Prototype Construction Basics

[108]

Assumptions and Disclaimers
Let's assume, for the purpose of this sample project, that you have already completed
some of the initial project tasks, including some, but doubtfully all:

• Strategy sessions with various stakeholders in the company
• Contextual interviews with end users
• Establishment of a base line by conducting usability studies of the

existing application
• Review of competitive and related applications
• Analysis and inventory of the current site's content
• Development of some of the IA, including high-level taxonomy and

global navigation
• A prioritized list of key capabilities and features
• Development of personas and a matrix of user roles, their key tasks,

and flows
• Tasks provided with and/or those that help develop high-level

business requirements

With this solid understanding of the product and its intended users, you are ready to
dive into Axure and unleash your creative energies.

Due to limitations of scope and format, this project does not deal
with actual content, design, and the various RWD techniques, nor is
it possible to discuss all UX artifacts and their permutations. Rather,
we focus on methods and patterns that can be generalized and
applied to your own work.

Objectives and Artifacts
In the early phases of the design process, we generate a number of UX artifacts
that are important for establishing the overall user-experience framework of the
software. From concept models to personas and use case diagrams to various task
and interaction flows, these documents solidify a shared understanding across all
stakeholder parties on the project. However, it is often the case that these artifacts
are forgotten once wireframing and prototyping begins, and it is common to start
drifting away from established understandings.

Chapter 3

[109]

An important reason for the diminishing value of these artifacts is as simple as their
availability as reference tools, or rather lack of availability. It is common to create
these documents in diagramming tools such as Visio or OmniGraffle and save
them—for sharing purposes—as PDF or PPT files. These discrete documents are
often buried in a SharePoint-type repository or some Wiki, and they are difficult to
retrieve. Thus, all the insights concentrated in them are forgotten.

We will demonstrate how to create and integrate these artifacts into your Axure file
so that they are always a click away for easy reference. Integration of these artifacts
with wireframes and the prototype creates a highly valuable communication and
documentation package that UX contributes to the entire project team.

The following are some of the issues we will discuss next:

• Concept models and persona libraries.
• Use cases and flow diagrams as good examples of communication means

used early on in the project when you are setting the conceptual framework
for the wireframing and prototyping phase. It is an opportunity to discuss
how Axure's diagramming capabilities feed the wireframing process.

• We will move to construction methods that feature masters and dynamic
panels, and include some examples of iteration and feedback that will
require a rework of our initial construction.

• As we dive into topics such as interactions, widget libraries, styling, and
annotations, the demo project helps to visualize various concepts and
construction methods, when applicable.

• Throughout, we consider various prototyping and specification activities
in the context of the overall project plan, development methodologies,
and effort and resources estimation.

• Finally, workflow-wise, we focus on a single UX designer that is a very
common model for Axure practitioners worldwide and touch on team
projects that are discussed in detail in Chapter 9, Collaboration; we will
reference this project to demonstrate various team capabilities.

Prototype Construction Basics

[110]

Naming Conventions, Labeling, and
Unique IDs
It appears that humans have been in the business of naming things for quite some
time. For example, in the book of Genesis, we find the following tale about Adam,
the first man:

"...and whatever the man called every living creature, that was its name. The man
gave names to all cattle, and to the birds of the air, and to every animal of the field;"

Theology and religion aside, it is fascinating to observe that the first activity
attributed to Adam is assigning names to things. Today, we call such activities
tagging. When labeled, things and concepts can be explicitly referenced.

Names and labels are a good start, but unique IDs provide the ultimate
referential integrity. For example, the ISBN number of this book makes it
discoverable to both systems and humans. No translation is needed and
ambiguity is eliminated. Without a solid system of reference—otherwise known
as a naming convention—we risk chaos. Another old testament story, that of the
Tower of Babylon, a large-scale construction project gone awry, is often cited as
the quintessential example of massive failure due to communication breakdown
occurring when multiple teams fail to adopt a single framework of reference.

Naming conventions are critical to any artifact that is produced in a software
project in general, and to UX specifically. The benefits are significant, and it is not
that difficult to come up with a consistent system or tweak the one we present
here. Throughout this book, we repeatedly emphasize the importance of labeling
widgets and using unique identification for pages, masters, and other elements.
The following table shows arguments in favor:

Justification Description
Reduce risk of miscommunication
with stakeholders

Support explicit referencing with all stakeholders
so that everyone is on the same page. For example,
if engineering has a question about an element on a
wireframe, it should be able to point it out explicitly,
using its unique ID.

Making the Axure file easy to
understand

Axure lets you access all widgets. However, if you don't
label them (at least those that you use for interactions), it
can be very time-consuming to create interactions, since
all appear with a generic label.

Traceability Support referential integrity when you need to show
how and where the design aligns to requirements. Each
requirement (with a unique ID) should be matched to a
page, master, or other element, by its ID.

Chapter 3

[111]

The Farm2Table Sample Project in a Nutshell
In this simulated project, we develop a website for a cooperative called Farm2Table,
where local farmers sell their fresh organic produce to interested local consumers.
In a nutshell, this is how the system operates:

• Each week, subscribers can make modifications to the content of the box of
produce they purchased

• On Saturdays, the farmers deliver boxes to a central location in the
served area

• Editorial content created by the cooperative, such as weekly recipes based
on ingredients which are included in that week's box, help introduce
subscribers to new ways to maximize the value of the produce they get,
and try new things

• Finally, social features allow farmers and consumers get to know each other
and strengthen the cooperative and overall community ties

• The principle of building on the strength of local communities supports the
scaling concept of the cooperative business model, since the same system can
be reproduced across the country

Interactive Concept Models
At some point in the discovery process, it becomes important to piece together the
information collected through research activities and validate with stakeholders
our understanding of the universe that makes up the foundations for the design.
Concept models are useful when we want to communicate a high-level picture
of the relationships between discrete entities.

A good example is the Users Concept Model, which is a diagram that identifies
the key classes of users for whom unique features need to be developed in order to
support their roles in the system. Typically, this would be a static diagram created
in Visio or OmniGraffle.

Prototype Construction Basics

[112]

Axure provides a set of Flow widgets that are perfect for creating this model right
in the project file. The following diagram was created with Axure and is part of the
sample file:

Diagram 1

In the Farm2Table project, we identify the following user types:

• Users who work for the cooperative Farm2Table (Diagram 1, A).
These include:

 ° Business users in management, accounting, sales, marketing,
and so on

 ° Administrative users who deal with support and maintenance
 ° Editors and other staff who maintain the site's content

Chapter 3

[113]

• In each area, or local, where Farm2Table operates (B), users are
farmer-members in the cooperative (C). Farmers are very busy,
especially during harvest season. They also don't have staff that
can be dedicated to the site.

• In each area, or local, where Farm2Table operates, users are the consumers
(D). Here we identify the following:

 ° Member-customer: Individual who is a subscriber and is paying for
the service.

 ° Non-member prospect: Individual who upon visit to the site
provided an e-mail and agreed to receive newsletters and
other content.

 ° Non-member visitor: Individual who visited the site but did not
leave any e-mail address. Also, individuals who are part of the entire
potential audience, for whom local, engaging content needs to be
created to compel them to subscribe to the site.

The Axure Edge
The feature that makes this concept model stand out from anything created in
Visio-type tools is the Persona Viewer box (Diagram 1, E). Imagine sitting in a
stakeholders' meeting, discussing various tasks and user flows, being able to
access this model, and instantly seeing the persona(s) developed for that type
upon clicking each user type. Remember that concept models, other diagrams,
and persona documents fade from the collective memory of the project team
because they are not readily available as references, but this diagram as well
as the persona profile could be created in the Axure file!

Keep this persona viewer in mind as you read this book, and at some point, try to
create it yourself. In the actual demo file, we provide one approach to this, but see
it as a future self exercise to create your own persona viewer.

On Capabilities and Requirements
The state of methodology for the creation of business requirements in the real world
is disturbing. It is difficult, perhaps impossible, to find two projects that apply the
same methodology, definition, and terminology to define what requirements mean,
not to mention how to write them. Alas, the scope of this book greatly limits our
discussion on this painful topic.

Prototype Construction Basics

[114]

We will take a semi-happy path here. Based on discovery activities conducted so far,
you should have, at a minimum, a list of high-level aspirations that provide a core set
of guidelines and define the site. These aspirations are sometimes called capabilities.
In some projects, the list of business requirements is handed to you, and in other
projects, you play a key role in their development. Regardless, business requirements
should not define the user experience. Rather, our contribution as UX designers is to
translate the requirements into a world-class practical user experience.

There are many flavors of definitions and many passionate discussions about the
terms listed in the following table. The table is meant to provide you with our
pragmatic flavor in the context of this book. Most UX practitioners must maintain
the flexibility of adjusting to the variability in terminology from one organization
to another. To avoid unpleasant miscommunication, make sure you understand the
specific use of terms as you start working on the project.

Term Definition
Requirements • A discrete statement that defines a business functionality

• Each statement should cover a single functionality
• Requirements should be classified under relevant headings such as

business, user, system, and legal
• Business requirements should not prescribe the UX. For example,

the following is not acceptable:
"The user should be able to select from a droplist one of the
following items". The UX designer will determine the appropriate
widget to be used here, droplist or whatever.

• Do not use Axure to manage requirements
Use case • A use case is a high-level graphical abstraction of an interaction

between a user and the system
• Use case diagrams should be created in Axure and linked to related

flows and pages within the file
Scenario • A scenario is a narrative that describes a likely path a user will take

when performing a set of tasks in the system
• The prototype should be designed to follow agreed-upon scenarios

Initial, High-level Requirements
It is not uncommon to get requirements in the form of a Word document which is a
list of bullet points. That is, if you are lucky enough to get any requirements at all.
As we repeat many times in this book, requirements are a dicey and complex
problem. What we want to stress here is the need to number each individual
requirement such that it can be uniquely identified.

Chapter 3

[115]

The following sample is a set of requirements for the Farm2Table project. While we
need these here in order to make sense of the sample prototype, remember that UX
is not responsible for creating business requirements, and for good reasons that are
beyond the scope of this section, the UX designer should resist the urge to define
them. Still, we bring them here in order to underscore desirable attributes:

• Each requirement has a unique identifier (Column 1). The identifier follows
a naming convention joining the prefix BR (Business Requirement), an
associated capability, and a running number. The running number can
support hundreds of requirements, which is important for large projects.
The entire ID, when parsed, is meaningful to a human reader and can be
sorted, grouped, and filtered when in a database or spreadsheet.

• The requirement text (Column 2) is atomic, meaning that it is limited to a
single directive.

• The associated capability has a unique ID (Column 3). Naturally,
the convention of this ID depends on the project.

• The associated capability (Column 4) helps group requirements in
meaningful subsets. If the term capability is not used, the word category can
be used instead, regardless of such an organizing element being necessary.

Home Page
The following table is a sample list of requirements for the home page, grouped
by capabilities. The ID scheme proposed here is only meant to serve the needs
of a scheme. It may or may not be relevant to the one used in your project.
But there should be an identification scheme.

Requirement ID Requirement Capability ID Capability
BR_C-01_001 All users—visitors and

subscribers—should be able to
see all the upcoming weekly
offerings from local farmers.

C-01 Order Creation and
Management

BR_C-01_002 The weekly offerings should
be viewed by category (fruits,
vegetables, and so on) or
by farm.

C-01 Order Creation and
Management

BR_C-01_003 All users should be able to add
10 different products from a
single farm to the weekly box.

C-01 Order Creation and
Management

Prototype Construction Basics

[116]

Requirement ID Requirement Capability ID Capability
BR_C-01_004 All users are free to select any

combination that adds up to
10 items. For example, 10 units
of onion, or 1 unit of each
product type.

C-01 Order Creation and
Management

BR_C-01_005 The quantity of individual
items in each unit will be listed
on each offering. For example,
"4 yellow sweet onions".

C-01 Order Creation and
Management

BR_C-01_006 The content of the weekly box
should be visible and updated
as the users add or remove
items.

C-01 Order Creation and
Management

BR_C-01_007 Only when the box is full (10
items) should the user be able
to order it.

C-01 Order Creation and
Management

BR_C-01_008 Users need to log in only when
ordering their weekly box.

C-01 Order Creation and
Management

BR_C-02_001 Premium users can add 12
items to an order.

C-02 Account Creation
and Management

BR_C-03_001 All users should be able to
access information about the
farm and the farmer.

C-03 Social

BR-C-03_002 All subscribers can post
reviews about farms and
their offerings.

C-03 Social

Although it should not be your responsibility to write business requirements,
we stress the following points:

• Working without any form of requirements is an invitation to disaster
• When you get the requirements, it is important to evaluate the quality and

flag ambiguity, conflicts, contradictions, and other issues as early as possible
• The business is the ultimate owner of any requirements list, even if UX

played an active role in helping generate them

Good requirements should be easily broken into short and unambiguous sentences
with a syntax that includes the user, a user action, and the interaction outcome. In
other words, each of these sentences becomes a use case. As already mentioned, use
case methodology is beyond the scope of this book, but a wealth of information on
this subject matter is available.

Chapter 3

[117]

Axure and Requirement Management
Axure is not a requirement management system; it does not pretend to be one and
should generally not be used as one. However, under certain conditions, Axure 7
becomes a viable alternative to Excel or Word documents. These conditions are
as follows:

• Axure is deployed as a Team Project
• SVN is used
• A dedicated business analyst will be responsible for entering and

maintaining the requirements in Axure
• The requirements are entered into a Repeater widget, essentially

a spreadsheet
• The setup is piloted with a sample of real requirements

Looking ahead, the potential of integrating Axure with a requirement management
system, or linking it to spreadsheets, introduces powerful benefits for a UX project
done in Axure. This is because of the ability to efficiently maintain direct references
to the latest version of the requirements that drive the project.

Use Cases
We could probably write an entire book only on use cases, as many such books exist.
As with other artifacts, we highly recommend an alignment around the expectations
from use case diagrams, at the start of the project. There are various interpretations
as to what a use case diagram is, and there as several known methodologies for their
creation, such as the Unified Modeling Language (UML).

It is often the case that business stakeholders and others who have a hard time
understanding the diagrams. This is because use cases are abstractions of key
processes that involve an actor (the user or the system) and some key business
process. A good rule of thumb is to remember that the goal is not to create the
perfect diagram, but rather one that can be understood without you having to
walk stakeholders through it.

Prototype Construction Basics

[118]

Out of the discovery phase and high-level requirements gathering in the Farm2Table
demo project, it is possible to drive out the creation of the following use cases:

Use case ID Use case name
UC-01 Setup a New Subscription [+Gift]
UC-02 Assemble My Weekly Box
UC-03 Suspend Delivery
UC-04 Set Repeat Box
UC-05 Review Farm/Produce Details
UC-06 Renew Subscription

The following are some useful guidelines to keep in mind when thinking about use
cases and the prototype:

• Don't prototype stuff that does not correspond to a use case.
• Prototype high-priority use cases first.
• Each use case should have a primary and alternative scenario; negotiate

which alternative, if any, needs to be prototyped.
• Label all use cases and stick to your convention. In this example, we use a

straightforward UC prefix to denote the words use case.

Axure is an integrated wireframing, prototyping, and
specifications system. It means that we can start developing
the specifications document in parallel to the wireframing and
prototyping effort. Diagrams are a good example of important
documentation that can be created in Axure and generated in
the Word specification document.

Use Case Diagram Page
The prototype is only a sample of the entire application. In most cases, it cannot
simulate the various states and permutations that will occur to various users under
various conditions.

This means that what gets prototyped must be pre-defined and agreed upon. A use
case library built in Axure can provide the roadmap for aligning the expectation of
stakeholders about the flows that will be submitted for review and testing. Along
with other UX artifacts that you create in your Axure file, the effectiveness and
value that you contribute to the projects is significantly improved.

Chapter 3

[119]

Step 1 – Adding a Flow Page to the Sitemap
Occasionally, we meet Axure users who are surprised to learn about Axure's flow
pages and diagramming capabilities.

When you launch Axure, it opens a blank new file with a Home page and three
nested siblings (Image 1, A). We recommend keeping structure and flow pages,
such as use case and flow diagrams, in a section above the wireframe pages.

Note that the order of pages in the Sitemap pane is the order in which those pages
will appear in the HTML prototype and Word specification table of content. By
placing structure and flow pages first, you control a logical narrative that provides
high-level abstractions such as user flows, before moving into the actual wireframes
and interaction. This will work well in early review meetings as you describe the
prototype. Additionally, at a later stage, readers of the UX specification will be able
to form a clear idea of the application by flowing the page progression.

In the Sitemap pane, navigate to Add | Sibling Page Before in the Home page (B).

Image 1

Prototype Construction Basics

[120]

Double-click on this new page to open it as a tab in the Wireframe tab. Next, rename
the new page to Use Cases (Image 2, A). Axure provides a method to differentiate
between wireframe pages and diagram pages: right-click and select the Flow option
(B) from the Diagram Type contextual menu.

Image 2

Notice that the page icon (Image 3, A) has changed, making it easy to distinguish
between wireframe and flow pages, as shown in the following screenshot:

Image 3

Chapter 3

[121]

Showing the Grid
Initially the grid—a helpful tool—may not be visible on the page and you would
want to turn it on. You can do so by executing the following steps:

1. Right-click anywhere on the page area to display the context menu, and from
there, select the Show Grid option (Image 4, A).

2. Alternatively, you can access the grid option from the Arrange menu. Finally,
you can use the shortcut combination (Apple, Win) to toggle the grid display.

Image 4

Step 2 – Creating the Use Case Diagram
Next, perform the following steps to create the use case diagram:

1. Select the Flow widget library (Image 5, A) in the Widgets pane.
2. Drag out the Actor widget (B) to the page. This stick figure is the standard

representation of users in UML and most diagramming methodologies.

Prototype Construction Basics

[122]

3. Drag out an Ellipse widget and label it Subscribe/Create Account (C).
4. The Ellipse widget is the UML notation for use case. Continue to add and

label ellipse widgets as needed, or copy them from the sample file.

Image 5

Refine Diagram
To complete the use case diagram, we want to connect the actor widget to the
use cases and organize the widgets nicely on the page for a polished presentation.
Begin with the layout and organize the cases in a vertical order that follows a
logical progression of possibilities.

In the following Image 6, we have shown a simplified visualization, which organizes
the use cases under a shared background and only a single arrow connector is
needed to associate the actor with these cases:

Chapter 3

[123]

Image 6

Axure's Selection Modes
This is a great opportunity to get familiarized with Axure's three selection modes,
which facilitate moving and arranging widgets on wireframe and flow pages. You
can find the Selection Mode option on Axure's toolbar (Image 7, A) for the Windows
version and (B) for the Mac version, as shown in the following screenshot:

Image 7

Prototype Construction Basics

[124]

The modes are described in the following table:

Select Intersected Mode Select Contained Mode Connector Mode
This is Axure's default mode
(C). When you click-and-
drag your mouse over the
wireframe, all the widgets
that are part of your selection
area, even if they were only
partially included in it,
are selected.

In this mode (D), only
widgets that are fully
included in your selection are
selected.

This mode (E) is most
effective when you
work with Flow widgets
because it generates
connector lines that you
can use to hook up the
various flow widgets in
your diagrams.

Our personal preference is the Select Contained Mode, over the default Select
Intersected Mode, because it provides precision by including only items fully
encompassed by our selection, leaving out others that are in close proximity.

Working with Widgets
To organize widgets on a page, use the tools in the Object toolbar. Image 8 shows
the tools on the Mac version; the identical tools on the Windows version are shown
as follows:

• Group and ungroup objects (Image 8, A)
• Move forward or backwards, top or bottom (B)
• Align objects left, right, and middle and top, bottom, and center (C)
• Distribute objects horizontally and vertically (D)
• Lock and unlock objects (E)

Image 8

Select a group of widgets in the use case page, illustrated in Image 9, and use the
Align (Image 9, A) and Distribute (B) options on the toolbar to balance the cases
on the page.

Chapter 3

[125]

Image 9

With all the use cases vertically aligned and evenly distributed, group them together
using the Group option on the toolbar. Select this group, and while holding the Shift
key, select the actor widget. Use the Align Middle option to have the actor facing the
use cases.

Next, switch to the Connector mode (Image 7, E) and draw lines from the actor
widgets to each of the use cases. You should end up with a page that looks
something like as shown in the following Image 10.

Image 10

Prototype Construction Basics

[126]

Staying Organized with Sitemap Folders
The ability to group Sitemap pages in folders, high on the wish list of many users
over the past few years, is one of those enhancements that seem minor, but provides
significant convenience similar to folders in our e-mail client. Anything that helps us
keep the Axure file organized and tidy is important.

Folders help keep the sitemap organized:

• Flow pages and wireframe pages can be kept separate (Image 11, A) as shown
in the following screenshot:

Image 11

• Reflect key domains of the project

In a team situation, avoid creating too many folders for each team member. In the
Farm2Table prototype, the top-level folders are for Diagrams and Wireframes
(Image 12, A) as shown in the following screenshot:

Image 12

Chapter 3

[127]

Under Wireframes, there is a second level (B), breaking down the pages into the
three key user types, as follows:

• Customers
• Admins
• Farmers

Within each category, pages can be nested further.

Saving the Project File
To paraphrase the joke on Chicago elections: save your work early and often. In our
experience, Axure is very stable; if you share your painfully learned lessons from
dealing with software in general, you will also develop the instinct to save your
work frequently. In addition to the standard save, we recommend two strategies
to support iterative design work. They are:

The RP Route
Use the Save As… command at the end of each day to create an archive of daily
versions of your RP file. It is a good idea to use the Save As… command before
making dramatic changes to key wireframes.

Here's why: your Axure file will evolve rapidly to incorporate tremendous amounts
of detail, as you address increasingly finer requirements. Ideas that looked initially
promising will not work as well as you thought. Feedback from stakeholders and
users will require more changes, sometimes requiring that you backtrack to the
previous version.

It is in your best interest to maintain an ongoing history of your Axure file.
When you work on a standalone file (.rp), this means that you are responsible
for managing the revision history. I am not talking about merely backing up your
file here, which is a given.

For managing the history of revisions, a technique—or rather a behavior—that
works for us is quite simple and easy to implement: at the end of each workday, save
the file. Then, use the Save As… command to save the file in an Archive directory
and append the date to the filename. The next day, open the file from the current
directory. With this method, you will always be able to restore or find previous
items and add them back to the current file, if needed.

Prototype Construction Basics

[128]

The RPPRJ Route – Convert to Team Project
The design process is iterative—and rapidly so. It is hard to keep up, but you
often regret that you made a change over some wireframe only to discover that the
previous version was more compelling to stakeholders and users. What if there was
a system that could automatically capture all your work and make it possible to
restore to any previously saved version of your prototype?

Such a system is included with Axure and is primarily meant to support
collaborative team work. However, who said that you cannot take advantage
of its features, which include the ability to capture all of the above? We highly
recommend this approach, which is described in detail in Chapter 7, Managing
Prototype Change, over the standard RP standalone, with the exception of true
throw-away fast explorations that are not meant to be saved and expanded.

Task Flow Diagram Pages
A prototype is tailored to visualize and demonstrate the user experience. Before we
can develop the demonstration, we really need to nail down key user tasks which is,
after all, the reason for the existence of the application. Since the scope of this book
limits our discussion of the topic to the context of Axure, I will focus on the aspect of
creating task flow diagrams.

Task flow diagrams are a model, an abstraction of the Ping-Pong exchange that
makes up user-system interaction. These diagrams also play an important role in:

• Validating the sequence and logic of each task with business and
technical stakeholders

• Developing an agreement on which flows and parts of flows should be
prototyped, and to what level of fidelity

The diagrams should be shaped by explicit context, which is determined by a
combination of inputs, including:

• What the system knows about the given user
• The options afforded to the user by the system
• The user's actions

Chapter 3

[129]

While there are no set standards for UX flow diagrams, keep in mind that clarity,
precision, and organization would help you during joint sessions with stakeholders.

Axure provides a one-stop shop for creating both flow diagrams and the
wireframes that are associated with them. The ability to use a single application
for modeling, simulating, and documenting the user experience gives us a
powerful work environment.

Task Flow Diagrams (Sans Visio)
In a non-integrated world, you create, edit, and store your artifacts in dedicated
software packages. Visio (PC) and OmniGraffle (Mac) were the tools of choice for
many of us, frankly, because no tools were created primarily for UX. Both are good,
general-purpose diagramming tools and many practitioners swear by them; they can
do some amazing stuff. But let's get real: these are all static and single-user tools. In
terms of workflow, there are costs and inefficiencies. The benefits of joining diagrams
in Axure as opposed to spreading the IA across multiple tools are straightforward:
all artifacts can be created in a single tool, organized within a project framework,
be updated regularly in response to iterative design, and be linked.

Let's create a couple of task flow diagram pages, one for modeling the path of
creating a new subscription and the other for the process of assembling the weekly
box. In the Sitemap pane, add the two siblings below the Use Cases diagram page.
Label the pages and use the Diagram Type menu to change their icons to mark them
as flow pages.

Flow Diagram – New Subscription
To compose the diagram, you follow steps that are similar to those you would follow
in Visio or Omni Graffle. But in creating the diagrams in Axure, you benefit from
centralizing IA artifacts with the prototype and gain some benefits.

Prototype Construction Basics

[130]

Compose the diagram (see sample file FL-01) with Flow widgets (Image 13, A).
Use the Connector mode to draw connectors from one widget to another, and
use the Arrow Style options to add directional arrowheads to the connectors.

Image 13

Chapter 3

[131]

It is a good idea to add a glossary using the Wireframe library widgets. But you can
also drag pages from the Sitemap pane (FL-01B). Notice that the widget inherits
its label from its parent page on the Sitemap pane. Also, note the document icon
on the upper-left corner of the widget (Image 14, B). After you generate the HTML
prototype, clicking on this widget will link to the actual pages.

Image 14

Prototype Construction Basics

[132]

Flow Diagram – Assemble My Weekly Box
Some of the initial requirements, as captured in Image 15, include:

• Ability to add/remove and edit the content of the box without having
to log in

• Ability to log in only when done with the box and ready for a one-click order

Image 15

As we mentioned earlier, when discussing use cases, it is desirable to align the
diagrams that are in the Axure project with prioritized scenarios for usability testing.
Also, focusing on the most important flows ensures that all stakeholders are clear on
the scope of the prototyping effort.

Chapter 3

[133]

Linking Use Cases to Flow Diagrams while
Keeping Your Naming Conventions Intact
In addition to being able to create and store diagrams and wireframes within the
same application, you can link Axure diagrams and wireframes to create a seamless
transition from one to the other, with the help of the following steps:

1. Open the Use Cases page in the Wireframe pane.
2. Right-click on the use case UC-01 Setup a New Subscription

(Image 16, A), and select the Reference Page… option (B) as shown
in the following screenshot:

Image 16

3. The Reference Page popup (Image 17, A) lists all the pages in the
Sitemap pane.

Prototype Construction Basics

[134]

4. Select the page FL-01 Setup New Subscription (B) to link the use case to the
page and close the popup, as shown in the following screenshot:

Image 17

Chapter 3

[135]

5. Notice an unexpected change in the label of the use case: it is now showing
the name of the page it is referencing (Image 18, A). This is a problem because
you still want to be able to communicate with stakeholders about the use
case independently from the referenced page. Also, you want to keep the ID
of the use case permanent and not have it changed, in case you also change
the ID of the page you are linking it to.

Image 18

Prototype Construction Basics

[136]

6. To undo this, the fastest method is to just delete the shape and create a new
one. Or, you can delete the OnClick case that Axure created.

7. With the correct ID showing, select the text on the widget (Image 19, A)
and click on the Link icon on the toolbar (B) as shown in the
following screenshot:

Image 19

8. From the Link Properties popup (Image 20, A), select the page you want to
link to FL-01 Setup New Subscription from the list under the Link to a page
in this design section (B) as shown in the following screenshot (Image 20):

Chapter 3

[137]

Image 20

9. Now the shape maintains its unique and permanent ID, and it is linking to
the diagram flow page.

Generating an HTML Prototype
It is now time to generate your first HTML prototype, in order to review the work
you have completed thus far. As your prototype advances, you will find yourself
generating previews quite often, in order to validate that the HTML output works
in the way you intended.

Generating the complete HTML prototype is accomplished from the Publish option,
which is accessible either from the toolbar icon (Image 21, A) or from Axure's menu
bar (B). The Generate Prototype Files… dialog (C) allows you to specify various
settings that affect the output. However, at this early point, start with the General
section (D) and let Axure know where to output the HTML prototype.

Prototype Construction Basics

[138]

Use Axure's default for the destination folder, a directory labeled Axure Prototypes
in your Documents folder. Alternatively, keep all your project work under the same
directory, as described in Chapter 2, Axure Basics – the User Interface, which makes it
easier to find all your project-related stuff, especially when you want to transport or
back up your work.

Chrome or Firefox is the recommended browser, but you can specify your choice in
the Open With section (D). Each time you generate the HTML prototype, it opens
a new browser tab. It is a good idea to bookmark the page after the first time you
generate the prototype, and from then on, use the Do Not Open option, to reduce
to proliferation of open tabs in the browser. Just generate and refresh the page.

Image 21

Chapter 3

[139]

Hit the Prototype icon to generate the HTML prototype. The screen is divided into
the following two sections:

• On the left, a pane with two tabs, Sitemap and Page Notes. The Sitemap tab
(Image 22, A) is selected by default.

• The main body, which displays the diagram or wireframe. The top page in
the Sitemap tab is the default.

In our example, the Use Cases page (B) is selected in the Sitemap pane and
displayed in the main section of the screen. In the main page, notice the little icon on
the lower-right corner of the Setup New Subscription use case (C). Notice that the
cursor changes, indicating an active link, which on click, loads the referenced Setup
New Subscription diagram page in a new tab (D).

It is also possible to set up links from diagram shapes to their corresponding
wireframes, as in the link to the actual wireframe of the My Profile page (E).

Image 22

Prototype Construction Basics

[140]

To summarize what we've covered thus far:

• Creating use case diagrams
• Creating task flow diagrams
• Referencing and linking flow and wireframe pages from diagrams
• Generating an HTML prototype

Even an Axure novice can complete the activities we covered till now in 30 minutes
or so and create a meaningful piece of work. As you continue to build the prototype,
the underlying use cases and task flow will always be available for confirmation
and validation.

The Sitemap Diagram
Another classic, basic, and very useful diagram is the Sitemap, which we can
assemble by placing actual pages on the canvas, as shown here:

Image 23

Chapter 3

[141]

The following list is a simple inventory of all key Customer pages in the Farm2Table
site. Due to the limitation of this being a sample project and not a full-fledged
project, we are not treating the farmers or admin pages here, which otherwise
would be considered as well.

Notice that all pages have unique IDs in addition to names.

Axure Sitemap Customer
Page ID/Title Visitor Logged in subscriber
100 Home [Visitor] Y N
110 Home [Subscriber] N Y
200 Calendar Y Y
300 Farm [Main] Y Y
310 Farm List Y Y
320 Farm Details Y Y
400 Table [Main] Y Y
410 Recipes Y Y
420 Recipe [Details] Y Y
900 My Profile N X
901 My Account N X
910 My Box History [List] N X
920 My Box -[Detail] N X
930 My Favorites [List] N X
940 My Favorite [Detail] N X
950 My Reviews [List] N X
960 My Review [Detail] N X

Prototype to test: plan your prototype such that you create pages, page
elements, and interactions that are part of a prioritized list of user flows
that must be tested.

We will focus on developing the following pages:

• Homepage [Visitor, Subscriber not logged in]
• Home [Subscriber logged in]
• Profile (including My List, a feature that lets the user tag favorites items that

can be used to automatically build a 1-click box)

Prototype Construction Basics

[142]

• Seasonal Calendar
• Farm Detail
• Item Detail
• Recipes

A Device/OS-agnostic UI Framework
"Everything should have its place, and there should be a place for everything."

 – Various attributions

The reality is that we must think and design devices/OSes agnostically.
Smartwatches, smartglasses, smartphones, tablets, desktops, and large TV sets,
all deliver a unique experience that should be optimized around the strengths
and challenges their form-factor presents. A robust UI framework must provide a
cohesive experience that can scale up—functionality wise—to accommodate new
business capabilities; it also has to solve for a device-dependent experience. This is
the catch, the challenge, and the opportunity.

It is difficult to optimize the design in such a way that regardless of the variability of
device, its operating system, and screen size, the user experience will be optimal. The
schedules, resources, and budget do not extend to comfortably accommodate all the
work. Process issues, when all we had to worry about was the desktop experience,
get exponentially worse.

There are conversations in our discipline around the best approach to develop an
agnostic experience:

• From small to big?: Some maintain that we have to start with the smallest
screen size, the smartphone, and work our way up. Others find it easier to
start with a portrait view of a tablet; then, there are those who start with
the desktop.

Chapter 3

[143]

• All or Subset?: Some argue that there is only so much you can do on a small
screen on the go and on limited bandwidth, and thus, smartphone content
should be optimized for the device, and only a subset of all content and
functionality should be offered there. Others maintain that with increasingly
generous smartphone screens and the fact that they have become a primary
work and pleasure platform for most users, the expectation is to have access
to all content and all functionality regardless of the device used.

We will not take sides in these debates because changes are just too rapid. Instead,
we will just point out that our experience has shown that it is more effective to
validate content and functionality with stakeholders with wireframes and prototypes
designed for a landscape desktop view, and show the smartphone and tablet
experiences side-by-side.

It is easier for everyone to consider the entire set and then subtract, rather than
working the other way round and figure out what is missing. Of course, a
prioritization method for content and functionality is needed either way.

Still, we are talking about a design that does not become smaller or larger to
accommodate the screen, but rather, a user interface system that transforms in
response to the size of the screen. In order to develop such an interface system, we
have to wireframe and prototype it first. For each screen, we have to wire, review,
iterate, and test at least three versions, if not more, typically for desktop, tablet, and
smartphone. The number of possible permutations is, of course, much higher.

Back in the Farm2Table project, with information gained from discovery activities
and work done on the IA, it is time to develop rough wireframes that will guide the
conceptual development phase of a user experience framework.

Before you dive into Axure's Adaptive Views feature, we recommend you first
flesh-out the design in a fast and straightforward way. Whether you are new to
Axure or a veteran user, this can be done without the Adaptive Views feature—just
straightforward wireframing sketches.

Prototype Construction Basics

[144]

If you choose to start the exploration and related discussions from desktop screens
at landscape orientation (Image 24, C), it is useful to communicate to all that the
importance and focus is on mobile first. When showing a comparative image of the
layouts, start with the smartphone view (A), followed by the tablet portrait view (B),
and close with the desktop view (C).

Image 24

RWD, Axure's Adaptive Views, and Base view
The world would be so boring without some semantic confusion, and
so we are blessed with musings around topics such as the differences
between Responsive Web Design and Adaptive Web Design. But for most
non-technical people, and by that we mean many of the stakeholders you
work with, the bottom line is an experience that transcends the device
and its operating system. They want to see layouts for desktop, tablet, and
mobile—in landscape and portrait orientation.
To create a prototype that simulates this behavior without coding it in
HTML 5, CSS, and JavaScript, we use Axure's Adaptive Views capability.
Create your initial wireframe in the traditional landscape desktop view
that is 1200 pixels wide. You organize all the elements that need to be
there and you want to create additional views for narrower screens.
The moment you add an adaptive view, the original 1200 pixel wide
wireframe becomes the Base view, meaning that all the other views you
create will inherit from it.

Chapter 3

[145]

First Wireframe – Produce [Visitor, User Not
Logged In]
Often, you might have a gut feeling about the general organization of the layout
based on experience and familiarity with similar applications. You recognize the
appropriateness of a particular pattern that could be applied, and since typically, the
basic building blocks are elements such as header, footer, and body, they serve as the
initial placeholders for deeper exploration.

The width of Axure's widgets is set in pixels and there is no option to set them as
a percentage of the browser's window width. You cannot set the width of a widget
to be 100 percent of the screen width, for instance. If you could, the widget's width
would be elastic, making it resize to whatever the browser window width is.
Therefore, it is important to decide what the wireframe's maximum width will be
before placing widgets on the page. The decision can be simple if the target width
is known. If the application is device agnostic, Adaptive Views addresses the issue.
However, for each view, the width is fixed.

In the following example, we begin with a high-priority page, one most visitors will
see: the Produce page as it is presented to visitors and subscribers who did not log in
yet. Start the Produce page by outlining layout blocks with Rectangle widgets:

• Farm2Table Logo
• Global Navigation Bar
• Produce Box (Shopping Cart)
• Promo Banner
• How This Site Works Promo Box
• Recipes Promo Box
• Produce Items
• Footer

Prototype Construction Basics

[146]

So, here are a couple of approaches to tackle the wireframe:

1: The quick and dirty approach 2: The device/OS-agnostic approach
This approach often does not bother with
restrictions such as maximum width, widgets
alignment, spacing, and other composition
considerations. Widgets are placed on the
pages quickly and tentatively, with a lot of
copy and paste of similar widgets to speed
up the construction. This approach can
be compared to stream-of-consciousness
writing, and for some, it is a great way to get
ideas out.

This approach is based on the principle
that small, upfront investment of time at
the start of wireframe construction can pay
off big-time later in the project.
This means that you must pay attention to
small details such as proportions, widget
and text alignment, spacing, and so on.

A Quick but Structured Construction Approach
The third approach takes the advantages of both options listed in the previous table
in that it affords rapid explorations, but anchors the work around an underlying
grid structure. This supports conversion of the work to other sizes as it reduces
throwaway work and expensive rework.

Keep in mind the mismatch between RWD's use of the term Grid and Axure's
implementation of the same, called Guide. Regardless, the idea is to have a set of
vertical lines establish the number of columns and their spacing on a layout. The
following Image 25 visualizes the screen:

Image 25

Start by creating Global Guides for the Base view of the page. This is a 1200 pixel
wide desktop, landscape-oriented layout. We use Axure's 1200 grid with 15 columns
but you can modify and use the opportunity to create your own guides.

Chapter 3

[147]

From the Widgets pane, drag over the Rectangle widgets that correspond to sections
on the Produce page. Resize and organize them in the header, body, and footer areas.
With Axure's Zoom feature (Image 26, A), you can adjust the display of the wireframe
area to get a better sense of the entire composition: a useful feature when you want
to move or resize wide objects.

Double-click on each widget to type in its label. Labeling widgets will be really
important with Adaptive Views.

Image 26

Prototype Construction Basics

[148]

Add other Views: Manually or with Adaptive Views?
With this simplistic, very high composition in place for view, duplicate
this page and create related smartphone and tablet views. It may be a bit
too early to use Axure's adaptive views at this point because all you need
is a canvas for rapid consideration of all views. In other words, before
you dive in to the specifics and get bogged down by having to manage
adaptive views, develop your approach first.

Ok! So it is now time to move from big rectangles, which you could do in
PowerPoint, to actual high-level definition of the various page elements. We want to
focus our attention on high-level requirements and the information gathered so far.
The following are some high-level, conceptual questions to develop:

• How is information organized and accessed on each screen in the case of
Information Architecture?

• Where and how are key task flows initiated and ended?
• What are the main navigation systems?
• What common elements are shared across screens?
• How are common elements affected by a device size?

Getting Started with Masters and
Dynamic Panels
Although we begin with a specific wireframe because we have to start somewhere,
some global elements, such as header, footer, and navigation are shared across
multiple pages. You could continue developing an element on a particular page
and then copy and paste it wherever it is needed. But of course, now you will have
to visit every page that uses this element each time you make a change and apply
the updates. This is not an acceptable approach, although all of us probably ended
up in such a situation at one project or another. It is a painful, slow, and expensive
construction approach.

Global Elements as Masters
Some common elements of the UI framework, such as the header and footer, are
natural candidates for consideration as global elements. Other modules typically
include the login component, search and search results, help, and various alerts.
Essentially, any element that repeats on multiple screens should be considered to be
global. The global navigation is a natural global element since it repeats on most pages.

Chapter 3

[149]

Axure Masters and Why to Use Them
Reuse, efficiency, productivity, edit one - update all! These are some of the benefits
that immediately come to mind—that and the deep desire to avoid the pain
mentioned previously.

Axure masters are not dumb rubber-stamps. Rather, they are powerful in that they
can be assigned a behavior that is contextual to the page or element they are placed
on. In Chapter 5, Advanced Interactions, we discuss masters in depth, but we will start
using this powerful feature here.

The Global Navigation Bar
In most sites, this element appears in almost every page as it provides the user with
an explicit indication to current position and available broad options. It provides a
macro orientation:

• Where am I in the context of this site?
• What are the main sections of this site?
• Where can I find the content I'm looking for?

To construct the global navigation, perform the following steps:

1. Drag over and place a Label widget in the global navigation area. In Axure 7,
it is no longer necessary to user rectangle widgets as a workaround to create
rollover and other visual effects.

2. Change the text to Home and also label the widget Home.
3. Add additional labels for Calendar, Farm, Table, Contact Us, About, and

FAQ. And finally, it should look similar to the following screenshot:

Image 27

Prototype Construction Basics

[150]

Adding Wireframe Pages
At this point, add main category pages to correspond to the tabs in the
global navigation:

• 110 Home (Subscriber)
• 200 Calendar
• 300 Farm
• 400 Table
• 900 Contact Us
• 910 About
• 920 FAQ

We have two options to continue from here:

Quick and dirty Masters: A "Front-Loading" investment
Use the "quick and dirty" method to
simply duplicate the Produce page,
rename it, and adjust the widgets on
each duplicated page. The drawback
is that changes to repeating elements,
such as the global navigation, will
have to be applied manually to all
wireframes. This approach is fast
initially, but costly in the long run.

Use the somewhat slower but structured method
of converting all the repeating elements on the
home page into masters, then duplicating it to
create the category pages. The masters will be
reused, thus saving time in the long run, and
ensuring construction consistency across pages.
Since masters have adaptive views, they will work
well later on.
For a refresher on adaptive views, see Chapter 2,
Axure Basics – the User Interface. This is the
approach which will be demonstrated next.

Creating Your First Master
We are going to demonstrate the second approach, using masters. Masters are
components of the user interface that appear on multiple pages. When you edit
the master, all its instances in the prototype are immediately updated. A twist that
Axure has added to masters is that while the look and feel of a master is identical
wherever you use it, its behavior can be tailored to fit the context in which it is used.
We discuss this feature, called Raised Event, in Chapter 5, Advanced Interactions.

Chapter 3

[151]

So, our first master that we will create using the following steps will be the global
navigation bar:

1. In the Wireframes pane switch of the Home page, select the group of widgets
that make up the global navigation bar (Image 28, A).

2. Right-click anywhere within the selection, and in the contextual menu, select
the Convert to Master option (B) from the Arrange menu.

3. Axure will prompt you with the Convert To Master dialog (C).
4. Make sure to re-label the master, replacing the default and generic New

Master 1 with something meaningful, and hit the Continue button. We will
discuss naming convention strategies in Chapter 4, Creating Basic Interactions.

5. Leave the Place Anywhere option selected.

Image 28

Prototype Construction Basics

[152]

Note that you can undo this action and revert the master to its original state by
selecting the Undo option from the Edit menu.

Start the name of each master with an M. For example, M Global Nav.
The prefix will make it easier for you to identify which open wireframes
are masters.

You will immediately notice a change in the way the navigation bar looks: the entire
block now has a pink shade (Image 29, A), which helps you distinguish masters from
other widgets. The new master appears in the Masters pane (Image 29, B). Keep in
mind that the Masters pane is not contextual to a specific wireframe. Rather, it is the
repository of all the masters you have in your project file. The Widget Manager pane
is contextual to the edited wireframe page.

Image 29

In the Produce page, continue to create masters out of the Header and Footer blocks,
since these elements too will appear on every page.

Masters from scratch
You can also create new masters without converting existing widgets by
using the Add Master option in the Masters pane. This is a good option
when you know in advance that the widget will be used as a master.

Basic Interactions
It is a lot of fun to get these interactions going. That is why we are using Axure,
right? So indeed, it is so simple to get the global navigation to link to other pages
that we start with interactions in this chapter.

In the M-Global Nav master, click on the Calendar button (Image 30, A), and from
the Interactions widgets and Notes section, double-click on the OnClick interaction
(B) to bring up the Case Editor window. There, select the Open Link action (C) from
the first column, and in the third column select the target page, in this case Calendar
(D). That's it.

Chapter 3

[153]

Use the Preview button to view the page in the browser and enjoy the ease with
which you were able to create the link.

Image 30

Dynamic Panels to the Rescue
For the Farm2Table global navigation, we have chosen a simple, text-based design.
But what if your design calls for something more elaborate?

For example, the global navigation is designed using tab widgets in such a way that
the shape of the active tab clearly indicates to the user the page they are on. The
implication of this design decision is that the global navigation needs to have four
states, each with the active section tab. However, you have only one master, and it
will always show the Home page tab as active.

Yes, it is possible to avoid this predicament—just have all buttons look identical,
and change their fill and outline colors—but this is not what you want for the design.

This is the first example of a construction situation in which Axure's dynamic panels
come into play. We provide a deep-dive into dynamic panels in Chapter 4, Creating
Basic Interactions.

Prototype Construction Basics

[154]

In the sample page, DP Example (use the Search feature in the Sitepmap pane to
find it), open the global nav master, select all widgets, right-click, and select the
Convert to Dynamic Panel option from the context menu (Image 31, A), as shown
in the following screenshot:

Image 31

You have just created a container that will hold the four states of the global nav.
Once you close the dialog box, notice the changes in the master wireframe. The
rectangle and navigation widgets now appear as a single box with a light-blue
mask (A), which is how Axure helps you visually distinguish dynamic panels
from other widgets.

Chapter 3

[155]

The Dynamic Panel State Manager (Image 32, B) dialog appears when you
double-click on the dynamic panel. Now is the time to relabel it to something
meaningful, such as DP Global Nav. We recommend using a prefix such as DP
(acronym for dynamic panel) to help identify dynamic panels by their label. Finally,
the node nested under the dynamic panel is of its initial state, which is labeled with
the default State 1. Relabel the state to Home.

Image 32

Since adding the additional three states is self-explanatory, do this to complete this
phase of the example.

New dynamic panel from scratch
You can also create a new dynamic panel by dragging over a dynamic
panel widget to the wireframe. Double-click to edit, and the first state
will open in a new tab in the Wireframes pane. Add widgets to this
blank wireframe. This is a good option, if you know in advance that the
component you are going to wireframe needs to be a dynamic panel.

Prototype Construction Basics

[156]

States Construction in a Dynamic Panel
The following Image 33 shows the dynamic panel (A) and the wireframes that make
up its four states (B through E).

Image 33

In our example, the overall size and structure of the states is uniform, with the
exception of the active tab (B through E). In other cases, each state of the dynamic
panel may have different physical properties; we will go through such an example
at a later point.

Chapter 3

[157]

Automatically Resizing a Dynamic Panel and
Associated States
In the previous version of Axure, you had to make sure to manually adjust the size of
the dynamic panel such that it would accommodate its largest state. The dimensions
of the dynamic panel were fixed, and thus, areas of a state that extended beyond the
panel's boundary would not be visible. In Axure 7, Fit to Content solves this issue.
The following screenshot shows the Fit to Content option (Image 34), which resizes a
dynamic panel to fit the dimensions of the largest state:

Image 34

Adding Visual Effects
Next, we want to enhance the user experience and provide visual effects in response
to user actions. For example, when a user hovers over a tab in the global navigation
bar, the tab should change its appearance. With Axure, you can create such effects
effortlessly, which we will demonstrate on Farm2Table's Global Nav bar.

Prototype Construction Basics

[158]

The Set Interaction Styles dialog (Image 35, A), provides a one-stop place to create
and apply dedicated visual treatments to four states that reflect the widget's
appearance in the listed conditions (B):

• MouseOver
• MouseDown
• Selected
• Disabled

Image 35

The dialog contains various visual properties. You can also use a custom style by
checking the first checkbox Base Style, and select the Custom style from there.
We will discuss this important capability later.

There is still no way to link an actual CSS file.

Chapter 3

[159]

Adding Sketch Effects
If you like to begin your design process for a project by sketching exploratory
wireframes on paper or an iPad, you can achieve a similar tentative look by
using Axure's Sketch Effects feature, which has been introduced in Version 6.

For early iterations of the prototype, this kind of treatment might help communicate
to stakeholders that we are still looking at initial concepts. The effect can be applied
on a page-by-page basis or to all pages as a global style. Sketchiness affects the entire
wireframe, not only the selected widgets in a wireframe. The good news is that this
effect can be easily removed at any time. Experiment with the Sketchiness slider to
find the level that works for you. The following Image 36 shows the before and after
stages of the effect being applied to the page:

Image 36

Prototype Construction Basics

[160]

Summary
This chapter laid out the foundation for the project's interactive prototype and
proposed a structured, pragmatic, yet requirements-driven approach to wireframe
construction. Taking advantage of Axure's unified wireframing and specifications
environment, we covered:

• Constructing various artifacts such as concept models, personas, use case,
and task flow diagrams based on information gathered throughout discovery
and requirements activities

• Basic wireframing aided by guides and grids
• Wireframe construction with masters and dynamic panels
• The importance of labeling of widgets, naming conventions, masters,

and dynamic panel states
• Applying visual effects in response to mouse activity
• Applying the sketch effect

You were introduced to Farm2Table, the book's demonstration project, and in a
series of activities, created an initial set of diagrams and wireframes that included
the use of wireframe and flow widgets, masters, and dynamic panels.

The next chapter will introduce you to Axure interactivity fundamentals such as
interactions, cases, events, and actions. We will also discuss naming conventions
and wireframe construction strategies.

Creating Basic Interactions
"Learning is not attained by chance, it must be sought for with ardor and diligence."

– Abigail Adams

We joke that Elizabeth is a true designer in the sense that her right brain will be
on fire when she approaches her work, so shifting to logic is tricky for her. Despite
this, she has been able to build rather sophisticated prototypes. So, while Axure 7
supports the creation of highly advanced rapid prototypes, the key to success for
someone who does not have pseudo code running easily through their mind is:
approaching interactivity with an open mind, writing down in plain language what
the desired interaction should be, and the willingness to seek help from a colleague,
online tutorial, or this book.

In this chapter, we cover the basics of Axure interaction and some of the simple-yet-
powerful features that empower non-programmers to develop high-fidelity, clickable
UX prototypes.

The basic model of creating interactivity in an Axure prototype involves four
hierarchical building blocks: Interactions, Events, Cases, and Actions. Interactions
are triggered by events, which cause cases to execute actions. These four topics are
the focus of this chapter.

Axure Interactions
Client expectations of a good user experience continue to rise, and it is clear that we
are in the midst of an enormous transition in software design. This, along with the
spread of Responsive Web Design (RWD), has placed UX front and center of the
web design process. Early in that process is the need to "sell" your vision of the user
experience to stakeholders and you have a better chance of success if they have to be
engaged as early as possible, starting at the wireframe level. There is less tolerance
and satisfaction with static annotated wireframes, which requires an effort on the
part of stakeholders to imagine the fluidity of the expected functionality.

Creating Basic Interactions

[162]

Axure enables designers to rapidly simulate highly engaging user experiences that
can be reviewed and tested on target devices as static wireframes are transformed
into dynamic prototypes. In this chapter, we focus on how to make the transition
from static to interactive, using simple, yet wickedly effective interactions.

Interactions are Axure's term for the building blocks that turn static wireframes into
clickable, interactive HTML prototypes. Axure shields us from the complexities of
coding by providing a simple, wizard-like interface for defining instructions and
logic in English. Each time we generate the HTML prototype, Axure converts the
interactions into real code (JavaScript, HTML, and CSS), which a web browser can
understand. Note however, that this code is not production grade code.

Each Axure interaction is composed, in essence, of three basic units of
information—when, where, and what:

• When does an interaction happen?: The Axure terminology for "when" is
events, and some examples for discrete events include:

 ° When the page is loaded in the browser.
 ° When a user clicks on a widget, such as a button.
 ° When the user tabs out of a form field.

A list of events can be seen on the Interactions tab in the Widget Interactions
and Notes pane on the right-hand side of the screen. You will also find the
related list of events under the Page Interactions tab, which is located under
your main workspace.

• Where can we find the interaction?: An interaction is attached either to
a widget, such as a rectangle, radio button, or drop-down list; a page; or a
master wireframe. You create widget interactions using the options in the
Widget Properties pane, and page and master interactions using the options
in the Page Properties pane. These are called cases. A single event can have
one or more cases.

• What should happen?: The Axure terminology for "what", is actions. Actions
define the outcome of the interaction. For example, when a page loads, you
can instruct Axure on how the page should behave and what it will display
when it is first rendered on the screen. More examples of this could be when
the user clicks on a button, it will link to another page; when the user tabs
out of a form field, the input will be validated and an error message. Ensure
that all of the actions you want to include for that case or scenario are in the
same case.

Chapter 4

[163]

Multiple cases
Sometimes, an event could have alternative paths, each with
its own case(s). The determination of which path to trigger is
controlled with conditional logic which we will cover later in this
chapter, and more extensively, in Chapter 5, Advanced Interactions.

Axure Events
In general, Axure interactions are triggered by two types of events, which are
as follows:

• Page and master level events which can be triggered automatically, such
as when the page is loaded in the browser, or as a result of a user action,
such as scrolling.

• When a user directly interacts with a widget on the page. These interactions
are typically triggered directly by the user, such as clicking on a button,
or as a result of a user action which causes a number of events to follow.

Page-level Events
Think about this concept as a staging setup, an orchestration of actions that takes
place behind the scenes and is executed as the page gets rendered in the browser.
Moreover, it is a setup to which you can apply conditional logic and variables, and
deliver a contextual rendering of the page. In short, events, which can be applied to
pages and on masters, will likely become one of your frequently used methods to
control your prototype.

Keep in mind that the order in which the interactions you build into the prototype
will be executed by the browser. The following Image 1 screenshot illustrates the
OnPageLoad event as an example:

1. The browser gets a request to load a page (Image 1, A), either because it is
the first time you launch the prototype or as a result of navigation from
one prototype page to another.

2. The browser first checks for OnPageLoad interactions. An OnPageLoad
event (B) may be associated with the loading page (C), a master used on
the page (D), or both.

Creating Basic Interactions

[164]

3. If OnPageLoad exists, the browser first evaluates page-level interactions,
and then master-level interactions. As we will see in Chapter 5, Advanced
Interactions, the benefits of this order of operations is that you can set
the value of a variable on the page's OnPageLoad interaction and pass
that variable to the master's OnPageLoad interaction. It sounds a bit
complicated, perhaps.

4. If the OnPageLoad interaction includes condition(s) (E), the browser
will evaluate the logic and execute the appropriate action (F and/or G).
Otherwise, if the OnPageLoad event does not include a condition, the
browser will execute the interaction (H).

5. The requested page is rendered (I) per the interaction.

Image 1

The following table lists the events offered at a page level:

Event names Definition
OnPageLoad This event will trigger assigned action(s) that will impact

how the page is initially rendered after it loads.
OnWindowResize This event will trigger assigned action(s) when a browser

is resized.
OnWindowScroll This event will trigger assigned action(s) when the user

scrolls the browser window.
OnPageClick This event will trigger assigned action(s) when the user

clicks on any empty part of the page (not clicking on
any widget).

Chapter 4

[165]

Event names Definition
OnPageDoubleClick This event will trigger assigned action(s) when the user

double-clicks on any empty part of the page (not clicking
on any widget).

OnContextMenu This event will trigger assigned action(s) when the user
right-clicks any empty a part of the page (not clicking on
any widget).

OnMouseMove This event will trigger assigned action(s) when the mouse
pointer is moved anywhere on the page.

OnPageKeyUp This event will trigger assigned action(s) when a pressed
key is released.

OnPageKeyDown This event will trigger assigned action(s) when a key
is pressed.

OnAdaptiveViewChange This event will trigger assigned action(s) on a switch from
on adaptive view to another.

Widget-level Events
The OnClick event, whether using a mouse or tapping a finger, is one of the
fundamental triggers of modern user-computer interactions. In Axure, this
action is one of the several actions you can associate with a widget.

The following Image 2 screenshot illustrates how widget-level events are processed:

1. The user interacts with a widget by initiating an event (Image 2, A), such as
OnClick, which is associated with that widget (B).

2. The type of widget (Button, Checkbox, and so on) constrains the possible
response the user can expect (D). For example, before clicking on a button,
the user may move the mouse over it and the visual appearance of the button
will change in response to the OnMouseEnter event. Axure includes events
that can also handle mobile devices, the use of fingers, as means of enabling
the user's direct manipulation of the interface.

3. The browser will check if conditional logic is tied to the widget event (E).
For example, you may have created an interaction in which a rollover event
will display different states of a dynamic panel based on some variable. The
browser will evaluate the condition and execute the action(s) (F and/or G).

4. If no conditions exist, the browser will execute the action(s) associated with
the widget (H).

Creating Basic Interactions

[166]

5. Based on the actions tied to the event, the browser will update the screen or
load some other screen (I).

Image 2

The following table lists Axure's inventory of events which can be applied to widgets
and dynamic panels. Each widget has its own set of possible actions:

Event names Dynamic panels Definition
OnClick The user clicks on an element.
OnPanelStateChange X Dynamic panels may have multiple states

and this event can be used to trigger
action(s) when a dynamic panel
changes states.

OnDragStart X This event pinpoints the moment the user
begins to drag a dynamic panel.

OnDrag X This event spans the duration of the
dynamic panel being dragged.

OnDragDrop X This event pinpoints the moment the user
finished dragging the dynamic panel. This
could be an opportunity to validate that,
for example, the user placed the widget in
the right place.

OnSwipeLeft X The event will trigger assigned action(s)
when the user swipes from right to left.

OnSwipeRight X The event will trigger assigned action(s)
when the user swipes from left to right.

Chapter 4

[167]

Event names Dynamic panels Definition
OnSwipeUp X The event will trigger assigned action(s)

when the user swipes upwards.
OnSwipeDown X The event will trigger assigned action(s)

when the user swipes downwards.
OnDoubleClick The event will trigger assigned action(s)

when the user double-clicks on
an element.

OnContextMenu The event will trigger assigned action(s)
when the user right-clicks on an element.

OnMouseDown The event will trigger assigned action(s)
when the user clicks on the element but
has yet to release the mouse button.

OnMouseUp The event will trigger assigned action(s)
on the release of the mouse button.

OnMouseMove The event will trigger assigned action(s)
when the user moves the cursor.

OnMouseEnter The event will trigger assigned action(s)
when the cursor is moved over an element

OnMouseOut The event will trigger assigned action(s)
when the cursor is moved away from
an element.

OnMouseHover The event will trigger assigned action(s)
when the cursor is placed over an
element. This is great for custom tooltips.

OnLongClick This is great to use on a touchscreen. Use
this when a user clicks on the element and
holds it.

OnKeyDown The event will trigger assigned action(s)
as the user presses a key on the keyboard.
It can be attached to any widget, but the
action is only sent to the widget that
has focus.

OnKeyUp The event will trigger assigned action(s)
as the user releases a pressed key on the
keyboard.

OnMove The event will trigger assigned action(s)
when the referenced widget moves.

OnShow The event will trigger assigned action(s)
when the visibility state of the referenced
widget changes to Show.

Creating Basic Interactions

[168]

Event names Dynamic panels Definition
OnHide The event will trigger assigned action(s)

when the visibility state of the referenced
widget changes to Show.

OnScroll X The event will trigger assigned action(s)
when the user is scrolling. Good to
use in conjunction with the Pin to
Browser feature.

OnResize X The event will trigger assigned action(s)
when it detects that referenced panel has
been resized.

OnLoad X The dynamic panel is initiated when a
page is loaded.

OnFocus The event will trigger assigned action(s)
when the widget comes into focus.

OnLostFocus The event will trigger assigned action(s)
when the widget loses focus.

OnSelectionChange This event is only applicable to drop-
down lists and is typically used with a
condition: when selected option of X, show
this. Use this when you want a selection
option to trigger action(s) that will change
something on the wireframe.

OnCheckedChange This event is only applicable to radio
buttons and textboxes. Use this when
you want a selection option to trigger
action(s) that will change something on
the wireframe.

Axure Cases
You are familiar with cases from modeling and diagraming the user experience.
Cases are abstractions of interaction flows the user has with an application. Each case
encapsulates a discrete path the user can take. Typically, we are asked to prototype
the primary case and often, alternative paths which are either contextual to the user
or to some other conditions that may cause the same task to have variable flows.
Multiple cases of the same task infer some conditional logic that impacts which
path of the task will have to be followed.

Chapter 4

[169]

Axure cases are a way to build alternate paths for the same task. In all of the
examples we constructed so far, we encountered cases as part of the process of
creating interaction. However, other than labeling the case in a meaningful way,
we had no real use for cases. That is because our interactions so far involved single
cases and no conditions were involved. In the Axure vocabulary, the term "Case"
references the way to build a single path or multiple paths for each event.

The following Image 3 diagram illustrates the structure of an Axure interaction,
and where the case fits in:

Image 3

Cases are typically used in one of the following two ways, in both page and master
OnPageLoad events or in widget events.

• A single case with one or more actions (Image 3, A) per single interaction
event. No conditional logic is involved.

• Multiple cases, each with one or more actions (B) per single interaction event.
Conditional logic is used or manual selection of the prototype determines the
execution of the interaction.

To conclude this topic, an Axure case is basically a container of actions and it is the
construct that makes it possible for us to simulate alternate interaction paths. The
higher the fidelity of the prototype, the higher the number of multi-case interactions.

Creating Basic Interactions

[170]

Axure Actions
As described above, an Axure case is an organizational unit for one or more actions
triggered by an event. In turn, each case includes a minimum of one action. The action
is an instruction to the browser to do something. It is Axure's method to shield its users
from having to code these instructions.

Axure currently supports the following actions, which are organized into six groups:

• Links
• Widgets
• Dynamic Panels
• Variables
• Repeaters
• Miscellaneous

Variables, raised events, and repeaters actions will be
discussed in the Chapter 5, Advanced Interactions.

The following table lists all the actions currently available in Axure 7.
Their functionality is for the most part self explanatory.

Categories Sub categories Actions
Link Actions Open Links Current Window

New Window/Tab
Popup Window
Parent Window

Link Actions - Close Window
Link Actions Open Link in Frame Inline Frame

Parent Frame
Link Actions - Scroll to Widget

(Anchor Link)
Widgets Actions Show/Hide Show

Hide
Toggle Visibility

Widgets Actions - Set Text

Chapter 4

[171]

Categories Sub categories Actions
Widgets Actions - Set Image
Widgets Actions Set Selected/Checked Selected

Not Selected
Toggle Selected

Widgets Actions - Set Selected List Option
Widgets Actions Enable/Disable Enable

Disable
Widgets Actions - Move
Widgets Actions Bring to Front/Back Bring to Front

Send to Back
Widgets Actions - Focus
Widgets Actions Expand/Collapse Tree

Node
Expand Tree Node
Collapse Tree Node

Dynamic Panels - Set Panel State
Set Panel Size

Variables - Set Variable Value
Repeaters - Add Sort

Remove Sort
Add Filter
Remove Filter
Set Current Page
Set Item per Page

Repeaters Datasets Datasets
Add Rows
Mark Rows
Unmark Rows
Update Rows
Delete Rows

Miscellaneous Actions - Wait
Other
Raise Event [Applies only to
widgets in masters)

Creating Basic Interactions

[172]

Things to Keep in Mind
The following are a few points to remember as you read through the chapter:

• An Axure interaction is a container that includes an event with a minimum
of one case and each case has a minimum of one action.

• Multiple cases associated with an event provide a way to simulate multiple
possible paths of response to that event.

• Remember that just because you can, does not mean you have to. Prioritize
the creation of interactions by assessing the value the interaction provides
to your ability to accurately communicate the desired experience to
stakeholders, developers, and users.

• Focus on primary interaction flows first and then the alternatives. Seriously
scrutinize the desire to deal with edge cases. In the end, the more complex
the prototype, that more effort is involved in responding to changes.

Widgets, Events, and Context
Each of Axure's built-in widgets can be assigned to an interaction, but no single
widget can perform all possible actions. This is a good thing because most user
interface widgets have inherent, well-established constraints. For example, a radio
button can be selected or deselected, enabled or disabled, and in or out of focus.
Therefore, Axure events and widgets are contextual. We feel that the best way to
internalize which actions are associated with a widget is to drag each widget to
the Wireframes pane, and while it is selected, switch to the Interactions tab in the
Widgets Interactions and Notes pane where the possible actions will be visible.

Note that you don't have to create interactions to enable some widgets for
interaction. Form input widgets such as text fields, radio buttons, or drop-down
lists will respond to the user without any interactions although no follow-up action
will take place. For example, the user will be able to type in a text field, but actions
such as evaluating the contents of the field or actions once the user exits the field
will not happen unless you create the appropriate interactions. Other widgets, such
as rectangle or image widgets, without an interaction will appear as part of a static
image when the wireframe is rendered in the browser.

Chapter 4

[173]

Labeling
Labeling is extremely important and necessary when it comes to interactions. Some
may think that the newly added This Widget feature may remove the best practice
to label widgets and dynamic panels, but we believe it to still be important for the
following reasons:

• The This Widget feature is actually a development coding trick, a useful
timesaving shortcut. But while it is a best practice for developers to comment
code so that other developers can understand it, Axure, does not have a
commenting feature yet and so labeling plays an important role in helping
you and colleagues understand the logic set up in the file.

• The This Widget option can be used when the interaction is directly created
for a selected widget. In this one case, it is possible not to label the widget.
However, it is often the case when you want to impact the widget indirectly,
as a result of some other event on some other widget, the label becomes
invaluable in being able to reference the widget.

• You may have to produce a UI specification for review and a unique
identifier will be necessary for meaningful reference and documentation.

The following screenshot shows This Widget (Image 4, A) listed among the list of all
widgets in the Configure actions column (B):

Image 4

The following examples demonstrate how simple interactions can transform an
otherwise static slideshow of wireframes into a more engaging prototype. There are
many ways to construct the following examples and our focus was on simplicity
and utility—something that a novice user could adopt immediately. You can follow
the example by taking a quick-and-dirty approach: create a new file and construct
the wireframes at a very low fidelity which allows you to create the interaction.
Alternatively, use the project demo files for a more elaborate approach.

Creating Basic Interactions

[174]

Example 1 – Controlling Styles
A trivial user experience requirement is that the global navigation object will clearly
communicate to the user which page they are on. Our basic objective in this example
is that when a page loads, the global navigation bar will change to reflect the selected
page. When broken into basics statements, an interaction can be described as follows:

• When: A page loads
• Where: Global Navigation
• What: Reflect which page is presented
• Condition: No

What's interesting about this and most requirements is that there are many ways to
execute the "What" component. The active tab can be larger, it can have a different
color than the other tabs, its label can have a font in bold and different color, and so
on. While there are well-accepted UX conventions, creativity and innovation are at
the core of what UX designers contribute to the process.

Because the interaction patterns of the application you are designing will be tied
to your interpretation of requirements and to the application's visual design style
guide, Axure's interactions are much like Lego blocks: you mix and match standard
pieces and end up with a unique creation.

The interactions we describe in the example address user orientation by making the
navigation bar reflect visually which page the user is on:

• Display the Home tab in its "selected" state when the page loads.
• Clicking on any of the other navigation tabs will switch the body's dynamic

panel to a corresponding state and display the clicked tab on the navigation
bar, in its "selected" state.

The Homepage (Image 5, A) body section (B) is constructed as a dynamic panel
composed of fives states (C), each corresponding to an item in the main navigation
bar. The navigation bar is not part of the dynamic panel and is positioned above it.
With this approach, clicking on any of the buttons on the navigation bar (except the
one that is in its selected mode), will trigger a switch to the appropriate state and
show the button's selected mode.

Chapter 4

[175]

Image 5

Step 1 – Navigation Bar Setup
Start by setting the selected and normal style for these states of your main navigation:

1. Select a widget on the bar in this example, it is How It Works (Image 6, A).
2. In the Widget Properties and Style, click on the Selected link (B).
3. The style editor opens. In this example, the text color different from the

widget's default state will indicate its selected state. Check the Font Color
checkbox and click on its drop-down arrow (C).

4. Type in 008D7E, or select a swatch you like, and click on OK to dismiss
the window.

Creating Basic Interactions

[176]

5. Repeat for each tab or copy and paste the Home link for each main navigation
element and change the text. Make sure to label each one so it is unique.

Image 6

Step 2 – Setting the Navigation to Reflect the
Current Page
Global navigation should always let the user know which page they are on and
which other major destinations on the site are available. The visual style of the
selected navigation button is typically the indicator to the page the user is on. Upon
clicking another button on the navigation, it assumes the selected style as the content
of the page changes. We want to simulate this behavior here. The example is limited
to the Home and How It Works widgets, but the method applies to all.

Chapter 4

[177]

The interaction should accomplish the following:

1. When the user clicks on the How It Works widget:
 ° The content of the body section will show the content of How It Works
 ° Setting the How It Works tab to its selected state and visual style

Therefore, this will be one case that has two actions.

2. In the Widget Interactions and Notes panel, click on the Interactions tab.
3. Double-click on the OnClick event, which will open the Case Editor window.
4. In the Click to add actions pane, click on Selected (Image 7, A).
5. In the Configure actions column, check the How it Works tab (B).
6. Set the Home link's selected state value to true (C) and all of the other tabs

to false (D).

Image 7

Stay in the Case Editor window because you have one more action to add—clicking
the navigation button should change the content of the body section:

1. In the Click to add actions pane, click on Set Panel State (Image 8, A).
2. In the Configure actions pane, choose the dynamic panel (B).
3. From the drop menu Select the state (C), choose the relevant state,

which in our example is How It Works in this example (D).

Creating Basic Interactions

[178]

4. Name the case, if you have not done it so far (E), and close the Case
Editor window.

Image 8

Step 3 – Setting the Remaining Tabs
Setting up the other tabs is easy because it is possible to repurpose the case we have
created earlier and use it for the other buttons on the navigation bar, with the relevant
tweaks, of course. This is where Axure's Copy Case feature can be used. With the How
it Works widget selected in the navigation bar:

1. Hover over the How it Works case (Image 9, A)
2. Right-click and select Copy from the context menu (B).

Chapter 4

[179]

Image 9

3. Click on the Shop widget in the navigation bar, so it is active in the Widget
Interactions and Notes pane (Image 10, A).

4. Hover over the OnClick event (B), right-click and choose the Paste option
(C) from the context menu.

Image 10

Creating Basic Interactions

[180]

To tweak the pasted case so that it now works for the Shop tab:

1. Open the Case Editor window by clicking on the case.
2. Change value for Shop to true and How It Works to false (Image 11, A).

Image 11

Also, modify the target state that will show on the screen when Shop is clicked in the
navigation bar:

1. Change the value of the Select the state drop-down list to Shop (Image 12, A).
2. Close Case Editor.

Image 12

Chapter 4

[181]

Example 2 – Hide and Show
A typical login control includes username and password fields and a few options
such as "forgot password?". It is not necessary to display this section on the page at
all times. Instead, the section can be invoked by a much smaller element, such
as a button, which we will cover in this example.

Construction Strategy
Let's begin with the approach to the construction:

• Position the LOG IN widget on the right end of the global navigation bar.
• Design the login section, then convert it to a dynamic panel which is hidden

by default. You could later add a state that handles the "forgot password?"
option to the dynamic panel.

• Finally, add the interaction on the login button which, when pressed,
will make the login section visible.

Step 1 – Assigning Styles to the LOG IN Tab
Click on the LOG IN widget and in the Widget Properties and Style pane proceed
to click on the Selected link (Image 13, A), which will launch the Set Interaction
Styles window. The following settings should be applied:

1. Set the text to bold (B).
2. Set the Font Color to #008184 (C).
3. Set the Fill Color to #F3F3F3 (D).

Creating Basic Interactions

[182]

4. Close the window.

Image 13

Step 2 – Creating the Login Layer
To create the login layer, carry out the following steps:

1. The login section here is a small area which fits the username and password
fields and a couple of options. You can work on this on a blank page and
later copy the section to the homepage.

Chapter 4

[183]

2. Once you have it designed, select all the widgets that make up the section
(Image 14, A), right-click on it and choose the Convert to Dynamic Panel
option (B) from the context menu.

Image 14

3. Name the dynamic panel and its first state.
4. Position the dynamic panel just below the Login widget on the navigation bar.
5. Optionally, add a second state that helps the user reset their password.

Typically, an e-mail field, reset password, cancel buttons, and some verbiage
are all that's required.

6. Set the dynamic panel to Hidden.
7. Optionally, right-click on the panel and from the context menu, click on

Order and select the Send to Back option.

Creating Basic Interactions

[184]

By default, the first state of a dynamic panel is visible, which can make
it difficult to assess how other states will appear on the page. Use the
Move Up button on the Widget Manager pane to promote the state
you are working on to the top of the state stack. When done, remember
to restore the order of layers so that the correct state is on top.
To make sure that the page always loads with the correct state on top,
create an OnPageLoad interaction using the Set Panel State action,
specifying the desired state.

Step 3 – Show or Hide the Login Panel
With the widgets in place, we move to create the interactions. In this example, the
LOG IN button on the navigation bar should operate as a toggle. When the user
clicks on it:

• If the panel is hidden, it should become visible
• If it is already visible, it will become hidden

This is a very simple example. Our first step will be to create the logic to show the
layer if it is not visible.

1. Click to select the LOG IN widget on the navigation bar.
2. In the Widgets Interactions and Notes pane's Interactions tab, create an

OnClick event to launch the Case Editor window.
3. In the Click to add actions column, select the Toggle Visibility action

(Image 15, A).
4. Select the Login dynamic panel in the Configure actions column (B).
5. Name the case in the Case description field (C).

Chapter 4

[185]

Image 15

Preview and test the interaction by clicking on the LOGIN button (Image 16, A).
The panel (B) should become visible one the first click, hidden on the next.

Image 16

Creating Basic Interactions

[186]

Example 3 – Utility Actions
Sometimes we use actions that are not specifically relevant to the prototype but
rather to support a more convenient construction. We call these "Utility" actions. In
this example, we demonstrate how to apply the Move action to a lightbox widget so
that we can keep it to the side of the main wireframe and move it to its appropriate
location when the HTML prototype is generated. This technique helps de-clutter the
working area, especially on busy screens.

Step 1 – the Lightbox Widget
As part of the promotional materials in the Farm2Table project, there is a video
lightbox (Image 17, A) which is triggered when the user clicks on the WATCH THE
VIDEO button (B). While the intent is to display the lightbox horizontally-centered
and minimize possible vertical scroll, during construction it is more convenient to keep
this large widget on another part of the canvas, so it is not in the way of accessing other
widgets. While we could use the Arrange feature to send the lightbox to the back and
bring it to the front when needed, it can be annoying. So we "park" the lightbox below
the main wireframe area, at a vertical position of 1400 pixel on the y axis.

Image 17

Chapter 4

[187]

The interaction that we plan to build for the WATCH THE VIDEO button will thus
have to include the Move action, which in this case, serves as a mere "utility" action.
The actions are as follows:

• Show the lightbox
• Move the lightbox
• Bring to front

Step 2 – Interaction
Click to select the WATCH THE VIDEO button and create an OnClick event for it.
To set the Show action:

1. Select the Show action in the Click to add actions column.
2. Choose the lightbox widget in the Configure actions column (Image 18, A).
3. Set Visibility to Show.
4. Axure 7 has a new feature that allows you to choose the treat as lightbox

option (B), which automatically grays-out the area outside of the
lightbox—a fantastic time-saving enhancement.

Image 18

Creating Basic Interactions

[188]

Next, we want to reposition the lightbox from its "parking" space in the wireframe to
its appropriate place on the screen:

1. Select the Move action (Image 19, A).
2. Choose the lightbox (B).
3. In the Move option, set the y axis to -1381 (C). The minus in front of the

value means that the widget will move up.

Image 19

Finally, add the action Bring to Front, which will ensure that the lightbox is not
obscured by some other widget. As an extra credit, devise the reverse interaction
that will hide the lightbox, and move it back to its "parking" position on the canvas.
The following Image 20 screenshot shows interaction in action:

Chapter 4

[189]

Image 20

Summary
In this chapter, we covered the fundamental aspects of Axure interactions. Interactions
can be associated with pages, masters, and contextually, with widgets. It is up to you
to determine which elements in a prototype should be interactive and to what level
of fidelity the interactions should mimic the planned application. As a rule of thumb,
focus on your deliverables and on the value that each interaction can provide to make
the prototype communicate better your intention for the user experience.

If you are expected to deliver a specifications document, the higher the fidelity and
complexity of your interactions, the more difficult it gets to generate a clear and
easy-to-digest UI specifications document. Start experimenting very early with
the output of your prototype as a Word document. Final words to conclude this
chapter—label widget and interaction elements in your wireframes!

In the next chapter, we will cover more advanced aspects of Axure interactions
such as conditional logic, variables, raised event, to name a few. Don't let the word
"Advanced" scare you off —the investment in learning some of the more intricate
aspects of interactions and wireframe constructions will help you create really
compelling high-fidelity prototypes.

Advanced Interactions
Axure, the company, does a unique balancing act with Axure, the software, on how
to reconcile two opposing philosophical and practical approaches to their product,
which are as follows:

• A designer-centric approach to rapid, interactive prototyping, which
minimizes the need for coding knowledge that many designers lack

• A developer-centric approach that relies heavily on coding

The first approach appeals to an audience that represents a significant part of the UX
community: practitioners who flock to Axure precisely because Axure is a tool that
provides designers with an invaluable, hands-on opportunity to conceptualize and
shape the user experience and an opportunity to create and communicate interactive
design without a prerequisite to code HTML, CSS, and JavaScript or through an
intermediary front-end developer.

Experience prototypes are multidimensional and temporal, a composition of
organization and flow that can only be arrived at by the iterative process of a
user-centered design. The closer UX architects and designers are to exploring the
user engagement, the better the experience we design. The speed and relative ease
with which Axure helps us conceptualize, validate, and iterate the prototype and
gain approval is invaluable. Naturally, the fact that Axure offers more capabilities
and more sophisticated options sets the bar for what constitutes a high-fidelity
simulation. The bar is being raised by front-end developers' coding-responsive
HTML prototypes. So, Axure 7 represents the most advanced and powerful
UX-centric tool ever made available.

This leads us to the second approach. Implementing advanced features such as
support for responsive is not trivial. However, there is a cost associated with the added
power because the product becomes more complex. The learning curve necessary to
gain expertise gets steeper as proficiency in logic, variables, and function—knowledge
that we established earlier, many of us don't possess—becomes a prerequisite to
unlock the potential embedded in the new functionality.

Advanced Interactions

[192]

In recent years, we have seen the emergence of Axure developers—people with
significant coding skills who discovered a niche in the industry—as they can gain
all the benefits of Axure by adding their coding skills to harness more advanced
features of Axure. However, does this put the majority of UX practitioners in a
frustrating bind? Are we moving back to a time where we did not have direct
control over our design because we had to hand it over to a developer?
The answer is a categorical no.

Don't let the word "advanced" scare you away from this chapter! We will cover a
set of features such as raised events, conditional logic, and variables. We will also
introduce terminology associated with programming and suggest complexity. It
is understandable if you are not interested in, or are intimidated by the prospect
of coding and wish to avoid using this set of Axure features as long as possible;
however, you should not!

First, it is possible to create sophisticated prototypes without coding in Axure 7.
By now, you are familiar with Axure's interactions and the Case Editor features,
which require you to only select from a contextual selection of options and construct
interaction simply by pointing and clicking and thus the only typing required is
labeling. You will find a similar, easy-to-use interface when you use a feature
such as the condition builder or when you simulate drag-and-drop interactions.

Secondly, consider some of the terminologies and methods we use in interaction
design. For example, we use algorithms, pseudo code, and branching logic to
determine use cases, scenarios, and how functionality responds to user interaction
under certain conditions. Axure makes it fairly easy to model the logic we need in
order to visualize branching paths in the interactive prototype.

Finally, not only will you maximize your investment in Axure, you will also
enhance your own professional skills and have an opportunity to express your
creativity. Similar to languages, the greater your vocabulary, the more expressive
and persuasive your communication. It is the same with professional tools; like any
professional tool, Axure, more than anything else, is an enabler for your creativity.

Conditions
When you incorporate conditional logic into your prototype, you save yourself from
a great deal of overhead work because you can reuse patterns in multiple ways as
you simulate conditional interactions and the branching of flows.

Chapter 5

[193]

Let's face it. We use logic all the time, even if the results are not always logical,
and in computer science and interaction design, conditional logic is necessary to
accommodate a variety of business rules, situations, and exceptions. Yet, there still
appears to be a general reluctance when it comes to dealing with direct use of logic
among non-programmers who use software. A good example of this is the so-called
advanced search feature that is common to library catalogs and most of the search
engines, including Google, as shown in the following screenshot (Image 1, A):

Image 1

When was the last time you actually used the advanced search, if ever? Google's
concept of a single search field and no operators (B) was revolutionary and daring
in the early 2000s. Since then, it has become the standard search interface, much to
the surprise of librarians and other information workers who "owned" the space
of search back in the day. However, these people were trained, experienced, and
comfortable with structuring search queries, which are essentially logical statements
with operators where a true evaluation typically results in a found set.

Advanced Interactions

[194]

IF-THEN-ELSE
About 2,300 years ago, in ancient Greece, Aristotle invented logic, a formal discipline
of abstract reasoning, which enabled the digital world we live in today. Among other
features, logic makes it possible to form statements that can be evaluated to be TRUE
or FALSE. Based on this evaluation, the exact path of an action can be determined
with minimal details.

A Basic Set
The following logic table shows an example that relates to the Farm2Table project:

Evaluation Statement A Statement B Statement C
IF condition The user has

a premium
subscription.

The user has a
regular subscription.

The user has no
subscription.

If this condition is
true, do this action

The user can make
a weekly order of
produce, grown
by farms in the
cooperative.

The user can order
from a single farm in
the cooperative.

The user cannot
order anything.

ELSE
(if this condition is
not true)

Evaluate the next
statement.

Evaluate the next
statement.

If the statements
A and B are
FALSE, then the
statement C must
be TRUE.

Notice the following aspects:

• The subject of the preceding statements is the user.
• We don't need to know anything about the user other than whether they

have a subscription and if they do, what type of subscription.
• We don't need to know anything about the farms involved, where they are,

the content of the weekly order, and so on.
• At any given moment the evaluation is performed, only one of the statements

can be evaluated to be TRUE.
• The word ELSE connects the IF statements and provides an automation rule

for decision-making. If a statement is FALSE, move to the next one until you
get to a TRUE statement and the evaluation stops.

Chapter 5

[195]

• The word ELSE connects the statements that help us define the relationships
between a subscription level and benefits associated with it.

• One of the statements must be TRUE.

We can generalize the specific example from the preceding table as the
generalized abstraction:

IF the condition A associated with k and m is met (it is evaluated to TRUE)
THEN do X (and stop)

ELSE

IF the condition B associated with k and m is met
THEN do Y (and stop)

ELSE

IF the condition C associated with k and m is met
THEN do Z (end of the statement set)

The following table groups the ingredients of the preceding abstraction:

Conditions Entities Actions
Condition A = the user has a
premium subscription
Condition B = the user has a regular
subscription
Condition C = the user has no
subscription

k = user
m = subscription

X = allow the user to order
from any farm
Y= allow the user to order
from one farm
Z = don't allow the user to
order from any farm

The IF-THEN-ELSE statement is the most common logic device utilized throughout
the process of design to help capture the impact of various rules on the behavior and
interaction patterns of system and user. In the prototype construction phase, while
adding interactions to static wireframes, think of it as the strings you pull to make a
puppet move according to a script.

Advanced Interactions

[196]

How Statements Relate to Each Other
In the previous example, there is a strong correlation between the entities in the
statement set and the rules that guide the system towards the correct interaction.
The following logic table shows another such example:

Evaluations Statement A Statement B Statement C
IF condition The user has

a premium
subscription.

An item in the
user's weekly
box becomes
unavailable.

All the ingredients
for a recipe are
offered in the
weekly calendar.

If condition is TRUE,
THEN

The user can order
the weekly produce
from multiple farms
in the cooperative.

The farm will
substitute that item.

All the ingredients
for a recipe are
offered in the
weekly calendar.

ELSE (If the
condition is not
TRUE)

Evaluate the next
statement.

Evaluate the next
statement.

If the statements A
and B are FALSE,
then the statement C
must be TRUE.

While the individual statements that make up the entire preceding set can be
evaluated as TRUE or FALSE, they are not related to each other and consequently it
is difficult to see the logical thread that binds this to some consistent cause-and-effect
pattern of interaction. When troubleshooting the IF-THEN-ELSE logic statements,
make sure that it is possible to follow the set of statements to a meaningful
actionable pattern.

AND and OR
One last topic before we move to Axure is that statements are connected with the
logical operators, AND and OR. These are used to connect two or more sentences
to create meaningful compound statements. A compound statement is used when
multiple situations need to be evaluated in order to determine which action to take.
To understand better, see the following logic table:

IF AND (IF) AND (IF) AND (IF) THEN
An item in the
user's weekly
box becomes
unavailable.

The user has
a standard
subscription.

The user
has set up a
substitution
list.

A substitute item
is available at the
user's home farm.

The farm will
substitute the
item with the
substitute.

Chapter 5

[197]

In the previous example, the word AND is used to connect the set of statements such
that for a specific action to take place, all of the statements must evaluate to TRUE
or Yes.

As you can see, conditions can quickly become complex, but the nature of business
rules is often complex and multiple issues need to be looked at in order to determine
the appropriate course of action.

The following table organizes the same set of rules, but they are stated in a
different manner:

IF OR (IF) OR (IF) OR (IF) THEN
An item in the
user's weekly
box becomes
unavailable.

The user has
a standard
subscription.

The user
has set up a
substitution list.

A substitute
item is available
at the user's
home farm.

The farm will
substitute the
unavailable
item with the
substitute.

The result here will be very different. All of the statements in the first set need to be
TRUE for the farm to send a substitute, whereas only one of the three statements,
no matter which one, needs to be TRUE for the farm to take the same action.

This kind of decision-making is actually very natural to UX designers because we use
a similar logic approach to model task and interaction flows based on business rules
and other factors. When we create a conditional interaction, we reflect the flow's
logic in the prototype.

Write it down first
If you need to use logic but you don't have much experience with the
syntax or the prototype needs to respond to a complex set of rules, it is a
good idea to first write down the logic on paper and make sure you are
getting the correct outcome as you read the conditions.

Advanced Interactions

[198]

Sandbox Files for Learning and Experimenting
Often, the most effective way to figure things out is by experimentation. In the course
of prototyping, you will find yourself wondering how some Axure feature works or
wanting to explore a new interaction. This is where the sandboxing technique can
help, which is as follows:

• Create a new/blank Axure file on your desktop, work through your
explorations on this file, and then apply your learning to the project file.
In the sandbox file, you don't have to worry about breaking any of your
previous work and can instead focus only on the mechanics of the feature
you are trying to figure out. The technique will also keep your production
file size small and free of experimentation wireframes.

• Alternatively, if you want to use specific elements from a Team Project file,
export it to a standard RP format and explore locally on that copy.

Guided Example – Conditions
As you will see in the example, Axure makes it very easy to apply conditional logic
to a prototype. We will use a sandbox file to explore the feature and then apply the
learning to the Farm2Table project file.

The following diagram shows the typical flow for a successful approach to deal with
conditions and interactivity:

Plan ingn
and
Construction

Step 1
Define the
Interactions
(On Paper)

Step 2
Wireframe

Construction

Step 3
Case Editor:

Condition Builder

Step 4
Case Editor:

Create
Interactions

Step 5
Test

Step 6
Tweak and

Refine

Conditions
and
Interactions

Testing
and
Tweaking

Image 2

Chapter 5

[199]

Step 1 – Defining the Interaction
This example simulates a common e-commerce pattern of a product details screen.
The user can choose from a list of properties, in this case, the color and size of a
t-shirt. Typically, there is a dependency between the selections the user makes
such as when a desired color is out of stock in a needed size.

This is the perfect opportunity to use Axure's conditional logic features. As we
established in Chapter 4, Creating Basic Interactions, the first step is to define the
desired interaction. Now that conditional logic is involved, it is important to
spell out the logic of the interaction you want to create:

• When: When the user changes the color selection of a t-shirt.
• Where: The Color drop-down list widget.
• What: Change the state of the image dynamic panel, the text on the product

header, and the values in the Size drop-down list.
• Conditions: When the page loads, the product name will be Green T-Shirt,

the image will be of the green t-shirt, and the value of the Color drop-down
list will be Green. The default value for the Size drop-down list will be
Select and all the size options will be available.

When the user selects the value in the Color drop-down list, they can do one
of the following:

 ° Change the state of the image dynamic panel and show the shirt of
the selected color.

 ° Change the values in the Size drop-down list to simulate that some
sizes are not available.

 ° Change the product name in the header to reflect the selected color.

The last point of the preceding bullet list specifies the default state of the page, that
is, default values when the page loads. When you plan interactions that involve
conditions, always make sure to establish the default state as the starting condition.

Step 2 – Wireframe Construction
The new Preview feature of Axure 7 is awesome in that it affords us an instant
way to evaluate the looks and interactions on a page. However, it is also a good
idea to prepare a sandbox in case you need to have multiple pages and generate
a quick sample.

Create a blank directory on your desktop and label it Axure Sandbox. Create a new
Axure file, label it If-Then-Sandbox, and save it in the Axure Sandbox directory.

Advanced Interactions

[200]

Next, create a wireframe with the necessary widgets. While the sample file we
created is slightly more involved because we used photos of colored shirts, sandbox
files should be quick-and-dirty affairs where plain-colored rectangles could easily
substitute fancy photos. Your wireframe should include the following widgets:

Image 3

• The product name label (Image 3, A); optional for your own sandbox
• A dynamic panel with three states (B), each with an image rectangle widget

of the corresponding color— green, orange, and purple
• The Color drop-down list (C2) and its label (C1)
• The Size drop-down list (D2) and its label (D1)
• The Add to Cart button (E)

Step 3 – Setting the First Condition
When you start with interactions, having the flow preplanned helps in both creating
the wireframe and adding the interaction. Now that we've covered both of them
in Step 1 – Defining the Interaction and Step 2 – Wireframe Construction, let's set the
conditional logic for the interaction to be as follows:

Chapter 5

[201]

Image 4

1. Click on the Color drop-down list widget to select it (Image 4, A) and then
double-click on the OnSelectionChange (B) in the Interactions tab.

2. In the Case Editor window (C) that pops up, click on the Add
Condition button (D).

3. In the Condition Builder dialog that appears (E), create a condition that
responds to the selected value in the drop-down list. The condition row (F)
is repeated in as a plain language sentence in the description section (K).

4. In our example, the condition checks whether the value of the drop-down
list equals "Orange" (G).

When done setting the first row, click on the OK button (I) to close the dialog.

Advanced Interactions

[202]

When you create conditions, always make sure to account for all the
possible cases that are applicable to the interaction.

Step 4 – Adding an Interaction to the Condition
Next, create the action that is triggered when the condition is met. In the initial case,
when the value of the drop-down list is Green, various widgets on the screen, such
as the image of the t-shirt, reflect that selection. Now, you might ask yourself, "the
screen already reflects the green choice, why check for it?"

This is because, once the user selects a value from the Color drop-down list that is
different from the default value Green, the widget will change to reflect that new
choice. At that point, the user should be able to select the Green value again, which
is why we provide the condition and actions to show how to update the screen to the
Green choice. This is illustrated as follows:

Image 5

Chapter 5

[203]

In the Case Editor window (Image 5, A), the first condition you just created appears
in the Organize actions column (B).

We recommend that you make a habit of labeling your cases (C). It takes less than
five seconds and is a good investment.

Now, configure the actions Set Text, Set Panel State, and Set Selected List Option
to reflect the Green selection (D).

However, there is no action that can take care of changing the values of the Size
drop-down list!

It is common to start work on conditional interactions and find that the wireframe
needs more work. Over time, and with experience, you will forecast such
needs early.

Click on OK to close the Case Editor window. Convert the Size drop-down list into
a dynamic panel, duplicate and re-label the states, and change the values in each
drop-down list to simulate that not all sizes are available in orange and purple.

Image 6

Advanced Interactions

[204]

With the tweak to the Size drop-down list done, return to the Case 1 - Green case
(Image 6, A) and add it to the Set Panel State action.

Image 7

Copy and paste to duplicate and modify the action and the condition.

Note about testing
Typically, you want to test an interaction before duplicating it. In this
example, however, as the first condition-interaction pair is the default
state, testing will not work until you add at least another case.

The completed conditional set for the Color drop-down list (Image 7, A) should have
three cases (C, D, and E) attached to the OnSelectionChange interaction (B).

Chapter 5

[205]

Label widgets, interactions, and cases
When you review the sample Axure file, notice that all relevant
widgets, cases, and conditions were labeled. You may have created
your own sample file without bothering to label and probably noticed
that it can become tricky to identify the correct widgets you want to
control. Labeling is a chore, but it is a minor one relative to the value
gained from a clear, well-identified file.

Step 5 – Testing the Interaction
At this point the construction should be complete, but it must be tested to verify that
the interaction works as intended:

Image 8

Advanced Interactions

[206]

Generate the HTML prototype or use the Preview feature. As you switch from one
color t-shirt to another, the header label, image, and size selections should change
as planned (as shown in Image 8).

There are chances that while changing the value in the Color drop-down list,
the details do not change at all or the wrong information is displayed.

Troubleshooting of such problems can be done as follows:

• The actual interaction logic in this example is quite simple, so the culprit is
highly likely to be attributed to a copy-and-paste issue, such as values not
changed correctly.

Step 6 – Tweak and Iterate
Once the basic conditional interactions are functioning as planned, it is tempting to
enhance the fidelity of the prototype. For example, disabling the Add to Cart button
until the user selects a shirt size. Generally, breaking the construction of interactions
into autonomic units makes the entire process more efficient and troubleshooting
becomes easier.

The Condition Builder in Detail
This is where the brain of our prototype lives. Each condition occupies a row in
the builder. Many of the columns in the condition are composed of contextual
drop-down lists, which make it easy to pick the appropriate value needed for the
task. This is essentially a combinatorial system with nearly endless possibilities to
control an interaction. In this section, we will take a deep dive into the builder.

Each condition row is composed of five drop-down lists that form an equation in
which we compare the first two drop-down lists to the last two drop-down lists.
The following screenshot illustrates how the segments are assembled in the builder:

Chapter 5

[207]

Image 9

The following table provides the breakdown of each field in the condition builder
with reference to the preceding screenshot:

A B C D E F and G
selected
option of is
one of the
fourteen
choices in
this drop-
down list. The
selection made
here impacts
the other drop-
down lists.

The choice
in the first
drop-down
list narrows
the options
of this drop-
down list
to droplists
and listbox
widgets.

The third
drop-down
list is where
we determine
how to evaluate
choices in the
first two drop-
down lists (that
is, A and B) to
choices in the
next two drop-
down lists (that
is, D and E).
In addition
to the equals
option, there
are nine more
options to
construct the
evaluation.

In the
fourth
drop-down
list, we
specify
what type
of value
is being
evaluated.

The last
drop-down
list is
contextual
to the
selection
we make
in the
previous
drop-down
list (that is,
D).

Add new
conditional
rows or
remove
existing rows
using the
controls at the
end of each
row (F).
The
Description
section (G) is
automatically
generated
by Axure to
reiterate the
condition in
plain text.

Advanced Interactions

[208]

Guided Example – Higher Fidelity with Multiple
Conditions
Actual applications often evaluate multiple conditions against business rules before
determining which action to take, for example, contextual rendering of a screen
based on the user login and other parameters. The Condition Builder window is
a significant time saver because with relatively few wireframes, mostly variations
within dynamic panel states, it is possible to create multiple conditions and simulate
sophisticated interactions.

As mentioned throughout this book, doing something just because it is possible
is nice, but a better approach is to limit the more complex parts of the prototype
to agreed-upon flows. The prototype cannot simulate the entire product, and
so the effort should focus on types of interaction that you want to validate in
usability testing.

Step 1 – Define the Interaction and Desired Fidelity
The following figure shows subscription flow that defines a single
condition evaluation:

Home

Thanks and
Offer

Enter Zip

End

Range?No Yes

850 New
Subscriber

Form

Image 10

If the visitor's zip code is within the range of service, move on to a subscription form.
Otherwise, thank the visitor and let them know whether and when the service will
become available in their area. Also, provide the user with an opportunity to provide
an e-mail address for a notification when the service is available in their area.

We will start the prototype with this basic level and advance from there.

Chapter 5

[209]

From Low to High
The iteration process is evolutionary, and we do not expect the design to
dramatically change in each iteration. Rather, foundations and principles
established early provide the necessary structural support. Things that don't
work, however, should be reevaluated and dropped, if needed. The following
image gives a tongue-in-cheek illustration of the iterative process:

Image 11

The simplest and crudest prototype will have a zip code field that accepts any type of
input and any number of characters, which means that no validation of any sort will
be performed. The Submit button is always active and links to the next step even if
the zip code field is empty. This is essentially a static wireframe.

From there, prototypes get more and more advanced in simulating an experience
that is governed by business rules and the interaction quality we design for it.

For starters, we have a couple of choices, which are as follows:

• The user enters the zip string and clicks on the Join button. The string will
be evaluated then, and if it is an invalid entry, the user will be messaged to
reenter the zip string.

• As the user types in the zip, we only evaluate an input of 5 digits. Why 5
digits? Because this is the basic zipcode standard in the USA. In this case,
a message is displayed if the zip is not a digit and is hidden when the
typo is fixed. The Join button only becomes active when all five digits
have been typed.

Advanced Interactions

[210]

In this example, we will use the Condition Builder window to create the second
option and the first step is to define the desired interaction. As with all interactions
that involve the conditional logic, this is the opportunity to spell out the logic:

• When: When the user inputs the zip code
• Where: In the Zip Code field
• What: Validate the zip code while typing. Alert the user if there is an issue

or switch the user to the new account page
• Conditions: On entry, the Zip Code field is empty and the Join button

is disabled

The following table is an aid that helps organize and group conditions according to
triggers that fire their evaluation:

Evaluated condition(s) Action(s) Evaluation trigger
1 If the user types in a

non-numeric character.
The Join button remains
disabled and a message alerts
the user to fix the input.

After each keystroke

2 If the user enters less or
more than five digits.

The Join button
remains disabled.

After each keystroke

3 If the user's input
equals five digits and
they match our range.

Activate the Join button. After all digits
were typed

4 If the zip code is not
within the range.

A Thank You message is
displayed; the user can
submit an e-mail address for
a notification that will be sent
when the service becomes
available at the desired
zip code.

After all digits
were typed

Chapter 5

[211]

The Evaluation trigger column in the preceding table is very useful as an
organizational and planning tool to determine which Axure event to use for the
interactions. In this example, it makes more sense to start with evaluating the
conditions after each keystroke and then the entire typed string.

Step 2 – Wireframe Construction
For this example, we will use a standalone RP file. A similar but not identical set
of widgets is provided in the Farm2Table project file on the homepage wireframe
(#100). You are invited to create the interaction there as well, as an additional
opportunity to practice.

Image 12

To make the example further relevant, we use Axure's Adaptive Views feature
although it limits the example to a desktop base view (Image 12, A) and vertical
(portrait) orientation for smartphone (H).

Advanced Interactions

[212]

Start by placing the widgets in the base view and then create the smartphone version.

The widgets are:

• A label widget Your Zip Code (B)
• A text field widget for the zip code (C)
• A button widget that is disabled Join (D)
• A (hidden by default) label widget for error messages (E)
• An optional rectangle widget to frame the other widgets (F)

Again, as demonstrated in the file, we recommend that you label the widgets as
you go.

Step 3 – Evaluating Conditions
Let's start with the first couple of conditional requirements that need to be evaluated:

Evaluated conditions When Actions
1 If the user types in a

non-numeric character.
After each keystroke The Join button remains disabled

and a message alerts the user to
fix the input.

2 If the user enters less
than five digits.

After each keystroke The Join button remains disabled.

Divide and Conquer – Part 1
While the preceding conditions are evaluated after each keystroke, they don't yield
the exact same response and so each must be evaluated separately.

Let's begin with the first condition, which is as follows:

Evaluated condition When Action
1 If the user types

in a non-numeric
character.

After each keystroke The Join button remains
disabled and a message alerts
the user to fix the input.

Chapter 5

[213]

Image 13

All the interaction cases are associated with the selected zip code field (Image 13, A),
and the first condition, which we immediately label as Case 1- Not Numeric, will
use the OnTextChange event (B).

In the left-most columns of the Condition Builder window, options that can work
are text on widget and text on focused widget. The latter (C) is the one we want
because it eliminates the next drop-down list in the builder and the need to specify
which widget we mean.

Next, select is not (D) because we want to alert the user if they type a non-numeric
value, which is why we select numeric from the final column (E).

Advanced Interactions

[214]

Close the Condition builder window and add the following associated actions:

• Set the text in the error field to something similar to Numbers only, please.
• Make this hidden widget visible.

The next step is to preview the interaction to validate that it is working.

Counter Conditions
Occasionally, we need to add interactions that were not part of the initial set. Specific
to our example, we need to show what happens when the user fixes the error by
deleting the letter and typing the number. The counter action essentially serves to
reset the action(s) triggered by the initial condition. The following is an example:

Image 14

1. Duplicate the first case and relabel it Case 2 - Numeric.
2. Change the condition evaluation to is numeric.
3. Add an action to clear out the text in the error widget to "" (that is, empty).
4. Add an action that hides the message widget.

Chapter 5

[215]

Now, there are two cases under the OnTextChange action (Image 14, A). Case 1 - Not
Numeric (B) alerts the user in the case of typing in a letter instead of a number, and
Case 2 - Numeric (C) clears the warning after the user fixes the issue.

Divide and Conquer – Part 2
We are now ready to address the second condition, which is as follows:

Evaluated condition When Action
2 If the user enters less

or more than five
digits.

After each keystroke The Join button remains
disabled.

Checking for the number of digits in the field is also associated with the third
condition, which is as follows:

Evaluated condition When Action
3 If the user's input

equals five digits and
they match our range.

After all digits were typed. Activate the Join button

There is some redundancy here that we can eliminate. The Join button is disabled
by default. It will change the state to enabled when its length equals 5. In other
words, we only need to address the third condition and it will take care of the
second condition.

There is a normal tendency to dive into an interaction in an ad hoc manner.
The value of planning ahead is the potential to reduce the work and complexity.
Generally, the less interaction you need to isolate and debug, the better.
The following is an example:

This initially looks like an easy one:

1. Add a case to the OnTextChange action and label it Case 3 - length is 5.
2. Add a condition that checks the length of the input into the zip code field.
3. Add an action to enable the Join button.
4. Preview the interactions.

Although showing and hiding the error message works as before, typing in five
digits does not activate the Join button. This is not working! What is going on?

Advanced Interactions

[216]

Toggle IF/ELSE IF and Order of Execution
The following is an example of how Axure and most software handle the processing
of conditional logic sets:

IF

This condition is TRUE, do something

(and stop the evaluation)

ELSE IF

Another condition is TRUE, do something

(and stop the evaluation)

ELSE IF

Another condition is TRUE, do something

(and stop the evaluation).

In our example, as the user types into the field, each keystroke is being evaluated
as a letter (alphabet) or number and the evaluation essentially pauses until the next
keystroke. This is a binary situation; the character must be one and as a result the
third evaluation that checks for the length of the string never gets evaluated.

Instinctively, you might think of shuffling things around and making the length
of the string the first condition to be evaluated. Try it. Indeed, once you type in
five numbers, the Join button becomes active. Alas, if the fifth character the user
typed was a letter, the Join button still becomes active and the error alert will not
be displayed. Now you know that it is because the evaluation stopped after the
keystroke was evaluated for length.

To keep the third case associated with the OnTextChange action, Axure provides
a method that makes it possible to disassociate it from the previous two actions,
as visualized in the following example:

Chapter 5

[217]

Image 15

In our example, Axure scans the interaction from top to bottom and treats the three
cases as a single set of cases: IF, ELSE IF, and ELSE IF (Image 15, A).

Right-click on Case 3 - length is 5 and from the context menu, select the last option
Toggle IF/ELSE IF (B). Now, Axure scans through the three cases very differently.
It will start with the first two cases, evaluate for IF and ELSE IF. It will stop when the
character entered is a letter or a number. It will then start a separate evaluation for
the length of the string, which is only an IF and is not associated with the other case.

Satisfy ALL or ANY
You probably recall your parents telling you that you can have dessert IF you finish
your broccoli AND IF you behave well at the table. This is an example of satisfying
ALL conditions. Now, you probably figured out that if you negotiate, behave well
but don't finish the broccoli, your parents' hearts would melt and you will get the
dessert. It was sufficient to satisfy ANY of the conditions and that is how you
learned about the difference between ALL and ANY.

Back to Axure and our example. We are ready to deal with the second part of the
third condition, which is visualized in image 16, and is as follows:

Evaluated condition When Action
3 If the user's input equals

five digits (Image 16, A)
AND they match our
range (B).

After all digits were typed. Activate the Join button

Advanced Interactions

[218]

Jointly both the parts activate the Join button. We will add condition rows that
look for a match with the specific zip codes. For the purpose of prototyping and
validation in usability tests, it is sufficient to use a small number of zip codes.

Image 16

In the condition builder for this case, we now have four rows. The first row was
created earlier and looks for a string with length of 5. The other three look for a
value that matches those entered.

When we test this, it does not work! Why?

When multiple conditional statements need to be evaluated in a single conditional
block, in addition to the Toggle IF/ELSE IF option, you must also pay special
attention to the value you want in the Condition Builder window's Satisfy
drop-down list (Image 17, A), which has only two values, all and any. The
following screenshot shows these two options in the Satisfy drop-down list:

Image 17

By default, the all option of the Satisfy drop-down list is fine if you have a
single condition in the Condition Builder window. With two or more conditions,
it becomes critical that this drop-down list is set to the correct value. To help you
create the condition, the drop-down list is set as part of a sentence. Always read
the entire sentence when you are considering the option to be set. It will be one
of the following:

Chapter 5

[219]

• Satisfy ALL of the following. (Eat your broccoli AND behave well.)
• Satisfy ANY of the following. (Eat your broccoli OR behave well.)

Is this going to solve our current problem?

Choosing all seems to be correct because the Join button can be activated only
when five digits are entered and they match a certain predefined value. Alas, it
does not work because it wants the zip code field to match three different values
simultaneously, which of course is impossible.

If we change the setting on the Condition Builder window to any, we will also get
into trouble because the Join button will get activated as soon as there are five digits
in the field, which is enough to satisfy the any processing.

Negative Thinking
There are, of course, several ways to accomplish what we discuss in this example,
but one of our primary goals is to introduce you to issues that you will encounter
throughout the process of building conditional interactions and the approaches to
resolve them. The solution here involves just a bit of mental exercise, as is explained
in the following example:

Image 18

Advanced Interactions

[220]

Although in our initial approach (Image 18, A), we created a set of four rows in the
Condition Builder window (A1) in a modified approach (B), they can be thought
of as two groupings, which are as follows:

• The first row checks for the length of the string in the zip code field (B1)
• The next three rows check for the validity of the entered zip code (B2)

The three conditional rows associated with the second group can be set to does
not equal instead of equals as we initially created. We keep the selection in the
Satisfy drop-down list to all. Let's compare how Axure processes in both A and
B approaches:

Approach A Approach B
Row Evaluate Processing Evaluate Processing
1 The length of the zip

code field must be
equal to 5

Even if this is
TRUE, each of
the other rows
must be TRUE.

The length of the
zip code field
must be equal
to 5.

Even if this is
TRUE, each of
the other rows
must be TRUE.

2 The value of the zip
code must be equal
to the first predefined
value.

Even if this is
TRUE, each of
the other rows
must be TRUE.

The value of the
zip code must not
be equal to the
first predefined
value.

Even if this is
TRUE, each of
the other rows
must be TRUE.

3 The value of the
zip code must be
equal to the second
predefined value.

Even if this is
TRUE, each of
the other rows
must be TRUE.

The value of the
zip code must not
be equal to the
second predefined
value.

Even if this is
TRUE, each of
the other rows
must be TRUE.

4 The value of the zip
code must be equal to
the third predefined
value.

Even if this is
TRUE, each of
the other rows
must be TRUE.

The value of the
zip code must not
be equal to the
third predefined
value.

Even if this is
TRUE, each of
the other rows
must be TRUE.

Conclusion Obviously, it is impossible that the zip
code field will be equal to the values
of the second, third, and fourth rows
simultaneously. The evaluation will
never be TRUE regardless of the zip code
values. It is logically wrong and the Join
button will never become active whether
we create an associated action that
enables it or an action that disables it.

It is possible that the second, third,
and fourth rows will evaluate to
TRUE and it is possible to satisfy
all conditions.
In other words, as long as the entered
zip code does not match any of those
listed in the conditional rows, the
Join button will stay disabled.

Chapter 5

[221]

With approach B, we can take a step further and actually remove the first row. It is
not necessary to maintain the button disabled unless the correct zip code is entered.
An evaluation of the entered zip to the predefined values cannot happen unless it
has five digits!

Image 19

We finalize the work by adding a fourth case, which finally enables the Join button if
the length of the zip code field (Image 19, A) equals 5. Combined, the four cases take
care of validation, messaging, and branching of the flow according to the rules stated
at the start of the construction process.

Advanced Interactions

[222]

More Than Meets the Eye
To reduce overall interface complexity and visual load, Axure 7 surfaces key
actions in the Widget Interactions and Notes pane and others are accessible via the
somewhat easy-to-neglect More Events link (Image 20, A). It is possible to assign
various cases to multiple actions. The entire inventory of actions is available through
the context menu (B).

Image 20

Time Estimation for Conditional Work
Even if you are familiar and experienced with logic and with Axure's Condition
Builder, not to mention if this is a new territory for you, make sure to cushion your
construction time estimates. You might get an unpleasant surprise after spending
several frustrating hours trying to get some conditional interaction to work just to
find that it was a simple logical slip. As the previous example demonstrated, there
may be multiple ways to construct conditions and logical statements. The more
complex the logic, the more opportunities there are to slip and thus more time is
required to rethink, organize, and iterate.

Chapter 5

[223]

Troubleshooting Conditions
As much as many interactions and conditions are easy to set up in Axure, We can
guarantee that there will be cases where your interaction will not work as expected.
The following are some basic troubleshooting ideas:

• The most common culprit—a simple copy-and-paste issue—might explain
the inexplicable behavior of a widget. The problematic widget may have
inherited the interactions and conditions of the original widget. Clean up
as needed.

• Are you evaluating the correct widget? Axure presents all the widgets that
are placed on the page (or master). The list can be very long and so picking
the wrong widget is understandable. If you are having a hard time finding
the widget, relabel it temporarily as XYZ, which will make it much easier to
spot. Remember to restore to the original label after you fix the interaction.

• Take a moment to write down the conditional logic and review it against
what you have in Axure. Make sure to review it in order. Sometimes just
writing the logic, especially if it is complex, makes it easier to spot the
problem in Axure.

• Check the Satisfy drop-down list if you have multiple conditions.
Depending on how you want the logic to work, the setting may be wrong.

Raised Events
Can a tiger change its stripes? Can an Axure master change its size or shape from
one page to another? The answer to both is, unfortunately, no. However, you can
control the behavior of a master so that each of its instances, across multiple pages,
will have a different behavior for the same event. Axure's Raised Events feature
greatly extends the usefulness of masters and once you learn this feature (it's easy,
we promise), you will find yourself using it often.

The following are important points to remember about raised events:

• Raised events can be created only for widgets that are on masters
• A master may have multiple numbers of raised events
• Creating a raised event is a two-step process:

1. Create the raised event on the master.
2. Place the master on the page and click to select the master. Create the

interaction for the raised event.

Advanced Interactions

[224]

Why do we need raised events? The bottom-line answer is context and reuse.
The explanation for this is as follows:

• Masters would be of very limited use for an interactive prototype if there was
no way to allow the master with different behaviors based on the page the
master is placed.

• When a master is placed on a page, it is not possible to edit or assign
interactions to any of the master's widgets directly. The master's wireframe
has to be edited separately. Raised events afford a way to create an
interaction on a wireframe, which can be applied to widgets within
masters without editing the master.

Place the

master

on one

or more

pages and

Select it.

Step 1

In wireframeMaster

Create 1 or more

raised event(s) on an

actionable widget(s).

Step 2

In each wireframe

in the

Widget Interaction pane

Page

Create an interaction to

for the raised event(s) that

is contextual to that page.

Image 21

Guided Example
This example is meant to help you understand the idea of raised events and how
useful this feature is. We feel that it is easier to consider a construction strategy
that maximizes the use of masters in your prototype when you have the power
and flexibility of Raised Events.

In this example, we demonstrate how a single master placed on three different pages
can trigger, with Raised Events, different actions based on which page they are
placed. This will be impossible without the Raised Event feature because inherently
the master must perform identically on each page.

See the raised event's example RP file for reference and try to implement the Raised
Events feature on the Farm2Table project file using the master M 100 RE Item and
page 200 - Produce.

Chapter 5

[225]

Step 1 – Creating a Raised Event on the Master
Masters maintain their visual consistency wherever they are used, allow a single
point of documentation, and are critical in applying a particular design system across
an application. When taking the build-as-you-go, ad hoc construction approach
(which is normal), our wireframes are littered with redundant widgets across pages.
Each needs to be labeled, sometimes documented, and styled consistently. This is
inefficient and more troubling and can lead to UX defects during development.

In this example, we use a basic widget (a button) to demonstrate a
powerful and surprisingly easy Axure feature. We will return to it when
we discuss widget libraries and custom styles, so consider Raised Events
as a strategic feature that adds significant power to your prototype.

The following are the steps to create a raised event on the master:

Image 22

1. Create a new RP file, save it as Raised Events Tutorial. Don't bother with
the default set of pages in the Sitemap pane; keep them as is.

2. Create a master and label it M-1 Primary Action Button (Image 22, A).
Double-click to open it for editing (B).

3. Use a rectangle shape to create a button. Label it Primary Action (C).

Advanced Interactions

[226]

4. Create an interaction case for the OnClick action. Label it Case 1 - Raise
Event (D).

5. From the list of actions in the Case Editor window, select the last item, Raise
Event (E), which is found under the Miscellaneous category.

Image 23

6. In the Configure actions column (Image 23, A), click on the + icon to add a
raised event and label it DoPrimaryAction (B).

Important
Notice the checkbox to the left of the newly labeled raised event (Which
must be alphanumeric only and without spaces). It is not selected (Image
23, A). In the Organize actions column of the Case Editor window,
the action appears as a generic, unassigned Raise Event (B). Select the
checkbox for this raised event (C) and now the action is associated (D).

Congratulations on creating your first raised event! You can create multiple raised
events for each master. The next step is to get the raised event to do some work
for us.

Chapter 5

[227]

Troubleshooting raised events
The first thing to check if a raised event does not work is to make sure
that the checkbox next to the raised event name in the Case Editor
window (Image 23, C) is indeed selected!

Step 2 – Applying an Interaction to Raised Events
on a Page
Here is the cool and powerful aspect of raised events and the time invested in
understanding raised events will finally pay off. As masters are meant to be reused
and placed on multiple pages, the list of raised events will be exposed on each page,
including on the wireframe pages of other masters. On each page, you can create
different interactions for the same raised event. This is how the same master can
have different behaviors on different pages.

Wireframe Construction
On the Home page, our master will toggle the visibility of a widget:

Image 24

Advanced Interactions

[228]

1. Open the Home page to edit and drag the following:
 ° An instance of the master (Image 24, A). Label it Primary Action

[Btn] - 1.
 ° A rectangle widget. Label the widget Widget 1 and set it to

Hidden (B).

2. Switch to the Page Interactions tab and add a case to the OnPageLoad action
that sets the text of the master to Toggle Visibility (C).

3. Now, preview the page.

Binding the Raised Event with an Action
In this step, we will connect the raised event that was created on the master to a specific action
for this page.
Essentially, raised events are handles that you attach to a master so that you can access it on
the page. While the name of the raised event does not change from page to page and from one
instance of the master to another, the action you assign it to does.

Image 25

Chapter 5

[229]

When you click to select the master (Image 25, A), the raised event DoPrimaryAction
(B) appears in the Interactions tab of the Widget Interactions and Notes pane.

Now, create a case and label it Case 1 - Toggle Visibility (C) and assign it the
Toggle action for the widget. Preview the interaction.

Same Master but Different Behaviors
You get the idea. As you drag additional instances of the master to the same page
or place the master on other pages, the raised event you created for the master
will become visible and at that point, you can assign it different actions. In the
example file, the master is placed on each page in the prototype, sometimes multiple
instances, and each does something unique. The advantages are as follows:

• The visual properties of the master are maintained everywhere
• The master can be documented as a pattern
• Each instance of the master can be documented for its unique behavior

Amplifying Raised Events in Nested Masters
It is common to nest one master within the wireframe of another master. The raised
events of the nested master, however, will not be exposed when the enclosing master
is placed on page wireframes. Ezra coined the term "Amplified" raised events several
years ago to describe the following three-step technique to solve the issue:

1. Create a raised event X in master A, and place an instance of master A in the
wireframe of master B.

2. In the wireframe of master B, select master A and create an interaction for the
exposed action X. This interaction too will use a raise event action. Label this
raised event Amplify X.

3. Place master B on the wireframe of page N, and select master B to expose the
action Amplify X. Now, you can create the action under Amplify X, which
will actually be what you want master A to do.

Advanced Interactions

[230]

The following example will illustrate the concept.

Construction
We want to include the M-1 Primary Action Button master in another master and use the
DoPrimaryAction raised event associated with it, so perform the following steps:

Image 26

1. Add a new page to the Sitemap pane and label it Amplified Raised Event
(Image 26, A).

2. Add a new master, label it M-2 Product Box (B), and open it for editing.
3. There, frame an Image widget (C) with a Rectangle widget (D) and add

the first master, that is, M-1 Primary Action Button (E), to form a product
thumbnail component.

4. In the master wireframe, add an OnPageLoad interaction which sets the label
of the Primary Action button to Add to Cart (F).

Chapter 5

[231]

Image 27

5. Now, open the Amplified Raised Event page (Image 27, A), place the M-2
Product Box master on it, and label it Product Box 1 (B).
The M-2 Product Box is a nested master inside the M-1 Primary Action
Button master; the Primary Action widget button is nested in M-2 Product
Box. However, when you click on the M-2 Product Box master, nothing
shows up in the action list in the Interactions tab of the Widget Interaction
and Notes pane (C).
The raised event that is embedded in M-1 Primary Action Button is not
exposed to the page that uses M-2 Product Box.

6. Preview the page. The OnPageLoad interaction that you created for M-2
Product Box is working fine—the label of M-2 Product Box changes as
planned to Add to Cart (D).

Advanced Interactions

[232]

Amplifying a Raised Event
The following steps will help you amplify a raised event:

Image 28

1. Open the M-2 Product Box master for editing (Image 28, A), and select the
nested master of the Primary Action button (B).

2. That master's raised event DoPrimaryAction is visible in the Interaction
tab of the Widget Interactions and Notes pane (C). In the Case Editor
window (D), create a case for this action and label it Case 1 - Amplify
DoPrimaryAction (E).

3. This case (F) too is a raised event. Label it AmplifyDoPrimaryAction and
remember to select the checkbox (G).

Chapter 5

[233]

Completion
With the amplified raised event added to the nesting master M-2 Product Box,
we return to the Amplify Raised Event page (Image 29, A).

Image 29

Now, clicking anywhere on the M-2 Product Box master (B) exposes the
AmplifyDoPrimaryAction action in the Interactions tab of the Widget
Interactions and Notes pane (C).

Although, this action is tied to a raised event in the M-2 Product Box master, it is tied
to the raised event of the M-1 Primary Action Button master. The action you add to
it on the page should be related to the behavior of the button.

At this point, adding an interaction in the Case Editor window (D) is
straightforward. In our example, clicking on the button only triggers a Set Text
action (E), which changes its label to Added to Cart (F). However, this could be
whatever is needed.

Advanced Interactions

[234]

To conclude the raised events topic, we want to reemphasize the tremendous
usefulness of this feature to the construction of high-fidelity prototypes. While
masters help us enforce visual consistency and reduce the number-redundant
wireframes, raised events help assign contextual behaviors to those masters.

Variables
About two thousand years ago, the Greek philosopher Epictetus said that:

"The materials of action are variable, but the use we make of them should
be constant."

The ancient Greeks loved deep concepts like atoms, so it is not surprising that they
invented information architecture and the notion of separating a reference to data
from the actual data it contains. Wikipedia has a good definition for a variable.
In the context of computer science, it is a symbolic name given to some known or
unknown quantity or information for the purpose of allowing the name to be used
independently of the information it represents.

We use variables all the time. When we think (or perhaps, prefer not to think) about
our account balance, the term "account balance" is the name for a variable. The actual
amount of the balance changes, but our way to reference it does not have to.
As Epictetus said, the variable is constant, only its value changes.

In addition to storing data, variables are used to pass this data around from one
event that sets their value to another event that consumes that value. As a result,
variables are very useful when you have conditional logic because it is possible to
check the value of a variable in order to determine which path to take.

We can also control the scope in which variables can be used:

• Local variables are limited to a certain function in a certain area of the
application and are not available to other functions in other areas of
the same application.

• Global variables are visible or available to all functions across the
entire application.

A simplified analogy is human memory. We are equipped with a working or
short-term memory. It is a limited storage capacity that enables us to complete
specific tasks; for example, it helps us remember that we put water to boil or
where we left our phone. There is no need to store this information after the
activity ended and the information is replaced by new transient information.
We also have long-term memory, which enables us to retrieve information on
demand, long after its acquisition.

Chapter 5

[235]

Guided Example – Tracking Items in a
Shopping Cart
Keeping track of stuff is very useful and this functionality is common in many
applications, from the number of unread e-mails in an inbox to the number of items
in a shopping cart. In this counting example, we cover fundamental principles of
working with variables, conditional logic, and Axure's environment for using them.

Step 1 – Defining the Interaction
We will start with a very basic counter. The user is presented with a page of products;
each product includes an action button, which when clicked does the following:

• Advances the counter of items in the shopping cart by 1
• Changes the button label from Add to Cart to Remove from Cart

Step 2 – Constructing the Interaction
We need a page with a few products and a representation of a shopping cart with a
counter. As items are added or removed from the cart, the counter will keep track of
the number of items in the cart, described as follows:

Image 30

Advanced Interactions

[236]

Your own file does not have to be fancy; the use of Adaptive Views is immaterial
to variables.

However, if you want to take the opportunity and practice your Repeater and
Adaptive Views skills, all the resources are in the Variables tutorial file. Here
we use only the Base (Image 30, A) and smartphone-vertical views (B).

Start a new RP file and save it as Variables Tutorial.

Rename the Home page as The Onion Store and delete the other auto-generated
pages from the Sitemap pane.

The Repeater Wireframe
The repeater wireframe (Image 31, A) consists of three widgets:

• A semitransparent rectangle labeled Onion Name that displays the onion's
name (B)

• An Image widget labeled Onion Image to show a thumbnail of the onion (C)
• A Rounded Rectangle widget labeled Add (D)

Image 31

Chapter 5

[237]

The Repeater Dataset
There are only three columns in the table, which are as follows:

• The row number, which is not used for display, but is good to have for
reference (Image 32, A).

• Names of onions (B).
• The third column consists of images of onions (C). Left-click on the cell in

this column and from the context menu, select Import Image... (D).

Image 32

Advanced Interactions

[238]

Repeater Item Interactions
The dataset populates repeater items on the OnItemLoad event (Image 33, A).

Create a case to populate the repeater and label it Case 1 - Populate Repeater (B).

The two actions we need are (C):

• Set Text: This action populates the Onion Name widget with values from the
Onion_Name dataset column

• Set Image: This action places the image in the Onion_Image dataset column

Image 33

Chapter 5

[239]

Repeater Formatting
Finally, the organization of repeater items on the page for Base (Image 34, A) and a
320 smartphone views (B) is given as follows:

• Layout: Select the Horizontal option for both views, Wrap (Grid) of 4 items
per row for Base, and 1 for 320 (C).

• Item Background: Do not select anything here for both views (D).
• Pagination: Do not select anything here for both views (E).
• Spacing: Enter spacing as 20 px for both row and column for both views.

Image 34

Advanced Interactions

[240]

Step 3 – Introducing Variables
Personalized and contextual user experience is a core tenant of modern applications.
Therefore, it is highly probable that you will be expected to prototype such
adaptability in your projects.

Without variables, prototyping interactions that are contextual to user actions, the
data on the screen, and accurately mirrors the actual behavior—is very difficult. For
years, UX practitioners have resorted (and some still do) to using very tight scripts
and hard-coded wireframes to demonstrate such interactions. This method subjected
stakeholders and usability-test participants to lengthy explanations about the
envisioned behavior and exertion of mental energies to imagine the interface,
rather than interacting with it.

With Axure 7, the use of variables and their incorporation with cases that involve
conditional logic is easy and powerful. As we continue with our example, note that
planning is still the key to efficient prototyping.

Identifying Needed Variable(s)
Start by writing down what needs to happen when the user clicks on the Add button
of any item in the body:

• The user should be able to click on any item in any order
• Clicking on the Add button adds to the counter of items in the cart
• The label of the Add button changes to Remove when the item is added
• Clicking on the Remove button subtracts from the counter of items in the box

We need a variable to store the number of items in the cart. The following are the
points we know and can control about the variable:

• The variable name. We are going to label it cartCounter.
• Its default value. In this case, the default value is 0.
• We will probably want to place the cart or the number of items in the cart on

multiple pages. This means that the variable should be accessible across the
application. Such a variable is called a global variable, which we will cover
later in this chapter.

Adding Variables to the Prototype
The typical opportunities to create global variables are:

• While you are creating an interaction triggered by a widget.
• While you are creating a page interaction.

Chapter 5

[241]

Creating and Managing the Variables
In all cases, the Global Variables dialog will appear (Image 35, A) as shown in the
following screenshot:

Image 35

This is where you manage the inventory of variables in the prototype. The built-in
variable, OnLoadVariable, is available for use by default (B). Adding and removing
variables is trivial, but you need to follow Axure's naming rules while naming
variables; these rules are as follows:

• Must be alphanumeric
• Must have less than 25 characters
• Must not contain any spaces

Variables are listed in the table, with their names (C) and default values (D), both of
which can be edited inline in the row.

Advanced Interactions

[242]

Getting Variables to Work – Step 1
Perform the following steps:

1. Switch to edit the repeater wireframe (Image 36, A) and select the Add
button (B).

2. Create an interaction for the OnClick event (C).
3. In the Case Editor window, label it Case 1- Add an Item (D).
4. Select the Set Variable Value action (E) and in the column Configure

actions, keep the default, value, in the drop-down list Set variable to (F).

The value of the variable should be its existing value plus 1.

5. To identify the variable and create the formula, click on the function button
fx (G).

Image 36

Chapter 5

[243]

Getting Variables to Work – Step 2
The Edit Text dialog (Image 37, A) launches when clicked on fx as shown in the
following screenshot:

Image 37

Click on the Insert Variable or Function... link (B) and then click on cartCounter (C) from the
functions drop-down list.
The variable initially appears between two square brackets like [[cartCounter]]. The final
calculation should look like [[cartCounter+1]] (D).

Advanced Interactions

[244]

Getting Variables to Work – Step 3 (Preview)
Preview the page. Click on the X= icon on the Sitemap bar (Image 38, A) to view
the variables pop-up, which lists all the variables on the page and their values (B).

Image 38

The initial value of cartCounter is 0. Now, as you click any of the products on the
page, in any order, the counter will advance (D).

When you troubleshoot interactions involving variables,
always use this pop-up to see whether the variable value
is changing as expected.

Finishing the Interaction
To complete the work, we have to do the following:

• Display the value of the cartCounter variable on the shopping cart widget
• Change the text on the Add button to Remove
• Change the behavior of the button such that it subtracts 1 from the variable

Chapter 5

[245]

With the button wired to advance the value of the variable (Image 39, A), adding a
second Set Text (B) action takes care of changing the text of the button to Remove (C)
and reflecting the variable value on the counter (D).

Image 39

Preview the wireframe and you will see how the Add label changes to Remove after
the first click. You will also see that the shopping cart shows the new value correctly.

However, if you continue to click on the Remove button (Image 40, A), the text will
not revert to Add and the total number of items in the cart will continue to advance
by 1 with each click on the Remove button (B).

Image 40

To actually get the buttons to work, we need to use conditional logic.

Advanced Interactions

[246]

Here is how to think about the first condition:

IF the text of the button is equal to "Add" (Image 41, A), THEN perform Case 1 (B).

Image 41

In the Case Editor window, click on the Add Condition button (C) to bring the
Condition Builder window (D), and compose the condition row here (E).

Finally, duplicate the Case 1- Add to Cart case and relabel it to Case 2 - Remove
from Cart (Image 42, A), as shown in the following screenshot:

Chapter 5

[247]

Image 42

This case just does the opposite of Case 1. Remember to do the following:

• Change the condition
• Change the value of the variable so that with each click, 1 is subtracted (B)
• The text on the button changes back to Add (C)

Points to Remember about Variables
Debugging interactions is unavoidable and can be extremely time consuming.
Axure 7 introduces important aids to efficiently deal with the debugging process:

Image 43

Advanced Interactions

[248]

The Global Variables window (Image 43) provides a one-stop destination to view
all the global variables in the project and their default values. Initialing variables (in
other words, setting a default) is very important. So, remember this while creating
a variable. When the prototype loads, the variable will be set to that value and will
provide you with a base from which you can follow the changes in the variable
throughout the interaction.

When you generate the HTML prototype with Sitemap, one of the new options is the
button X= (Image 44, A), which displays the variable viewer pop-up (B).

Image 44

As you step through the interaction, you can observe your variables in real time.
Pinpointing an interaction bug is easier because you can identify the exact spot
where the variable value does not match the value you expected.

Think about your variables as a herd of sheep. You want to know their
condition at all times. Maintain a list of the variables you use in the file,
their possible values, and the resulting path based on the value. One
method is to keep such a list in Axure as a dedicated page on the Sitemap
pane. This is especially beneficial in shared project files because all team
members can easily share and learn about the variables used in the file.

Chapter 5

[249]

This concludes the guided example on variables. While on paper the process may
appear long and complex, it is, in actuality, quite fast and straightforward. Many of
the steps mentioned here are basic and take seconds to perform. The key for success
with this type of advanced interaction is to think through the entire flow. Remember
what it is that you are trying to simulate and be practical about it.

Variable Types
Axure supported variables in the previous versions, but Axure 7 has some significant
enhancements that improve the practical use of variables in your prototype and open
up new possibilities to create high-fidelity prototypes. Axure offers three types of
variables: global variables, special variables, and local variables.

Global Variables
As their name suggests, global variables, once set, are available to any page
throughout the browser session. In other words, they will expire only when
you close your browser tab or window.

Axure's Built-in Variable
Axure comes with one built-in global variable labeled, by default, OnLoadVariable.
This variable is ready for you to modify. Rename as needed and set a default value.
You can, of course, use it to track stuff when a page loads.

Create Your Own Variables
Axure supports unlimited variables, but like everything good in life, there are some
limits. If you are using Internet Explorer to test and socialize your prototype, Axure
recommends limiting the prototype to a maximum of 25 variables. In practice,
25 variables can satisfy a great number of advanced prototyping.

If you use any of the other browsers for viewing HTML prototypes, the sky is the
limit if you want to use variables to the max. Variables are passed via a URL and as
an example, the limit of the Firefox URL is 64,000 characters. In other words, when
you add up the characters that make up the names of your variables and their values,
the sum total should be 64,000 or lower. So, while there is a limit, 64,000 characters
should be more than enough. In any case, the phrase "less is more" applies to
variables as well.

Advanced Interactions

[250]

Special Variables
Displaying the current day, date, or page name in the prototype is a valuable
capability and another welcome enhancement to Axure 7. Like other topics discussed
in this chapter, don't let the terminology hold you from using this function. Think
about special variables as the Insert feature in Microsoft Word. You can insert today's
date into a document or display the page number in the footer. Similarly, Axure
provides a form of built-in access to useful parameters you can incorporate into the
prototype when relevant.

Currently, these built-in variables include attributes of the current day or the name
of the current page. Most likely, items such as current time and others' attributes will
be added to Axure in the future. The following is a list of the special variables offered
in Axure 7:

Variable name Description Example in editor Result in prototype
PageName Name of the current

page as it appears in
the Sitemap pane.

This is the
[[PageName]] page.

This is the Home page.

Day The numeric value
of the current day.
The value will be
within the range
of 1 to 31.

Today is day [[Day]]
of the month.

Today is day 17 of the
month.

Month The numeric value
of the current
month. The value
will be within the
range of 1 to 12.

This is month
[[Month]] of the year.

This is month 5 of the
year.

MonthName The name value of
the current month.

This month is
[[MonthName]].

This month is May.

DayOfWeek The name value of
the current day.

Today is
[[DayOfWeek]].

Today is Friday.

Year The current year.
It will consist of
4 digits.

The year is [[Year]] The year is 2011.

GenDay The numeric value
of the day in which
the prototype was
generated. The
value will be within
the range of 1 to 7.

Generated on day
[[GenDay]].

Generated on day 3.

Chapter 5

[251]

Variable name Description Example in editor Result in prototype
GenMonth The numeric value

of the month in
which the prototype
was generated. The
value will be within
the range of 1 to 12.

Generated in month
[[GenMonth]].

Generated in month 8.

GenMonthName The name value of
the month in which
the prototype was
generated.

Generated in
[[GenMonthName]].

Generated in January.

GenDayOfWeek The name value of
the week in which
the prototype was
generated.

Generated on
[[GenDayOfWeek]].

Generated on Tuesday.

GenYear The year in which
the prototype was
generated.

Generated in
[[GenYear]].

Generated in 2011.

Usage Examples
Here are some examples of combinations you can make with variables:

In the editor Result in prototype
Today is [[DayOfWeek]], [[MonthName]]
[[Day]] [[Year]]

Today is Thursday, August 21 2011

Prototype generated on [[GenMonth]]/
[[GenDay]]/[[GenYear]]

Prototype generated on 12/28/2011

Local Variables and Functions
Both of these features are new to Axure 7 and add a significant boost to our ability
to create sophisticated interactive prototypes. However, a serious discussion of these
topics is beyond the scope of this book and a short explanation of how these features
work can be more confusing than helpful.

Advanced Interactions

[252]

Naming Variables
Axure variables have basic naming rules. A variable name must meet the
following conditions:

• It should be alphanumeric
• It should be less than 25 characters long
• It should not contain spaces

Here are some best practice suggestions to keep in mind:

• As you cannot use spaces and are limited to alphanumeric characters, use
the CamelCase convention, which makes it easy to parse words within the
variable string. Basically, you need to capitalize the first character in each
word. For example, use "WishListCount" instead of "wishlistcount".

• Use descriptive names so that you or others who work on the file will
understand what the variable stands for. Avoid names such as Var1, Var2,
and so on, because we can guarantee that within days or weeks you yourself
will not remember what these names stand for.

• If you are working on a shared project file, each team member should
add their initials at the end of the variable name in the upper case. For
example, "WishListCountES". Note the potential for redundant variables
as each designer creates their own version of the same variable. This is
an example of a collaboration process issue, which we will discuss in
Chapter 9, Collaboration.

Pros and Cons of Using Variables
Be strategic! Always keep in mind the phrase, "Just because I can, does not mean
I should". In the previous sections of this topic, we discussed many of the aspects
involved in using variables and the value of integrating them into the prototype. If
you plan to use variables extensively, it is important to understand how interactions
in general and variables in particular will affect your work, and in the case of a team,
everyone who is using the file.

Axure makes it fairly easy to figure out the construction of a prototype and the
interactions involved. Events, cases, and conditions are presented in a natural
language that shields you from the obscurities of programming language code. As
long as you label your widgets in a meaningful way, any Axure user should be able
to open up your file and understand how you wired it.

Chapter 5

[253]

However, it is difficult to infer computations and the use of variables that you
yourself did not create. You might need a few minutes to remind yourself what is
going on in the file if you open it after several weeks or months. It is not uncommon
to forget which variable value is meant to trigger which path and so on. Our advice
is to document key interactions and variable assignments. For example, create a
folder in the sitemap and label it For Internal Use. Here, create a page where you
can describe interactions and the expected changes in variable values. Such a page
can be included when generating the Word specifications document to communicate
the logic to developers and others.

The use of variables enables you to gain considerable construction efficiencies.
Instead of redundant instances that show variations of a page, you may use just
one page or master and manipulate its layout with variables.

Summary
In this chapter, we covered a set of Axure functionalities that are responsible for
creating truly engaging, high-fidelity interactive prototypes. Conditions, raised
events, and variables extend our ability to move beyond the basics of navigating
from one wireframe to another. We can also create relevant context in response
to inputs.

The use of these capabilities, while not too complicated, does require a higher level
of discipline and focus. This is not coding, yet conditional logic and variables involve
formal evaluation of multiple possibilities and things can quickly get complicated.
As long as you document the values of variables, and the possible actions that
should take place given each value, you should be able to reduce interactions
that don't work and save time on debugging.

Finally, don't hesitate to experiment and try interactions that may help you to better
communicate your vision of the experience to stakeholders and users.

In the next chapter, we are going to cover widget libraries—an important Axure
feature that is essential for managing and sharing the global design patterns of
your project.

Widget Libraries
"Time is money."

 – Benjamin Franklin

An Axure widget library is basically a collection of custom widgets that are stored
in a special file format called RPLIB. These collections greatly extend Axure's
built-in widget libraries; you can create these collections yourself or download
a library made by others.

If you are not color-blind, Axure's .rplib library files (Image 1, A) can be visually
distinguished from standard .rp Axure files (B) by the color of their icons. There
are additional differences which we will discuss later in the chapter.

Axure's widget libraries are all about efficiency, consistency, and sharing because
they provide a method for distribution and reuse. As such, they save time and
reduce costs by eliminating needless redoing of assets created by yourself or others.
Additionally, they help maintain the consistency of design patterns across a UX
project or across a portfolio of UX projects.

Image 1

Widget Libraries

[256]

As UX designers, we are tasked with delivering a compelling user experience
that meets business requirements, technical constraints, and user expectations.
The process typically moves very quickly from high-level conceptual sketches to
detailed designs, from static diagrams to clickable simulations of interaction flows.
Consequently, we have to:

• Produce many wireframes quickly
• Manage consistency of design patterns across the existing and

new wireframes

The way to accomplish these demands successfully is through reuse. "Prefab" is
at the heart of the construction industry, as well as in software development: the
practice of using ready-made widgets saves the time of having to create those
from scratch. In addition, we can manage the consistency of design patterns by
propagating changes made to the pattern library to the project files that use it.

Before we dive deeper into widget libraries, it is important to have a brief
discussion on design patterns because the concept is a deeply grounded principle
across disciplines, from arts to engineering to computer science. The use of patterns
in UX design is commonplace and complements the paradigm of object-oriented
programming and application development. Within the user experience context, a
pattern is a template for an application-agnostic group of widgets, which solves a
specific interaction requirement in a generalized way.

Patterns are considered a very good thing in principle, but can be difficult to apply in
practice. Everyone seems to agree that the adoption of patterns within an application
and cross-applications improves skill transference, reduces the learning curve, and
yields a superior user experience overall. Yet millions of users still have to put up with
significant inconsistencies brought to bear by operating systems. To the decades-long
battle between generations of Microsoft Windows and Apple OS, we now have to deal
with inconsistencies among mobile platforms such as Google's Android, Apple's iOS,
and others. To make things worse, the move to applications in a Cloud often translates
to interaction patterns that are inconsistent with patterns of desktop applications, not
to mention the patterns based on gestures, voice, and motion.

There is little we can do about cross-platform consistencies; and one could argue
that the impact of such inconsistencies is relatively minor, because few users
switch regularly between operating systems. This is not the real issue. The example
underscores the fundamental problem with trying to leverage too much on any
particular set of design patterns, because the rate of change is too high.

Chapter 6

[257]

While the effectiveness of patterns depends on uniformity and consistent application,
it is important to preserve openness to constant refinement, adaptation, and new
patterns, and to avoid becoming dogmatic and enslaved to existing patterns.

Some examples of interaction categories where patterns play an important
role include:

• Navigation
• Data Entry
• Grids and Lists
• Search
• Message and Error handling
• Shopping
• Sign-In/Out and Authentication

Don't enforce or lock into a pattern library too early in the design
process. Remember that your ultimate goal is to design an
application, not a pattern library.

This chapter is designed to walk you through the functionality of widget libraries.
It will also help you determine the best approach for you and your team with
regards to the creation of design patterns. We will cover the following topics:

• When to use a widget library
• Library types
• How to create your own custom library
• The pros and cons of using a widget library
• The pros and cons of using masters as a library

When to Use a Widget Library
If you are starting a brand new project and do not have any previous patterns
you wish to use, explore the already created widget libraries especially if you are
designing a mobile/responsive site, as there are many already produced mobile
patterns available to UX designers. The following is a list of scenarios applicable
for widget libraries:

• You want to create a widget library and share it with other UX designers.
• You want a repository of approved widgets for subsequent practitioners

in your organization to use.

Widget Libraries

[258]

• You are on a large enterprise-wide project and want to share your patterns
across the different product lines or projects.

• One person manages/updates the widget library. On larger teams, this
may become an issue as the person responsible for updating may become
a bottleneck.

Library Types
There are a few different libraries available for you to use and we will discuss each
one in the forthcoming sections.

Axure's Built-in Libraries
Widget libraries are accessible from the Widgets pane. Axure includes two built-in
libraries, which provide the basic building blocks for developing an extended user
experience vocabulary. The built-in libraries cannot be altered, which means that it
is not possible to add or remove widgets from these collections. It is quite possible to
prototype an entire application, even a complex one, utilizing only a portion of these
built-in widgets:

• Accessible from the Widgets pane, there are roughly 25 widgets in the
Wireframe library.

• There are currently 17 unique flow widgets, which are meant to be used for
diagram construction. Included in this library as well, is the Image widget.
It is available in both libraries.

The mechanics of the Widget pane are described in more detail in
Chapter 2, Axure Basics – the User Interface.

Axure and Community Libraries
In addition to the built-in libraries, Axure's website provides links to a growing
number of widget libraries. Many libraries have been posted by UX practitioners for
fellow UX practitioners. We include a description of one such library, written by its
author, Marc-Oliver Gern, in Appendix, Practitioners' Corner.

Chapter 6

[259]

The generosity of people within the UX profession is fantastic! The types of widgets
you will find in the community libraries include iPhone, iPad and OS X user interface
components, Android, Windows 7, various icons and social media elements, and
much more!

Most of these community libraries are free of charge despite the substantial amount
of thought and labor that was invested in creating them.

To access the community libraries, visit
http://www.axure.com/community/widget-libraries.

Of course, when you develop your own cool widget library, make sure that it is
listed on the Axure site!

Submitting a Widget Library
Axure has very clear instructions on their website, but they are listed as follows to
save you some time. This list is from Axure's website and here are the suggestions
they request you to follow so that your library is approved and posted for the
community to enjoy:

• Made in the current version of Axure (v7)
• Created using native Axure widgets rather than images
• Widget formatting controlled by Custom Widget Styles
• Utilizes interactive elements when necessary
• Widgets are organized into folders
• Library is saved as a RPLIB file

Your library must have a page on your website or AxShare with screenshots,
a description, and a link to download.

To submit the library, e-mail Axure at contactus@axure.
com with your attached library and a link to your description/
download page.
Not all widget libraries will be approved and some may go
through an editing process. Once approved, Axure will upload
your listing to our widget library page.

Widget Libraries

[260]

Create Your Own Widget Library
Axure makes it very easy to create, manage, and distribute your own widget
libraries, which is great because there are several circumstances for which
extending Axure's built-in widgets is beneficial:

• You collaborate on a project with other UX designers and need to ensure
consistency and efficiency throughout the file.

• You find yourself spending too much time repurposing parts of existing
wireframes in new wireframes.

• You design user interfaces for applications that share an interface framework.
• You want to share with the world a set of widgets, which you think would

benefit others in their prototyping projects.

How to Create a Widget Library
In this example, we will establish a widget library for the purpose of supporting
consistency of design patterns in a prototype, in this case, for the book's
demonstration project, Farm2Table.

Step 1 – Creating the Library File
Although the file-format of Axure's widget libraries is different than that of project
files, and libraries are independent of the project files that are linked to them, the
process of creating a new library requires you to begin with a new or existing RP file,
as illustrated in the following Image 2 screenshot:

Image 2

Chapter 6

[261]

Perform the following steps to create a library file:

1. Create a new or open an existing Axure RP file. From the droplist in the
Widgets pane, select the Create library… option (Image 2, A).

2. Save the library to any destination you want.
3. The library file opens and you can begin to build it out.

The prototype that you created the widget library from will
automatically have a link to the newly created widget library (B).

A few things to note about the widget library user interface:

• The Widget Library pane (Image 3, A) replaces the Sitemap pane.
• The Widget Properties tab (B) and Widget Notes tab (C) replaces the

Page Properties, Page Interactions, and Page Style tabs.
• The Share menu is not part of the RPLIB file format. This means that

a widget library file cannot be converted into a Shared Project file.
This poses some challenges for teams who share libraries.

With the widget library file ready, we can move to creating some widgets.

Image 3

Widget Libraries

[262]

Step 2 – Creating a Custom Widget
This is very straight forward. Click on the Add Widget icon (Image 4, A), and within
that page, add your widget.

Image 4

In the Widget Properties tab, label the new widget (Image 5, A) and its tooltip (B).
Organizations that use widget libraries gain the efficiency in their content strategy
by managing consistency of language across all applications.

Image 5

Chapter 6

[263]

Click on Widget Style Editor (Image 6, A) to launch it. There, click on the Custom
tab, create a new custom style, and label it (B). Apply the style you want (C) and
close the style editor. Special consideration should be given to naming widgets
uniformly and in a non-specific way, such as a unique number, as the context of
use for the widget, might change depending on the file it will be used in.

Image 6

Voilà! Congratulations, you have now created a custom widget.

Widget Libraries

[264]

Step 3 – Refreshing a Library in the Project File
The project file you used in Step 1, is automatically linked to the new widget library.
However, as you add or modify the widgets in the library, you need to trigger an
update whenever you want the latest changes to the library to be reflected in the
project file. The following Image 7 illustrates the state of the project file's Widget Pane
before and after the update. From the Options menu (A), select the Refresh Library
option (B). All the changes are reflected in the file (C).

Image 7

From now on, when making changes to the widget library file, we
need to remember to refresh the library in the project file in order to
reflect those changes.

Managing Widget Libraries
You just created your first widget library, or perhaps you also downloaded a few
community libraries. Now you are ready to use them in your prototype file. The
Widgets pane is the hub for all activities related to widget libraries. Using the
libraries droplist in the Widgets pane, you can initiate the following tasks:

• Load Library…
• Create Library…
• Edit library…
• Refresh Library
• Unload Library

Chapter 6

[265]

When you want to use a custom widget from one of your loaded libraries, drag it
over just as you would do with the built-in widgets. If the widget includes variables
or a custom style, the Import Wizard dialog would flag such dependencies. If you
want to create your own interactions or avoid importing styles that are incompatible
with your project, use the Cancel button to import only the widgets or click on the
Finish button to import the entire package.

Once you drag an instance of the widget into your wireframe, that instance is no
longer associated with its original widget library, a behavior similar to that of
Axure's built-in widgets and break-away masters. Thus, updates and changes
made to widgets in the widget library are not applied to any of the instances
of these widgets in your project file even after you refresh the library.

To track wireframes that use custom widgets, as well as the placed
custom widgets themselves, add a new annotation field to your collection
of widget-level notes in the project file. When you drag a custom widget
from a library, write the name of the widget in the field. If you use
multiple custom libraries, add the name of the library.

Remember that the widget library is a discrete file, completely unaware of and
separated from your project file. When you add more widgets to the library,
make improvements and modifications to the existing widgets, or download an
updated version of a library you downloaded from the web, these changes are not
automatically reflected in the Widget Library pane of your project file until you use
the Refresh option. Once more, the widgets that are already placed on wireframes
will not be updated, so you will need to update those instances.

Masters or External Widget Libraries?
Widget libraries are a great distribution vehicle for sharing your coolest widgets with
the world. However, when it comes to managing a pattern library for a large project
or an entire application suite, we need to consider the following two options:

• Option A: Store the project's patterns (Widgets and/or Masters) in an
external RPLIB widget library and load it into the project file.

• Option B: Store the project's patterns as a collection of masters within a
shared project file.

There are pros and cons to both approaches and depending on the circumstances of
your project, you should determine which type of widget collection is appropriate
for your particular needs.

Widget Libraries

[266]

Using RPLIB
The following is a list of pros and cons of using a widget library file.

Pros
• The library can be used simultaneously in multiple projects. Updates to a

single library file will become available to all the projects upon refreshing
the library.

• The library can become the organization's ever-evolving repository of record
for standards, UX design styles, and patterns.

• For UX consultants, a personal library of patterns that are used often can
become an invaluable time-saving tool.

• In a team situation, one can easily distribute the library file to team members.

Cons
• In a team situation, there arises the need to notify team members that new

updates are available so that they know to refresh their link to the library.
• In a team situation, the owner of the library might make changes to widgets

without taking into account the impact such a change might have on the
wireframes of another team member.

• In a team situation, only a single user can make updates to the library at any
given time. In large, high-velocity projects, this may become a bottleneck
to the workflow because modifications to patterns are needed at a much
faster rate.

• Updates to widgets do not apply to widgets used in the project. Change
management of the prototype may require a significant amount of rework
if the wireframes are constructed of non-master custom widgets.

Using Masters in an RP or RPPRJ file
We think the biggest benefits of using masters as a widget library are for shared
projects. If you are updating masters on your local RP file, your colleagues will
not be able to benefit. The following is a list of pros and cons of using a master
as a widget library.

Chapter 6

[267]

Pros
• Updates to pattern widgets are immediately applied across all wireframes

where the masters are used.
• In a team situation, a designer who is about to change a custom

widget pattern can first check where the master is used and discuss
the potential implications with team members who are using the master
in their wireframes.

• No need to refresh an external widget library.
• A smoother update workflow because the pattern library is built into the

project file.
• In shared project files, multiple designers can own and update their

custom widget masters. This parallel workflow works well for large,
high-velocity projects.

Cons
• Widget patterns tend to be project specific, so it may be more challenging to

consider a more generalized construction of patterns.
• Sharing with other prototype files has potentially serious limitations.

The project file has to be made available to the importing user. If that user is
working on another version of Axure, the masters may not import correctly.

• Difficult to evolve the patterns over time and across multiple projects,
especially when the specific project file in which the masters were created,
is no longer in use.

When to Begin Creating Patterns
As you can see, the steps involved in the creation of a widget library are pretty
straight forward, so let's move to some best practices. In the past, we have seen
many designers so focused on creating the coolest designs, that they forget to pause
and see whether there are any new patterns emerging in their evolving project,
often ending up with a fragmented design. This can pose many problems in the
long run. The two most obvious problems are: poor usability of the site and longer
development time because the developers are creating many unique elements. To
avoid this, keep taking pauses while designing to check it. When you do and you
find a pattern, add it to your widget library. At the very beginning of a project, it is
obviously too early to have patterns unless you choose to begin with patterns from a
previous project or use one of the many wonderful libraries that are out there.

Widget Libraries

[268]

Our own behavioral pattern has been to start creating patterns once the
direction of the design has been chosen. We work on very large-scale
projects that tend to have many designers. So once we are clear as to the
direction, we begin to create high-level patterns. As the project becomes
more detailed, the patterns become more concrete or detailed.

The following is a list of the patterns we create right before the detail design
process begins:

• Table styles
• Button styles (primary, secondary, and tertiary)
• Form elements
• Label styles (title case versus sentence case and placement of the label)
• Prototype style guide. For example, section background colors: while we

design in gray scale, specific shade values should be used consistently across
patterns in order to maintain visual coherence and quality.

• Any unique design elements for this particular design. For example, in the
Farm2Table concept, we would place the image placeholder widget and
the social media utility in the lightbox along with the lightbox itself in the
pattern library.

• Of course, we would also have an icon library.

As you can see in the next screenshot, a pattern folder and an icon folder have
been created:

Image 8

Chapter 6

[269]

Wireframe Global Patterns
We think it is important to document and design the following global patterns.
We think it is good to get the client to think about these things and we guarantee
the development team will ask at some point in the project. It is best to be thinking
about these throughout the detail design process. In order to achieve this, we meet as
a team to decide how we wish to solve issues such as error handling. We continue to
check in with each other to ensure that our decided patterns continue to work as the
design evolves. Each project may drive a unique set of global elements, but here is a
checklist we use to ensure that we have tried to cover everything. Of course, we are
not perfect and developers always think of something the team has missed!

• What is displayed when data is loading
• User input error handling (user input error)
• System error handling (system errors such as the system is down)
• Data display rules (this can be amounts, whole numbers, zeroes, and so on)
• Sorting rules
• Table patterns (document this once so that you don't have to document it

throughout your design)
• Any form element behaviors
• Basic page rules and any rules for lightboxes

Summary
Widget libraries help extend Axure's built-in collection of widgets and share custom
widgets with others, for free or a fee. The libraries available for download from
Axure's website and elsewhere save you significant time and effort if you need
to prototype for OS-specific mobile devices, popular social networks, and other
commonly used elements. Additionally, widget libraries help develop, evolve, and
enforce the global pattern library for a project or an entire suite of applications. In
other words, they offer a strategy to manage and propagate change, which is the
topic of our next chapter.

Managing Prototype Change
"Nothing endures but change."

 – Heraclitus

Many UX projects are subject to two opposing change agents, which often place
the design effort, sometimes the entire project as well, at risk. On one hand, good
UX places a premium on multiple iteration cycles of design, review, validation,
and revision, because these are likely to yield successful results. The process is
inherently slow, can be costly, and involves constant change to the prototype.
On the other hand, there are ambitious business plans, aggressive schedules,
changing requirements, and limited budgets coupled with shifting priorities
and scope. Typically, UX loses in this conflict.

Additionally, there is a dimension of change associated with our design tool. As we
shift from sketches and high-level wireframes to a detailed design and interactivity,
we are constantly developing the Axure file. New pages, repeaters, masters, and
dynamic panels are added rapidly and wired with new interactions. It is tempting
to use time-saving shortcuts such as copy and paste in order to quickly create
alternative scenarios and possible dynamic panel states, instead of taking a longer
path of thinking about the construction of masters and their reuse. It is also normal
to keep the previous versions of wireframes in case we might need them at a later
point. Before you know it, you are looking at a fairly bloated Axure file. It may take
longer to generate the HTML prototype, not to mention finding the latest version
of a wireframe.

Managing Prototype Change

[272]

In this chapter, we will look at Axure's features and construction strategies for
dealing with prototype changes in a productive and efficient manner. The topics
that we will cover include the following:

• Change readiness checklist
• Development methodologies, UX, and change
• Estimating Axure work effort
• Change and effective prototype construction

From a Vision to Reality
UX projects tend to follow an unfortunate yet predictable path. We begin with a
project launch fuelled by excitement, high aspirations, and a bucketful of ambitious
strategic goals. We follow with an intense, stimulating, high-level conceptual
exploration phase, in search of a "killer" user experience. The outcome is a
polished, high-fidelity vision that is presented to decision makers, who justifiably
are impressed and excited, and they bless the ambitious project with the "green"
light. They allocate a meager budget and issue a directive for delivery to be done
"yesterday". Now, your polished high-fidelity prototype needs to address the details
of low-level requirements, technical constraints, and pragmatic compromises that
need to be made in order to meet the timeline and budget.

Perhaps this description is bleaker than what you have personally experienced
in your projects; we truly hope this is the case. However, the numbers talk for
themselves; let's compare the 2013 IT Project Success Rates survey by Scott W.
Ambler with the 2010 version that was mentioned in the previous edition of this
book (refer to http://www.ambysoft.com/surveys/success2010.html and
http://www.ambysoft.com/surveys/success2013.html):

Status 2010 2013
Successful About 55 percent About 60 percent
Challenged About 32 percent About 30 percent
Failed About 13 percent About 10 percent

Ambler breaks down the projects by paradigms such as Lean, Agile, and others,
which we aggregated here. It is good to see a trend of improvement, but ask
yourself: "What if only 60 percent of medical procedures were successful?",
"What if 10 percent of skyscrapers collapsed and 30 percent of those finally erected
were problematic?" These numbers are totally unacceptable, and yet, here we are.

Chapter 7

[273]

Ambler compares other dimensions of software development paradigms, and on the
scale of -10 to +10, he reports the highest performance on the following parameters:

• Product quality: Less than 5
• Stakeholder value: Less than 6
• ROI: About 6
• Time/Schedule: Less than 6

In other words, the results are really poor on all counts.

Despite the critical importance of UX to the success of products, it often still plays
a small role in dictating and governing the budgets and schedules of the projects.

Regardless, by adopting commonsense practices for managing changes and
utilizing the appropriate Axure features, we increase the value of UX in the project
by maintaining a high quality and responsiveness to the ongoing change. We also
improve the quality of our own life by reducing the stress and overtime that typically
accompany a massive last-minute change.

The Change-readiness Checklist
The following are generalized and repeatable key steps that will help you and
your stakeholders deal successfully, at least from a UX perspective, with the
most permanent aspect of any project you will be involved with, that is,
change. The common thread across this theme is the idea of upfront investment
and foundation setting early on. In other words, to be able to deal effectively
with change downstream, you must be prepared before your journey begins,
and focus specifically on the following:

• Expectation settings
• Alignment on estimation and plans
• Construction strategies

Expectations, Paradigms, and Change
Regardless of your formal employment status, be it that of a consultant or an
in-house resource, there are two issues that you need to address before the
project officially launches:

• What exactly are you expected to deliver?
• What strategy should you choose for construction in Axure?

Managing Prototype Change

[274]

Answering the first question is often very tricky because it is difficult to make exact
quantitative statements on the effort. However, it is possible to make educated
estimates. While the answer to the first question underscores the relationships and
agreements between you (UX) and the project's stakeholders, the answer to the
second question affects your ability to deliver successfully on the agreements made.

An agreement on the granularity of detail that is expected from UX artifacts and
deliverables is critical, because mismatched expectations are likely to result in a
blunder and, often, a scramble to meet deadlines with significantly more work
than planned.

Before reaching an agreement, you need to estimate the requested work in order to
develop a reasonable estimate of time and budget. There is a tendency to come up
with overly optimistic estimates, and here are some of the reasons for this:

• You are bidding on the project and want to be ahead of the competition
• Lack of prior experience in developing an application for a specific domain
• Lack of experience due to distortion of scale. An approach that worked in a

small startup project may backfire in a large enterprise project
• Lack of familiarity with the culture of the particular client or organization
• Lack of experience with all of the previously mentioned reasons; typically,

newly minted college graduates entering the workforce suffer from this
• You are a born optimist, and at the start of each new project, you hope that

this time things will be better

Regardless, bad estimates will put the entire project at risk and affect your
well-being. There is a high probability that you might find yourself working
impossible, crazy hours just to keep up with an endless stream of demands and
changes that you did not estimate for, but stakeholders expect you should deliver.
This situation is not uncommon, yet it can be avoided, or at least minimized.

The larger the organization and the project, the less visibility you have due to layers
of management, departmental silos, and office politics and strife, which often slow
things down.

In this and other situations, consider three dimensions that will help you develop
a reasonable estimate of the UX effort from an Axure perspective so that you can
handle change with more ease:

• The software development model of the project
• The expected granularity level of the prototype
• The expected detailed level of the UI documentation—from light annotation

to highly detailed specifications document(s)

Chapter 7

[275]

These are generic dimensions, and are independent of your personal experience, the
project domain, and other variables. They are all about expectations, and if you know
at the start what is expected and in what context, then the budget, schedule, and the
quality of deliverables can be in alignment with the project.

UX and Software Development Models
In an unscientific survey, we approached some colleagues in the UX community and
asked if they can define the following development paradigms that Ambler lists in
the survey mentioned earlier in this chapter:

• Lean
• Agile
• Iterative
• Ad-hoc
• Traditional

Are you clear about these models and can you define each of them? Not
surprisingly, practitioners' definitions appear to reflect their own experiences,
and there is a general frustration with the ambiguity and vast variability
surrounding the paradigms.

Traditionally, UX has been weak on the smooth integration with development
methodologies, often because these methodologies typically neglect to fully
understand the UX process. Often, UX is brought in by the business side of
the organization and is imposed on engineering, which may be set on internal
methodologies and processes that are not aligned with those that the UX team
expects to follow.

Make it a high priority to do the following:

• Get familiarized with the prevalent development methods in general and
with the development flavor of your project, in particular

• Seek alignment of UX and engineering around methods, processes, artifacts,
and deliverables

In our personal experience, and one that many of our colleagues share, we have
yet to find a project that matches elegantly (and sometimes remotely) with any of
the aspirational definitions for these models. We typically find a methodological
blend, one that evolves and sometimes deteriorates as the project progresses. An
extensive review of the entire landscape of popular development methodologies is
well beyond the scope of this book, but we want to present a couple of them that are
common on the spectrum.

Managing Prototype Change

[276]

Traditional (Waterfall)
Just a few years ago, an acceptable practice was to estimate the UX effort based on
the number of wireframes needed to visualize a set of screens and user flows that
was agreed upon. The common development model followed a fairly linear path
known as Waterfall, in which requirements were first developed, followed by
software and interface design activities, software build, testing, and release. After
its first release, the software would continue to evolve through cycles of incremental
enhancements until the end of its life cycle.

The traditional waterfall model did not require much collaboration or iteration,
and it contributed greatly to the creation of a silo mentality in which businesses
and development teams worked in relative isolation, and sometimes with hostility
towards each other. The process called for each group to focus on its part of the
project and hand over its deliverables to the next team.

It roughly looked (and highly simplified) something like this: The business team
would spend a year on developing the complete business requirements for the
product and hand the document over to the development team. That team would
then spend another year on developing the application, and once complete, present
it to the business team. The gaps between the expectations of the business and the
development would often be substantial, although on paper, most requirements
were being fulfilled. So basically, the organization would spend two or more years
of substantial investment in the product and end up with a flop. Each group would
blame the other due to the lack of shared accountability and ownership of the
entire process.

UX often had little or no input in the planning phase. With little understanding of the
UX process, business, and development, the stakeholders would make assumptions
about how the interface should be designed based on their understanding of what
users want. Little was done to validate these assumptions with the real users.

A minor benefit of UX was the relative ease of planning and estimating the user
interface effort because so much of planning was done up front. Of course, once
work started on the UX (design), the actual deliverables almost always deviated
from the original estimate. However, keeping track of the changes was relatively
easy as long as you and the stakeholders on the project established a clear change
control process.

Chapter 7

[277]

Agile
The Agile model shares fundamental values and principles with the well-established
UX approach to User Centered Design. In fact, the first value listed on the "Agile
Manifesto" (refer to www.agilemanifesto.org) is "Individual and interactions over
processes and tool". Although the word individual referred to here is a member of the
project team and not the end user that UX has in mind, this is a value that any UX
practitioner would subscribe to.

The Agile software development model is highly collaborative and iterative and
follows these key phases: requirements, architecture and design, development,
testing, and feedback. Without iteration and emphasis on delivering a working
software, these phases may remind you of the waterfall model. Instead of
establishing both high- and low-level requirements before development begins,
as is the case with the traditional waterfall model, Agile considers requirements
in a flexible way, that supports rapid adaptations and changes as the iterative
process unfolds.

From a UX perspective, there are some pitfalls to keep in mind. To start, Agile is
fraught with technical jargon and terminology such as Scrum, Sprint, Timebox,
Backlog, Burn Down, Team Velocity, Planning Poker, DOD, and on and on.
Fortunately, there are also plenty of good resources online that can help you
sort things out.

Jargon-heavy practices are always problematic because there is an increased risk
of communication failure due to misinterpretations of key terminology. Always
remember to not take anything for granted and make sure that you and those in
charge of the Agile process are on the same page regarding the definition of various
Agile terms. Down the road, this can reduce the risk of problems that occur due to
inconsistent application of the same term by yourself and other team members.

If you are not familiar with the meaning of a term, don't hesitate to ask. If you are
embarrassed to ask or worried that not being familiar with terminology will have a
negative impact on how others in the team perceive your competence, research the
term first and then discuss.

Agile Flavors
There are several agile methodologies that share the basic principles of the agile
model, but they differ on implementation and sometimes also on terminology and
practice. These methodologies include Scrum, Extreme Programming (XP), crystal,
Dynamic Systems Development Method (DSDM), Feature-Driven Development
(FDD), and Lean software development.

Managing Prototype Change

[278]

The profusion of methodologies and their associated jargon can be daunting for UX
professionals who, in general, tend not to be well-versed in the arcana of developers.
Agile is practiced in many flavors, and the differences between the implementation
nuances of the model at various organizations can be substantial. Make sure to
get a solid understanding of the particular Agile flavor that is planned, or is being
practiced on your project, as early as possible. Your previous experience with Agile
may lead you to assumptions about the process that may be irrelevant. Remember
that you are part of a larger interdisciplinary team, so don't make assumptions and
don't be shy about asking for clarifications.

Sometimes, the project plan has been outlined by the development team well before
UX joined the project, a situation that is not uncommon when UX is outsourced.
This plan may not take the full impact of specialized UX tasks into consideration.
For example, a usability-testing activity may be included, but none or few of the
activities that support the effort are accounted for, such as allowing enough time
for recruitment, creating the scripts, and preparing the Axure file to match the
tested scenarios. Reviewing the plan and ensuring that you are comfortable
with it is important.

Estimating Axure Work
Keeping the development methodology aside, estimating your work, and more
importantly, the budget that should be allocated to it, is a constant challenge. Due to
the complexity of modern applications and the demands of RWD, agreements on the
number of wireframes and the number of revisions are no longer realistic or practical
as a basis for triggering change orders. With Axure, the boundary between static
wireframes and highly interactive prototypes is blurry, compared to an interactive
prototype coded by a front-end developer. Consequently, if you are a consultant,
your risk of losing money, perhaps ending up working for less than the federal
minimal wage, is real. We are not joking, and if you've been around the block for
a while, you are not smiling.

The main problem we have in UX when it comes to valuating our work is the
ambiguity most people have about our deliverables and the effort involved in
producing them.

Chapter 7

[279]

What appears to be a simple question, "What is a wireframe?" is not trivial when
it comes to being paid for producing one. Let's use a home page to illustrate the
situation, as all sites will have one. Only a few years ago, a home page would be
considered as a single wireframe for the purpose of estimating and delivery.
Today, we are likely to produce:

• A set of at least three layouts (for example, a desktop, tablet, and
smartphone) corresponding to a responsive design system for the site
Should this set be counted, for the purpose of estimating the budget, timeline,
and resources, as a single wireframe or as multiple wireframes?

• Contextual variations targeting various user types such as visitors and
signed-in users

Should this set be counted, for the purpose of estimating the budget, timeline,
and resources, as a single wireframe or as multiple wireframes?

On top of that, the page is no longer a collection of simplistic boxes but rather a
composite of widgets, repeaters, masters, and dynamic panels that represent any
number of common services and shared components:

• Each master is an independent wireframe and is potentially made of widgets,
dynamic panels, and perhaps repeaters and other masters
Masters are a powerful, time- and money-saving, Axure-specific feature, but should
each master be considered a unique wireframe, or should we consider only pages in
the Sitemap pane?

• Each dynamic panel is a set of unique states that are sometimes composed of
additional nested dynamic panels and masters
Dynamic panels are a powerful and useful Axure-specific feature, but should each
state of a dynamic panel be considered as a unique wireframe?

• The wireframes also include a collection of interactions that enable
the prototype

• Finally, the icing on the cake is adding the notes for the purpose
of generating the necessary documentation of this compound
wireframe/prototype

In other words, we can significantly pack more power and value into Axure
wireframes, compared to what a traditional static type of wireframe can provide,
but the time-and budget-estimating model should factor in your planned
construction approach, complexity, and approval workflow.

Managing Prototype Change

[280]

Where Does Time Go?
The typical project schedule includes a built-in fallacy that equates blocks of eight
hours per day to eight hours of productive work. For some reason, everyone buys
into this nonsense despite knowing better. Additionally, most project plans fail to
account adequately, or altogether, the following:

• Analysis and synthesis time: UX is often about creative problem-solving
and developing a successful framework for a challenging project. This
requires time. Time is necessary to digest the information that you collect
during discovery and requirement development, analyze and synthesize the
materials, and emerge with a concept or an approach. In short, you need time
to think, and thinking takes time. Unfortunately, most project plans don't
include thinking time.

• Exploration and iteration: Unfortunate as it is, these activities also take
time. It is rare to hit the appropriate solution at the first draft. Often, several
options need to be developed and explored, and the winning solution will
emerge through such explorations and discussions. This is a time-consuming
process, time that is also not fully accounted for in plans, if at all.

To be clear, we recognize that the clock is ticking and the
pressure of time-to-market or other reasons that drive the
project are extremely important. We are not suggesting a
leisurely wandering-in-the-park-and-smell-the-flowers type
of activity. Rather, we are looking at an up-front investment
of time and resources that will pay off later as a cohesive
framework, which will have sufficient opportunity to hatch,
so make sure to fight for this time if needed.

• Meetings: UX is "face-time heavy", meaning that face-to-face meetings with
stakeholders and team members will consume a significant portion of your
day. At some point of the project, meetings can account for over 50 percent of
your weekly schedule, for example, during the development and review of
business requirements.

• Elaboration: Despite Axure's efficiencies and ease of use, wireframing
and interactions take time, especially if you are modeling multiple use
cases, conditional flows, and exceptions. You will be generating the
HTML prototype frequently, reworking masters, states, and so on.
This is time consuming.

Chapter 7

[281]

• Snags: Sometimes, you will unexpectedly get stuck in a wireframe or
interaction. You may have to reconstruct a wireframe that was previously
considered finished, as a result of a required change. Don't assume that each
Axure session will go absolutely smooth and fast.

• Communication: Phone calls and conference calls, responding and
writing e-mails, creating presentations, and reading and creating support
documentation are activities that will quickly add up to a substantial
amount of time spent daily on project-related work, which you cannot
postpone much.

• Downtime: We are not machines yet, although in some projects, you may
feel the expectation to act like one. Taking food, coffee, and washroom breaks
are fortunately still allowed and should be encouraged because productivity,
creativity, and motivation suffer as a result of work pressures. Taking a break
every 50 minutes or so is also encouraged in order to rest your eyes, stretch,
and improve your circulation. Finally, even a quick visit to the washroom can
potentially sink half an hour spent listening to a colleague's stories.

• Health issues and personal emergencies: We all get ill at some point or
another. Flu, allergies, and other normal, seasonal maladies will require
us to take a few days off from work in order to recover, not to mention
avoiding the entire office catching your bugs.

There are no absolute answers to estimate both the amount of Axure work needed,
such as wireframing and interaction, or the amount of real time it will take to
produce. However, you can apply common sense and experience to any of the
following formulas:

• The optimist formula leaves only four hours of actual work a day:
Eight hours a day (100%) minus four hours (25% meetings and
communications + 15% other project-related stuff + 10% downtime = 50%).
In other words, plan for productive work of about four hours a day.

• The realist formula leaves only two hours of actual work a day: Eight hours
a day (100%) minus 6 hours (40% meetings and communications + 20% other
project-related stuff + 10 % downtime + 10% buffer = 80%). In other words,
plan to work productively for about two hours of prototyping work.

This is why you will most likely find yourself at some point working well over
eight-hour days, including weekends, and sometimes through holidays. If your
experience does not agree with our description here, please let us know! What
we hear so far seems to corroborate a general experience.

Managing Prototype Change

[282]

Account for Responsive Web Design (RWD)
RWD must be factored into estimates for obvious reasons. However, as you probably
know from experience, depending on obviousness or common sense is not a
reliable method as nothing should be left for change. The following are some
of the elementary activities to be added to the estimate:

• Develop a device-agnostic design system
• Content and functionality strategies per layout
• Learning and experimenting with Axure's adaptive layouts feature
• Iteration cycles that consider the layout, functionality, and behavior of

multiple layouts per your responsive system
• Scenario construction, debugging, and testing of the prototype across

multiple devices

These are time-consuming activities, and moreover, changes to scope and
functionality need to cascade across all layouts. It is difficult to have a generalized
estimate without accounting for experience with responsive design as well as
experience with Axure. As a rule of thumb, however, doubling your time and
resource estimates is legitimate.

Account for Refactoring an Axure File
Refactoring is the process of restructuring an Axure file without changing the
appearance of wireframes or the behavior of the prototype.

The first phase of most UX projects can be considered as the "honeymoon" phase,
which typically yields what is sometimes referred to as a "vision" or "proof of concept"
prototype. The honeymoon period is characterized by the following attributes:

• Excitement: It is a period of exploration during which you have an
opportunity to understand the goals of the project and develop and
validate a concept with stakeholders and end users.

• Team building and familiarization: Like the honeymoon of a newly married
couple, everyone is on their best behavior, but some cracks may open here
and there. If you are a consultant, you may also start getting a sense of
internal politics. If you are an internal resource, you may already know many
team members and be familiar with internal politics, which in turn might
help you make quick assessments about the level of collaboration you can
expect from others.

Chapter 7

[283]

• High-level requirements: For their honeymoon, people often travel to
some remote and romantic destination such as Paris, for example, or some
Tropical Island. It is an opportunity to be away from the grind of daily
routine. Similarly, the vision prototype is a high-level concept built to
address strategic, high-level goals. You can explore and propose cool user
interactions, highly efficient contextual presentations of information and user
flows, and so on. Your work is unencumbered by the constraints of low-level
business and technical requirements.

Typically, the transition from a concept to a detailed design will be impacted by the
artifacts and deliverables you created and the expectations around the level of detail
and elaboration in the preceding phases. This is when the vision prototype often
needs to be refactored. Why?

In the vision prototype, you articulate a high-level UI framework, navigation,
and layouts of the application, without having a good grasp of the nitty-gritties
of business rules and other strategic or technical constraints. Naturally, your
goal is to impress the team with your ideas and your abilities, and Axure is
the right tool to iterate at a rapid-fire pace on conceptual wireframes and highly
interactive prototypes.

You do your best to move with the flow and integrate all feedback and requests
for modifications that stakeholders throw at you—"It would be nice if we could do
such and such...", and you can mock it up before the sentence is finished and get
stakeholders excited about the result. This is normal and good but all the while
you typically do the following:

• Don't label or annotate anything
• Duplicate pages and widgets instead of creating and using masters
• Don't use Axure's custom styles feature to control the visual appearance of

widgets—it appears to be faster to do it manually
• Don't pay too much attention to spaces and alignment of widgets, and don't

use guides or think too much about proportional relations between elements

You move fast doing whatever you need to do to get an impressive concept
out. When stakeholders and management embrace that concept, there is often
a misperception that you are almost done!

Managing Prototype Change

[284]

The reality is that shifting to a detailed design of the vision prototype will have to
adapt quickly to detailed requirements, business rules, pragmatic prioritization of
scope, and technical constraints:

• Wireframes will have to communicate with stakeholders through annotations
or detailed specifications using words and not just visuals. Labeling and
notes will be required.

• Use of masters and/or a widget library becomes critical to ensure consistent
construction, modification, and documentation of wireframes.

• Use of Axure's custom styles to implement consistently and cascade
modifications of an approved visual guide design and branding guides.

• The prototype will have to be modified to support a prioritized set of
primary and alternate scenarios for validation and usability testing.

More on Expectation Alignment
Generally, people only have a vague understanding of the essence of the work
UX designers do. Stakeholders and other people from other disciplines who are
working on the project consume our artifacts and deliverables, but they often greatly
underestimate the amount of effort that was invested into producing them; this is a
problem for UX.

You will gain substantial cooperation and understanding after you explain the work
process, the value of using Axure, and the amount of work you need to do in order
to create those great interactions and contextual flows. Most people get that and will
begin taking into account the leg time that UX requires. The following are a couple
of examples:

• Prototype granularity: The prototype will be consumed by everyone
involved in the project. What level of granularity is expected from the
prototype? Stakeholders may not realize that the more granular the
prototype, the more effort has to be invested in managing it through
iterations. The guiding principle for low-level interactivity should be its
value to understanding the user experience and its use in usability testing
as a part of an agreed-upon set of primary and alternative scenarios.

• Specifications: The primary audience for UI specifications is the
development team. Stakeholders might incorrectly focus on the ease with
which it is possible to generate specs in Axure with a click of a button, and
not be aware of the following:

Chapter 7

[285]

 ° The tedious effort of writing the content that goes into the
annotation fields.

 ° The manual cleanup process that might be needed after the raw
specification document has been generated.

 ° The extra time needed to digest, review, and comment on various
adaptive flows. More meetings are needed, and meetings will
be longer due to the need to go over smartphone, tablet,
and desktop views.

Construction for Change
The words "iteration" and "change" trigger different emotions. Iteration suggests
a planned and consistent movement towards improvement, as in an evolutionary
process, where more depth, detail, and fidelity yield a final outcome that is close to
the original vision. It is a process. Change is a transition from one state to another,
sometimes expected, and often unpredictable, a disruptive departure from the
previous state, blunt and sudden. It seems to catch us by surprise, despite being
a predictable reaction to dissatisfaction with the current state of things or to some
unpredictable events. Evidence shows that there is a higher chance of achieving a
vision through rapid iteration than through "change".

Paradoxically, what often happens in UX-heavy projects is that an iteration ends
up getting a bad rap; it is too slow and too expensive. On the other hand, constant
change in strategy, requirements, and people is accepted as a normal state of
things. Perhaps it's because "change management" evolved into a thriving global
business and "iteration management" is mostly mentioned in the obscure context
of Agile development. A search in Amazon yields over 90,000 results with "change
management" but zero for "iteration management".

In the context of change and developing UX in Axure, we focus on a set of features
that support swiping and cascading change to wireframes and prototypes. We
suggest that you approach the construction of the file keeping in mind that changes
will disrupt and sometimes overturn the outcome of your iterative work. The
expectations will be for a fast turnaround and you should be prepared.

Managing Prototype Change

[286]

Cascade Change and Rollback Change
In most projects, we typically encounter two types of change: one that involves
going back and restoring an older version and one that involves changing an
existing element across the board and advancing it to the next level of iteration
(refer to Image 1).

We highly recommend a construction strategy that embraces change from the get-go,
a strategy that takes advantage of several Axure features when creating wireframes
and prototyping. It is a small, upfront investment that affords both the agility to
reverse course and to implement new ongoing modifications.

Cascade ChangeP.I.T

Team Project

P.I.T = Point In Time

Rollback Change

Masters

Custom Widget Library

Custom Styles

Global Guides

Image 1

Rollback Change with Team Project
Reversing course by reverting to a previous version of an entire page or some
global element, sort of an undo, is a common occurrence, and the ability to support
it is important. The reasons behind such changes may range from functionality
descoping, a need for simplification due to time or budget crunch, to change
in requirements. The first item on the construction-for-change list is the Axure
environment itself. Even if you are the only person who will use Axure on the
project, we highly recommend that you set your file as a team project and not as
the default standalone RP file.

Chapter 7

[287]

The ability to go back and restore the project to any point in its history is
invaluable to iterative work. Often, there is a point where you are not satisfied
with a wireframe or interaction, but you worry that it may be too much work to
redo everything if your improved approach is not accepted. In other words, the
cost associated with change seems too high. With a team project, you have the
confidence that restoring will be easier. The following screenshot takes us through
the use of the history browser:

Image 2

The Team Project History Browser (Image 2, A) is the main conduit for pointing
and restoring a previous version. By selecting any point in the span of the file's
life (B), it is possible to identify the elements that were modified (C) and restore
that complete version as an RP file. To read all about the team project, refer to
Chapter 9, Collaboration.

Managing Prototype Change

[288]

Cascade Change with Masters and Libraries
Visual consistency is a fundamental principle of good software design and an
attribute that can significantly help with managing change. Of course, not all screens
in a given software will have the same layout. Rather, a level of visual coherence can
guarantee a consistent experience across the application.

It is a common practice to develop pages as templates, for the following reasons:

• Advantage to you as a UX designer: Since we often need to create multiple
versions of the same page in order to visualize variations, leverage design
patterns across instances of the same screen to simplify construction of your
Axure prototype and specifications.

• Advantage to the development team: Developers typically think about
templates and code reuse, efficiency and reuse being native to programming.
Developers will instantly understand and appreciate your approach
of templates in the design. Discuss the structure of templates with the
developers to align your modular approach to the coded modular approach.

The concept of page templates is very similar to that of masters, except that templates
are not a built-in Axure feature. They are a choice of construction method you choose
to use. In this section, we discuss several Axure features that lend themselves to the
creation, use, and modification of Axure templates.

Cascade Change with Custom Styles
The widget style editor affords global control over the visual properties of a widget
type. In other words, it is Axure's user-friendly way to apply Cascading Style Sheet
(CSS) properties to widgets, with the exception of widget height and width.

Note the following items:

• Not all the widgets that appear in the Widgets pane are listed in the style
editor. That's because some widgets, such as the dynamic panel, don't really
have independent visual properties of their own.

• The Rectangle, Placeholder, and Button Shape widgets are referenced as
a Button Shape widget in the style editor, so changes to the default of that
style are applied to these three widgets.

Widget Properties' Cheat Sheets
The following tables aggregate properties that can be set per widget. Familiarity
with the applicability of properties to the various widgets is useful when you plan
the implementation of your visual design.

Chapter 7

[289]

Also note that there are properties that can be applied to a shape as a custom style
only when you create the widget for the first time. Changing the property later will
not change the widgets that have already been styled with this custom style.

Consider the bold property for example. Suppose you create a style with a particular
fill and line color, and the font is bold. When you drag a Rectangle widget and apply
the custom style to it, the text in the widget will be bold. However, if at some point
you change the custom style so that the color of the background is a different color
and the text is not bold, all the widgets that you already styled with this custom style
will have the new fill color, but the text in them will stay bold.

The properties can be clustered in three general categories such as font, shape,
and alignment/spacing. They are listed as follows.

Font Properties
Font properties are supported by all widgets:

• Font
• Typeface
• Font size
• Bold
• Italic
• Underline
• Font color

Shape Properties
These properties can be applied to some widgets, but not to others, as listed in the
following table:

Widgets Line
color

Line
width

Line
style

Corner
radius

Fill
color

Opacity
(%)

Outer
shadow

Inner
shadow

Text
shadow

Shape Y Y Y Y Y Y Y Y Y
Paragraph Y Y Y Y Y Y Y Y Y
H1 to H6 Y Y Y Y Y Y Y Y Y
Image Y Y Y Y Y Y Y
Text link
Text link
Mouse
Over

Managing Prototype Change

[290]

Widgets Line
color

Line
width

Line
style

Corner
radius

Fill
color

Opacity
(%)

Outer
shadow

Inner
shadow

Text
shadow

Text link
mouse
down
Text field Y
Text area Y
Droplist
List box
Checkbox
Radio
button
Flow shape Y Y Y Y Y Y Y Y
Tree node Y Y Y Y Y
HTML
button

Alignment and Spacing Properties
The following table shows the support for various alignment and spacing properties
for widgets:

Widgets Alignment Vert Align L-T-R-B Pad Line spacing

Shape Y Y Y Y
Paragraph Y Y Y Y
H1 to H6 Y Y Y Y
Image Y Y Y Y
Text Link
Text Link Mouse Over
Text Link Mouse Down
Text Field Y
Text Area Y
Droplist
List Box
Checkbox Y Y
Radio Button Y Y
Flow Shape
Tree Node
HTML Button Y

Chapter 7

[291]

Default Widget Styles
When you start a new Axure file, all the widgets have an out-of-the-box default
style. By tweaking the default style of widgets in your project file, you can save time
and enforce consistency across all your wireframes. The changes you make will be
immediately applied across the entire file to all the widgets for which you modified
the default style, with the exception of widgets to which you assigned a custom style.

Each time you drag a Rectangle widget (Image 3, A) onto the wireframes pane, its
visual properties are to be preset to the default setting. These include setting black
line and white fill, the font as Arial, size 13, and so on. In the toolbar, click on the
widget style editor icon (B) to launch the Widget Style Editor dialog (C).

Widgets that can be controlled by the editor are listed on the left-hand column,
under the Widget Defaults tab (D). When you click on any of the widgets on the list,
you can see its visual properties. Modifications that you make to these properties will
be applied to all the widgets of this type across the entire prototype. For example, if
you change the font, font size, background, and fill colors (E) of a Shape widget, the
new settings will apply to the Rectangle, Placeholder, and Button widgets across all
your wireframes in this file.

Image 3

Managing Prototype Change

[292]

If you change the font family of one widget from Arial to
Verdana, for example, make sure to apply the same properties to
all the widgets listed in the editor. If you don't, the result might
be an inconsistent mix of typefaces on various widgets. Also,
make sure to review all your wireframes as some fonts are wider
than others, and undesirable text wrapping may occur.

Local Changes with Style Painter
The style painter is a common feature in drawing and painting applications.
With a single click, it allows you to apply the visual properties from one widget
to other widgets.

For example, suppose there is a dialog box with a primary-action button and four
secondary-action buttons. Initially, all the buttons share the default style of the
Rectangle widget and all look the same. You want to style the action buttons in a
way that distinguishes the primary button from the secondary one. The following
are the steps:

1. Start by applying the desired visual properties to the primary-action button
(Image 4, A) and the secondary-action buttons (B).

2. With the newly styled button selected (C), click on the Style Painter icon on
the toolbar (D).

3. The Style Painter dialog (E) appears. Click on the Copy button (F). Don't
close the dialog box yet. It will float above the work area, but you will be
able to make selections on the wireframe.

4. Select the three unformatted secondary buttons (G) and click on the Apply
button (H) in the Style Painter dialog. The desired style will be applied to
the selected buttons.

Chapter 7

[293]

Image 4

Easy and fast, the style painter helps you maintain visual consistency across widgets.
It is a real time-saver when you have to apply a set of visual properties that includes
gradients, from a widget on one page to widgets on other pages. This is especially
convenient in cases where using copy and paste to replace unformatted widgets with
formatted ones is not a productive option.

Managing Prototype Change

[294]

There are a number of drawbacks in using the style painter as a systematic method
for implementing style changes, which are as follows:

• You must apply the desired style to all like-widgets across all wireframes,
which can be time consuming, especially if the style needs to be changed as
a result of feedback.

• Even when minor style changes are required, for example, changing one of
the gradient values used for the fill of primary action-buttons, the task of
changing it is still time consuming because you have to go through the
entire file and make the changes.

• It can be difficult to differentiate between widgets that have been updated
and those that were not. Pressing the Apply button will be fast, but the rest
is not.

• If you had started to apply the change to some widgets and had to stop for
some reason, you may have a hard time figuring out which widgets have
already been modified, and may have to go through the entire file again and
make sure that all the widgets are updated.

Additionally, you cannot apply the painter styles, such as MouseOver, Selected,
and so on, to other button states. The style painter is a welcome addition to Axure's
widget-editing capabilities. It is great when creating quick drafts because it greatly
reduces tedious repetitive formatting steps. However, when it comes to maintaining
the consistency of an application's style guide, consider the approach we propose in
the following section.

If you are using the style painter often, it is a good clue that you
actually need to convert the same-styled widgets into a custom
widget or a master.

Alignment with the Project Style Guide and CSS
The following technique promises to provide substantial efficiencies and speed in
our ability to adjust wireframes and prototypes to the visual design. Axure does not
yet support explicit integration of the CSS files, but hopefully, we will see this in
coming versions.

Chapter 7

[295]

Have a Style Guide?
A style guide is an extensive document that is typically produced by the visual
designer on the project. For a large project, the style guide helps those who are
responsible for governance and quality control with the primary tool to compare
approved design specifications with what has been coded. A typical guide should
cover the following aspects of the visual design:

• Branding Guidelines:
 ° The color palette: This lists the HEX values of all the major colors,

including gradients
 ° Application logo: This includes all the allowed instances and sizes of

the logo on various pages and display rules

• Design Elements:
 ° Typography: This lists the fonts and the styling of fonts across

the applications
 ° Graphics: This lists the rules and styling for buttons and icons,

including size, order, margin, and padding

• Structural Elements:

 ° This covers the styling and sizing rules for data grid tables, windows,
light boxes, alert, message and error boxes, and finally, forms

The style guide should be the document of record for anything related to visual
design. The style guide is accompanied with a CSS style sheet that translates many of
the properties' sheets, which translate many of the properties listed in the guide, into
the CSS classes and IDs.

Some elements that are listed in the style guide, such as the details of the page
anatomy, may also be covered in your UX documentation. Make sure to synchronize
with the visual designer about the names and labels of various elements to avoid
conflicting references.

Axure Custom Styles
Currently, Axure does not support explicit CSS integration either in the form of
linking with external CSS files or by creating the CSS internally, but it is getting
close. We have covered a number of methods that are available to quickly modify
the visual style of widgets. We found that using the Style Painter or default widget
styles have their limitations when you have to reflect the latest visual design in
your prototype.

Managing Prototype Change

[296]

However, Axure custom styles are getting close to emulating the usage and
behavior of CSS. While the implementation is not perfect, you can still gain
substantial efficiencies in the change process and maintenance of the widgets'
styles, and the ability to conform to the project's style guide and some of its CSS.

The following screenshot illustrates the use of custom styles to apply a primary
and secondary look and feel to the buttons, including a default state (A and C)
and rollover states (B and D). The details are provided in the following section.

A B

C D

Secondary

Primary Primary

Secondary

Image 5

The following table is a section of a typical style guide as it would pertain to the
buttons in Image 5. It looks very different from a CSS file, which will be handed over
to the developers. Typically, the style guide is an artifact that is delivered by the
visual designer and is not created in Axure. With the new repeater widget, it is now
conceivable to create the style guide in the Axure file. The possibility is not covered
in this book, but we would love to hear about successful implementations.

Widget State Style guide Image 5
Primary
Button

Default Fill gradation: Hex#: FF6600 bottom to Hex#:
FFCC00 top
Border width: 1px
Border color: 99000
Corner radius: 8
Font family: Arial
Font style: Normal
Font weight: Normal
Font size: 16px
Color: Hex#: FFFFFF
Text align: Center
Padding left, right: 12 px
Padding top, bottom: 6 px

A

Chapter 7

[297]

Widget State Style guide Image 5
Primary
Button

Rollover Fill gradation: Hex#: FFCC00 bottom, to Hex#:
FF6600 top
Border width: 1px
Border color: FF0000
Corner radius = 8
Font family: Arial
Font style: Normal
Font weight: Bold
Font size: 16px
Color: FFFFFF
Text align: Center
Padding left, right: 12 px
Padding top, bottom: 6 px

B

Secondary
Button

Default Height = 32 px
Fill gradation: Hex#: FF9900 bottom, to Hex#:
FFCC99 top
Border width: 1px
Border color: 99000
Font family: Arial
Font style: Normal
Font weight: Normal
Font size: 14px
Color: FFFFFF
Text align: Center
Padding left, right: 12 px
Padding top, bottom: 6 px

C

Secondary
Button

Rollover Fill gradation: Hex#: FF6600 bottom,
to Hex#: FFCC00 top.
Border width: 1px
Border color: FF0000
Font family: Arial
Font style: Normal
Font weight: Bold
Font size: 14px
Color: FFFFFF
Text align: Center
Padding left, right: 12 px
Padding top, bottom: 6 px

D

Managing Prototype Change

[298]

The benefits of a style guide, as a communication method, over a CSS document
are as follows:

• Style guides are a lot easier for non-developers to read, in comparison.
Reading a CSS document is like reading code. Not a complicated code for
some, perhaps, but class and ID names can be very obscure, and there may
be other properties that typical UX designers may not be familiar with.

• Often, the CSS document will not be available for quite some time. While the
style guide is created and handed over by the visual designer, a developer
typically converts it into working CSS. This activity may take place later in
the development process.

Without custom styles, managing styles is still possible. In the context of the buttons
in the previous example:

• Method A: Create the buttons in the project's widget library. Whenever
a primary or secondary instance of a button is needed, drag it over to
a wireframe.

• Method B: Construct each button as a master within your prototype file.
To use, drag the master over to a wireframe and flatten it in order to modify
the text or size.

When it comes to managing changes of the visual design in your prototype, a major
drawback of both these approaches is that once applied to a wireframe, you can no
longer make a global change in any of the buttons' visual properties. You will need
to go over each wireframe and apply the changes manually, which is a tedious and
time-consuming process.

With Axure's Custom Style feature, it is possible to capture the visual properties of
all the elements listed in the project's style guide, as custom styles, and from then
on, use only these styles. Most importantly, this is useful in masters, as flattening
masters will not remove the widget's link to the custom style. Consequently,
updating the custom style will instantly update the master, its instances, and its
flattened instances.

The following steps illustrate a simple example of the application of a custom style to
a master, in this case, a button widget:

1. In a sandbox, create a master and label it M Primary Button.
2. Open the Primary Button master and create a button with a height of 32

pixels (Image 6, A).
3. Type the label Primary on the button and that's it for now as far as styling

the master goes.

Chapter 7

[299]

4. Click on the widget style editor icon on the toolbar (B) to open the Widget
Style Editor dialog (C), and switch to the Custom tab on the left-hand pane
(D). Initially, this column will be empty.

5. Click on the add icon to create your first custom style and label it. You
can use spaces and other characters to separate the words in the name of a
custom style; we recommend getting used to maintaining compatibility with
CSS naming guidelines.

6. To apply the custom styles to the widget, click on the drop-down list (E) to
the left of the widget's style editor icon. This drop-down list now lists the
new style you just added. Select this value, and see your widget change to
that style! As an alternate path, you can use the Widgets Properties pane,
and switch to the formatting tab where the Style drop-down list also appears
in the Style tab.

7. Repeat the process for secondary and other classes of buttons or widgets.

Image 6

Managing Prototype Change

[300]

If you have the project's CSS document and you understand it, you
can use the class name used there. Otherwise, keep in mind the
W3C's CSS 2.1 guidelines:

"In CSS, identifiers (including element names, classes, and IDs in selectors) can
contain only the characters [a-zA-Z0-9] and ISO 10646 characters U+00A0 and
higher, plus the hyphen (-) and the underscore (_); they cannot start with a digit,
two hyphens, or a hyphen followed by a digit."

Please refer to http://www.w3.org/TR/CSS21/syndata.html
for more information.

Axure Style Editor Versus CSS
The style properties listed in the Widget Style Editor dialog box match the properties
in your style guide as well as the standard CSS syntax:

Axure Widget Style Editor Style guide/CSS syntax
Font Font-Family
Font Size Font-Size
Bold Font-Weight
Italic Font-Style
Underline Text-Decoration
Alignment Text-Align
Vert Align Vertical-Align
Left Pad Padding-Left
Top Pad Padding-Top
Right Pad Padding-Right
Bottom Pad Padding-Bottom
Line Spacing Line-Height
Font Color Color
Fill Color Background-Color
Line Color Border-Color
Line Width Border-Width
Line Style Border-Style

Chapter 7

[301]

Continue to add the other styles and expand the custom styles library. As long as
you style your widget using custom styles, you will be able to respond to changes
in the style guide very quickly.

In fact, you could start your custom style library fairly early in the design process;
a grayscale set of custom styles is a common use case. You can enjoy the benefits
of visual consistency while you are working with this temporary grayscale palette.
When the actual style guide is provided, updating the grayscale styles to reflect the
actual design can save days of tedious manual updates.

Impact of Alignment of the Prototype with Visual
Design
Should the prototype be aligned with the application's visual design? The benefits
are substantial:

• Stakeholders and participants in usability testing can provide valuable
response to the overall look and feel of the proposed user experience.
Responding to change is inherent in user experience prototyping projects.

• Reduce confusion during development; the developers can easily see, in both
the HTML prototype and the Word specifications, what they are supposed
to code.

The second item is actually very important. When the prototype is kept at its basic
grayscale and low-fidelity design, there is a need to manage two different types
of wireframes:

• The wireframes of record, which are wireframes created in our
Axure prototype.

• Visual design wireframes, typically created in Photoshop, which are
delivered by the visual designer. These often reflect an older version of the
Axure wireframes, which the visual designer used as a frame of reference
for creating the visual design.

The problem is that it is very confusing for stakeholders and especially developers
who need to figure out how to deal with these two different sets of wireframes.
Everyone gravitates to the flushed-out visual design, and the grayscale work starts
to get discounted and criticized for being outdated. The pressure to reconcile the
wireframes and generate a prototype that has the target look falls on you and
often sooner than you hoped. The desire to incorporate the new visual design is
compelling and will be difficult to resist. Only through the use of techniques such
as custom styles and masters can the effort be manageable, and even then, time for
refactoring is necessary.

Managing Prototype Change

[302]

How do we get to two sets of wireframes?

• Typically, the conception process begins before visual design is engaged.
In the early stages of the project, the focus is on to getting the basics right:
the information architecture, global and process navigation, high-level
functionality, critical task flows, and so on. By the time visual design is
added, it is typically built as a skin on grayscale-based wireframes that
are continuously used for iteration and testing.

• Some designers strongly feel that visual design is premature in the early
stages and can often unnecessarily shift discussions from matters of
substance to superficial topics of colors and graphics.

Alignment with Existing Visual Design
The following are situations in which you are restricted to an established
design pattern:

• Comply with the look and feel of other applications produced by
the company

• Be consistent with the branding guidelines of a corporation

The application you are asked to design can be new or a functionality enhancement
of an existing application. The user experience you develop may represent a
departure from the company's existing or legacy assets, but the visual design
must match.

You may have access to the master files of the visual assets in the form of Photoshop,
Illustrator, or PNG files. However, all you have to work with are often the graphics
that are used on an existing site or application. These you can extract and modify for
use in your own prototype.

With Axure, it is possible to use an exceptionally fast method to create, extend,
and manage interactive prototypes that are based on an existing application. The
following example demonstrates how to use screen captures of an existing site to
create a custom widget library that becomes the source of building blocks that are
required to design an extension to an existing application.

Chapter 7

[303]

The following steps illustrate the example, which is based on the home page of
www.packtpub.com:

1. Take screen captures of the existing interface. The PNG format is the best.
2. In Axure, use the Slice Image option to carve out repeating visual patterns.

You can also refine the various widgets in an image-editing tool such as
Fireworks or Photoshop, or a screen capture tool such as Snagit.

3. Create a widget library and add all the graphic assets.
4. You can now rebuild pages based on the existing look and feel and

experiment with incremental changes to various patterns by replacing
a graphic slice with a widget-based wireframe in the master.

Image 7

Managing Prototype Change

[304]

The Page Style Editor
With the Page Style Editor dialog box, you can create custom page-level styles,
which you can apply to a specific page in your prototype. The key benefits of this
feature are as follows:

• Consistency across all pages that share similar properties.
• Ability to change wireframes quickly and efficiently during the detailed

design phase. When changes to any of the page style's properties are called
for, you only need to make the modification once to the custom page style.

We touched upon the Page Style Editor dialog box earlier in the book, in the context
of the Sketch Effect feature. However, there are additional properties you can
control, which, in a manner that is similar to the properties listed in the Widget Style
Editor dialog box, map to CSS properties. Axure shields you from having to know
CSS, its terminologies, and syntax, but understanding the mapping can be useful
when you discuss visual design with developers and designers.

Axure Page Style Editor CSS
Page Align Margin and Padding
Back Color background-color
Back Image background-image
Back Image—Import background-attachment
Horz Align background-position
Vert Align background-position
Repeat background-repeat

Finally, note that page styles do not impact widget styles, but there is one exception:
if you use the Sketch Effects feature, the sketchiness value will be applied to the
widgets on the page. The widgets will retain all their standard or custom properties,
but will appear sketchy.

Guides
The construction quality of the wireframes that make up the prototype is important
because the recognition of such quality, or lack of recognition is instant. Stakeholders
are unconsciously and consciously sensitive to the presentation quality of the
wireframes and prototype. Make no mistakes as first impressions matter even
if you are showing the first of many drafts of what will eventually morph into a
high-fidelity prototype.

Chapter 7

[305]

Quality is often expressed in small details, such as proper alignment, order,
proportion, and the composition balance of the elements of the page. It is well worth
the minor time investment of neatly organizing widgets on the page from the start
instead of overlooking the positioning of widgets "because it is only a draft".

With Axure, it is possible to move beyond the casual use of guides as a temporary
alignment aid. You can also take advantage of guides as scaffoldings that support
the consistency of layouts and patterns across multiple pages of your prototype.
Axure supports both global guides and page-level guides.

Global Guides
Axure's global guides are what most people who deal with RWD actually refer to as
The Grid—an unfortunate terminology misalignment between Axure and the world.

The global grid is a construct that affects the entire design framework, and the idea
that the contents of a page can be organized in a consistent, flexible, and proportional
arrangement of columns is ancient. The overall effect helps create good page layouts
that are pleasing to the eye because the width of all content elements and their span
is based on the same ratio. If you consider the guide early in the design process, you
are likely to gain efficiencies of construction because the width of widgets will be
 set to a standard ratio, allowing you the flexibility to mix and match widgets
across pages.

Describing the grid concept and variations in RWD is beyond the scope of this book,
but Axure's global guides is a feature that lets you generate a grid system based on
a predefined number of columns that are applied to a page, and helps you arrange
content in blocks that span any combination of the columns for that grid. Note the
unfortunate terminology mix-up here; Axure has decided to use the term "guide"
to refer to what is commonly referenced by all RWD frameworks as a grid.

Axure comes loaded with two global guide presets based on a 960 and
1200 grids. However, as RWD frameworks such as Twitter Bootstrap and
ZURB Foundation are becoming mainstream, you are likely to create a
grid that will be an approximation of the grid used by your development
team. This is really important, so make sure to discuss the appropriate
approach before you begin with a detailed design.

We are often asked to review Axure files and are always surprised to find that the
pages do not conform to any global guides. As a result, it is difficult to develop a
unified, widget library that can be repurposed across several pages. The width of
widgets varies, and as a result, swapping, adding, and modularizing pages becomes
a time-consuming task.

Managing Prototype Change

[306]

Global guides are important even if you are not designing with adaptive views,
and are critical if you do.

Page Guides
Guides are also available on a page level. In addition to the global guides, which are
created as a set, you can add individual vertical or horizontal rules by dragging them
over from the horizontal and vertical ruler bars, similar to Fireworks, Photoshop, and
other tools. The use of page guides is typically casual and probably more common
than the use of global guides. Often, you just want a visual aid to help you with
the organization of widgets on the page. The ability to control the guides per page
provides additional flexibility for page-level design.

To apply page-level guides to other pages, copy and paste the guides from page
to page. Unfortunately, you cannot save the local guides for reuse on other pages,
and we hope such functionality will be added at some point.

The most common use of guides, however, is casual. Typically, the guide is needed
to align objects across a horizontal or vertical line. Most users of drawing and
painting applications are familiar with the convention of creating guides by
dragging them over from the vertical or horizontal rulers.

To add a horizontal guide to the page, click on the horizontal ruler and drag down
to the page area. A thin green line will appear. The Y coordinate will be displayed to
assist with exact positioning (Image 8, A).

To remove a guide, you can either click and drag it out of the page (B) or right-click
on it and use the Delete option from the context menu.

To lock a guide to the page, right-click and select the Lock option from the
context menu (C).

Image 8

Chapter 7

[307]

Grid
We have noted that Axure's terminology conflicts with common RWD terminology,
and so Axure's guides are RWD's grids. Axure's grid, on the other hand, is a visual
tool that helps with the organization of wireframe layouts and is common to most
drawing and illustration software. The grid is an infinite pattern of horizontal
and vertical lines that are set to a predefined interval and are a part of the page
background in the editing mode. However, they are not visible in the generated
prototype or Word specifications screenshots.

The grid is perhaps a trivial and little-noticed feature of Axure, and many users
don't bother to display it or change the default "out-of-the-box" settings. However,
you can improve the construction quality of your wireframes by taking advantage
of the grid to align widgets across a horizontal or vertical axis.

Customizing the Grid
You can customize the Axure grid using the Grid Settings option, which you can
access from the Grid and Guides option in the Arrange tab from the wireframe's
menu. Alternatively, you can right-click anywhere within an empty space in the
wireframe area. You can also toggle the visibility of the grid. Axure also lets you
toggle the Snap feature, which makes the grid lines function like a magnet; as you
drag a widget across a wireframe, it snaps to the closest grid line. The following
screenshot illustrates the process of customizing the grid:

Image 9

Managing Prototype Change

[308]

From the Arrange menu (Image 9, A), select the Grid and Guide option (B), and then
select the Grid Setting… option (C).

The Grid Dialog opens on the Grid tab (D). The default Axure grid is set to a
10-pixel spacing with Intersection style.

If you switch the grid style to Line, keep in mind that it might be difficult to
distinguish between grid lines and guide lines. As always, experiment with the
options and settle for what you are most comfortable with.

Summary
In this chapter, we discussed the challenges that UX practitioners face while
managing predictable and unpredictable changes to the prototype. Many of these
challenges have nothing to do with Axure, but fall squarely on the realities of
software development. And of course, change in the form of constant iteration for
the purpose of optimizing the user experience is inherent to UX. Consequently, it is
in our best interest to figure out how to avoid the most tedious and time-consuming
chores that typically involve tweaking the layout and visual design.

Axure provides a number of features that support changes on a global level. Some
are common to many applications, such as the find and replace feature that is
used for modifying text strings in the prototype. The powerful and still evolving
Custom Styles feature provides dramatic time- and effort-saving in maintaining the
consistency of visual design patterns across the prototype as do the use of masters,
raised events, and "central-command" interactions.

The key to successful change management is, however, in expectations management.
Assume that stakeholders need to be educated about the effort involved in
requesting UX work because they are not familiar with the practice. Your ability
to estimate the overall scope of effort and level of wireframing, prototyping,
refactoring, and specification efforts should be combined with your ability to
educate and articulate what's involved in your work.

In the next chapter, we will discuss the workflows involved in the creation of the
UI specifications document, a process that begins with alignment of expectations
around the document, the output format, and so on.

UI Specifications
"Great things are done by a series of small things brought together."

 – Vincent Van Gogh

The UI specifications document is a communications tool; it is written in a formal
way in which the UX designers prescribe to the developers the desired behavior of
the user interface. If you need to deliver such a document, your takeaways from this
chapter should be:

• When scoping the project, determine the deliverable; is it the prototype with
annotations, a Word/PDF document, or both? The answer you receive will
have a direct impact on your approach to Axure and thus, on your estimates.

• Understand your audience by learning what their expectations are from
this deliverable.

• If it is a Word/PDF document, show the development samples and gain
approval on the format and scope of the specifications as early in the
project as possible.

• Communication with the development team is vital to success. No matter
how much they want you to document, walking the team through the design
and soliciting feedback will aid success.

The tendency to postpone dealing with the specifications until later in the project is
natural. The specifications are typically the last major deliverable for UX and more
pressing tasks on the designer's plate tend to take priority. On many projects, Axure
is still a new concept and thus many development teams have no idea what they
may need or want. Therefore, they are unwilling to discuss this topic at the start of
the project.

UI Specifications

[310]

Axure provides an integrated specification creation and output environment.
This feature addresses the iceberg nature of specifications heads-on: it significantly
reduces the labor and time involved in updating and producing the UI specifications
artifact. In other words, it translates to real value for UX designers who use the tool.
This capability has been prominent on Axure's long list of groundbreaking features
since the product's release back in 2004 and helped propel its popularity within the
UX industry.

Axure has streamlined the design and documentation process, but many of us still
struggle with Axure's output of the file, as it can be difficult to consume. This chapter
will provide you with some useful tips to address this and other issues.

If your project is Responsive Web Design (RWD), we highly
recommend that you use a prototype as part of the deliverable.
We will discuss some best approaches we have found for a RWD
UI specification later in this chapter.

This chapter is designed to help you deliver a UI specification that is useful and
well received by the stakeholders receiving the document. We will cover the
following topics:

• Importance of collaboration
• Global specifications
• Creating and customizing a UI specification document
• Generating a UI specification document

Importance of Collaboration
 At the end of the day, developers must translate the design artifacts (prototype,
UI specification, or both) into a fully functional application. The UI specifications
document binds the visualizations we have created throughout the project—the
wireframes and prototype—with the technical details of the user interface.

The following are well-worn truisms that illustrate why the interactive prototype
and the UI specifications document complement each other so well:

• The first is that "no one reads anymore". Typical software projects
generate an obscene amount of internal documents. For those who are not
responsible for authoring, you are expected to review and comment on
mounds and mounds of documentation. When crunch time sets in, even
the best-intentioned team member will find it impossible to review the
document carefully.

Chapter 8

[311]

• It is much easier for UX designers to express their ideas by just showing the
stakeholders what you mean. Words can be powerful, but this is one instance
where words cannot truly express what we hope to achieve.

• As UX designers, we have a unique relationship with product managers. The
product manager comes to the project with a lot of historical knowledge, but
they usually have no idea how their user-base interacts with their product. If
we are lucky enough to conduct user research, we approach the design phase
with a lot of knowledge on the users' mental model. Merging/leveraging
each person's knowledge will lead to a much better product.

Creating concepts early in the design process and collaborating with
the product manager throughout the process can be very effective;
let's hope the product manger respects what we do and does not try
to force a design.

UX designers, whether consultants or in-house resources, should remember that
one of the most important factors for the success of UX involves building solid
relationships with all stakeholders on the project. Fostering these relationships early
on does not mean that the team will not face adversity, but a spirit of collaboration
and communication leads to trust and helps avoid problems down the road. One
often-overlooked relationship is the development team and as they are the primary
consumer of the UI specifications, try to build that relationship as early in the
project as possible so that if conflicts arise, the willingness to work together
will be established.

Aligning Expectations
The development team is typically the primary target audience for the UI specifications
document. To be successful with this deliverable, you many need to push to have this
discussion early. As mentioned earlier in the chapter, the developers may not know
what they want and/or may not find this conversation useful if they are new to Axure.
The following are a few suggestions to ensure alignment:

• Meet the development team very early on in the project to explicitly discuss
the UI specifications document.

• Ask to see an example of specifications the development team has been using
for other projects, but don't be surprised if you do not receive any.

• Demo Axure's specifications features to the development team. There is a
high probability that the tool will be an exotic unknown to the team, which
may lead to initial resistance to Axure if the team is used to working with
Visio/Word documents.

UI Specifications

[312]

• Whatever hesitations the developers may originally have, it is likely that
education and review of the various possibilities to generate specifications
will help you build a compelling case.

• Discuss with the team the attributes and level of detail they would like to
see. Schedule a follow-up meeting in which you will present a draft of the
specifications that includes the agreed-upon fields an tweak as needed.

• Come to an agreement on the appropriate deliverables to document topics
such as business rules, date requirements, and any style-guide elements.

The UI Specifications
As mentioned at the start of this chapter, Axure provides an integrated and
configurable specification capture and output environment. However, by no
means should you assume that the process of creating the specifications involves
filling in the annotation fields and hitting the Generate button. You will get a
document for sure, but it may not be something you want to hand over to your
development partners.

A good specifications document should provide a high-level description of the user
experience across the entire application, continue to cover the structure and behavior
of the application's various screens, and conclude with the behavior of various
widgets down to button-level elements. In other words, the document's underlying
structure should be composed of the following:

• Global aspects of the application, using the Word template that is part of the
specification generator

• Page-level description, using page notes
• Widget-level descriptions, using field annotations

The following sections will describe in detail how to customize the various elements
to best fit the document you want to generate for your project.

Global Specifications
There is a great deal of interaction behaviors and display rules that apply across
the application. The UI specifications should have a section that covers these
conventions. This will save the UX designer/team time by documenting these global
conventions in a single place. It will also help the stakeholders (from development,
product, and so on) digest the information, and it will ensure one more level of
quality as the team knows what type of pattern has been established. The following
are suggestions to consider when writing the globals. Not all the following items
may be relevant to any given project, but this is a good checklist to use as a start:

Chapter 8

[313]

• Introduction, which conveys the purpose and target audience, that is,
what this document is and for whom is it written

• Guidelines and principles, which includes the specifications of the
following items:

 ° Screen resolution
 ° Devices support
 ° Date and time display rules
 ° Browser support
 ° Performance, that is, the acceptable response time for various

interactions from a UX perspective
 ° Messaging display, which includes the specifications of the

following fields:
 ° User errors
 ° System errors
 ° User filtered the dataset to the point where there are

no results

 ° Confirmations
 ° Alerts
 ° User assistance and guidance
 ° Handling of user access, permissions, and security
 ° User customization features
 ° Localization features
 ° Accessibility requirements

• Interface layouts
• Table patterns
• Key patterns (samples), which includes the specifications of the

following fields:
 ° Windows and dialogs
 ° Notifications such as the following:

 ° Error messages
 ° Warning messages
 ° Confirmation messages
 ° Informational messages

UI Specifications

[314]

 ° Miscellaneous may include the specifications of the following fields:

 ° Calendars
 ° Button patterns
 ° Icon patterns
 ° Sign in

• Abbreviated glossary of the Axure terminology where you define, in simple
terms, what masters, dynamic panels, and widgets are

• Document control, which includes the specifications of the following fields:

 ° Document versioning
 ° Related documents (such as the visual design guide)
 ° Reviewers' list
 ° Approvers' list

We have seen over the years that the global specifications are an often undervalued
and ignored section, mainly due to the fact that the reviewers do not realize how
much valuable information is in the globals and also most likely due to the fact that
project timelines do not allow enough time to review. The value is usually seen
when developers start asking questions and we point them to the globals for the
answers. In order to get stakeholders to pay attention to this section, we recommend
requesting signoff on this section. In other words, do not lump it in with the
wireframe signoff.

Generators and Outputs – Specifications and
Prototypes
Before we dive into the details of capturing the project's global specifications,
let's clarify the relationship between Axure's generators, specifications, and the
prototype. The following screenshot helps illustrate the concepts:

Chapter 8

[315]

Image 1

The preceding screenshot shows the menu where you can output your work.
The following list further defines this menu:

• Prototype: Always refers to an HTML output of your Axure file. Whenever
you click on the Generate HTML Files… option (Image 1, A) in the Publish
menu, you are presented with the Generate HTML dialog (D). In the dialog,
you can specify various options of the default HTML output generator. You
can create multiple HTML outputs, which is useful to break apart a large
project into sections that generate faster.
The HTML prototype generates the contents of the pages in your sitemap in
Safari, Chrome, or Firefox.

• Specification: This always refers to a formatted Word output of the Axure
file. Whenever you click on the Generate Specification... option (B) in the
Publish menu, you are presented with the Generate Specification dialog (E).
In this dialog, you determine the format and output options of the default
Word output generator. Similar to the HTML output, you can create multiple
Word generators. For example, you can divide a large project into smaller
specification chapters that correspond to application modules.

UI Specifications

[316]

• Generators: Axure provides three output options: HTML, Word, and CSV.
Out of the box, Axure comes with one generator of each type. When you click
on the More Generators and Configurations… option (C) in the Publish
menu, you are presented with the Generator Configuration dialog (F), which
lists all the generators you currently have in your project file (G). Here, you
can manage your generator collection (H). The following are some of the
actions that you can perform using the options listed in this dialog:

 ° Create new generators in one of the output formats
 ° Edit a generator
 ° Duplicate an existing generator
 ° Delete generators
 ° Set the default generator for the HTML and Word outputs

Why would you need multiple generators? Consider the following examples:

• You may want to generate an HTML version with the footnotes visible and
another with the footnotes hidden. When you meet stakeholders, you can
have both versions available, allowing you to easily switch between one that
is visually clean and the other that provides descriptive details about various
elements of the interface.

• For large projects, you may want to generate the HTML only of a subset
of pages, the ones you are currently working on in order to speed up the
HTML generation.

• For large projects, you may want to divide the Word output into chapters,
each corresponding to a workstream or an application module. This works
well when there are different stakeholders and development teams for each
module or workstream. Each can review and respond to the relevant portion
of the specifications.

As opposed to the HTML output, for the specifications to be meaningful,
you need to annotate the wireframes: pages, masters, dynamic
panels, and widgets. This means that the effort involved in generating
specifications extends beyond the configuration of a generator.

Chapter 8

[317]

Customizing the Word Specifications
Generator
Let's start with the first Word generator for the project. Although you can use the
provided generator, we recommend creating a dedicated generator; leave this one
for experimentations. Refer to Image 2 to follow the flow:

Image 2

The following steps will help you customize the Word specifications generator:

1. Click on the Publish menu and then the Generate Specification... option
(Image 2, A).

2. In the Generator Configuration dialog (B), select the Word Specification
option (D) from the Add drop-down list (C).

3. Rename the new generator with an appropriate name.

UI Specifications

[318]

4. Click on the Set as Default button (E); the default generator is the one that
is launched when you click on the Generate Specification... option in the
Publish menu. Refer to the preceding screenshot (F) for the newly added
Word specification, which is now the default.

5. Now, you can click on the Edit and generate icon (G), which will launch
the Generate Prototype dialog. Here, you will set the various properties
that determine the final output of the Word specification. We will cover
this dialog in detail later in this chapter.

Now that you understand the relationship between generators and specifications and
have a Word generator waiting to be configured, it is time to dive into the mechanics
of capturing the specifications.

Page Notes
Axure's page notes provide the mechanics to capture the page-level description and
other specifications. This is the place to provide the following details:

• High-level overview of the page
• Page entry points
• What the user can accomplish on this page (actionable items)
• Important user experience principles
• Key interface components

Out of the box, Axure provides a single-page notes field named Default, which you
probably should rename. You can add additional note fields, which will help you
provide an organizational structure to the page note section in the specification. For
example, you can consider adding notes to discuss key business requirements that
are addressed by this page, functional specifications, localization and personalization
notes, and so on.

Although the section is named Page Notes, you can use it for pages
and masters.

The page note categories you create in the file are available to all pages, although this
does not mean that you have to fill all the notes sections on all pages. To customize
the notes section, refer to Image 3, which illustrates this process:

Chapter 8

[319]

Image 3

1. Open the page for editing (Image 3, A) on the Wireframes pane.
2. Click on the Page Notes tab (B) in the Page Properties pane. You will see the

Default note field (C) listed in the drop-down list.

UI Specifications

[320]

3. A good reason to rename this field is that you will have an option to
use the note name as a header in the specification document. Obviously,
to the reader, the word "Default" will be somewhat vague.

4. To rename the note field, click on the Customize Notes… link (D).
5. In the Page Notes dialog (E) that appears, click on the first item (F) and

type in the name of the new note field, for example, Page Description.
6. To add additional note fields, click on the Add icon (G).
7. It is a good idea to add a note field for your personal use (H)—a place to

capture issues, ideas, or questions for stakeholders and so on. You can
generate a version of the specification that has only this field, which will
provide you with a good issue management system.

8. Close the Page Notes Fields dialog when you are done adding the fields you
need. You can always tweak this section, although once you have started to
capture information, be careful about deleting note fields.

9. From this point on, the renamed and new fields are listed in the drop-down
list. Switch between fields using the drop-down list.

One Note Section Versus Many
One question often discussed by UX design teams is, "Is it better to have one single,
yet large annotation field or a variety of discreet, topical annotation fields?". When
discussing this topic with colleagues, there seems to be an agreement that a lot
depends on the nature of the project. As a result, there is no right or wrong answer
here. However, evaluate your needs and approach in light of the following:

• Some developers are interested in very detailed specifications, while others
want to focus only on the absolutely necessary details.

• The specifications may be used by a remote team, often overseas, and
the developers will interpret your words verbatim, while in an agile
environment, the developers might barely read anything.

• In some projects, the specifications are also going to be consumed and signed
off by business analysts, business stakeholders, and other non-developers.
Understand what they are looking to get from the documentation and tailor
note field content for this audience. This will help in getting their approval.

• With multiple note fields, it is likely that you will make mistakes! Also,
forgetting to switch note fields will result in typing notes in the wrong
notes field, which is a common mistake.

• Gather feedback once the development teams have begun using the UI
specifications. You may find that developers gloss over this section. If this
is the case, ask them where this type of information should be.

Chapter 8

[321]

Annotation Fields
Every element on a wireframe was placed there for some reason; you started with
a blank canvas after all. Someone, probably a developer, will need to translate the
wireframe to live code.

In the UI specifications document, you are expected to provide both descriptive and
prescriptive information about any widget in a wireframe. Axure takes care of many
of the most labor-intensive tasks and delivers significant time savings. Still, you can
expect to spend a significant amount of time on the specifications.

After establishing your page notes, it is time to configure the annotation fields.
Across the UX industry, there is no standard for the UI specifications document. The
deliverable's format and depth of coverage depends on the UX practitioner, the tools
used to generate the document and special requests from the development team.

Axure comes with a set of nine annotation fields. You will want to rename or remove
some of these fields. You can easily add your own fields and customize both their
label and type. Annotation field types are as follows:

• Text
• Select List
• Number
• Date

Each UX project may be vastly different, but one can argue that across the board,
there are generalized properties that can be, and are, applicable to any interface
project. Naturally, as a discipline, UX is rapidly evolving and we need to address
new interaction methods such as gestures, haptic feedback, and other factors.

This evolution is likely to expand the type of information that has to be captured
in the specifications, and consequently, the annotation fields needed to capture
and communicate such information to developers. The following are the steps to
customize your annotations:

1. From the Project menu (Image 4, A), select the Widget Note Fields and Sets
… option (B).

2. The Widget Note Fields and Sets window (C) will appear, listing Axure's
out-of-the-box fields in the Customize Fields column (D).

3. To rename a field (E), click on it and type a new label. While you can change
the label of the annotation field, you will not be able to change its type.

4. If the field happens to be a Select List type field, the current values are
listed in the left-hand side column (F), for example, Edit: Status in the next
screenshot. You can easily modify, add, and remove values by typing in that
area (G).

UI Specifications

[322]

5. Use the controls above the list of fields (H) to add new annotation fields
of various types, reorder them in the list, and delete fields. We highly
recommend that you delete fields you don't plan to use in order to avoid
confusion such as entering content in such fields by mistake.

We recommend that you start working with each delivery team to
determine what type of information should belong in the annotation
field. It is also best to start with a small number of fields.

Image 4

Annotation Views
Annotation views is a feature that allows you to group your annotation fields. This is
useful if you have a long list of fields and want to organize them in smaller groups.
For example, you may decide, together with your development team stakeholders,
that a subset of fields are mandatory and the rest are optional. By setting your
Annotation tab to the mandatory view, the much shorter list of fields will be easier
to scan as you go over your widgets and ensure that all mandatory information has
been captured.

Chapter 8

[323]

Generating Specifications
As mentioned throughout this chapter, it is important to experiment and test the
output of the specifications early and often.

You control all the output properties of the specification document in the Generate
Specification window. The window is divided into eight sections. When you are
done tweaking them, click on the Generate button. Axure will launch Microsoft
Word, which will open with the specification document ready for your review
and edit.

The General Section
The following screenshot illustrates the first section, General, in the specifications
configuration window (Image 5, A):

Image 5

UI Specifications

[324]

In this first section, you instruct Axure about two things, which are as follows:

• Where you want to create the generated specifications: By default, the path
(B) shown in the preceding screenshot leads to the Specifications directory
(C) that is created when you install Axure. For Windows users, the directory
name is My Axure RP specifications, and it is located under the My
Documents folder or in the Documents folder on the Mac. Click on the ellipsis
button (D) to change the path to your own destination, for example, if
you want to store the document in a special folder you have for all your
project's files. You can always use the default by clicking on the Use
Default button (E).

• The name of the specifications document: By default, it is the name of
your Axure prototype file. You can modify the last segment of the path (F)
as needed.

The Pages Section
In the Pages section (Image 6, A), you select pages from the prototype's sitemap
which will appear in the specifications as illustrated in the following screenshot:

Image 6

Chapter 8

[325]

The following table illustrates each option of the Pages section:

Options Description
Include Pages Section (B) This option supersedes the rest of the options below. If you

uncheck this option, none of the pages in the sitemap will
be generated.

Section header (C) You can customize the name of the Pages section. For
example, instead of Pages, you may want to call the label
Screens. If you check this option, don't leave it blank. This
label will appear in the table of contents of the generated
specifications.

Include Sitemap List (D) If you check this option, Axure will include a list of all the
pages in your project's sitemap. Keep in mind that if you
choose to generate some of the pages, the list will still show
all of them, which may be confusing to the reader.

Sitemap header (E) You can relabel the default sitemap header from Page
Tree to Application Screens, for example. If you check
this option, don't leave it blank. Your custom label or the
default will appear in the generated Word document.

Generate All Pages (F) By default, this option is checked. As mentioned earlier, it
is most likely that you will want to uncheck it. The ability
to segment pages is extremely useful. Not only can you
have precision and select just the relevant screen you
want to include in the specifications, but it also opens up
the possibilities to generate chapters and sections that
are tailored for specific audiences. In a large project, each
workstream can generate its own set of specifications.
This option is useful in large projects with many pages
and subpages where Axure can control all the pages and
subpages with the options Check All, Uncheck All, Check
All Children, and Uncheck All Children (G).

UI Specifications

[326]

The Masters Section
In the Masters section (Image 7, A), as illustrated in the following screenshot, you
select which masters from the prototype's sitemap will appear in the specifications
and how they will appear:

Image 7

Chapter 8

[327]

The following table illustrates each option of the Masters section:

Options Description
Include Masters Section (B) This option supersedes the rest of the options below. If you

uncheck this option, none of the masters in the prototype
will be generated. To clarify, the masters will still appear in
wireframes, but there will not be a special section for them in
the specifications document. This can be useful if you want to
create, for example, a PowerPoint presentation showing only
key screens of the applications. Instead of manually taking
screen captures of each from the HTML prototype, you can
generate a specification of only the pages you need and exclude
the masters. All the screenshots you need for the presentation
will be automatically generated faster.

Section header (C) You can customize the name of the masters section. For
example, instead of the default Masters, a term which might be
foreign to readers not familiar with Axure's terminology, you
may want to call the label Reusable UI elements. Even if you
stay with Masters, don't leave it blank, as the label will appear
in the table of contents of the generated specifications.

Include Master List (D) If you check this option, Axure will include a list of all the
masters in your project.

Master list Header (E) You can, for example, relabel the default master list header from
Page Tree to List of Reusable Components. If you check this
option, don't leave it blank. Your custom label or the default will
appear in the generated Word document.

Only list generated
Masters (F)

By default, this option is checked and we recommend leaving it
checked— there is little value in listing items that do not appear
in the document.
This option is useful in large projects with many masters where
Axure can control all the masters with the options Check
All, Uncheck All, Check All Children, and Uncheck All
Children (H).

Generate All Masters (G) By default, this option is checked, and if kept checked, it will
generate all the masters in your file. You should consider
unchecking it, especially if you are tweaking which pages will
be generated. Typically, your file may include old versions of
pages and masters, various design candidates, and even work
in progress; there can actually be quite a few things you would
want to keep out of the specifications.

Only generate Masters used
on generated Pages (I)

By default, this option is not selected, but we recommend that
you consider checking it, especially if you are generating only
a subset of pages. Remember, masters are not independent
elements; they are reused in one or more pages. If a master does
not appear in the pages that are generated in the specifications,
it will make little sense.

UI Specifications

[328]

Options Description
Do not generate Masters Set
As Custom Widgets (J)

Masters that are set as custom widgets are typically intended
to be modified once they are placed on the page. This means
that a master set as a custom widget will not actually be easily
recognizable as such, on the page. As a result, it will not be
very valuable to the developers and will most likely create
some confusion.

Document Masters in Page
Section (K)

By default, Axure generates the Masters section after the Pages
section. The table of contents will look similar to the following:
Page Section
 Page 1
 Page 2
 Page n
Masters Section
 Master 1
 Master 2
 Master n
This means that a developer working on a particular page
needs to jump from the Pages section to the Masters section
and locate a master mentioned in the page section, which can be
inconvenient and sometimes confusing, as not all the elements
associated with a single page are in one place.
By checking this option, Axure will generate the page with its
associated master(s).
The table of content will look similar to the following:
Page Section
 Page 1
 Master 1
 Master 2
 Page 2
 Master 1
 Master n
 Page n
 Master 1
 Master 2
 Master n
This organization packages all the information about a screen in
one section.

Chapter 8

[329]

Options Description
Only document first use (L) If you checked the previous option, one immediate downside

will be a redundancy of masters. Basically, each master will
repeat on each page it is used on. Depending on the size and the
project and the construction of your prototype, this redundancy
may translate to hundreds of extra pages in your specification
document, and we are not exaggerating here. So, the option to
generate only the first instance of a master under the first page
it is used on can be a tremendous space saver. However, it does
end up intensifying the original problem of spreading masters
in the document because this arrangement forces the reader to
potentially hunt for masters all over the document.

Exclude Master Notes (M) Similar to pages, you can add notes to masters. This is a very
useful feature, especially if the master is a large, composite
component that can benefit from its own set of notes. However,
you do have an option to exclude those notes.

The Page Properties Section
In the Pages section, you selected which pages from the sitemap will be generated
in the specifications. In the Page Properties section (Image 8, A), you are offered a
wealth of 14 options to configure page information. These options will apply to all
the pages in the sitemap as illustrated in the following screenshot:

Image 8

UI Specifications

[330]

Options Description
Include Page Notes (B) With this option selected, page notes will be generated

for each of the pages.
Show Page Notes names as
headers (C)

As discussed earlier in the book, you can create
multiple note fields. With this option selected, these
note names will appear as headers and the content of
the notes below.

Use heading basic style (D) If you checked the previous option, this option will
become active. If it is unchecked, the style Heading
3 will be applied, giving page notes significant
prominence. If you select this checkbox, the basic
heading will be Heading 5, which is gray, with a
smaller font, making notes less prominent.

Select and order the Notes (E) This option allows you to govern the order in which the
page notes will be generated within each page.

Include Page Interactions (F) With this option selected, OnPageLoad interactions will
be generated.

Section header (G) If you do choose to include page interactions, you can
use the default section header or relabel it.

Use heading basic style (H) Similar to Use heading basic style (D), you have the
option of making the interaction section more or
less prominent.

Include List of Masters Used on
Page/Master (I)

Lists the masters used for the associated wireframe.

Section header (J) If you check the preceding option, you can modify the
default label.

Include Master Usage Report
(Masters only) (K)

Each master will have a listing of all its instances across
the entire prototype. This can be incredibly helpful.

Section header (L) This is similar to Section header (G).
Pages header (M) This is similar to Section header.
Masters header (N) This is similar to Section header.
Include Panels and
Repeaters (O)

If you are using a dynamic panel in your prototype,
you are likely to want this option checked in order
to expose the various states associated with those
dynamic panels.

Chapter 8

[331]

The Screenshot Section
This is one of the great timesaving features involved in producing the UI
specifications document—automatic generation of all wireframes' screenshots.
This means that each time you generate a fresh version of the specifications, your
screen captures are up to date! Not only that, but the annotation footnotes will be
created as well. The following screenshot will help you understand the different
options provided in this section:

Image 9

UI Specifications

[332]

The following table illustrates each option of Image 9:

Options Description
Include Screenshot (B) This option supersedes the rest of the options below. If

you uncheck this option, none of the screenshots in the
prototype will be generated. It is difficult to think about
a situation in which you might not want to include
screenshots.

Screenshot header (C) You can modify the label of this section, for example,
change the default Screenshot to Wireframe.

Show footnotes on
screenshot (D)

With this option selected, the screenshots will include
the little blue numbered footnotes that reference
annotated elements on the wireframe. You are most
likely to want this option selected for the specifications
document. However, if you need to generate a set of
wireframes to include in a PowerPoint presentation, the
footnotes option can be skipped.

Exclude footnotes not in widget
tables (E)

We will discuss widget tables in the Widget Tables
section, which comes up next. Basically, the idea is
that you may have more annotation fields in your
Axure file than fields that you want to display in your
document. You organize the fields in a widget table(s).
With this option checked, footnotes that are associated
with fields that are not part of the widget tables
will not be generated. For example, you may have a
field to capture internal issues, questions, and other
miscellaneous details. Typing content in this field will
create a footnote on the wireframe. However, as you
are not going to include this field in the widget table(s),
you don't want the footnote to appear; this option takes
care of the situation.

Put border on screenshot (F) This option does exactly what it claims. However, you
may want to consider whether you need to use it. It
might confuse the developer to think that perhaps the
border is a part of the wireframe as visually it might be
difficult to distinguish the Axure added border from a
frame around the widget. Something to keep in mind.

Do not scale footnotes with
screenshot (G)

With this option, the size of the yellow footnotes
stays constant.

Apply default OnPageLoad
Cases (H)

This may be an important option to check. There are
many circumstances where the rendering of the page
depends on the execution of the OnPageLoad event.
The interactions are triggered not only when the HTML
prototype renders in the browser, but also when the
specification is being generated.

Chapter 8

[333]

Options Description
Include Submenu (I) This option will generate screenshots of expanded

menus if you use Axure's menu widgets in your
prototype.

Include expanded Trees (J) This option will generate screenshots of expanded trees
if you use Axure's Tree widgets in your prototype.

Show default pages in inline
Frames (K)

This is an incredibly important option to check if you
load pages inside iFrames on other pages. It will ensure
that the entire wireframe, the parent page as well as the
page that is targeted for the iFrame, is generated.

Do not apply Background
Styles (L)

If you use a background effect for the prototype, for
example, a background color, you can have these
removed from the screenshot output.

Do not apply Sketch
Effects (M)

This is just what it means; while you can maintain the
option of sketch effects on your prototype, you can
choose to remove them from the output.

Max width as % of page/
column width (N)

This option provides a measure of control over the
width of the screenshot, in relation to the output page.
For example, 60 percent of a width of 7.5 inches, for a
letter-sized page set to portrait (with half-inch margins
to the left and right), we generate a screenshot that is
4.5 inches wide, leaving a 3 inch space for annotation
information. Keep in mind that in a typical project,
the variation between wireframes is significant and
you'll want to experiment and ensure the quality of
the output.

Max height as % of page
height (O)

This is similar to the previous option, but this option
controls the maximum height of the screenshot. This is
useful for long, scrolling screens. Keep in mind that in
a typical project, the variation between wireframes is
significant and you'll want to experiment and ensure
the quality of the output.

Allow screenshots to split
across pages (single column
only)

This option can be useful for very tall screenshots. If
you limit the height of the image so that it fits onto
the page, you will, by default, also reduce its width,
potentially making it difficult to identify details.

UI Specifications

[334]

Adaptive Views
The Adaptive Views section is only relevant if you are using adaptive views for
your project. This section is straightforward, as you can simply choose which views
you want to include in your specifications document. The Adaptive Views section is
shown in the following screenshot:

Image 10

The following table illustrates the option in the Adaptive Views section (Image 10):

Option Description
Generate Screenshots for
All Views (B)

If you uncheck this option, you must choose which views
to display. In this example, only two of the views are
displayed. We feel it only makes sense to include the
views that have a great enough difference in layout.

When generating a specification document that contains adaptive views,
only display the views that are actually unique. In Image 10, just the base
view and mobile (phone) view are included in the specifications, as the
other two sizes are not that different from the base view. In any case,
remember to discuss the options with the relevant stakeholders.

Chapter 8

[335]

The Widget Tables Section
In the hierarchy of Axure annotations, Page Note fields can be described as
the "macro" level of the specs: a configurable space that allows you to discuss
an entire page and provide the UX an overview and context. The Widget
Annotation fields are the "micro" option, allowing you to capture the UX
properties of widget-level controls.

The Widget Tables section (Image 11, A) provides you with a number of controls
that help you organize the presentation of widget annotations in the specifications
document as illustrated in Image 11:

Image 11

UI Specifications

[336]

The following table illustrates each option in the Widget Tables section:

Option Description
Include Widget Tables (B) This option supersedes the rest of the options below.

If unchecked, none of the widget annotations will be
generated. Axure lets you create any number of widget
tables. Click on the Add link to add a widget table.

Table header (C) You can change the label of this section. For example, if you
add an additional table, the first can be labeled Mandatory
Annotations (K) and the second table Optional
Annotations (M). You can switch between the tables
using the widget table drop-down list (L).

Select and order the
columns (D and J)

All the widget annotation fields in your file are listed here.
Each field is a column in the table. Obviously, the higher
the number of fields, the narrower each table column is.
Axure provides an easy and powerful method to avoid the
problem by allowing you to associate fields with multiple
tables. As a result, each table has fewer, wider columns, and
the result is readable and clear. You can control the order of
the columns within each table, which will be their order in
the widget tables.

Only include Widgets with
footnotes (E)

This option will reduce unnecessary clutter from the
specification, listing only widgets that actually have
footnotes.

Remove rows with only
footnotes and label data (F)

This is a great space-saving option that will filter out
widgets that have footnotes, but have no actual annotations.

Filter annotations (G) This option allows you to filter a specific annotation field
if its value is equal to, does not equal, contains, does not
contain, is one of, or is not one of, some other value. By
applying the filter, you can control at a very granular level
and filter which annotations to include in the generated
specifications. For example, if you track releases, this feature
will help you output a specifications that only deals with a
specific release.

Remove empty columns
(H)

Another space saver that helps produce a more
compact document.

Column Heading Label (K) This option allows you to name the column headers. As
you can see in this example, Footnote was renamed to # (L).
Click on Hide (M) to collapse this section.

Allow rows to break across
pages (I)

This is a self-explanatory option: although you want to
discuss with the developers, they may prefer to see the
entire row in one place and avoid a potential error in case
the developer missed the continued row.

Chapter 8

[337]

The Layout Section
The Layout section (Image 12, A) provides additional controls over the page layout of
the specifications document as illustrated in the following screenshot:

Image 12

The following table illustrates each option in the Layout section (Image 12):

Option Description
Columns (B) You have a choice of a single-column or two-column

layout. Keep in mind that in a two-column layout, the
screenshots may be too small for an application page.
However, if these are specifications for an iPhone app,
for example, this may be a perfect, compact format.

Order the content that will be
displayed in the Specification
for each Page and Master (C)

You can set the order of appearance of major content
sections in the specification. Use the up and down
arrows (D) to organize the sections.

UI Specifications

[338]

The Word Template Section
Last but not least is the Word Template section (Image 13, A). When you click on
the Generate button on this dialog, Axure gets a Word template to open with all the
content organized as per your selection in the previous sections. This panel provides
you with access to edit the Word template, import a template, or create one on your
own, as illustrated in the following screenshot:

Image 13

The following table illustrates each option in the Word Template section (Image 13):

Option Description
Edit (B) This option allows you to edit the template you are using.
Import (C) This allows you to import an already formatted template from

your computer.
New Template (D) This is the one we have used most often in our experience

with Axure. In fact, set this up as early as you can.
Applied Word Styles (E) You can modify the default style names if you want. You also

have the option to use Word's built-in styles instead. You
will have to experiment and determine which you like better.
Refer to Image 15 for some further explanation on this.

Paper size (F) This lets you choose between U.S. formats such as Legal,
Letter, Ledger, and the international A4 format.

Chapter 8

[339]

Option Description
Orientation (G) This lets you choose between the Portrait and Landscape

orientations.
Numbered Headings (H) We recommend that you choose Not Numbered if you have

been numbering your wireframes and dynamic panels. This
numbering will be sufficient and gives you more control.

Columns (I) This lets you choose between one or two columns page
layout.

Formatting-applied Word Styles
As a designer, it is very probable that you will want to format the headers to your
liking, so it is worthwhile to mention how to actually do that! The following are the
steps to format headers:

1. Once you have the customized Word template, click on the Edit link
(Image 13, B).

2. The Word template will open. Highlight the heading you want to
change to see which style is assigned to it as shown in the following
Image 14 screenshot:

Image 14

UI Specifications

[340]

3. Now, navigate to Format | Style; this is shown in Image 15:

Image 15

Chapter 8

[341]

4. Now in the Style window, click on the Modify... button and in the
Modify Style window, you can update the formatting (B), as shown
in the following screenshot:

Image 16

Quick Tips to Improve the Layout
At the time of writing this book, Axure is by far the most effective and efficient tool.
Having said that, our observation by talking to many in the community is that the
Word UI specification document should be generated in a manner that is easy to
read. The following is a list of things we have found over the years that have helped:

• Go light on dynamic panels.
• For each different scenario that you have to show, for example, the initial

state of the home page and then how the home page looks when the login
layer is opened, have a wireframe for each.

• In order to keep your layout organized, make each widget on the page
a master. That master may have different states and you can utilize the
OnPageLoad event to set the correct state that you want to display for
that scenario.

• The smaller your master, the more flexibility you will have to drag-and-drop
elements onto a wireframe to display what you wish.

UI Specifications

[342]

• Remember that your labels are headers in your Word document. Do not
be vague and label something Widget 2. This will make no sense to
your reader.

• Number all of your wireframes, dynamic panels, and masters and do not use
Word's default numbering system because you numbered them yourself.
The Word numbering system is duplicative and will cause confusion.

• After you generate, take 5-10 minutes to clean up the document. You will
most likely have to delete extra spaces.

• For RWD projects, the HTML prototype is the best way to go. If you have to
generate a UI Word specification, only include the views that have a variance
in design and behavior. All the preceding tips also apply to RWD projects.

Let's first look at a sitemap for a UI Word specification (Image 17, A) and for an
HTML output (B), as shown in the following screenshot. The UI Word specification
(A) is what we call a flat file, which is very similar to our pre-Axure days. Don't
worry, this is efficient because you will have masters for everything and simply use
the OnPageLoad event. The HTML output (B) is the exact same design, but as it is an
HTML file, all of the scenarios in the UI Word specification (A) are simply dynamic
panels in the HTML output (B).

Image 17

Chapter 8

[343]

Setting up the Wireframe with OnPageLoad
This concept may hurt your brain at first, but you will catch on quickly; we promise!

The following screenshot shows F2T-001 home page's initial entry on the left-hand
side (Image 18, A). Notice the soft pink elements, which mean these are all masters.
F2T-001.1 home page on the right-hand side shows the login layer displayed (B).
All that was done here was we dragged-and-dropped the master onto a wireframe.
Then, OnPageLoad, we set action to Show (C).

Image 18

Summary
Regardless of the tool you are using, generating UI specifications is a complicated
affair. However, if you take the time to construct your file correctly, create global
patterns and document them, and set up a template that works for the stakeholders,
it will not be that bad. Remember to start the review process early and plan for it
when creating a project plan.

The final chapter of the book will discuss the importance of teamwork
and collaboration.

Collaboration
For this new edition of the book, we looked to refresh the quote by Henry Ford that
was used in the previous edition:

"Coming together is the beginning, staying together is progress and working
together is success."

But it turns out that Ford's quote is still very relevant for this new edition. Many
aspects of team collaboration, such as uniformity in the quality of wireframes or
proficiency levels, are taken for granted and often with little consideration to the
nuts and bolts involved with setting up the appropriate conditions for success. In
this chapter, we will explore Axure's collaboration feature set (available only in
the Axure Pro version), appropriately renamed in Version 7 as Team Projects, as
it relates to the three challenge dimensions in Ford's quote, which are as follows:

• "Coming together" relates to planning and training
• "Staying together" relates to communication and synchronization
• "Working together" relates to individuals and culture

Thus, while teamwork continues to be an acute pain point for UX teams, we feel that
the combination of Axure 7 Team Project's features, adoption of best practices and
awareness of potential pitfalls, can end up with a recipe for successful collaboration,
which you can use repeatedly and with consistent results.

There are many reasons for difficulties. To begin with, a project has to be of a certain
size and complexity to warrant the extended investment an organization will have
to make in a UX team. Each UX designer is usually assigned to one or several
workstreams or modules, each with its dedicated business, engineering, and other
stakeholders. Then, add the constraints of tight schedule and budget, and you'll end
up in a fast-paced environment with many asynchronously moving parts; you may
be working in such an environment right now.

Collaboration

[346]

For a UX team that is using a traditional file-centric tool such as Word or Visio, an
immediate concern is keeping wireframes or any artifacts for that matter in sync.
Some of the challenges are:

• Only one person can edit the file at any given time, which means that each
designer works on a separate file.

• To get a sense of the entire application, constant consolidation of the
individual files is necessary.

• The larger the team and the more accelerated the project velocity, the harder
it is to manage the consistency of interaction patterns and widgets across the
files each designer is working on.

The UX team faces a similar challenge of collecting feedback from stakeholders.
A common practice has each UX workstream create PowerPoint or Word documents
of the latest wireframes, add some verbiage describing the interactions, and send
them out to stakeholders for written feedback. There are several drawbacks here,
stated as follows:

• Stakeholders need to respond to a static presentation of a dynamic interface
• Redundant, extra effort for the team, to create stakeholder presentations
• A challenge to consolidate the feedback from multiple stakeholders
• A challenge to share the feedback with the other UX workstreams on a timely

and on-going basis

Axure 7 Pro supports two forms of collaboration, which help address major
difficulties in all the areas mentioned earlier:

• The Team Projects format enables a team of UX designers and others, such as
business analysts, to collaborate on the same project file

• The Discussion tab in the HTML prototype facilitates review by a stakeholder
who can add comments for each page on the sitemap

Like other important Axure features, these capabilities translate to significant time
and effort savings for the UX team and the entire project. For a UX team that is
considering a prototyping tool that supports a collaborative environment, there are
a few other "industrial strength" options at the price point and maturity offered by
Axure. The Team Projects feature, known to users of previous versions as Shared
Projects, has been around since Version 4.5 released in 2008. It is stable, reliable,
and is being continuously refined.

Chapter 9

[347]

Note the discussion around the use of Axure's axureShare cloud platform and the
enablement of the Discussion feature later on in the project. It is an option integrated
into the HTML prototype, where the entire team and stakeholders can share
feedback and response to wireframe.

Collaboration still continues to pose significant challenges because such is the
nature of this process: any project with many simultaneously, asynchronously
moving parts is inherently a complex process to manage. This chapter focuses on
Axure's collaboration features and the methods that will help you keep the UX team,
stakeholders, and prototype in sync.

In this chapter, we will cover:

• The Team Projects environment
• Setting up a team project
• The Team menu
• Managing a team project
• Best practices for Team Projects
• axureShare

Team Projects (Pro Version Only)
When you save an Axure file for the first time, it will be saved as an .rp file by
default, Axure's standalone format, which is just like a Word or Visio document
that allows only a single person to access and work on it at any given time.

Axure's Team Projects (formally known as Shared Projects) feature seems to suggest
obvious support for collaboration, but it is the versioning capability that also makes
it compelling to single practitioners.

Understanding the Team Projects
Environment
Axure's Team Projects environment is straightforward. The next diagram depicts a
typical setup. The master prototype file is on an SVN server or in a shared directory
(Image 1, A). Each team member (B) may be using a Mac or Windows machine and
needs Axure 7. Each team member can check out the following elements:

• Pages
• Masters

Collaboration

[348]

• Annotation fields
• Global variables
• Page style sheet
• Widget styles
• Generators

To edit files that are on the shared repository, team members check out a desired
element (C). If other team members attempt to check out the same item, Axure
prompts them that the file is already checked out. Once done editing, team members
check in the element (D) and it clears for editing by others.

Image 1

Understanding the Check Out/In Status
The following table lists the Team Projects's check out/in statuses:

Status Description Icon
Checked In The element is available for check out

to all team members. However, the
status indicates only what the local
copy 'knows'. When you actually try
to check out the file, Axure will let
you know if it is available or not.

Blue diamond.

Chapter 9

[349]

Status Description Icon
Checked Out The element is checked out to you.

The local copy of other team members
will still display the file as checked in.

Green circle. The
person who has the
element checked out
will see an indicator—
in the form of an icon
or a label—mark its
status. The local copies
of the other team
members will show
that the element is
checked in, until they
attempt to check the
item out.

New When you add a new element, it
is first created in your local Axure
project file. Once you check it in, other
members of the team will be able to
see or use it.

Green plus sign. The
icon is applicable to
pages and masters.
It appears only on
the local copy of the
person who created it.
Other elements may
not have an indicator.

Conflict The element on your local Axure
project file conflicts with a version
of the same element on the master
project file on the server or shared
directory.

Red rectangle

Unsafely Checked
Out

You checked out an element despite
being warned that it has been checked
out by another team member. You or
the other person will lose the work
you did, once you attempt to check in
the file to the repository.

Orange triangle

Setting Up a Shared Repository
The process of setting up the Team Projects environment is like following a recipe.
You need to prepare some ingredients in advance so that you don't get stuck half
way through. In this case, you need to have the location of the repository. As
mentioned earlier, the repository can be stored on:

• A shared network drive
• A dedicated SVN server hosted on a company server
• An SVN hosting service such as Beanstalk or Unfuddle

Collaboration

[350]

Either way, you will have an address that will point to that repository location and
with the location available, you are ready to proceed.

Security and backup
Some organizations forbid putting anything outside of their secured
environment, so using an SVN host may not be an option. Additionally,
whether your team's plan calls for the use of an SVN hosting service,
the organization's own dedicated SVN server, or space on a shared
directory, make sure to get a clear understanding of the support, such as
regular backup and restore, that will be provided.

The following is the process of setting up a shared repository, which can be based
on an RP file that gets converted to serving as a team project. Any Axure RP file
can be converted.

1. With the file open in Axure, select the Create Team Project from Current
File… option (Image 2, B) from the Team menu (A).

Image 2

2. The Create Team Project window (Image 3, A) will open, offering a
wizard-type flow that will walk you through the steps of creating the
shared repository.

Chapter 9

[351]

Image 3

3. Name the project in the Team Projects Name field. Pay attention to the
disclaimer: Files and folders associated with the project will be created
using the project name. Please enter a valid filename. For example "\"
and "/" are not valid characters.

Our recommendation is to keep the project name short,
and use a hyphen to separate multiple words, for example,
My-Great-Project, or CamelCase. The name MyGreatProject
is later used in a URL, so we want to avoid spaces.

4. Click on the Next button to continue.

The Team Projects Directory step (Image 4, A) is where you point Axure to the
location of the shared repository. This screen includes the following instructions:

• This directory is commonly on a network drive where others can access
the Team Projects.
Ex: /Volumes/Public/OurSharedDirectory

Collaboration

[352]

• The Team Project Directory will be created on this directory with
the project name.
Ex: /Volumes/Public/OurSharedDirectory/ProjectName

• The Team Directory can also be a URL for an SVN directory. An
SVN server must already be configured. Ex: http://svn.myserver.com/
OurSharedDirectory/
Ex: svn://www.myserver.com/OurSharedDirectory/

Due to recent compatibility issues with Beanstalk, at the time
of going to print, Axure recommends the services of Unfuddle.
We do not endorse any vendor, and the use of a vendor in
images is meant to provide realistic fidelity.

• Team directories or project names with special characters may not
work properly.

Image 4

Chapter 9

[353]

You can either paste the address you prepared into the Team Directory field (B),
or use the ellipsis button to the right of the field to navigate to the shared directory
on the organization's network.

Before clicking on the Next button, make sure you have spelled the project name
correctly because the typos will stay with the file throughout the life of the project.
You can return to the previous screen and make the correction, if needed.

After you click on the Next button, Axure will prompt you if there is a problem
with the information you provided. You'll have to validate that the path you have is
correct. If you are dependent on someone else for validating the information, it is a
good idea to do this setup during a time when that person is available.

Axure then asks you to point to the local directory for the team project (Image 5, A),
which is where the local copy of the repository will be created on your hard drive.
By default, Axure offers to store it in the directory labeled Team Projects in the
Axure directory (B), but it is up to you where to store it.

Image 5

Collaboration

[354]

As shown in the following screenshot, Axure will offer to create the local directory
for you, if needed (Image 6, A):

Image 6

Axure will prompt you with a Success confirmation upon completion of the process
(Image 7, A), as shown in the following screenshot:

Image 7

Chapter 9

[355]

When you look in the local directory, you'll find that Axure has created two items,
which are as follows:

• The RPPRJ file, for example, farm2table.rpprj (Image 8, A)
• The directory DO_NOT_EDIT (B), which, as it clearly states, you should not

mess with

Image 8

Congratulations! The local copy of your team project is ready for you to use.
The following are the steps that you should perform next:

• Make sure to distribute the link to the shared directory to all your
team members.

• Have the link, as well as the username and password of the SVN server,
readily available; this enables you to access the server the first time a team
member attempts to load the file.

Collaboration

[356]

If you have been using a standalone version of the project, you will find the most
prominent visual differences on the Sitemap pane (Image 9, A) and the Masters
pane (B):

Image 9

In the team projects's RPPRJ file, the icons for pages and masters include a status
indicator. This indicator reflects the state of the element on your local copy of the
project, not its status on the server.

Another difference between a standalone RP file and a team projects file is the
directories and files that make up a team project. Like the quintessential forbidden
castle door in a fairy tale, the mysteriously labeled folder DO_NOT_EDIT might be
attracting your attention. It is actually not a bad idea to take a quick glance to satisfy
your natural curiosity.

Chapter 9

[357]

The following screenshot illustrates the local copy of the repository, which has been
created in the Team Projects directory—a subdirectory located inside Axure's
main directory:

Image 10

Your project has a dedicated folder within the Team Projects directory, and
as mentioned earlier, there are two items in its root level: the RPPRJ file and the
DO_NOT_EDIT folder (Image 10, A). The DO_NOT_EDIT directory has the following
two folders:

• LocalStore (B), which contains a small set of files used by Axure
• SVN (C), which contains all the project files used in communications with

the SVN server. The size of this directory will grow as the projects advance.

Collaboration

[358]

If the name DO_NOT_EDIT is not clear enough, we will reiterate. Manually
manipulating the content of these files is not advisable because there is a
risk that the Axure file will get corrupted.

If you did not set up the Team Projects environment yourself or if you have to
recreate the local copy of the project for some reason, you will need to create your
local copy of the project by accessing the shared repository, which we will discuss
in next section.

Loading from a Shared Repository
Before you start, make sure to have:

• The path to the shared repository on the server
• The username and password if the file is hosted on an SVN server

It is highly recommended that the person who is responsible for setting the shared
repository makes this information readily available to the team and is also available
to help with the setup, if needed. On your part, make sure to save this information
for future use.

You should either have a path to a network directory or a URL to an SVN server
that looks something like this: https://company.svn.unfuddle.com/farm2table/
farm2table.

From the Team menu (Image 11, A), select the Get and Open Team Project…
option (B) as shown in the following screenshot:

Image 11

Chapter 9

[359]

Axure will present the Get Team Project dialog box (Image 12, A) as shown in the
following screenshot:

Image 12

The Team Directory field (B) is where you either paste the URL, a path such as
the example we discussed earlier or use the ellipsis button to navigate within the
network to the destination.

The dialog has the following instructional text, which is useful to keep in mind:

• This directory should contain the Team Project repository including
folders like "db", "conf", and "locks".

• Note: If you have previously opened this team project on this computer,
you do not need to get it again. You can use File->Open to open the .rpprj
file in your local copy of the team project.

• Team directories or project names with special characters may not
work properly.

Collaboration

[360]

Pointing to the local directory is the next step (Image 13, A) where you tell Axure
to create a local copy of the repository. By default, Axure offers to store it in the
directory labelled Team Projects in the Axure directory (B), but you can certainly
point to another destination using the ellipsis button.

Image 13

After clicking on the Finish button, Axure will download all the necessary files
from the server or network directory to the destination folder you indicated earlier.
Depending on your network connection speed and the size of the file, this might
take few seconds to a couple of minutes.

The shared file will open and you can start working. Remember to access the file
on a day-to-day basis. You can use the Open Recent option from the File menu,
or the Welcome Screen... option located under the Help menu. If for some reason
you forgot where the file is located, use the file search option to look for the .rpprj
string in the filename.

Chapter 9

[361]

The Team Menu
Once you have the local copy of the project, you will be using the Team menu
constantly. You and the entire team should have a solid understanding of the
various menu options.

Creating and Loading
You typically have to use the following options only once per project:

Menu options Description
Create Team Project from
Current file…

Use this option if you want to create a team project
file out of the current file. This option is only active
when you have the RP file open.

Get and Open Team Project… Use this option to create a local copy of a team
project file. If you are also the person responsible
for creating the team project, you can skip this step
because a local copy will be created for you when
you create the shared file.

Updating the Entire File
The following set of options apply batch-like functionality to updates, check outs
and check ins:

Menu options Description
Get All Changes
from Team
Directory

This option will update your local copy of the project file with
all the latest changes that were made by other team members.
Make a habit of getting all changes first every time you start
working on the file and repeat it a few times during the day.

Send All
Changes to Team
Directory

This option will update the shared repository with all the
new changes you have made since the last time you sent your
changes. Consider this option as a form of saving your work.
Although you can and should use the Save option to save your
work to the local copy of the project, sending your updates will
ensure that if something happens to the local copy, most of your
work will be on the server. Note that the files you are working
on are still checked out to you. The trade off is that when you
send your changes to the shared directory, you can no longer
undo them by undoing the check out.

Collaboration

[362]

Menu options Description
Check Out
Everything

This option will check the entire project for you—a highly
unadvisable action. Fortunately, Axure will prompt you with
a warning, as shown in the following screenshot:

Image 14

If you do manage to somehow check out the entire project,
check it back as soon as possible because the rest of the team
obviously will not be able to safely check out any of the assets.

Check In
Everything

This option will check in everything you have checked out.
Develop the habit to use this option at the end of the day. This
ensures that you have nothing checked out and that other team
members can check out files in case you are out of the office.

Undo All Check
Outs

This is a great option to help you undo undesirable work and
revert the effected items back to their state before you check
them out. For example, you check out a page and a few masters
with the intention of further developing the prototype. Things
fall apart and you realize that the best bet is to start over. Now,
you were saving your work in the meantime, so you cannot
undo the local copy. However, if you did not send changes,
you can undo the check out.

Updating Single Page or Master
The following set of options allows you to deal with a single element at a time:

Menu options Description
Get Changes from Team
Directory

This option applies only to a selected page or master.
New to Version 7, the name of the active page tab
appears in the menu. If you right-click on a page in the
Sitemap pane, the command in the context menu will
not have the page name.

Send Changes to Team
Directory

This option applies only to a selected page or master.

Chapter 9

[363]

Menu options Description
Check Out This option applies only to a selected page or master.
Check In This option applies only to a selected page or master.
Undo Check Out This option applies only to a selected page or master.

Managing Team Projects
In a Team Projects architecture, each team member has a copy of the project on their
computer. During the course of a day's work, each team member will create new
elements, check out files, and generally modify the project. These changes will not
be reflected in the shared repository until the team member sends all changes to the
server or checks in all their checked out elements.

While you can tell if a page is checked out to you, you cannot tell if a page is actually
available for check out or if it has been checked out by another team member, by
looking at the sitemap. This applies not only to pages, but to all the elements that
are controlled by the shared repository.

The Manage Team Projects console provides all team members with a real-time
view of the availability status of the elements that are managed by the system.
This view spares you from the hassle of attempting to check out an element that
is checked out to another team member.

Let's walk through a normal use scenario.

Check Out/In Use Case – Team Member A
After doing some work on a couple of pages, it is time to send all changes to
the shared repository using the Send All Changes to Team Directory option
(Image 15, B) in the Team menu (A), as shown in the following screenshot:

Image 15

Collaboration

[364]

Team member A is presented with the Send Changes dialog (Image 16, A), listing the
elements that are going to be updated on the server in the top pane (B) and a field to
enter what these changes were in the Change Notes pane (C). Upon clicking on OK,
the updates will be sent to the shared repository.

Image 16

Check Out/In Use Case – Team Member B
Switch to team member B, who also wants to check out the same page that team
member A has checked out. To this user, the page appears available for check out on
the Sitemap pane. To see if the page is available, the user chooses to use the Manage
Team Project… option (Image 17, B) from the Team menu (A), as shown in the
following screenshot:

Image 17

Chapter 9

[365]

The Manage Team Project dialog (Image 18, A) is presented. The top section of
the dialog indicates the path to the shared directory and includes the instruction:
Click Refresh to retrieve the current status of the pages, masters, and document
properties in the team project. Right click on an item or selection to check in,
check out, and get the latest changes. Click the column header to sort by the
column. Indeed, notice that the main table area (B) is empty initially.

Upon clicking on the Refresh button (C), the table area is populated with the list of
all pages, masters, and design documents in real time.

Image 18

Column headers in the window's table area (Image 19, A) are sortable, making it easy
to quickly find out which pages are checked out and to whom.

Image 19

Collaboration

[366]

Team members can easily coordinate their check outs. Right-clicking on the row
presents a contextual menu listing available actions.

Dismiss this dialog by clicking on the Close button. It is a good idea to get into the
habit of using the Manage Team Projects console before trying to check out pages
that are the responsibility of other team members.

Browse Team Projects History…
Axure's Team Projects feature provides a team or an individual with additional
invaluable features, which are as follows:

• The risk of lost work is significantly reduced. As long as the SVN server or
the shared network directory where you host your project are regularly and
reliably backed up, you can restore any previous version of the project from
day one. It is not possible to exaggerate the importance of this capability and
the peace of mind that comes with it.

• Gain the precious ability to step back in time and access earlier iterations
of the prototype. When you consider the realities of a large and fast-paced
project, you realize that the need to revert to an earlier version of some
pattern is likely to occur. One of the most challenging aspects of iterative
design is having an effective way to revert to or compare to an earlier
version of the application.

The system maintains complete version control throughout the file's lifecycle. Each
time a team member sends changes or checks in their work, a new version is added
to the log. Each version, precisely identified with a unique revision number and
the date of its capture, can be exported into a fully functional RP file, which reflects
its condition at the moment the version was created. Items from that RP file can be
imported back into the main project as needed.

Barring a catastrophic failure of the SVN server or a shared directory that has not
been backed up properly, as long as the shared repository is available, you can
access practically any restore point in the project, illustrated as follows:

1. From the Team menu, select the Browse Team Projects History… option
(Image 20, A) as shown in the following screenshot:

Chapter 9

[367]

Image 20

2. The Team Projects History Browser dialog (Image 21, A) appears. The top
field Team Directory points to the shared repository.

Image 21

Collaboration

[368]

3. Depending on the size of the team and the point in time that you want to
recover relative to the start date of the file, the list of all versions can be
overwhelmingly long. To narrow down the list to the set of potential versions
that correspond to the date and time you are looking for, use the Start Date
and End Date calendar controls (Image 22, A). By default, the start and end
dates are set to capture the last seven days worth of work.

Image 22

4. If you want to override the calendar pickers, you have an option to retrieve
the list of all versions by checking the All Dates checkbox. Click on the Get
History button to continue.

5. Within seconds, the table area (Image 23, A) gets populated by a list of
versions, with each row representing a fully functional restore point of
the Axure file. Each row can be sorted by one of the version's attributes,
including Revision number, Date, Author, and Check In Note.

Chapter 9

[369]

Image 23

6. Identify in the list the version that is most likely to contain the last good
version of the item or items you are looking to restore. Normally, you will
see several versions for each day. Since the revision number is serial, the
highest revision number corresponds to the last update for that date.

When you click on a row, all the activity that has been automatically recorded by
Axure, will be displayed in the Check In Notes pane. This information is incredibly
valuable because typically, you will be looking to restore a particular page or master.

Now comes the truly fantastic part. If you identified the revision, use the Export to
RP file button and Axure will prompt you to save the file on your drive. Within a
few seconds, you'll be able to open a fully functional, standalone Axure file (in the
.rp format)—a snapshot of the entire project corresponding to the time and date of
that revision. Now, you can find the element you were looking for and import it into
the current share project file if you want.

However, if this ends up not being the snapshot you need, continue exploring until
you find it. If more versions are available, the Next 100 Revisions button will be
active. Use the Close button to dismiss this window when you are done.

Collaboration

[370]

A side benefit of the history browser is that there is no need to keep old versions
of pages and masters in the active Sitemap and Masters panes, especially since the
constant additions and updates by multiple team members tend to greatly bloat
the working environment. As the project moves deeper into detailed design, it is
beneficial to do regular audits with team members, discard pages that are no longer
relevant and discard masters that are not used on any pages. The result will be a
leaner file that generates faster as both HTML prototype and Word specifications
document. As we discussed, all the previous work can be easily restored, if needed.

Repoint to Moved Shared Directory…
Occasionally, there is a need to move the shared directory from its location on the
network drive. As long as the repository has been moved in its entirety, this is a
safe operation. All team members can continue to use their local copy of the file,
but point towards the new location of the shared repository.

The following steps will help you if there is a need to move the shared repository:

1. Coordinate the move with the entire team. Ideally, pick a date and time that
will minimize the impact on the team's schedule. Try to avoid proximity to
major deadlines.

2. Make sure that team members are aware of the planned move. Clearly
communicate to all that the shared repository will not be available at the
set timeframe.

3. At a set time, before the move, all team members should use the Check In
Everything option.

4. After the move, provide all team members with the updated path.
5. Each team member will repoint to the new location by using the Repoint

to Moved Team Directory… option in the Team menu and entering the
provided URL into the Team Directory field (B).

Image 24

Chapter 9

[371]

Clean Up Local Copy... and Dealing with a Working
Copy Locked Alert
Sometimes, for some unknown reasons, bad stuff happens. With Axure, such events
are extremely rare. However, suppose you are attempting to check in your work
and you get the error message Working Copy Locked. As explained by Axure,
the message A variety of things can cause "Working Copy Locked" errors. These
include virus scanners and losing connection to the server or a computer failure
during a previous operation as shown in the following screenshot:

Image 25

Execute the following steps in the event of a Working Copy Locked error (typically
occurs when you try to check in something):

1. Select the Clean Up Local Copy… from the Team menu
2. Axure will attempt to repair the problem, as described in the Clean Up Local

Copy dialog (A), a process which includes the following steps (B):
1. Save the project. (You have to do this.)
2. Export the project to an RP file for backup. (You have to do this.)
3. Clean up SVN-specific files. (Axure does this.)
4. Get all changes. (Axure does this.)

Collaboration

[372]

From our personal experience and that of some of our colleagues, we can attest to the
fact that this feature seems to work just fine and you are able to send your work to
the server.

Best Practices for the UX Axure
Teamwork
Teams are complicated. The number of variables that determine a teams' makeup
and workings can be wildly different, making meaningful comparison difficult.
However, as the famous proverb goes, "For every problem, there is an opportunity".
In this section, we are not attempting to resolve the challenge, but rather, isolate the
most fundamental team attributes.

Attributes of the UX Team
The following are the attributes to evaluate your potential challenges and
opportunities for your team:

• Team size: How big is the UX team? Obviously, two people are a team, but
the larger the number of UX designers involved in a project, the harder it
is to keep everyone on the same page. Larger teams are likely to break into
multiple workstreams that tend to form silos of concentrated isolation, so
there is also the challenge of cross-workstream communications.

• Location: Are all team members sharing the same physical office space? Is
everyone on the same floor and in close proximity? Are people spread across
the corporate campus or across multiple cities? Are some team members
working remote from their home-offices? Are team members spread across
the globe?

• Knowledge of project's domain: Some team members may have previous
project experience with and exposure to the application's domain. Other
team members are new to the domain and its nuances. This can be an issue
with expert systems.

• UX experience and expertise: Some team members may be UX veterans with
established track record, but also with a set preference for how they are used
to having things done. Other team members may have a different take. Junior
members may have significantly less experience with UX work and may
lack the ability to foresee potential problems and estimated workload and
confidence when presenting to stakeholders.

Chapter 9

[373]

• Axure expertise: Veteran team members are likely to have years of
power-use skills with tools like Visio, but little Axure knowledge, perhaps
even some resistance. Some team members will be totally new to the tools,
while a few may have significant Axure experience. Additionally, some
veteran Axure users may not be familiar with the new features of Axure 7,
such as adaptive views and the Responder widget.

• Individual personalities: This section is impossible to cover in a few
sentences. However, the normal mix of extroverts, introverts, assertive, shy,
outgoing, reserved, blunt, self-starters, strong work ethic, lazy, overly polite,
alpha and beta types, and so on can turn a team dynamic into a soap opera.

• Cultural influences: In some cultures, it is not polite to behave in an assertive
way around team members of higher seniority. This might be mistakenly
interpreted by one from an all-are-equal culture as timidness, hesitation, or
lack of confidence. Team members might find the attitude and manners of
others to be rude and inappropriate, leading to tension and hostile relations.
The combinations are as diverse as the world we live in.

Regular and effective communication is the fundamental ingredient for successful
teamwork, yet it is easier said than done. This is especially true with virtual teams
of individuals who work remotely from their homes and on-site teams spread
across several geographical locations. That said, all too often, colleagues who share
a cubicle, fail to exchange meaningful information despite their physical proximity.
The following are a few practices to consider for your team:

• As much as possible, it is important to allocate time for staff development.
Ensure that all team members are at a level of Axure proficiency that makes
them not only productive but good enough to avoid loss of work due to basic
errors that might mess up the Team Project file. As we know, such calamities
tend to happen just before a major deadline.

• Team members should understand how to work with Team Projects. All
should be comfortable with the various options under the Team menu, and
with the difference between options such as Get All Changes from Team
Directory and Get Changes from Team Directory, for example.

• New team members should have an on-boarding deep-dive session with
a knowledgeable team member to cover the structure of the site. In large,
intense projects, new members are often thrown into the cold waters of
a Team Projects file to sink or swim because the team is at the height of
some crunch. Disoriented and under pressure to get up to speed as soon
as possible, the incoming member can be easily lost in the intricacies, and
depart from the set approach.

Collaboration

[374]

• All team members should participate in a weekly status meeting that covers
the structure of the sitemap, variables (since these are global and limited),
and other important changes. Use web sharing to view the file and make
sure that team members understand how other members constructed
their wireframes.

• Despite looming deadlines, it is important to be careful and pay attention
before checking in and out. A few seconds of concentration can save hours
of lost work.

• Team members should avoid unsafe checkouts; this is critical. There are few
and clear reasons for breaking this rule, more so when the person who has
the elements checked out, is going to be away for some time.

• Before you begin work on a page, make sure to get all changes from the
shared directory; this will ensure you have the latest copy.

• Start your work session by getting all changes. Continue to update your file
frequently throughout the day.

• When done editing a page or master you checked out, check it in so that it
will be available for other team members.

• Check out only what's needed for your design work and check in as soon
as you are done. Then, check out the next chunk you are going to work on.
Avoid hogging files you are not working on and are still checked out from.

• If possible, structure the sitemap and masters in sections such that team
members can work on chunks of the file in parallel. Agree on unique page
and master IDs and a naming convention to help team members access the
right files.

• Make sure that the shared file is backed up regularly.

axureShare – Axure's Cloud Solution for
Sharing
axureShare, formally known as AxShare, has been around for a number of years
now, and it is the foundation to an Axure cloud-based hosting service for your
HTML prototypes.

Axure keeps adding features and capabilities to this valuable
service, so despite our efforts to update this section as late as
possible in the production process, some stuff might have changed
by the time you read this.

Chapter 9

[375]

Please make sure to visit the website for the latest updates. A couple of updates that
are of high value to consultants and agencies are as follows:

• Use and manage custom domains, that is, ensure the ability to point your
domain to share.axure.com

• Brand the client experience

axureShare is currently hosted on the Amazon Web Services cloud platform,
which is quite reliable and secure as far as cloud environments go.

Due to time and space limitation, we will not cover the entire set of capabilities of
axureShare here, but focus on its collaboration capabilities, which are as follows:

• Host your prototypes of axureShare and share them with stakeholders
• Enable the use of the Discussion feature in the HTML prototype to generate

off-line discussion among stakeholders and the UX team

You can link to axureShare from Axure.com or directly, share.axure.com. The
following are the screenshots of axureShare webpages before (Image 26) and after
(Image 27) logging in:

Image 26

Image 27

Collaboration

[376]

Creating an axureShare Account
To take advantage of Axure, you need to create an account. As of May 2014,
axureShare is totally free. An account allows you to upload up to 1000 (yes, one
thousand) projects and the size limit for each project can be 100 MB. This is quite
awesomely generous: Axure has eliminated a tiered subscription strategy it had
experimented with and refunded those who held paid accounts. The current free
plan—the only axureShare plan—is like the discontinued Enterprise plan, but with
an additional 500 projects that you can upload.

Feedback from Stakeholders – the
Discussion Tab
Only a few years ago, the means of collecting feedback from stakeholders about
a proposed user experience was very limited, because it was rare to actually have
an interactive prototype available for review on a regular basis. Axure helped
revolutionize the way user experience is expressed by replacing static wireframe
presentations with compelling interactive simulations. However, for a while,
methods for collecting feedback were few and somewhat limited.

Normally, you gather stakeholders in a meeting room or video conference calls,
and as you demonstrate the prototype, people respond to various aspects of the
application's design. It is good practice to request attendees to suspend their
feedback until you have a chance to complete an initial walkthrough of the
proposed interaction. However, it is rare that people can hold off their comments
and typically, the presentation flow is interrupted, with a risk of derailment due
to tangential discussions.

Of course, experience and good facilitation skills play a major role in one's ability
to drive a presentation forward in a productive way. However, regardless of
the facilitation, it is objectively difficult for stakeholders to provide you with a
thoughtful response because they have a relatively brief window of opportunity
to view, digest, and respond to your presentation.

Axure's Discussion feature is meant to address this difficulty by providing
stakeholders with the ability to respond in writing directly to the HTML prototype,
which can be difficult and time consuming to do using traditional means. The
Discuss tab is located on the prototype's left menu bar. Multiple stakeholders can
initiate or respond to multiple discussions organized by topics for every individual
page listed in the Sitemap pane. This feature is far from being robust, but it has been
evolving over the past few years in the right direction.

Chapter 9

[377]

Specifically, it is fairly easy for non-technical stakeholders to participate in feedback
loops. Given Axure's track record of listening to the user community and enhancing
features, the Discussion feature is likely to become an important value addition
to users.

Discussions Hosted on axureShare
As was mentioned earlier in this chapter, in the context of using a third-party SVN
hosting service for your shared repository, it is important that you get documented
clearance to use axureShare from the relevant department in the organization for
which you are working. It is also a good idea to test how the corporate firewall
impacts access to the site since you want to provide a hassle-free experience
to stakeholders.

With axureShare, you have two options to facilitate a discussion with stakeholders
and users:

• Host the project on axureShare. This option is free and has very few
limitations in terms of file size or the number of files you can host.
Security concerns by the organization you are working for may pose
the main reservation.

• Host the HTML on an internal server and enable the discussion feature.

The first option begins by uploading your file to axureShare, illustrated as follows:

1. Once you sign in, you can upload your .rp file by creating a new project.
The Create a New Project dialog is straightforward (Image 28, A).

2. Select the RP file you wish to upload (B). If you want to share a team project,
export the latest version of your RPPRJ file to an RP file. Check the file size to
make sure that it is smaller than 100 MB and you are good to go.

Collaboration

[378]

3. Add the project's name and an optional password (C). If you add a password,
it will be required from everyone who attempts to view or add feedback
to your prototype. It is a good idea to use a password because it provides
stakeholders with an added sense of confidence in the confidentiality of
the work.

Image 28

Prototype ID and Other Features
Once the file is uploaded and generated on the axureShare server, it will be listed
under the My Projects table, as shown in the following screenshot (Image 29, A):

Chapter 9

[379]

Image 29

Under My Projects, there is a row of buttons (B) for creating new projects and
folders. Projects and folders can be moved for better organization.

By selecting a row in the My Project table (A), you can apply the following actions
with the help of buttons in the button row:

• Move to a folder
• Delete
• Rename
• Duplicate

axureShare generates a prototype ID for each hosted prototype. This ID enables
the Discuss tab in the generated prototype. Note that you do not need to upload
the file to axureShare in order to generate the ID, which means that you can enable
discussions on prototypes hosted internally.

Collaboration

[380]

In Axure, click on Generate Prototype Files... from the Publish menu or the Publish
button to see the Generate Prototype dialog. Select the Discuss tab and paste the ID
you copied from the axureShare website into the Prototype ID field (Image 30, A).
This is how you enable the Discuss tab in the generated HTML prototype.

Image 30

We highly recommend that you provide some basic training to stakeholders on how
to use the Discuss tab feature (Image 31, A) and include simple instruction each time
you seek feedback. Organizing the discussion threads is important. The person who
begins a thread should use the first entry just for the topic (B).

Image 31

Chapter 9

[381]

The following is a use case:

• Susan is a stakeholder who has access to the prototype via the URL you
provided. Depending on your subscription level and use of individual
passwords, there might be minor variations in the flow, but essentially,
it is very easy for every participant to associate their names with their
entries (Image 32, A).

Image 32

Collaboration

[382]

The first discussion thread is made of a topic and a response; both are created by the
first person to start the thread (Image 33, A). That's because at this point, there are no
title or subject fields for the thread, which is unfortunate.

Image 33

When another stakeholder wants to post a response, begin by using the Commenting
as field to associate their names with the response (Image 34, A) as shown in the
following screenshot:

Chapter 9

[383]

Image 34

The following screenshot shows how the thread handles the discussion between two
or more stakeholders (Image 35, A).

Image 35

Collaboration

[384]

So, for each page, it is possible to manage multiple conversations around multiple
topics (Image 36, A and B). The timestamp helps with the timeline organization.

Image 36

Chapter 9

[385]

Discussions Not Hosted on axureShare
Another option to facilitate a dialog in the prototype via the Discuss tab is to use
axureShare to generate a special code which you enter in the HTML generator
configuration. The actual prototype HTML files can be hosted on an internal server.
The following are the steps:

1. From the Discuss section in the Generate Prototype dialog in Axure, click on
the link Get a new ID at share.axure.com or point your browser directly to
share.axure.com.

2. Log in and click on the New Project button (Image 37, A). There is no need to
upload your project file. A new row will be added to the list of prototypes,
with the code you need.

Image 37

3. Open the Generate Prototype dialog and click on the Discuss section.
4. Type or paste the prototype ID into the field (Image 38, A) and click on the

Generate button as shown in the following screenshot:

Image 38

Collaboration

[386]

5. Send an e-mail to anyone you want to have a discussion with, and provide
them with the URL to prototype and the password to the Discuss tab.

Should you protect the discussion with a password? The truth is that it is a matter of
control. By not sharing the password with everyone who has access to the prototype,
you are controlling who can participate in the discussion and adding feedback.
Consider the stakeholders that you want to get involved with. If the feedback is
going to be of business strategy, perhaps it is not wise to have it exposed to contract
developers and others who will also access the site, but from which you are not
expecting feedback via the discussion option. If you are not sure, ask.

In conclusion, Axure's Discussion feature is promising because it is integrated in the
product. The feature is not limited to the team project files. It can also be activated on
the standard RP files.

It is important to make sure that stakeholders and users who are
supposed to participate in the discussion can figure out how to navigate
the prototype. Often, not all widgets have interactions assigned to them:
some features work, and others do not. Let the user know in advance
that upon moving the mouse over a certain area of the screen, a guide
(constructed as a hidden dynamic panel) will appear, instructing them
where to click on. This layer of instructions could also include letter or
number tags over certain areas you want feedback on. These footnotes
will make it easier to get a more structured feedback since all reviewers
will refer to the same elements.

Publishing to Axure Share
Finally, another method to host your project on axureShare is from the Publish
menu, which is illustrated as follows:

1. From the Publish menu (Image 39, A) or the Publish button (B), select the
Publish to Axure Share... option (C), as shown in the following screenshot:

Chapter 9

[387]

Image 39

2. The Publish to Axure Share dialog (Image 40, A) provides the option to a
new axureShare account directly from the Create Account section (B) and
spares you a trip to the website.

Note that the following screenshot (Image 40) was taken at
the end of March 2014; the actual Axure dialog still makes
reference to AxShare, which has been renamed axureShare.

Image 40

Collaboration

[388]

3. If you already have an axureShare account, switch to the Existing Account
section (Image 41, A).

4. The Create a new project option (B) is the default option.
5. The integration with the cloud works nicely. By using the Folder field (C),

you can point the project directly to a folder located on axureShare (D).
However, at this point, you still cannot create a folder from here.

6. Finally, you can select the Replace an existing project option (E). You will
need to provide the code.

Note that the following screenshot (Image 41) was taken at the end
of March 2014; the actual Axure dialog still makes reference to
AxShare, which has been renamed axureShare.

Image 41

Chapter 9

[389]

Summary
Once you experience Axure's Team Projects features, you may wonder how UX
teams managed projects before Axure Pro. Well, obviously you and others did, but
at a premium cost of time and effort. Teams that are evaluating prototyping tools
to support their work can reflect on their current workflow and methods, and then
consider Axure's value proposition compared to other options in the market.

Axure's Team Projects feature adds real, measurable value by helping the UX team
address head-on the following three major obstacles:

• It provides a controlled environment which facilitates work on the same
prototype and specifications file by multiple team members.

• It maintains unlimited version control which is critical for disaster recovery
or reverting to a previous revision.

• It facilitates dialog between the team and its stakeholders by providing
a direct feedback in the Discussion pane, an Axure feature which is not
limited just to Team Projects, and yet compliments the entire iterative
process of teamwork.

These capabilities are built on top of the tool's rich, reliable, yet constantly evolving
platform of UX-specific features set for prototyping and specifications.

• Closing the book is an appendix we hope you will find valuable. The
Appendix, Practitioners' Corner, covers troubleshooting tips and provides
interesting tutorials and case studies written by practitioners who share
their expertise.

Practitioners' Corner
Axure enjoys one of the most vibrant, supportive, and sharing user communities.
UX practitioners from all over the world generously share their expertise with others
through various online meeting places such as the Axure Forum, AxureWorld.org,
and so on. The overwhelming majority of this sharing is free.

For a tool that is used by so many consultants, the community culture of openness
and collaboration is not necessarily a given, since expertise and know-how are often
valued as a competitive advantage in the competition for work. So, we are fortunate
to have a wealth of ever-evolving best practices and support.

Therefore, for this book, we approached the community and asked for
contributions. In the following sections, you will find several entries written
by fellow UX practitioners, which we hope you will find valuable since learning
from the experience of others can be helpful.

Additionally, we included the results from a brief survey we conducted, which gives
some insights into the users and use of Axure throughout the world, and also a brief
set of troubleshooting tips.

Survey of Axure Users
In March 2014, a few weeks before this book went to press, we collected the
responses of 123 UX practitioners who responded to an open invitation we published
on the Axure forum and the LinkedIn groups AxureWorld and Ax-Stream. The
following table shows the responses. We were surprised by the high number of
respondents who use the Team Project (formally Shared Projects) feature, the high
number of respondents who have experience with RWD, and the high number of
respondents who use/d Axure to generate Word/PDF specifications.

Practitioners' Corner

[392]

The survey questions and responses are presented as follows:

Questions and options Response percent
Q1. For how many years have you been using Axure?

More than 6 years 20.3%
2-5 years 58.5%
1 year or less 20.3%
I'm evaluating Axure, have never used it 00.8%

Q2. Have you worked or are you working now on a project that involves RWD
prototyping?

Yes 69.9%
No 30.1%

Q3. Is Axure your exclusive prototyping tool?
Yes 64.2%
No 35.8%

Q4. Have you ever used Axure Shared Projects (Team Projects in v7)?
Yes 52.0%
No 48.0%

Q5. Have you ever used Axure to create Word/PDF specifications?
Yes 62.6%
No 37.4%

Q6. Have you ever used Raised Events?
Yes 45.5%
No 54.5%

Q7. Have you ever used variables?
Yes 86.2%
No 13.8%

Q8. Is there a feature within Axure that you find hard to grasp?
Raised Events 26.0%
Masters 04.9%
Dynamic panels 13.0%
Variables 22.0%
Functions 24.4%
Creating PDF/Word output that is easy to read 34.1%
Debugging when something does not work 49.6%
Repeater 29.3%

Appendix

[393]

Questions and options Response percent
Q9. Do you run into any performance issues with Axure 7?

No issues 26.8%
The HTML runs slow after I generate a prototype 37.4%
Tabbing between pages is slow 31.7%
Clicking between tasks always takes time 26.8%
Axure crashes on me more than twice a day 15.4%

It is interesting to note that less than a half of respondents used Raised Events and
about a quarter found the feature hard to grasp. We find Raised Events to be one of
the most valuable actions in Axure (as explained in Chapter 5, Advanced Interactions).
So, if over a half of respondents do not use Raised Events, it is logical to conclude
that they are not creating the most effective and robust prototypes. We leave it to
you to infer other insights from this survey. It was not meant to be scientific, but
it is a nice sample.

Troubleshooting Interactions Checklists
Sometimes interactions in the prototype don't work as you expected—an experience
that can be frustrating, and sometimes stressful, if you are under a tight deadline.
Bugs happen: it is unavoidable, and you should build time into the project plan
for testing and debugging. Of course, so many things can go wrong, but we found
that there are a few common behaviors that lead to the creation of issues and other
behaviors that help resolve them systematically and efficiently.

Experienced Axure users are often asked by colleagues for help in debugging their
interactions. While sometimes, especially during looming deadlines, it is very
tempting to just fix the problem for them and move on, we believe that taking the
time to help team members adopt good troubleshooting habits pays off. It reduces
the frequency of you being disrupted to help with a bug just to find a very basic
error, which your colleague could have easily identified had they followed a basic
troubleshooting checklist. Stress and annoyance can be reduced, which is very
important for good teamwork.

The following sections are brief on purpose and meant to help you, if you are a
novice user, quickly absorb and internalize core best practices, and reduce time
spent and frustration built over bugs, as you enhance your skills in constructing
interactions. For experienced users, we hope they will save the time needed to
come up with such a list to hand out to less-experienced colleagues.

Practitioners' Corner

[394]

The General Approach
The following list combines common-sense and learned behaviors that we
have adopted over the years, because they help us reduce bugs or tackle them
more efficiently:

• Axure invokes events in the order listed in the Interactions tab. Therefore,
make sure you order the events in the order you want them to play out.

• Assign unique names and IDs to widgets and dynamic panels. This will
save you from accidentally assigning an action/event to the wrong widget
or dynamic panel.

• If you have multiple bugs on one wireframe, fix one bug at a time. When you
uncover a bug, isolate it, fix it, and then verify the fix before moving on.

• Read the code in the Interaction tab. For example, you may be 100 percent
positive that you set the associated widget to Show, but when reading the
code, you may find it is set to Hide.

• When relevant, add the Bring to Front and Send to Back actions to cases.
Sometimes, the widget you are trying to have do something is simply
covered up by other widgets.

• If you hit the wall trying to fix a particular bug and getting increasingly
frustrated and stressed because of lost time, it is sometimes best to walk
away from it for a bit, and then review it afresh.

• If you have spent a lot of time on an issue, and still cannot figure it out,
try the following:

 ° The first approach to isolate the issue could be: delete the case and
start over, or make a copy, delete the original, and slowly rebuild it
from the copy. Add one chunk at a time until something goes wrong.

 ° The second approach to isolate the issue could be: start a new RP
file, and recreate only the problematic cases from scratch. Don't copy
or import anything from the production file. As you rebuild the
integration step by step, consider the logic and order of operations.

 ° Generally, the use of copy and paste is a great time saver, but often,
it is a source of issues. Look at the original interaction, and see what
makes it work. Then look at the pasted version and make sure that all
the actions are pointing to the correct widgets.

 ° Ask a colleague for help.
 ° Send the Axure file to Axure support, as they are very helpful.
 ° Axure additionally has a wonderful support forum which you can

find at http://www.axure.com/forum/forum.php.

Appendix

[395]

Questions to Ask when Debugging
This list reflects some of the common mistakes we keep repeating. Taking the liberty
of assuming we are not significantly more stupid than the average Axure user, we
think that the reason for repeating some of these mistakes can be attributed to fast
pace of work, multitasking, and other very normal causes. So, when you run into a
bug, ask yourself the following questions, just as we often do:

• Is the action assigned to the correct widget or dynamic panel?
• Are you using the correct action?
• Do you have the order of events correct?
• Do you have an action in your event that is cancelling out what you are

trying to do? For example, did you set up a Show action, and then two lines
later you have a Hide action? Since the Hide action is after the Show action,
Axure will hide the widget or dynamic panel, so you will not be able to see
what you are actually trying to show.

• Do you have a panel in front of the widget or dynamic panel from which
you are trying to invoke an action, and thus, cannot click on it? Make sure
the item you want to click on is in front, otherwise you will not be able to
click on it.

• Have you reviewed the interaction you have set up at the page level and
at the widget/dynamic panel level? You may have an action at the page or
master level that is cancelling out your widget/dynamic panel events.

• Have you initialized global variables by setting their default value?
• Are the variables you are using working as intended? The generated HTML

prototype includes the ability to observe how interactions change the values
of variables. You should know the variable's initial value, and its expected
values as the interaction progresses. Click through the prototype, and stop
when the variable does not change as expected. Check the relevant case to
make sure it includes an action that affects the variable.

• Do you have extra actions? As you add actions to a case, some of the
initial actions may be conflicting with those added later, or causing
some unexpected behavior.

Practitioners' Corner

[396]

Common Hurdles
This section is organized by core Axure features and is focused on basic sources of
trouble which inexperienced users often face:

Category Hurdles Recommendations
Masters I have the master on my

wireframe but do not see how
to create events for it.

Go to the master and create a
raised event to it. To invoke an
action in a master, use raised
events. When creating a raised
event, remember that its name
cannot have spaces, and it
must be checked in order to be
associated with an action. To
read more about raised events,
refer to Chapter 5, Advanced
Interactions.

Masters I create the raised event
but still do not see it on
my wireframe.

Go to the master wireframe and
make sure that the raised event
that should be triggered by the
action is checked.

Moving widgets and
dynamic panels

Where did the widget/
dynamic panel go?

Check to see if you have it set to
a Move To or Move By option.
You may think you are moving
is to 1200 pixels, but you may be
moving it by 1200 pixels.

IF/THEN Statements When do I use All
versus Any?

When you use All, the
interaction will work only if
all the conditions are satisfied.
In Axure, "AND" shows in
the code.
When you use Any, the
interaction will happen as
long as at least one condition is
satisfied. In Axure, "OR" shows
in the code.

Appendix

[397]

Category Hurdles Recommendations
Adaptive Views Why are my views changed

when I do not want them to?
If you have the checkbox Affect
All Views checked, all views
will now be "tied" together. The
checkbox should really only be
used if you are in a child view
and want your change to apply
to the parent view. Be sure to
check the checkbox before you
make the changes, and uncheck
when you are done making the
desired changes.

Adaptive Views What do I do when I generate
the HTML (not preview) and
the views do not change?

This is most likely a settings
issue. Go to the generator you
are using in the Adaptive Views
tab, and click on Generate
ALL pages.

Construction Tutorials
Axure has a thriving user community, and the sharing of know-how is quite
wonderful. For this book, we approached a number of experienced Axure users and
asked them to submit a tutorial that could be of use to the readers. These tutorials
are quite descriptive, but they do assume familiarity with Axure and an ability to
fill in possible gaps in the descriptions. Each of the RP files are available on AxShare
for download and review, and like other tutorials in the book, we recommend you
follow by constructing them yourself.

Practitioners' Corner

[398]

Shira Luk-Zilberman – Simulating
a Type-ahead Search Experience
Tutorial level: Intermediate/advanced

Practitioner Profile
Shira Luk-Zilberman is currently a user experience designer at Sizmek, a leading
campaign management platform. She previously worked at Netcraft, one of Israel's
top UX consulting agencies. She completed her BSc and MSc in Computer Science,
and she was on the path towards a career in software engineering before she realized
that UX is far more interesting.

Shira brings her analytical and technical skills to the design process, and she specializes
in creating usable solutions for complex domains. She is always excited to explore
Axure's most advanced capabilities (and hacks) to achieve a truly realistic experience.
She is an active user of the online Axure forums, and she is one of the admins of Israel's
Axure community on Facebook, where she answers (and asks) questions daily.

When she is not building prototypes, she is busy mothering little baby Noga, who
occupies most of her waking (and also most of her sleeping) hours. Her LinkedIn
profile is il.linkedin.com/in/shiraluk/.

The Tutorial
In this tutorial, I would like to share with you some construction ideas for simulating
the familiar search field using a new repeater widget of Axure 7. The interface
comprises a search box and drop-down list of items. As the user types a search
query, the values in the list change dynamically and display relevant suggestions
according to the text entered.

Some familiar interfaces that use this pattern include Google (Image 1, A),
Facebook (B), and LinkedIn (C), as shown in the following screenshot:

Appendix

[399]

Image 1

We will cover the following topics in this tutorial:

• A simple implementation of type-ahead, similar to Google's search
• Adding images and summary text, as used by Facebook's search
• Adding category fields to simulate LinkedIn's example

In the previous versions of Axure, the simulation required use of a dynamic panel
with several states that match only a single query string. Applying changes to the
design was a tedious task.

Practitioners' Corner

[400]

The repeater widget allows us to create a generic, easy-to-maintain interface that
works for any search query. Now that's powerful!

1. Creating a Google-like Type-ahead Search
Interface
In addition to simulating the behavior of a type-ahead search, this section also covers
handling the widget's borders and dealing with a use case where there is no text in
the search field.

Start by creating a sandbox file and drag over a repeater widget to the default Home
page. Label the repeater widget RPTR_SearchOptions.

1.1 Configuring the Repeater
Perform the following steps to configure the repeater:

1. Double-click on the widget.
2. In the new tab, (RPTR_SearchOptions) Home (Image 2, A), that opens,

rename the first column in the Repeater Dataset tab (B) to Search_Option
(C) and insert as many permutations as you can of search suggestions (D).

Image 2

Appendix

[401]

Don't sweat over coming up with the list. You can copy the
values that appear in a real Google type-ahead.

3. While still on the (RPTR_SearchOptions) Home tab (Image 3, A), rename the
default repeater item shape (B) to LBL_SearchOption (C).

4. In the repeater pane below, switch to the Repeater Item Interactions tab (D),
and double-click on the OnItemLoad interaction (E).

Image 3

5. In the Case Editor window (Image 4, A) that opens next, select the Set
Text action (B) and click on the fx button (C) to set the values that will
be displayed in the repeater.

6. In the Edit Text window (D) that opens, click on the Insert Variable or
Function... link (E), and from the Repeater/Dataset category, select Item.
Search_Option (F). This is where naming the item, an earlier step, helps.

Practitioners' Corner

[402]

7. Back in the Case Editor window, the configured action is displayed in the
Organize actions as well as in the Configure actions columns (G).

Image 4

8. When switching to the Home page tab (Image 5, A), the values entered in the
dataset are visible (B). This preview helps with formatting, which is done
back in the RPTR_SearchOptions tab (C) where you can apply formatting to
the repeater item (D) such as, Right Alignment (E), and Left Padding (G).

9. View the results back in the Home tab (G) and tweak the repeater (H),
as needed.

Appendix

[403]

Image 5

1.2 Simulating Search
With the repeater widget in place, we continue with the construction by associating
an input search field to the suggestions drop-down list.

Practitioners' Corner

[404]

While still on the Home page (Image 6, A) tab, add a Text Field widget (B) that will
serve as the search box. Name it TXT_Search (C). We will use the OnTextChange (D)
event to dynamically change the displayed repeater values according to the current
content of the search box. Double-click on it to open the Case Editor window.

Image 6

A brief explanation before we continue with the step-by-step description: we will use
the Add Filter action of the repeater so that every time the user changes the text in
the search box, a new filter is applied to the repeater. The new filter uses the text in
the search box for its input.

The tricky part is to filter only the search options that contain the search text. The
Add Filter action works with a Boolean (true/false) expression that is applied to each
item of the repeater. The items that evaluate to true are filtered and made visible. The
items that evaluate to false are not visible. The goal is to build an expression that will
only be "true" for items that contain the text in the search box.

In plain English, we are telling Axure: as the user types in the search field, look for
a match in the list of search options we created in the repeater; if there is a match,
show it.

The following is the step-by-step process:

1. In the Case Editor window (Image 7, A), select the Add Filter action (B) from
the Repeaters category (C).

2. We want to filter the list of items in the repeater based on live input to the
search box. Click on the fx button (D) to open the Edit Value window,
as shown in the following screenshot:

Appendix

[405]

Image 7

3. First, we select the repeater column we want to filer. In our case, it is the
Search_Option column we created in the repeater dataset in an earlier step.

4. In the Edit Value window (Image 8, A), click on the Insert Variable or
Function link (B), and from the Repeater / Dataset group, select Item.
Search_Option (C).

Image 8

5. [[Item.Search_Option]] will be pasted into the field. Place the mouse pointer
in between n and]], and move to the next step.

6. Next, still in the Edit Value window (Image 9, A), click on the Insert Variable
or Function... link (B) again.

Practitioners' Corner

[406]

7. From the String category (C), select indexOf('searchValue') (D) as shown in
the following screenshot:

Image 9

8. The method indexOf returns the position of the first occurrence of the input
value in a string, and in the next step, you will see how it is relevant to us.

9. Continue in the Edit Value dialog (Image 10, A), and click on the Add Local
Variable link (B) to create a local variable of type text on widget (D) named
LVAR1 (C), which will reference the text in the textbox TXT_Search (E).

Appendix

[407]

Image 10

Remember that we are using the string method indexOf(), which returns the position
of the first occurrence of the input value in a string. In other words, if the expression
[[item.Search_Option.indexOf(LVAR1)]] is larger than or equal to 0, there is some
occurrence of LVAR1 within item.Search_Option. Otherwise, if the expression
returns -1, there is no occurrence.

In the formula [[Item.Search_OptionLVAR.indexOf('searchValue')]], substitute
searchValue with LVAR1, and evaluate it to be equal to or greater than 0. The final
query string should be as follows:

[[item.Search_Option.indexOf(LVAR1) >= 0]]

This query string is case sensitive. To make it case insensitive, add the
string method toLowerCase(), which converts a string to lowercase letters,
as follows:
[[item.Search_Option.toLowerCase().indexOf(LVAR1.toLowerCase()) >= 0]]

Practitioners' Corner

[408]

Preview the Home page in the browser (Image 11, A). As you type into the search
field (B), the letters in the string that make up the word Axure and the type-ahead
options in the list (C) refresh instantly, as shown in the following screenshot:

Image 11

We now have a search box that dynamically filters the search options according to
the entered text. Yay!

1.3 Tweaking the Borders
Now, we want to achieve a Google-style pane with only an outline border. Here is
the trick to do that.

Change the shape of the repeater item (Image 12, A) to a bottom border shape (B),
and place it in location Left: 0, Top: -1 (C).

Image 12

Appendix

[409]

Now, when the repeater is rendered, each item will hide the bottom border of the
item before it, and the result will be a list with no horizontal borders, except for the
last element (Image 13, A).

Image 13

We still need to account for the missing top border of the first element. Add a
horizontal line named HL_TopBorder (Image 14, A) to the repeater item, and
set it to Hidden (B).

Image 14

Practitioners' Corner

[410]

The line will be visible only for the first rendered element. Here's how:

1. In the RPTR_SearchOptions tab (Image 15, A), we add a case to the
OnItemLoad event (B).

2. Double-click on it to open the Case Editor window (C), and click on the
Add Condition button (D).

Image 15

3. We can figure out when the first element is rendered by using the built-in
isFirst function. We do this by adding a condition to the OnItemLoad event,
which evaluates to true for the first element the repeater is rendered on.

4. In the Condition Builder window (Image 16, A), set the first drop-down list
to value (B), and click on the fx button on the next field (C) to launch the Edit
Text window (D).

Appendix

[411]

5. There, click on the Insert Variable or Function... link (E), and from the
Repeater / Dataset group (F), select IsFirst (G).

Image 16

6. Complete the condition to read as: if "[[Item.isFirst]]" equals "true"
(Image 17, A) as shown in the following screenshot:

Image 17

7. Close the Condition Builder window.

Practitioners' Corner

[412]

8. Back in the Case Editor window (Image 18, A), use the Show action (B) to
control the visibility of HL_TopBorder (C).

Image 18

9. Close the Case Editor window.

So, now we have two cases associated with the OnItemLoad event (Image 19, A).
Remember that the cases are not associated with each other. The first controls the items
that display in the list, the other deals with the display of the top line. Use the Toggle
IF/ELSE IF option (B) to make the two IF conditions, instead of the default IF-ELSE.

Image 19

Appendix

[413]

The two cases should look as shown in the following screenshot (Image 20):

Image 20

Preview the Home page in the browser and voila – the top border is rendered only
for the first element (Image 21, A).

To help you debug, make the line color red to better
distinguish it.

Image 21

Practitioners' Corner

[414]

1.4 Dealing with No Text
The following are the final refinements to complete the Google-like interaction:

1. First, hide the repeater widget (Image 22, A), as suggestions will not be visible
until the user starts typing.

2. Then, we need to make sure that the repeater is not shown when the search
box is empty. Add a condition to the OnTextChange event that hides the
repeater if the text is empty (B), and add another condition that displays it
when it is not empty (C).

Image 22

With that, we are done! We have successfully simulated a Google-like type-ahead
search interface. In the next part, we will see how we can convert this interface to
resemble the Facebook interface.

Appendix

[415]

2. Creating a Facebook-like Type-ahead Search
Interface
The behavior of Facebook's type-ahead search pattern is similar to Google's,
but it has a richer interface. Facebook's type-ahead drop-down list includes
an image (Image 23, A), a title (B), and a summary line (C), as shown in the
following screenshot:

Image 23

It is fairly easy to tweak our Google example to the Facebook one. This is one of the
major strengths of the repeater widget. Once you have an infrastructure of working
patterns, it is easy to apply the changes:

1. Start by duplicating the Home page. Rename the Home page Google Type
Ahead and the new page Facebook Type Ahead.

2. On the repeater item page's RPTR_SearchOptions tab (Image 24, A),
update the Repeater Dataset tab (B).

Practitioners' Corner

[416]

3. Update the Search_Option column (C) with the company names.
4. Add a column named Summary_Line (D), which contains a short summary

of the item.

Image 24

5. Now, update the repeater to match the Facebook item layout with the
following two label widgets:

 ° Search Options (Image 25, A), named LBL_Name
 ° Summary Line (B), named LBL_SummaryLine

6. Also, add an Image widget (C) and name it Item_Image.

Image 25

7. Also, remember to adjust the width of the top horizontal rule, if needed.
8. In the Repeater Item Interactions tab (Image 26, A) associate the newly

created labels, LBL_Name and LBL_SummaryLine, with the matching
repeater item columns (B).

Appendix

[417]

Image 26

9. Preview the page on the browser (Image 27). Tweaking the Google pattern
to fit a Facebook type pattern required only a little effort, which involved
updating the dataset and item layout.

Image 27

Now let's take our tutorial to the next level and see how to create the
LinkedIn interface.

Practitioners' Corner

[418]

3. Creating a LinkedIn-like Type-ahead Search
Interface
The LinkedIn type-ahead search is a bit more complicated to simulate, as it contains
two types of items: a category item (Image 28, A) and a result item (B). To simplify
this, we will ignore the first item in the LinkedIn panel (C). This item is actually a
link to the LinkedIn search result page, and it can be incorporated into the repeater
in a technique that is similar to the one shown in the following screenshot:

Image 28

3.1 Updating the Data
Perform the following steps to update the data:

1. Start by duplicating the Facebook Type Ahead page and rename it LinkedIn
Type Ahead.

Appendix

[419]

2. Tweak the Repeater Dataset tab (Image 29, A) by adding a column to the
repeater named Item_Type (B). This column will later help you differentiate
between a category item and a result item.

Image 29

3. Next, slightly tweak the design to resemble the LinkedIn pattern (Image 30) as
shown in the following screenshot:

Image 30

Practitioners' Corner

[420]

The following screenshot (Image 31) shows you the interim result:

Image 31

Now, there are two problems to deal with regarding the category items' companies
and groups:

• They still look like a result item
• They'll get filtered out when performing a search

We will deal with the latter problem first, because it's easier.

3.2 Ensuring that Category Items Always Show
To ensure that category items do not get filtered out, we add another condition to the
query string associated with the OnTextChange event of the search field itself, which
we created back in the Google example. We use the logical operator OR (which looks
like two vertical lines, ||), which combines two expressions with an OR operator
between them.

We used the following string for the Google and Facebook examples:

[[item.Search_Option.toLowerCase().indexOf(LVAR1.toLowerCase()) >= 0]]

The following string is the additional expression that we want to evaluate:

item.Item_Type=='category'

Appendix

[421]

The condition checks whether the item.Item_Type property is equal to the category.
This condition will always be true for category fields, and as we are using an OR
operator, the entire expression will always be true for category fields. This ensures
that they will always be shown when filtering.

So the new query string should look like the following:

[[item.Search_Option.toLowerCase().indexOf(LVAR1.toLowerCase()) >= 0 ||
item.Item_Type=='category']]

Now the results will always contain the Companies and Groups categories (Image
32, A) regardless of the search query. This, of course, means that these categories
will appear whether the results in these categories (B) match the query or not.

Image 32

This problem can be fixed but the solution is beyond the scope of
this tutorial.

Practitioners' Corner

[422]

3.3 Applying the Correct Design to Category Fields
Now, this is where it gets even trickier; we need to change the design for the
Companies and Groups items, so they will look like a header for the category:

1. Convert the repeater item widget into a dynamic panel (Image 33, A) and
name it DP_List_Items (B).

2. The dynamic panel should have two states (C):
 ° The first state is for a result item. The design will not change.

Label this state Result_Item.
 ° The second state is for a category field. Duplicate the first state to

create this state. We will change its design to be a category header.
Label this state Category_Item.

Image 33

3. Note that the horizontal line, HL_TopBorder, should stay outside of the
dynamic panel and retain the visibility behavior that we created earlier.

4. Next is the design of the Category_Item state. As we duplicated the state
from the original state, delete the image and the two labels, create a new label
widget for the category name, and label it LBL_Category-Name as shown in
the following screenshot (Image 34):

Appendix

[423]

Image 34

5. Also, change the background color to gray and adjust the height of the
rectangle. In the Repeater Item Interactions tab (Image 35, A), update the
OnItemLoad actions (B) of the repeater. Associate LBL_Category-Name
with the Search_Option column of the dataset (C).

Image 35

6. Next, we will add a case to the OnItemLoad event, which will switch the
state of the dynamic panel for all the categories.

7. To this case (the third case for this event), we add a condition that changes
the state of the dynamic panel for all the category items.

8. In the Condition Builder window, select a value (Image 36, A) for the first
drop-down list in the condition row. Click on the fx button (B) to launch the
Edit Text window (C). There, click on the Insert Variable or Function... link
(D), and from the Repeater / Dataset group (E), select item.Item_Type (F).

Practitioners' Corner

[424]

9. Close the Edit Text window and set the third drop-down list to equals (G),
the fourth drop-down list to value (H), and type category (I) in the last field.

Image 36

10. Close the Condition Builder window and set an action to set the dynamic
panel, DP_List_Items, to Category_Item (Image 37, A).

Image 37

Appendix

[425]

11. Remember to toggle the case from Else If to If.
12. When viewing the resulting page, the category rows start to resemble the

LinkedIn style. We encounter a new challenge now, which is the gap that
comes after each category item (Image 38, A).

Image 38

This happens because the Result_Item rows are 60 pixels high and the
Category_Item rows are 30 pixels high. The repeater doesn't know this because
the panel state is changed dynamically. It allocates 60 pixels for each item regardless
of the state of the dynamic panel.

Hopefully, this problem will be addressed in the newer versions of Axure.
Until then, we use another trick.

Practitioners' Corner

[426]

3.4 Dealing with the Gaps
What we now have is a 30 pixels gap that needs to be closed. Basically, what we do is
push each item up so that it will close the gap. This is a bit tricky because items in the
first Companies category need to be moved by -30 pixels, and items in the Groups
category need to be moved by -60 pixels, as they have to close both the gaps. When
we add a third category later, the items there would need to close three gaps and
move by -90 pixels. So, the trick is to figure out the number of pixels by which we
need to move each item.

We do this by adding a new global variable named ItemOffset. This variable
will store the current offset and will decrease by 30 pixels each time we meet
a new category.

The following screenshot (Image 39) shows us the cases applied to the
OnItemLoad event:

Image 39

Appendix

[427]

Let's review what happens in the OnItemLoad event (Image 39, A):

1. The first item we meet when the repeater is rendered is the first category
item, Companies.

2. The first case is triggered and Companies is moved by 0 pixels—since we are
not looking to really move the widget, just to trigger an action (B).

3. As this is an item of the category type, the third case is executed and the
ItemOffset variable is updated to 0-30 which is -30 (C).

4. The next items will be shifted by -30 pixels.
5. Once we meet the second category, the third case is executed again and

ItemOffset is updated to -60.
6. Now the next items are shifted by -60 pixels. Mission accomplished!
7. When the last item is rendered, the ItemOffest global variable is reset to 0.

The following screenshot (Image 40) shows us the final result:

Image 40

Practitioners' Corner

[428]

To add an additional category to this example, all we need to do is add a few more
category items and result items to the repeater dataset, and that's it!

Summary
This was an opportunity to demonstrate the repeater's powerful abilities to create
a robust, generic interface that can be easily scaled with new data and/or a new
design. Like many powerful features, mastering the repeater widget requires an
investment of your time. However, once you do master it, you can achieve a realistic,
high-fidelity interface on Axure like never before.

Svetlin Denkov – Building a Form-factor
Viewer/Emulator to Support Effective RWD
Demos on the Desktop
Tutorial level: Intermediate/advanced

Practitioner Profile
Svetlin Denkov is a UX Prototyper at GN ReSound in Chicago, where he builds
highly interactive prototypes for mobile and tablet devices using different
technologies. He has a masters degree in Human-Computer Interaction from DePaul
University. Svetlin is also a leader at the Chicago chapter of IxDA, which introduces
technology events to the local UX community on a monthly basis.

He has used Axure for several years now as his favorite prototyping tool and
regularly contributes to the Chicago Axure Users Meetup. In his spare time, as a
"Sifu" user, Svetlin helps others on the Axure forums under the name light_forger.
You can also follow him on Twitter at @svetlindenkov, where he posts about UX,
prototyping, and technology.

When he is not prototyping, Svetlin seeks creative inspiration for new ideas over a
strong cup of oolong tea, unless he is mountain biking, which he enjoys immensely!

The Tutorial
Denkov is a User Experience Designer who seeks productive workflows to create
Responsive Web Designs (RWD). He was excited to learn about the inclusion of an
Adaptive Views feature in Axure 7 Beta. Adopting the software during its Beta phase
enabled him to test Mobile-First RWDs for iOS-specific breakpoints. Breakpoints
identify device segmentations based on the resolution's width or height.

Appendix

[429]

The electronic magazine UXmatters, accessible at http://www.uxmatters.com,
inspired him to work on his early tests; therefore, he created a two-page RWD design
for a UXmatters mobile site with a Home page linking to an Article page. He is not
associated with the magazine in any way, but he enjoys their content and built the
mobile site as an exercise. He shared many of his findings from these tests with other
UXers at Axure Meetups in Chicago and Orlando.

However, an unexpected problem emerged during these presentations. To trigger
designs at different breakpoints (Image 41, A and C) on the desktop, the browser
(and therefore, the viewport) had to be resized by dragging the bottom-right window
corner (Image 41, B). However, this confused the participating UX designers and
other design professionals. Many asked for an explanation of what exactly was
being done on the screen; they wanted to know what role the resizing of the
browser played in the demonstration.

Image 41

Practitioners' Corner

[430]

Based on comments he received, it was obvious that the current approach to
demonstrate RWDs communicated designs ineffectively, because the audience
was distracted by the presentation method. The resizing of the browser and
the consequent screen lag introduced an unfamiliar situation that confused
the participants.

This can be very disruptive, especially when a user experience designer is making
a presentation to stakeholders during design reviews; it sets up a scenario that can
compromise a project's momentum and ultimately its timeline. A new approach to
demonstrate RWD was needed.

1. Setup and Assumptions
Luckily, there is a relatively easy-to-implement solution that can be adopted by
UX designers. Before diving into the explanation, we need to take note that several
assumptions were made while designing this solution.

The breakpoints have been identified ahead of time. In this tutorial, I am using an
iPhone 5S in portrait and landscape modes (Image 42, A and B), as shown in the
following screenshot:

Image 42

Appendix

[431]

The iPhone 5C has an identical retina resolution of 1136 pixels by 640 pixels. For
more information on the mobile project setup, refer to the tutorials on iPhone at
http://www.Axure.com. The initial RWD prototype is organized in discrete pages
for Home (Image 42, A) and Article (B):

Image 43

Call to Action (CTA) allows for navigation between pages. For example, on the
Home page, clicking on the article's title (Image 44, A) leads to an action (B) that
opens the Article page, as shown in the following screenshot:

Image 44

Practitioners' Corner

[432]

2. Constructing the Representation
The solution includes a new page, RWD Viewer (Image 45, A), with a two-state
dynamic panel (C), and controls for alternating between the states. Each state holds
an iFrame that has been sized to match the appropriate breakpoint (D). A global
variable keeps track of the current page that is being viewed, and its value is passed
on, changing the dynamic panel to a different state, switching between breakpoints
using the top-button navigation (B), as shown in the following screenshot:

Image 45

Appendix

[433]

2.1 Setting Up the View
The following are the steps to set up the view:

1. Create a new RWD Viewer page as the container for the viewer
(Image 46, A), as shown in the following screenshot:

Image 46

2. Create two buttons that include a description of the breakpoint and a visual
of its orientation. (Image 47, A and B). You can also opt for a much simpler
treatment. The styling is up to you!

3. Group the buttons using the Selection Group pop up (C) in a group
called buttons.

Image 47

Practitioners' Corner

[434]

4. Create a two-state dynamic panel and label it dp_Viewer (Image 48, A).
Name each of the states to reflect the appropriate breakpoint, for example,
s1_iPhone5SPortrait (B) and s2_iPhone5SLandscape (C).

Image 48

5. Size the dynamic panel so it accommodates all the content. Adjust its height
and width to be, at the very least, the height and width of the largest content
across all views.

Next, in each state of the dynamic panel, create an iFrame sized to its breakpoint:

A 340 pixels by 548 pixels iFrame for portrait, which you label if_iPhone5SPortrait
(Image 49, A) and 588 pixels by 320 pixels iFrame for landscape, which you label
if_iPhone5SLandscape.

20 pixels are added to the width to accommodate the scroll bar so that it is shown
in Firefox. If you're giving a demo in Chrome or Safari, the scroll bar is only 2 pixels
wide. Additionally, 20 pixels are removed from the top to accommodate iPhone's
status bar. For more information on handling the status bar in iOS 7, refer to the
Axure Mobile forum at http://forum.Axure.com.

Appendix

[435]

The following screenshot (Image 49) illustrates the vertical state (A) and the Location
+ Size panel (B):

Image 49

Practitioners' Corner

[436]

The following screenshot (Image 50) illustrates the horizontal state (A) and the
Location + Size panel (B):

Image 50

Next, we will configure the iFrame. Set Home as the default target page for both the
iFrames (Image 51, A). For a seamless experience, enable scrolling for both iFrames by
selecting the Show as Needed option (B), as shown in the following screenshot:

Appendix

[437]

Image 51

2.2 Adding Interactivity
The next section details wiring interactions to the wireframes:

1. To pass context from one iFrame to another, a global variable must be used
to store the currently opened Axure page as a text string. Create a global
variable and name it gVarCurrPage. Set Home as the variable's default value.

2. Clicking on the article's link in the Home page (Image 12, A) sets the value of
the global variable to Article (B) as shown in the following screenshot:

Image 52

Practitioners' Corner

[438]

3. Similarly, in the Article page, gVarCurrPage will be set to Home if the
user clicks on the relevant navigation there. Essentially, for every CTA that
triggers a page change, the value of the global variable has to be updated.

4. Lastly, for the two buttons we created in step 2.1 Setting Up the View,
the actions must be updated for every button.

5. Click on the first button to set the dp_Viewer to s1_iPhone5SPortrait state.
6. Add conditional statements to check the value of gVarCurrPage and open

the appropriate page in the iFrame; for example, if the value is Article,
open the Article page in if_iPhone5SPortrait.

7. The same applies for the second button, except this time dp_Viewer is set
to s2_iPhone5SLandscape.

8. You must do this for every button depending on the number of breakpoints
you have included in your design.

2.3 Testing the Prototype
Preview or generate the prototype in the browser to check the interaction and layout.
Possible tweaks include toggling the iFrame borders and changing the captions
above each layout option. Switching breakpoints via buttons (Image 53, A and B) is
now elegant and seamless and resizing the browser window is no longer required.
Presenting layouts in meetings has now been transformed to a polished experience.

Image 53

Appendix

[439]

3. Possible Limitations
While this organizational approach significantly improves the RWD presentation,
it is not without limitations. The following is a list of the possible limitations:

• The RWD viewer assumes that all screens map across all breakpoints. If you
have breakpoints for which some of the screens are combined/removed,
this has to be reflected by updating the values in the conditional statements
assigned to the buttons.

• Using nested dynamic panels to organize your screen content may break
the RWD viewer. This is true when you try to pass context between iFrames
because there is a single container page. Therefore, instead of checking for
the page name, you must check for the state of the parent dynamic panel
(the content container). Not only will you have to change the state of this
panel, but you will also have to adjust the states of any other existing panels,
for example, headers, footers, and so on. You can see how this easy task
becomes quite a daunting task.
The newly introduced OnAdaptiveViewChange event may help in handling
custom interactions in dynamic panels (and possibly content, although Axure
at this point does not provide actions for "Place in View" and "Unplace from
View" of widgets), but this does not eliminate the need to use the resizing
metaphor for triggering views.

• An inherent limitation of using a page-based design is that the content does
not load immediately when opened in an iFrame. Each page loads separately,
introducing a lag in updating the iFrame. This can be solved by using a
transitional loading screen, which displays the content as the screen loads,
but this is outside the scope of the tutorial.

With the Axure's 7.0 update and its cloud storage service AxureShare
(http://share.Axure.com), it appears that the pages' speed for loading content
has significantly improved, but this speed will vary depending on the amount and
type of content (for example, rich visual assets versus vector Axure widgets) you
have per page.

Practitioners' Corner

[440]

Takeaways
Despite the limitations, using this approach will benefit the communication of
RWD by:

• Helping project members and stakeholders understand design views
across devices

• Facilitating a discussion of the design during reviews
• Ensuring close team collaboration for iterating the design
• Separating the content from the viewer, which will allow prototype demos

on a mobile device or on a desktop

In addition to the time and effort spent in creating the RWD design, a User
Experience designer must put in more effort and work harder to adopt this
presentation strategy; he/she must build the viewer before the design is ready
for demonstration. For multiple projects that target the same number and type of
platforms, building the viewer can be done once and consequently tweaked from
one project to another.

Furthermore, just like any change management exercise, prototypers must be careful
to reflect updates in page names and the overall flow of the prototype in order not to
break the iFrame content loading.

Lastly, this technique may not be applicable to all types of project work. More
specifically, maintaining deep, highly interactive prototypes using this approach
may prove challenging. Ideally, the technique should be applied for click-through
experiences. Regardless of the scope and goals of your projects, I hope what I
presented here will be useful to many of you who engage in creating RWDs!

Reusing Cases Across Different Widgets
and Events
Tutorial level: Intermediate/advanced

Practitioner Profile
Ritch is the CEO of Ax-Stream—the approved Axure RP training and support
partners for Europe. He has worked in UX, UCD, and Usability since 1995 and has
particular expertise in designing and usability testing of early conceptual prototypes
(using Axure). Ritch has published numerous refereed papers in this field and
was on the editorial board of the Encyclopedia of Human-Computer Interaction,
published in the year 2007. He is a member of as well as a guest speaker for the
User Experience Professionals Association (UXPA).

Appendix

[441]

He has been using Axure, in lead UX roles, on multimillion dollar projects since 2008
and focuses on: highly complex Axure prototyping, developing intelligent widget
libraries and strategic work around integrating Axure into UCD and Agile methods.
He contributed a tutorial to the book Axure RP 6 Prototyping Essentials, Ezra Schwartz,
Packt Publishing; he is "Sifu" on the Axure forum, owns the Axure RP Pro LinkedIn
group, and is a regular panel speaker at AxureWorld.

He holds a PhD in Human-Computer Interaction (HCI) from Loughborough
University's Human Sciences and Advanced Technology (HUSAT) research center
and has delivered lectures at the masters level across five countries on UXD, UCD,
Usability, IT Strategy, Business Analysis, and IT development methodology.

The Tutorial
In the training courses we conduct at Ax-Stream, our delegates often ask if it is
possible to reuse cases across different events and widgets. The more technical of
them frame this question, "Is it possible to define a library of subroutines in Axure
that can be reused?"

This requirement can usefully be explained by considering the following screenshot
(Image 54), where we have prototyped a very simple usability questionnaire using
Axure 7:

Image 54

There are three questions and a pair of radio buttons for answering each question.
As the questions are answered by clicking on the radio buttons, we want the total
score to be updated whereby one point is scored for each Yes answer. So, if the user
answers Yes to all three questions, the total score is 3, and if the user answers No to
all three questions, the total score is 0.

Practitioners' Corner

[442]

To prototype this in Axure 7, perform the following steps:

1. Create a page titled questionnaire (Image 54, A).
2. Add Label widgets for questions (B) and their corresponding pairs of

Yes and No radio buttons (C).
3. Add a Rectangle widget to display the total score (D).

Image 55

4. Label all of the radio buttons and the total rectangle shape.
5. Assign each pair of radio buttons (Image 56, A) to a radio group (B),

which will take care of the exclusivity of each answer.

Image 56

Appendix

[443]

6. Add a case to the OnClick event of the first radio button (Image 57, A)
named setTotalScore (B). It calculates the total score based on the status
of the radio buttons.

7. This is done with three local variables: LVar_question1, LVar_question2,
and LVar_question3, which are mapped to the is selected of status of the
three Yes radio buttons (C). When in the selected state, the value of their local
variable will be 1. The three values are added and placed in a global variable
called gVar_totalScore.

Image 57

8. For the same radio button (Image 58, A), add an action (C) to the
setTotalScore case (B) that uses the Set Text action.

Practitioners' Corner

[444]

9. Place the value of the gVar_totalScore variable in the bs_totalScore (D)
Rectangle widget.

Image 58

10. Copy this case onto all the radio buttons so that the total score will be
updated when the user clicks on any of the radio buttons.

The Problem
This example will work just fine, but the architecture of this Axure prototype has a
significant problem that can cost us a lot of time later on! The problem comes when
we want to add additional questions and an associated pair of radio buttons.

In addition to adding cases to the new radio buttons, we also need to update every
case on each of the existing six radio buttons so that the total score is now calculated
on the basis of all questions. This can be quite a lengthy and tedious task, and in real
prototyping scenarios, we may have to update lots of cases this way! Remember,
a key feature of prototyping is speed!

Appendix

[445]

When there are many actions and conditions to be updated within each case, we
can save some time by updating just one case, deleting any old cases, then copying
and pasting the updated case as required. However, this is still quite lengthy and
tedious. Its repetitive nature also means that it is error prone; for example, it is
easy to forget to update one or more widgets if we are editing lots of them. In turn,
bugs introduced by such errors can be quite difficult to track down, as we may be
convinced that all the widgets have been correctly updated.

The Solution
Fortunately, there is a great solution to this problem. The approach involves a
small dynamic panel, which has one empty state. This panel responds to an event
triggered by the radio buttons, executing a case that contains all of the necessary
actions to calculate and set the total score. The same cases that were present on each
radio button in the previous version of our prototype are now concentrated at a
single place.

Start by duplicating the questionnaire page to questionnaire2 (Image 59, A). Add
a fourth question (B). Due to the duplication, there is a bit of work—tweaking the
widgets and the calculations that are based on the local variables. Try to do this
yourself before looking at the file for answers. Add a small dynamic panel to the
right of the bs_totalScore widget (Image 59, C) and label it calculator. There is
nothing you need to do with its states.

Image 59

Practitioners' Corner

[446]

Copy the setTotalScore action from any of the radio buttons in the questionnaire
page and paste it to an OnMove event of the calculator dynamic panel. For the
rad1_yes radio button (Image 60, A), create a Move calculator by (0,0) (B) case
for an OnClick event.

Image 60

This panel is obviously not intended to move. Rather, the action triggers the panel's
OnMove event, which, in turn, performs the cases and sets the total score. Paste this
action to all radio buttons.

This architecture means that if we add one more question, we simply have to update
one case on the OnMove event of the dynamic panel and copy and paste some cases
onto the new radio buttons—we do not have to update any of the cases on the exiting
radio buttons!

Discussion, Takeaways, and Next Steps
Of course, the time-saving and error-prevention benefits of this architecture
increase along with the number of times similar cases would otherwise need to be
replicated across the prototype, but the architecture has another, less obvious, but
key advantage! Keeping track of what interactions each widget/event is performing
in a prototype can ultimately become the limiting factor in how complex an Axure
prototype an individual can produce. This architecture, whereby we keep more
complex cases in one place or modularize the interactive aspects of the prototype,
makes the process of managing complex interactivity easier and more scalable;
thus, this increases the potential complexity of the prototype.

Appendix

[447]

The ultimate progression of this architecture is to set global variables prior to
triggering a dynamic panel's OnMove event such that the panel then uses the value
in the variables to determine (through the use of conditions) which case(s) to execute,
and how this execution should be performed, in particular contexts. Indeed, some
Axure experts, including myself, have pushed this architecture to the point whereby
for very complex prototyping, we manage most, or even all, of the interactivity using
a single control panel and a suitable set of variables to manage the behavior of this
panel. In my experience, this makes it easier to keep the interaction model in mind
and identify/correct any bugs. Indeed, an example of this can be found in the widget
called menuPanDragSwipeRepeaterItems in Ax-Stream's Drag, Swipes and Spins
widget library (which is available for free download at www.ax-stream.com).

The use of such architectures can be extended in Axure prototyping, whereby we
set up a bunch of such control dynamic panels on a page that act like a subroutine
library we can simply call upon from any widget or event to execute the cases
we need.

Of course, as with all Axure functionality, we can place these control panels into
masters if we want to reuse them across pages. Similarly, we can place them within
custom widgets so that (complex) cases can be reused across different projects via
widget libraries. I also hope that such libraries will eventually be produced for
distribution across the Axure community. This will ensure the Axure prototyping
speed can be increased in general—just as code subroutines and objects that solve
common programing problems are freely available to developers (for a wide variety
of development environments).

Clearly, these more sophisticated progressions will be best suited to those with
a more technical background, who are capable of complex Axure prototyping.
However, the basic technique of using the OnMove event on a dynamic panel to
reduce redundancy in a prototype's interaction model is not particularly difficult
to understand at its most basic level, and I hope it will be useful to the wider
Axure community.

Practitioners' Corner

[448]

Marc-Oliver Gern – Using the Axure UI Kit,
a Widget Library
Tutorial level: Beginner to advanced

Practitioner Profile
Inconsistencies of interactive components and UI elements in software products
are a nightmare. Not only are they confusing to end users and developers, but they
also drive up the development costs, since they are extremely hard to manage and
difficult to update. The end goal always should be to bundle up all the functionalities
your app needs with as few UI components as possible.

Marc has created a new interactive toolkit in Axure (http://wearebridge.co/ux-
tools) to help UX, IX, and visual designers build better, more consistent prototypes
faster. It consists of UI elements, page modules, and page templates. You can now
easily build wireframes and flows or start your own library with some of the stencils
he has provided. Libraries can be used not only to verify design assumptions on a
component-by-component basis, but also to define and document design decisions.
Libraries constructed in Axure can be easily shared, tested, and kept up to date.

This section will briefly walk you through the process of creating and adding a new
page module to the library of interactive components. A page module consists of
multiple UI elements and can initiate several view changes inside its own property.
Dynamic modules are becoming increasingly important with the growing popularity
of single-page applications.

1. Ideate and Define
Let's assume that you already set the stage for your library and used the widget,
interaction, and page style panes to define a consistent form language for your
components (colors, shapes, proportions, fonts, margin, padding, and so on).
We can jump straight to the design of a new module. We are also clear about
the context, function, and form of the new module.

Appendix

[449]

The way I always approach the next stage is to look at best practices on the web or
on mobile and search to find out if there are already established design patterns out
there that I can adopt. Especially, when you design components for closed platforms,
such as the iOS and Android, or XBOX, you want to make sure you "stick to existing
frameworks" (Roman Nurik, Android Design team). This is basically your first, free
usability test; if you see it in action on a major site or app, it probably has been tested
already with users. You can also quickly google usability and performance tests and
get answers on more specific questions around touch events, gestures, form creation,
naming conventions, icons, legibility, and so on. The web is full of knowledge.

Feeling a bit more fancy and ready to raise the design bar? Check out the Web and
you can draw some inspiration from www.pattrns.com, www.littlebigdetails.
com, www.behance.com, www.cssdesignawards.com, and so on. There are some
really interesting design visions out there that might add just the pixel piece
you needed. After all, design is about imagination and experimentation, not
just designing by numbers.

So finally, you think you are on a good path and maybe have even discovered two
solutions along your design journey. Now, let's quickly talk to a front-end developer
and see if there are some issues around performance. He should also give you a
rough estimate for coding. Connect the dots: the goal of this first step is to come
up with the most elegant solution to solve your design problem.

2. Build
You are equipped with a clear idea, notes, and raw sketches and can go back to
Axure to craft the new page module. I hope you made use of the built-in Axure
widget library and created a new library. If not, do so; it's much easier to manage,
share, and distribute your components later on.

Ok, let's start clicking. First thing, look at the existing UI elements you already
crafted and see what you can reuse. Remember the overarching design mantra for
interaction designers: build more with less, more efficiently. Think as a front-end
developer and what code she or he can reuse to achieve a specific outcome quickly.
Look at what is on your website or your app already and what combination of
existing elements might do the job as well.

Practitioners' Corner

[450]

Take the following page module for example (Image 61). It is a Welcome Module for
first-time users. It elegantly wraps multiple functionalities into a dynamic widget
and was built quickly by merging a few basic UI elements: an accordion, form fields,
a button, the carousel, and the modal window itself. These basic elements might be
already in your library, so you just need to stitch them together, which is easy since
you built them based on a grid and global style attributes. The solution and adaptive
view for small screen devices can be just the accordion itself—the grid shows us
where the breakpoints are and how it can fit on a vertical view of a smartphone.

Image 61

Appendix

[451]

The functionality for the individual components (the accordion, form fields, button,
view controller, and so on) has been established earlier and should be available to
you right away.

You can use widget interactions and page interactions once you've
created a master out of a single component. Page interactions are good
for initializing onPageLoad events, such as setting a specific state for a
dynamic widget. Be sure to name each and every component or group
module. It will be easier for you to add interactions and reference the
right widgets.

3. Contextualize
While building components, make sure you understand the context in which other
designers, researchers, content strategists, or copywriters are going to use the library
you created later. When you look at the previous example, I didn't define every
single element, nor did I add all the content for the different states and views. I left
it open and just provided the functional framework my colleagues can take and
continue working on effectively. We will discuss one such case as an example: a UX
researcher wants to test different images and alternative messaging on a welcome
flow. You want to make it easy for him/her to change the content and quickly build
several test cases. You might also have the chance to build products for different
markets, and a library is an awesome tool to test localization. Give it a try: change
English to the German or Russian version and see how the proportions of your
components hold up. It is a good thing that you defined some global style attributes
using the widget pane from Axure. Now, you can easily change the font size of all
your green buttons in the UI library. Maybe the executive producer did not like the
green color of the buttons either? If so, change it back to grey with a click of a button.

Think you are finished? Do the clean up: describe it, name it, and stitch it to an
existing folder so people can find it easily later. I use categories that are more generic
such as UI elements, page modules, and page components. Maybe it makes more
sense to tie the components to your developer's naming conventions and how they
refer to UI modules in the code. I also had good experiences with actual themes such
as maps, forum, e-commerce, and so on. See what works best within your context.

Practitioners' Corner

[452]

4. Test
This is the beauty of Axure. Now that you've actually created your new module in a
real prototyping tool, you can take it for a test ride. Go ahead, open a new document
and drag your new module from the widget library onto your page. I often use the
public folder of Dropbox, so I can share a link with the stakeholders too. Preview it
in a browser and click on all the interactive components, change the views, and so
on. Don't miss the opportunity to look it up on a tablet and/or small screen device,
if you happen to optimize the view port in Publish / Generate HTML Files. You
especially want to check where the copy breaks, readability, positioning, the timing
for transitioning, and so on. Are you missing some interactions? While dragging
your element from the library to your screen, Axure might have lost a reference to
a specific widget. Go back to the interaction widget and see if there is an undefined
piece of code. The goal of this state is to make it work rock solid so that it can be
tested with real users, if needed.

5. Iterate
You have discovered some usability flaws or performance issues and might also
have looked at some testing results from your UX researchers. It's time to implement
the changes and put the official stamp on it: Version 1.0 of the software will change
on a relatively frequent basis, so make sure to keep track of the changes. I usually
add a change log page to each library. You can also use the Note widget from Axure
to keep track of changes. With this, you keep the users of your library informed
about the changes you made. Now, you might not be the only one working on this
library, so it's good practice on how to log your work.

Here we go—you've added another page module with several UI elements to your
widget library. Maybe you should inform your colleagues about it and introduce the
new design snippet with a friendly "Welcome XYZ to the family" e-mail. I hope you
crafted an e-mail template already. Get ready and start your own UI kit or even lay
out an interactive style guide with Axure.

Collaboration
The following section includes contributions of Axure users who have experienced
working in a team environment using Axure's Team Projects (previously known as
Shared Projects). Some, like Ildikó's story, describe the experience of working in a
small team. By reading about the challenges she describes, we hope that the readers
who experience very similar issues will see that they are not alone. This entire book
is filled with strategies which we hope can help readers, like they helped Ildikó,
handle some of the issues. The case study from Orbitz, the global travel site, is at the
opposite end of the spectrum. The team describes the meticulous process they let in
transitioning the entire organization to Axure.

Appendix

[453]

Ildikó Balla – Collaboration in Small Teams
The following section is based on a Skype interview with Ezra—one of the authors of
this book.

Practitioner Profile
Ildikó Balla is a UX consultant currently living in Sydney, Australia. She has over
six years of experience working on mobile, web, and desktop applications ranging
from simple sites to complex back-office solutions and e-commerce platforms, and
experience in establishing and leading a small team of junior interaction designers.
Specializing in interaction design and medium-fidelity prototyping, Axure has been
Ildikó's tool of choice for the past five years.

Ildikó is currently working for reInteractive (www.reinteractive.net), Australia's
largest Ruby on Rails-focused development company. She is in charge of
requirements analysis, information architecture, interaction design, and user
testing for complex web applications and business intelligence solutions.

Some of Ildikó's short articles about UX, interaction design, and prototyping can
be found on the company's blog. She is a regular attendee of AxureWorld and
similar Axure- and UX-related events. She was the technical reviewer of
Axure RP Prototyping Cookbook, John Henry Krahenbuhl, Packt Publishing.

In her spare time, Ildikó is often found taking pictures, travelling, riding,
and learning new languages, though usually not all at the same time.

Reflections on Team Projects
On one of my projects, I was the lead of a small team of three additional junior
interaction designers, who were also not familiar with Axure. So I had to quickly
share from my experience in both UX and the tool. Another challenge was the
limited ability of some members in the team to communicate in English when
it came to writing clear annotations.

The team was required to annotate the wireframes, and these annotations were later
consumed by Business Analysts (BAs), who generated more extensive specification
documents, and stakeholders through the HTML prototype.

Practitioners' Corner

[454]

Early on, we had to get to an agreement on how much to annotate, and who will
write and review the annotations. It was important to provide the client with a
consistent, fluid level of writing, and given the language challenge mentioned earlier,
the majority of the task was assigned to one team member who was assigned the
writing. As mentioned earlier, because BAs were assigned the task of writing the
extensive specification documents, the agreement was that the team provides only
light annotations, and the workload on the person was manageable.

To support team collaboration, we used the Shared Projects feature (renamed
Team Projects in Version 7) from the get go. With help from the company's IT
team, we were set up on the company's own SVN server, and we were supported
by IT throughout.

I am a proponent of naming conventions and implement and use them. I encouraged
my team to use the scheme, because it can save a lot of time in the long run, especially
when trying to guess what things are or do. But, I ended up not enforcing it, just
because it was difficult to govern on top of all the other things I had on my plate.

The prototype we were expected to deliver did include the visual design, but the
interactions were in high fidelity. The way we split the work, each team member
owned a set of pages in the file and was responsible for building the interactions
on these pages.

We would have documented our code, if there was a way to do it in Axure, to add
comments to interactions. Instead, we tried to use very descriptive names. But when
it came to global variables, for example, we had a challenge. Because each team
member was creating variables as needed, and because it is not possible to document
variables (owner, purpose, and so on), the list of global variables mushroomed
with redundancies and abandoned variables, but no one knew what they were and
where they were used. Everyone was afraid to delete variables in case they broke
something, somewhere in the prototype.

With each team member owning a chunk of the prototype pages, we had obvious
style differences. Some were careful about alignment and measurements and some
were more loose in their treatment of the layout, distorting images instead of fitting
them, for example, use of line width, and so on. This created consistency issues. We
did not initially have a widget library, but we quickly started using masters, as I
wanted to ensure that consistency does not get out of control. We also incorporated
the style guide, which was mostly textual, as a master in the file.

Susan Grossman – Enterprise Team Sharing
Susan's experience, while describing the challenges of large UX teams using Axure's
collaboration features, shares many fundamentals with Ildikó's.

Appendix

[455]

Practitioner Profile
Susan Grossman is a well-seasoned enterprise consultant who usually works under
titles like Senior UX Analyst, Interaction Designer, or Technical Trainer. She has
actively used Axure at a variety of corporations, working with their teams' nuances
and processes, through many diverse projects: waterfall, agile, or lean. An avid
all-inclusive web proponent, Susan volunteers to help nonprofits improve usability
and meet accessibility. She works out of her California Gold Rush foothills home
with a Rhodesian Ridgeback at her side.

Reflections on Team Projects
When using Axure in an enterprise environment, shared projects online and outside
the firewall are a must. I can't imagine going back to working without one.

There are several repositories out there that allow you to set access permissions on
different projects and maintain version control. One of them is Beanstalk, which
keeps an activity log by project, supports grouping projects in separate repositories,
has e-mail notifications, and prominently gives the subversion URL to use the first
time you "Get and Open" a shared project. The ability to assign users to specific
projects with separate URLs for retrieving is a must for busy UX teams. For me, it
emphasizes teamwork, even when you're working remotely, and you see all those
check-ins with comments in the main area and everyone with permissions in the
right column.

Whatever repository you use, being able to add notes for every check in and
downloading any past version are expected features. I like being able to get a
past version, save it off locally as an .rp file and pull in older pages from it.
When business asks for something that was removed in a previous release or
an idea that wasn't used before, which could work now on a different screen,
this comes in real handy.

Since Axure allows you to choose what pages to generate, some teams will set
several cover pages in the prototype. There will be one cover page for the business
that will always get published as the root or top-level page. This page explains what
you're showing and gives details on what a wireframe is, what it does and doesn't
include, and any disclaimers you may need about pages using screenshots from
existing live sites, the look and feel of being in the comp part of the project, and
what it means to be sketchy.

The second cover page is never published and is strictly for passing along
information to someone who may pick up the project a year later. This is a
significant time saver when looking up things, such as who was on the initial
project, a summary of the main requirements, and nice-to-haves that are on
unpublished pages for future releases, including in past versions, and so forth.

Practitioners' Corner

[456]

Why Have an Existing Online Product Outside
the Firewall?
You don't have to create your own repository or install and maintain one. I'm a
remote contractor for a large corporation, have been remotely contracting for
quite a few years, and depend a lot on discussion.

A lot of companies use an online bug tracker, or put their knowledge base outside
the firewall, and it makes sense to do the same for your shared Axure projects. They
need to be accessible no matter where the team members are, and without relying on
logging in and going through a network first. When well utilized in a collaborative
team project, your files get pretty large, cumbersome, or completely unreachable
if the network has issues. Even if the team is all onsite, there are often things that
must be done in the evening or over the weekend when going back to the office
isn't possible.

The repository must allow you to set different levels of permissions. Even when
we're all pros, someone will accidently delete something, relocate to another
project, or make some mistake wherever possible. And like Murphy's law, it will
happen right before an important presentation of the work to business sponsors.
At the minimum, you'll need roles for a limited number of team members who can
administer (add/delete), an overall owner (or super admin) who can add users and
assign administrators, and finally, users who can check in and out of a project once it
is set up.

Process and Convention
It's important to have a process to use Axure-shared projects that the UX team
follows. These include how they deal with the repository, how they add/remove
pages in the site map, what masters must be used, when to create new masters,
and how to display interactions and roles.

Always Get the Latest
Before starting work on an existing project, always get all the changes from the
shared directory or there's a high probability of overwriting someone else's work.
No exceptions.

Before generating a prototype, even if done to quickly show something, always get
all the changes from the shared directory or there's a high probability that you may
show work that's no longer valid. Again, no exceptions. I've seen this happen both
with the site owner questioning why they're seeing something they thought was
changed, or ended up showing something that has been scrapped.

Appendix

[457]

Never use the Check out Everything option unless you change something on every
page. Also, inform everyone else working on the project. There's nothing more
frustrating than trying to fix something late at night and finding it checked out to
an unreachable teammate who wasn't even working on that page. Pages should be
checked out as determined. They then need to be edited in Axure using the option
Check Out.

You need a process to check-in—some teams request that every night a check-in
is done, both for versioning and a record of progress in the check-in notes. Others
assign specific sections and request that they aren't checked in until the section is
ready for its first review. This works fine as long as any new masters or changes to
masters are coordinated. This is really a choice determined by the number of people
working on the project, and how fast the turnaround is.

Size
One of the reasons why past versions should be saved and made easily available is
file size. Often, multiple candidate wireframes exploring possible interpretations of
the requirements are set up as root-level pages. Some of these pages are removed
over time to reduce the file's size and its complexity. If all alternative interactions
for all versions, including their notes, are retained on a large project, they become
difficult to sync and pull down without crashing or not completing them on the
standard issue company laptop.

Saved versions or past versions that can be easily fetched from the repository will
allow you to import a style or concept down the line when the business remembers
something they saw early on and think that the current requirements could use
that treatment. It's also not best practice to leave all the pages in, even if they aren't
published. A team member could unknowingly build the project and set pages that
the business has decided against generating, causing invalid feedback, and making
you look bad.

It's important to know and consider all your team mates' systems. If someone was
issued with an older laptop, though you may have no problems uploading and
retrieving a large project, if other members are unable to get the project running
without errors, or crashing, timelines will slip. It's important to remember that this
isn't an issue with Axure itself, but the systems using Axure and getting projects
from a shared, external repository.

Practitioners' Corner

[458]

Enterprise Naming Conventions
As mentioned previously, initial versions of the wireframers' early interpretation of
the requirements are set up as root-level pages. A lot of projects name their screens
by the initial requirement feat, use case number, or user story name, depending
on the company. Under each named version, there are sets of the same child pages
(name and data) showcasing the style of the version.

For a simple example of initial concept versioning, one version may be a tabbed
or panel experience, another maybe a dynamic version with a section of the page
changing based on choices, the final version showing highlights of everything like
a dashboard. It's important that each child of these different flows' names would
reflect the parent version for easy referencing in remote meetings.

Names and Dynamics
For clear directions to those creating the comps and then relating the full experience
to development, dynamics can sometimes add an unexpected kink. In a project that
has several roles accessing the same pages that were shown different sections and/or
possible data sets, we chose to display the role in Axure dynamic. When generated
as HTML and demoed, we entered the screen as the core user, and there was a mini
dashboard in the top corner that was not part of the flow. It allowed us to switch
to the other roles by selecting the role name link. This changed areas on the screen
using Axure variables with OnClicks. It was very clear to the business that we could
include a bit of flow, keep the dashboard, and switch users at any time on any page.
The business loved it.

Then, it was time to do the comps and many extra meetings had to be called. There
wasn't a physical screen named with the company convention that they could tie
directly to a comp and without this, a matrix had to be created so comps weren't
missed. It also caused extra meetings with the development team on why there
were comps that didn't appear to match up to a named page in the wires.

In this case, the dynamics could have been less fancy and utilized name screens
from the dashboard so the business still had a feel of changing roles on the
screen, but would be actually moving to another page. I'd recommend saving
the in-page dynamics to represent data returns, or success and error messages
for form submission.

Appendix

[459]

Team Skillsets
Not all team members are equally skilled with Axure. You may have some team
members who are highly skilled and will set up all the masters initially, while other
team members work with the business doing the initial storyboarding, architecture,
and rough wires. How interactive the wires are will be determined by the team's skill
levels. If there's only one person who knows how to set panel states on page load,
you'll want to keep your interactions basic so everyone can work on them and the
final product is consistent.

There is also risk if you have a contractor come through that sets up fancy
interactions and isn't there when you're doing updates/new releases. I had the
chance to work with a very skilled Axure user on one of my contracts, and though
he was brought in for one specific project, he ended up assisting with some complex
flows and concepts on several projects. After he was gone, and some of these projects
went to other UX people, there were some major requirement changes in the next
release. Things were missed because the new team members didn't know how to
update the wireframes and interactions correctly.

If your team has several members with strong Axure skills, then you should be
taking advantage of the features available by adding cases to show different states,
and using custom widgets along with your masters.

Most UX practitioners are skilled in storyboarding and information architecture
and any team member should be able to set up the sitemap correctly and generate a
flow diagram within Axure. Axure makes these tasks easy to use in order to display
different options to the business, grouping the versions in the sitemap and rendering
a flow for the business to visualize what you're proposing. Simple storyboards can
be used at this stage, like we used to do in Visio, with the storyboard kept as the first
page of the final version and the generated sitemap as the second.

Publishing and Prototyping Pages and Settings
Updates
Several teams I've worked on have used password-secure AxShare outside the
firewall, publishing space for their wireframes. AxShare allows each team to create
their own unique URL and password—all administered from the same AxShare
manage page.

Practitioners' Corner

[460]

Make sure before you demonstrate that only the pages that are a part of the
discussion, or only the approved ones, are published, which means someone has to
be responsible for making sure that only the agreed-upon pages are selected in the
Pages tab of the Generate Prototype menu. Managing this tree correctly can become
complex when multiple team members are working on the same file, but on different
pages or versions.

Not all files created are for publishing, and yet making sure the ones that are to
be published have been updated in this view correctly isn't as easy as it sounds.
Someone always has this checked out. You can get around that locally, but when
it's time to check in and publish, you need to check destination folders and make
sure someone hasn't turned on anything you don't want published, or have checked
annotations that were only meant to be published for the development team.

This is just another opportunity to process and make sure all the team members
understand the publishing options and how they affect even team members who
don't publish.

Setting Expectations
Starting a large website/web application project brings a lot of teams together, and
each team has their own expectations on what deliverables they'll produce for what
purpose. The teams that receive these deliverables have their own expectations on
what they'll receive and how they'll use them. Often, there's a large chasm between
these sets of expectations.

Axure has opened a lot of possibilities for higher-quality deliverables and has
widened the gap between these expectations. Fortunately, expectations can be set
early in the requirement process to help close the gap. The cover page discussed
previously is part of setting expectations, and I have found it very helpful to read it
out loud to the business before diving into the presentation.

So What Are You Boarding/Framing/Prototyping?
Teams need to determine how they're using Axure. Sometimes a project can be
jumped into before there's a team together other than business analysts. Whoever is
doing these early stage flows and story boards in Axure needs to know before they
start how deep the final deliverables are for the UX team.

Appendix

[461]

What are the architecture or design goals? Are they using the interactions for activity
analysis or just to portray to the business? Will the business want to see the comps
themselves added into the wires, or are they separate deliverables? What is the
expected complexity level? All these factors affect the Axure skills you need for the
project. Do you need all requirements, wire/comp/content in a comprehensive
specification? If so, you many need team members who really understand how to
coax Axure to generate a usable requirements document.

Is this being built off an existing look and feel? Is this an enhancement to an existing
product that another team initially worked on? Then, you'll want to see what already
exists and leverage any masters or other widgets available, base your team choices
on the type of interactions, and set up.

I've seen very good UX people with basic Axure skills end up on pages that utilize a
lot of the features they have no idea how to use. If paired with an Axure guru, they'll
supply extremely high-quality deliverables, whereas alone they'd fail, with business
and development both unhappy.

Look And Feel (L&F) in Wires
The following section addresses the impact and importance of wireframe fidelity.

High-fidelity Wireframes Really Get the Point Across!
I've had companies hire me for reviews and hand me their Axure project to use to
see all the paths, what it should look like, and where each flow starts. They included
full navigation that reflected the page you were on and all the content (final images
and text). These projects made it possible to review the final project thoroughly
and completely understand the kind of responses and when they should happen.
Their high fidelity made it so we didn't need any clarification meetings, and enabled
working remotely 100 percent, for a fast turnaround with more time available to
produce a final quality analysis.

High-fidelity Wireframes Can Lead to Extreme Frustration
When working on a very large enterprise project, wireframes are not a living artifact.
The framers don't expect to be updating them as the content people complete
content, or the UI people create the final graphics. They are a stage in design that
defines the interactions as well as the basic layout. Deliverables down the line, such
as content matrices and comps, will refer to them by page names and someone will
probably keep a mapping matrix too.

Practitioners' Corner

[462]

In this instance, the Axure project is a tool to help the business understand what
they're asking for, what does and doesn't work, and show all the interactions. Once
approved, the project is a tool for the UI to work up comps from, and content to see
what they need to produce. Then this group of artifacts goes to development for
coding, and quality assurance to write test scripts. At different stages of the wires,
the teams all come together to discuss the path taken, voice their doubts, make
suggestions, praise some ideas, and so forth.

If the wires are high fidelity, what happens is the business wants to see the content
in the frames, not just placeholders, and wants to know what the image is going to
look like. System admins will take apart pieces like your footer that may not exactly
match the links they already have in production, and want you to match everything
and change it with the next month's release. Then the developers start telling you
that unless all the latest content and possible flows are covered, they can't
start coding.

If you try to accommodate all these demands, you're changing content as it's altered
and approved by legal, adjusting L&F as the live product changes and approvals
for images come through, and so forth. The wireframe is suddenly the truth for
everything, and you'll be updating it until the "end of life" of the live web application
and never move onto another new and exciting project ever again. Everyone will
be unhappy, the work will go way over budget, and the nuances you could have
focused on will never get improved.

It's Kind of Sketchy
It's incredibly important to set the expectations for your Axure wireframes at
the start of the project. Make sure stakeholders clearly understand exactly what
deliverables to expect, when to expect them and their scope and fidelity level.
On large projects, get all the teams to sign off on this statement of deliverables
and remind stakeholders about the agreement when needed.

There are several methods of getting this point across, including visually in Axure
itself. Things such as using color for emphasis only but keeping your pseudo headers
and photos gray scale will clearly show that this is not about look and feel and/
or turning up the level of sketchiness. So, it looks more like a story board than a
prototype. And memorize your favorite "that's what the UI will do" phrase,
because you'll be using it a lot.

Appendix

[463]

Lorem Ipsum can be helpful as placeholders, though there's a fine line between
when and how to use this. Combined with sketchiness, the initial content paragraphs
are best in Lorem Ipsum, so business can concentrate on your interactions instead
of the marketing language. This comes with a warning—in a recent project I saw
some Lorem Ipsum getting into a few modal windows in the test environment. The
development team left in the placeholder text, and the error was only discovered
during testing.

Orbitz Worldwide – Axure As a Document
Base
The following case study is a remarkable, detailed, and valuable description of
transitioning an entire organization from Visio to Axure. The level of planning,
risk-to-value assessment, and methodology echoes the general message of this book,
which puts a premium on upfront investment in preplanning, strategy, and logistics,
for winning long-term value and success with the tool.

The following case study includes feedback contributions from the following
team members.

Practitioner Profiles
Adam C. Basey is currently an information architect at Orbitz Worldwide, one of the
leading online travel agents with previous working experience at Accenture, User
Centric, and Indiana University Alumni Association, all in IT- and HCI-related areas.
He has a B.S. in Informatics and M.S. in Human-Computer Interaction/Design from
the Indiana University School of Informatics and Computing. He has great passion
for design and always looks for ways to make things simpler. He is an expert in
having a bird's eye view of the problem and sets the vision clearly before stepping
forward. Personal fitness is his hobby and passion and he is an ACE-certified trainer.
In his free time, he passes out his bodybybasey.com business cards and flexes
frequently. The cards usually end back on his desk. His LinkedIn profile is
http://www.linkedin.com/in/adambasey.

Practitioners' Corner

[464]

Suresh Kandeeban is an information architect at Cognizant Interactive, User
Experience division of Cognizant Technology Solutions, one of the top-tier services
and consulting companies. He is an Axure enthusiast who actively looks for better
ways to work with Axure and also loves to share his knowledge. He is an expert
in using the Axure tool and has good knowledge (intermediate level) in using
other popular prototyping tools, such as Balsamiq, Visio, and so on. He likes
reading design books and those that are related to mobiles. Responsive design and
SEO inspires him a lot. His personal website is www.sureshkandeeban.com and
he can also be found on LinkedIn at http://www.linkedin.com/pub/suresh-
kandeeban/72/a3b/973.

Melissa Sisco is currently the User Experience Lead at CA Technologies, a large
independent software company. She has been working in the User Experience
department for more than 16 years and is passionate about turning around failing
product experiences into positive, simple, and intuitive designs. Previously, she
worked at Orbitz where she helped the UX team make the transition from Visio to
Axure for all their wireframing and prototyping needs. During her 12 plus years
prior to Orbitz, Melissa was a member of the User Experience group at Accenture
where she helped shape the design of several websites and products for a
variety of Fortune 500 companies. Her LinkedIn profile can be found at
http://www.linkedin.com/in/melissasisco/.

Vinoth Balu Gunasekaran is a Manager (Biz. Dev.) at Cognizant Interactive, User
Experience division of Cognizant Technology Solutions, a global leader in business
and information technology consulting. He started off his career in interaction design
about 10 years ago, architecting user experience solutions for business applications,
portals, and e-commerce sites across business domain, technology landscape,
form factor, and geography. As part of a long-term consulting engagement, he
has been jointly working with the in-house UX team of a leading US-based online
travel agency where he helped the team make a business case, chart roadmap, and
complete the transition to Axure, leaning down the wireframe specifications in
the process. When not working on client projects, Vinoth is typically engaged in
creating proof of concepts, conducting benchmarking studies, and crafting solution
approaches for IT business proposals from Cognizant's global clientele.

Appendix

[465]

Julie Harpring is a senior user experience architect for the travel website company,
Orbitz Worldwide, where she recently created a custom Axure widget library for the
UX team. Since she entered the field of interaction design in 2005, Julie has created
mobile, tablet, and desktop experiences for organizations such as Orbitz, eBookers,
HotelClub, CVS Caremark, Motorola Solutions, the University of Missouri, and
Goodyear. She holds a master's degree in Science in Human-Computer Interaction
from Indiana University, a bachelor's degree in Journalism, and a bachelor's degree
in the field of Arts in English from the University of Missouri. Julie loves tapping
into her journalistic sleuthing skills to gain user insights that lead to exciting
new concepts. Her LinkedIn profile can be found at www.linkedin.com/in/
julieharpring/.

Background
For years, Visio has been the documentation tool in our company for an extremely
large document base/wireframes of our current set of platform pages. This is a
comprehensive collection of all possible permutations, combinations, and conditions
of every page that a customer can see on our e-commerce platform. We call these
pages document masters.

A typical project process in the UX team of our company has been that every time
someone works on a project, they create a copy of a document master page and
update that page/module based on the project requirements. This copy of the
document master for the project is referenced as a Project Document (PD). The
PD is what gets presented to the business for review and further iterations before
implementing. Once the project goes live, the PD will be merged back with the
document master file so that the document master stays up to date. We call this
merging. The following diagram will give you a brief idea of the merging process:

Master

Create a copy of master and add project
specific requirements

Merging- Once project goes live, new
enhancements are merged to the master

Project
Document (PD)

Image 62

Practitioners' Corner

[466]

Traditionally, this process as seen in the preceding diagram (Image 62) was done in
Visio, which has served as a great wireframing and documentation tool, but was
lacking in features as the UX industry evolved. At times, showing an interactive
prototype/wireframe to stakeholders had a clear advantage in helping them
understand the concept at hand. We needed a tool that allowed us to wireframe,
annotate, capture functional specifications, as well as produce interactive prototypes
for our PDs, and so we began to explore different tools outside of Visio to experiment
with, during our PD phase.

Axure had become the go-to wireframing tool for our company for project work or
PD but we still needed to justify recreating all of our Visio document masters in an
Axure format. So, why Axure? From what we understood of the use of Axure during
the PD phase, we felt, we could achieve the following for our document masters.

Why Axure
Following are the improvements Axure would have on our UX delivery process and
how it maintains our current information architecture capabilities as well as enriches
our interaction design capabilities:

Process Improvements
• Create a leaner doc base
• Simplify documenting
• Streamline delivery of doc base and project documents to stakeholders
• Simplify the merge process
• Project documents that are already being produced in Axure
• Majority of the team will be skilled in Axure
• Prototyping capabilities with less effort

Enriches Interaction Design (IxD)
Axure provides a rich canvas of prototyping and IxD-centric artifacts in its tool set:

• IxD is where we define system behaviors to answer the question, "How does
a user take the action they want?".

For example, the drop-downs lists, buttons, and checkboxes in a web e-mail
application are defined in the IxD, so there I can find the answer to a question
such as "How should I reply to the sender of this e-mail?".

Appendix

[467]

Maintains Current Information Architecture (IA)
Axure is capable of maintaining current IA capabilities:

• In IA, we define the information structure to answer the question, "How does
a user find the information they want?".

For example, navigation links for a big corporate website are in IA and there
we define the answer to a question like "Where can I find directions to the
company's main headquarters?".

Investigation and Implementation of Axure as a
Document Base
After reviewing multiple wireframing/prototyping tools in an agile environment
during the PD phase, the team focused on Axure and its suitability in managing not
only our PDs but our masters as well.

We created a working group of five people that met once or twice weekly over a
course of six months, and used the following set of activities to investigate Axure's
capabilities as a possible document base to hold our masters and determine the
implementation strategy.

Proof of Concept
One of the first things we did in the working group was to begin building a
skeleton/framework in the format of an Axure Team Project using one of our more
complex document masters. It was necessary to test all the content and methods we
used in Visio within the Axure environment and determine new ways to work.

Essentially, we began to create a proof of concept (POC) that was eventually
shared with management and the UX team for buy in. While building the POC,
we were able to determine why Axure would be a better tool for us, as shown in
the following table:

Features Description Visio Axure
Leverage doc base
for PD creation

Exports a shared project to the mirror RP file for
creation of PD.

5 1

Report creation Uses annotations or page notes to create a
report. For example, doc maintenance.

4 2

Masters A container that can hold a collection of widgets
that you can reuse throughout your doc base or
RPPRJ (shared project).

5 1

Practitioners' Corner

[468]

Features Description Visio Axure
Sharing doc base Ability to generate an HTML link to share the

doc base.
5 1

Doc base
version control

Built-in version control that brings back the
previous state of a master.

0 3

Merging Ability to import from PD under certain
circumstances (replaces an entire page or create
a new page).

5 1

Doc base
structure/nav

Provides the stakeholder and IA a hierarchy of
document contents with active links.

5 2

Screen map Provides the stakeholder and IA a screen map
with active links to the associated pages.

4 1

File Management Ability to see pages being worked on. 4 1
Widgets Community of widgets and customization

of widgets.
3 2

Project Document Improvements with Axure
The following table represents the improvements Axure would have on our PDs
and UX delivery process with one being easy and five difficult:

Features Description Visio Axure
Layering Ability to cycle between annotations, wireframe,

and design comp.
4 2

PD/deliverable
consumption

Generate a single access point to PD with
multiple pages and ensure stakeholders are
viewing the most up-to-date PD.

4 2

PD version control Self-contained versioning within the deliverable. 3 2
PD structure/nav Provides the stakeholder and IA with a more

clear hierarchy of document contents in a left rail.
5 2

Screen map Provides the stakeholder and IA with a screen
map with active links to the associated pages.

5 2

Widgets Community of widgets and customization
of widgets.

3 2

Prototyping IA contents are already in a prototyping-ready
environment.

5 1

Appendix

[469]

Lean-down Documentation
Separate sessions were held where we identified and called out every type of
documentation method and artifact used in our Visio document masters. The
purpose of this activity was to allow our quality engineers, user interface engineers,
product specialists, and developers raise a voice into what the future of the
document base would be. More importantly, it was an opportunity to remove
artifacts that no longer needed to be documented in our document masters.
Essentially, we carried out a process to lean-down documentation to eliminate
old or unnecessary documentation artifacts.

Effort/Estimation
The initiative to migrate the doc base from Visio to Axure started with an effort
estimate. We considered two different approaches with the biggest assumption
being "nothing will be dynamic" (as in, we will only move the masters over from
Visio to Axure as static wireframes with no interactions) in the doc base document
masters as follows:

• Approach A: Evolutionary (build the doc base in Axure by copying it from
Visio or by taking a screenshot of it)

 ° Pros: Communicate the vision by building the doc base in a lesser
time span.

 ° Cons: Not reusable from a project standpoint. This is one of the
objectives for the migration.

• Approach B: Rebuild (start creating all the wireframe views/conditions
in Axure)

 ° Pros: Completely reusable from both a project document creation
perspective and merging perspective.

 ° Cons: Requires a longer time span.

To align with UX team's Vision for an efficient use of the doc base, we started with
the rebuild approach to construct the entire doc base in Axure, though it took longer.

Effort Calculation
The following are the estimates for the effort required to migrate the document base:

• Conducted a quick audit of the existing document masters documented
in Visio.

• Categorized those into three buckets—small, medium, and high complexity.

Practitioners' Corner

[470]

• Rebuilt a sample of each document master per complexity level (small,
medium, and high) for an estimate of the time it would take to document
the master into Axure based on approaches A and B.

• Split the team—one group focused on the evolutionary approach and the
other on the rebuild approach.

• After completing the tasks, armed with the figures, we calculated the overall
migration estimates/efforts.

The following table shows our estimates for the two approaches:

Hours
for high
complexity
views/
conditions

Hours for
medium
complexity
views/
conditions

Hours
for low
complexity
views/
conditions

of
files

Total effort Resource Duration

Evolutionary approach—1.5 hours per Visio doc (average)
0.5 0.5 0.5 305 305 x 1.5 =

457.5 hrs.
1 57 days

Rebuild approach—12 hours per Visio doc (average)
6 4.5 1.5 305 305 x 12 =

3660 hrs.
1 457 days

Assuming a single resource was working 20 days a month, we estimated the
Evolutionary approach will require three months compared to 23 months for
the Rebuild approach.

To align with X team's vision to make an efficient use of the doc base, we started
with the Rebuild approach to build the entire doc base in Axure, though it took
longer. More about that in the Axure Migration section.

Internal Documentation Process
The following workflow table represents the collaborative working model of UXAs
and UXDs at various stages of the design process/activities:

Appendix

[471]

Step 1 Step 2 Step 3 Step 4 Next
Stage:

Artifact/s

Process A. Project Kick-off

Get all the
changes from
the shared
directory

Quick check-in/
out to identify/
annotate the
impacted pages

Export as an
RP file

Retain only
relevant
pages

B. Project
Updates

Project RP
file

Process B. Project Updates
User Research/
Concepting

Create a shared
project from the
current file

Share
UXA/UXD
artifacts with
stakeholders

C. Usability
Testing
(Optional)

Project
RPPRJ file—
UXA/UXD
solutions

Process C. Usability Testing (Optional)
Prepare
usability test
artifacts

Create linked
comps (if needed)
or rich, interactive
prototype

Test with users D. Merging
(Once the
project goes
live)

Highly
Interactive
RP/RPPRJ
file

Process D. Merging (Once the project goes live)
Get all changes
from the shared
directory

Archive the doc
base

Check out all
the master
pages and
merge project
updates into it

Quick check
in/out to
remove
annotations

Document
master
RPPRJ file

Workflow Details
The following sections will give you a detailed description of different stages
in workflow.

Process A – Project Kick-off
This phase starts with getting all the changes from the shared directory so as to
ensure we have the latest version of the document master to get started with the
new project.

There have been conflicts in the past where two UXAs/UXDs work on the same page
(for example, the search results page) later realizing/understanding the conflicts.
Traditionally, Excel was used to resolve these conflicts; however, we identified a
potential solution in Axure that we started using by annotating the site map under
a user's name with intended page changes.

Practitioners' Corner

[472]

The following screenshot (Image 63) shows how Axure's annotation capability was
used for a page tracker (content was scrubbed for confidentiality reasons):

Image 63

A quick check in/out mentioned in the workflow table is the step to inform users
to annotate pages that are getting impacted, so everyone on the team has visibility
of the document masters that are being used for PDs, along with some high-level
details of document master changes.

Next, a UX team member exports the document masters that have been identified
from the document base shared file .rppj to a .rp file. The objective is to retain
only those pages that are necessary or relevant to their project. It's important that
no actual changes to the document base are made until a merge takes place.

Any work created on a PD should not be represented in the document base until the
project goes live. Because team members may be working on the document master
at the same time for different projects in different PDs, we used Axure's annotation
feature to create an integrated file tracker, which allows team members to chat with
one another on potential feature team/project overlaps.

Appendix

[473]

Process B – Project Updates
This is the phase where most design explorations occur. UXAs/UXDs will set the
exported (.rp) file as a shared project file (.rpprj) among themselves to work on
collaboratively, which is now their shared PD. Based on reviews and iterations, the
designs will be updated / changed and the final version will be shared with the
stakeholders as detailed in the Storing/Sharing Files section. To iterate, the deliverable
will host both UXA/UXD artifacts in the same location without having to go to
different targets, which is one of the main advantages of using a shared project
delivery. Another main advantage is to ensure there is communication between
the UXA and UXD so that the designs/wires presented are in sync.

Process C – Usability Testing
As mentioned, this phase doesn't apply to all projects. For those applicable,
interactive wireframes are created using the linked comps approach or Axure's
interactive capability.

Process D – Merging
This phase starts only when the project goes live. As the first step, a team member
would get all the changes from the shared directory for the latest version of the
document base. In our company, there is a traditional process of archiving the old
version of the documents whenever you make updates and we leveraged the same
approach while using Axure by exporting a version of the document base .rpprj
to a .rp file. Axure's built-in shared version history didn't work out to our specific
needs, since it handles each and every update as a version.

Once a team member has the latest version of the doc base, they export it as a .rp file
and archive it. Then, they will check out those pages that they want to update with
the new project-specific changes from their PD, which is in the .rpprj or .rp format.
They can either copy and paste or choose to import with Axure's import feature from
the PD.

Once a team member completes the merge, they will remove any annotations/notes,
from the screen map we are leveraging as the file tracker, to indicate that they are
done with the project. The document base is now updated from the PD, and the PD
is also archived in the UX_Projects file location mentioned in the following section,
in a directory labeled merged.

Practitioners' Corner

[474]

Storing/Sharing Files
We created three file locations for people to manage their artifact throughout the
design process; they are as follows:

• UX_Doc Base: This is the folder where the document base master
configuration file resides.

• UX_Projects: This is the folder where the project-specific documents
(project RP file, project RPPRJ file, design comps, assets, and so on) reside.

• Design_Server: This is the space where the shared prototype (.rprj) is
published and shared with the stakeholders. Stakeholders can only see the
readable version of the wireframes / design comps. By only sharing the
generated HTML with stakeholders, we can take down PD anytime the
project or UX standards used within that PD are out of date.

Demo to UX Team and Management
Another activity was presenting and demonstrating findings to the management and
the UX team. We had many iterations of our POC, internal process documentation,
training material, and other artifacts mentioned in this case study. Our approach was
very iterative and eventually we landed on a version of the document base in Axure
that was acceptable to the team, and we were given approval to migrate from Visio
to Axure.

Training/Change Management
The activities that were used to bring our team up to speed on the Axure document
base and delivery process of PDs are as follows:

• Video / Audio training: This activity is used to get the team excited with a
fun video of how the POC worked.

• Wiki pages: This is the location for all internal process documentation to use
Axure as the document base.

• Open hours: Open-door policy for questions and continued education.
• Working sessions: Sessions with smaller groups of the UX Team with their

specific project needs and PDs.
• Team meetings: Meetings to show findings and updates to process changes

when needed.
• Retros: Meetings where the UX team has the opportunity to give a

design-and-process critique of the document base and process where
we collect action items to make fixes.

Appendix

[475]

Axure Migration
Our proof of concept finally worked well with all the investigations and explorations
that we did. With multiple rounds of presentations and discussions, we got a
buy-in from the management team to move on with the huge effort of document
base migration from Vision to Axure.

We identified a resource by the name of Jessintha Jeyaraj who worked out of the
southern part of India to help us in completing this migration. She did justice to
this to a point where we can say, "The Axure doc base is up and running for use".

Afterword
Writing a book about software can often feel like attempting to build a skyscraper on
quicksand and it certainly feels like it at times. We started writing this book about
a year ago when Axure 7 was in its infancy. Back then, we thought that this project
would be fast and relatively straightforward—merely an update to the Version 6
book. However, this was when we knew very little about the new stuff Axure was
"cooking" such as the Repeater and Adaptive Views features meant to tackle head-on
simulating data-driven applications and Responsive Web Design (RWD).

When we started writing, RWD has not been very common yet. Nonetheless,
we had already noticed the trend among employers and recruiters to demand,
in addition to UX mastery, also HTML/CSS and JavaScript proficiency for
prototype coding—a frustrating demand that underscores how deeply UX is
misunderstood in the software industry. The introduction of Adaptive Views
and Repeater meant a chance to revert the trend and let UX designers regain
control over rapid prototyping.

Axure's new capabilities meant that we, the authors, had to rethink the strategies
around wireframe and prototype construction as well as the generation of
specification documents. We also had to examine the impact of these new
capabilities on collaboration. And another thing: when Ezra wrote Axure RP 6
Prototyping Essentials, and Elizabeth was one of his technical reviewers, we both
had a wealth of experience with the tool; we were the experts. However, when we
started working on this book, our challenge was to synthesize, fuse, and extrapolate
the old and the new.

We quickly realized that in addition to Axure's new capabilities, Axure 7 will
include numerous enhancements and improvements that also impact the entire
process of prototyping with the tool. For example, you no longer need to create a
dynamic panel just to control the visibility of a widget because visibility is now part
of the style settings of widgets and can be controlled directly. This may look like a
trivial tweak, but for any user working with Axure since Version 4, this is a major
improvement to wireframing construction efficiency and quality. It also means
having to unlearn, adapt, and remaster one's Axure skills.

Afterword

[478]

To make the challenge a little more interesting, new features were formed and
matured over many months. Through a succession of Alpha and Beta versions
and regular conversations with Victor, Paul, and others at the company, we found
ourselves rewriting and tweaking earlier drafts that became obsolete, or because we
found better ways to get things done.

With a wealth of video tutorials available on the Internet, we decided to reduce
the amount of step-by-step instructions that are so common to software books,
including the previous version of this one. Where such detailed walkthrough is
used, we tried to describe more of the "why" and less of the "what". As UX
designers, we regret, however, that the usability of these instructions is sometimes
poor; although, our original drafts had images and text side by side for improved
readability, we had to revert to the final layout largely due to the requirements of
Amazon's Kindle platform.

When Axure 7 was released in December 2013, the pressure to finish the book
intensified for many good reasons. However, we felt that we needed more time to
digest the tool before we could finish the writing. Our editors at Packt Publishing
were fully supportive despite the loss of revenue.

In conclusion, despite the challenges, and the need to negotiate full-capacity
workloads and personal life, we have focused on writing a book that both of
us would want to read: a book about the continual process of getting better at
controlling communication with stakeholders, managing expectations throughout
the design process, and mastering the planning, estimation, and production of
world-class artifacts.

We hope you find value in this book. We are looking forward to hear your comments
and suggestions for improvement.

Ezra Schwartz and Elizabeth Srail

Index
A
Adaptive Views 104
Adaptive Views, design area

about 73
adding 74
set of fields 75

Agile Manifesto 277
agile methodologies

crystal 277
Dynamic Systems Development Method

(DSDM) 277
Extreme Programming (XP) 277
Feature-Driven Development (FDD) 277
Scrum 277

Agile model 277
amplified raised events

adding, to nested master 233
construction 230, 231
creating 229, 232

annotation fields 321
annotation views 322
AxShare. See also axureShare

URL 106
Axure

about 11
capabilities 44
collaboration 347
conditions 192
deliverables prototypes 37, 38
Discussion feature 376
features 44
heuristic evaluation 36
layout tips 341, 342
prototypes, versus specifications 44
prototyping 106

raised events 223
small projects 33
specifications 37, 38
survey 391-393
Team Projects 347
tips, for using on large project 39
UI specifications 309
user interface 47
user validation 36
variable types 249
variables 234
web applications and portals 34, 35
widget libraries 255
wireframe, setting up with

OnPageLoad 343
Axure 7 9
Axure actions

about 170
functionality 170
groups 170

Axure cases 168, 169
Axure Construction Strategy Checklist

about 31
opportunities 32
risks 33

Axure custom styles
about 295
example 298
using 296

Axure discussion forum
URL 11

Axure events
actions 163
page level events 163, 164
widget-level events 165

[480]

Axure file
restructuring 282

Axure file formats
RP file format 50
RPPRJ file format 50

Axure interactions 161, 162
Axure masters

about 149
benefits 149

axureShare
about 374, 375
account, creating 376

Axure Share
publishing to 386-388

Axure Style Editor
versus, CSS 300

Axure work
Axure file, restructuring 282, 283
estimating 278, 279
expectation alignment 284
project schedule 280
RWD, estimating 282

B
break-away masters 265
built-in libraries, Axure 258
Business Analysts (BAs) 453
Business Requirements Document (BRD)

references 77

C
Call to Action (CTA) 431
capabilities 114
cascade change, with custom styles

about 288
Axure custom styles 296
changes, in style painter 292
CSS files, aligning 294
default widget styles 291
existing visual design, aligning 302
page style editor 304
Project Style Guide, aligning 294
prototype, aligning with visual design 301
style guide 295
widget properties cheat sheets 288

change management, UX project
cascade change 286
cascade change, with custom styles 288
cascade change, with masters and

libraries 288
change-readiness checklist 273
expectations 274
from vision to reality 272
guides 305
paradigms 274
performing 285
rollback change 286
rollback change, with team project 287

collaboration
about 310, 311, 347, 452
Axure, as document base 463-474
collaboration in teams 453
enterprise team sharing 454-462

community libraries, Axure 258
concept models

about 111
Axure Edge 113
using 111-113

condition builder
about 206
multiple conditions, creating 208

conditions
about 192, 193
condition builder 206, 207
IF-THEN-ELSE 194
troubleshooting 223

conditions and interactivity example
diagrammatic representation 198
first condition, setting 200
interaction, adding a condition 202-204
interaction, defining 199
interaction, testing 205, 206
iterating 206
tweaking 206
wireframe construction 199

construction tutorials
about 397
by Marc-Oliver Gern 448
by Ritch Macefield 440
by Shira Luk-Zilberman 398
by Svetlin Denkov 428

[481]

context 172
counting example, variables

interaction, constructing 235
interaction, defining 235
interaction, finishing 244-246
items, tracking in shopping cart 235
repeater dataset 237
repeater formatting 239
repeater item interactions 238
repeater wireframe 236
variables, identifying 240

custom styles
about 66
creating 66, 67

D
default styles

changing 64, 65
design area

about 72, 73
Adaptive Views 73
Adaptive Views, adding 74
Adaptive Views definitions 75

device/OS-agnostic approach,
wireframe 146

device/OS-agnostic UI framework 142, 143
Discussion tab

about 376
discussions, hosted on axureShare 377
HTML files, placing on server 385, 386
prototype ID 378, 379
use case 381-384

dynamic panel
about 60, 153
example 153-155
resizing automatically 157
states construction 156

E
events 172
example, raised events

about 224
interaction, applying on page 227
raised event, binding with action 228, 229
raised event, creating on master 225

wireframe construction 227, 228
expectation alignment, Axure work

prototype granularity 284
specifications 284

expectations
aligning 311, 312

F
Facebook-like type-ahead search interface,

Shira Luk-Zilberman tutorial
creating 415-417

Farm2Table project
about 106
sketch effects, adding 159
visual effects, adding 157

flow diagrams
use cases, linking to 133-136

flow widgets 80, 81
form fields 59

G
generated HTML prototype

functions 100, 101
generate specification window

about 323
Adaptive Views section 334
Adaptive Views section, options 334
formatting 339-341
general section 323
layout section 337
layout section, options 337
masters section 326
masters section, options 327-329
page properties section 329
page properties section, options 330
pages section 324
pages section, options 325
screenshot section 331
screenshot section, options 332, 333
widget tables section 335
widget tables section, options 336
Word template section 338
Word template section, options 338

global elements 148

[482]

global grid 305
global guides 305
global navigation bar

basic interactions 152
creating 149
master, creating 150-152
wireframe pages, adding 150

global specifications 312-314
global variable

about 240, 249
built-in global variable 249
custom variables, creating 249

Google-like type-ahead search interface,
Shira Luk-Zilberman tutorial

borders, tweaking 408-413
creating 400
no text, dealing with 414
repeater, configuring 400-402
search, simulating 403-407

grid
about 307
customizing 307, 308

grids and guides menu
about 87
guides, setting 87, 88

guides
about 305
global guides 305
grid 307
page guides 306

H
hide and show example, interactions

about 181
construction strategy 181
login layer, creating 182, 183
login panel, showing 184, 185
styles, assigning to LOG IN tab 181

high-fidelity interactive prototype example
conditions, evaluating 212
creating 208
desired fidelity, defining 208
interaction, defining 208
iteration process 209

wireframe construction 211
HTML prototype

generating 137-140

I
IF-THEN-ELSE statement

about 194, 195
abstraction 195
AND operator 196, 197
aspects 194
example 194
OR operator 196, 197
sandboxing technique, using 198

inheritance 74
interactions 82
interactions checklists, troubleshooting

challenges 396
debugging questions 395
general approach 394
performing 393

interactions tab
about 82
interactions 82

L
labeling 173
light annotations 32
line-height 72
LinkedIn-like type-ahead search interface,

Shira Luk-Zilberman tutorial
category items display, ensuring 420, 421
creating 418
data, updating 418-420
design, applying to category fields 422-425
gap, dealing with 426-428

M
master drop behavior feature

about 90
break away from master option 91
lock to master location option 91
place anywhere option 91

[483]

masters
using, in RP or RPPRJ file 266

masters, as widget library
cons 267
pros 267

masters pane
about 89
functions 89, 90
master drop behavior 90
Usage Report 92

member-customer 113
menu bar, Axure 99

N
non-member prospect 113
non-member visitor 113
note sets

about 85
configuring 86
uses 86

O
OnCheckedChange event 168
OnClick event 166
OnContextMenu event 165, 167
OnDoubleClick event 167
OnDragDrop event 166
OnDrag event 166
OnDragStart event 166
OnFocus event 168
OnHide event 168
OnKeyDown event 167
OnKeyUp event 167
OnLoad event 168
OnLongClick event 167
OnLostFocus event 168
OnMouseDown event 167
OnMouseEnter event 167
OnMouseHover event 167
OnMouseMove event 167
OnMouseOut event 167
OnMouseUp event 167
OnMove event 167
OnPageClick event 164

OnPageDoubleClick event 165
OnPageLoad event

about 164
used, for setting wireframe 343

OnPanelStateChange event 166
OnResize event 168
OnScroll event 168
OnSelectionChange event 168
OnShow event 167
OnSwipeDown event 167
OnSwipeLeft event 166
OnSwipeRight event 166
OnSwipeUp event 167
OnWindowResize event 164
OnWindowScroll event 164
opportunities, Axure Construction

Strategy Checklist
flows and diagrams 32
heuristic review 32
interactive prototype 32
light annotations 32
pattern library 32

P
page formatting tab 79
page guides 306
page interactions tab 78
page level events

about 163, 164
OnAdaptiveViewChange 165
OnContextMenu 165
OnMouseMove 165
OnPageClick 164
OnPageDoubleClick 165
OnPageKeyDown 165
OnPageKeyUp 165
OnPageLoad 164
OnWindowResize 164
OnWindowScroll 164

page notes
about 318-320
managing 77, 78
one note section, versus many 320

page notes tab 76

[484]

page properties pane
about 75
flow widgets 80, 81
page formatting tab 79
page interactions tab 78
page notes tab 76
sketch effects 79, 80

page style editor
about 304
benefits 304

patterns
creating 267, 268

project file, saving
RPPRJ route 128
RP route 127

project schedule, Axure work
analysis and synthesis time 280
communication 281
downtime 281
elaboration 280
exploration and iteration 280
health issues and personal emergencies 281
meetings 280
snags 281

prototype
aligning, with visual design 301

prototype changes
managing 272

prototyping, Axure
about 106
artifacts 109
assumptions 108
capabilities 114
disclaimers 108
Farm2Table project, in Nutshell 111
HTML prototype, generating 137
interactive concept models 111-113
issues 109
key design activities 106
labeling 110
naming conventions 110
objectives 108
project file, saving 127
requirements 114
Sitemap diagram 140

task flow diagrams 128
unique IDs 110
use case diagram 118

prototyping interaction, UX
adaptability to localization 15
exception handling 15
in-page data updates 15
multiple screen sizes 15
personalized experience based on login 15
scalability and future scope 15
scenarios 14

prototyping models, UX
Option A 8
Option B 8

prototyping principles
UX, aligning with 105

Q
quick and dirty approach, wireframe 146

R
Raised Event 150
raised events

about 223
advantages 224
amplifying, in Nested Masters 229
binding, with action 228, 229
creating, on master 225, 226
example 224
interaction, applying on page 227
points to remember 223

reInteractive
URL 453

repeater widget 61, 398
requirements

about 114
high-level requirements 114
home page requirements 115, 116
requirement management system 117
use cases 117

Responsive Web Design. See RWD
risks, Axure Construction Strategy Checklist

detailed specifications 33
high fidelity prototype 33

[485]

usability testing prototype 33
vision prototype 33

RP file format 50
RPLIB

about 255
cons 266
pros 266

RPPRJ file format
about 50
features 51

RWD
about 6, 8, 73, 161, 310
estimating 282

S
Sitemap diagram 140
sitemap pane 54
Sketch Effects feature

using 159
software development models

Ad-hoc 275
Agile 277
Iterative 275
Lean 275

special variables 250
structured construction approach 146
style guide

about 295
aspects 295
benefits 298

style painter
about 292
action buttons, styling 292
drawbacks 294

styles controlling example, interactions
about 174
navigation bar setup 175
navigation, setting 176, 177
tabs, setting 178-180

style tab
about 61, 62
alignment + padding 70-72
base style 63, 64
custom styles 66

default style 64
fills, lines, + borders 68
font 67
line spacing 72
location + size section 63
outer and inner shadow 69, 70

T
task flow diagrams

about 128
composing 130, 131
OmniGraffle (Mac) 129
pages, creating 129
Visio (PC) 129
weekly box, assembling 132

Team menu
Clean Up Local Copy 371
creating 361
entire file, updating 361
loading 361
options 361
shared repository, moving 370
single page or master, updating 362
Team Projects, managing 363

team project
creating 51

Team Projects
about 347
check out/in status 348, 349
check out/in use case, team member A 363
check out/in use case, team member B 364
history, browsing 366-369
managing 363
shared repository, loading from 358-360
shared repository, setting up 349-355
Team menu 361
Team Projects environment 347, 348

The Grid 305
This Widget feature 173
toolbars, Axure 99
traditional waterfall model 276
tutorial, by Shira Luk-Zilberman

about 398
Facebook-like type-ahead search interface,

creating 415-417

[486]

Google-like type-ahead search interface,
creating 400

LinkedIn-like type-ahead search interface,
creating 418

practitioner profile 398
tutorial, by Svetlin Denkov

about 428-430
assumptions 430, 431
benefits 440
interactivity, adding 437, 438
limitations 439
practitioner profile 428
prototype, testing 438
representation, constructing 432
view, setting up 433-436

tutorial, by Marc-Oliver Gern
about 448
building 449, 451
contextualization 451
defining 448, 449
iterating 452
testing 452

tutorial, by Ritch Macefield
about 440-444
benefits 446
problem 444
solution 445, 446

Type Ahead search 61

U
UI specifications

about 309, 312
annotation fields 321
annotation views 322
generators 314-316
global specifications 312-314
page notes 318-320
prototypes 314
specifications 315
Word specifications generator, customizing

317, 318
Unified Modeling Language (UML)

use cases 117
Usage Report

about 92

features 92
use case diagram

about 118
creating 121
flow page, adding to Sitemap 119, 120
grid, displaying 121
refining 122
selection modes 123
Sitemap, organizing 126
widgets, organizing on page 124

use cases
linking, to flow diagrams 133-137

User Experience. See UX
user interface, Axure

design area 72
environment 52
generated HTML prototype 100
grids and guides menu 87
masters pane 89
menu bar 99
page properties pane 75
sitemap pane 54
toolbars 99
Welcome to Axure RP Pro 7.0

window 48, 49
widget interactions and notes pane 81
widget manager pane 92
widgets pane 56, 57
workspace, customizing 53

Utility actions example, interactions
about 186
Lightbox Widget 186, 187
OnClick event, creating 187, 188

UX
about 6
aligning, with prototyping

principles 105, 106
prototyping, by UX Designers 12-14
prototyping interaction 14
prototyping models 8
software development models 275

UX and Stakeholders' perspectives
about 39
engineering 41
leadership 40

[487]

project management 41
visual design 42

UX Axure Teamwork
about 372
attributes 372

UX perspectives 43
UX project

change management 271
honeymoon phase 282
honeymoon phase attributes 282
project-level forecasting 16
reality 284
vision prototype 283
Weighted Risk Checklist 16, 17

UX Team
Axure expertise 373
cultural influences 373
domain knowledge 372
experience and expertise 372
individual personalities 373
location 372
team size 372

V
variables

about 234
adding, to prototype 240
cons 253
creating 241
global variable 240
identifying 240
managing 241
naming rules 252
needed variables, identifying 240
points to remember 247, 248
previewing 244
pros 252
using 242, 243

variable types
about 249
global variables 249
local variables 251
special variables 250
usage examples 251

visual effects
adding 157

W
Web Fonts mappings

about 95
code, copying into Axure 97, 98
font, assigning 96
font, selecting 96
font, tagging 96

Weighted Risk Checklist, UX project
benefits 16
business requirements exist 26
business requirements exist,

opportunities 27
business requirements exist, risk factors 27
client 20
client, opportunities 21
client, risk factors 20
Communication and Collaboration tools 28
Communication and Collaboration tools,

opportunities 29
Communication and Collaboration tools,

risk factors 29
employment types 19
employment types, opportunities 19
employment types, risk factors 19
enterprise grade 22
enterprise grade, opportunities 23
enterprise grade, risk factors 22
heuristics 17
localization 26
localization, risk factors 26
redesign 23
redesign, opportunities 24
redesign, risk factors 23
responsive 25
responsive, opportunities 25
responsive, risk factors 25
score 18
transactional 24
transactional, opportunities 25
transactional, risk factors 24
UX Documentation and Traceability 29
UX Documentation and Traceability,

opportunities 30
UX Documentation and Traceability,

risk factors 30

[488]

UX reporting to 21
UX reporting to, opportunities 22
UX reporting to, risk factors 21
UX Resources 27
UX Resources, opportunities 28
UX Resources, risk factors 28

widget interactions and notes pane
about 81
interactions tab 82
note sets 85
widget notes tab 83

widget-level events
about 165
OnCheckedChange 168
OnClick 166
OnContextMenu 167
OnDoubleClick 167
OnDrag 166
OnDragDrop 166
OnDragStart 166
OnFocus 168
OnHide 168
OnKeyDown 167
OnKeyUp 167
OnLoad 168
OnLongClick 167
OnLostFocus 168
OnMouseDown 167
OnMouseEnter 167
OnMouseHover 167
OnMouseMove 167
OnMouseOut 167
OnMouseUp 167
OnMove 167
OnPanelStateChange 166
OnResize 168
OnScroll 168
OnSelectionChange 168
OnShow 167
OnSwipeDown 167
OnSwipeLeft 166
OnSwipeRight 166
OnSwipeUp 167

widget libraries
about 255, 256
creating 260
custom widget, creating 262, 263
library file, creating 261
managing 264, 265
refreshing, in project file 264
storing, in external RPLIB widget

library 265
storing, in within shared project file 265
submitting 259
types 258
using 257

widget libraries, types
built-in libraries 258
community libraries 258

widget library file
cons 266
pros 266

widget manager pane
about 92, 93
filter, applying 94, 95
filter options 95
functionality 93, 94
Web Fonts mappings 95

widget notes tab
about 83
date fields 83
notes, managing 84, 85
number fields 83
select list fields 83
text fields 83

widget properties cheat sheets
about 289
alignment and spacing properties 290
font properties 289
shape properties 289

widgets 172
widgets pane

about 56, 57
wireframe widgets 57

wireframe
device/OS-agnostic approach 146

[489]

quick and dirty approach 146
setting up, with OnPageLoad 343
structured construction approach 146

wireframe global patterns 269
wireframe widgets

about 57
dynamic panel 60
features 59
form fields 59
Paragraph widget 59

repeater widget 61
shapes 59
style tab 61
text widgets 59
widget shape, selecting 57, 58

Word specifications generator
customizing 317, 318

workspace
customizing 53
detach panes option 54
hide/show individual panes option 53

Thank you for buying
Prototyping Essentials with Axure
Second Edition

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective
MySQL Management" in April 2004 and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike.
For more information, please visit our website: www.packtpub.com.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals
should be sent to author@packtpub.com. If your book idea is still at an early stage and you
would like to discuss it first before writing a formal book proposal, contact us; one of our
commissioning editors will get in touch with you.

We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

Mobile Prototyping with Axure 7
ISBN: 978-1-84969-514-5 Paperback: 118 pages

Quickly deploy innovative user experience designs to
mobile devices for responsive prototyping using the
exciting new features of Axure 7

1. Walk through the steps needed to build mobile
interactions in Axure.

2. Deploy your prototypes on devices and in
users' hands.

3. Download Axure RP 7 files and get
started immediately.

Instant Axure RP Starter
ISBN: 978-1-84969-516-9 Paperback: 70 pages

Start prototyping your first Axure RP project the
easy way

1. Learn something new in an Instant!
A short, fast, focused guide delivering
immediate results.

2. Helping you learn the fundamentals of Axure
RP, while making prototypes.

3. Focus on only the most important features,
saving you time and helping you to start using
Axure RP immediately.

4. Providing you with essential resources that will
help you become an Axure master.

Please check www.PacktPub.com for information on our titles

[492]

Mastering Web Application
Development with AngularJS
ISBN: 978-1-78216-182-0 Paperback: 372 pages

Build single-page web applications using the power
of AngularJS

1. Make the most out of AngularJS by
understanding the AngularJS philosophy and
applying it to real life development tasks.

2. Effectively structure, write, test, and finally
deploy your application.

3. Add security and optimization features to your
AngularJS applications.

4. Harness the full power of AngularJS by
creating your own directives.

Advanced Express Web
Application Development
ISBN: 978-1-78328-249-4 Paperback: 148 pages

Your guide to building professional real-world web
applications with Express

1. Learn how to build scalable, robust, and
reliable web applications with Express using
a test-first, feature-driven approach.

2. Full of practical tips and real world examples,
and delivered in an easy-to-read format.

3. Explore and tackle the issues you encounter
in commercially developing and deploying
an Express application.

Please check www.PacktPub.com for information on our titles

[493]

	Cover
	Copyright
	Credits
	Foreword
	About the Author
	Acknowledgments
	About the Author
	Acknowledgments
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Prototyping Fundamentals
	The Times They Are A-Changin'
	The Axure Option
	UX Prototyping by UX Designers
	Prototyping Interaction

	Project-level Forecasting
	A Weighted Risk Checklist for UX Projects
	The Heuristics
	The Score
	Your Employment Type
	The Client
	UX Reporting To...
	Enterprise Grade
	New Product or a Redesign
	Transactional
	Responsive
	Localization
	Business Requirements Exist
	UX Resources
	Communication and Collaboration Tools
	UX Documentation and Traceability

	Axure Construction Strategy Checklist
	Showcasing Opportunities
	Considering Risks

	Practical Axure
	Small Projects
	Web Applications and Portals
	Heuristic Evaluation
	User Validation
	Deliverables – Prototypes and Specifications

	Tips for Using Axure on Large-Design Projects
	UX and Stakeholders' Perspectives
	Leadership
	Project Management
	Engineering
	Visual Design
	The UX Perspectives

	The Axure Perspective
	Summary

	Chapter 2: Axure Basics – the User Interface
	Getting Started
	Axure File Formats
	The RP File Format (Standalone Files)
	The RPPRJ File Format (Team Project)
	Team Projects

	Environment
	Customizing the Workspace
	The Sitemap Pane
	The Widgets Pane
	Wireframe Widgets
	Selecting a Widget Shape – Option 1
	Selecting a Widget Shape – Option 2
	Selecting a Widget Shape – Option 3
	Shapes – Highlights
	Form Fields – Highlights (New!)
	Dynamic Panels – Highlights
	The Repeater Widget (New!)

	Style
	Location and Size
	Base Style
	Font
	Fills, Lines, + Borders
	Alignment + Padding

	The Design Area
	Adaptive Views (New!)
	Adding Adaptive Views
	Adaptive View Definitions

	The Page Properties Pane
	Page Notes
	Manage Notes

	Page Interactions
	Page Formatting
	Sketch Effects
	Flow Widgets

	The Widget Interactions and Notes Pane
	The Interactions Tab
	Interactions

	The Notes Tab
	Note Sets

	Grid and Guides
	Setting Guides

	The Masters Pane
	Master Drop Behavior
	Place Anywhere
	Lock to Master Location
	Break Away from Master

	Usage Report

	The Widget Manager Pane
	Widgets Manager Functionality
	Widgets Manager – Filter

	Web Fonts Mappings (New!)
	Step 1 – Assign/Tag the Font
	Step 2 – The Web Font
	Step 3 – Copy the Code into Axure

	The Toolbars and the Menu Bar
	The Generated Prototype
	Summary

	Chapter 3: Prototype Construction Basics
	Aligning UX with Prototyping Principles
	Getting Started with Prototyping in Axure
	Key Design Activities
	Assumptions and Disclaimers
	Objectives and Artifacts
	Naming Conventions, Labeling, and
Unique IDs
	The Farm2Table Sample Project in a Nutshell
	Interactive Concept Models
	The Axure Edge

	On Capabilities and Requirements
	Initial, High-level Requirements
	Axure and Requirement Management
	Use Cases

	Use Case Diagram Page
	Step 1 – Adding a Flow Page to the Sitemap
	Step 2 – Creating the Use Case Diagram
	Staying Organized with Sitemap Folders

	Saving the Project File
	Task Flow Diagram Pages
	Task Flow Diagrams (Sans Visio)
	Flow Diagram – New Subscription
	Flow Diagram – Assemble My Weekly Box

	Linking Use Cases to Flow Diagrams while Keeping Your Naming Conventions Intact
	Generating an HTML Prototype
	The Sitemap Diagram

	A Device/OS-agnostic UI Framework
	First Wireframe – Produce [Visitor, User Not Logged In]
	A Quick but Structured Construction Approach

	Getting Started with Masters and Dynamic Panels
	Global Elements as Masters
	Axure Masters and Why to Use Them
	The Global Navigation Bar
	Adding Wireframe Pages
	Creating Your First Master
	Basic Interactions

	Dynamic Panels to the Rescue
	States Construction in a Dynamic Panel
	Automatically Resizing a Dynamic Panel and Associated States

	Adding Visual Effects
	Adding Sketch Effects
	Summary

	Chapter 4: Creating Basic Interactions
	Axure Interactions
	Axure Events
	Page-level Events
	Widget-level Events

	Axure Cases
	Axure Actions
	Things to Keep in Mind
	Widgets, Events, and Context
	Labeling

	Example 1 – Controlling Styles
	Step 1 – Navigation Bar Setup
	Step 2 – Setting the Navigation to Reflect the Current Page
	Step 3 – Setting the Remaining Tabs

	Example 2 – Hide and Show
	Construction Strategy
	Step 1 – Assigning Styles to the LOG IN Tab
	Step 2 – Creating the Login Layer
	Step 3 – Show or Hide the Login Panel

	Example 3 – Utility Actions
	Step 1 – the Lightbox Widget
	Step 2 – Interaction

	Summary

	Chapter 5: Advanced Interactions
	Conditions
	IF-THEN-ELSE
	A Basic Set
	How Statements Relate to Each Other
	AND and OR
	Sandbox Files for Learning and Experimenting
	Guided Example – Conditions
	Step 1 – Defining the Interaction
	Step 2 – Wireframe Construction
	Step 3 – Setting the First Condition
	Step 4 – Adding an Interaction to the Condition
	Step 5 – Testing the Interaction
	Step 6 – Tweak and Iterate

	The Condition Builder in Detail
	Guided Example – Higher Fidelity with Multiple Conditions

	Troubleshooting Conditions

	Raised Events
	Guided Example
	Step 1 – Creating a Raised Event on the Master
	Step 2 – Applying an Interaction to Raised Events on a Page

	Amplifying Raised Events in Nested Masters

	Variables
	Guided Example – Tracking Items in a Shopping Cart
	Step 1 – Defining the Interaction
	Step 2 – Constructing the Interaction
	Step 3 – Introducing Variables

	Variable Types
	Global Variables
	Axure's Built-in Variable
	Create Your Own Variables

	Special Variables
	Usage Examples
	Local Variables and Functions

	Naming Variables
	Pros and Cons of Using Variables
	Summary

	Chapter 6: Widget Libraries
	When to Use a Widget Library
	Library Types
	Axure's Built-in Libraries
	Axure and Community Libraries
	Submitting a Widget Library

	Create Your Own Widget Library
	How to Create a Widget Library
	Step 1 – Creating the Library File
	Step 2 – Creating a Custom Widget
	Step 3 – Refreshing a Library in the Project File

	Managing Widget Libraries
	Masters or External Widget Libraries?
	Using RPLIB
	Pros
	Cons

	Using Masters in an RP or RPPRJ file
	Pros
	Cons

	When to Begin Creating Patterns
	Wireframe Global Patterns

	Summary

	Chapter 7: Managing Prototype Change
	From a Vision to Reality
	The Change-readiness Checklist

	Expectations, Paradigms, and Change
	UX and Software Development Models
	Traditional (Waterfall)
	Agile

	Estimating Axure Work
	Where Does Time Go?
	Account for Responsive Web Design (RWD)
	Account for Refactoring an Axure File
	More on Expectation Alignment

	Construction for Change
	Cascade Change and Rollback Change
	Rollback Change with Team Project
	Cascade Change with Masters and Libraries
	Cascade Change with Custom Styles
	Widget Properties' Cheat Sheets
	Default Widget Styles
	Local Changes with Style Painter
	Alignment with the Project Style Guide and CSS
	Have a Style Guide?
	Axure Custom Styles
	Impact of Alignment of the Prototype with Visual Design
	Alignment with Existing Visual Design
	The Page Style Editor

	Guides
	Global Guides
	Page Guides
	Grid

	Summary

	Chapter 8: UI Specifications
	Importance of Collaboration
	Aligning Expectations

	The UI Specifications
	Global Specifications
	Generators and Outputs – Specifications and Prototypes
	Customizing the Word Specifications Generator
	Page Notes
	One Note Section Versus Many

	Annotation Fields
	Annotation Views

	Generating Specifications
	The General Section
	The Pages Section
	The Masters Section
	The Page Properties Section
	The Screenshot Section
	Adaptive Views
	The Widget Tables Section
	The Layout Section
	The Word Template Section
	Formatting-applied Word Styles

	Quick Tips to Improve the Layout
	Setting up the Wireframe with OnPageLoad

	Summary

	Chapter 9: Collaboration
	Team Projects (Pro Version Only)
	Understanding the Team Projects Environment
	Understanding the Check Out/In Status
	Setting Up a Shared Repository
	Loading from a Shared Repository
	The Team Menu
	Creating and Loading
	Updating the Entire File
	Updating Single Page or Master
	Managing Team Projects
	Browse Team Projects History…
	Repoint to Moved Shared Directory…
	Clean Up Local Copy... and Dealing with a Working Copy Locked Alert

	Best Practices for the UX Axure Teamwork
	Attributes of the UX Team

	axureShare – Axure's Cloud Solution for Sharing
	Creating an axureShare Account

	Feedback from Stakeholders – the Discussion Tab
	Discussions Hosted on axureShare
	Prototype ID and Other Features

	Discussions Not Hosted on axureShare
	Publishing to Axure Share

	Summary

	Appendix: Practitioners' Corner
	Survey of Axure Users
	Troubleshooting Interactions Checklists
	The General Approach
	Questions to Ask when Debugging
	Common Hurdles

	Construction Tutorials
	Shira Luk-Zilberman – Simulating
a Type-ahead Search Experience
	Practitioner Profile
	The Tutorial
	1. Creating a Google-like Type-ahead Search Interface
	2. Creating a Facebook-like Type-ahead Search Interface
	3. Creating a LinkedIn-like Type-ahead Search Interface
	Summary

	Svetlin Denkov – Building a Form-factor Viewer/Emulator to Support Effective RWD Demos on the Desktop
	Practitioner Profile
	The Tutorial
	1. Setup and Assumptions
	2. Constructing the Representation
	3. Possible Limitations
	Takeaways

	Reusing Cases Across Different Widgets
and Events
	Practitioner Profile
	The Tutorial
	The Problem
	The Solution
	Discussion, Takeaways, and Next Steps

	Marc-Oliver Gern – Using the Axure UI Kit,
a Widget Library
	Practitioner Profile
	1. Ideate and Define
	2. Build
	3. Contextualize
	4. Test
	5. Iterate

	Collaboration
	Ildikó Balla – Collaboration in Small Teams
	Practitioner Profile
	Reflections on Team Projects

	Susan Grossman – Enterprise Team Sharing
	Practitioner Profile
	Reflections on Team Projects
	Why Have an Existing Online Product Outside
the Firewall?
	Process and Convention
	Always Get the Latest
	Size
	Enterprise Naming Conventions
	Names and Dynamics
	Team Skillsets
	Publishing and Prototyping Pages and Settings Updates
	Setting Expectations
	So What Are You Boarding/Framing/Prototyping?
	Look And Feel (L&F) in Wires

	Orbitz Worldwide – Axure As a Document Base
	Practitioner Profiles
	Background
	Why Axure
	Investigation and Implementation of Axure as a Document Base
	Proof of Concept
	Project Document Improvements with Axure
	Lean-down Documentation
	Effort/Estimation
	Internal Documentation Process
	Storing/Sharing Files
	Demo to UX Team and Management
	Training/Change Management
	Axure Migration

	Afterword
	Index

