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Preface
Welcome	to	Python	Game	Programming	By	Example.	As	hobbyist	programmers	or
professional	developers,	we	may	build	a	wide	variety	of	applications,	from	large	enterprise
systems	to	web	applications	made	with	state-of-the-art	frameworks.	However,	game
development	has	always	been	an	appealing	topic,	maybe	simply	for	creating	casual	games
and	not	just	for	high-budget	AAA	titles.

If	you	want	to	explore	the	different	ways	of	developing	games	in	Python,	a	language	with
clear	and	simple	syntax,	then	this	is	the	book	for	you.	In	each	chapter,	we	will	build	a	new
game	from	scratch,	using	several	popular	libraries	and	utilities.	By	the	end	of	this	book,
you	will	be	able	to	quickly	create	your	own	2D	and	3D	games,	and	have	a	handful	of
Python	libraries	in	your	tool	belt	to	choose	from.



What	this	book	covers
Chapter	1,	Hello,	Pong!,	details	the	required	software,	its	installation,	and	the	basic	syntax
of	Python:	data	structures,	control	flow	statements,	object	orientation,	and	so	on.	It	also
includes	the	first	game	of	the	book,	the	classic	“Hello,	world”	game.

Chapter	2,	Cocos	Invaders,	introduces	the	cocos2d	game	engine	and	explains	how	to	build
a	game	similar	to	Space	Invaders	to	put	this	knowledge	into	practice.	Here,	you	learn	the
basics	of	collisions,	input	handling,	and	scene	setup.

Chapter	3,	Building	a	Tower	Defense	Game,	is	where	you	learn	to	develop	a	full-fledged
game	with	cocos2d.	This	game	includes	some	interesting	components,	such	as	a	HUD	and
a	main	menu.

Chapter	4,	Steering	Behaviors,	covers	seemingly	intelligent	movements	for	autonomous
characters.	You	will	be	adding	these	strategies	gradually,	in	different	levels	of	a	basic
game	built	with	particle	systems.

Chapter	5,	Pygame	and	3D,	presents	the	foundations	of	3D	and	guides	you	through	the
basic	structure	of	an	OpenGL	program.

Chapter	6,	PyPlatformer,	is	where	you	develop	a	3D	platformer	game	with	all	the
techniques	learned	in	the	previous	chapter.

Chapter	7,	Augmenting	a	Board	Game	with	Computer	Vision,	introduces	the	topic	of
computer	vision,	which	allows	software	to	learn	about	the	real	world	via	a	camera.	In	this
chapter,	you	build	a	system	to	analyze	a	game	of	checkers	(draughts)	in	real	time	as
players	move	pieces	on	a	physical	board.





What	you	need	for	this	book
The	projects	covered	in	this	book	assume	that	you	have	installed	Python	3.4	on	a
computer	with	Windows,	Mac	OS	X,	or	Linux.	We	also	assume	that	you	have	included
pip	during	the	installation	process,	since	it	will	be	the	package	manager	used	to	install	the
required	third-party	packages.





Who	this	book	is	for
If	you	have	ever	wanted	to	create	casual	games	in	Python	and	you	wish	to	explore	the
various	GUI	technologies	that	this	language	offers,	then	this	is	the	book	for	you.	This	title
is	intended	for	beginners	in	Python	with	little	or	no	knowledge	of	game	development,	and
it	covers	step	by	step	how	to	build	seven	different	games,	from	the	well-known	Space
Invaders	to	a	classical	3D	platformer.





Conventions
In	this	book,	you	will	find	a	number	of	text	styles	that	distinguish	between	different	kinds
of	information.	Here	are	some	examples	of	these	styles	and	an	explanation	of	their
meaning.

Code	words	in	text,	database	table	names,	folder	names,	filenames,	file	extensions,
pathnames,	dummy	URLs,	user	input,	and	Twitter	handles	are	shown	as	follows:	“For
instance,	on	Ubuntu,	you	need	to	install	the	python3-tk	package.”

A	block	of	code	is	set	as	follows:

new_list	=	[]

for	elem	in	collection:

				if	elem	is	not	None:

								new_list.append(elem)

Any	command-line	input	or	output	is	written	as	follows:

$	python	–-version

Python	3.4.3

New	terms	and	important	words	are	shown	in	bold.	Words	that	you	see	on	the	screen,
for	example,	in	menus	or	dialog	boxes,	appear	in	the	text	like	this:	“Make	sure	that	you
check	the	Tcl/Tk	option	to	include	the	library.”

Note
Warnings	or	important	notes	appear	in	a	box	like	this.

Tip
Tips	and	tricks	appear	like	this.





Reader	feedback
Feedback	from	our	readers	is	always	welcome.	Let	us	know	what	you	think	about	this
book—what	you	liked	or	disliked.	Reader	feedback	is	important	for	us	as	it	helps	us
develop	titles	that	you	will	really	get	the	most	out	of.

To	send	us	general	feedback,	simply	e-mail	<feedback@packtpub.com>,	and	mention	the
book’s	title	in	the	subject	of	your	message.

If	there	is	a	topic	that	you	have	expertise	in	and	you	are	interested	in	either	writing	or
contributing	to	a	book,	see	our	author	guide	at	www.packtpub.com/authors.

mailto:feedback@packtpub.com
http://www.packtpub.com/authors




Customer	support
Now	that	you	are	the	proud	owner	of	a	Packt	book,	we	have	a	number	of	things	to	help
you	to	get	the	most	from	your	purchase.



Downloading	the	example	code
You	can	download	the	example	code	files	from	your	account	at	http://www.packtpub.com
for	all	the	Packt	Publishing	books	you	have	purchased.	If	you	purchased	this	book
elsewhere,	you	can	visit	http://www.packtpub.com/support	and	register	to	have	the	files	e-
mailed	directly	to	you.

Additionally,	up-to-date	example	code	for	Chapter	7,	Augmenting	a	Board	Game	with
Computer	Vision,	is	posted	at	http://nummist.com/opencv.

http://www.packtpub.com
http://www.packtpub.com/support
http://nummist.com/opencv


Downloading	the	color	images	of	this	book
We	also	provide	you	with	a	PDF	file	that	has	color	images	of	the	screenshots/diagrams
used	in	this	book.	The	color	images	will	help	you	better	understand	the	changes	in	the
output.	You	can	download	this	file	from
https://www.packtpub.com/sites/default/files/downloads/B04505_Graphics.pdf.

https://www.packtpub.com/sites/default/files/downloads/B04505_Graphics.pdf


Errata
Although	we	have	taken	every	care	to	ensure	the	accuracy	of	our	content,	mistakes	do
happen.	If	you	find	a	mistake	in	one	of	our	books—maybe	a	mistake	in	the	text	or	the
code—we	would	be	grateful	if	you	could	report	this	to	us.	By	doing	so,	you	can	save	other
readers	from	frustration	and	help	us	improve	subsequent	versions	of	this	book.	If	you	find
any	errata,	please	report	them	by	visiting	http://www.packtpub.com/submit-errata,
selecting	your	book,	clicking	on	the	Errata	Submission	Form	link,	and	entering	the
details	of	your	errata.	Once	your	errata	are	verified,	your	submission	will	be	accepted	and
the	errata	will	be	uploaded	to	our	website	or	added	to	any	list	of	existing	errata	under	the
Errata	section	of	that	title.

To	view	the	previously	submitted	errata,	go	to
https://www.packtpub.com/books/content/support	and	enter	the	name	of	the	book	in	the
search	field.	The	required	information	will	appear	under	the	Errata	section.

Additionally,	any	errata	for	Chapter	7,	Augmenting	a	Board	Game	with	Computer	Vision,
will	be	posted	at	http://nummist.com/opencv.

http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support
http://nummist.com/opencv


Piracy
Piracy	of	copyrighted	material	on	the	Internet	is	an	ongoing	problem	across	all	media.	At
Packt,	we	take	the	protection	of	our	copyright	and	licenses	very	seriously.	If	you	come
across	any	illegal	copies	of	our	works	in	any	form	on	the	Internet,	please	provide	us	with
the	location	address	or	website	name	immediately	so	that	we	can	pursue	a	remedy.

Please	contact	us	at	<copyright@packtpub.com>	with	a	link	to	the	suspected	pirated
material.

We	appreciate	your	help	in	protecting	our	authors	and	our	ability	to	bring	you	valuable
content.

mailto:copyright@packtpub.com


Questions
If	you	have	a	problem	with	any	aspect	of	this	book,	you	can	contact	us	at
<questions@packtpub.com>,	and	we	will	do	our	best	to	address	the	problem.

You	can	also	contact	the	authors	directly.	Alejandra	Rodas	de	Paz,	author	of	Chapters	1	to
6,	can	be	reached	at	<alexrdp90@gmail.com>.	Joseph	Howse,	author	of	Chapter	7,	can	be
reached	at	<josephhowse@nummist.com>,	and	answers	to	common	questions	can	be	found
on	his	website,	http://nummist.com/opencv.

mailto:questions@packtpub.com
mailto:alexrdp90@gmail.com
mailto:josephhowse@nummist.com
http://nummist.com/opencv




Chapter	1.	Hello,	Pong!
Game	development	is	a	highly	evolving	software	development	process,	and	it	has
improved	continuously	since	the	appearance	of	the	first	video	games	in	the	1950s.
Nowadays,	there	are	a	wide	variety	of	platforms	and	engines,	and	this	process	has	been
facilitated	with	the	arrival	of	open	source	tools.

Python	is	a	free	high-level	programming	language	with	a	design	intended	to	write	readable
and	concise	programs.	Thanks	to	its	philosophy,	we	can	create	our	own	games	from
scratch	with	just	a	few	lines	of	code.	There	are	a	plenty	of	game	frameworks	for	Python,
but	for	our	first	game,	we	will	see	how	we	can	develop	it	without	any	third-party
dependency.

In	this	chapter,	we	will	cover	the	following	topics:

Installation	of	the	required	software
An	overview	of	Tkinter,	a	GUI	library	included	in	the	Python	standard	library
Applying	object-oriented	programming	to	encapsulate	the	logic	of	our	game
Basic	collision	and	input	detection
Drawing	game	objects	without	external	assets
Developing	a	simplified	version	of	Breakout,	a	pong-based	game



Installing	Python
You	will	need	Python	3.4	with	Tcl	/	Tk	8.6	installed	on	your	computer.	The	latest	branch
of	this	version	is	Python	3.4.3,	which	can	be	downloaded	from
https://www.python.org/downloads/.	Here,	you	can	find	the	official	binaries	for	the	most
popular	platforms,	such	as	Windows	and	Mac	OS.	During	the	installation	process,	make
sure	that	you	check	the	Tcl/Tk	option	to	include	the	library.

The	code	examples	included	in	the	book	have	been	tested	against	Windows	8	and	Mac,
but	can	be	run	on	Linux	without	any	modification.	Note	that	some	distributions	may
require	you	to	install	the	appropriate	package	for	Python	3.	For	instance,	on	Ubuntu,	you
need	to	install	the	python3-tk	package.

Once	you	have	Python	installed,	you	can	verify	the	version	by	opening	Command	Prompt
or	a	terminal	and	executing	these	lines:

$	python	--version

Python	3.4.3

After	this	check,	you	should	be	able	to	start	a	simple	GUI	program:

$	python

>>>	from	tkinter	import	Tk

>>>	root	=	Tk()

>>>	root.title('Hello,	world!')

>>>	root.mainloop()

These	statements	create	a	window,	change	its	title,	and	run	indefinitely	until	the	window	is
closed.	Do	not	close	the	new	window	that	is	displayed	when	the	second	statement	is
executed.	Otherwise,	it	will	raise	an	error	because	the	application	has	been	destroyed.

We	will	use	this	library	in	our	first	game,	and	the	complete	documentation	of	the	module
can	be	found	at	https://docs.python.org/3/library/tkinter.html.

Tip
Tkinter	and	Python	2

The	Tkinter	module	was	renamed	to	tkinter	in	Python	3.	If	you	have	Python	2	installed,
simply	change	the	import	statement	with	Tkinter	in	uppercase,	and	the	program	should
run	as	expected.

https://www.python.org/downloads/
https://docs.python.org/3/library/tkinter.html




An	overview	of	Breakout
The	Breakout	game	starts	with	a	paddle	and	a	ball	at	the	bottom	of	the	screen	and	some
rows	of	bricks	at	the	top.	The	player	must	eliminate	all	the	bricks	by	hitting	them	with	the
ball,	which	rebounds	against	the	borders	of	the	screen,	the	bricks,	and	the	bottom	paddle.
As	in	Pong,	the	player	controls	the	horizontal	movement	of	the	paddle.

The	player	starts	the	game	with	three	lives,	and	if	they	miss	the	ball’s	rebound	and	it
reaches	the	bottom	border	of	the	screen,	one	life	is	lost.	The	game	is	over	when	all	the
bricks	are	destroyed,	or	when	the	player	loses	all	their	lives.

This	is	a	screenshot	of	the	final	version	of	our	game:





The	basic	GUI	layout
We	will	start	out	game	by	creating	a	top-level	window	as	in	the	simple	program	we	ran
previously.	However,	this	time,	we	will	use	two	nested	widgets:	a	container	frame	and	the
canvas	where	the	game	objects	will	be	drawn,	as	shown	here:

With	Tkinter,	this	can	easily	be	achieved	using	the	following	code:

import	tkinter	as	tk

lives	=	3

root	=	tk.Tk()

frame	=	tk.Frame(root)

canvas	=	tk.Canvas(frame,	width=600,	height=400,	bg='#aaaaff')

frame.pack()

canvas.pack()

root.title('Hello,	Pong!')

root.mainloop()

Tip
Downloading	the	example	code

You	can	download	the	example	code	files	from	your	account	at	http://www.packtpub.com
for	all	the	Packt	Publishing	books	you	have	purchased.	If	you	purchased	this	book
elsewhere,	you	can	visit	http://www.packtpub.com/support	and	register	to	have	the	files	e-
mailed	directly	to	you.

Through	the	tk	alias,	we	access	the	classes	defined	in	the	tkinter	module,	such	as	Tk,
Frame,	and	Canvas.

Notice	the	first	argument	of	each	constructor	call	which	indicates	the	widget	(the	child
container),	and	the	required	pack()	calls	for	displaying	the	widgets	on	their	parent
container.	This	is	not	necessary	for	the	Tk	instance,	since	it	is	the	root	window.

http://www.packtpub.com
http://www.packtpub.com/support


However,	this	approach	is	not	exactly	object-oriented,	since	we	use	global	variables	and
do	not	define	any	new	classes	to	represent	our	new	data	structures.	If	the	code	base	grows,
this	can	lead	to	poorly	organized	projects	and	highly	coupled	code.

We	can	start	encapsulating	the	pieces	of	our	game	in	this	way:

import	tkinter	as	tk

class	Game(tk.Frame):

				def	__init__(self,	master):

								super(Game,	self).__init__(master)

								self.lives	=	3

								self.width	=	610

								self.height	=	400

								self.canvas	=	tk.Canvas(self,	bg='#aaaaff',

																																width=self.width,

																																height=self.height)

								self.canvas.pack()

								self.pack()

if	__name__	==	'__main__':

				root	=	tk.Tk()

				root.title('Hello,	Pong!')

				game	=	Game(root)

				game.mainloop()

Our	new	type,	called	Game,	inherits	from	the	Frame	Tkinter	class.	The	class
Game(tk.Frame):	definition	specifies	the	name	of	the	class	and	the	superclass	between
parentheses.

If	you	are	new	to	object-oriented	programming	with	Python,	this	syntax	may	not	sound
familiar.	In	our	first	look	at	classes,	the	most	important	concepts	are	the	__init__	method
and	the	self	variable:

The	__init__	method	is	a	special	method	that	is	invoked	when	a	new	class	instance
is	created.	Here,	we	set	the	object	attributes,	such	as	the	width,	the	height,	and	the
canvas	widget.	We	also	call	the	parent	class	initialization	with	the	super(Game,
self).__init__(master)	statement,	so	the	initial	state	of	the	Frame	is	properly
initialized.
The	self	variable	refers	to	the	object,	and	it	should	be	the	first	argument	of	a	method
if	you	want	to	access	the	object	instance.	It	is	not	strictly	a	language	keyword,	but	the
Python	convention	is	to	call	it	self	so	that	other	Python	programmers	won’t	be
confused	about	the	meaning	of	the	variable.

In	the	preceding	snippet,	we	introduced	the	if	__name__	==	'__main__'	condition,
which	is	present	in	many	Python	scripts.	This	snippet	checks	the	name	of	the	current
module	that	is	being	executed,	and	will	prevent	starting	the	main	loop	where	this	module
was	being	imported	from	another	script.	This	block	is	placed	at	the	end	of	the	script,	since
it	requires	that	the	Game	class	be	defined.

Tip



New-	and	old-style	classes

You	may	see	the	MySuperClass.__init__(self,	arguments)	syntax	in	some	Python	2
examples,	instead	of	the	super	call.	This	is	the	old-style	syntax,	the	only	flavor	available
up	to	Python	2.1,	and	is	maintained	in	Python	2	for	backward	compatibility.

The	super(MyClass,	self).__init__(arguments)	is	the	new-class	style	introduced	in
Python	2.2.	It	is	the	preferred	approach,	and	we	will	use	it	throughout	this	book.

See	the	chapter1_01.py	script,	which	contains	this	code.	Since	no	external	assets	are
needed,	you	can	place	it	in	any	directory	and	execute	it	from	the	Python	command	line	by
running	chapter1_01.py.	The	main	loop	will	run	indefinitely	until	you	click	on	the	close
button	of	the	window,	or	you	kill	the	process	from	the	command	line.

This	is	the	starting	point	of	our	game,	so	let’s	start	diving	into	the	Canvas	widget	and	see
how	we	can	draw	and	animate	items	in	it.





Diving	into	the	Canvas	widget
So	far,	we	have	the	window	set	up	and	now	we	can	start	drawing	items	on	the	canvas.	The
Canvas	widget	is	two-dimensional	and	uses	the	Cartesian	coordinate	system.	The	origin—
the	(0,	0)	ordered	pair—is	placed	in	the	top-left	corner,	and	the	axis	can	be	represented
as	shown	in	the	following	screenshot:

Keeping	this	layout	in	mind,	we	can	use	two	methods	of	the	Canvas	widget	to	draw	the
paddle,	the	bricks,	and	the	ball:

canvas.create_rectangle(x0,	y0,	x1,	y1,	**options)

canvas.create_oval(x0,	y0,	x1,	y1,	**options)

Each	of	these	calls	returns	an	integer,	which	identifies	the	item	handle.	This	reference	will
be	used	later	to	manipulate	the	position	of	the	item	and	its	options.	The	**options	syntax
represents	a	key/value	pair	of	additional	arguments	that	can	be	passed	to	the	method	call.
In	our	case,	we	will	use	the	fill	and	the	tags	option.

The	x0	and	y0	coordinates	indicate	the	top-left	corner	of	the	previous	screenshot,	and	x1
and	y1	are	indicated	in	the	bottom-right	corner.

For	instance,	we	can	call	canvas.create_rectangle(250,	300,	330,	320,
fill='blue',	tags='paddle')	to	create	a	player’s	paddle,	where:

The	top-left	corner	is	at	the	coordinates	(250,	300).
The	bottom-right	corner	is	at	the	coordinates	(300,	320).



The	fill='blue'	means	that	the	background	color	of	the	item	is	blue.
The	tags='paddle'	means	that	the	item	is	tagged	as	a	paddle.	This	string	will	be
useful	later	to	find	items	in	the	canvas	with	specific	tags.

We	will	invoke	other	Canvas	methods	to	manipulate	the	items	and	retrieve	widget
information.	This	table	gives	the	references	to	the	Canvas	widget	that	will	be	used	in	this
chapter:

Method Description

canvas.coords(item) Returns	the	coordinates	of	the	bounding	box	of	an	item.

canvas.move(item,	x,	y) Moves	an	item	by	a	horizontal	and	a	vertical	offset.

canvas.delete(item) Deletes	an	item	from	the	canvas.

canvas.winfo_width() Retrieves	the	canvas	width.

canvas.itemconfig(item,	**options) Changes	the	options	of	an	item,	such	as	the	fill	color	or	its	tags.

canvas.bind(event,	callback)
Binds	an	input	event	with	the	execution	of	a	function.	The	callback	handler
receives	one	parameter	of	the	type	Tkinter	event.

canvas.unbind(event)
Unbinds	the	input	event	so	that	there	is	no	callback	function	executed	when
the	event	occurs.

canvas.create_text(*position,

**opts)

Draws	text	on	the	canvas.	The	position	and	the	options	arguments	are
similar	to	the	ones	passed	in	canvas.create_rectangle	and
canvas.create_oval.

canvas.find_withtag(tag) Returns	the	items	with	a	specific	tag.

canvas.find_overlapping(*position)
Returns	the	items	that	overlap	or	are	completely	enclosed	by	a	given
rectangle.

You	can	check	out	a	complete	reference	of	the	event	syntax	as	well	as	some	practical
examples	at	http://effbot.org/tkinterbook/tkinter-events-and-bindings.htm#events.

http://effbot.org/tkinterbook/tkinter-events-and-bindings.htm#events




Basic	game	objects
Before	we	start	drawing	all	our	game	items,	let’s	define	a	base	class	with	the	functionality
that	they	will	have	in	common—storing	a	reference	to	the	canvas	and	its	underlying
canvas	item,	getting	information	about	its	position,	and	deleting	the	item	from	the	canvas:

class	GameObject(object):

				def	__init__(self,	canvas,	item):

								self.canvas	=	canvas

								self.item	=	item

				def	get_position(self):

								return	self.canvas.coords(self.item)

				def	move(self,	x,	y):

								self.canvas.move(self.item,	x,	y)

				def	delete(self):

								self.canvas.delete(self.item)

Assuming	that	we	have	created	a	Canvas	widget	as	shown	in	our	previous	code	samples,	a
basic	usage	of	this	class	and	its	attributes	would	be	like	this:

item	=	canvas.create_rectangle(10,10,100,80,	fill='green')

game_object	=	GameObject(canvas,item)	#create	new	instance

print(game_object.get_position())

#	[10,	10,	100,	80]

game_object.move(20,	-10)

print(game_object.get_position())

#	[30,	0,	120,	70]

game_object.delete()

In	this	example,	we	created	a	green	rectangle	and	a	GameObject	instance	with	the	resulting
item.	Then	we	retrieved	the	position	of	the	item	within	the	canvas,	moved	it,	and
calculated	the	position	again.	Finally,	we	deleted	the	underlying	item.

The	methods	that	the	GameObject	class	offers	will	be	reused	in	the	subclasses	that	we	will
see	later,	so	this	abstraction	avoids	unnecessary	code	duplication.	Now	that	you	have
learned	how	to	work	with	this	basic	class,	we	can	define	separate	child	classes	for	the	ball,
the	paddle,	and	the	bricks.



The	Ball	class
The	Ball	class	will	store	information	about	the	speed,	direction,	and	radius	of	the	ball.	We
will	simplify	the	ball’s	movement,	since	the	direction	vector	will	always	be	one	of	the
following:

[1,	1]	if	the	ball	is	moving	towards	the	bottom-right	corner
[-1,	-1]	if	the	ball	is	moving	towards	the	top-left	corner
[1,	-1]	if	the	ball	is	moving	towards	the	top-right	corner
[-1,	1]	if	the	ball	is	moving	towards	the	bottom-left	corner

A	representation	of	the	possible	direction	vectors

Therefore,	by	changing	the	sign	of	one	of	the	vector	components,	we	will	change	the	ball’s
direction	by	90	degrees.	This	will	happen	when	the	ball	bounces	against	the	canvas	border,
when	it	hits	a	brick,	or	the	player’s	paddle:

class	Ball(GameObject):

				def	__init__(self,	canvas,	x,	y):

								self.radius	=	10

								self.direction	=	[1,	-1]

								self.speed	=	10

								item	=	canvas.create_oval(x-self.radius,	y-self.radius,

																																		x+self.radius,	y+self.radius,

																																		fill='white')

								super(Ball,	self).__init__(canvas,	item)

For	now,	the	object	initialization	is	enough	to	understand	the	attributes	that	the	class	has.
We	will	cover	the	ball	rebound	logic	later,	when	the	other	game	objects	have	been	defined
and	placed	in	the	game	canvas.



The	Paddle	class
The	Paddle	class	represents	the	player’s	paddle	and	has	two	attributes	to	store	the	width
and	height	of	the	paddle.	A	set_ball	method	will	be	used	to	store	a	reference	to	the	ball,
which	can	be	moved	with	the	ball	before	the	game	starts:

class	Paddle(GameObject):

				def	__init__(self,	canvas,	x,	y):

								self.width	=	80

								self.height	=	10

								self.ball	=	None

								item	=	canvas.create_rectangle(x	-	self.width	/	2,

																																							y	-	self.height	/	2,

																																							x	+	self.width	/	2,

																																							y	+	self.height	/	2,

																																							fill='blue')

								super(Paddle,	self).__init__(canvas,	item)

				def	set_ball(self,	ball):

								self.ball	=	ball

				def	move(self,	offset):

								coords	=	self.get_position()

								width	=	self.canvas.winfo_width()

								if	coords[0]	+	offset	>=	0	and	\

												coords[2]	+	offset	<=	width:

												super(Paddle,	self).move(offset,	0)

												if	self.ball	is	not	None:

																self.ball.move(offset,	0)

The	move	method	is	responsible	for	the	horizontal	movement	of	the	paddle.	Step	by	step,
the	following	is	the	logic	behind	this	method:

The	self.get_position()	calculates	the	current	coordinates	of	the	paddle
The	self.canvas.winfo_width()	retrieves	the	canvas	width
If	both	the	minimum	and	maximum	x-axis	coordinates,	plus	the	offset	produced	by
the	movement,	are	inside	the	boundaries	of	the	canvas,	this	is	what	happens:

The	super(Paddle,	self).move(offset,	0)	calls	the	method	with	same	name
in	the	Paddle	class’s	parent	class,	which	moves	the	underlying	canvas	item
If	the	paddle	still	has	a	reference	to	the	ball	(this	happens	when	the	game	has	not
been	started),	the	ball	is	moved	as	well

This	method	will	be	bound	to	the	input	keys	so	that	the	player	can	use	them	to	control	the
paddle’s	movement.	We	will	see	later	how	we	can	use	Tkinter	to	process	the	input	key
events.	For	now,	let’s	move	on	to	the	implementation	of	the	last	one	of	our	game’s
components.



The	Brick	class
Each	brick	in	our	game	will	be	an	instance	of	the	Brick	class.	This	class	contains	the	logic
that	is	executed	when	the	bricks	are	hit	and	destroyed:

class	Brick(GameObject):

				COLORS	=	{1:	'#999999',	2:	'#555555',	3:	'#222222'}

				def	__init__(self,	canvas,	x,	y,	hits):

								self.width	=	75

								self.height	=	20

								self.hits	=	hits

								color	=	Brick.COLORS[hits]

								item	=	canvas.create_rectangle(x	-	self.width	/	2,

																																							y	-	self.height	/	2,

																																							x	+	self.width	/	2,

																																							y	+	self.height	/	2,

																																							fill=color,	tags='brick')

								super(Brick,	self).__init__(canvas,	item)

				def	hit(self):

								self.hits	-=	1

								if	self.hits	==	0:

												self.delete()

								else:

												self.canvas.itemconfig(self.item,

																																			fill=Brick.COLORS[self.hits])

As	you	may	have	noticed,	the	__init__	method	is	very	similar	to	the	one	in	the	Paddle
class,	since	it	draws	a	rectangle	and	stores	the	width	and	the	height	of	the	shape.	In	this
case,	the	value	of	the	tags	option	passed	as	a	keyword	argument	is	'brick'.	With	this	tag,
we	can	check	whether	the	game	is	over	when	the	number	of	remaining	items	with	this	tag
is	zero.

Another	difference	from	the	Paddle	class	is	the	hit	method	and	the	attributes	it	uses.	The
class	variable	called	COLORS	is	a	dictionary—a	data	structure	that	contains	key/value	pairs
with	the	number	of	hits	that	the	brick	has	left,	and	the	corresponding	color.	When	a	brick
is	hit,	the	method	execution	occurs	as	follows:

The	number	of	hits	of	the	brick	instance	is	decreased	by	1
If	the	number	of	hits	remaining	is	0,	self.delete()	deletes	the	brick	from	the	canvas
Otherwise,	self.canvas.itemconfig()	changes	the	color	of	the	brick

For	instance,	if	we	call	this	method	for	a	brick	with	two	hits	left,	we	will	decrease	the
counter	by	1	and	the	new	color	will	be	#999999,	which	is	the	value	of	Brick.COLORS[1].
If	the	same	brick	is	hit	again,	the	number	of	remaining	hits	will	become	zero	and	the	item
will	be	deleted.





Adding	the	Breakout	items
Now	that	the	organization	of	our	items	is	separated	into	these	top-level	classes,	we	can
extend	the	__init__	method	of	our	Game	class:

class	Game(tk.Frame):

				def	__init__(self,	master):

								super(Game,	self).__init__(master)

								self.lives	=	3

								self.width	=	610

								self.height	=	400

								self.canvas	=	tk.Canvas(self,	bg='#aaaaff',

																																width=self.width,

																																height=self.height)

								self.canvas.pack()

								self.pack()

								self.items	=	{}

								self.ball	=	None

								self.paddle	=	Paddle(self.canvas,	self.width/2,	326)

								self.items[self.paddle.item]	=	self.paddle

								for	x	in	range(5,	self.width	-	5,	75):

												self.add_brick(x	+	37.5,	50,	2)

												self.add_brick(x	+	37.5,	70,	1)

												self.add_brick(x	+	37.5,	90,	1)

								self.hud	=	None

								self.setup_game()

								self.canvas.focus_set()

								self.canvas.bind('<Left>',

																									lambda	_:	self.paddle.move(-10))

								self.canvas.bind('<Right>',

																									lambda	_:	self.paddle.move(10))

				def	setup_game(self):

											self.add_ball()

											self.update_lives_text()

											self.text	=	self.draw_text(300,	200,

											'Press	Space	to	start')

											self.canvas.bind('<space>',

											lambda	_:	self.start_game())

This	initialization	is	more	complex	that	what	we	had	at	the	beginning	of	the	chapter.	We
can	divide	it	into	two	sections:

Game	object	instantiation,	and	their	insertion	into	the	self.items	dictionary.	This
attribute	contains	all	the	canvas	items	that	can	collide	with	the	ball,	so	we	add	only
the	bricks	and	the	player’s	paddle	to	it.	The	keys	are	the	references	to	the	canvas
items,	and	the	values	are	the	corresponding	game	objects.	We	will	use	this	attribute
later	in	the	collision	check,	when	we	will	have	the	colliding	items	and	will	need	to
fetch	the	game	object.
Key	input	binding,	via	the	Canvas	widget.	The	canvas.focus_set()	call	sets	the
focus	on	the	canvas,	so	the	input	events	are	directly	bound	to	this	widget.	Then	we



bind	the	left	and	right	keys	to	the	paddle’s	move()	method	and	the	spacebar	to	trigger
the	game	start.	Thanks	to	the	lambda	construct,	we	can	define	anonymous	functions
as	event	handlers.	Since	the	callback	argument	of	the	bind	method	is	a	function	that
receives	a	Tkinter	event	as	an	argument,	we	define	a	lambda	that	ignores	the	first
parameter—lambda	_:	<expression>.

Our	new	add_ball	and	add_brick	methods	are	used	to	create	game	objects	and	perform	a
basic	initialization.	While	the	first	one	creates	a	new	ball	on	top	of	the	player’s	paddle,	the
second	one	is	a	shorthand	way	of	adding	a	Brick	instance:

				def	add_ball(self):

								if	self.ball	is	not	None:

												self.ball.delete()

								paddle_coords	=	self.paddle.get_position()

								x	=	(paddle_coords[0]	+	paddle_coords[2])	*	0.5

								self.ball	=	Ball(self.canvas,	x,	310)

								self.paddle.set_ball(self.ball)

				def	add_brick(self,	x,	y,	hits):

								brick	=	Brick(self.canvas,	x,	y,	hits)

								self.items[brick.item]	=	brick

The	draw_text	method	will	be	used	to	display	text	messages	in	the	canvas.	The
underlying	item	created	with	canvas.create_text()	is	returned,	and	it	can	be	used	to
modify	the	information:

				def	draw_text(self,	x,	y,	text,	size='40'):

								font	=	('Helvetica',	size)

								return	self.canvas.create_text(x,	y,	text=text,

																																							font=font)

The	update_lives_text	method	displays	the	number	of	lives	left	and	changes	its	text	if
the	message	is	already	displayed.	It	is	called	when	the	game	is	initialized—this	is	when
the	text	is	drawn	for	the	first	time—and	it	is	also	invoked	when	the	player	misses	a	ball
rebound:

				def	update_lives_text(self):

								text	=	'Lives:	%s'	%	self.lives

								if	self.hud	is	None:

												self.hud	=	self.draw_text(50,	20,	text,	15)

								else:

												self.canvas.itemconfig(self.hud,	text=text)

We	leave	start_game	unimplemented	for	now,	since	it	triggers	the	game	loop,	and	this
logic	will	be	added	in	the	next	section.	Since	Python	requires	a	code	block	for	each
method,	we	use	the	pass	statement.	This	does	not	execute	any	operation,	and	it	can	be
used	as	a	placeholder	when	a	statement	is	required	syntactically:

				def	start_game(self):

								pass

See	the	chapter1_02.py	module,	a	script	with	the	sample	code	we	have	so	far.	If	you
execute	this	script,	it	will	display	a	Tkinter	window	like	the	one	shown	in	the	following



figure.	At	this	point,	we	can	move	the	paddle	horizontally,	so	we	are	ready	to	start	the
game	and	hit	some	bricks:





Movement	and	collisions
Now	that	we	have	placed	all	of	our	game	objects,	we	can	define	the	methods	that	will	be
executed	in	the	game	loop.	This	loop	runs	indefinitely	until	the	game	ends,	and	each
iteration	updates	the	position	of	the	ball	and	checks	the	collision	that	occurs.

With	the	Canvas	widget,	we	can	calculate	what	the	items	that	overlap	with	the	given
coordinates	are,	so	for	now,	we	will	implement	the	methods	that	are	responsible	for
moving	the	ball	and	changing	its	direction.

Let’s	start	with	the	movement	of	the	ball	and	the	conditions	for	recreating	the	bouncing
effect	when	it	reaches	the	canvas	borders:

				def	update(self):

								coords	=	self.get_position()

								width	=	self.canvas.winfo_width()

								if	coords[0]	<=	0	or	coords[2]	>=	width:

												self.direction[0]	*=	-1

								if	coords[1]	<=	0:

												self.direction[1]	*=	-1

								x	=	self.direction[0]	*	self.speed

								y	=	self.direction[1]	*	self.speed

								self.move(x,	y)

The	update	method	does	the	following:

It	gets	the	current	position	and	the	width	of	the	canvas.	It	stores	the	values	in	the
coords	and	width	local	variables,	respectively.
If	the	position	collides	with	the	left	or	right	border	of	the	canvas,	the	horizontal
component	of	the	direction	vector	changes	its	sign
If	the	position	collides	with	the	upper	border	of	the	canvas,	the	vertical	component	of
the	direction	vector	changes	its	sign
We	scale	the	direction	vector	by	the	ball’s	speed
The	self.move(x,	y)	moves	the	ball

For	instance,	if	the	ball	hits	the	left	border,	the	coords[0]	<=	0	condition	evaluates	to
true,	so	the	x-axis	component	of	the	direction	changes	its	sign,	as	shown	in	this	diagram:



If	the	ball	hits	the	top-right	corner,	both	coords[2]	>=	width	and	coords[1]	<=	0
evaluate	to	true.	This	changes	the	sign	of	both	the	components	of	the	direction	vector,	like
this:

The	logic	of	the	collision	with	a	brick	is	a	bit	more	complex,	since	the	direction	of	the
rebound	depends	on	the	side	where	the	collision	occurs.

We	will	calculate	the	x-axis	component	of	the	ball’s	center	and	check	whether	it	is
between	the	lowermost	and	uppermost	x-axis	coordinates	of	the	colliding	brick.	To
translate	this	into	a	quick	implementation,	the	following	snippet	shows	the	possible
changes	in	the	direction	vector	as	per	the	ball	and	brick	coordinates:



								coords	=	self.get_position()

								x	=	(coords[0]	+	coords[2])	*	0.5

								brick_coords	=	brick.get_position()

								if	x	>	brick_coords[2]:

												self.direction[0]	=	1

								elif	x	<	brick_coords[0]:

												self.direction[0]	=	-1

								else:

												self.direction[1]	*=	-1

For	instance,	this	collision	causes	a	horizontal	rebound,	since	the	brick	is	being	hit	from
above,	as	shown	here:

On	the	other	hand,	a	collision	from	the	right-hand	side	of	the	brick	would	be	as	follows:

This	is	valid	when	the	ball	hits	the	paddle	or	a	single	brick.	However,	the	ball	can	hit	two
bricks	at	the	same	time.	In	this	situation,	we	cannot	execute	the	previous	statements	for
each	brick;	if	the	y-axis	direction	is	multiplied	by	-1	twice,	the	value	in	the	next	iteration



of	the	game	loop	will	be	the	same.

We	could	check	whether	the	collision	occurred	from	above	or	behind,	but	the	problem
with	multiple	bricks	is	that	the	ball	may	overlap	the	lateral	of	one	of	the	bricks	and,
therefore,	change	the	x-axis	direction	as	well.	This	happens	because	of	the	ball’s	speed
and	the	rate	at	which	its	position	is	updated.

We	will	simplify	this	by	assuming	that	a	collision	with	multiple	bricks	at	the	same	time
occurs	only	from	above	or	below.	That	means	that	it	changes	the	y-axis	component	of	the
direction	without	calculating	the	position	of	the	colliding	bricks:

								if	len(game_objects)	>	1:

												self.direction[1]	*=	-1

With	these	two	conditions,	we	can	define	the	collide	method.	As	we	will	see	later,
another	method	will	be	responsible	for	determining	the	list	of	colliding	bricks,	so	this
method	only	handles	the	outcome	of	a	collision	with	one	or	more	bricks:

				def	collide(self,	game_objects):

								coords	=	self.get_position()

								x	=	(coords[0]	+	coords[2])	*	0.5

								if	len(game_objects)	>	1:

												self.direction[1]	*=	-1

								elif	len(game_objects)	==	1:

												game_object	=	game_objects[0]

												coords	=	game_object.get_position()

												if	x	>	coords[2]:

																self.direction[0]	=	1

												elif	x	<	coords[0]:

																self.direction[0]	=	-1

												else:

																self.direction[1]	*=	-1

								for	game_object	in	game_objects:

												if	isinstance(game_object,	Brick):

																game_object.hit()

Note	that	this	method	hits	every	brick	instance	that	is	colliding	with	the	ball,	so	the	hit
counters	are	decreased	and	the	bricks	are	removed	if	they	reach	zero	hits.





Starting	the	game
Finally,	we	have	built	the	functionality	needed	to	run	the	game	loop—the	logic	required	to
update	the	ball’s	position	according	to	the	rebounds,	and	restart	the	game	if	the	player
loses	one	life.

Now	we	can	add	the	following	methods	to	our	Game	class	to	complete	the	development	of
our	game:

				def	start_game(self):

								self.canvas.unbind('<space>')

								self.canvas.delete(self.text)

								self.paddle.ball	=	None

								self.game_loop()

				def	game_loop(self):

								self.check_collisions()

								num_bricks	=	len(self.canvas.find_withtag('brick'))

								if	num_bricks	==	0:

												self.ball.speed	=	None

												self.draw_text(300,	200,	'You	win!')

								elif	self.ball.get_position()[3]	>=	self.height:

												self.ball.speed	=	None

												self.lives	-=	1

												if	self.lives	<	0:

																self.draw_text(300,	200,	'Game	Over')

												else:

																self.after(1000,	self.setup_game)

								else:

												self.ball.update()

												self.after(50,	self.game_loop)

The	start_game	method,	which	we	left	unimplemented	in	a	previous	section,	is
responsible	for	unbinding	the	Spacebar	input	key	so	that	the	player	cannot	start	the	game
twice,	detaching	the	ball	from	the	paddle,	and	starting	the	game	loop.

Step	by	step,	the	game_loop	method	does	the	following:

It	calls	self.check_collisions()	to	process	the	ball’s	collisions.	We	will	see	its
implementation	in	the	next	code	snippet.
If	the	number	of	bricks	left	is	zero,	it	means	that	the	player	has	won,	and	a
congratulations	text	is	displayed.
Suppose	the	ball	has	reached	the	bottom	of	the	canvas:

Then,	the	player	loses	one	life.	If	the	number	of	lives	left	is	zero,	it	means	that
the	player	has	lost,	and	the	Game	Over	text	is	shown.	Otherwise,	the	game	is
reset

Otherwise,	this	is	what	happens:

The	position	of	the	ball	is	updated	according	to	its	speed	and	direction,	and	the
game	loop	is	called	again.	The	.after(delay,	callback)	method	on	a	Tkinter
widget	sets	a	timeout	to	invoke	a	function	after	a	delay	in	milliseconds.	Since



this	statement	will	be	executed	when	the	game	is	not	over	yet,	this	creates	the
loop	necessary	to	execute	this	logic	continuously:

				def	check_collisions(self):

								ball_coords	=	self.ball.get_position()

								items	=	self.canvas.find_overlapping(*ball_coords)

								objects	=	[self.items[x]	for	x	in	items	\

															if	x	in	self.items]

								self.ball.collide(objects)

The	check_collisions	method	links	the	game	loop	with	the	ball	collision	method.	Since
Ball.collide	receives	a	list	of	game	objects	and	canvas.find_overlapping	returns	a	list
of	colliding	items	with	a	given	position,	we	use	the	dictionary	of	items	to	transform	each
canvas	item	into	its	corresponding	game	object.

Remember	that	the	items	attribute	of	the	Game	class	contains	only	those	canvas	items	that
can	collide	with	the	ball.	Therefore,	we	need	to	pass	only	the	items	contained	in	this
dictionary.	Once	we	have	filtered	the	canvas	items	that	cannot	collide	with	the	ball,	such
as	the	text	displayed	in	the	top-left	corner,	we	retrieve	each	game	object	by	its	key.

With	list	comprehensions,	we	can	create	the	required	list	in	one	simple	statement:

objects	=	[self.items[x]	for	x	in	items	if	x	in	self.items]

The	basic	syntax	of	list	comprehensions	is	the	following:

new_list	=	[expr(elem)	for	elem	in	collection]

This	means	that	the	new_list	variable	will	be	a	list	whose	elements	are	the	result	of
applying	the	expr	function	to	each	elem	in	the	list	collection.

We	can	filter	the	elements	to	which	the	expression	will	be	applied	by	adding	an	if	clause:

new_list	=	[expr(elem)	for	elem	in	collection	if	elem	is	not	None]

This	syntax	is	equivalent	to	the	following	loop:

new_list	=	[]

for	elem	in	collection:

				if	elem	is	not	None:

								new_list.append(elem)

In	our	case,	the	initial	list	is	the	list	of	colliding	items,	the	if	clause	filters	the	items	that
are	not	contained	in	the	dictionary,	and	the	expression	applied	to	each	element	retrieves
the	game	object	associated	with	the	canvas	item.	The	collide	method	is	called	with	this
list	as	a	parameter,	and	the	logic	for	the	game	loop	is	completed.





Playing	Breakout
Open	the	chapter1_complete.py	script	to	see	the	final	version	of	the	game,	and	run	it	by
executing	chapter1_complete.py,	as	you	did	with	the	previous	code	samples.

When	you	press	the	spacebar,	the	game	starts	and	the	player	controls	the	paddle	with	the
right	and	left	arrow	keys.	Each	time	the	player	misses	the	ball,	the	lives	counter	will
decrease,	and	the	game	will	be	over	if	the	ball	rebound	is	missed	again	and	there	are	no
lives	left:

In	our	first	game,	all	the	classes	have	been	defined	in	a	single	script.	However,	as	the
number	of	lines	of	code	increases,	it	becomes	necessary	to	define	separate	scripts	for	each
part.	In	the	next	chapters,	we	will	see	how	it	is	possible	to	organize	our	code	by	modules.





Summary
In	this	chapter,	we	built	out	first	game	with	vanilla	Python.	We	covered	the	basics	of	the
control	flow	and	the	class	syntax.	We	used	Tkinter	widgets,	especially	the	Canvas	widget
and	its	methods,	to	achieve	the	functionality	needed	to	develop	a	game	based	on	collisions
and	simple	input	detection.

Our	Breakout	game	can	be	customized	as	we	want.	Feel	free	to	change	the	color	defaults,
the	speed	of	the	ball,	or	the	number	of	rows	of	bricks.

However,	GUI	libraries	are	very	limited,	and	more	complex	frameworks	are	required	to
achieve	a	wider	range	of	capabilities.	In	the	next	chapter,	we	will	introduce	Cocos2d,	a
game	framework	that	helps	us	with	the	development	of	our	next	game.





Chapter	2.	Cocos	Invaders
In	the	previous	chapter,	we	built	a	game	with	a	Graphical	User	Interface	(GUI)	package
called	Tkinter.	Since	it	is	part	of	the	Python’s	standard	libraries,	it	was	easy	to	set	up	the
project	and	create	the	required	widgets	with	a	few	lines	of	code.	However,	this	kind	of
module	falls	short	of	providing	the	core	functionality	of	game	development	beyond	the	2D
graphics.

The	project	covered	in	this	chapter	is	developed	with	cocos2d.	This	framework	has	forks
for	different	programming	languages	besides	Python,	such	as	C++,	Objective-C,	and
JavaScript.

The	game	that	we	will	develop	is	a	variant	of	a	classical	game,	Space	Invaders.	This
arcade	was	a	success	of	its	time,	and	it	has	become	part	of	the	culture	of	video	gaming.

In	this	two-dimensional	game,	the	player	must	defeat	waves	of	descending	aliens	by
shooting	them	with	a	laser	cannon,	which	can	be	moved	horizontally	and	is	protected	by
some	defense	bunkers.	The	enemy	fire	attempts	to	destroy	the	player’s	cannon,	and	it
gradually	damages	the	bunkers.

In	our	version,	we	will	leave	out	the	defense	bunkers,	and	the	game	will	look	as	follows:



With	this	project,	you	will	learn	the	following:

The	foundations	of	cocos2d
How	to	work	with	sprites
Processing	input	events
Handling	movements	and	collisions
Complementing	cocos2d	with	the	Pyglet	API



Installing	cocos2d
In	our	previous	game,	we	did	not	use	any	third-party	package	since	Tkinter	was	part	of	the
Python	standard	library.	This	is	not	the	case	with	our	new	game	framework,	which	must
be	downloaded	and	installed.

The	Python	Package	Index	(also	called	PyPI)	is	an	official	software	repository	of	third-
party	packages,	and	thanks	to	package	manager	systems,	this	process	becomes	very
straightforward.	The	pip	is	the	packaging	tool	recommendation,	and	it	is	already	included
in	the	latest	Python	installations.

You	can	check	whether	pip	is	installed	by	running	pip	--version.	The	output	indicates
the	version	of	pip	and	where	it	is	located.	This	information	may	vary	depending	on	your
Python	version	and	its	installation	directory:

$	pip	--version

pip	6.0.8	from	C:\Python34\lib\site-packages	(python	3.4)

Since	cocos2d	is	available	on	the	PyPI,	you	can	install	it	by	running	the	following
command:

$	pip	install	cocos2d

This	command	downloads	and	installs	not	only	the	cocos2d	package	but	also	its
dependencies	(Pyglet	and	six).	Once	run,	the	console	output	should	print	the	progress	and
indicate	that	the	installation	was	executed	successfully.	To	verify	that	cocos2d	is	correctly
installed,	you	can	run	this	command:

$	python	-c	"import	cocos;	print(cocos.version)"

0.6.0

At	the	time	of	writing	this	book,	the	latest	version	of	cocos2d	is	0.6.0,	so	the	output	might
be	a	greater	version	than	this	one.

Tip
The	Python	packaging	ecosystem

Apart	from	pip,	there	are	other	packaging	utilities,	such	as	easy_install	and	conda.	Each
tool	has	different	features	and	limitations,	but	in	this	book,	we	will	stick	with	pip	due	to
its	ease	of	use	and	the	fact	that	it	is	included	in	the	latest	Python	installations	by	default.





Getting	started	with	cocos2d
As	with	any	other	framework,	cocos2d	is	composed	of	several	modules	and	classes	that
implement	different	features.	In	order	to	develop	applications	with	this	API,	we	need	to
understand	the	following	basic	concepts:

Scene:	Each	of	the	stages	of	your	application	is	a	scene.	While	your	game	may	have
many	scenes,	only	one	is	active	at	any	given	point	in	time.	The	transition	between
scenes	defines	your	game’s	workflow.
Layer:	Every	sheet	contained	in	a	scene,	whose	overlay	creates	the	final	appearance
of	the	scene,	is	called	a	layer.	For	instance,	your	game’s	main	scene	may	have	a
background	layer,	an	HUD	layer	with	player	information	and	scores,	and	an
animation	layer,	where	events	and	collisions	between	sprites	are	being	processed.
Sprite:	This	is	a	2D	image	that	can	be	manipulated	though	cocos2d	actions,	such	as
move,	scale,	or	rotate.	In	our	games,	sprites	will	represent	the	player’s	character,
enemies,	and	visual	information,	such	as	the	number	of	lives	left.
Director:	This	is	a	shared	object	that	initializes	the	main	window	and	controls	the
current	scene	as	well	as	the	rest	of	the	scenes	that	are	on	hold.

All	of	these	classes	except	Director	inherit	from	CocosNode.	This	class	represents
elements	that	are—or	contain—nodes	that	get	drawn,	and	it	is	part	of	the	core	of	the
library.

The	functionality	of	this	class	covers	parent-child	relations,	special	placements,	rendering,
and	scheduled	actions.	CocosNodes	are	also	notified	when	they	are	added	as	a	child	of
another	node	and	when	they	are	removed	from	their	parent	node.

This	table	has	a	summary	of	the	most	relevant	members	of	this	class:

Member Description

add(child,	z=0,

name=None)
This	adds	a	child.	It	raises	an	exception	if	the	name	already	exists.

remove(child)
This	removes	a	child	given	its	name	or	the	object.	It	raises	an	exception	if	the	child	is	not	on
the	list	of	children.

kill() Removes	itself	from	its	parent.

get_children() Returns	a	list	of	the	children	of	the	node,	ordered	by	their	z	index.

parent The	parent	node.

position The	position	coordinates	relative	to	the	parent	node.

x The	x-axis	position	coordinate.

y The	y-axis	position	coordinate.

schedule(callback) This	schedules	a	function	to	be	called	every	frame.



on_enter()
This	is	called	when	added	as	a	child	while	the	parent	is	in	the	active	scene,	or	if	the	scene
goes	active.

on_exit()
This	is	called	when	removed	from	its	parent	while	the	parent	is	in	the	active	scene,	or	if	the
scene	goes	active.

With	these	definitions	in	mind,	we	can	build	our	first	cocos2d	application.	It	will	be	a
simple	application	in	which	the	player	must	pick	up	four	objects	placed	around	the	scene.
The	player	character	can	be	moved	with	the	arrow	keys,	and	there	are	neither	menus	nor
display	information.

The	application	will	look	like	this:

As	can	be	seen,	the	functionality	will	be	quite	basic,	since	the	purpose	of	this	example	is
to	familiarize	yourself	with	the	cocos2d	modules.

Remember	to	save	the	script	in	the	same	directory	as	the	'ball.png'	image,	since	it	is
loaded	by	your	game.	The	first	iteration	of	our	app	contains	the	following	code:

import	cocos

class	MainLayer(cocos.layer.Layer):

				def	__init__(self):

								super(MainLayer,	self).__init__()



								self.player	=	cocos.sprite.Sprite('ball.png')

								self.player.color	=	(0,	0,	255)

								self.player.position	=	(320,	240)

								self.add(self.player)

if	__name__	==	'__main__':

				cocos.director.director.init(caption='Hello,	Cocos')

				layer	=	MainLayer()

				scene	=	cocos.scene.Scene(layer)

				cocos.director.director.run(scene)

First	of	all,	we	import	the	cocos	module.	We	can	import	only	the	required	modules
separately	(cocos.sprite,	cocos.layer,	cocos.scene,	and	cocos.director),	which	has
the	advantage	of	a	quicker	initialization.	However,	for	this	basic	app,	we	will	follow	a
simpler	approach.

We	have	defined	a	custom	layer	by	inheriting	from	the	cocos.layer.Layer	class.	In	this
example,	we	call	its	parent	__init__	method	only,	but	as	we	will	see	later,	there	are	other
Layer	subclasses	that	can	be	used	for	specialized	functionality,	such	as	ColorLayer	and
Menu.

The	layer	contains	a	single	cocos.sprite.Sprite	instance	with	the	'ball.png'	image,
which	will	represent	the	player	character.	The	color	attribute	indicates	the	RGB	color
applied	to	the	sprite	image,	represented	as	a	tuple	whose	values	range	from	0	to	255.	The
position	attribute,	declared	in	the	CocosNode	class,	sets	the	sprite’s	center	coordinates.	It
is	also	possible	to	pass	these	values	as	keyword	arguments	to	the	__init__	method.

The	main	code	block	performs	the	following	actions:

Initializes	the	main	window	with	the	Director	instance
Instantiates	our	Layer	subclass	with	the	sprite
Creates	an	empty	scene	that	contains	the	layer
Runs	the	Director	main	loop	with	the	scene

Since	director.init	wraps	the	creation	of	a	Pyglet	window,	the	complete	list	of
keyword	parameters	that	can	be	passed	to	this	method	is	available	at	the	Pyglet	Window
API	Reference.

For	our	cocos2d	games,	only	a	subset	of	these	parameters	will	be	used,	and	the	most
relevant	keyword	parameters	are	the	following:

Parameter	name Description Default	value

fullscreen A	flag	for	creating	the	window	that	fills	the	entire	screen False

resizable Indicates	whether	the	window	is	resizable False

vsync Sync	with	the	vertical	retrace True

width Window	width	in	pixels 640

height Window	height	in	pixels 480



caption Window	title	(string) 	

visible Indicates	whether	the	window	is	visible	or	not True

Once	we	have	set	up	the	application,	we	extend	its	functionality	by	handling	input	events.



Handling	user	input
Each	Layer	is	responsible	for	handling	input	events	through	the	is_event_handler	flag,
which	is	set	to	False	by	default.	If	this	flag	is	set	to	True,	the	Layer	will	receive	input
events	and	call	the	corresponding	handler	methods.

These	are	event	listeners	from	the	Layer	class:

on_mouse_motion(x,	y,	dx,	dy):	The	(x,	y)	are	the	physical	coordinates	of	the
mouse,	and	(dx,	dy)	is	the	distance	vector	covered	by	the	mouse	since	the	last	call
on_mouse_press(x,	y,	buttons,	modifiers):	Just	as	in	on_mouse_motion,	(x,	y)
are	the	physical	coordinates	of	the	mouse,	but	this	is	called	when	a	mouse	button	is
pressed
on_mouse_drag(x,	y,	dx,	dy,	buttons,	modifiers):	A	combination	of
on_mouse_press	and	on_mouse_motion,	this	is	called	when	the	mouse	moves	over
with	one	or	more	buttons	pressed
on_key_press(key,	modifiers):	This	is	called	when	a	key	is	pressed
on_key_release(key,	modifiers):	This	is	called	when	a	key	is	released

The	buttons	parameter	is	a	bitwise	OR	of	Pyglet	button	constants	that	are	defined	in	the
pyglet.window.mouse	and	pyglet.window.key	modules	for	the	on_mouse	and	on_key
events,	respectively.	The	modifiers	parameter	is	a	bitwise	OR	of	the	pyglet.window.key
constants,	such	as	Shift,	Option,	and	Alt.	You	can	find	all	the	constants	defined	in	this
module	at	https://pythonhosted.org/pyglet/api/pyglet.window.key-module.html.

When	you	define	one	of	these	methods	in	your	Layer	subclass	and	the	corresponding	input
event	occurs,	the	method	is	called.

In	this	iteration	of	our	sample	game,	we	will	print	a	message	when	a	key	is	pressed	or
released:

Tip
Note	that	since	Pyglet	is	used	internally	for	event	handling,	we	need	the	symbol_string
function	from	the	pyglet.window.key	module	to	decode	the	name	of	the	key.

import	cocos

from	pyglet.window	import	key

class	MainLayer(cocos.layer.Layer):

				is_event_handler	=	True

				def	__init__(self):

								super(MainLayer,	self).__init__()

								self.player	=	cocos.sprite.Sprite('ball.png')

								self.player.color	=	(0,	0,	255)

								self.player.position	=	(320,	240)

								self.add(self.player)

				def	on_key_press(self,	k,	m):

								print('Pressed',	key.symbol_string(k))

https://pythonhosted.org/pyglet/api/pyglet.window.key-module.html


				def	on_key_release(self,	k,	m):

								print('Released',	key.symbol_string(k))

Tip
We	have	omitted	the	if	__name__	==	'__main__'	block,	but	remember	to	include	it	in
your	scripts	in	order	to	execute	the	application.

When	you	launch	it,	the	keyboard	events	must	be	printed	on	the	console.	Our	next	step
will	be	to	reflect	these	events	in	the	game	state	by	modifying	the	sprite’s	position.

Tip
The	Pyglet	event	framework

Event	handling	is	implemented	in	cocos2d	with	the	Pyglet	event	framework.	This	event
framework	allows	you	to	define	emitters	with	a	given	event	name	(such	as	on_key_press)
and	register	listeners	over	these	events.

Remember	that	Pyglet	is	the	multimedia	library	on	which	cocos2d	relies,	so	we	will	see
more	usages	of	this	API	since	major	cocos2d	applications	use	Pyglet	modules.



Updating	the	scene
So	far,	our	game	only	displays	the	same	content,	as	objects	are	being	modified.	In	a	way
similar	to	the	Tkinter	callback	that	was	looping	during	the	execution	of	our	last	game,	we
need	to	refresh	our	cocos2d	application	periodically.

This	is	achieved	with	the	schedule	method	from	the	CocosNode	class.	It	schedules	a
function	that	is	called	on	every	frame,	and	the	first	argument	that	this	function	receives	is
the	elapsed	time	in	seconds	since	the	last	clock	tick.

While	it	is	possible	to	pass	additional	arguments	to	this	callback	function,	we	will	define	a
new	method	in	the	MainLayer	class	with	the	elapsed	time	parameter	only:

import	cocos

from	collections	import	defaultdict

from	pyglet.window	import	key

class	MainLayer(cocos.layer.Layer):

				is_event_handler	=	True

				def	__init__(self):

								super(MainLayer,	self).__init__()

								self.player	=	cocos.sprite.Sprite('ball.png')

								self.player.color	=	(0,	0,	255)

								self.player.position	=	(320,	240)

								self.add(self.player)

								self.speed	=	100.0

								self.pressed	=	defaultdict(int)

								self.schedule(self.update)

				def	on_key_press(self,	k,	m):

								self.pressed[k]	=	1

				def	on_key_release(self,	k,	m):

								self.pressed[k]	=	0

				def	update(self,	dt):

								x	=	self.pressed[key.RIGHT]	-	self.pressed[key.LEFT]

								y	=	self.pressed[key.UP]	-	self.pressed[key.DOWN]

								if	x	!=	0	or	y	!=	0:

												pos	=	self.player.position

												new_x	=	pos[0]	+	self.speed	*	x	*	dt

												new_y	=	pos[1]	+	self.speed	*	y	*	dt

												self.player.position	=	(new_x,	new_y)

We	have	modified	on_key_press	and	on_key_release	so	that	they	save	the	keystroke	in
defaultdict,	a	special	dictionary	from	the	collections	module.	This	data	structure
returns	the	corresponding	value	if	the	key	is	present	or	the	default	value	of	the	type	if	the
key	does	not	exist.	In	our	case,	since	it	is	defaultdict(int),	the	default	value	for	the
absent	keys	is	0.

We	have	scheduled	the	update	method,	and	for	each	frame,	it	checks	the	values	of	the



pressed	arrow	keys.	If	the	difference	between	these	values	is	distinct	to	zero,	the	sprite	is
moved.



Processing	collisions
In	cocos2d,	proximity	and	collisions	among	actors	are	calculated	with	an	interface	of	the
cocos.collision_model	package	called	CollisionManager.	This	interface	can	be	used	to
determine	whether	two	objects	are	overlapping,	or	which	objects	are	closer	than	a	certain
distance	from	a	given	object.

Actors	should	be	added	first	to	the	set	of	objects	that	are	managed	by	the	collision
manager,	also	called	known	entities.	The	set	of	managed	objects	is	initially	empty.

The	CollisionManager	interface	is	implemented	by	two	classes:

CollisionManagerBruteForce:	This	is	a	straightforward	implementation.	In	it,	all
known	entities	are	used	to	calculate	proximity	and	collisions.	It	is	intended	for
debugging	purposes,	and	it	does	not	scale	if	the	set	of	known	entities	grows	in	size.	It
does	not	need	any	arguments	in	its	initialization.
CollisionManagerGrid:	This	divides	the	space	into	rectangular	cells	with	a	given
width	and	height.	When	calculating	the	spatial	relations	between	objects,	it	only
considers	the	objects	from	the	known	entities	that	overlap	the	same	cell.	Its
performance	is	better	suited	for	a	large	number	of	known	entities.	The	__init__
method	requires	the	minimum	and	maximum	coordinates	of	the	space,	the	cell	width,
and	the	cell	size.	The	recommended	cell	size	is	the	maximum	object	width	and	height
multiplied	by	1.25.	Note	that	as	this	factor	increases	its	value,	more	objects	overlap
the	same	cell	and	the	performance	starts	to	degrade.

The	reference	of	the	CollisionManager	methods	that	we	are	going	to	use	in	this	chapter	is
the	following:

Method Description

add(obj) Makes	obj	a	known	object

clear() Empties	the	set	of	known	objects

iter_colliding(obj) Returns	an	iterator	of	objects	colliding	with	obj

knows(obj) This	is	true	if	obj	is	a	known	object

An	object	can	be	collided	with	if	it	has	a	member	called	Cshape	and	its	value	is	an
instance	of	cocos.collision_model.Cshape.	There	are	two	classes	in	cocos2d	that	inherit
from	Cshape:

CircleShape:	This	uses	a	circle	as	the	geometric	space.	When	an	instance	is	created,
the	center	of	the	circle	and	its	radius	must	be	specified.	Two	circles	collide	if	the
Euclidean	distance	between	their	centers	is	less	than	the	sum	of	their	radius.
AARectShape:	This	uses	a	rectangle	as	the	geometric	space.	The	rectangle	is	axis-
aligned,	which	means	that	its	sides	are	parallel	to	the	x	and	y	axes.	This	can	be	well
suited	if	the	actors	do	not	rotate.	Instead	of	the	Euclidean	distance,	it	uses	the
Manhattan	distance	to	calculate	a	collision	between	two	rectangles.



In	our	example,	we	will	use	circular	shapes	for	our	actors.	In	order	to	test	the	collision
manager,	four	sprites	are	added	to	the	Layer,	and	they	will	act	as	pickups—they	will	be
destroyed	when	they	collide	with	the	player’s	sprite.

Besides,	since	Cshape	requires	a	cocos.euclid.Vector2	for	the	center	coordinates,	we
will	replace	the	tuples	for	the	Vector2	instances.

Before	adding	the	collision	manager,	we	define	a	new	class	to	replace	our	sprites.	The
actors	of	our	game	share	these	attributes,	so	we	will	avoid	code	duplication:

import	cocos

import	cocos.collision_model	as	cm

import	cocos.euclid	as	eu

from	collections	import	defaultdict

from	pyglet.window	import	key

class	Actor(cocos.sprite.Sprite):

				def	__init__(self,	x,	y,	color):

								super(Actor,	self).__init__('ball.png',	color=color)

								self.position	=	pos	=	eu.Vector2(x,	y)

								self.cshape	=	cm.CircleShape(pos,	self.width/2)

Now	that	we	have	this	base	class,	we	can	add	these	objects	with	the	required	cshape
member.	The	collision	manager	implementation	that	we	will	use	in	all	our	applications	is
CollisionManagerGrid,	since	the	brute-force	implementation	is	only	intended	for
reference	and	debugging:

class	MainLayer(cocos.layer.Layer):

				is_event_handler	=	True

				def	__init__(self):

								super(MainLayer,	self).__init__()

								self.player	=	Actor(320,	240,	(0,	0,	255))

								self.add(self.player)

								for	pos	in	[(100,100),	(540,380),\

															(540,100),	(100,380)]:	

												self.add(Actor(pos[0],	pos[1],	(255,	0,	0)))

								cell	=	self.player.width	*	1.25

								self.collman	=	cm.CollisionManagerGrid(0,	640,	0,	480,

																																															cell,	cell)

								self.speed	=	100.0

								self.pressed	=	defaultdict(int)

								self.schedule(self.update)

				def	on_key_press(self,	k,	m):

								self.pressed[k]	=	1

				def	on_key_release(self,	k,	m):

								self.pressed[k]	=	0

Now	the	update	method	must	perform	the	following	steps	in	order	to	be	able	to	detect
collisions	of	moving	objects:	clear	the	collision	manager,	add	the	actors	to	the	set	of



known	entities,	and	iterate	over	the	objects’	collisions:

				def	update(self,	dt):

								self.collman.clear()

								for	_,	node	in	self.children:

												self.collman.add(node)

								for	other	in	self.collman.iter_colliding(self.player):

												self.remove(other)

								x	=	self.pressed[key.RIGHT]	-	self.pressed[key.LEFT]

								y	=	self.pressed[key.UP]	-	self.pressed[key.DOWN]

								if	x	!=	0	or	y	!=	0:

												pos	=	self.player.position

												new_x	=	pos[0]	+	self.speed	*	x	*	dt

												new_y	=	pos[1]	+	self.speed	*	y	*	dt

												self.player.position	=	(new_x,	new_y)

												self.player.cshape.center	=	self.player.position

Note	the	statement	in	which	the	cshape	center	of	the	player	sprite	is	updated	with	the	new
position.	Without	this	line,	the	collision	manager	will	not	detect	any	collision	between	the
player	and	the	pickups,	since	the	entity	center	will	always	be	in	the	initial	position.

In	the	chapter2_01.py	script,	you	can	find	the	complete	code.	For	this	application,	we
only	needed	a	single	sprite.	However,	most	games	use	several	images	to	represent
different	game	characters	and	their	animations.

In	the	next	section,	we	will	see	the	sprites	that	our	Space	Invaders	game	will	have.





Creating	game	assets
We	will	need	a	few	basic	images	for	our	cocos2d	sprites.	They	will	be	the	visual
representations	of	the	player’s	cannon	and	the	different	types	of	aliens.

The	following	image	shows	how	these	sprites	can	be	drawn	with	an	image	editor	program,
with	the	help	of	a	grid:

Unfortunately,	the	usage	of	image	manipulation	tools	is	beyond	the	scope	of	this	book.
There	is	a	wide	variety	in	these	programs,	and	for	basic	sprites	(such	as	the	ones	shown	in
the	previous	image),	you	can	use	MS	Paint	on	Windows	systems.

Under	the	img	folder,	you	can	find	the	different	images	that	we	will	use	in	our	game.	Feel
free	to	edit	them	and	change	their	colors.	However,	do	not	modify	their	size	as	it	is	used	to
determine	the	width	and	the	height	of	the	Sprite	and	its	Cshape	member.

Tip
Creating	your	own	“pixel	art”

There	are	more	advanced	applications	that	can	be	run	on	any	platform.	This	is	the	case	of
GIMP,	an	open	source	program	that	is	part	of	the	GNU	project.	The	sprites	used	in	this
chapter	have	been	drawn	with	GIMP	2,	the	current	version.

You	can	download	it	for	free	from	http://www.gimp.org/downloads/.

http://www.gimp.org/downloads/




Space	Invaders	design
Before	writing	our	game	with	cocos2d,	we	should	consider	which	actors	we	need	to	model
in	order	to	represent	our	game	entities.	In	our	Space	Invaders	version,	we	will	use	the
following	classes:

PlayerCannon:	This	is	the	character	controlled	by	the	player.	The	spacebar	is	used	to
shoot,	and	the	horizontal	movement	is	controlled	with	the	right	and	left	arrow	keys.
Alien:	Each	one	of	the	descending	enemies,	with	different	looks	and	scores
depending	on	the	alien	type.
AlienColumn:	There	are	columns	of	five	aliens	into	which	every	group	of	aliens	is
divided.
AlienGroup:	A	whole	group	of	enemies.	It	moves	horizontally	or	descends	uniformly.
Shoot:	A	small	projectile	launched	by	the	enemies	towards	the	player	character.
PlayerShoot:	A	Shoot	subclass.	It	is	launched	by	the	player	rather	than	the	alien
group.

Apart	from	these	classes,	we	need	a	custom	Layer	for	the	game	logic,	which	will	be
named	GameLayer,	and	a	base	class	for	the	logic	that	is	shared	among	the	actors—similar
to	the	GameObject	class	from	our	previous	game.

We	will	call	it	Actor,	as	we	did	in	our	previous	cocos2d	application.	In	fact,	it	is	quite
similar	to	that	one,	except	that	this	implementation	adds	the	definition	of	two	methods:
update	and	collide.	They	will	be	called	when	our	game	loop	updates	the	position	of	the
nodes	and	when	a	known	entity	hits	the	actor,	respectively.

This	module	is	new,	apart	from	the	code	we	saw	in	the	previous	section,	and	it	will	contain
the	following	code:

import	cocos.sprite

import	cocos.collision_model	as	cm

import	cocos.euclid	as	eu

class	Actor(cocos.sprite.Sprite):

				def	__init__(self,	image,	x,	y):

								super(Actor,	self).__init__(image)

								self.position	=	eu.Vector2(x,	y)

								self.cshape	=	cm.AARectShape(self.position,

																																					self.width	*	0.5,

																																					self.height	*	0.5)

				def	move(self,	offset):

								self.position	+=	offset

								self.cshape.center	+=	offset

				def	update(self,	elapsed):

								pass

				def	collide(self,	other):

								pass



The	PlayerCannon,	Alien,	Shoot,	and	PlayerShoot	classes	will	extend	from	this	class.
Therefore,	with	this	little	piece	of	code,	we	have	set	up	the	interface	for	collision	detection
and	the	movements	of	all	our	game	objects.



The	PlayerCannon	and	GameLayer	classes
As	we	saw	earlier,	PlayerCannon	is	one	of	our	game	actors.	It	must	respond	to	the	left	and
right	keystrokes	to	control	the	horizontal	movement	of	the	sprite,	and	the	object	is
destroyed	if	an	enemy’s	shot	hits	it.

We	will	implement	this	by	overriding	both	update	and	collide:

from	collections	import	defaultdict

from	pyglet.window	import	key

class	PlayerCannon(Actor):

				KEYS_PRESSED	=	defaultdict(int)

				def	__init__(self,	x,	y):

								super(PlayerCannon,	self).__init__('img/cannon.png',	x,	y)

								self.speed	=	eu.Vector2(200,	0)

				def	update(self,	elapsed):

								pressed	=	PlayerCannon.KEYS_PRESSED

								movement	=	pressed[key.RIGHT]	-	pressed[key.LEFT]

								w	=	self.width	*	0.5

								if	movement	!=	0	and	w	<=	self.x	<=	self.parent.width	-	w:

												self.move(self.speed	*	movement	*	elapsed)

				def	collide(self,	other):

								other.kill()

								self.kill()

To	determine	whether	a	key	is	pressed	or	not,	we	have	defined	defaultdict,	as	in	our
basic	cocos2d	application.	In	this	case,	it	is	a	class	attribute	of	PlayerCannon.	The
horizontal	movement	is	limited	so	that	the	character	cannot	leave	the	collision	manager
grid.

The	GameLayer	class	will	be	the	main	layer	of	our	game,	and	it	will	be	responsible	for
doing	the	following:

Keeping	track	of	the	number	of	player	lives	left	and	the	current	score
Handling	input	key	events	by	setting	its	is_event_handler	flag	to	true
Creating	the	game	actors	and	adding	them	as	child	nodes
Running	the	game	loop	by	executing	a	scheduled	function	for	each	frame	where	the
collisions	are	processed	and	the	object	positions	are	updated

Its	initial	implementation	is	the	following:

import	cocos.layer

class	GameLayer(cocos.layer.Layer):

				is_event_handler	=	True

				def	on_key_press(self,	k,	_):

								PlayerCannon.KEYS_PRESSED[k]	=	1

				def	on_key_release(self,	k,	_):



								PlayerCannon.KEYS_PRESSED[k]	=	0

				def	__init__(self):

								super(GameLayer,	self).__init__()

								w,	h	=	cocos.director.director.get_window_size()

								self.width	=	w

								self.height	=	h

								self.lives	=	3

								self.score	=	0

								self.update_score()

								self.create_player()

								self.create_alien_group(100,	300)

								cell	=	1.25	*	50

								self.collman	=	cm.CollisionManagerGrid(0,	w,	0,	h,

																																															cell,	cell)

								self.schedule(self.update)

The	create_player	method	adds	a	PlayerCannon	in	the	center	of	the	screen.	It	will	be
called	each	time	the	player	character	needs	to	be	respawned,	while	update_score
increments	the	score	by	adding	the	points	for	each	alien	that	is	destroyed.	The	default
value	of	the	score=0	argument	in	the	method	signature	means	that	if	no	arguments	are
passed,	the	argument’s	value	will	be	0:

				def	create_player(self):

								self.player	=	PlayerCannon(self.width	*	0.5,	50)

								self.add(self.player)

				def	update_score(self,	score=0):

								self.score	+=	score

The	create_alien_group	method	initializes	the	rows	of	descending	aliens.	Since	the
required	classes	have	not	been	implemented	yet,	we	will	leave	it	with	the	pass	statement
for	now:

				def	create_alien_group(self,	x,	y):

								pass

The	update	method	is	a	callback	that	will	be	scheduled	to	be	executed	for	each	frame:

				def	update(self,	dt):

								self.collman.clear()

								for	_,	node	in	self.children:

												self.collman.add(node)

												if	not	self.collman.knows(node):

																self.remove(node)

								for	_,	node	in	self.children:

												node.update(dt)

We	did	a	small	trick	here.	As	we	saw	in	the	CollisionManager	reference,	the	knows
method	checks	whether	an	object	is	in	the	set	of	known	entities—which	should	be	always
true	since	all	of	the	layer’s	children	have	been	added.

However,	when	an	object	is	outside	of	the	surface	covered	by	the	collision	manager,	it
does	not	overlap	with	any	cell	of	the	grid	and	it	is	considered	to	be	“not	known.”	In	this



way,	objects	that	move	out	of	this	area	are	automatically	removed:

				def	collide(self,	node):

								if	node	is	not	None:

												for	other	in	self.collman.iter_colliding(node):

																node.collide(other)

																return	True

								return	False

Finally,	the	collide	method	encapsulates	the	call	to	iter_colliding	and	checks	whether
the	node	is	a	reference	to	a	valid	object—the	PlayerShoot	instance	can	be	None	if	there	is
no	current	shoot.

As	usual,	we	write	the	main	block	for	the	moment	when	our	script	is	run	as	the	main
module:

if	__name__	==	'__main__':

				cocos.director.director.init(caption='Cocos	Invaders',

																																	width=800,	height=650)

				game_layer	=	GameLayer()

				main_scene	=	cocos.scene.Scene(game_layer)

				cocos.director.director.run(main_scene)





Invaders!
There	are	three	classes	used	to	represent	our	invaders:	Alien,	AlienColumn,	and
AlienGroup.

Out	of	these	classes,	only	Alien	inherits	from	Actor	because	it	is	the	only	entity	that	is
drawn	and	collides	with	other	objects.	Instead	of	a	static	image,	the	sprite	will	be	a	basic
animation	wherein	each	image	will	be	shown	for	0.5	seconds.	This	is	achieved	by	loading
an	ImageGrid	and	creating	an	Animation	from	this	sprite	grid.	Since	these	classes	belong
to	the	pyglet.image	module,	we	need	to	import	them	first.

Another	function	of	our	aliens	will	be	notifying	its	column	that	the	object	has	been
removed.	Thanks	to	this,	the	column	of	aliens	knows	what	the	bottom	one	is	and	starts
shooting	from	its	position.

You	learned	from	the	CocosNode	reference	that	the	on_exit	method	is	called	when	a	node
is	removed,	so	you	will	be	overriding	it	to	inform	its	corresponding	column.	Note	that	a
reference	to	the	column	is	passed	to	the	__init__	method.	We	could	have	implemented
the	same	functionality	with	a	Pyglet	event	handler	mechanism,	but	that	would	require
pushing	the	handlers	to	every	Alien	instance:

from	pyglet.image	import	load,	ImageGrid,	Animation

class	Alien(Actor):

				def	load_animation(imgage):

								seq	=	ImageGrid(load(imgage),	2,	1)

								return	Animation.from_image_sequence(seq,	0.5)

				TYPES	=	{

								'1':	(load_animation('img/alien1.png'),	40),

								'2':	(load_animation('img/alien2.png'),	20),

								'3':	(load_animation('img/alien3.png'),	10)

				}

				def	from_type(x,	y,	alien_type,	column):

								animation,	score	=	Alien.TYPES[alien_type]

								return	Alien(animation,	x,	y,	score,	column)

				def	__init__(self,	img,	x,	y,	score,	column=None):

								super(Alien,	self).__init__(img,	x,	y)

								self.score	=	score

								self.column	=	column

				def	on_exit(self):

								super(Alien,	self).on_exit()

								if	self.column:

												self.column.remove(self)

The	TYPES	class	attribute	help	us	load	the	animations	only	once,	at	the	beginning	of	the
game.	The	score	is	the	number	of	points	earned	when	the	enemy	is	destroyed,	while	the
column	attribute	contains	a	reference	to	the	column	to	which	the	alien	belongs.



The	AlienColumn	class	is	responsible	for	instantiating	the	columns	of	aliens	with	a	given
pattern,	like	this:

Since	we	have	defined	the	Alien.from_type	utility	method,	we	call	it	in	the	proper	order
to	place	each	type	of	alien,	as	seen	in	the	previous	figure:

class	AlienColumn(object):

				def	__init__(self,	x,	y):

								alien_types	=	enumerate(['3',	'3',	'2',	'2',	'1'])

								self.aliens	=	[Alien.from_type(x,	y+i*60,	alien,	self)

																							for	i,	alien	in	alien_types]

				def	remove(self,	alien):

								self.aliens.remove(alien)

				def	shoot(self):	pass

The	should_turn	method	checks	whether,	given	the	current	direction,	the	column	has
reached	the	side	of	the	screen	or	not.	It	will	return	False	if	there	are	no	aliens	left	in	the
column:

				def	should_turn(self,	d):

								if	len(self.aliens)	==	0:

												return	False

								alien	=	self.aliens[0]

								x,	width	=	alien.x,	alien.parent.width

								return	x	>=	width	-	50	and	d	==	1	or	x	<=	50	and	d	==	-1

All	the	AlienColumn	instances	form	the	AlienGroup.	It	is	moved	uniformly,	and	it
delegates	the	shooting	logic	to	each	column.	This	movement	is	implemented	with	the
speed	and	direction	object	attributes.

While	the	alien	group	is	being	updated,	it	sums	the	elapsed	times	between	frames.	When	a
certain	period	has	elapsed,	the	whole	group	is	moved	down	or	laterally.	The	direction	will
depend	on	whether	any	column	has	reached	the	lateral	sides	or	not:



class	AlienGroup(object):

				def	__init__(self,	x,	y):

								self.columns	=	[AlienColumn(x	+	i	*	60,	y)

																								for	i	in	range(10)]

								self.speed	=	eu.Vector2(10,	0)

								self.direction	=	1

								self.elapsed	=	0.0

								self.period	=	1.0

				def	update(self,	elapsed):

								self.elapsed	+=	elapsed

								while	self.elapsed	>=	self.period:

												self.elapsed	-=	self.period

												offset	=	self.direction	*	self.speed

												if	self.side_reached():

																self.direction	*=	-1

																offset	=	eu.Vector2(0,	-10)

												for	alien	in	self:

																alien.move(offset)

				def	side_reached(self):

								return	any(map(lambda	c:	c.should_turn(self.direction),

																							self.columns))

				def	__iter__(self):

								for	column	in	self.columns:

												for	alien	in	column.aliens:

																yield	alien

Here,	we	also	define	a	__iter__	method,	which	is	a	special	method	that	is	invoked	when
you	iterate	over	an	object.	In	this	way,	we	can	call	for	alien	in	alien_group	in	the	rest	of
our	code.

Now	that	we	have	implemented	the	logic	of	our	enemies	and	the	movement	of	the	whole
group,	we	can	add	its	instantiation	to	the	GameLayer	class:

				def	create_alien_group(self,	x,	y):

								self.alien_group	=	AlienGroup(x,	y)

								for	alien	in	self.alien_group:

												self.add(alien)

This	creates	a	new	alien	group	and	adds	all	the	enemies	to	the	layer	as	child	nodes.	The
chapter2_02.py	script	contains	the	code	that	we	have	written	so	far,	and	its	execution	will
look	like	this:







Shoot’em	up!
The	Shoot	actor,	by	itself,	is	quite	basic;	it	only	requires	a	speed	attribute	and	overrides
the	update	method	so	that	the	object	is	moved	by	the	distance	determined	by	this	speed
and	the	elapsed	time	between	frames:

class	Shoot(Actor):

				def	__init__(self,	x,	y,	img='img/shoot.png'):

								super(Shoot,	self).__init__(img,	x,	y)

								self.speed	=	eu.Vector2(0,	-400)

				def	update(self,	elapsed):

								self.move(self.speed	*	elapsed)

The	PlayerShoot	class	requires	a	bit	more	logic,	since	the	player	cannot	shoot	until	the
previous	beam	has	hit	an	enemy	or	reached	the	end	of	the	screen.

As	we	want	to	avoid	global	variables,	we	will	use	a	class	attribute	to	hold	the	reference	to
the	current	shot.	When	the	shot	leaves	the	scene,	this	reference	will	be	set	to	None	again.

We	will	override	the	collide	method	from	the	Actor	class	so	that	both	the	beam	and	the
alien	are	destroyed	when	a	collision	occurs.	This	is	done	by	calling	the	kill	method
defined	in	the	Sprite	class.	It	internally	removes	the	CocosNode	from	its	parent:

class	PlayerShoot(Shoot):

				INSTANCE	=	None

				def	__init__(self,	x,	y):

								super(PlayerShoot,	self).__init__(x,	y,	'img/laser.png')

								self.speed	*=	-1

								PlayerShoot.INSTANCE	=	self

				def	collide(self,	other):

								if	isinstance(other,	Alien):

												self.parent.update_score(other.score)

												other.kill()

												self.kill()

				def	on_exit(self):

								super(PlayerShoot,	self).on_exit()

								PlayerShoot.INSTANCE	=	None

With	this	class,	we	can	add	this	functionality	to	the	update	method	of	PlayerCannon:

				def	update(self,	elapsed):

								pressed	=	PlayerCannon.KEYS_PRESSED

								space_pressed	=	pressed[key.SPACE]	==	1

								if	PlayerShoot.INSTANCE	is	None	and	space_pressed:

												self.parent.add(PlayerShoot(self.x,	self.y	+	50))

								movement	=	pressed[key.RIGHT]	-	pressed[key.LEFT]

								if	movement	!=	0:

												self.move(self.speed	*	movement	*	elapsed)

The	shoot	method	in	AlienColumn—which	we	left	unimplemented—can	be	modified



with	our	new	Shoot	class.

To	randomly	shoot	a	new	beam,	we	will	call	random.random(),	which	returns	a	random
float	between	the	semi-open	range	of	(0.0,	1.0).	We	will	set	a	low	probability.	This	is
because	this	function	will	be	called	several	times	per	second.	The	random	module	is	part
of	the	Python	standard	library,	so	you	can	start	playing	around	with	it	by	adding	the
import	random	statement	at	the	beginning	of	the	script:

				def	shoot(self):

								if	random.random()	<	0.001	and	len(self.aliens)	>	0:

												pos	=	self.aliens[0].position

												return	Shoot(pos[0],	pos[1]	-	50)

								return	None

Now	the	update	method	of	the	GameLayer	class	can	calculate	which	objects	collide	with
the	cannon	and	the	player’s	current	shot,	as	well	as	randomly	shoot	from	the	alien
columns:

				def	update(self,	dt):

								self.collman.clear()

								for	_,	node	in	self.children:

												self.collman.add(node)

												if	not	self.collman.knows(node):

																self.remove(node)

								self.collide(PlayerShoot.INSTANCE)

								if	self.collide(self.player):

												self.respawn_player()

								for	column	in	self.alien_group.columns:

												shoot	=	column.shoot()

												if	shoot	is	not	None:

																self.add(shoot)

								for	_,	node	in	self.children:

												node.update(dt)

								self.alien_group.update(dt)

Here,	respawn_player()	decrements	the	number	of	lives,	and	it	unschedules	update	if
there	are	no	lives	left.	This	stops	the	main	loop	and	represents	the	game	over	situation:

				def	respawn_player(self):

								self.lives	-=	1

								if	self.lives	<	0:

												self.unschedule(self.update)

								else:

												self.create_player()

In	this	iteration,	the	game	we	have	built	is	very	similar	to	the	final	version.	The	playable
character	can	be	moved	with	the	arrow	keys	and	is	able	to	shoot.	The	enemies	move
uniformly,	and	the	lower	alien	of	each	row	can	shoot	as	well.	The	code	for	this
implementation	can	be	found	in	the	chapter2_03.py	script.

Now,	the	only	detail	left	is	displaying	the	game	information:	the	current	score	and	the
number	of	lives	left.



Adding	an	HUD
Our	“heads-up	display”	will	be	a	new	Layer	that	will	be	drawn	over	our	GameLayer:

class	HUD(cocos.layer.Layer):

				def	__init__(self):

								super(HUD,	self).__init__()

								w,	h	=	cocos.director.director.get_window_size()

								self.score_text	=	cocos.text.Label('',	font_size=18)

								self.score_text.position	=	(20,	h	-	40)

								self.lives_text	=	cocos.text.Label('',	font_size=18)

								self.lives_text.position	=	(w	-	100,	h	-	40)

								self.add(self.score_text)

								self.add(self.lives_text)

				def	update_score(self,	score):

								self.score_text.element.text	=	'Score:	%s'	%	score

				def	update_lives(self,	lives):

								self.lives_text.element.text	=	'Lives:	%s'	%	lives

				def	show_game_over(self):

								w,	h	=	cocos.director.director.get_window_size()

								game_over	=	cocos.text.Label('Game	Over',	font_size=50,

																																					anchor_x='center',

																																					anchor_y='center')

								game_over.position	=	w	*	0.5,	h	*	0.5

								self.add(game_over)

Our	GameLayer	will	hold	a	reference	to	the	HUD	layer,	and	its	methods	will	be	modified
so	that	they	can	call	the	HUD	directly:

				def	__init__(self,	hud):

								super(GameLayer,	self).__init__()

								w,	h	=	cocos.director.director.get_window_size()

								self.hud	=	hud

								self.width	=	w

								self.height	=	h

								#	...

The	hud	attribute	will	be	used	when	the	player	needs	to	be	respawned	and	when	the	score
is	updated:

				def	create_player(self):

								self.player	=	PlayerCannon(self.width	*	0.5,	50)

								self.add(self.player)

								self.hud.update_lives(self.lives)

				def	respawn_player(self):

								self.lives	-=	1

								if	self.lives	<	0:

												self.unschedule(self.update)

												self.hud.show_game_over()

								else:

												self.create_player()



				def	update_score(self,	score=0):

								self.score	+=	score

								self.hud.update_score(self.score)

The	main	block	should	also	be	modified	to	create	the	scene	with	the	two	layers.	Here,	we
pass	the	z	index	to	indicate	the	ordering	of	the	children	layers:

if	__name__	==	'__main__':

				cocos.director.director.init(caption='Cocos	Invaders',

																																	width=800,	height=650)

				main_scene	=	cocos.scene.Scene()

				hud_layer	=	HUD()

				main_scene.add(hud_layer,	z=1)

				game_layer	=	GameLayer(hud_layer)

				main_scene.add(game_layer,	z=0)

				cocos.director.director.run(main_scene)



Extra	feature	–	the	mystery	ship
To	complete	our	game,	we	will	add	a	final	ingredient:	the	mystery	ship	that	randomly
appears	at	the	top	of	the	screen:

class	MysteryShip(Alien):

				SCORES	=	[10,	50,	100,	200]

				def	__init__(self,	x,	y):

								score	=	random.choice(MysteryShip.SCORES)

								super(MysteryShip,	self).__init__('img/alien4.png',	x,	y,

																																										score)

								self.speed	=	eu.Vector2(150,	0)

				def	update(self,	elapsed):

								self.move(self.speed	*	elapsed)

In	an	approach	similar	to	the	shooting	logic	of	our	enemies,	we	will	randomly	add	this
alien	to	our	scheduled	function:

				def	update(self,	dt):

								self.collman.clear()

								#	...

								self.alien_group.update(dt)

								if	random.random()	<	0.001:

												self.add(MysteryShip(50,	self.height	-	50))

You	can	find	the	complete	implementation	of	this	game	in	the	chapter2_04.py	script.
Enjoy	your	first	cocos2d	game!





Summary
In	this	chapter,	we	introduced	cocos2d	and	its	most	relevant	modules.	We	developed	our
first	application	to	get	started	with	the	library,	and	later	we	built	a	simplified	version	of
Space	Invaders.

This	version	can	be	extended	by	adding	defense	bunkers	or	more	random	values	to	the
possible	scores	of	the	mystery	ship.	Besides,	if	you	want	to	change	the	visual	appearance
of	the	invaders,	you	can	edit	the	sprites	and	create	your	own	enemies!

In	the	next	chapter,	we	will	develop	a	complete	tower	defense	game,	with	transitions
between	scenes,	enhanced	display	information,	and	complex	menus.





Chapter	3.	Building	a	Tower	Defense
Game
In	the	previous	chapter,	you	learned	the	fundamentals	of	cocos2d,	and	now	you	are	able	to
develop	a	basic	game	with	this	library.	However,	most	games	use	more	than	a	single
scene,	and	their	complexity	it	is	not	limited	to	collisions	and	input	detection.

With	our	next	game,	we	will	dive	into	the	cocos2d	modules	that	provide	us	the	advanced
functionality	we	are	looking	for:	menus,	transitions,	scheduled	actions,	and	an	efficient
way	of	storing	level	graphics.

In	this	chapter,	we	will	cover	these	topics:

How	to	manipulate	sprites	with	cocos2d	actions
Using	tile	maps	as	background	layers
Animated	transitions	between	game	scenes
How	to	create	scenes	that	act	as	menus	and	cut	scenes
Building	a	full-fledged	cocos2d	application	with	all	the	ingredients	you	have	learned
so	far



The	tower	defense	gameplay
The	genre	of	tower	defense	challenges	the	player	to	stop	enemy	characters	from	reaching
a	certain	position	by	placing	strategically	different	towers	so	that	they	can	defeat	the
enemies	before	they	arrive	at	that	point.	The	towers	shoot	autonomously	towards	the
enemies	that	are	within	their	firing	range.	The	game	is	over	when	a	concrete	number	of
enemies	reach	the	end	point.

In	our	version,	the	scenario	will	be	a	meandering	road	in	the	desert,	and	we	have	to	protect
a	bunker	that	is	placed	at	the	end	of	this	road,	as	shown	in	the	following	screenshot.	At	the
far	end,	enemy	tanks	will	be	spawning	randomly,	and	we	must	place	turrets	that	destroy
them	before	they	reach	our	bunker.	The	turrets	can	be	placed	in	specific	slots,	and	each
turret	spends	part	of	our	limited	resources.





Cocos2d	actions
In	our	previous	game,	we	manipulated	our	sprites	directly	through	their	members,
especially	the	position	attribute.	The	game	loop	updated	each	actor	with	the	elapsed	time
from	the	previous	frame.

However,	our	tower	defense	game	will	be	based	mainly	on	cocos2d	actions,	which	are
orders	to	modify	object	attributes	such	as	the	position,	rotation,	or	scale.	They	are
executed	by	calling	the	do()	method	of	the	CocosNode	class.	Therefore,	any	sprite,	layer,
or	scene	can	be	a	valid	target	of	an	action.

The	actions	that	we	will	cover	in	this	section	can	be	divided	into	two	main	groups:
interval	actions	and	instant	actions.



Interval	actions
These	actions	have	a	duration,	and	their	execution	ends	after	that	certain	duration.	For
instance,	if	we	want	to	move	a	sprite	to	a	certain	position,	we	do	not	want	it	to	happen
immediately	but	last	a	fixed	amount	of	time,	giving	the	impression	that	it	moves	with	a
determined	speed.	This	can	be	achieved	with	the	MoveTo	action:

import	cocos

import	cocos.actions	as	ac

if	__name__	==	'__main__':

				cocos.director.director.init(caption='Actions	101')

				layer	=	cocos.layer.Layer()

				sprite	=	cocos.sprite.Sprite('tank.png',	position=(200,	200))

				sprite.do(ac.MoveTo((250,	300),	3))

				layer.add(sprite)

				scene	=	cocos.scene.Scene(layer)

				cocos.director.director.run(scene)

In	this	sample,	we	move	our	tank	sprite,	initially	placed	at	position	(200,	200),	to
position	(250,	300).	The	second	argument	of	MoveTo	indicates	the	duration,	which	is	3
seconds.	If	we	wanted	to	use	a	relative	offset	instead	of	the	absolute	coordinates,	we	could
have	used	the	MoveBy	action.	The	equivalent	in	this	example	would	be	MoveBy((50,
100),	3).

Another	common	action	is	rotating	a	node,	and	for	this	purpose,	cocos2d	offers	the
RotateBy	and	RotateTo	actions,	which	take	the	angle	in	degrees	and	the	duration	in
seconds:

#	...

sprite	=	cocos.sprite.Sprite('tank.png',	position=(200,	200))

sprite.do(ac.RotateBy(180,	5))	#	Rotate	180	degrees	in	5	sec

Like	MoveTo	and	MoveBy,	the	difference	between	RotateTo	and	RotateBy	is	the	use	of
absolute	and	relative	rotations.

Tip
The	math	module

The	Python	standard	library	contains	a	module	with	commonly	used	mathematical
functions.	Since	cocos2d	works	with	degrees	for	rotation	actions,	the
math.degrees(radians)	and	math.radians(degrees)	conversion	utilities	included	in	the
math	module	can	be	extremely	useful.

See	the	entire	functionality	provided	by	this	module	at
https://docs.python.org/3.4/library/math.html.

The	complete	reference	of	instant	actions	included	in	the
cocos.actions.interval_actions	module	is	the	following:

https://docs.python.org/3.4/library/math.html


Interval	action Description

Lerp Interpolates	between	values	for	a	specified	attribute

MoveTo Moves	the	target	to	the	position	(x,	y)

MoveBy Moves	the	target	by	an	offset	of	(x,	y)

JumpTo Moves	the	target	to	a	position	simulating	a	jump	movement

JumpBy Moves	the	target	simulating	a	jump	movement

Bezier Moves	the	target	through	a	Bézier	path

Blink Blinks	the	target	by	hiding	and	showing	it	a	number	of	times

RotateTo Rotates	the	target	to	a	certain	angle

RotateBy Rotates	a	target	clockwise	by	a	number	of	degrees

ScaleTo Scales	the	target	to	a	zoom	factor

ScaleBy Scales	the	target	by	a	zoom	factor

FadeOut Fades	out	the	target	by	modifying	its	opacity	attribute

FadeIn Fades	in	the	target	by	modifying	its	opacity	attribute

FadeTo Fades	the	target	to	a	specific	alpha	value

Delay Delays	the	action	by	a	certain	number	of	seconds

RandomDelay Delays	the	action	randomly	between	a	minimum	value	and	a	maximum	value	of	seconds



Instant	actions
We	have	just	introduced	interval	actions.	These	are	applied	over	a	duration	of	time.	Now
we	will	cover	instant	actions,	which	are	applied	immediately	to	the	CocosNode	instance.
Actually,	they	are	internally	implemented	as	interval	actions	with	zero	duration.	One
example	of	an	instant	action	is	CallFunc,	which	invokes	a	function	when	the	action	is
executed:

import	cocos.actions	as	ac

def	update_score():

				print('Updating	the	score…')

sprite	=	cocos.sprite.Sprite('tank.png',	position=(200,	200))

sprite.do(ac.CallFunc(update_score))

As	we	will	see	later,	this	action	will	be	handy	when	we	want	to	call	a	specific	function
during	a	sequence	of	actions.

Note	that	the	update_score	argument	in	the	last	line	is	not	followed	by	().	This	is	a	subtle
but	important	difference;	it	means	that	we	are	creating	CallFunc	with	a	reference	to	the
update_score	function,	instead	of	actually	invoking	it.

The	following	table	contains	all	the	actions	defined	in	the
cocos.actions.instant_actions	module:

Instant	action Description

Place Places	the	target	in	the	position	(x,	y)

CallFunc Calls	a	function

CallFuncS Calls	a	function	with	the	target	as	the	first	argument

Hide Hides	the	target	by	setting	its	visibility	to	False

Show Shows	the	target	by	setting	its	visibility	to	True

ToggleVisibility Toggles	the	visibility	of	the	target



Combining	actions
By	now,	you	know	how	to	apply	actions	separately,	but	you	need	to	combine	them	in
order	to	achieve	a	more	complex	behavior.

The	Action	class,	defined	in	the	cocos.actions.base_actions	module,	is	the	base	class
that	InstantAction	and	IntervalAction	inherit	from.	It	implements	the	__add__	special
method,	which	is	called	internally	when	we	use	the	+	operator.

This	operator	creates	a	sequence	of	actions	that	are	applied	serially	to	the	target:

sprite	=	cocos.sprite.Sprite('tank.png',	position=(200,	200))

sprite.do(ac.MoveBy((80,	0),	3)	+	ac.Delay(1)	+	\

										ac.CallFunc(sprite.kill))

This	snippet	moves	our	tank	80	pixels	to	the	right	in	3	seconds.	It	stands	for	1	second,	and
finally,	it	is	removed	by	calling	the	kill()	method.

Apart	from	__add__,	the	__or__	special	method	is	also	overridden.	It	is	invoked	when	the
|	operator	is	used	and	runs	the	actions	in	parallel:

sprite	=	cocos.sprite.Sprite('tank.png',	position=(200,	200))

sprite.do(ac.MoveTo((500,	150),	3)	|	ac.RotateBy(90,	2))

This	moves	the	sprite	to	the	(500,	150)	position	in	3	seconds,	and	during	the	first	2
seconds,	it	rotates	90	degrees	clockwise.

The	__add__	and	__or__	special	methods	can	be	combined	to	produce	a	sequence	of
actions	that	run	both	in	parallel	and	sequentially:

sprite	=	cocos.sprite.Sprite('tank.png',	position=(200,	200))

sprite.do((ac.MoveTo((500,	150),	3)	|	ac.RotateBy(90,	2))	+	\

										ac.CallFunc(sprite.kill))

This	example	performs	combined	movement	and	rotation	as	the	previous	one,	but	when
the	parallel	actions	are	done,	it	removes	the	sprite.

Tip
Python’s	special	methods

Cocos2d	implements	action	sequences	by	emulating	numeric	operators,	but	these	could
have	been	implemented	with	normal	methods.	In	programing,	this	kind	of	shortcut	offered
by	a	language	is	called	syntactic	sugar,	and	it	succinctly	expresses	a	functionality	that	can
also	be	implemented	in	a	more	verbose	manner.



Custom	actions
We	have	a	full	list	of	actions	included	in	the	library,	but	what	if	none	of	these	actions
perform	the	visual	effect	that	we	desire	and	we	want	to	define	a	new	action?

We	can	create	instant	or	interval	actions	by	extending	the	corresponding	class.	For	our
game,	we	want	an	action	that	indicates	visually	that	an	enemy	tank	has	been	hit	by
applying	a	red	filter	to	the	tank,	and	it	should	gradually	return	to	the	original	color.

In	this	case,	we	define	an	IntervalAction	subclass	called	Hit,	keeping	in	mind	that	the
following	steps	will	be	performed	internally	by	cocos2d:

The	init(*args,	**kwargs)	is	called.	One	of	these	keyword	arguments	should	be
the	duration	of	the	action,	so	you	can	set	it	as	your	duration	attribute.	Do	not	confuse
this	with	the	__init__	special	method.
A	copy	of	the	instance	is	made;	usually,	this	should	not	have	any	side	effect.
The	start()	is	called.	From	here,	the	self.target	attribute	can	be	used.
The	update(t)	is	called	several	times,	where	t	is	the	time	in	the	(0,	1)	range.
Then,	update(1)	is	called.
The	stop()	is	called.

It	is	not	necessary	to	override	all	of	these	methods,	but	only	those	that	are	required	to
implement	your	action.	For	instance,	we	only	need	to	store	the	duration	and	update	the
color	of	the	sprite	depending	on	the	elapsed	time,	t:

class	Hit(ac.IntervalAction):

				def	init(self,	duration=0.5):

								self.duration	=	duration

	 	

				def	update(self,	t):

								self.target.color	=	(255,	255	*	t,	255	*	t)

When	update(0)	is	invoked,	the	sprite’s	color	will	be	(255,	0,	0),	which	looks	as	if	a	red
filter	is	being	applied	to	the	image.	The	red	tone	will	decrease	as	the	elapsed	time,	t,	rises
monotonically.

Since	we	know	that	update(1)	will	be	called,	the	final	color	of	the	target	will	be	(255,
255,	255),	and	there	is	no	need	to	reset	the	initial	color	of	the	sprite.

The	following	snippet	shows	how	this	new	action	can	be	used:

sprite	=	cocos.sprite.Sprite('tank.png',	position=(200,	200))

sprite.do(ac.MoveBy((100,0),3)	+	Hit()	+	ac.MoveBy((50,0),2))

In	the	Chapter3_01.py	script,	you	can	see	this	snippet	with	all	of	the	usual	code	required
to	run	the	scene.





Adding	a	main	menu
The	Space	Invaders	version	that	we	developed	in	the	previous	chapter	starts	a	new	game
as	soon	as	the	application	is	loaded.	In	most	games,	an	initial	screen	is	displayed	and	the
player	can	choose	between	different	options	apart	from	starting	a	new	game,	such	as
changing	the	default	controls	or	taking	a	look	at	the	high	scores.

The	cocos.menu	cocos2d	module	offers	a	Layer	subclass	named	Menu,	which	serves
exactly	this	purpose.	By	extending	it,	you	can	override	its	__init__	method	and	set	the
style	of	the	title,	the	menu	items,	and	the	selected	menu	item.

These	items	are	represented	as	a	list	of	MenuItem	instances.	Once	this	list	is	instantiated,
you	can	call	the	create_menu	method,	which	builds	the	final	menu	with	the	actions	that
are	executed	when	a	menu	item	is	selected.

While	the	basic	MenuItem	only	displays	a	static	label,	there	are	several	MenuItem
subclasses	for	distinct	input	modes:

ToggleMenuItem:	Toggles	a	Boolean	option
MultipleMenuItem:	Switches	between	multiple	values
EntryMenuItem:	This	is	the	menu	item	for	entering	a	text	input
ImageMenuItem:	Shows	a	selectable	image	instead	of	a	text	label
ColorMenuItem:	This	is	the	menu	item	for	selecting	a	color

All	of	these	classes	except	ImageMenuItem	invoke	a	callback	function	when	its	value
changes	to	this	new	value	as	the	first	argument.

A	typical	usage	could	be	the	following:

import	cocos

from	cocos.menu	import	*

import	pyglet.app

class	MainMenu(Menu):

				def	__init__(self):

								super(MainMenu,	self).__init__('Sample	menu')

								self.font_title['font_name']	=	'Times	New	Roman'

								self.font_title['font_size']	=	60

								self.font_title['bold']	=	True

								self.font_item['font_name']	=	'Times	New	Roman'

								self.font_item_selected['font_name']	=	\

											'Times	New	Roman'

								self.difficulty	=	['Easy',	'Normal',	'Hard']

								m1	=	MenuItem('New	Game',	self.start_game)

								m2	=	EntryMenuItem('Player	name:',	self.set_player_name,

																											'John	Doe',	max_length=10)

								m3	=	MultipleMenuItem('Difficulty:	',	self.set_difficulty,

								self.difficulty)

								m4	=	ToggleMenuItem('Show	FPS:	',	self.show_fps,	False)

								m5	=	MenuItem('Quit',	pyglet.app.exit)

								self.create_menu([m1,	m2,	m3,	m4,	m5],

																									shake(),	shake_back())



When	self.create_menu	is	called,	we	can	pass	a	cocos2d	action	that	is	applied	when	a
menu	item	is	activated	and	when	it	is	deactivated.	The	cocos.menu	module	includes	a	few
actions,	and	we	imported	the	shake()	and	shake_back()	actions,	which	perform	a	little
shake	movement	at	the	current	menu	item	and	return	to	the	original	style	when	the	option
is	deselected,	respectively.

The	rest	of	the	code	has	been	omitted	for	brevity;	you	can	find	the	complete	script	in
Chapter3_02.py	with	the	class	methods	that	are	called	when	a	menu	item	is	activated.
Note	the	reference	to	the	pyglet.app.exit	function,	which	finalizes	the	cocos2d
application.

With	just	a	few	lines	of	code,	we	have	built	a	menu	where	the	player	can	input	their	name,
set	the	game	difficulty,	and	toggle	the	FPS	display.	The	menu	items	can	be	selected	with
the	arrow	keys	or	the	mouse	pointer.

This	is	the	type	of	main	menu	we	are	looking	for	for	our	tower	defense	game.	Since	this	is
only	one	layer,	we	can	later	add	a	background	layer	that	improves	the	visual	appearance	of
the	menu.

Now	that	you	have	understood	the	menu	API,	let’s	move	on	to	the	design	of	the	main
scene.





Tile	maps
The	technique	of	tile	maps	became	a	successful	approach	to	storing	large	amounts	of
information	about	game	worlds	with	small,	reusable	pieces	of	graphics.	In	2D	games,	tile
maps	are	represented	by	a	two-dimensional	matrix	that	references	to	a	tile	object.	This
object	contains	the	required	data	about	each	cell	of	the	terrain.

The	initial	sheet	used	by	the	tile	map	contains	the	“building	blocks”	of	our	scenario,	and	it
looks	like	what	is	shown	in	the	following	screenshot:

Starting	from	this	simple	image,	we	can	build	a	grid	map	in	which	each	cell	is	one	of	the
squares	the	sheet	is	divided	into.



Tiled	Map	Editor
We	will	use	Tiled	Map	Editor,	a	useful	tool	for	manipulating	tiled	maps.	It	can	be
downloaded	for	free	from	http://www.mapeditor.org/,	and	it	can	be	run	on	most	operating
systems,	including	Windows	and	Mac	OS.

This	software	is	also	well-suited	for	level	design,	since	you	can	edit	and	visualize	the
resulting	world	in	a	simple	way.

Once	we	have	installed	and	launched	the	program,	we	can	load	the	image	that	we	will	use
for	our	tile	map.	For	this	game,	we	have	used	a	PNG	image	that	is	already	bundled	with
the	Map	Editor	installation.

In	the	menu	bar,	go	to	File	|	New…	to	create	a	new	map.	When	a	new	map	is	created,	you
will	be	prompted	for	some	basic	information,	such	as	the	map	orientation,	map	size,	size
of	the	pattern,	and	spacing	between	the	cells.	In	our	game,	we	will	use	an	orthogonal	map
of	640	x	480	pixels	and	32	x	32	pixels	for	each	cell,	as	shown	in	the	following	screenshot:

Now	go	to	Map	|	New	Tileset…,	enter	the	name	map0,	and	load	the
tmw_desert_spacing.png	image	from	the	examples	folder,	as	shown	in	this	screenshot:

http://www.mapeditor.org/


You	can	use	the	tiles	shown	in	the	Tileset	view	to	draw	a	map	like	this	one:

Once	the	map	is	drawn,	we	can	save	it	in	several	file	formats,	such	as	CSV,	JSON,	or
TXT.	We	will	choose	the	TMX	format,	which	is	an	XML	file	that	can	be	loaded	by
cocos2d.	Go	to	File	|	Save	as…	to	store	the	tiled	map	with	this	format.



Loading	tiles
Thanks	to	the	cocos.tiles	module,	we	can	load	our	tile	maps	as	layers	and	manipulate
them	like	any	other	CocosNode	instance.	If	our	TMX	file	and	the	corresponding	PNG
image	are	stored	in	the	assets	folder,	and	the	name	of	the	map	we	want	to	load	is	'map0',
this	would	be	the	code	necessary	to	load	it:

import	cocos

tmx_file	=	cocos.tiles.load('assets/tower_defense.tmx')

my_map	=	tmx_file('map0')

my_map.set_view(0,	0,	my_map.px_width,	my_map.px_height)

scene	=	cocos.scene.Scene(my_map)





The	scenario	definition
Once	we	have	loaded	the	tile	map,	we	need	to	link	the	resulting	image	with	the	game
information.	Our	scenario	class	should	contain	the	following:

The	positions	where	the	turrets	can	be	placed
The	position	of	the	bunker
The	initial	position	for	enemy	spawning
The	path	that	the	enemies	must	follow	to	reach	the	bunker

In	the	following	screenshot,	we	can	see	this	data	overlaid	on	top	of	our	TMX	map:

The	rectangles	represent	the	slots	in	which	the	player	can	place	the	turrets.	The	scenario
stores	only	the	centers	of	these	squares,	because	the	game	layer	will	translate	these
positions	into	clickable	squares.

The	lines	over	the	road	represent	the	path	that	the	enemy	tanks	must	follow.	This
movement	will	be	implemented	by	chaining	the	MoveBy	and	RotateBy	actions.	We	will
define	two	constants	for	rotation	toward	the	left	or	the	right,	and	an	auxiliary	function	that
returns	a	MoveBy	action	whose	duration	makes	the	enemies	move	uniformly:

import	cocos.actions	as	ac

RIGHT	=	ac.RotateBy(90,	1)

LEFT	=	ac.RotateBy(-90,	1)

def	move(x,	y):

				dur	=	abs(x+y)	/	100.0

				return	ac.MoveBy((x,	y),	duration=dur)

With	these	constants	and	the	auxiliary	function,	we	can	easily	create	a	list	of	actions	that



will	be	chained	to	represent	the	complete	list	of	steps	required	to	follow	the	green	path
shown	in	the	previous	screenshot.	For	instance,	this	could	be	a	hypothetical	usage	of	these
utilities	to	compose	a	chain	of	actions:

steps	=	[move(610,	0),	LEFT,	move(0,	160),	LEFT,	move(-415,	0),

									RIGHT,	move(0,	160),	RIGHT,	move(420,	0)]

for	step	in	steps:

				actions	+=	step

sprite.do(actions)

This	solution	not	only	avoids	the	need	to	write	all	the	steps	one	by	one,	but	also	makes	our
code	more	expressive	and	readable.	Now	let’s	encapsulate	this	logic	in	a	class	that	will
hold	this	data.

Tip
Domain-specific	languages

This	use	of	abstractions	to	represent	high-level	concepts	is	widely	found	in	programming,
and	game	development	is	not	an	exception.	When	this	syntax	reaches	a	whole	domain	of
specialized	features,	the	resulting	language	is	called	a	Domain-specific	Language	(DSL).

While	this	small	domain	only	covers	sprite	movements	and	cannot	be	considered	a	DSL
by	itself,	advanced	game	engines	include	specific	scripting	languages	that	are	focused	on
game	development.



The	scenario	class
Let’s	start	the	definition	of	the	scenario	module	by	creating	an	empty	file	called
scenario.py	and	opening	it	with	our	favorite	text	editor.	This	module	will	contain	the
definition	of	the	Scenario	class,	which	groups	the	previously	discussed	information,	such
as	the	bunker’s	position,	the	chain	of	actions	that	the	enemies	will	follow,	and	so	on:

class	Scenario(object):

				def	__init__(self,	tmx_map,	turrets,	bunker,	enemy_start):

								self.tmx_map	=	tmx_map

								self.turret_slots	=	turrets

								self.bunker_position	=	bunker

								self.enemy_start	=	enemy_start

								self._actions	=	None

				def	get_background(self):

								tmx_map	=	cocos.tiles.load('assets/tower_defense.tmx')

								bg	=	tmx_map[self.tmx_map]

								bg.set_view(0,	0,	bg.px_width,	bg.px_height)

								return	bg

To	retrieve	the	sequence	of	actions,	we	will	use	the	@property	decorator.	It	allows	us	to
access	to	an	attribute	by	invoking	functions	that	will	act	as	getters	and	setters:

				@property

				def	actions(self):

								return	self._actions

				@actions.setter

				def	actions(self,	actions):

								self._actions	=	ac.RotateBy(90,	0.5)

								for	step	in	actions:

												self._actions	+=	step

This	decorator	wraps	the	access	to	the	internal	_actions	member.	Given	an	instance	of
this	class	named	scenario,	the	retrieval	of	the	scenario.actions	member	would	trigger
the	getter	function,	while	an	assignment	to	scenario.actions	would	trigger	the	setter
function.

Now	we	can	define	a	function	that	instantiates	a	scenario	and	set	its	members	based	on	the
disposition	of	our	'map0'.	If	we	had	designed	more	levels,	we	could	have	added	more
functions	that	create	these	new	scenarios:

def	get_scenario():

				turret_slots	=	[(192,	352),	(320,	352),	(448,	352),

																				(192,	192),	(320,	192),	(448,	192),

																				(96,	32),	(224,	32),	(352,	32),	(480,	32)]

				bunker_position	=	(528,	430)

				enemy_start	=	(-80,	110)

				sc	=	Scenario('map0',	turret_slots,

																		bunker_position,	enemy_start)

				sc.actions	=	[move(610,	0),	LEFT,	move(0,	160),

																		LEFT,	move(-415,	0),	RIGHT,

																		move(0,	160),	RIGHT,	move(420,	0)]



				return	sc

To	use	this	module	from	another	one,	we	will	import	it	with	this	statement:	from
scenario	import	get_scenario.	The	next	script	that	we	will	write	is	responsible	for
defining	our	game’s	main	menu.





Transitions	between	scenes
In	a	previous	section,	you	learned	how	to	create	a	menu	with	cocos2d’s	built-in	classes.
The	menu	of	our	tower	defense	game	will	be	very	similar,	since	it	follows	the	same	steps.
It	will	be	implemented	in	a	separate	module,	named	mainmenu:

class	MainMenu(cocos.menu.Menu):

				def	__init__(self):

								super(MainMenu,	self).__init__('Tower	Defense')

								self.font_title['font_name']	=	'Oswald'

								self.font_item['font_name']	=	'Oswald'

								self.font_item_selected['font_name']	=	'Oswald'

								self.menu_anchor_y	=	'center'

								self.menu_anchor_x	=	'center'

								items	=	list()

								items.append(MenuItem('New	Game',	self.on_new_game))

								items.append(ToggleMenuItem('Show	FPS:	',	self.show_fps,

																																				director.show_FPS))

								items.append(MenuItem('Quit',	pyglet.app.exit))

								self.create_menu(items,	ac.ScaleTo(1.25,	duration=0.25),

																									ac.ScaleTo(1.0,	duration=0.25))

This	menu	displays	three	menu	items:

An	option	for	starting	a	new	game
A	toggle	item	for	showing	the	FPS	label
A	quit	option

To	start	a	new	game,	we	will	need	the	instance	of	the	main	scene.	It	will	be	returned	by
calling	the	new_game	function	of	mainscene.py,	which	has	not	been	developed	yet.
Besides,	we	will	add	a	transition	with	the	FadeTRTransition	class	from	the
cocos.scenes.transitions	module.

A	transition	is	a	scene	that	performs	a	visual	effect	before	setting	the	control	of	a	new
scene.	It	receives	this	scene	as	its	first	argument	and	some	options,	such	as	the	transition
duration	in	seconds:

from	cocos.scenes.transitions	import	FadeTRTransition

from	mainscene	import	new_game

game_scene	=	new_game()		#	Instance	of	cocos.scene.Scene

transition	=	FadeTRTransition(game_scene,	duration=2)

Now,	to	replace	the	current	scene	with	the	new	one	decorated	with	a	transition,	we	call
director.push.	In	this	way,	the	on_start_menu	method	of	our	MainMenu	class	is
implemented:

				def	on_new_game(self):

								director.push(FadeTRTransition(new_game(),	duration=2))



The	visual	effect	produced	by	this	transition	is	that	the	current	scene’s	tiles	fade	from	the
left-bottom	corner	to	the	top-right	corner,	as	shown	here:

You	can	find	the	complete	code	of	this	module	in	the	mainmenu.py	script.



Game	over	cut	scene
To	create	a	cut	scene	when	the	game	is	over,	we	will	need	a	simple	layer	and	a	text	label.
Since	a	scene	is	a	CocosNode,	we	can	apply	actions	to	it.	To	hold	this	screen	for	a	moment,
it	will	perform	a	Delay	action	that	lasts	3	seconds,	and	then	it	will	trigger	a
FadeTransition	to	the	main	menu.

We	will	wrap	these	steps	in	a	separate	function,	which	will	be	part	of	another	new	module,
named	gamelayer.py:

def	game_over():

				w,	h	=	director.get_window_size()

				layer	=	cocos.layer.Layer()

				text	=	cocos.text.Label('Game	Over',	position=(w*0.5,	h*0.5),

																												font_name='Oswald',	font_size=72,

																												anchor_x='center',	anchor_y='center')

				layer.add(text)

				scene	=	cocos.scene.Scene(layer)

				new_scene	=	FadeTransition(mainmenu.new_menu())

				func	=	lambda:	director.replace(new_scene)

				scene.do(ac.Delay(3)	+	ac.CallFunc(func))

				return	scene

This	function	will	be	called	from	the	game	layer	when	the	bunker’s	health	points	decrease
to	zero.





The	tower	defense	actors
We	will	define	several	classes	in	the	actors.py	module	to	represent	the	game	objects.

As	with	our	previous	game,	we	will	include	a	base	class,	from	which	the	rest	of	the	actor
classes	will	inherit:

import	cocos.sprite

import	cocos.euclid	as	eu

import	cocos.collision_model	as	cm

class	Actor(cocos.sprite.Sprite):

				def	__init__(self,	img,	x,	y):

								super(Actor,	self).__init__(img,	position=(x,	y))

								self._cshape	=	cm.CircleShape(self.position,

																																						self.width	*	0.5)

				@property

				def	cshape(self):

								self._cshape.center	=	eu.Vector2(self.x,	self.y)

								return	self._cshape

In	the	Actor	implementation	in	the	previous	chapter,	when	the	sprite	was	displaced	by
calling	the	move()	method,	both	cshape	and	position	were	updated	at	the	same	time.
However,	actions	such	as	MoveBy	only	modify	the	sprite	position,	and	the	CShape	center	is
not	updated.

To	solve	this	issue,	we	wrap	the	access	to	the	CShape	member	through	the	cshape
property.	With	this	construct,	when	the	actor.cshape	value	is	read,	the	internal	_cshape
is	updated	by	setting	its	center	with	the	current	sprite	position.

This	solution	is	possible	because	an	object	only	needs	a	cshape	member	in	order	to	be	a
valid	entity	for	a	CollisionManager,	and	a	property	is	exposed	in	the	same	way	as	any
other	attribute	that	is	directly	accessed.

Now	that	our	actor	base	class	has	been	defined,	we	can	start	implementing	the	classes	for
the	turrets	and	the	enemy	tanks.



Turrets	and	slots
Turrets	are	game	objects	that	act	autonomously;	that	is,	there	is	no	need	to	bind	input
events	with	their	actions.	The	collision	shape	is	not	the	sprite	size	but	the	firing	range.
Therefore,	a	collision	between	a	turret	and	a	tank	means	that	the	enemy	is	inside	this	range
and	can	be	considered	a	valid	target:

class	Turret(Actor):

				def	__init__(self,	x,	y):

								super(Turret,	self).__init__('turret.png',	x,	y)

								self.add(cocos.sprite.Sprite('range.png',	opacity=50,

																																					scale=5))

								self.cshape.r	=	125.0

								self.target	=	None

								self.period	=	2.0

								self.reload	=	0.0

								self.schedule(self._shoot)

The	shooting	logic	is	implemented	by	scheduling	a	function	that	increments	the	reload
counter.	When	the	sum	of	elapsed	seconds	reaches	the	period	value,	the	counter	is
decreased	and	the	turret	creates	a	shoot	sprite	whose	aim	is	at	the	current	target:

				def	_shoot(self,	dt):

								if	self.reload	<	self.period:

												self.reload	+=	dt

								elif	self.target	is	not	None:

												self.reload	-=	self.period

												offset	=	eu.Vector2(self.target.x	-	self.x,

																																self.target.y	-	self.y)

												pos	=	self.cshape.center	+	offset.normalized()	*	20

												self.parent.add(Shoot(pos,	offset,	self.target))

Apart	from	setting	the	target,	a	collision	with	the	circular	shape	that	represents	the	firing
range	also	rotates	the	turret,	giving	the	impression	that	it	is	aiming	at	the	target.

To	calculate	the	angle	by	which	the	sprite	must	rotate,	we	calculate	the	vector	that	runs
from	the	turret	to	the	target.	With	the	atan2	function	from	the	math	module,	we	calculate
the	angle	between	the	π	and	-π	radians	formed	by	the	positive	x	axis	and	this	vector.
Finally,	we	change	the	sign	of	the	angle	and	convert	it	from	radians	to	degrees:

				def	collide(self,	other):

								self.target	=	other

								if	self.target	is	not	None:

												x,	y	=	other.x	-	self.x,	other.y	-	self.y

												angle	=	-math.atan2(y,	x)

												self.rotation	=	math.degrees(angle)

A	shoot	is	not	an	actor,	since	it	is	not	required	to	be	able	to	collide.	Through	a	sequence	of
actions,	it	will	move	from	the	turret	to	the	tank’s	position	and	hit	the	target	instance:

class	Shoot(cocos.sprite.Sprite):

				def	__init__(self,	pos,	offset,	target):

								super(Shoot,	self).__init__('shoot.png',	position=pos)

								self.do(ac.MoveBy(offset,	0.1)	+



																ac.CallFunc(self.kill)	+

																ac.CallFunc(target.hit))

Apart	from	Turret	and	Shoot,	we	will	need	a	class	to	represent	the	slots	in	which	the
turrets	can	be	placed.	Since	we	will	take	advantage	of	the	CollisionManager	functionality
to	detect	whether	a	CShape	has	been	clicked	on,	this	class	only	needs	a	cshape	member:

class	TurretSlot(object):

				def	__init__(self,	pos,	side):

								self.cshape	=	cm.AARectShape(eu.Vector2(*pos),	side*0.5,	side*0.5)

Instances	of	this	class	will	be	added	to	a	different	CollisionManager	so	that	they	do	not
conflict	with	the	rest	of	the	game	objects.



Enemies
An	enemy	tank	is	an	actor	that	follows	the	scenario	path	until	it	reaches	the	bunker	at	the
end	of	the	road.	It	is	destroyed	if	the	turret	shots	reduce	its	health	points	to	zero.

The	player	increments	their	score	each	time	a	tank	is	destroyed,	so	apart	from	health,	we
will	need	a	score	attribute	to	indicate	how	many	points	the	player	earns:

class	Enemy(Actor):

				def	__init__(self,	x,	y,	actions):

								super(Enemy,	self).__init__('tank.png',	x,	y)

								self.health	=	100

								self.score	=	20

								self.destroyed	=	False

								self.do(actions)

Since	we	must	differentiate	between	whether	the	tank	has	exploded	because	it	has	been
defeated	by	the	turrets	or	because	it	has	reached	the	end	point,	we	will	use	a	destroyed
flag.	This	flag	will	be	set	to	true	only	if	the	tank	is	destroyed	by	a	turret.

We	also	check	the	CocosNode	flag	called	is_running,	since	it	is	set	to	false	when	the
node	is	removed.	Thus,	we	can	prevent	the	tank	from	being	removed	when	it	has	already
been	killed:

				def	hit(self):

								self.health	-=	25

								self.do(Hit())

								if	self.health	<=	0	and	self.is_running:

												self.destroyed	=	True

												self.explode()

				def	explode(self):

								self.parent.add(Explosion(self.position))

								self.kill()

Like	the	animations	of	our	Space	Invaders	game,	an	explosion	will	be	simulated	with	a
fast	sequence	of	sprites	that	lasts	for	0.07	seconds.	To	avoid	having	too	many	sprite
instances	in	our	layer,	the	kill()	method	is	called	1	second	after	the	object	instantiation:

raw	=	pyglet.image.load('explosion.png')

seq	=	pyglet.image.ImageGrid(raw,	1,	8)

explosion_img	=	Animation.from_image_sequence(seq,	0.07,	False)

class	Explosion(cocos.sprite.Sprite):

				def	__init__(self,	pos):

								super(Explosion,	self).__init__(explosion_img,	pos)

								self.do(ac.Delay(1)	+	ac.CallFunc(self.kill))



Bunker
You	might	remember	the	description	of	the	gameplay.	We	need	to	keep	the	enemies	away
from	a	specific	area.	In	our	version,	it	is	represented	by	a	bunker	that	is	placed	at	the	end
of	the	road.

The	bunker	instance	only	needs	to	process	the	enemy	collisions	and	decrease	its	health
points.	The	initial	number	of	health	points	is	100,	and	each	collision	subtracts	10	points
from	this	total:

class	Bunker(Actor):

				def	__init__(self,	x,	y):

								super(Bunker,	self).__init__('bunker.png',	x,	y)

								self.hp	=	100

				def	collide(self,	other):

								if	isinstance(other,	Enemy):

												self.hp	-=	10

												other.explode()

												if	self.hp	<=	0	and	self.is_running:

																self.kill()

As	we	did	with	the	Tank	class,	we	check	whether	the	CocosNode	flag	is_running	is	set	to
true	to	avoid	calling	kill()	when	the	bunker	has	already	been	removed.





Game	scene
The	game	layer	contains	several	attributes	for	holding	the	reference	to	the	HUD	layer,	the
scenario,	and	the	game	information,	such	as	the	score	or	the	number	of	points	that	can	be
spent	to	build	new	turrets.

These	classes	are	added	to	the	gamelayer	module,	which	has	contained	only	the	game
over	transition	so	far:

class	GameLayer(cocos.layer.Layer):

				def	__init__(self,	hud,	scenario):

								super(GameLayer,	self).__init__()

								self.hud	=	hud

								self.scenario	=	scenario

								self.score	=	self._score	=	0

								self.points	=	self._points	=	40

								self.turrets	=	[]

								w,	h	=	director.get_window_size()

								cell_size	=	32

								self.coll_man	=	cm.CollisionManagerGrid(0,	w,	0,	h,

																																																cell_size,

																																																cell_size)

								self.coll_man_slots	=	cm.CollisionManagerGrid(0,	w,	0,	h,

																																																						cell_size,

																																																						cell_size)

								for	slot	in	scenario.turret_slots:

												self.coll_man_slots.add(actors.TurretSlot(slot,

																																																						cell_size))

								self.bunker	=	actors.Bunker(*scenario.bunker_position)

								self.add(self.bunker)

								self.schedule(self.game_loop)

Another	difference	from	our	previous	cocos2d	game	is	the	usage	of	two	collision
managers:	coll_man	for	the	game	actors	and	coll_man_slots	for	the	turret	slots.	While
the	first	one	is	updated	during	each	iteration	of	the	game	loop,	the	second	one	contains
static	shapes	that	do	not	conflict	with	the	actors’	collisions.	As	a	result,	we	avoid
unnecessary	additions	and	removals	from	the	turret	slot	shapes;	thus,	improving	the
collision	checking	performance.

Both	points	and	score	are	properties	that,	apart	from	accessing	the	_points	and	_score
internal	attributes,	update	the	HUD	with	the	new	numeric	value.	Here,	we	will	show	the
points	property,	but	score	has	a	similar	implementation:

				@property

				def	points(self):

								return	self._points

				@points.setter

				def	points(self,	val):

								self._points	=	val

								self.hud.update_points(val)



The	game	loop	is	quite	simple	since	the	logic	of	the	game	is	mainly	implemented	with
actions:

				def	game_loop(self,	_):

								self.coll_man.clear()

								for	obj	in	self.get_children():

												if	isinstance(obj,	actors.Enemy):

																self.coll_man.add(obj)

								for	turret	in	self.turrets:

												obj	=	next(self.coll_man.iter_colliding(turret),	None)

												turret.collide(obj)

								for	obj	in	self.coll_man.iter_colliding(self.bunker):

												self.bunker.collide(obj)

								if	random.random()	<	0.005:

												self.create_enemy()

These	are	the	statements	performed	for	each	frame:

It	updates	the	collision	manager	with	the	positions	of	the	enemy	tanks.
For	each	turret,	we	check	whether	there	is	any	enemy	within	the	firing	range.	If	so,
we	call	the	collide()	method	of	the	Turret	class.
We	also	check	whether	a	collision	with	the	bunker	has	occurred.	Since	the	only
entities	managed	by	self.coll_man	are	the	enemy	tanks,	we	do	not	have	to	worry
about	verifying	that	the	other	object	is	a	tank	and	not	a	turret.
Enemies	are	randomly	spawned	with	a	given	probability.	We	left	a	static	value,	but	it
could	have	been	calculated	depending	on	the	number	of	enemies	defeated	so	that	the
game	becomes	increasingly	more	difficult.

The	create_enemy()	method	places	a	new	tank	at	the	initial	position.	To	prevent	them
from	always	spawning	at	the	same	coordinates,	we	will	apply	a	random	offset	of	+/-	10
pixels	in	both	the	x	and	y	components:

				def	create_enemy(self):

								enemy_start	=	self.scenario.enemy_start

								x	=	enemy_start[0]	+	random.uniform(-10,	10)

								y	=	enemy_start[1]	+	random.uniform(-10,	10)

								self.add(actors.Enemy(x,	y,	self.scenario.actions))

The	layer	will	process	user	input	as	usual,	and	we	will	register	only	one	method	to	process
mouse	events.	With	the	objs_touching_point()	method,	we	will	know	whether	any	slot
has	been	clicked	on.	If	the	player	has	enough	points,	a	new	turret	instance	is	placed	at	the
center	of	the	slot’s	position:

				is_event_handler	=	True

				def	on_mouse_press(self,	x,	y,	buttons,	mod):

								slots	=	self.coll_man_slots.objs_touching_point(x,	y)

								if	len(slots)	and	self.points	>=	20:

												self.points	-=	20

												slot	=	next(iter(slots))

												turret	=	actors.Turret(*slot.cshape.center)



												self.turrets.append(turret)

												self.add(turret)

Finally,	we	override	the	remove()	method	to	detect	which	type	of	object	has	been
removed:

				def	remove(self,	obj):

								if	obj	is	self.bunker:

												director.replace(SplitColsTransition(game_over()))

								elif	isinstance(obj,	actors.Enemy)	and	obj.destroyed:

												self.score	+=	obj.score

												self.points	+=	5

								super(GameLayer,	self).remove(obj)

If	the	node	is	the	bunker,	it	means	that	the	player	has	lost	the	game,	and	the	director
replaces	the	current	scene	with	the	Game	Over	cut	scene.	If	the	node	is	an	enemy	tank,
the	score	and	the	points	are	updated	before	actually	removing	the	object.



The	HUD	class
This	layer	is	responsible	for	displaying	the	game	information,	a	functionality	similar	to	the
HUD	we	built	in	our	previous	game:

class	HUD(cocos.layer.Layer):

				def	__init__(self):

								super(HUD,	self).__init__()

								w,	h	=	director.get_window_size()

								self.score_text	=	self._create_text(60,	h-40)

								self.score_points	=	self._create_text(w-60,	h-40)

				def	_create_text(self,	x,	y):

								text	=	cocos.text.Label(font_size=18,	font_name='Oswald',

																													anchor_x='center',	anchor_y='center')

								text.position	=	(x,	y)

								self.add(text)

								return	text

				def	update_score(self,	score):

								self.score_text.element.text	=	'Score:	%s'	%	score

				def	update_points(self,	points):

								self.score_points.element.text	=	'Points:	%s'	%	points



Assembling	the	scene
To	conclude	our	mainscene.py	module,	we	will	define	the	new_game()	function.	This
function	is	used	by	the	main	menu	when	a	new	game	is	started.	It	returns	the	scene	with
the	tile	map,	the	HUD	layer,	and	the	game	layer	initialized	and	displayed	in	the	correct
order:

def	new_game():

				scenario	=	get_scenario()

				background	=	scenario.get_background()

				hud	=	HUD()

				game_layer	=	GameLayer(hud,	scenario)

				return	cocos.scene.Scene(background,	game_layer,	hud)

The	game	will	be	started	with	the	conditional	block	that	we	saw	in	our	previous	games.
Apart	from	initializing	the	director	and	running	the	scene,	we	will	load	the	Oswald	font
and	add	the	images	to	the	resource	path	with	the	Pyglet	API:

from	cocos.director	import	director

import	pyglet.font

import	pyglet.resource

from	mainmenu	import	new_menu

if	__name__	==	'__main__':

				pyglet.resource.path.append('assets')

				pyglet.resource.reindex()

				pyglet.font.add_file('assets/Oswald-Regular.ttf')

				director.init(caption='Tower	Defense')

				director.run(new_menu())

This	is	saved	in	the	towerdefense.py	script.	The	following	screenshot	shows	the	final
project	layout:







Summary
With	this	project,	we	saw	how	to	include	menus,	transitions,	and	actions	in	our	cocos2d
applications.	Our	code	is	split	into	multiple	modules,	enhancing	a	better	organization	of
our	games.

This	game	can	be	the	base	for	a	more	complex	tower	defense	game.	You	can	customize
the	number	of	points	required	to	create	a	new	turret,	or	change	the	probability	of	spawning
enemies.	As	an	exercise,	try	to	create	a	new	TMX	map	with	Map	Editor	and	define	a
custom	scenario	based	on	this	background.	Your	imagination	is	the	limit!





Chapter	4.	Steering	Behaviors
Our	previous	cocos2d	game	was	based	on	actions,	so	movements	and	rotations	were
predefined	and	the	characters	were	not	influenced	by	the	current	state	of	the	game.
However,	a	recurring	problem	in	game	development	is	how	to	recreate	life-like
animations,	such	as	pursuing	a	target	or	avoiding	moving	obstacles.

Now,	you	will	learn	how	to	apply	steering	behaviors,	a	technique	used	to	create
seemingly	intelligent	movements	for	autonomous	characters.	The	implementation	of	these
strategies	achieves	the	ability	to	navigate	through	the	game	world	with	improvised
patterns.

Finally,	we	will	put	these	strategies	in	practice	with	particle	systems,	a	Cocos2d	module
that	we	have	not	worked	with	so	far.	Since	we	will	use	simple	shapes,	these	particle
systems	will	represent	our	characters,	with	the	advantage	of	us	not	requiring	external
assets	for	our	applications.

In	this	chapter,	we	will	cover	these	topics:

Basic	concepts	of	steering	behaviors
Behaviors	for	individuals	and	groups
Mixing	these	strategies
How	to	render	particle	systems	with	cocos2d



NumPy	installation
To	use	the	particle	system	support	of	cocos2d,	it	is	necessary	to	install	NumPy,	a	Python
package	used	to	operate	with	large	arrays	and	matrices	in	an	efficient	way.	Since	it
contains	several	C	modules,	it	might	be	difficult	to	install	it	on	Windows	systems	because
you	might	not	have	the	appropriate	compiler.

You	can	download	the	official	binaries	for	Windows	and	Mac	OS	X	from	the	NumPy	site
at	http://sourceforge.net/projects/numpy/files/NumPy/1.9.2/.

Another	option	is	to	download	the	unofficial	compiled	binaries	from	Christoph	Gohlke’s
website	at	http://www.lfd.uci.edu/~gohlke/pythonlibs/#numpy.	Here,	the	packages	are
uploaded	as	.whl	files.	This	is	the	extension	of	the	wheel	format	and	can	be	installed	with
pip:

$	pip	install	numpy‑1.9.2+mkl‑cp34‑none‑win32.whl

In	both	cases,	remember	to	install	the	binaries	for	Python	3.4,	since	the	versions	for
Python	2.7	and	3.3	are	available	for	download	as	well.

You	can	check	whether	the	installation	was	successful	by	running	this	command:

$	python	-c	"import	numpy;print(numpy.version.version)"

1.9.2

Once	NumPy	is	installed,	you	have	all	the	requirements	for	supporting	particle	systems	in
cocos2d.

http://sourceforge.net/projects/numpy/files/NumPy/1.9.2/
http://www.lfd.uci.edu/~gohlke/pythonlibs/#numpy


The	ParticleSystem	class
The	base	class	for	cocos2d	particle	systems	is	ParticleSystem,	as	defined	in	the
cocos.particle	module.	The	following	table	lists	some	of	the	most	relevant	class
members.	Note	that	the	ones	ending	in	_var	indicate	that	random	variance	can	be	applied
to	the	base	value.

Class	member Description

Active Indicates	whether	the	particle	system	is	spawning	new	particles	or	not.

Duration
The	duration	of	the	system	in	seconds.	This	value	is	-1	for	infinite
duration.

Gravity Gravity	of	the	particles.

angle,	angle_var The	angular	direction	of	the	particles	measured	in	degrees.

speed,	speed_var The	speed	of	the	particles.

tangential_accel,

tangential_accel_val
Tangential	acceleration.

radial_accel,	radial_accel_var Radial	acceleration.

size,	size_var The	size	of	the	particles.

life,	life_var The	time	in	seconds	for	which	each	particle	will	live.

start_color,	start_color_var The	start	color	of	the	particles.

end_color,	end_color_val The	end	color	of	the	particles.

total_particles The	maximum	number	of	particles.

You	can	create	your	own	particle	systems	by	extending	this	class	and	redefining	the	values
of	these	class	members.

Cocos2d	includes	another	module,	cocos.particles_systems,	with	some	predefined
ParticleSystem	subclasses,	each	producing	a	different	visual	effect.	The	names	of	these
classes	are	Fireworks,	Spiral,	Meteor,	Sun,	Fire,	Galaxy,	Flower,	Explosion,	and	Smoke.



A	quick	demonstration
This	code	is	a	basic	example	that	shows	how	to	add	a	static	ParticleSystem	to	our	layer
without	processing	any	user	input	or	actions:

import	cocos

import	cocos.particle_systems	as	ps

class	MainLayer(cocos.layer.Layer):

				def	__init__(self):

								super(MainLayer,	self).__init__()

								particles	=	ps.Spiral()

								particles.position	=	(320,	240)

								self.add(particles)

if	__name__	==	'__main__':

				cocos.director.director.init(caption='Particles	example')

				scene	=	cocos.scene.Scene(MainLayer())

				cocos.director.director.run(scene)

ParticleSystem	inherits	from	CocosNode.	Therefore,	the	instance	has	the	usual	members’
position,	rotation,	and	scale,	as	well	as	the	do()	and	kill()	methods.

Running	this	script	shows	the	following	predefined	particle	system:



You	can	replace	ps.Spiral()	with	other	built-in	particle	systems,	such	as	ps.Galaxy()	or
ps.Fireworks().	Many	Integrated	Development	Environments	(IDE),	such	as	PyCharm
or	PyDevm,	offer	code	completion	and	will	list	all	the	names	that	are	defined	in	a	module
after	typing	its	name.





Implementing	steering	behaviors
The	strategies	that	we	will	cover	here	have	been	taken	from	Craig	Reynolds’s	paper
Steering	Behaviors	for	Autonomous	Characters,	written	in	1999.	It	has	become	a	well-
known	reference	for	implementing	autonomous	motion	in	an	easy	manner	for	non-
playable	characters.

You	can	check	out	the	online	version	at	http://www.red3d.com/cwr/steer/gdc99/.	In	this
section,	you	will	learn	how	to	implement	the	following	kinds	of	behavior:

Seek	and	flee
Arrival
Pursuit	and	evade
Wander
Obstacle	avoidance

http://www.red3d.com/cwr/steer/gdc99/


Seek	and	flee
The	seek	behavior	moves	the	character	towards	a	specific	position	in	the	space.	This
behavior	is	based	on	the	combination	of	two	forces:	the	character’s	velocity	and	the
steering	force.	This	force	is	calculated	as	the	difference	between	the	desired	velocity	(the
direction	from	the	character	to	the	target)	and	the	character’s	current	velocity.

Note	that	this	is	not	a	force	in	the	strict	physics	definition;	it	is	just	another	velocity	vector.
You	can	think	of	it	as	a	correction	of	the	character’s	velocity,	and	the	resulting	path	will	be
a	smooth	curve	that	adjusts	the	velocity	until	it	is	aligned	towards	the	target.

Flee	is	the	inverse	of	seek,	and	it	makes	the	character	move	away	from	the	target.	It	means
that	the	steering	force	pushes	the	character	away	from	the	target.

You	can	see	both	seek	and	flee	represented	graphically	in	the	following	diagram.	The
curved	paths	show	the	final	direction	once	the	forces	are	combined,	the	right	one	towards
the	target	(seek),	and	the	left	one	away	from	the	target	(flee).

For	our	implementation,	we	need	a	class	that	represents	the	autonomous	character	with	the
following	members:

velocity:	A	two-dimensional	vector	representing	the	actor’s	velocity
speed:	The	actor’s	speed,	measured	in	the	number	of	pixels	per	frame
max_force:	The	maximum	magnitude	of	the	steering	force
max_velocity:	The	maximum	magnitude	of	the	velocity	vector
target:	The	position	that	the	actor	tries	to	reach

Besides,	to	put	our	particle	systems	into	practice,	we	will	extend	CocosNode	instead	of



Sprite	and	represent	our	actor	with	the	Sun	particle	system:

import	cocos

import	cocos.euclid	as	eu

import	cocos.particle_systems	as	ps

class	Actor(cocos.cocosnode.CocosNode):

				def	__init__(self,	x,	y):

								super(Actor,	self).__init__()

								self.position	=	(x,	y)

								self.velocity	=	eu.Vector2(0,	0)

								self.speed	=	2

								self.max_force	=	5

								self.max_velocity	=	200

								self.target	=	None

								self.add(ps.Sun())

								self.schedule(self.update)

The	update()	method	will	compute	the	new	position	of	the	character	for	each	frame,
based	on	the	current	velocity	and	the	target	that	it	is	seeking:

				def	update(self,	dt):

								if	self.target	is	None:

												return

								distance	=	self.target	-	eu.Vector2(self.x,	self.y)

								steering	=	distance	*	self.speed	-	self.velocity

								steering	=	truncate(steering,	self.max_force)

								self.velocity	=	truncate(self.velocity	+	steering,

																																	self.max_velocity)

								self.position	+=	self.velocity	*	dt

Step	by	step,	we	perform	the	following	operations:

Calculate	the	distance	to	the	target.
We	scale	this	distance	against	the	speed	and	subtract	the	current	velocity.	This	gives
us	the	steering	force.
Truncate	this	force	with	the	maximum	force.
Sum	the	steering	force	with	the	current	velocity	and	limit	it	to	the	maximum	velocity
that	can	be	reached.
Update	the	position	with	the	velocity	per	frame.

This	figure	shows	how	these	vectors	are	added	to	achieve	the	resulting	path	to	the	target:



The	truncate()	function	limits	the	magnitude	of	a	vector,	preventing	the	velocity	from
reaching	a	greater	module	than	allowed:

def	truncate(vector,	m):

				magnitude	=	abs(vector)

				if	magnitude	>	m:

								vector	*=	m	/	magnitude

				return	vector

If	the	vector	module	is	greater	than	the	maximum	value,	the	vector	is	normalized	and
scaled	by	this	value.

The	character’s	target	will	be	the	mouse	pointer,	and	the	target	coordinates	must	be
updated	when	the	mouse	is	moved.	To	do	so,	we	will	define	a	custom	layer	that	handles
the	mouse	motion	events	and	sets	the	actor’s	target:

class	MainLayer(cocos.layer.Layer):

				is_event_handler	=	True

				def	__init__(self):

								super(MainLayer,	self).__init__()

								self.actor	=	Actor(320,	240)

								self.add(self.actor)

				def	on_mouse_motion(self,	x,	y,	dx,	dy):

								self.actor.target	=	eu.Vector2(x,	y)

if	__name__	==	'__main__':

				cocos.director.director.init(caption='Steering	Behaviors')

				scene	=	cocos.scene.Scene(MainLayer())

				cocos.director.director.run(scene)

When	you	run	this	code,	which	is	present	in	the	seek.py	script,	the	character	will	seek	the
mouse	pointer	when	you	move	it	over	the	window.



For	the	flee	behavior,	simply	change	the	sign	of	the	velocity	when	the	position	is	updated:

				def	update(self,	dt):

								if	self.target	is	None:

												return

								#	...

								self.position	+=	self.velocity	*	dt	*	-1

This	will	make	the	character	flee	from	the	mouse	pointer,	and	eventually	leave	the	window
if	the	mouse	is	closer	to	the	center	than	the	character.	In	the	seek_and_flee.py	script,	you
can	find	a	combination	of	these	implementations,	where	it	is	possible	to	switch	them	with
the	mouse	click.



Arrival
You	may	notice	that	with	the	seek	behavior,	if	the	character’s	velocity	is	too	high,	it	will
pass	through	the	target	and	come	back	smoothly.

The	arrival	behavior	lowers	the	velocity	once	the	character	has	reached	a	minimum
distance	close	to	the	target,	decreasing	it	gradually.	This	distance	gives	us	the	radius	of	the
slowing	area,	a	circle	centered	at	the	target	position	that	causes	the	character’s	velocity	to
decrease.

The	implementation	of	this	is	quite	similar	to	that	of	the	seek	behavior.	We	need	to	add	the
slow_radius	member	to	indicate	the	radius	of	the	slowing	area:

class	Actor(cocos.cocosnode.CocosNode):

				def	__init__(self,	x,	y):

								super(Actor,	self).__init__()

								self.position	=	(x,	y)

								self.slow_radius	=	200

								self.velocity	=	eu.Vector2(0,	0)

								#	...

With	this	attribute,	we	can	modify	our	update()	method	so	that	the	steering	force	is
decreased	linearly	by	the	ramp	factor.	When	the	distance	is	greater	than	the	slow	radius,
the	ramp	factor	is	at	a	minimum	of	1.0,	so	the	steering	force	remains	unmodified:

				def	update(self,	dt):

								if	self.target	is	None:

												return

								distance	=	self.target	-	eu.Vector2(self.x,	self.y)

								ramp	=	min(abs(distance)	/	self.slow_radius,	1.0)

								steering	=	distance	*	self.speed	*	ramp	-	self.velocity

								steering	=	truncate(steering,	self.max_force)

								self.velocity	=	truncate(self.velocity	+	steering,



																																	self.max_velocity)

								self.position	+=	self.velocity	*	dt

Note	that	when	the	distance	approaches	0,	the	ramp	factor	equals	0	and	the	steering	force
becomes	-self.velocity.

Check	out	the	arrival.py	file	with	the	complete	implementation	of	the	behavior.



Pursuit	and	evade
The	pursuit	behavior	is	similar	to	seek,	with	the	difference	being	that	the	character	will
move	towards	the	position	at	which	the	target	will	be	in	the	future	based	on	the	target’s
current	velocity.

The	future	position	is	the	sum	of	the	target	position	plus	the	velocity	vector	multiplied	by
a	unit	of	time.	It	gives	the	coordinates	where	the	target	will	be	placed	within	1	second	if	it
does	not	modify	its	velocity:

				def	update(self,	dt):

								if	self.target	is	None:

												return

								pos	=	self.target.position

								future_pos	=	pos	+	self.target.velocity	*	1

								distance	=	future_pos	-	eu.Vector2(self.x,	self.y)

								steering	=	distance	*	self.speed	-	self.velocity

								steering	=	truncate(steering,	self.max_force)

								self.velocity	=	truncate(self.velocity	+	steering,

																																	self.max_velocity)

								self.position	+=	self.velocity	*	dt

If	you	want	to	set	the	future	position	as	the	coordinates	where	the	target	will	be	within	2
seconds,	multiply	the	target’s	velocity	by	2.

In	this	example,	we	will	replace	our	mouse	pointer	target	with	a	moving	node.	It	will	have
a	linear	velocity,	and	our	actor	can	use	this	velocity	to	calculate	the	future	position:

class	MainLayer(cocos.layer.Layer):

				def	__init__(self):

								super(MainLayer,	self).__init__()

								self.target	=	ps.Sun()



								self.target.position	=	(40,	40)

								self.target.start_color	=	ps.Color(0.2,	0.7,	0.7,	1.0)

								self.target.velocity	=	eu.Vector2(50,	0)

								self.add(self.target)

								self.actor	=	Actor(320,	240)

								self.actor.target	=	self.target

								self.add(self.actor)

								self.schedule(self.update)

				def	update(self,	dt):

								self.target.position	+=	self.target.velocity	*	dt

On	the	other	hand,	for	the	evade	behavior,	we	need	to	change	only	the	last	statement	of	the
update()	method	to	self.position	+=	self.velocity	*	dt	*	-1,	exactly	as	we	did
for	the	flee	behavior.

The	code	of	this	behavior	is	included	in	the	pursuit.py	script.



Wander
The	wander	steering	simulates	a	random	walk	without	any	specific	target.	It	produces	a
casual	movement	without	sharp	turns	or	predictable	paths.

It	can	be	implemented	with	a	seek	behavior	with	targets	calculated	randomly.	However,	a
more	organic	solution	is	to	generate	a	random	steering	force	towards	a	point	on	a
circumference	placed	ahead	of	the	character.

This	force	is	calculated	per	frame,	giving	small	random	displacements	that	produce	the
visual	effect	of	the	character	wandering	around.	This	behavior	can	be	parameterized	with
the	following	values:

wander_angle:	The	current	angle	of	displacement,	to	which	the	small	variations	will
be	added
circle_distance:	The	distance	of	the	character’s	position	from	the	wander	circle’s
center
circle_radius:	The	radius	of	the	wander	circle
angle_change:	The	factor	by	which	the	random	value	will	be	multiplied	to	produce	a
change	in	the	wander	angle

Now	that	we	have	seen	how	these	forces	are	calculated,	we	can	implement	our	wander
behavior.

First	of	all,	we	will	add	these	attributes	to	our	Actor	class:

import	math

import	random

class	Actor(cocos.cocosnode.CocosNode):

				def	__init__(self,	x,	y):

								super(Actor,	self).__init__()

								self.position	=	(x,	y)

								self.velocity	=	eu.Vector2(0,	0)

								self.wander_angle	=	0



								self.circle_distance	=	50

								self.circle_radius	=	10

								self.angle_change	=	math.pi	/	4

								self.max_velocity	=	50

								self.add(ps.Sun())

								self.schedule(self.update)

With	these	members,	we	can	modify	our	update()	method:

				def	update(self,	dt):

								circle_center	=	self.velocity.normalized()	*	\

																								self.circle_distance

								dx	=	math.cos(self.wander_angle)

								dy	=	math.sin(self.wander_angle)

								displacement	=	eu.Vector2(dx,	dy)	*	self.circle_radius

								self.wander_angle	+=	(random.random()	-	0.5)	*	\

																													self.angle_change

								self.velocity	+=	circle_center	+	displacement

								self.velocity	=	truncate(self.velocity,

																																	self.max_velocity)

								self.position	+=	self.velocity	*	dt

								self.position	=	(self.x	%	640,	self.y	%	480)

These	new	statements	perform	the	following	operations:

The	circle’s	center	is	placed	at	the	given	distance	ahead	of	the	current	character’s
velocity.
We	calculate	the	displacement	with	wander_angle,	and	it	is	scaled	as	per	the	radius
of	the	circle.
Given	a	random	value	between	0.0	and	1.0,	we	subtract	0.5	so	that	the	value	is
between	-0.5	and	0.5,	thus	preventing	the	angle	from	always	changing	by	a	positive
value.	We	multiply	this	value	by	angle_change	and	add	it	to	the	wander_angle
member.

You	may	notice	another	statement	after	the	position	is	updated	with	the	velocity.	This	last
statement	of	the	method	is	used	to	relocate	the	character,	since	it	is	very	likely	that	the
character	will	leave	the	screen	due	to	the	randomness	of	its	movement.

Feel	free	to	tweak	the	circle_distance,	circle_radius,	and	angle_change	values,	and
observe	the	differences	that	they	cause	to	the	player’s	movement.

Our	main	layer	is	simplified	since	it	only	needs	to	add	the	actor:

class	MainLayer(cocos.layer.Layer):

				def	__init__(self):

								super(MainLayer,	self).__init__()

								self.actor	=	Actor(320,	240)

								self.add(self.actor)

The	wander.py	script	contains	the	complete	implementation	of	this	behavior.



Obstacle	avoidance
So	far,	we	have	not	placed	any	barrier	in	our	world,	so	the	character	can	freely	move
around	without	avoiding	any	area.

However,	most	games	place	some	obstacles,	and	the	characters	cannot	pass	through	them.
The	obstacle	avoidance	behavior	generates	a	steering	force	that	causes	the	character	to	try
and	dodge	these	blocking	items.	Note	that	this	does	not	perform	collision	detections,	so	if
the	current	speed	is	high	and	the	steering	force	module	is	not	enough	to	counteract	the
character’s	velocity,	the	character	might	overlap	with	the	shape	of	the	obstacle.

To	detect	the	presence	of	obstacles	ahead,	the	character	will	keep	an	imaginary	vector
along	its	forward	axis,	which	represents	the	distance	up	to	which	it	can	see	ahead.	The
closest	obstacle	that	collides	with	this	segment,	if	any,	will	be	the	threat	to	avoid.

We	will	define	an	Obstacle	class	to	represent	the	circular	obstacles	that	we	will	use.	Each
of	them	can	have	a	different	radius,	and	we	will	keep	track	of	all	the	created	instances	with
a	class	member	list:

class	Obstacle(cocos.cocosnode.CocosNode):

				instances	=	[]

				def	__init__(self,	x,	y,	r):

								super(Obstacle,	self).__init__()

								self.position	=	(x,	y)

								self.radius	=	r

								particles	=	ps.Sun()

								particles.size	=	r	*	2

								particles.start_color	=	ps.Color(0.0,	0.7,	0.0,	1.0)

								self.add(particles)

								self.instances.append(self)

The	Actor	class	will	have	two	new	attributes:	max_ahead,	the	maximum	distance	at
which	the	character	can	detect	the	presence	of	an	obstacle,	and	max_avoid_force,	the
maximum	force	that	can	be	applied	to	dodge	an	obstacle:

class	Actor(cocos.cocosnode.CocosNode):

				def	__init__(self,	x,	y):



								super(Actor,	self).__init__()

								self.position	=	(x,	y)

								self.velocity	=	eu.Vector2(0,	0)

								self.speed	=	2

								self.max_velocity	=	300

								self.max_force	=	10

								self.target	=	None

								self.max_ahead	=	200

								self.max_avoid_force	=	300

								self.add(ps.Sun())

								self.schedule(self.update)

The	steering	force	keeps	seeking	the	target,	with	the	difference	that	the	avoid	force	is
applied	as	well:

				def	update(self,	dt):

								if	self.target	is	None:

												return

								distance	=	self.target	-	eu.Vector2(self.x,	self.y)

								steering	=	distance	*	self.speed	-	self.velocity

								steering	+=	self.avoid_force()

								steering	=	truncate(steering,	self.max_force)

								self.velocity	=	truncate(self.velocity	+	steering,

																																	self.max_velocity)

								self.position	+=	self.velocity	*	dt

The	avoid	force	is	calculated	with	the	closest	obstacle.	To	check	whether	the	ahead	vector
intersects	each	obstacle,	we	will	calculate	the	minimum	distance	from	the	circle’s	center	to
the	vector.	If	this	distance	is	lower	than	the	circle’s	radius	and	it	is	the	minimum	distance,
the	obstacle	is	the	closest	one.

To	find	the	distance	between	a	vector	and	a	point,	we	must	project	that	point	to	the	vector
and	see	if	it	falls	into	its	length.	If	it	does,	we	calculate	the	distance	between	these	two
points,	which	is	the	distance	between	the	vector	and	the	point.	Otherwise,	it	means	that	the
point	is	behind	or	beyond	the	projection	of	the	point	on	the	vector.

With	these	operations	in	mind,	we	can	define	the	avoid_force()	method:

				def	avoid_force(self):



								avoid	=	eu.Vector2(0,	0)

								ahead	=	self.velocity	*	self.max_ahead	/	self.max_velocity

								l	=	ahead.dot(ahead)

								if	l	==	0:

												return	avoid

								closest,	closest_dist	=	None,	None

								for	obj	in	Obstacle.instances:

												w	=	eu.Vector2(obj.x	-	self.x,	obj.y	-	self.y)

												t	=	ahead.dot(w)

												if	0	<	t	<	l:

																proj	=	self.position	+	ahead	*	t	/	l

																dist	=	abs(obj.position	-	proj)

																if	dist	<	obj.radius	and	\

																			(closest	is	None	or	dist	<	closest_dist):

																				closest,	closest_dist	=	obj.position,	dist

								if	closest	is	not	None:

												avoid	=	self.position	+	ahead	-	closest

												avoid	=	avoid.normalized()	*	self.max_avoid_force

								return	avoid

These	are	the	steps	performed	by	this	method:

We	calculate	the	ahead	vector	and	its	squared	length.	If	it	is	zero,	it	means	that	it	does
not	see	anything	ahead	and	the	avoidance	force	is	(0,	0).
For	each	obstacle,	we	keep	track	of	the	distance	between	the	ahead	vector	and	the
circle’s	center.	If	this	distance	is	lower	than	its	radius	and	it	is	the	closest	obstacle,	we
set	it	as	the	obstacle	to	avoid.
Finally,	if	there	is	any	obstacle	selected,	we	scale	the	avoid	force	by	the
max_avoid_force	factor.

We	will	add	some	obstacles	to	our	MainLayer,	and	the	actor	will	avoid	them	without	any
further	reference	to	these	new	objects,	since	they	are	automatically	added	to	the
Obstacle.instances	list:

class	MainLayer(cocos.layer.Layer):

				is_event_handler	=	True

				def	__init__(self):

								super(MainLayer,	self).__init__()

								self.add(Obstacle(200,	200,	40))

								self.add(Obstacle(240,	350,	50))

								self.add(Obstacle(500,	300,	50))

								self.actor	=	Actor(320,	240)

								self.add(self.actor)

				def	on_mouse_motion(self,	x,	y,	dx,	dy):

								self.actor.target	=	eu.Vector2(x,	y)

You	can	check	out	the	entire	script	in	the	obstacles.py	file.	Run	it	and	move	the	mouse
pointer	above	the	screen	to	see	how	the	character	tries	to	avoid	the	obstacles	represented
by	the	green	circles.





Gravitation	game
To	put	into	practice	what	you	have	learned	about	steering	behaviors,	we	will	build	a	basic
game.	The	player’s	objective	is	to	collect	some	pickup	items	that	rotate	around	different
planets	placed	in	the	world,	while	escaping	from	enemies.	The	enemies	are	non-playable
characters	that	seek	the	playable	character	and	avoid	the	planets.

We	will	represent	the	characters	as	particle	systems,	and	the	final	version	of	the	game	will
look	like	this:



Basic	game	objects
As	usual,	we	will	define	a	base	class	that	wraps	the	access	to	the	CircleShape	attribute
with	the	updated	center:

from	cocos.cocosnode	import	CocosNode

from	cocos.director	import	director

import	cocos.collision_model	as	cm

class	Actor(CocosNode):

				def	__init__(self,	x,	y,	r):

								super(Actor,	self).__init__()

								self.position	=	(x,	y)

								self._cshape	=	cm.CircleShape(self.position,	r)

				@property

				def	cshape(self):

								self._cshape.center	=	eu.Vector2(self.x,	self.y)

								return	self._cshape

Since	some	characters	will	rotate	around	the	planets,	we	will	define	another	class	to
update	the	position	of	the	actor	based	on	a	rotational	movement.	This	class	will	have	a
reference	to	the	planet	it	is	rotating	around,	the	angular	speed,	and	the	current	angle	of
rotation:

class	MovingActor(Actor):

				def	__init__(self,	x,	y,	r):

								super(MovingActor,	self).__init__(x,	y,	r)

								self._planet	=	None

								self._distance	=	0

								self.angle	=	0

								self.rotationSpeed	=	0.6

								self.schedule(self.update)

Access	to	the	Planet	member	will	be	implemented	through	a	property,	because	when	we
set	planet,	we	need	to	calculate	the	distance	and	the	current	angle:

				@property

				def	planet(self):

								return	self._planet

				@planet.setter

				def	planet(self,	val):

								if	val	is	not	None:

												dx,	dy	=	self.x	-	val.x,	self.y	-	val.y

												self.angle	=	-math.atan2(dy,	dx)

												self._distance	=	abs(eu.Vector2(dx,	dy))

								self._planet	=	val

The	scheduled	method	increments	the	rotation	angle	with	the	elapsed	time	and	updates	the
actor’s	position	with	the	cosine	and	sine	of	this	angle:

				def	update(self,	dt):

								if	self.planet	is	None:

												return



								dist	=	self._distance

								self.angle	+=	self.rotationSpeed	*	dt

								self.angle	%=	math.pi	*	2

								self.x	=	self.planet.x	+	dist	*	math.cos(self.angle)

								self.y	=	self.planet.y	-	dist	*	math.sin(self.angle)



Planets	and	pickups
Our	Planet	class	will	represent	the	static	actors	around	which	the	pickups	and	the	player
rotate.	We	will	keep	track	of	all	the	instances,	as	we	did	with	the	Obstacle	class
previously:

class	Planet(Actor):

				instances	=	[]

				def	__init__(self,	x,	y,	r=50):

								super(Planet,	self).__init__(x,	y,	r)

								particles	=	ps.Sun()

								particles.start_color	=	ps.Color(0.5,	0.5,	0.5,	1.0)

								particles.size	=	r	*	2

								self.add(particles)

								self.instances.append(self)

Pickups	will	be	moving	actors,	so	we	will	inherit	from	MovingActor,	which	has
implemented	this	functionality:

class	PickupParticles(ps.Sun):

				size	=	20

				start_color	=	ps.Color(0.7,	0.7,	0.2,	1.0)

class	Pickup(MovingActor):

				def	__init__(self,	x,	y,	planet):

								super(Pickup,	self).__init__(x,	y,	10)

								self.planet	=	planet

								self.gravity_factor	=	50

								self.particles	=	PickupParticles()

								self.add(self.particles)



Player	and	enemies
The	player	character	revolves	around	the	planets	like	the	pickups	do,	but	with	the
difference	that	it	can	switch	from	one	planet	to	another	when	the	spacebar	is	pressed.

This	is	the	control	that	the	player	has	over	the	actor,	so	we	will	need	to	add	a	linear	speed
to	implement	this	kind	of	movement,	which	extends	the	logic	offered	by	the	MovingActor
class:

class	Player(MovingActor):

				def	__init__(self,	x,	y,	planet):

								super(Player,	self).__init__(x,	y,	16)

								self.planet	=	planet

								self.rotationSpeed	=	1

								self.linearSpeed	=	80

								self.direction	=	eu.Vector2(0,	0)

								self.particles	=	ps.Meteor()

								self.particles.size	=	50

								self.add(self.particles)

Now	the	update()	method	performs	a	linear	movement	when	the	player	is	not	revolving
around	any	planet:

				def	update(self,	dt):

								if	self.planet	is	not	None:

												super(Player,	self).update(dt)

												gx	=	20	*	math.cos(self.angle)

												gy	=	20	*	math.sin(self.angle)

												self.particles.gravity	=	eu.Point2(gx,	-gy)

								else:

												self.position	+=	self.direction	*	dt

Finally,	we	need	to	implement	the	method	that	triggers	the	switch	from	one	planet	to
another.	It	calculates	the	direction	vector	depending	on	the	current	angle	of	rotation	with
respect	to	the	planet:

				def	switch(self):

								new_dir	=	eu.Vector2(self.y	-	self.planet.y,

																													self.planet.x	-	self.x)

								self.direction	=	new_dir.normalized()	*	self.linearSpeed

								self.planet	=	None

								self.particles.gravity	=	eu.Point2(-self.direction.x,

																																											-self.direction.y)

You	may	notice	that	the	gravity	of	the	particles	is	updated	with	the	player’s	movement.
This	gives	visual	feedback	of	the	current	direction	of	the	character	and	the	position	it	is
pointing	to.

The	implementation	of	the	Enemy	class	is	almost	the	same	as	the	one	we	saw	with	the
obstacle	avoidance	behavior.	The	main	differences	are	that	this	class	uses	the
Planet.instances:	list	and	the	radius	of	the	obstacles	is	retrieved	from	the	cshape
member	of	each	planet:

				def	avoid_force(self):



								#	...

								closest,	closest_dist	=	None,	None

								for	obj	in	Planet.instances:

												w	=	eu.Vector2(obj.x	-	self.x,	obj.y	-	self.y)

												t	=	ahead.dot(w)

												if	0	<	t	<	l:

																proj	=	self.position	+	ahead	*	t	/	l

																dist	=	abs(obj.position	-	proj)

																if	dist	<	obj.cshape.r	and	\

																			(closest	is	None	or	dist	<	closest_dist):

																				closest,	closest_dist	=	obj.position,	dist

								if	closest	is	not	None:

												avoid	=	self.position	+	ahead	-	closest

												avoid	=	avoid.normalized()	*	self.max_avoid_force

								return	avoid



Explosions
There	are	some	collisions	that	can	trigger	a	game	event.	For	instance,	when	an	item	is
picked	up	by	the	player,	it	must	be	removed,	or	when	the	playable	character	hits	an	enemy
or	a	planet,	it	is	destroyed	and	spawns	again	in	its	original	position.

One	way	to	enhance	these	situations	is	through	explosions;	they	give	visual	feedback	to
the	player.	We	will	implement	them	with	a	custom	particle	system:

class	ActorExplosion(ps.ParticleSystem):

				total_particles	=	400

				duration	=	0.1

				gravity	=	eu.Point2(0,	0)

				angle	=	90.0

				angle_var	=	360.0

				speed	=	40.0

				speed_var	=	20.0

				life	=	3.0

				life_var	=	1.5

				emission_rate	=	total_particles	/	duration

				start_color_var	=	ps.Color(0.0,	0.0,	0.0,	0.2)

				end_color	=	ps.Color(0.0,	0.0,	0.0,	1.0)

				end_color_var	=	ps.Color(0.0,	0.0,	0.0,	0.0)

				size	=	15.0

				size_var	=	10.0

				blend_additive	=	True

				def	__init__(self,	pos,	particles):

								super(ActorExplosion,	self).__init__()

								self.position	=	pos

								self.start_color	=	particles.start_color



The	game	layer
All	the	game	objects	that	we	have	developed	will	be	added	to	the	main	game	layer.	As
usual,	it	will	contain	a	collision	manager	that	covers	the	entire	window:

class	GameLayer(cocos.layer.Layer):

				def	__init__(self):

								super(GameLayer,	self).__init__()

								x,	y	=	director.get_window_size()

								cell_size	=	32

								self.coll_man	=	cm.CollisionManagerGrid(0,	x,	\

																												0,	y,	cell_size,	cell_size)

								self.planet_area	=	400

								planet1	=	self.add_planet(450,	280)

								planet2	=	self.add_planet(180,	200)

								planet3	=	self.add_planet(270,	440)

								planet4	=	self.add_planet(650,	480)

								planet5	=	self.add_planet(700,	150)

								self.add_pickup(250,	250,	planet2)

								self.add_pickup(740,	480,	planet4)

								self.add_pickup(700,	60,	planet5)

								self.player	=	Player(300,	350,	planet3)

								self.add(self.player)

								self.add(Enemy(600,	100,	self.player))

								self.schedule(self.game_loop)

We	also	defined	a	couple	of	helper	methods	to	avoid	repeating	the	same	code	during
initialization:

				def	add_pickup(self,	x,	y,	target):

								pickup	=	Pickup(x,	y,	target)

								self.add(pickup)

				def	add_planet(self,	x,	y):

								planet	=	Planet(x,	y)

								self.add(planet)

								return	planet

Once	the	scenario	is	set	up	with	the	positions	of	the	characters,	and	what	actors	are
rotating	around	each	planet,	we	can	implement	the	game	loop:

				def	game_loop(self,	_):

								self.coll_man.clear()

								for	node	in	self.get_children():

												if	isinstance(node,	Actor):

																self.coll_man.add(node)

								if	self.player.is_running:

												self.process_player_collisions()

				def	process_player_collisions(self):

								player	=	self.player

								for	obj	in	self.coll_man.iter_colliding(player):

												if	isinstance(obj,	Pickup):

																self.add(ActorExplosion(obj.position,

																																								obj.particles))



																obj.kill()

												else:

																self.add(ActorExplosion(player.position,

																																								player.particles))

																player.kill()

The	layer	must	process	the	input	events,	specifically	the	spacebar	press	that	triggers	when
the	player’s	character	stops	rotating	around	a	planet	and	leaves	the	orbit	in	a	perpendicular
direction.

When	the	spacebar	is	pressed	again,	the	collision	manager	calculates	what	the	closest
planet	is	within	a	specific	distance—which	we	set	up	in	the	__init__	method—and	if
there	is	any,	it	is	set	as	the	planet	around	which	the	target	must	rotate:

				is_event_handler	=	True

				def	on_key_press(self,	k,	_):

								if	k	!=	key.SPACE:

												return

								if	self.player.planet	is	None:

												self.player.planet	=	self.find_closest_planet()

								else:

												self.player.switch()

				def	find_closest_planet(self):

								ranked	=	self.coll_man.ranked_objs_near(self.player,

																																																self.planet_area)

								planet	=	next(filter(lambda	x:	isinstance(x[0],	Planet),

																													ranked))

								return	planet[0]	if	planet	is	not	None	else	None

Finally,	do	not	forget	to	add	the	conditional	block	to	run	the	script	as	the	main	module.
Here,	we	set	the	window’s	width	and	height:

if	__name__	==	'__main__':

				director.init(width=850,	height=600,	caption='Gravitation')

				director.run(cocos.scene.Scene(GameLayer()))

You	can	check	out	the	complete	game	in	the	gravitation.py	script.	The	game	does	not
require	any	extra	assets,	since	all	the	rendered	elements	are	based	on	the	cocos2d	particle
systems.





Summary
In	this	chapter,	you	learned	several	kinds	of	steering	behavior	that	produce	realistic	and
autonomous	navigations	around	your	game	world.	These	strategies	might	be	mixed,
causing	complex	patterns	and	seemingly	more	intelligent	actions.

Try	to	change	the	values	of	the	constants	used	in	each	behavior	to	see	how	to	achieve
different	velocities	and	forces.	Keep	in	mind	the	importance	of	generating	smooth
movements	instead	of	pronounced	twists	so	that	the	experience	is	visually	engaging.

Finally,	we	applied	this	knowledge	in	a	basic	game.	Since	it	is	a	demonstration	of	adding	a
non-playable	character,	the	game	can	be	complemented	with	all	the	ingredients	that	we
covered	in	the	previous	character	(such	as	menus,	transitions,	and	so	on).

In	the	next	chapter,	we	will	jump	into	3D	game	development	with	OpenGL,	a	new	topic
with	more	advanced	features	and	details	of	a	lower	level.





Chapter	5.	Pygame	and	3D
In	our	previous	chapters,	we	developed	our	2D	games	with	Python	modules	that	are	built
on	top	of	a	graphical	user	interface	library,	such	as	Tkinter	and	Pyglet.	This	allowed	us
to	start	coding	our	games	without	worrying	about	the	lower-level	details.

Now	we	will	develop	our	first	3D	game	with	Python,	which	will	require	an	understanding
of	some	basic	principles	of	OpenGL,	a	popular	multiplatform	API	for	building	2D	and	3D
applications.	You	will	learn	how	to	integrate	these	programs	with	Pygame,	a	Python
library	commonly	used	to	create	sprite-based	games.

In	this	chapter,	we	will	cover	the	following	topics:

A	steady	approach	to	PyOpenGL	and	Pygame
Initializing	an	OpenGL	context
Understanding	the	different	modes	that	can	be	enabled	with	OpenGL
How	to	render	lights	and	simple	shapes
Integrating	OpenGL	with	Pygame
Drawing	primitives	and	performance	improvements



Installing	packages
PyOpenGL	is	a	package	that	offers	Python	bindings	to	OpenGL	and	related	APIs,	such	as
GLU	and	GLUT.	It	is	available	on	the	Python	package	Index,	so	you	can	easily	install	it
via	pip:

$	pip	install	PyOpenGL

However,	we	will	need	freeglut	for	our	first	examples,	before	we	integrate	OpenGL	with
Pygame.	Freeglut	is	a	third-party	library	that	is	not	included	if	you	install	the	package
from	PyPI.

On	Windows,	an	alternative	is	to	download	and	install	the	compiled	binaries	from
http://www.lfd.uci.edu/~gohlke/pythonlibs/#pyopengl.	Remember	to	install	the	version	for
Python	3.4.

Pygame	is	the	other	package	that	we	will	need	in	this	chapter.	It	can	be	downloaded	from
the	official	website	at	http://www.pygame.org/download.shtml.	You	can	install	it	from
source	if	you	want	to;	the	compilation	page	contains	the	steps	for	building	Pygame	on
different	platforms.

Windows	users	can	directly	use	the	MSI	for	Python	3.2	or	download	Unofficial	Windows
Binaries	from	the	Christoph	Gohlke’s	website
(http://www.lfd.uci.edu/~gohlke/pythonlibs/).

Macintosh	users	can	find	the	instructions	required	to	compile	it	from	source	on	the
Pygame	website	at	http://pygame.org/wiki/macintosh.

http://www.lfd.uci.edu/~gohlke/pythonlibs/#pyopengl
http://www.pygame.org/download.shtml
http://www.lfd.uci.edu/~gohlke/pythonlibs/
http://pygame.org/wiki/macintosh




Getting	started	with	OpenGL
OpenGL	is	a	broad	topic	in	itself,	and	it	is	possible	to	find	plenty	of	tutorials,	books,	and
other	resources,	usually	targeted	at	C	or	C++.

Since	this	chapter	is	not	intended	to	be	a	comprehensive	guide	for	this	specification,	we
will	take	advantage	of	GLUT,	which	stands	for	OpenGL	Utility	Toolkit.	It	is	widely	used
in	small	applications	because	of	its	simplicity	and	portability,	and	the	bindings	are
implemented	in	PyOpenGL.

GLUT	will	help	us	perform	some	basic	operations,	such	as	creating	windows	and	handling
input	events.

Tip
GLUT	licensing

Unfortunately,	GLUT	is	not	in	the	public	domain.	The	copyright	is	maintained	by	its
author,	Mark	Kilgard,	who	wrote	it	for	the	sample	programs	included	in	Red	Book,	the
official	OpenGL	programming	guide.

This	is	the	reason	we	are	using	freeglut,	one	of	the	open	source	alternatives	that
implement	the	GLUT	API.



Initializing	the	window
The	first	lines	of	our	script	will	be	the	import	statements	as	well	as	the	definition	of	our
App	class	and	its	__init__	method.

Apart	from	the	OpenGL	API	and	GLUT,	we	import	the	OpenGL	Utility	Library	(GLU).
GLU	is	usually	distributed	with	the	basic	OpenGL	package,	and	we	will	use	a	couple	of
functions	offered	by	this	library	in	our	example:

import	sys

import	math

from	OpenGL.GL	import	*

from	OpenGL.GLU	import	*

from	OpenGL.GLUT	import	*

class	App(object):

				def	__init__(self,	width=800,	height=600):

								self.title	=	b'OpenGL	demo'

								self.width	=	width

								self.height	=	height

								self.angle	=	0

								self.distance	=	20

You	may	wonder	what	the	b	before	the	'OpenGL	demo'	string	means.	It	represents	a	binary
string,	and	it	is	one	of	the	differences	between	Python	2	and	3.	Therefore,	if	you	find	a
GLUT	program	written	in	Python	2,	remember	that	the	string	title	of	the	window	must	be
defined	as	a	binary	string	in	order	to	work	with	Python	3.

With	these	instance	members,	we	can	call	our	OpenGL	initialization	functions:

				def	start(self):

								glutInit()

								glutInitDisplayMode(GLUT_DOUBLE	|	GLUT_DEPTH)

								glutInitWindowPosition(50,	50)

								glutInitWindowSize(self.width,	self.height)

								glutCreateWindow(self.title)

								glEnable(GL_DEPTH_TEST)

								glEnable(GL_LIGHTING)

								glEnable(GL_LIGHT0)

Step	by	step,	our	start	method	performs	the	following	operations:

glutInit():	This	initializes	the	GLUT	library.	While	it	is	possible	to	pass	parameters
to	this	function,	we	will	leave	this	call	without	any	arguments.
glutInitDisplayMode():	This	sets	the	display	mode	of	the	top-level	window	that	we
will	create.	The	mode	is	the	bitwise	OR	of	a	few	GLUT	display	mode	masks.
GLUT_DOUBLE	is	the	mode	for	the	double	buffer,	which	creates	separate	front	and	back
buffers.	While	one	of	these	buffers	is	being	displayed,	the	other	one	is	being
rendered.	On	the	other	hand,	GLUT_DEPTH	requests	a	depth	buffer	for	the	window.	It
stores	the	z	coordinate	of	each	generated	pixel,	and	if	the	same	pixel	is	rendered	for	a
second	time	because	two	objects	overlap,	it	determines	which	object	is	closer	to	the



camera,	that	is,	reproducing	the	depth	perception.
glutInitWindowPosition()	and	glutInitWindowsSize():	These	set	the	initial	position
of	the	window	and	its	size.	According	to	our	width	and	height	instance	members,	it
indicates	to	create	a	window	of	800	x	600	pixels	with	an	offset	of	50	pixels	in	the	x
and	y	axes	from	the	top-left	corner	of	the	screen.
glutCreateWindow():	This	creates	the	top-level	window	of	our	application.	The
argument	passed	to	this	function	is	a	binary	string	for	use	as	the	window	title.
glEnable():	This	is	the	function	used	to	enable	the	GL	capabilities.	In	our	app,	we
call	it	with	the	following	values:

GL_DEPTH_TEST:	This	performs	depth	comparisons	and	updates	the	depth	buffer.
GL_LIGHTING:	This	enables	lighting.
GL_LIGHT0:	This	enables	Light0.	PyOpenGL	defines	a	specific	number	of	light
constants—from	GL_LIGHT0	to	GL_LIGHT8—but	the	particular	implementation	of
OpenGL	that	you	are	running	might	allow	more	than	this	number.

Tip
Lighting	and	colors

When	lighting	is	enabled,	the	colors	are	not	determined	by	the	glColor	functions	but	by
the	combination	of	the	lighting	computation	and	the	material	colors	set	by	glMaterial.	To
combine	lighting	with	glColor,	it	is	required	that	you	enable	GL_COLOR_MATERIAL	first:

glEnable(GL_COLOR_MATERIAL)

#	...

glColor4f(r,	g,	b,	a)

#	Draw	polygons

Once	we	have	initialized	GLUT	and	enabled	the	GL	capabilities,	we	complete	our
start()	method	by	specifying	the	clear	color,	setting	the	perspective,	and	starting	the
main	loop:

				def	start(self):

								#	...

								glClearColor(.1,	.1,	.1,	1)

								glMatrixMode(GL_PROJECTION)

								aspect	=	self.width	/	self.height

								gluPerspective(40.,	aspect,	1.,	40.)

								glMatrixMode(GL_MODELVIEW)

								glutDisplayFunc(self.display)

								glutSpecialFunc(self.keyboard)

								glutMainLoop()

				def	keyboard(self,	key,	x,	y):

								pass

These	statements	perform	the	following	operations:

glClearColor():	This	defines	the	clear	values	for	the	color	buffer;	that	is,	each	pixel
will	have	this	value	if	no	other	color	is	rendered	in	this	pixel.
glMatrixMode():	This	sets	the	matrix	stack	mode	for	matrix	operations,	in	this	case



to	the	projection	matrix	stack.	OpenGL	concatenates	matrix	operations	for
hierarchical	modes,	making	it	easy	to	compose	the	transformation	of	a	child	object
relative	to	its	parent.	With	GL_PROJECTION,	we	set	the	matrix	mode	for	the	projection
matrix	stack.
gluPerspective():	The	previous	statement	sets	the	projection	matrix	stack	as	the
current	stack.	With	this	function,	we	can	generate	the	perspective	projection	matrix.
The	parameters	that	generate	this	matrix	are	as	follows:

fovy:	The	view	angle	in	degrees	in	the	y	direction.
aspect:	This	is	the	aspect	ratio	of	the	field	of	view.	It	is	the	ratio	of	the	viewport
width	to	the	viewport	height.
zNear:	The	distance	from	the	viewer	to	the	Near	plane.
zFar:	The	distance	from	the	viewer	to	the	Far	plane.

With	glMatrixMode(GL_MODELVIEW),	we	set	the	modelview	matrix	stack,	which	is	the
initial	value,	as	the	current	matrix	mode.

The	last	three	GLUT	calls	do	the	following:

glutDisplayFunc():	This	receives	the	function	that	will	be	invoked	to	display	the
window.



glutSpecialFunc():	This	sets	the	keyboard	callback	for	the	current	window.	Note	that
this	callback	will	be	triggered	only	when	the	keys	represented	by	the	GLUT_KEY_*
constants	are	pressed.
glutMainLoop():	This	starts	the	main	loop	of	the	application.

With	the	OpenGL	context	initialized,	we	are	able	to	call	the	OpenGL	functions	that	will
render	our	scene.

Tip
The	OpenGL	and	GLUT	reference

As	you	may	have	already	noticed,	the	OpenGL	and	GLUT	specifications	define	a	large
number	of	functions.	You	can	find	the	bindings	of	these	APIs	implemented	by	PyOpenGL
on	the	official	website	at	http://pyopengl.sourceforge.net/documentation/manual-
3.0/index.html.

http://pyopengl.sourceforge.net/documentation/manual-3.0/index.html


Drawing	shapes
Our	display()	function	performs	the	very	common	tasks	of	a	main	game	loop.

It	first	clears	the	screen,	then	sets	up	a	viewing	transformation	(we	will	see	what	this
means	after	the	snippet),	and	finally	renders	the	light	and	draws	the	game	objects:

				def	display(self):

								x	=	math.sin(self.angle)	*	self.distance

								z	=	math.cos(self.angle)	*	self.distance

								glClear(GL_COLOR_BUFFER_BIT	|	GL_DEPTH_BUFFER_BIT)

								glLoadIdentity()

								gluLookAt(x,	0,	z,

																		0,	0,	0,

																		0,	1,	0)

								glLightfv(GL_LIGHT0,	GL_POSITION,	[15,	5,	15,	1])

								glLightfv(GL_LIGHT0,	GL_DIFFUSE,	[1.,	1.,	1.,	1.])

								glLightfv(GL_LIGHT0,	GL_CONSTANT_ATTENUATION,	0.1)

								glLightfv(GL_LIGHT0,	GL_LINEAR_ATTENUATION,	0.05)

								glPushMatrix()

								glMaterialfv(GL_FRONT,	GL_DIFFUSE,	[1.,	1.,	1.,	1.])

								glutSolidSphere(2,	40,	40)

								glPopMatrix()

								glPushMatrix()

								glTranslatef(4,	2,	0)

								glMaterialfv(GL_FRONT,	GL_DIFFUSE,	[1.,0.4,0.4,1.0])

								glutSolidSphere(1,	40,	40)

								glPopMatrix()

								glutSwapBuffers()

These	are	the	operations	that	display()	performs:

glClear():	With	the	GL_COLOR_BUFFER_BIT	and	GL_DEPTH_BUFFER_BIT	masks,	this
clears	the	color	and	depth	buffers.
glLoadIdentity():	This	loads	the	identity	matrix	as	the	current	matrix.	The	identity
matrix	is	a	4	x	4	matrix	with	ones	in	the	main	diagonal	and	zeros	everywhere	else.
This	makes	the	stack	matrix	start	over	at	the	origin,	which	is	useful	if	you	have
previously	applied	some	matrix	transformations.
gluLookAt():	This	creates	a	viewing	matrix.	The	first	three	parameters	are	the	x,	y,
and	z	coordinates	of	the	eye	point.	The	next	three	parameters	are	the	x,	y,	and	z
coordinates	of	the	reference	point,	that	is,	the	position	the	camera	is	looking	at.
Finally,	the	last	three	parameters	specify	the	direction	of	the	up	vector	(usually,	it	is	0,
1,	0).
glLightfv():	This	sets	the	parameters	of	light	source	0	(GL_LIGHT0).	The	following
parameters	are	specified	in	our	example:

GL_POSITION:	This	defines	the	position	of	the	light



GL_DIFFUSE:	This	sets	the	RGBA	intensity	of	the	light
GL_CONSTANT_ATTENUATION:	This	specifies	the	constant	attenuation	factor
GL_LINEAR_ATTENUATION:	This	specifies	the	linear	attenuation	factor

Once	the	lighting	attributes	are	set,	we	can	start	rendering	basic	shapes	with	GLUT.	If	we
draw	the	objects	first,	lighting	will	not	be	applied	correctly:

glPushMatrix():	This	pushes	a	new	matrix	into	the	current	matrix	stack,	identical	to
the	one	below	it.	While	we	do	this,	we	can	apply	transformations	such	as
glTranslate	and	glRotate,	to	this	matrix.	We	will	render	our	first	sphere	at	the
origin,	but	the	second	one	will	be	transformed	with	glTranslate.
glTranslate():	This	multiplies	the	current	matrix	by	the	translation	matrix.	In	our
example,	the	translation	values	for	the	second	sphere	are	4	for	the	x	axis,	and	2	for
the	y	axis.
glMaterialfv():	This	sets	the	material	parameters	of	the	front	face,	as	it	is	called	with
GL_FONT.	With	GL_DIFFUSE,	we	specify	that	we	are	setting	the	RGBA	reflectance	of
the	material.
glutSolidSphere():	Through	GLUT,	this	routine	allows	us	to	easily	draw	a	solid
sphere.	It	receives	the	sphere’s	radius	as	the	first	argument,	and	the	number	of	slices
and	stacks	into	which	the	sphere	will	be	subdivided.	The	greater	these	values	are,	the
rounder	the	sphere	will	be.
glPopMatrix():	This	pops	the	current	matrix	from	the	stack.	If	we	did	not	do	this,
each	new	object	rendered	would	be	a	child	of	the	previous	one.

Finally,	we	switch	the	buffers	with	glutSwapBuffers().	If	double	buffering	was	not
enabled,	we	should	call	the	single	buffer	equivalent—glFlush().



Running	the	demo
As	usual,	we	check	whether	the	module	is	the	main	script	for	starting	the	application:

if	__name__	==	'__main__':

				app	=	App()

				app.start()

If	you	run	the	complete	application,	the	result	will	look	like	what	is	shown	in	the
following	screenshot:



Refactoring	our	OpenGL	program
As	you	may	have	seen,	this	example	uses	enough	OpenGL	calls	to	grow	out	of	control	if
we	do	not	structure	our	code.	That’s	why	we	are	going	to	apply	some	object-oriented
principles	to	achieve	a	better	organization,	without	modifying	the	order	of	the	calls	or
losing	any	functionality.

The	first	step	will	be	to	define	a	Light	class.	It	will	hold	the	attributes	needed	to	render	the
light:

class	Light(object):

				enabled	=	False

				colors	=	[(1.,1.,1.,1.),	(1.,0.5,0.5,1.),

														(0.5,1.,0.5,1.),	(0.5,0.5,1.,1.)]

				def	__init__(self,	light_id,	position):

								self.light_id	=	light_id

								self.position	=	position

								self.current_color	=	0

Besides,	this	modularization	will	help	us	implement	a	new	functionality:	changing	the
color	of	the	light.	We	set	the	current	color	index	to	0,	and	we	will	iterate	over	the	different
colors	defined	in	Light.colors	each	time	the	switch_color()	method	is	called.

The	render()	method	respects	the	original	implementation	of	lighting	from	our	non-
refactored	version:

				def	render(self):

								light_id	=	self.light_id

								color	=	Light.colors[self.current_color]

								glLightfv(light_id,	GL_POSITION,	self.position)

								glLightfv(light_id,	GL_DIFFUSE,	color)

								glLightfv(light_id,	GL_CONSTANT_ATTENUATION,	0.1)

								glLightfv(light_id,	GL_LINEAR_ATTENUATION,	0.05)

				def	switch_color(self):

								self.current_color	+=	1

								self.current_color	%=	len(Light.colors)

Finally,	we	wrap	the	call	to	enable	lighting	with	the	enable()	method	and	a	class
attribute:

				def	enable(self):

								if	not	Light.enabled:

												glEnable(GL_LIGHTING)

												Light.enabled	=	True

								glEnable(self.light_id)

Another	improvement	is	the	creation	of	a	Sphere	class.	This	class	will	allow	us	to
customize	the	radius,	position,	and	color	of	each	instance:

class	Sphere(object):

				slices	=	40

				stacks	=	40



				def	__init__(self,	radius,	position,	color):

								self.radius	=	radius

								self.position	=	position

								self.color	=	color

				def	render(self):

								glPushMatrix()

								glTranslatef(*self.position)

								glMaterialfv(GL_FRONT,	GL_DIFFUSE,	self.color)

								glutSolidSphere(self.radius,	Sphere.slices,	Sphere.stacks)

								glPopMatrix()

With	these	classes,	we	can	adapt	our	App	class	and	create	the	instances	that	we	will	render
in	the	main	loop:

class	App(object):

				def	__init__(self,	width=800,	height=600):

								#	...

								self.light	=	Light(GL_LIGHT0,	(15,	5,	15,	1))

								self.sphere1	=	Sphere(2,	(0,	0,	0),	(1,	1,	1,	1))

								self.sphere2	=	Sphere(1,	(4,	2,	0),	(1,	0.4,	0.4,	1))

Remember	that	before	rendering	the	light	object,	we	need	to	enable	OpenGL	lighting
through	the	light.enable()	method:

				def	start(self):

								#	...

								glEnable(GL_DEPTH_TEST)

								self.light.enable()

								#	...

Now	the	display()	method	becomes	succinct	and	expressive,	since	the	application
delegates	the	OpenGL	calls	to	the	object	instances:

				def	display(self):

								x	=	math.sin(self.angle)	*	self.distance

								z	=	math.cos(self.angle)	*	self.distance

								glClear(GL_COLOR_BUFFER_BIT	|	GL_DEPTH_BUFFER_BIT)

								glLoadIdentity()

								gluLookAt(x,	0,	z,

																		0,	0,	0,

																		0,	1,	0)

								self.light.render()

								self.sphere1.render()

								self.sphere2.render()

								glutSwapBuffers()

To	complete	our	first	sample	application,	we	will	add	input	handling.	It	allows	the	player
to	rotate	the	camera	around	the	spheres	and	move	forward	or	away	from	the	center	of	the
scene.



Processing	the	user	input
As	we	saw	earlier,	glutSpecialFunc	takes	a	callback	function	that	receives	the	pressed	key
as	the	first	argument,	and	the	x	and	y	coordinates	of	the	mouse	when	the	key	was	pressed.

We	will	use	the	right	and	left	arrow	keys	to	move	around	the	spheres,	and	the	up	and	down
arrow	keys	to	approximate	or	move	away	from	the	spheres.	Besides	all	of	this,	the	color	of
the	light	will	change	if	we	press	F1,	and	the	application	will	be	closed	if	the	Insert	key	is
pressed.

To	do	so,	we	will	check	the	values	of	the	key	argument	with	the	respective	GLUT
constants:

				def	keyboard(self,	key,	x,	y):

								if	key	==	GLUT_KEY_INSERT:

												sys.exit()

								if	key	==	GLUT_KEY_UP:

												self.distance	-=	0.1

								if	key	==	GLUT_KEY_DOWN:

												self.distance	+=	0.1

								if	key	==	GLUT_KEY_LEFT:

												self.angle	-=	0.05

								if	key	==	GLUT_KEY_RIGHT:

												self.angle	+=	0.05

								if	key	==	GLUT_KEY_F1:

												self.light.switch_color()

								self.distance	=	max(10,	min(self.distance,	20))

								self.angle	%=	math.pi	*	2

								glutPostRedisplay()

Note	that	we	trimmed	the	value	of	the	self.distance	member,	so	its	value	is	always
between	10	and	20,	and	self.angle	is	also	always	between	0	and	2π.	To	notify	that	the
current	window	needs	to	be	redisplayed,	we	call	glutPostRedisplay().

You	can	check	out	the	Chapter5_02.py	script,	which	contains	this	refactored	version	of
our	application.

When	you	run	it,	press	the	arrow	keys	to	rotate	around	the	spheres	and	F1	to	see	how	the
lighting	affects	the	spheres’	materials.







Adding	the	Pygame	library
With	GLUT,	we	can	write	OpenGL	programs	quickly,	primarily	because	it	was	aimed	to
provide	routines	that	make	learning	OpenGL	easier.	However,	the	GLUT	API	was
discontinued	in	1998.	Nonetheless,	there	are	some	popular	substitutes	in	the	Python
ecosystem.

Pygame	is	one	of	these	alternatives,	and	we	will	see	that	it	can	be	seamlessly	integrated
with	OpenGL,	even	simplifying	the	resulting	code	for	the	same	program.



Pygame	101
Before	we	integrate	Pygame	into	our	OpenGL	program,	we	will	write	a	sample	2D
application	to	get	started	with	Pygame.

We	will	import	Pygame	and	its	locals	module,	which	includes	the	constants	that	we	will
need	in	our	application:

import	sys

import	pygame

from	pygame.locals	import	*

class	App(object):

				def	__init__(self,	width=400,	height=300):

								self.title	=	'Hello,	Pygame!'

								self.fps	=	100

								self.width	=	width

								self.height	=	height

								self.circle_pos	=	width/2,	height/2

Pygame	uses	regular	strings	for	the	window	title,	so	we	will	define	the	attribute	without
adding	b.	Another	change	is	the	number	of	frames	per	second	(FPS),	which	we	will	later
find	out	how	to	control	via	Pygame’s	clock:

				def	start(self):

								pygame.init()

								size	=	(self.width,	self.height)

								screen	=	pygame.display.set_mode(size,	DOUBLEBUF)

								pygame.display.set_caption(self.title)

								clock	=	pygame.time.Clock()

								while	True:

												dt	=	clock.tick(self.fps)

												for	event	in	pygame.event.get():

																if	event.type	==	QUIT:

																				pygame.quit()

																				sys.exit()

												pressed	=	pygame.key.get_pressed()

												x,	y	=	self.circle_pos

												if	pressed[K_UP]:	y	-=	0.5	*	dt

												if	pressed[K_DOWN]:	y	+=	0.5	*	dt

												if	pressed[K_LEFT]:	x	-=	0.5	*	dt

												if	pressed[K_RIGHT]:	x	+=	0.5	*	dt

												self.circle_pos	=	x,	y

												screen.fill((0,	0,	0))

												pygame.draw.circle(screen,	(0,	250,	100),

																															(int(x),	int(y)),	30)

												pygame.display.flip()

We	initialize	the	Pygame	modules	with	pygame.init(),	and	then	we	create	a	screen	with	a
given	width	and	height.	The	DOUBLEBUF	flag	is	passed	so	as	to	enable	double	buffering,
which	has	the	benefits	we	mentioned	previously.

The	main	event	loop	is	implemented	with	a	while	block,	and	with	the	Clock	instance,	we
can	control	the	frame	rate	and	calculate	the	elapsed	time	between	frames.	This	value	will



be	multiplied	by	the	speed	of	movement,	so	the	circle	will	move	at	the	same	speed	if	the
FPS	value	changes.

With	pygame.event.get(),	we	retrieve	the	event	queue,	and	if	a	QUIT	event	occurs,	the
window	is	closed	and	the	application	finishes	its	execution.

The	pygame.key.get_pressed()	returns	a	list	with	the	pressed	keys,	and	with	the	key
constants,	we	can	check	whether	the	arrow	keys	are	pressed.	If	so,	the	circle’s	position	is
updated	and	it	is	drawn	on	the	new	coordinates.

Finally,	pygame.display.flip()	updates	the	screen’s	surface.

The	Chapter5_03.py	script	contains	the	full	code	of	this	example.

Tip
The	Pygame	documentation

Since	Pygame	is	divided	into	several	modules,	each	one	with	various	functions,	classes,
and	constants,	the	official	documentation	is	a	useful	reference.

We	are	using	some	functions	from	the	key	module;	you	can	find	further	information	about
it	at	https://www.pygame.org/docs/ref/key.html.	The	same	applies	for	the	display	and
time	modules.

https://www.pygame.org/docs/ref/key.html


Pygame	integration
Let’s	see	how	it	is	possible	to	implement	the	same	functionality	with	Pygame.	The	first
step	is	to	replace	the	OpenGL.GLUT	import	with	the	ones	we	used	in	our	previous	example:

import	sys

import	math

import	pygame

from	pygame.locals	import	*

from	OpenGL.GL	import	*

from	OpenGL.GLU	import	*

The	title	string	is	now	a	regular	string,	and	the	FPS	attribute	can	be	added	as	well:

class	App(object):

				def	__init__(self,	width=800,	height=600):

								self.title	=	'OpenGL	demo'

								self.fps	=	60

								self.width	=	width

								self.height	=	height

								#	...

We	remove	the	GLUT	calls	from	our	start()	method,	and	they	are	replaced	by	the
Pygame	initialization.	Apart	from	DOUBLEBUF,	we	will	add	the	OPENGL	flag	to	create	an
OpenGL	context:

				def	start(self):

								pygame.init()

								pygame.display.set_mode((self.width,	self.height),

																																OPENGL	|	DOUBLEBUF)

								pygame.display.set_caption(self.title)

								glEnable(GL_CULL_FACE)

								#	...

								glMatrixMode(GL_MODELVIEW)

								clock	=	pygame.time.Clock()

								while	True:

												dt	=	clock.tick(self.fps)

												self.process_input(dt)

												self.display()

The	new	process_input()	method	updates	the	scene	and	the	instance	attributes	by
retrieving	the	events	from	the	event	queue	and	processing	the	pressed	keys.

If	a	QUIT	event	occurs	or	the	Esc	key	is	pressed,	the	Pygame	program	is	executed.
Otherwise,	the	camera	position	is	updated	with	the	distance	and	angle	of	rotation,
controlled	by	the	arrow	keys:

				def	process_input(self,	dt):

								for	event	in	pygame.event.get():

												if	event.type	==	QUIT:

																self.quit()



												if	event.type	==	KEYDOWN:

																if	event.key	==	K_ESCAPE:

																				self.quit()

																if	event.key	==	K_F1:

																				self.light.switch_color()

								pressed	=	pygame.key.get_pressed()

								if	pressed[K_UP]:

												self.distance	-=	0.01	*	dt

								if	pressed[K_DOWN]:

												self.distance	+=	0.01	*	dt

								if	pressed[K_LEFT]:

												self.angle	-=	0.005	*	dt

								if	pressed[K_RIGHT]:

												self.angle	+=	0.005	*	dt

								self.distance	=	max(10,	min(self.distance,	20))

								self.angle	%=	math.pi	*	2

The	glutSwapBuffers()	is	replaced	by	pygame.display.flip(),	and	the	new	quit()
method	quits	Pygame	and	exits	Python	gracefully:

				def	display(self):

								#	...

								self.light.render()

								self.sphere1.render()

								self.sphere2.render()

								pygame.display.flip()

				def	quit(self):

								pygame.quit()

								sys.exit()

Another	consequence	of	removing	GLUT	is	that	we	cannot	use	glutSolidSphere	to
render	our	spheres.

Fortunately,	we	can	substitute	it	with	the	gluSphere	GLU	function.	The	only	difference	is
that	we	need	to	create	a	GLUquadratic	object	first,	and	then	call	the	function	with	this
argument	and	the	usual	radius,	number	of	slices,	and	number	of	stacks	into	which	the
sphere	is	divided:

class	Sphere(object):

				slices	=	40

				stacks	=	40

				def	__init__(self,	radius,	position,	color):

								self.radius	=	radius

								self.position	=	position

								self.color	=	color

								self.quadratic	=	gluNewQuadric()

				def	render(self):

								glPushMatrix()

								glTranslatef(*self.position)

								glMaterialfv(GL_FRONT,	GL_DIFFUSE,	self.color)

								gluSphere(self.quadratic,	self.radius,



																		Sphere.slices,	Sphere.stacks)

								glPopMatrix()

With	these	changes,	the	GLUT	API	is	now	completely	replaced	by	Pygame.	Check	out	the
chapter5_04.py	script	to	see	the	complete	implementation.

Tip
OpenGL	and	SDL

By	including	Pygame,	we	replace	the	GLUT	API	with	Simple	DirectMedia	Layer
(SDL),	which	is	the	library	that	Pygame	is	built	over.	Like	freeglut,	it	is	another	cross-
platform	alternative	to	GLUT.





Drawing	with	OpenGL
Until	now,	we	have	always	rendered	our	objects	with	a	utility	routine,	but	most	OpenGL
applications	require	the	use	of	some	drawing	primitives.



The	Cube	class
We	will	define	a	new	class	to	render	cubes,	and	we	will	use	the	following	representation	to
better	understand	the	vertices’	positions.	From	0	to	7,	the	vertices	are	enumerated	and
represented	in	a	3D	space.

The	sides	of	a	cube	can	now	be	represented	as	tuples:	the	back	face	is	(0,	1,	2,	3),	the
right	face	is	(4,	5,	1,	0),	and	so	on.

Note	that	we	arrange	the	vertices	in	counterclockwise	order.	As	we	will	learn	later,	this
will	help	us	enable	an	optimization	called	face	culling,	which	consists	of	drawing	only	the
visible	faces	of	a	polygon:

class	Cube(object):

				sides	=	((0,1,2,3),	(3,2,7,6),	(6,7,5,4),

													(4,5,1,0),	(1,5,7,2),	(4,0,3,6))

The	__init__	method	will	store	the	values	of	the	position	and	color,	as	well	as	the
vertex	coordinates	with	respect	to	the	center	position	of	the	cube:

				def	__init__(self,	position,	size,	color):

								self.position	=	position

								self.color	=	color

								x,	y,	z	=	map(lambda	i:	i/2,	size)



								self.vertices	=	(

												(x,	-y,	-z),	(x,		y,	-z),

												(-x,	y,	-z),	(-x,	-y,	-z),

												(x,	-y,	z),	(x,		y,	z),

												(-x,	-y,	z),	(-x,	y,	z))

The	render()	method	pushes	a	new	matrix,	transforms	it	according	to	its	current	position,
and	calls	glVertex3fv()	for	each	vertex	of	the	six	faces	of	cube.

The	glVertex3fv	takes	a	list	of	three	float	values	that	specify	the	vertex	position.	This
function	is	executed	between	the	glBegin()	and	glEnd()	calls.	They	delimit	the	vertices
that	define	a	primitive.	The	GL_QUADS	mode	treats	each	group	of	four	vertices	as	an
independent	quadrilateral.

The	last	statement	pops	the	current	matrix	from	the	matrix	stack:

				def	render(self):

								glPushMatrix()

								glTranslatef(*self.position)

								glBegin(GL_QUADS)

								glMaterialfv(GL_FRONT,	GL_DIFFUSE,	self.color)

								for	side	in	Cube.sides:

												for	v	in	side:

																glVertex3fv(self.vertices[v])

								glEnd()

								glPopMatrix()



Enabling	face	culling
Even	though	a	cube	has	six	faces,	we	can	see	a	maximum	of	only	three	faces	at	once,	and
only	two	or	one	from	certain	angles.	Therefore,	if	we	discard	the	faces	that	are	not	going
to	be	visible,	we	can	avoid	rendering	at	least	50	percent	of	the	faces	of	our	cubes.

By	enabling	face	culling,	OpenGL	checks	which	faces	are	facing	the	viewer	and	discards
the	faces	that	are	facing	backwards.	The	only	requirement	is	to	draw	the	faces	of	the	cube
in	the	counterclockwise	order	of	the	vertices,	which	is	the	default	front	face	in	OpenGL.
The	implementation	part	is	easy;	we	add	the	following	line	to	our	glEnable	calls:

#	...

glEnable(GL_LIGHTING)

glEnable(GL_CULL_FACE)

#	...

In	our	next	application,	we	will	add	some	cubes	and	enable	face	culling	to	see	this
optimization	in	practice.





Basic	collision	detection	game
With	all	of	these	ingredients,	you	are	now	able	to	write	a	simple	game	that	detects	simple
collisions	between	shapes.

The	scene	consists	of	an	infinite	lane.	Blocks	appear	randomly	at	the	end	of	the	lane	and
move	towards	the	player,	represented	as	the	sphere	in	the	following	screenshot.	He	or	she
must	avoid	hitting	the	blocks	by	moving	the	sphere	from	right	to	left	in	the	horizontal	axis.

The	game	is	over	when	the	player’s	character	collides	with	one	of	the	blocks.

This	gameplay	is	direct	and	uncomplicated,	and	it	will	allow	us	to	develop	a	3D	game
without	worrying	too	much	about	more	complicated	physics	calculations.

Since	we	are	going	to	reuse	the	Light,	Cube,	and	Sphere	classes,	we	need	to	define	a	new
class	only	to	represent	our	game	blocks:

class	Block(Cube):

				color	=	(0,	0,	1,	1)

				speed	=	0.01



				def	__init__(self,	position,	size):

								super().__init__(position,	(size,	1,	1),	Block.color)

								self.size	=	size

				def	update(self,	dt):

								x,	y,	z	=	self.position

								z	+=	Block.speed	*	dt

								self.position	=	x,	y,	z

Its	update()	method	simply	moves	the	block	towards	the	player	by	updating	its	z
coordinate	with	uniform	speed.

Our	App	class	sets	the	initial	values	of	the	attributes	that	we	will	need	during	the	execution
of	our	game,	and	creates	the	Light	and	the	game	object	instances	as	in	our	previous
examples:

class	App(object):

				def	__init__(self,	width=800,	height=600):

								#	...

								self.game_over	=	False

								self.random_dt	=	0

								self.blocks	=	[]

								self.light	=	Light(GL_LIGHT0,	(0,	15,	-25,	1))

								self.player	=	Sphere(1,	position=(0,	0,	0),

																													color=(0,	1,	0,	1))

								self.ground	=	Cube(position=(0,	-1,	-20),

																											size=(16,	1,	60),

																											color=(1,	1,	1,	1))

The	start()	method	has	small	variations,	only	adding	glEnable(GL_CULL_FACE),	as	we
mentioned	previously:

				def	start(self):

								pygame.init()

								#	...

								glMatrixMode(GL_MODELVIEW)

								glEnable(GL_CULL_FACE)

								self.main_loop()

The	main_loop()	method	is	now	a	separate	method	and	includes	the	random	generation	of
blocks,	collision	detection,	as	well	as	the	updating	of	the	positions	of	the	blocks:

				def	main_loop(self):

								clock	=	pygame.time.Clock()

								while	True:

												for	event	in	pygame.event.get():

																if	event.type	==	QUIT:

																				pygame.quit()

																				sys.exit()

												if	not	self.game_over:

																self.display()

																dt	=	clock.tick(self.fps)

																for	block	in	self.blocks:

																				block.update(dt)

																self.clear_past_blocks()

																self.add_random_block(dt)



																self.check_collisions()

																self.process_input(dt)

We	will	implement	collision	detection	by	comparing	the	boundaries	of	the	closest	blocks
with	the	extremes	of	the	sphere.	Since	the	sphere’s	width	is	smaller	than	the	block	size,	if
one	of	these	extremes	is	between	the	right	and	left	boundaries	of	a	block,	it	will	be
considered	as	a	collision:

				def	check_collisions(self):

								blocks	=	filter(lambda	x:	0	<	x.position[2]	<	1,

																								self.blocks)

								x	=	self.player.position[0]

								r	=	self.player.radius

								for	block	in	blocks:

												x1	=	block.position[0]

												s	=	block.size	/	2

												if	x1-s	<	x-r	<	x1+s	or	x1-s	<	x+r	<	x1+s:

																self.game_over	=	True

																print("Game	over!")

To	prevent	the	spawning	of	too	many	blocks,	we	defined	a	counter	called	random_dt.	It
accumulates	the	elapsed	time	in	milliseconds	between	frames,	and	it	will	try	to	spawn	a
new	block	only	if	the	sum	is	greater	than	800	milliseconds:

				def	add_random_block(self,	dt):

								self.random_dt	+=	dt

								if	self.random_dt	>=	800:

												r	=	random.random()

												if	r	<	0.1:

																self.random_dt	=	0

																self.generate_block(r)

				def	generate_block(self,	r):

								size	=	7	if	r	<	0.03	else	5

								offset	=	random.choice([-4,	0,	4])

								self.blocks.append(Block((offset,	0,	-40),	size))

If	the	generated	random	number	is	lower	than	0.1,	a	new	block	is	added	to	the	block	list
and	the	random_dt	counter	is	reset	to	0.	In	this	way,	the	minimum	elapsed	time	between
two	blocks	can	be	0.8	seconds,	giving	enough	time	to	leave	a	tolerable	distance	from	one
block	to	another.

Another	operation	that	the	main	loop	performs	is	removing	the	blocks	that	are	located
behind	the	cameras’	viewing	area,	avoiding	the	creation	of	too	many	Block	instances:

				def	clear_past_blocks(self):

								blocks	=	filter(lambda	x:	x.position[2]	>	5,

																								self.blocks)

								for	block	in	blocks:

												self.blocks.remove(block)

												del	block

The	code	for	displaying	the	game	objects	stays	as	succinct	as	usual,	thanks	to	the	transfer
of	the	drawing	primitives	to	the	respective	render()	methods:



				def	display(self):

								glClear(GL_COLOR_BUFFER_BIT	|	GL_DEPTH_BUFFER_BIT)

								glLoadIdentity()

								gluLookAt(0,	10,	10,

																		0,	0,	-5,

																		0,	1,	0)

								self.light.render()

								for	block	in	self.blocks:

												block.render()

								self.player.render()

								self.ground.render()

								pygame.display.flip()

To	finish	our	game,	we	will	modify	the	input	handling	of	our	program.	This	change	is
straightforward,	since	we	only	need	to	update	the	x	component	of	the	character’s	position
and	trim	it	so	that	it	cannot	move	out	of	the	lane:

				def	process_input(self,	dt):

								pressed	=	pygame.key.get_pressed()

								x,	y,	z	=	self.player.position

								if	pressed[K_LEFT]:

												x	-=	0.01	*	dt

								if	pressed[K_RIGHT]:

												x	+=	0.01	*	dt

								x	=	max(min(x,	7),	-7)

								self.player.position	=	(x,	y,	z)

In	the	chapter5_05.py	script,	you	can	find	the	full	implementation	of	the	game.	Run	it
and	feel	free	to	modify	and	improve	it!	You	can	add	pickup	items	and	keep	track	of	the
score,	or	give	the	player	a	number	of	lives	before	the	game	is	over.





Summary
In	this	chapter,	you	learned	how	it	is	possible	to	work	with	Python	and	OpenGL,	and	with
basic	knowledge	about	OpenGL	APIs,	we	were	able	to	develop	a	simple	3D	game.

We	saw	two	cross-platform	alternatives	for	creating	an	OpenGL	context:	GLUT	and
Pygame.	You	can	decide	which	one	better	suits	your	3D	games,	depending	on	the	trade-
offs	of	each	option.	Keep	this	in	mind:	an	advantage	of	using	both	is	that	you	may	adapt
existing	examples	from	one	library	to	the	other!

With	these	foundations	of	3D	covered,	in	the	next	chapter,	we	will	see	how	to	develop	a
3D	platformer	based	on	these	technologies.





Chapter	6.	PyPlatformer
So	far,	you	have	learned	how	to	implement	games	in	Python	with	different	libraries,	with
the	primary	focus	being	on	the	practice	of	game	development.

Now,	we	will	introduce	some	theoretical	concepts	that	will	not	only	complement	the
practice,	but	will	also	help	us	develop	games	efficiently.	This	theory	will	aid	us	in
understanding	why	games	are	conceptually	designed	the	way	they	are.

In	this	chapter,	we	will	cover	these	topics:

Foundations	of	the	game	theory
Object-oriented	principles	applied	to	game	development
How	to	implement	a	small	3D	game	framework
Modularizing	our	functionality	with	reusable	components
Adding	a	physics	engine	to	simulate	rigid	bodies’	interactions
Creating	the	building	blocks	of	a	platformer	game



An	introduction	to	game	design
There	are	several	academic	definitions	of	what	a	game	is;	however,	most	of	them	share	the
key	terms,	such	as	rules,	objectives,	and	players.	Assuming	that	all	games	share	these
concepts,	we	may	ask	some	interesting	questions	while	analyzing	a	game:	what	is	the
game’s	main	objective?	What	are	the	rules	that	the	player	must	follow?	Is	it	difficult	to
recognize	the	goal	and	the	rules	of	the	system?

Other	definitions	make	references	to	concepts	such	as	resource	management	and
inefficiencies,	because	the	decisions	of	the	player	are	usually	conditioned	by	the
limitations	of	some	useful	tokens	in	the	game.

The	decisions	we	make	when	we	create	a	game	are	deeply	related	with	these	concepts,	and
as	we	will	see	later,	it	is	a	good	exercise	to	think	about	them	even	when	we	are	starting
with	the	development.



Level	design
In	order	to	successfully	engage	our	players,	our	game	needs	to	gradually	add	new
challenges	that	preserve	their	interest.	However,	these	ingredients	should	be	introduced	in
a	coherent	order	so	that	the	player	does	not	become	confused	because	she	or	he	does	not
know	how	to	react	to	the	game’s	output.

This	means	that	the	player	is	not	only	playing	your	game	but	also	learning	how	to	play	it.
This	learning	curve	should	be	carefully	considered	in	tutorials	and	the	first	level,	because
incorrect	guidance	can	lead	to	frustration.



Platformer	skills
In	our	platformer	game,	the	first	action	that	the	player	will	learn	is	how	to	move	their
character,	which	is	intuitively	performed	by	pressing	the	arrow	keys.	Since	there	is	not	any
threat	nearby,	the	player	can	experiment	moving	around	and	can	become	familiar	with	the
control	keys.

Next,	the	player	will	face	an	obstacle,	and	she	or	he	needs	to	learn	how	to	jump	over	it	to
continue.	There	is	no	gap	between	the	obstacle	and	the	ground,	so	there	is	no	risk	of
falling	from	the	platform	if	the	character’s	jump	is	too	short,	as	shown	in	the	following
screenshot:

Once	the	first	obstacle	is	cleared,	the	player	faces	a	couple	of	platforms	with	gaps	in
between,	as	shown	in	the	next	screenshot.	Now	it	is	required	to	measure	the	jumping
forces,	or	else	the	character	will	fall	into	the	void.



If	the	character	does	not	reach	the	platform	and	falls,	it	will	respawn	at	the	initial	position.
That’s	another	lesson	that	the	player	will	learn:	move	with	care,	or	else	you	will	have	to
start	over	again!

On	the	next	platform,	the	player	will	encounter	a	new	character.	If	the	character	collides
with	it,	it	will	move	back	to	the	spawn	position.	Therefore,	the	player	learns	that	these
objects	should	be	avoided	and	they	must	jump	over	it	to	advance.



After	this,	the	player	can	reach	a	platform	on	which	there	is	a	spinning	box.	It	is	placed	in
the	middle	of	a	narrow	platform,	so	it	is	very	easy	to	collide	with,	as	shown	in	this
screenshot:



When	this	happens,	the	player’s	ammo	is	increased,	so	now	the	character	is	able	to	shoot
by	pressing	the	spacebar.	On	the	next	platform,	the	player	can	find	another	enemy	to	test
their	shooting	ability.	With	the	pickup,	the	player	can	shoot	up	to	five	times,	so	they	can
try	out	this	ability	several	times	before	running	out	of	ammo.

Now	that	we	have	analyzed	the	skills	that	our	players	will	need	to	learn,	we	can	move	on
to	the	architectural	design	of	our	game.



Component-based	game	engines
When	we	start	developing	a	game	from	scratch,	the	first	step	may	be	to	define	a	basic
class	with	common	attributes	for	all	the	game	objects,	such	as	its	position	coordinates,	the
color,	the	speed,	and	so	on.	This	could	be	the	basic	GameObject	or	Actor	class	we	declared
in	previous	chapters.

Then	you	need	to	add	other	game	objects	with	more	concrete	kinds	of	behavior,	such	as
the	character	that	will	be	controlled	by	the	player,	or	the	enemies	that	randomly	shoot	the
playable	character.	If	you	represent	these	entities	with	separate	classes,	each	one
implements	that	functionality	with	a	custom	method	in	the	corresponding	class.

Consequently,	every	specialization	of	an	existing	entity	might	be	translated	into	a	new
subclass.	Suppose	we	want	to	add	a	special	type	of	enemy	that	moves	along	a	particular
route,	which	we	will	call	PatrolEnemy.	In	our	class	diagram	shown	here,	this	class	will
extend	our	Enemy	class:

While	this	approach	might	work	for	small	games,	it	becomes	more	difficult	to	scale	the
organization	of	the	project	when	the	inheritance	hierarchy	grows.	Imagine	that	we	want	to
add	another	type	of	enemy	that	shoots	only	when	it	is	located	within	a	certain	distance
from	the	player,	and	a	third	enemy	that	combines	this	new	behavior	with	PatrolEnemy.
This	is	illustrated	in	the	following	diagram:



If	some	game	objects	follow	the	behavior	of	their	ancestors	and	share	the	functionality
with	other	entities,	you	may	need	to	use	multiple	inheritance	or	define	intermediate	classes
that	would	be	unnecessary	otherwise.

On	the	other	hand,	a	component-based	design	follows	the	principle	of	favoring	object
composition	over	class	inheritance.	This	means	that	the	functionality	is	contained	in	other
classes,	instead	of	reusing	it	with	a	subclass.

Translated	into	our	example,	this	architecture	leaves	us	with	the	following	diagram.
Besides,	as	we	will	see	later,	a	component	base	class	is	also	added.

The	classes	under	the	Game	Objects	area	are	GameObject	subclasses,	but	their	behavior	is
determined	by	the	composition	of	their	Components	subclasses.

In	this	way,	we	do	not	introduce	multiple	inheritance	solutions	and	keep	these	pieces	of
functionality	separated	in	small	classes,	with	the	advantage	of	being	able	to	add	or	remove



them	dynamically.

In	later	sections,	we	will	see	how	these	components	are	also	used	to	render	objects	in	our
OpenGL	context,	but	now	we	will	move	on	to	the	library	that	we	will	use	to	simulate
physics	in	our	game.





Introducing	Pymunk
We	will	implement	physics	in	our	game	with	Pymunk,	a	2D	physics	engine	built	on	top	of
Chimpunk2D.

Even	though	we	are	using	OpenGL	for	2D	graphics,	our	platformer	game	will	recreate	a
two-dimensional	space,	so	we	will	work	on	the	plane	in	which	the	z	axis	equals	0.

You	can	install	Pymunk	directly	from	pip:

$	pip	install	pymunk

The	Chimpunk2D	library	is	written	in	C,	so	you	might	need	to	compile	it	on	your	platform
if	the	distribution	does	not	ship	with	the	precompiled	library.	On	32-bit	Windows	and	32-
bit	and	64-bit	Linux	versions,	Pymunk	will	include	the	Chimpunk2D	binaries.

For	other	platforms,	or	if	you	want	to	compile	the	library	yourself,	you	can	check	out	the
installation	guide	and	the	steps	for	compiling	Chimpunk2D	at
http://pymunk.readthedocs.org/en/latest/installation.html.

Tip
Don’t	reinvent	the	wheel!

Implementing	a	rigid	body	library	is	a	laborious	task,	especially	if	you	are	developing	a
casual	game	from	scratch—as	we	are	doing	in	this	chapter.

Fortunately,	the	Pymunk	API	is	simple	and	well-documented,	so	you	can	get	started
quickly	and	avoid	losing	time	crafting	a	custom	physics	engine.

The	main	classes	of	the	pymunk	package	are	the	following:

Space:	A	two-dimensional	space	in	which	the	physics	simulation	will	occur.	We	will
use	a	Space	instance	for	the	entire	game,	and	we	will	update	each	frame	through	its
step()	method.
Body:	This	represents	the	rigid	body,	the	basic	unit	of	simulation.	It	has	a	position
member,	which	will	also	represent	the	position	of	the	game	object	that	contains	the
rigid	body.	The	other	members	that	we	will	cover	are	the	velocity	and	force
vectors.
Shape:	The	base	class	for	all	shapes.	We	will	limit	ourselves	to	circle	and	box
shapes,	defined	by	the	Circle	and	Poly	classes	respectively.
Arbiter:	This	represents	a	collision	pair	between	shapes	and	is	used	in	collision
callbacks.	It	also	contains	information	about	the	contact	points	of	the	collision.

In	the	next	section,	we	will	rely	on	these	classes	and	their	attributes	to	hold	information
about	game	objects	and	their	collisions.

http://pymunk.readthedocs.org/en/latest/installation.html




Building	a	game	framework
The	Component	and	GameObject	classes	form	the	core	of	our	game	engine.	The	interface
offered	by	the	Component	class	is	as	easy	as	this:

class	Component(object):

				__slots__	=	['gameobject']

				def	start(self):

								pass

				def	update(self,	dt):

								pass

				def	stop(self):

								pass

				def	on_collide(self,	other,	contacts):

								pass

These	methods	define	the	life	cycle	of	our	components:

start():	This	is	called	when	the	component	is	added	to	the	game	object	instance.	The
component	keeps	a	reference	to	the	game	object	as	self.gameobject.
update(dt):	This	is	called	for	each	frame,	where	the	dt	argument	is	the	elapsed	time
in	seconds	since	the	previous	frame.
on_collide(other,	contacts):	This	is	called	when	the	component’s	game	object
collides	with	another	rigid	body.	The	other	argument	is	the	other	game	object	of	the
collision	pair,	and	contacts	includes	the	contact	points	between	the	objects.	This	last
argument	is	directly	passed	from	the	Pymunk	API,	and	we	will	see	later	how	to	work
with	it.
stop():	This	is	called	when	the	component	is	removed	from	the	game	object	instance.

These	will	be	invoked	from	our	GameObject	class.	As	we	mentioned	earlier,	a	game	object
internally	uses	a	rigid	body	to	represent	its	position	in	the	x	and	y	axes	and	an	extra
variable	for	the	z	axis.	By	default,	we	will	work	in	the	z=0	plane.

The	GameObject	class	is	defined	as	follows:

import	pymunk	as	pm

class	GameObject(object):

				instances	=	[]

				def	__init__(self,	x=0,	y=0,	z=0,	scale=(1,	1,	1)):

								self._body	=	pm.Body()

								self._body.position	=	x,	y

								self._shape	=	None

								self._ax	=	0

								self._ay	=	0

								self._z	=	z

								self.tag	=	''

								self.scale	=	scale

								self.components	=	[]

								GameObject.instances.append(self)



The	two-dimensional	position	is	complemented	with	an	inner	_z	member,	and	the	rotation
is	extended	with	the	angle	of	rotation	in	the	x	and	y	axis	with	the	_ax	and	_ay	members,
respectively.	The	velocity	vector	is	directly	retrieved	from	the	rigid	body:

				@property

				def	position(self):

								pos	=	self._body.position

								return	pos.x,	pos.y,	self._z

				@position.setter

				def	position(self,	pos):

								self._body.position	=	pos[0],	pos[1]

								self._z	=	pos[2]

				@property

				def	rotation(self):

								return	self._ax,	self._ay,	self._body.angle

				@rotation.setter

				def	rotation(self,	rot):

								self._ax	=	rot[0]

								self._ay	=	rot[1]

								self._body.angle	=	rot[2]

				@property

				def	velocity(self):

								return	self._body.velocity

				@velocity.setter

				def	velocity(self,	vel):

								self._body.velocity	=	vel

The	game	object’s	position	can	be	modified	by	applying	an	impulse	or	a	force	vector	to
the	underlying	rigid	body:

				def	move(self,	x,	y):

								self._body.apply_impulse((x,	y))

				def	apply_force(self,	x,	y):

								self._body.apply_force((x,	y))

The	instance	components	can	be	manipulated—added,	removed,	and	retrieved	by	type—in
a	flexible	way	with	the	following	methods:

				def	add_components(self,	*components):

								for	component	in	components:

												self.add_component(component)

				def	add_component(self,	component):

								self.components.append(component)

								component.gameobject	=	self

								component.start()

				def	get_component_by_type(self,	cls):

								for	component	in	self.components:



												if	isinstance(component,	cls):

																return	component

				def	remove_component(self,	component):

								component.stop()

								self.components.remove(component)

To	display	the	game	object,	we	pay	special	attention	to	the	Renderable	components.	The
interface	of	this	Component	subclass	include	a	render()	method,	which	is	called	in	the
display	loop	for	each	active	game	object.

The	update()	method	directly	delegates	the	execution	to	every	attached	component:

				def	render(self):

								for	component	in	self.components:

												if	isinstance(component,	Renderable):

																component.render()

				def	update(self,	dt):

								for	component	in	self.components:

												component.update(dt)

Finally,	when	we	remove	a	game	object,	we	need	to	delete	the	shape	of	its	rigid	body	from
the	Pymunk	space;	otherwise,	the	visual	result	will	be	such	that	the	entities	still	keep
colliding	with	an	invisible	object:

				def	remove(self):

								for	component	in	self.components:

												self.remove_component(component)

								if	self._shape	is	not	None:

												Physics.remove(self._shape)

								GameObject.instances.remove(self)

				def	collide(self,	other,	contacts):

								for	component	in	self.components:

												component.on_collide(other,	contacts)

You	can	find	the	implementation	of	these	two	classes	in	the
pyplatformer/enginecomponents.py	and	pyplatformer/engine/__init__.py	scripts.

Tip
Saving	space	consumption

By	default,	each	object	instance	has	an	internal	dictionary	for	attribute	storage.	The
__slots__	class	variable	tells	Python	to	allocate	space	only	for	each	variable,	saving
space	if	the	instance	has	few	attributes.

Since	components	are	small	classes,	we	added	this	optimization	to	avoid	instantiating
unnecessary	dictionaries.

Now	we	will	move	on	to	the	physics	module,	where	the	Input	class	and	the	shape
components	are	defined.



Adding	physics
This	module	is	responsible	for	initializing	the	Pymunk	Space.	This	happens	at	the
beginning	of	the	file,	and	the	gravity	and	the	collision	handler	are	set	to	default	values:

import	pymunk

def	coll_handler(_,	arbiter):

				if	len(arbiter.shapes)	==	2:

								obj1	=	arbiter.shapes[0].gameobject

								obj2	=	arbiter.shapes[1].gameobject

								obj1.collide(obj2,	arbiter.contacts)

								obj2.collide(obj1,	arbiter.contacts)

				return	True

space	=	pymunk.Space()

space.gravity	=	0,	-10

space.set_default_collision_handler(coll_handler)

The	collision	handler	receives	the	space	where	the	collision	occurs	as	the	first	parameter
and	an	Arbiter	instance	with	the	collision	information.	Here,	we	obtain	the	game	object
attached	to	the	shape	and	trigger	the	collide()	method.

The	Physics	class	is	similar	to	Input,	since	it	contains	a	couple	of	class	methods	that
wrap	the	basic	functionality	we	are	looking	for:

class	Physics(object):

				@classmethod

				def	step(cls,	dt):

								space.step(dt)

				@classmethod

				def	remove(cls,	body):

								space.remove(body)

The	Rigidbody	class	is	a	base	component	that	replaces	the	initial	static	body	that	every
game	object	has	with	a	non-static	one.	It	also	adds	a	reference	to	the	game	object	from	the
shape,	so	it	is	possible	to	retrieve	the	game	object	from	the	Pymunk	collision	information:

class	Rigidbody(Component):

				__slots__	=	['mass',	'is_static']

				def	__init__(self,	mass=1,	is_static=True):

								self.mass	=	mass

								self.is_static	=	is_static

				def	start(self):

								if	not	self.is_static:

												#	Replace	the	static	body

												pos	=	self.gameobject._body.position

												body	=	pymunk.Body(self.mass,	1666)

												body.position	=	pos

												self.gameobject._body	=	body

				def	add_shape_to_space(self,	shape):

								self.gameobject._shape	=	shape



								shape.gameobject	=	self.gameobject

								if	self.is_static:

												space.add(shape)

								else:

												space.add(self.gameobject._body,	shape)

Note
Note	that	static	bodies	are	not	added	to	the	space;	only	their	shapes	are.

The	BoxCollider	and	SphereCollider	subclasses	create	the	corresponding	shape	by
calling	the	Pymunk	API:

class	BoxCollider(Rigidbody):

				__slots__	=	['size']

				def	__init__(self,	width,	height,	mass=1,	is_static=True):

								super(BoxCollider,	self).__init__(mass,	is_static)

								self.size	=	width,	height

				def	start(self):

								super(BoxCollider,	self).start()

								body	=	self.gameobject._body

								shape	=	pymunk.Poly.create_box(body,	self.size)

								self.add_shape_to_space(shape)

class	SphereCollider(Rigidbody):

				__slots__	=	['radius']

				def	__init__(self,	radius,	mass=1,	is_static=True):

								super(SphereCollider,	self).__init__(mass,	is_static)

								self.radius	=	radius

				def	start(self):

								super(SphereCollider,	self).start()

								body	=	self.gameobject._body

								shape	=	pymunk.Circle(body,	self.radius)

								self.add_shape_to_space(shape)

Each	implementation	only	differs	in	the	information	that	is	passed	to	build	the	shape,	but
you	can	easily	add	another	rigid	body	component	by	following	the	same	pattern.



Renderable	components
The	components	module	includes	the	definition	of	the	Renderable	class,	which	we
mentioned	earlier	when	we	looked	at	how	to	display	game	objects.

It	pushes	a	matrix	to	the	current	stack	and	performs	some	basic	operations	before
delegating	the	rendering	to	the	_render()	method,	saving	us	from	repeating	this
boilerplate	code:

class	Renderable(Component):

				__slots__	=	['color']

				def	__init__(self,	color):

								self.color	=	color

				def	render(self):

								pos	=	self.gameobject.position

								rot	=	self.gameobject.rotation

								scale	=	self.gameobject.scale

								glPushMatrix()

								glTranslatef(*pos)

								if	rot	!=	(0,	0,	0):

												glRotatef(rot[0],	1,	0,	0)

												glRotatef(rot[1],	0,	1,	0)

												glRotatef(rot[2],	0,	0,	1)

								if	scale	!=	(1,	1,	1):

												glScalef(*scale)

								if	self.color	is	not	None:

												glColor4f(*self.color)

								self._render()

								glPopMatrix()

				def	_render(self):

								pass

The	Cube	and	Sphere	subclasses	are	an	adaptation	of	the	implementation	we	covered	in
Chapter	5,	PyGame	and	3D,	and	along	with	the	Light	class,	they	have	been	omitted	for
brevity.

The	Camera	component
You	may	remember	how	to	set	up	the	camera	perspective	with	GLU,	which	was	one	of	the
first	actions	of	the	display	loop	in	the	previous	chapter.

Now	we	will	use	a	component	to	perform	the	same	task,	but	it	will	differ	from	other
components	in	the	way	in	which	it	is	called	in	the	main	loop.	This	happens	because	these
matrix	operations	need	to	be	the	first	ones	of	the	OpenGL	matrix	stack	if	we	want	to	set	up
the	camera	position	correctly:

class	Camera(Component):

				instance	=	None

				def	__init__(self,	dy,	dz):

								self.dy	=	dy



								self.dz	=	dz

								Camera.instance	=	self

				def	render(self):

								pos	=	self.gameobject.position

								glLoadIdentity()

								gluLookAt(pos[0],	self.dy,	self.dz,

																		pos[0],	pos[1],	pos[2],

																		0,	1,	0)

The	camera	will	look	at	the	game	object	with	which	it	is	attached	and	the	distance	along
the	y	and	z	axes	are	parameterized	in	its	__init__	method.

This	implementation	takes	the	last	camera	that	has	been	instantiated	as	the	current	one.	In
our	game,	we	will	only	use	a	single	camera	component,	and	this	can	be	considered	a
common	scenario	in	basic	games.

However,	if	you	need	to	switch	between	multiple	cameras,	you	can	define	a	more	complex
component.	As	you	may	notice,	these	implementations	are	very	clean	and	concise	thanks
to	the	assumption	of	these	simplifications.



The	InputManager	module
To	handle	input	events,	we	create	a	separate	module	that	will	wrap	the	processing	of	our
pygame	events.	Since	we	will	register	keystrokes	and	the	special	QUIT	event	only,	this	class
is	quite	uncomplicated:

from	collections	import	defaultdict

import	pygame

class	Input(object):

				quit_flag	=	False

				keys	=	defaultdict(bool)

				keys_down	=	defaultdict(bool)

				@classmethod

				def	update(cls):

								cls.keys_down.clear()

								for	event	in	pygame.event.get():

												if	event.type	==	pygame.QUIT:

																cls.quit_flag	=	True

												if	event.type	==	pygame.KEYUP:

																cls.keys[event.key]	=	False

												if	event.type	==	pygame.KEYDOWN:

																cls.keys[event.key]	=	True

																cls.keys_down[event.key]	=	True

				@classmethod

				def	get_key(cls,	key):

								return	cls.keys[key]

				@classmethod

				def	get_key_down(cls,	key):

								return	cls.keys_down[key]

Note	that	with	this	interface,	it	is	straightforward	to	get	the	pressed	keys	within	any
component,	like	this	for	instance:

class	HorizontalMovement(Component):

				def	update(self,	dt):

								direction	=	Input.get(K_RIGHT)	-	Input.get(K_RIGHT)

								self.gameobject.move(dt	*	direction	*	5,	0)

We	can	subtract	boolean	values	because	bool	is	a	subclass	of	int,	and	True	corresponds	to
1,	while	False	corresponds	to	0.



The	Game	class
The	Game	class	is	responsible	for	bootstrapping	the	application—setting	the	initial	values
of	the	window	attributes,	initializing	the	OpenGL	context,	and	entering	the	game	loop:

class	Game(object):

				def	__init__(self,	caption,	width=800,	height=600):

								self.caption	=	caption

								self.width	=	width

								self.height	=	height

								self.fps	=	60

				def	mainloop(self):

								self.setup()

								clock	=	pygame.time.Clock()

								while	not	Input.quit_flag:

												dt	=	clock.tick(self.fps)

												dt	/=	1000

												Physics.step(dt)

												self.update(dt)

												self.render()

								pygame.quit()

								sys.exit()

Some	of	these	initial	operations	have	been	extracted	into	the	setup()	method,	so
mainloop()	stays	clear	and	understandable:

				def	setup(self):

								pygame.init()

								pygame.display.set_mode((self.width,	self.height),

																																pygame.OPENGL	|	pygame.DOUBLEBUF)

								pygame.display.set_caption(self.caption)

								glEnable(GL_LIGHTING)

								glEnable(GL_COLOR_MATERIAL)

								glColorMaterial(GL_FRONT_AND_BACK,	GL_AMBIENT_AND_DIFFUSE)

								glEnable(GL_DEPTH_TEST)

								glClearColor(0.5,	0.7,	1,	1)

								glMatrixMode(GL_PROJECTION)

								aspect	=	self.width	/	self.height

								gluPerspective(45,	aspect,	1,	100)

								glMatrixMode(GL_MODELVIEW)

The	update()	and	render()	calls	delegate	the	execution	to	the	game	object	instances,
which	in	turn,	will	invoke	their	components’	methods:

				def	update(self,	dt):

								Input.update()

								for	gameobject	in	GameObject.instances:

												gameobject.update(dt)

				def	render(self):

								glClear(GL_COLOR_BUFFER_BIT	|	GL_DEPTH_BUFFER_BIT)

								if	Camera.instance	is	not	None:

												Camera.instance.render()

								for	gameobject	in	GameObject.instances:



												gameobject.render()

								pygame.display.flip()

The	final	arrangement	of	our	engine	package	looks	like	this:

The	pyplatformer/game.py	script	contains	the	game	logic,	and	thanks	to	the	micro-
framework	that	we	have	developed,	it	will	consist	of	a	dozen	short	classes	only.





Developing	PyPlatformer
With	this	architectural	background,	we	can	start	crafting	the	custom	components	of	our
platformer	game.	The	Component	API	may	look	simple,	but	it	allows	us	to	implement	the
functionality	in	a	succinct	manner.



Creating	the	platforms
Each	platform	of	our	game	is	nothing	but	a	cube	with	a	static	rigid	body.	However,	since
we	will	create	several	instances	with	these	components,	it	is	convenient	to	define	a	class	to
avoid	repeating	this	kind	of	instantiation:

class	Platform(GameObject):

				def	__init__(self,	x,	y,	width,	height):

								super(Platform,	self).__init__(x,	y)

								color	=	(0.2,	1,	0.5,	1)

								self.add_components(Cube(color,	size=(width,	height,	2)),

																												BoxCollider(width,	height))



Adding	pickups
In	platformer	games,	it	is	common	that	the	player	is	able	to	collect	some	items	that	give
valuable	resources.	In	our	game,	when	the	character	hits	one	of	these	pickups,	its	ammo	is
incremented	by	five	units.

To	decorate	this	type	of	game	object,	we	will	add	a	component	that	rotates	the	attached
game	object	around	its	y	axis:

class	Rotating(Component):

				speed	=	50

				def	update(self,	dt):

								ax,	ay,	az	=	self.gameobject.rotation

								ay	=	(ay	+	self.speed	*	dt)	%	360

								self.gameobject.rotation	=	ax,	ay,	az

Finally,	we	can	define	a	GameObject	subclass	that	wraps	the	instantiation	of	these
components:

class	Pickup(GameObject):

				def	__init__(self,	x,	y):

								super(Pickup,	self).__init__(x,	y)

								self.tag	=	'pickup'

								color	=	(1,	1,	0.5,	1)

								self.add_components(Cube(color,	size=(1,	1,	1)),

																												Rotating(),	BoxCollider(1,	1))

We	use	the	tag	attribute	as	a	way	of	identifying	its	type.	Thus,	if	we	need	to	check	the
game	object’s	type,	we	don’t	need	to	rely	on	the	isinstance	function	and	the	hierarchy
model.



Shooting!
When	the	player	collides	with	one	of	these	pickups,	it	is	destroyed	and	it	is	no	longer
displayed	on	the	scene.	With	a	physics	engine,	this	also	means	removing	the	game	object
and	disabling	its	rigid	body.	Remember	that	we	defined	the	GameObject.remove()	method
for	this	purpose.

To	simulate	the	gradual	disappearance	of	the	object,	we	will	decrease	its	scale	until	it	does
not	become	visible,	and	then	we	will	remove	it:

class	Disappear(Component):

				def	update(self,	dt):

								self.gameobject.velocity	=	0,	0

								s1,	s2,	s3	=	map(lambda	s:	s	-	dt*2,

																									self.gameobject.scale)

								self.gameobject.scale	=	s1,	s2,	s3

								if	s1	<=	0:	self.gameobject.remove()

This	component	is	attached	dynamically	to	the	pickup	and	forces	its	removal.	The	ability
to	shoot	and	collect	these	items	is	defined	in	the	Shooter	component:

class	Shoot(Component):

				def	on_collide(self,	other,	contacts):

								self.gameobject.remove()

class	Shooter(Component):

				__slots__	=	['ammo']

				def	__init__(self):

								self.ammo	=	0

				def	update(self,	dt):

								if	Input.get_key_down(K_SPACE)	and	self.ammo	>	0:

												self.ammo	-=	1

												d	=	1	if	self.gameobject.velocity.x	>	0	else	-1

												pos	=	self.gameobject.position

												shoot	=	GameObject(pos[0]	+	1.5	*	d,	pos[1])

												shoot.tag	=	'shoot'

												color	=	(1,	1,	0,	1)

												shoot.add_components(Sphere(0.3,	color),	Shoot(),

																																	SphereCollider(0.3,	mass=0.1,

																																																is_static=False))

												shoot.apply_force(20	*	direction,	0)

				def	on_collide(self,	other,	contacts):

								if	other.tag	==	'pickup':

												self.ammo	+=	5

												other.add_component(Disappear())

Each	time	the	player	shoots,	a	game	object	is	instantiated	and	moves	towards	the	current
game	object’s	direction.	It	has	an	auxiliary	Shoot	component.	This	component	removes
the	shoot	instance	when	it	collides	with	other	rigid	bodies.

To	decide	which	entities	are	affected	by	a	player’s	shooting,	we	add	a	component	that



checks	the	colliding	entity’s	tag	and	disappears	if	it	is	a	shoot:

class	Shootable(Component):

				def	on_collide(self,	other,	contacts):

								if	other.tag	==	'shoot':

												self.gameobject.add_component(Disappear())

Now	each	enemy	has	the	following	components:

class	Enemy(GameObject):

				def	__init__(self,	x,	y):

								super(Enemy,	self).__init__(x,	y)

								self.tag	=	'enemy'

								color	=	(1,	0.2,	0.2,	1)

								self.add_components(Sphere(1,	color),	Shootable(),

																												SphereCollider(1,	is_static=False))



The	Player	class	and	its	components
Apart	from	the	rigid	body	and	the	Shooter,	our	player	character	has	two	main
components:

Respawn:	This	spawns	the	player	in	its	initial	position	if	it	falls	into	the	void	or
collides	with	an	enemy.	The	following	is	an	example	of	the	Respawn	class:

class	Respawn(Component):

				__slots__	=	['limit',	'spawn_position']

				def	__init__(self,	limit=-15):

								self.limit	=	limit

								self.spawn_position	=	None

				def	start(self):

								self.spawn_position	=	self.gameobject.position

				def	update(self,	dt):

								if	self.gameobject.position[1]	<	self.limit:

												self.respawn()

				def	on_collide(self,	other,	contacts):

								if	other.tag	==	'enemy':

												self.respawn()

				def	respawn(self):

								self.gameobject.velocity	=	0,	0

								self.gameobject.position	=	self.spawn_position

PlayerMovement:	This	queries	the	input	state	and	checks	what	forces	can	be	applied
to	the	character’s	rigid	body	to	move	it	horizontally	or	make	it	jump.	Here	is	an
example	of	the	PlayerMovement	class:

class	PlayerMovement(Component):

				__slots__	=	['can_jump']

				def	__init__(self):

								self.can_jump	=	False

				def	update(self,	dt):

								d	=	Input.get_key(K_RIGHT)	-	Input.get_key(K_LEFT)

								self.gameobject.move(d	*	5	*	dt,	0)

								if	Input.get_key(K_UP)	and	self.can_jump:

												self.can_jump	=	False

												self.gameobject.move(0,	8)

				def	on_collide(self,	other,	contacts):

								self.can_jump	|=	any(c.normal.y	<	0	for	c	in	contacts)

Note
Note	how	we	use	the	list	of	contact	points	to	check	whether	the	player	has	touched
the	ground,	and	then	enable	the	jump	movement	again.



The	Player	class	combines	all	of	these	components	into	a	single	entity:

class	Player(GameObject):

				def	__init__(self,	x,	y):

								super(Player,	self).__init__(x,	y)

								self.add_components(Sphere(1,	(1,	1,	1,	1)),

																												PlayerMovement(),	Respawn(),

																												Shooter(),	Camera(10,	20),

																												SphereCollider(1,	is_static=False))



The	PyPlatformer	class
Finally,	we	define	a	Game	subclass	that	instantiates	all	of	our	game	objects	and	places	them
in	the	scene:

class	PyPlatformer(Game):

				def	__init__(self):

								super(PyPlatformer,	self).__init__('PyPlatformer')

								self.player	=	Player(-2,	0)

								self.light	=	GameObject(0,	10,	0)

								self.light.add_component(Light(GL_LIGHT0))

								self.ground	=	[

												#	Platform	1

												Platform(3,	-2,	30,	1),

												Platform(-11,	3,	2,	9),

												Platform(8,	0,	2,	3),

												#	Platform	2	&	3

												Platform(23,	0,	6,	1),

												Platform(40,	2,	24,	1),

												#	Platform	4	&	5

												Platform(60,	3,	8,	1),

												Platform(84,	4,	26,	1)

								]

								self.pickup	=	Pickup(60,	5)

								self.enemies	=	[Enemy(40,	4),	Enemy(90,	6)]

if	__name__	==	'__main__':

				game	=	PyPlatformer()

				game.mainloop()

You	can	check	out	all	the	game	objects	and	components	in	the	pyplatformer/game.py
script.





Summary
In	this	chapter,	you	learned	about	the	benefits	of	a	component-based	design	and	how	it
allows	you	to	build	small	pieces	that	can	be	added,	removed,	and	combined	with	several
game	objects.

Note	that	the	most	important	exercise	of	this	chapter	is	not	how	to	implement	a	platformer
game,	but	how	it	is	possible	to	set	up	a	component-based	framework	and	provide	the	basic
building	blocks	of	a	game.

With	these	foundations,	you	can	add	some	basic	functionality,	such	as	moving	the	enemies
and	the	platforms,	displaying	more	information	about	the	ammo,	or	keeping	track	of	a
score	based	on	the	number	of	lives	lost	and	enemies	destroyed.

As	usual,	the	final	version	of	this	chapter’s	game	is	nothing	but	the	starting	point	of	a
more	complex	application!

In	the	next	chapter,	we	will	interact	with	a	real-word	checkers	game	via	a	webcam.	This
application	will	be	developed	with	OpenCV,	a	cross-platform	computer	vision	library.





Chapter	7.	Augmenting	a	Board	Game
with	Computer	Vision
Computer	vision	is	the	science	and	engineering	of	smart	camera	systems	(or	more	broadly,
smart	image	systems,	since	images	can	come	from	another	source	besides	a	camera).
Examples	of	subtopics	in	computer	vision	include	face	recognition,	license	plate
recognition,	image	classification	(as	used	in	Google’s	Search	by	image),	motion	capture
(as	used	in	Xbox	Kinect	games),	and	3D	scanning.

Computer	vision,	like	game	development,	has	become	more	accessible	in	recent	years	and
is	now	almost	a	ubiquitous	topic.	“How	can	we	leverage	people’s	interest	in	cameras?”	or
“How	can	we	leverage	all	the	cameras	that	are	in	our	building,	our	city,	or	our	country?”	is
as	natural	a	question	as	“How	can	we	leverage	people’s	interest	in	games	and
simulations?”	and	the	implications	extend	beyond	entertainment.

Cameras	are	everywhere.	Many	of	them	are	attached	to	powerful	host	computers	and
networks.	We	live,	work,	and	play	amidst	an	army	of	digital	eyes,	including	webcams,
camera	phones,	camera-controlled	game	consoles	and	smart	TVs,	security	cameras,
drones,	and	satellites.	Images	of	you	may	be	captured,	processed,	or	transmitted	many
times	daily.

The	songwriter	John	Lennon	asked	us	to	“imagine	all	the	people	living	for	today”	but,	for
a	moment,	let’s	imagine	all	pixels	instead.	A	single	image	may	contain	millions	of	pixels,
amounting	to	more	bytes	of	data	than	Leo	Tolstoy’s	War	and	Peace	(an	epic	1500-page
novel	about	Russian	society	during	the	Napoleonic	Wars).	A	single	camera	may	capture	a
video	stream	containing	thousands	of	these	epic-sized	images	per	minute.	Billions	of
cameras	are	active	in	the	world.	Networks	and	disk	drives	are	congested	with	the
accumulation	of	image	data,	and	once	an	image	is	online,	copies	of	it	may	remain	in
circulation	indefinitely.	When	we	use	software	to	acquire,	edit,	analyze,	and	review
streams	of	images,	we	may	notice	that	the	computer’s	CPU	usage	soars	while	its	battery
power	plummets.

As	game	developers,	we	know	that	a	good	game	engine	simplifies	a	lot	of	optimization
problems,	such	as	batching	sprites	or	3D	models	to	send	to	the	GPU	for	rendering.	Good
computer	vision	libraries	(and	more	broadly,	good	numeric	and	scientific	libraries)	also
simplify	a	lot	of	optimization	problems	and	help	us	conserve	CPU	usage	and	battery	life
while	processing	video	input	(or	other	large	streams	of	data)	in	real	time.	Since	the	1990s,
computer	vision	libraries,	like	game	engines,	have	become	more	numerous,	faster,	easier
to	use,	and	often	free.	This	chapter	leverages	the	following	libraries	to	capture,	process,
and	display	images:

NumPy:	This	is	a	numeric	library,	which	we	previously	used	in	Chapter	4,	Steering
Behaviors.	Its	documentation	is	at	http://docs.scipy.org/doc/.
OpenCV:	This	is	a	cross-platform	library	for	computational	photography,	computer
vision,	and	machine	learning.	OpenCV’s	Python	version	represents	images	as	NumPy
arrays.	However,	beneath	the	Python	layer,	OpenCV	is	implemented	in	C++	code

http://docs.scipy.org/doc/


with	a	wide	range	of	hardware-specific	optimizations.	Thanks	to	these	optimizations,
OpenCV	functions	tend	to	run	faster	than	their	NumPy	equivalents.	The	OpenCV
documentation	is	at	http://docs.opencv.org/.
scikit-learn:	This	is	a	machine	learning	library.	It	processes	NumPy	arrays.	For	its
documentation,	refer	to	http://scikit-learn.org/stable/documentation.html.
WxPython:	This	is	a	cross-platform	GUI	framework.	On	each	platform,	WxPython
is	certain	to	have	a	native	look	and	feel	because	it	uses	native	GUI	widgets	(in
comparison,	many	cross-platform	GUI	frameworks,	such	as	Tkinter,	use	their	own
non-native	widgets	with	a	configurable	“skin”	that	may	emulate	a	native	look).
WxPython	is	a	wrapper	around	a	C++	library	called	WxWidgets.	For	WxPython’s
documentation,	refer	to	http://wxpython.org/onlinedocs.php.

Note
Later	in	this	chapter,	in	the	Setting	up	OpenCV	and	other	dependencies	section,	we
will	discuss	the	version	requirements	and	setup	steps	for	each	library.

Following	the	pattern	of	other	chapters	in	this	book,	we	will	apply	computer	vision	to	a
classic	game:	checkers,	also	known	as	draughts.	This	board	game	has	many	variants	from
all	cultures	and	all	periods	of	history	in	the	past	5,000	years.	It	is	the	grandfather	of	all
strategy	games.	Across	most	variants,	the	game	has	the	following	features:

There	are	two	players,	who	are	sometimes	called	light	and	dark.
There	are	two	kinds	of	playing	pieces,	sometimes	called	pawns	and	kings.	A	pawn	is
a	short,	circular	playing	piece.	A	king	is	a	tall,	circular	playing	piece	made	by
stacking	two	pawns.
The	board	is	a	grid	of	alternating	light	and	dark	squares.	Pieces	may	only	occupy	the
dark	squares.	The	size	of	the	grid	depends	on	the	variant	of	the	game.
At	the	start	of	the	game,	each	player	has	an	army	of	pawns,	occupying	multiple
adjacent	rows	on	one	side	of	the	board.	The	two	armies	start	on	opposite	sides	of	the
board	with	two	vacant	rows	between	them.
A	piece	may	capture	an	opposing	piece	by	jumping	over	it	into	an	unoccupied	square.
A	piece	may	make	multiple	jumps	in	one	turn.
On	reaching	the	farthest	row,	a	pawn	is	promoted	to	a	king.
The	difference	between	a	pawn	and	a	king	depends	on	the	variant.	In	some	variants,
only	a	king	can	move	back	toward	its	starting	side.	Moreover,	in	some	variants,	a
pawn	can	cross	only	one	unoccupied	square	at	a	time	while	a	king	can	cross	multiple
unoccupied	squares.	The	latter	are	called	flying	kings.

Note
For	descriptions	of	many	international	variants	of	checkers,	or	draughts,	refer	to
https://en.wikipedia.org/wiki/Draughts.

We	will	build	an	application	that	monitors	a	real-world	game	of	checkers	via	a	webcam.
The	application	will	detect	a	checkerboard	and	classify	each	square	as	an	empty	square,	a
light	pawn,	a	light	king,	a	dark	pawn,	or	a	dark	king.	Furthermore,	the	application	will
alter	the	webcam’s	images	to	create	a	bird’s-eye	view	of	the	board,	with	labels	to	show	the

http://docs.opencv.org/
http://scikit-learn.org/stable/documentation.html
http://wxpython.org/onlinedocs.php
https://en.wikipedia.org/wiki/Draughts


results	of	the	classification.	This	is	a	simple	case	of	augmented	reality,	meaning	that	the
application	applies	special	effects	and	annotations	to	a	real-time	view	of	a	real-world
object.	We	will	call	this	application,	quite	simply,	Checkers.

Note
The	completed	project	for	this	chapter	can	be	downloaded	from
http://nummist.com/opencv/4507_07.zip,	and	any	FAQ	and	errata	can	be	found	at
http://nummist.com/opencv.

http://nummist.com/opencv/4507_07.zip
http://nummist.com/opencv


Planning	the	Checkers	application
Let’s	give	further	thought	to	the	real-world	scene	that	our	Checkers	program	will	expect
and	the	virtual	scene	it	will	create.	Consider	the	following	close-up	photograph,	showing
part	of	an	8	x	8	checkerboard.	From	the	top-left	corner	to	right-hand	side,	we	see	a	light
king,	a	light	pawn,	a	dark	pawn,	and	a	dark	king.

This	checkerboard	is	just	a	sheet	of	matte	paper	on	which	black	and	white	squares	are
printed	(the	paper	is	glued	to	a	foam	board	to	make	it	rigid).	The	playing	pieces	happen	to
be	poker	chips—red	chips	for	the	dark	side	and	gray	chips	for	the	light	side.	A	stack	of
two	poker	chips	is	a	pawn,	while	a	stack	of	four	is	a	king.	As	this	example	suggests,
people	may	play	checkers	with	homemade	or	improvised	sets.	There	is	no	guarantee	that
two	checkers	sets	will	look	alike,	so	we	will	try	to	avoid	rigid	assumptions	about	the	color
scheme.	However,	high	contrast	is	generally	helpful	in	computer	vision,	and	this	example
is	ideal	because	it	uses	four	contrasting	colors	for	dark	squares,	light	squares,	dark	pieces,
and	light	pieces.

We	will	assume	that	a	light	border	surrounds	the	checkerboard	(see	the	preceding	image).
This	assumption	makes	it	easier	to	detect	the	board’s	edge.

Look	carefully	at	the	white	squares	to	the	left	of	the	kings.	Since	the	kings	are	taller	than
the	pawns,	the	kings	cast	longer	shadows	into	adjacent	light	squares.	We	will	rely	on	this
observation	to	differentiate	between	pawns	and	kings.	Importantly,	in	a	bird’s-eye	view	of
the	board,	the	heights	of	the	playing	pieces	will	not	be	visible	but	the	shadows	will	be.	We
will	assume	that	the	shadows	are	approximately	orthogonal	(not	diagonal),	and	are
sufficiently	long	to	reach	an	adjacent	square.

To	further	simplify	our	computer	vision	work,	we	will	require	that	the	camera	and
checkerboard	remain	stationary	relative	to	each	other.	The	camera	should	have	a	view	of
the	entire	board	plus	a	small	margin.	To	achieve	this,	the	webcam	will	need	to	be
approximately	2	feet,	or	0.6	meters,	away	from	the	board	(however,	the	exact	requirement
will	vary	depending	on	the	webcam’s	field	of	view	and	the	board’s	size).	As	seen	in	the



following	photograph,	a	tripod	is	a	good	way	to	keep	the	webcam	stationary	in	a	high
position	from	where	it	can	view	the	whole	board:

As	the	following	screenshot	shows,	our	Checkers	application	will	display	both	the
unmodified	camera	view	(left)	and	an	idealized	bird’s-eye	view	(right):



The	bird’s-eye	view	contains	annotations,	or	in	other	words,	text	for	showing	the
classification	results.	The	annotation	1	means	a	dark	pawn,	11	a	dark	king,	2	a	light	pawn,
and	22	a	light	king.	A	lack	of	annotation	means	an	empty	square.

Note	the	GUI	widgets	at	the	bottom	of	the	screenshot.	These	controls	will	enable	the	user
to	adjust	certain	parameters	of	our	checkerboard	detector	and	square	classifier.
Specifically,	the	following	adjustments	will	be	supported:

Rotate	board	CCW:	Click	on	this	button	to	rotate	the	bird’s-eye	view	90	degrees
counterclockwise	(CCW)
Flip	board	X:	Click	on	this	button	to	flip	the	bird’s-eye	view	horizontally
Flip	board	Y:	Click	on	this	button	to	flip	the	bird’s-eye	view	vertically
Shadow	direction:	Select	one	of	the	radio	buttons—up,	left,	down,	or	right—to
specify	the	direction	of	the	kings’	shadows	in	the	bird’s-eye	view
Empty	threshold:	Move	this	slider	to	the	left	to	classify	more	squares	as	nonempty,
or	to	the	right	to	classify	more	squares	as	empty
Player	threshold:	Move	this	slider	to	the	left	to	classify	more	pieces	as	light,	or	to
the	right	to	classify	more	pieces	as	dark
Shadow	threshold:	Move	this	slider	to	the	left	to	classify	more	pieces	as	kings,	or	to
the	right	to	classify	more	pieces	as	pawns

We	will	divide	our	implementation	of	the	Checkers	application	into	six	Python	modules:

Checkers.py:	This	module	implements	the	GUI	using	WxPython.
CheckersModel.py:	This	module	uses	OpenCV,	NumPy,	and	scikit-learn	to	capture,
analyze,	and	augment	images	of	a	checkers	game	in	real	time.
WxUtils.py:	This	module	provides	a	utility	function	to	convert	images	from	OpenCV
formats	to	a	displayable	WxPython	format.	The	implementation	includes	a
workaround	for	a	WxPython	bug	that	affects	first-generation	Raspberry	Pi
computers.
ResizeUtils.py:	Using	OpenCV,	this	module	provides	a	utility	function	to	try	to	set
a	camera’s	resolution	and	return	the	actual	resolution.
ColorUtils.py:	Using	NumPy,	this	module	provides	utility	functions	to	extract	a
color	channel	(such	as	the	red	component	of	an	image)	and	quantify	differences	the
between	colors.
CVBackwardCompat.py:	This	module	provides	aliases	so	that	things	in	OpenCV	2.x
appear	to	have	the	same	names	as	their	equivalents	in	OpenCV	3.x.

Before	we	write	any	of	these	modules,	let’s	set	up	the	dependencies.





Setting	up	OpenCV	and	other
dependencies
This	chapter’s	project	will	work	with	OpenCV	2.x	or	3.x	and	Python	2.7	or	3.4.	Note	that
OpenCV	2.x	does	not	support	Python	3.x.	However,	on	most	Linux	systems,	it	is	more
convenient	to	install	OpenCV	2.x	(and	use	Python	2.7)	because	OpenCV	3.x	does	not
have	binary	packages	for	most	Linux	systems	yet.

The	following	subsections	cover	only	the	simplest	ways	to	set	up	our	dependencies	on
Windows,	Mac,	and	several	Linux	distributions.	Other	approaches	(and	other	Unix-like
platforms)	can	also	work.	For	example,	advanced	users	may	wish	to	configure	and	build
OpenCV	3.0’s	source	code	on	Linux	systems	that	do	not	yet	have	prepackaged	builds	of
OpenCV	3.x.	For	guidance	on	alternative	setups,	refer	to	one	of	Packt	Publishing’s
dedicated	books	on	OpenCV,	such	as	Learning	OpenCV	3	Computer	Vision	with	Python
by	Joe	Minichino	and	Joseph	Howse.



Windows
Christoph	Gohlke,	from	the	University	of	California,	Irvine,	provides	many	reliable
prebuilt	versions	of	scientific	Python	libraries	for	Windows.	Go	to	his	download	site	at
http://www.lfd.uci.edu/~gohlke/pythonlibs/.	If	you	had	not	installed	NumPy	in	Chapter	4,
Steering	behaviors,	get	the	latest	NumPy+MKL	whl	file	from	Gohlke’s	site	(MKL	is	an
Intel	Math	Kernel	Library	that	provides	optimizations).	At	the	time	of	writing	this	book,	it
is	one	of	the	following:

Python	2.7,	32-bit:	numpy‑1.9.2+mkl‑cp27‑none‑win32.whl
Python	2.7,	64-bit:	numpy‑1.9.2+mkl‑cp27‑none‑win_amd64.whl
Python	3.4,	32-bit:	numpy‑1.9.2+mkl‑cp34‑none‑win32.whl
Python	3.4,	64-bit:	numpy‑1.9.2+mkl‑cp34‑none‑win_amd64.whl

Open	Command	Prompt	and	use	pip	to	install	NumPy	from	the	wheel	file.	The	relevant
command	will	be	something	like	this:

$	pip	install	numpy‑1.9.2+mkl‑cp27‑none‑win32.whl

The	output	from	this	command	should	include	Successfully	installed	numpy-1.9.2+mkl
or	a	similar	line.

Note
If	you	run	into	problems	later	while	importing	modules	from	OpenCV	or	scikit-learn,	try
uninstalling	any	previous	version	of	NumPy	from	Chapter	4,	Steering	behaviors	and	using
the	latest	NumPy+MKL	whl	file	from	Gohlke’s	site.

Similarly,	get	Gohlke’s	latest	whl	file	for	scikit-learn	and	install	it	with	pip.	At	the	time	of
writing	this	book,	it	is	one	of	the	following:

Python	2.7,	32-bit:	scikit_learn‑0.16.1‑cp27‑none‑win32.whl
Python	2.7,	64-bit:	scikit_learn‑0.16.1‑cp27‑none‑win_amd64.whl
Python	3.4,	32-bit:	scikit_learn‑0.16.1‑cp34‑none‑win32.whl
Python	3.4,	64-bit:	scikit_learn‑0.16.1‑cp34‑none‑win_amd64.whl

Also,	at	the	time	of	writing	this	book,	Gohlke	offers	downloads	of	OpenCV	2.4	for	Python
2.7	and	OpenCV	3.0	for	Python	3.4.	The	following	are	the	latest	versions:

Python	2.7,	32-bit:	opencv_python‑2.4.11‑cp27‑none‑win32.whl
Python	2.7,	64-bit:	opencv_python‑2.4.11‑cp27‑none‑win_amd64.whl
Python	3.4,	32-bit:	opencv_python‑3.0.0‑cp34‑none‑win32.whl
Python	3.4,	64-bit:	opencv_python‑3.0.0‑cp34‑none‑win_amd64.whl

If	you	are	satisfied	with	using	Gohlke’s	latest	build	of	OpenCV,	download	the	whl	file	and
install	it	with	pip.

Alternatively,	to	get	OpenCV	3.x	with	Python	2.7	bindings,	we	can	download	an	official
build	from	the	OpenCV	site	and	perform	some	installation	steps	manually.	The	available
downloads	of	OpenCV	are	listed	at	http://opencv.org/downloads.html.	Get	the	latest
version	for	Windows.	At	the	time	of	writing	this	book,	the	latest	file	is	called	opencv-

http://www.lfd.uci.edu/~gohlke/pythonlibs/
http://opencv.org/downloads.html


3.0.0.exe,	and	it	includes	prebuilt	bindings	for	Python	2.7	but	not	3.4.	Run	it,	and	when
prompted,	enter	the	folder	into	which	you	want	to	extract	OpenCV.	We	will	refer	to	this
location	as	<opencv_unzip_path>.	Among	other	things,	the	extracted	subfolders	contain
the	pyd	and	dll	files,	which	are	compiled	library	files	that	the	Python	interpreter	can	load
at	runtime.	Next,	we	must	ensure	that	Python	can	find	these	files.

Copy	one	of	the	following	pyd	files	to	the	Python	site-packages	folder:

Python	2.7,	32-bit:	<opencv_unzip_path>/opencv/build/python/x86/cv2.pyd
Python	2.7,	64-bit:	<opencv_unzip_path>/opencv/build/python/x64/cv2.pyd

Note
Typically,	the	Python	2.7	site-packages	folder	would	be	located	at
C:\Python27\Lib\site-packages.

Now,	edit	the	system’s	Path	variable	to	include	one	of	the	following	folders	(which
contain	dll	files	of	OpenCV	and	some	of	its	dependencies):

Python	2.7,	32-bit:	<opencv_unzip_path>/build/x86/vc12/bin
Python	2.7,	64-bit:	<opencv_unzip_path>/build/x64/vc12/bin

Note
The	Path	variable	can	be	edited	by	going	to	Control	Panel	|	System	and	Security	|
System	|	Advanced	system	settings	|	Environment	Variables….	Edit	the	existing
value	of	Path	by	appending	something	like;
<opencv_unzip_path>/build/x86/vc12/bin.	Note	the	use	of	the	semicolon	as	a
separator	between	paths.

Finally,	we	require	wxPython.	For	Python	2.7,	wxPython	installers	are	available	at
http://wxpython.org/download.php.	Download	and	run	the	latest	installer.	At	the	time	of
writing,	it	is	one	of	the	following	exe	files:

Python	2.7,	32-bit:	wxPython3.0-win32-3.0.2.0-py27.exe
Python	2.7,	64-bit:	wxPython3.0-win64-3.0.2.0-py27.exe

For	Python	3.4,	we	must	use	wxPython	Phoenix,	which	is	a	more	actively	developed	fork
of	wxPython.	Snapshot	builds	of	wxPython	Phoenix	are	listed	at
http://wxpython.org/Phoenix/snapshot-builds/.	Download	the	latest	whl	file	for	Python	3.4
on	Windows,	and	install	it	with	pip.	At	the	time	of	writing	this	book,	it	is	one	of	the
following:

Python	3.4,	32-bit:	wxPython_Phoenix-3.0.3.dev1764+9289a7c-cp34-none-
win32.whl

Python	3.4,	64-bit:	wxPython_Phoenix-3.0.3.dev1764+9289a7c-cp34-none-
win_amd64.whl

Now,	we	have	all	the	necessary	dependencies	for	developing	our	project	on	Windows.

http://wxpython.org/download.php
http://wxpython.org/Phoenix/snapshot-builds/


Mac
The	MacPorts	package	manager	provides	an	easy	command-line	tool	to	configure,	build,
and	install	open	source	software,	such	as	OpenCV.	MacPorts	itself	is	an	open	source
community	project,	but	it	depends	on	Apple’s	Xcode	development	environment,	including
the	Xcode	Command	Line	Tools.	To	set	up	Xcode,	the	Xcode	Command	Line	Tools,	and
then	MacPorts,	follow	the	instructions	given	at	https://www.macports.org/install.php.

Once	MacPorts	is	set	up,	we	can	open	the	terminal	and	start	installing	packages,	also
known	as	ports.	A	typical	installation	command	has	the	following	format:

$	sudo	port	install	<package>	+<variant_0>	+<variant_1>	...

The	variants	are	alternative	configurations	of	the	port.	For	example,	OpenCV	can	be
configured	to	build	its	Python	bindings	and	to	use	optimizations	for	certain	pieces	of
hardware.	These	optimizations	add	more	dependencies	to	OpenCV	but	may	make	its
functions	run	faster.	We	will	tell	OpenCV	to	optimize	itself	via	three	frameworks:	Eigen
(for	CPU	vector	processing),	Intel	Thread	Building	Blocks	(TBB,	for	CPU
multiprocessing),	and	OpenCL	(for	GPU	multiprocessing).	The	OpenCL	optimizations	are
not	used	by	the	Python	interface,	but	it	is	good	to	have	them	just	in	case	you	work	in
future	with	OpenCV	in	other	languages.

Tip
To	search	for	ports	by	name,	run	a	command	such	as	the	following:

$	port	list	*cv*

The	preceding	command	will	list	all	ports	whose	names	contain	cv,	notably	the	opencv
port.	To	list	the	variants	of	a	port,	run	a	command	such	as	this:

$	port	variants	opencv

To	install	OpenCV	for	Python	2.7,	run	the	following	command	in	the	terminal:

$	sudo	port	install	opencv	+python27	+eigen	+tbb	+opencl

Alternatively,	to	install	it	for	Python	3.4,	run	this	command:

$	sudo	port	install	opencv	+python34	+eigen	+tbb	+opencl

Note	that	opencv	+python27	depends	on	python27	and	py27-numpy,	while	opencv
+python34	depends	on	python34	and	py34-numpy.	Thus,	the	relevant	Python	version	and
NumPy	version	are	also	installed.	All	MacPorts	Python	installations	are	separate	from
Mac’s	built-in	Python	installation	(sometimes	called	Apple	Python).	To	use	the	MacPorts
Python	2.7	installation	as	your	default	Python	interpreter,	run	the	following	command:

$	sudo	port	select	python	python27

Alternatively,	to	make	the	MacPorts	Python	3.4	installation	your	default	Python
interpreter,	run	this	command:

$	sudo	port	select	python	python34

https://www.macports.org/install.php


If	it	ever	becomes	necessary	to	make	Apple	Python	the	default	again,	run	a	command	such
as	the	following:

$	port	select	python	python27-apple

For	Python	2.7,	here	is	a	command	that	serves	to	install	scikit-learn:

$	sudo	port	install	py27-scikit-learn

Similarly,	for	Python	3.4,	the	following	command	installs	scikit-learn:

$	sudo	port	install	py34-scikit-learn

To	install	wxPython	for	Python	2.7,	run	this	command:

$	sudo	port	install	py27-wxpython-3.0

For	Python	3.x,	we	need	to	use	wxPython	Phoenix,	which	is	a	more	actively	developed
fork	of	wxPython.	At	the	time	of	writing	this	book,	MacPorts	does	not	contain	any
wxPython	Phoenix	packages,	so	we	will	first	set	up	pip	and	then	use	it	to	install	the	latest
snapshot	build	of	wxPython	Phoenix.	To	install	pip	for	Python	3.4,	run	the	following
command:

$	sudo	port	install	py34-pip

We	can	make	the	newly	installed	pip	the	default	pip	executable:

$	sudo	port	select	pip	pip34

Snapshot	builds	of	wxPython	Phoenix	are	listed	at	http://wxpython.org/Phoenix/snapshot-
builds/.	Download	the	latest	whl	file	for	Python	3.4	on	Mac.	At	the	time	of	writing	this
book,	it	is	wxPython_Phoenix-3.0.3.dev1764+9289a7c-cp34-cp34m-
macosx_10_6_intel.whl.	To	install	this	package,	run	a	command	such	as	the	following:

$	sudo	pip	install	wxPython_Phoenix-3.0.3.dev1764+9289a7c-cp34-cp34m-

macosx_10_6_intel.whl

The	output	from	this	command	should	include	Successfully	installed	wxPython-
Phoenix-3.0.3.dev1764+9289a7c	or	a	similar	line.

Now,	we	have	all	the	necessary	dependencies	for	developing	our	project	on	Mac.

http://wxpython.org/Phoenix/snapshot-builds/


Debian	and	its	derivatives,	including	Raspbian,
Ubuntu,	and	Linux	Mint
For	Python	2.7,	the	required	libraries	are	in	the	standard	repository.	To	install	them,	open
the	terminal	and	run	the	following	command:

$	sudo	apt-get	install	python-opencv	python-scikits-learn	python-wxgtk2.8

Note	that	the	python-opencv	package	depends	on	the	python-numpy	package,	so	python-
numpy	will	also	be	installed.

As	an	alternative,	you	can	install	wxPython	Phoenix	instead	of	the	python-wxgtk2.8
package.	To	set	up	wxPython	Phoenix	and	its	dependencies,	try	the	following	commands:

$	sudo	apt-get	install	libwxbase3.0-dev	libwxgtk3.0-dev	wx-common	

libwebkit-dev	libwxgtk-webview3.0-dev	wx3.0-examples	wx3.0-headers	wx3.0-

i18n	libwxgtk-media3.0-dev

$	pip	install	--upgrade	--pre	-f	http://wxpython.org/Phoenix/snapshot-

builds/	--trusted-host	wxpython.org	wxPython_Phoenix

However,	if	in	doubt,	just	use	the	python-wxgtk2.8	package.



Fedora	and	its	derivatives,	including	RHEL	and
CentOS
For	Python	2.7,	the	required	libraries	are	in	the	standard	repository.	To	install	them,	open
the	terminal	and	run	the	following	command:

$	sudo	yum	install	opencv-python	python-scikit-learn	wxPython

Note	that	the	opencv-python	package	depends	on	the	numpy	package,	so	numpy	will	also
be	installed.



OpenSUSE	and	its	derivatives
Again,	for	Python	2.7,	the	required	libraries	are	in	the	standard	repository.	To	install	them,
open	the	terminal	and	run	the	following	command:

$	sudo	yum	install	python-opencv	python-scikit-learn	python-wxWidgets

Note	that	the	python-opencv	package	depends	on	the	python-numpy	package,	so	python-
numpy	will	also	be	installed.





Supporting	multiple	versions	of	OpenCV
OpenCV	2.x	and	OpenCV	3.x	both	use	the	name	cv2	for	their	top-level	Python	module.
However,	inside	this	module,	some	classes,	functions,	and	constants	have	been	renamed	in
OpenCV	3.x.	Moreover,	some	functionality	is	entirely	new	in	OpenCV	3.x,	but	our	project
relies	only	on	functionality	that	is	present	in	both	major	versions.

To	bridge	a	few	of	the	naming	differences	between	versions	2.x	and	3.x,	we	create	a
module,	CVBackwardCompat.	It	begins	by	importing	cv2:

import	cv2

OpenCV’s	version	string	is	stored	in	cv2.__version__.	For	example,	its	value	may	be
2.4.11	or	3.0.0.	We	can	use	the	following	line	of	code	to	get	the	major	version	number	as
an	integer,	such	as	2	or	3:

CV_MAJOR_VERSION	=	int(cv2.__version__.split('.')[0])

For	OpenCV	2.x	(or	earlier),	we	will	inject	new	names	into	the	imported	cv2	module	so
that	all	the	necessary	OpenCV	3.x	names	will	be	present.	Specifically,	we	need	to	create
aliases	for	several	constants	that	have	new	names	in	OpenCV	3.x,	as	seen	in	the	following
code:

if	CV_MAJOR_VERSION	<	3:

				#	Create	aliases	to	make	parts	of	the	OpenCV	2.x	library

				#	forward-compatible.

				cv2.LINE_AA	=	cv2.CV_AA

				cv2.CAP_PROP_FRAME_WIDTH	=	cv2.cv.CV_CAP_PROP_FRAME_WIDTH

				cv2.CAP_PROP_FRAME_HEIGHT	=	cv2.cv.CV_CAP_PROP_FRAME_HEIGHT

				cv2.FILLED	=	cv2.cv.CV_FILLED

This	is	the	entire	implementation	of	CVBackwardCompat.	Our	other	modules	will	be	able	to
import	the	CVBackwardCompat	instance	of	cv2	and	use	any	of	the	aliases	that	we	may	have
injected.	We	will	see	an	example	in	the	next	module—ResizeUtils.





Configuring	cameras
OpenCV	provides	a	class,	called	cv2.VideoCapture,	that	represents	a	stream	of	images
from	either	a	video	file	or	a	camera.	This	class	has	methods	such	as	read(image)	for
exposing	the	stream’s	next	image	as	a	NumPy	array.	It	also	has	the	get(propId)	and
set(propId,	value)	methods	for	accessing	properties	such	as	the	width	and	height	(in
pixels),	color	format,	and	frame	rate.	The	valid	properties	and	values	may	depend	on	the
system’s	video	codecs	or	camera	drivers.

Across	cameras,	the	default	property	values	may	differ	dramatically.	For	example,	one
camera	might	default	to	an	image	size	of	640	x	480,	while	another	may	default	to	1920	x
1080.	For	greater	predictability,	we	should	try	to	set	crucial	parameters	rather	than	rely	on
the	defaults.	Let’s	create	a	module	called	ResizeUtils	containing	a	utility	function	to
configure	the	image	size.

The	ResizeUtils	module	begins	by	importing	the	CVBackwardCompat	instance	of	cv2,
which	may	contain	aliases	(depending	on	the	OpenCV	version).	Here	is	the	import
statement:

from	CVBackwardCompat	import	cv2

The	property	IDs	for	width	and	height	are	stored	in	constants	called
cv2.CAP_PROP_FRAME_WIDTH	and	cv2.CAP_PROP_FRAME_HEIGHT,	respectively	(referring	to
the	previous	section,	note	that	the	constants’	original	names	in	OpenCV	2.x	were
cv2.cv.CV_CAP_PROP_FRAME_WIDTH	and	cv2.cv.CV_CAP_PROP_FRAME_HEIGHT,	but	we
created	aliases	to	match	the	OpenCV	3.x	names).	Note	the	use	of	these	constants	in	the
following	implementation	of	the	utility	function:

def	cvResizeCapture(capture,	preferredSize):

				#	Try	to	set	the	requested	dimensions.

				w,	h	=	preferredSize

				successW	=	capture.set(cv2.CAP_PROP_FRAME_WIDTH,	w)

				successH	=	capture.set(cv2.CAP_PROP_FRAME_HEIGHT,	h)

				if	successW	and	successH:

								#	The	requested	dimensions	were	successfully	set.

								#	Return	the	requested	dimensions.

								return	preferredSize

				#	The	requested	dimensions	might	not	have	been	set.

				#	Return	the	actual	dimensions.

				w	=	capture.get(cv2.CAP_PROP_FRAME_WIDTH)

				h	=	capture.get(cv2.CAP_PROP_FRAME_HEIGHT)

				return	(w,	h)

As	arguments,	the	function	takes	a	cv2.VideoCapture	object	called	capture	and	a	two-
dimensional	tuple	called	preferredSize.	We	try	to	configure	capture	to	use	the	preferred
width	and	height	in	preferredSize.	The	preferred	dimensions	may	or	may	not	be
supported,	so	as	with	the	feedback,	we	return	a	tuple	of	the	actual	width	and	height.

The	ResizeUtils	module	will	be	useful	for	our	CheckersModel	module,	as
CheckersModel	is	responsible	for	instantiating	and	reading	from	cv2.VideoCapture.





Working	with	colors
Normally,	when	OpenCV	obtains	an	image	from	a	file	or	camera,	it	puts	the	image	in	the
blue-green-red	(BGR)	color	format.	More	specifically,	the	image	is	a	3D	NumPy	array	in
which	image[y][x][0]	is	a	pixel’s	blue	value	(in	the	range	of	0	to	255),	image[y][x][1]
is	its	green	value,	and	image[y][x][2]	is	its	red	value.	The	y	and	x	indices	start	from	the
top-left	corner	of	the	image.	If	we	convert	an	image	into	grayscale,	it	becomes	a	2D
NumPy	array,	in	which	image[y][x]	is	a	pixel’s	grayscale	value.

Let’s	write	some	utility	functions	in	the	ColorUtils	module	to	work	with	color	data.	Our
functions	will	use	Python’s	standard	math	module	and	NumPy,	as	seen	in	the	following
import	statements:

import	math

import	numpy

Let’s	write	a	function	that	allows	us	to	copy	a	single	color	channel	from	a	source	image
(which	is	in	BGR	format)	to	a	destination	image	(which	is	in	grayscale	format).	If	the
specified	destination	image	is	None	or	its	format	is	wrong,	our	function	will	create	it.	To
copy	the	channel,	we	just	take	a	flat	view	of	the	source	image,	slice	it	with	a	stride	of	3,
and	assign	the	result	to	a	full	slice	of	the	destination	image,	as	seen	in	the	following
implementation:

def	extractChannel(src,	channel,	dst):

				dstShape	=	src.shape[:2]

				if	dst	is	None	or	dst.shape	!=	dstShape	or	\

												dst.dtype	!=	numpy.uint8:

								dst	=	numpy.empty(dstShape,	numpy.uint8)

				dst[:]	=	src.flatten()[channel::3].reshape(dstShape)

				return	dst

For	typical	checkerboards	under	typical	lighting	conditions,	the	red	channel	shows	a	high
contrast	between	dark	and	light	squares.	Later,	we	will	use	this	observation	to	our
advantage.

On	the	other	hand,	parts	of	our	analysis	will	rely	on	full	colors	instead	of	only	one
channel.	We	will	need	to	quantify	the	contrast	or	distance	between	two	BGR	colors	in
order	to	decide	whether	a	square	contains	a	light	piece,	a	dark	piece,	a	shadow,	or	nothing.
A	naïve	approach	is	to	use	the	Euclidean	distance,	which	would	be	implemented	like	this:

def	colorDist(color0,	color1):

				return	math.sqrt(

								(color0[0]	-	color1[0])	**	2	+

								(color0[1]	-	color1[1])	**	2	+

								(color0[2]	-	color1[2])	**	2)

However,	this	approach	assumes	that	all	color	channels	have	the	same	scale	and	the	scale
is	linear.	This	assumption	defies	common	sense.	For	example,	most	people	would	agree
that	the	color	amber	(b=0,	g=191,	r=255)	is	not	a	shade	of	red	(b=0,	g=0,	r=255)	but	that
the	color	emerald	(b=191,	g=255,	r=0)	is	a	shade	of	green	(b=0,	g=255,	r=0),	even
though	these	two	pairings	represent	the	same	Euclidean	distance	(191).	Many	alternative



formulations	assume	that	the	channels	are	still	linear	but	have	different	scales—typically,
they	assume	that	green	has	the	biggest	unit,	followed	by	red,	and	then	blue.	These
formulations	yield	high	contrast	between	yellow	and	blue	(for	example,	between	sunlight
and	shade),	and	yet	yield	low	contrast	between	shades	of	blue.	This	is	still	rather
unsatisfactory	because	most	people	are	good	at	distinguishing	shades	of	blue.	Thiadmer
Riemersma	compares	several	distance	formulations	at
http://www.compuphase.com/cmetric.htm,	and	proposes	an	alternative	in	which	the	green
scale	is	linear	while	the	red	and	blue	scales	are	nonlinear,	with	red	differences	having
more	weight	in	comparisons	of	reddish	colors	and	blue	differences	having	more	weight	in
comparisons	of	non-reddish	colors.	Let’s	replace	our	previous	colorDist	function	with
the	following	implementation	of	Riemersma’s	method:

def	colorDist(color0,	color1):

				#	Calculate	a	red-weighted	color	distance,	as	described

				#	here:	http://www.compuphase.com/cmetric.htm

				rMean	=	int((color0[2]	+	color1[2])	/	2)

				rDiff	=	int(color0[2]	-	color1[2])

				gDiff	=	int(color0[1]	-	color1[1])

				bDiff	=	int(color0[0]	-	color1[0])

				return	math.sqrt(

								(((512	+	rMean)	*	rDiff	*	rDiff)	>>	8)	+

								4	*	gDiff	*	gDiff	+

								(((767	-	rMean)	*	bDiff	*	bDiff)	>>	8))

Based	on	the	preceding	formula,	the	distance	between	black	and	white	is	approximately
764.8.	The	scale	of	this	distance	is	not	intuitive.	We	might	prefer	to	work	with	normalized
values,	whereby	the	normalized	distance	between	black	and	white	is	defined	as	1.0.	The
following	function	returns	a	normalized	color	distance:

def	normColorDist(color0,	color1):

				#	Normalize	based	on	the	distance	between	(0,	0,	0)	and

				#	(255,	255,	255).

				return	colorDist(color0,	color1)	/	764.8333151739665

Now	we	have	sufficient	utility	functions	to	support	our	upcoming	implementation	of	the
CheckersModel	module,	which	will	capture	and	analyze	images.

http://www.compuphase.com/cmetric.htm




Building	the	analyzer
The	CheckersModel	module	is	the	eyes	and	the	brain	of	our	project.	It	brings	together
everything	except	the	GUI.	Specifically,	it	depends	on	NumPy,	OpenCV,	scikit-learn,	and
our	ColorUtils	and	ResizeUtils	modules,	as	reflected	in	the	following	import
statements:

import	numpy

import	sklearn.cluster

from	CVBackwardCompat	import	cv2

import	ColorUtils

import	ResizeUtils

Note
Although	we	are	combining	image	capturing	and	analysis	into	one	module,	they	are
arguably	distinct	responsibilities.	For	this	project,	they	share	a	dependency	on	OpenCV.
However,	in	a	future	project,	you	might	capture	images	from	a	camera	that	requires
another	library,	or	from	an	entirely	different	type	of	source,	such	as	a	network.	You	might
even	support	a	wide	variety	of	capturing	techniques	in	one	project.	Whenever	you	feel	that
image	capture	is	a	complex	problem	in	its	own	right,	consider	dedicating	at	least	one
separate	module	to	it.

To	make	our	code	more	readable,	we	will	define	several	constants	in	this	module.	These
constants	represent	the	possible	states	of	the	board’s	rotation,	the	shadows’	direction,	and
each	square’s	classification.	Here	are	their	definitions:

ROTATION_0	=	0

ROTATION_CCW_90	=	1

ROTATION_180	=	2

ROTATION_CCW_270	=	3

DIRECTION_UP	=	0

DIRECTION_LEFT	=	1

DIRECTION_DOWN	=	2

DIRECTION_RIGHT	=	3

SQUARE_STATUS_UNKNOWN	=	-1

SQUARE_STATUS_EMPTY	=	0

SQUARE_STATUS_PAWN_PLAYER_1	=	1

SQUARE_STATUS_KING_PLAYER_1	=	11

SQUARE_STATUS_PAWN_PLAYER_2	=	2

SQUARE_STATUS_KING_PLAYER_2	=	22

This	module	will	also	contain	the	CheckersModel	class,	declared	like	this:

class	CheckersModel(object):

Note	that	we	have	made	CheckersModel	a	subclass	of	object.	This	is	important	for
Python	2.x	compatibility	because	we	are	going	to	use	property	getter	and	setter	methods,
as	discussed	in	the	next	subsection.	Unlike	Python	3.x,	Python	2.x	does	not	support



accessor	methods	in	all	classes,	but	rather	only	in	subclasses	of	object.



Providing	access	to	the	images	and	classification
results
The	member	variables	of	the	CheckersModel	class	will	include	current	images	of	the
scene	(that	is,	everything	that	the	webcam	can	see)	in	BGR	and	grayscale,	as	well	as	a
current	image	of	the	board	in	BGR.	Unlike	the	scene,	the	board	will	be	a	bird’s-eye	view
and	may	contain	text	in	order	to	show	the	classification	results.	We	will	provide	property
getters	so	that	other	modules	may	read	the	images	and	their	sizes,	as	seen	in	the	following
code:

				@property

				def	sceneSize(self):

								return	self._sceneSize

				@property

				def	scene(self):

								return	self._scene

				@property

				def	sceneGray(self):

								return	self._sceneGray

				@property

				def	boardSize(self):

								return	self._boardSize

				@property

				def	board(self):

								return	self._board

Note
Property	getters	and	setters	simply	provide	a	shorthand	notation	so	that	a	method	looks
like	a	non-callable	variable.	Here	is	an	example	that	demonstrates	how	to	use	a	property
getter:

bm	=	BoardModel()

scene	=	bm.scene		#	Calls	getter,	bm.scene()

Here,	we	have	implemented	only	a	getter	and	not	a	setter	because	other	modules	should
not	set	the	images.	Thus,	a	piece	of	code	such	as	the	following	will	produce	an	error:

bm.scene	=	None		#	Calls	setter,	bm.scene(None)

#	Error!	There	is	no	such	setter.

The	next	subsection,	Providing	access	to	parameters	for	the	user	to	configure,	will	give
examples	on	how	to	implement	setter	methods.

We	also	provide	a	getter	for	the	classification	results	as	a	2D	NumPy	array:

				@property

				def	squareStatuses(self):

								return	self._squareStatuses

For	example,	if	Player	1	has	a	king	in	the	top-left	corner	of	the	board,
boardModel.squareStatuses[0,	0]	will	be	11	(the	value	of	the
SQUARE_STATUS_KING_PLAYER_1	constant,	which	we	defined	earlier).



All	the	aforementioned	properties	represent	the	results	of	the	CheckersModel	module’s
work,	so	other	modules	should	treat	them	as	read-only	(and	thus	they	have	only	getters,
not	setters).	Next,	let’s	consider	other	properties	that	represent	the	parameters	of	the
CheckersModel	module’s	work,	and	have	both	getters	and	setters	so	that	other	modules
may	reconfigure	them.



Providing	access	to	parameters	for	the	user	to
configure
To	understand	why	CheckersModel	offers	parameters	that	are	reconfigurable	at	runtime,
let’s	look	at	a	preview	of	the	things	that	we	will	not	automate	in	this	project:

The	bird’s-eye	view	of	the	checkerboard	may	be	rotated	and	flipped	in	a	way
different	from	what	the	user	expects.	This	problem	is	discussed	in	the	Creating	and
analyzing	the	bird’s-eye	view	of	the	board	subsection.	We	allow	the	user	to	specify	a
different	rotation	(0,	90,	180,	or	270	degrees)	and	flip	(X,	Y,	neither,	or	both).
The	shadows’	direction	is	not	detected	automatically.	By	default,	we	assume	that	the
shadows’	direction	is	up	(negative	y).	We	allow	the	user	to	specify	a	direction	(up,
right,	down,	or	left).
To	classify	the	contents	of	the	squares,	we	compare	the	two	dominant	colors	in	the
square,	and	this	comparison	relies	on	certain	threshold	values.	For	some	lighting
conditions	and	some	colors	of	checkers	sets,	the	default	thresholds	might	not	be
appropriate.	We	allow	the	user	to	specify	different	thresholds.	The	precise	meaning	of
each	threshold	is	discussed	in	the	Analyzing	the	dominant	colors	in	a	square
subsection.

The	board’s	rotation	is	expressed	as	an	integer,	corresponding	to	one	of	the	constants	that
we	declared	at	the	start	of	this	module.	The	following	code	implements	the	getters	and
setters	for	the	rotation,	and	the	setter	uses	the	modulus	operator	to	ensure	that	the	rotations
wrap	around:

				@property

				def	boardRotation(self):

								return	self._boardRotation

				@boardRotation.setter

				def	boardRotation(self,	value):

								self._boardRotation	=	value	%	4

The	direction	of	the	shadows	is	a	similar	property:

				@property

				def	shadowDirection(self):

								return	self._shadowDirection

				@shadowDirection.setter

				def	shadowDirection(self,	value):

								self._shadowDirection	=	value	%	4

The	thresholds	and	flip	directions	do	not	require	any	special	logic	in	a	getter	or	setter,	so
we	will	simply	implement	them	as	plain	old	member	variables.	We	can	see	their
declarations	in	the	following	code,	which	is	the	start	of	the	class’s	initializer:

				def	__init__(self,	patternSize=(7,	7),	cameraDeviceID=0,

																	sceneSize=(800,	600)):

								self.emptyFreqThreshold	=	0.3

								self.playerDistThreshold	=	0.4

								self.shadowDistThreshold	=	0.45



								self._boardRotation	=	ROTATION_0

								self.flipBoardX	=	False

								self.flipBoardY	=	False

								self._shadowDirection	=	DIRECTION_UP

Let’s	proceed	to	look	at	the	rest	of	the	member	variables	and	initialization	code.



Initializing	the	entire	model	of	the	game
As	we	have	previously	discussed,	the	role	of	the	CheckersModel	class	is	to	produce
images	of	the	scene	and	board	and	classify	the	contents	of	each	square.	The	remainder	of
the	__init__	method	declares	variables	that	pertain	to	imaging	and	classification.

The	images	of	the	scene	and	board	will	initially	be	None,	as	seen	here:

								self._scene	=	None

								self._sceneGray	=	None

								self._board	=	None

Looking	back	at	the	previous	subsection,	note	that	patternSize	is	one	of	the	initializer’s
arguments.	This	variable	refers	to	the	number	of	internal	corners	in	the	board,	such	as	(7,
7)	in	a	standard	American	checkerboard	with	eight	rows	and	eight	columns.	Later,	we	will
see	that	the	number	of	internal	corners	is	important	for	certain	OpenCV	functions.	Let’s
put	the	corner	dimensions	and	count	into	the	member	variables,	like	this:

								self._patternSize	=	patternSize

								self._numCorners	=	patternSize[0]	*	patternSize[1]

Later,	as	the	steps	toward	classification,	we	will	measure	the	frequency	and	distance	of	the
two	dominant	colors	in	each	square.	This	task	is	discussed	in	the	Analyzing	the	dominant
colors	in	a	square	subsection.	For	now,	we	will	only	create	empty	NumPy	arrays	for	this
data:

								self._squareFreqs	=	numpy.empty(

																(patternSize[1]	+	1,	patternSize[0]	+	1),

																numpy.float32)

								self._squareDists	=	numpy.empty(

																(patternSize[1]	+	1,	patternSize[0]	+	1),

																numpy.float32)

Similarly,	we	will	create	a	NumPy	array	for	the	results	of	classification,	and	we	will	fill	in
this	array	with	the	SQUARE_STATUS_UNKNOWN	value	(which	we	previously	defined	as	-1):

								self._squareStatuses	=	numpy.empty(

																(patternSize[1]	+	1,	patternSize[0]	+	1),

																numpy.int8)

								self._squareStatuses.fill(SQUARE_STATUS_UNKNOWN)

To	find	each	square’s	dominant	colors,	we	will	rely	on	a	class	in	scikit-learn	called
sklearn.cluster.MiniBatchKMeans.	This	class	represents	a	statistical	process	called	k-
means	clustering,	which	separates	data	into	a	given	number	of	groups	and	finds	the
centroid	of	each	group.	For	now,	we	only	need	to	construct	an	instance	of	the	class	with	a
single	argument,	n_clusters,	which	indicates	the	number	of	groups	that	the	clusterer	will
distinguish	(2	in	this	case,	because	we	want	to	know	the	two	dominant	colors):

								self._clusterer	=	sklearn.cluster.MiniBatchKMeans(2)

To	support	webcam	input,	we	will	create	a	VideoCapture	object	and	set	its	capture
dimensions	using	our	utility	function	from	the	ResizeUtils	module:



								self._capture	=	cv2.VideoCapture(cameraDeviceID)

								self._sceneSize	=	ResizeUtils.cvResizeCapture(

																self._capture,	sceneSize)

								w,	h	=	self._sceneSize

Later,	as	we	capture	images,	we	will	try	to	find	the	internal	corners	of	the	checkerboard,
and	we	will	store	the	successfully	detected	corners	so	that	we	do	not	have	to	perform	this
search	from	scratch	for	every	frame.	The	following	two	member	variables	will	hold	the
previously	detected	corners	(initially	None)	and	a	grayscale	image	of	the	scene	at	the	time
of	the	previous	detection	(initially	an	empty	image):

								self._lastCorners	=	None

								self._lastCornersSceneGray	=	numpy.empty(

															(h,	w),	numpy.uint8)

The	scene’s	detected	corner	coordinates	will	imply	a	homography	(a	matrix	that	describes
a	difference	in	perspective)	when	we	compare	them	with	the	known	corner	coordinates	in
a	bird’s-eye	view	of	the	board.	Like	the	corners,	the	homography	does	not	need	to	be
recomputed	for	every	frame,	so	we	will	store	it	in	the	following	member	variable	(initially
None):

								self._boardHomography	=	None

We	will	arbitrarily	stipulate	that	the	bird’s-eye	view	of	the	board	will	be	no	larger	than	the
captured	image	of	the	scene.	Starting	from	this	constraint,	we	will	calculate	the	size	of	a
square	and	the	board:

								self._squareWidth	=	min(w,	h)	//	(max(patternSize)	+	1)

								self._squareArea	=	self._squareWidth	**	2

								self._boardSize	=	(

												(patternSize[0]	+	1)	*	self._squareWidth,

												(patternSize[1]	+	1)	*	self._squareWidth

								)

Having	determined	the	size	of	a	square,	we	will	calculate	a	set	of	corner	coordinates	for
the	bird’s-eye	view.	We	need	the	coordinates	of	only	those	internal	corners	where	four
squares	meet.	Later,	in	the	Detecting	the	board’s	corners	and	tracking	their	motion
subsection,	we	will	compare	these	ideal	coordinates	to	the	internal	corners	of	the
checkerboard	that	are	detected	in	the	scene	in	order	to	find	the	homography.	Here	is	our
code	for	creating	a	list	and	then	a	NumPy	array	of	evenly	spaced	corners:

								self._referenceCorners	=	[]

								for	x	in	range(patternSize[0]):

												for	y	in	range(patternSize[1]):

																self._referenceCorners	+=	[[x,	y]]

								self._referenceCorners	=	numpy.array(

																self._referenceCorners,	numpy.float32)

								self._referenceCorners	*=	self._squareWidth

								self._referenceCorners	+=	self._squareWidth

This	concludes	the	initialization	of	the	CheckersModel	class.	Next,	let’s	consider	how	the
images	of	the	scene	and	board	will	change,	along	with	the	results	of	classification.



Updating	the	entire	model	of	the	game
Our	CheckersModel	class	will	provide	the	following	update	method,	which	other	modules
may	call:

				def	update(self,	drawCorners=False,

															drawSquareStatuses=True):

Specifically,	the	GUI	application	(in	the	Checkers	module)	will	call	this	update	method.
Logically,	the	application	is	responsible	for	managing	resources	and	ensuring	that
everything	remains	responsive,	so	it	is	in	a	better	position	to	decide	when	an	update
should	occur.	The	update	method’s	drawCorners	argument	specifies	whether	the	results	of
corner	detection	should	be	displayed	in	the	scene.	The	drawSquareStatuses	argument
specifies	whether	the	results	of	classification	should	be	displayed	in	the	bird’s-eye	view	of
the	board.

The	update	method	relies	on	several	helper	methods.	First,	we	will	call	a	helper	that	tries
to	capture	a	new	image	of	the	scene.	If	this	fails,	we	return	False	to	inform	the	caller	that
no	update	has	occurred:

								if	not	self._updateScene():

												return	False		#	Failure

We	will	proceed	to	search	for	the	checkerboard	in	the	scene.	A	successful	search	will
produce	a	set	of	corner	coordinates	for	the	board’s	squares.	Moreover,	these	coordinates
will	imply	a	homography.	The	following	line	of	code	calls	a	helper	method	that	is
responsible	for	finding	the	corners	and	a	homography:

								self._updateBoardHomography()

Next,	we	will	call	a	helper	method	that	is	responsible	for	creating	the	bird’s-eye	view	of
the	board	as	well	as	analyzing	and	classifying	each	square:

								self._updateBoard()

At	this	point,	the	board	detection	and	square	classification	are	complete,	but	we	may	still
need	to	display	results	depending	on	the	drawCorners	and	drawSquareStatuses
arguments.	Conveniently,	OpenCV	provides	a	function,
cv2.drawChessboardCorners(image,	patternSize,	corners,	patternWasFound),	to
display	a	set	of	detected	corners	in	a	scene	containing	a	chessboard	or	checkerboard.	Here
is	the	way	we	use	it:

								if	drawCorners	and	self._lastCorners	is	not	None:

												#	Draw	the	board's	grid.

												cv2.drawChessboardCorners(

																				self._scene,	self._patternSize,

																				self._lastCorners,	True)

We	have	another	helper	method	for	displaying	the	classification	result	in	a	given	square.
The	following	code	shows	how	we	iterate	over	squares	and	call	the	helper:

								if	drawSquareStatuses:



												for	i	in	range(self._patternSize[0]	+	1):

																for	j	in	range(self._patternSize[1]	+	1):

																				self._drawSquareStatus(i,	j)

At	this	point,	the	update	has	succeeded,	and	we	return	True	to	let	the	caller	know	that
there	are	new	results:

								return	True		#	Success

Let’s	delve	deeper	into	the	helper	methods’	roles,	starting	with	image	capture.



Capturing	and	converting	an	image
OpenCV’s	VideoCapture	class	has	a	read(image)	method.	This	method	captures	an
image	and	writes	it	to	the	given	destination	array	(if	image	is	None	or	its	format	is	wrong,	a
new	array	is	created).	The	method	returns	a	tuple,	(retval,	image),	containing	a	boolean
(True	if	the	capture	has	succeeded)	and	then	the	image	(either	the	old	array	or	a	newly
created	array).	We	use	this	method	to	try	to	capture	a	new	scene	from	the	camera.	If	this
succeeds,	we	use	our	extractChannel	utility	function	to	get	the	red	channel	as	a	grayscale
version	of	the	scene.	The	following	method	performs	these	steps	and	returns	a	boolean	to
indicate	success	or	failure:

				def	_updateScene(self):

								success,	self._scene	=	self._capture.read(self._scene)

								if	not	success:

												return	False		#	Failure

								#	Use	the	red	channel	as	grayscale.

								self._sceneGray	=	ColorUtils.extractChannel(

																self._scene,	2,	self._sceneGray)

								return	True		#	Success

Consider	the	following	strip	of	images.	The	leftmost	image	represents	the	original	scene	in
BGR	color	(though	it	will	appear	as	grayscale	in	this	book’s	print	edition).	This	board’s
colors	are	burnt	amber	for	the	dark	squares,	ochre	for	the	light	squares,	and	burnt	sienna
for	the	border	(this	color	scheme	is	quite	common	in	checkerboards).	The	second,	third,
and	fourth	images	(from	left	to	right)	represent	the	scene’s	blue,	green,	and	red	channels,
respectively:

Note	that	the	red	channel	captures	the	checkerboard	brightly	and	with	good	contrast
between	lighter	and	darker	squares.	Moreover,	the	board’s	border	appears	quite	light.	This
is	good	because	we	are	soon	going	to	use	a	detector	that	is	optimized	for	a	black-and-
white	board	with	a	white	border.



Detecting	the	board’s	corners	and	tracking	their
motion
We	do	not	want	to	update	the	board’s	corners	and	homography	in	every	frame,	but	only	in
frames	where	the	board	or	camera	has	moved.	This	rule	reduces	the	computational	burden
in	most	frames	and	allows	us	to	keep	a	good	detection	result	from	a	previous	frame	so	that
we	do	not	require	an	unobstructed	view	of	the	board	in	every	frame.	Particularly,	we	can
be	relatively	sure	of	getting	good	detection	results	when	the	board	is	empty,	and	we	would
want	to	keep	these	results	for	later	frames	in	which	the	board	is	cluttered	with	pieces	or
with	the	players’	moving	hands.

Before	finding	new	corners	and	the	homography,	let’s	look	at	tracking	motion.	Suppose
we	have	detected	a	set	of	corners	in	a	previous	frame.	Rather	than	searching	the	entire
image	for	new	corners,	we	can	try	to	find	the	same	corners	at	or	near	their	previous
locations.	This	idea—mapping	frame-to-frame	motion	of	individual	points	in	an	image—
is	called	optical	flow.	OpenCV	provides	implementations	of	several	optical	flow
techniques.	We	will	use	a	technique	called	pyramidal	Lukas-Kanade,	which	is
implemented	in	the	cv2.calcOpticalFlowPyrLK(prevImg,	nextImg,	prevPts)	function.
This	function	returns	a	tuple,	(nextPts,	status,	error).	Each	of	the	tuple’s	elements	is
an	array.	The	nextPts	contains	the	points’	estimated	new	coordinates.	The	status
contains	codes	for	indicating	whether	each	estimate	is	valid	(1,	meaning	the	point	was
tracked)	or	invalid	(0,	meaning	it	was	lost).	Finally,	error	contains	a	measurement	of
dissimilarity	between	the	pixels	in	the	old	and	new	neighborhoods	for	each	point.	A	high
average	error	across	all	points	implies	that	everything	looks	different	and,	most	likely,	that
the	board	or	camera	has	moved.	We	apply	this	reasoning	in	the	following	code,	which	is
the	beginning	of	the	_updateBoardHomography	method:

				def	_updateBoardHomography(self):

								if	self._lastCorners	is	not	None:

												corners,	status,	error	=	cv2.calcOpticalFlowPyrLK(

																				self._lastCornersSceneGray,

																				self._sceneGray,	self._lastCorners,	None)

												#	Status	is	1	if	tracked,	0	if	not	tracked.

												numCornersTracked	=	sum(status)

												#	If	not	tracked,	error	is	invalid	so	set	it	to	0.

												error[:]	=	error	*	status

												meanError	=	(sum(error)	/	numCornersTracked)[0]

												if	meanError	<	4.0:

																#	The	board's	old	corners	and	homography	are

																#	still	good	enough.

																return

Note
The	threshold,	meanError	<	4.0,	has	been	chosen	experimentally.	If	you	see	that	the
estimate	of	the	board’s	corners	changes	even	when	the	board	is	still,	try	raising	the
threshold.	Conversely,	if	you	find	that	the	estimate	of	the	board’s	corners	remains
unchanged	even	when	the	board	is	moved,	you	may	need	to	lower	the	threshold.



If	we	have	not	yet	returned,	it	means	that	either	there	are	no	previously	found	corners,	or
the	previously	found	corners	are	no	longer	valid	(probably	because	the	board	or	the
camera	has	moved).	Either	way,	we	must	search	for	new	corners.	OpenCV	provides	many
general-purpose	functions	for	finding	any	kind	of	corner,	but	conveniently,	it	also	provides
a	specialized	function	for	finding	the	corners	of	squares	in	a	chessboard	or	a	checkerboard.
This	function,	cv2.findChessboardCorners(image,	patternSize),	can	find	a	board	of
any	specified	dimensions,	even	a	non-square	board.	The	patternSize	argument	specifies
the	number	of	internal	corners,	such	as	(7,	7)	for	a	standard	American	checkerboard	with
eight	rows	and	eight	columns.	This	function	returns	a	tuple,	(retval,	corners),	where
retval	is	a	Boolean	(which	is	True	if	all	the	corners	were	found)	and	corners	is	a	list	of
corner	coordinates.	It	expects	a	checkerboard	with	pure	black	and	pure	white	squares,	but
other	color	schemes	may	work	depending	on	the	strength	of	their	contrast	in	the	given
grayscale	image.	Moreover,	the	function	expects	the	board	to	have	a	light	border,	which
makes	it	easier	to	find	the	corners	of	the	outermost	dark	squares.	The	following	code
shows	our	usage	of	findChessboardCorners:

								#	Find	the	corners	in	the	board's	grid.

								cornersWereFound,	corners	=	cv2.findChessboardCorners(

																self._sceneGray,	self._patternSize,

																flags=cv2.CALIB_CB_ADAPTIVE_THRESH)

Note	that	findChessboardCorners	has	an	optional	flags	argument.	We	used	a	flag	called
cv2.CALIB_CB_ADAPTIVE_THRESH,	which	stands	for	adaptive	thresholding.	When	this
flag	is	set,	the	function	attempts	to	compensate	for	the	overall	brightness	of	the	image	so
that	it	does	not	necessarily	require	the	squares	to	look	really	black	or	really	white.

The	small	circles	and	lines	shown	in	the	following	image	are	a	visualization	of	the	corners
found	using	findChessboardCorners.	They	are	drawn	using	the	drawChessboardCorners
function,	which	we	covered	in	the	previous	subsection.



If	the	corners	are	found,	we	can	convert	their	coordinates	from	a	list	to	a	NumPy	array.
Then,	we	can	compare	the	found	coordinates	with	the	reference	coordinates	for	a	bird’s-
eye	view	(remember	that	we	already	initialized	the	reference	coordinates	in	the	Initializing
the	entire	model	of	the	game	subsection).	To	compare	the	two	sets	of	coordinates,	we	will
use	an	OpenCV	function	called	cv2.findHomography(srcPoints,	dstPoints,	method).
The	optional	method	argument	represents	a	strategy	to	reject	outliers	(incongruous	points
that	should	not	be	counted	toward	the	result).	The	function	returns	a	homography	matrix,
which	is	a	transformation	that	maps	srcPoints	to	dstPoints	with	minimal	error.	The
following	code	demonstrates	our	use	of	findHomography:

								if	cornersWereFound:

												#	Find	the	homography.

												corners	=	numpy.array(corners,	numpy.float32)

												corners	=	corners.reshape(self._numCorners,	2)

												self._boardHomography,	matches	=	cv2.findHomography(

																				corners,	self._referenceCorners,	cv2.RANSAC)

												#	Record	the	corners	and	their	image.

												self._lastCorners	=	corners

												self._lastCornersSceneGray[:]	=	self._sceneGray

Note	that	we	keep	a	copy	of	the	grayscale	image	of	the	scene.	The	next	time	this	method	is
called,	we	will	compare	the	old	and	new	grayscale	scenes	to	track	the	corners’	motion.

At	this	point,	we	may	have	found	the	board’s	homography,	but	we	have	not	yet	created	an
image	to	show	the	bird’s-eye	view.	Let’s	tackle	this	task	next.



Creating	and	analyzing	the	bird’s-eye	view	of	the
board
If	the	board’s	corners	and	homography	are	found,	we	can	transform	the	scene’s
perspective	to	produce	a	bird’s-eye	view	of	the	board.	The	relevant	function	in	OpenCV	is
cv2.warpPerspective(src,	M,	dsize,	dst),	where	M	is	the	homography	matrix	and
dsize	is	an	arbitrary	size	for	the	output	image.	This	function	applies	the	homography
matrix	to	change	the	perspective,	and	then	it	resizes	and	crops	the	result.	Our
_updateBoard	method	begins	with	the	following	code:

				def	_updateBoard(self):

								if	self._boardHomography	is	not	None:

												#	Warp	the	board	to	obtain	a	bird's-eye	view.

												self._board	=	cv2.warpPerspective(

																				self._scene,	self._boardHomography,

																				self._boardSize,	self._board)

The	following	pair	of	images	shows	the	camera’s	view	of	the	scene	(left),	and	the	resulting
bird’s-eye	view	of	the	board	(right)	after	perspective	transformation:

At	this	stage,	the	bird’s-eye	view	might	still	need	to	be	rotated	and/or	flipped	to	match	the
user’s	subjective	perception	of	directions.	The	user	is	probably	sitting	on	one	side	of	the
board	and	perceives	this	side	as	the	“near”	or	“down”	(positive	y)	side.	The	camera	might
be	on	the	same	side,	any	other	side,	or	a	diagonal!	Moreover,	depending	on	its	drivers	and
configuration,	the	camera	may	even	capture	mirrored	images.	The
findChessboardCorners	function	does	not	limit	its	search.	As	far	as	it	is	concerned,	the
scene	could	show	an	upside-down	and	mirrored	chessboard,	and	this	solution	is	as	good	as
any	other	solution	that	puts	a	set	of	corners	in	the	right	places.	We	could	inspect	and	edit
the	values	in	the	_boardHomography	matrix	to	enforce	our	own	assumptions,	but	instead	of
this,	we	will	let	the	user	inspect	the	image	and	decide	on	any	necessary	changes.

Looking	closely	at	the	preceding	pair	of	images,	note	that	the	board	has	a	dark	or	blurry
seam	down	the	middle	(it	can	fold	here).	The	seam	is	approximately	horizontal	in	the
camera’s	view	but	vertical	in	the	bird’s-eye	view.	Moreover,	the	two	views	differ	by	a
horizontal	flip.	A	user	might	find	these	differences	unintuitive.



OpenCV	provides	a	function	called	cv2.flip(src,	flipCode,	dst)	to	flip	an	image	in
the	manner	specified	by	flipCode	(-1	or	less	to	flip	both	x	and	y	coordinates,	0	to	flip	y
coordinates,	and	1	or	greater	to	flip	x	coordinates).	Another	function,
cv2.transpose(src,	dst),	serves	to	swap	x	and	y	coordinates	with	each	other.	A	rotation
of	90	or	270	degrees	can	be	implemented	as	a	combination	of	a	transpose	and	a	flip,	while
a	rotation	of	180	degrees	can	be	implemented	as	a	flip	in	both	dimensions.	Let’s	use	these
approaches	in	the	following	code	to	apply	a	specified	flip	and	rotation:

												#	Rotate	and	flip	the	board.

												flipX	=	self.flipBoardX

												flipY	=	self.flipBoardY

												if	self._boardRotation	==	ROTATION_CCW_90:

																cv2.transpose(self._board,	self._board)

																flipX	=	not	flipX

												elif	self._boardRotation	==	ROTATION_180:

																flipX	=	not	flipX

																flipY	=	not	flipY

												elif	self._boardRotation	==	ROTATION_CCW_270:

																cv2.transpose(self._board,	self._board)

																flipY	=	not	flipY

												if	flipX:

																if	flipY:

																				cv2.flip(self._board,	-1,	self._board)

																else:

																				cv2.flip(self._board,	1,	self._board)

												elif	flipY:

																cv2.flip(self._board,	0,	self._board)

Later,	we	will	ensure	that	user	can	set	boardRotation,	flipBoardX,	and	flipBoardY	via
the	GUI.	For	example,	the	user	can	see	the	preceding	pair	of	images	and	then	make
adjustments	to	produce	the	following	pair	of	images	instead:

Once	the	transformations	are	complete,	we	will	iterate	over	all	the	squares	and	call	a
helper	method	to	generate	data	about	each	square’s	color:

												for	i	in	range(self._patternSize[0]	+	1):

																for	j	in	range(self._patternSize[1]	+	1):

																				self._updateSquareData(i,	j)

Then,	we	will	iterate	over	all	the	squares	again	and	call	a	helper	method	to	update	the



classification	of	each	square:

												for	i	in	range(self._patternSize[0]	+	1):

																for	j	in	range(self._patternSize[1]	+	1):

																				self._updateSquareStatus(i,	j)

Note	that	a	square’s	classification	may	rely	on	data	about	a	neighboring	square	(since	we
may	search	for	a	shadow	to	distinguish	a	king	from	a	pawn).	This	is	why	we	analyze	the
colors	of	all	the	squares	in	one	step	and	classify	the	squares	in	another	step.	Let’s	consider
the	analysis	of	colors	now.



Analyzing	the	dominant	colors	in	a	square
Our	_updateSquareData	method	takes	a	square’s	indices	as	arguments,	and	it	begins	by
calculating	the	square’s	top-left	and	bottom-right	pixel	coordinates	in	the	_board	image,	as
seen	in	the	following	code:

				def	_updateSquareData(self,	i,	j):

								x0	=	i	*	self._squareWidth

								x1	=	x0	+	self._squareWidth

								y0	=	j	*	self._squareWidth

								y1	=	y0	+	self._squareWidth

Remember	that	we	have	a	member	variable	called	_clusterer.	It	is	an	instance	of	the
sklearn.cluster.MiniBatchKMeans	class.	This	class	has	a	method,	called	fit(X),	that
classifies	the	data	in	X	and	stores	the	results	in	the	member	variables	of	MiniBatchKMeans.
X	must	be	a	2D	NumPy	array,	so	we	must	reshape	the	square’s	image	data.	For	example,	if
a	square	has	75	x	75	pixels	with	three	color	channels,	we	will	pass	a	view	of	the	square	as
an	array	of	shape	(75*75,	3),	not	(75,	75,	3).	The	following	code	shows	how	we	slice
and	reshape	the	square	and	pass	it	to	the	fit	method:

								#	Find	the	two	dominant	colors	in	the	square.

								self._clusterer.fit(

																self._board[y0:y1,	x0:x1].reshape(

																								self._squareArea,	3))

The	results	of	the	color	clustering	are	stored	in	_clusterer.centers	and
_clusterer.labels,	which	are	NumPy	arrays.	The	shape	of	centers	is	(2,	3),	and	it
represents	the	two	dominant	BGR	colors	in	the	square.	Meanwhile,	labels	is	a	one-
dimensional	array	whose	length	is	equal	to	the	number	of	pixels	in	the	square.	Each	value
in	labels	is	0	if	the	pixel	is	clustered	with	the	first	dominant	color,	or	1	if	the	pixel	is
clustered	with	the	second	dominant	color.	Thus,	the	mean	of	labels	represents	the	second
color’s	frequency	(the	proportion	of	pixels	that	are	clustered	with	this	color).	The
following	code	shows	how	we	can	find	the	frequency	of	the	less	dominant	color,	as	well
as	the	normalized	distance	between	the	two	dominant	colors,	based	on	the	formula	in	our
ColorUtils	module:

								#	Find	the	proportion	of	the	square's	area	that	is

								#	occupied	by	the	less	dominant	color.

								freq	=	numpy.mean(self._clusterer.labels_)

								if	freq	>	0.5:

												freq	=	1.0	-	freq

								#	Find	the	distance	between	the	dominant	colors.

								dist	=	ColorUtils.normColorDist(

																self._clusterer.cluster_centers_[0],

																self._clusterer.cluster_centers_[1])

								self._squareFreqs[j,	i]	=	freq

								self._squareDists[j,	i]	=	dist

The	frequency	and	distance	enable	us	to	talk	about	the	square’s	colors	at	a	much	higher



level	of	abstraction	than	raw	channel	values.	For	example,	we	may	observe,	“This	square
contains	a	big	object	that	contrasts	strongly	with	the	background,”	(high	frequency	and
high	distance)	without	needing	to	search	for	any	specific	square	color	or	playing	piece
color.	Next,	we	will	use	such	observations	to	classify	the	contents	of	a	square.



Classifying	the	contents	of	a	square
Our	_updateSquareStatuses	method	takes	a	square’s	indices	as	arguments	(again),	and	it
begins	by	looking	up	the	square’s	frequency	and	distance	data,	as	seen	in	this	code:

				def	_updateSquareStatus(self,	i,	j):

								freq	=	self._squareFreqs[j,	i]

								dist	=	self._squareDists[j,	i]

We	are	also	interested	in	the	frequency	and	distance	data	of	a	neighboring	square	that	may
potentially	contain	a	shadow.	As	discussed	earlier,	the	user	may	configure	a	shadow’s
direction.	The	following	code	shows	how	we	can	select	a	neighbor	based	on	the	shadow’s
direction:

								if	self._shadowDirection	==	DIRECTION_UP:

												if	j	>	0:

																neighborFreq	=	self._squareFreqs[j	-	1,	i]

																neighborDist	=	self._squareDists[j	-	1,	i]

												else:

																neighborFreq	=	None

																neighborDist	=	None

								elif	self._shadowDirection	==	DIRECTION_LEFT:

												if	i	>	0:

																neighborFreq	=	self._squareFreqs[j,	i	-	1]

																neighborDist	=	self._squareDists[j,	i	-	1]

												else:

																neighborFreq	=	None

																neighborDist	=	None

								elif	self._shadowDirection	==	DIRECTION_DOWN:

												if	j	<	self._patternSize[1]:

																neighborFreq	=	self._squareFreqs[j	+	1,	i]

																neighborDist	=	self._squareDists[j	+	1,	i]

												else:

																neighborFreq	=	None

																neighborDist	=	None

								elif	self._shadowDirection	==	DIRECTION_RIGHT:

												if	i	<	self._patternSize[0]:

																neighborFreq	=	self._squareFreqs[j,	i	+	1]

																neighborDist	=	self._squareDists[j,	i	+	1]

												else:

																neighborFreq	=	None

																neighborDist	=	None

								else:

												neighborFreq	=	None

												neighborDist	=	None

We	expect	a	king’s	shadow	to	be	a	small	region	(low	frequency)	that	contrasts	strongly
(high	frequency)	with	the	background	of	a	light	square.	Thus,	we	will	test	whether	the
frequency	is	below	a	certain	threshold	and	that	the	distance	is	above	another	threshold,	as
seen	in	the	following	code:

								castsShadow	=	\

																neighborFreq	is	not	None	and	\



																neighborFreq	<	self.emptyFreqThreshold	and	\

																neighborDist	is	not	None	and	\

																neighborDist	>	self.shadowDistThreshold

Remember	that	the	user	may	configure	the	thresholds	in	order	to	manually	adapt	our
approach	to	different	lighting	conditions	and	color	schemes.

Note
Note	that	the	squares	on	one	edge	of	the	board	will	not	have	any	neighbors	in	the
shadow’s	direction,	so	we	just	assume	that	there	is	no	shadow	there.	We	could	improve	on
our	approach	by	analyzing	the	border	areas	just	past	the	board’s	edge.

At	this	point,	we	have	an	idea	of	whether	the	neighbor	might	be	a	shadow	or	not,	but	we
still	need	to	consider	the	current	square.	We	expect	a	playing	piece	to	be	a	large	object
(high	frequency),	and	in	the	absence	of	such	an	object,	the	square	must	be	empty.	This
logic	is	reflected	in	the	following	code,	which	relies	on	a	frequency	threshold:

								if	freq	<	self.emptyFreqThreshold:

												squareStatus	=	SQUARE_STATUS_EMPTY

								else:

A	playing	piece	may	be	either	dark	or	light,	and	either	a	pawn	or	a	king.	We	expect	a	light
playing	piece	to	contrast	strongly	(high	distance)	with	the	background	of	a	dark	square,
while	a	dark	playing	piece	will	have	weaker	contrast.	Thus,	another	distance	threshold	is
tested.	Moreover,	we	expect	a	king	to	have	a	long	shadow	that	extends	into	a	neighboring
square,	while	a	pawn	should	have	a	shorter	shadow.	The	following	code	reflects	these
criteria:

												if	dist	<	self.playerDistThreshold:

																if	castsShadow:

																				squareStatus	=	SQUARE_STATUS_KING_PLAYER_1

																else:

																				squareStatus	=	SQUARE_STATUS_PAWN_PLAYER_1

												else:

																if	castsShadow:

																				squareStatus	=	SQUARE_STATUS_KING_PLAYER_2

																else:

																				squareStatus	=	SQUARE_STATUS_PAWN_PLAYER_2

At	this	point,	we	have	a	classification	result.	We	will	store	it	so	that	other	methods	(and
other	modules,	via	a	property	getter)	may	access	it:

								self._squareStatuses[j,	i]	=	squareStatus

Next,	we	will	provide	a	convenient	way	to	visualize	the	classifications	of	all	the	squares.



Drawing	text
As	the	last	step	of	updating	the	image	of	the	board,	we	will	draw	text	atop	each	nonempty
square	to	show	the	numeric	code	of	the	classification	result.	OpenCV	provides	a	function
called	cv2.putText(img,	text,	org,	fontFace,	fontScale,	color,	thickness,
lineType)	for	drawing	text	at	the	position	specified	by	the	org	(origin)	argument.	The
origin	refers	to	the	top-left	corner	of	the	text.	However,	we	want	the	text	to	be	centered	in
the	square.	To	find	the	text’s	origin	relative	to	the	square’s	center,	we	need	to	know	the
size	of	the	text	in	pixels.	Fortunately,	OpenCV	provides	another	function,
cv2.getTextSize(text,	fontFace,	fontScale,	thickness),	for	this	purpose.	The
following	code	uses	these	two	functions	to	place	the	text	in	the	center	of	a	given	square:

				def	_drawSquareStatus(self,	i,	j):

								x0	=	i	*	self._squareWidth

								y0	=	j	*	self._squareWidth

								squareStatus	=	self._squareStatuses[j,	i]

								if	squareStatus	>	0:

												text	=	str(squareStatus)

												textSize,	textBaseline	=	cv2.getTextSize(

																				text,	cv2.FONT_HERSHEY_PLAIN,	1.0,	1)

												xCenter	=	x0	+	self._squareWidth	//	2

												yCenter	=	y0	+	self._squareWidth	//	2

												textCenter	=	(xCenter	-	textSize[0]	//	2,

																										yCenter	+	textBaseline)

												cv2.putText(self._board,	text,	textCenter,

																								cv2.FONT_HERSHEY_PLAIN,	1.0,

																								(0,	255,	0),	1,	cv2.LINE_AA)

Note	that	we	use	the	cv2.FONT_HERSHEY_PLAIN	and	cv2.LINE_AA	constants	to	select	the
Hershey	Plain	font	and	anti-aliasing.

This	completes	the	functionality	of	the	CheckersModel	class.	Next,	we	write	a	utility
function	to	convert	an	OpenCV	image	for	use	with	wxPython.	After	this,	we	will
implement	the	GUI	application.	It	configures	an	instance	of	CheckersModel	and	displays
the	resulting	images	of	the	scene	and	board.





Converting	OpenCV	images	for	wxPython
As	we	have	seen	earlier,	OpenCV	treats	images	as	NumPy	arrays—typically,	3D	arrays	in
BGR	format	or	2D	arrays	in	grayscale	format.	Conversely,	wxPython	has	its	own	classes
for	representing	images,	typically	in	RGB	format	(the	reverse	of	BGR).	These	classes
include	wx.Image	(an	editable	image),	wx.Bitmap	(a	displayable	image),	and
wx.StaticBitmap	(a	GUI	element	that	displays	a	Bitmap).

Our	wxUtils	module	will	provide	a	function	that	converts	a	NumPy	array	from	either
BGR	or	grayscale	to	an	RGB	Bitmap,	ready	for	display	in	a	wxPython	GUI.	This
functionality	depends	on	OpenCV	and	wxPython,	as	reflected	in	the	following	import
statements:

from	CVBackwardCompat	import	cv2

import	wx

Conveniently,	wxPython	provides	a	factory	function	called	wx.BitmapFromBuffer(width,
height,	dataBuffer),	which	returns	a	new	Bitmap.	This	function	can	accept	a	NumPy
array	in	RGB	format	as	the	dataBuffer	argument.	However,	a	bug	causes
BitmapFromBuffer	to	fail	on	the	first-generation	Raspberry	Pi,	a	popular	single-board
computer	(SBC).	As	a	workaround,	we	can	use	a	pair	of	functions:
wx.ImageFromBuffer(width,	height,	dataBuffer)	and	wx.BitmapFromImage(image).
The	latter	is	less	efficient,	so	we	should	preferably	use	it	only	on	hardware	that	is	affected
by	the	bug.

To	check	whether	we	are	running	on	the	first-generation	Pi,	we	can	inspect	the	name	of
the	system’s	CPU,	as	seen	in	the	following	code:

#	Try	to	determine	whether	we	are	on	Raspberry	Pi.

IS_RASPBERRY_PI	=	False

try:

				with	open('/proc/cpuinfo')	as	f:

								for	line	in	f:

												line	=	line.strip()

												if	line.startswith('Hardware')	and	\

																				line.endswith('BCM2708'):

																IS_RASPBERRY_PI	=	True

																break

except:

				pass

Next,	let’s	look	at	our	conversion	function’s	implementation	for	the	first-generation	Pi.
First,	we	check	the	dimensionality	of	the	NumPy	array,	then	make	an	informed	guess
about	its	format	(BGR	or	grayscale),	and	finally	convert	it	to	an	RGB	array	using	an
OpenCV	function	called	cv2.cvtColor(src,	code).	The	code	argument	specifies	the
source	and	destination	formats,	such	as	cv2.COLOR_BGR2RGB.	After	all	of	this,	we	use
ImageFromBuffer	and	BitmapFromImage	to	convert	the	RGB	array	to	an	Image	and	the
Image	to	a	Bitmap:

if	IS_RASPBERRY_PI:



				def	wxBitmapFromCvImage(image):

								if	len(image.shape)	<	3:

												image	=	cv2.cvtColor(image,	cv2.COLOR_GRAY2RGB)

								else:

												image	=	cv2.cvtColor(image,	cv2.COLOR_BGR2RGB)

								h,	w	=	image.shape[:2]

								wxImage	=	wx.ImageFromBuffer(w,	h,	image)

								bitmap	=	wx.BitmapFromImage(wxImage)

								return	bitmap

The	implementation	for	other	kinds	of	hardware	is	similar,	except	that	we	convert	the
RGB	array	directly	to	a	Bitmap	using	BitmapFromBuffer:

else:

				def	wxBitmapFromCvImage(image):

								if	len(image.shape)	<	3:

												image	=	cv2.cvtColor(image,	cv2.COLOR_GRAY2RGB)

								else:

												image	=	cv2.cvtColor(image,	cv2.COLOR_BGR2RGB)

								h,	w	=	image.shape[:2]

								#	The	following	conversion	fails	on	Raspberry	Pi.

								bitmap	=	wx.BitmapFromBuffer(w,	h,	image)

								return	bitmap

We	will	use	this	function	in	our	GUI	application,	coming	up	next.





Building	the	GUI	application
The	Checkers	module	will	contain	all	of	the	code	required	for	the	GUI	application.	This
module	depends	on	wxPython	as	well	as	Python’s	standard	threading	module	to	allow	us
to	put	all	of	the	intensive	computer	vision	work	onto	a	background	thread.	Moreover,	we
will	rely	on	our	CheckersModel	module	for	the	capturing	and	analysis	of	images,	and	our
WxUtils	module	for	its	image	conversion	utility	function.	Here	are	the	relevant	import
statements:

import	threading

import	wx

import	CheckersModel

import	WxUtils

Our	application	class,	Checkers,	is	a	subclass	of	wx.Frame,	which	represents	a	normal
window	(not	a	dialog).	We	initialize	it	with	an	instance	of	CheckersModel,	and	a	window
title	(Checkers	by	default).	Here	are	the	declarations	of	the	class	and	the	__init__
method:

class	Checkers(wx.Frame):

				def	__init__(self,	checkersModel,	title='Checkers'):

We	will	also	store	CheckersModel	in	a	member	variable,	like	this:

								self._checkersModel	=	checkersModel

The	implementation	of	the	initializer	continues	in	the	following	subsections.	We	will	see
how	the	application	lays	out	the	GUI,	handles	events,	and	interacts	with	CheckersModel.



Creating	a	window	and	binding	events
We	will	create	a	window	by	initializing	the	wx.Frame	superclass.	Rather	than	use	the
default	window	style,	we	will	specify	a	custom	style	that	does	not	allow	the	window	to	be
resized.	We	will	also	specify	the	window’s	title	and	a	gray	background	color	in	this	code:

								style	=	wx.CLOSE_BOX	|	wx.MINIMIZE_BOX	|	wx.CAPTION	|	\

																wx.SYSTEM_MENU	|	wx.CLIP_CHILDREN

								wx.Frame.__init__(self,	None,	title=title,	style=style)

								self.SetBackgroundColour(wx.Colour(232,	232,	232))

Most	wxPython	classes	inherit	a	Bind(event,	handler)	method	from	a	high-level	class
called	EvtHandler.	The	method	registers	a	given	callback	function	(handler)	for	a	given
type	of	GUI	event	(event).	When	the	object	receives	an	event	of	the	given	type,	the
callback	is	invoked.	For	example,	let’s	add	the	following	line	of	code	to	ensure	that	a
given	method	is	called	when	the	window	is	closed:

								self.Bind(wx.EVT_CLOSE,	self._onCloseWindow)

The	preceding	callback	is	important	because	our	Checkers	class	needs	to	do	some	custom
cleanup	as	it	closes.

We	can	also	give	event	bindings	an	identifier	and	connect	these	bindings	to	keyboard
shortcuts	via	the	wx.AcceleratorTable	class.	For	example,	let’s	add	this	code	to	bind	a
callback	to	the	Esc	key:

								quitCommandID	=	wx.NewId()

								self.Bind(wx.EVT_MENU,	self._onQuitCommand,

																		id=quitCommandID)

								acceleratorTable	=	wx.AcceleratorTable([

												(wx.ACCEL_NORMAL,	wx.WXK_ESCAPE,

													quitCommandID)

								])

								self.SetAcceleratorTable(acceleratorTable)

Later,	we	will	implement	the	callback	such	that	the	Esc	key	makes	the	window	close.

Now	that	we	have	a	window	and	a	basic	grasp	of	wxPython	event	binding,	let’s	start
putting	GUI	elements	in	there!



Creating	and	laying	out	images	in	the	GUI
The	wx.StaticBitmap	class	is	a	GUI	element	that	displays	a	wx.Bitmap.	Using	the
following	code,	let’s	create	a	pair	of	StaticBitmap	for	our	images	of	the	scene	and	the
board:

								self._sceneStaticBitmap	=	wx.StaticBitmap(self)

								self._boardStaticBitmap	=	wx.StaticBitmap(self)

Later,	we	will	implement	a	helper	method	to	show	the	CheckersModel's	latest	images.	We
will	also	call	this	helper	now	to	initialize	the	Bitmaps	of	StaticBitmap:

								self._showImages()

To	define	the	layouts	of	the	StaticBitmaps	and	other	wxPython	widgets,	we	must	add
them	to	a	kind	of	collection	called	wx.Sizer.	It	has	several	direct	and	indirect	subclasses,
such	as	wx.BoxSizer	(a	simple	horizontal	or	vertical	layout)	and	wx.GridSizer.	For	this
project,	we	will	use	wx.BoxSizer	only.	The	following	code	puts	our	two	StaticBitmaps
in	a	horizontal	layout,	with	the	scene	image	first	(leftmost)	and	the	board	image	second:

								videosSizer	=	wx.BoxSizer(wx.HORIZONTAL)

								videosSizer.Add(self._sceneStaticBitmap)

								videosSizer.Add(self._boardStaticBitmap)

The	rest	of	the	GUI	will	consist	of	buttons,	a	radio	box,	and	sliders,	all	for	the	purpose	of
enabling	the	user	to	configure	the	CheckersModel.



Creating	and	laying	out	controls
By	design,	several	properties	of	our	CheckersModel	class	must	be	configured	interactively.
A	person	must	adjust	these	parameters	while	viewing	the	results	of	board	detection	and
square	classification.	Adjustments	should	be	necessary	only	after	the	board	is	initially
detected	and	after	any	major	changes	in	the	lighting.

Remember	that	the	board	detector	does	not	limit	its	search	to	any	range	of	rotations,	and	it
may	choose	a	rotation	in	any	quadrant.	The	user	may	wish	to	change	the	rotation	to	match
his	or	her	subjective	idea	of	which	way	the	board	is	facing.	Using	the	following	code,	we
will	create	a	button	labeled	Rotate	board	CCW,	and	we	will	bind	it	to	a	callback	that	will
be	responsible	for	adjusting	the	rotation	by	increments	of	90	degrees	counterclockwise:

								rotateBoardButton	=	wx.Button(

																self,	label='Rotate	board	CCW')

								rotateBoardButton.Bind(

																wx.EVT_BUTTON,

																self._onRotateBoardClicked)

Also	remember	that	the	detector	may	arbitrarily	flip	the	board,	since	it	makes	no
assumption	about	whether	or	not	the	camera	is	mirrored.	Let’s	create	and	bind	the	Flip
board	X	and	Flip	board	Y	buttons	to	give	the	user	additional	control	over	the
perspective:

								flipBoardXButton	=	wx.Button(

																self,	label='Flip	board	X')

								flipBoardXButton.Bind(

																wx.EVT_BUTTON,

																self._onFlipBoardXClicked)

								flipBoardYButton	=	wx.Button(

																self,	label='Flip	board	Y')

								flipBoardYButton.Bind(

																wx.EVT_BUTTON,

																self._onFlipBoardYClicked)

As	the	square	classifier	relies	on	the	shadows’	direction	to	determine	where	the	tall	king
pieces	lie,	we	enable	the	user	to	specify	the	shadows’	direction	using	a	radio	box	(a	set	of
radio	buttons).	The	box	is	labeled	Shadow	direction	and	the	options	are	up,	left,	down,
and	right,	as	specified	in	the	following	code:

								shadowDirectionRadioBox	=	wx.RadioBox(

																self,	label='Shadow	direction',

																choices=['up',	'left',	'down',	'right'])

								shadowDirectionRadioBox.Bind(

																wx.EVT_RADIOBOX,

																self._onShadowDirectionSelected)

Note	that	the	radio	buttons	in	the	box	are	collectively	bound	to	one	callback,	which	is
invoked	whenever	any	button	is	pressed.

Last	among	the	controls,	we	will	provide	sliders	to	configure	the	classifier’s	threshold
values.	These	define	its	expectations	about	the	color	contrast	in	different	kinds	of	squares.



The	code	shown	here	calls	a	helper	method	to	make	and	bind	three	sliders,	labeled	Empty
threshold,	Player	threshold,	and	Shadow	threshold:

								emptyFreqThresholdSlider	=	self._createLabeledSlider(

																'Empty	threshold',

																self._checkersModel.emptyFreqThreshold	*	100,

																self._onEmptyFreqThresholdSelected)

								playerDistThresholdSlider	=	self._createLabeledSlider(

																'Player	threshold',

																self._checkersModel.playerDistThreshold	*	100,

																self._onPlayerDistThresholdSelected)

								shadowDistThresholdSlider	=	self._createLabeledSlider(

																'Shadow	threshold',

																self._checkersModel.shadowDistThreshold	*	100,

																self._onShadowDistThresholdSelected)

Note
Elsewhere	in	the	Checkers	class,	we	implement	the	following	method	to	help	create
sliders:

				def	_createLabeledSlider(self,	label,	initialValue,	callback):

								slider	=	wx.Slider(self,	size=(180,	20))

								slider.SetValue(initialValue)

								slider.Bind(wx.EVT_SLIDER,	callback)

								staticText	=	wx.StaticText(self,	label=label)

								sizer	=	wx.BoxSizer(wx.VERTICAL)

								sizer.Add(slider,	0,	wx.ALIGN_CENTER_HORIZONTAL)

								sizer.Add(staticText,	0,	wx.ALIGN_CENTER_HORIZONTAL)

								return	sizer

All	our	controls	will	share	certain	layout	properties.	They	will	be	centered	vertically	in
their	sizer	and	will	have	8	pixels	of	padding	on	their	right-hand	side	(to	separate	each
control	from	its	neighbor).	Let’s	declare	these	properties	once,	like	this:

								controlsStyle	=	wx.ALIGN_CENTER_VERTICAL	|	wx.RIGHT

								controlsBorder	=	8

Using	these	properties,	let’s	add	all	the	controls	to	a	horizontal	sizer,	as	seen	in	the
following	code:

								controlsSizer	=	wx.BoxSizer(wx.HORIZONTAL)

								controlsSizer.Add(rotateBoardButton,	0,

																										controlsStyle,	controlsBorder)

								controlsSizer.Add(flipBoardXButton,	0,

																										controlsStyle,	controlsBorder)

								controlsSizer.Add(flipBoardYButton,	0,

																										controlsStyle,	controlsBorder)

								controlsSizer.Add(shadowDirectionRadioBox,	0,

																										controlsStyle,	controlsBorder)

								controlsSizer.Add(emptyFreqThresholdSlider,	0,

																										controlsStyle,	controlsBorder)

								controlsSizer.Add(playerDistThresholdSlider,	0,

																										controlsStyle,	controlsBorder)

								controlsSizer.Add(shadowDistThresholdSlider,	0,

																										controlsStyle,	controlsBorder)



Now	we	have	all	our	controls	in	a	row!



Nesting	layouts	and	setting	the	root	layout
Sizers	can	be	nested.	Let’s	create	a	vertical	sizer	and	add	our	two	previous	sizers	to	it	so
that	our	images	will	appear	first	(topmost)	and	our	controls	second:

								rootSizer	=	wx.BoxSizer(wx.VERTICAL)

								rootSizer.Add(videosSizer)

								rootSizer.Add(controlsSizer,	0,	wx.EXPAND	|	wx.ALL,

																						border=controlsBorder)

The	window	should	adopt	a	sizer	as	the	root	of	the	layout	and	should	resize	itself	to	fit
this	layout.	The	next	line	of	code	does	this:

								self.SetSizerAndFit(rootSizer)

Now,	we	have	a	GUI	with	a	layout	and	some	event	bindings,	but	how	do	we	start	running
updates	to	the	checkers	analyzer?



Starting	a	background	thread
The	CheckersModel	class	encapsulates	all	of	the	heavy	processing	in	this	project,
particularly	the	capture	and	analysis	of	images.	If	we	ran	its	update()	method	on	the	main
thread	(which	wxPython	uses	for	GUI	events),	the	GUI	would	become	unresponsive,
because	update()	would	hog	the	processor	all	the	time.	Thus,	we	must	create	a
background	thread	that	update()	may	safely	monopolize.	The	following	code	uses
Python’s	standard	threading.Thread	class	to	run	a	given	function	on	a	new	thread:

								self._captureThread	=	threading.Thread(

												target=self._runCaptureLoop)

								self._running	=	True

								self._captureThread.start()

Note	that	we	initialized	a	member	variable,	_running,	before	we	started	the	thread.	Later,
in	the	implementation	of	the	thread’s	function,	we	will	use	the	_running	variable	to
control	the	termination	of	a	loop.

A	little	later,	we	will	see	the	implementation	of	the	_runCaptureLoop()	method,	which	we
have	assigned	to	run	on	the	background	thread.	First,	let’s	look	at	the	implementations	of
the	callback	methods	that	we	have	bound	to	various	GUI	events.



Closing	a	window	and	stopping	a	background
thread
When	the	window	closes,	we	need	to	ensure	that	the	background	thread	terminates
normally,	meaning	that	the	thread’s	function	must	return.	The	threading.Thread	class	has
a	method	called	join()	that	blocks	the	caller’s	thread	until	the	callee	thread	returns.	Thus,
it	allows	us	to	wait	for	another	thread’s	completion.	As	we	will	see	later,	our	background
thread	continues	until	_running	is	False,	so	we	must	set	this	before	calling	join().
Finally,	we	must	clean	up	the	wx.Frame	object	by	calling	its	Destroy()	method.	Here	is
the	code	for	the	relevant	callback:

				def	_onCloseWindow(self,	event):

								self._running	=	False

								self._captureThread.join()

								self.Destroy()

Note
All	event	callbacks	in	wxPython	require	an	event	argument.	Depending	on	the	type	of
event,	the	event	argument	may	have	properties	that	give	details	about	the	user’s	input	or
other	circumstances.

The	window	will	close	(and	the	preceding	callback	will	be	called)	when	the	user	clicks	on
the	standard	close	button	(X),	or	when	we	call	the	wx.Frame	objects	Close()	method.
Remember	that	we	want	the	window	to	close	when	the	user	presses	the	Esc	key.	Thus,	the
Esc	key	is	mapped	to	the	following	callback:

				def	_onQuitCommand(self,	event):

								self.Close()

The	rest	of	our	callbacks	relate	to	controls	that	represent	the	analyzer’s	configuration.



Configuring	the	analyzer	based	on	user	input
Remember	that	the	CheckersModel	class	has	a	boardRotation	property.	This	is	an	integer
in	the	range	of	0	to	3,	representing	counterclockwise	rotation	in	90-degree	increments.	The
property’s	setter	uses	a	modulus	operator	to	ensure	that	a	value	of	4	circles	back	to	0,	and
so	on.	Thus,	when	the	user	clicks	on	the	GUI’s	Rotate	board	CCW	button,	we	can	simply
increment	boardRotation,	like	this:

				def	_onRotateBoardClicked(self,	event):

								self._checkersModel.boardRotation	+=	1

Similarly,	when	the	user	clicks	on	the	Flip	board	X	or	Flip	board	Y	button,	we	can
negate	the	value	of	the	flipBoardX	or	flipBoardY	property	(remember	that	these
properties	are	booleans).	Here	are	the	relevant	callbacks:

				def	_onFlipBoardXClicked(self,	event):

								self._checkersModel.flipBoardX	=	\

												not	self._checkersModel.flipBoardX

				def	_onFlipBoardYClicked(self,	event):

								self._checkersModel.flipBoardY	=	\

												not	self._checkersModel.flipBoardY

Like	the	boardRotation	property,	the	shadowDirection	property	is	an	integer	that
represents	a	counterclockwise	rotation	in	90-degree	increments.	The	options	in	the
Shadow	direction	control	box	are	arranged	in	the	same	order	(up,	right,	down,	and	left).
Conveniently,	wxPython	gives	the	selected	option’s	index	to	the	callback	in
event.Selection.	We	can	assign	this	index	to	the	shadowDirection	property,	as	seen	in
the	following	code:

				def	_onShadowDirectionSelected(self,	event):

								self._checkersModel.shadowDirection	=	event.Selection

The	threshold	properties	(emptyFreqThreshold,	playerDistThreshold,	and
shadowDistThreshold)	are	floating-point	numbers	in	the	range	of	0.0	to	1.0.	By	default,
wxPython’s	sliders	interpret	the	user’s	input	as	an	integer	in	the	range	of	0	to	100.	Thus,
when	the	user	moves	a	slider,	we	change	the	corresponding	threshold	to	one-hundredth	of
the	slider’s	value,	as	seen	in	these	callbacks:

				def	_onEmptyFreqThresholdSelected(self,	event):

								self._checkersModel.emptyFreqThreshold	=	\

																event.Selection	*	0.01

				def	_onPlayerDistThresholdSelected(self,	event):

								self._checkersModel.playerDistThreshold	=	\

																event.Selection	*	0.01

				def	_onShadowDistThresholdSelected(self,	event):

								self._checkersModel.shadowDistThreshold	=	\

																event.Selection	*	0.01

As	the	user	changes	the	properties,	the	effect	on	the	classification	should	be	visible	in	real
time,	or	with	only	a	momentary	lag.	Let’s	consider	how	to	update	and	display	the	results.



Updating	and	showing	images
On	the	background	thread,	the	application	will	continually	ask	its	CheckersModel	instance
to	update	the	images	and	the	analysis.	Whenever	an	update	succeeds,	the	application	must
alter	its	GUI	to	show	the	new	images.	This	GUI	event	must	be	processed	on	the	main
(GUI)	thread;	otherwise,	the	application	will	crash,	because	two	threads	cannot	access	the
GUI	objects	at	once.	Conveniently,	wxPython	provides	a	function	called
wx.CallAfter(callableObj)	to	call	a	target	function	(or	some	other	callable	object)	on
the	main	thread.	The	following	code	implements	our	background	thread’s	loop,	which
terminates	when	_running	is	False:

				def	_runCaptureLoop(self):

								while	self._running:

												if	self._checkersModel.update():

																wx.CallAfter(self._showImages)

On	the	main	thread,	we	get	the	CheckersModel	images	of	the	unprocessed	scene	and	the
processed	board,	convert	them	to	wxPython’s	Bitmap	format	using	our	utility	function,
and	display	them	in	the	application’s	StaticBitmap.	These	two	methods	carry	out	this
work:

				def	_showImages(self):

								self._showImage(

												self._checkersModel.scene,	self._sceneStaticBitmap,

												self._checkersModel.sceneSize)

								self._showImage(

												self._checkersModel.board,	self._boardStaticBitmap,

												self._checkersModel.boardSize)

				def	_showImage(self,	image,	staticBitmap,	size):

								if	image	is	None:

												#	Provide	a	black	bitmap.

												bitmap	=	wx.EmptyBitmap(size[0],	size[1])

								else:

												#	Convert	the	image	to	bitmap	format.

												bitmap	=	WxUtils.wxBitmapFromCvImage(image)

								#	Show	the	bitmap.

								staticBitmap.SetBitmap(bitmap)

This	is	the	end	of	the	Checkers	class,	but	we	still	need	one	more	function	in	the	Checkers
module.



Running	the	application
Let’s	write	a	main()	function	to	launch	an	instance	of	the	Checkers	application	class.	This
function	must	also	create	the	application’s	instance	of	CheckersModel.	We	will	allow	the
user	to	specify	the	camera	index	as	a	command-line	argument.	For	example,	if	the	user
runs	the	following	command,	CheckersModel	will	use	a	camera	index	of	1:

$	python	Checkers.py	1

Here	is	the	main()	function’s	implementation:

				def	main():

				import	sys

				if	len(sys.argv)	<	2:

								cameraDeviceID	=	0

				else:

								cameraDeviceID	=	int(sys.argv[1])

				checkersModel	=	CheckersModel.CheckersModel(

												cameraDeviceID=cameraDeviceID)

				app	=	wx.App()

				checkers	=	Checkers(checkersModel)

				checkers.Show()

				app.MainLoop()

if	__name__	==	'__main__':

				main()

That’s	all	for	the	code!	Let’s	grab	a	webcam	and	a	checkers	set!





Troubleshooting	the	project	in	real-world
conditions
Although	this	project	should	work	with	many	checkers	sets,	camera	perspectives,	and
lighting	setups,	it	still	requires	the	user	to	set	the	stage	carefully,	in	accordance	with	the
following	guidelines:

1.	 Ensure	that	the	webcam	and	the	board	are	stationary.	The	webcam	should	be	on	a
tripod	or	some	other	mount.	The	board	should	also	be	secured	in	place,	or	it	should
be	sufficiently	heavy	so	that	it	does	not	move	when	the	players	touch	it.

2.	 Leave	the	board	empty	until	the	application	detects	it	and	displays	the	bird’s-eye
view.	If	there	are	playing	pieces	on	the	board,	they	will	probably	interfere	with	the
initial	detection.

3.	 For	best	results,	use	a	black-and-white	checkerboard.	Other	color	schemes	(such	as
dark	wood	and	light	wood)	may	work.

4.	 For	best	results,	use	a	board	with	a	light	border	around	the	playing	area.
5.	 Also,	for	best	results,	use	a	board	with	a	matte	finish	or	no	finish.	Reflections	on	a

glossy	board	will	probably	interfere	with	the	analysis	of	the	dominant	colors	in	some
squares.

6.	 Put	the	playing	pieces	on	the	dark	squares.
7.	 Use	playing	pieces	that	are	not	of	the	same	color	as	the	dark	squares.	For	example,	on

a	black	and	white	board,	use	red	and	white	(or	red	and	gray)	pieces.
8.	 Use	playing	pieces	that	are	sufficiently	tall.	A	king	(a	pair	of	stacked	pieces)	must

cast	a	shadow	on	an	adjacent	square.
9.	 Ensure	that	the	scene	has	bright	light	coming	predominantly	from	one	direction,	such

as	daylight	from	a	window.	Also	ensure	that	the	board	is	aligned	such	that	the	light	is
approximately	parallel	to	the	x	or	y	gridlines.	Thus,	a	kings’	shadow	will	fall	on	an
adjacent	light	square.

Experiment	with	various	real-world	conditions	and	various	settings	in	the	application	to
see	what	works	and	what	fails.	Every	computer	vision	system	has	limits.	Like	a	person,	it
does	not	see	everything	clearly,	and	it	does	not	understand	all	that	it	sees.	As	part	of	our
testing	process,	we	should	always	strive	to	find	the	system’s	limits.	This	will	drive	us	to
adopt	or	invent	more	robust	techniques	for	our	future	work.





Further	reading	on	OpenCV
Our	checkers	application	gives	a	glimpse	of	the	world	of	computer	vision.	Yet,	there	is
much	more	to	see!	For	Python	programmers,	the	following	books	from	Packt	Publishing
reveal	a	broad	range	of	OpenCV’s	functionality,	with	impressive	applications:

Learning	OpenCV	3	Computer	Vision	with	Python	(October	2015),	by	Joe	Minichino
and	Joseph	Howse:	This	is	a	grand	tour	of	OpenCV’s	Python	interface	and	the
underlying	theories	in	computer	vision,	machine	learning,	and	artificial	intelligence.
With	a	gentle	learning	curve,	it	is	suitable	for	either	beginners	or	those	who	want	to
round	out	their	knowledge	of	the	library	and	its	uses.
Raspberry	Pi	Computer	Vision	Programming	(May	2015),	by	Ashwin	Pajankar:	This
beginner-friendly	book	emphasizes	techniques	that	are	practical	for	low-cost,	low-
powered	platforms	such	as	the	Raspberry	Pi	single-board	computers.
OpenCV	for	Secret	Agents	(January,	2015),	by	Joseph	Howse:	This	is	a	collection	of
creative,	adventurous	projects	for	intermediate	to	advanced	developers	who	may	be
new	to	computer	vision.	If	you	want	to	perform	a	biometric	recognition	of	a	cat	or
see	people’s	heartbeats	through	a	motion-amplifying	webcam,	then	this	is	the	(only)
book	for	you!

Besides	these	options,	Packt	Publishing	offers	more	than	a	dozen	other	books	on	OpenCV
and	computer	vision	for	C++,	Java,	Python,	iOS,	and	Android	developers.	We	hope	to
meet	you	again	in	an	exploration	of	this	exciting	and	burgeoning	topic!





Summary
While	analyzing	a	game	of	checkers,	we	encountered	several	fundamental	aspects	of
computer	vision	in	the	following	tasks:

Capturing	images	from	a	camera
Performing	computations	on	color	and	grayscale	data
Detecting	and	recognizing	a	set	of	features	(the	corners	of	the	board’s	squares)
Tracking	movements	of	the	features
Simulating	a	different	perspective	(a	bird’s-eye	view	of	the	board)
Classifying	the	regions	of	the	image	(the	contents	of	the	board’s	squares)

We	also	set	up	and	used	OpenCV	and	other	libraries.	Having	built	a	complete	application
using	these	libraries,	you	are	in	a	better	position	to	understand	the	potential	of	computer
vision	and	plan	further	studies	and	projects	in	this	field.

This	chapter	also	concludes	our	journey	together	in	Python	Game	Programming	by
Example.	We	built	modern	versions	of	classic	video	games	as	well	as	an	analyzer	for	a
classic	board	game.	Along	the	way,	you	gained	practical	experience	in	many	of	the	major
game	engines,	graphics	APIs,	GUI	frameworks,	and	scientific	libraries	for	Python.	These
skills	are	transferable	to	other	languages	and	libraries,	and	will	serve	as	your	foundation
again	and	again	as	you	build	your	own	games	and	other	pieces	of	visual	software!

Go	create	some	more	great	projects,	share	the	fun,	and	stay	in	touch	with	us	(Alejandro
Rodas	de	Paz	at	<alexrdp90@gmail.com>	and	Joseph	Howse	at	http://nummist.com/)!

mailto:alexrdp90@gmail.com
http://nummist.com/
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