
www.allitebooks.com

http://www.allitebooks.org

RabbitMQ Essentials

Hop straight into developing your own messaging
applications by learning how to utilize RabbitMQ

David Dossot

BIRMINGHAM - MUMBAI

www.allitebooks.com

http://www.allitebooks.org

RabbitMQ Essentials

Copyright © 2014 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: April 2014

Production Reference: 1180414

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78398-320-9

www.packtpub.com

www.allitebooks.com

http://www.allitebooks.org

Credits

Author
David Dossot

Reviewers
Ken Pratt

Ken Taylor

Ignacio Colomina Torregrosa

Héctor Veiga

Commissioning Editor
Ashwin Nair

Acquisition Editor
Richard Harvey

Content Development Editor
Govindan K

Technical Editors
Shruti Rawool

Nachiket Vartak

Copy Editors
Aditya Nair

Kirti Pai

Project Coordinator
Puja Shukla

Proofreader
Ameesha Green

Indexer
Monica Ajmera Mehta

Graphics
Sheetal Aute

Ronak Dhruv

Abhinash Sahu

Production Coordinator
Alwin Roy

Cover Work
Alwin Roy

Cover Image
Sheetal Aute

www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

Foreword

What gets me most excited about RabbitMQ is that people keep finding new and
better ways to use it. Messaging has truly come of age and stands beside databases
and web applications as a technology that every professional developer needs
to know.

In 2006, when RabbitMQ was born, messaging was mostly used by companies that
had way too many IT systems and desperately needed some way to connect them.
Jargon words such as "pubsub" and "queue" were strictly for messaging geeks and
highly paid integration consultants. But the world was already changing and we
were about to find out why.

Today's software and web applications are increasing in scale rapidly. There are more
users, apps, devices, places, and ways to connect; this creates a burning need to build
more scalable applications. At the same time, these new applications have to integrate
with existing systems and services written using any language or API you care to
think of. There is only one way to deliver scalability in this kind of environment: use
messaging. The best way to do that is via a product such as RabbitMQ.

We started RabbitMQ because there was no messaging tool that was really powerful
and dependable, yet easy to get started with. We decided to make one. We hope you
like it.

The fun part is designing the tool so that you, the developer, feel like RabbitMQ is
actually helping you to build better apps, instead of getting in the way. Your use of
the tool should grow with your system.

www.allitebooks.com

http://www.allitebooks.org

The hard part is balancing simplicity and power. With RabbitMQ, we think we got
this about right. Developers have little tolerance for complexity and nonsense. But
beware! There is such a thing as "fake simplicity"; if a tool makes promises that seem
too good to be true, then something is almost certainly broken. A truly simple system
makes its capabilities obvious when they are needed. RabbitMQ will never lie to you
or conceal its true behavior and we think this is essential in a good tool.

In this book, David Dossot has shown how messaging can help anyone architect and
design solid scalable apps and how RabbitMQ can deliver on this promise. In 2014,
everyone can grok the basics of messaging. Read this book to get started.

Alexis Richardson
Former CEO, Rabbit Technologies Inc.

www.allitebooks.com

http://www.allitebooks.org

About the Author

David Dossot has worked as a software engineer and an architect for more than
18 years. He has been using RabbitMQ since 2009 in a variety of different contexts.
He is the main contributor to the AMQP transport for Mule. His focus is on building
distributed and scalable server-side applications for the JVM and the Erlang VM.
He is a member of IEEE, the Computer Society, and AOPA, and holds a diploma in
Production Systems Engineering from ESSTIN.

He is a co-author for the first and second editions of Mule in Action (Manning
Publications Co.). He is a Mule champion and a DZone Most Valuable Blogger.
He commits on multiple open source projects and likes to help people on Stack
Overflow. He's also a judge for the annual Jolt Awards software competition.

I would like to thank my wife for giving the thumbs up to this
book project, while just recovering from the previous book. It was a
stretch goal, but with her support and the patience and love of the
rest of my family, it became possible. I'm also grateful to the rainy
winters we get in the Pacific Northwest as I didn't feel bad staying
inside writing!

I would like to extend a special thanks to our early reviewers—
without them, the book wouldn't be as great as it is now. I want to
use this opportunity to give kudos to a bunch of first class software
engineers and architects who have inspired me and from whom
I've learned so much throughout my career: Romuald van der
Raaij, André Weber, Philip Thomas, Pierre-Antoine Grégoire, Carl
Schmidt, Tim Meighen, Josh Devins, Dominic Farr, Erik Garrett, and
Ken Pratt.

www.allitebooks.com

http://www.allitebooks.org

About the Reviewers

Ken Pratt has over 10 years of professional experience in software development,
and knows more programming languages than you can imagine. He has shipped
multiple products powered by RabbitMQ and enjoys discovering new ways to
structure systems.

Ken Taylor has worked in software development and technology for over 15 years.
During the course of his career, he has worked as a systems analyst on multiple
software projects in several industries as well as U.S. government agencies. He has
successfully used RabbitMQ for messaging on multiple projects. He previously
reviewed RabbitMQ Cookbook, written by Sigismondo Boschi and Gabriele Santomaggio,
Packt Publishing. He is a member and speaker of the 757 Ruby users group and the
Hampton Roads .NET Users Group (HRNUG). He holds an A.S. degree in Computer
Science from the Paul D. Camp Community College and was awarded a U.S. patent
for a real estate financial software product. He is currently working at Outsite
Networks Inc. in Norfolk, Virginia. He lives in Suffolk, Virginia with his lovely wife,
Lucia, and his two sons, Kaide and Wyatt.

I would like to thank my wife for her support while writing this
book, and my sons for reminding me the importance of being
inquisitive. I would also like to thank Packt Publishing for asking
me to participate as a technical reviewer in this excellent resource
on RabbitMQ.

Ignacio Colomina Torregrosa is a technical engineer in Telecommunications
and has a master's degree in Free Software. He works as a PHP/Symfony developer
and he has experience using RabbitMQ as a tool to optimize and improve the
performance of web applications that deal with a large amount of traffic.

www.allitebooks.com

http://www.allitebooks.org

Héctor Veiga is a software engineer specializing in real-time data integration.
Recently, he has focused his work on different cloud technologies such as AWS,
Heroku, OpenShift, and so on to develop scalable, resilient, and high-performing
applications to handle high-volume real-time data in diverse protocols and formats.
Additionally, he has a strong foundation in messaging systems knowledge such
as RabbitMQ and AMQP. Also, he has a master's degree in Telecommunications
Engineering from the Universidad Politécnica de Madrid and a master's degree in
Information Technology and Management from the Illinois Institute of Technology.

He currently works at HERE as a part of Global Data Integrations and is actively
developing scalable applications to consume data from several different sources.
HERE heavily utilizes RabbitMQ to address their messaging requirements. In
the past, he worked at Xaptum Technologies, a company dedicated to M2M
technologies. He has also reviewed RabbitMQ Cookbook written by Sigismondo Boschi
and Gabriele Santomaggio, Packt Publishing.

I would like to thank my family and friends for their support.
Specially, I would like to acknowledge my family in Chicago: David,
Pedro, Javier, Jorge, Daniela, Gerardo, and Jaime; without them, this
would not have been possible.

www.allitebooks.com

http://www.allitebooks.org

www.PacktPub.com

Support files, eBooks, discount offers and more
You might want to visit www.PacktPub.com for support files and downloads related
to your book.

Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www.PacktPub.
com and as a print book customer, you are entitled to a discount on the eBook copy.
Get in touch with us at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign
up for a range of free newsletters and receive exclusive discounts and offers on Packt
books and eBooks.

TM

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt's online
digital book library. Here, you can access, read and search across Packt's entire
library of books.

Why Subscribe?
•	 Fully searchable across every book published by Packt
•	 Copy and paste, print and bookmark content
•	 On demand and accessible via web browser

Free Access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view nine entirely free books. Simply use your login credentials
for immediate access.

Table of Contents
Preface	 1
Chapter 1: A Rabbit Springs to Life	 7

What is messaging?	 7
A loosely coupled architecture	 9
Meet AMQP	 10

The RabbitMQ broker	 12
A case for RabbitMQ	 13

Getting RabbitMQ ready	 15
Installing the broker	 15
Installing the management plugin	 18
Configuring users	 19

Summary	 22
Chapter 2: Creating an Application Inbox	 23

Connecting to RabbitMQ	 23
Working with channels	 28
Building the inbox	 31

Sending user messages	 35
AMQP message structure	 38
Fetching user messages	 39

Seeing it run	 41
Adding topic messages	 43
Summary	 47

Chapter 3: Switching to Server-push	 49
Moving beyond polling	 49

Consuming queues	 50
Creating a consumer subscription wrapper	 52
Babysitting subscriptions	 56

Tying into the WebSocket endpoint	 58
Running the application	 62

Table of Contents

[ii]

Publishing to all queues	 63
Binding to the fanout	 65
Publishing to all	 66
Running the application	 68

Summary	 69
Chapter 4: Handling Application Logs	 71

Publishing and consuming logs	 71
Load testing AMQP	 75

Running a load test	 77
Prefetching messages	 79

Messaging serendipity	 80
Summary	 83

Chapter 5: Tweaking Message Delivery	 85
Handling dead letters	 85

Refactoring queues	 87
Undertaking messages	 89

Making delivery mandatory	 95
Implementing the back-office sender	 98

Summary	 99
Chapter 6: Smart Message Routing	 101

Service-oriented messaging	 101
Replying to queues	 102
Routing service requests	 105

Exposing the authentication service	 106
Calling the authentication service	 113
Summary	 116

Chapter 7: Taking RabbitMQ to Production	 117
Tackling the broker SPOF	 117

Mirroring queues	 122
Connecting to the cluster	 125
Federating brokers	 127

Monitoring the broker	 134
Summary	 137

Chapter 8: Testing and Tracing Applications	 139
Testing RabbitMQ applications	 140

Unit testing RabbitMQ applications	 140
Integration testing RabbitMQ applications	 145

Table of Contents

[iii]

Tracing RabbitMQ	 150
Drinking at the Firehose	 152

Summary	 154
Appendix: Message Schemas	 155

User message	 155
Authentication messages	 156

Login	 156
Request	 156
Response	 157

Logout	 157
Request	 158
Response	 158

Generic error message	 158
Index	 161

Preface
RabbitMQ is an open source messaging broker that implements the AMQP protocol.
In the past few years, its popularity has been growing. Initially used by the most
daring companies, many are now discovering not only RabbitMQ's particular
virtues, but also the positive impact of using messaging in software engineering.
Indeed, with the advent of cloud computing, the need to architect and build systems
that both scale and degrade gracefully has become more pressing. Opting for loosely
coupled architectures, tied together by a message passing through brokers such
as RabbitMQ, software engineers have been able to satisfy the needs of modern
application development.

RabbitMQ Essentials takes the readers through the journey of Clever Coney Media,
a fictitious company with real-world problems. Starting with their first step of
RabbitMQ, we will follow the company as they develop their understanding and
usage of messaging across their different applications. From one-way asynchronous
message passing to request-response interactions, the reader will discover the wide
range of applications that messaging with RabbitMQ enables.

This book covers the core principles of the AMQP protocol and best practices for its
usage. It also details some of the proprietary extensions that RabbitMQ has added
to the protocol and why and when it makes sense to use them. The interoperability
of AMQP is demonstrated throughout the book, with examples written in different
programming languages.

This book will teach readers all they need to not only get started with their projects,
but also grow them, through gaining a deep and wide understanding of the
capacities of RabbitMQ and AMQP. The code has a prominent place in this book,
with an accent put on the detailed production-grade examples.

Preface

[2]

What this book covers
Chapter 1, A Rabbit Springs to Life, introduces the reader to the notion of messaging
and its benefits. After introducing AMQP and RabbitMQ, the reader will learn how
to install and configure RabbitMQ, and get ready to start developing applications
with it.

Chapter 2, Creating an Application Inbox, discusses the usage of RabbitMQ to create
a simple message inbox. By the end of this chapter, you'll know how to connect to
RabbitMQ and publish direct and topic exchanges and get messages out of queues.

Chapter 3, Switching to Server-push, describes a more efficient way to consume
messages and route them to end users. It also introduces the fanout exchange and
teaches you how it can be used to reach many queues while publishing only a single
message.

Chapter 4, Handling Application Logs, keeps building on the previously learned
concepts and puts them in action in the context of aggregating application usage
data. You'll also learn about the notion of quality of service and how it can be used to
improve performance. You'll perform a load test of your RabbitMQ application.

Chapter 5, Tweaking Message Delivery, discusses the usage of RabbitMQ extensions for
the AMQP protocol to make undelivered messages expire and deal with them when
this happens. It also discusses the standard options that can be used to ensure the
success of message deliveries.

Chapter 6, Smart Message Routing, explains how the headers' exchange can be used to
perform a property-based routing of messages and how request-response styles of
interactions can be achieved with RabbitMQ.

Chapter 7, Taking RabbitMQ to Production, presents different strategies that can be
used to deal with the potential failures of the RabbitMQ broker. In this context, you'll
learn about clustering and federation. You'll also read about monitoring RabbitMQ
to ensure a smooth production ride.

Chapter 8, Testing and Tracing Applications, describes the challenges that are inherent
to distributed systems and what mitigation strategies can be used to alleviate them.

Appendix, Message Schemas, lists all the schemas used to specify the JSON
representation of the messages in the different examples.

Preface

[3]

What you need for this book
Readers with a good command of Java and some knowledge of Ruby and Python
will feel the most at ease when reading the code samples. Thus, readers with C, C++,
and C# experience should be able to make the most of the Java samples. Finally, the
discussion around code samples will benefit all readers, especially those with an
exposure to the middleware software engineering.

We will install and configure RabbitMQ as part of the first chapter, so you do not
need to worry about this. However, you will need the following software installed
before running the code examples:

•	 JDK 7 and Maven 3 to run the Java examples: The former can be
downloaded from http://www.oracle.com/technetwork/java/javase/
downloads/jdk7-downloads-1880260.html and the latter from http://
maven.apache.org/download.cgi.

•	 Ruby 2.0 (or equivalent JRuby) and Bundler to run the Ruby examples:
Ruby can be downloaded from https://www.ruby-lang.org/en/
downloads/. The installation of Bundler is detailed at http://bundler.
io/#getting-started.

•	 Python 2.7 to run the Python examples: This can be downloaded from
http://www.python.org/download/ and to manage dependencies, you can
download the pip package from http://www.pip-installer.org.

•	 PHP 5.3 to run the PHP examples: This can be downloaded from http://
www.php.net/downloads.php.

•	 Apache JMeter and the AMQP plugin to run load tests: These can be
downloaded from http://jmeter.apache.org/download_jmeter.cgi and
https://github.com/jlavallee/JMeter-Rabbit-AMQP, respectively.

Who this book is for
This book discusses architectural and programming concepts in the context of
messaging; as such, it addresses a wide audience from software architects to
engineers. It focuses on building applications with RabbitMQ using different popular
programming languages and therefore, contains lot of code. No prior experience
with message-oriented middleware is required.

Preface

[4]

Conventions
In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows:
"The first of these additions takes care of declaring the topic exchange in the existing
onApplicationStart method."

A block of code is set as follows:

rabbitMqManager.call(new ChannelCallable<DeclareOk>()
{
 @Override
 public String getDescription()
 {
 return "Declaring topic exchange: " + USER_TOPICS_EXCHANGE;
 }

When we wish to draw your attention to a particular part of a code block, the
relevant lines or items are set in bold:

 try
 {
 connection = factory.newConnection();
 connection.addShutdownListener(this);
 LOGGER.info("Connected to " + factory.getHost() + ":" +
 factory.getPort());
 }

Any command-line input or output is written as follows:

$ sudo service rabbitmq-server restart

New terms and important words are shown in bold. Words that you see on the
screen, in menus or dialog boxes for example, appear in the text like this: "When
connected to the management console, click on the Exchanges tab."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Preface

[5]

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or may have disliked. Reader feedback is important for us
to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com,
and mention the book title through the subject of your message.

If there is a book that you need and would like to see us publish, please send us
a note in the SUGGEST A TITLE form on www.packtpub.com or e-mail suggest@
packtpub.com.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the example code
You can download the example code files for all Packt books you have purchased
from your account at http://www.packtpub.com. If you purchased this book
elsewhere, you can visit http://www.packtpub.com/support and register to have
the files e-mailed directly to you.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you would report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/support, selecting your book, clicking on the errata submission form link, and
entering the details of your errata. Once your errata are verified, your submission
will be accepted and the errata will be uploaded to our website, or added to any list
of existing errata, under the Errata section of that title.

www.allitebooks.com

http://www.allitebooks.org

Preface

[6]

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you
come across any illegal copies of our works, in any form, on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with
any aspect of the book, and we will do our best to address it.

A Rabbit Springs to Life
Messaging or message queuing is a style of communication between applications
or components that enables a loosely coupled architecture. Advanced Message
Queuing Protocol (AMQP) is a specification that defines the semantics of an
interoperable messaging protocol. RabbitMQ is an Erlang-based implementation of
AMQP, which supports advanced features such as clustering.

In this chapter, we will cover the following topics:

•	 Introducing concepts and terminology related to messaging
•	 Discovering AMQP and RabbitMQ
•	 Presenting the context in which all the book's examples will take place
•	 Installing and configuring RabbitMQ

What is messaging?
Smoke signals, couriers, carrier pigeons, and semaphores: if this was a riddle, you
would think of messages right away. Humanity has always had the need to connect
with each other, finding new ways to defy the challenge posed by the distance
between the different groups of people who need to communicate. We've come
a long way with modern technologies, but essentially the basics remain. Senders,
recipients, and messages are the core of all our communication infrastructures.

Software applications have the same needs; systems need to exchange messages with
each other. They sometimes need to be sure that the message sent has reached its
destination. They sometimes need to receive an immediate response, but not all the
time. In some cases, they may even need to receive more than one response. Based
on these different needs, different styles of communication between systems have
emerged.

A Rabbit Springs to Life

[8]

All this can be explained with the help of the following figure:

Client Server

Request

Response Endpoint

The request-response style of interaction

This request-response style of interaction is the most common style; a system (acting
as a client) interacts with a remote system (acting as a server) via a synchronous
interaction with a remotely exposed communication endpoint. Whether it takes
the form of a remote procedure call, a web service invocation, or consumption of a
resource, the model is the same: one system sends a message to another and waits for
the remote party to respond synchronously. Systems communicate with each other
in a point-to-point manner.

The advantages of this approach are met with inconveniences. On one hand,
programmers get a simple programming model as everything happens in a
procedural fashion. On the other hand, the tight coupling between both parties has
a deep impact on the architecture of the whole system as it is hard to evolve, hard to
scale, and so on.

Publisher Consumer
Message

Queue

Broker

Message

One-way interaction with message queuing

Enter the one-way style of interaction, where systems interact with each other in
an asynchronous fashion via the transmission of messages, and generally through
the intermediary of relaying parties known as message brokers. In this scheme,
commonly referred to as messaging or message queuing, systems play the role of
message publishers (producers) and message consumers. They publish a message
to a broker on which they rely on to deliver it to the intended consumer. If a
response is required, it will eventually come at some point on time through the same
mechanism, but reversed (the consumer and producer roles will be swapped).

Chapter 1

[9]

A loosely coupled architecture
The advantage of the messaging approach is that systems are loosely coupled. They
don't need to know exactly where they are located; a mere name is enough to reach
them. Systems can, therefore, be evolved in an independent manner with no impact
on each other as the reliability of message delivery is entrusted to a broker. This is
demonstrated in the following figure:

Broker

Publisher

Publisher

Publisher

Consumer

Consumer

Consumer

Message enabling a loosely coupled architecture

Indeed, the architecture represented in the preceding figure allows the following:

•	 The publishers or consumers fail without impacting each other
•	 The performance of each side to leave the other side unaffected
•	 The number of instances of publishers and consumers to grow and reduce

and to accommodate their workload in complete independence
•	 The publishers are unaware of the location and technology of the consumers

and vice-versa

The main downside of this approach is that programmers cannot rely on the mental
model of procedural programming where things immediately happen one after
another. In messaging, things happen over time, so systems must be programmed to
deal with it.

If all this is a little blurry, let's use an analogy of a well-known protocol: Simple
Mail Transfer Protocol (SMTP). In this protocol, e-mails are published (sent) to
an SMTP server. This initial server then stores and forwards the e-mail to the next
SMTP server, and so on until the recipient e-mail server is reached. At this point, the
message is queued in an inbox, waiting to be picked up by the consumer (typically,
via POP3 or IMAP). With SMTP, the publisher has no idea when the e-mail will
be delivered or whether it will eventually be delivered at all. In case of a delivery
failure, the publisher can be notified of issues later down the line. The only sure fact
is that the broker has successfully accepted the message it had initially sent.

A Rabbit Springs to Life

[10]

Furthermore, if a response is needed, it will arrive asynchronously using the same
delivery mechanism but with the publisher and consumer roles reversed. The entire
process is demonstrated in the following figure:

Sender

(Publisher)

Adressee

(Consumer)

Email

(Message)
Inbox

(Queue)

SMTP+IMAP Server

(Broker)

Email

(Message)

SMTP Server

(Broker)

Email

(Message)

The e-mail infrastructure as an analogy for message queuing

With these fundamental notions established, let's now delve into the messaging
protocol that we are going to consider in this book: Advanced Message Queuing
Protocol (AMQP).

Meet AMQP
The Advanced Message Queuing Protocol (AMQP) is an open standard that defines
a protocol for systems to exchange messages. AMQP defines not only the interaction
that happens between a consumer/producer and a broker, but also the over-the-wire
representation of the messages and commands that are being exchanged. Since it
specifies the wire format for messages, AMQP is truly interoperable—nothing is left
to the interpretation of a particular vendor or hosting platform. And since it is open,
the AMQP community has flourished with broker and client implementations in a
wide range of languages.

The AMQP 0-9-1 specification can be downloaded at http://
www.rabbitmq.com/resources/specs/amqp0-9-1.pdf.

Let's look at the following list of core concepts of AMQP, which we will revisit in
detail in the upcoming chapters:

•	 Broker: This is a middleware application that can receive messages produced
by publishers and deliver them to consumers or to another broker.

•	 Virtual host: This is a virtual division in a broker that allows the segregation
of publishers, consumers, and all the AMQP constructs they depend upon,
usually for security reasons (such as multitenancy).

•	 Connection: This is a physical network (TCP) connection between a
publisher/consumer and a broker. The connection only closes on client
disconnection or in the case of a network or broker failure.

Chapter 1

[11]

•	 Channel: This is a logical connection between a publisher/consumer and
a broker. Multiple channels can be established within a single connection.
Channels allow the isolation of the interaction between a particular client
and broker so that they don't interfere with each other. This happens without
opening costly individual TCP connections. A channel can close when a
protocol error occurs.

•	 Exchange: This is the initial destination for all published messages and the
entity in charge of applying routing rules for these messages to reach their
destinations. Routing rules include the following: direct (point-to-point),
topic (publish-subscribe) and fanout (multicast).

•	 Queue: This is the final destination for messages ready to be consumed. A
single message can be copied and can reach multiple queues if the exchange's
routing rule says so.

•	 Binding: This is a virtual connection between an exchange and a queue that
enables messages to flow from the former to the latter. A routing key can be
associated with a binding in relation to the exchange routing rule.

Publisher

Channel

Channel

Channel

Exchange
Binding

Queue

Virtual Host

Broker

Consumer

Overview of the concepts defined by the AMQP specification

You may have a message-queuing background and are by now wondering what are
the main differences between AMQP and another protocol that you know. Here is a
quick comparison of some of the main features:

•	 Java Message Service (JMS): Unlike AMQP, this only defines the wire
protocol for a Java programming interface and not messages. As such, JMS
is not interoperable and only works when compatible clients and brokers are
used. Moreover, unlike AMQP, it does not define the commands necessary to
completely configure messaging routes, leaving too much room for vendor-
specific approaches. Finally, in JMS, message producers target a particular
destination (queue or topic), meaning the clients need to know about the
target topology. In AMQP, the routing logic is encapsulated in exchanges,
sparing the publishers from this knowledge.

A Rabbit Springs to Life

[12]

•	 MQ Telemetry Transport (MQTT): This is an extremely lightweight
message-queuing protocol. MQTT focuses only on the publish-subscribe
model. Like AMQP, it is interoperable and is very well suited for massive
deployments in embedded systems. Like AMQP, it relies on a broker for
subscription management and message routing. RabbitMQ can speak the
MQTT protocol—thanks to an extension.

•	 ØMQ (also known as ZeroMQ): This offers messaging semantics without
the need for a centralized broker (but without the persistence and delivery
guarantees that a broker provides). At its core, it is an interoperable
networking library. Implemented in many languages, it's a tool of choice for
the construction of high-performance and highly-available distributed systems.

•	 Process inboxes: Programming languages and platforms such as Erlang or
Akka offer messaging semantics too. They rely on a clustering technology to
distribute messages between processes or actors. Since they are embedded in
the hosting applications, they are not designed for interoperability.

Multiple commercial and open source implementations of AMQP are available.
Often, existing messaging brokers have been extended with an AMQP adapter, like
in the case of ActiveMQ.

The open source broker we will look at in detail for this book has been built from the
ground to support AMQP. So let's now turn our focus on RabbitMQ.

The RabbitMQ broker
RabbitMQ is an Erlang implementation of an AMQP broker. Erlang has been
chosen to build it because of its intrinsic support for building highly-reliable and
distributed applications. Indeed, it is used to run telecommunication switches for
which a proverbial total system's availability of 9 nines has been reported (that's 32
milliseconds of downtime per year). Erlang is also able to run on any operating system.

RabbitMQ implements Version 0-9-1 of AMQP with custom extensions (as allowed
by the protocol) and some undeprecations (for features RabbitMQ really wants
to keep). For data persistence, it relies on Mnesia, the in-memory/file-persisted
embedded database of Erlang, and specific message storage and index files. For
clustering, it mainly relies on Erlang's ingrained clustering abilities. RabbitMQ
can easily be extended with the addition of plugins; for example, a web-based
administration console can be deployed on it, thanks to this mechanism. This is
shown in the following diagram:

Chapter 1

[13]

RabbitMQ

Broker

Standalone

RabbitMQ

Broker

RabbitMQ

Broker

Cluster

RabbitMQ

Broker

RabbitMQ

Broker

Federation

RabbitMQ

Broker

RabbitMQ

Broker

The RabbitMQ broker engaging in various topologies

As shown in the preceding figure, RabbitMQ brokers can not only be clustered
together, they can also be connected together using different techniques, such as
federation and shovels, in order to form messaging topologies with smart message
routing across brokers and the capacity to span multiple data centers.

What's the deal with AMQP 1.0?
AMQP 1.0 was published at the end of 2011 after the development
and maintenance of AMQP was transferred to OASIS. Why hasn't
RabbitMQ rushed to support this version, since it seems to be the
first official release? The fact of the matter is that AMQP has been
drastically revised between 0-9-1 and 1.0. It was so drastic that some
core concepts, such as the exchange, no longer exist. So, AMQP 1.0
is a different protocol than 0-9-1, with no truly compelling reason
to adopt it. It is not more capable than 0-9-1, and some would also
argue that it has lost some of the key aspects that made it attractive
in the first place.

We're done with our quick introduction to messaging, AMQP, and RabbitMQ. In the
next section, we will introduce Clever Coney Media, a fictitious company that just
discovered RabbitMQ and will put it to service for the greater good!

A case for RabbitMQ
Clever Coney Media (CCM) is a fictitious integrated software and digital media
agency that specializes in developing applications for online communities. Their
software landscape, as shown in the following figure, is a hodgepodge of technologies:

•	 Its flagship product is a Rich Internet Application (RIA), backed by a Java
backend. It's used by end users to engage in thematic online communities.

A Rabbit Springs to Life

[14]

•	 The back office is built with Ruby on Rails.
•	 The company's website and blog runs on PHP.
•	 A bunch of ad hoc Python scripts are used to extract and message data in

order to generate usage reports.

Data

Analysis

Scripts

Rich

Internet

Application

Back

Office

Company’s

Website

and

Blog

Main

DB

Website

DB

php

Clever Coney Media's heterogeneous software landscape

You may wonder, why is CCM looking at adding RabbitMQ to their already busy
environment? The main driver for this is a new feature it wants to offer to their users,
which is the capacity to send messages to other users. Think of it as a mix of chat,
without the immediateness, and e-mail, without the long-running history. Instead of
creating its own messaging infrastructure, it's decided to use a ready-made message
oriented middleware like RabbitMQ.

We'll see in the rest of the book that as its knowledge and usage of RabbitMQ
increases, CCM will discover new opportunities to leverage it in its environment. But
for now, enough with the ado; let's follow CCM as it gets started with its very first
step with RabbitMQ.

Chapter 1

[15]

Getting RabbitMQ ready
To get started, we will go through the following three installation and
configuration steps:

•	 Installing the RabbitMQ broker
•	 Installing the management plugin
•	 Configuring the vhost and user

Installing the broker
CCM runs its production servers on Ubuntu Linux. Most of the developers'
workstations run Mac OS X and Linux, while some run Windows. This
heterogeneity is not a concern for RabbitMQ, which can run natively on all these
operating systems.

RabbitMQ provides complete online installation guides for all the supported
operating systems (you can access these at http://www.rabbitmq.com/download.
html). In our case, we will follow the instructions for Debian/Ubuntu.

For greater control, we do not wish to use the RabbitMQ APT repository; instead, we
want to download the Debian package and manually install it, as follows:

$ wget http://www.rabbitmq.com/releases/rabbitmq-server/v3.2.1/rabbitmq-
server_3.2.1-1_all.deb

$ sudo dpkg -i rabbitmq-server_3.2.1-1_all.deb

$ sudo apt-get -f --force-yes --yes install

Downloading the example code
You can download the example code files for all Packt books you
have purchased from your account at http://www.packtpub.com.
If you purchased this book elsewhere, you can visit http://www.
packtpub.com/support and register to have the files e-mailed
directly to you.

In case you wonder why we first ran the dkpg software followed by the apt-get
command, the reason is simple: the first attempt expectedly fails because none of
the Erlang dependencies are present in our system. This failure generates a list of
unresolved dependencies that the apt-get command picks up and installs, including
the installation of the RabbitMQ broker.

www.allitebooks.com

http://www.allitebooks.org

A Rabbit Springs to Life

[16]

The installation of RabbitMQ has also installed Erlang on your
machine. Though not absolutely required for using RabbitMQ, we
want to encourage you to discover this simple yet powerful language
and platform. You can learn more about Erlang at http://www.
erlang.org/. You can also consider Elixir as an alternative language
for the Erlang VM at http://elixir-lang.org.

We can verify that the RabbitMQ broker is actually working using the standard
service command:

$ sudo service rabbitmq-server status

Status of node 'rabbit@ip-172-31-31-18' ...

[{pid,4027},

 {running_applications,[{rabbit,"RabbitMQ","3.2.1"},

 {mnesia,"MNESIA CXC 138 12","4.5"},

 {os_mon,"CPO CXC 138 46","2.2.7"},

 {xmerl,"XML parser","1.2.10"},

 {sasl,"SASL CXC 138 11","2.1.10"},

 {stdlib,"ERTS CXC 138 10","1.17.5"},

 {kernel,"ERTS CXC 138 10","2.14.5"}]},

 {os,{unix,linux}},

 {erlang_version,"Erlang R14B04 (erts-5.8.5) [source] [64-bit] [rq:1]
[async-threads:30] [kernel-poll:true]\n"},

 {memory,[{total,27085496},

 {connection_procs,2648},

 {queue_procs,5296},

 {plugins,0},

 {other_proc,9040296},

 {mnesia,57776},

 {mgmt_db,0},

 {msg_index,25768},

 {other_ets,752416},

 {binary,1952},

 {code,14546600},

 {atom,1360921},

 {other_system,1291823}]},

 {vm_memory_high_watermark,0.4},

Chapter 1

[17]

 {vm_memory_limit,247537664},

 {disk_free_limit,50000000},

 {disk_free,7020503040},

 {file_descriptors,[{total_limit,924},

 {total_used,3},

 {sockets_limit,829},

 {sockets_used,1}]},

 {processes,[{limit,1048576},{used,122}]},

 {run_queue,0},

 {uptime,73}]

...done.

If you're wondering what format is used to represent the server status information,
it's not JSON but in fact, Erlang lists and tuples. You can notice how the status data
contains a lot of contextual information about RabbitMQ and the Erlang VM.

The default folders where the package has installed files are /
etc/rabbitmq for configuration files, /usr/lib/rabbitmq for
application files, and /var/lib/rabbitmq for data files.

If you take a look at the running processes for RabbitMQ, you'll find both the service
wrapper and the Erlang virtual machine (also known as BEAM) running as follows:

$ pgrep -fl rabbitmq

3633 /bin/sh /usr/sbin/rabbitmq-server

3647 /usr/lib/erlang/erts-5.8.5/bin/beam.smp -W w -K true -A30 -P
1048576 -- -root /usr/lib/erlang -progname erl -- -home /var/lib/
rabbitmq -- -pa /usr/lib/rabbitmq/lib/rabbitmq_server-3.1.5/sbin/../ebin
-noshell -noinput -s rabbit boot -sname rabbit@pegasus -boot start_sasl
-config /etc/rabbitmq/rabbitmq -kernel inet_default_connect_options
[{nodelay,true}] -sasl errlog_type error -sasl sasl_error_logger false
-rabbit error_logger {file,"/var/log/rabbitmq/rabbit@pegasus.log"}
-rabbit sasl_error_logger {file,"/var/log/rabbitmq/rabbit@pegasus-sasl.
log"} -rabbit enabled_plugins_file "/etc/rabbitmq/enabled_plugins"
-rabbit plugins_dir "/usr/lib/rabbitmq/lib/rabbitmq_server-3.1.5/sbin/../
plugins" -rabbit plugins_expand_dir "/var/lib/rabbitmq/mnesia/rabbit@
pegasus-plugins-expand" -os_mon start_cpu_sup false -os_mon start_disksup
false -os_mon start_memsup false -mnesia dir "/var/lib/rabbitmq/mnesia/
rabbit@pegasus"

A Rabbit Springs to Life

[18]

You may find that when RabbitMQ runs, a process named epmd is
also running. This is the Erlang Port Mapper Daemon in charge of
coordinating Erlang nodes in a cluster. It is expected to start even if
you are not running clustered RabbitMQ.

Note that by default, the broker service is configured to auto-start when the Linux
host starts. You can confirm and configure this via a tool called rcconf as shown in
the following screenshot:

The RabbitMQ server service auto-starts by default

Installing the management plugin
By default, RabbitMQ does not embed a web-based management console but
offers it as an optional plugin. This management console makes it very easy to
peek into a running RabbitMQ instance, so we definitely want to have it installed
from the get go.

The Debian package has installed several scripts, one of them being rabbitmq-
plugins, whose purpose is to allow the installation and removal of plugins. Let's use
it to install the management plugin as follows:

$ sudo rabbitmq-plugins enable rabbitmq_management

The following plugins have been enabled:

 mochiweb

 webmachine

 rabbitmq_web_dispatch

 amqp_client

 rabbitmq_management_agent

 rabbitmq_management

Plugin configuration has changed. Restart RabbitMQ for changes to take
effect.

Chapter 1

[19]

Yes, it is that easy! As invited by the installer, we need to restart RabbitMQ
as follows:

$ sudo service rabbitmq-server restart

* Restarting message broker rabbitmq-server [OK]

Using our favorite web browser, we can now reach the home page of the
management console by navigating to http://<hostname>:15672 as shown in the
following screenshot:

The login screen of the management console

So, what Username and Password can we use to log in to the console? None yet, but
we're going to to have a remedy for that too!

Configuring users
One of the scripts installed by the Debian package is rabbitmqctl, which is
the RabbitMQ broker control script. It is of paramount importance as it is used to
configure all aspects of the broker. We will now use it to configure an administration
user in the broker as follows:

$ sudo rabbitmqctl add_user ccm-admin hare123

Creating user "ccm-admin" ...

...done.

$ sudo rabbitmqctl set_user_tags ccm-admin administrator

Setting tags for user "ccm-admin" to [administrator] ...

...done.

A Rabbit Springs to Life

[20]

By default, RabbitMQ comes with a guest user authenticated with the
guest password. You'll want to change this password to something
else as follows:
sudo rabbitmqctl change_password guest guest123

By navigating back to the management console login screen, we are now able to log
in with ccm-admin and hare123. We are welcomed by this overview of the broker's
internals, as shown in the following screenshot:

The main dashboard of the management console

Note that at this point, the ccm-admin user is not able to introspect any exchange or
queue in any virtual host. We will address this issue in a moment. But for now, we
need another user for development purposes so that our applications can connect to
RabbitMQ. So, let's create the ccm-dev user as follows:

$ sudo rabbitmqctl add_user ccm-dev coney123

Creating user "ccm-dev" ...

..done.

Chapter 1

[21]

As discussed earlier in this chapter, RabbitMQ supports the notion of virtual hosts,
which are logical subdivisions of its execution space. We're going to create a virtual
host, also known as vhost, for the development environment. So, anything that
happens in it happens in isolation from any other environments we can create in the
future (such as a QA environment). So, let's create a vhost named ccm-dev-vhost
as follows:

$ sudo rabbitmqctl add_vhost ccm-dev-vhost

Creating vhost "ccm-dev-vhost" ...

..done.

RabbitMQ comes with a default vhost named / on which the guest
user has full permissions. Though this is convenient for quick tests,
we recommend that you create dedicated vhosts in order to keep
concerns separated so that it is possible to completely drop a vhost
and restart from scratch without unexpected impacts.

As it currently is, neither the ccm-admin nor ccm-dev users have permission to
do anything on ccm-dev-vhost. Let's fix this by giving the vhost full rights on it
as follows:

$ sudo rabbitmqctl set_permissions -p ccm-dev-vhost ccm-admin ".*" ".*"
".*"

Setting permissions for user "ccm-admin" in vhost "ccm-dev-vhost"

...done.

$ sudo rabbitmqctl set_permissions -p ccm-dev-vhost ccm-dev ".*" ".*"
".*"

Setting permissions for user "ccm-dev" in vhost "ccm-dev-vhost"

...done.

What have we just done? Most of the command is straightforward but the
".*" ".*" ".*" part looks a tad mysterious, so let's analyze it. It is a triplet of
permissions for the considered vhost that respectively grant configure, write, and
read permissions on the designated resources for the considered user and vhost.
Resources, which consist of exchanges and queues, are designated by regular
expressions that match their names. Thus, in our case, we are allowing any resource
via the .* regular expression.

The actual commands that are granted depend on the resource type and the
granted permissions. The reader can get a complete list of the access control policies
supported by RabbitMQ at http://www.rabbitmq.com/access-control.html.

A Rabbit Springs to Life

[22]

As an alternative to all command lines, you can also turn to the user management
features of the management console. If you click on the Admin tab of the console
and then on the ccm-dev user listed in the Users tab, you'll see what's shown in the
following screenshot. The entire user configuration you've set from the command
line is visible and editable in the management console.

Details of an individual user in the management console

Summary
A lot of ground was covered in this chapter. We learned about the architectural
and design promises of messaging and how AMQP and RabbitMQ deliver on these
promises. We discovered the reason why Clever Coney Media decided to introduce
RabbitMQ in their software landscape. Finally, we installed and configured a
RabbitMQ broker.

It's time to hit the ground running and write some code. You can now turn to the
next chapter to start building your first RabbitMQ-powered application!

Creating an Application Inbox
Applications that need to use RabbitMQ need to establish a permanent connection to
it. When this connection is established, logical channels can be created and message-
oriented interactions, such as publishing and getting messages, can be performed.
After learning these fundamentals, you'll learn how exchange-routing strategies
determine how messages are delivered to queues. In particular, you will learn about
direct exchange, which delivers messages to a single queue, and topic exchange,
which delivers messages to multiple queues based on pattern-matching routing keys.

In this chapter, we will discuss the following topics:

•	 Establishing a solid connection to RabbitMQ
•	 Working with channels
•	 Publishing messages to RabbitMQ
•	 Getting messages from RabbitMQ
•	 Direct and topic exchanges

Connecting to RabbitMQ
Before delving into the code, let's quickly summarize what Clever Coney Media
(CCM) wants to achieve with RabbitMQ. As said in the previous chapter, it wants
to add an application inbox to allow users of its web application to send messages to
each other. The expected user experience is more like that of an e-mail than instant
messaging, though messages will be transient by definition; once received, it will
not be possible to read it again. Thus, message queuing is a perfect match for it; each
user will have a dedicated message queue where messages will wait until retrieval.

Creating an Application Inbox

[24]

The following diagram illustrates the architecture CCM has in place and where
RabbitMQ will fit in:

HTML CSS

JavaScript

Front-End

Web
Load

Balancer

Application

Server

RabbitMO

Broker

Main

DB

Application

Server

Application

Server

CCM's main application architecture

From what you've learned in Chapter 1, A Rabbit Springs to Life, you need to establish
a physical (network) connection between the application servers and RabbitMQ,
which will multiplex many logical channels. Unlike creating channels, creating
connections is a costly operation, very much like it is with database connections.
Typically, database connections are pooled, where each instance of the pool is used
by a single execution thread. AMQP is different in the sense that a single connection
can be used by many threads through many multiplexed channels. Thus, establishing
a single long-lived connection between each application server and RabbitMQ
should be enough to support the needs of this new feature, until it's proven that it
gets saturated by traffic and multiple connections become a necessity.

So for now, CCM will start with a single connection. Since the Rich Internet
Application is written in Java, we will discover this client API first. According to the
documentation, connecting to RabbitMQ is as simple as the following:

ConnectionFactory factory = new ConnectionFactory();
factory.setUsername(userName);
factory.setPassword(password);
factory.setVirtualHost(virtualHost);
factory.setHost(hostName);
factory.setPort(portNumber);
Connection connection = factory.newConnection();

Chapter 2

[25]

This seems easy enough, but CCM is worried about writing production-grade code,
that is, code that can gracefully handle failures. What if RabbitMQ is not running?
Clearly, it does not want to take their whole application down if this happens. What
if RabbitMQ needs a restart? They also want their application to recover gracefully
when that occurs. In fact, they want their application to keep functioning whether
the whole messaging subsystem is working or not. The user experience will be
altered accordingly.

In summary, the behavior CCM aims at is the following:

•	 The application should start whether a connection to RabbitMQ can be
established or not

•	 If the connection to RabbitMQ is lost, it should reconnect by itself
•	 If the connection is down, sending or fetching messages should fail gracefully

There are ready-made libraries that wrap the RabbitMQ client and make
all this possible, such as Spring AMQP (http://projects.spring.
io/spring-amqp), Mule AMQP (http://www.mulesoft.org/
connectors/amqp-connector), or Beetle (https://github.
com/xing/beetle). CCM wants to learn the basics and underlying
mechanisms for itself and so do we; hence, we will not use any of them in
this book. Consider using them in your projects.

Let's now detail the implementation of the RabbitMqManager class created to
reify this behavior. You will discover it piece by piece and comment it as you go,
as follows:

public class RabbitMqManager implements ShutdownListener
{
 private final static Logger LOGGER =
 Logger.getLogger(RabbitMqManager.class.getName());

 private final ConnectionFactory factory;
 private final ScheduledExecutorService executor;
 private volatile Connection connection;

 public RabbitMqManager(final ConnectionFactory factory)
 {
 this.factory = factory;
 executor = Executors.newSingleThreadScheduledExecutor();
 connection = null;
 }

www.allitebooks.com

http://www.allitebooks.org

Creating an Application Inbox

[26]

The goal of the RabbitMqManager class is to babysit a single connection to
RabbitMQ. Therefore, it keeps a single reference to a Connection instance with a
null value, meaning it is not connected. Because reconnection attempts will be made
asynchronously, in order to avoid mobilizing a thread of the main application, an
executor is created to be able to run asynchronous tasks. The Connection variable is
declared volatile so that it is visible to all threads at all time.

This manager attempts connecting only when its start method is called, so let's now
look into the following code:

public void start()
{
 try
 {
 connection = factory.newConnection();
 connection.addShutdownListener(this);
 LOGGER.info("Connected to " + factory.getHost() + ":" +
 factory.getPort());
 }
 catch (final Exception e)
 {
 LOGGER.log(Level.SEVERE, "Failed to connect to " +
 factory.getHost() + ":" + factory.getPort(), e);
 asyncWaitAndReconnect();
 }
}

What's notable about this code is that it registers the RabbitMqManager class
itself as a listener for connection shutdown events so that its shutdownCompleted
method (which we'll discuss in a moment) is called when something bad happens
to the connection. It also deals with a connection failure on start by calling
asyncWaitAndReconnect, a method that we'll look at right now in the following code:

private void asyncWaitAndReconnect()
{
 executor.schedule(new Runnable()
 {
 @Override
 public void run()
 {
 start();
 }
 }, 15, TimeUnit.SECONDS);
}

Chapter 2

[27]

As you can see, this method simply schedules a restart of the whole
RabbitMqManager class to happen in 15 seconds. Why the wait? The main reason
is that you want to avoid thrashing on reconnection attempts; there's no point in
retrying a reconnection too fast. In fact, a simple exponential back-off strategy could
easily be bolted on this code. Let's now look at the following method called by the
RabbitMQ Java client when something goes sour with the connection:

@Override
public void shutdownCompleted(final ShutdownSignalException cause)
{
 // reconnect only on unexpected errors
 if (!cause.isInitiatedByApplication())
 {
 LOGGER.log(Level.SEVERE, "Lost connection to " +
 factory.getHost() + ":" + factory.getPort(),
 cause);

 connection = null;
 asyncWaitAndReconnect();
 }
}

The important aspects here are that we only try a reconnection if the connection
shutdown was not initiated by the application, which happens on a normal
application termination, and that we reconnect asynchronously in order to avoid
mobilizing the RabbitMQ client thread that called the shutdownCompleted
method. What's left to look at is the stop method that's used to cleanly terminate
RabbitMqManager as follows:

public void stop()
{
 executor.shutdownNow();

 if (connection == null)
 {
 return;
 }

 try
 {
 connection.close();
 }
 catch (final Exception e)
 {

Creating an Application Inbox

[28]

 LOGGER.log(Level.SEVERE, "Failed to close connection", e);
 }
 finally
 {
 connection = null;
 }
}

Again, nothing complex here. After issuing a termination of the executor in charge
of running the reconnection attempts, the connection itself is cleanly disposed of; all
this in the context of Java's verbose but mandatory exception-handling mechanism.
With this in place, connecting to RabbitMQ still looks very much like the example
from the documentation, but now with robustness mixed in as follows:

ConnectionFactory factory = new ConnectionFactory();
factory.setUsername("ccm-dev");
factory.setPassword("coney123");
factory.setVirtualHost("ccm-dev-vhost");
factory.setHost("localhost");
factory.setPort(5672);

RabbitMqManager connectionManager = new RabbitMqManager(factory);
connectionManager.start();

Establishing a connection is the basis for doing anything with RabbitMQ; however,
the real work happens in channels. Let's see what CCM came up with in that matter.

Working with channels
The Channel instances are created by the Connection object; therefore, the logical
location to place the channel creation logic is in RabbitMqManager, as follows:

public Channel createChannel()
{
 try
 {
 return connection == null ? null : connection.createChannel();
 }
 catch (final Exception e)
 {
 LOGGER.log(Level.SEVERE, "Failed to create channel", e);
 return null;
 }
}

Chapter 2

[29]

Again, this is quite simple; if anything goes awry when creating a channel, the
method returns null. This is in line with what CCM desires, to shield the application
from any RabbitMQ-related failures. Instead of dealing with exceptions coming from
the messaging subsystem, it will just have to deal with potential null values. In
the same spirit, the disposal of channels is delegated to a method that takes care of
potential exceptions as follows:

public void closeChannel(final Channel channel)
{
 // isOpen is not fully trustable!
 if ((channel == null) || (!channel.isOpen()))
 {
 return;
 }

 try
 {
 channel.close();
 }
 catch (final Exception e)
 {
 LOGGER.log(Level.SEVERE, "Failed to close channel: " +
 channel, e);
 }
}

Note that the isOpen method can't be fully trusted; another thread may close the
channel after this check is done. So, the call to the close method could still fail
because the channel might have closed already.

Though channel instances are technically thread safe, it is
strongly recommended that you avoid having several threads
using the same channel concurrently.

Realizing that the "open channel, do something with the channel, close channel"
scenario may occur regularly in the code, CCM decides to support it by creating
some code artifacts. It first creates an interface that defines what the contract for this
pattern should be, as follows:

public interface ChannelCallable<T>
{
 String getDescription();

 T call(Channel channel) throws IOException;
}

Creating an Application Inbox

[30]

Then, it adds a method to RabbitMqManager in order to execute such a
ChannelCallable instance, as follows:

public <T> T call(final ChannelCallable<T> callable)
{
 final Channel channel = createChannel();

 if (channel != null)
 {
 try
 {
 return callable.call(channel);
 }
 catch (final Exception e)
 {
 LOGGER.log(Level.SEVERE, "Failed to run: " +
 callable.getDescription() + " on channel: " +
 channel, e);
 }
 finally
 {
 closeChannel(channel);
 }
 }

 return null;
}

Again, the invoker of this call method will be shielded from any error that could
stem from the messaging layer; it will just receive null if something goes wrong.
Notice how the ChannelCallable description is used in the log message. The
guiding principle here is that you should always provide as much contextual
information as possible when something goes wrong.

CCM is quite happy with its core infrastructure code. It is now able to connect to a
RabbitMQ broker, open a channel, and issue a series of commands, all in a
thread-safe and exception-safe manner. It's now time to build on this foundation!

Chapter 2

[31]

Building the inbox
If you remember the discussion about AMQP in Chapter 1, A Rabbit Springs to
Life, messages are published to exchanges from where they get routed to queues,
ready to be consumed. A routing strategy determines which queue (or queues) the
message will be routed to. The routing strategy bases its decision on a routing key
(a free-form string) and potentially on message meta-information. In the case of the
user-to-user messaging system considered here, one message needs to be routed
to the queue acting as the inbox of the addressee. Therefore, the exchange-routing
strategy that needs to be used is the direct one, which matches the destination queue
name with the routing key used when the message is produced, as illustrated in the
following figure:

User-inbox.123

User-inbox.456

User-inbox.789

Direct

Exchange
Publisher

User-inbox.123

User-inbox.456

User-inbox.789

The direct exchange route messages to specific queues

To tie the messaging logic in its application, CCM will piggyback an existing
polling mechanism that's already in place between the JavaScript frontend and the
Java backend. This is not the most efficient approach, and in fact it will be reviewed
as you'll soon find out, but it's the easiest way for it to get started and roll out the
feature in the best time frame. The following figure shows how the frontend poll
will be used to fetch messages from the user's inbox and a regular AJAX call will
be used to send a new message. Messages themselves will be represented as JSON
objects (refer to Appendix, Message Schemas, for the formal specification of these
JSON messages).

Creating an Application Inbox

[32]

They will contain meta-information such as timestamp, sender, and receiver IDs on
top of the text contents of the message itself, as shown in the following diagram:

HTML CSS

JavaScript

Front-End

Application

Server

JSON

HTTP

JSON

HTTP

Poller Fetch

Messages

Send

Message

The frontend/backend interactions of CCM's main application

Let's follow the code CCM has created to roll this feature out and learn about the
different concepts at the same time. It's created a UserMessageManager class to
encapsulate all the operations related to this particular feature:

public class UserMessageManager
{
 static final String USER_INBOXES_EXCHANGE = "user-inboxes";

 @Inject
 RabbitMqManager rabbitMqManager;

 public void onApplicationStart()
 {
 rabbitMqManager.call(new ChannelCallable<DeclareOk>()
 {
 @Override
 public String getDescription()
 {
 return "Declaring direct exchange: " +
 USER_INBOXES_EXCHANGE;
 }

 @Override
 public DeclareOk call(final Channel channel)
 throws IOException
 {
 String exchange = USER_INBOXES_EXCHANGE;

Chapter 2

[33]

 String type = "direct";
 // survive a server restart
 boolean durable = true;
 // keep it even if nobody is using it
 boolean autoDelete = false;
 // no special arguments
 Map<String, Object> arguments = null;

 return channel.exchangeDeclare(exchange, type,
 durable, autoDelete, arguments);
 }
 });
 }

After receiving the RabbitMqManager instance via the dependency injection, it's
created an onApplicationStart method that, as its name suggests, gets called
every time the application server starts. All this method does is declare the exchange
where the user-to-user messages are published to. Why do we do this on start? This
is because it's a fundamental requirement of the user-to-user messaging subsystem; if
the exchange doesn't exist, attempts to publish messages to it will raise exceptions.

Channels are killed by exceptions—in our case, sending to a
nonexistent exchange would not only raise an exception, it will also
terminate the channel where the error occurred. Any subsequent code
that tries to use the terminated channel will fail too. Thus, do not be
surprised to see cascades of failures when something goes wrong.

Notice that the method to create the exchange is called declare not create—this is
to suggest that if the exchange already exists, it will do nothing; otherwise, it will
actually create it. This is why it's safe to declare this every time the application starts.
Also, it would be an overkill to do it when every message is sent, so the application
start is the best time to do it.

Besides using the direct type, we also configure the durable, autoDelete, and
arguments properties of the exchange. We do not want this exchange to go away
after a restart of RabbitMQ, nor when it's not being used anymore; hence, the values
we've used.

An exchange declaration is idempotent only if the exchange properties
are the same. Trying to declare an already existing exchange with
different properties will fail. Always use consistent properties in your
exchange declaration. If you need to change the properties, you'll need
to delete the exchange before declaring it with the new properties. The
same rule applies to a queue declaration.

Creating an Application Inbox

[34]

After creating the exchange, the next thing we want to do is to have the user inbox
queue created and bound to the exchange. The following is how we do it:

public void onUserLogin(final long userId)
{
 final String queue = getUserInboxQueue(userId);

 rabbitMqManager.call(new ChannelCallable<BindOk>()
 {
 @Override
 public String getDescription()
 {
 return "Declaring user queue: " + queue + ",
 binding it to exchange: "
 + USER_INBOXES_EXCHANGE;
 }

 @Override
 public BindOk call(final Channel channel)
 throws IOException
 {
 return declareUserMessageQueue(queue, channel);
 }
 });
}

private BindOk declareUserMessageQueue(final String queue,
 final Channel channel) throws IOException
{
 // survive a server restart
 boolean durable = true;
 // keep the queue
 boolean autoDelete = false;
 // can be consumed by another connection
 boolean exclusive = false;
 // no special arguments
 Map<String, Object> arguments = null;
 channel.queueDeclare(queue, durable, exclusive,
 autoDelete, arguments);

 // bind the addressee's queue to the direct exchange
 String routingKey = queue;
 return channel.queueBind(queue, USER_INBOXES_EXCHANGE,
 routingKey);
}

Chapter 2

[35]

Every time a user logs in on the system, the application calls onUserLogin. After
getting the addressee's queue name from getUserInboxQueue (merely "user-
inbox." + userId), it then calls declareUserMessageQueue (you'll soon
understand why the method is split in half). In this method, the queue is declared
with an approach that's really similar to how it's done for an exchange, but with
slightly different properties, as follows:

•	 durable: This is true because you want the queue to stay declared even after
a broker restart

•	 autoDelete: This is false because you want to keep the queue even if it's not
being consumed anymore

•	 exclusive: This is false because you want this queue to be consumable by
other connections (remember we have several application servers connected
to RabbitMQ; hence, the queue will be accessed from different connections)

•	 arguments: This is null because you don't need to custom configure
the queue

Then the queue is bound to the exchange using its own name as the routing key
so that the direct routing strategy can route messages to it. When this is done,
publishing messages to the user-inboxes exchange will actually deliver messages to
the user queue whose name matches the published routing key.

If no queue is bound to an exchange or if the routing strategy
can't find a matching destination queue, the message published
to the exchange will be discarded silently. It's possible to
optionally be notified when unroutable messages are discarded,
as we will see in subsequent chapters.

Again, when the same properties are used, these operations are idempotent, so we
can safely declare the queue and bind it to the exchange again and again, each time a
user logs in.

Sending user messages
Now let's look at the method of UserMessageManager that's in charge of
sending messages:

static final String MESSAGE_CONTENT_TYPE = "application/vnd.ccm.pmsg.
v1+json";
static final String MESSAGE_ENCODING = "UTF-8";

public String sendUserMessage(final long userId,
 final String jsonMessage)

www.allitebooks.com

http://www.allitebooks.org

Creating an Application Inbox

[36]

{
 return rabbitMqManager.call(new ChannelCallable<String>()
 {
 @Override
 public String getDescription()
 {
 return "Sending message to user: " + userId;
 }

 @Override
 public String call(final Channel channel)
 throws IOException
 {
 String queue = getUserInboxQueue(userId);

 // it may not exist so declare it
 declareUserMessageQueue(queue, channel);

 String messageId = UUID.randomUUID().toString();

 BasicProperties props = new BasicProperties.Builder()
 .contentType(MESSAGE_CONTENT_TYPE)
 .contentEncoding(MESSAGE_ENCODING)
 .messageId(messageId)
 .deliveryMode(2)
 .build();

 String routingKey = queue;

 // publish the message to the direct exchange
 channel.basicPublish(USER_INBOXES_EXCHANGE,
 routingKey, props,
 jsonMessage.getBytes(MESSAGE_ENCODING));

 return messageId;
 }
 });
}

Chapter 2

[37]

Now, you should understand why the declareUserMessageQueue method was
extracted from onUserLogin:. We are calling it in sendUserMessage every time
one user sends a message to another. Why on earth are we doing that? Haven't we
already declared and bound the user queue on login? Well, maybe and maybe not;
there is no guarantee that the addressee has ever logged into the system, so as far
as the sender is concerned, it's impossible to be sure the destination queue exists.
Thus, the safest path is to declare it on every message sent, bearing in mind that
this declare operation is idempotent, so it will not do anything if the queue already
exists. It may seem strange at first, but it's the sender's responsibility to ensure the
addressee's queue exists if they want to be sure the message will not be lost.

This is a common pattern with AMQP; when there is no strong
happens before relationship between events, idempotent re-
declaration is the way to go. Conversely, the check, then act pattern
is discouraged; trying to check the pre-existence of an exchange
or a queue can't give any guarantee of success in the typical
distributed environment where AMQP is used.

The method for publishing a message is very simple. You call basicPublish
towards the user-inboxes exchange, using the queue name as the routing key (as
per the direct routing), some optional message properties, and an array of bytes
that represent the actual message payload. Let's detail the message properties we've
associated with the message as follows:

•	 contentType: Because a message is published, thus consumed as a byte
array, nothing really says what these bytes represent. Sure, in our current
situation, both publishers and consumers are in the same system, in the
same class too, so you could implicitly assume the content type is what we
expect. This said, the reason we always specify a content type is that we
want messages to be self-contained; whichever system ends up receiving or
introspecting a message will know for sure what the byte array it contains
represents. Moreover, by embedding a version number in the content type
(application/vnd.ccm.pmsg.v1+json), we future-proof the system in case
we later decide to alter the JSON representation of messages.

•	 contentEncoding: You use a specific encoding (UTF-8) when you serialize
string messages into byte arrays so that they can be published. Again, in
order for the messages to be self-explicit, we provide all the necessary meta-
information to allow reading them.

Creating an Application Inbox

[38]

•	 messageID: As you will see later in the book, message identifiers are an
important aspect of traceability in messaging and distributed applications.
For now, let us just say that you want each message to have a unique
identifier, hence the usage of a UUID for generating such an identifier.

•	 deliveryMode: This is probably the most mysterious parameter as it is set
to 2. The AMQP specification defines the value for this property as follows:
for Non-persistent it is set to 1 and for Persistent it is set to 2. Now it's
clearer! Indeed, you want a guarantee that the RabbitMQ broker will write
the message to the disk so that it won't be lost, no matter what.

Do not confuse exchange and queue durability with message
persistence; non-persistent messages stored in a durable queue will be
gone after a broker restart, leaving you with an empty queue.

But what would happen if the sending of the user message fails for example, if
the connection with RabbitMQ is broken? In that case, the sendUserMessage class
will return null and it will be up to the caller to deal with the issue. In your case,
you will simply inform the end user that the messaging application is currently
experiencing issues.

Why would you ever use a non-persistent delivery mode? Isn't the whole
point of a message broker such as RabbitMQ to guarantee that messages
aren't lost? This is true, but there are circumstances where this guarantee
can be relaxed. Consider a scenario where a fire hose-like publisher
bombards the broker with a deluge of noncritical messages. In that case,
using a non-persistent delivery would spare accessing the host machine's
disk, resulting in elevated performances.

Before going any further, let's take a look at the structure of an AMQP message.

AMQP message structure
The following figure illustrates the structure of an AMQP message where you will
recognize the four properties we've just used and discover a few more. Note that
this figure uses the specification name of the fields; each language implementation
renames them slightly so they can be valid names, for example, content-type
becomes contentType in Java.

Chapter 2

[39]

properties:

content-type::string

content-encoding::string

delivery-mode::1|2

priority::0-9

correlation-id::string

reply-to::string

expiration::string

message-id::string

timestamp::timestamp

type::string

user-id::string

app-id::string

reserved::null

headers::map[string,object]

AMQP Message

body:byte[]

Structure of an AMQP message

Except the reserved one, all these properties are free to use and, unless otherwise
specified, are ignored by the AMQP broker. In the case of RabbitMQ, the only field
that is supported by the broker is the user-id field, which is validated to ensure it
matches the name of the broker user that established the connection to the broker.
Notice how the headers property allows you to add extra key-value pairs in case
none of the standard properties fit your needs.

Fetching user messages
We can now turn our attention to the method in UserMessageManager that's in
charge of retrieving messages. Remember that you're piggybacking a poll request
that the frontend regularly sends to the application; therefore, you will retrieve
the messages from the user inbox queue in a synchronous manner, holding the
application thread in charge of dealing with the poll requests until you've removed
all the pending messages from the queue. The channel method to use for this is
called basicGet. Let's see it in action as follows:

public List<String> fetchUserMessages(final long userId)
{
 return rabbitMqManager.call(new ChannelCallable<List<String>>()
 {
 @Override
 public String getDescription()
 {
 return "Fetching messages for user: " + userId;
 }
 @Override
 public List<String> call(final Channel channel)

Creating an Application Inbox

[40]

 throws IOException
 {
 List<String> messages = new ArrayList<>();

 String queue = getUserInboxQueue(userId);
 boolean autoAck = true;

 GetResponse getResponse;

 while ((getResponse = channel.basicGet
 (queue, autoAck)) != null)
 {
 final String contentEncoding =
 getResponse.getProps().getContentEncoding();
 messages.add(new String
 (getResponse.getBody(), contentEncoding));
 }

 return messages;
 }
 });
}

In the preceding method, you can assume that the user queue exists, and thus, that
you can safely get messages from it. This is a reasonable assumption as this method
will always be called after onUserLogin has been called for the user, leading to the
pre-existence of the queue. Notice how basicGet is called repeatedly until a null
response is received, which means the queue is empty. Notice also how you use the
content encoding from the received message properties to build a string out of the
body's byte array.

One thing remains unclear: what is this autoAck flag about? AMQP brokers rely
on client-side acknowledgement for the certainty that a message has been correctly
received and can now be permanently destroyed from the broker storage. It is
therefore up to the consumer to acknowledge a message if and only if it is done
with processing, or if they are certain that there is no risk of losing it if it processes
asynchronously. In our case, since the risk of losing a message is acceptable,
you do not manually acknowledge messages. Instead, you inform the broker to
consider them as acknowledged as soon as we get them (you'll look into manual
acknowledgement further in the book).

And that is it! You now have a working user inbox ready to be tested. Sure, it is not
extremely fast (we rely on polls) and is wasteful in resources (a channel is created
and closed on each poll). However, all in all it works, it doesn't leak resources, and
it can recover gracefully from a RabbitMQ broker restart. Let's take a look at the
management console when running the application with a dozen simulated users.

Chapter 2

[41]

Seeing it run
With the application running on a pair of servers connected to RabbitMQ, you can
see the following established connections from the management console:

The management console provides connection information

As expected, one connection per application server has been established. Notice how
the upstream and downstream network throughputs are clearly represented. What
about channels? Because they get opened and closed very quickly, it's actually hard
to see any from the management console. With our current architecture, they just
don't stay long enough to be rendered on the user interface of the console. So let's
look at the following exchanges:

The user-inbox direct exchange shows up in the management console

Creating an Application Inbox

[42]

You can see the user exchange and the rate of messages coming in and out of it.
Their being consumed as fast as they come in is a good sign as it means the current
architecture is sufficient for our needs and messages are not piling up. However,
what are all these other exchanges that we can see here? Clearly, we haven't created
them by code, so they should be coming from somewhere. Indeed, the nameless
exchange represented as (AMQP default) and all the exchanges whose names start
with amq. are defined by the AMQP specification and, as such, must be provided by
default by RabbitMQ. Now, what about queues? Let's have a look at them:

Each user-to-user inbox queue is visible in the management console

As expected, you see one queue per user and some nifty usage statistics. Notice
how the ack column is empty. This should be no surprise to you if you remember
what we've said about message acknowledgement. You're receiving messages while
letting RabbitMQ know we won't be acknowledging them; thus, there's no activity
related to acknowledging messages!

Do not fear the multiplication of queues; with enough RAM, a
RabbitMQ can deal with hundreds of thousands of queues and
bindings without flinching.

Chapter 2

[43]

Confident about its architecture and implementation, CCM rolls out the user-to-user
messaging subsystem to production. It's an immediate success. Users actually want a
new feature added to it: the capacity to send a message to a group of users. Let's see
how we're going to implement this new feature with RabbitMQ.

Adding topic messages
CCM's application allows users to organize themselves in groups by registering
their topics of interest. The new message feature we want to roll out will allow a
user to send a message to all users interested in a particular topic. It turns out that
this feature matches a specific exchange routing rule, not surprisingly called topic!
This type of exchange allows the routing of message to all the queues that have been
bound with a routing key that matches the routing key of the message. So, unlike the
direct exchange that routes a message to at the most one queue, the topic exchange
can route it to multiple queues.

The topic exchange supports strict routing key matching and also
wild-card matching using * and # as respective placeholders for
exactly one word and zero or more words. Words are delimited
by dots, so even if routing keys are of free form, RabbitMQ will
interpret dots in them as word separators. It's a good practice to
structure routing keys from the most general element to the most
specific one, such as news.economy.usa.

The following figure illustrates how the topic exchange will be used in CCM's
application. In the following figure, notice how the single inbox queue remains
unchanged but simply gets connected to the topic exchange via extra bindings, each
of them reflecting the subject of interest of a user:

user-inbox.123

user-inbox.456

user-inbox.789

Publisher
Topic

Exchange

politics

science

sports

politics

The topic exchange sending thematic messages to users' queues

Creating an Application Inbox

[44]

Because you use the same inbox for everything, the code for fetching messages that
is already in place doesn't need to be changed. In fact, this whole feature can be
implemented with only a few additions. The first of these additions takes care of
declaring the topic exchange in the existing onApplicationStart method as follows:

rabbitMqManager.call(new ChannelCallable<DeclareOk>()
{
 @Override
 public String getDescription()
 {
 return "Declaring topic exchange: " +
 USER_TOPICS_EXCHANGE;
 }

 @Override
 public DeclareOk call(final Channel channel)
 throws IOException
 {
 final String exchange = USER_TOPICS_EXCHANGE;
 final String type = "topic";
 // survive a server restart
 final boolean durable = true;
 // keep it even if not in user
 final boolean autoDelete = false;
 // no special arguments
 final Map<String, Object> arguments = null;

 return channel.exchangeDeclare(exchange, type, durable,
 autoDelete, arguments);
 }
});

Nothing really new or fancy here; the main difference with the direct exchange you
previously declared is that this exchange is named user-topics and is of the type
topic. Sending a message is even simpler than with the user-to-user feature because
there is no attempt to create the addressee's queue; it wouldn't make sense for the
sender to iterate through all the users to create and bind their queues. Only users
already subscribed to the target topic at the time of sending will get the message,
which is exactly the expected functionality. The sendTopicMessage method is
listed hereafter:

public String sendTopicMessage(final String topic, final String
message)
{
 return rabbitMqManager.call(new ChannelCallable<String>()

Chapter 2

[45]

 {
 @Override
 public String getDescription()
 {
 return "Sending message to topic: " + topic;
 }

 @Override
 public String call(final Channel channel) throws IOException
 {
 String messageId = UUID.randomUUID().toString();

 BasicProperties props = new BasicProperties.Builder()
 .contentType(MESSAGE_CONTENT_TYPE)
 .contentEncoding(MESSAGE_ENCODING)
 .messageId(messageId)
 .deliveryMode(2)
 .build();

 // publish the message to the topic exchange
 channel.basicPublish(USER_TOPICS_EXCHANGE, topic, props,
message.getBytes(MESSAGE_ENCODING));

 return messageId;
 }
 });
}

Except the difference that you will now publish to the user-topics exchange, the
rest of the code that creates and publishes the message is exactly the same as the
user-to-user messaging. Lastly, we need to add the following method to let the
application inform the UserMessageManager when a user subscribes or unsubscribes
from certain topics:

public void onUserTopicInterestChange(final long userId,
 final Set<String> subscribes,
 final Set<String> unsubscribes)
{
 final String queue = getUserInboxQueue(userId);

 rabbitMqManager.call(new ChannelCallable<Void>()
 {
 @Override
 public String getDescription()
 {

www.allitebooks.com

http://www.allitebooks.org

Creating an Application Inbox

[46]

 return "Binding user queue: " + queue + " to exchange: " +
USER_TOPICS_EXCHANGE + " with: "
 + subscribes + ", unbinding: " + unsubscribes;
 }

 @Override
 public Void call(final Channel channel) throws IOException
 {
 for (String subscribe : subscribes)
 {
 channel.queueBind(queue,
 USER_TOPICS_EXCHANGE, subscribe);
 }

 for (String unsubscribe : unsubscribes)
 {
 channel.queueUnbind(queue,
 USER_TOPICS_EXCHANGE, unsubscribe);
 }

 return null;
 }
 });
}

Why do we give the responsibility of managing the users' subscription state to the
application? Why can't onUserTopicInterestChange be self-contained? The reason
is that the AMQP specification does not provide any means to introspect the current
bindings of a queue. Therefore, it is not possible to iterate them in to remove the
ones not needed anymore in order to reflect a change in a user's topics of interest.
This is not a terrible concern because the application is required to maintain this
state anyway; it just needs to be sure to inform UserMessageManager when a user's
interests change.

The RabbitMQ management console exposes a REST API that can
be used to perform queue binding introspection, among other many
other features not covered by the AMQP specification.

With this new code in place, everything works as expected. No code change is
needed to retrieve messages because they arrive in the same inbox queue as the user-
to-user messages. Indeed, topical messages are sent and received correctly by users,
and all this with a minimal change and no increase in the number of queues. When
connected to the management console, click on the Exchanges tab; the only visible
difference is the new exchange topic user-topics.

Chapter 2

[47]

The user-topics topic exchange is showing on the management console

Summary
In this chapter, you learned about connecting to RabbitMQ and sending
and receiving messages. You also discovered the direct and topic exchanges
and put them into motion in the context of CCM's user-to-user and group
messaging features.

In the next chapter, we're going to up the ante. CCM will increase responsiveness
of the messaging system by switching to server-push and then keep rolling out new
features on it.

Switching to Server-push
In the previous chapter, you learned how to connect to and get messages from
RabbitMQ. Though receiving messages synchronously works perfectly, messages
can be "pushed" from RabbitMQ directly to an application consumer for greater
efficiency, as you'll discover in this chapter. In the process, you'll also learn how
message consumers can either manually acknowledge messages or receive the
messages without acknowledgements, the former allowing a zero-message loss
design. Finally, you'll be acquainted with the fanout exchange, which routes
messages to all queues bound to it, irrespective of the routing keys.

In this chapter, you will learn about the following topics:

•	 Consuming messages from queues
•	 Manually acknowledging messages
•	 The fanout exchange

Moving beyond polling
Clever Coney Media is enjoying the application inbox feature that was rolled out
in the previous chapter. Users enjoy it very much as well. Everything works fine
except for the fact that the frontend regularly polling the backend for messages is
starting to take its toll in terms of load, meaning it has begun to suffer performance
degradation. Granted, the slow polling mechanism that was initially in place
between the frontend and the backend was not designed to perform more than a
basic ping. A better approach is needed.

Switching to Server-push

[50]

CCM decides to re-architect the solution in favor of a server-push approach.
The idea is to server-push messages to the users' browsers whenever a message
is available, instead of regularly polling to fetch a message or, more often than
not, nothing. The good news is that there is a technology perfect for this use case:
WebSocket. Well supported by modern browsers, this protocol has the advantage of
being full-duplex, which means that messages will be able to flow in both directions.
Therefore, each frontend to backend WebSocket connection will be used both to
server-push messages back to users and also for users to send messages to the server.
This is illustrated in the following figure:

HTML CSS
JavaScript
Front-End

Application
Server

JSON
WebSocket

Bi-directional
Message

Push

WebSocket-based server-push architecture

It is important to note that both server-push and poller-based mechanisms can
coexist pacifically. Indeed, CCM will keep the AJAX endpoint currently used by the
poller mechanism in order to support older or less capable browsers. The idea is
that if a WebSocket connection can't be established, the frontend will revert to the
polling mechanism.

You can learn more about the WebSocket protocol at
http://tools.ietf.org/html/rfc6455.

Let's now follow CCM as it rolls out server-push.

Consuming queues
The following diagram illustrates the interactions between the client and server
WebSocket peers and the RabbitMQ exchanges and queues:

Chapter 3

[51]

Client
WebSocket

Direct
Exchange

Publish

Subscribe

Topic
Exchange

User Queue

PublishServer
WebSocket

The client and server WebSockets connecting

In the previous diagram, the publication of messages towards the direct exchange
for user-to-user messages, and the topic exchange for group messages, is not
different than before. What is different is that instead of getting the messages from
RabbitMQ queues, you will consume them. What's the difference? When you
consume messages, you register a listener that new messages arriving in the queue
will be automatically delivered to. So, unlike the synchronous basicGet operations
you were performing before, you will now be using an asynchronous consumer to
receive the queued messages.

Since you're still working on the CCM's application server that is in Java, you will
look at RabbitMQ's Java API. Registering a queue consumer is as simple as follows:

channel.basicConsume(queue, autoAck, consumer)

Here, the consumer is an implementation of the com.rabbitmq.client.Consumer
interface. The interface defines the contract between a queue consumer and
RabbitMQ. It sports several methods, some related to receiving error notifications,
but the main method you will focus on is the following:

void handleDelivery(String consumerTag,
 Envelope envelope,
 AMQP.BasicProperties properties,
 byte[] body)
 throws IOException;

The handleDelivery method is called whenever a message is received from the
queue. Hence, when this method is called, you will want to push the message back to
the frontend via the WebSocket server.

Switching to Server-push

[52]

The RabbitMQ Java client comes with a handy default
implementation of the com.rabbitmq.client.Consumer interface
named com.rabbitmq.client.DefaultConsumer. Use it and
override only the methods you are interested in.

The consumer is bound to the channel that was used to consume a particular queue.
If this channel is closed, the consumer will stop receiving messages. Since a channel
cannot be reopened and has to be recreated from scratch, the implication is that
both the channel and its consumer must be re-established in case of problems. CCM
decides to tackle this problem by wrapping the consumer in a class that supports the
reconnection mechanism.

Creating a consumer subscription wrapper
CCM decides to create a Subscription class to represent a user subscription to
its own queue while supporting the possibility of being reconnected. Let's now
progressively unfold this class and comment it as we go:

public class Subscription
{
 private final static Logger LOGGER = Logger.
getLogger(Subscription.class.getName());

 private final String queue;
 private final SubscriptionDeliverHandler handler;

 private volatile DefaultConsumer consumer;

 public Subscription(final String queue, final
 SubscriptionDeliverHandler handler)
 {
 this.queue = queue;
 this.handler = handler;
 }

The state that the Subscription class will encapsulate consists of the following:

•	 queue: This is the queue name that will be consumed to receive
user messages

•	 handler: This is the callback that will be called when a message arrives
•	 consumer: This is the instance of the consumer, when connected to a

channel, declared volatile so it can safely be re-created by another thread

Chapter 3

[53]

At this point, you're probably wondering what the SubscriptionDeliveryHandler
interface look like. It is as follows:

public interface SubscriptionDeliverHandler
{
 void handleDelivery(Channel channel,
 Envelope envelope,
 AMQP.BasicProperties properties,
 byte[] body);
}

As you can see, the preceding code exposes only a handleDelivery method, which
is very similar to the one from RabbitMQ's Consumer interface (see http://bit.ly/
rmqconsumer), but provides channel instead of consumerTag. For now, let's just say
that CCM doesn't need consumerTag but needs the current channel. You'll soon find
out why. For now, let's keep on with our discovery of the Subscription class. First,
let's look at what happens when it's starting:

public String start(final Channel channel) throws IOException
{
 consumer = null;

 if (channel != null)
 {
 try
 {
 consumer = new DefaultConsumer(channel)
 {
 @Override
 public void handleDelivery(final String
 consumerTag,
 final Envelope envelope,
 final BasicProperties properties,
 final byte[] body) throws IOException
 {
 handler.handleDelivery(channel, envelope,
 properties, body);
 }

 };

 final boolean autoAck = false;
 final String consumerTag = channel.basicConsume
 (queue, autoAck, consumer);

Switching to Server-push

[54]

 LOGGER.info("Consuming queue: " + queue + ": with tag:
 " + consumerTag + " on channel: "
 + channel);

 return consumerTag;
 }
 catch (final Exception e)
 {
 LOGGER.log(Level.SEVERE, "Failed to start consuming queue:
" + queue, e);
 consumer = null;
 }
 }

 return null;
}

The notable bits, hidden in Java's typical error-handling drama, are as follows:

•	 On start, a fresh channel instance is provided
•	 RabbitMQ's DefaultConsumer keeps a reference to this channel
•	 Its handleDelivery method is directly wired to CCM's own version of

handleDelivery in the configured handler
•	 The automatic acknowledgment of messages is turned off (we'll discuss

why soon)
•	 basicConsume is the channel method in charge of establishing a consumer

instance as the listener of a queue's messages
•	 The consumer field is nullified if the subscription hasn't been activated

Let's delve into the stop method right away, as follows:

public void stop()
{
 final Channel channel = getChannel();
 if (channel == null)
 {
 return;
 }

 LOGGER.log(Level.INFO, "Stopping subscription: " + this);

 try
 {
 channel.basicCancel(consumer.getConsumerTag());

Chapter 3

[55]

 }
 catch (final Exception e)
 {
 LOGGER.log(Level.SEVERE, "Failed to cancel subscription: "
 + this, e);
 }

 try
 {
 channel.close();
 }
 catch (final Exception e)
 {
 LOGGER.log(Level.SEVERE, "Failed to close channel: "
 + channel, e);
 }
 finally
 {
 consumer = null;
 }
}

There's not much to it really. With lots of fail-safe mechanisms, this method firstly
cancels the active consumer so RabbitMQ stops delivering messages to it, before
closing the current channel and nullifying the consumer field. Note that the current
channel is extracted from the current consumer via the getChannel method as follows:

public Channel getChannel()
{
 return consumer == null ? null : consumer.getChannel();
}

You're almost done with this class. Let's take a look at the last two methods:

@Override
protected void finalize() throws Throwable
{
 stop();
}

@Override
public String toString()
{
 final ToStringHelper tsh = Objects.toStringHelper(this).
addValue(hashCode()).add("queue", queue);
 if (consumer != null)

www.allitebooks.com

http://www.allitebooks.org

Switching to Server-push

[56]

 {
 tsh.add("channel", getChannel());
 tsh.add("consumerTag", consumer.getConsumerTag());
 }
 return tsh.toString();
}

The finalize method is overridden to ensure that the subscription is closed if for
any reason, the class gets garbage collected before stop is properly called. Because
the stop method is idempotent, it's fine to call it several times. The toString method
is overridden to provide a nice textual rendering of the Subscription class.

Good production-grade systems produce meaningful log entries; strive to
give enough contexts when you log events in order to simplify forensics
when something goes wrong, or during development to allow you to
trace the execution across multiple classes and threads.

The Subscription class by itself is not enough to ensure the robustness of the
system because it doesn't contain any reconnection logic. Therefore, its instances
must be "babysat" by an external entity. Let's see how this is done.

Babysitting subscriptions
Being the channel factory of your application, the RabbitMqManager class is the
natural factory for Subscription instances. Because it creates the subscription
and because it takes care of handling connection issues and reconnections, the
RabbitMqManager class is the most appropriate entity for babysitting Subscription
instances. The following is how subscriptions are created:

private final Set<Subscription> subscriptions;

public RabbitMqManager(final ConnectionFactory factory)
{
 // ... existing code omitted

 subscriptions = synchronizedSet(new HashSet<Subscription>());
}

public Subscription createSubscription(final String queue, final
SubscriptionDeliverHandler handler)
{
 final Subscription subscription = new Subscription
 (queue, handler);
 subscriptions.add(subscription);

Chapter 3

[57]

 startSubscription(subscription);
 return subscription;
}

private void startSubscription(final Subscription subscription)
{
 final Channel channel = createChannel();

 if (channel != null)
 {
 try
 {
 subscription.start(channel);
 }
 catch (final Exception e)
 {
 LOGGER.log(Level.SEVERE, "Failed to start
 subscription: " + subscription + " on channel: "
 + channel, e);
 }
 }
}

What is interesting to note is that whether the start operation succeeds or not, a
Subscription instance will be provided to the caller of createSubscription. This
opens the door for graceful and transparent reconnections. So how does reconnection
actually work? If you remember from the previous chapter, it's the start method of
the RabbitMqManager that gets called when a reconnection attempt occurs. The only
change that was needed to this method was to add a call to restartSubscriptions,
which is reproduced after the following:

private void restartSubscriptions()
{
 LOGGER.info("Restarting " + subscriptions.size() + "
subscriptions");

 for (final Subscription subscription : subscriptions)
 {
 startSubscription(subscription);
 }
}

That's it. You can now tie the WebSocket server endpoint with the
subscription mechanism.

Switching to Server-push

[58]

Tying into the WebSocket endpoint
You first need to refactor the UserMessageManager class to expose variants of
sendUserMessage and sendTopicMessage that take a channel argument. Indeed,
since you will have an active channel associated with a subscription, you will use it
not only to consume messages, but also to produce them.

Channels are full duplex, which means that one channel can be used
for both publishing and consuming messages.

On top of these basic refactorings, you also need to add the following to the
UserMessageManager method to allow creating a subscription for a particular
user inbox:

public Subscription subscribeToUserInbox(final long userId, final
SubscriptionDeliverHandler handler)
{
 final String queue = getUserInboxQueue(userId);
 return rabbitMqManager.createSubscription(queue, handler);
}

CCM uses a JSR-356-compliant implementation of server-side WebSocket in its
Java application backend. In this model, an application has to expose WebSocket
endpoints, so CCM will create one endpoint dedicated to user messaging.

Here is a good introduction to JSR-356, the Java API for WebSocket:
http://www.oracle.com/technetwork/articles/java/
jsr356-1937161.html.

We will look at the main methods of UserMessageServerEndpoint, keeping in mind
that WebSocket authentication will not be discussed. Let's first look at what happens
when a user browser connects to the WebSocket server:

@OnOpen
public void startSubscription(@PathParam("user-id") final long
 userId, final Session session)
{
 session.setMaxIdleTimeout(0);

 final Subscription subscription =
 userMessageManager.subscribeToUserInbox(userId,
 new SubscriptionDeliverHandler()
 {
 @Override

Chapter 3

[59]

 public void handleDelivery(final Channel channel,
 final Envelope envelope,
 final BasicProperties properties,
 final byte[] body)
 {
 try
 {
 final String contentEncoding =
 properties.getContentEncoding();
 session.getBasicRemote().sendText(new String
 (body, contentEncoding));
 channel.basicAck(envelope.getDeliveryTag(),
 false);
 }
 catch (final Exception e)
 {
 LOGGER.log(Level.SEVERE,
 "Failed to push over websocket message ID: " +
 properties.getMessageId(), e);

 try
 {
 final boolean requeue = true;
 channel.basicReject(envelope.getDeliveryTag(),
 requeue);
 }
 catch (final Exception e2)
 {
 LOGGER.log(Level.SEVERE,
 "Failed to reject and requeue message ID:
 " + properties.getMessageId(), e);
 }
 }
 }
 });

 session.getUserProperties().put
 (RABBITMQ_SUBSCRIPTION, subscription);
}

Switching to Server-push

[60]

The important aspect of this method is that it uses userMessageManager received
by the dependency injection, to subscribe SubscriptionDeliverHandler that
is in charge of sending the messages consumed from the user-specific queue
on WebSocket. Do you see how the channel instance passed in CCM's custom
handleDelivery method comes handy? It is required needed to perform manual
message acknowledgement with the basicAck channel action. You perform
this single message acknowledgment if and only if the sendText WebSocket
operation has succeeded (that is, it didn't throw an exception). Otherwise, you use
basicReject to actively reject and requeue the delivered message. If you don't
acknowledge and fail to reject a message, the RabbitMQ broker will eventually
redeliver the message once the subscription is re-established with a new channel.

Use manual acknowledgment if there is a risk that the processing of a
message may fail and you want the broker to eventually redeliver it.
Redelivery of unacknowledged messages doesn't happen immediately
unless the basicReject or basicRecover channel actions are used.
With the automatic acknowledgment mode, it's impossible to reject
messages or recover channels.

Also, note how the session's user properties are used to store the subscription
so that it can be used in other methods. Indeed, you are required to gracefully
terminate the subscription in case of disconnection of the WebSocket, as shown
in the following code:

@OnClose
public void stopSubscription(final Session session)
{
 final Subscription subscription = (Subscription) session.
getUserProperties().get(
 RABBITMQ_SUBSCRIPTION);

 if (subscription != null)
 {
 subscription.stop();
 }
}

Of course, the Subscription instance is also required to publish messages because,
as you may remember, it acts as a channel provider, as shown in the following code:

@OnMessage
public void publishMessage(final String jsonMessage, final Session
 session)
 throws IOException, EncodeException

Chapter 3

[61]

{
 final Subscription subscription = (Subscription)
 session.getUserProperties().get(
 RABBITMQ_SUBSCRIPTION);

 final Channel channel = subscription == null ? null :
 subscription.getChannel();
 if (channel == null)
 {
 LOGGER.log(Level.SEVERE, "No active channel to dispatch
 message: " + jsonMessage);
 return;
 }

 // inspect the message to find out where to route it
 final Message message = OBJECT_MAPPER.readValue(jsonMessage,
 Message.class);
 if (message.getAddresseeId() != null)
 {
 userMessageManager.sendUserMessage(message.getAddresseeId(),
 jsonMessage, channel);
 }
 else if (!Strings.isNullOrEmpty(message.getTopic()))
 {
 userMessageManager.sendTopicMessage(message.getTopic(),
 jsonMessage, channel);
 }
 else
 {
 LOGGER.log(Level.SEVERE, "Received unroutable message: " +
 jsonMessage);
 }
}

Did you see how you now use the sendUserMessage and sendTopicMessage
method variants that take a channel as a third argument? There is now no reason
to keep using the somewhat wasteful method of creating and closing the channel
each time since you now have access to a channel, which itself benefits from the
reconnection mechanism you've created.

CCM is now ready to activate server-push for its user messaging feature!

Switching to Server-push

[62]

Running the application
CCM has tested whether the server-push mechanism successfully withstands
connection issues with the RabbitMQ broker. Its application can start even if it can't
connect to the broker, and it can recover if the broker is restarted.

The robustness of a distributed system isn't the sole responsibility of one
actor but a combination of the effort of all its members. No matter how
highly available one of its members is, accounting for its potential failure
in other members that depend on it will ensure a smooth ride and avoid
the proverbial wake-up call.

Let's take a glance at the management console to see how switching to server-push
has affected things. The following figure shows the channel's view:

Active consumers keeping channels open

Remember how with the polling approach, where channels were open and closed
very quickly, no channel was visible on the view. Now, because each consumer
keeps its channel open, you can see active channels in the management console. You
can also see the associated usage rates.

There is no logical limit to the number of channels a RabbitMQ broker
can handle; the limiting factors are the available memory on the broker
as each channel mobilizes memory, and the actual network bandwidth
available for pushing messages on all these channels.

Chapter 3

[63]

Now, let's take a look at the queue view of the management console:

Manual acknowledgements showing up in rates

Did you see how the ack column shows a non-zero rate? This is because you are now
using manual acknowledgment. Thus, the RabbitMQ client now sends ack messages
over the wire to the broker. This definitely has a cost in terms of bandwidth usage
and general performance; however, if in your case, you value the guarantee of
successful message processing over speed, it is perfectly acceptable.

After hearing about the resounding success of server-pushed user messages, the
customer support team at Clever Coney Media came up with a new requirement:
being able to message all users in the system. Let's see how this new feature can
be implemented!

Publishing to all queues
CCM's journey with RabbitMQ is just getting more exciting; a new application now
wants to integrate with the user's messaging platform! Indeed, the customer support
team wants to be able to send messages to all users directly from their back-office
application. They are fine with the fact that this public address system will only be
able to reach users who have already used the messaging system. This means there's
no need to forcefully create queues and bindings for all the existing users of the
system; only the really active ones who log in regularly will be reachable.

Switching to Server-push

[64]

With this specification in hand, you can start planning and come up with the
new overall messaging architecture shown in the following diagram. There's no
fundamental change; the only addition is the Ruby on Rails back-office application
that will be connected to the RabbitMQ in order to publish messages.

HTML CSS
JavaScript
Front-End

Web
Load

Balancer

Application
Server

RabbitMQ
Broker

Back
Office

Main
DB

Application
Server

Application
Server

The new architecture with the back-office public address

To roll this out, you can use the topic's messaging that's already in place and create
a special cs-pa topic to which all users would be subscribed. But in fact, there's a
cleaner and simpler approach offered by the AMQP protocol: the fanout exchange.
As shown in the following diagram, the fanout exchange routes a copy of each
message it receives to all the queues bound to it. This model fits perfectly with the
public-address behavior that CCM aims for.

User-inbox.123

User-inbox.456

User-inbox.789

Fanout
ExchangePublisher

The fanout exchange routes to all bound queues.

With this said, let's wire the fanout exchange in the main Java application.

Chapter 3

[65]

Binding to the fanout
To start using this new exchange in the main application, you need to perform
two steps: declare the fanout exchange when the application starts and bind the
user inbox queue to it when a user logs in. So, let's do just that. You will first extend
the onApplicationStart method of the UserMessageManager class with the
following code:

public static final String USER_FANOUT_EXCHANGE = "user-fanout";

rabbitMqManager.call(new ChannelCallable<DeclareOk>()
{
 @Override
 public String getDescription()
 {
 return "Declaring fanout exchange: " +
 USER_FANOUT_EXCHANGE;
 }

 @Override
 public DeclareOk call(final Channel channel)
 throws IOException
 {
 final String exchange = USER_FANOUT_EXCHANGE;
 final String type = "fanout";
 // survive a server restart
 final boolean durable = true;
 // keep it even if not in user
 final boolean autoDelete = false;
 // no special arguments
 final Map<String, Object> arguments = null;

 return channel.exchangeDeclare(exchange, type, durable,
 autoDelete, arguments);
 }
});

Once again, you'll use the same set of properties except that this time the exchange
type is fanout. You then add the following to the onUserLogin method:

rabbitMqManager.call(new ChannelCallable<BindOk>()
{
 @Override
 public String getDescription()
 {

Switching to Server-push

[66]

 return "Binding user queue: " + queue + " to exchange: " +
 USER_FANOUT_EXCHANGE;
 }

 @Override
 public BindOk call(final Channel channel) throws IOException
 {
 // bind the addressee's queue to the fanout exchange
 final String routingKey = "";
 return channel.queueBind(queue, USER_FANOUT_EXCHANGE,
 routingKey);
 }
});

Did you notice how you used an empty string as the routing key when binding the
queue? The value doesn't really matter because the fanout exchange doesn't care
about routing keys; however, you can't use null so you settled for "".

Now you're done; there's nothing more to do as the existing server-push
infrastructure will remain the same, especially because users can't publish messages
to this fanout exchange. So, let's now turn our attention to the code added to the back
office to publish messages on this new exchange.

Publishing to all
CCM's back-office system is a Ruby on Rails application. After looking around, it
found several AMQP clients that could be used to connect from Ruby to RabbitMQ.
They've selected the one called Ruby AMQP (accessible at http://rubyamqp.info)
because of its capacity to integrate well with the Rails application and its support for
a range of processing models, including Phusion Passenger, which is what they're
currently using.

Because this new public address system will be rarely used, you're not concerned about
efficient connection management as you are with the main application. In fact, you're
fine with connecting and disconnecting for each interaction with the fanout exchange
because, if you're having temporary issues with the RabbitMQ broker, retrying to
publish from the back-office application will eventually end up working. So, the
following is the Ruby code used to publish a message on the public address system:

AMQP.connect(:host => '127.0.0.1',
 :username => 'ccm-dev',
 :password => 'coney123',
 :vhost => 'ccm-dev-vhost') do |connection|

 channel = AMQP::Channel.new(connection)

Chapter 3

[67]

 exchange = channel.fanout(
 'user-fanout',
 :durable => true,
 :auto_delete => false)

 message_id = SecureRandom.uuid
 message_json = JSON.generate({
 :time_sent => (Time.now.to_f*1000).to_i,
 :sender_id => -1, # special value for support
 :subject => pa_subject,
 :content => pa_content })

 exchange.publish(
 message_json,
 :routing_key => '',
 :content_type => 'application/vnd.ccm.pmsg.v1+json',
 :content_encoding => 'UTF-8',
 :message_id => message_id,
 :persistent => true,
 :nowait => false) do

 connection.close
 end

end

The logic in this code should feel familiar; connect to RabbitMQ, get a channel,
perform a few channel actions, and then close the connection. You don't need to close
the channel before closing the connection; closing the latter closes the former and all
other active channels that could have been created on this connection.

Notice that you declare the user-fanout exchange right before using it. You do not
want to rely on the implicit pre-existence of the exchange as this would necessarily
mean the main application would have to run once to create the exchange before the
back office can use it. Since exchange declaration is idempotent, you should therefore
declare it at all times.

Unless there is a strong guarantee that an exchange or a queue will
pre-exist, assume it doesn't exist and declare it. Creating a happens
before time coupling between two different applications is a recipe
for disaster and will blow up at the worst moment. Better to be safe
than sorry, especially when AMQP encourages you and provides the
necessary means to do so!

Switching to Server-push

[68]

Again, you've paid extra attention to make sure the same configuration parameters
were used in the exchange declaration than in the Java application.

Be particularly careful with AMQP client libraries that may use
different default values for exchange and queue parameters; it's better
to be explicit and to specify all values.

With this code in place, the back-office application can now send public-address
messages to all users! This is again a great success, one that again reinforces CCM in
its decision to deploy RabbitMQ and build on it.

Running the application
There's nothing spectacular to notice when running the application; messages from
the back office successfully flow to the user inbox queues and the only visible change
is the newly created user-fanout exchange, visible in the management console shown
in the following figure:

The fanout exchange for user queues is visible in the management console

Chapter 3

[69]

At this point, it is very interesting to take a look at the bindings of any particular
queue. For this, click on the Queues tab and then scroll down and click on Bindings
to unfold the hidden pane. You should see what's reproduced in the following figure
where each queue has multiple bindings, one for the user-to-user messaging feature,
several for the topics' messages, and a final one for the public-address fanout feature:

Each user queue has multiple bindings

Before concluding, let's pause for a second and relish the fact that you now have
a successful message integration that works across platforms. This may not seem
evident to anyone with a little experience with messaging systems, since it is not
short of a small miracle. Messaging systems are the realm of platform-specific
implementations at best, vendor-locked ones at worst. Thanks to AMQP and
RabbitMQ, these Java and Ruby applications can engage in messaging interactions
without having to even think about their heterogeneity.

Summary
In this chapter, you learned a new way to consume messages from RabbitMQ. You
saw how it can be used to implement snappy server-push messaging in the context
of a WebSockets implementation. You also discovered the fanout exchange and how
it can be leveraged in order to send a single message to multiple addressees.

But we're not done yet; Clever Coney Media has new plans to use RabbitMQ, plans
that will significantly increase the load the broker has to deal with.

Flip to the next chapter to find out what it's up to.

Handling Application Logs
RabbitMQ can be used for applications log processing, thanks to its high
performance. You're about to learn how to route logs between applications
publishing them and custom scripts consuming them. You'll also use the AMQP
plugin for JMeter in order to find the performance capacity of consumers. You'll
discover that performance can be improved by using message prefetching, a quality
of the service property of channels. Finally, you'll see how expressive routing keys
can open the door to unexpected new features.

In this chapter, we will discuss the following topics:

•	 Log concentration with RabbitMQ
•	 Load testing with JMeter
•	 Channel quality of service and message prefetching
•	 Routing key patterns

Publishing and consuming logs
So far, Clever Coney Media has used only RabbitMQ in the context of its main user-
facing application. However, others in the company are interested in benefiting
from message queuing. If you remember the overview of the architecture that was
introduced in Chapter 1, A Rabbit Springs to Life, CCM uses Python to perform a
data analysis of the user data stored in the different databases being used in the
company. The team that is in charge of internal analytics has been looking for an
elegant solution to aggregate logs from different applications in order to roll out new
statistics, both for internal and end-user consumption.

Handling Application Logs

[72]

Taking its interoperable nature into account, CCM thinks that AMQP is the perfect fit
for this need; the idea is to publish logs from all applications to RabbitMQ and then
use Python to consume, persist, slice, and then dice this data. The following diagram
illustrates the architecture it has in mind:

Rich

Internet

Application

Back

Office

Company’s

Website

and

Blog

Log

Analysis

Scripts

php

RabbitMQ

Broker

Log4J Logs

Apache2 Logs

(syslog)

The log analysis architecture

There are two main sources of logs to be dealt with: Log4j for the Java application
and syslog for the Apache2-based applications. The team quickly identifies the
following two libraries that will facilitate the rolling out of this architecture:

•	 Bevis: This is a syslog listener/server that forwards messages to AMQP
(https://github.com/bkjones/bevis)

•	 AMQP appender: This is an appender for Log4j that publishes to AMQP
(https://github.com/jbrisbin/vcloud/tree/master/amqp-appender)

Both these libraries publish logs to topic exchanges and use a configurable routing
key that is composed of the level and the source of the log. Let's get to know these
routing keys:

•	 For syslog logs, let the routing key be severity.facility, where
severity is a number between 0 and 7 (the lowest, the most critical) and
facility is a number between 0 and 23 (http://tools.ietf.org/html/
rfc5424). Bevis translates these numbers to human-readable values in the
routing key. For example, 3.18 gets translated to err.local2.

Chapter 4

[73]

•	 For Log4j, the routing key is level.name, where level is a string such as
INFO or ERROR, and name is either a fully qualified classname for application-
level logs (for instance, com.ccm.MyClass), or access for access logs.

With such rich routing keys, there is no strong rationale to use a different exchange
for each of these two log sources. We will, therefore, configure the libraries to publish
to a single topic exchange. It's time to take a look at the implementation!

Pay attention to the expressiveness of the routing keys used
with topic exchanges.

Let's start working on the Python script that processes log messages. This script
will be in charge of archiving the logs in HDF5, a file format that is well suited for
efficiently storing, retrieving, and analyzing swarms of data.

Discussing HDF5 is beyond the scope of this book. You can
get more information at http://www.hdfgroup.org/
HDF5/whatishdf5.html.

The logs' archive script will consume messages from a single queue that will
bind to the topic exchange with an all matching routing key (#), as shown in the
following diagram:

Syslog
Publishers

Log4j
Publishers

app-logs
Topic

Exchange
app-logs-archiver#

logs
-archiver py

The application logs' archive architecture

If you remember our previous discussion about the notion of happens before in the
context of declaring exchanges and queues, you should be wondering what program
(or programs) will be in charge of these declarations in our current case.

Handling Application Logs

[74]

After investigating the syslog and Log4j publishers, it turns out that the former
doesn't do any kind of declaration, while the latter declares the exchange in the
durable (not-autodelete) mode, but doesn't declare or bind any queue. Consequently,
the Python script will have to use the same exchange declaration (which is fine with
us as these settings are what we wanted) and will have to create and bind the app-
logs-archiver queue. To ensure no message gets lost, you will start your Python
script before rolling out the syslog and Log4j publishers.

Always consider publishers' and consumers' exchange and queue
declarations and the potential start order they entail.

Let's look at the logs-archiver.py script, for which we use the amqp library (online
documentation available at http://amqp.readthedocs.org). Note that in the
following code, the store_log_data function has been elided for brevity:

#!/usr/bin/env python
import amqp

connection = amqp.Connection(host='ccm-dev-rabbit', userid='ccm-dev',
password='coney123', virtual_host='ccm-dev-vhost')
channel = connection.channel()

EXCHANGE = 'app-logs'
QUEUE = 'app-logs-archiver'

channel.exchange_declare(exchange=EXCHANGE, type='topic',
durable=True, auto_delete=False)
channel.queue_declare(queue=QUEUE, durable=True, auto_delete=False)
channel.queue_bind(queue=QUEUE, exchange=EXCHANGE, routing_key='#')

def handle_message(message):
 store_log_data(message)
 message.channel.basic_ack(delivery_tag=message.delivery_tag)

channel.basic_consume(callback=handle_message, queue=QUEUE, no_
ack=False)

print ' [*] Waiting for messages. To exit press CTRL+C'
while channel.callbacks:
 channel.wait()

channel.close()
connection.close()

Thanks to the AMQP specification, this code should look familiar. Indeed, the same
concepts are (thankfully) named identically across all the client libraries out there. As
you can see, we perform the following tasks:

Chapter 4

[75]

•	 Establishing a connection and opening a channel
•	 Declaring the exchange and queue and binding the latter to the former
•	 Consuming the queue with a custom callback handler
•	 Acknowledging messages only when they have been successfully processed

(stored, in our case)

The latter point is important; we don't want to risk losing any log message, so the
store_log_data function should throw an exception. The log message that cannot
be handled will be eventually represented for processing. If the error condition is
temporary, it will clear up upon redelivery. Otherwise, we will need to address the
issue in the code.

Distinguish recoverable from nonrecoverable errors
when processing messages in order to redeliver or
discard them respectively.

The question you're probably burning to have answered now is: how will this code
behave under load? After all, you're about to concentrate all access and application
logs of CCM on it! Let's find out with a round of load testing.

Load testing AMQP
You're going to use Apache JMeter with the AMQP plugin to generate load on
RabbitMQ. For this first test, your goal is to basically saturate the logs-archiver.
py script in order to determine what the maximum processing capacity of a single
running instance of it. After starting JMeter, add a Thread Group element under the
Test Plan element and configure it as shown in the following screenshot:

JMeter thread group for the logs load test

Handling Application Logs

[76]

As you can see, we will use 50 concurrent threads, each publishing messages to
RabbitMQ in an infinite loop. This is way more than the total number of servers at
CCM but remember, we want to find out the upper limit of what we can actually
achieve. The following screenshot shows the configuration of the element in charge
of publishing messages to RabbitMQ by adding an AMQP publisher sampler:

The JMeter AMQP Publisher sampler for the logs load test

Notice how you're simulating an Apache2 syslog message; the routing key is info.
local2 (as per the previous discussion) and the message content is a genuine access
log entry. Since none of the log publisher libraries you're using have the message
type field, we leave this field blank, which is saddening as we'd rather have all
messages sent to RabbitMQ properly stamped with a meaningful type. Also, note
that we do not bind any queue on the app-logs topic exchange. The responsibility of
the load test stops at publishing messages to the right exchange and nothing more.

Chapter 4

[77]

Keep your load test real; use realistic payload sizes and don't run it
all on the localhost. There is a network cost for moving bytes around
that you want to have accounted for in your load tests.

The last bit we add is a Summary Report listener so that we can follow what's going
on when we generate load on RabbitMQ. It doesn't need any configuration and can
simply be dropped after the AMQP publisher as shown in the following screenshot:

The JMeter Summary Report for the logs load test

That is all! You're ready to load test the log archiver.

Running a load test
After starting the Python script, we start the JMeter load test while having the
Summary Report open, so we can confirm messages are successfully being sent, as
shown in the following screenshot (and yes, the bytes-related statistics, KB/sec and
Avg. Bytes, are buggy):

The JMeter summary report with the logs load test running

Handling Application Logs

[78]

While the test is still running, we connect to the RabbitMQ management console and
first look at the Exchanges tab. As you can see in the next screenshot, the app-logs
topic exchange is getting hit pretty hard with more than 7,000 messages per second!

The logs load test generates traffic on the fanout exchange

For us, the most interesting statistics can be seen in the Queues tab in the
following screenshot:

The logs load test generates traffic on the archiver's queue

Chapter 4

[79]

Indeed, the Python script is able to receive and acknowledge 766 messages per
second. This is 20 times more than what the current CCM infrastructure generates
at peak time, which is great. As this means there is enough capacity for CCM's
business, the traffic grows significantly. What would we do if one day, this capacity
becomes an issue? Remember that you're only running one instance of the archive
script; we have the capacity to run several scripts in parallel or refactor it to be
multithreaded in order to consume messages from the same queue at a higher rate.

This is great news and a testimony to RabbitMQ's high performance, but you're not
over yet. There is another scenario we want to load test—a post-crash recovery.

Prefetching messages
There's a question that lingers at the back of the analyst team's minds: what would
happen if the log archiver was off for a while? How long would it take to catch up
with the accumulated messages and how can we optimize this recovery time? This
is a very important consideration. To answer these questions, we first baseline the
existing archive script by sending a fixed number of messages to its queue while it's
off then timing how long it takes to catch up.

For this, we modify the JMeter Thread Group in order to publish only 50,000
messages, as shown in the following screenshot:

The JMeter Thread Group configured to send 50,000 messages

With this in place, we measure 5,900 milliseconds to consume 50,000 messages with
the log archive Python script. This is quite impressive, but is it possible to improve
this figure? The answer is yes—thanks to a channel property named prefetching,
which is part of the Quality of Service (QoS) configuration of a channel. This
property allows you to configure the number of messages or the amount of bytes (or
both) delivered at a time by RabbitMQ to a consumer. Since we acknowledge each
message individually, it makes sense that by receiving messages in batches, we will
reduce the number of network interactions, thus improving the overall performance.

Handling Application Logs

[80]

The prefetch count and size QoS settings are only effective
with manual message acknowledgment.

After several experiments, we find that prefetching messages in batches of 50
provides the maximum improvement. Adding the following line in the logs' archive
script effectively lowers the time to 4,083 milliseconds:

channel.basic_qos(prefetch_count=50, prefetch_size=0, a_global=False)

Note that we do not impose any limit to the number of bytes that can be prefetched
by setting the prefetch_size to 0. Also, we do not apply this QoS setting to all
channels, only the one used by the log messages' consumer.

With long-running workers consuming messages from a
single queue, set the prefetch count to 1 in order to guarantee
a fair distribution of work across your workers.

At this point, you've achieved your targets in terms of capacity estimation and
performance improvement. But you're not fully done; while working on the logs'
archive script, the team thought of a cool new feature to roll out.

Messaging serendipity
One of the advantages of messaging is that the new behavior that wasn't initially
envisioned can easily be grafted to a system because of its lowly coupled nature.
In our case, the fact that all application logs are not being published to a single
topic exchange allows us to create a specific consumer that will receive only error
messages and report them to the operations team.

If you remember our discussion about the routing keys used by the application logs'
publishers, all we need to do is to receive messages whose routing first component
(that is, the string before the first period of the routing key) indicates an error. These
components are as follows:

•	 For the syslog publisher: err, crit, alert, and emerg
•	 for the Log4j publisher: ERROR and FATAL

Now we know this, we can create a Python script that will create and bind a queue to
the app-logs topic exchange, using the one-binding-per-error-message-routing-key
pattern. The following code shows the logs-error-reporter.py script without the
body of the report_error function (eluded for brevity):

Chapter 4

[81]

#!/usr/bin/env python
import amqp

connection = amqp.Connection(host='ccm-dev-rabbit', userid='ccm-dev',
password='coney123', virtual_host='ccm-dev-vhost')
channel = connection.channel()

EXCHANGE = 'app-logs'
QUEUE = 'app-logs-error-reporter'

channel.exchange_declare(exchange=EXCHANGE, type='topic',
durable=True, auto_delete=False)
channel.queue_declare(queue=QUEUE, durable=True, auto_delete=False)

bind syslog severities:
channel.queue_bind(queue=QUEUE, exchange=EXCHANGE, routing_
key='err.#')
channel.queue_bind(queue=QUEUE, exchange=EXCHANGE, routing_
key='crit.#')
channel.queue_bind(queue=QUEUE, exchange=EXCHANGE, routing_
key='alert.#')
channel.queue_bind(queue=QUEUE, exchange=EXCHANGE, routing_
key='emerg.#')

bind log4j levels
channel.queue_bind(queue=QUEUE, exchange=EXCHANGE, routing_
key='ERROR.#')
channel.queue_bind(queue=QUEUE, exchange=EXCHANGE, routing_
key='FATAL.#')

channel.basic_qos(prefetch_count=50, prefetch_size=0, a_global=False)

def handle_message(message):
 report_error(message)
 message.channel.basic_ack(delivery_tag=message.delivery_tag)

channel.basic_consume(callback=handle_message, queue=QUEUE, no_
ack=False)

print ' [*] Waiting for messages. To exit press CTRL+C'
while channel.callbacks:
 channel.wait()

channel.close()
connection.close()

Handling Application Logs

[82]

Notice how you've leveraged the # wildcard in the queue-binding operations that are
highlighted in the preceding script. This allows you to match only the first part of the
routing key (the severity) and accept anything else after it.

With this script running, let's browse to the Exchanges tab of the RabbitMQ
management console once more and click on the apps-log exchange. The bindings
shown in the following screenshot should be visible:

The application logs exchange's multiple bindings

Since you're in the management console, let's do something we haven't done yet.
Let's use it to send test messages to the apps-log exchange. Scroll down a little
below the Bindings section shown in the preceding screenshot until you reach the
Publish message section. In this interface, fill in the routing key and payload as
shown in the following screenshot:

Chapter 4

[83]

Using the management console to send test log messages

After clicking on Publish message, the error gets correctly reported by the Python
script. We further test by changing the routing key to info.local2 or ERROR.com.
ccm.Tests to see what is reported and what isn't. Everything works as expected,
so you're very glad for this last minute idea and the capacity to roll it out cleanly
message queuing thanks to RabbitMQ.

Summary
In this chapter, you learned how load testing can be used to determine the maximum
capacity of message consumers. You learned about message prefetching and how it
can improve the performance for consumers that need to deal with large number of
messages. We also explained how messaging can facilitate the rolling out of new and
unexpected features in a lowly decoupled architecture.

It seems the team in charge of user messages needs some help to deal with old
messages piling up in queues; this is what we'll discuss in the next chapter.

Tweaking Message Delivery
While reading the previous chapters, you may have wondered about the fate of
messages that are stuck in queues forever. You may even have decided to test the
usage of the basic message property named expiration. It's now time to actually
tackle the notion of message time-to-live thoroughly. You may also have been
wondering whether there was an option to prevent messages that target inexistent
queues from being silently dropped. That's also an important question we'll discuss
in this chapter.

In this chapter, we will discuss the following topics:

•	 Message time-to-live
•	 Dead-letter exchanges and queues
•	 Mandatory delivery
•	 Returned message handling

Handling dead letters
Things are going very well at Clever Coney Media. The user messaging feature gets
traction as more and more users learn how to use it. After a few months of activity,
one thing becomes clear though: some users don't log in to the application often,
which leads to messages piling up in their inbox queues. Though the amount of
data is not detrimental (yet), the idea of having messages lying around in queues,
potentially forever, is not satisfactory. Imagine users logging in after a couple of
weeks of vacation and being flooded with obsolete messages—this is the negative
type of user experience that CCM is keen on avoiding.

Tweaking Message Delivery

[86]

CCM decides to address this by specifying a new rule: after one week, any user
message not delivered will be either:

•	 E-mailed to the user if it's a direct user-to-user message and if the user has
opted for an e-mail fallback

•	 Discarded if it's a topic or a public address message

So, users turn to RabbitMQ to find out what is offered in terms of message
expiration. It appears that the following options are possible:

•	 Using the standard AMQP message expiration property for
published messages

•	 Using a custom RabbitMQ extension that allows users to define a message
time-to-live (TTL) per queue

•	 Using a custom RabbitMQ extension that allows users to define a TTL for
the queue itself

The first option is interesting because it is a standard AMQP option; however,
after reading more about how it is supported in RabbitMQ, it turns out that those
messages are only discarded when consumed. Even if expired, they would still sit in
the queue, which would defeat the purpose of what they're trying to achieve. CCM
rules out the last option because we do not want the queue to be deleted. This leaves
the second option: you will configure each user inbox queue with a TTL, which will
be enforced by RabbitMQ whether the queue is being consumed or not.

This is all fine and dandy, but what actually happens to messages when they expire?
Remember that you want to consume these messages in order to e-mail them.
So, how can you achieve this? This is where RabbitMQ's Dead Letter Exchange
(DLX) comes handy. In messaging parlance, a dead letter is a message that can't be
delivered, either because its intended target fails to be achieved or because it expires
(typically, a message property indicates the exact failure reason). Thus, in your case,
messages that reach their TTL will become dead letters. RabbitMQ offers the option
to automatically route these dead letters to a specific exchange, a so-called dead
letter exchange. Since you want to receive messages sent to this exchange, you will
have to bind a queue to it, consume it, and log received messages. This queue will
act as what's known as a Dead Letter Queue (DLQ), the ultimate destination of dead
letters. The following diagram illustrates the overall architecture that CCM intends
to roll out.

Chapter 5

[87]

user-inbox.123

user-inbox.456

user-inbox.789

user-inbox.123

user-inbox.456

user-inbox.789

Fanout

Exchange

user-dlx

Consumer

(Logger)

user-dlq

Dead letter handling architecture

What's notable in this diagram is that when they expire, messages published to the
DLX use the original routing key they had when they were delivered to a user inbox
queue. This behavior can be modified as RabbitMQ allows the definition of a specific
routing key to use when messages are published to the DLX. You're happy with the
default behavior; the original routing key is an interesting bit of information you'd
like to use in order to find out the ID of the concerned user. Therefore, you've made
the DLX exchange a fanout one in order to have all messages routed in the DLQ,
whatever their original routing key could have been.

The battle plan is ready. It's now time to roll it out!

Refactoring queues
The first step to roll out this architecture consists of configuring the user inbox
queues with the desired TTL of one week and a DLX equal to "user-dlx". Using the
RabbitMQ extensions to AMQP, this can be achieved by respectively defining the
"x-message-ttl" and "x-dead-letter-exchange" arguments when declaring
the queue.

You could be tempted to jump right to your code editor and modify the
declareUserMessageQueue method to use the following arguments:

arguments.put("x-message-ttl", TimeUnit.DAYS.toMillis(7L));
arguments.put("x-dead-letter-exchange", USER_DL_EXCHANGE);

Tweaking Message Delivery

[88]

However, this would be wrong at several levels. The main issue is that you would
be changing the declaration from a queue with no arguments to one with two
arguments. Remember our discussion in Chapter 2, Creating an Application Inbox,
queue (or exchange) declaration is idempotent only if all the parameters used are
the same. Any discrepancy in the declaration will yield an exception and will be
punished with an immediate channel termination!

Cultivating a "Spidey sense" for breaking changes in queues and
exchange declarations will save you the unpleasant experience of
repeated errors and the mass extinction of channels.

The other problem is that this change will only apply when users log in. Indeed, this
is when we declare the user inbox queue. This would not fulfill our requirement to
apply our expiration rule to all existing queues independent of user actions. Finally,
another thing to consider is that if these properties were configured at the queue
declaration level, any change to one of them will require deleting and recreating all
the queues. Clearly, the TTL and DLX configurations are cross-cutting concerns and
should rather be configured in a more global fashion. Is that even possible?

The answer is yes! RabbitMQ has a simple and elegant solution to this problem called
policies. RabbitMQ supports policies that define specific behaviors and that can
be applied to queues or exchanges. Policies are applied not only when a queue or
exchange is declared, but also to an existing queue or exchange. Both queue message
TTL and dead letter exchange are configurable via policies, but only a single policy
can apply to a queue or exchange. So, you will craft a policy that combines both TTL
and DLX settings and apply it to all user inbox queues. This cannot be achieved via the
AMQP protocol, so you can't do this using the RabbitMQ client. You'll instead use the
powerful command-line tools provided with RabbitMQ (should you want to do it by
code, the management REST API would be your friend). This strategy to refactor the
existing queues is achieved with the following single command-line operation:

$ sudo rabbitmqctl set_policy -p ccm-dev-vhost Q_TTL_DLX "user-
 inbox\.\d+" '{"message-ttl":604800000, "dead-letter-
 exchange":"user-dlx"}' --apply-to queues

Let's take some time to dissect the preceding command:

•	 sudo rabbitmqctl set_policy: This part of the command uses the
set_policy control command

•	 -p ccm-dev-vhost: This part of the command applies the message to the
development virtual host

•	 Q_TTL_DLX: This part of the command names the message so that we
understand it pertains to queue time-to-live and dead letter exchange

Chapter 5

[89]

•	 "user-inbox\.\d+": This part of the command uses some regex fu to apply
the entire command to the user inbox queues only by selecting them by name

•	 '{"message-ttl":604800000, "dead-letter-exchange":"user-dlx"}':
This part of the command uses a policy definition composed of a TTL of
seven days in milliseconds and the name of the DLX

•	 --apply-to queues: This part of the command ensures that this policy is
only applied to queues, which is somewhat redundant with the regex, but
acts as a safety net because it selects RabbitMQ entities by type instead
of name

So here we go! You can run this command and life will be peachy. Wait a second! At
this time, you haven't created the "user-dlx" exchange and you haven't bound the
"user-dlq" queue to it yet. If you apply this policy right now, you will have seven
days to roll out the missing exchange and queue. Sure, this is plenty of time, but
smart developers don't like to work against the clock if they can avoid it.

Since you're smart, you're not going to run this command right now. Instead, you'll
first create the infrastructure in charge of dealing with the dead letters and roll it out
to our application. Then and only then will you apply the "Q_TTL_DLX" policy.

Undertaking messages
You need to create the necessary infrastructure to deal with expired messages, which
means you need to do the following:

1.	 Declare the user-dlx fanout exchange.
2.	 Declare the user-dlq queue and bind it to the user-dlx fanout.
3.	 Create a subscriber of the user-dlq queue that consumes and e-mails the

dead letters.

To implement this behavior, you will add extra code to the onApplicationStart
method of the UserMessageManager class. First, you'll add the following code to
create the exchange and bind the queue to it:

static final String USER_DL_EXCHANGE = "user-dlx";
static final String USER_DL_QUEUE = "user-dlq";

rabbitMqManager.call(new ChannelCallable<BindOk>()
{
 @Override
 public String getDescription()
 {

Tweaking Message Delivery

[90]

 return "Declaring dead-letter exchange: " +
 USER_DL_EXCHANGE + " and queue: " + USER_DL_QUEUE;
 }

 @Override
 public BindOk call(final Channel channel) throws IOException
 {
 final boolean durable = true;
 final boolean autoDelete = false;

 final String exchange = USER_DL_EXCHANGE;
 final String type = "fanout";
 final Map<String, Object> arguments = null;

 channel.exchangeDeclare(exchange, type, durable,
 autoDelete, arguments);

 final String queue = USER_DL_QUEUE;
 final boolean exclusive = false;
 channel.queueDeclare(queue, durable, exclusive,
 autoDelete, arguments);

 final String routingKey = "";
 return channel.queueBind(queue, exchange, routingKey);
 }
});

As you can see, this is just a standard fanout exchange declaration and the related
queue declaration and binding. You used the same logic while implementing the
public address system in Chapter 3, Switching to Server-push. Now let's look at the
following consumer code for this queue, the code that you're also adding to the
onApplicationStart method:

rabbitMqManager.createSubscription(USER_DL_QUEUE, new
SubscriptionDeliveryHandler()
{
 @Override
 public void handleDelivery(final Channel channel,
 final Envelope envelope,
 final BasicProperties properties,
 final byte[] body)
 {
 @SuppressWarnings("unchecked")

Chapter 5

[91]

 final List<Map<String, LongString>> deathInfo =
 (List<Map<String, LongString>>)
 properties.getHeaders().get("x-death");

 if(deathInfo.get(0).get("exchange").toString().equals("user-
 inboxes"))
 {
 final long userId =
 Long.valueOf(StringUtils.substringAfter
 (envelope.getRoutingKey(), "user-inbox."));

 final String contentEncoding =
 properties.getContentEncoding();

 try
 {
 final String jsonMessage = new String(body,
 contentEncoding);
 userManager.handleDeadMessage(userId,
 jsonMessage);
 }
 catch (final UnsupportedEncodingException uee)
 {
 LOGGER.severe("Failed to handle dead message: " +
 envelope.getRoutingKey() + ", encoding: " +
 contentEncoding + ", entry: " +
 Base64.encodeBase64(body));
 }
 }

 try
 {
 final boolean multiple = false;
 channel.basicAck(envelope.getDeliveryTag(), multiple);
 }
 catch (final IOException ioe)
 {
 LOGGER.severe("Failed to acknowledge: " +
 ToStringBuilder.reflectionToString(envelope,
 ToStringStyle.SHORT_PREFIX_STYLE));
 }
 }
});

Tweaking Message Delivery

[92]

There's a lot happening here, so let's take some time to focus on the important
aspects. The overall structure of the method should look familiar. Indeed, you're
reusing the same subscription management feature you've created to consume user
messages in the WebSocket (refer to Chapter 3, Switching to Server-push). Hurray to
code reusage!

You may be puzzled by the very first line of code in the handle method. We create
a deathInfo variable by fetching a message header named x-death. Do you
remember we said messages sent to the DLX can retain their original routing key?
Well, there's something else that happens to them: RabbitMQ injects a custom header
name x-death, which contains extra contextual information about the cause of
death. This extra header is a key-value map with the following entries:

•	 queue: This indicates the queue name where the message was stored
before it expired

•	 exchange: This indicates the exchange that this message was sent to
•	 reason: This indicates whether the message is rejected, the TTL for the

message has expired, or the queue length limit is exceeded
•	 time: This indicates the date and time when the message was dead lettered
•	 routing keys: This indicates all the routing keys associated with the

message (RabbitMQ supports multiple routing keys in an extension to
AMQP known as the sender-selected destination, which is beyond the
scope of this book and is fully documented at http://www.rabbitmq.com/
sender-selected.html)

With this map in hand, you can get the original exchange and compare it to see if it's
the user-inboxes one. In this way, you will only trigger user-specific logic to deal
with dead messages for user-to-user messages. All other messages are just directly
acknowledged after being consumed, effectively draining the DLX until it's empty.
The user ID is extracted from the routing key in order to call the userManager.
handleDeadMessage method in charge of e-mailing the message to the user if he
or she has opted for it.

Note that the reason of death could be used to further filter messages. Here you've
assumed only expired ones will hit the DLQ; however, in the future, you may
roll out new policies that could make messages die for other reasons, such as the
incapacity to be delivered.

Extracting the user ID from the routing key is borderline
hackish. A cleaner approach would consist of adding the
target user ID in a custom header for user-to-user messages.

Chapter 5

[93]

Finally, pay attention to how the message bytes get logged when they can't properly
be decoded to a string. They're encoded in base 64, which is always possible,
and logged alongside the encoding, providing you with enough information
to understand the issue.

Make your life easier and log enough contextual data when an
exception occurs. Always consider what information you'll need if
you need to perform forensics for a particular exception.

After rolling out this code to your application servers, you will see that the dead
letter exchange and queue have been correctly created. Now you can set the "Q_TTL_
DLX" policy, as shown in the following code:

$ sudo rabbitmqctl set_policy -p ccm-dev-vhost Q_TTL_DLX "user-inbox\.\
d+" '{"message-ttl":604800000, "dead-letter-exchange":"user-dlx"}'
--apply-to queues

Setting policy "Q_TTL_DLX" for pattern "user-inbox\\.\\d+" to
"{\"message-ttl\":604800000, \"dead-letter-exchange\":\"user-dlx\"}" with
priority "0" ...

...done.

After running this script, you can use the management console to see what's been
changed on the user inbox queue definitions. The following screenshot shows a few
of these queues:

The Q_TTL_DLX policy is applied to all user inbox queues

Tweaking Message Delivery

[94]

As you can see in the following screenshot, it's clearly visible that the Q_TTL_DLX
policy has been applied to user inbox queues, while other queues such as the user-
dlq haven't been affected. In the management interface, let's click on the Admin tab
and then the Policies tab (on the right). Notice how the custom policy is visible in the
following screenshot:

The Q_TTL_DLX details are visible in the management console

At this point, any message created and that will stay for more than seven days in a
user queue will be unmercifully moved to the DLQ, consumed, potentially e-mailed,
and buried for real! But what should be done with the existing messages that were
created before you rolled out the policy? There is, unfortunately, no out-of-the-box
solution to this problem, so you will have to take a somewhat drastic measure—you
will purge all the queues that are not empty and that have no active subscribers. This
is rough, but is your only way to get out of the current conundrum. Moreover, it's a
solution you can easily implement with a simple script.

So far, we've been using the rabbitmqctl script to manage our RabbitMQ broker.
You need to install a new script that comes bundled with the management console
you installed in Chapter 1, A Rabbit Springs to Life. This script called rabbitmqadmin
can be downloaded by simply browsing a particular URL of the management
interface, namely http://localhost:15672/cli/. After following the displayed
download instructions, install the script in a location that makes it available to all
users (typically, /usr/local/bin on a Linux machine).

More information on the rabbitmqadmin script can be found at
http://www.rabbitmq.com/management-cli.html.

Chapter 5

[95]

You can now create a script that will drop all consumerless queues that are not
empty, as shown in the following code:

#!/bin/bash

queues_to_purge=`rabbitmqctl list_queues -p ccm-dev-
vhost name messages_ready consumers | grep "user-inbox\.
[[:digit:]]\+[[:space:]]\+[1-9][[:digit:]]*[[:space:]]\+0" | awk '{
print $1}'`

for queue in $queues_to_purge ; do
 echo -n "Purging $queue ... "
 rabbitmqadmin -V ccm-dev-vhost -u ccm-admin -p hare123 purge
 queue name=$queue
done

Notice that you used both rabbitmqctl and rabbitmqadmin to achieve your goal,
the former having the capacity to list specific attributes of queues in a way that's easy
to parse, the latter having the capacity to purge queues. After executing this script as
a super user, the state of the RabbitMQ broker is where you wanted it and your TTL
and DLX policy will keep it that way in the long run!

Sending this message to the e-mail bridge gives a new idea to the customer
support team.

Making delivery mandatory
So far, the customer support team at CCM has been relying only on e-mails to
interact with individual users. They've recently added the RabbitMQ-powered
public address system discussed in Chapter 3, Switching to Server-push. Now that
direct user messages can get routed to users by e-mails, they're interested in the
possibility of sending such messages to individual users from the back office
application. Furthermore, if possible they would like users who don't have an
inbox queue on RabbitMQ to get the message e-mailed to them immediately
instead of having to wait for the seven days' TTL.

Tweaking Message Delivery

[96]

In terms of messaging architecture, you're in a known territory; this is the exact
same model as the one you put in place in Chapter 2, Creating an Application Inbox,
for user-to-user messages, as illustrated in the following screenshot. The only
difference is that, unlike the main application, the back office will not create and
bind a user queue prior to sending a message. Instead, the back office will have
to somewhat detect that no such queue pre-exists and revert to an e-mail delivery
for the message.

User-inbox.123

User-inbox.456

User-inbox.789

Direct

Exchange
Publisher

User-inbox.123

User-inbox.456

User-inbox.789

The back office will use the user-inboxes direct exchange for direct messages

What's unclear is how to achieve the second part of the requirements: how can the
back office check the pre-existence of a queue? The AMQP specification doesn't
define a direct way to do this. The RabbitMQ management plugin exposes a REST
API that could be used to check the existence of a queue; it's a tempting approach,
but you'd rather stay within the confines of what AMQP offers by default. Moreover,
this could expose you to a check then act type of race condition. Indeed, the queue
could be created by another process after you verify that it doesn't exist. So, after
digging deeper into the AMQP specification, you're excited to discover a feature that
allows you to achieve your goal in a safe and elegant manner. This feature is called
mandatory delivery.

Consider the management REST API of RabbitMQ for cases when
AMQP doesn't have any way to support the functionality you're after.
You can access the REST API documentation on your RabbitMQ broker
at http://localhost:15672/api/.

When a message is published on an exchange with the mandatory flag set to true,
it will be returned by RabbitMQ if the message cannot be delivered to a queue. A
message cannot be delivered to a queue either because no queue is bound to the
exchange, or because none of the bound queues have a routing key that would match
the routing rules of the exchange. In the current case, it would mean that no user
inbox queue is bound to a routing key that matches the addressee's user ID.

Chapter 5

[97]

AMQP defines another delivery-related flag named immediate, which
is a step beyond mandatory in the sense it ensures that the message
has been actually delivered to a consumer. RabbitMQ has chosen not
to support this feature for it is nontrivial to implement efficiently and
elegantly, especially in clustered environments.

The trick about returned messages is that RabbitMQ doesn't return them
synchronously as a response to the publish operation; it returns them in an
asynchronous fashion. This means that for the developer, a specific message handler
will have to be registered with RabbitMQ in order to receive the returned messages.
This leads to the overall architecture illustrated in the following diagram:

user-inbox.123

user-inbox.456

user-inbox.951

user-inbox.123

user-inbox.456

RabbitMQ

?

Publisher

Return

Handler

Direct

Exchange

A dedicated handler takes care of returned messages

If you come from a JMS background, you're probably wondering about
transactional delivery. AMQP supports the notion of transactions on
a per-channel basis, both for consumers and producers. That said, it
comes with several nontrivial "gotchas", due to a certain lack of clarity
in the specification. Generally speaking, the acknowledgment/rejection
mechanism is preferred for transactions.

With this decided, it's now time to add the necessary code in the back office.

Tweaking Message Delivery

[98]

Implementing the back-office sender
In CCM's back office, you're going to add a method very similar to the one used for the
public address messaging system (seen in Chapter 3, Switching to Server-push); however,
this time we will add support for returned messages. The Ruby client library supports
this feature very elegantly as you'll soon find out. The following code is the code you
need to add to support the mandatory delivery of messages to user inboxes and to
handle potentially returned messages. The method that takes care of e-mailing the
messages to the users has not been included for brevity, as follows:

channel = AMQP::Channel.new(connection)

exchange = channel.direct(
 'user-inboxes',
 :durable => true,
 :auto_delete => false) do |exchange, declare_ok|

 exchange.on_return do |basic_return, metadata, payload|
 email_message_to_user(payload)
 end

 message_id = SecureRandom.uuid
 message_json = JSON.generate({
 :time_sent => (Time.now.to_f*1000).to_i,
 :sender_id => -1, # special value for support
 :addressee_id => user_id,
 :subject => 'Direct message from CS',
 :content => 'A private message from customer support...'})

 routing_key = "user-inbox.#{user_id}"

 exchange.publish(
 message_json,
 :routing_key => routing_key,
 :content_type => 'application/vnd.ccm.pmsg.v1+json',
 :content_encoding => 'UTF-8',
 :message_id => message_id,
 :persistent => true,
 :nowait => false,
 :mandatory => true) do

 puts "Published message ID: #{message_id} to: #{routing_key}"
 end
end

Chapter 5

[99]

In case you don't recall the code used for sending to the public address fanout
exchange, we highlighted the lines that differ in this code. In short, the main
notable points are as follows:

•	 The user-inboxes direct exchange is used for message publication
•	 Returned messages are handled through a closure registered via exchange.

on_return

•	 The message JSON payload now defines an addressee_id field, which is
required by the schema for direct user messages

•	 Messages are published with the required routing_key to target a particular
user inbox and with the mandatory flag set to true

That is all! The feature is ready to go live. As you can see, the major "gotcha" was in
understanding that messages are returned asynchronously and need to be handled
that way.

The Ruby AMQP library gives the impression that returned messages are
provided by exchanges. Behind the scenes, they are actually provided
directly by the channels, as it's clearly visible in the RabbitMQ Java client.

Summary
While rolling out two new cool features for Clever Coney Media, you learned about
the very important subjects: message TTL and the handling of dead letters with
specific exchanges and queues. You discovered the notion policy and how it allows
you to refactor your existing queues. You also learned about how delivery can be
made mandatory and how to deal with cases when it doesn't succeed.

So far, we've only discussed asynchronous interactions with RabbitMQ, which
makes sense because it's the core premise of messaging. That said, it's possible
to perform synchronous invocations too, as you're just about to find out in the
next chapter.

Smart Message Routing
So far, all the messaging interactions that you've learned about were one way:
flowing from message publishers to consumers. However, what if the consumer
would like to let the publisher know that processing is complete? If the consumer
were to act as a service and the publisher as a client, you would have to find a way
to route a response back to the consumer. If you've been toying with these questions,
then you've arrived at the right chapter! By the end of it, you'll know everything you
need to roll out a message-driven, service-oriented architecture. Loose coupling and
its related benefits in scalability and graceful degradation will be no mystery to you.

In this chapter, we will discuss the following topics:

•	 Request-response interaction with reply-to queues
•	 Exclusive queues
•	 Advanced routing with headers exchange

Service-oriented messaging
Clever Coney Media has considered rolling out a service-oriented architecture (SOA)
several times, but never actually did so, mostly out of the fear of introducing tight
coupling between their different systems. As their understanding of messaging
grew with the use of RabbitMQ, CCM realized that they could benefit from such a
message-oriented middleware in their SOA strategy. Their initial assumption was
that SOA meant web services that were reductive. Indeed, message queuing can also
be used for interacting with services.

To kick-start their RabbitMQ-powered SOA initiative, CCM decided to start with
a simple service that would expose the authentication mechanism of the main Java
application. This was done to allow other applications to perform login and logout
operations with end-user credentials. The first application to benefit from this will be
the Ruby on Rails back office. This will allow customer service representatives to test
user credentials from within the back office.

Smart Message Routing

[102]

A question that should be on your mind by now is: how can we possibly have
service-style request-response interactions with RabbitMQ, knowing all the efforts
made by AMQP to decouple the publisher from the consumer? You are right to
wonder about this. All interactions with RabbitMQ are one way and asynchronous.
On the other hand, a client interacting with a service expects to receive a response.
How can we resolve this dichotomy? The answer is by reversing the publisher and
consumer roles for the response phase. When sending the service request, the client
will act as a publisher and the service as a consumer, but when returning the service
response, the service will act as a publisher and the client as a consumer. This implies
that different queues will be used for requests and responses. This architecture is
illustrated in the following diagram:

requests

responses

Client

Publisher

Consumer

Consumer

Server

Publisher

A request-response interaction performed with message queues

If you have been exposed to document/literal SOAP over JMS, all this
should sound very familiar. The only difference is that here we will be
using JSON messages and AMQP.

Replying to queues
The other question you probably have right now is: how can the service know
where to publish the response message? We can't reasonably hardcode an exchange
and routing key in the service to publish responses; it would be too inflexible. The
solution is to have the request message carry the coordinates of the location where
the response should be sent. The good news is that this mechanism is supported by
the AMQP protocol out of the box. If you remember our discussion about the AMQP
message structure in Chapter 2, Creating an Application Inbox, each message carries a
reply-to property where the client will store the queue name of the location where
the response must be sent.

Chapter 6

[103]

Wait a minute! Messages are published to exchanges. So, how could you possibly
send the response directly to a queue? Well, there's a little trick that we've been
hiding from you until now. Every time you create a queue, it gets automatically
bound to the default exchange with its queue name as the routing key. This means
that by publishing a message to the default exchange using the queue name as
the routing key, the message will end up in the designated queue. What is this
mysterious default exchange? It's a direct and durable exchange named "" (an empty
string) that is automatically created by RabbitMQ for each virtual host. To make
the default exchange visible in the management console, its empty string name is
rendered as (AMQP default), as shown in the following screenshot:

The default exchange is one among several built-in exchanges

As you can see in the preceding screenshot, there are a bunch of other predeclared
exchanges that get automatically created for every virtual host. You can spot
them easily because their names start with amq.. They are meant for testing
and prototyping purposes only, so you do not need to use them in your actual
application code.

With great power comes great responsibility; producing messages to
the default exchange is a convenient way to send messages directly
to a particular queue. However, don't overuse this pattern! It creates
tight coupling between producers and consumers because the producer
becomes aware of particular queue names. This basically voids the
benefits of having the layer of indirection, thus generating isolation,
which is provided by exchanges and their routing rules. Use with care!

Smart Message Routing

[104]

You may be wondering what type of queue can be used for the reply-to mechanism?
The answer is: any type, but in practice, the following two approaches are used:

•	 Create a short-lived queue for each request-response interaction: This
approach uses an exclusive, autodelete, nondurable, and server-side named
queue created by the client. It's exclusive so that no other consumer can get
messages from it, which makes sense because only the client is supposed to
consume the response replied to the queue. It can be autodeleted because
once the reply has been consumed, there is no longer a use for it. It doesn't
need to be durable because request-response interactions are not meant to be
long lived. So, it doesn't matter if unconsumed response messages get lost;
the client process waiting for that particular response is long gone. Finally,
the responsibility to generate a unique name for this short-lived queue is left
to the server, which relieves the client from having to figure out a unique
naming scheme.

•	 Use a permanent reply-to queue specific to the client: This approach uses
a nonexclusive, nonautodelete, nondurable, and client-side named queue. It
is basically a typical queue, except that it doesn't need to be durable for the
same reason explained in the previous point. It cannot be exclusive because
a different consumer will be used for each request-response interaction. The
difficulty in using such a queue is correlating responses with requests. This
is done by using the CorrelationId message property that gets carried from
the request message to the response message, thus allowing the client to
consume the response for the correct request.

The latter approach is more efficient than the former since no queue gets created
and then deleted for each request. In your case, since the interactions with the
authentication service will be few and far between, you've opted for the first
approach. Moreover, the first approach doesn't deal with response correlation, so it's
easier to roll out.

Don't go bare bones if you decide to use permanent reply
queues. RabbitMQ client libraries offer primitives that simplify
responses that are correlated with requests.

By now, you must have a good idea of how responses will be routed back to
response queues, but what about requests? How will we deliver them to the
authentication service? Read on as we're about to discover the fourth type of
exchange offered by RabbitMQ.

Chapter 6

[105]

Routing service requests
CCM has two main requirements when it comes to routing request messages
to services:

•	 Clients should send service requests to a single exchange so that they don't
have to deal with a map of services to exchanges

•	 Several versions of the same service should be able to run in parallel to allow
the graceful evolution of their SOA

With these requirements in mind, your initial thought is probably to use a topic
exchange and structure the routing key as {service_name}{version}. This is a
good idea and it would actually work, but RabbitMQ supports a type of exchange
that you haven't used before and that offers a more elegant solution to this problem.
Indeed, the headers exchange allows routing messages based on their headers,
which are custom key-value pairs stored in the message properties. This is more
elegant because the routing is guided by the properties of the message and not by
whatever routing key was used at the time of publication. With this approach, the
message and its routing information are all self-contained, remain consistent, and are
therefore easier to inspect as a whole.

The following diagram summarizes the approach we've just discussed in detail:

Client

Publisher

Consumer

Consumer

Authentication
Service

Publisher

RabbitMQ

internal-services
Headers
Exchange

Authentication-service

Default
Exchange<transient>

A request-response interaction powered by RabbitMQ

That was a lot of preliminary. By now, you must be eager to see some code. Let's not
further delay it and implement the authentication service first.

Smart Message Routing

[106]

Exposing the authentication service
Your first move towards rolling out the authentication service is to create the definition
of the request and response messages used for the authentication service. Since CCM
favors JSON as a wire format, you're using the JSON schema to strictly define the
schemas of the login request and response messages and the logout request and
response messages (these schemas can be found in Appendix, Message Schemas).

With this done, you can now turn to coding and start by creating a new class
unsurprisingly named AuthenticationService. It will take care of the
communication with RabbitMQ and the dispatch to the internal classes that are
actually performing the authentication. Let's look at the first part of the constructor
of this class, where we've highlighted the interesting bits:

private static final String INTERNAL_SERVICES_EXCHANGE = "internal-
services";
private static final String AUTHENTICATION_SERVICE_QUEUE =
"authentication-service";

public AuthenticationService(final RabbitMqManager rabbitMqManager)
{
 rabbitMqManager.call(new ChannelCallable<Void>()
 {
 @Override
 public String getDescription()
 {
 return "Declaring and binding: " +
 AUTHENTICATION_SERVICE_QUEUE;
 }

 @Override
 public Void call(final Channel channel) throws IOException
 {
 channel.exchangeDeclare(INTERNAL_SERVICES_EXCHANGE,
 "headers",
 true, // durable
 false, // auto-delete
 null); // arguments

 channel.queueDeclare(AUTHENTICATION_SERVICE_QUEUE,
 false, // durable
 false, // exclusive,
 true, // auto-delete
 null); // arguments

Chapter 6

[107]

 String routingKey = "";
 Map<String, Object> arguments = new HashMap<>();
 arguments.put("x-match", "all");
 arguments.put("request_type", "login");
 arguments.put("request_version", "v1");
 channel.queueBind(AUTHENTICATION_SERVICE_QUEUE,
 INTERNAL_SERVICES_EXCHANGE, routingKey,
 arguments);

 // other arguments unchanged
 arguments.put("request_type", "logout");
 channel.queueBind(AUTHENTICATION_SERVICE_QUEUE,
 INTERNAL_SERVICES_EXCHANGE, routingKey, arguments);

 return null;
 }
 });

Let's review what you've just coded. Once again, we put RabbitMqManager to good
use, as it encapsulates all the logic to deal with connection and channel management.
Observe how the exchange type is set to headers. Also observe how the queue is
nondurable and autodeletable. As we've explained earlier, since service interactions
are synchronous and short lived, there's no reason to have request messages survive
a RabbitMQ restart. The queue is not exclusive because all the Java application
servers will consume it simultaneously.

The binding part of this code is where the interesting things happen. A headers
exchange is configured via arguments and not a routing key. This is why the routing
key is an empty string. The arguments themselves are a map of key values that define
the matching rules with the incoming message headers. A specific key (x-match) is
used to specify whether any or all of the other key-value pairs should match.

In your case, you want to match the key with the version v1 of the login and logout
types of messages. So, you've bound the authentication-service queue to the
internal-services exchange twice as follows:

•	 Once with x-match=all, request_type=login, request_version=v1
•	 Once with x-match=all, request_type=logout, request_version=v1

Now, let's look at how you've created the consumer for the authentication-
service queue, as shown in the following code:

rabbitMqManager.createSubscription(AUTHENTICATION_SERVICE_QUEUE, new
SubscriptionDeliverHandler()
{
 @Override

Smart Message Routing

[108]

 public void handleDelivery(final Channel channel,
 final Envelope envelope,
 final BasicProperties
 requestProperties,
 final byte[] requestBody)
 {
 try
 {
 channel.basicAck(envelope.getDeliveryTag(), false);
 }
 catch (final IOException ioe)
 {
 LOGGER.severe("Failed to acknowledge: "
 + reflectionToString(envelope,
 SHORT_PREFIX_STYLE));
 }

 if (isBlank(requestProperties.getReplyTo()))
 {
 LOGGER.warning("Received request without reply-to: "
 + reflectionToString(envelope,
 SHORT_PREFIX_STYLE));
 return;
 }

 handleRequest(channel, envelope, requestProperties,
 requestBody);
 }

You shouldn't be surprised to see the re-use of the subscription mechanism that
you created earlier. Since it deals with graceful reconnection, it's the right thing
to do. Note how the incoming messages are acknowledged right away. It would
make no sense to reject and redeliver a message in the context of a service-oriented
request-response interaction. Thus, all messages are acknowledged independently,
irrespective of what happens when handling them.

The RabbitMQ Java SDK contains helper classes to create RPC clients
and servers, including those with JSON-serialized messages. Consider
using them, but make sure you understand their behavior in case of
disconnection and agree with the message semantics they use.

Chapter 6

[109]

The next method to look at is the one in charge of deserializing and dispatching the
JSON messages to the actual methods. Let's take a look at the following code:

private void handleRequest(final Channel channel,
 final Envelope envelope,
 final BasicProperties
 requestProperties,
 final byte[] requestBody)
{
 try
 {
 final String contentEncoding =
 requestProperties.getContentEncoding();

 switch (requestProperties.getContentType())
 {
 case LOGIN_REQUEST_V1_CONTENT_TYPE :
 {
 final LoginRequestV1 request =
 OBJECT_MAPPER.readValue(new
 String(requestBody,
 contentEncoding), LoginRequestV1.class);
 final LoginResponseV1 response = login(request);
 final byte[] responseBody =
 OBJECT_MAPPER.writeValueAsString(response).
 getBytes(
 MESSAGE_ENCODING);
 respond(channel, requestProperties,
 LOGIN_RESPONSE_V1_CONTENT_TYPE, responseBody);
 break;
 }

 case LOGOUT_REQUEST_V1_CONTENT_TYPE :
 {
 final LogoutRequestV1 request = OBJECT_MAPPER.
readValue(new String(requestBody,
 contentEncoding), LogoutRequestV1.class);
 final LogoutResponseV1 response = logout(request);
 final byte[] responseBody = OBJECT_MAPPER.
writeValueAsString(response).getBytes(
 MESSAGE_ENCODING);
 respond(channel, requestProperties, LOGOUT_RESPONSE_
V1_CONTENT_TYPE, responseBody);
 break;
 }

Smart Message Routing

[110]

 default :
 throw new IllegalArgumentException("Unsupported
message type: " + requestProperties.getContentType());
 }
 }
 catch (final Exception e)
 {
 handleException(channel, envelope, requestProperties, e);
 }
}

As you can see, the dispatching mechanism is based on the message content-type
property. Looking at this, three questions are certainly going to pop up in your head:

•	 Why not use the content-type property in the matching rule of the headers
exchange? The answer is that it's just impossible, as matching rules only apply
to custom message headers and not to any of the built-in message properties.

•	 Why not use the request_type and request_version headers in the switch
expression? It's possible, but for this, we would need to concatenate them in a
string that would end up being a variation of the content-type.

•	 Why not peek in the message content itself to find out its type? If we are
using XML instead of JSON, we would use specific namespaces for that
matter. JSON doesn't support that notion. One could argue that we could use
a $schema property in our JSON payload and switch to it, but at the end of
the day, we'd rather tell message types apart without having to parse them.

Observe that we also specifically deal with unsupported message types. The last
thing we want is to silently swallow such messages. Instead, we want to make it
clear to the developers and the operation team that something is not right with the
system. On the other hand, valid request messages are deserialized to an object that
gets passed to either the login or logout methods (which we won't detail here as
their implementation is not directly relevant to our discussion).

Be strict and deserialize request and response JSON messages straight
to objects with internal services. Different version numbers will allow
you to evolve gracefully. Conversely, if you expose public services over
AMQP, be lax with the request messages (do not bind them to objects),
but stay strict with your response messages (serialize them from objects).
This will cut some slack for external users who may lack the discipline or
understanding needed when rigorously dealing with schema versions.

Chapter 6

[111]

The objects returned from these methods are then sent to the reply queue using
the respond method, which is listed in the following code with the important
lines highlighted:

private void respond(final Channel channel,
 final BasicProperties requestProperties,
 final String responseContentType,
 final byte[] responseBody) throws IOException
{
 final String messageId = UUID.randomUUID().toString();

 final BasicProperties props = new BasicProperties.Builder()
 .contentType(responseContentType)
 .contentEncoding(MESSAGE_ENCODING)
 .messageId(messageId)
 .correlationId(requestProperties.getCorrelationId())
 .deliveryMode(1)
 .build();

 channel.basicPublish("", requestProperties.getReplyTo(),
 props, responseBody);
}

The notable aspects of the respond method are as follows:

•	 The correlation-id of the request message is propagated to the response
message. Though this is not required in your case, since you'll be using
temporary reply queues, it is a good practice to do so. Moreover, it opens the
door to switch to a permanent response queue should performance issues
arise with the short-lived queues.

•	 The delivery-mode is set to 1, which indicates nonpersistence. Once again,
this is because of the transient nature of request-response interactions.

•	 The response is published to the default exchange, the name of which is an
empty string. The routing key used for the publication is the name of the
reply queue, which is stored in the reply-to property for the request message.

Finally, let's take a look at the handleException method, which is called whenever
anything goes wrong while handling a request message, whether this is done because
the request message can't be deserialized, its type is unknown, or if the actual method
being called ends up throwing an exception. This is shown in the following code:

private void handleException(final Channel channel,
 final Envelope envelope,
 final BasicProperties
 requestProperties,

Smart Message Routing

[112]

 final Exception e1)
{
 LOGGER.log(SEVERE, "Failed to handle: " +
 reflectionToString(envelope, SHORT_PREFIX_STYLE),
 e1);

 try
 {
 final ErrorV1 error = new ErrorV1()
 .withContext(reflectionToString(envelope,
 SHORT_PREFIX_STYLE))
 .withMessage(e1.getMessage());
 final byte[] responseBody =
 OBJECT_MAPPER.writeValueAsString(error).getBytes(
 MESSAGE_ENCODING);
 respond(channel, requestProperties, ERROR_V1_CONTENT_TYPE,
 responseBody);
 }
 catch (final Exception e2)
 {
 LOGGER.log(SEVERE,
 "Failed to respond error for: " +
 reflectionToString(envelope, SHORT_PREFIX_STYLE),
 e2);
 }
}

Observe how a generic error message is used as the service response when an
exception occurs. This is a very simple and powerful way of propagating potential
issues back to the caller of a message-oriented service. Since this is an internal
service, it is perfectly fine if the error message carries lots of contextual information.

You're done with the implementation of the authentication service. After deploying
the preceding code, the internal-services exchange and the authentication-
service queue is created. By looking at the bindings of the latter in the management
console, you can visually confirm that the correct bindings and headers that match
the specified rules are in place, as shown in the following screenshot:

Chapter 6

[113]

The routing and matching rules of a queue bound twice to a headers exchange

Now that the service is ready, it's time to write a client that interacts with it.

Calling the authentication service
If you remember the initial use case, CCM wants to interact with the authentication
service from the Ruby-on-Rails back office application. Therefore, you will
implement the client in Ruby. The code you came up with is reproduced as follows:

channel = AMQP::Channel.new(connection)

channel.on_error do |ch, channel_close|
 connection.close { EventMachine.stop }
 raise "Channel error: #{channel_close.inspect()}"
end

channel.headers(
 'internal-services',
 :durable => true,
 :auto_delete => false,
 :passive => true) do |exchange|

 channel.queue('',
 :exclusive => true,
 :durable => false,
 :auto_delete => true) do |response_queue|

 response_queue.subscribe do |metadata, payload|
 handle_response(metadata.content_type, payload)
 end

 puts "Response queue created: #{response_queue.name}"

Smart Message Routing

[114]

 message_id = SecureRandom.uuid
 message_json = JSON.generate({
 :username => user_name,
 :password => password})

 exchange.publish(
 message_json,
 :content_type => 'application/vnd.ccm.login.req.v1+json',
 :content_encoding => 'UTF-8',
 :message_id => message_id,
 :correlation_id => message_id,
 :reply_to => response_queue.name,
 :headers => { :request_type => 'login',
 :request_version => 'v1' })
 end

 EventMachine.add_timer(3) do
 puts 'No response after 3 seconds'
 connection.close { EventMachine.stop }
 end
end

There are several interesting bits in this code. Observe that first, a passive declaration
of the internal-services headers exchange is performed. What does this mean?
Basically, it is a declaration attempt that just checks the existence of the exchange,
the expected routing type, and the durability configuration. If you remember our
discussion about check then act strategies in Chapter 2, Creating an Application Inbox,
you're probably thinking "Ah hah! You're doing the opposite of what you preached."
Actually, in this case, it's okay if the exchange gets deleted after the check and the
subsequent publish operation fails; the failure will be dealt with by the channel error
handler (at the top of the code snippet). This passive declaration saves you the effort
of creating a temporary queue for no reason if it's clear that the publish operation
will fail anyway.

With this in place, the next step consists of creating the exclusive autodelete response
queue. Did you spot that an empty string is used for its name? This means that it
will be up to RabbitMQ to generate a unique name for the queue, which is what you
want since you're using short-lived response queues. Then, the response handler
gets subscribed to the queue, which makes sense because we want to do this before
sending the request. Otherwise, we may not be ready to receive the response if it
comes back very quickly.

Chapter 6

[115]

After this, the login message is created and published to the exchange with the
necessary reply_to property and the request_type and request_version headers.
For good measure, a correlation_id property is also provided, though it's not used
since a temporary queue is used for the response (instead of a permanent one).

You can learn more about EventMachine and how it enables
Ruby to execute a code in a nonblocking fashion at http://
rubyeventmachine.com.

Finally, a time-out is set in order to deal with a case where no service response comes
back. This is crucial if you do not want to block the client application threads forever
in case there is an issue with the service, a blocking that could eventually make the
whole application unusable.

Reasonable time-outs is one of the secret sauces of distributed
systems that degrade gracefully when things go haywire. Another
ingredient of the secret sauce is retries with exponential back-offs and
a capped number of attempts.

You're done with the authentication service client. If you glance at the management
console while a service request is underway, you will see the temporary reply queue
right above the authentication-service queue, as illustrated in the following
screenshot. The name of the management console starts with amq.gen- to make it
clear that it's a name that has been generated by RabbitMQ. Observe that the queue
is exclusively accessible to its owner:

A transient reply queue and the authentication service queue involved in a request-response interaction

At this point, you've built a solid message-oriented SOA foundation that you build
upon to roll out new services or new versions of existing services as the need arises.

Smart Message Routing

[116]

Summary
In this chapter, you learned the principles of performing service invocations in a
message-oriented manner. You learned how to roll out services and clients and
configure RabbitMQ to smartly route messages back and forth between them.

By now, all the features Clever Coney Media was planning to implement on
RabbitMQ are established. It's now time to turn your attention to the operational
aspects of RabbitMQ in production. That's what the next chapter of this book will
focus on.

Taking RabbitMQ to
Production

Who wants to have all their eggs in the same basket? No one of course, but this is
basically what Clever Coney Media has been doing so far since it has been running a
single instance of RabbitMQ in production. In this chapter, you'll learn how to address
this concern using the clustering and federation features of RabbitMQ. You'll also learn
how to check the pulse of the brokers and get alerts if things start turning sour.

In this chapter, you will learn about:

•	 Broker clustering
•	 High-availability queues
•	 The federation plug cluster in
•	 Monitoring RabbitMQ

Tackling the broker SPOF
So far, Clever Coney Media has been running a single instance of RabbitMQ for all
its production needs. Things have been running smoothly, but it's just a matter of
time until something bad happens. Though RabbitMQ brokers are extremely stable, a
crash is always possible. Losing an instance altogether due to a virtual instance glitch
is a likely possibility that can't be ignored if you're running in the cloud. Therefore, it
is essential to tackle the broker single point of failure (SPOF) before something bad
happens, to prevent losing data, annoying users, and avoiding the dreaded 2 a.m.
phone calls.

Taking RabbitMQ to Production

[118]

The good news is that RabbitMQ provides all the necessary features to deal with this
issue out of the box. Indeed, RabbitMQ can easily be configured to run in an active/
active deployment, where several brokers are engaged in a cluster to act as a single
highly-available AMQP middleware. The active/active aspect is essential, because it
means that no manual fail-over operation is needed if one broker goes down, again
sparing you a 2 a.m. phone call.

Therefore CCM decides to roll out a second RabbitMQ broker (named rmq-prod-2)
and cluster it with the one it already has (named rmq-prod-1). This would lead to
the architecture represented in the following diagram:

Main

DB

Application

Server

Application

Server

Application

Server

rmq-prod-1 rmq-prod-1

Cluster

Back

Office

A high-availability cluster of two RabbitMQ brokers

CCM informs you when the second instance of RabbitMQ is ready that needs to be
clustered with the already existing one. It has made sure that the content of the file
in /var/lib/rabbitmq/.erlang.cookie is the same as in the first instance. This
is required because RabbitMQ relies on Erlang's clustering feature, which allows
several Erlang nodes to communicate with each other locally or over the network.
The Erlang cluster requires a so-called security cookie as a means of cross-node
authentication.

If your RabbitMQ instances are firewalled from each other, you'll need
to open specific ports on top of the one used by AMQP (5672); otherwise,
the cluster will not work. You can get more information at http://
www.rabbitmq.com/clustering.html#firewall.

Chapter 7

[119]

You do not need to configure any user or virtual host on the second node, like you
did in Chapter 1, A Rabbit Springs to Life. Instead, you just have to join the cluster, and
its configuration will automatically be synchronized with the existing RabbitMQ
instance, including users, virtual hosts, exchanges, queues, and policies.

Keep in mind that when a node joins a cluster, it will be completely
reset. All its configuration and data will be deleted before it
synchronizes with the other members of the cluster.

For this, you run the following command on the second node:

$ sudo rabbitmqctl stop_app

Stopping node rabbit@rmq-prod-2 ...

...done.

$ sudo rabbitmqctl join_cluster rabbit@rmq-prod-1

Clustering node rabbit@rmq-prod-2 with rabbit@rmq-prod-1 ...

...done.

$ sudo rabbitmqctl start_app

Starting node rabbit@rmq-prod-2 ...

...done.

Make sure the same version of Erlang is used by all the RabbitMQ nodes
that engage in a cluster; otherwise, the join_cluster command will
fail with an OTP version mismatch error.
Similarly, the same major/minor version of RabbitMQ should be used
across nodes, but patch versions can differ; this means that versions 3.2.1
and 3.2.0 can be used in the same cluster, but not 3.2.1 and 3.1.0.

After running these commands, you can check whether the cluster is active by
running the cluster_status command on any node. Hereafter, you run it on the
first node:

$ sudo rabbitmqctl cluster_status

Cluster status of node rabbit@rmq-prod-1 ...

[{nodes,[{disc,[rabbit@rmq-prod-2,rabbit@rmq-prod-1]}]},

 {running_nodes,[rabbit@rmq-prod-2,rabbit@rmq-prod-1]},

 {partitions,[]}]

...done.

Taking RabbitMQ to Production

[120]

Notice how two lists of nodes are given in the status message: the one named nodes
is the list of configured nodes in the cluster, while the one named running_nodes
lists the nodes that are actually active. The list of configured nodes is persistent, so
it will survive a restart of the brokers. On restart, each broker will automatically re-
engage with the cluster.

Spend some time getting acquainted with RabbitMQ's behavior
in a split-brain (also known as network partition) situation at
http://www.rabbitmq.com/partitions.html.

We've said that the entire configuration will be synchronized on the new node
joining the cluster. You can confirm this by connecting to the management console
on the second node. You can use the ccm-admin user to log in because it's been
synchronized. As you can see in the following screenshot of the Queues view of the
management console, the configuration has actually been synchronized:

All configurations are synchronized after joining the cluster

If you want to add more nodes, you would only need to have each new
node join one of the other nodes in the cluster. It would then discover all
the other nodes in the cluster automatically (a neat feature provided by
the underlying Erlang clustering mechanism).

Chapter 7

[121]

In the management console of the first node, the Overview tab shows all the nodes
that are in the cluster, as illustrated in the following screenshot:

The management console overview shows all cluster members

As you can see, all the members of the cluster are listed, including the statistics and
ports they've opened (both for AMQP and the management console itself). You
may be wondering what the different values shown in the Type column are. Disc
means that this node persists its data to the filesystem, which is the default behavior.
It's also possible to start a node as a ram node, in which case all message data will
be purely stored in memory. This is an interesting approach for creating high-
performance members in a cluster. Stats means the node is the one that contains the
management statistics database, which is not spread across the cluster. Finally, the *
indicates the node you're connected to.

Nodes can be removed from the cluster, as explained in this
tutorial at http://www.rabbitmq.com/clustering.
html#breakup.

At this point, you're probably thinking you're done with clustering. In fact, there's
one more step to perform to ensure the high availability of your queues' data.

Taking RabbitMQ to Production

[122]

Mirroring queues
With clustering, you ensured that the configuration gets synchronized across all
RabbitMQ nodes. This means that clients can now connect to one node or the other
and find the exchanges and queues they're expecting. However, there is one thing
that is not carried over the cluster by default: the messages themselves. By default,
queue data is local to a particular node; so if this node goes down, consumers will
have to wait until it comes back to access it. This may sound strange, but it can be
a perfectly acceptable scenario for messages used to track long running tasks, for
example, for which having to wait for a while would not be tragic.

In your case, you want the data in the users' queues to be highly available. This
can be achieved with mirrored queues. When a queue is mirrored, its instances
across the network organize themselves around one master and several slaves. All
interaction (message queuing and dequeuing) happens with the master; the slaves
receive the updates via synchronization over the cluster. If you interact with a node
that hosts a slave queue, the interaction would actually be forwarded across the
cluster to the master and then synchronized back to the slave.

Activating queue mirroring is done via a policy that is applied to each queue
concerned. Since only one policy at a time is allowed on a queue (or exchange),
you will first have to clear the Q_TTL_DLX policy you created in Chapter 5, Tweaking
Message Delivery and apply a new policy that composes the Q_TTL_DLX policy with
the queue mirroring one (that is, the high-availability queue). This sounds more
complicated than it is, as you can see by running the following command:

$ sudo rabbitmqctl clear_policy -p ccm-prod-vhost Q_TTL_DLX

Clearing policy "Q_TTL_DLX" ...

...done.

$ sudo rabbitmqctl set_policy -p ccm-prod-vhost HA_Q_TTL_DLX "user-
 .+" '{"message-ttl":604800000, "dead-letter-exchange":"user-dlx",
 "ha-mode":"all", "ha-sync-mode":"automatic"}' --apply-to queues

 Setting policy "HA_Q_TTL_DLX" for pattern "user-.+" to "{\"ha-
 mode\":\"all\", \"message-ttl\":604800000, \"dead-letter-
 exchange\":\"user-dlx\"}" with priority "0" ...

...done.

As you can see, you just added "ha-mode":"all" to the existing TTL and DLX
policy rules. The all value for ha-mode means that the queues will be mirrored
across all nodes in the cluster, which is exactly what you want for your two-node
cluster. Other options are exactly and nodes, which allow specifying a number or
nodes and a list of node names in an extra ha-params parameter respectively.

Chapter 7

[123]

The ha-sync-mode parameter is unsurprisingly used to specify the synchronization
mode for the mirrored queue, and can be either manual or automatic. In the manual
mode, a newly mirrored slave queue will not receive any of the existing messages,
but will eventually become consistent with the master queue, as old messages get
consumed. In your case, you want immediate synchronization of the queues so that
any existing messages become visible across all nodes, and are fine with the initial
unresponsiveness this will create, as performance is not critical for user messages.

It is possible to manually synchronize a mirrored queue with
rabbitmqctl sync_queue <queue_name>. The manual
synchronization can be canceled with rabbitmqctl cancel_sync_
queue <queue_name>.

You certainly must have noticed that we apply this policy only to the user inboxes
and dead-letter queue. You're most likely wondering about the log and the service
queues. For the log queues, we will be looking at another high-availability option
because it does not make sense to mirror the high traffic that goes through them across
the cluster. For the service temporary response queues, there is no need to make them
highly available; if something goes wrong with a broker, the synchronous interaction
will break and the client will have to back off and retry. However, the service request
queues need to be mirrored to allow providers and consumers to be connected to
different RabbitMQ brokers. This is done with the following command:

$ sudo rabbitmqctl set_policy -p ccm-prod-vhost HA_Q ".+-service" '{"ha-
mode":"all", "ha-sync-mode":"automatic"}' --apply-to queuesSetting policy
"HA_Q" for pattern ".+-service" to "{\"ha-mode\":\"all\", \"ha-sync-
mode\":\"automatic\"}" with priority "0" ...

...done.

As you can see, you opted for the .+-service pattern, so any new service that
you could develop alongside the authentication one will have its request queue
automatically mirrored, as long as its name ends with -service.

Taking RabbitMQ to Production

[124]

If you take a look at the Queues tab of the management console after running the
above command, you'll see that the HA_Q_TTL_DLX and HA_Q policies have been
applied to the intended queues, as visible in the following screenshot:

Mirrored queues with the HA policies applied.

Notice how the mirrored queues have a +1 next to them. It's not an option for
sharing them with your friends on Google Plus; instead, it denotes the fact that the
queues are mirrored to one other node in the cluster. Staying in the management
console, if you look at Details of any mirrored queue, you will see something similar
to the next image. As you can see, the master node (rabbit@rmq-prod-1) and the
slave nodes (only rabbit@rmq-prod-2, in your case) are clearly detailed:

Master and slave nodes are detailed for each mirrored queue

At this point, the RabbitMQ brokers are clustered and user queues are mirrored.
However, the client applications are not yet able to benefit from this highly-available
deployment. Let's fix this right away.

Chapter 7

[125]

Connecting to the cluster
The applications that connect to RabbitMQ need to be modified a little so that they
can benefit from the cluster. Currently, they connect to a single node and thus,
should be modified to be able to connect to both nodes, trying one and failing
over to the other one in case of trouble. Besides this modification, no other change
is required from the client applications. They will continue to interact with the
exchanges and queues they know about in the same way as before.

Let's first modify the main Java application. All you need to do is edit the
RabbitMqManager class, so it receives by injection both a com.rabbitmq.client.
ConnectionFactory and an array of com.rabbitmq.client.Address instances, one
for each RabbitMQ node. Then you can modify the start() method as shown in the
following code:

public void start()
{
 try
 {
 connection = factory.newConnection(addresses);
 connection.addShutdownListener(this);
 LOGGER.info("Connected to " + connection.getAddress().
getHostName() + ":" + connection.getPort());
 restartSubscriptions();
 }
 catch (final Exception e)
 {
 LOGGER.log(Level.SEVERE, "Failed to connect to " + Arrays.
toString(addresses), e);
 asyncWaitAndReconnect();
 }
}

Basically, the list of broker addresses is passed to the connection factory and the
actual connection is used in the success log statement, while the list of addresses
is used in the failure log statement. With this in place, the RabbitMQ Java client
will connect to the first responsive node in the address list and will try each of the
provided broker addresses until it can establish a connection, or eventually fail. In
case of failure, the overall reconnect mechanism you've already put in place will kick
in and the addresses will once again be attempted for connection. The following code
illustrates how connection factory and the list of addresses are created before
being passed on to RabbitMqManager:

ConnectionFactory factory = new ConnectionFactory();
factory.setUsername("ccm-prod");

Taking RabbitMQ to Production

[126]

factory.setPassword("******");
factory.setVirtualHost("ccm-prod-vhost");

Address[] addresses = new Address[]{
 new Address("rmq-prod-1", 5672),
 new Address("rmq-prod-2", 5672)};

With this in place, the main Java application is able to benefit from the cluster. Let's
turn our attention to the Ruby on Rails back office. Things are a little simpler here
because it doesn't maintain a permanent connection to RabbitMQ. Therefore, all that
is needed is a mechanism to attempt connecting to the first broker, then the second,
and run a block provided on the first successfully established connection.

You can achieve this very elegantly, thanks to the on_tcp_connection_failure
mechanism provided by the amqp gem, as follows:

def run_with_connection(settings, &action)
 broker = settings[:brokers].shift

 raise "Impossible to connect to any broker" if broker.nil?

 settings.merge!(broker)

 settings.merge!({
 :on_tcp_connection_failure => Proc.new {
 run_with_connection(settings, &action)
 }
 })

 EventMachine.run do
 AMQP.connect(settings) do |connection|
 action.call(connection)
 end
 end
end

settings = {
 :brokers => [
 {:host => 'rmq-prod-1', :port=> 5672},
 {:host => 'rmq-prod-2', :port=> 5672}
],
 :vhost => "ccm-prod-vhost",
 :user => "ccm-prod",
 :password => "******"
}

Chapter 7

[127]

Notice how each connection is attempted by mutating the settings hash using
the broker host and port information. With this in place, calling run_with_
connection(settings) will create a valid connection to RabbitMQ and pass it to
the block provided.

At this point, you've taken care of all the systems concerned with user queues. But
what about the log aggregation mechanism? It's indeed time to address this concern.

Federating brokers
So far, you've followed an approach to high availability that most developers should
be very familiar with. The way you created a cluster of two RabbitMQ brokers is
really similar to what is typically done when making a relational database highly
available. The database remains a centralized resource that offers high guarantees
of availability. But RabbitMQ is not a one-trick rabbit when it comes to high
availability. Remember, you left the log queues out of the equation for a reason;
you did not want to mirror such a highly-trafficked queue. What could you do in
order for CCM to enjoy the same guarantees for log aggregation? Enter the notion of
messaging topologies.

If you think beyond the notion of a single centralized enterprise resource and
instead think in terms of distributed components, the idea of creating a topology
of RabbitMQ brokers will emerge. RabbitMQ offers the following two plugins that
allow the connection of brokers:

•	 The shovel plugin, which connects queues in one broker to exchanges in
another broker

•	 The federation plugin, which connects queues to queues or exchanges to
exchanges across brokers

Both plugins ensure a reliable delivery of messages across brokers; if messages can't
be routed to the target broker, they'll remain safely accumulated. Neither require
brokers to be clustered, which simplifies setup and management (RabbitMQ and
Erlang versions can mismatch). Moreover, both plugins work fine over WAN
connections, something clustering doesn't do well.

In a federation, only the node where messages converge needs to be
manually configured; its upstream nodes get automatically configured
for the topology. Conversely with shovels, each source node needs to
be manually configured to send to a destination node, which itself is
unaware of the fact that it's engaged in a particular topology.

Taking RabbitMQ to Production

[128]

In your case, the ideal topology consists of running a RabbitMQ node collocated
with each application that emits logs to the app-logs topic exchange (refer to Chapter
4, Handling Application Logs), and have this exchange forward all messages to a
centralized single RabbitMQ node where the app-logs-archiver and app-logs-
error-reporter queues will be bound. This topology is illustrated in the
following diagram:

Rich

Internet

Application

Back

Office

Log

Analysis

Scripts

Company’s

Website

and

Blog
php

app-prod-1 app-prod-2 app-prod-3 bo-prod-1 web-prod-1

logs-prod

Rich

Internet

Application

Rich

Internet

Application

Log4j Logs Log4j Logs Log4j Logs
Apache2 Logs

(syslog)

Apache2 Logs

(syslog)

A topology that federates log messages to a central broker

In this topology, all applications will write to a local RabbitMQ node, which will
act as a store-and-forward broker, pushing all logs to a centralized RabbitMQ node.
If this central node is down, the log entries will remain locally accumulated until it
comes back up. Obviously, the assumption here is that the local RabbitMQ nodes are
extremely stable. Your experience with running RabbitMQ in the past few months
will help you with this approach. Moreover, logs are considered important but not
critical data for CCM, so a best-effort approach is acceptable. Knowing this, you
chose to use the federation plugin, as it's the one that supports exchange to exchange
connectivity (with shovel, messages would have to be accumulated in a local queue
on each node).

Chapter 7

[129]

More information on the shovel plugin can be found at
http://www.rabbitmq.com/shovel.html.

The federation plugin needs to be installed on all RabbitMQ nodes that will engage
in the topology. Therefore, you install it by running the following commands on
each node:

$ sudo rabbitmq-plugins enable rabbitmq_federation

The following plugins have been enabled:

 rabbitmq_federation

Plugin configuration has changed. Restart RabbitMQ for changes to take
effect.

$ sudo rabbitmq-plugins enable rabbitmq_federation_management

The following plugins have been enabled:

 rabbitmq_federation_management

Plugin configuration has changed. Restart RabbitMQ for changes to take
effect.

Moreover, unlike with clustering, each node needs to be manually set up to have the
desired user and virtual host configured. Therefore, you need to run the necessary
command, as discussed in Chapter 1, A Rabbit Springs to Life. Next, you need to
configure the apps-log exchange federation itself. This involves multiple steps
(which we will detail hereafter) that are all run on the central broker, that is, the one
towards which all logs will converge. First, you need to configure what are called
upstreams, which are the RabbitMQ nodes that will send data to the central broker.

Five upstreams are needed, since there are five servers that will send logs over;
however, we will only consider two in the following examples for brevity's sake. What
you're about to do for two upstreams will be done the same way for the other three:

$ sudo rabbitmqctl set_parameter -p ccm-prod-vhost federation-upstream
app-prod-1-logs '{"uri":"amqp://ccm-prod:******@app-prod-1:5672/ccm-prod-
vhost"}'

Setting runtime parameter "app-prod-1-logs" for component "federation-
upstream" to "{\"uri\":\"amqp://ccm-prod:******@app-prod-1:5672/ccm-prod-
vhost\"}" ...

...done.

$ sudo rabbitmqctl set_parameter -p ccm-prod-vhost federation-upstream
app-prod-2-logs '{"uri":"amqp://ccm-prod:******@app-prod-2:5672/ccm-prod-
vhost"}'

Taking RabbitMQ to Production

[130]

Setting runtime parameter "app-prod-2-logs" for component "federation-
upstream" to "{\"uri\":\"amqp://ccm-prod:******@app-prod-2:5672/ccm-prod-
vhost\"}" ...

...done.

The next step consists of creating an upstream set, which is a logical group of
upstreams referred to by their names. You run the following command to create an
upstream set named app-prod-logs, and that contains the app-prod-1-logs and
app-prod-2-logs upstreams:

$ sudo rabbitmqctl set_parameter -p ccm-prod-vhost federation-upstream-
set app-prod-logs '[{"upstream": "app-prod-1-logs"},{"upstream": "app-
prod-2-logs"}]'

Setting runtime parameter "app-prod-logs" for component "federation-
upstream-set" to "[{\"upstream\": \"app-prod-1-logs\"},{\"upstream\":
\"app-prod-2-logs\"}]" ...

...done.

If you know that you'll never have more than one logical group of
upstreams, you can skip the creation of an upstream set and use
the implicit set named all, which automatically contains all the
upstreams in a virtual host.

After this, you need to configure the user that the federation plugin will use in the
central broker to interact with the federated exchange, with the following command:

$ sudo rabbitmqctl set_parameter federation local-username '"ccm-
 prod"'

Setting runtime parameter "local-username" for component "federation"
 to "\"ccm-prod\"" ...

...done.

If you browse the Federation Upstreams tab in the Admin section of the
management console, you'll see that the two upstreams have been correctly
configured (as shown in the following screenshot):

Chapter 7

[131]

Upstream nodes are configured in a federation

If you switch to Federation Status, you'll see that it's empty, meaning that it's
inactive. Why is that? After all, you've just created the topology. The reason is no
exchange nor is queue yet actively engaged in the topology. Because of its dynamic
nature, the federation is inactive. To bring it to life, you need to create a policy
applied to the app-logs exchange that configures it to be federated with the
app-prod-logs upstream set you've just created. You decide on naming this policy
LOGS_UPSTREAM and run the following command:

$ sudo rabbitmqctl set_policy -p ccm-prod-vhost --apply-to exchanges
 LOGS_UPSTREAM "app-logs" '{"federation-upstream-set":"app-prod-
 logs"}'

Setting policy "LOGS_UPSTREAM" for pattern "app-logs" to
 "{\"federation-upstream-set\":\"app-prod-logs\"}" with priority "0" ...

...done.

Taking RabbitMQ to Production

[132]

After running this command, if you come back to the Federation Status tab, you'll
see that the federation is now running links for the app-logs exchange from the two
upstream nodes of the configured set (as shown in the following screenshot):

Running upstream links for a federated exchange

If you look at the app-logs exchange on this node, you'll see that there's nothing
special to it, except that it has the LOGS_UPSTREAM policy applied to it
(as represented in the following screenshot):

An exchange gets federated via a specific policy

It's also possible to get the status of the federation from the command
line by running sudo rabbitmqctl eval 'rabbit_federation_
status:status().' on the downstream node.

Chapter 7

[133]

Now if you connect to the management console of any of the upstream nodes and
look at the same exchange, you'll see what's represented in the following image.
Now we're talking! The downstream node clearly has informed the upstream nodes
of the federation, because the link established for the app-logs exchange is clearly
visible (albeit grayed out, you may need to squint to be able to read it).

In an upstream node, federation links are visible in the management console

If you look at the Connections and Channels tabs of the management console,
you'll see that the downstream node is connected to the upstream mode over the
AMQP protocol. Except for the setup of the topology itself, there's nothing magical
about the federation. It's been built on top of AMQP, and thus, benefits from the
same advantages offered by the protocol. Hence, if your RabbitMQ instances are
firewalled, no special port besides the one used by AMQP (5672 by default) needs
to be opened.

You can read more about the federation plugin at http://www.
rabbitmq.com/federation.html and http://www.rabbitmq.
com/federation-reference.html.

From now on, you'll sleep better at night. You've clustered the nodes that were
required to be highly available and deployed the others in a reliable topology. But
what if things are going really bad with a broker? How will you know? It's time to
review some monitoring strategies.

Taking RabbitMQ to Production

[134]

Monitoring the broker
The last task required to ensure a smooth production ride with RabbitMQ is the same
as that of any other system; proper monitoring and alerting should be put in place in
order to stay abreast of what's happening in the running brokers. In essence, the two
questions you need to ask yourself are: what to monitor and how to monitor it? Let's
take time to answer these two questions in the context of Clever Coney Media. We
won't be discussing the monitoring of the machines (hardware or virtual) on which
the brokers run, but will be focusing on the RabbitMQ specifics only.

Let's tackle the "how" first. There are two main ways to retrieve live information
from a RabbitMQ broker: via the rabbitmqctl command-line tool and via the REST
API exposed over HTTP by the management console. Any decent monitoring system
will be able to use one or the other in order to collect metrics and report them to its
central aggregation, charting, and alerting engine.

An experimental SNMP monitoring plugin has been developed
for RabbitMQ. I have successfully used it in the past, but its
development has unfortunately been abandoned.

Since you've installed the management console at CCM, you're opting to use its rich
and well-documented REST API over the command-line tool. The documentation
of this API is available at http://localhost:15672/api/ on any RabbitMQ node
where the plugin is installed.

Keep in mind that the management console is backed by the
API, so anything you see and do with your browser can be
done via the API.

CCM uses Zabbix as its monitoring tool of choice, so you'll be writing single-line
shell commands to gather metrics locally and send them to the Zabbix server. All in
all, the monitoring architecture will be as represented in the following diagram:

Chapter 7

[135]

Server

rmq-prod-1

Management

REST API

HTTP

Agent

ZABBIX

HTTP

Agent

ZABBIX

rmq-prod-2

Management

REST API

HTTP

Agent

ZABBIX

...

Management

REST API

ZABBIX

RabbitMQ monitoring architecture at CCM

You can learn more about Zabbix by reading Mastering Zabbix from
Packt Publishing. You can get more information at http://www.
packtpub.com/monitor-large-information-technology-
environment-by-using-zabbix/book.

Let's now detail the "what". Here are the different checks and metrics you've decided
to implement and their related commands:

•	 Node liveness: Check whether RabbitMQ is performing its basic duties by
executing a set of commands (declares the aliveness-test queue, publishes to,
and consumes from it). Set the alarm to fire if the command returns 0
as follows:
curl -s http://ccm-admin:******@localhost:15672/api/aliveness-
 test/ccm-prod-vhost | grep -c "ok"

•	 Cluster size: Check on each of the clustered nodes their view of the active
cluster size (it can differ in case of a network partition). Set the alarm to fire if
the size is less than the healthy cluster size, which is 2 in your case, as follows:
curl -s http://ccm-admin:******@localhost:15672/api/nodes |
 grep -o "contexts" | wc -l

Taking RabbitMQ to Production

[136]

•	 Federation status: Check the active upstream links on the central log
aggregation broker and raise an alarm if it's less than the optimal size (5 in
your case) as follows:
curl -s http://ccm-admin:******@localhost:15672/api/
 federation-links/ccm-prod-vhost | grep -o "running" | wc -l

•	 Queues high-watermarks: Ensure the number of available messages in
a queue is below a certain threshold. In your case, you'll verify that both
the user-dlq and authentication-service queues have less than 25
messages in them. Otherwise, an alarm will be raised to indicate that either
the consumers are down or are too slow and most of them would need to
be provisioned. The scripts have to be written to fail gracefully if the queues
don't exist:
curl -s -f http://ccm-admin:******@localhost:15672/api/queues/
 ccm-dev-vhost/user-dlq | jq '.messages_ready'

curl -s -f http://ccm-admin:******@localhost:15672/api/queues/
 ccm-dev-vhost/authentication-service | jq '.messages_ready'

•	 Overall message throughput: Monitor the intensity of the messaging traffic
on a particular broker, for which you won't set any particular alarm (you
may have to add an alarm if a throughput threshold proves to be the upper
limit of what one of your broker can withstand). The following command
will do the same for you:

curl -s http://ccm-admin:******@localhost:15672/api/vhosts/
 ccm-prod-vhost | jq '.messages_details.rate'

Some metrics come with related rigid upper limits whose values are also available
from the API. For these, you'll raise an alarm whenever a threshold of 80 percent of
the upper limit is reached. The following script will return false when the alarm
must be raised. Let's detail them:

•	 File descriptors: The performance of the message persistence on the disk can
be affected if not enough descriptors are available.
curl -s http://ccm-admin:******@localhost:15672/api/
 nodes/rabbit@${host} | jq '.fd_used<.fd_total*.8'

•	 Socket descriptors: RabbitMQ will stop accepting new connections if these
descriptors are exhausted.
curl -s http://ccm-admin:******@localhost:15672/api/nodes/
rabbit@${host} | jq '.sockets_used<.sockets_total*.8'

Chapter 7

[137]

•	 Erlang processes: There is an upper limit to the number of processes that can
be created in an Erlang VM. Albeit if very high (around a million), it is worth
keeping an eye on them.
curl -s http://ccm-admin:******@localhost:15672/api/nodes/
 rabbit@${host} | jq '.proc_used<.proc_total*.8'

•	 Memory and disk space: If any of these system resources get exhausted,
RabbitMQ will not be able to work properly.

curl -s http://ccm-admin:******@localhost:15672/api/nodes/
rabbit@${host} | jq '.mem_used<.mem_limit*.8'

curl -s http://ccm-admin:******@localhost:15672/api/nodes/
rabbit@${host} | jq '.disk_free_limit<.disk_free*.8'

On top of that, the presence of the following two processes must be checked:

•	 rabbitmq-server: This is obvious but should not be forgotten!
•	 epmd: The Erlang Port Mapper Daemon plays a critical role in the clustering

mechanism and, as such, should be carefully monitored.

Finally, the occurrence of ERROR REPORT entries in the main RabbitMQ logfile needs
to be monitored as well. This logfile is typically located at: /var/log/rabbitmq/
rabbit@<hostname>.log.

You now have the means to gather a holistic view of your RabbitMQ brokers all
across your network in order to be proactive and stay on top of issues before they
become too problematic.

Summary
In this chapter, you learned how RabbitMQ delivers powerful features, such as
clustering or federation, in an elegant and easy-to-grasp manner. Using these
features, you increased the availability and overall resilience of your messaging
infrastructure. You also learned how to keep an eye on these brokers and be alerted
if anything goes wrong with one of your RabbitMQ instances.

In the next and final chapter of this book, you'll learn about testing and tracing
strategies that will allow you to develop and maintain applications in the long run.

Testing and
Tracing Applications

Testing is essential to software engineering; no application can gracefully evolve
over time if it is not associated with a consummate set of automated tests that act
as a safety net against regression. Indeed, beyond validating that applications
exhibit the intended behavior, testing is about defeating the test of time. RabbitMQ
applications do not escape this rule, as this chapter explains in detail. Sometimes,
reflecting about the code and testing it is not enough. Tracing comes into play when
an actual application is executed and its inputs/outputs are scrutinized in order to
get a deeper understanding of what it does. This chapter presents two handy tracing
tools provided by RabbitMQ, which are very likely to become prominent in your
developer's toolbox.

In this chapter, you will learn about the tools and techniques to do the following:

•	 Unit testing RabbitMQ applications
•	 Writing integration tests for these applications
•	 Tracing the AMQP protocol
•	 Tracing the RabbitMQ broker

Testing and Tracing Applications

[140]

Testing RabbitMQ applications
Developers at Clever Coney Media are test infected; they can't ship any piece of
software that hasn't been properly tested in an automated fashion and with enough
coverage. So how is it that you haven't seen any test until now? We wanted to keep the
main focus on RabbitMQ and AMQP, so we didn't include testing in the discussions.
As we're closing this book, now is a good time to revisit the code you've written and
detail the tests that were created for it. We will focus on the main Java application, as
it is where the vast majority of the critical code resides; however, the principles and
practices you will learn about are applicable to any language or platform.

Your approach to test RabbitMQ applications is twofold:

•	 Create a set of unit tests that exercise the behavior of your classes, one by
one and in isolation. In these unit tests, use mock objects instead of the
actual RabbitMQ client classes to ensure that things are wired up together
the way they should. Leverage these mock objects to test failure scenarios by
raising exceptions.

•	 Create a set of integration tests that exercise your classes as a whole and run
them against a live instance of RabbitMQ. Mock-driven testing is indeed
no guarantee that things will work as intended in the real world, hence the
necessity to test code with an actual broker.

Let's start unit testing your code.

Unit testing RabbitMQ applications
You've settled on Mockito (http://mockito.org) as your mocking framework of
choice, because it's able to mock both interfaces and concrete classes (the RabbitMQ
client contains both), ties perfectly with JUnit, has an awesome syntax, and "Does
The Right Thing™" by default! Because Mockito works great with JUnit, you'll be
able to run these unit tests as part of your Maven build using the standard Surefire
plug-in (http://maven.apache.org/surefire/maven-surefire-plugin/).

Mocha is a good mocking framework that you could use to test the
Ruby code (http://gofreerange.com/mocha/docs/).

Let's focus on unit testing the RabbitMqManager class, as it's the foremost class of the
Java application. You first need to create the test class and initialize the SUT (System
Under Test). This is how you do it:

@RunWith(MockitoJUnitRunner.class)
public class RabbitMqManagerTest

Chapter 8

[141]

{
 private static final Address[] TEST_ADDRESSES = {new
Address("fake")};

 @Mock
 private ConnectionFactory connectionFactory;

 @Mock
 private Connection connection;

 @Mock
 private Channel channel;

 private RabbitMqManager rabbitMqManager;

 @Before
 public void initialize() throws Exception
 {
 rabbitMqManager = new RabbitMqManager(connectionFactory, TEST_
ADDRESSES);
 when(connection.getAddress()).thenReturn(InetAddress.
getLocalHost());
 }

As you can see, you declared mocks for the principal classes that are involved when
dealing with RabbitMQ: connectionFactory, connection, and channel. Then you
initialize the RabbitMQManager class with the array that contains a fake address. It's
fine, because no actual connection attempt will be made since we're mocking the
RabbitMQ classes. You may wonder whether you should have several addresses
there in order to test the connection fall-back mechanism onto which the cluster
client relies. The answer is no; this is a behavior provided by the actual RabbitMQ
client library and not by any of your code.

Trust that the libraries you use are tested and do
not retest them.

You've also attached a global behavior to the getAddress() method of the
connection mock, so it returns a valid InetAddress instance, which spares you
from doing it again and again in all the tests. Let's now detail a few tests that you've
written to exercise the start() method:

@Test
public void startFailure() throws Exception

Testing and Tracing Applications

[142]

{
 when(connectionFactory.newConnection(TEST_ADDRESSES))
 .thenThrow(new RuntimeException("simulated failure"));

 rabbitMqManager.start();

 final List<Runnable> scheduleReconnection = rabbitMqManager.
getExecutor().shutdownNow();

 assertThat(scheduleReconnection.size(), is(1));
}

In this test, you've first configured the connectionFactory mock to throw an
exception when asked to create a new connection. This will simulate an issue when
communicating with RabbitMQ. Note that you're throwing RuntimeException
and not IOException, which is the checked exception that is thrown by
newConnection(). This is because you want to ensure that your code can actually
handle any exception that could bubble up through this method call, which is its
intended behavior. You've also made it clear in the exception message that it is an
intentional one.

Always make your test exception messages explicit, so they
can't be confused with actual exceptions.

After that, you actually call the start() method, which is the main purpose of
this test. If you remember its behavior from Chapter 2, Creating an Application
Inbox, the start() method should have scheduled a reconnection task in case of
a connection failure. That's why you shut down the executor encapsulated by the
RabbitMqManager class and assert that it actually contained a scheduled Runnable
instance. At this point, you're happy with this first test and move on to testing a
successful start attempt as follows:

@Test
public void startSuccess() throws Exception
{
 when(connectionFactory.newConnection(TEST_ADDRESSES))
 .thenReturn(connection);

 rabbitMqManager.start();

 verify(connection).addShutdownListener(rabbitMqManager);
}

Chapter 8

[143]

This test is short and sweet: the connectionFactory mock is configured to return
the connection mock. The only assertion you've added is a verification of the
fact that RabbitMqManager has registered itself as a shutdown listener on the
connection mock. This is enough to ensure that the expected behavior kicks in
when a connection is successfully created. Finally, you add another test to verify that
the actual reconnection mechanism works as follows:

@Test
public void startFailureThenSuccess() throws Exception
{

 when(connectionFactory.newConnection(TEST_ADDRESSES))
 .thenThrow(new RuntimeException("simulated connection
 failure"))
 .thenReturn(connection);

 rabbitMqManager.setReconnectDelaySeconds(0);

 rabbitMqManager.start();

 Thread.sleep(100L);

 verify(connectionFactory, times(2))
 .newConnection(TEST_ADDRESSES);
 verify(connection).addShutdownListener(rabbitMqManager);
 verifyNoMoreInteractions(connectionFactory);
}

Let's detail the notable bits in this test. First, you configured the connectionFactory
mock to initially fail then succeed when asked to create a new connection. Then you
set the reconnection delay to be 0 so that RabbitMqManager retries right away. After
starting it, you ponder for a few milliseconds before asserting that everything went
fine. It's a little unfortunate that Thread.sleep has to be used, but there is no testing
seam that we could use to register a synchronization primitive to block the testing
thread just at the needed time.

Avoid sleeping tests as much as possible; they slow down
your tests and can exhibit erratic behaviors in a slow or busy
continuous integration server.

The verifications in this test ensure that the newConnection method has been called
twice, that the RabbitMqManager class has registered itself as a shutdown listener
(as it should in case of connection success), and that no other interaction has occurred
with connectionFactory (as expected after a connection success).

Testing and Tracing Applications

[144]

Many other tests are needed in order to exercise the channel creation and closure and
the subscription management features of RabbitMqManager, but we will just detail
one extra test. The following is what you've written to test a successful execution of a
ChannelCallable instance via the call method:

@Test
public void callSuccess() throws Exception
{
 when(channel.isOpen()).thenReturn(true);
 when(connection.createChannel()).thenReturn(channel);
 rabbitMqManager.setConnection(connection);

 final Channel expectedChannel = channel;

 final String result = rabbitMqManager.call(new
ChannelCallable<String>()
 {
 @Override
 public String getDescription()
 {
 return "success";
 }

 @Override
 public String call(final Channel channel) throws IOException
 {
 return channel == expectedChannel ? "ok" : "bad";
 }
 });

 assertThat(result, is("ok"));

 verify(channel).close();
}

Let's detail this test bit by bit as follows:

•	 You've configured the channel mock to act as if it's open and the connection
mock to return the channel mock when asked for a new channel. This will
ensure that the call method effectively creates a new channel.

•	 You've also configured RabbitMqManager with the connection mock; this
way, you do not need to call the start method to establish a connection. This
is important to contain the test to only exercise the logic you're interested in.

Chapter 8

[145]

•	 The copy of channel to the final variable expectedChannel is a Java
technicality; it's necessary to allow using it inside the ChannelCallable
anonymous inner class that follows.

•	 The ChannelCallable class itself ensures that expectedChannel has been
passed to it by the RabbitMqManager class and confirms it by returning ok
to the caller.

•	 The assertions of the test consist in checking that ok has been returned and
close() has been called on channel, which is the last thing the call method
should do after executing ChannelCallable.

With this approach, you've been able to achieve almost 100 percent test coverage for
your classes using the RabbitMQ client SDK. This is a great position to be in as it will
ensure that any breaking change will be caught at development time. This said, you
also want to add tests that will exercise your code against a real broker instead of
using mocks. It's time to write some integration tests.

Integration testing RabbitMQ applications
Unlike what you've just done with unit tests, which are aware of all the internals of
the tested application, integration tests focus on testing a system as a whole. They
are sometimes referred to as black-box testing, which is opposite to white-box or
clear-box testing. Your goal with integration testing your RabbitMQ application is
to gain confidence that not only are things wired up internally as they should be,
but also that they really work as intended.

Integration tests should be automated and reproducible. They should
not require any manual configuration, so they can be run as often as
necessary without being a hurdle for developers. Like boy scouts,
they should clean up after themselves so that they don't mess the
environment they're running in. This is essential if they're intended to
run on production systems.

You will use JUnit to run the integration tests so that they're developed in a familiar
fashion, are automated, and can easily be run from a programming environment.
You will also use the Failsafe Maven plugin (https://maven.apache.org/
surefire/maven-failsafe-plugin/) to run these tests as part of your Maven
build, but only as part of a specific profile. Indeed, you do not want these tests to run
by default; otherwise, the build may fail when run on a machine where RabbitMQ is
not running (like your continuous integration server).

Testing and Tracing Applications

[146]

Let's look in detail at the test that validates that the subscription mechanism works
well. First, you need to create and configure the SUT, which is again an instance of
RabbitMqManager, but this time configured to connect to a live RabbitMQ broker
as follows:

public class RabbitMqManagerIT
{
 private RabbitMqManager rabbitMqManager;

 @Before
 public void configureAndStart() throws Exception
 {
 final ConnectionFactory connectionFactory = new
ConnectionFactory();
 connectionFactory.setUsername(System.getProperty("test.rmq.
username", "ccm-dev"));
 connectionFactory.setPassword(System.getProperty("test.rmq.
password", "coney123"));
 connectionFactory.setVirtualHost(System.getProperty("test.rmq.
vhost", "ccm-dev-vhost"));

 final String addresses = System.getProperty("test.rmq.
addresses", "localhost:5672");

 rabbitMqManager = new RabbitMqManager(connectionFactory,
Address.parseAddresses(addresses));

 System.out.printf("%nRunning integration tests on %s%n%n",
addresses);

 rabbitMqManager.start();
 }

 @After
 public void stop() throws Exception
 {
 rabbitMqManager.stop();
 }

As you can see, before reaching the point where RabbitMqManager gets instantiated,
we extract configuration values from system properties, falling back to default values
that point to a locally running RabbitMQ broker. This approach allows you to point
the tests at any broker by simply providing different connection parameters to
the test.

Chapter 8

[147]

Integration tests make great smoke tests. Make them easily
reusable so that you can run them against any system to quickly
validate that they are working fine.

Now let's look at the test itself. It's pretty long, so before delving into the code, let's
talk about what it will do. You want to test if the subscription mechanism works.
For this, you will: create a test queue, subscribe to it, send a message to it, and finally
assert that the message has been consumed by the subscriber. With this said, let's
look at the first part of the test, which takes care of setting the test queue as follows:

@Test
public void subscriptionTest() throws Exception
{
 final String queue = rabbitMqManager.call(new
ChannelCallable<String>()
 {
 @Override
 public String getDescription()
 {
 return "subscription test setup";
 }

 @Override
 public String call(final Channel channel)
 throws IOException
 {
 final DeclareOk declareOk = channel.queueDeclare("",
 false, true, true, null);
 return declareOk.getQueue();
 }
 });

The important bit here is that you create an automatically named, exclusive,
nondurable, and auto-delete queue. Why these options? You want the queue
name to be unique so that there is no possible collision if another developer runs
the test on the same broker. For further protection from any risk of having another
consumer interacting with this queue, you made it exclusive. Finally, you do not
want either the messages or the queue itself to be retained when you're done with
the test, hence the nondurability and autodeletion attributes. Next, we create the
subscription as follows:

final AtomicReference<byte[]> delivered = new
AtomicReference<byte[]>();
final CountDownLatch latch = new CountDownLatch(1);

Testing and Tracing Applications

[148]

final Subscription subscription = rabbitMqManager.
createSubscription(queue,
 new SubscriptionDeliverHandler()
 {
 @Override
 public void handleDelivery(final Channel channel,
 final Envelope envelope,
 final BasicProperties properties,
 final byte[] body)
 {
 delivered.set(body);
 latch.countDown();
 }
 });

assertThat(subscription.getChannel().isOpen(), is(true));

This bit is very interesting because here you can use synchronization primitives
instead of having to resort to a sleep statement as you did before. Indeed, the latch
will allow you to block the test thread until the handleDelivery method has been
called and the message body value set on the delivered atomic reference. Without
this mechanism, there would be no way to check what message was delivered or
when it was delivered, since it is done by a thread other than the testing thread. That
said, you can right away assert that the subscription encapsulates an open channel.
With this in place, it's now time to send a test message to the queue as follows:

final byte[] body = rabbitMqManager.call(new ChannelCallable<byte[]>()
{
 @Override
 public String getDescription()
 {
 return "publish test message";
 }

 @Override
 public byte[] call(final Channel channel) throws IOException
 {
 final byte[] body = UUID.randomUUID().toString().getBytes();
 channel.basicPublish("", queue, null, body);
 return body;
 }
});

Chapter 8

[149]

Nothing particularly novel here. You may wonder why we are creating a random
body payload for the test message. This is to ensure that the test will be consuming
the right message and not a message that could be lingering from a previous test.
Notice that you have to target the default exchange to be able to send to the test
queue directly, which frees you from the need to declare a test exchange and bind
the queue to it.

If you're concerned that test messages could be mixed with
real ones in a tested broker, add a custom flag to the messages'
headers to tag them as ignorable.

The following final code fragment is where the assertions happen:

if (!latch.await(1, TimeUnit.MINUTES))
{
 fail("Handler not called on time");
}

assertThat(delivered.get(), is(body));

subscription.stop();
assertThat(subscription.getChannel(), is(nullValue()));

Did you see how you've leveraged latch to block the test thread until the message
gets delivered? Nothing should ever be blocked forever, so you've been wise enough
to cap the waiting period to one minute and fail the test if no message has been
received after that.

At this point, you've covered your bases in term of testing. You're now pretty
confident that any regression will be caught at an early stage thanks to the barrage
of unit and integration tests you've created.

Our focus is on testing RabbitMQ-related code exclusively; however, to be
thorough, you will add an extra layer of integration tests that will exercise
the application as a whole via HTTP and WebSockets interactions.

When adding new features, it's sometimes convenient to step-debug into an
application to trace its execution. The next section will detail how to achieve this
with RabbitMQ.

Testing and Tracing Applications

[150]

Tracing RabbitMQ
Tracing the execution of a program is a convenient way to figure out what is really
happening under the hood when reasoning about a particular behavior leads to
no firm conclusion. Usually, the buck stops at the border where the application
interacts with external resources such as the RabbitMQ broker. The good news is
that RabbitMQ provides two tools that can be of tremendous help when it comes to
tracing the interactions with a broker.

The first of these tools is Tracer, an AMQP-aware network proxy that can be placed
between a RabbitMQ client and a broker in order to gain insight into the interactions
that are happening between each other. Tracer is available as part of the Java client
download available at http://www.rabbitmq.com/download.html.

The complete documentation for Tracer and PerfTest (a basic
load test tool) can be found at http://www.rabbitmq.com/
java-tools.html.

After installation, Tracer can be started with the following:

runjava.sh com.rabbitmq.tools.Tracer [listenPort] [connectHost]
 [connectPort].

All the parameters are optional. If left blank, Tracer will start a local proxy listening
on port 5673 and connect to a local RabbitMQ on port 5672. Since you're happy with
the defaults, you start Tracer with just the following command line:

$./runjava.sh com.rabbitmq.tools.Tracer

Now you can run the integration tests you've just created through this proxy. Do you
remember that we made the connection information configurable on these tests? The
approach is going to pay off now as we will configure them to go through the proxy
port instead of directly hitting the RabbitMQ broker. You do this by running the
following command line:

$ mvn -Pintegration_tests -Dtest.rmq.addresses=localhost:5673 verify

The output of Tracer is very verbose as it includes the complete details of the
AMQP operations. Hereafter only the columns that show the channel ID, interaction
direct (-> is client to broker and <- is opposite), and the name of the operation is
reproduced, with the interactions related to the subscriber highlighted:

ch#0 <- <connection.start>
ch#0 -> <connection.start-ok>
ch#0 <- <connection.tune>
ch#0 -> <connection.tune-ok>

Chapter 8

[151]

ch#0 -> <connection.open>
ch#0 <- <connection.open-ok>
ch#1 -> <channel.open>
ch#1 <- <channel.open-ok>
ch#1 -> <queue.declare>
ch#1 <- <queue.declare-ok>
ch#1 -> <channel.close>
ch#1 <- <channel.close-ok>()
ch#1 -> <channel.open>
ch#1 <- <channel.open-ok>
ch#1 -> <basic.consume>
ch#1 <- <basic.consume-ok>
ch#2 -> <channel.open>
ch#2 <- <channel.open-ok>
ch#2 -> <basic.publish>
ch#2 -> <channel.close>
ch#1 <- <basic.deliver>
ch#2 <- <channel.close-ok>
ch#1 -> <basic.cancel>
ch#1 <- <basic.cancel-ok>
ch#1 -> <channel.close>
ch#1 <- <channel.close-ok>
ch#0 -> <connection.close>
ch#0 <- <connection.close-ok>

You can see the operations from the client and the responses from the broker,
typically being named after the operation and suffixed with -ok. In essence, the
following is the AMQP synopsis of the test code you're running:

•	 Establish a connection
•	 Open a channel, use it to declare the test queue, and close it
•	 Open a channel, use it to consume a queue
•	 Open a channel, use it to publish the test message, and close it
•	 Receive the message delivery, cancel the consumer, and close its channel
•	 Close the connection

Notice how the connection start and tune operations are initiated by the broker as
a response to establishing the connection to it. Also, notice that the channel number
gets reused after being closed; it may seem that the same channel #1 has been used
for creating the test queue and subscribing to it, but that's not the case since this
channel has been explicitly closed. Only its identifier has been reused.

Testing and Tracing Applications

[152]

The Tracer may report bogus uncaught java.io.EOFException
exceptions; this is a known and benign issue. You can confirm in the
RabbitMQ log that no communication error actually happened.

Tracer is a very powerful tool to easily gain a deep understanding of the AMQP
protocol and the usage your applications make of it. However, it requires you to
insert a proxy between a client and the broker it connects to. Fear not if this is an
issue; RabbitMQ has more than one trick in its bag of tracing tools.

Drinking at the Firehose
RabbitMQ offers the possibility of spying on all message publications and delivery
operations that happens in a particular virtual host of a broker. This feature is
called the Firehose tracer. When activated on a virtual host, a copy of all published
and all delivered messages is sent to the amq.rabbitmq.trace exchange (which is
automatically created in every virtual host).

The routing key used for messages published to the amq.rabbitmq.trace exchange
is publish.<exchange_name> for publication events and deliver.<queue_name>
for message deliveries. The original message body is carried to the copies sent to
this exchange. Extra information about the original publication or delivery event are
added in a set of headers, including exchange_name for the name of the exchange
where the message was originally published or redelivered if the message has been
delivered more than once.

The complete reference guide of the Firehose tracer can be found
at http://www.rabbitmq.com/firehose.html.

You want to use the Firehose when running the integration tests to see the
exchanged messages from the broker's standpoint. Before activating the Firehose
on RabbitMQ, you need first to create a client application that will subscribe to
the exchange and print out the messages that come to it. For this, you create the
following Python script:

#!/usr/bin/env python
import amqp

connection = amqp.Connection(host='localhost', userid='ccm-dev',
password='coney123', virtual_host='ccm-dev-vhost')
channel = connection.channel()

EXCHANGE = 'amq.rabbitmq.trace'

Chapter 8

[153]

QUEUE = 'firehose-queue'

channel.queue_declare(queue=QUEUE, durable=False, auto_delete=True,
exclusive=True)
channel.queue_bind(queue=QUEUE, exchange=EXCHANGE, routing_key='#')

def handle_message(message):
 print message.routing_key, '->', message.properties, message.body
 print '--------------------------------'

channel.basic_consume(callback=handle_message, queue=QUEUE, no_
ack=True)

print ' [*] Waiting for messages. To exit press CTRL+C'
while channel.callbacks:
 channel.wait()

channel.close()
connection.close()

This code should be very familiar; it is almost the same one that you used to log
errors in Chapter 4, Handling Application Logs. The main difference is that this time
you're using a transient queue bound to the amq.rabbitmq.trace exchange, which
doesn't need to be re-declared since it is by design guaranteed to be present.

After starting this script, you turn the Firehose on by running the following
command line:

$ sudo rabbitmqctl -p ccm-dev-vhost trace_on

Starting tracing for vhost "ccm-dev-vhost" ...

...done.

Now you can run the integration tests again, this time on the standard port since no
proxying is needed with the Firehose:

$ mvn -Pintegration_tests verify

Let's now look at the following output of the Firehose consumer Python script:

publish. -> {'application_headers': {u'node': u'rabbit@pegasus',
u'exchange_name': u'', u'routing_keys': [u'amq.gen-vTMWL--
04lap8s8JPbX5gA'], u'properties': {}}} 93b56787-b4f5-41e1-8c6f-
d5f9b64275ca

Testing and Tracing Applications

[154]

deliver.amq.gen-vTMWL--04lap8s8JPbX5gA -> {'application_headers':
{u'node': u'rabbit@pegasus', u'exchange_name': u'', u'redelivered': 0,
u'routing_keys': [u'amq.gen-vTMWL--04lap8s8JPbX5gA'], u'properties': {}}}
93b56787-b4f5-41e1-8c6f-d5f9b64275ca

As you can see, the publication to the default exchange (remember, its name is an empty
string) and the delivery to the automatically named test queue are clearly visible. All the
details that concern them are readily available in the message properties.

Keep in mind that running the Firehose is taxing for the RabbitMQ broker, so when
you're done with your tracing session, shut it down with the following:

$ sudo rabbitmqctl -p ccm-dev-vhost trace_off

Stopping tracing for vhost "ccm-dev-vhost" ...

...done.

The Firehose will come handy when tracing what's happening between your
different applications and your RabbitMQ brokers in depth. Keep in mind that
using unique message IDs, as you've learned throughout this book, will help you a
lot when the time comes to perform forensics analysis and trace the progression of
messages across your complete infrastructure.

Summary
In this chapter, you learned about unit and integration testing RabbitMQ applications,
thus increasing your confidence and capacity to refactor and helping you maintain
them in the long run. You've also discovered two powerful tracing tools to peek deeper
under the hood of the AMQP protocol and the RabbitMQ broker.

Armed with this knowledge and everything else you learned throughout this
book, you're now fully equipped to build production-grade distributed RabbitMQ
applications that will scale and last.

RabbitMQ is a solid, stable, and dependable messaging broker. Now go and build
something great with it.

Message Schemas
This appendix contains the different message schemas used by Clever Coney Media
to specify the JSON representations of the messages they send through RabbitMQ.

Messages are represented using the JSON format, http://json.
org/. Their definitions are expressed using draft 3 of the JSON schema
language, http://tools.ietf.org/html/draft-zyp-json-
schema-03. (CCM doesn't use draft 4 because their code generation
tool doesn't support it yet.)

User message
The user message schema is used to represent all user messages (user-to-user, topic,
or public-announce messages), and is coded as follows:

{
 "$schema": "http://json-schema.org/draft-03/schema#",
 "$content_type": "application/vnd.ccm.pmsg.v1+json",
 "type": "object",
 "additionalProperties": false,
 "properties": {
 "time_sent": {
 "type":"string",
 "format":"utc-millisec"
 },
 "sender_id": {
 "type": "integer",
 "optional": "false"
 },
 "addressee_id": {

Message Schemas

[156]

 "type": "integer",
 "optional": "true"
 },
 "topic": {
 "type": "string",
 "optional": "true"
 },
 "subject": {
 "type": "string",
 "optional": "false"
 },
 "content": {
 "type": "string",
 "optional": "false"
 }
 }
}

Authentication messages
The following schemas represent the request and response messages used by the
authentication service.

Login
The authentication service exposes a login operation. The following pair of schemas
defines the request and response messages it deals with.

Request
The request schema represents a login request message that allows us to validate a
user's credentials, and is coded as follows:

{
 "$schema": "http://json-schema.org/draft-03/schema#",
 "$content_type": "application/vnd.ccm.login.req.v1+json",
 "type": "object",
 "additionalProperties": false,
 "properties": {
 "username": {
 "type":"string",
 "required": true

Appendix

[157]

 },
 "password": {
 "type":"string",
 "required": true
 }
 }
}

Response
The response schema represents the response to a login request, including a token
that can be used to perform authenticated operations, and is coded as follows:

{
 "$schema": "http://json-schema.org/draft-03/schema#",
 "$content_type": "application/vnd.ccm.login.res.v1+json",
 "type": "object",
 "additionalProperties": false,
 "properties": {
 "success": {
 "type":"boolean",
 "required": true
 },
 "authentication_token": {
 "type":"string",
 "required": true
 }
 }
}

Logout
Another operation exposed by the authentication service is logout. The following
two schemas represent the request and response messages the logout operation
works with.

Message Schemas

[158]

Request
A logout request message is defined by the following schema:

{
 "$schema": "http://json-schema.org/draft-03/schema#",
 "$content_type": "application/vnd.ccm.logout.req.v1+json",
 "type": "object",
 "additionalProperties": false,
 "properties": {
 "authentication_token": {
 "type":"string",
 "required": true
 }
 }
}

Response
The following schema represents the response after a logout operation has
been attempted:

{
 "$schema": "http://json-schema.org/draft-03/schema#",
 "$content_type": "application/vnd.ccm.logout.res.v1+json",
 "type": "object",
 "additionalProperties": false,
 "properties": {
 "success": {
 "type":"boolean",
 "required": true
 }
 }
}

Generic error message
Whenever something goes wrong when a service processes a request message, it
can return an error message to provide information about the failure. The following
schema represents such a generic error message that can be returned not only by the
authentication service, but by any service CCM will create:

{
 "$schema": "http://json-schema.org/draft-03/schema#",
 "$content_type": "application/vnd.ccm.error.v1+json",

Appendix

[159]

 "type": "object",
 "additionalProperties": false,
 "properties": {
 "context": {
 "type":"string",
 "required": true
 },
 "message": {
 "type":"string",
 "required": true
 }
 }
}

Index
Symbols
--apply-to queues command 89
-p ccm-dev-vhostctl set_policy command 88

A
addressee_id field 99
Advanced Message Queuing Protocol

(AMQP)
about 7, 10
binding 11
broker 10
channel 11
connection 10
exchange 11
load testing 75-77
queue 11
virtual host 10

AMQP 0-9-1 specification
URL, for downloading 10

AMQP 1.0 13
AMQP appender

URL 72
AMQP message

structure 38, 39
applications log. See logs
arguments 35
asyncWaitAndReconnect method 26
authentication messages

about 156
login request message 156
login response message 157
logout request message 157, 158
logout response message 158

authentication service
calling 113-115
exposing 106-111

authentication-service queue 107, 115
autoDelete 35

B
Babysitting subscriptions 56, 57
back-office sender

implementing 99
basicConsume 54
basicGet 40
Beetle

URL 25
Bevis

URL 72
binding

about 11
broker

about 10, 12, 117-121
cluster, connecting to 125-127
federating 127-133
installing 15-18
monitoring 134-137
queues, mirroring 122

broker SPOF. See broker

C
CCM

about 13, 23, 50
application, running 62, 63, 68, 69
consumer subscription wrapper, creating

52-56

[162]

ChannelCallable class 145
ChannelCallable description 30
ChannelCallable instance 30
channels

about 11
open channel 29
working with 28, 29

Clever Coney Media. See CCM
cluster size 135
cluster_status command 119
connectionFactory 143
connectionFactory mock 142
connections 10, 41, 42
consumer field 55
consumer subscription wrapper

creating 52, 53
contentEncoding 37
contentType 37
CorrelationID 111
CorrelationId message property 104

D
Dead Letter Exchange (DLX) 86
Dead Letter Queue (DLQ) 86
dead letters

handling 8-87
declareUserMessageQueue method 37, 87
delivery

making, mandatory 95-97
delivery-mode 111
deliveryMode 38
direct routing

building 37
durable 35

E
Erlang Port Mapper Daemom (epmd) 137
Erlang processes 137
exchange

about 11, 92
properties 33

exclusive 35
expiration 85

F
Failsafe Maven plugin

URL 145
fanout

binding to 65, 66
federation plugin 127
federation status 136
file descriptors 136
finalize method 56
Firehose 152, 153

G
generic error message 158
getAddress() method 141
getChannel method 55

H
handleDelivery method 51, 53, 54, 148
handleException method 111
ha-params parameter 122
ha-sync-mode parameter 123
HDF5

URL 73

I
immediate 97
inbox

building 31, 33
InetAddress instance 141
installation

broker 15-18
management plugin 18, 19

integration testing
RabbitMQ applications 145-149

isOpen method 29

J
Java Message Service. See JMS
JMS 11
join_cluster command 119
JSON format

URL 155

[163]

JSON schema language
URL 155

JUnit 140

L
load testing

AMQP 75, 76
running 77, 79

login operation 156
login request message 156
login response message 157
logout operation 157
logout request message 158
logout response message 158
logs

about 71
AMQP appender 72
Bevis 72
consuming 71, 72
publishing 71, 72

loosely coupled architecture 9, 10

M
management plugin

installing 18, 19
mandatory delivery 96
memory and disk space 137
message brokers 8
messageId 38
messages

about 89
advantages 80-82
prefetching 79, 80
publishing 37

messaging 7, 8
mirrored queues 122, 124
Mocha

URL 140
Mockito

URL 140
MQ Telemetry Transport. See MQTT
MQTT 12
Mule AMQP

URL 25
multitenancy 10

N
newConnection method 143
node liveness 135

O
ØMQ 12
onApplicationStart method 33, 44, 90

P
PerfTest 150
policies 88
prefetching 79
Publish message section 82

Q
Q_TTL_DLX command 88
queues

about 11, 92
application, running 68, 69
consuming 50-52
fanout, binding to 65, 66
mirroring 122
publishing to 63, 64
publishing to all 66-68
refactoring 87-89

queues high-watermarks 136

R
rabbitmqadmin 94
RabbitMQ application

broker 12, 13
connecting to 23
integration testing 145-149
testing 140
tracing 150, 152
unit testing 140-144

rabbitmqctl command-line tool 134
RabbitMQManager class 25, 26, 56, 125, 140,

141, 144, 145
rabbitmq-server 137
reason 92
reply-to property 102
request-response style of interaction 8

[164]

respond method 111
Rich Internet Application (RIA) 13, 24
routing key 31, 92

S
security cookie 118
sendUserMessage class 38
server-push approach 50
Service-oriented Architecture (SOA) 101
service-oriented messaging

about 101, 102
queues, replying to 102-105
service requests, routing 105

severity.facility 72
shovel plugin 127
shutdownCompleted method 26, 27
Simple Mail Transfer Protocol. See SMTP
single point of failure (SPOF) 117
SMTP 9
socket descriptors 136
Spring AMQP

URL 25
start method 26
start() method 141, 142
stop method 56
store_log_data function 74, 75
sudo rabbitmqctl set_policy command 88
Surefire plugin

URL 140
SUT (System Under Test) 140

T
testing 139
time 92
topic! 43
topic messages

adding 43-46
toString method 56
Tracer 150, 152

U
unit testing

RabbitMQ applications 140-145
upstreams 129
user-fanout exchange 67
user messages

fetching 39, 40
sending 35, 37

user message schema 155
UserMessageServerEndpoint 58
users

configuring 19, 21, 22

V
vhost 21

W
WebSocket

about 50
endpoint, typing into 58-61
URL 50

WebSocket endpoint
typing into 58-61

Z
ZeroMQ. See ØMQ

Thank you for buying
RabbitMQ Essentials

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective
MySQL Management" in April 2004 and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike. For
more information, please visit our website: www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order to
continue its focus on specialization. This book is part of the Packt Open Source brand, home
to books published on software built around Open Source licences, and offering information
to anybody from advanced developers to budding web designers. The Open Source brand
also runs Packt's Open Source Royalty Scheme, by which Packt gives a royalty to each Open
Source project about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should
be sent to author@packtpub.com. If your book idea is still at an early stage and you would like
to discuss it first before writing a formal book proposal, contact us; one of our commissioning
editors will get in touch with you.
We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

RabbitMQ Cookbook
ISBN: 978-1-84951-650-1 Paperback: 288 pages

Over 70 practical recipes to help you develop
messaging applications using RabbitMQ with the
help of plenty of real-life examples

1.	 Create scalable distributed applications
with RabbitMQ.

2.	 Exploit RabbitMQ on both web and
mobile platforms.

3.	 Deploy message services on cloud
computing platforms.

RabbitMQ Messaging Application
Development How-to [Instant]
ISBN: 978-1-78216-574-3 Paperback: 54 pages

Build scalable message-based applications
with RabbitMQ

1.	 Learn something new in an Instant! A short,
fast, focused guide delivering immediate
results.

2.	 Learn how to build message-based applications
with RabbitMQ using a practical Node.js
e-commerce example.

3.	 Implement various messaging patterns
including asynchronous work queues, publish
subscribe and topics.

Please check www.PacktPub.com for information on our titles

Apache CloudStack Cloud
Computing
ISBN: 978-1-78216-010-6 Paperback: 294 pages

Leverage the power of CloudStack and learn to
extend the CloudStack environment

1.	 Install, deploy, and manage a cloud service
using CloudStack.

2.	 Step-by-step instructions on setting up and
running the leading open source cloud
platform CloudStack.

3.	 Set up an IaaS cloud environment using
CloudStack.

OpenStack Cloud Computing
Cookbook Second Edition
ISBN: 978-1-78216-758-7 Paperback: 396 pages

Over 100 recipes to successfully set up and manage
your OpenStack cloud environments with
complete coverage of Nova, Swift, Keystone,
Glance, Horizon, Neutron, and Cinder

1.	 Updated for OpenStack Grizzly.

2.	 Learn how to install, configure, and manage
all of the OpenStack core projects including
new topics such as block storage and software
defined networking.

3.	 Learn how to build your Private Cloud
utilizing DevOps and Continuous Integration
tools and techniques.

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	Foreword
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: A Rabbit Springs to Life
	What is messaging?
	A loosely coupled architecture
	Meet AMQP

	The RabbitMQ broker
	A case for RabbitMQ

	Getting RabbitMQ ready
	Installing the broker
	Installing the management plugin
	Configuring users

	Summary

	Chapter 2: Creating an Application Inbox
	Connecting to RabbitMQ
	Working with channels
	Building the inbox
	Sending user messages
	AMQP message structure
	Fetching user messages

	Seeing it run

	Adding topic messages
	Summary

	Chapter 3: Switching to Server-push
	Moving beyond polling
	Consuming queues
	Creating a consumer subscription wrapper
	Babysitting subscriptions

	Tying into the WebSocket endpoint
	Running the application

	Publishing to all queues
	Binding to the fanout
	Publishing to all
	Running the application

	Summary

	Chapter 4: Handling Application Logs
	Publishing and consuming logs
	Load testing AMQP
	Running a load test
	Prefetching messages

	Messaging serendipity
	Summary

	Chapter 5: Tweaking Message Delivery
	Handling dead letters
	Refactoring queues
	Undertaking messages

	Making delivery mandatory
	Implementing the back-office sender

	Summary

	Chapter 6: Smart Message Routing
	Service-oriented messaging
	Replying to queues
	Routing service requests

	Exposing the authentication service
	Calling the authentication service
	Summary

	Chapter 7: Taking RabbitMQ to Production
	Tackling the broker SPOF
	Mirroring queues
	Connecting to the cluster
	Federating brokers

	Monitoring the broker
	Summary

	Chapter 8: Testing and Tracing Applications
	Testing RabbitMQ applications
	Unit testing RabbitMQ applications
	Integration testing RabbitMQ applications

	Tracing RabbitMQ
	Drinking at the Firehose

	Summary

	Appendix: Message Schemas
	User message
	Authentication messages
	Login
	Request
	Response

	Logout
	Request
	Response

	Generic error message

	Index

