
M A N N I N G

Ryan Bigg
Yehuda Katz

IN ACTION

www.allitebooks.com

http://www.allitebooks.org

Rails 3 in Action

www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

Rails 3 in Action
RYAN BIGG

YEHUDA KATZ

M A N N I N G

SHELTER ISLAND

www.allitebooks.com

http://www.allitebooks.org

iv

For online information and ordering of this and other Manning books, please visit
www.manning.com. The publisher offers discounts on this book when ordered in quantity.
For more information, please contact

Special Sales Department
Manning Publications Co.
20 Baldwin Road
PO Box 261
Shelter Island, NY 11964
Email: orders@manning.com

©2012 by Manning Publications Co. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in
any form or by means electronic, mechanical, photocopying, or otherwise, without prior written
permission of the publisher.

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in the book, and Manning
Publications was aware of a trademark claim, the designations have been printed in initial caps
or all caps.

Recognizing the importance of preserving what has been written, it is Manning’s policy to have
the books we publish printed on acid-free paper, and we exert our best efforts to that end.
Recognizing also our responsibility to conserve the resources of our planet, Manning books
are printed on paper that is at least 15 percent recycled and processed without the use of
elemental chlorine.

Manning Publications Co. Development editor: Cynthia Kane
20 Baldwin Road Copyeditors: Kevin Hobson, Linda Kern
PO Box 261 Proofreader: Tiffany Taylor
Shelter Island, NY 11964 Typesetter: Dottie Marsico

Cover designer: Marija Tudor

ISBN 978-1-935182-27-6
Printed in the United States of America
1 2 3 4 5 6 7 8 9 10 – MAL – 16 15 14 13 12 11

www.allitebooks.com

www.manning.com
http://www.allitebooks.org

v

brief contents
1 ■ Ruby on Rails, the framework 1

2 ■ Testing saves your bacon 23

3 ■ Developing a real Rails application 44

4 ■ Oh CRUD! 83

5 ■ Nested resources 99

6 ■ Authentication and basic authorization 117

7 ■ Basic access control 136

8 ■ More authorization 164

9 ■ File uploading 213

10 ■ Tracking state 243

11 ■ Tagging 286

12 ■ Sending email 312

13 ■ Designing an API 347

14 ■ Deployment 385

15 ■ Alternative authentication 412

16 ■ Basic performance enhancements 434

17 ■ Engines 468

18 ■ Rack-based applications 516

www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

vii

contents
preface xv
acknowledgments xvii
about this book xx
about the authors xxiii
about the cover illustration xxiv

1 Ruby on Rails, the framework 1

1.1 What is Ruby on Rails? 2

Benefits 2 ■ Common terms 3 ■ Rails in the wild 4

1.2 Developing your first application 5

Installing Rails 5 ■ Generating an application 6 ■ Starting the
application 6 ■ Scaffolding 7 ■ Migrations 8 ■ Viewing
and creating purchases 9 ■ Validations 13 ■ Showing off 14
Routing 15 ■ Updating 16 ■ Deleting 20

1.3 Summary 21

2 Testing saves your bacon 23

2.1 Test- and behavior-driven development 24

2.2 Test-driven development 24

Why test? 25 ■ Writing your first test 25 ■ Saving bacon 27

2.3 Behavior-driven development 28

RSpec 29 ■ Cucumber 35

2.4 Summary 42

www.allitebooks.com

http://www.allitebooks.org

CONTENTSviii

3 Developing a real Rails application 44

3.1 Application setup 45

The application story 45 ■ Version control 47 ■ The Gemfile
and generators 50 ■ Database configuration 53 ■ Applying a
stylesheet 54

3.2 First steps 55

Creating projects 55 ■ RESTful routing 60 ■ Committing
changes 72 ■ Setting a page title 72 ■ Validations 76

3.3 Summary 81

4 Oh CRUD! 83

4.1 Viewing projects 83

Writing a feature 84 ■ The Factory Girl 85 ■ Adding a link to
a project 86

4.2 Editing projects 88

The edit action 88 ■ The update action 90

4.3 Deleting projects 91

Writing a feature 92 ■ Adding a destroy action 92 ■ Looking
for what isn’t there 93

4.4 Summary 97

5 Nested resources 99

5.1 Creating tickets 99

Nested routing helpers 100 ■ Creating a tickets controller 101
Defining a has_many association 103 ■ Creating tickets within a
project 104 ■ Finding tickets scoped by project 105 ■ Ticket
validations 106

5.2 Viewing tickets 108

Listing tickets 110 ■ Culling tickets 111

5.3 Editing tickets 112

Adding the edit action 113 ■ Adding the update action 114

5.4 Deleting tickets 115

5.5 Summary 116

6 Authentication and basic authorization 117

6.1 What Devise does 118

Installing Devise 118

www.allitebooks.com

http://www.allitebooks.org

CONTENTS ix

6.2 User signup 121

6.3 Confirmation link sign-in 122

Testing email 122 ■ Confirming confirmation 123

6.4 Form sign-in 126

6.5 Linking tickets to users 128

Attributing tickets to users 129 ■ We broke something! 131
Fixing the Viewing Tickets feature 132 ■ Fixing the Editing
Tickets feature 133 ■ Fixing the Deleting Tickets feature 134

6.6 Summary 135

7 Basic access control 136

7.1 Projects can be created only by admins 137

7.2 Adding the admin field to the users table 138

7.3 Restricting actions to admins only 138

Fixing three more broken scenarios 143 ■ Hiding the New Project
link 144 ■ Hiding the edit and delete links 146

7.4 Namespace routing 148

7.5 Namespace-based CRUD 151

Adding a namespace root 151 ■ The index action 152
The new action 153 ■ The create action 154

7.6 Creating admin users 155

7.7 Editing users 157

The show action 158 ■ The edit and update actions 159

7.8 Deleting users 161

Ensuring you can’t delete yourself 162

7.9 Summary 163

8 More authorization 164

8.1 Restricting read access 165

8.2 Restricting by scope 168

8.3 Fixing what you broke 172

Fixing Editing Projects 173 ■ Fixing the four failing
features 173 ■ One more thing 176 ■ Fixing Signing Up 178

8.4 Blocking access to tickets 183

Locking out the bad guys 183

www.allitebooks.com

http://www.allitebooks.org

CONTENTSx

8.5 Restricting write access 185

Rewriting a feature 185 ■ Blocking creation 187 ■ What is
CanCan? 188 ■ Adding abilities 189

8.6 Restricting update access 190

No updating for you! 191 ■ Authorizing editing 192

8.7 Restricting delete access 193

Enforcing destroy protection 193 ■ Hiding links based on
permission 194

8.8 Assigning permissions 198

Viewing projects 198 ■ And the rest 206

8.9 Seed data 209

8.10 Summary 212

9 File uploading 213

9.1 Attaching a file 214

A feature featuring files 214 ■ Enter stage right, Paperclip 216
Using Paperclip 217

9.2 Attaching many files 220

Two more files 221 ■ Using nested attributes 224

9.3 Serving files through a controller 226

Protecting files 227 ■ Showing your assets 228 ■ Public
assets 230 ■ Privatizing assets 230

9.4 Using JavaScript 231

JavaScript testing 232 ■ Introducing jQuery 233 ■ Adding
more files with JavaScript 234 ■ Responding to an asynchronous
request 235 ■ Sending parameters for an asynchronous
request 237

9.5 Summary 241

10 Tracking state 243

10.1 Leaving a comment 244

Where’s the ticket? 245 ■ The comment form 247
The comment model 247 ■ The comments controller 249

10.2 Changing a ticket’s state 252

Creating the State model 253 ■ Selecting states 255
Callbacks 257 ■ Seeding states 259 ■ Fixing creating
comments 261

CONTENTS xi

10.3 Tracking changes 263

Ch-ch-changes 263 ■ Another c-c-callback 264 ■ Displaying
changes 265 ■ Show me the page 266 ■ Automatic escaping
saves your bacon 267 ■ Styling states 268

10.4 Managing states 269

Adding additional states 270 ■ Defining a default state 273

10.5 Locking down states 278

Hiding a select box 278 ■ Bestowing changing state
permissions 280 ■ Hacking a form 282 ■ Ignoring a
parameter 283

10.6 Summary 285

11 Tagging 286

11.1 Creating tags 287

Creating tags feature 287 ■ Using text_field_tag 288
Showing tags 288 ■ Defining the tags association 289
The Tag model 289 ■ Displaying a ticket’s tags 290

11.2 Adding more tags 292

Adding tags through a comment 292 ■ Fixing the
CommentsController spec 294

11.3 Tag restriction 295

Testing tag restriction 295
Tags are allowed, for some 296

11.4 Deleting a tag 297

Testing tag deletion 298 ■ Adding a link to delete the
tag 299 ■ Actually removing a tag 302

11.5 Finding tags 303

Testing search 303 ■ Searching by state with
Searcher 305 ■ Searching by state 307 ■ Search, but
without the search 309

11.6 Summary 310

12 Sending email 312

12.1 Sending ticket notifications 313

Automatically watching a ticket 314 ■ Using observers 315
Defining the watchers association 316 ■ Introducing Action
Mailer 318 ■ An Action Mailer template 320 ■ Delivering
HTML emails 322

CONTENTSxii

12.2 Subscribing to updates 325

Testing comment subscription 325 ■ Automatically adding a user
to a watchlist 327 ■ Unsubscribing from ticket notifications 328

12.3 Real-world email 333

Testing real-world email 334 ■ Configuring Action Mailer 336
Connecting to Gmail 337

12.4 Receiving emails 340

Setting a reply-to address 340 ■ Receiving a reply 342

12.5 Summary 345

13 Designing an API 347

13.1 The projects API 349

Your first API 351 ■ Serving an API 354 ■ API
authentication 355 ■ Error reporting 356 ■ Serving
XML 358 ■ Creating projects 360 ■ Restricting access to only
admins 362 ■ A single project 365 ■ No project for you! 368
Updating a project 370 ■ Exterminate! 372

13.2 Beginning the tickets API 374

13.3 Rate limiting 377

One request, two request, three request, four 377 ■ No more,
thanks! 379 ■ Back to zero 380

13.4 Versioning an API 381

Creating a new version 381

13.5 Summary 384

14 Deployment 385

14.1 Server setup 386

Setting up a server using VirtualBox 386 ■ Installing the
base 388

14.2 RVM and Ruby 389

Installing RVM 389 ■ Installing Ruby 390

14.3 Creating a user for the app 391

Key-based authentication 391 ■ Disabling password
authentication 393

14.4 The database server 394

Creating a database and user 394 ■ Ident authentication 395

CONTENTS xiii

14.5 Deploy away! 395

Deploy keys 396 ■ Configuring Capistrano 397 ■ Setting up
the deploy environment 400 ■ Deploying the application 401
Bundling gems 403 ■ Choosing a database 405

14.6 Serving requests 407

Installing Passenger 408 ■ An init script 410

14.7 Summary 410

15 Alternative authentication 412

15.1 How OAuth works 413

15.2 Twitter authentication 415

Setting up OmniAuth 415 ■ Registering an application with
Twitter 416 ■ Setting up an OmniAuth testing
environment 417 ■ Testing Twitter sign-in 419

15.3 GitHub authentication 425

Registering and testing GitHub auth 425

15.4 Summary 433

16 Basic performance enhancements 434

16.1 Pagination 435

Introducing Kaminari 436 ■ Paginating an interface 437
Paginating an API 443

16.2 Database query enhancements 444

Eager loading 445 ■ Database indexes 446

16.3 Page and action caching 448

Caching a page 448 ■ Caching an action 451 ■ Cache
sweepers 454 ■ Client-side caching 457 ■ Caching page
fragments 460

16.4 Background workers 462

16.5 Summary 466

17 Engines 468

17.1 A brief history of engines 469

17.2 Why engines are useful 470

17.3 Brand-new engine 471

Creating an engine 471 ■ The layout of an engine 472
Engine routing 476

CONTENTSxiv

17.4 Setting up a testing environment 478

Removing Test::Unit 479 ■ Installing RSpec and
Capybara 481

17.5 Writing your first engine feature 482

Your first Capybara test 483 ■ Setting up routes 484 ■ The
topics controller 485 ■ The index action 485 ■ The new
action 488 ■ The create action 489 ■ The show action 490
Showing an association count 492

17.6 Adding more posts to topics 493

17.7 Classes outside your control 497

Engine configuration 497 ■ A fake User model 500
Authenticating topics 501 ■ Adding authorship to topics 505
Post authentication 506 ■ Showing the last post 509

17.8 Releasing as a gem 512

17.9 Integrating with an application 513

17.10 Summary 514

18 Rack-based applications 516

18.1 Building Rack applications 517

A basic Rack application 518

18.2 Building bigger Rack applications 522

You’re breaking up 522 ■ Running a combined Rack
application 524

18.3 Mounting a Rack application with Rails 525

Mounting Heartbeat 526 ■ Introducing Sinatra 527
The API, by Sinatra 528 ■ Basic error checking 532

18.4 Middleware 533

Middleware in Rails 534 ■ Investigating
ActionDispatch::Static 536 ■ Crafting middleware 538

18.5 Summary 540

appendix A Why Rails? 541

appendix B Tidbits 546

index 551

xv

preface
This book has been through quite the development process! It began in 2008 with

Michael Ivey, Yehuda Katz, and Ezra Zygmuntowicz and was called Merb in Action. Since

then it has changed name and hands a couple of times, winding up with people such as

James Cox and the great Mike Gunderloy, the latter of whom is probably most famous

for his work on Factsheet Five and many .NET books, not to mention being one of the

founding members of the RailsBridge (http://railsbridge.org) organization.

 Then, somehow, I became involved with this book.

 I received an email on a cold April morning in 2010 from Christina Rudloff at

Manning asking if I would have any interest in joining the project. I was exceptionally

excited! I had been writing short blog posts about Rails for years, and the idea of

focusing that effort into writing a book made me extremely happy. Long story short:

Yehuda Katz liked what he saw on my blog and wanted me to join the project. Working

with Yehuda has been brilliant. He’s got to be one of the smartest and most patient

people I have ever met.

 Shortly after receiving that initial email from Christina, I talked with another per-

son from Manning, Michael Stephens, first via email and then very late at night over

the phone (we are on different continents) about the project. I worked out the initial

chapter layout, and I distinctly remember one thing that Michael asked me: “You

know what you’re getting yourself into, right?” I thought “Sure, I’ve written blog posts

before, how hard could it be?” and replied in much the same manner. How little did

I know!

 Since then, I have learned a lot about the book-writing process. For starters, it

involves a lot more than just the two people and the publishing company on the front

http://railsbridge.org

PREFACExvi

cover. It also takes a very long time to write a book. This book has been my life for the

past year and a bit. I’ve spent many weekends, mornings before work, and evenings

after work (and way too often, time even in my dreams) writing chapters for this book.

I’ve talked about it (perhaps too much) as well. It’s become such a running joke

among people I know that when I’m introduced, they ask, “Do you know he’s writing a

book?”

 Writing is sometimes easy, but other times it can be a struggle to come up with any-

thing at all. There have been bad days, sure, but the good days outnumber those mas-

sively. The feeling of achievement you get when you finish a chapter, or even a section,

is awesome. Receiving positive feedback from people has been a huge boon to com-

pleting this book.

 Now, in 2011, the book is finally done, and what an amazing feeling that is! I’d like

to think that it offers a unique perspective on developing a full Ruby on Rails applica-

tion from scratch in the same (or at least, similar) manner that people are developing

Rails applications at this time. It’s also the first book to cover the latest features of

Rails found in version 3.1.

 RYAN BIGG

xvii

acknowledgments
This has been an amazing process, full of amazing people. A large portion of this

book would not have been possible without the support of my employer, Mikel Lind-

saar, and company, RubyX, allowing me to take time off to write the book. The sup-

port of the community at large has also been enormous in helping me complete this

book. Winning the Ruby Hero award at RailsConf, partially due to my work on this

very book, was the highlight of my career so far. After I won the award, Mikel also pro-

vided me with a new laptop at no expense to replace my previous one that was three

years old. Bloody champion!

 Of course, a lot of this wouldn’t have been as easy if it wasn’t for the Rails Core

Team’s valiant efforts on their maintenance of the framework over the years and their

constant focus on improving people’s lives on an almost daily basis. Also there are

Yehuda Katz, Carl Lerche, and André Arko to thank for their work on an important

part of developing not only Rails applications, but also Ruby libraries such as Bundler

and Thor. These people are my idols, and I love them dearly.

 Through a Rails-based review system called Twist that I built myself over a single

day, I’ve collected more than 1,200 notes from people from around the world who

have been reviewing the book as I have been writing it. A special mention goes to the

three people who’ve left the most notes in Twist: Roy Hacker, Deryl Doucette, and

Peter Ley. An almost-as-special mention goes to the 33 other people who’ve also left

notes. Without your help, this book wouldn’t be half as brilliant as it is today.

 Also thanks to Tim McEwan for the ideas for the engines chapter, Chris Darroch

for an initial read-through of the first chapters, and Rob Zolkos for helping with some

ACKNOWLEDGMENTSxviii

gnarly ePub Ruby and XLST code. And yes, thanks to Andrew Snow for assisting with a

difficult moral problem in chapter 16 at Railscamp in June 2011.

 In addition to those who’ve been leaving notes in Twist, there are the people at

Manning. First, thanks to Christina Rudloff for the initial contact and Michael Ste-

phens for the late-night chats and management of the process. Candace Gillhooley

and Nick Chase have also been enormously helpful.

 Cynthia Kane, my development editor at Manning, is particularly special. Her job

was to tell me when I was doing things wrong, such as not segueing between sections

or making the text flow too fast, and to leave me notes such as “FIGURE!!!” when I

needed an image to go along with the text. Our almost weekly catch-ups were well

worthwhile; it was great always having someone there, prodding me for more content

and talking through the process. Marjan Bace, fearless leader of Manning Publica-

tions, should also be credited for supporting this project for as long as it has been

around.

 The production team at Manning, including Troy Mott, has been great throughout

this process too. The extreme focus they’ve shown in finishing this book is stunning. I

also need to mention the wonderful work by Doug Warren in the final technical

proofing of the book, as well as Manning’s copyeditors, who touched up basically

every single paragraph in the book.

 Special thanks to the reviewers who took time out of their busy schedules to pro-

vide feedback on the manuscript at different stages during development. They

include Jason Rogers, Craig Smith, Emmanuel Asante, Chad Moone, Dr. Jamie P. Fin-

lay, Dave Nicolette, Grant Oladipo, Jean-Philippe Castro, Americo Savinon, Thomas

Athanas, Chris Kelly, Greg Vaughn, Pete Helgren, Joshua R Cronemeyer, Peter Melo,

Robby O’Connor, Philip Hallstrom, Curtis Miller, Patrick Peak, Anthony J. Topper,

Brian Rose, Daniel Bretoi, Wesley Moxam, Jon Agnes, and David Workman

 Finally, my friends and family have been amazing throughout my entire life, all the

way from my parents—who supported my career choice in Ruby on Rails and techni-

cal writing, even though they paid for me to study Network Admin at TAFE and always

told me that I should “get out the house more”—to my current housemate, who

accepts that we don’t see much of each other (or at least I think so). You’re all won-

derful people, and I hope now that the book is over I will see more of you. I would list

you all here if only it didn’t require this book to be printed in a multivolume series.

 RYAN BIGG

Rails 3 in Action is a long-time coming. To give you some perspective, the book was

originally called Merb in Action, and it managed a perpetual beta through the Merb

merge, the release of Rails 3.0, and is finally ready just in time for Rails 3.1.

 I can say with confidence that Rails 3 in Action would not exist without the hard,

tireless work of Ryan Bigg. It was Ryan’s idea to focus the book around real-world test-

ing from the ground up, and it makes Rails 3 in Action the first book for Rails practitio-

ners that teaches Rails the way professional Rails developers do it.

ACKNOWLEDGMENTS xix

 Since we merged Merb with Rails, I have had the benefit of not insignificant sup-

port from friends and family, who helped keep me on course in the long process that

eventually delivered Rails 3.0. I want to especially call out Aaron Patterson, José Valim,

Santiago Pastorino, and Xavier Noria, who stepped up and brought life back to a com-

munity that was starting to show signs of age by the time Rails 2.3 hit the shelves. And

Carl Lerche, who helped me keep focus on doing things right, even when it was

tempting not to.

 Finally, I would be remiss if I didn't thank my wife, Leah, who has been there for

me through the amazing trajectory of my development career, through good times

and bad. Without her, I would have given up long ago.

YEHUDA KATZ

www.allitebooks.com

http://www.allitebooks.org

xx

about this book
Ruby on Rails is a leading web application framework built on top of the fantastic

Ruby programming language. Both the language and the framework place an

extreme emphasis on having a principle of least surprise and getting out of the way of

the developers using it.

 Ruby on Rails has been growing at a rapid pace, with large internet companies

such as Yellow Pages and Groupon using it for their core functionality. With the latest

release of Rails, version 3.1, comes a set of changes that improve the already brilliant

framework that has been constructed over the past seven years. The fantastic commu-

nity around the framework has also been growing at a similar pace.

 This book is designed to take you through developing a full-featured Rails applica-

tion from step one, showing you exactly how professionals in the real world are devel-

oping applications right now.

Who should read this book

This book is primarily for those who are looking to begin working with the Ruby on

Rails framework and who have some prior experience with Ruby, although that is not

entirely necessary.

 Later chapters, such as chapter 13, “Designing an API,” chapter 17, “Engines,” and

chapter 18, “Rack-based applications,” delve into more advanced topics, so these chap-

ters are suitable for people who already have a foundation with Rails and are looking

to expand their skillset a little further.

 If you’re looking for a book that teaches you the same practices that are used in

the real world, then this is the book you are looking for.

ABOUT THIS BOOK xxi

Roadmap

Chapter 1 introduces the Ruby on Rails framework and begins to show how you can

develop the beginnings of an application.

 Chapter 2 shows off test-driven development and behavior-driven development,

which are two core concepts in this book and for developing Rails applications. By

testing the code you write, you can be assured that it’s always working that way.

 Chapters 3 and 4 discuss the application you develop in this book—a project-man-

agement app of sorts—and delve into the core concepts of a Rails application. They

also look at developing the first core features of your application.

 Chapter 5 begins an introduction to nested resources, building on top of the fea-

tures developed in the previous two chapters.

 Chapter 6 introduces authentication, requiring users to sign in to the application

before they can perform certain tasks.

 Chapter 7 builds on the work in chapter 6 by adding new areas of the application

that are accessible only to users with a certain flag set in the database. You also use

namespaces for the first time.

 Chapter 8 builds on the basic authorization created in chapter 7, fleshing it out

into something neater and more scalable.

 In chapter 9, you learn about file uploading using the Paperclip gem. In this chap-

ter you also learn about testing parts of your application that use JavaScript and about

CoffeeScript, a neater language that compiles down to JavaScript.

 Chapter 10 builds not one but two new features for the application, adding the

ability to comment on a ticket as well as track the ticket’s lifecycle through varying

states.

 In chapter 11, you add a feature that lets users assign tags to tickets so they can be

easily grouped. You also add a feature to allow users to search for tickets matching a

certain state or tag, or both.

 Chapter 12 begins our foray into dealing with email in a Rails application. You’ll

see not only how to send email but also how to receive messages and parse them into

meaningful data in your application.

 Chapter 13 involves creating an API for the project resources in an application

that provide other applications with a standardized way to access your application’s

data. We also look at token-based authentication and how to create multiple versions

of an API.

 In chapter 14, you deploy the application to an Ubuntu box and set it up to act like

a normal web server using a RubyGem called Passenger and a web server called nginx.

 In chapter 15, you create a “nice to have” feature: the ability to sign up or sign in

using either Twitter or GitHub. When this is complete, people are no longer required

to provide you with an email and password when they sign up; instead, they can use

GitHub and Twitter as authentication providers.

ABOUT THIS BOOKxxii

 By chapter 16, your application is all grown up and needs to handle any kind of

performance issues it encounters. We cover basic performance enhancements, such

as pagination, database indexing, and page and fragment caching.

 Chapter 17 introduces a new feature for Rails 3: engines. You develop one of your

own from scratch—a forum system—and then integrate it with the existing application.

 Chapter 18 delves into the depths of Rack, explaining how Rack applications are

made and can be tied into Rails. The chapter also explains, and contains examples of,

middleware being used in Rails.

Code conventions and downloads

Code conventions in the book follow the style of other Manning books in the In Action

series. All code in listings and in text appears in a monospaced font like this to sepa-

rate it from ordinary text. In some cases, the original source code has been reformat-

ted to fit on the pages. In general, the original code was written with page-width

limitations in mind, but sometimes you may find a slight formatting difference

between the code in the book and that provided in the source download. In a few rare

cases, where long lines could not be reformatted without changing their meaning, the

book listings contain line-continuation markers. Code annotations accompany many

of the listings, highlighting important concepts. In many cases, numbered bullets link

to explanations that follow in the text.

 Source code for all the working examples in this book is available for download

from the publisher’s website at www.manning.com/Rails3inAction.

Author Online

The purchase of Rails 3 in Action includes free access to a private forum run by Man-

ning Publications where you can make comments about the book, ask technical ques-

tions, and receive help from the authors and other users. To access and subscribe to

the forum, point your browser to www.manning.com/Rails3inAction, and click the

Author Online link. This page provides information on how to get on the forum once

you are registered, what kind of help is available, and the rules of conduct in the

forum.

 Manning’s commitment to our readers is to provide a venue where a meaningful

dialogue between individual readers and between readers and the authors can take

place. It’s not a commitment to any specific amount of participation on the part of the

authors, whose contribution to the book’s forum remains voluntary (and unpaid). We

suggest you try asking the authors some challenging questions, lest their interest stray!

 The Author Online forum and the archives of previous discussions will be accessi-

ble from the publisher’s website as long as the book is in print.

www.manning.com/Rails3inAction
www.manning.com/Rails3inAction

xxiii

about the authors
RYAN BIGG has been developing Ruby on Rails since version 1.2 and can be found

helping out the community by answering questions on IRC or StackOverflow or writ-

ing documentation. He currently works for a web consultancy based in Sydney called

RubyX.

YEHUDA KATZ is well known not only for his work on this third version of Ruby on

Rails, but also for other web-related projects such as jQuery, Bundler, Merb, and

SproutCore. He currently works for Strobe in San Francisco as a lead developer on

SproutCore and is the coauthor of Manning’s jQuery in Action, Second Edition.

xxiv

about the cover illustration
The figure on the cover of Rails 3 in Action is captioned “A Soldier.” The illustration is

taken from a nineteenth-century edition of Sylvain Maréchal’s four-volume compen-

dium of regional and military dress customs published in France. Each illustration is

finely drawn and colored by hand. The rich variety of Maréchal’s collection reminds

us vividly of how culturally apart the world’s towns and regions were just 200 years ago.

Isolated from each other, people spoke different dialects and languages. In the streets

or in the countryside, it was easy to identify where they lived and what their trade or

station in life was just by their dress.

 Dress codes have changed since then and the diversity by region, so rich at the

time, has faded away. It is now hard to tell apart the inhabitants of different conti-

nents, let alone different towns or regions. Perhaps we have traded cultural diversity

for a more varied personal life—certainly for a more varied and fast-paced technolog-

ical life.

 At a time when it is hard to tell one computer book from another, Manning cele-

brates the inventiveness and initiative of the computer business with book covers

based on the rich diversity of regional life of two centuries ago, brought back to life by

Maréchal’s pictures.

1

Ruby on Rails,
the framework

Welcome aboard! It’s great to have you with us on this journey through the world of

Ruby on Rails. Ruby on Rails is known throughout the lands as a powerful web

framework that helps developers rapidly build modern web applications. In partic-

ular, it provides lots of niceties to help you in your quest to develop a full-featured

real-world application and be happy doing it. Great developers are happy develop-

ers. There’s much more to the Rails world than might appear at first glance, but

not overwhelmingly too much. And what a first glance! Oh, you two haven’t met?

Well, time for some introductions then!

This chapter covers

 Exploring Ruby on Rails

 Building the foundations of a Ruby on Rails app

 Working with the scaffold generator

2 CHAPTER 1 Ruby on Rails, the framework

1.1 What is Ruby on Rails?

Ruby on Rails is a framework built on the Ruby language, hence the name Ruby on

Rails. The Ruby language was created back in 1993 by Yukihiro “Matz” Matsumuto of

Japan. Ruby was released to the general public in 1995. Since then, it has earned both

a reputation and an enthusiastic following for its clean design, elegant syntax, and

wide selection of tools available in the standard library and via a package management

system called RubyGems. It also has a worldwide community and many active contribu-

tors constantly improving the language and the ecosystem around it.

 Ruby on Rails was created in 2004 by David Heinemeier Hansson during the devel-

opment of 37signals’ flagship product: Basecamp. When Rails was needed for other

37signals projects, the team extracted the Rails code from it, crafted the beginnings of

the framework, and released it as open source under the MIT license.1 Since then,

Ruby on Rails has quickly progressed to become one of the leading web development

frameworks. This is in no small part due to the large community surrounding it who

are constantly working on submitting patches to add new features or to fix existing

bugs. Version 3 of this framework indicates yet another significant milestone in the

project’s history and introduces some new concepts, but won’t leave those already

familiar with the framework in the dark. The latest version of Rails is the primary

focus of this book.

1.1.1 Benefits

Ruby on Rails allows for rapid development of applications by using a concept known

as convention over configuration. When you begin writing a Ruby on Rails application,

you run an application generator, which creates a basic skeleton of directories and

files for your application. These files and directories provide categorization for pieces

of your code, such as the app/models directory for containing files that interact with

the database and the public/images directory for images. Because all of this is already

there for you, you won’t be spending your time configuring the way your application is

laid out. It’s done for you.

 How rapidly can you develop a Ruby on Rails application? Take the annual Rails

Rumble event. This event aims to bring together small teams of one to four developers

around the world to develop Ruby on Rails2 applications in a 48-hour period. Using

Rails, these teams can deliver amazing web applications in just two days.3 Another

great example of rapid development of a Rails application is the 20-minute blog

screencast recorded by Yehuda Katz.4 This screencast takes you from a no-application

state to having a basic blogging and commenting system.

 Ruby on Rails affords you a level of productivity unheard of in other web frame-

works because every Ruby on Rails application starts out the same way. The similarity

1 The MIT license: http://en.wikipedia.org/wiki/MIT_License.
2 And now other Ruby-based web frameworks, such as Sinatra.
3 To see an example of what has come out of previous Rails Rumbles, take a look at their alumni archive:

http://r09.railsrumble.com/entries.
4 20-minute blog screencast: http://vimeo.com/10732081.

http://en.wikipedia.org/wiki/MIT_License
http://r09.railsrumble.com/entries

3What is Ruby on Rails?

between the applications is so close that the paradigm shift between different Rails

applications is not tremendous. If and when you jump between Rails applications, you

don’t have to relearn how it all connects—it’s mostly the same.

 The core features of Rails are a conglomerate of many different parts called Rail-

ties (when said aloud it rhymes with “bowties”), such as Active Record, Active Support,

Action Mailer, and Action Pack.5 These different Railties provide a wide range of meth-

ods and classes that help you develop your applications. They prevent you from per-

forming boring, repetitive tasks—such as coding how your application hooks into

your database—and let you get right down to writing valuable code for your business.

 Ever wished for a built-in way of writing automated tests for your web application?

Ruby on Rails has you covered with Test::Unit, part of Ruby’s standard library. It’s

incredibly easy to write automated test code for your application, as you’ll see

throughout this book. Test::Unit saves your bacon in the long term, and that’s a fantas-

tic thing. We touch on Test::Unit in the next chapter before moving on to RSpec and

Cucumber, two other test frameworks that are preferred over Test::Unit and a little

easier on the eyes too.

 In addition to testing frameworks, the Ruby community has produced several high-

quality libraries (called RubyGems, or gems for short) for use in your day-to-day devel-

opment with Ruby on Rails. Some of these libraries add additional functionality to

Ruby on Rails; others provide ways to turn alternative markup languages such as Mark-

down and Textile into HTML. Usually, if you can think it, there’s a gem out there that

will help you do it.

 Noticing a common pattern yet? Probably. As you can see, Ruby on Rails (and the

great community surrounding it) provides code that performs the trivial application

tasks for you, from setting up the foundations of your application to handling the

delivery of email. The time you save with all these libraries is immense! And because

the code is open source, you don’t have to go to a specific vendor to get support. Any-

body who knows Ruby can help you if you’re stuck.

1.1.2 Common terms

You’ll hear a few common Ruby on Rails terms quite often. This section explains what

they mean and how they relate to a Rails application.

MVC

The Model-View-Controller (MVC) paradigm is not unique to Ruby on Rails but pro-

vides much of the core foundation for a Ruby on Rails application. This paradigm is

designed to keep the logically different parts of the application separate while provid-

ing a way for data to flow between them.

 In applications that don’t use MVC, the directory structure and how the different

parts connect to each other is commonly left up to the original developer. Generally,

5 Railties share the same version number as Rails, which means when you’re using Rails 3.1, you’re using the
3.1 version of the Railtie. This is helpful to know when you upgrade Rails because the version number of the
installed Railties should be the same as the version number of Rails.

4 CHAPTER 1 Ruby on Rails, the framework

this is a bad idea because different people have different opinions on where things

should go. In Rails, a specific directory structure makes all developers conform to the

same layout, putting all the major parts of the application inside an app directory.

This app directory has three main subdirectories: models, controllers, and views.

Domain logic—how the records in your database are retrieved—is kept in models.

In Rails applications, models define the code that interacts with the database’s tables

to retrieve and set information in them. Domain logic also means things such as vali-

dations or particular actions to perform on the data.

 Controllers interact with the models to gather information to send to the view.

They call methods on the model classes, which can return single objects representing

rows in the database or collections (arrays) of these objects. Controllers then make

these objects available to the view through instance variables.

 Views display the information gathered by the controller, by referencing the

instance variables set there, in a user-friendly manner. In Ruby on Rails, this display is

done by default with a templating language known as Embedded Ruby (ERB). ERB

allows you to embed Ruby (hence the name) into any kind of file you wish. This tem-

plate is then preprocessed on the server side into the output that’s shown to the user.

 The assets, helpers, and mailers directories aren’t part of the MVC paradigm, but

they are important parts of Rails. The assets directory is for the static assets of the

application, such as JavaScript files, images, and Cascading Style Sheets (CSS) for mak-

ing the application look pretty. We look more closely at this in chapter 3.

 The helpers directory is a place to put Ruby code (specifically, modules) that pro-

vides helper methods for just the views. These helper methods can help with complex

formatting that would otherwise be messy in the view or is used in more than one place.

 Finally, mailers is a home for the classes of your application that deal with sending

email. In previous versions of Rails, these classes were grouped with models but have

since been given their own home. We look at them in chapter 11.

REST

MVC in Rails is aided by REST, a routing paradigm. Representational State Transfer

(REST) is the convention for routing in Rails. When something adheres to this conven-

tion, it’s said to be RESTful. Routing in Rails refers to how requests are routed within

the application itself. You benefit greatly by adhering to these conventions, because

Rails provides a lot of functionality around RESTful routing, such as determining

where a form can, or will, send to.

1.1.3 Rails in the wild

A question sometimes asked by people new to Rails is, “Is Rails ready?” Of course it is!

The evidence is stacked mightily in Rails’ favor with websites such as Twitter, Yellow

Pages, and of course Basecamp, serving millions and millions of page requests daily.6

6 Some of the more well-known applications that run on Ruby on Rails can be found at http://rubyonrails.org
/applications.

http://rubyonrails.org/applications
http://rubyonrails.org/applications

5Developing your first application

 If any site is a testament to the power of Ruby on Rails, Twitter is it. Even though

Twitter suffered from scaling problems back in 2008 (due to its massive growth and

other technological problems, not due to Rails), it is now the eleventh most popular

website, according to Alexa, and is exceptionally stable.

 Another well-known site that runs Ruby on Rails is GitHub, a hosting service for

Git repositories. This site was launched in February 2008 and is now the leading Git

web-hosting site. GitHub’s massive growth was in part due to the Ruby on Rails com-

munity quickly adopting it as their de facto repository hosting site. Now GitHub is

home to over a million repositories for just about every programming language on the

planet. It’s not exclusive to programming languages either; if it can go in a Git reposi-

tory, it can go on GitHub. As a matter of fact, this book and its source code are kept on

GitHub!

 Now that you know what other people have accomplished with this framework,

let’s dive into creating your own application.

1.2 Developing your first application

We covered the theory behind Rails and showed how quickly and easily you can

develop an application. Now it’s your turn to get an application going.

1.2.1 Installing Rails

To get started, you must have these three things installed:

 Ruby

 RubyGems

 Rails

If you’re on a UNIX-based system (Linux or Mac), we recommend you use RVM

(http://rvm.beginrescueend.com) to install Ruby and RubyGems. It is the preferred

solution of the community because it works so simply. Installing from a package man-

agement system such as Ubuntu’s Aptitude has been known to be broken.7 After

installing RVM, you must run this command to install a 1.9.2 version of Ruby:

rvm install 1.9.2

To use this version of Ruby, you would need to use rvm use 1.9.2 every time you wished

to use it or else set up a .rvmrc file in the root of your project, which is explained on the

RVM site in great detail. Alternatively, you can set this version of Ruby as the default

with the command rvm use --default 1.9.2, and use rvm use system if you ever want

to swap back to the system-provided Ruby install if you have one.

 If you’re on Windows, you can’t use RVM and you can’t use a 1.9.* version of Ruby,

but that’s okay. Rails 3 works with Ruby 1.8 versions of Rails too. We would recom-

mend the use of the Rails Installer program (http://railsinstaller.org) from Engine

Yard, or installing the Ruby 1.8.7-p352 binary from ruby-lang.org as an alternative.

7 Broken Ubuntu Ruby explained here: http://ryanbigg.com/2010/12/ubuntu-ruby-rvm-rails-and-you/.

www.allitebooks.com

http://rvm.beginrescueend.com
http://ryanbigg.com/2010/12/ubuntu-ruby-rvm-rails-and-you/
http://railsinstaller.org
http://www.allitebooks.org

6 CHAPTER 1 Ruby on Rails, the framework

 Next, you need to install the rails gem. The following command installs both

Rails and its dependencies. If you’re using the Rails installer you will not need to run

this command because Rails will already be installed:

gem install rails -v 3.1.0

1.2.2 Generating an application

With Rails now installed, to generate an application, you run the rails command and

pass it the new argument and the name of the application you want to generate:

things_i_bought. When you run this command, it creates a new directory called

things_i_bought, which is where all your application’s code will go. You can call your

application anything you wish, but it can’t be given the same name as a reserved word

in Rails. For example, you wouldn’t call your application rails because it defines a Rails

constant, which is internal to Rails, and the two constants would clash.

 The application that you’re going to generate will be able to record purchases you

have made. You can generate it using this command:

rails new things_i_bought

The output from this command may seem a bit overwhelming at first, but rest assured:

it’s for your own good. All of the directories and files generated here provide the

building blocks for your application, and you’ll get to know each of them as we prog-

ress. For now, let’s get rolling and learn by doing, which is the best way of learning.

1.2.3 Starting the application

To get the server running, you must first change into the newly created application’s

directory and then run these commands to start the application server:

cd things_i_bought

bundle install
rails server

The bundle install command installs all the gems required for your application.

This is explained in further detail in chapter 3.

 This starts a web server on your local address on port 3000 using a Ruby standard

library web server known as WEBrick. It will say it’s “starting in development on

http://0.0.0.0:3000,” which indicates to you that the server will be available on port

3000 on all network interfaces of this machine.8 To connect to this server, go to

http://localhost:3000 in your favorite browser. You’ll see the “Welcome aboard”

page, which is so famous in Rails (see figure 1.1).

 If you click About Your Application’s Environment, you’ll find your Ruby, Ruby-

Gems, Ruby on Rails, and Rack versions and other environmental data. One of the

things to note here is that the output for Environment is Development. Rails provides

8 This is what the 0.0.0.0 address represents. It is not an actual address, so to speak, and so localhost or
127.0.0.1 should be used.

http://0.0.0.0:3000
http://localhost:3000

7Developing your first application

three environments for running your application: development, test, and production.

How your application functions can depend on the environment in which it is run-

ning. For example, in the development environment, classes are not cached; so if you

make a change to a class when running an application in development mode, you

don’t need to restart the server, but the same change in the production environment

would require a restart.

1.2.4 Scaffolding

To get started with this Rails application, you generate a scaffold. Scaffolds in Rails pro-

vide a lot of basic functionality but are generally not used for full-scale development

because you may want something more customized, in which case you’d build it your-

self. But for this example of what Rails can do, let’s generate a scaffold by running this

command:

rails generate scaffold purchase name:string cost:float

When you used the rails command earlier, it generated an entire Rails application.

You can use this command inside of an application to generate a specific part of the

application by passing the generate argument to the rails command, followed by

what it is you want to generate.

Figure 1.1 Welcome aboard!

8 CHAPTER 1 Ruby on Rails, the framework

 The scaffold command generates a model, a controller, and views based on the

name passed after scaffold in this command. These are the three important parts

needed for your purchase tracking. The model provides a way to interact with a data-

base. The controller interacts with the model to retrieve and format its information

and defines different actions to perform on this data. The views display the informa-

tion from the controller in a neat format.

 Everything after the name for the scaffold are the fields for the database table and

the attributes for the objects of this scaffold. Here you tell Rails that the table for your

purchase scaffold will contain name and cost fields, which are a string and a float.9 To

create this table, the scaffold generator generates what’s known as a migration. Let’s

have a look at what migrations are.

1.2.5 Migrations

Migrations are used in Rails as a form of version control for the database, providing a

way to implement incremental changes to the schema of the database. Each migration

is timestamped right down to the second, which provides you (and anybody else devel-

oping the application with you) an accurate timeline of your database. When two

developers are working on separate features of an application and both generate a

new migration, this timestamp will stop them from clashing. Let’s open the only file in

db/migrate now and see what it does. Its contents are shown in the following listing.

class CreatePurchases < ActiveRecord::Migration
def self.up

create_table :purchases do |t|

t.string :name
t.float :cost

t.timestamps

end
end

def self.down

drop_table :purchases
end

end

Migrations are Ruby classes that inherit from ActiveRecord::Migration. Inside the

class, two class methods are defined: up and down. Inside the up method is the code

you want to be run when you run the migration, and inside the down method is the

code that runs when you roll the migration back.

 Inside both of these methods you use database-agnostic commands to create and

drop a table. In the up method, you create a table and specify the fields you want in

9 Usually you wouldn’t use a float for storing monetary amounts because it can lead to incorrect-rounding
errors. Generally, you store the amount in cents as an integer and then do the conversion back to a full dollar
amount. This example uses a float because it’s easier to not have to define the conversion at this point.

Listing 1.1 db/migrate/[date]_create_purchases.rb

9Developing your first application

that table by calling methods on the t block variable. The string and float methods

create fields of those particular types on any Rails-compatible database system.10 You

specified these fields when you used the scaffold command. The timestamps

method is special; it creates two fields called created_at and updated_at, which have

their values set when records are created and updated automatically by Rails.

 To run the migration, type this command into the console:

rake db:migrate

This command run the self.up part of this migration. Because this is your first time

running migrations in your Rails application, and because you’re using a SQLite3

database, Rails first creates the database in a new file at db/development.sqlite3 and

then creates the purchases table inside that. When you run rake db:migrate, it

doesn’t just run the self.up method from the latest migration but runs any migration

that hasn’t yet been run, allowing you to run multiple migrations sequentially.

 Your application is, by default, already set up to talk to this new database, so you

don’t need to change anything. If you ever want to roll back this migration, you’d use

rake db:rollback, which rolls back the latest migration by running the self.down

method of the migration.11

 Rails keeps track of the last migration that was run by storing it using this line in

the db/schema.rb file:

ActiveRecord::Schema.define(:version => [timestamp]) do

This version should match the prefix of the migration you just created,12 and Rails uses

this value to know what migration it’s up to. The remaining content of this file shows

the combined state of all the migrations to this point. This file can be used to restore

the last-known state of your database if you run the rake db:schema:load command.

 With your database set up with a purchases table in it, let’s look at how you can

add rows to it through your application

1.2.6 Viewing and creating purchases

Start your browser now and go to http://

localhost:3000/purchases. You’ll see the

scaffolded screen for purchases, as shown in

figure 1.2. No purchases are listed yet, so

let’s add a new purchase by clicking New

Purchase.

10 So far, MySQL, PostgreSQL, SQLite3, Oracle, Frontbase, and IBM DB.
11 If you want to roll back more than one migration, use the rake db:rollback STEP=3 command, which rolls

back the three most recent migrations.
12 Where [timestamp] in this example is an actual timestamp formatted like YYYYmmddHHMMSS.

Figure 1.2 Purchases

http://localhost:3000/purchases
http://localhost:3000/purchases

10 CHAPTER 1 Ruby on Rails, the framework

 In figure 1.3, you see two inputs for the fields you generated. This page is the result

of the new action from thePurchasesController controller. What you see on the page

comes from the view located at app/views/purchases/new.html.erb, and it looks like

the following listing.

<h1>New purchase</h1>

<%= render 'form' %>

<%= link_to 'Back', purchases_path %>

This is an ERB file, which allows you to mix HTML and

Ruby code to generate dynamic pages. The beginning of

an ERB tag indicates that the result of the code inside the

tag will be output to the page. If you want the code to be

evaluated but not output, you use the <% tag, like this:

<% some_variable = "foo" %>

If you were to use <%= some_variable = "foo" %> here,

the some_variable variable would be set and the value

output to the screen. By using <%=, the Ruby code is eval-

uated but not output.

 The render method, when passed a string as in this example, renders a partial. A

partial is a separate template file that you can include in other templates to repeat

similar code. We’ll take a closer look at these in chapter 3.

 The link_to method generates a link with the text of the first argument (Back)

and with an href attribute specified by the second argument (purchases_path),

which is simply /purchases.

 This particular partial is at app/views/purchases/_form.html.erb, and the first

half of it looks like the following listing.

<%= form_for(@purchase) do |f| %>

<% if @purchase.errors.any? %>

<div id="error_explanation">
<h2><%= pluralize(@purchase.errors.count, "error") %> prohibited this

purchase from being saved:</h2>

<% @purchase.errors.full_messages.each do |msg| %>

<%= msg %>

<% end %>

</div>

<% end %>

Listing 1.2 app/views/purchases/new.html.erb

Listing 1.3 First half of app/views/purchases/_form.html.erb

Figure 1.3 A new purchase

11Developing your first application

This half is responsible for defining the form by using the form_for helper. The

form_for method is passed one argument—an instance variable called @purchase—

and with @purchase it generates a form. This variable comes from the Purchases-

Controller’s new action, which is shown in the following listing.

def new
@purchase = Purchase.new

respond_to do |format|
format.html # new.html.erb
format.xml { render :xml => @purchase }

end
end

The first line in this action sets up a new @purchase variable by calling the new method

on the Product model, which initializes a new object of this model. The variable is

then automatically passed through to the view by Rails.

 Next in the controller is the respond_to method that defines what formats this

action responds to. Here, the controller responds to the html and xml formats. The

html method here isn’t given a block and so will render the template from app/views/

purchases/new.html.erb, whereas the xml method, which is given a block, will execute

the code inside the block and return an XML version of the @purchase object. You’ll

be looking at what the html response does from here forward because that is the

default format requested.

 So far, all of this functionality is provided by Rails. You’ve coded nothing yourself.

With the scaffold generator, you get an awful lot for free.

 Going back to the view, the block for the form_for is defined between its do and

the %> at the end of the file. Inside this block, you check the @purchase object for any

errors by using the @purchase.errors.any? method. These errors will come from the

model if the object did not pass the validation requirements set in the model. If any

errors exist, they’re rendered by the content inside this if statement. Validation is a

concept covered shortly.

 The second half of this partial looks like the following listing.

<div class="field">
<%= f.label :name %>

<%= f.text_field :name %>

</div>
<div class="field">

<%= f.label :cost %>

<%= f.text_field :cost %>

</div>
<div class="actions">

<%= f.submit %>
</div>

<% end %>

Listing 1.4 app/controllers/purchases_controller.rb

Listing 1.5 Second half of app/views/purchases/_form.html.erb

12 CHAPTER 1 Ruby on Rails, the framework

Here, the f object from the form_for block is used to define

labels and fields for your form. At the end of this partial, the

submit method provides a dynamic submit button.

 Let’s fill in this form now and click the submit button. You

should see something similar to figure 1.4.

 What you see here is the result of your posting: a successful

creation of a Purchase. Let’s see how it got there. The submit

button posts the data from the form to the create action, which looks like the follow-

ing listing.

def create

@purchase = Purchase.new(params[:purchase])

respond_to do |format|

if @purchase.save

format.html { redirect_to(@purchase, :notice => 'Purchase was successfu

lly created.') }
format.xml { render :xml => @purchase, :status => :created, :location

=> @purchase }

else
format.html { render :action => "new" }

format.xml { render :xml => @purchase.errors, :status => :unprocessabl

e_entity }
end

end

end

Here, you use the Purchase.new you first saw used in the new action. But this time you

pass it an argument of params[:purchase]. params (short for parameters) is a method

that returns the parameters sent from your form in a Hash-like object. When you pass

this params hash into new, Rails sets the attributes13 to the values from the form.

 Inside the respond_to is an if statement that calls @purchase.save. This method

validates the record, and if it’s valid, the method saves the record to the database and

returns true.

 If the return value is true, the action responds by redirecting to the new

@purchase object using the redirect_to method, which takes either a path or an

object that it turns into a path (as seen in this example). The redirect_to method

interprets what the @purchase object is and determines that the path required is

purchase_path because it’s an object of the Purchase model. This path takes you to

the show action for this controller. The :notice option passed to the redirect_to sets

up a flash message. A flash message is a message that can be displayed on the next

request.

 You’ve seen what happens when the purchase is valid, but what happens when it’s

invalid? Well, it uses the render method to show the new action’s template again. We

Listing 1.6 app/controllers/purchases_controller.rb

13 The Rails word for fields.

Figure 1.4

Your first purchase

13Developing your first application

should note here that this doesn’t call the new action/method again14 but only ren-

ders the template.

 You can make the creation of the @purchase object fail by adding a validation.

Let’s do that now.

1.2.7 Validations

You can add validations to your model to ensure that the data conforms to certain

rules or that data for a certain field must be present or that a number you enter must

be above a certain other number. You’re going to write your first code for this applica-

tion and implement both of these things now.

 Open up your Purchase model and change the whole file to what’s shown in the

following listing.

class Purchase < ActiveRecord::Base

validates_presence_of :name

validates_numericality_of :cost, :greater_than => 0
end

You use the validates_presence_of method to define a validation that does what it

says on the box: validates that the field has a value. The other validation method,

validates_numericality_of, does more than what it initially claims: it validates that

the cost attribute is a number and that it is greater than 0.

 Let’s test out these validations by going back to http://localhost:3000/purchases,

clicking New Purchase, and clicking Create Purchase. You should see the errors shown

in figure 1.5.

14 To do that, you call redirect_to new_purchase_path, but that wouldn’t persist the state of the
@purchase object to this new request without some seriously bad hackery. By rerendering the template, you
can display information about the object if the object is invalid.

Listing 1.7 app/models/purchase.rb

Figure 1.5

Errors on purchase

http://localhost:3000/purchases

14 CHAPTER 1 Ruby on Rails, the framework

Great! Here, you’re told that Name can’t be blank and that the value you entered for

Cost isn’t a number. Let’s see what happens if you enter foo for the Name field and

-100 for the Cost field, and click Create Purchase. You should get a different error for

the Cost field now, as shown in figure 1.6.

 Good to see! Both of your validations are working now. When you change Cost to

100 and click Create Purchase, it should be considered valid by the validations and

take you to the show action. Let’s look at what this particular action does now.

1.2.8 Showing off

This action displays the content such as shown in figure 1.7.

The number at the end of the URL is the unique numerical ID for this purchase. But

what does it mean? Let’s look at the view for this show action now, as shown in the fol-

lowing listing.

<p id="notice"><%= notice %></p>

<p>

Name:
<%= @purchase.name %>

</p>

<p>
Cost:

Listing 1.8 app/views/purchases/show.html.erb

Figure 1.6 Cost must

be greater than 0

Figure 1.7 A single purchase

15Developing your first application

<%= @purchase.cost %>
</p>

<%= link_to 'Edit', edit_purchase_path(@purchase) %> |

<%= link_to 'Back', purchases_path %>

On the first line is the notice method, which displays the notice set on the

redirect_to from the create action. After that, field values are displayed in p tags by

simply calling them as methods on your @purchase object. This object is defined in

your PurchasesController’s show action, as shown in the following listing.

def show

@purchase = Purchase.find(params[:id])

...
end

The find method of the Purchase class is used to find the record with the ID of

params[:id] and instantiate a new Purchase object from it with params[:id] as the

number on the end of the URL.

 Going back to the view (app/views/purchases/show.html.erb) now, at the end of

this file you see link_to, which generates a link using the first argument as the text

for it and the second argument as the href for that URL. The second argument for

link_to is a method itself: edit_purchase_path. This method is provided by a

method call in config/routes.rb, which we now look at.

1.2.9 Routing

The config/routes.rb file of every Rails application is where the application routes are

defined in a succinct Ruby syntax. The methods used in this file define the pathways

from requests to controllers. If you look in your config/routes.rb while ignoring the

commented-out lines for now, you’ll see what’s shown in the following listing.

ThingsIBought::Application.routes.draw do

resources :purchases
end

Inside the block for the draw method is the resources method. Collections of similar

objects in Rails are referred to as resources. This method defines the routes and routing

helpers (such as the edit_purchase_path method) to your purchases resources. Look

at table 1.1 for a list of the helpers and their corresponding routes.

 In this table, :id can be substituted for the ID of a record. Each routing helper has

an alternative version that will give you the full URL to the resource. Simply use the

_url extension rather than _path, and you’ll get a URL such as http://localhost:3000/

purchases for purchases_url.

Listing 1.9 app/controllers/purchases_controller.rb

Listing 1.10 config/routes.rb

www.allitebooks.com

http://localhost:3000/purchases
http://localhost:3000/purchases
http://www.allitebooks.org

16 CHAPTER 1 Ruby on Rails, the framework

From this table, two of these routes will act differently depending on how they’re

requested. The first route, /purchases, takes you to the index action of Purchases-

Controller if you do a GET request. GET requests are the standard type of requests

for web browsers, and this is the first request you did to this application. If you do a

POST request to this route, it will go to the create action of the controller. This is the

case when you submit the form from the new view. Let’s go to http://localhost:3000/

purchases/new now and look at the source of the page. You should see the beginning

tag for your form looking like the following listing.

<form action="/
purchases" class="new_purchase" id="new_purchase" method="post">

The two attributes to note here are the action and method attributes. The action dic-

tates the route to where this form goes, and the method tells the form what kind of

HTTP request to make.

 How’d this tag get rendered in the first place? Well, as you saw before, the app/

views/purchases/new.html.erb template uses the form partial from app/views/

purchases/_form.html.erb, which contains this as the first line:

<%= form_for(@purchase) do |f| %>

This one simple line generates that form tag. When we look at the edit action shortly,

you’ll see that the output of this tag is different, and you’ll see why.

 The other route that responds differently is the /purchases/{id} route, which

acts in one of three ways. You already saw the first way: it’s the show action to which

you’re redirected (a GET request) after you create a purchase. The second of the

three ways is when you update a record, which we look at now.

1.2.10 Updating

Let’s change the cost of the foo purchase now. Perhaps it only cost 10. To change it, go

back to http://localhost:3000/purchases and click the Edit link next to the foo

record. You should now see a page that looks similar to the new page, shown in

figure 1.8.

 This page looks similar because it re-uses the partial used in the new action. Such is

the power of partials: you can use the same code for two different requests to your

application. The template for this action can be seen in the following listing.

Listing 1.11 The HTML source of app/views/purchases/new.html.erb

Helper Route

purchases_path /purchases

new_purchase_path /purchases/new

edit_purchase_path /purchases/:id/edit

purchase_path /purchases/:id Table 1.1 Routing helpers

and their routes

http://localhost:3000/purchases/
http://localhost:3000/purchases/
http://localhost:3000/purchases

17Developing your first application

<h1>Editing purchase</h1>

<%= render 'form' %>

<%= link_to 'Show', @purchase %> |

<%= link_to 'Back', purchases_path %>

For this action, you’re working with a pre-existing object rather than a new object,

which you used in new. This pre-existing object is found by the edit action in

PurchasesController, shown in the next listing.

GET /purchases/1/edit

def edit
@purchase = Purchase.find(params[:id])

...

end

The code to find the @purchase object here is identical to what you saw earlier in the

show action.

 Back in the view for a moment, at the bottom of it you can see two uses of link_to.

The first creates a Show link, linking to the @purchase object, which is set up in the

edit action of your controller. Clicking this link would take you to purchase_

path(@purchase) or /purchases/:id. Rails will figure out where the link needs to go

according to the class of the object. Using this syntax, it will attempt to call the

purchase_path method because the object has a class of Purchase and will pass the

object along to that call, generating the URL.15

 The second use of link_to in this view generates a Back link, which uses the rout-

ing helper purchases_path. It can’t use an object here because it doesn’t make sense

to; calling purchases_path is the easy way to go back to the index action.

Listing 1.12 app/views/purchases/edit.html.erb

Listing 1.13 app/controllers/purchases_controller.rb

15 This syntax is exceptionally handy if you have an object and are not sure of its type but still want to generate
a link for it. For example, if you had a different kind of object called Order and it was used instead, it would
use order_path rather than purchase_path.

Figure 1.8 Editing a purchase

18 CHAPTER 1 Ruby on Rails, the framework

Let’s try filling in this form now, for example, by changing the cost from 100 to 10 and

clicking Update Purchase. You now see the show page but with a different message,

shown in figure 1.9.

 Clicking Update Purchase brought you back to the show page. How did that hap-

pen? Click the back button on your browser and view the source of this page, specifi-

cally the form tag and the tags directly underneath, shown in the following listing.

form action="/purchases/

2" class="edit_purchase" id="edit_purchase_2" method="post"
div style="margin:0;padding:0;display:inline"

input name="_method" type="hidden" value="put" /

/div
...

This form’s action points at /purchases/2, which is the route to the show action in

PurchasesController. You should also note two other things. The method attribute of

this form is a post, but there’s also the input tag underneath.

 The input tag passes through the _method parameter with the value set to "put".

Rails catches this parameter and turns the request from a POST into a PUT. This is the

Listing 1.14 The HTML source of app/views/purchases/edit.html.erb

In the beginning...

In really early versions of Rails, you had to generate links like this:

link_to "Back", { :controller => "purchases",

:action => "show",
:id => @purchase.id }

This hash was then interpreted and matched to a route, like /purchases/1. You can

still use it today in Rails 3 if you wish, but it’s not best practice. The hash can be

shortened:

link_to "Back", "/purchases/#{@purchase.id}"

These days, the following is best:

link_to "Back", @purchase

By using the routing helpers introduced in Rails 2 and still available in Rails 3.1, you

can have much shorter link_to calls in your application, increasing the readability

of the code throughout.

Figure 1.9 Viewing an updated purchase

19Developing your first application

second (of three) ways the /purchases/{id} responds according to the method. By

making a PUT request to this route, you’re taken to the update action in Purchases-

Controller. Let’s take a look at this in the following listing.

def update

@purchase = Purchase.find(params[:id])

respond_to do |format|

if @purchase.update_attributes(params[:purchase])

format.html { redirect_to(@purchase,
:notice => 'Purchase was successfully updated.') }

format.xml { head :ok }

else
format.html { render :action => "edit" }

format.xml { render :xml => @purchase.errors,

:status => :unprocessable_entity }
end

end

end

Just as in the show and edit actions, you fetch the object first by using the find

method. The parameters from the form are sent through in the same fashion as they

were in the create action, coming through as params[:purchase]. Rather than instan-

tiating a new object by using the new class method, you use update_attributes on the

@purchase object. This does what it says on the tin: updates the attributes. What it

doesn’t say on the tin, though, is that it validates the attributes and, if the attributes are

valid, saves the record and returns true. If they aren’t valid, it returns false.

 When update_attributes returns true, you’re redirected back to the show action

for this particular purchase by using redirect_to.

 If it returns false, you’re shown the edit action’s template again, just as back in

the create action where you were shown the new template again. This works in the

same fashion and displays errors if you enter something wrong. Let’s try editing a pur-

chase and setting the name to blank and then clicking Update Purchase. It should

error exactly like the create method did, as shown in figure 1.10.

Listing 1.15 app/controllers/purchases_controller.rb

Figure 1.10

Update fails!

20 CHAPTER 1 Ruby on Rails, the framework

As you can see by this example, the validations you defined in your Purchase model

take effect for both the creation and updating of records automatically.

 Now what would happen if, rather than update a purchase, you wanted to delete

it? That’s built in to the scaffold too.

1.2.11 Deleting

In Rails, delete is given a much more forceful name: destroy. This is another sensible

name because to destroy a record is to put an end to its existence.16 Once this record’s

gone, it’s gone, baby, gone.

 You can destroy a record by going to http://localhost:3000/purchases and click-

ing the Destroy link shown in figure 1.11 and then clicking OK on the confirmation

box that pops up.

 When that record’s destroyed, you’re taken back to the Listing Purchases page.

You’ll see that the record no longer exists. You should now only have one record, as

shown in figure 1.12.

 How does all of this work? Let’s look at the index template in the following listing

to understand, specifically the part that’s used to list the purchases.

<% @purchases.each do |purchase| %>
<tr>

<td><%= purchase.name %></td>

<td><%= purchase.cost %></td>
<td><%= link_to 'Show', purchase %></td>

<td><%= link_to 'Edit', edit_purchase_path(purchase) %></td>

<td><%= link_to 'Destroy', purchase, :confirm => 'Are you sure?',
:method => :delete %></td>

</tr>

<% end %>
</table>

<%= link_to 'New Purchase', new_purchase_path %>

16 Mac OS X dictionary.

Listing 1.16 app/views/purchases/index.html.erb

Figure 1.11 Destroy! Figure 1.12 Last record standing

21Summary

In this template, @purchases is a collection of all the objects from the Purchase

model, and each is used to iterate over each, setting purchase as the variable used in

this block.

 The methods name and cost are the same methods used in app/views/purchases/

show.html.erb to display the values for the fields. After these, you see the three uses of

link_to.

 The first link_to passes in the purchase object, which links to the show action of

PurchasesController by using a route such as/purchases/{id}, where {id} is the ID

for this purchase object.

 The second link_to links to the edit action using edit_purchase_path and

passes the purchase object as the argument to this method. This routing helper deter-

mines the path is /purchases/{id}/edit.

 The third link_to links seemingly to the purchase object exactly as the first, but it

doesn’t go there. The :method option on the end of this route specifies the method of

:delete, which is the third and final way the /purchases/{id} route can be used. If

you specify :delete as the method of this link_to, Rails interprets this request and

takes you to the destroy action in the PurchasesController. This action is shown in

the following listing.

def destroy

@purchase = Purchase.find(params[:id])

@purchase.destroy

respond_to do |format|

format.html { redirect_to(purchases_url) }

format.xml { head :ok }
end

end

Just as in the show, edit, and update actions shown earlier, this action finds the

@purchase object by using Purchase.find and then destroys the record by calling

destroy on it, which permanently deletes the record. Then it uses redirect_to to take

you to the purchases_url, which is the route helper defined to take you to http://

localhost:3000/purchases. Note that this action uses the purchases_url method

rather than purchases_path, which generate a full URL back to the purchases listing,

such as http://localhost:3000/purchases/1.

 That wraps up our application run-through!

1.3 Summary

In this chapter you learned what Rails is and how to get an application started with it,

the absolute bare, bare, bare essentials of a Rails application. But look how fast you got

going! It took only a few simple commands and an entire two lines of your own code

to get the bones of a Rails application going. From this basic skeleton, you can keep

adding on bits and pieces to develop your application, and all the while you get things

Listing 1.17 app/controllers/purchases_controller.rb

22 CHAPTER 1 Ruby on Rails, the framework

for free from Rails. You don’t have to code the logic of what happens when Rails

receives a request or specify what query to execute on your database to insert a

record—Rails does it for you.

 You also saw that some big-name players—such as Twitter and GitHub—use Ruby

on Rails. This clearly answers the question “Is Rails ready?” Yes, it very much is. A wide

range of companies have built successful websites on the Rails framework, and a lot

more will do so in the future.

 Still wondering if Ruby on Rails is right for you? Ask around. You’ll hear a lot of

people singing its praises. The Ruby on Rails community is passionate not only about

Rails but also about community building. Events, conferences, user group meetings,

and even camps are held all around the world for Rails. Attend these and discuss Ruby

on Rails with the people who know about it. If you can’t attend these events, you can

explore the IRC channel on Freenode #rubyonrails, the mailing list rubyonrails-talk on

Google Groups, not to mention Stack Overflow and a multitude of other areas on the

internet where you can discuss with experienced people what they think of Rails.

Don’t let this book be the only source for your knowledge. There’s a whole world out

there, and no book could cover it all!

 The best way to answer the question “What is Rails?” is to experience it for yourself.

This book and your own exploration can eventually make you a Ruby on Rails expert.

 When you added validations to your application earlier, you manually tested that

they were working. This may seem like a good idea for now, but when the application

grows beyond a couple of pages, it becomes cumbersome to manually test them.

Wouldn’t it be nice to have some automated way of testing your applications? Some-

thing to ensure that all the individual parts always work? Something to provide the

peace of mind that you crave when you develop anything? You want to be sure that it’s

continuously working with the most minimal effort possible, right?

 Well, Ruby on Rails does that too. There are several testing frameworks for Ruby

and Ruby on Rails, and in chapter 2 we look at three of them: Test::Unit, RSpec, and

Cucumber.

23

Testing saves your bacon

Chapter 1 presented an extremely basic layout of a Rails application and an exam-

ple of the scaffold generator.1 One question remains, though: how do you make

your Rails applications maintainable?

 The answer is that you write automated tests for the application as you develop

it, and you write these all the time.

 By writing automated tests for your application, you can quickly ensure that

your application is working as intended. If you didn’t write tests, your alternative

would be to check the entire application manually, which is time consuming and

error prone. Automated testing saves you a ton of time in the long run and leads to

fewer bugs. Humans make mistakes; programs (if coded correctly) do not. We’re

going to be doing it right from step one.2

This chapter covers

 Writing tests with RSpec and Cucumber

 Maintaining code through tests

 Test- and behavior-driven development

1 We won’t use the scaffold generator for the rest of the book because people tend to use it as a crutch, and
it generates extraneous code.

2 Unlike certain other books.

24 CHAPTER 2 Testing saves your bacon

2.1 Test- and behavior-driven development

In the Ruby world a huge emphasis is placed on testing, specifically on test-driven devel-

opment (TDD) and behavior-driven development (BDD). This chapter covers three testing

tools, Test::Unit, RSpec, and Cucumber, in a basic fashion so you can quickly learn

their format.

 By learning good testing techniques now, you’ve got a solid way to make sure noth-

ing is broken when you start to write your first real Rails application. If you didn’t test,

there’s no telling what could go wrong in your code.

TDD is a methodology consisting of writing a failing test case first (usually using a

testing tool such as Test::Unit), then writing the code to make the test pass, and finally

refactoring the code. This process is commonly called red-green-refactor. The reasons for

developing code this way are twofold. First, it makes you consider how the code

should be running before it is used by anybody. Second, it gives you an automated test

you can run as often as you like to ensure your code is still working as you intended.

We’ll be using the Test::Unit tool for TDD.

BDD is a methodology based on TDD. You write an automated test to check the

interaction between the different parts of the codebase rather than testing that each

part works independently.

 The two tools used for BDD are RSpec and Cucumber, both of which this book uses

heavily.

 Let’s begin by looking at TDD and Test::Unit.

2.2 Test-driven development

A cryptic yet true answer to the question “Why should I test?” is “because you are

human.” Humans—the large majority of this book’s audience—make mistakes. It’s one

of our favorite ways to learn. Because humans make mistakes, having a tool to inform

them when they make one is helpful, isn’t it? Automated testing provides a quick safety

net to inform developers when they make mistakes. By they, of course, we mean you.

We want you to make as few mistakes as possible. We want you to save your bacon!

TDD and BDD also give you time to think through your decisions before you write

any code. By first writing the test for the implementation, you are (or, at least, you

should be) thinking through the implementation: the code you’ll write after the test

and how you’ll make the test passes. If you find the test difficult to write, then perhaps

the implementation could be improved. Unfortunately, there’s no clear way to quan-

tify the difficulty of writing a test and working through it other than to consult with

other people who are familiar with the process.

 Once the test is implemented, you should go about writing some code that your

test can pass. If you find yourself working backward—rewriting your test to fit a buggy

implementation—it’s generally best to rethink the test and scrap the implementation.

Test first, code later.

25Test-driven development

2.2.1 Why test?

Automated testing is much, much easier than manual testing. Have you ever gone

through a website and manually filled in a form with specific values to make sure it

conforms to your expectations? Wouldn’t it be faster and easier to have the computer

do this work? Yes, it would, and that’s the beauty of automated testing: you won’t

spend your time manually testing your code because you’ll have written test code to

do that for you.

 On the off chance you break something, the tests are there to tell you the what,

when, how, and why of the breakage. Although tests can never be 100% guaranteed,

your chances of getting this information without first having written tests are 0%.

Nothing is worse than finding out something is broken through an early-morning

phone call from an angry customer. Tests work toward preventing such scenarios by

giving you and your client peace of mind. If the tests aren’t broken, chances are high

(though not guaranteed) that the implementation isn’t either.

 You’ll likely at some point face a situation in which something in your application

breaks when a user attempts to perform an action you didn’t consider in your tests.

With a base of tests, you can easily duplicate the scenario in which the user encoun-

tered the breakage, generate your own failed test, and use this information to fix the

bug. This commonly used practice is called regression testing.

 It’s valuable to have a solid base of tests in the application so you can spend time

developing new features properly rather than fixing the old ones you didn’t do quite

right. An application without tests is most likely broken in one way or another.

2.2.2 Writing your first test

The first testing library for Ruby was Test::Unit, which was written by Nathaniel Talbott

back in 2000 and is now part of the Ruby core library. The documentation for this

library gives a fantastic overview of its purpose, as summarized by the man himself:

The general idea behind unit testing is that you write a test method that makes certain
assertions about your code, working against a test fixture. A bunch of these test methods
are bundled up into a test suite and can be run any time the developer wants. The results
of a run are gathered in a test result and displayed to the user through some UI.

—Nathaniel Talbott

The UI Talbott references could be a terminal, a web page, or even a light.3

 A common practice you’ll hopefully by now have experienced in the Ruby world is

to let the libraries do a lot of the hard work for you. Sure, you could write a file yourself

that loads one of your other files and runs a method and makes sure it works, but why

do that when Test::Unit already provides that functionality for such little cost? Never

re-invent the wheel when somebody’s done it for you.

 Now you’re going to write a test, and you’ll write the code for it later. Welcome to

TDD.

3 Such as the one GitHub has made: http://github.com/blog/653-our-new-build-status-indicator.

www.allitebooks.com

http://github.com/blog/653-our-new-build-status-indicator
http://www.allitebooks.org

26 CHAPTER 2 Testing saves your bacon

 To try out Test::Unit, first create a new directory called example and in that direc-

tory make a file called example_test.rb. It’s good practice to suffix your filenames with

_test so it’s obvious from the filename that it’s a test file. In this file, you’re going to

define the most basic test possible, as shown in the following listing.

require 'test/unit'

class ExampleTest < Test::Unit::TestCase

def test_truth

assert true
end

end

To make this a Test::Unit test, you begin by requiring test/unit, which is part of

Ruby’s standard library. This provides the Test::Unit::TestCase class inherited from

on the next line. Inheriting from this class provides the functionality to run any

method defined in this class whose name begins with test. Additionally, you can

define tests by using the test method:

test "truth" do

assert true

end

To run this file, you run ruby example_test.rb in the terminal. When this command

completes, you see some output, the most relevant being two of the lines in the middle:

.
1 tests, 1 assertions, 0 failures, 0 errors, 0 skips

The first line is a singular period. This is Test::Unit’s way of indicating that it ran a test

and the test passed. If the test had failed, it would show up as an F; if it had errored, an

E. The second line provides statistics on what happened, specifically that there was

one test and one assertion, and that nothing failed, there were no errors, and nothing

was skipped. Great success!

 The assert method in your test makes an assertion that the argument passed to it

evaluates to true. This test passes given anything that’s not nil or false. When this

method fails, it fails the test and raises an exception. Go ahead, try putting 1 there

instead of true. It still works:

.

1 tests, 1 assertions, 0 failures, 0 errors, 0 skips

In the following listing, you remove the test_ from the beginning of your method

and define it as simply a truth method.

def truth

assert true
end

Listing 2.1 example/example_test.rb

Listing 2.2 example/example_test.rb, alternate truth test

27Test-driven development

Test::Unit tells you there were no tests specified by running the default_test method

internal to Test::Unit:

No tests were specified.

1 tests, 1 assertions, 1 failures, 0 errors

Remember to always prefix Test::Unit methods with test!

2.2.3 Saving bacon

Let’s make this a little more complex by creating a bacon_test.rb file and writing the

test shown in the following listing.

require 'test/unit'

class BaconTest < Test::Unit::TestCase
def test_saved

assert Bacon.saved?

end

end

Of course, you want to ensure that your bacon4 is always saved, and this is how you do

it. If you now run the command to run this file, ruby bacon_test.rb, you get an error:

NameError: uninitialized constant BaconTest::Bacon

Your test is looking for a constant called Bacon and cannot find it because you haven’t

yet defined the constant. For this test, the constant you want to define is a Bacon class.

You can define this new class before or after the test. Note that in Ruby you usually

must define constants and variables before you use them. In Test::Unit tests, the code

is only run when it finishes evaluating it, which means you can define the Bacon class

after the test. In the next listing, you follow the more conventional method of defin-

ing the class above the test.

require 'test/unit'

class Bacon

end
class BaconTest < Test::Unit::TestCase

def test_saved

assert Bacon.saved?
end

end

Upon rerunning the test, you get a different error:

NoMethodError: undefined method `saved?' for Bacon:Class

Listing 2.3 example/bacon_test.rb

4 Both the metaphorical and the crispy kinds.

Listing 2.4 example/bacon_test.rb

28 CHAPTER 2 Testing saves your bacon

Progress! It recognizes there’s now a Bacon class, but there’s no saved? method for

this class, so you must define one, as in the following listing.

class Bacon

def self.saved?

true
end

end

One more run of ruby bacon_test.rb and you can see that the test is now passing:

.

1 tests, 1 assertions, 0 failures, 0 errors, 0 skips

Your bacon is indeed saved! Now any time that you want to check if it’s saved, you can

run this file. If somebody else comes along and changes that true value to a false,

then the test will fail:

F

1) Failure:
test_saved(BaconTest) [bacon_test.rb:11]:

Failed assertion, no message given.

Test::Unit reports “Failed assertion, no message given” when an assertion fails. You

should probably make that error message clearer! To do so, you can specify an addi-

tional argument to the assert method in your test, like this:

assert Bacon.saved?, "Our bacon was not saved :("

Now when you run the test, you get a clearer error message:

1) Failure:

test_saved(BaconTest) [bacon_test.rb:11]:
Our bacon was not saved :(

And that, my friend, is the basics of TDD using Test::Unit. Although we don’t use this

method in the book, it’s handy to know about because it establishes the basis for TDD

in Ruby in case you wish to use it in the future. Test::Unit is also the default testing

framework for Rails, so you may see it around in your travels. From this point on, we

focus on RSpec and Cucumber, the two gems you’ll be using when you develop your

next Rails application.

2.3 Behavior-driven development

BDD is similar to TDD, but the tests for BDD are written in an easier-to-understand lan-

guage so that developers and clients alike can clearly understand what is being tested.

The two tools we cover for BDD are RSpec and Cucumber.

 RSpec tests are written in a Ruby domain-specific language (DSL), like this:

describe Bacon do

it "is edible" do

Listing 2.5 example/bacon_test.rb

29Behavior-driven development

Bacon.edible?.should be_true
end

end

The benefits of writing tests like this are that clients can understand precisely what

the test is testing and then use these steps in acceptance testing;5 a developer can

read what the feature should do and then implement it; and finally, the test can be

run as an automated test. With tests written in DSL, you have the three important ele-

ments of your business (the clients, the developers, and the code) all operating in the

same language.

 RSpec is an extension of the methods already provided by Test::Unit. You can even

use Test::Unit methods inside of RSpec tests if you wish. But we’re going to use the

simpler, easier-to-understand syntax that RSpec provides.

 Cucumber tests are written in a language called Gherkin, which goes like this:

Given I am reading a book

When I read this example

Then I should learn something

Each line indicates a step. The benefit of writing tests in the Gherkin language is that

it’s closer to English than RSpec is, making it even easier for clients and developers to

read.

2.3.1 RSpec

RSpec is a BDD tool written by Steven R. Baker and now maintained by David Chelim-

sky as a cleaner alternative to Test::Unit, with RSpec being built as an extension to

Test::Unit. With RSpec, you write code known as specs that contain examples, which are

synonymous to the tests you know from Test::Unit. In this example, you’re going to

define the Bacon constant and then define the edible? method on it.

 Let’s jump right in and install the rspec gem by running gem install rspec. You

should see the following output:

Successfully installed rspec-core-2.6.4
Successfully installed rspec-expectations-2.6.4

Successfully installed rspec-mocks-2.6.4

Successfully installed rspec-2.6.4

You can see that the final line says the rspec gem is installed, with the version number

specified after the name. Above this line, you also see a thank-you message and,

underneath, the other gems that were installed. These gems are dependencies of the

rspec gem, and as such, the rspec gem won’t work without them.

 When the gem is installed, create a new directory for your tests called bacon any-

where you like, and inside that, create another directory called spec. If you’re run-

ning a UNIX-based operating system such as Linux or Mac OS X, you can run the

mkdir -p bacon/spec command to create these two directories. This command will

5 A process whereby people follow a set of instructions to ensure a feature is performing as intended.

30 CHAPTER 2 Testing saves your bacon

generate a bacon directory if it doesn’t already exist, and then generate in that direc-

tory a spec directory.

 Inside the spec directory, create a file called bacon_spec.rb. This is the file you use

to test your currently nonexistent Bacon class. Put the code from the following listing

in spec/bacon_spec.rb.

describe Bacon do

it "is edible" do

Bacon.edible?.should be_true
end

end

You describe the (undefined) Bacon class and write an example for it, declaring that

Bacon is edible. The describe block contains tests (examples) that describe the

behavior of bacon. In this example, whenever you call edible? on Bacon, the result

should be true. should serves a similar purpose to assert, which is to assert that its

object matches the arguments passed to it. If the outcome is not what you say it should

be, then RSpec raises an error and goes no further with that spec.

 To run the spec, you run rspec spec in a terminal in the root of your bacon direc-

tory. You specify the spec directory as the first argument of this command so RSpec

will run all the tests within that directory. This command can also take files as its argu-

ments if you want to run tests only from those files.

 When you run this spec, you get an uninitialized constant Object::Bacon

error, because you haven’t yet defined your Bacon constant. To define it, create

another directory inside your Bacon project folder called lib, and inside this directory,

create a file called bacon.rb. This is the file where you define the Bacon constant, a

class, as in the following listing.

class Bacon

end

You can now require this file in spec/bacon_spec.rb by placing the following line at the

top of the file:

require 'bacon'

When you run your spec again, because you told it to load bacon, RSpec has added the

lib directory on the same level as the spec directory to Ruby’s load path, and so it will

find the lib/bacon.rb for your require. By requiring the lib/bacon.rb file, you ensure

the Bacon constant is defined. The next time you run it, you get an undefined method

for your new constant:

1) Bacon is edible

Failure/Error: Bacon.edible?.should be_true

Listing 2.6 bacon/spec/bacon_spec.rb

Listing 2.7 bacon/lib/bacon.rb

31Behavior-driven development

NoMethodError:
undefined method `edible?' for Bacon:Class

This means you need to define the edible? method on your Bacon class. Re-open lib/

bacon.rb and add this method definition to the class:

def self.edible?

true

end

Now the entire file looks like the following listing.

class Bacon
def self.edible?

true
end

end

By defining the method as self.edible?, you define it for the class. If you didn’t pre-

fix the method with self., it would define the method for an instance of the class

rather than for the class itself. Running rspec spec now outputs a period, which indi-

cates the test has passed. That’s the first test—done.

 For the next test, you want to create many instances of the Bacon class and have the

edible? method defined on them. To do this, open lib/bacon.rb and change the

edible? class method to an instance method by removing the self. from before the

method, as in the next listing.

class Bacon

def edible?

true
end

end

When you run rspec spec again, you get the familiar error:

1) Bacon edible?
Failure/Error: its(:edible?) { should be_true }

expected false to be true

Oops! You broke a test! You should be changing the spec to suit your new ideas before

changing the code! Let’s reverse the changes made in lib/bacon.rb, as in the following

listing.

class Bacon

def self.edible?

true
end

end

Listing 2.8 bacon/lib/bacon.rb

Listing 2.9 bacon/lib/bacon.rb

Listing 2.10 bacon/lib/bacon.rb

32 CHAPTER 2 Testing saves your bacon

When you run rspec spec, it passes. Now let’s change the spec first, as in the next

listing.

describe Bacon do

it "is edible" do

Bacon.new.edible?.should be_true
end

end

In this code, you instantiate a new object of the class rather than using the Bacon class.

When you run rspec spec, it breaks once again:

NoMethodError in 'Bacon is edible'

undefined method `edible?' for #<Bacon:0x101deff38>

If you remove the self. from the edible? method, your test will now pass, as in the

following listing.

$ rspec spec

.

1 example, 0 failures

Now you can go about breaking your test once more by adding additional functional-

ity: an expired! method, which will make your bacon inedible. This method sets an

instance variable on the Bacon object called @expired to true, and you use it in your

edible? method to check the bacon’s status.

 First you must test that this expired! method is going to actually do what you think

it should do. Create another example in spec/bacon_spec.rb so that the whole file now

looks like the following listing.

require 'bacon'

describe Bacon do

it "is edible" do
Bacon.new.edible?.should be_true

end

it "expired!" do
bacon = Bacon.new

bacon.expired!

bacon.should be_expired
end

end

When you find you’re repeating yourself, stop! You can see here that you’re defining a

bacon variable to Bacon.new and that you’re also using Bacon.new in the first example.

You shouldn’t be repeating yourself like that!

Listing 2.11 bacon/spec/bacon_spec.rb

Listing 2.12 Terminal

Listing 2.13 bacon/spec/bacon_spec.rb

33Behavior-driven development

 A nice way to tidy this up is to move the call to Bacon.new into a subject block.

subject calls allow you to create an object to reference in all specs inside the

describe block,6 declaring it the subject (both literally and figuratively) of all the tests

inside the describe block. You can define a subject like this:

subject { Bacon.new }

In the context of the entire spec, it looks like the following listing.

require 'bacon'

describe Bacon do

subject { Bacon.new }

it "is edible" do

Bacon.new.edible?.should be_true
end

it "expired!" do

bacon = Bacon.new

bacon.expired!
bacon.expired.should be_true

end

end

Now that you have the subject, you can cut a lot of the code out of the first spec and

refine it:

its(:edible?) { should be_true }

First, the its method takes the name of a method to call on the subject of these tests.

The block specified should contain an assertion for the output of that method. Unlike

before, you’re not calling should on an object, as you have done in previous tests, but

rather on seemingly nothing at all. If you do this, RSpec figures out that you mean the

subject you defined, so it calls should on that.

 You can also reference the subject manually in your tests, as you’ll see when you

write the expired! example shown in the following listing.

it "expired!" do

subject.expired!

subject.should_not be_edible
end

Here, the expired! method must be called on the subject because it is only defined

on your Bacon class. For readability’s sake, you explicitly call the should_not method

on the subject and specify that edible? should return false.

6 Or inside a context block, which we use later. It works in a similar way to the describe blocks.

Listing 2.14 bacon/spec/bacon_spec.rb

Listing 2.15 bacon/spec/bacon_spec.rb

34 CHAPTER 2 Testing saves your bacon

 If you run rspec spec again, your first spec still passes, but your second one fails

because you have yet to define your expired! method. Let’s do that now in lib/

bacon.rb, as shown in the following listing.

class Bacon

def edible?
true

end

def expired!
self.expired = true

end

end

By running rspec spec again, you get an undefined method error:

NoMethodError in 'Bacon expired!'

undefined method `expired=' for #<Bacon:0x101de6578>

This method is called by the following line in the previous example:

self.expired = true

To define this method, you can use the attr_accessor method provided by Ruby, as

shown in listing 2.17; the attr prefix of the method means attribute. If you pass a

Symbol (or collection of symbols) to this method, it defines methods for setting

(expired=) and retrieving the attribute expired values, referred to as a setter and a get-

ter respectively. It also defines an instance variable called @expired on every object of

this class to store the value that was specified by the expired= method calls.

WARNING In Ruby you can call methods without the self. prefix. You
specify the prefix because otherwise the interpreter will think that you’re
defining a local variable. The rule for setter methods is that you should
always use the prefix.

class Bacon

attr_accessor :expired
...

end

With this in place, if you run rspec spec again, your example fails on the line follow-

ing your previous failure:

Failure/Error: subject.should_not be_edible

expected edible? to return false, got true

Even though this sets the expired attribute on the Bacon object, you’ve still hard-

coded true in your edible? method. Now change the method to use the attribute

method, as in the following listing.

Listing 2.16 bacon/lib/bacon.rb

Listing 2.17 bacon/lib/bacon.rb

35Behavior-driven development

def edible?
!expired

end

When you run rspec spec again, both your specs will pass:

..

2 examples, 0 failures

Let’s go back in to lib/bacon.rb and remove the self. from the expired! method:

def expired!

expired = true

end

If you run rspec spec again, you’ll see your second spec is now broken:

Failure/Error: Bacon expired!

expected edible? to return false, got true

Tests save you from making mistakes such as this. If you write the test first and then

write the code to make the test pass, you have a solid base and can refactor the code to

be clearer or smaller and finally ensure that it’s still working with the test you wrote in

the first place. If the test still passes, then you’re probably doing it right.

 If you change this method back now

def expired!

self.expired = true
end

and then run your specs using rspec spec, you’ll see that they once again pass:

..

2 examples, 0 failures

Everything’s normal and working once again, which is great!

 That ends our little foray into RSpec for now. You’ll use it again later when you

develop your application. If you’d like to know more about RSpec, The RSpec Book:

Behavior-Driven Development with RSpec, Cucumber, and Friends (David Chelimsky et al.,

Pragmatic Bookshelf, 2010) is recommended reading.

2.3.2 Cucumber

For this section, we retire the Bacon example and go for something more formal with

Cucumber.

NOTE This section assumes you have RSpec installed. If you don’t, use this

command to install it: gem install rspec.

Whereas RSpec and Test::Unit are great for unit testing (testing a single part), Cucum-

ber is mostly used for testing the entire integration stack.

Listing 2.18 bacon/lib/bacon.rb

www.allitebooks.com

http://www.allitebooks.org

36 CHAPTER 2 Testing saves your bacon

 Cucumber’s history is intertwined with RSpec, so the two are similar. In the begin-

ning of BDD, as you know, there was RSpec. Shortly thereafter, there were RSpec Sto-

ries, which looked like the following listing.

Scenario "savings account is in credit" do

Given "my savings account balance is", 100 do |balance|
@account = Account.new(balance)

end

...
end

The idea behind RSpec Stories is that they are code- and human-readable stories that

can be used for automated testing as well as quality assurance (QA) testing by stake-

holders. Aslak Hellesoy rewrote RSpec Stories during October 2008 into what we

know today as Cucumber. The syntax remains similar, as seen in the following listing.

Scenario: Taking out money

Given I have an account

And my account balance is 100
When I take out 10

Then my account balance should be 90

What you see here is known as a scenario in Cucumber. Under the scenario’s title, the

remainder of the lines are called steps, which are read by Cucumber’s parser and

matched to step definitions, where the logic is kept. Scenarios are found inside a feature,

which is a collection of common scenarios. For example, you may have one feature for

dictating what happens when a user creates projects and another for when a user cre-

ates tickets.

 Notice the keywords Given, And, When, and Then. These are just some of the key-

words that Cucumber looks for to indicate that a line is a step. If you’re going to be

using the same keyword on a new line, it’s best practice to instead use the And keyword

because it reads better. Try reading the first two lines aloud from the previous listing,

then replace the And with Given and try it again. It just sounds right to have an And

there rather than a Given.

Given steps are used for setting up the scene for the scenario. This example sets up

an account and gives it a balance of 100.

When steps are used for defining actions that should happen during the scenario.

The example says, When I take out 10.

Then steps are used for declaring things that take place after the When steps have

completed. This example says, When I take out 10 Then my account balance should

be 90.

 These different step types add a great deal of human readability to the scenarios in

which they’re used, even though they can be used interchangeably. You could define

Listing 2.19 Example

Listing 2.20 Example

37Behavior-driven development

all the steps as Givens, but it’s not really readable. Let’s now implement this example

scenario in Cucumber. First, run mkdir -p accounts/features, which, much as in the

RSpec example, creates a directory called accounts and a directory inside of that

called features. In this features directory, create a file called account.feature. In this file,

you write a feature definition, as shown in the following listing.

Feature: My Account

In order to manage my account

As a money minder
I want to ensure my money doesn't get lost

This listing lays out what this feature is about and is more useful to human readers

(such as stakeholders) than it is to Cucumber.

 Next, you put in your scenario underneath the feature definition, as in the follow-

ing listing.

Scenario: Taking out money

Given I have an account

And it has a balance of 100
When I take out 10

Then my balance should be 90

The whole feature should now look like the following listing.

Feature: My Account
In order to manage my account

As a money minder

I want to ensure my money doesn't get lost

Scenario: Taking out money

Given I have an account

And it has a balance of 100
When I take out 10

Then my balance should be 90

As you can see in listing 2.23, it’s testing the whole stack of the transaction rather than

a single unit. This process is called integration testing. You set the stage by using the Given

steps, play out the scenario using When steps, and ensure that the outcome is as you

expected by using Then steps. The And word is used when you want a step to be defined

in the same way as the previous step, as seen in the first two lines of this scenario.

 To run this file, you first need to ensure Cucumber is installed, which you can do

by installing the Cucumber gem: gem install cucumber. When the Cucumber gem is

installed, you can run this feature file by going into the accounts directory and run-

ning cucumber features, as in the next listing.

Listing 2.21 accounts/features/account.feature

Listing 2.22 accounts/features/account.feature

Listing 2.23 accounts/features/account.feature

38 CHAPTER 2 Testing saves your bacon

Feature: My Account
In order to manage my account

As a money minder

I want to ensure my money doesn't get lost

Scenario: Taking out money

Given I have an account

And it has a balance of 100
When I take out 10

Then my balance should be 90

This output appears in color in the terminal with the steps of the scenario in yellow,7

followed by a summary of this Cucumber run, and then a list of what code you used to

define the missing steps (not shown in this example output), again in yellow. What

this output doesn’t tell you is where to put the step definitions. Luckily, this book does.

All these step definitions should go into a new file located at features/step_definitions/

account_steps.rb. The file is called account_steps.rb and not account.rb to clearly sepa-

rate it from any other Ruby files, so when looking for the steps file, you don’t get it

confused with any other file. In this file, you can copy and paste in the steps Cucum-

ber gave you, as in the following listing.

Given /^I have an account$/ do

pending # express the regexp above with the code you wish you had

end

Given /^it has a balance of (\d+)$/ do |arg1|

pending # express the regexp above with the code you wish you had

end

When /^I take out (\d+)$/ do |arg1|

pending # express the regexp above with the code you wish you had

end

Then /^my balance should be (\d+)$/ do |arg1|

pending # express the regexp above with the code you wish you had

end

If you run cucumber features again, you’ll see that all your steps are defined but not

run (signaled by their blue coloring) except the very first one, which is yellow because

it’s pending. Now you’re going to restructure the first step to make it not pending. It

will now instantiate an Account object that you’ll use for the rest of this scenario.

Listing 2.24 Terminal

7 If you’re running Windows, you may need to install ANSICON in order to get the colored output. This process
is described at https://github.com/adoxa/ansicon, and you can download ANSICON from http://adoxa
.110mb.com/ansicon/.

Listing 2.25 features/step_definitions/account_steps.rb

https://github.com/adoxa/ansicon
http://adoxa.110mb.com/ansicon/
http://adoxa.110mb.com/ansicon/

39Behavior-driven development

Given /^I have an account$/ do
@account = Account.new

end

Steps are defined by using regular expressions, which are used when you wish to match

strings. In this case, you’re matching the step in the feature with this step definition by

putting the text after the Given keyword into a regular expression. After the regular

expression is the do Ruby keyword, which matches up with the end at the end. This

syntax indicates a block, and this block is run (“called”) when this step definition is

matched.

 With this step defined, you can try running cucumber features/account.feature

to see if the feature will pass. No—it fails with this error:

Given I have an account

uninitialized constant Object::Account (NameError)

Similar to the beginning of the RSpec showcase, create a lib directory inside your

accounts directory. To define this constant, you create a file in this new directory

called account.rb. In this file you put code to define the class, shown in the following

listing.

class Account

end

This file is not loaded automatically, of course: you have to require it just as you did in

RSpec with lib/bacon.rb. Cucumber’s authors already thought of this and came up

with a solution. Any file inside of features/support is automatically loaded, with one

special file being loaded before all the others: features/support/env.rb. This file

should be responsible for setting up the foundations for your tests. Now create fea-

tures/support/env.rb and put these lines inside it:

$LOAD_PATH << File.expand_path('../../../lib', __FILE__)

require 'account'

When you run this feature again, the first step passes and the second one is pending:

Scenario: Taking out money

Given I have an account
And it has a balance of 100

TODO (Cucumber::Pending)

Go back into features/step_definitions/account_steps.rb now and change the second

step’s code to set the balance on your @account object, as shown in the next listing.

Note in this listing that you change the block argument from arg1 to amount.

Listing 2.26 features/step_definitions/account_steps.rb

Listing 2.27 accounts/lib/account.rb

40 CHAPTER 2 Testing saves your bacon

Given /^it has a balance of (\d+)$/ do |amount|
@account.balance = amount

end

With this step, you’ve used a capture group inside the regular expression. The capture

group captures whatever it matches. In Cucumber, the match is returned as a variable,

which is then used in the block. An important thing to remember is that these vari-

ables are always String objects.

 When you run this feature again, this step fails because you haven’t yet defined the

method on the Account class:

And it has a balance of 100
undefined method `balance=' for #<Account:0xb7297b94> (NoMethodError)

To define this method, open lib/account.rb and change the code in this file to look

exactly like the following listing.

class Account

def balance=(amount)
@balance = amount

end

end

The method is defined as balance=. In Ruby, these methods are called setter methods

and, just as their name suggests, they’re used for setting things. Setter methods are

defined without the space between the method name and the = sign, but they can be

called with or without the space, like this:

@account.balance=100

or
@account.balance = 100

The object after the equals sign is passed in as the single argument for this method. In

this method, you set the @balance instance variable to that value. Now when you run

your feature, this step passes and the third one is the pending one:

Scenario: Taking out money

Given I have an account
And it has a balance of 100

When I take out 10

TODO (Cucumber::Pending)

Go back into features/step_definitions/account_steps.rb and change the third step to

take some money from your account:

When /^I take out (\d+)$/ do |amount|
@account.balance = @account.balance - amount

end

Listing 2.28 features/step_definitions/account_steps.rb

Listing 2.29 accounts/lib/account.rb

41Behavior-driven development

Now when you run this feature, it’ll tell you there’s an undefined method balance,

but didn’t you just define that?

When I take out 10

undefined method `balance' for #<Account:0xb71c9a8c
@balance=100> (NoMethodError)

Actually, the method you defined was balance= (with an equals sign), which is a setter

method. balance (without an equals sign) in this example is a getter method, which is

used for retrieving the variable you set in the setter method. Not all methods without

equal signs are getter methods, however. To define this method, switch back into lib/

account.rb and add this new method directly under the setter method, as shown in the

following listing.

def balance=(amount)

@balance = amount

end

def balance
@balance

end

Here you define the balance= and balance methods you need. The first method is a

setter method, which is used to set the @balance instance variable on an Account object

to a specified value. The balance method returns that specific balance. When you run

this feature again, you’ll see a new error:

When I take out 10

String can't be coerced into Fixnum (TypeError)

./features/step_definitions/account_steps.rb:10:in `-'

This error occurred because you’re not storing the balance as a Fixnum but as a

String. As mentioned earlier, the variable returned from the capture group for the

second step definition is a String. To fix this, you coerce the object into a Fixnum by

calling to_i8 inside the setter method, as shown in the following listing.

def balance=(amount)

@balance = amount.to_i

end

Now anything passed to the balance= method will be coerced into an integer. You also

want to ensure that the other value is also a Fixnum. To do this, open features/

step_definitions/account_steps.rb and change the third step to look exactly like the fol-

lowing listing.

Listing 2.30 accounts/lib/account.rb

Listing 2.31 accounts/lib/account.rb

8 For the sake of simplicity, we use to_i. Some will argue that to_f (converting to a floating-point number) is
better to use for money. They’d be right. This is not a real-world system, only a contrived example. Chill.

42 CHAPTER 2 Testing saves your bacon

When /^I take out (\d+)$/ do |amount|
@account.balance -= amount.to_i

end

That makes this third step pass, because you’re subtracting a Fixnum from a Fixnum.

When you run this feature, you’ll see that this step is definitely passing and the final

step is now pending:

Scenario: Taking out money
Given I have an account

And it has a balance of 100

When I take out 10
Then my balance should be 90

TODO (Cucumber::Pending)

This final step asserts that your account balance is now 90. You can implement it in

features/step_definitions/account_steps.rb, as shown in the following listing.

Then /^my balance should be (\d+)$/ do |amount|
@account.balance.should eql(amount.to_i)

end

Here you must coerce the amount variable into a Fixnum again so you’re comparing a

Fixnum with a Fixnum. With this fourth and final step implemented, your entire sce-

nario (which also means your entire feature) passes:

Scenario: Taking out money
Given I have an account

And it has a balance of 100

When I take out 10
Then my balance should be 90

1 scenario (1 passed)

4 steps (4 passed)

As you can see from this example, Cucumber allows you to write tests for your code in

syntax that can be understood by developers, clients, and parsers alike. You’ll see a lot

more of Cucumber when you use it in building your next Ruby on Rails application.

2.4 Summary

This chapter demonstrated how to apply TDD and BDD principles to test some rudi-

mentary code. You can (and should!) apply these principles to all code you write,

because testing the code ensures it’s maintainable from now into the future. You don’t

have to use the gems shown in this chapter to test your Rails application; they are just

preferred by a large portion of the community.

 You’ll apply what you learned in this chapter to building a Rails application from

scratch in upcoming chapters. You’ll use Cucumber from the outset by developing

Listing 2.32 features/step_definitions/account_steps.rb

Listing 2.33 features/step_definitions/account_steps.rb

43Summary

features to describe the behavior of your application and then implementing the nec-

essary steps to make them pass. Thankfully, there’s another gem that generates some

of these steps for you.

 When you wish to test that a specific controller action is inaccessible, you use

RSpec because it’s better suited for single-request testing. You use Cucumber when

you want to test a series of requests, such as when creating a project. You’ll see plenty

of examples of when to use Cucumber and when to use RSpec in later chapters.

 Let’s get into it!

44

Developing a real
Rails application

This chapter gets you started on building a Ruby on Rails application from scratch

using the techniques covered in the previous chapter plus a couple of new ones.

With the techniques you learned in chapter 2, you can write features describing the

behavior of the specific actions in your application and then implement the code

you need to get the feature passing.

 For the remainder of the book, this application is the main focus. We guide you

through it in an Agile-like fashion. Agile focuses largely on iterative development,

developing one feature at a time from start to finish, then refining the feature until

it’s viewed as complete before moving on to the next one.1

This chapter covers

 Building the foundation for a major app

 Diving deep into app foundations

 Generating the first functionality for an app

1 More information about Agile can be found on Wikipedia: http://en.wikipedia.org/wiki/Agile_software
_development.

http://en.wikipedia.org/wiki/Agile _software_development
http://en.wikipedia.org/wiki/Agile _software_development

45Application setup

 Some of the concepts covered in this chapter were explained in chapter 1. Rather

than using scaffolding, as you did previously, you write this application from the

ground up using the behavior-driven development (BDD) process and other genera-

tors provided by Rails.

 The scaffold generator is great for prototyping, but it’s less than ideal for deliver-

ing simple, well-tested code that works precisely the way you want it to work. The code

provided by the scaffold generator often may differ from the code you want. In this

case, you can turn to Rails for lightweight alternatives to the scaffold code options,

and you’ll likely end up with cleaner, better code.

 First, you need to set up your application!

3.1 Application setup

Chapter 1 explained how to quickly start a Rails application. This chapter explains a

couple of additional processes that improve the flow of your application development.

One process uses BDD to create the features of the application; the other process uses

version control. Both will make your life easier.

3.1.1 The application story

Your client may have a good idea of the application they want you to develop. How

can you transform the idea in your client’s brain into beautifully formed code? First,

you sit down with your client and talk through the parts of the application. In the

programming business, we call these parts stories, and we use Cucumber to develop

the stories.

 Start with the most basic story and ask your client how they want it to behave.

Then write the Cucumber scenario for it using the client’s own terms. You define the

step definitions when it’s time to implement the function of the story. The client can

also provide helpful information about the form—what the application should look

like. With the function and form laid out, you have a pretty good idea of what the cli-

ent wants.

 You may find it helpful to put these stories into a system such as Pivotal Tracker

(http://pivotaltracker.com) so you can keep track of them. Pivotal Tracker allows you

to assign points of difficulty to a story and then, over a period of weeks, estimate which

stories can be accomplished in the next iteration on the basis of how many were com-

pleted in previous weeks. This tool is exceptionally handy to use when working with

clients because the client can enter stories and then follow the workflow process. In

this book, we don’t use Pivotal Tracker because we aren’t working with a real client,

but this method is highly recommended.

 For this example application, your imaginary client, who has limitless time and

budget (unlike those in the real world), wants you to develop a ticket-tracking applica-

tion to track the company’s numerous projects. You’ll develop this application using

the methodologies outlined in chapter 2: you’ll work iteratively, delivering small work-

ing pieces of the software to the client and then gathering the client’s feedback to

www.allitebooks.com

http://pivotaltracker.com
http://www.allitebooks.org

46 CHAPTER 3 Developing a real Rails application

improve the application as necessary. If no improvement is needed, then you can

move on to the next prioritized chunk of work.

BDD is used all the way through the development process. It provides the client

with a stable application, and when (not if) a bug crops up, you have a nice test base

you can use to determine what is broken. Then you can fix the bug so it doesn’t hap-

pen again, a process called regression testing (mentioned in chapter 2).

 As you work with your client to build the Cucumber stories, the client may ask why

all of this prework is necessary. This can be a tricky question to answer. Explain that

writing the tests before the code and then implementing the code to make the tests

pass creates a safety net to ensure that the code is always working. Note: Tests will

make your code more maintainable, but they won’t make your code bug-proof.

 Features also give you a clearer picture of what the clients really want. By having it

all written down in features, you have a solid reference to point to if clients say they

suggested something different. Story-driven development is simply BDD with emphasis

on things a user can actually do with the system.

 By using story-driven development, you know what clients want, clients know you

know what they want, you have something you can run automated tests with to ensure

that all the pieces are working, and finally if something does break, you have the test

suite in place to catch it. It’s a win-win-win situation.

 To start building the application you’ll be developing throughout this book, run

the good old rails command, preferably outside the directory of the previous appli-

cation. Call this app ticketee, the Australian slang for a person who checks tickets on

trains. It also has to do with this project being a ticket-tracking application, and a Rails

application, at that. To generate this application, run this command:

rails new ticketee

Presto, it’s done! From this bare-bones application, you’ll build an application that

 Tracks tickets (of course) and groups them into projects

 Provides a way to restrict users to certain projects

 Allows users to upload files to tickets

 Lets users tag tickets so they’re easy to find

 Provides an API on which users can base

development of their own applications

You can’t do all of this with a command as sim-

ple as rails new [application_name], but you

can do it step by step and test it along the way so

you develop a stable and worthwhile application.

 Throughout the development of the applica-

tion, we advise you to use a version control sys-

tem. The next section covers that topic using

Git. You’re welcome to use any other, but this

book uses Git exclusively.

Help!

If you want to see what else

you can do with this new com-

mand (hint: there’s a lot!), you

can use the --help option:

rails new --help

The --help option shows you

the options you can pass to

the new command to modify

the output of your application.

47Application setup

3.1.2 Version control

It is wise during development to use version control software to provide checkpoints

in your code. When the code is working, you can make a commit, and if anything goes

wrong later in development, you can revert to the commit. Additionally, you can cre-

ate branches for experimental features and work on those independently of the main

code base without damaging working code.

 This book doesn’t go into detail on how to use a version control system, but it does

recommend using Git. Git is a distributed version control system that is easy to use and

extremely powerful. If you wish to learn about Git, we recommend reading Pro Git, a

free online book by Scott Chacon.2

 Git is used by most developers in the Rails community and by tools such as Bun-

dler, discussed shortly. Learning Git along with Rails is advantageous when you come

across a gem or plugin that you have to install using Git. Because most of the Rails

community uses Git, you can find a lot of information about how to use it with Rails

(even in this book!) should you ever get stuck.

 If you do not have Git already installed, GitHub’s help site offers installation guides

for Mac,3 Linux,4 and Windows.5 The precompiled installer should work well for Macs,

and the package distributed versions (APT, eMerge, and so on) work well for Linux

machines. For Windows, the msysGit application does just fine.

 For an online place to put your Git repository, we recommend GitHub,6 which offers

free accounts. If you set up an account now, you can upload your code to GitHub as you

progress, ensuring that you don’t lose it if anything were to happen to your computer.

To get started with GitHub, you first need to generate a secure shell (SSH) key, which

is used to authenticate you with GitHub when you do a git push to GitHub’s servers.7

Once you generate the key, copy the public key’s content (usually found at ~/.ssh/

id_rsa.pub) into the SSH Public Key field on the Signup page or, if you’ve already signed

up, click the Account Settings link (see figure 3.1) in the menu at the top, select SSH

Public Keys, and then click Add Another Public Key to enter it there (see figure 3.2).

2 http://progit.org/book/.
3 http://help.github.com/mac-set-up-git/. Note this lists four separate ways, not four separate steps, to install Git.
4 http://help.github.com/linux-set-up-git/.
5 http://help.github.com/win-set-up-git/.
6 http://github.com.
7 A guide for this process can be found at http://help.github.com/linux-key-setup/.

Figure 3.1 Click Account Settings.

http://progit.org/book/
http://help.github.com/mac-set-up-git/
http://help.github.com/linux-set-up-git/
http://help.github.com/windows-set-up-git/
http://github.com
http://help.github.com/linux-key-setup/

48 CHAPTER 3 Developing a real Rails application

Now that you’re set up with GitHub, click

the New Repository button on the dash-

board to begin creating a new repository

(see figure 3.3).

 On this page, enter the Project Name as

ticketee and click the Create Repository but-

ton to create the repository on GitHub. Now

you are on your project’s page. Follow the

instructions, especially concerning the configuration of your identity. In listing 3.1,

replace "Your Name" with your real name and you@example.com with your email

address. The email address you provide should be the same as the one you used to

sign up to GitHub. The git commands should be typed into your terminal or com-

mand prompt.

git config --global user.name "Your Name"

git config --global user.email you@example.com

You already have a ticketee directory, and you’re probably inside it. If not, you should

be. To make this directory a git repository, run this easy command:

git init

Your ticketee directory now contains a .git directory, which is your git repository. It’s all

kept in one neat little package

 To add all the files for your application to this repository’s staging area, run

git add .

Listing 3.1 Configuring your identity in GitHub

Figure 3.2 Add an SSH key.

Figure 3.3 Create a new repository.

49Application setup

The staging area for the repository is the location where all the changes for the next

commit are kept. A commit can be considered as a checkpoint of your code. If you

make a change, you must stage that change before you can create a commit for it. To

create a commit with a message, run

git commit -m "Generated the Rails 3 application"

This command generates quite a bit of output, but the most important lines are the

first two:

Created initial commit cdae568: Generated the Rails 3 application

35 files changed, 9280 insertions(+), 0 deletions(-)

cdae568 is the short commit ID, a unique identifier for the commit, so it changes with

each commit you make. The number of files and insertions may also be different. In

Git, commits are tracked against branches, and the default branch for a git repository is

the master branch, which you just committed to.

 The second line lists the number of files changed, insertions (additional line

count), and deletions. If you modify a line, it’s counted as both an insertion and a

deletion because, according to Git, you’ve removed the line and replaced it with the

modified version.

 To view a list of commits for the current branch, type git log. You should see an

output similar to the following listing.

commit cdae568599251137d1ee014c84c781917b2179e1

Author: Your Name <you@example.com>
Date: [date stamp]

Generated the Rails 3 application

The hash after the word commit is the long commit ID; it’s the longer version of the pre-

viously sighted short commit ID. A commit can be referenced by either the long or the

short commit ID in Git, providing no two commits begin with the same short ID.8 With

that commit in your repository, you have something to push to GitHub, which you can

do by running

git remote add origin git@github.com:yourname/ticketee.git

git push origin master -u

The first command tells Git that you have a remote server called origin for this repos-

itory. To access it, you use the git@github.com:[your github username]/ticketee

.git path, which connects to the repository using SSH. The next command pushes

the named branch to that remote server, and the -u option tells Git to always pull

from this remote server for this branch unless told differently. The output from this

command is similar to the following listing.

Listing 3.2 Viewing the commit log

8 The chances of this happening are 1 in 268,435,456.

50 CHAPTER 3 Developing a real Rails application

Counting objects: 73, done.
Compressing objects: 100% (58/58), done.
Writing objects: 100% (73/73), 86.50 KiB, done.
Total 73 (delta 2), reused 0 (delta 0)
To git@github.com:rails3book/ticketee.git
* [new branch] master -> master

Branch master set up to track remote branch master from origin.

The second to last line in this output indicates that your push to GitHub succeeded

because it shows that a new branch called master was created on GitHub. Next, you

must set up your application to use RSpec and Cucumber.

3.1.3 The Gemfile and generators

The Gemfile is used for tracking which gems are used in your application. The Bundler

gem is responsible for everything to do with this file; it’s the Bundler’s job to ensure that

all the gems are installed when your application is initialized. Let’s look at the following

listing to see how this looks inside (commented lines are removed for simplicity).

source 'http://rubygems.org'

gem 'rails', '3.1.0'

gem 'sqlite3'

group :assets do
 gem 'sass-rails', " ~> 3.1.0"
 gem 'coffee-rails', "~> 3.1.0"
 gem 'uglifier'
end

gem 'jquery-rails'

group :test do
 # Pretty printed test output
 gem 'turn', :require => false
end

In this file, Rails sets a source to be http://rubygems.org (the canonical repository for

Ruby gems). All gems you specify for your application are gathered from the source.

Next, it tells Bundler it requires version 3.1.0.beta of the rails gem. Bundler

inspects the dependencies of the requested gem as well as all gem dependencies of

those dependencies (and so on), then does what it needs to do to make them avail-

able to your application.

 This file also requires the sqlite3 gem, which is used for interacting with SQLite3

databases, the default when working with Rails. If you were to use another database

system, you would need to take out this line and replace it with the relevant gem, such

as mysql2 for MySQL or pg for PostgreSQL.

 The assets group inside the Gemfile contains two gems called sass-rails and

coffee-rails. The sass-rails gem provides a bridge into the sass gem, which

Listing 3.3 Terminal

Listing 3.4 Gemfile

http://rubygems.org

51Application setup

provides much better templating for stylesheets, and the coffee-rails gem provides

a similar bridge between Rails and the CoffeeScript templating languages. We’ll look

at these in further detail when they're required.

 Finally, at the bottom of the Gemfile, the turn gem is specified. This gem is for

making the Test::Unit output a lot prettier, but you’re not going to be using Test::Unit,

you can remove these lines:

group :test do
Pretty printed test output

gem 'turn', :require => false

end

While you’re removing Test::Unit things, remove the test directory too: you won’t

need that either. You’ll be using the spec directory for your tests instead.

 Chapter 2 focused on BDD and, as was more than hinted at, you’ll be using it to

develop this application. First, alter the Gemfile to ensure you have the correct gems

for RSpec and Cucumber for your application. Add the lines from the following list-

ing to the bottom of the file.

group :test, :development do

gem 'rspec-rails', '~> 2.5'
end

group :test do

gem 'cucumber-rails'
gem 'capybara'

gem 'database_cleaner'

end

In the Gemfile, you specify that you wish to use the latest 2.x release of RSpec in the

test and development groups. You put this gem inside the development group

because without it, the tasks you can use to run your specs will be unavailable. Addi-

tionally, when you run a generator for a controller or model, it’ll use RSpec, rather

than the default Test::Unit, to generate the tests for that class.

 With rspec-rails, you specified a version number with ~> 2.5, which tells Ruby-

Gems you want RSpec 2.5 or higher. This means when RSpec releases 2.5.1 or 2.6 and

you go to install your gems, RubyGems will install the latest version it can find rather

than only 2.5.

 A new gem is used in listing 3.5: Capybara. Capybara is a browser simulator in Ruby

that is used for integration testing. Cucumber and Capybara are two distinct entities.

Cucumber is the testing tool that interacts with Capybara to perform tasks on a simu-

lated application. Integration testing using Cucumber and Capybara ensures that

when a link is clicked in your application, it goes to the correct page, or when you fill

in a form and click the Submit button, an onscreen message tells you it was successful.

 Capybara also supports real browser testing by launching an instance of Firefox. You

can then test your application’s JavaScript, which you’ll use extensively in chapter 8.

Listing 3.5 Check for RSpec and Cucumber gems

52 CHAPTER 3 Developing a real Rails application

 An alternative to Capybara is Webrat, which is now less preferred because of the

cleaner syntax and real browser testing features of Capybara. Capybara is the better

alternative, hands down.9

 Another new gem in listing 3.5 is the database_cleaner gem, which is used by

cucumber_rails to clear out the database at the end of each test run to ensure you’re

working with a pristine state each time.

 Groups in the Gemfile are used to define gems that should be loaded in specific

scenarios. When using Bundler with Rails, you can specify a gem group for each Rails

environment, and by doing so, you specify which gems should be required by that envi-

ronment. A default Rails application has three standard environments: development,

test, and production.

 Development is used for your local application, such as when you’re playing with it

in the browser. In development mode, page and class caching is turned off, so

requests may take a little longer than they do in production mode. Don’t worry. This is

only the case for larger applications. We’re not there yet.

 Test is used when you run the automated test suite for the application. This envi-

ronment is kept separate from the development environment so your tests start with a

clean database to ensure predictability.

 Production is used when you finally deploy your application. This mode is

designed for speed, and any changes you make to your application’s classes are not

effective until the server is restarted.

 This automatic requiring of gems inside the Rails environment groups is done by

this line in config/application.rb:

Bundler.require(:default, Rails.env) if defined?(Bundler)

To install these gems to your system, run bundle install --binstubs at the root of

your application. It tells the Bundler gem to read your Gemfile and install the gems

specified in it.

 The --binstubs option stores executable files in the bin directory for the gems

that have executables. Without it, you’d have to type bundle exec rspec spec to run

your RSpec tests. With it, you can just run bin/rspec spec. Much better! You don’t

need to run bundle install --binstubs every time because Bundler remembers this

configuration option for later.

 You don’t even have to run bundle install! Just bundle will do the same thing.

NOTE If you’re running Ubuntu, you must install the build-essential
package because some gems build native extensions and require the
make utility. You may also have to install the libxslt1-dev package
because the nokogiri gem (a dependency of Cucumber) depends on it.
You’ll also need to install the libsqlite3-dev package to allow the
sqlite3 gem to install.

9 As of this writing, Webrat has an open bug: https://github.com/brynary/webrat/pull/46. If we were using
Webrat, we could run into it and be stuck in the mud (so to speak).

https://github.com/brynary/webrat/pull/46

53Application setup

This command installs not only the rspec-rails, cucumber, and capybara gems but

also their dependencies (and so on)! How great is that? You’re just getting started.

 The bundle install --binstubs command also creates a Gemfile.lockfile that con-

tains a list of the gems and their relative versions. Once Gemfile.lock is created,

whenever you run bundle install, Bundler reads this file rather than Gemfile to work

out the dependencies of the application and installs from it. You commit this file to

your repository so that when other people work on your project and run bundle

install, they get exactly the same versions that you have.

 Next, you want to generate the skeleton for Cucumber. A generator can generate

either static or dynamic content, depending on the generator. For the Cucumber skel-

eton generator, it’s set content. To run this generator, you use the rails command

rails generate cucumber:install

or simply

rails g cucumber:install

Rails doesn’t mind if you use generate or g: it’s all the same to Rails.

 Let’s not mind too much about all the files it has generated at the moment; they’re

explained in time. With the Cucumber skeleton now generated, you have a base on

which to begin writing your features.

 While you’re generating things, you may as well run the RSpec generator too:

rails generate rspec:install

With this generated code in place, you should make a commit so you have another

base to roll back to if anything goes wrong:

git add .

git commit -m "Ran the cucumber and rspec generators"
git push

3.1.4 Database configuration

By default, Rails uses a database system called SQLite3, which stores each environ-

ment’s database in separate files inside the db directory. SQLite3 is the default data-

base system because it’s the easiest to set up. Out of the box, Rails also supports the

MySQL and PostgreSQL databases, with gems available that can provide functionality

for connecting to other database systems such as Oracle.

 If you want to change which database your application connects to, you can open

config/database.yml (development configuration shown in the following listing) and

alter the settings to the new database system.

development:

adapter: sqlite3
database: db/development.sqlite3

pool: 5

timeout: 5000

Listing 3.6 config/database.yml

54 CHAPTER 3 Developing a real Rails application

For example, if you want to use PostgreSQL, you change the settings to read like the

following listing. It’s common convention, but not mandatory, to call the environ-

ment’s database [app_name]_[environment].

development:

adapter: postgresql
database: ticketee_development

username: root

password: t0ps3cr3t

You’re welcome to change the database if you wish. Rails will go about its business. It’s

good practice to develop and deploy on the same database system to avoid strange

behavior between two different systems. Systems such as PostgreSQL perform faster

than SQLite, so switching to it may increase your application’s performance. Be mind-

ful, however, that switching database systems doesn’t automatically switch your data

over for you.

 It’s generally wise to use different names for the different database environments

because if you use the same database in development and test, the database will be

emptied of all data when the tests are run, eliminating anything you may have set up

in development mode. You should never work on the live production database

directly unless you are absolutely sure of what you’re doing, and even then extreme

care should be taken.

 Finally, if you’re using MySQL, it’s wise to set the encoding to utf8 for the data-

base, using this setup in the config/database.yml file:

development:

adapter: mysql2
database: ticketee_development

username: root

password: t0ps3cr3t
encoding: utf8

This way, the database is set up automatically to work with UTF-8 (UCS Transformation

Format–8-bit), eliminating any potential encoding issues that may be encountered

otherwise.

 That’s database configuration in a nutshell. Now we look at how to use a pre-

prepared stylesheet to make an application look prettier than its unstyled brethren.

3.1.5 Applying a stylesheet

So that your application looks good as you’re developing it, we have a pre-prepared

stylesheet you can use to style the elements on your pages. You can download the

stylesheet from http://github.com/rails3book/ticketee/raw/master/app/assets/

stylesheets/application.css and put it in the app/stylesheets directory. By default, your

Rails application includes this stylesheet; you can configure it in the app/views/

layouts/application.html.erb file using this line:

<%= stylesheet_link_tag "application" %>

Listing 3.7 config/database.yml

http://github.com/rails3book/ticketee/raw/master/app/assets/stylesheets/application.css
http://github.com/rails3book/ticketee/raw/master/app/assets/stylesheets/application.css

55First steps

No further configuration is necessary: just drop and use. Simple.

 With a way to make your application decent looking, let’s develop your first feature

to use this new style: creating projects.

3.2 First steps

You now have version control for your application, and you’re hosting it on GitHub.

You also cheated a little and got a pre-prepared stylesheet.10

 It’s now time to write your first Cucumber feature, which isn’t nearly as daunting as

it sounds. We explore things such as models and RESTful routing while we do it. It’ll

be simple, promise!

3.2.1 Creating projects

The CRUD (create, read, update, delete) acronym is something you see all the time in

the Rails world. It represents the creation, reading, updating, and deleting of some-

thing, but it doesn’t say what that something is.

 In the Rails world, CRUD is usually referred to when talking about resources.

Resources are the representation of the information from your database throughout

your application. The following section goes through the beginnings of generating a

CRUD interface for a resource called Project by applying the BDD practices learned in

chapter 2 to the application you just bootstrapped. What comes next is a sampler of

how to apply these practices when developing a Rails application. Throughout the

remainder of the book, you continue to apply these practices to ensure you have a sta-

ble and maintainable application. Let’s get into it!

 The first story for your application is the creation (the C in CRUD). You create a

resource representing projects in your application by writing a feature, creating a con-

troller and model, and adding a resource route. Then you add a validation to ensure

that no project can be created without a name.

 First, you generate a feature file at features/creating_projects.feature, and in this

file, you put the story you would have discussed with the client, as shown in the follow-

ing listing.

Feature: Creating projects
In order to have projects to assign tickets to

As a user

I want to create them easily

Scenario: Creating a project
Given I am on the homepage

When I follow "New Project"

And I fill in "Name" with "TextMate 2"
And I press "Create Project"

Then I should see "Project has been created."

10 You wouldn’t have a pre-prepared stylesheet in the real world, where designers would design at the same time
you’re developing features.

Listing 3.8 features/creating_projects.feature

56 CHAPTER 3 Developing a real Rails application

To run all features for your application, run rake cucumber:ok. This command causes

the following error message:

...db/schema.rb doesn't exist yet. Run "rake db:migrate" to
create it then try again. If you do not intend to use a database,
you should instead alter ...ticketee/config/application.rb to limit
the frameworks that will be loaded

The db/schema.rb file referenced here (when generated) will contain a Ruby version

of your database’s schema, which can be used to import the structure of your data-

base. The great thing is that this file is database agnostic, so if you choose to switch

databases during the life of your project, you won’t have to re-create this schema file.

To generate this file, run this command:

rake db:migrate

For now, this command prints out the standard first line of rake output, the path to

the application:

(in /home/us/ticketee)

When you run any Rake task, the first line will be this line. Its only purpose is to indi-

cate which directory you’re running inside. When you run this particular task, it gen-

erates the db/schema.rb file your feature required. Therefore, you can run rake

cucumber:ok again to have it fail on the second step of your feature:

When I follow "New Project"

no link with title, id or text 'New Project' found

The first step here passes, but you haven’t written a step definition for it, as you did in

chapter 2! It nevertheless passes because of the features/step_definitions/web_steps.rb

file, which was generated when you ran the rails generate cucumber:install com-

mand. This file contains a step definition that matches your first step:

Given /^(?:|I)am on (.+)$/ do |page_name|

visit path_to(page_name)
end

First, Cucumber interprets this step on the basis of the definition from within this file.

The visit method inside this definition comes from Capybara and emulates going to

a specific path in a virtual browser. The path_to method is also defined, but it’s in the

features/support/paths.rb file inside the NavigationHelpers module, again provided

by Cucumber:

module NavigationHelpers
...

def path_to(page_name)
case page_name

when /the home\s?page/
'/'

...

Therefore, the path that Capybara will visit is /. If you start the server for the applica-

tion by running rails server (or rails s) and navigate to http://localhost:3000 in

http://localhost:3000

57First steps

your browser, you’ll see the famous Welcome Aboard page from Rails (the same one

you saw when you generated your first application in chapter 1), shown in figure 3.4.

 This is the page Capybara sees, and the reason the first step passes is that Capybara

can go to the homepage successfully. This Welcome Aboard page lives at public/

index.html in your application. To proceed, delete this file using this command:

git rm public/index.html

Run rake cucumber:ok again. This time you’ll see that the first step fails:

Given I am on the homepage
No route matches [GET] "/" (ActionController::RoutingError)

The first step fails because you removed the public/index.html file that Rails was origi-

nally serving up at the root path, so the task goes to Rails. Rails claims it can’t handle

that route and throws an exception. You have to tell Rails what to do with a request for

/, or the root route comes in. You can do this easily in config/routes.rb. At the moment,

this file has the content seen in the following listing (comments removed).

Ticketee::Application.routes.draw do
end

Listing 3.9 config/routes.rb

Figure 3.4 Welcome aboard: take #2

58 CHAPTER 3 Developing a real Rails application

The comments are good for a read if you’re interested in the other routing syntax, but

you needn’t look at these right now. To define a root route, you put the following

directly under the first line of this file:

root :to => "projects#index"

This defines the root route to point at the ProjectsController’s index action. This

controller doesn’t exist yet, and when you run rake cucumber:ok again, Cucumber

complains about a missing constant, ProjectsController:

Given I am on the homepage

uninitialized constant ProjectsController ...

To define this constant, you generate a controller. The controller is the first port of call

for your routes (as you can see now!) and is responsible for querying the model for

information inside an action and then doing something with that information (such

as rendering a template). (Lots of new terms are explained later. Patience, grasshop-

per.) To generate this controller, run this command:

rails g controller projects

This command produces output similar to the output produced when you ran rails

new earlier, but this time it creates files just for the projects controller, the most impor-

tant of these being the controller itself, which is housed in app/controllers/

projects_controller.rb. This is where all the actions will live, just like your app/control-

lers/purchases_controller.rb back in chapter 1. Before we dive into that, a couple of

notes about the output.

 app/views/projects contains the views relating to your actions (more on this

shortly).

invoke helper shows that the helper generator was called here, generating a file

at app/helpers/projects_helper.rb. This file defines a ProjectsHelper module. Help-

ers generally contain custom methods to use in your view, and they come as blank

slates when they are first created.

invoke erb signifies that the Embedded Ruby (ERB) generator was invoked.

Actions to be generated for this controller have corresponding ERB views located in

app/views/projects.

invoke rspec shows that the RSpec generator was invoked at this point also. This

means that RSpec has generated a new file at spec/controllers/projects_controller.rb,

which you can use to test your controller; you won’t use this for the time being. By gen-

erating RSpec tests rather than Test::Unit tests, a long-standing issue within Rails has

been fixed. (In previous versions of Rails, even if you specified the RSpec gem, all the

default generators would still generate Test::Unit tests. With Rails 3, the testing frame-

work you use is just one of a large number of configurable things in your application.)

 As mentioned previously when you ran rails generate rspec:install, this gen-

erator has generated an RSpec controller spec for your controller, spec/controllers/

projects_controller_spec.rb, rather than a Test::Unit functional test. This file is used for

testing the individual actions in your controller.

59First steps

 Now, you’ve just run the generator to generate a new ProjectsController class

and all its goodies. This should fix the “uninitialized constant” error message. If you

run rake cucumber:ok again, it declares that the index action is missing:

Given I am on the homepage
The action 'index' could not be found for ProjectsController ...

To define the index action in your controller, you must define a method inside the

ProjectsController class, just as you did when you generated your first application,

shown in the following listing.

class ProjectsController < ApplicationController

def index

end
end

If you run rake cucumber:ok again, this time Rails complain of a missing template

projects/index:

Given I am on the homepage
Missing template projects/index, application/index

with {:handlers=>[:erb, :builder],

:formats=>[:html],
:locale=>[:en, :en]}.

Searched in:

* ".../ticketee/app/views"

The error message isn’t the most helpful, but it’s quite detailed. If you know how to

put the pieces together, you can determine that it’s trying to look for a template called

projects/index or application/index, but it’s not finding it. These templates are pri-

marily kept at app/views, so it’s fair to guess that it’s expecting something like app/

views/projects/index.

 The extension of this file is composed of two parts: the format followed by the han-

dler. In your output, you’ve got a handler of either :erb or :builder and a format of

:html, so it’s fair to assume from this that the file it’s looking for is either

index.html.erb or index.html.builder. Either of these is fine, but we’ll use the first one

for consistency’s sake.

 The first part, index, is the name of the action; that’s the easy part. The second

part, html, indicates the format of this template. Actions in Rails can respond to differ-

ent formats (using respond_to, which you saw in chapter 1); the default format is

html. The third part, erb, indicates the templating language you’re using, or the han-

dler for this specific template. Templates in Rails can use different templating lan-

guages/handlers, but the default in Rails is ERB, hence the erb extension.

 You could also create a file at app/views/application/index.html.erb to provide the

view for the index action. This would work because the ProjectsController inherits

from the ApplicationController. If you had another controller inherit from

Listing 3.10 app/controllers/projects_controller.rb

60 CHAPTER 3 Developing a real Rails application

ProjectsController, you could put an action’s template at app/views/application,

app/views/projects, or app/views/that_controller, and Rails would still pick up on it.

This allows different controllers to share views in a simple fashion.

 To generate this view, create the app/views/projects/index.html.erb file for now.

When you run rake cucumber:ok again, you get back to what looks like the original

error:

Given I am on the homepage
When I follow "New Project"

no link with title, id or text 'New Project' found

Although this looks like the original error, it’s actually your first step truly passing now.

You’ve defined a homepage for your application by generating a controller, putting an

action in it, and creating a view for that action. Now Cucumber (via Capybara) can

navigate to it. That’s the first step in the first feature passing for your first application,

and it’s a great first step!

 The second step in your features/creating_projects.feature file is now failing, and

it’s up to you to fix it. You need a link on the root page of your application that reads

"New Project". Open app/views/projects/index.html.erb, and put the link in by using

the link_to method:

<%= link_to "New Project", new_project_path %>

This single line re-introduces two old concepts and one new one: ERB output tags, the

link_to method (both of which you saw in chapter 1), and the mysterious

new_project_path method.

 As a refresher, in ERB, when you use <%= (known as an ERB output tag), you are

telling ERB that whatever the output of this Ruby is, put it on the page. If you only

want to evaluate Ruby, you use an ERB evaluation tag: <%, which doesn’t output con-

tent to the page but only evaluates it. Both of these tags end in %>.

 The link_to method in Rails generates an <a> tag with the text of the first argu-

ment and the href of the second argument. This method can also be used in block

format if you have a lot of text you want to link to:

<%= link_to new_project_path do %>

bunch

of
text

<% end %>

Where new_project_path comes from deserves its own section. It’s the very next one.

3.2.2 RESTful routing

The new_project_path method is as yet undefined. If you ran rake cucumber:ok, it

would still complain of an undefined method or local variable,'new_project_

path'. You can define this method by defining a route to what’s known as a resource in

Rails. Resources are collections of objects that all belong in a common location, such

as projects, users, or tickets. You can add the projects resource in config/routes.rb by

61First steps

using the resources method, putting it directly under the root method in this file, as

shown in the following listing.

resources :projects

This is called a resource route, and it defines the routes to the seven RESTful actions in

your projects controller. When something is said to be RESTful, it means it conforms

to the Representational State Transfer (REST) standard. In Rails, this means the

related controller has seven actions:

 index
 show
 new
 create
 edit
 update
 destroy

These seven actions match to just four request paths:

 /projects

 /projects/new

 /projects/:id

 /projects/:id/edit

How can four be equal to seven? It can’t! Not in this world, anyway. Rails will deter-

mine what action to route to on the basis of the HTTP method of the requests to these

paths. Table 3.1 lists the routes, HTTP methods, and corresponding actions to make it

clearer.

 The routes listed in the table are provided when you use resources :projects.

This is yet another great example of how Rails takes care of the configuration so you

can take care of the coding.

Listing 3.11 config/routes.rb

Table 3.1 RESTful routing matchup

HTTP method Route Action

GET /projects index

POST /projects create

GET /projects/new new

GET /projects/:id show

PUT /projects/:id update

DELETE /projects/:id destroy

GET /projects/:id/edit edit

62 CHAPTER 3 Developing a real Rails application

 To review the routes you’ve defined, you can run the rake routes command and

get output similar to the following.

root /

{:controller=>"projects", :action=>"index"}

projects GET /projects(.:format)
{:action=>"index", :controller=>"projects"

POST /projects(.:format)

{:action=>"create", :controller=>"projects"}
new_project GET /projects/new(.:format)

{:action=>"new", :controller=>"projects"

edit_project GET /projects/:id/edit(.:format)
{:action=>"edit", :controller=>"projects"}

project GET /projects/:id(.:format)

{:action=>"show", :controller=>"projects"}
PUT /projects/:id(.:format)

{:action=>"update", :controller=>"projects"}

DELETE /projects/:id(.:format)

{:action=>"delete", :controller=>"projects"}

The words in the leftmost column of this output are the beginnings of the method

names you can use in your controllers or views to access them. If you want just the

path to a route, such as /projects, then use projects_path. If you want the full URL,

such as http://yoursite.com/projects, use projects_url. It’s best to use these helpers

rather than hardcoding the URLs; doing so makes your application consistent across

the board. For example, to generate the route to a single project, you would use either

project_path or project_url:

project_path(@project)

This method takes one argument and generates the path according to this object.

You’ll see later how you can alter this path to be more user friendly, generating a URL

such as /projects/1-our-project rather than the impersonal /projects/1.

 The four paths mentioned earlier match up to the helpers in table 3.2. Running

rake cucumber:ok now produces a complaint about a missing new action:

When I follow "New Project"

The action 'new' could not be found for ProjectsController

In the following listing, you define the new action in your controller by defining a new

method directly underneath the index method.

Listing 3.12 rake routes output

URL Helper

GET /projects projects_path

/projects/new new_project_path

/projects/:id project_path

/projects/:id/edit edit_project_path Table 3.2

RESTful routing matchup

63First steps

class ProjectsController < ApplicationController

def index

end

def new

end

end

Running rake cucumber:ok now results in a complaint about a missing new template,

just as it did with the index action:

When I follow "New Project"

Missing template projects/new with {
:handlers=>[:erb, :builder, :sass, :scss],

:formats=>[:html],

:locale=>[:en, :en]
} in view paths "/home/rails3/ticketee/app/views"

You can create the file at app/views/projects/new.html.erb to make this step pass,

although this is a temporary solution. You come back to this file later to add content

to it. The third step should now be the failing step, given the second one is passing, so

run rake cucumber:ok to see if this is really the case:

And I fill in "Name" with "TextMate 2"

cannot fill in, no text field, text area or password field with
id, name, or label 'Name' found (Capybara::ElementNotFound)

Now Capybara is complaining about a missing "Name" field on the page it’s currently

on, the new page. You must add this field so that Capybara can fill it in. Before you do

that, however, fill out the new action in the ProjectsController so you have an object

to base the fields on. Change the new to this:

def new
@project = Project.new

end

The Project constant is going to be a class, located at app/models/project.rb, thereby

making it a model. A model is used to retrieve information from the database. Because

this model inherits from Active Record, you don’t have to set up anything extra. Run

the following command to generate your first model:

rails g model project name:string

This syntax is similar to the controller generator’s syntax except that you specified you

want a model, not a controller. The other difference is that you gave it one further

argument comprising a field name and a field type separated by a colon. When the

generator runs, it generates not only the model file but also a migration containing the

code to create this table and the specified field. You can specify as many fields as you

like after the model’s name.

Listing 3.13 app/controllers/projects_controller.rb

64 CHAPTER 3 Developing a real Rails application

 Migrations are effectively version control for the database. They are defined as

Ruby classes, which allows them to apply to multiple database schemas without having

to be altered. All migrations have a change method in them when they are first

defined. For example, the code shown in the following listing comes from the migra-

tion that was just generated.

class CreateProjects < ActiveRecord::Migration

def change

create_table :projects do |t|
t.string :name

t.timestamps

end
end

end

The change method is a new addition to Rails 3.1. When you run the migration for-

ward (using rake db:migrate), it creates the table. When you roll the migration back

(with rake db:rollback), it deletes (or drops) the table from the database. In previ-

ous versions of Rails, this migration would have been written as follows:

class CreateProjects < ActiveRecord::Migration
def self.up

create_table :projects do |t|

t.string :name

t.timestamps

end

end

def self.down

drop_table :projects

end
end

Here, the self.up method would be called if you ran the migration forward, and the

self.down method if you ran it backward.

 In Rails 3.1, you can still use this syntax if you wish, but instead of self.up and

self.down, you simply define the up and down methods:

class CreateProjects < ActiveRecord::Migration
def up

code

end

def down

code

end
end

This syntax is especially helpful if the migration does something that has a reverse

function that isn’t clear, such as removing a column:

Listing 3.14 db/migrate/[date]_create_projects.rb

65First steps

class CreateProjects < ActiveRecord::Migration
def up

remove_column :projects, :name

end

def down

add_column :projects, :name, :string

end
end

This is because ActiveRecord won’t know what type of field to re-add this column as,

so you must tell it what to do in the case of this migration being rolled back.

 The first line tells Active Record you want to create a table called projects. You

call this method in the block format, which returns an object that defines the table. To

add fields to this table, you call methods on the block’s object (called t in this exam-

ple and in all model migrations), the name of which usually reflects the type of col-

umn it is, and the first argument is the name of that field. The timestamps method is

special: it creates two fields, the created_at and updated_at datetime fields, which

are by default set to the current time in coordinated universal time (UTC) by Rails

when a record is created and updated, respectively.

 A migration doesn’t automatically run when you create it—you must run it yourself

using rake db:migrate. This command migrates the database up to the latest migra-

tion, which for now is the only migration. If you create a whole slew of migrations at

once, this command migrates them in the order they were created.

 With this model created and its related migration run, you can now run the feature

and have the second step passing once again and the third one failing:

When I follow "New Project"

And I fill in "Name" with "TextMate 2"
cannot fill in, no text field, text area or password field with

id, name, or label 'Name' found (Capybara::ElementNotFound)

Now you are back to the missing field error. To add this field to the new action’s view,

you use a partial. Partials allow you to render dynamic content chunks in your views

and are helpful for reducing duplicate code. You put this form in a partial because

you must use it later in the edit action of your controller. To create a partial for your

projects, create a new file called app/views/projects/_form.html.erb; the underscore

prefix to this file’s name indicates that it’s a partial. You fill this file with the content

from the following listing.

<%= form_for(@project) do |f| %>
<p>

<%= f.label :name %>

<%= f.text_field :name %>
</p>

<%= f.submit %>

<% end %>

Listing 3.15 app/views/projects/_form.html.erb

66 CHAPTER 3 Developing a real Rails application

So many new things! The form_for call allows you to specify the values for the attri-

butes of your new Project object when this partial is rendered under the new action,

and it allows you to edit the values for an existing object when you’re on the edit

action. This works because you’ll set @project in both of these actions to point to new

and existing objects respectively.

 The form_for method is passed the @project object as the first argument, and

with this, the helper does more than simply place a form tag on the page. form_for

inspects the @project object and creates a form builder specifically for that object.

The two main things it inspects are (1) whether or not it’s a new record and (2) what

the class name is.

 Determining what action attribute the form has (where the form sends to) is

dependent on whether the object is a new record. A record is classified as new when it

hasn’t been saved to the database, and this check is performed internally to Rails

using the persisted? method, which returns true if the record is stored in the data-

base or false if it’s not. The class of the object also plays a pivotal role in where the

form is sent. Rails inspects this class and from it determines what the route should be.

In this case, it is /projects. Because the record is new, the path is /projects and the

method for the form is post. Therefore, a request is sent to the create action in

ProjectsController.

 After that part of form_for is complete, you use the block syntax to receive an f

variable, which is a FormBuilder object. You can use this object to define your forms

fields. The first element you define is a label. label tags correspond to their field ele-

ments on the page and serve two purposes in the application. First, they give users a

larger area to click rather than just the field, radio button, or check box. The second

purpose is so you can reference the label’s text in the Cucumber story, and Cucumber

will know what field to fill in.

TIP If you want to customize a label, you can pass a second argument:
<%= f.label :name, "Project name" %>

After the label, you put the text_field, which renders an input tag corresponding to

the label and the field. The output tag looks like this:

<input id="project_name" name="project[name]"

size="30" type="text">

Then you use the submit method to provide users with a Submit button for your form.

Because you call this method on the f object, a check is made regarding checks

whether or not the record is new and sets the text to read “Create Project” if the

record is new or “Update Project” if it is not.

 The great thing about this partial is that later on, you can use it to implement your

edit action. To use this partial for the new action, put the following code inside the

app/views/projects/new.html.erb:

<h2>New project</h2>

<%= render "form" %>

67First steps

The render method in this variation renders the app/views/projects/_form.html.erb

partial at this location.

 Now, running rake cucumber:ok once more, you can see that your feature is one

step closer to finishing: the field is filled in. How did Capybara know where to find the

correct field to fill in? Simple. When you defined the field inside app/views/projects/

_form.html.erb, you used the syntax shown in the following listing.

<%= f.label :name %>

<%= f.text_field :name %>

Capybara finds the label containing the "Name" text you ask for in your scenario and

fills out the corresponding field. Capybara has a number of ways to locate a field, such

as by the name of the corresponding label, the id attribute of the field, or the name

attribute. The last two look like this:

When I fill in "project_name" with "TextMate 2"

or

When I fill in "project[name]" with "TextMate 2"

These aren’t human friendly ways to find a field, so let’s use "Name" instead.

 When you run the feature again with rake cucumber:ok, you get this error:

And I press "Create Project"
The action 'create' could not be found for ProjectsController

The feature now complains of a missing action called create. To define this action,

you define the create method underneath the new method in the Projects-

Controller, as in the following listing.

def create

@project = Project.new(params[:project])

@project.save
flash[:notice] = "Project has been created."

redirect_to @project

end

The new method takes the argument params, which is available inside controller meth-

ods and returns the parameters passed to the action, such as those from the form, as a

HashWithIndifferentAccess object. These are different from normal Hash objects,

because you can reference a String key by using a matching Symbol and vice versa. In

this case, the params hash is

{
"commit" => "Create Project",

"action" => "create",

"project" => {
"name" => "TextMate 2"

Listing 3.16 app/views/projects/_form.html.erb

Listing 3.17 app/controllers/projects_controller.rb

68 CHAPTER 3 Developing a real Rails application

},
"controller" => "projects"

}

TIP If you’d like to inspect the params hash at any point in time, you can
put p params in any action and then run the action either by accessing it
through rails server or by running a scenario that will run an action
containing this line. This outputs to the console the params hash and is
equivalent to doing puts params.inspect.

All the hashes nested inside this hash are also HashWithIndifferentAccess hashes. If

you want to get the name key from the project hash here, you can use either { :name =>

"TextMate 2" }[:name], as in a normal Hash object, or { :name => "TextMate 2"

}['name']; you may use either the String or the Symbol version—it doesn’t matter.

 The first key in the params hash, commit, comes from the Submit button, which

has the value Create Project. This is accessible as params[:commit]. The second key,

action, is one of two parameters always available, the other being controller. These

represent exactly what their names imply: the controller and action of the request,

accessible as params[:controller] and params[:action] respectively. The final key,

project, is, as mentioned before, a HashWithIndifferentAccess. It contains the

fields from your form and is accessible via params[:project]. To access the name field,

use params[:project][:name], which calls the [] method on params to get the value

of the :project key and then, on the result, calls [] again, this time with the :name

key to get the name of the project passed in.

 When new receives this HashWithIndifferentAccess, it generates a new Project

object with the attributes based on the parameters passed in. The Project object will

have a name attribute set to the value from params[:project][:name].

 You call @project.save to save your new Project object into the projects table.

 The flash method in your create action is a way of passing messages to the next

request, and it’s also a HashWithIndifferentAccess. These messages are stored in the

session and are cleared at the completion of the next request. Here you set the

:notice key to be Project has been created. to inform the user what has happened. This

message is displayed later, as is required by the final step in your feature.

 The redirect_to method takes either an object, as in the create action, or a path

to redirect to as a string. If an object is given, Rails inspects that object to determine

what route it should go to, in this case, project_path(@project) because the object

has now been saved to the database. This method generates the path of something

such as /projects/:id, where :id is the record id attribute assigned by your database

system. The redirect_to method tells the browser to begin making a new request to

that path and sends back an empty response body; the HTTP status code will be a 302

Redirected to /projects/1, which is the currently nonexistent show action.

 Upon running rake cucumber:ok again, you are told that your app doesn’t know

about a show action:

And I press "Create Project"

The action 'show' could not be found for ProjectsController

69First steps

The show action is responsible for displaying a single record’s information. To retrieve

a record, you need an ID to fetch. You know the URL for this page is going to be some-

thing like /projects/1, but how do you get the 1 from that URL? Well, when you use

resource routing, as you have done, this 1 is available as params[:id], just as

params[:controller] and params[:action] are also automatically made available by

Rails. You can then use this params[:id] parameter in your show action to find a spe-

cific Project object.

 Put the code from the following listing into app/controllers/projects_controller.rb

to do this right now.

def show

@project = Project.find(params[:id])
end

You pass the params[:id] object to Project.find here, which gives you a single

Project object that relates to a record in the database, which has its id field set to

whatever params[:id] is. If Active Record cannot find a record matching that ID, it

raises an ActiveRecord::RecordNotFound exception.

 When you run rake cucumber:ok, you get an error telling you the show action’s

template is missing:

And I press "Create Project"

Missing template projects/show, application/show
with { :handlers=>[:erb, :builder],

:formats=>[:html],

:locale=>[:en, :en]}.

Searched in:
* "/Users/ryanbigg/Sites/book/edge-ticketee/app/views"

Listing 3.18 app/controllers/projects_controller.rb

Combining redirect_to and flash

You can combine flash and redirect_to by passing the flash as an option to the

redirect_to. If you want to pass a success message, you use the notice flash key;

otherwise you use the alert key. By using either of these two keys, you can use this

syntax:

redirect_to @project,

:notice => "Project has been created."
or

redirect_to @project,

:alert => "Project has not been created."

If you do not wish to use either notice or alert, you must specify flash as a hash:

redirect_to @project,

:flash => { :success => "Project has been created."}

70 CHAPTER 3 Developing a real Rails application

You can create the file app/views/projects/show.html.erb with the following content

for now:

<h2><%= @project.name %></h2>

When you run rake cucumber:ok, you see this message:

And I press "Create Project"

Then I should see "Project has been created."

expected #has_content?("Project has been created.")
to return true, got false

This error message shows the has_content? method from Capybara, which is used to

see if the page has specific content on it. It’s checking for "Project has been

created." and is not finding it. Therefore, you must put it somewhere, but where?

The best location is in the application layout, located at app/views/layouts/

application.html.erb. This file provides the layout for all templates in your application,

so it’s a great spot for the flash message.

 Here is quite the interesting file:

<html>

<head>
<title>Ticketee</title>

<%= stylesheet_link_tag "application" %>

<%= javascript_include_tag "application" %>
<%= csrf_meta_tags %>

</head>

<body>

<%= yield %>

</body>

</html>

The first line sets up the doctype to be HTML for the layout, and three new methods

are used: stylesheet_link_tag, javascript_include_tag, and csrf_meta_tags.

stylesheet_link_tag is for including stylesheets from the app/assets/stylesheets

directory. Using this tag results in the following output:

<link href="/assets/application.css"

media="screen"
rel="stylesheet"

type="text/css" />

The /assets path is served by a gem called sprockets. In this case, you’re specifying

the /assets/application.css path, so Sprockets looks for a file called app/assets/applica-

tion.css, which would usually act as a manifest file listing the Cascading Style Sheets

(CSS) files that need to be included for the application. The current manifest file just

provides a stylesheet for the entire application.

 For your CSS files, you can use the Sass language to produce more powerful

stylesheets. Your application depends on the sass-rails gem, which itself depends on

71First steps

sass, the gem for these stylesheets. We don’t go into detail here because the Sass site

covers most of that ground: http://sass-lang.com/. Rails automatically generates

stylesheets for each controller that uses Sass, as indicated by its .css.scss extension. This

final extension tells Sprockets to process the file using Sass before serving it as CSS.

javascript_include_tag is for including JavaScript files from the public/

javascripts directory. When the application string is specified here, Rails loads the

application JavaScript manifest file, app/assets/javascripts/application.js, which looks

like this:

//= require jquery
//= require jquery_ujs
//= require_tree .

This file includes the jquery.js and jquery_ujs.js files located in the jquery-rails gem

that your application depends on (see the Gemfile) and compiles them into one super-

file called application.js, which is referenced by this line in the output of your pages:

<script src="/assets/application.js" type="text/javascript"></script>

This file is also served through the sprockets gem. As with your CSS stylesheets, you

can use an alternative syntax called CoffeeScript (http://coffeescript.org), which pro-

vides a simpler JavaScript syntax that compiles into proper JavaScript. Just as with the

Sass stylesheets, Rails generates CoffeeScript files inside app/assets/javascripts with the

extension .js coffee, indicating to Sprockets they are to be parsed by a CoffeeScript

interpreter first, then served as JavaScript. We use CoffeeScript a little later, in

chapter 9.

csrf_meta_tags is for protecting your forms from cross-site request forgery

(CSRF)11 attacks. It creates two meta tags, one called csrf-param and the other csrf-

token. This unique token works by setting a specific key on forms that is then sent

back to the server. The server checks this key, and if the key is valid, the form is sub-

mitted. If the key is invalid, an ActionController::InvalidAuthenticityToken

exception occurs.

 Later in the file is the single line

<%= yield %>

This line indicates to the layout where the current action’s template is to be rendered.

Create a new line just before <%= yield %> and place the following code on it:

<% flash.each do |key, value| %>

<div class='flash' id='<%= key %>'>
<%= value %>

</div>
<% end %>

11 http://en.wikipedia.org/wiki/CSRF.

http://coffeescript.org
http://en.wikipedia.org/wiki/CSRF
http://sass-lang.com/

72 CHAPTER 3 Developing a real Rails application

This code renders all the flash messages that get defined, regardless of their name. It

displays the flash[:notice] you set up in the controller. Run rake cucumber:ok

again and see that not only the last step in your scenario is passing,

Then I should see "Project has been created."

but the entire scenario is passing!

1 scenario (1 passed)

5 steps (5 passed)

Yippee! You have just written your first BDD feature for this application! That’s all

there is to it. If this process feels slow, that’s how it’s supposed to feel when you’re new

to any process. Remember when you were learning to drive a car? You didn’t drive like

Michael Schumacher first off. You learned by doing it slowly and methodically. As you

progress, it becomes quicker, as all things do with practice.

3.2.3 Committing changes

You’re at a point where all (just the one for now) your features are running, and

points like this are great times to make a commit:

git add .
git commit -m "Creation of projects feature complete"

You should commit often because commits provide checkpoints you can revert back

to if anything goes wrong. If you’re going down a path where things aren’t working

and you want to get back to the last commit, you can revert all your changes by using

git checkout .

WARNING This command doesn’t prompt you to ask whether you’re sure
you want to take this action. You should be incredibly sure that you want
to destroy your changes. If you’re not sure and want to keep your changes
while reverting back to the previous revision, it’s best to use the git stash
command. This command stashes your unstaged changes to allow you to
work on a clean directory and allows you to restore the changes using git
stash apply.

With the changes committed to your local repository, you can push them off to the

GitHub servers. If for some reason the code on your local machine goes missing, you

have GitHub as a backup. Run git push to put it up to GitHub’s servers. You don’t

need to specify the remote or branch because you did that the first time you pushed.

 Commit early. Commit often.

3.2.4 Setting a page title

Before you completely finish working with this story, there is one more thing to point

out: the templates are rendered before the layout. You can use this to your benefit by

setting an instance variable such as @title in the show action’s template; then you can

73First steps

reference it in your application’s layout to show a title for your page at the top of the

tab or window.

 To test that the page title is correctly implemented, add an addendum to your

Cucumber scenario for it. At the bottom of the scenario in features/creating

_projects.feature, add the two lines shown in the following listing.

And I should be on the project page for "TextMate 2"

And I should see "TextMate 2 - Projects - Ticketee"

The first line ensures that you’re in the ProjectsController’s show action, or at least

it would if you had defined the path to it. If you run rake cucumber:ok now, this first

step fails:

Can't find mapping from "the project page for "TextMate 2"" to a path.
Now, go and add a mapping in .../ticketee/features/support/paths.rb

Then it tells you to add a mapping in features/support/paths.rb, which is what you

should do. You visited this file at the beginning of your feature when you saw that it

had this path to the home page defined:

when /the home\s?page/

'/'

To define your own path, simply add another when directly underneath this one, as in

the following listing.

when /the project page for "([^\"]*)"/

project_path(Project.find_by_name!($1))

These two whens together should now look like the following listing.

when /the home\s?page/
'/'

when /the project page for "([^\"]*)"/

project_path(Project.find_by_name!($1))

When the when is fully matched to whatever page_name is, the part in the quotation

marks is captured and stored as the variable $1. This is referred to as a capture group.

 You then use this variable to find the project by the given name so that

project_path has a record to act on, thereby returning the path to the project. You

find this record by using a dynamic method. This find_by_name! method doesn’t exist,

and in Ruby when methods don’t exist, another method named method_missing is

called.

 The method_missing method is passed the name of the method that cannot be

found, and any arguments passed to it are passed as additional arguments to

Listing 3.19 features/creating_projects.feature

Listing 3.20 features/support/paths.rb

Listing 3.21 features/support/paths.rb

74 CHAPTER 3 Developing a real Rails application

method_missing. These are then used to construct a real method call and make Ruby

act as though the method exists. When you use the bang (find_by_name! with an

exclamation mark as opposed to find_by_name) version of this method, Active

Record raises an ActiveRecord::RecordNotFound exception if the record isn’t found.

This can prove helpful if, for example, you misspell a project’s name when trying to

use this step. The exception raised if you don’t capitalize the M in TextMate (thereby

making it Textmate) is this:

Then I should be on the project page for "Textmate 2"

Couldn't find Project with name = Textmate 2 (ActiveRecord::RecordNotFound)

If you don’t use the bang version of this method, the finder returns nil. If

project_path is passed nil, you get a hard-to-debug error:

Then I should be on the project page for "Textmate 2"

No route matches {:action => "show", :controller => "projects"}

This error claims that no route matches up to the ProjectsController’s show action,

but there actually is one: /projects/:id. The difference is that this route requires

you to pass through the id parameter too; otherwise the error occurs.

 To debug something like this, you check and double check what values were being

passed where, particularly what $1 was coming back as, and whether Proj-

ect.find_by_name was returning any record. If you checked those two things, you’d

find that Project.find_by_name isn’t returning what you think it should be return-

ing, and hopefully you’d realize you were passing in the wrong name.

 Upon running rake cucumber:ok, you now see that a step passes, but the rest of

the feature fails:

And I should be on the project page for "TextMate 2"

And I should see "TextMate 2 - Projects - Ticketee"

expected #has_content?("TextMate 2 - Projects - Ticketee")
to return true, got false

Why are you getting an error seemingly from RSpec? Because Capybara uses its helpers

internally to determine if it can find content. This error therefore means that Capy-

bara can’t find the content it’s looking for. What content? Have a look at the last line

of the backtrace:

features/creating_projects.feature:13:

Line 13 of features/creating_projects.feature is the And I should see "TextMate 2 -

Projects - Ticketee" step, which checks for content shown on the page. To make

this step pass, you need to define the content it should see. Write the code from the

following listing into app/views/projects/show.html.erb.

<% @title = "TextMate 2 - Projects - Ticketee" %>

Listing 3.22 app/views/projects/show.html.erb

75First steps

Then enter the following code in app/views/layouts/application.html.erb where the

title tag currently is.

<title><%= @title || "Ticketee" %></title>

In Ruby, instance variables that aren’t set return nil as their values. If you try to access

an instance variable that returns a nil value, you can use || to return a different

value, as in this example.

 With this in place, your step passes when you run rake cucumber:ok:

And I should see "TextMate 2 - Projects - Ticketee"

With this scenario now passing, you can change your code and have a solid base to

ensure that whatever you change works as you expect. To demonstrate this point,

change the code in show to use a helper instead of setting a variable.

 Helpers are methods you can define in the files inside app/helpers, and they are

made available in your views. Helpers are for extracting the logic from the views, as

views should just be about displaying information. Every controller that comes from

the controller generator has a corresponding helper, and another helper exists for

the entire application. Now open app/helpers/application_helper.rb and insert the

code from the following listing.

module ApplicationHelper

def title(*parts)
unless parts.empty?

content_for :title do

(parts << "Ticketee").join(" - ") unless parts.empty?
end

end

end
end

When you specify an argument in a method beginning with the splat operator (*), any

arguments passed from this point will be available inside the method as an array. Here

that array can be referenced as parts. Inside the method, you check to see if parts is

empty? by using the opposite keyword to if: unless. If no arguments are passed to the

title method, parts will be empty and therefore empty? will return true.

 If parts are specified for the title method, then you use the content_for method

to define a named block of content, giving it the name of "title". Inside this content

block, you join the parts together using a hyphen (-), meaning this helper will output

something like "TextMate 2 - Projects - Ticketee".

 With this, you can slightly alter the title code inside the app/views/projects/

show.html.erb page to look like "TextMate 2 - Projects - Ticketee", perhaps getting

it to show the name of the project rather than Show in the title. Before you do that,

Listing 3.23 app/views/layouts/application.html.erb

Listing 3.24 app/helpers/application_helper.rb

76 CHAPTER 3 Developing a real Rails application

though, you should change the line in the feature that checks for the title on the page

to the following:

And I should see "TextMate 2 - Projects - Ticketee"

When you run this feature, it should be broken:

expected #has_content?("TextMate 2 - Projects - Ticketee")

to return true, got false

Now you can fix it by replacing the line that sets @title in your show template with

this one:

<% title(@project.name, "Projects") %>

You don’t need Ticketee here any more because the method puts it in for you. Let’s

replace the title tag line with this:

<title>

<% if content_for?(:title) %>
<%= yield(:title) %>

<% else %>

Ticketee

<% end %>
</title>

This code uses a new method called content_for?, which checks that the specified

content block is defined. If it is, you use yield and pass it the name of the content

block, which causes the content for that block to be rendered. If it isn’t, then you just

output the word Ticketee, and that becomes the title.

 When you run this feature again, it passes:

...

And I should see "TextMate 2 - Projects - Ticketee"

1 scenario (1 passed)
7 steps (7 passed)

That’s a lot neater now, isn’t it? Let’s create a commit for that functionality and push

your changes:

git add .

git commit -m "Added title functionality for show page"

git push

Next up, we look at how to stop users from entering invalid data into your forms.

3.2.5 Validations

The next problem to solve is preventing users from leaving a required field blank. A

project with no name isn’t useful to anybody. Thankfully, Active Record provides vali-

dations for this issue. Validations are run just before an object is saved to the database,

and if the validations fail, then the object isn’t saved. When this happens, you want to

tell the user what went wrong, so you write a feature that looks like the following listing.

77First steps

Scenario: Creating a project without a name
Given I am on the homepage

When I follow "New Project"

And I press "Create Project"
Then I should see "Project has not been created."

And I should see "Name can't be blank"

The first two steps are identical to the ones you placed inside the other scenario. You

should eliminate this duplication by making pour code DRY (Don’t Repeat Yourself!).

This is another term you’ll hear a lot in the Ruby world. It’s easy to extract common

code from where it’s being duplicated and into a method or a module you can use

instead of the duplication. One line of code is 100 times better than 100 lines of dupli-

cated code. To DRY up your code, before the first scenario, you define a background.

For Cucumber, backgrounds have a layout identical to scenarios but are executed

before every scenario inside the feature. Delete the two steps from the top of both of

these scenarios so that they now look like the following listing.

Scenario: Creating a project

And I fill in "Name" with "TextMate 2"

And I press "Create Project"
Then I should see "Project has been created."

And I should be on the project page for "TextMate 2"

And I should see "TextMate 2 - Projects - Ticketee"

Scenario: Creating a project without a name

And I press "Create Project"

Then I should see "Project has not been created."
And I should see "Name can't be blank"

Then on the line before the first Scenario, define the Background, as in the next listing.

Background:

Given I am on the homepage
When I follow "New Project"

Now when you run rake cucumber:ok, this will fail because it cannot see the error

message on the page:

Then I should see "Project has not been created."

To get this feature to do what you want it to do, add a validation. Validations are

defined on the model and typically are run before the data is put into the database,

but this can be made optional, as you’ll see later. To define a validation ensuring the

name attribute is there, open the app/models/project.rb file and make it look like the

following listing.

Listing 3.25 features/creating_projects.feature

Listing 3.26 features/creating_projects.feature

Listing 3.27 features/creating_projects.feature

78 CHAPTER 3 Developing a real Rails application

class Project < ActiveRecord::Base
validates :name, :presence => true

end

This validates method tells the model that you want to validate the name field and

that you want to validate its presence. There are other kinds of validations as well,

such as the :uniqueness key, which, when passed true as the value, validates the

uniqueness of this field as well. In prior versions of Rails, to do this you would have to

use the validates_presence_of method instead:

class Project < ActiveRecord::Base

validates_presence_of :name
end

This syntax is still supported in Rails 3, but with the new syntax in Rails 3, you can

specify multiple validation types for multiple fields on the same line, thereby reducing

duplication in your model.

With the presence validation in place, you can experiment with the validation by using

the Rails console, which allows you to have all the classes and the environment from

your application loaded in a sandbox environment. You can launch the console with

this command

rails console

or with its shorter alternative:

rails c

If you’re familiar with Ruby, you may realize that this is effectively IRB with some Rails

sugar on top. For those of you new to both, IRB stands for Interactive Ruby, and it pro-

Listing 3.28 app/models/project.rb

Beware race conditions with the uniqueness validator

The validates_uniqueness_of validator works by checking to see if a record

matching the validation criteria exists already. If this record doesn’t exist, the valida-

tion will pass.

A problem arises if two connections to the database both make this check at almost

exactly the same time. Both connections will claim that a record doesn’t exist and

therefore will allow a record to be inserted for each connection, resulting in non-

unique records.

A way to prevent this is to use a database uniqueness index so the database, not

Rails, does the uniqueness validation. For information about how to do this, consult

your database’s manual.

Although this problem doesn’t happen all the time, it can happen, so it’s something

to watch out for.

79First steps

vides an environment for you to experiment with Ruby without having to create new

files. The console prompt looks like this:

Loading development environment (Rails 3.1.0.beta)

irb(main):001:0>

At this prompt,12 you can enter any valid Ruby and it’ll be evaluated. But for now, the

purpose of opening this console is to test the newly appointed validation. To do this,

try to create a new project record by calling the create method. The create method

is similar to the new method, but it attempts to create an object and then a database

record for it rather than just the object. You use it identically to the new method:

irb(main):001:0> Project.create
=> #<Project id: nil,

name: nil,

created_at: nil,
updated_at: nil>

Here you get a new Project object with the name attribute set to nil, as you should

expect because you didn’t specify it. The id attribute is nil too, which indicates that

this object is not persisted (saved) in the database.

 If you comment out or remove the validation from inside the Project class and

type reload! in your console, the changes you just made to the model are reloaded.

When the validation is removed, you have a slightly different outcome when you call

Project.create:

irb(main):001:0> Project.create

=> #<Project id: 1,
name: nil,

created_at: "2010-05-06 01:00:15",

updated_at: "2010-05-06 01:00:15">

Here, the name field is still expectedly nil, but the other three attributes have values.

Why? When you call create on the Project model, Rails builds a new Project object

with any attributes you pass it13 and checks to see if that object is valid. If it is, Rails sets

the created_at and updated_at attributes to the current time and then saves it to the

database. After it’s saved, the id is returned from the database and set on your object.

This object is valid, according to Rails, because you removed the validation, and there-

fore Rails goes through the entire process of saving.

 The create method has a bigger, meaner brother called create! (pronounced cre-

ate BANG!). Re-add or uncomment the validation from the model and type reload! in

the console, and you’ll see what this mean variant does with this line:

irb(main):001:0> Project.create!

ActiveRecord::RecordInvalid: Validation failed: Name can't be blank

12 Although you may see something similar to ruby-1.9.2-p180 :001 > too, which is fine.
13 The first argument for this method is the attributes. If there is no argument passed, then all attributes default

to their default values.

80 CHAPTER 3 Developing a real Rails application

The create! method, instead of nonchalantly handing back a Project object regard-

less of any validations, raises an ActiveRecord::RecordInvalid exception if any of the

validations fail, showing the exception followed by a large stacktrace, which you can

safely ignore for now. You are notified which validation failed. To stop it from failing,

you must pass in a name attribute, and it will happily return a saved Project object:

irb(main):002:0> Project.create!(:name => "TextMate 2")
=> #<Project id: 2,

name: "TextMate 2",

created_at: "[timestamp]",
updated_at: "[timestamp]">

That’s how to use create to test it in the console, but in your ProjectsController,

you use the method shown in the following listing instead.

@project = Project.new(params[:project])
@project.save

save doesn’t raise an exception if validations fail, as create! did, but instead returns

false. If the validations pass, save returns true. You can use this to your advantage to

show the user an error message when this returns false by using it in an if statement.

Make the create action in the ProjectsController, as in the following listing.

def create
@project = Project.new(params[:project])
if @project.save

flash[:notice] = "Project has been created."
redirect_to @project

else
flash[:alert] = "Project has not been created."
render :action => "new"

end
end

Now if the @project object is valid, then save returns true and executes everything

between the if and the else. If it isn’t valid, then everything between the else and

the following end is executed. In the else, you specify a different key for the flash mes-

sage because you’ll want to style alert messages differently from notices later in the

application’s lifecycle.

 When you run rake cucumber:ok here, the second step of your second scenario

passes because you now have the flash[:alert] set:

Then I should see "Project has not been created."
And I should see "Name can't be blank"

expected #has_content?("Name can't be blank")
to return true, got false

...

12 steps (1 failed, 11 passed)

Listing 3.29 app/controllers/projects_controller.rb

Listing 3.30 app/controllers/projects_controller.rb

81Summary

This scenario passes because of the changes you made to the controller and applica-

tion layout, where you display all the flash messages. Of course, the third step is now

failing. To display error messages in the view, you need to install the dynamic_form

gem. To install it, add this line to your Gemfile underneath the line for the coffee-

rails gem:

gem 'coffee-rails'
gem 'dynamic_form'

Then you must run bundle install to install it. Alternatively, you could install it as a

plugin by using this command:

rails plugin install git://github.com/rails/dynamic_form.git

This command executes a git clone on the URL passed in and creates a new folder

called vendor/plugins/dynamic_form in your application, putting the plugin’s code

inside of it. Installing it as a plugin would lead to a “polluted” repository, so installing

it as a gem is definitely preferred here. Also, when it’s installed as a gem, RubyGems

and Bundler provide an exceptionally easy way of keeping it up to date, whereas the

plugin architecture in Rails doesn’t. This is a good reason to try to use gems instead of

plugins.

 The helpful method you’re installing this gem for is the error_messages method

on the FormBuilder object—that is, what f represents when you use form_for in your

app/views/projects/_form.html.erb view:

<%= form_for(@project) do |f| %>

Directly under this form_for line, on a new line, insert the following to display the

error messages for your object inside the form:

<%= f.error_messages %>

Error messages for the object represented by your form, the @project object, will now

be displayed. When you run rake cucumber:ok, you get this output:

2 scenarios (2 passed)
12 steps (12 passed)

Commit and push, and then you’re done with this story!

git add .
git commit -m "Add validation to ensure names are

specified when creating projects"

git push

3.3 Summary

We first covered how to version-control an application, which is a critical part of the

application development cycle. Without proper version control, you’re liable to lose

valuable work or be unable to roll back to a known working stage. We used Git and

GitHub as examples, but you may use alternatives, such as SVN or Mercurial, if you

prefer. This book covers only Git, because covering everything would result in a multi-

volume series, which is difficult to transport.

82 CHAPTER 3 Developing a real Rails application

 Next we covered the basic setup of a Rails application, which started with the rails

new command that initializes an application. Then we segued into setting up the Gem-

file to require certain gems for certain environments, such as RSpec in the test envi-

ronment, and then running the installers for these gems so your application is fully

configured to use them. For instance, after running rails g rspec:install, your

application is set up to use RSpec and so will generate RSpec specs rather than the

default Test::Unit tests for your models and controllers.

 Finally, you wrote the first story for your application, which involved generating a

controller and a model as well as an introduction to RESTful routing and validations.

With this part of your application covered by Cucumber features, you can be notified

if it is broken by running rake cucumber:ok, a command that runs all the features of

the application and lets you know if everything is working or if anything is broken. If

something is broken, the feature fails, and then it’s up to you to fix it. Without this

automated testing, you would have to do it all manually, and that just isn’t any fun.

 Now that you’ve got a first feature under your belt, let’s get into writing the next

one!

83

Oh CRUD!

In chapter 3, you began writing stories for a CRUD (create, read, update, delete)

interface for your Project resource. Here, you continue in that vein, beginning

with writing a story for the R part of CRUD: reading. We often refer to reading as

viewing in this and future chapters—we mean the same thing, but sometimes view-

ing is just a better word.

 For the remainder of the chapter, you’ll round out the CRUD interface for proj-

ects, providing your users with ways to edit, update, and delete projects too. Best of

all, you’ll be doing this using behavior-driven development the whole way through.

4.1 Viewing projects

The show action generated for the story in chapter 3 was only half of this part of

CRUD. The other part is the index action, which is responsible for showing a list of

the projects. From this list, you can navigate to the show action for a particular proj-

ect. The next story is about adding functionality to allow you to do that.

This chapter covers

 Expanding on the functionality of your app

 Building a RESTful resource

 Creating, updating, and deleting a resource

84 CHAPTER 4 Oh CRUD!

4.1.1 Writing a feature

Create a new file in the features directory called viewing_projects.feature, shown in the

following listing.

Feature: Viewing projects
In order to assign tickets to a project

As a user

I want to be able to see a list of available projects

Scenario: Listing all projects

Given there is a project called "TextMate 2"

And I am on the homepage
When I follow "TextMate 2"

Then I should be on the project page for "TextMate 2"

If you run rake cucumber:ok here, all the features will run. Instead, you want to run

just the feature you’re working on because you don’t want the other feature to be

altered by what you do here. When you’re done, you’ll run rake cucumber:ok to

ensure that everything is still working.

 To run just this one feature, use the bin/cucumber executable, which was added to

your project when you ran bundle install --binstubs. If you didn’t use the

--binstubs option, you would have to use bin/cucumber instead, and typing all of

that gets a bit boring after a while.

 Now, to run this single feature, you run the following command:

bin/cucumber features/viewing_projects.feature

You should always use bin/cucumber rather than straight cucumber to run the bun-

dled version of your gems because you could be using different versions of the same

gem across separate projects. By running the bin/cucumber command, you ensure

that you’re loading the version of the gem specified by your bundle rather than the

system version of that gem.

 The first line of the only scenario in the feature fails, all because you haven’t

defined the “there is a project” step yet, as Cucumber informs you in the output:

3 scenarios (1 undefined, 2 passed)

15 steps (3 skipped, 1 undefined, 11 passed)

You can implement step definitions for
undefined steps with these snippets:

Given /^there is a project called "([^"]*)"$/ do |arg1|

pending # express the regexp above with the code you wish you had
end

As you can see in the step output, you’ve got one undefined step. Underneath that,

Cucumber very handily gives you a step definition you can use to define this step. In this

step, you need to create a new Project object. Rather than doing it manually by calling

Project.create everywhere you need it, you can set up a little thing called factories.

Listing 4.1 features/viewing_projects.feature

85Viewing projects

 Factories allow you to create new example objects for all of your models in a simple

and elegant syntax. This functionality doesn’t come with Rails, unfortunately, so you

must rely on a gem for it: factory_girl.

4.1.2 The Factory Girl

The factory_girl, created by thoughtbot,1 provides an easy way to use factories to cre-

ate new objects for your tests. Factories define a bunch of default values for an object,

allowing you to have easily craftable objects you can use to run your tests on.

 Before you can use this gem, you need to add it to the :test group in your Gem-

file. Now the whole group looks like this:

group :test do

gem 'cucumber-rails'

gem 'capybara'
gem 'database_cleaner'

gem 'factory_girl'

end

To install, run bundle. You’ll now use Factory Girl in your new step definition.

 Create a new file at features/step_definitions/project_steps.rb, and add this small

chunk of code:

Given /^there is a project called "([^\"]*)"$/ do |name|
Factory(:project, :name => name)

end

The Factory method2 looks for the :project factory and generates a new object based

on the details it contains. You don’t have a factory defined yet, but you will shortly.

 When you define the factory, you give it a default name. The :name => name part

of this method call changes the default name to the one passed in from your feature.

You use factories here because you needn’t be concerned about any other attribute on

the Project object. If you weren’t using factories, you’d have to use this method to

create the object instead:

Project.create(:name => name)

Although this code is about the same length as its Factory variant, it isn’t future-

proof. If you were to add another field to the projects table and add a validation (say,

a presence one) for that field, you’d have to change all occurrences of the create

method to contain this new field. When you use factories, you can change it in one

place—where the factory is defined. If you cared about what that field was set to, you

could modify it by passing it as one of the key-value pairs in the Factory call.

 That’s a lot of theory—now how about some practice? Let’s see what happens

when you run bin/cucumber features/viewing_projects.feature:

Not registered: project (ArgumentError)

1 Thoughtbot’s website: http://thoughtbot.com.
2 Yes, methods can begin with a capital letter.

http://thoughtbot.com

86 CHAPTER 4 Oh CRUD!

Aha! You’re now told there’s no such factory! Then you’d better get around to creat-

ing one. You use these factories not only in your Cucumber features but also later in

your RSpec tests. Placing the factories inside the features directory isn’t fair to the

RSpec tests, and placing them inside the spec isn’t fair to the Cucumber tests. So

where do they go? Create a new folder at the root of your application for them, and

name it factories. Inside this directory, create your Project factory by creating a new

file called project_factory.rb and filling it with the following content:

Factory.define :project do |project|

project.name 'Ticketee'
end

This small snippet defines your project factory, which creates a new instance of the

Project class, defaulting the name attribute to Ticketee. These files aren’t going to

load themselves, so you must create a new file at features/support/factories.rb and put

this content in it:

Dir[Rails.root + "factories/*.rb"].each do |file|
require file

end

All .rb files in features/support are loaded automatically before Cucumber starts, so all

the files in the factories are required, and they define all the factories in the files.

 With this factory defined, your feature should have nothing to whine about. Let’s

look at the following listing to see what happens now when you run bin/cucumber

features/viewing_projects.feature

Given there is a project called "TextMate 2"

And I am on the homepage
When I follow "TextMate 2"

no link with title, id or text 'TextMate 2' found ...

A link appears to be missing. You’ll add that right now.

4.1.3 Adding a link to a project

Capybara is expecting a link on the page with the words “TextMate 2” but can’t find it.

The page in question is the homepage, which is the index action from your

ProjectsController. Capybara can’t find it because you haven’t yet put it there,

which is what you’re going to do now. Open app/views/projects/index.html.erb, and

add the contents of the following listing underneath the first link.

<h2>Projects</h2>

<% @projects.each do |project| %>

<%= link_to project.name, project %>

<% end %>

Listing 4.2 features/viewing_projects.feature failure

Listing 4.3 app/views/projects/index.html.erb

87Viewing projects

If you run the Cucumber feature again, you get this error, which isn’t helpful at first

glance:

Showing /[path to ticketee]/app/views/projects/index.html.erb

where line #5

raised:

You have a nil object when you didn't expect it!

You might have expected an instance of Array.

This error points at line 5 of your app/views/projects/index.html.erb file. From this

you can determine that the error has something to do with the @projects variable.

This variable isn’t yet been defined, and because there’s no each method on nil, you

get this error. As mentioned in chapter 3, instance variables in Ruby return nil rather

than raise an exception if they’re undefined. Watch out for this in Ruby—as seen

here, it can sting you hard.

 To define this variable, open ProjectsController at app/controllers/

projects_controller.rb and change the index method definition to look like the follow-

ing listing.

def index

@projects = Project.all
end

By calling all on the Project model, you retrieve all the records from the database as

Project objects, and they’re available as an Array-like object. Now that you’ve put all

the pieces in place, you can run the feature with bin/cucumber features/

viewing_projects.feature, and all the steps should pass:

1 scenario (1 passed)
4 steps (4 passed)

The feature now passes. Is everything else still working, though? You can check by run-

ning rake cucumber:ok. At the bottom, you should see this:

3 scenarios (3 passed)

16 steps (16 passed)

All of your scenarios and their steps are passing, meaning all of the functionality

you’ve written so far is working as it should. Commit and push this using

git add .

git commit -m "Added the ability to view a list of all projects"
git push

The reading part of this CRUD resource is done! You’ve got the index and show

actions for the ProjectsController behaving as they should. Now you can move on

to updating.

Listing 4.4 app/controllers/projects_controller.rb

88 CHAPTER 4 Oh CRUD!

4.2 Editing projects

With the first two parts of CRUD (creating and reading) done, you’re ready for the

third part: updating. Updating is similar to creating and reading in that it has two

actions for each part (creation has new and create, reading has index and show). The

two actions for updating are edit and update. Let’s begin by writing a feature and cre-

ating the edit action.

4.2.1 The edit action

As with the form used for creating new projects, you want a form that allows users to

edit the information of a project that already exists. You first put an Edit Project link

on the show page that takes users to the edit action where they can edit the project.

Write the feature from the following listing into features/editing_projects.feature.

Feature: Editing Projects

In order to update project information
As a user

I want to be able to do that through an interface

Scenario: Updating a project
Given there is a project called "TextMate 2"

And I am on the homepage

When I follow "TextMate 2"
And I follow "Edit Project"

And I fill in "Name" with "TextMate 2 beta"

And I press "Update Project"
Then I should see "Project has been updated."

Then I should be on the project page for "TextMate 2 beta"

In this story, you again use the bin/cucumber command to run just this one feature:

bin/cucumber features/editing_projects.feature.

 The first three steps pass for this feature because of the work you’ve already done,

but it fails on the fourth step when it tries to follow the as-yet nonexistent Edit Project

link on the show page:

no link with title, id or text 'Edit Project' found (Capybara::ElementNotFound)

To add this link, open app/views/projects/show.html.erb and add the link from the

following listing underneath the code currently in that file.

<%= link_to "Edit Project", edit_project_path(@project) %>

The edit_project_path method generates the link to the Project object, pointing at

the ProjectsController’s edit action. This method is provided to you because of the

resources :projects line in config/routes.rb.

Listing 4.5 features/editing_projects.feature

Listing 4.6 app/views/projects/show.html.erb

89Editing projects

 If you run bin/cucumber features/editing_projects.feature again, it now

complains about the missing edit action:

The action 'edit' could not be found for ProjectsController

You should now define this action in your ProjectsController, underneath the show

action, as in the following listing.

def edit

@project = Project.find(params[:id])

end

As you can see, this action works in an identical fashion to the show action, where the

ID for the resource is automatically passed as params[:id]. Let’s work on DRYing3 this

up once you’re done with this controller. When you run feature again, you’re told that

the edit view is missing:

Given I am on the homepage

Missing template projects/edit, application/edit

with {:handlers=>[:erb, :builder],
:formats=>[:html],

:locale=>[:en, :en]}.

Searched in:
* ".../ticketee/app/views"

It looks like you need to create this template. For this edit action’s template, you can

re-use the form partial (app/views/projects/_form.html.erb) you created in chapter 3

by putting the code from the following listing into app/views/projects/edit.html.erb.

<h2>Edit project</h2>

<%= render "form" %>

When you pass a string to the render method, Rails looks up a partial in the current

directory matching the string and renders that instead. Using the partial, the next

step passes without any further intervention from you when you run bin/cucumber

features/editing_projects.feature, but the output now says it can’t find the

update action:

And I fill in "Name" with "TextMate 2 beta"

And I press "Update Project"
The action 'update' could not be found for ProjectsController

Great! It looks like the edit action is working fine, so your next step is to define the

update action.

Listing 4.7 app/controllers/projects_controller.rb

3 As a reminder: DRY = Don’t Repeat Yourself!

Listing 4.8 app/views/projects/edit.html.erb

90 CHAPTER 4 Oh CRUD!

4.2.2 The update action

As the following listing shows, you can now define this update action underneath the

edit action in your controller.

def update
@project = Project.find(params[:id])

@project.update_attributes(params[:project])

flash[:notice] = "Project has been updated."
redirect_to @project

end

Notice the new method here, update_attributes. It takes a hash of attributes identi-

cal to the ones passed to new or create, updates those specified attributes on the

object, and then saves them to the database if they are valid. This method, like save,

returns true if the update is valid or false if it is not.

 Now that you’ve implemented the update action, let’s see how the feature is going

by running bin/cucumber features/editing_projects.feature:

1 scenario (1 passed)

8 steps (8 passed)

What happens if somebody fills in the name field with a blank value? The user receives

an error, just as in the create action. You should move the first four steps from the

first scenario in features/editing_projects.feature into a Background so the Feature

now looks like the following listing.

Feature: Editing Projects

In order to update project information

As a user
I want to be able to do that through an interface

Background:

Given there is a project called "TextMate 2"
And I am on the homepage

When I follow "TextMate 2"

And I follow "Edit Project"

Scenario: Updating a project

And I fill in "Name" with "TextMate 2 beta"

And I press "Update Project"
Then I should see "Project has been updated."

Then I should be on the project page for "TextMate 2 beta"

Now you can add a new scenario, shown in the following listing, to test that the user is

shown an error message for when the validations fail on update directly under the

other scenario in this file.

Listing 4.9 app/controllers/projects_controller.rb

Listing 4.10 features/editing_projects.feature

91Deleting projects

Scenario: Updating a project with invalid attributes is bad
And I fill in "Name" with ""

And I press "Update Project"

Then I should see "Project has not been updated."

When you run bin/cucumber features/editing_projects.feature, the first step

passes but the second doesn’t:

expected there to be content "Project has not been updated." in "[text]"

Again, this error means that it was unable to find the text “Project has not been

updated.” on the page. This is because you haven’t written any code to test for what to

do if the project being updated is now invalid. In your controller, use the code in the

following listing for the update action.

def update

@project = Project.find(params[:id])

if @project.update_attributes(params[:project])

flash[:notice] = "Project has been updated."
redirect_to @project

else

flash[:alert] = "Project has not been updated."
render :action => "edit"

end

end

And now you can see that the feature passes when you rerun it:

2 scenarios (2 passed)

15 steps (15 passed)

Again, you should ensure everything else is still working by running rake cucumber

:ok; you should see this summary:

5 scenarios (5 passed)
31 steps (31 passed)

Let’s make a commit and push now:

git add .
git commit -m "Added updating projects functionality"

git push

The third part of CRUD, updating, is done. The fourth and final part is deleting.

4.3 Deleting projects

We’ve reached the final stage of CRUD: deletion. This involves implementing the final

action of your controller, the destroy action, which allows you to delete projects.

Listing 4.11 features/editing_projects.feature

Listing 4.12 app/controllers/projects_controller.rb

92 CHAPTER 4 Oh CRUD!

4.3.1 Writing a feature

You’re going to need a feature to get going: a Delete Project link on the show page

that, when clicked, prompts the user for confirmation. You put the feature at features/

deleting_projects.feature using the following listing.

Feature: Deleting projects

In order to remove needless projects

As a project manager
I want to make them disappear

Scenario: Deleting a project

Given there is a project called "TextMate 2"
And I am on the homepage

When I follow "TextMate 2"

And I follow "Delete Project"
Then I should see "Project has been deleted."

Then I should not see "TextMate 2"

When you run this feature using bin/cucumber features/deleting_projects

.feature, the first three steps pass, and the fourth fails:

And I follow "Delete Project"

no link with title, id or text 'Delete Project' found ...

4.3.2 Adding a destroy action

Of course, you need to create a Delete Project link for the show action’s template,

app/views/projects/show.html.erb. You put this on the line after the Edit Project link

using the following listing.

<%= link_to "Delete Project", @project, :method => :delete,

:confirm => "Are you sure you want to delete this project?" %>

Here you pass two new options to the link_to method, :method and :confirm.

 The :method option tells Rails what HTTP method this link should be using, and

here’s where you specify the :delete method. In the previous chapter, the four HTTP

methods were mentioned; the final one is DELETE. When you developed your first

application, chapter 1 explained why you use the DELETE method, but let’s review why.

If all actions are available by GET requests, then anybody can send you a link to, say,

the destroy action for one of your controllers, and if you click that, it’s bye-bye pre-

cious data.

 By using DELETE, you protect an important route for your controller by ensuring

that you have to follow the link from the site to make the proper request to delete this

resource.

 The :confirm option brings up a prompt, using JavaScript, that asks users if

they’re sure of what they clicked. Because Capybara doesn’t support JavaScript by

Listing 4.13 features/deleting_projects.feature

Listing 4.14 app/views/projects/show.html.erb

93Deleting projects

default, this prompt is ignored, so you don’t have to tell Capybara to click OK on the

prompt—there is no prompt because Rails has a built-in fallback for users without

JavaScript enabled. If you launch a browser and follow the steps in the feature to get

to this Delete Project link, and then click the link, you see the confirmation prompt.

This prompt is exceptionally helpful for preventing accidental deletions.

 When you run the feature again, it complains of a missing destroy action:

And I follow "Delete Project"
The action 'destroy' could not be found for ProjectsController

The final action you need to implement is in your controller, and you’ll put it under-

neath the update action. This action is shown in the following listing.

def destroy
@project = Project.find(params[:id])
@project.destroy
flash[:notice] = "Project has been deleted."
redirect_to projects_path

end

Here you call the destroy method on the @project object you get back from your

find. No validations are run here, so no conditional setup is needed. Once you call

destroy on that object, the relevant database record is gone for good but the object

still exists. When it’s gone, you set the flash[:notice] and redirect back to the proj-

ect’s index page by using the projects_path routing helper.

 With this last action in place, your newest feature should pass when you run bin/

cucumber features/deleting_projects.feature:

1 scenario (1 passed)
6 steps (6 passed)

Let’s see if everything else is running with rake cucumber:ok:

6 scenarios (6 passed)

37 steps (37 passed)

Great! Let’s commit that:

git add .

git commit -m "Implemented delete functionality for projects"

git push

Done! Now you have the full support for CRUD operations in your Projects-

Controller. Let’s refine this controller into simpler code before we move on.

4.3.3 Looking for what isn’t there

People sometimes poke around an application looking for things that are no longer

there, or they muck about with the URL. As an example, launch your application’s

server by using rails server and try to navigate to http://localhost:3000/projects/

not-here. You’ll see the exception shown in figure 4.1.

Listing 4.15 app/controllers/projects_controller.rb

http://localhost:3000/projects/not-here
http://localhost:3000/projects/not-here

94 CHAPTER 4 Oh CRUD!

The ActiveRecord::RecordNotFound exception is Rails’ way of displaying exceptions

in development mode. Underneath this error, more information is displayed, such as

the backtrace of the error.

 If you were running in the production environment, you would see a different error.

Stop the server that is currently running, and run these commands to start in produc-

tion mode:

rake db:migrate RAILS_ENV=production
rails server -e production

Here you must specify the RAILS_ENV environment variable to tell Rails you want to

migrate your production database. By default in Rails, the development and produc-

tion databases are kept separate so you don’t make the mistake of working with pro-

duction data and deleting something you shouldn’t. This problem is also solved by

placing the production version of the code on a different server from the one you’re

developing on. You only have to run the migration command when migrations need

to be run, not every time you need to start your server.

 You also pass the -e production option to the rails server command, which

tells it to use the production environment. Next, navigate to http://[our-local-

ip]:3000/project/not-here, where [our-local-ip] is whatever the IP of your computer is

on the local network, like 10.0.0.2 or 192.168.0.3. When you do this, you get the stan-

dard Rails 404 page (see figure 4.2), which, to your users, is unhelpful.

 It’s not the page that’s gone missing, but rather the resource you’re looking for isn’t

found. If users see this error, they’ll probably have to click the Back button and then

refresh the page. You could give users a much better experience by dealing with the

error message yourself and redirecting them back to the home page.

 To do so, you capture the exception and, rather than letting Rails render a 404

page, you redirect the user to the index action with an error message. To test that

users are shown an error message rather than a “Page does not exist” error, you’ll

write an RSpec controller test rather than a Cucumber feature, because viewing proj-

ects that aren’t there is something a users can do, but not something they should do.

Plus, it’s easier.

Figure 4.1 ActiveRecord::RecordNotFound exception

Figure 4.2 “Page does not exist” error

95Deleting projects

 The file for this controller test, spec/controllers/projects_controller_spec.rb, was

automatically generated when you ran the controller generator because you have the

rspec-rails gem in your Gemfile.4 Open this controller spec file and take a look. It

should look like the following listing.

require 'spec_helper'

describe ProjectsController do

end

The spec_helper.rb file it references is located at spec/spec_helper.rb and it, like the

previous examples of spec/spec_helper.rb (in chapter 2), is responsible for setting up

the environment for your tests. This time, however, it already has code, which includes

the Rails environment and the Rails-associated RSpec helpers as well as any file inside

the spec/support directory or its subdirectories.

 In this controller spec, you want to test that you get redirected to the Projects page

if you attempt to access a resource that no longer exists. You also want to ensure that a

flash[:alert] is set.

 To do all this, you put the following code inside the describe block:

it "displays an error for a missing project" do

get :show, :id => "not-here"
response.should redirect_to(projects_path)

message = "The project you were looking for could not be found."

flash[:alert].should eql(message)
end

The first line inside this RSpec test—more commonly called an example—tells RSpec to

make a GET request to the show action for the ProjectsController. How does it

know which controller should receive the GET request? RSpec infers it from the class

used for the describe block.

 In the next line, you tell RSpec that you expect the response to take you back to

the projects_path through a redirect_to call. If it doesn’t, the test fails, and noth-

ing more in this test is executed: RSpec stops in its tracks.

 The final line tells RSpec that you expect the flash[:alert] to contain a useful

messaging explaining the redirection to the index action.5

 To run this spec, use the bin/rspec spec/controllers/projects_controller

_spec.rb command.

 It may seem like nothing is happening at first, because RSpec must load the Rails

environment and your application, and loading takes time. The same delay occurs

when you start running a Rails server.

4 The rspec-rails gem automatically generates the file using a Railtie, the code of which can be found at
https://github.com/rspec/rspec-rails/blob/master/lib/rspec-rails.rb.

Listing 4.16 spec/controllers/projects_controller_spec.rb

5 The lines for the flash[:alert] are separated into two lines to accommodate the page width of this book.
You can put it on one line if you like. We won’t yell at you.

https://github.com/rspec/rspec-rails/blob/master/lib/rspec-rails.rb

96 CHAPTER 4 Oh CRUD!

 When the test runs, you get a failure:

F

1) ProjectsController displays an error

message when asked for a missing project
Failure/Error: get :show, :id => "not-here"

Couldn't find Project with ID=not-here

This is the same failure you saw when you tried running the application using rails

server. Now that you have a failing test, you can fix it.

 Open the app/controllers/projects_controller.rb file, and put the code from the

following listing underneath the last action in the controller but before the end of the

class.

private

def find_project

@project = Project.find(params[:id])

rescue ActiveRecord::RecordNotFound
flash[:alert] = "The project you were looking" +

" for could not be found."

redirect_to projects_path
end

This method has the private method before it, so the controller doesn’t respond to

this method as an action. To call this method before every action, use the

before_filter method. Place these lines directly under the class Projects-

Controller definition:

before_filter :find_project, :only => [:show,
:edit,

:update,

:destroy]

What does all this mean? Let’s start with the before_filter. before_filters are run

before all the actions in your controller unless you specify either the :except or :only

option. Here you have the :only option defining actions you want the before_filter

to run for. The :except option is the opposite of the :only option, specifying the

actions you do not want the before_filter to run for. The before_filter calls the

find_project method before the specified actions, setting up the @project variable

for you. This means you can remove the following line from all four of your actions

(show, edit, update, and destroy):

@project = Project.find(params[:id])

By doing this, you make the show and edit actions empty. If you remove these actions

and run rake cucumber:ok again, all the scenarios still pass. Controller actions don’t

need to exist in the controllers if there are templates corresponding to those actions,

which you have for these actions. For readability’s sake, it’s best to leave these in the

Listing 4.17 app/controllers/projects_controller.rb

97Summary

controller so anyone who reads the code knows that the controller responds to these

actions.

 Back to the spec now: if you run bin/rspec spec/controllers/projects

_controller_spec.rb once more, the test now passes:

.

1 example, 0 failures

Let’s check to see if everything else is still working by running rake cucumber:ok and

then rake spec. You should see these outputs:

6 scenarios (6 passed)

37 steps (37 passed)
and

.

3 examples, 0 failures, 2 pending

The RSpec output shows two pending examples. These come from the spec files for

ProjectsHelper (spec/helpers/projects_helper_spec.rb) and Project model (spec/

models/project_spec.rb) respectively. You can delete these files or remove the pending

lines from them to make your RSpec output green instead of yellow when it passes.

Other than that, these two specs have no effect on your test output.

 It’s great to see that everything is still going! Let’s commit and push that!

git add .
git commit -m "Users should be redirected back to the projects page

if they try going to a project that doesn't exist."

git push

This completes the basic CRUD implementation for your project’s resource. Now you

can create, read, update, and delete projects to your heart’s content, and these fea-

tures are all well covered with tests, which leads to greater maintainability.

4.4 Summary

This chapter covered developing the first part of your application using BDD practices

and Cucumber and then making each step pass. Now you have an application that is

truly maintainable. If you want to know if these features or specs are working later in

the project, you can run rake cucumber:ok or rake spec and if something is broken,

you’ll know about it. Doesn’t that beat manual testing? Just think of all the time you’ll

save in the long run.

 You learned firsthand how rapidly you can develop the CRUD interface for a

resource in Rails. There are even faster ways to do it (such as by using scaffolding, dis-

cussed in chapter 1), but to absorb how this whole process works, it’s best to go

through it yourself, step by step, as you did in this chapter.

 So far you’ve been developing your application using BDD techniques, and as your

application grows, it will become more evident how useful these techniques are. The

main thing they’ll provide is assurance that what you’ve coded so far is still working

exactly as it was when you first wrote it. Without these tests, you may accidentally break

98 CHAPTER 4 Oh CRUD!

functionality and not know about it until a user—or worse, a client—reports it. It’s

best that you spend some time implementing tests for this functionality now so that

you don’t spend even more time later apologizing for whatever’s broken and fixing it.

 With the basic project functionality done, you’re ready for the next step. Because

you’re building a ticket-tracking application, it makes sense to implement functional-

ity that lets you track tickets, right? That’s precisely what you do in the next chapter.

We also cover nested routing and association methods for models. Let’s go!

99

Nested resources

With the project resource CRUD done, the next step is to set up the ability to create

tickets within the scope of a given project. The term for performing actions for

objects within the scope of another object is nesting. This chapter explores how to

set up nested routing for Ticket resources by creating a CRUD interface for them,

scoped underneath the projects resource that you just created.

5.1 Creating tickets

To add the functionality to create tickets underneath the projects, you first develop

the Cucumber features and then implement the code required to make them pass.

Nesting one resource under another involves additional routing, working with asso-

ciations in Active Record, and using more before_filters. Let’s get into this.

 To create tickets for your application, you need an idea of what you’re going to

implement. You want to create tickets only for particular projects, so you need a

This chapter covers

 Building a nested resource

 Declaring data associations between two

database tables

 Working with objects within an association

100 CHAPTER 5 Nested resources

New Ticket link on a project’s show page. The link must lead to a form where a title

and a description for your ticket can be entered, and the form needs a button that

submits it to a create action in your controller. You also want to ensure the data is

valid, just as you did with the Project model. Start by using the code from the follow-

ing listing in a new file.

Feature: Creating Tickets
In order to create tickets for projects
As a user
I want to be able to select a project and do that

Background:
Given there is a project called "Internet Explorer"
And I am on the homepage
When I follow "Internet Explorer"
And I follow "New Ticket"

Scenario: Creating a ticket
When I fill in "Title" with "Non-standards compliance"
And I fill in "Description" with "My pages are ugly!"
And I press "Create Ticket"
Then I should see "Ticket has been created."

Scenario: Creating a ticket without valid attributes fails
When I press "Create Ticket"
Then I should see "Ticket has not been created."
And I should see "Title can't be blank"
And I should see "Description can't be blank"

When you run the code in listing 5.1 using the bin/cucumber features/

creating_tickets.feature command, your background fails, as shown here:

And I follow "New Ticket"

no link with title, id or text 'New Ticket' found ...

You need to add this New Ticket link to the app/views/projects/show.html.erb tem-

plate. Add it underneath the Delete Project link, as shown in the following listing.

<%= link_to "New Ticket", new_project_ticket_path(@project) %>

This helper is called a nested routing helper and is just like the standard routing helper.

The similarities and differences between the two are explained in the next section.

5.1.1 Nested routing helpers

In listing 5.2, you used a nested routing helper—new_project_ticket_path—rather

than a standard routing helper such as new_ticket_path because you want to create a

new ticket for a given project. Both helpers work in a similar fashion, except the

nested routing helper takes one argument always, the @project object for which you

want to create a new ticket: the object that you’re nested inside. The route to any

Listing 5.1 features/creating_tickets.feature

Listing 5.2 app/views/projects/show.html.erb

101Creating tickets

ticket URL is always scoped by /projects/:id in your application. This helper and its

brethren are defined by changing this line in config/routes.rb

resources :projects

to the lines in the following listing.

resources :projects do
resources :tickets

end

This code tells the routing for Rails that you have a tickets resource nested inside the

projects resource. Effectively, any time you access a ticket resource, you access it within

the scope of a project too. Just as the resources :projects method gave you helpers to

use in controllers and views, this nested one gives you the helpers (where id repre-

sents the identifier of a resource) shown in table 5.1.

As before, you can use the *_url alternatives to these helpers, such as project

_tickets_url, to get the full URL if you so desire. The :project_id symbol here

would normally be replaced by the project ID as well as the :id symbol, which would

be replaced by a ticket’s ID.

 In the left column are the routes that can be accessed, and in the right, the routing

helper methods you can use to access them. Let’s make use of them by first creating

your TicketsController.

5.1.2 Creating a tickets controller

Because you defined this route in your routes file, Capybara can now click the link in

your feature and proceed before complaining about the missing TicketsController,

spitting out an error followed by a stack trace:

And I follow "New Ticket"
uninitialized constant TicketsController ...

Some guides may have you generate the model before you generate the controller,

but the order in which you create them is not important. In Cucumber, you just

follow the bouncing ball, and if Cucumber tells you it can’t find a controller, then

you generate the controller it’s looking for next. Later, when you inevitably receive

Listing 5.3 config/routes.rb

Table 5.1 Nested RESTful routing matchup

Route Helper

/projects/:project_id/tickets project_tickets_path

/projects/:project_id/tickets/new new_project_ticket_path

/projects/:project_id/tickets/:id/edit edit_project_ticket_path

/projects/:project_id/tickets/:id project_ticket_path

102 CHAPTER 5 Nested resources

an error that it cannot find the Ticket model, as you did for the Project model, you

generate that too.

 To generate this controller and fix this uninitialized constant error, use this

command:

rails g controller tickets

You may be able to pre-empt what’s going to happen next if you run Cucumber: it’ll

complain of a missing new action that it’s trying to get to by clicking the New Ticket

link. Open app/controllers/tickets_controller.rb and add the new action, shown in the

following listing.

def new

@ticket = @project.tickets.build
end

The build method simply instantiates a new record for the tickets association on the

@project object, working in much the same way as the following code would:

Ticket.new(:project_id => @project.id)

Of course, you haven’t yet done anything to define the @project variable in Tickets-

Controller, so it would be nil. You must define the variable using a before_filter,

just as you did in the ProjectsController. Put the following line just under the class

definition in app/controllers/tickets_controller.rb:

before_filter :find_project

You don’t restrict the before_filter here: you want to have a @project to work with

in all actions because the tickets resource is only accessible through a project. Under-

neath the new action, define the method that the before_filter uses:

private

def find_project
@project = Project.find(params[:project_id])

end

Where does params[:project_id] come from? It’s made available through the won-

ders of Rails’s routing, just as params[:id] was. It’s called project_id instead of id

because you could (and later will) have a route that you want to pass through an ID for

a ticket as well, and that would be params[:id]. Now how about that tickets method

on your @project object? Let’s make sure it doesn’t already exist by running bin/

cucumber features/creating_tickets.feature:

And I follow "New Ticket"

undefined method 'tickets' for #<Project:0xb7461074> (NoMethodError)

No Rails magic here yet.

Listing 5.4 app/controllers/tickets_controller.rb

103Creating tickets

5.1.3 Defining a has_many association

The tickets method is defined by an association method in the Project class called

has_many, which you can use as follows, putting it directly above the validation you put

there earlier:

has_many :tickets

As mentioned before, this defines the tickets method you need but also gives you a

whole slew of other useful methods, such as the build method, which you call on the

association. The build method is equivalent to new for the Ticket class (which you

create in a moment) but associates the new object instantly with the @project object

by setting a foreign key called project_id automatically. Upon running the feature,

you get this:

And I follow "New Ticket"
uninitialized constant Project::Ticket (NameError)

You can determine from this output that the method is looking for the Ticket class,

but why? The tickets method on Project objects is defined by the has_many call in

the Project model. This method assumes that when you want to get the tickets, you

actually want objects of the Ticket model. This model is currently missing; hence, the

error. You can add this model now with the following command:

rails generate model ticket title:string description:text project:references

The project:references part defines an integer column for the tickets table called

project_id in the migration. This column represents the project this ticket links to

and is called a foreign key. You should now run the migration by using rake

db:migrate and load the new schema into your test database by running rake

db:test:prepare.

 The rake db:migrate task runs the migrations and then dumps the structure of

the database to a file called db/schema.rb. This structure allows you to restore your

database using the rake db:schema:load task if you wish, which is better than run-

ning all the migrations on a large project again! The rake db:test:prepare task

loads this schema into the test database, making the fields that were just made avail-

able on the development database by running the migration also now available on

the test database.

 Now when you run bin/cucumber features/creating_tickets.feature, you’re

told the new template is missing:

And I follow "New Ticket"
Missing template tickets/new, application/new

with {:handlers=>[:erb, :builder],

:formats=>[:html],
:locale=>[:en, :en]}.

Searched in:

* ".../ticketee/app/views"

A file seems to be missing! You must create this file in order to continue.

104 CHAPTER 5 Nested resources

5.1.4 Creating tickets within a project

Create the file at app/views/tickets/new.html.erb, and put the following inside:

<h2>New Ticket</h2>
<%= render "form" %>

This template renders a form partial, which will be relative to the current folder and will

be placed at app/views/tickets/_form.html.erb, using the code from the next listing.

<%= form_for [@project, @ticket] do |f| %>
<%= f.error_messages %>

<p>

<%= f.label :title %>

<%= f.text_field :title %>

</p>

<p>
<%= f.label :description %>

<%= f.text_area :description %>

</p>

<%= f.submit %>
<% end %>

Note that form_for is passed an array of objects rather than simply

<%= form_for @ticket do |f| %>

This code indicates to form_for that you want the form to post to the nested route

you’re using. For the new action, this generate a route like /projects/1/tickets, and for

the edit action, it generates a route like /projects/1/tickets/2. When you run bin/

cucumber features/creating_tickets.feature again, you’re told the create action

is missing:

And I press "Create Ticket"
The action 'create' could not be found for TicketsController

To define this action, put it directly underneath the new action but before the private

method:

def create

@ticket = @project.tickets.build(params[:ticket])

if @ticket.save
flash[:notice] = "Ticket has been created."

redirect_to [@project, @ticket]

else
flash[:alert] = "Ticket has not been created."

render :action => "new"

end
end

Inside this action, you use redirect_to and specify an Array B—the same array you

used in the form_for earlier—containing a Project object and a Ticket object. Rails

Listing 5.5 app/views/tickets/_form.html.erb

B Specify array

105Creating tickets

inspects any array passed to helpers, such as redirect_to and link_to, and deter-

mines what you mean from the values. For this particular case, Rails determine that

you want this helper:

project_ticket_path(@project, @ticket)

Rails determines this helper because, at this stage, @project and @ticket are both

objects that exist in the database, and you can therefore route to them. The route gen-

erated would be /projects/1/tickets/2 or something similar. Back in the form_for,

@ticket was new, so the route happened to be /projects/1/tickets.

 You could have been explicit and specifically used project_ticket_path in the

action, but using an array is DRYer.

 When you run bin/cucumber features/creating_tickets.feature, both scenar-

ios report the same error:

And I press "Create Ticket"
The action 'show' could not be found TicketsController

Therefore, you must create a show action for the TicketsController, but when you

do so, you’ll need to find tickets only for the given project.

5.1.5 Finding tickets scoped by project

Currently, the first scenario is correct, but the second one is not.

 Of course, now you must define the show action for your controller, but you can

anticipate that you’ll need to find a ticket for the edit, update, and destroy actions

too and pre-empt those errors. You can also make this a before_filter, just as you

did in the ProjectsController with the find_project method. You define this

finder underneath the find_project method in the TicketsController:

def find_ticket

@ticket = @project.tickets.find(params[:id])
end

find is yet another association method provided by Rails when you declared that your

Project model has_many :tickets. This code attempts to find tickets only within the

scope of the project. Put the before_filter at the top of your class, just underneath

the one to find the project:

before_filter :find_project
before_filter :find_ticket, :only => [:show,

:edit,

:update,
:destroy]

The sequence here is important because you want to find the @project before you go

looking for tickets for it. With this before_filter in place, create an empty show

action in your controller to show that it responds to this action:

def show

end

106 CHAPTER 5 Nested resources

Then create the view for this action at app/views/tickets/show.html.erb using this code:

<div id='ticket'>

<h2><%= @ticket.title %></h2>

<%= simple_format(@ticket.description) %>
</div>

The new method, simple_format, converts the line breaks1 entered into the descrip-

tion field into HTML break tags (
) so that the description renders exactly how the

user intends it to.

 Based solely on the changes that you’ve made so far, your first scenario should be

passing. Let’s see with a quick run of bin/cucumber features/creating_tickets

.feature:

Then I should see "Ticket has been created."

...
2 scenarios (1 failed, 1 passed)

16 steps (1 failed, 2 skipped, 13 passed)

This means that you’ve got the first scenario under control and that users of your

application can create tickets within a project. Next, you need to add validations to

the Ticket model to get the second scenario to pass.

5.1.6 Ticket validations

The second scenario fails because the @ticket that it saves is valid, at least according

to your application in its current state:

expected there to be content "Ticket has not been created" in "[text]"

You need to ensure that when somebody enters a ticket into the application, the

title and description attributes are filled in. To do this, define the following valida-

tions inside the Ticket model.

validates :title, :presence => true
validates :description, :presence => true

Now when you run bin/cucumber features/creating_tickets.feature, the entire

feature passes:

2 scenarios (2 passed)

16 steps (16 passed)

Before we wrap up here, let’s add one more scenario to ensure that what is entered

into the description field is longer than 10 characters. You want the descriptions to be

useful! Let’s add this scenario to the features/creating_tickets.feature file:

Scenario: Description must be longer than 10 characters
When I fill in "Title" with "Non-standards compliance"

And I fill in "Description" with "it sucks"

1 Line breaks are represented as \n and \r\n in strings in Ruby rather than as visible line breaks.

Listing 5.6 app/models/ticket.rb

107Creating tickets

And I press "Create Ticket"
Then I should see "Ticket has not been created."

And I should see "Description is too short"

The final line here is written this way because you do not know what the validation

message is, but you’ll find out later. To implement this scenario, add another option

to the end of the validation for the description in your Ticket model, as shown in

the following listing.

validates :description, :presence => true,

:length => { :minimum => 10 }

If you go into rails console and try to create a new Ticket object by using create!,

you can get the full text for your error:

irb(main):001:0> Ticket.create!
ActiveRecord::RecordInvalid: ... Description is too short

(minimum is 10 characters)

That is the precise error message you are looking for in your feature. When you run

bin/cucumber features/creating_tickets.feature again, you see that all three sce-

narios are now passing:

3 scenarios (3 passed)
25 steps (25 passed)

You should ensure that the rest of the project still works. Because you have both fea-

tures and specs, you should run the following command to check everything:

rake cucumber:ok spec

The summary for these two tasks together is2

9 scenarios (9 passed)
62 steps (62 passed)

and

5 examples, 0 failures, 4 pending

Listing 5.7 app/models/ticket.rb

2 The summary is altered to cut down on line noise with only the important parts shown.

Alternative validation syntax

You can use a slightly differently named method call to accomplish the same thing

here:

validates_presence_of :title

validates_presence_of :description

Some people prefer this syntax because it’s been around for a couple of years; oth-

ers prefer the newer style. It’s up to you which to choose. A number of other

validates_* methods are available.

108 CHAPTER 5 Nested resources

Great! Everything’s still working. Push the changes!

git add .

git commit -m "Implemented creating tickets for a project"

git push

This section covered how to create tickets and link them to a specific project through

the foreign key called project_id on records in the tickets table.

 The next section shows how easily you can list tickets for individual projects.

5.2 Viewing tickets

Now that you have the ability to create tickets, you use the show action to create the

functionality to view them individually.

 When displaying a list of projects, you use the index action of the Projects-

Controller. For tickets, however, you use the show action because this page is cur-

rently not being used for anything else in particular. To test it, put a new feature at

features/viewing_tickets.feature using the code from the following listing.

Feature: Viewing tickets

In order to view the tickets for a project

As a user
I want to see them on that project's page

Background:

Given there is a project called "TextMate 2"
And that project has a ticket:

| title | description |

| Make it shiny! | Gradients! Starbursts! Oh my! |
And there is a project called "Internet Explorer"

And that project has a ticket:

| title | description |
| Standards compliance | Isn’t a joke. |

And I am on the homepage

Scenario: Viewing tickets for a given project
When I follow "TextMate 2"

Then I should see "Make it shiny!"

And I should not see "Standards compliance"
When I follow "Make it shiny!"

Then I should see "Make it shiny" within "#ticket h2"

And I should see "Gradients! Starbursts! Oh my!"

When I follow "Ticketee"

And I follow "Internet Explorer"

Then I should see "Standards compliance"
And I should not see "Make it shiny!"

When I follow "Standards compliance"

Then I should see "Standards compliance" within "#ticket h2"
And I should see "Isn't a joke."

Listing 5.8 features/viewing_tickets.feature

Check element
using CSS
selector

B

109Viewing tickets

Quite the long feature! We’ll go through it piece by piece in just a moment. First, let’s

examine the within usage in your scenario. Rather than checking the entire page for

content, this step checks the specific element using Cascading Style Sheets (CSS)

selectors. The #ticket prefix finds all elements with an ID of ticket that contain an

h2 element with the content you specified. This content should appear inside the

specified tag only when you’re on the ticket page, so this is a great way to make sure

that you’re on the right page and that the page is displaying relevant information.

 The first step passes because you defined it previously; the next one is undefined.

Let’s see this by running bin/cucumber features/viewing_tickets.feature:

Undefined step: "that project has a ticket:" (Cucumber::Undefined)

The bottom of the output tells you how to define the step:

Given /^that project has a ticket:$/ do |table|

table is a Cucumber::Ast::Table
pending # express the regexp above with the code you wish you had

end

This step in the scenario is defined using the following syntax:

| title | description |
| Make it shiny! | Gradients! Starbursts! Oh my! |

For Cucumber, this syntax represents a table, which is what the step definition hints at.

Using the code shown in the following listing, define this step inside a new file at fea-

tures/step_definitions/ticket_steps.rb.

Given /^that project has a ticket:$/ do |table|

table.hashes.each do |attributes|

@project.tickets.create!(attributes)
end

end

Because you used a table here, Cucumber provides a hashes method for the table

object, which uses the first row in the table as keys and the rest of the rows (as many as

you need) for the values of hashes stored in an array. In this step, you iterate through

this array, and each hash represents the attributes for the tickets you want to create.

 One thing that you haven’t done yet is define the @project variable used inside

this iterator. To do that, open features/step_definitions/project_steps.rb and change

this line

Factory(:project, :name => name)

to the following:

@project = Factory(:project, :name => name)

Instance variables are available throughout the scenario in Cucumber, so if you define

one in one step, you may use it in the following steps. If you run the feature again, you

Listing 5.9 features/step_definitions/ticket_steps.rb

110 CHAPTER 5 Nested resources

see that it can’t find the text for the first ticket because you’re not displaying any tick-

ets on the show template yet:

expected there to be content "Make it shiny!" in "[text]"

5.2.1 Listing tickets

To display a ticket on the show template, you can iterate through the project’s tickets

by using the tickets method, made available by the has_many :tickets call in your

model. Put this code at the bottom of app/views/projects/show.html.erb, as shown in

the next listing.

<ul id='tickets'>

<% @project.tickets.each do |ticket| %>

#<%= ticket.id %> - <%= link_to ticket.title, [@project, ticket] %>

<% end %>

TIP If you use a @ticket variable in place of the ticket variable in the
link_to’s second argument, it will be nil. You haven’t initialized the
@ticket variable at this point, and uninitialized instance variables are nil
by default. If @ticket rather than the correct ticket is passed in here, the
URL generated will be a projects URL, such as /projects/1, rather than the
correct /projects/1/tickets/2.

Here you iterate over the items in @project.tickets using the each method, which

does the iterating for you, assigning each item to a ticket variable inside the block.

The code inside this block runs for every single ticket. When you run bin/cucumber

features/viewing_tickets.feature, you get this error:

When I follow "Ticketee"

no link with title, id or text 'Ticketee' found

The reasoning behind wanting this not-yet-existing link is that when users click it, it

takes them back to the homepage, which is where you want to go in your feature to get

back to the projects listing. To add this link, put it into app/views/layouts/application

.html.erb (as shown in the following listing) so that it’s available on every page, just

above the <%= yield %>.

<h1><%= link_to "Ticketee", root_path %></h1>

<%= yield %>

The call to yield should be used only once. If you put <%= yield %> then the content

of the page would be rendered twice.

Listing 5.10 app/views/projects/show.html.erb

Listing 5.11 app/views/layouts/application.html.erb

111Viewing tickets

 The root_path method is made available by the call to the root method in config/

routes.rb. This simply outputs / when it’s called, providing a path to the root of your

application.

 Running bin/cucumber features/viewing_tickets.feature again, you can see

this is all working:

1 scenario (1 passed)

18 steps (18 passed)

Your code expressly states that inside the TextMate 2 project, you should see only the

"Make it shiny!" ticket, and inside the Internet Explorer project, you should see only

the "Standards compliance" ticket. Both statements worked.

 Time to make sure everything else is still working by running rake cucumber:ok

spec. You should see that everything is green:

10 scenarios (10 passed)
80 steps (80 passed)

and

5 examples, 0 failures, 4 pending

Fantastic! Push!

git add .

git commit -m "Implemented features for displaying a list of relevant

tickets for projects and viewing particular tickets"
git push

Now you can see tickets just for a particular project, but what happens when a project

is deleted? The tickets for that project would not be deleted automatically. To imple-

ment this behavior, you can pass some options to the has_many association, which will

delete the tickets when a project is deleted.

5.2.2 Culling tickets

When a project is deleted, its tickets become useless: they’re inaccessible because of

how you defined their routes. Therefore, when you delete a project, you should also

delete the tickets for that project, and you can do that by using the :dependent option

on the has_many association defined in your Project model.

 This option has three choices that all act slightly differently from each other. The

first one is the :destroy value:

has_many :tickets, :dependent => :destroy

If you put this in your Project model, any time you call destroy on a Project object,

Rails iterates through each ticket for this project and calls destroy on them, then calls

any destroy callbacks (such as any has_manys in the Ticket model, which also have the

dependent option)3 the ticket objects have on them, any destroy callbacks for those

objects, and so on. The problem is that if you have a large number of tickets, destroy

is called on each one, which will be slow.

3 Or any callback defined with after_destroy or before_destroy.

112 CHAPTER 5 Nested resources

 The solution is the second value for this option:

has_many :tickets, :dependent => :delete_all

This simply deletes all the tickets using a SQL delete, like this:

DELETE FROM tickets WHERE project_id = :project_id

This operation is quick and is exceptionally useful if you have a large number of tick-

ets that don’t have callbacks. If you do have callbacks on Ticket for a destroy opera-

tion, then you should use the first option, :dependent => :destroy.

 Finally, if you just want to disassociate tickets from a project and unset the

project_id field, you can use this option:

has_many :tickets, :dependent => :nullify

When a project is deleted with this type of :dependent option defined, it will execute

an SQL query such as this:

UPDATE tickets SET project_id = NULL WHERE project_id = :project_id

Rather than deleting the tickets, this option keeps them around, but their project_id

fields are unset.

 Using this option would be helpful, for example, if you were building a task-

tracking application and instead of projects and tickets you had users and tasks. If you

delete a user, you may want to reassign rather than delete the tasks associated with that

user, in which case you’d use the :dependent => :nullify option instead.

 In your projects and tickets scenario, though, you use :dependent => :destroy if

you have callbacks to run on tickets when they’re destroyed or :dependent =>

:delete_all if you have no callbacks on tickets.

 This was a little bit of a detour for the work you’re doing now, but it’s a nice thing

to know if you ever need to delete an associated object when the original object is

deleted.

 Let’s look at how to edit the tickets in your application.

5.3 Editing tickets

You want users to be able to edit tickets, the updating part of this CRUD interface. This

section covers creating the edit and update actions for the TicketsController.

 The next feature you’re going to implement is the ability to edit tickets. This func-

tionality follows a thread similar to the projects edit feature where you follow an Edit

link in the show template. With that in mind, you can write this feature using the code

in the following listing and put it in a file at features/editing_tickets.feature.

Feature: Editing tickets

In order to alter ticket information
As a user

I want a form to edit the tickets

Listing 5.12 features/editing_tickets.feature

113Editing tickets

Background:
Given there is a project called "TextMate 2"

And that project has a ticket:

| title | description |
| Make it shiny! | Gradients! Starbursts! Oh my! |

Given I am on the homepage

When I follow "TextMate 2"
And I follow "Make it shiny!"

When I follow "Edit Ticket"

Scenario: Updating a ticket
When I fill in "Title" with "Make it really shiny!"

And I press "Update Ticket"

Then I should see "Ticket has been updated."
And I should see "Make it really shiny!" within "#ticket h2"

But I should not see "Make it shiny!"

Scenario: Updating a ticket with invalid information
When I fill in "Title" with ""

And I press "Update Ticket"

Then I should see "Ticket has not been updated."

When you run this feature using bin/cucumber features/editing_tickets.feature,

the first two steps pass, but the third fails:

When I follow "Edit"

no link with title, id or text 'Edit Ticket' found

To fix this, add the Edit Ticket link to the TicketsController’s show template,

because that’s where you’ve navigated to in your feature. Put it on the line underneath

the <h2> tag in app/views/tickets/show.html.erb:

<%= link_to "Edit Ticket", [:edit, @project, @ticket] %>

Here is yet another use of the Array argument passed to the link_to method, but

rather than passing all Active Record objects, you pass a Symbol first. Rails, yet again,

works out from this Array what route you wish to follow. Rails interprets this array to

mean the edit_project_ticket_path method, which is called like this:

edit_project_ticket_path(@project, @ticket)

Now that you have an Edit Project link, you need to add the edit action to the

TicketsController.

5.3.1 Adding the edit action

The next logical step is to define the edit action in your TicketsController, which

you can leave empty because the find_ticket before filter does all the hard lifting for

you (shown in the following listing).

def edit

end

Listing 5.13 app/controllers/tickets_controller.rb

114 CHAPTER 5 Nested resources

Again, you’re defining the action here so that anybody coming through and reading

your TicketsController class knows that this controller responds to this action. It’s

the first place people will go to determine what the controller does, because it is the

controller.

 The next logical step is to create the view for this action. Put it at app/views/

tickets/edit.html.erb and fill it with this content:

<h2>Editing a ticket in <%= @project.name %></h2>
<%= render "form" %>

Here you re-use the form partial you created for the new action, which is handy. The

form_for knows which action to go to. If you run the feature command here, you’re

told the update action is missing:

And I press "Update"

The action 'update' could not be found TicketsController

5.3.2 Adding the update action

You should now define the update action in your TicketsController, as shown in the

following listing.

def update
if @ticket.update_attributes(params[:ticket])

flash[:notice] = "Ticket has been updated."

redirect_to [@project, @ticket]
else

flash[:alert] = "Ticket has not been updated."

render :action => "edit"
end

end

Remember that in this action you don’t have to find the @ticket or @project objects

because a before_filter does it for the show, edit, update, and destroy actions. With

this single action implemented, both scenarios in your ticket-editing feature pass:

2 scenarios (2 passed)
20 steps (20 passed)

Now check to see if everything works:

12 scenarios (12 passed)
100 steps (100 passed)

and

5 examples, 0 failures, 4 pending

Great! Let’s commit and push that:

git add .

git commit -m "Implemented edit action for the tickets controller"
git push

Listing 5.14 app/controllers/tickets_controller.rb

115Deleting tickets

In this section, you implemented edit and update for the TicketsController by

using the scoped finders and some familiar methods, such as update_attributes.

You’ve got one more part to go: deletion.

5.4 Deleting tickets

We now reach the final story for this nested resource, the deletion of tickets. As with

some of the other actions in this chapter, this story doesn’t differ from what you used

in the ProjectsController, except you’ll change the name project to ticket for your

variables and flash[:notice]. It’s good to have the reinforcement of the techniques

previously used: practice makes perfect.

 Let’s use the code from the following listing to write a new feature in features/

deleting_tickets.feature.

Feature: Deleting tickets

In order to remove tickets

As a user
I want to press a button and make them disappear

Background:

Given there is a project called "TextMate 2"
And that project has a ticket:

| title | description |

| Make it shiny! | Gradients! Starbursts! Oh my! |
Given I am on the homepage

When I follow "TextMate 2"

And I follow "Make it shiny!"

Scenario: Deleting a ticket

When I follow "Delete Ticket"

Then I should see "Ticket has been deleted."
And I should be on the project page for "TextMate 2"

When you run this using bin/cucumber features/deleting_tickets.feature, the

first step fails because you don’t yet have a Delete Ticket link on the show template for

tickets:

When I follow "Delete Ticket"

no link with title, id or text 'Delete Ticket' found (Capybara::ElementNotFound)

You can add the Delete Ticket link to the app/views/tickets/show.html.erb file just

under the Edit link (shown in the next listing), exactly as you did with projects.

<%= link_to "Delete Ticket", [@project, @ticket], :method => :delete,

:confirm => "Are you sure you want to delete this ticket?" %>

The :method => :delete is specified again, turning the request into one headed for

the destroy action in the controller. Without this :method option, you’d be off to the

Listing 5.15 features/deleting_tickets.feature

Listing 5.16 app/views/tickets/show.html.erb

116 CHAPTER 5 Nested resources

show action because the link defaults to the GET method. Upon running bin/cucumber

features/deleting_tickets.feature, you’re told a destroy action is missing:

When I follow "Delete Ticket"

The action 'destroy' could not be found in TicketsController

The next step must be to define this action, right? Open app/controllers/

tickets_controller.rb, and define it directly under the update action:

def destroy
@ticket.destroy

flash[:notice] = "Ticket has been deleted."

redirect_to @project
end

With that done, your feature should now pass:

1 scenario (1 passed)
8 steps (8 passed)

Yet again, check to see that everything is still going as well as it should by using rake

cucumber:ok spec. If it is, you should see output similar to this:

13 scenarios (13 passed)
108 steps (108 passed)

and

5 examples, 0 failures, 4 pending

Commit and push!

git add .

git commit -m "Implemented deleting tickets feature"
git push

You’ve now completely created another CRUD interface, this time for the tickets

resource. This resource is accessible only within the scope of a project, so you must

request it using a URL such as /projects/1/tickets/2 rather than /tickets/2.

5.5 Summary

In this chapter, you generated another controller, the TicketsController, which

allows you to create records for your Ticket model that will end up in your tickets

table. The difference between this controller and the ProjectsController is that the

TicketsController is accessible only within the scope of an existing project because

you used nested routing.

 In this controller, you scoped the finds for the Ticket model by using the tickets

association method provided by the association helper method has_many call in your

Project model. has_many also provides the build method, which you used to begin to

create new Ticket records that are scoped to a project.

 In the next chapter, you learn how to let users sign up and sign in to your applica-

tion using a gem called devise. You also implement a basic authorization for actions

such as creating a project.

117

Authentication
and basic authorization

You’ve now created two resources for your Ticketee application: projects and tick-

ets. Now you’ll use a gem called Devise, which provides authentication, to let users

sign in to your application. With this feature, you can track which tickets were cre-

ated by which users. A little later, you’ll use these user records to allow and deny

access to certain parts of the application.

 The general idea behind having users for this application is that some users are

in charge of creating projects (project owners) and others use whatever the proj-

ects provide. If they find something wrong with it or wish to suggest an improve-

ment, filing a ticket is a great way to inform the project owner of their request. You

don’t want absolutely everybody creating or modifying projects, so you’ll learn to

restrict project creation to a certain subset of users.

This chapter covers

 Working with engine code and generators

 Building an authentication system with an engine

 Implementing basic authorization checking

118 CHAPTER 6 Authentication and basic authorization

 To round out the chapter, you’ll create another CRUD interface, this time for the

users resource, but with a twist.

 Before you start, you must set up Devise!

6.1 What Devise does

Devise is an authentication gem that provides a lot of the common functionality for

user management, such as letting users sign in and sign up, in the form of a Rails

engine. An engine can be thought of as a miniature application that provides a small

subset of controllers, models, views, and additional functionality in one neat little

package. You can override the controllers, models, and views if you wish, though, by

placing identically named files inside your application. This works because Rails looks

for a file in your application first before diving into the gems and plugins of the appli-

cation, which can speed up the application’s execution time.

6.1.1 Installing Devise

To install Devise, first add the following line to the Gemfile, right after the end for the

:test group:

gem 'devise', '~> 1.4.3'

To install the Devise gem, run bundle. Once Devise is installed, you need to run the

generator, but how do you know the name of it? Simple! You can run the generate

command with no additional arguments to list all the generators:

rails generate

In this output, you’ll see devise:install listed. Hey, that’ll probably help you get

things installed! Let’s try it:

rails g devise:install

This code generates two files, config/initializers/devise.rb and config/locales/

devise.en.yml:

 config/initializers/devise.rb sets up Devise for your application and is the source

for all configuration settings for Devise.

 config/locales/devise.en.yml contains the English translations for Devise and is

loaded by the internationalization (I18n) part of Rails. You can learn about

internationalization in Rails by reading the official I18n guide: http://

guides.rubyonrails.org/i18n.html.

The code also gives you three setup tips to follow. The first setup tip tells you to set up

some Action Mailer settings, which you can place in your development environment’s

configuration at config/environments/development.rb and in your test environment’s

configuration at config/environments/test.rb:

config.action_mailer.default_url_options = { :host => 'localhost:3000' }

http://guides.rubyonrails.org/i18n.html
http://guides.rubyonrails.org/i18n.html

119What Devise does

The files in config/environments are used for environment-specific settings, like the

one you just added. If you wish to configure something across all environments for

your application, you put it in config/application.rb.

 The second tip tells you to set up a root route, which you have done already. The

third tip tells you to add displays for notice and alert in your application layout,

which you’ve also done, except with different code than what it suggests.

 The next step to get Devise going is to run this command:

rails g devise user

This generator generates a model for your user and adds the following line to your

config/routes.rb file:

devise_for :users

By default, this one simple line adds routes for user registration, signup, editing and

confirmation, and password retrieval. The magic for this line comes from inside the

User model that was generated, which contains the code from the following listing.

class User < ActiveRecord::Base
Include default devise modules. Others available are:

:token_authenticatable, :encryptable, :confirmable,

:lockable, :timeoutable and :omniauthable
devise :database_authenticatable, :registerable,

:recoverable, :rememberable, :trackable, :validatable

Setup accessible (or protected) attributes for your model
attr_accessible :email, :password,

:password_confirmation, :remember_me

end

The devise method here comes from the Devise gem and configures the gem to pro-

vide the specified functions. These modules are shown in the following two tables.

Table 6.1 shows default functions, and table 6.2 shows the optional functions.

Listing 6.1 app/models/user.rb

Table 6.1 Devise default modules

Module Provides

:database_authenticatable Adds the ability to authenticate via an email and password field

in the database.

:registerable Provides the functionality to let a user sign up.

:recoverable Adds functionality to let the user recover their password if they

ever lose it.

:rememberable Provides a check box for users to check if they want their session

to be remembered. If they close their browser and revisit the

application, they are automatically signed in on their return.

120 CHAPTER 6 Authentication and basic authorization

The devise call is followed by a call to attr_accessible. This method defines fields

that are accessible via attribute mass-assignment. Attribute mass-assignment happens

when you pass a whole slew of attributes to a method such as create or

update_attributes; because these methods take any and all parameters passed to

them by default, users may attempt to hack the form and set an attribute they are not

supposed to set, such as an admin boolean attribute. By using attr_accessible, you

define a white list of fields you want the user to access. Any other fields passed

through in an attribute mass-assignment are ignored.

 The final step here is to run rake db:migrate to create the users table from the

Devise-provided migration in your development database and run rake

db:test:prepare so it’s created in the test database too.

:trackable Adds functionality to track users, such as how many times they

sign in, when they last signed in, and the current and last IPs

they signed in from.

:validatable Validates the user has entered correct data, such as a valid

email address and password.

Table 6.2 Devise optional modules (off by default)

Module Provides

:token_authenticatable Lets the user authenticate via a token; can be used in conjunction

with :database_authenticatable

:encryptable Adds support for other methods of encrypting passwords; by

default, Devise uses bcrypt

:confirmable When users register, sends them an email with a link they click to

confirm they’re a real person (you’ll switch on this module shortly

because it’s one step to prevent automated signups)

:lockable Locks the user out for a specific amount of time after a specific

number of retries (configurable in the initializer); default is a lock-

out time of 1 hour after 20 retries

:timeoutable If users have no activity in their session for a specified period of

time, they are automatically signed out; useful for sites that may

be used by multiple people on the same computer, such as email

or banking sites

:omniauthable Adds support for the OmniAuth gem, which allows for alternative

authentication methods using services such as OAuth and

OpenID

Table 6.1 Devise default modules (continued)

Module Provides

121User signup

6.2 User signup

With Devise set up, you’re ready to write a feature that allows users to sign up. The

Devise gem provides this functionality, so this feature will act as a safeguard to ensure

that if the functionality were ever changed, the feature would break.

 To make sure this functionality is always available, you write a feature for it, using

the following listing, and put it in a new file at features/signing_up.feature.

Feature: Signing up
In order to be attributed for my work

As a user

I want to be able to sign up

Scenario: Signing up

Given I am on the homepage

When I follow "Sign up"
And I fill in "Email" with "user@ticketee.com"

And I fill in "Password" with "password"

And I fill in "Password confirmation" with "password"

And I press "Sign up"
Then I should see "You have signed up successfully."

When you run this feature using bin/cucumber features/signing_up.feature,

you’re told it can’t find a Sign Up link, probably because you haven’t added it yet:

no link with title, id or text 'Sign up' found

You should now add this link in a nav:1

<nav>
<%= link_to "Sign up", new_user_registration_path %>

</nav>

You previously used the menu on the app/views/tickets/show.html.erb page to style the

links there. Here you use a nav tag because this is a major navigation menu for the

entire application, not just a single page’s navigation.

 With this link now in place, the entire feature passes when you run it because

Devise does all the heavy lifting for you:

1 scenario (1 passed)

7 steps (7 passed)

Because Devise has already implemented this functionality, you don’t need to write

any code for it. This functionality could be overridden in your application, and this

feature is insurance against anything changing for the worse.

 With the signup feature implemented, this is a great point to see if everything else

is working by running rake cucumber:ok spec. You should see this output:

Listing 6.2 features/signing_up.feature

1 nav is an HTML5 tag and may not be supported by some browsers. As an alternative, you could put <div
id='nav'> instead, in app/views/layouts/application.html.erb, directly underneath the h1 tag for your
application’s title.

122 CHAPTER 6 Authentication and basic authorization

14 scenarios (14 passed)
115 steps (115 passed)

and

6 examples, 0 failures, 5 pending

Great! Commit that!

git add .

git commit -m "Added feature to ensure Devise signup is always working"
git push

In this section, you added a feature to make sure Devise is set up correctly for your

application. When users sign up to your site, they’ll receive an email as long as you

configured your Action Mailer settings correctly. The next section covers how Devise

automatically signs in users who click the confirmation link provided in the email

they’ve been sent.

6.3 Confirmation link sign-in

With users now able to sign up to your site, you should make sure they’re also able to

sign in. When users are created, they should be sent a confirmation email in which

they have to click a link to confirm their email address. You don’t want users signing

up with fake email addresses! Once confirmed, the user is automatically signed in by

Devise.

6.3.1 Testing email

First, you enable the confirmable module for Devise because (as you saw earlier) it’s

one of the optional modules. With this module turned on, users will receive a confir-

mation email that contains a link for them to activate their account. You need to write

a test that checks whether users receive a confirmation email when they sign up and

can confirm their account by clicking a link inside that email.

 For this test, you use another gem called email_spec. To install this gem, add the

following line to your Gemfile inside the test group:

gem 'email_spec'

Now run bundle to install it.

 Next, run the generator to get the steps for email_spec with the following

command:

rails g email_spec:steps

This command generates steps in a file at features/step_definitions/email_steps.rb that

you can use in your features to check whether a user received a specific email and

more. This is precisely what you need to help you craft the next feature: signing in,

receiving an email, and clicking the confirmation link inside it.

 One additional piece you must set up is to require the specific files from the

email_spec library. Create a new file at features/support/email.rb, which you use for

requiring the email_spec files. Inside this file, put these lines:

123Confirmation link sign-in

Email Spec helpers
require 'email_spec'

require 'email_spec/cucumber'

6.3.2 Confirming confirmation

With the email_spec gem now fully installed and set up, let’s write a feature for sign-

ing users in when they click the confirmation link they should receive in their email.

Insert the following listing at features/signing_in.feature.

Feature: Signing in

In order to use the site

As a user
I want to be able to sign in

Scenario: Signing in via confirmation

Given there are the following users:
| email | password |

| user@ticketee.com | password |

And "user@ticketee.com" opens the email with subject

➥"Confirmation instructions"
And they click the first link in the email

Then I should see "Your account was successfully confirmed"

And I should see "Signed in as user@ticketee.com"

With this scenario, you make sure that when users are created, they receive an email

called “Confirmation instructions” that should contain confirmation instructions.

This email will contain a link, and when users click it, they should see two things: a

message saying “Your account was successfully confirmed” and notification that they

are now “Signed in as user@ticketee.com” where user@ticketee.com represents the

username.

 The first step in this scenario is currently undefined, so when you run this feature

using bin/cucumber features/signing_in.feature, it fails with the undefined step:

Given /^there are the following users:$/ do |table|
pending # express the regexp above with the code you wish you had

end

This step definition allows you to create as many users as you wish using Cucumber’s

table syntax. Put this step definition inside a new file called features/step_definitions/

user_steps.rb, using the code from the following listing.

Given /^there are the following users:$/ do |table|

table.hashes.each do |attributes|
@user = User.create!(attributes)

end

end

Listing 6.3 features/signing_in.feature

Listing 6.4 features/step_definitions/user_steps.rb

124 CHAPTER 6 Authentication and basic authorization

In this step definition, you use Cucumber’s table format again to specify more than

one user to create. To get to these attributes, iterate through table.hashes, storing

each set of attributes as attributes for each iteration. Inside the iteration, the

create! method creates the user record using these attributes. All of this should look

pretty familiar—you used it to create tickets for a project.

 The second step in this scenario is provided by the email_spec gem, and it fails

when you run bin/cucumber features/signing_in.feature again:

And "user@ticketee.com" opens the email with subject "Confirmation

 ➥instructions"

Could not find email With subject "Confirmation instructions".
Found the following emails:

[]

This is email_spec telling you it can’t find an email with the title “Confirmation

instructions,” which is what Devise would send out if you had told it you wanted users

to be confirmable. You haven’t yet done this, so no emails are being sent.

 To make users confirmable, add the :confirmable symbol at the end of the

devise call in app/models/user.rb:

devise :database_authenticatable, :registerable,

:recoverable, :rememberable, :trackable,

:validatable, :confirmable

Now Devise will send confirmation emails when users sign up. When you run bin/

cucumber features/signing_in.feature again, your first step is failing:

Given there are the following users:
| email | password | unconfirmed |

| user@ticketee.com | password | true |

undefined local variable or method 'confirmed_at' for #<User:...>

The confirmed_at attribute is used by Devise to determine whether or not a user has

confirmed their account. By default, this attribute is nil, indicating the user hasn’t

confirmed yet. The attribute doesn’t exist at the moment, so you get this error.

 You could add this attribute to the existing db/migrate/[timestamp]

_devise_create_users.rb migration, but because you already pushed that migration, you

should avoid changing it, as others will have to rerun the migration to get those

changes. Even though it’s just you working on the project at the moment, it’s a good

rule of thumb to not modify migrations that have already been pushed.

 Instead, create a new migration to add the confirmed_at field and two others,

confirmation_token and confirmation_sent_at. The confirmation_token is gener-

ated by Devise and used to identify users attempting to confirm their account when

they click the confirmation link from the email. The confirmation_sent_at field is

used also by Devise and tracks the time when the confirmation email was sent:

rails g migration add_confirmable_fields_to_users

Let’s now open this migration and put the code from the following listing inside it.

125Confirmation link sign-in

class AddConfirmableFieldsToUsers < ActiveRecord::Migration
def change

add_column :users, :confirmation_token, :string

add_column :users, :confirmed_at, :datetime
add_column :users, :confirmation_sent_at, :datetime

end

end

This migration adds the specified columns to the users table when you run rake

db:migrate or removes them when you run rake db:rollback.

 When users sign up, a confirmation token is generated for them. An email with a

link containing this token is sent (and the confirmation_sent_at field is set). When

users click the link, their account is confirmed, and the confirmed_at field is set to

the current time in the process.

 You now need to run rake db:migrate and rake db:test:prepare to update your

test database with this latest change. With these fields in place, you should be much

closer to having your scenario pass. Let’s see with a quick run of bin/cucumber fea-

tures/signing_in.feature:

Scenario: Signing in via confirmation

Given there are the following users:

| email | password |
| user@ticketee.com | password |

And "user@ticketee.com" opens the email with subject "Confirmation

 ➥instructions"
And they click the first link in the email

Then I should see "Your account was successfully confirmed"

Then I should see "Signed in as user@ticketee.com"
expected there to be content "Created by user@ticketee.com" in "[text]"

Everything but the final step is passing. The final step checks for “Signed in as

user@ticketee.com” somewhere on the page, but it can’t find it. You must add it to

your application’s layout, replacing the Sign Up link with “Signed in as [username]”

so users don’t have the option to sign up if they’re already signed in!

 Let’s open app/views/layouts/application.html.erb and change this line

<%= link_to "Sign up", new_user_registration_path %>

to the following:

<% if user_signed_in? %>
Signed in as <%= current_user.email %>

<% else %>

<%= link_to "Sign up", new_user_registration_path %>
<% end %>

The user_signed_in? and current_user methods are provided by Devise. The

user_signed_in? method returns true if the user is signed in; otherwise it returns

false. The current_user method returns a User object representing the current

user, and from that object you can call the email method to display the user’s email.

Listing 6.5 db/migrate/[timestamp]_add_confirmable_fields_to_users.rb

126 CHAPTER 6 Authentication and basic authorization

 When you run bin/cucumber features/signing_up.feature, the entire feature is

passing:

1 scenario (1 passed)

5 steps (5 passed)

In addition to signing-up facilities, Devise handles all the signing-in facilities too. All

you need to add is the :confirmable symbol to the devise call in the model, the con-

firmation fields to the users table, and the message “Signed in as [user]” in your

application—three easy steps.

 Does everything else pass? Run rake cucumber:ok spec, and you should see the

following output:

15 scenarios (15 passed)

120 steps (120 passed)

and
6 examples, 0 failures, 5 pending

Great! Push that!

git add .

git commit -m "Added feature for ensuring that a user is signed in

via a confirmation email by using email spec"
git push

Now that users can sign up and confirm their email addresses, what should happen

when they return to the site? They should be able to sign in! Let’s make sure this can

happen.

6.4 Form sign-in

The previous story covered the automatic sign-in that happens when users follow the

confirmation link from the email they receive when they sign up. Now you must write

a story for users who have confirmed their account and are returning and need to sign

in again.

 Place the scenario in the following listing directly underneath the previous sce-

nario in features/signing_in.feature.

Scenario: Signing in via form
Given there are the following users:

| email | password |
| user@ticketee.com | password |

And I am on the homepage
When I follow "Sign in"
And I fill in "Email" with "user@ticketee.com"
And I fill in "Password" with "password"
And I press "Sign in"
Then I should see "Signed in successfully."

When you run bin/cucumber features/signing_in.feature, it complains about the

missing Sign In link:

Listing 6.6 features/signing_in.feature

127Form sign-in

When I follow "Sign in"
no link with title, id or text 'Sign in' found (Capybara::ElementNotFound)

You should add the link directly under the Sign Up link in app/views/layouts

/application.html.erb, as shown in the following listing.

<%= link_to "Sign in", new_user_session_path %>

When you run the feature again, it still fails, but this time on the final step:

And I press "Sign in"

Then I should see "Signed in successfully."
expected there to be content "Signed in successfully." in "[text]"

It fails because users who have not yet confirmed their account by clicking the link in

the email can’t sign in. To fix this, you could confirm the users with the first step in

this scenario, but it would break the first scenario because it requires users to be

unconfirmed.

 To fix this, alter the first scenario in this feature to contain the following as its first

step:

Given there are the following users:

| email | password | unconfirmed |

| user@ticketee.com | password | true |

With this small change, the step now has an additional key available in the attributes

hash in the step definition. If this step is called with an unconfirmed user, it doesn’t

confirm the user; otherwise it does. Let’s alter this step definition in features/

step_definitions/user_steps.rb:

Given /^there are the following users:$/ do |table|

table.hashes.each do |attributes|
unconfirmed = attributes.delete("unconfirmed") == "true"

@user = User.create!(attributes)

@user.confirm! unless unconfirmed
end

end

At the top of the iteration over table.hashes, you now call attributes

.delete("unconfirmed"), which removes the unconfirmed key from the attributes

hash, returning its value in the process. If that value is equal to true then

unconfirmed is also set to true. If that’s the case, the final line in the iterator isn’t

called and the user isn’t confirmed. Otherwise, as in the case in the second scenario of

the feature, the user is confirmed and allowed to sign in.

 When you run bin/cucumber features/signing_in.feature again, both scenar-

ios pass:

2 scenarios (2 passed)

12 steps (12 passed)

Listing 6.7 app/views/layouts/application.html.erb

128 CHAPTER 6 Authentication and basic authorization

Run your tests again before you commit these changes with rake cucumber:ok spec.

Even though you didn’t change much code in this section, it’s still a good habit to run

your tests before every commit to stop unintentional regressions. You should see the

following summaries:

16 scenarios (16 passed)

127 steps (127 passed)

and
6 examples, 0 failures, 5 pending

Great, let’s commit and push:

git add .
git commit -m "Added feature for signing in via the Devise-provided form"

git push

6.5 Linking tickets to users

Now that users can sign in and sign up to your application, it’s time to link a ticket

with a user when it’s created automatically, clearly defining which user created the

ticket. You also want to ensure that the user who created the ticket gets attribution on

the ticket page.

 That part is easy: you need a “Created by [user]” message displayed on the ticket

page. The setup before it is a little more difficult, but you’ll get through it.

 You can test for this functionality by amending the Creating a Ticket scenario

inside features/creating_tickets.feature to have the following line as the final line for

the scenario:

Then I should see "Created by user@ticketee.com"

When you run the feature using bin/cucumber features/creating_tickets.feature,

it fails on this new step because it isn’t on the ticket show template:

expected #has_content?("Created by user@ticketee.com")

to return true, got false ...

You need to make sure the user is signed in before they can create a ticket; otherwise,

you won’t know who to make the owner of that ticket. When users go to a project page

and click the New Ticket link, they should be redirected to the sign-in page and asked

to sign in. Once they’re signed in, they should be able to create the ticket. Change the

Background of the Feature in features/creating_tickets.feature to ensure this process

happens, using the code from the following listing.

Given there is a project called "Internet Explorer"

And there are the following users:
| email | password |

| user@ticketee.com | password |

And I am on the homepage
When I follow "Internet Explorer"

And I follow "New Ticket"

Listing 6.8 features/creating_tickets.feature

129Linking tickets to users

Then I should see "You need to sign in or sign up before continuing."
When I fill in "Email" with "user@ticketee.com"

And I fill in "Password" with "password"

And I press "Sign in"
Then I should see "New Ticket"

The step that checks for the text “You need to sign in or sign up before continuing”

fails because you’re not ensuring the user is signed in before the new action in the

TicketsController.

 To do so, you can use the Devise-provided method authenticate_user! as a

before_filter. Put this method directly underneath the class definition for Tickets-

Controller inside app/controllers/tickets_controller.rb. The placement of this

before_filter ensures that if it fails, the other two before_filters underneath it

will not needlessly run, eventually saving valuable CPU cycles.

 The line you put in the TicketsController is

before_filter :authenticate_user!, :except => [:index, :show]

This line ensures that users are authenticated before they go to any action in the con-

troller that isn’t the index or show, including the new and create actions.

 By ensuring this authentication, you’ll know which user created a ticket during the

creation process, so let’s link tickets to users.

6.5.1 Attributing tickets to users

To link tickets to specific users, you alter the build line in your create action in

TicketsController from this line

@ticket = @project.tickets.build(params[:ticket])

to this:

@ticket = @project.tickets.build(params[:ticket].merge!(:user => current_user))

The merge! method here is a Hash and HashWithIndifferentAccess method, which

merges the provided keys into the hash and overrides any keys already specified.2

When you run the feature again using bin/cucumber features/creating_tickets

.feature, it complains about an unknown attribute in all three scenarios:

unknown attribute: user (ActiveRecord::UnknownAttributeError)

This error occurs because you haven’t added a belongs_to association between the

Ticket and User. Let’s open app/models/ticket.rb and add this line directly under the

belongs_to :project line:

belongs_to :user

The belongs_to method defines methods for accessing the association, as has_many

does, except here you retrieve only one record. Active Record knows which record

to retrieve when you call either project or user on a Ticket object because it

2 Which could happen if someone hacked the form and attempted to pass their own user attribute.

130 CHAPTER 6 Authentication and basic authorization

intelligently uses the name of the belongs_to association to imply that the fields are

project_id and user_id, respectively. When looking up a user, Active Record per-

forms a query like this:

SELECT * FROM users WHERE id = #{@ticket.user_id}

This query then returns a row from the database that matches the ID (if there is one),

and Active Record creates a new User object from this result.

 With these associations set up, you now need to add a field on the tickets table to

store the ID of the user that a ticket links to. Run this command:

rails g migration add_user_id_to_tickets user_id:integer

Based solely on how you wrote the name of this feature, Rails will understand that you

want to add a particular column to the tickets table. You specify the name and type

of the column after the migration name, and Rails creates the migration with the field

prefilled for you.

 If you open the new migration file (it’s the last one in the db/migrate directory),

you’ll see the output in the following listing.

class AddUserIdToTickets < ActiveRecord::Migration

def change

add_column :tickets, :user_id, :integer
end

end

It’s all done for you! You can close this file and then run the migration with rake

db:migrate and prepare the test database by using rake db:test:prepare.

 Let’s rerun bin/cucumber features/creating_tickets.feature and see where it

stands now:

Then I should see "Created by user@ticketee.com"

expected there to be content "Created by user@ticketee.com" in "[text]"

Listing 6.9 db/migrate/[timestamp]_add_user_id_to_tickets.rb

Bash migrate alias

If you’re using bash as a shell (which is probably the case if you’re on a UNIX oper-

ating system), you could add an alias to your ~/.bashrc to do both of these steps

for you rather than having to type them out:

alias migrate='rake db:migrate && rake db:test:prepare'

Then type source ~/.bashrc, and the alias will be available to you in your current

terminal window. It’ll also be available in new terminal windows even if you didn’t use

source, because this file is processed every time a new bash session is started. If

you don’t like typing source, then . ~/.bashrc will do.

131Linking tickets to users

Only one scenario fails now. We’re right back to the missing “Created by user@ticketee

.com” text. Open app/views/tickets/show.html.erb and, above the ticket description,

put the following line:

<small>Created by <%= @ticket.user.email %></small>

This line adds the text the feature needs to pass, so when you run bin/cucumber

features/creating_tickets.feature, you get the following output:

3 scenarios (3 passed)

44 steps (44 passed)

You should run rake cucumber:ok spec as usual to ensure you haven’t broken anything:

Failing Scenarios:

cucumber features/deleting_tickets.feature:15

cucumber features/editing_tickets.feature:16
cucumber features/viewing_tickets.feature:18

Oops, it looks like you did! If you didn’t have these tests in place, you wouldn’t have

known about this breakage unless you tested the application manually or guessed (or

somehow knew) that your changes would break the application in this way. Let’s see if

you can fix it.

6.5.2 We broke something!

Luckily, all the failed tests have the same error

When I follow "Make it shiny!"
undefined method 'email' for nil:NilClass (ActionView::Template::Error)

...

./app/views/tickets/show.html.erb:4:in ...

Whatever is causing this error is on line 4 of app/views/tickets/show.html.erb:

Created by <%= @ticket.user.email %>

Aha! The error is undefined method 'email' for nil:NilClass, and the only place

you call email on this line is on the user object from @ticket, so you can determine

that user must be nil. But why? Let’s have a look at how to set up the data in the

features/viewing_tickets.feature feature, as shown in the following listing.

Make sure to run db:test:prepare

If you don’t prepare the test database, the following error occurs when you run the

feature:

And I press "Create Ticket"
undefined method 'email' for nil:NilClass (ActionView::Template::Error)

Watch out for that one.

132 CHAPTER 6 Authentication and basic authorization

Given there is a project called "TextMate 2"
And that project has a ticket:

| title | description |

| Make it shiny! | Gradients! Starbursts! Oh my! |

No user is assigned to this ticket for the second step, and that’s why user is nil. You

should rewrite this feature to make it create a ticket and link it to a specific user.

6.5.3 Fixing the Viewing Tickets feature

The first step is to create a user you can link to, so change the first lines of the

Background to this:

Given there are the following users:
| email | password |
| user@ticketee.com | password |

And there is a project called "TextMate 2"
And that project has a ticket:

| title | description |
| Make it shiny! | Gradients! Starbursts! Oh my! |

Next, change the third step a little so it creates a ticket with a user:

And "user@ticketee.com" has created a ticket for this project:
| title | description |
| Make it shiny! | Gradients! Starbursts! Oh my! |

Also be sure to change the other ticket-creation lines further down:

And "user@ticketee.com" has created a ticket for this project:
| title | description |
| Standards compliance | Isn’t a joke. |

When you run bin/cucumber features/viewing_tickets.feature, you get the new

version of this step definition:

Given /^"([^\"]*)" has created a ticket for this project:$/ do |arg1, table|
table is a Cucumber::Ast::Table
pending # express the regexp above with the code you wish you had

end

Copy the first line of this step definition, open features/step_definitions/

ticket_steps.rb, and replace the first line in the file with this new line. Then replace

arg1 with email, making the entire step definition

Given /^"([^\"]*)" has created a ticket for this project:$/ do |email, table|
table.hashes.each do |attributes|

@project.tickets.create!(attributes)
end

end

Next, link this new ticket to the user who has the email you pass in. Change the step

definition as follows:

Given /^"([^\"]*)" has created a ticket for this project:$/ do |email, table|
table.hashes.each do |attributes|

Listing 6.10 features/viewing_tickets.feature

133Linking tickets to users

attributes = attributes.merge!(:user => User.find_by_email!(email))
@project.tickets.create!(attributes)

end
end

With this step definition in place, the feature should pass. Let’s do another run of

bin/cucumber features/viewing_tickets.feature:

1 scenario (1 passed)

19 steps (20 passed)

Let’s now fix up the other two, beginning with the Editing Tickets feature.

6.5.4 Fixing the Editing Tickets feature

You can re-use the step definition you created in the previous section in the features/

editing_tickets.feature by changing the first few lines of the Background to be identical

to the next listing.

Given there are the following users:
| email | password |
| user@ticketee.com | password |

Given there is a project called "TextMate 2"
And "user@ticketee.com" has created a ticket for this project:

| title | description |
| Make it shiny! | Gradients! Starbursts! Oh my! |

When you run the feature—unlike the Viewing Tickets feature—it doesn’t pass, com-

plaining that it can’t find the field called Title. Uh oh:

cannot fill in, no text field, text area or password field with id,
name, or label 'Title' found (Capybara::ElementNotFound)

Back in the TicketsController, you restricted some of the actions by using the

before_filter:

before_filter :authenticate_user!, :except => [:index, :show]

This before_filter restricts any access to the edit action for people who are not

signed in. In this feature then, you should sign in as the user you create so you can

edit this ticket. Change the first line of the Background to sign in as that user:

Background:
Given there are the following users:

| email | password |
| user@ticketee.com | password |

And I am signed in as them

When you run this feature, you see the last step in the example is undefined. You must

define this new step so you can sign in as the user set up in the first step of the

Background. Because you assigned @user in the there are the following users step,

you can reference this variable in the new step. Define this new step at the bottom of

features/step_definitions/user_steps.rb by copying the lines from features/signing_in

.feature and doing a couple of replacements, as shown in the following listing.

Listing 6.11 features/editing_tickets.feature

134 CHAPTER 6 Authentication and basic authorization

Given /^I am signed in as them$/ do
steps(%Q{

Given I am on the homepage

When I follow "Sign in"
And I fill in "Email" with "#{@user.email}"

And I fill in "Password" with "password"

And I press "Sign in"
Then I should see "Signed in successfully."

})

end

In this step definition, you use a method called steps. Because step definitions are

written in Ruby, you can’t use step definitions as you do in Cucumber features. To get

around this restriction, use the steps method and specify each step you want to call

inside %Q{}, a kind of super-String that allows you to use double and single quotes

inside. The steps method then takes each of these steps and runs them as if they were

inside a feature.

 Because this step is essentially a duplicate of what’s already in features/

signing_in.feature, you can remove the similar lines and turn the Signing in via Form

scenario into what’s shown in the following listing.

Scenario: Signing in via form

Given there are the following users:
| email | password |

| user@ticketee.com | password |

And I am signed in as them

Much simpler!

 Now if you run bin/cucumber features/editing_tickets.feature, this feature

passes because you’re signing in as a user before attempting to edit a ticket!

2 scenarios (2 passed)

27 steps (27 passed)

One more feature to go: the Deleting Tickets feature.

6.5.5 Fixing the Deleting Tickets feature

To fix the Deleting Tickets feature, take the first couple of lines from features/

editing_tickets.feature and put them into features/deleting_tickets.feature so that the

first few lines of the Background for this feature look like the following listing.

Given there are the following users:

| email | password |
| user@ticketee.com | password |

And I am signed in as them

Given there is a project called "TextMate 2"

Listing 6.12 features/user_steps.rb

Listing 6.13 features/signing_in.feature

Listing 6.14 features/deleting_tickets.feature

135Summary

And "user@ticketee.com" has created a ticket for this project:
| title | description |

| Make it shiny! | Gradients! Starbursts! Oh my! |

When you run bin/cucumber features/deleting_tickets.feature, this feature

passes once again:

1 scenario (1 passed)

11 steps (11 passed)

There! The last of the broken features is fixed.

 Now that the known failing scenarios are working, let’s check for any other break-

ages with rake cucumber:ok spec. You should see this output:

16 scenarios (16 passed)

148 steps (148 passed)

and
6 examples, 0 failures, 4 pending

Great! Let’s commit and push that to GitHub now:

git add .

git commit -m "When creating tickets, attribute them to the creator."
git push

You’ve added the feature to add attribution to the tickets so that when a ticket is cre-

ated, you know who created it. You’ve also restricted certain actions in the Tickets-

Controller on the basis of whether or not a user is signed in.

6.6 Summary

This chapter covered how to set up authentication so that users can sign up and sign

in to your application to accomplish certain tasks.

 We began with Devise, a gem that provides the signing up and signing in capabili-

ties right out of the box by way of being a Rails engine. Using Devise, you tested the

functionality provided by the gem in the same way you tested functionality you wrote

yourself: by writing Cucumber features to go with it.

 Then you moved into testing whether emails were sent out to the right people by

using another gem called email_spec. The gem allows you to click a link in an email to

confirm a user’s account and then have Devise automatically sign in the user.

 Then came linking tickets to users, so you can track which user created which

ticket. This was done by using the setter method provided by the belongs_to

method’s presence on the Ticket class. You were also able to use Hash’s lovely merge!

method in the TicketsController’s create action to link any ticket that was being

created to the currently signed-in user.

 In the next chapter, we look at restricting certain actions to only users who are

signed in or who have a special attribute set on them.

136

Basic access control

As your application now stands, anybody, whether they’re signed in or not, can cre-

ate new projects. As you did for the actions in the TicketsController, you must

restrict access to the actions in the ProjectsController. The twist here is that

you’ll allow only a certain subset of users—users with one particular attribute set in

one particular way—to access the actions.

 You’ll track which users are administrators by putting a boolean field called

admin in the users table. This is the most basic form of user authorization, which is

not to be confused with authentication, which you implemented in chapter 6.

Authentication is the process users go through to confirm their identity, whereas

authorization is the process users go through to gain access to specific areas.

This chapter covers

 Adding an authorization flag to a

database table

 Locking down access based on a

database flag

137Projects can be created only by admins

7.1 Projects can be created only by admins

To restrict the creation of projects to admins, you alter the existing Background in

features/creating_projects.feature and insert the following listing as the first three lines.

Given there are the following users:
| email | password |

| admin@ticketee.com | password |

And I am signed in as them

This listing creates a user. The Background should now look like the following listing.

Given there are the following users:

| email | password | admin |

| admin@ticketee.com | password | true |
And I am signed in as them

Given I am on the homepage

When I follow "New Project"

There’s a problem here: the admin attribute for User objects isn’t mass-assignable. You

saw this issue in chapter 6 when the attr_accessible method was introduced. This

restriction means that you can’t assign the admin attribute along with other attributes

using the new, build, create, or update_attributes method.

 You have to set this attribute manually by using either update_attribute or the

setter, user.admin = [value]. You use the latter here, so change this step in features/

step_definitions/user_steps.rb

Given /^there are the following users:$/ do |table|

table.hashes.each do |attributes|

unconfirmed = attributes.delete("unconfirmed") == "true"
@user = User.create!(attributes)

@user.confirm! unless unconfirmed

end
end

to this:

Given /^there are the following users:$/ do |table|
table.hashes.each do |attributes|

unconfirmed = attributes.delete("unconfirmed") == "true"

@user = User.create!(attributes)
@user.update_attribute("admin", attributes["admin"] == "true")

@user.confirm! unless unconfirmed

end
end

If you pass the admin attribute in your table, it’ll be a string. You check whether the

string is equal to true, and if it is, you use update_attribute to set the admin field man-

ually to true or false, depending on whether or not attributes["admin"]is true.

Listing 7.1 features/creating_projects.feature

Listing 7.2 features/creating_projects.feature

138 CHAPTER 7 Basic access control

 When you run this feature, it can’t find the admin field for your users table,

because you haven’t added it yet:

Given there are the following users:

| email | password | admin |
| admin@ticketee.com | password | true |

undefined method `admin=’ for #<User: ...>

7.2 Adding the admin field to the users table

You can generate a migration to add the admin field by running rails generate

migration add_admin_to_users admin:boolean. You want to modify this migration so

that when users are created, the admin field is set to false rather than defaulting to

nil. Open the freshly generated migration and change this line

add_column :users, :admin, :boolean

to this:

add_column :users, :admin, :boolean, :default => false

When you pass in the :default option here, the admin field defaults to false, ensur-

ing that users aren’t accidentally created as admins.

 The command rake db:migrate db:test:prepare runs the migration, adds the

admin field to the users table, and sets up the test database. Now you see that the step

is passing:

Given there are the following users:

| email | password | admin |

| admin@ticketee.com | password | true |

With this step definition implemented, run rake cucumber:ok and rake spec to make

sure you haven’t broken anything. According to this output, you haven’t:

16 scenarios (16 passed)
152 steps (152 passed)

Great! Now you can go about restricting the acts of creating, updating, and destroying

projects to only those users who are admins.

7.3 Restricting actions to admins only

For this step, you implement a before_filter that checks not only whether the user

is signed in but also whether the user is an admin.

 Before you write this before_filter, you write a controller spec rather than a

Cucumber feature to test it. Cucumber features are great for defining a set of actions

that a user can perform in your system, but controller specs are much better for

quickly testing singular points, such as whether or not a user can go to a specific

action in the controller. You used this same reasoning back in chapter 4 to test what

happens when a user attempts to go to a project that doesn’t exist.

 You want to ensure that all visits to the new, create, edit, update, and destroy

actions are done by admins and are inaccessible to other users. Open spec/controllers/

139Restricting actions to admins only

projects_controller_spec.rb, and add a let inside the describe so the top of the spec

looks like the following listing.

describe ProjectsController do
let(:user) do

user = Factory(:user)
user.confirm!
user

end

context "standard users" do
it "cannot access the new action" do

sign_in(:user, user)
end

end

...
end

Here you use a multilined block for the let method. This method defines a user

method, which returns a newly created and confirmed user. You create this user using

Factory Girl.

 You then use this object in your test to sign in as that user. The benefit of using let

over defining an instance variable in a before block is that the let code is called only

when it’s referenced, whereas all the code in a before is evaluated regardless. This is

helpful if some of your tests don’t need a User object.

 Underneath the let, you add a short placeholder test that signs in as the user,

attempting to use the userlet method. With this test, the let block is called, and you

should get an error when you run this spec using bin/rspec spec/controllers/

projects _controller_spec.rb:

Not registered: user (ArgumentError)

Therefore, you should create a user factory that creates a user object with a random

email address (because you may wish to create more than one user at a time using this

factory), and the password should default to password. Define this factory in a new file

called factories/user_factory.rb:

Factory.define :user do |user|
user.sequence(:email) { |n| "user#{n}@ticketee.com" }
user.password "password"
user.password_confirmation "password"
end

In this factory, you use the sequence method provided by Factory Girl, which passes a

unique number to the block and makes your user’s email addresses unique.

 The files within the factories directory aren’t yet required by RSpec, so their facto-

ries aren’t available for you. To make RSpec load them, create a new file at spec/support

/factories.rb and put this content in it:

Listing 7.3 spec/controllers/projects_controller_spec.rb

140 CHAPTER 7 Basic access control

Dir[Rails.root + "factories/*.rb"].each do |file|
require file

end

When the value of the email method is inside a block, it’s evaluated every time this

factory is called and generates a new (hopefully random) email address.

 The next bit of code to write is in your spec and is the first example to ensure that

users who are not admins (such as the user object) cannot access the new action. The

code in the following listing should replace the placeholder "cannot access the new

action" example you’ve already got.

context "standard users" do

it "cannot access the new action" do
sign_in(:user, user)

get :new

response.should redirect_to(root_path)
flash[:alert].should eql("You must be an admin to do that.")

end

end

This spec is placed inside a context block because you’ll have specs for standard users

later. context blocks function similarly to describe blocks; they’re mainly used to

specify the context of an example rather than to describe what it does.

 On the first line of the example, you use the sign_in method, which is available in

Devise, but the appropriate part isn’t yet included. This method takes two arguments:

the scope and the resource. Because you have only one scope for Devise, you don’t

have to worry about what this means right now. What you do care about is that this

method will sign in a user.

 To add this method, you must include a module in your RSpec configuration: the

Devise::TestHelpers module. Open spec/spec_helper.rb, and you’ll see the

RSpec.configure block (comments stripped) shown in the following listing.

RSpec.configure do |config|

config.mock_with :rspec

end

This configure method is responsible for setting up RSpec. To include the

Devise::TestHelpers method, you could use it like this:

RSpec.configure do |config|
config.mock_with :rspec

config.include Devise::TestHelpers

end

But you may want to rerun the RSpec generator to update your spec/spec_helper.rb

file and its associates when you update RSpec. If this file is updated, you’ll lose your

Listing 7.4 spec/controllers/projects_controller_spec.rb

Listing 7.5 spec/spec_helper.rb

141Restricting actions to admins only

changes. To fix this problem, use RSpec.configure in another file: spec/support/

devise.rb. RSpec automatically loads files in this directory. Let’s create this file now and

fill it with the content from the following listing.

RSpec.configure do |config|

config.include Devise::TestHelpers
end

You should include this module only for controller tests by passing a filter to the end:

config.include Devise::TestHelpers, :type => :controller

If you don’t restrict where this module is included, it could lead to problems further

down the line. It’s better to be safe than sorry.

TIP You can specify :type => :model as a filter if you want to include a
module only in your model specs. If you ever write any view specs, you can
use :type => :view to include this module only in the view specs. Simi-
larly, you can use :controller for controller specs.

Going back to your spec, you make a request on the third line to the new action in the

controller. The before_filter that you haven’t yet implemented should catch the

request before it gets to the action; it won’t execute the request but instead redirects

the user to root_path and shows a flash[:alert] saying the user “must be an admin

to do that.”

 If you run this spec with bin/rspec spec/controllers/projects_controller

_spec.rb, it fails as you expect:

Failure/Error: response.should redirect_to(root_path)

Expected response to be a <:redirect>, but was <200>

This error message tells you that although you expected to be redirected, the

response was actually a 200 response, indicating a successful response. This isn’t what

you want. Now let’s get it to pass.

 The first step is to define a new method that checks whether a user is an admin,

and if not, displays the “You must be an admin to do that” message and then redirects

the requester to the root_path. First define this new method inside app/controllers/

application_controller.rb, which is the base class for all controllers and makes any

methods defined here available to all controllers. Define the method using the follow-

ing listing inside the ApplicationController class.

private

def authorize_admin!
authenticate_user!

unless current_user.admin?

Listing 7.6 spec/support/devise.rb

Listing 7.7 app/controllers/application_controller.rb

142 CHAPTER 7 Basic access control

flash[:alert] = "You must be an admin to do that."
redirect_to root_path

end

end

This method uses the authenticate_user! method (provided by Devise) to ensure

that the user is signed in. If the user isn’t signed in when this method is called, they’re

asked to sign in. If the user isn’t an admin after signing in, they’re shown the “You

must be an admin to do that” message and redirected to the homepage.

 To call this method, call before_filter at the top of your ProjectsController, as

shown in the following listing.

before_filter :authorize_admin!, :except => [:index, :show]

With that in place, you can rerun the spec bin/rspec spec/controllers/projects

_controller_spec.rb, which should now pass:

2 examples, 0 failures

Great, now you know this is working for the new action, but does it work for create,

edit, update, and destroy? You can replace the "cannot access the new action"

example you just wrote with the code from the following listing.

{ "new" => "get",

"create" => "post",
"edit" => "get",

"update" => "put",

"destroy" => "delete" }.each do |action, method|
it "cannot access the #{action} action" do

sign_in(:user, user)

send(method, action.dup, :id => project.id)
response.should redirect_to(root_path)

flash[:alert].should eql("You must be an admin to do that.")

end
end

In this example, you use a project variable, which you need to set up by using a let,

as you did for user. Under the let for user, add one for project:

let(:project) { Factory(:project) }

The attributes of this project object are unimportant: you only need a valid object,

and Factory Girl provides that for you.

 The keys for the hash on the first line of listing 7.9 contain all the actions you want

to ensure are protected; the values are the methods you use to make the request to

the action. You use the action here to give your examples dynamic names, and you use

them further down when you use the send method. The send method allows you to

dynamically call methods and pass arguments to them. It’s used here because for each

Listing 7.8 app/controllers/projects_controller.rb

Listing 7.9 spec/controllers/projects_controller_spec.rb

143Restricting actions to admins only

key-value pair of the hash, the action1 and method change. You pass in the :id param-

eter because, without it, the controller can’t route to the edit, update, or destroy

action. The new and create actions ignore this parameter.

 The remainder of this spec is unchanged, and when you run bin/rspec spec/con-

trollers/projects_controller_spec.rb, you should see all six examples passing:

6 examples, 0 failures

Now’s a good time to ensure you haven’t broken anything, so let’s run rake cucumber

:ok spec:

cucumber features/deleting_projects.feature:6

cucumber features/editing_projects.feature:12
cucumber features/editing_projects.feature:18

Oops. Three scenarios are broken. They failed because, for these features, you’re not

signing in as an admin user—or, in fact, as any user!—which is now required for per-

forming the actions in the scenario. You can fix these scenarios by signing in as an

admin user.

7.3.1 Fixing three more broken scenarios

For the features/deleting_projects.feature, add a new Background, as shown in the fol-

lowing listing.

Background:

Given there are the following users:
| email | password | admin |

| admin@ticketee.com | password | true |

And I am signed in as them

When you run this feature, it once again passes:

1 scenario (1 passed)

8 steps (8 passed)

For the editing_projects.feature, use the steps from listing 7.10 again, putting them at

the top of the already existing Background:

Given there are the following users:
| email | password | admin |

| admin@ticketee.com | password | true |

And I am signed in as them

Now this feature also passes. Check it using bin/cucumber features/editing

_projects.feature:

2 scenarios (2 passed)
21 steps (21 passed)

1 The action variable is a frozen string in Ruby 1.9.2 (because it’s a block parameter), so you need to duplicate
the object because Rails forces the encoding on it to be UTF-8.

Listing 7.10 features/deleting_projects.feature

144 CHAPTER 7 Basic access control

That should be the last of it. When you run rake cucumber:ok, everything once again

passes:

16 scenarios (16 passed)

158 steps (158 passed)

Great! Now that accessing the actions is restricted, let’s make a commit here:

git add .

git commit -m "Restrict access to project
actions to admins only"

git push

You should also hide the links from the users who are not admins, because it’s useless

to show actions to people who can’t perform them.

7.3.2 Hiding the New Project link

Next you’ll learn how to hide certain links, such as the New Project link, from users

who have no authorization to perform that action in your application. To begin,

write a new feature called features/hidden_links.feature, which looks like the follow-

ing listing.

Feature: Hidden Links
In order to clean up the user experience

As the system

I want to hide links from users who can't act on them

Background:

Given there are the following users:

| email | password | admin |
| user@ticketee.com | password | false |

| admin@ticketee.com | password | true |

And there is a project called "TextMate 2"

Scenario: New project link is hidden for non-signed-in users

Given I am on the homepage

Then I should not see the "New Project" link

Scenario: New project link is hidden for signed-in users

Given I am signed in as "user@ticketee.com"

Then I should not see the "New Project" link

Scenario: New project link is shown to admins

Given I am signed in as "admin@ticketee.com"

Then I should see the "New Project" link

When you run this feature using bin/cucumber features/hidden_links.feature,

you’re given three new steps to define:

Then /^I should not see the "([^\"]*)" link$/ do |arg1|
pending # express the regexp above with the code you wish you had

end

Listing 7.11 features/hidden_links.feature

145Restricting actions to admins only

Given /^I am signed in as "([^\"]*)"$/ do |arg1|
pending # express the regexp above with the code you wish you had

end

Then /^I should see the "([^\"]*)" link$/ do |arg1|
pending # express the regexp above with the code you wish you had

end

Put the first and last steps in a new file called features/step_definitions/link_steps.rb,

using the code from the next listing.

Then /^I should see the "([^\"]*)" link$/ do |text|

page.should(have_css("a", :text => text),

"Expected to see the #{text.inspect} link, but did not.")
end

Then /^I should not see the "([^\"]*)" link$/ do |text|

page.should_not(have_css("a", :text => text),
"Expected to not see the #{text.inspect} link, but did.")

end

These two steps use the have_css method provided by Capybara, which checks that a

page has an element matching a Cascading Style Sheets (CSS) matcher, in this case an

element called a. The option you pass after it (:text => text) tells Capybara that

you’re checking for an a element that contains the text specified. If this matcher fails,

it outputs a custom error message that is the optional second argument to the should

and should_not method calls here, with have_css being the first argument.

 With these steps defined, you can now add the other new step to features/

step_definitions/user_steps.rb using the code from the following listing.

Given /^I am signed in as "([^\"]*)"$/ do |email|
@user = User.find_by_email!(email)

steps("Given I am signed in as them")

end

This step finds the user mentioned and then calls the "Given I am signed in as them"

step. Providing you always set up your users with “password” as their password, this

new step will pass.

 When you run your feature using bin/cucumber features/hidden_links

.feature, the first two scenarios are failing:

Failing Scenarios:
cucumber features/hidden_links.feature:13

cucumber features/hidden_links.feature:17

They fail, of course, because you’ve done nothing yet to hide the link! Open app/

views/projects/index.html.erb, and change the New Project link to the following:

Listing 7.12 features/step_definitions/link_steps.rb

Listing 7.13 features/step_definitions/user_steps.rb

146 CHAPTER 7 Basic access control

<%= admins_only do %>
<%= link_to "New Project", new_project_path %>

<% end %>

You’ll define the admins_only method soon, and it’ll take a block. Inside this block,

you specify all the content you want shown if the user is an admin. No content will be

shown if the user is not an admin. To define the admins_only helper, open app/helpers

/application_helper.rb and define the method inside the module using this code:

def admins_only(&block)

block.call if current_user.try(:admin?)

nil
end

The admins_only method takes a block, which is the code between the do and end in

your view. To run this code inside the method, call block.call, which runs the speci-

fied block but only if current_user.try(:admin?) returns a value that evaluates to

true. This try method tries a method on an object, and if that method doesn’t exist

(as it wouldn’t if current_user were nil), then it returns nil. At the end of the

method, you return nil so the content doesn’t show again.

 When you run this feature using bin/cucumber features/hidden_links.feature,

it passes:

3 scenarios (3 passed)
12 steps (12 passed)

Now that you’ve got the New Project link hiding if the user isn’t an admin, let’s do the

same thing for the Edit Project and Delete Project links.

7.3.3 Hiding the edit and delete links

Add this admins_only helper to the Edit Project and Delete Project links on the proj-

ects show view, but not before adding further scenarios to cover these links to features/

hidden_links.feature, as shown in the following listing.

Scenario: Edit project link is hidden for non-signed-in users

Given I am on the homepage
When I follow "TextMate 2"

Then I should not see the "Edit Project" link

Scenario: Edit project link is hidden for signed-in users
Given I am signed in as "user@ticketee.com"

When I follow "TextMate 2"

Then I should not see the "Edit Project" link

Scenario: Edit project link is shown to admins

Given I am signed in as "admin@ticketee.com"

When I follow "TextMate 2"
Then I should see the "Edit Project" link

Listing 7.14 features/hidden_links.feature

147Restricting actions to admins only

Scenario: Delete project link is hidden for non-signed-in users
Given I am on the homepage

When I follow "TextMate 2"

Then I should not see the "Delete Project" link

Scenario: Delete project link is hidden for signed-in users

Given I am signed in as "user@ticketee.com"

When I follow "TextMate 2"
Then I should not see the "Delete Project" link

Scenario: Delete project link is shown to admins

Given I am signed in as "admin@ticketee.com"
When I follow "TextMate 2"

Then I should see the "Delete Project" link

To make these steps pass, change the ProjectsController’s show template to wrap

these links in the admins_only helper, as shown in the next listing.

<%= admins_only do %>

<%= link_to "Edit Project", edit_project_path(@project) %>

<%= link_to "Delete Project", project_path(@project), :method => :delete,

:confirm => "Are you sure you want to delete this project?" %>
<% end %>

When you run this entire feature using bin/cucumber features/hidden_links

.feature, all the steps should pass:

9 scenarios (9 passed)

42 steps (42 passed)

All right, that was a little too easy! But that’s Rails.

 This is a great point to ensure that everything is still working by running rake

cucumber:ok spec. According to the following output, it is:

25 scenarios (25 passed)
200 steps (200 passed)

and

11 examples, 0 failures, 5 pending

Let’s commit and push that:

git add .

git commit -
m "Lock down specific projects controller actions for admins only"

git push

In this section, you ensured that only users with the admin attribute set to true can get

to specific actions in your ProjectsController as an example of basic authorization.

 Next, you learn to “section off” part of your site using a similar methodology and

explore the concept of namespacing.

Listing 7.15 app/views/projects/show.html.erb

148 CHAPTER 7 Basic access control

7.4 Namespace routing

Although it’s fine and dandy to ensure that admin users can get to special places in

your application, you haven’t yet added the functionality for triggering whether or not

a user is an admin from within the application itself. To do so, you create a new

namespaced section of your site called admin. The purpose of namespacing in this case

is to separate a controller from the main area of the site so you can ensure that users

accessing this particular controller (and any future controllers you create in this

namespace) have the admin field set to true.

 You begin by generating a namespaced controller with an empty index action by

using this command:

rails g controller admin/users index

When the / separator is used between parts of the controller, Rails knows to generate

a namespaced controller called Admin::UsersController at app/controllers/admin/

users_controller.rb. The views for this controller are at app/views/admin/users, and

the spec is at spec/controllers/admin/users_controller_spec.rb.

 This command also inserts a new route into your config/routes.rb file. You don’t

want that, so remove this line:

get "users/index"

Now you must write a spec for this newly generated controller to ensure only users

with the admin attribute set to true can access it. Open spec/controllers/admin/

users_controller_spec.rb and write an example to ensure non-signed-in users can’t

access the index action, as shown in the following listing.

require 'spec_helper'

describe Admin::UsersController do
let(:user) do

user = Factory(:user)
user.confirm!
user

end

context "standard users" do
before do

sign_in(:user, user)
end

it "are not able to access the index action" do
get 'index'
response.should redirect_to(root_path)
flash[:alert].should eql("You must be an admin to do that.")

end
end
end

Listing 7.16 spec/controllers/admin/users_controller_spec.rb

149Namespace routing

The new RSpec method, before, takes a block of code that’s executed before every

spec inside the current context or describe.

 You use the lengthy let(:user) block again, which is effectively the same as what

you have in spec/controllers/projects_controller_spec.rb. Rather than duplicating the

code inside this block, move it into a new file in your spec/support directory. Its job is

to provide methods to help you seed your test data, so call it seed_helpers.rb. In this

file, create a module called SeedHelpers, which contains a create_user! method that

uses the code from the let. This file is shown in the following listing.

module SeedHelpers

def create_user!(attributes={})

user = Factory(:user, attributes)
user.confirm!

user

end
end

RSpec.configure do |config|

config.include SeedHelpers

end

With this new spec/support/seed_helpers.rb file, you can now use create_user!

rather than the three lines of code you’re currently using. Let’s change the

let(:user) in spec/controllers/projects_controller_spec.rb to this:

let(:user) { create_user! }

Ah, much better! Let’s also change it in the new spec/controllers/admin/users

_controller_spec.rb file:

let(:user) { create_user! }

When you run this spec file using bin/rspec spec/controllers/admin/users

_controller_spec.rb, you see that there’s no route to the index action:

1) Admin::UsersController regular users are not able to access the

 ➥index action

Failure/Error: get 'index'
No route matches {:controller => "admin/users"}

In fact, there’s no route to the controller at all! To define this route, open config/

routes.rb and insert the following code before the final end in the file.

namespace :admin do
resources :users

end

This code defines similar routes to the vanilla resources but nests them under an

admin/ prefix. Additionally, the routing helpers for these routes have an admin part to

Listing 7.17 spec/support/seed_helpers.rb

Listing 7.18 config/routes.rb

150 CHAPTER 7 Basic access control

them: what would normally be users_path becomes admin_users_path, and new

_user_path becomes new_admin_user_path.

 With this namespace defined, when you run bin/rspec spec/controllers/admin

/users_controller_spec.rb, you should see it fail with a different error:

Failure/Error: response.should redirect_to(root_path)

Expected response to be a <:redirect>, but was <200>

This error appears because you need to implement the authorize_admin

!before_filter for your namespace. To apply it to all controllers in this namespace,

you create a new supercontroller whose only job (for now) is to call the before_filter.

You can also put methods that are common to the admin section here.

 Create a new file at app/controllers/admin/base_controller.rb, and fill it with this

code:

class Admin::BaseController < ApplicationController
before_filter :authorize_admin!

end

This file can double as an eventual homepage for the admin namespace and as a class

that the other controllers inside the admin namespace can inherit from, which you’ll

see in a moment. You inherit from ApplicationController with this controller so you

receive all the benefits it provides, like the authorize_admin! method and the Action

Controller functionality.

 Open app/controllers/admin/users_controller.rb, and change the first line of the

controller from this

class Admin::UsersController < ApplicationController

to this:

class Admin::UsersController < Admin::BaseController

Because Admin::UsersController inherits from Admin::BaseController, the

before_filter from Admin::BaseController now runs for every action inside

Admin::UsersController, and therefore in your spec, should pass.

 Run it with bin/rspec spec/controllers/admin/users_controller_spec.rb

now, and you should see this:

.

1 example, 0 failures

With that done, you should ensure that everything is working as expected by running

rake cucumber:ok spec:

25 scenarios (25 passed)
200 steps (200 passed)

and

14 examples, 0 failures, 7 pending

Great, everything is still green! Let’s commit that:

151Namespace-based CRUD

git add .
git commit -m "Added admin namespaced users controller"

git push

7.5 Namespace-based CRUD

Now that only admins can access this namespace, you can create the CRUD actions for

this controller too, as you did for the TicketsController and ProjectsController

controllers. Along the way, you’ll also set up a homepage for the admin namespace.

 For this new CRUD resource, you first write a feature for creating a user and put it

at features/creating_users.feature, as shown in the following listing.

Feature: Creating Users
In order to add new users to the system

As an admin

I want to be able to add them through the backend

Background:

Given there are the following users:

| email | password | admin |

| admin@ticketee.com | password | true |
And I am signed in as them

Given I am on the homepage

When I follow "Admin"
And I follow "Users"

When I follow "New User"

Scenario: Creating a new user
And I fill in "Email" with "newbie@ticketee.com"

And I fill in "Password" with "password"

And I press "Create User"
Then I should see "User has been created."

Scenario: Leaving email blank results in an error

When I fill in "Email" with ""
And I fill in "Password" with "password"

And I press "Create User"

Then I should see "User has not been created."
And I should see "Email can't be blank"

When you run this feature using bin/cucumber features/creating_users.feature,

the first four steps pass; but when you follow the Admin link, it fails because the link

doesn’t exist yet:

When I follow "Admin"

no link with title, id or text 'Admin' found (Capybara::ElementNotFound)

7.5.1 Adding a namespace root

Of course, you need this link for the feature to pass, but you want to show it only for

admins. You can use the admins_only helper you defined earlier and put the link in

app/views/layouts/application.html.erb in the nav element:

Listing 7.19 features/creating_users.feature

152 CHAPTER 7 Basic access control

<%= admins_only do %>
<%= link_to "Admin", admin_root_path %>

<% end %>

At the moment, admin_root_path doesn’t exist. To define it, open config/routes.rb

and change the namespace definition from this

namespace :admin do

resources :users
end

to this:

namespace :admin do
root :to => "base#index"

resources :users

end

When you rerun the feature, it fails because you don’t have an index action for the

Admin::BaseController controller:

When I follow "Admin"

The action 'index' could not be found for Admin::BaseController

Let’s add that now.

7.5.2 The index action

Open app/controllers/admin/base_controller.rb, and add the index action so the class

definition looks like the following listing.

class Admin::BaseController < ApplicationController

before_filter :authorize_admin!

def index

end

end

You define the action here to show users that this controller has an index action. The

next step is to create the view for the index action by creating a new file at app/views/

admin/base/index.html.erb and filling it with the following content:

<%= link_to "Users", admin_users_path %>

Welcome to Ticketee's Admin Lounge. Please enjoy your stay.

You needn’t wrap the link in an admins_only here because you’re inside a page that’s

visible only to admins. When you run the feature, you don’t get a message saying The

action 'index' could not be found even though you should. Instead, you get this:

When I follow "New User"
no link with title, id or text 'New User' found

Listing 7.20 app/controllers/admin/base_controller.rb

153Namespace-based CRUD

This unexpected output occurs because the Admin::UsersController inherits from

Admin::BaseController, where you just defined an index method. By inheriting

from this controller, Admin::UsersController also inherits its views. When you

inherit from a class like this, you get the methods defined in that class too. You can

override the index action from Admin::BaseController by redefining it in

Admin::UsersController, as in the following listing.

class Admin::UsersController < Admin::BaseController

def index
@users = User.all(:order => "email")

end

end

Next, you rewrite the template for this action, which lives at app/views/admin/users/

index.html.erb, so it contains the New User link and lists all the users gathered up by

the controller, as shown in the following listing.

<%= link_to "New User", new_admin_user_path %>

<% @users.each do |user| %>

<%= link_to user.email, [:admin, user] %>

<% end %>

In this example, when you specify a Symbol as an element in the route for the

link_to, Rails uses that element as a literal part of the route generation, making it use

admin_user_path rather than user_path. You saw this in chapter 5 when you used it

with [:edit, @project, ticket], but it bears repeating here.

 When you run bin/cucumber features/creating_users.feature again, you’re

told the new action is missing:

When I follow "New User"

The action 'new' could not be found for Admin::UsersController

7.5.3 The new action

Let’s add the new action Admin::UsersController now by using this code:

def new

@user = User.new

end

And let’s create the view for this action at app/views/admin/users/new.html.erb:

<h2>New User</h2>

<%= render "form" %>

Listing 7.21 app/controllers/admin/users_controller.rb

Listing 7.22 app/views/admin/users/index.html.erb

154 CHAPTER 7 Basic access control

Using the following listing, create the form partial that’s referenced in this new view at

app/views/admin/users/_form.html.erb. It must contain the email and password

fields, which are the bare essentials for creating a user.

<%= form_for [:admin, @user] do |f| %>

<%= f.error_messages %>
<p>

<%= f.label :email %>

<%= f.text_field :email %>
</p>

<p>

<%= f.label :password %>
<%= f.password_field :password %>

</p>

<%= f.submit %>
<% end %>

For this form_for, you use the array form you saw earlier with [@project, @ticket],

but this time you pass in a symbol rather than a model object. Rails interprets the

symbol literally, generating a route such as admin_users_path rather than

users_path, which would normally be generated. You can also use this array syntax

with link_to and redirect_to helpers. Any symbol passed anywhere in the array is

interpreted literally.

 When you run the feature once again, you’re told there’s no action called create:

And I press "Create User"

The action 'create' could not be found for Admin::UsersController

7.5.4 The create action

Let’s create that action now by using this code:

def create

@user = User.new(params[:user])

if @user.save
flash[:notice] = "User has been created."

redirect_to admin_users_path

else
flash[:alert] = "User has not been created."

render :action => "new"

end
end

With this action implemented, both scenarios inside this feature now pass:

2 scenarios (2 passed)
21 steps (21 passed)

This is another great middle point for a commit, so let’s do so now. As usual, you

should run rake cucumber:ok spec to make sure everything’s still working:

Listing 7.23 app/views/admin/users/_form.html.erb

155Creating admin users

27 scenarios (27 passed)
221 steps (221 passed)
and
14 examples, 0 failures, 7 pending

Great! Let’s push that:

git add .
git commit -m "Added the ability to create users through the admin backend"
git push

Although this functionality allows you to create new users through the admin back-

end, it doesn’t let you create admin users. That’s up next.

7.6 Creating admin users

To create admin users, you need a check box on the form that, when clicked, sets the

user’s admin field to true. But, because the admin attribute isn’t on the list of accessi-

ble attributes (attr_accessible inside app/models/user.rb), it can’t be mass-assigned

as the other fields can. Therefore, you must manually set this parameter in the con-

troller before the user is saved.

 To get started, let’s add another scenario to the features/creating_users.feature

using the code from the following listing.

Scenario: Creating an admin user
When I fill in "Email" with "newadmin@ticketee.com"
And I fill in "Password" with "password"
And I check "Is an admin?"
And I press "Create User"
Then I should see "User has been created"
And I should see "newadmin@ticketee.com (Admin)"

Now when you run bin/cucumber features/creating_users.feature, it fails on the

"Is an admin?" step:

cannot check field, no checkbox with id, name,
or label 'Is an admin?' found (Capybara::ElementNotFound)

You want to add this check box to the form for creating users, which you can do by

adding the following code to the form_for block inside app/views/admin/users/

_form.html.erb:

<p>
<%= f.check_box :admin %>
<%= f.label :admin, "Is an admin?" %>
</p>

With this check box in place, when you run bin/cucumber features/creating

_users.feature, you’re told "newadmin@ticketee.com (Admin)" can’t be found any-

where on the page:

Listing 7.24 features/creating_users.feature

156 CHAPTER 7 Basic access control

expected #has_content?("newadmin@ticketee.com (Admin)")
to return true, got false

This failure occurs because admin isn’t a mass-assignable attribute and therefore isn’t

set and because the user’s admin status isn’t displayed anywhere on the page. One

thing at a time. First, change the create action in Admin::UsersController to set the

admin field before you attempt to save the user, as shown in the following listing.

...

@user = User.new(params[:user])
@user.admin = params[:user][:admin] == "1"

if @user.save

...

This code sets the admin attribute on the user, which is one of the two things you need

to get this step to pass. The second problem is that only the user’s email address is dis-

played: no text appears to indicate they’re a user. To get this text to appear, change

the line in app/views/admin/users/index.html.erb from this

<%= link_to user.email, [:admin, user] %>

to this:

<%= link_to user, [:admin, user] %>

By not calling any methods on the user object and attempting to write it out of the

view, you cause Ruby to call to_s on this method. By default, this outputs something

similar to the following, which isn’t human friendly:

#<User:0xb6fd6054>

You can override the to_s method on the User model to provide the string containing

the email and admin status of the user by putting the following code inside the class

definition in app/models/user.rb, underneath the attr_accessible line:

def to_s

"#{email} (#{admin? ? "Admin" : "User"})"
end

Now that the admin field is set and displayed on the page, the feature should pass

when you run bin/cucumber features/creating_users.feature:

3 scenarios (3 passed)

33 steps (33 passed)

This is another great time to commit, and again, run rake cucumber:ok spec to make

sure everything works:

28 scenarios (28 passed)

288 steps (288 passed)
and

14 examples, 0 failures, 7 pending

Listing 7.25 app/controllers/admin/users_controller.rb

157Editing users

Good stuff. Push it:

git add .

git commit -

m "Added the ability to create admin users through the admin backend"
git push

Now you can create normal and admin users through the backend. In the future, you

may need to modify an existing user’s details or delete a user, so we examine the updat-

ing and deleting parts of the CRUD next.

7.7 Editing users

This section focuses on creating the updating capabilities for the Admin::Users-

Controller. Additionally, you need some functionality on the backend to enable users

to confirm their account, and you can put it on the editing page.

 As usual, you start by writing a feature to cover this functionality, placing the file at

features/editing_users.feature and filling it with the content from the following listing.

Feature: Editing a user

In order to change a user's details

As an admin
I want to be able to modify them through the backend

Background:

Given there are the following users:
| email | password | admin |

| admin@ticketee.com | password | true |

And I am signed in as them

Given there are the following users:

| email | password |

| user@ticketee.com | password |
Given I am on the homepage

When I follow "Admin"

And I follow "Users"
And I follow "user@ticketee.com"

And I follow "Edit User"

Scenario: Updating a user's details
When I fill in "Email" with "newguy@ticketee.com"

And I press "Update User"

Then I should see "User has been updated."
And I should see "newguy@ticketee.com"

And I should not see "user@ticketee.com"

Scenario: Toggling a user's admin ability
When I check "Is an admin?"

And I press "Update User"

Then I should see "User has been updated."
And I should see "user@ticketee.com (Admin)"

Scenario: Updating with an invalid email fails

Listing 7.26 features/editing_users.feature

158 CHAPTER 7 Basic access control

When I fill in "Email" with "fakefakefake"
And I press "Update User"

Then I should see "User has not been updated."

And I should see "Email is invalid"

When you run this feature using bin/cucumber features/editing_users.feature,

you discover the show action is missing:

And I follow "user@ticketee.com"
The action 'show' could not be found for Admin::UsersController

7.7.1 The show action

Define the show action in the Admin::UsersController, shown in listing 7.28, directly

under the index action, because grouping the different parts of CRUD is conven-

tional. The method you define is blank because you need to use a before_filter to

find the user, as you’ve done in other controllers to find other resources.

def show

end

You call the method to find the user object find_user and define it under the actions

in this controller, like this:

private

def find_user

@user = User.find(params[:id])
end

You then need to call this method using a before_filter, which should run before

the show, edit, update, and destroy actions. Put this line at the top of your class defi-

nition for Admin::UsersController:

before_filter :find_user, :only => [:show, :edit, :update, :destroy]

With this method in place, you can write the template for the show action to make this

step pass. This file goes at app/views/admin/users/show.html.erb and uses the follow-

ing code:

<h2><%= @user %></h2>
<%= link_to "Edit User", edit_admin_user_path(@user) %>

Now when you run bin/cucumber features/editing_users.feature, the step that

previously failed passes, and you’re on to the next step:

And I follow "user@ticketee.com"

And I follow "Edit User"

The action 'edit' could not be found for Admin::UsersController

Good, you’re progressing nicely. You created the show action for the Admin::Users-

Controller, which displays information for a user to a signed-in admin user. Now you

need to create the edit action so admin users can edit a user’s details.

Listing 7.27 app/controllers/admin/users_controller.rb

159Editing users

7.7.2 The edit and update actions

Add the edit action directly underneath the create action in your controller. It

should be another blank method like the show action:

def edit

end

With this action defined and the @user variable used in its view already set by the

before_filter, you now create the template for this action at app/views/admin/

users/edit.html.erb. This template renders the same form as the new template:

<%= render "form" %>

When you run bin/cucumber features/editing_users.feature, you’re told the

update action doesn’t exist:

The action 'update' could not be found for Admin::UsersController

Indeed, it doesn’t, so let’s create it! Add the update action to your Admin::Users-

Controller, as shown in the following listing. You needn’t set up the @user variable

here because the find_user before_filter does it for you.

def update

if @user.update_attributes(params[:user])
flash[:notice] = "User has been updated."

redirect_to admin_users_path

else
flash[:alert] = "User has not been updated."

render :action => "edit"

end
end

With this action in place, you need to delete the password parameters from

params[:user] if they are blank. Otherwise, the application will attempt to update a

user with a blank password, and Devise won’t allow that. Above update_attributes,

insert this code:

if params[:user][:password].blank?
params[:user].delete(:password)

end

Now the entire action looks like the following listing.

def update
if params[:user][:password].blank?

params[:user].delete(:password)

params[:user].delete(:password_confirmation)
end

if @user.update_attributes(params[:user])

Listing 7.28 app/controllers/admin/users_controller.rb

Listing 7.29 app/controllers/admin/users_controller.rb

160 CHAPTER 7 Basic access control

flash[:notice] = "User has been updated."
redirect_to admin_users_path

else

flash[:alert] = "User has not been updated."
render :action => "edit"

end

end

When you run bin/cucumber features/editing_users.feature again, the first and

third scenarios pass, but the second one fails because you haven’t set the user’s admin

capabilities inside the update action, as you did in the create action. To do so,

remove the following line from the create action:

@user.admin = params[:user][:admin] == "1"

Now define a method called set_admin, which you can use in both actions. This

method goes directly underneath find_user under the private keyword, as shown in

the following listing.

private

def set_admin

@user.admin = params[:user][:admin] == "1"
end

To use this method in the update action, place it directly above the call to update

_attributes:

set_admin

if @user.update_attributes(params[:user])

Placing set_admin above update_attributes ensures that the user is made an admin

directly before the save for update_attributes is triggered. You should also put it

before the save in the create action:

set_admin
if @user.save(params[:user])

Now when you run the feature, all the scenarios pass:

3 scenarios (3 passed)
41 steps (41 passed)

In this section, you added two more actions to your Admin::UsersController: edit

and update. Admin users can now update users’ details if they please.

 Run rake cucumber:ok spec to ensure nothing was broken by your latest changes.

You should see this output:

31 scenarios (31 passed)
270 steps (270 passed)

and

14 examples, 0 failures, 7 pending

Listing 7.30 app/controllers/admin/users_controller.rb

161Deleting users

Let’s make a commit for this new feature:

git add .

git commit -m "Added ability to edit and update users"

git push

With the updating done, there’s only one more part to go for your admin CRUD

interface: deleting users.

7.8 Deleting users

There comes a time in an application’s life when you need to delete users. Maybe they

asked for their account to be removed. Maybe they were being pesky. Or maybe you

have another reason to delete them. Whatever the case, having the functionality to

delete users is helpful.

 Keeping with the theme so far, you first write a feature for deleting users (using the

following listing) and put it at features/deleting_users.feature.

Feature: Deleting users
In order to remove users

As an admin

I want to click a button and delete them

Background:

Given there are the following users:

| email | password | admin |
| admin@ticketee.com | password | true |

| user@ticketee.com | password | false |

And I am signed in as "admin@ticketee.com"
Given I am on the homepage

When I follow "Admin"

And I follow "Users"

Scenario: Deleting a user

And I follow "user@ticketee.com"

When I follow "Delete User"
Then I should see "User has been deleted"

When you run this feature, you get right up to the first step with no issue and then it

complains:

no link with title, id or text 'Delete' found (Capybara::ElementNotFound)

Of course, you need the Delete link! Add it to the show template at app/views/admin/

users/show.html.erb, right underneath the Edit User link:

<%= link_to "Delete User", admin_user_path(@user), :method => :delete,

:confirm => "Are you sure you want to delete this user?" %>

You need to add the destroy action next, directly under the update action in

Admin::UsersController, as shown in the following listing.

Listing 7.31 features/deleting_users.feature

162 CHAPTER 7 Basic access control

def destroy
@user.destroy

flash[:notice] = "User has been deleted."

redirect_to admin_users_path
end

When you run bin/cucumber features/deleting_users.feature, the feature passes

because you now have the Delete User link and its matching destroy action:

1 scenario (1 passed)

8 steps (8 passed)

There’s one small problem with this feature, though: it doesn’t stop you from deleting

yourself!

7.8.1 Ensuring you can’t delete yourself

To make it impossible to delete yourself, you must add another scenario to the

deleting_users.feature, shown in the following listing.

Scenario: Userscannot delete themselves

When I follow "admin@ticketee.com"

And I follow "Delete User"
Then I should see "You cannot delete yourself!"

When you run this feature with bin/cucumber features/deleting_users.feature,

the first two steps of this scenario pass, but the third one fails, as you might expect,

because you haven’t added the message! Change the destroy action in the

Admin::UsersController to the following listing.

def destroy

if @user == current_user
flash[:alert] = "You cannot delete yourself!"

else

@user.destroy
flash[:notice] = "User has been deleted."

end

redirect_to admin_users_path
end

Now, before the destroy method does anything, it checks to see if the user attempting

to be deleted is the current user and stops it with the "You cannot delete yourself!"

message. When you run bin/cucumber features/deleting_users.feature this time,

the scenario passes:

2 scenarios (2 passed)
16 steps (16 passed)

Listing 7.32 app/controllers/admin/users_controller.rb

Listing 7.33 features/deleting_users.feature

Listing 7.34 app/controllers/admin/users_controller.rb

163Summary

Great! With the ability to delete users implemented, you’ve completed the CRUD for

Admin::UsersController and for the users resource entirely. Now make sure you

haven’t broken anything by running rake cucumber:ok spec. You should see this

output:

33 scenarios (33 passed)

286 steps (286 passed)

and
14 examples, 0 failures, 7 pending

Fantastic! Commit and push that:

git add .
git commit -m "Added feature for deleting users,

including protection against self-deletion"

With this final commit, you’ve got your admin section created, and it provides a great

CRUD interface for users in this system so that admins can modify their details when

necessary.

7.9 Summary

For this chapter, you dove into basic access control and added a field called admin to

the users table. You used admin to allow and restrict access to a namespaced controller.

 Then you wrote the CRUD interface for the users resource underneath the admin

namespace. This interface is used in the next chapter to expand on the authorization

that you’ve implemented so far: restricting users, whether admin users or not, to cer-

tain actions on certain projects. You rounded out the chapter by not allowing users to

delete themselves.

 The next chapter focuses on enhancing the basic permission system you’ve imple-

mented so far, introducing a gem called cancan. With this permission system, you’ll

have much more fine-grained control over what users of your application can and

can’t do to projects and tickets.

164

More authorization

At the end of chapter 7, you learned a basic form of authorization based on a bool-

ean field on the users table called admin. If this field is set to true, identifying

admin users, those users can access the CRUD functions of the Project resource as

well as an admin namespace where they can perform CRUD on the User resource.

 In this chapter, we expand on authorization options by implementing a broader

authorization system using a Permission model. The records for this model’s table

define the actions specified users can take on objects from your system, such as

projects. Each record tracks the user who has a specific permission, the object to

which the permission applies, and the type of permission granted.

 The authorization implemented in this chapter is whitelist authorization. Under

whitelist authorization, all users are denied access to everything by default, and you

must specify what the user can do. The opposite is blacklist authorization, under

which all users are allowed access to everything by default and you must block what

they may not access. You use whitelist authorization for your application because

This chapter covers

 Expanding with a more advanced system

 Setting permissions to control user actions

 Implementing a seed of data for the app

165Restricting read access

you may have a large number of projects and want to assign a user to only one of

them. Whitelist authorization involves fewer steps in restricting a user to one project.

 A good way to think about whitelist authorization is as the kind of list a security

guard would have at an event. If you’re not on the list, you don’t get in. A blacklist

comparison would be if the security guard had a list of people who weren’t allowed in.

 This chapter guides you through restricting access to the CRUD operations of

TicketsController one by one, starting with reading and then moving into creating,

updating, and deleting. Any time users want to perform one of these actions, they

must be granted permission to do so, or added to “the list.”

 During this process, you’ll see another gem called CanCan, which provides some

methods for your controllers and views that help you check the current user’s permis-

sion to perform a specific action.

 You first set up permissions through the Cucumber features, and once you’re done

with restricting the actions in your controller, you’ll generate functionality in the

backend to allow administrators of the application to assign permissions to users.

8.1 Restricting read access

A time comes in every ticket-tracking application’s life when it’s necessary to restrict

which users can see which projects. For example, you could be operating in a consul-

tancy where some people are working on one application, and others are working on

another. You want the admins of the application to be able to customize which proj-

ects each user can see.

 First, you create a model called Permission that tracks which users have which per-

missions for which actions. Before you create that model, you must update one of

your Viewing Projects features to make sure only users who have permission to view a

project are able to do so.

 Add a background and change the scenario in this feature to set up a user with the

correct permissions, and then make the user visit that project, changing the code in

the scenario in this feature to what is shown in the following listing.

Background:
Given there are the following users:

| email | password |

| user@ticketee.com | password |
And I am signed in as them

And there is a project called "TextMate 2"

And "user@ticketee.com" can view the "TextMate 2" project

Scenario: Listing all projects

And I am on the homepage

When I follow "TextMate 2"
Then I should be on the project page for "TextMate 2"

You’ve effectively rewritten a large portion of this feature, which is common practice

when implementing such large changes.

Listing 8.1 features/viewing_projects.feature

Let user
view project

B

166 CHAPTER 8 More authorization

 Underneath the there is a project step in the Background for this feature is a

new step B. It’s responsible for giving the specified user access to the specified proj-

ect, but not just any permission: permission to view the project. This step is currently

undefined, so when you run bin/cucumber features/viewing_projects.feature,

you get the step definition for it:

Given /^"([^"]*)" can view the "([^"]*)" project$/ do |arg1, arg2|

pending # express the regexp above with the code you wish you had
end

To implement this step, you use the not-yet-existent Permission model, which stores

the permissions in the database. This model needs a related table called permissions,

which contains three fields.

 The first field is the action field, which keeps track of the type of permission a

user has on particular objects. The objects can be of different types, so you must cre-

ate two fields to track the association to the object: thing_type and thing_id. This

kind of association is called a polymorphic association, poly meaning “many” and morphic

meaning “forms,” which is fitting. You’ll see more on these in a little while.

 One more field you add to this permissions table is a user_id column linking that

Permission to a User.

 With all of that in mind, you can define this step in a new file at features/

step_definitions/permission_steps.rb, as shown in the following listing.

Given /^"([^"]*)" can view the "([^"]*)" project$/ do |user, project|
Permission.create!(:user => User.find_by_email!(user),

:thing => Project.find_by_name!(project),

:action => "view")
end

In listing 8.2, you create a new Permission record with the action defined as view

linking the project and user passed in. This record defines the users who can access

the project. When you run this feature, you get an error because the Permission class

is not yet defined:

And "user@ticketee.com" can view the "TextMate 2" project
uninitialized constant Permission (NameError)

Define it now by generating the model using the following command, typed all on

one line:

rails generate model permission user_id:integer thing_id:integer

thing_type:string action:string

With this model and its related migration, you can run rake db:migrate and rake

db:test:prepare to set up the development and test databases. When you run your

feature again, you get this error message:

And "user@ticketee.com" can view the "TextMate 2" project
unknown attribute: user (ActiveRecord::UnknownAttributeError)

Listing 8.2 features/step_definitions/permission_steps.rb

167Restricting read access

This message occurs because you haven’t defined a belongs_to association between

the Permission objects and the users they relate to. To set up this association, open

app/models/permission.rb and define it using a simple belongs_to:

belongs_to :user

That’s the first association you need to define, and when you run this feature again,

you get a second error that looks similar to the first:

And "user@ticketee.com" can view the "TextMate 2" project
unknown attribute: thing (ActiveRecord::UnknownAttributeError)

This code represents a polymorphic association, which as mentioned earlier, needs to

associate with many types of objects. A polymorphic association uses the thing_type

and thing_id fields to determine what object a Permission object relates to.

 To define this association in your model, use this line:

belongs_to :thing, :polymorphic => true

Figure 8.1 illustrates how this association works.

 When you assign an object to the thing polymorphic association, instead of just

saving thing_id as in a normal belongs_to, Rails also saves the thing_type field,

which is the string version of the object’s class, or thing.class.to_s. In this step of

your application, the thing_type field is set to Project because you’re assigning a

Project object to thing. Therefore, the new record in the table has both thing_type

and thing_id attributes set.

 When Rails loads this object, it goes through the process shown in figure 8.2. Rails

knows this is a polymorphic association because you told it in the Permission model,

and it therefore uses the thing_id and thing_type fields to find the object. By know-

ing thing_type, Rails can figure out what model the association is and then use that

Permission

thing = Project(id = 1)

thing.id thing.class.to_s

Permission(thing_id

= thing.id)

Permission(thing_type =

thing.class.to_s)

Permission(thing_id = 1, thing_type = Project)

Figure 8.1 Polymorphic saving

168 CHAPTER 8 More authorization

model to load a specific object with the id of thing_id. Then, boom, you’ve got a

Project object.

 Now when you run bin/cucumber features/viewing_projects.feature, it

passes:

1 scenario (1 passed)

7 steps (7 passed)

The feature should pass with or without the new permission step because, at the

moment, the permission settings have no bearing on what projects a user can see.

 The easiest way to specify which projects users can see is to restrict the scope of the

projects the show action searches on so that projects the user doesn’t have access to

don’t show up in this list. By default, a find on a model searches all records in the

related table, but you can add a scope method to your model to allow you to search

on restricted sets of records.

8.2 Restricting by scope

To restrict the show action to certain record sets, you implement a scope on the

Project model that returns only the projects with related Permission records that

declare the user is authorized to read them.

 Before you scope down this find, you must write a spec to test that the show action

in the ProjectsController really does scope down this find, and if the project can’t

be found, the controller should deny all knowledge of a project ever having existed.

 The spec goes into spec/controllers/projects_controller_spec.rb directly under the

spec for testing that standard users can’t access specified actions, but still inside the

context block for standard users. This spec is shown in the following listing.

it "cannot access the show action" do

sign_in(:user, user)

get :show, :id => project.id

Listing 8.3 spec/controllers/projects_controller_spec.rb

permission.thing

It's "Project"

Okay nding "thing". What is thing_type ?

Project.find(1) is thing

Okay nding a Project object. What is thing_id?

Figure 8.2 Polymorphic loading

169Restricting by scope

response.should redirect_to(projects_path)
flash[:alert].should eql("The project you were looking for could not be fou

nd.")

end

You use the same error message from the missing project spec because you don’t

want to acknowledge to unauthorized users that the project they’re looking for exists

when they don’t have access to read it. When you run this spec using bin/rspec spec

/controllers/projects_controller_spec.rb, it fails:

1) ProjectsController standard users cannot access the show action

Failure/Error: response.should redirect_to(projects_path)

The spec fails because you haven’t yet scoped down the find call in the find_project

method, which is called using a before_filter in ProjectsController.

 With a failing spec testing the nonexistent behavior, open app/controllers/

projects_controller.rb and change the find_project method to look for projects that

the current user has access to so your spec will pass. But there’s one problem: you’re

not restricting the show action to only users who are signed in now.

 You must make it so that the user has to sign in before accessing the show action

because you need to use the current_user method to check what permissions this

user has access to within the find_project method.

 To do so, call the authenticate_user! method as a before_filter in this con-

troller, just as you did for certain actions in the TicketsController. Place this

method above the find_project to ensure that a user is authenticated before

find_project does its job. The filters in ProjectsController should now look like

the following listing.

before_filter :authorize_admin!, :except => [:index, :show]

before_filter :authenticate_user!, :only => [:show]

before_filter :find_project, :only => [:show, :edit, :update, :destroy]

Now alter the find_project method to check the permissions of the project before

letting authorized users see it or refusing unauthorized users access. Change the line

that defines the @project variable from this

@project = Project.find(params[:id])

to this:

@project = Project.readable_by(current_user).find(params[:id])

The readable_by method doesn’t exist yet; you’ll define it in just a moment. The

readable_by method returns a scope of only the projects the user is allowed to view.

This scope has exactly the same methods that an Active Record class has, so you can

treat it just like one. You can define this method using the scope class method in your

Project mode.

Listing 8.4 app/controllers/projects_controller.rb

170 CHAPTER 8 More authorization

 The scope method provides a method you can call on your class or on an associa-

tion collection for this class that returns a subset of records. The following scope call,

for example, defines a method called admins:

scope :admins, where(:admin => true)

If you wanted to, you could call this admins method on your User model to return all

the users who are admins:

User.admins

If you didn’t have the scope method, you’d have to specify the where manually on

your queries everywhere you used them, like this:

User.where(:admin => true)

As you can see, manually specifying where isn’t nearly as pretty as simply calling

User.admins. This may seem like a contrived example, but trust us: it gets ugly when

the conditions become more complex. Scopes are yet another great example of the

DRY (Don’t Repeat Yourself) convention seen throughout Rails. Because the scope

method defines your scope’s logic in one central location, you can easily change all

uses of this scope by changing it in this one spot.

 Scopes are also chainable. Imagine that you had another scope defined on your

User model, such as the following, as well as a field for storing the gender, appropri-

ately called gender:

scope :female, where(:gender => "Female")

You can call this scope by itself

User.female

which return all of your female users, or you can get all your female admins by doing

either this

User.admin.female

or this

User.female.admin

Rails builds up the queries by applying the scopes one at a time, and calling them in

any order will result in the same query.

 Let’s define a real scope now, along with the permissions association it needs to

use. Put this scope under the validation inside the Project model, as shown in the fol-

lowing lines:

validates :name, :presence => true, :uniqueness => true

has_many :permissions, :as => :thing

scope :readable_by, lambda { |user|
joins(:permissions).where(:permissions => { :action => "view",

:user_id => user.id })

}

Link to thing
association

B

171Restricting by scope

The :as option on the has_many :permissions association B links your projects to

the thing association on the Permission objects. You need this association defined

here because it’s used by the scope below it.

 Usually, you use scope without passing a block (represented by the lambda), but

here the outcome of this scope is dynamic according to which user is passed to it. You

therefore use a block to be able to pass this argument to the method generated by the

scope call, which then becomes available in the block for use in the where statement.

 The joins method here joins the permissions table using a SQL INNER JOIN,

allowing you to perform queries on columns from that table too. You do just that with

the where method, specifying a hash that contains the permissions key, which points

to another hash containing the fields you want to search on and their expected values.

 This scope then returns all the Project objects containing a related record in the

permissions table that has the action field set to view and the user ID equal to that

of the passed-in user.

 With this scope method in place, when you run this spec file again with bin/

rspec spec/controllers/projects_controller_spec.rb, your tests pass because

you’re now scoping down the find in the find_project method. But you still have

one failure:

7 examples, 1 failure

This failing spec is the last one in this file where you assert that users receive the mes-

sage “The project you were looking for could not be found” if they attempt to access a

project that is unknown to the system. It fails with this error:

Expected response to be a redirect to <http://test.host/projects>
but was a redirect to <http://test.host/users/sign_in>

Rather than redirecting back to /projects as it should, this code now redirects to the

/users/sign_in path. This would happen only if the user attempted to access an

action that you had locked down to be visible only to those who were signed in.

Recent changes to the show action fit this bill: users are now required to sign in before

you run the find_project method.

 Therefore, you just need to make a small fix to this final spec: you must sign in as a

user before you make the get :show request. Let’s change the first two lines of this

spec in spec/controllers/projects_controller.rb from this

it "displays an error for a missing project" do

get :show, :id => "not-here"

to this:

it "displays an error for a missing project" do

sign_in(:user, user)

get :show, :id => "not-here"

Now when you run bin/rspec spec/controllers/projects_controller_spec.rb,

all the examples pass:

172 CHAPTER 8 More authorization

.......

7 examples, 0 failures

All right! The examples for this controller are passing, but how about the feature—

the one you wrote previously to test that users can access this show action if they have

the correct permissions? This spec tested the negative, making sure a user without

permission can’t access this project.

 With the code you just implemented, this feature should still pass as it did the last

time you ran it. Let’s find out by running bin/cucumber features/viewing

_projects.feature:

1 scenario (1 passed)
7 steps (7 passed)

Isn’t that wonderful? You rewrote the feature and it still passed! You’ve tested both the

granted and denied facets of this particular permission by writing a feature and spec

respectively.

 Now that you implemented that little chunk of functionality and everything seems

to be going smoothly, let’s make sure the entire application is going the same way by

running rake cucumber:ok spec. Oh dear! You broke just about every feature in some

way:

Failing Scenarios:

cucumber features/creating_projects.feature:14

cucumber features/creating_tickets.feature:20

cucumber features/deleting_projects.feature:12

cucumber features/deleting_tickets.feature:19

cucumber features/editing_projects.feature:16

cucumber features/editing_tickets.feature:20

cucumber features/hidden_links.feature:35

cucumber features/hidden_links.feature:50 cu-

cumber features/viewing_tickets.feature:20

33 scenarios (9 failed, 4 skipped, 20 passed)
289 steps (9 failed, 87 skipped, 193 passed)

These features are all broken because you restricted the permissions on the find_project

method, and all of these features depend on this functionality in one way or another.

Let’s fix these, from the top, one at a time.

8.3 Fixing what you broke

Currently, you have a whole bundle of features that are failing! When this happens, it

may seem like everything’s broken (and maybe some things are on fire), but in reality

it’s not as bad as it seems. The best way to fix a mess like this is to break it down into

smaller chunks and tackle it one chunk at a time. The output from rake cucumber:ok

spec provided a list of the broken features: they are your chunks. Let’s go through

them and fix them, starting with the Editing Projects feature.

173Fixing what you broke

8.3.1 Fixing Editing Projects

When you run bin/cucumber features/editing_projects.feature:14, Cucumber

can’t find the Edit Project link:

And I follow "Edit Project"

no link with title, id or text 'Edit Project' found

 ➥(Capybara::ElementNotFound)

This error occurs because when Cucumber follows the TextMate 2 link, it’s taken to

the show action, which redirects it to the projects_path because the user doesn’t

have access to this project, and the page the user would now be on doesn’t have an

Edit Project link. But the users for this feature are the all-seeing admins and therefore

should be able to access all projects regardless of whether or not they have permission

to do so. Therefore, you must change how you declare @project in the find_project

method in ProjectsController to account for admins. Change it from this

@project = Project.readable_by(current_user).find(params[:id])

to this:

@project = if current_user.admin?
Project.find(params[:id])

else

Project.readable_by(current_user).find(params[:id])
end

As you can see, this code won’t scope the find using the readable_by scope if the user

is an admin, but it will if the user isn’t. When you run bin/cucumber features/editing

_projects.feature, it should now pass:

2 scenarios (2 passed)

19 steps (19 passed)

This change should fix a couple of other features as well, so rerun rake cucumber:ok

to find the ones that are still broken. You have a much shorter list now:

cucumber features/creating_tickets.feature:20
cucumber features/deleting_tickets.feature:19

cucumber features/editing_tickets.feature:20

cucumber features/viewing_tickets.feature:20

You reduced your failing scenarios from nine to only four, which is pretty good. Let’s

fix the first of these, the Creating Tickets feature.

8.3.2 Fixing the four failing features

Let’s run the first feature with bin/cucumber features/creating_tickets.feature.

You’ll see that it can’t find the New Ticket link:

And I follow "New Ticket"

no link with title, id or text 'New Ticket' found (Capybara::ElementNotFound)

174 CHAPTER 8 More authorization

This is the same problem as before: the user doesn’t have permission to access that

project. To fix this problem, alter the Background, put the permission step under-

neath the user-creation step, and sign in as that user, like this:

Given there are the following users:
| email | password |

| user@ticketee.com | password |

And "user@ticketee.com" can view the "Internet Explorer" project
And I am signed in as them

This Background also contains code that ensures users are asked to sign in if they click

the New Ticket link when they’re not signed in. Because you’ll log in as a user before

you get to this point, you can remove the last few lines from this Background:

Then I should see "You need to sign in or sign up before continuing."

When I fill in "Email" with "user@ticketee.com"
And I fill in "Password" with "password"

And I press "Sign in"

Then I should see "New Ticket"

When you run this feature again, all the scenarios pass:

3 scenarios (3 passed)

35 steps (35 passed)

One down, three to go. The next failing feature is the Deleting Tickets feature.

 It fails for the same reason as the previous one: the user doesn’t have access to the

project to delete a ticket. Let’s fix this now by putting the following line underneath

where your project is created:

Given there is a project called "TextMate 2"

And "user@ticketee.com" can view the "TextMate 2" project

That’s a little too easy! When you run bin/cucumber features/deleting_tickets

.feature, this feature now passes:

1 scenario (1 passed)

11 steps (11 passed)

Next up is the Editing Tickets feature, which contains not one but two broken scenar-

ios. The two scenarios in this feature, similar to the Editing Projects scenario, are bro-

ken because the feature can’t find a link:

And I follow "Make it shiny!"

no link with title, id or text 'Make it shiny!' found

 ➥(Capybara::ElementNotFound)

Again, the error occurs because the user doesn’t have permission to access this partic-

ular project. You must specify that this user has access to this project in the

Background, just as you did for the Creating Tickets and Editing Tickets features. Add

this line directly under the line that creates the project in the Background:

And "user@ticketee.com" can view the "TextMate 2" project

175Fixing what you broke

When you run bin/cucumber features/editing_tickets.feature, both scenarios

should pass:

2 scenarios (2 passed)

26 steps (26 passed)

Great! You fixed another feature. The one remaining feature that fails is Viewing Tick-

ets, which you fix in the same way as you fixed the previous features. Add this line

again underneath where you create the TextMate 2 project, this time in features/

viewing_tickets.feature:

And "user@ticketee.com" can view the "TextMate 2" project

You also need to add one for the Internet Explorer project:

And "user@ticketee.com" can view the "Internet Explorer" project

Also in this feature, you’re not signing in as the user who has these permissions, so

directly underneath the first step in your Background, add the following step:

And I am signed in as them

Running bin/cucumber features/viewing_tickets.feature, you’ll see that this fea-

ture is passing:

1 scenario (1 passed)
23 steps (23 passed)

That was fast! All four failing features are fixed. Well, so we hope. You independently

verified them, but run rake cucumber:ok spec to make sure nothing else is broken:

33 scenarios (33 passed)

287 steps (287 passed)

and
16 examples, 0 failures, 8 pending

Great! Everything’s working again! Let’s commit that:

git add .
git commit -m "Made projects only visible to users with

permission to see them"

git push

In these first two sections, you added the restriction on the ProjectsController that

projects should be accessible only to users with Permission records with the action

set to view. In the process, you broke a couple of features, but fixing them was really

simple.

 However, these changes only protect the actions in the ProjectsController that

use the find_project method and not those in the TicketsController. Before you

make changes in the TicketsController, note that the links to all projects are still vis-

ible to all users through the ProjectsController’s index, which is definitely some-

thing you should fix first.

176 CHAPTER 8 More authorization

8.3.3 One more thing

As described previously, the links to all projects are still visible to all users on the

homepage. The way to fix it is to write a new scenario to test that this behavior is

always present. You don’t have to write the whole scenario because you already have a

scenario you can modify instead, the one inside features/viewing_projects.feature.

 To test that the links are hidden on the index action, add a new step to the

Background and one to the scenario. The one in the Background goes directly under

the line that creates the TextMate 2 project, and it creates another project called

Internet Explorer:

And there is a project called "Internet Explorer"

Place the line that goes in the scenario directly under the line that takes you to the

homepage, making the first two lines of this scenario look like this:

And I am on the homepage

Then I should not see "Internet Explorer"

This feature will now ensure that the user who doesn’t have permission to view the

TextMate 2 project no longer can see the Internet Explorer project. When you run

this feature using bin/cucumber features/viewing_projects.feature, it fails:

expected #has_no_content?("Internet Explorer")

to return true, got false

To fix it, open app/controllers/projects_controller.rb and modify the index method to

do exactly what the find_project method does: restrict. You could re-use the code

from the find_project method in the index action, but that isn’t very DRY. Instead,

extract the code from find_project and move it into the Project model. Take the

code from this method

@project = if current_user.admin?
Project.find(params[:id])

else

Project.readable_by(current_user).find(params[:id])
end

and change it to this much shorter version:

@project = Project.for(current_user).find(params[:id])

The model is a better place than the controller for this logic. Open app/models/project

.rb and define this new for class method using the code shown next. You’ll also refactor

the method:

def self.for(user)

user.admin? ? Project : Project.readable_by(user)

end

The first line of this method uses a ternary statement, which is a shorter version of this:

if current_user.admin?

Project

177Fixing what you broke

else
Project.readable_by(current_user)

end

This statement is useful when you have short conditional statements like this one, but

it shouldn’t be (ab)used for longer conditional statements. As a general rule of

thumb, if the line for a ternary statement is longer than 80 characters, it’s probably

best to split it out over multiple lines for better readability.

 In the find_project method, you can call find on what this new for method

returns, and now in the index method, you can use it in an identical fashion, but just

replace the call to find with all, like this:

def index

@projects = Project.for(current_user).all

end

Because you are referencing current_user in this action, you must modify the

before_filter line that references authenticate_user! to ensure that users are

signed in before they visit this page. Let’s change it to this:

before_filter :authenticate_user!, :only => [:index, :show]

When you run the feature again with bin/cucumber features/viewing_projects

.feature, it passes:

1 scenario (1 passed)
9 steps (9 passed)

Ensure that everything is working as it should by running rake cucumber:ok spec.

Oops! You broke some of the scenarios inside the Hidden Links feature, as shown by

this output from the cucumber:ok part of the command you just ran:

cucumber features/hidden_links.feature:23

cucumber features/hidden_links.feature:27
cucumber features/hidden_links.feature:36

cucumber features/hidden_links.feature:40

If you run the first one of these features with bin/cucumber features/hidden_links

.feature:23, you’ll see that it can’t find the TextMate 2 link.

When I follow "TextMate 2"

no link with title, id or text 'TextMate 2' found (Capybara::ElementNotFound)

This error occurs because the user in this feature doesn’t have permission to view the

TextMate 2 project. But if you look at this scenario, it’s for users who are not signed

in—users who can no longer visit this page because, when they do, they are redirected

to the sign-in page. This means that the following scenarios no longer apply and can

be deleted:

Scenario: Edit project link is hidden for non-signed-in users
Scenario: Delete project link is hidden for non-signed-in users

178 CHAPTER 8 More authorization

Removing these scenarios removes two of the failing scenarios, but two more are still

failing:

Failing Scenarios:

cucumber features/hidden_links.feature:21
cucumber features/hidden_links.feature:31

These two scenarios fail because user@ticketee.com doesn’t have access to the Text-

Mate 2 project. To give it access, you can put the permission step underneath the

project-creation step in the Background, like this:

And there is a project called "TextMate 2"

And "user@ticketee.com" can view the "TextMate 2" project

When you run this feature again using bin/cucumber features/hidden_links

.feature, it passes:

7 scenarios (7 passed)
39 steps (39 passed)

You fixed the scenarios in the Hidden Links feature, but the Signing Up feature still

fails. These two features aren’t closely related, so it’s best to make a commit but not

push it to GitHub now so you have all related changes in one commit and other

changes in separate commits. For this commit, the ProjectsController’s index

action is restricted to displaying projects only the user can see, so the commit com-

mands are as follows:

git add .

git commit -m "Don’t show projects that a

user doesn't have permission to see"

Now let’s see why the Signing Up feature is acting up. When you run it using bin

/cucumber features/signing_up.feature, the final step fails:

Then I should see "You have signed up successfully"
expected #has_content?("You have signed up successfully.")

to return true, got false

When users sign up to your application, they’re shown the “You have signed up suc-

cessfully” message, as the feature says they should, and they’re also redirected to the

root of your application. The problem lies with this final step: people are redirected to

the root of the application, the ProjectsController’s index action, which is now

locked down to require that users be authenticated before they can view this action.

This is problematic, but it’s fixable.

8.3.4 Fixing Signing Up

The Signing Up feature is broken, and the problem lies solely with the latest changes

you made to the ProjectsController. When users sign up, they’re sent to the

root_path in the application, which resolves to the index action in the Projects-

Controller. This controller has the authenticate_user! method called before all

179Fixing what you broke

actions in it, checking if users are authenticated. If they aren’t, they’re redirected to

the sign-in page.

 You can see all of this in action if you start your server using rails server and

attempt to sign up. Rather than being properly shown the “You have signed up suc-

cessfully” message, you’ll see the Sign In page, as shown in figure 8.3.

 The configuration to send users to the root_path after sign-up is in Devise’s

Devise::RegistrationsController1 and is defined in a method called after

_inactive_sign_up_path_for:

The path used after sign up for inactive accounts.

 ➥You need to overwrite
this method in your own RegistrationsController.

def after_inactive_sign_up_path_for(resource)

root_path
end

As you can see, this method is hardcoded to return root_path. The comment above this

method suggests that you override the method in your own RegistrationsController.

It means you must create a new controller called RegistrationsController2 and,

inside this controller, override the after_inactive_sign_up_path_for method. To

give this controller the same functionality as Devise’s Devise::Registrations

Controller, you need to inherit from that controller. Finally, you can no longer redirect

to root_path, so you generate a new part of your application to present new users with

a message telling them they must confirm their account.

1 The Devise::RegistrationsController can be found at https://github.com/plataformatec/devise/
blob/v1.4.2/app/controllers/devise/registrations_controller.rb#L93-95.

2 The controller could be called anything: it just needs a name so you can point Devise at it later.

Figure 8.3 Sign-in page

https://github.com/plataformatec/devise/blob/v1.4.2/app/controllers/devise/registrations_controller.rb#L93-95
https://github.com/plataformatec/devise/blob/v1.4.2/app/controllers/devise/registrations_controller.rb#L93-95

180 CHAPTER 8 More authorization

 Create a new controller now at app/controllers/registrations_controller.rb and fill it

with this content:

class RegistrationsController < Devise::RegistrationsController

private

def after_inactive_sign_up_path_for(resource)
confirm_user_path

end
end

By defining this new controller as inheriting from Devise::Registrations-

Controller, you inherit all the behavior from that controller and gain the ability to

override things such as the after_inactive_sign_up_path_for, of which you take

full advantage here. The resource argument is the User object representing who’s

signing up. You could use it, but in this context, don’t. Next, you need to tell Devise to

use this controller instead of its own. Alter the following line in config/routes.rb

devise_for :users

to this:

devise_for :users, :controllers => { :registrations => "registrations" }

The :controllers option tells Devise you want to customize the controllers it uses,

and with this new hash, you tell it to use the RegistrationsController you defined

for registrations. In this controller, you override after_inactive_sign_up_path_for

to go to a new route: confirm_user_path.

 Because you’re overriding Devise’s controller, Rails won’t use Devise’s views. You

must copy the views from Devise into your application and move them into the app

/views/registrations directory. Lucky for you, Devise has a generator that places

Devise’s views in your application: devise:views. You can run the generator with

this command:

rails g devise:views

This command places Devise’s views into the app/views/devise directory of your appli-

cation. This directory shares the same name as the directory internal to Devise where

these views came from, and if a view exists in your application first, then Rails doesn’t

look for it in the engines attached to the application. With these files copied over,

move the app/views/devise/registrations directory out to app/views/registrations so

you have some views to use for your new RegistrationsController.

 Now you must address the problem that although the confirm_users_path

method used in your RegistrationsController isn’t defined yet, redirect_to takes

users to that location. Define a route for it by opening config/routes.rb and inserting

this line underneath devise_for :users:

get '/awaiting_confirmation',
:to => "users#confirmation",
:as => 'confirm_user'

181Fixing what you broke

The get method defines a new route in your application that responds to only GET

requests to /awaiting_confirmation. This route goes to the confirmation action in

UsersController, which you haven’t created yet either. Soon!

 The :as option tells Rails that you want routing helpers generated for this route

and you want the helpers to have the prefix confirm_user. This generates

confirm_user_path, which you use in your new check_for_sign_up action in

ProjectsController as well as in a confirm_user_url method.

 When you run the Signing Up feature again with bin/cucumber features/signing

_up.feature you don’t get the same error, but you get one that can be easily fixed:

Given I am on the homepage
uninitialized constant UsersController

This is the controller you’ll use to show users the confirmation page, so let’s create it

with a confirmation action that you’ll need with this command:

rails g controller users confirmation

This command adds a route to your routes file that you don’t want (because it over-

rides a route that Devise uses), so remove this line from config/routes.rb:

get "users/confirmation"

The added bonus of putting the action here is that you get a view for free at app/

views/users/confirmation.html.erb. In this view you’ll display the “You have signed up

successfully” message as well as a “Please confirm your account before signing in” mes-

sage. Before you add these messages to the template, add a line at the bottom of the

scenario inside features/signing_up.feature to check for this confirmation message:

Then I should see "Please confirm your account before signing in."

Post, put, delete, and anything

You can define routes that respond only to POST, PUT, and DELETE requests using

the post, put, and delete methods, respectively. All of these methods use the

same syntax and work in similar manners, but they define routes that respond only

to certain HTTP methods.

If it doesn’t matter which HTTP method a route responds to, you can use the match
method:

match '/some_route',

:to => "some#where"

This would respond to GET, POST, PUT and DELETE methods. This method is actually

used by the get, post, put, and delete methods internally, except they call it like this:

match '/some_route',

:to => "some#where",

:conditions => { :method => :get }

You could use conditions to filter the HTTP methods to which a route would respond,

but it’s better to just use the relevant HTTP method’s method.

182 CHAPTER 8 More authorization

This line ensures that you’re always taken to the correct page upon sign-up. Now

replace the code inside app/views/users/confirmation.html.erb with the following

code to make this feature pass again:

<h1>You have signed up successfully.</h1>

Please confirm your account before signing in.

When users sign up, rather than seeing a confusing page telling them they must be

signed in, they’ll instead see the page shown in figure 8.4.

 The Signing Up feature is probably fixed now, but the only true way to make sure

it’s working is to test it manually or to run the feature. Running the feature is easier, so

let’s do that with bin/cucumber features/signing_up.feature:

1 scenario (1 passed)

7 steps (7 passed)

Everything is green. Awesome! This feature is passing again. Let’s make a commit for

that:

git add .

git commit -m "Fix signing up feature,

take user to alternative confirmation page"

Is everything else working, though? Let’s check with rake cucumber:ok spec:

31 scenarios (31 passed)

285 steps (285 passed)
and

19 examples, 0 failures, 10 pending

Now everything’s working! Let’s push those changes to GitHub:

git push

You’ve limited the ability of users to take action on things inside the Projects-

Controller and fixed the Signing Up feature that broke because of the changes you

made. But you haven’t protected the TicketsController. This is a problem because

users who can’t view a project will still be able to view its tickets, which could pose a

security risk. A project’s most vital assets (for now) are the tickets associated with it,

and users who don’t have permission to see the project shouldn’t be able to see the

associated tickets. Let’s add this restriction next.

Figure 8.4 “Please confirm

your account”

183Blocking access to tickets

8.4 Blocking access to tickets

When implementing permissions, you have to be careful to ensure that all users who

should have access to something do, and all users who shouldn’t have access to some-

thing don’t. All of the TicketsController’s actions are still available to all users

because it has no permission checking. If you leave it in that state, users who are

unable to see the project can still make requests to the actions inside Tickets-

Controller. They shouldn’t be able to do anything to the tickets in a project if they

don’t have permission to view tickets for it. Let’s implement permission checking to

remedy this problem.

8.4.1 Locking out the bad guys

To prevent users from seeing tickets in a project they’re unauthorized to see, you must

lock down the show action of TicketsController.

 To test that when you put this restriction in place, it’s correct, write a spec in the

spec/controllers/tickets_controller_spec.rb file, just as you did for the Projects-

Controller. This file should now look like the following listing.

require 'spec_helper'

describe TicketsController do

let(:user) { create_user! }

let(:project) { Factory(:project) }
let(:ticket) { Factory(:ticket, :project => project,

:user => user) }

context "standard users" do
it "cannot access a ticket for a project" do

sign_in(:user, user)

get :show, :id => ticket.id, :project_id => project.id
response.should redirect_to(root_path)

flash[:alert].should eql("The project you were looking for could not be

found.")
end

end

end

This test sets up a project, a ticket, and a user who has no explicit permission to view

the project and therefore shouldn’t be able to view the ticket. You test this spec by

signing in as the unauthorized user and trying to go to the show action for this ticket,

which requires you to pass through a project_id to help it find what project the

ticket is in. The test should pass if the user is redirected to the root_path and if, upon

the user seeing the flash[:alert], the application denies all knowledge of this proj-

ect ever having existed.

 When you run this test using bin/rspec spec/controllers/tickets_controller

_spec.rb, you see the ticket factory is undefined:

No such factory: ticket (ArgumentError)

Listing 8.5 spec/controllers/tickets_controller_spec.rb

184 CHAPTER 8 More authorization

Define this factory now in a new file called factories/ticket_factory.rb. This file will be

automatically loaded by the code in spec/support/factories.rb:

Factory.define :ticket do |ticket|

ticket.title "A ticket"
ticket.description "A ticket, nothing more"

ticket.user { |u| u.association(:user) }

ticket.project { |p| p.association(:project) }
end

Here you set up some defaults for the title and description fields for a factory-

provided ticket, but you do something new with the user method. You pass a block

and call the association method on the object returned from the block, and the user

for this ticket becomes one user factory-created object. Nifty. You do the same thing

for the project method, so you can create tickets using this factory and have them

related to a project automatically if you want. For this spec, however, you override it.

 When you run bin/rspec spec/controllers/tickets_controller_spec.rb

again, this test fails because the user can still access this action:

TicketsController standard users cannot access a ticket for a project
Failure/Error: response.should redirect_to(root_path)

With this test failing correctly, you can work on restricting the access to only the proj-

ects the user has access to. Open app/controllers/tickets_controller.rb and remove the

:except option from the authenticate_user! filter, so it goes from this

before_filter :authenticate_user!, :except => [:index, :show]

to this:

before_filter :authenticate_user!

Now users should always be asked to sign in before accessing the index and show

actions for this controller, meaning that current_user will always return a User object.

 You can reference the current_user method in find_project and use the for

method to limit the project find scope to only the projects to which that user has

access. You can change the find_project method to the following example:

def find_project

@project = Project.for(current_user).find(params[:project_id])

rescue ActiveRecord::RecordNotFound
flash[:alert] = "The project you were looking for could not be found."

redirect_to root_path

end

The rewritten find_project method will retrieve a Project only if the current_user

has permission to view that project or is an admin. Otherwise, an ActiveRecord

::RecordNotFound exception will be thrown and rescued here, showing users “The

project you were looking for could not be found.”

185Restricting write access

 When you run the spec again with bin/rspec spec/controllers/tickets

_controller_spec.rb, it now passes because this user can no longer see this project

and is shown the error:

.
1 example, 0 failures

You scoped the project find for the TicketsController in the same way you did for

the ProjectsController, limiting it to only those projects to which the current user

has access.

 That’s the end of that! Now ensure that all your specs and features are passing by

running rake cucumber:ok spec. You should see this output:

31 scenarios (31 passed)

285 steps (285 passed)

and
20 examples, 0 failures, 10 pending

In this section, you altered the TicketsController so that only users with permission

to access a project can see the tickets inside it. Let’s commit that:

git add .
git commit -m "Restrict reading tickets to correct project scope"

git push

Now let’s add a new permission that restricts who can create tickets in a project.

8.5 Restricting write access

Sometimes when working on a project, you’ll want to limit the creation of tickets to a

certain person or a group of people, such as to only developers or only clients. For

this, you want the New link to be hidden from people who don’t have this permission,

and you need both the new and create actions to reject such users.

8.5.1 Rewriting a feature

You’re lucky to already have the feature for creating tickets, so you just need to add a

step to the Background declaring that the user can create tickets in the project. Place

this step directly under the one declaring that users can view the project. Open

features/creating_tickets.feature, and modify the Background so it contains these two

lines:

And "user@ticketee.com" can view the "Internet Explorer" project

And "user@ticketee.com" can create tickets in the "Internet Explorer" project

When you run bin/cucumber features/creating_tickets.feature, you’re told this

step is undefined:

Given /^"([^"]*)" can create tickets in the "([^"]*)"

 ➥ project$/ do |arg1, arg2|

pending # express the regexp above with the code you wish you had

end

186 CHAPTER 8 More authorization

Define it in features/step_definitions/permission_steps.rb directly under the viewing

projects step. This new step goes like this:

Given /^"([^"]*)" can create tickets in the "([^"]*)" project$/

do |user, project|
Permission.create!(:user => User.find_by_email!(email),

:thing => Project.find_by_name!(project),

:action => "create tickets")
end

This step is similar to the step before it. You changed the word view to create tickets and

made a few other small changes, so you should DRY these steps up now. Change the

steps to read exactly like the following listing.

permission_step = /

^"([^"]*)" can ([^"]*?) ([o|i]n)?\s?the "([^"]*)" project$/

Given permission_step do |user, permission, on, project|
create_permission(user, find_project(project), permission)

end

def create_permission(email, object, action)

Permission.create!(:user => User.find_by_email!(email),
:thing => object,

:action => action)

end

def find_project(name)

Project.find_by_name!(name)

end

Here we separated the regular expression onto its own line to make the line a little

shorter. It can all be put on one line without any adverse effects; this just makes it

neater.

 Now you extract creating permissions, finding the user, and finding the project

into separate methods, which means you won’t have to change each step if you want to

change the way a permission is created. You also combine the acts involved in creating

permissions into one step that matches all currently defined step definitions using a

regular expression that conforms to the style of other steps:

Given "user@ticketee.com" can create tickets on the "Ticketee" project
Given "user@ticketee.com" can view the "Ticketee" project

Given "user@ticketee.com" can edit tickets in the "Ticketee" project

This new step definition allows greater flexibility in how your steps are defined yet

leaves them easy to parse.

 With this permission step defined, run bin/cucumber features/creating

_tickets.feature, and the entire feature passes:

3 scenarios (3 passed)

35 steps (35 passed)

Listing 8.6 features/step_definitions/permission_steps.rb

187Restricting write access

This feature will pass whether the user has permission to create a ticket or not. You’re

now basically in the same situation you faced with the Viewing Tickets feature: the fea-

ture would pass either way. So, just like before, you use RSpec to test that users can’t

create a ticket if they don’t have permission to do so.

8.5.2 Blocking creation

Let’s write the specs to test that users with permission to view the project but without

permission to create tickets can’t create tickets. Put the specs shown in the following

listing in spec/controllers/tickets_controller_spec.rb inside the standard users context

block so all the examples are grouped nicely.

context "with permission to view the project" do

before do

sign_in(:user, user)

Permission.create!(:user => user, :thing => project, :action => "view")
end

def cannot_create_tickets!

response.should redirect_to(project)
flash[:alert].should eql("You cannot create tickets on this project.")

end

it "cannot begin to create a ticket" do
get :new, :project_id => project.id

cannot_create_tickets!

end

it "cannot create a ticket without permission" do

post :create, :project_id => project.id

cannot_create_tickets!
end

end

You first set up the specs using a before, signing in as a user, and defining a permis-

sion for that user to view the project. Next, you define a method called cannot

_create_tickets! asserting that unauthorized users should be redirected to the proj-

ect and shown an alert stating they’re not allowed to create tickets. Rather than dupli-

cating these two lines in each spec where you want to check that a user receives the

correct message, you just call the cannot_create_tickets! method in that place. The

two examples you just added ensure that unauthorized visitors to the new and create

actions can’t create tickets.

 When you run this file with bin/rspec spec/controllers/tickets_controller

_spec.rb, the specs fail, just as you might expect:

Failure/Error: response.should redirect_to(project)

Expected response to be a <:redirect>, but was <200>

Listing 8.7 spec/controllers/tickets_controller_spec.rb

188 CHAPTER 8 More authorization

To make the spec pass, you need to implement the permission checking on the new

and create actions in your TicketsController.

 Run a before_filter before the new action that checks whether the current user

has permission; if not, then redirect the user to the project page and display the error

described in the spec.

 Now change the before_filter calls to include this new one, as shown in the fol-

lowing lines:

before_filter :authenticate_user!
before_filter :find_project
before_filter :find_ticket, :only => [:show, :edit, :update, :destroy]
before_filter :authorize_create!, :only => [:new, :create]

This authorize_create!before_filter is placed after the authenticate_user! and

find_project before_filters because it uses the current_user object set up by the

authenticate_user! method and the @project object from find_project.

 In this new filter, you call a new method called cannot?, which returns true or

false to indicate whether the currently signed-in user can’t or can do a particular

action. You define the authorize_create! method code shown next:

def authorize_create!
if !current_user.admin? && cannot?("create tickets".to_sym, @project)

flash[:alert] = "You cannot create tickets on this project."
redirect_to @project

end
end

In this example, you use to_sym to create a symbolized version of a string, which is

required because the cannot? method takes only symbols. You also check whether or

not the user is an admin; if so, the user should be allowed to create tickets. If you run

the controller’s spec again with bin/rspec spec/controllers/tickets_controller

_spec.rb, the example fails because the cannot? method is undefined:

Failure/Error: get :new, :project_id => project.id
undefined method 'cannot?' for #<TicketsController:0xb651244c>

Rails doesn’t come with a cannot? method, but a gem called cancan (stylized as Can-

Can) does. This gem helps you tie together the User and Permission records. Let’s

install it now.

8.5.3 What is CanCan?

CanCan is a gem written by Ryan Bates of Railscasts fame; it provides some nice helper

methods (such as the cannot? method and its antithesis, can?) to use in controllers

and views.

 The can? and cannot? methods use the same permissions table you created to

check that a user has permission to perform a specific action on a specific object.

 To install CanCan, add this line to your Gemfile directly underneath the line for

Devise:

gem 'cancan'

189Restricting write access

(There’s no particular reason to put this gem underneath Devise other than that it’s

sensible to group together gems dealing with similar functions.) To install the CanCan

gem, run bundle install.

8.5.4 Adding abilities

When you run bin/rspec spec/controllers/tickets_controller_spec.rb, you get

this output:

Failure/Error: get :new, :project_id => project.id

uninitialized constant Ability

This error occurs because CanCan is now defining the cannot? method for the con-

troller, which uses a CanCan in-built method called current_ability:

@current_ability ||= ::Ability.new(current_user)

The ||= sets @current_ability if it isn’t already set. The :: before Ability indicates

to Ruby that you want the Ability at the root namespace. This allows you to have a

module called CanCan::Ability and a class at Ability and to differentiate between

the two. In this example, it’s trying to access just Ability, which is a class that doesn’t

yet exist.

 This new Ability class will provide the link between users and their permissions.

You define it in a new file at app/models/ability.rb exactly like the following listing.

class Ability

include CanCan::Ability

def initialize(user)

user.permissions.each do |permission|

can permission.action.to_sym,

 ➥permission.thing_type.constantize do |thing|

thing.nil? ||

permission.thing_id.nil? ||
permission.thing_id == thing.id

end

end
end

end

The Ability class’s initialize method defines how can? and cannot? will act. In

this example, you iterate over all the users’ permissions and use the can? method to

say that a user can perform a specific function. Users who shouldn’t be able to per-

form that function won’t have an entry in the permissions table for it. This is the

whitelist authorization described at the beginning of the chapter.

 When you run bin/rspec spec/controllers/tickets_controller_spec.rb, you

get this error:

Failure/Error: get :new, :project_id => project.id

undefined method 'permissions' for #<User:0xb59dc528>

Listing 8.8 app/models/ability.rb

190 CHAPTER 8 More authorization

This error occurs because you haven’t yet defined a has_many association on the User

model to the Permission model. To do so, open app/models/user.rb and add this line

within the class:

has_many :permissions

This is another case where there’s no reason other than that it makes sense to put it

directly underneath the line for the tickets association. It’s best if you group all similar

methods together. With this association in place, run bin/rspec spec/controllers/

tickets_controller_spec.rb, and the whole spec file passes:

...
3 examples, 0 failures

Great! Now that the spec’s passing, unauthorized users don’t have access to the new

and create actions. How about checking that those who have permissions can access

these actions? Let’s check on the Creating Tickets feature. With this permission

checking in place, any user with the right permissions should still be able to create

tickets. Run bin/cucumber features/creating_tickets.feature to make sure. It

should pass:

3 scenarios (3 passed)
38 steps (38 passed)

Good. Users without permission to create tickets no longer can do so.

 Now that you’ve implemented this story, it’s time to commit. As usual, you should

ensure that everything is still working by running rake cucumber:ok spec. Everything

should pass:

31 scenarios (31 passed)
288 steps (288 passed)
and
22 examples, 0 failures, 10 pending

Let’s commit the changes:

git add .
git commit -m "Restricting creating tickets to only users

 ➥who have permissions to do it"

git push

In this section, you limited the creation of tickets to only those users who’re granted

permission to do so by using the Permission class and the CanCan gem.

8.6 Restricting update access

You just learned how to restrict access to the creation of tickets; your next step is to

restrict which users can update tickets. Thankfully, you can re-use the framework

that’s already in place with CanCan to make this a cinch. You can also re-use the Edit-

ing Tickets feature to test the restriction.

191Restricting update access

 For this feature, at features/editing_tickets.feature, you set up a Permission that

says the user you sign in as has permission to update tickets. To do this, write a step in

the Background directly under the other one that sets up read access, as shown here:

And "user@ticketee.com" can view the "TextMate 2" project

And "user@ticketee.com" can edit tickets in the "TextMate 2" project

When you run bin/cucumber features/editing_tickets.feature, it all passes, just

as you expect. This step covers the scenario in which the user has permission to

update tickets; to cover the scenario in which the user doesn’t have permission, you

need to write a couple of specs first.

8.6.1 No updating for you!

In this section, you restrict updating of tickets in the same way you restricted creating

tickets. You start by writing two examples: one to test the edit action and the other to

test the update action. Inside spec/controllers/tickets_controller_spec.rb, within the

“with permission to view the project” context, define a cannot_update_tickets!

method right under the cannot_create_tickets! method, as shown next:

def cannot_update_tickets!

response.should redirect_to(project)
flash[:alert].should eql("You cannot edit tickets on this project.")

end

Then, underneath the existing examples, put the specs, as shown in the following

listing.

it "cannot edit a ticket without permission" do

get :edit, { :project_id => project.id, :id => ticket.id }

cannot_update_tickets!
end

it "cannot update a ticket without permission" do

put :update, { :project_id => project.id,
:id => ticket.id,

:ticket => {}

}
cannot_update_tickets!

end

These two examples make requests to their respective actions and assert that the user

is redirected away from them with an error message explaining why. With both of

these actions, you need to pass a project_id parameter so the find_project method

can find a project and an id parameter so the find_ticket method can find a ticket.

For the update action, you pass an empty hash so params[:ticket] is set. If you didn’t

do this, you would get a confusing error in your test:

NoMethodError:

undefined method 'stringify_keys' for nil:NilClass

Listing 8.9 Update tests for spec/controllers/tickets_controller_spec.rb

192 CHAPTER 8 More authorization

This error occurs because the update_attributes call in the update action would be

passed nil, because that’s what params[:ticket] defaults to if you don’t pass it in

here. This error would happen only if the user had permission to update a ticket,

which all users have for now (but not for long).

 When you run this file using bin/rspec spec/controllers/tickets_controller

_spec.rb, these two examples fail:

1) TicketsController standard users with permission to view the project
cannot edit a ticket without permission

Failure/Error: response.should redirect_to(project)

2) TicketsController standard users with permission to view the project
cannot update a ticket without permission

Failure/Error: response.should redirect_to(project)

Now you can implement this feature in your controller!

8.6.2 Authorizing editing

Before the edit and update actions are run, you want to authorize the user for them.

Write another before_filter for TicketsController: the before_filter list for this

controller should now look like the following listing.

before_filter :authenticate_user!

before_filter :find_project

before_filter :find_ticket, :only => [:show, :edit, :update, :destroy]
before_filter :authorize_create!, :only => [:new, :create]

before_filter :authorize_update!, :only => [:edit, :update]

At the bottom of this controller class, define the new method shown in the following

listing:

def authorize_update!

if !current_user.admin? && cannot?(:"edit tickets", @project)
flash[:alert] = "You cannot edit tickets on this project."

 redirect_to @project

 end
end

Now check whether the specs pass by running bin/rspec spec/controllers/tickets

_controller_spec.rb:

5 examples, 0 failures

Wasn’t that easy? The edit and update actions in the TicketsController are now

restricted, just like the create action. How’s the feature going? Let’s see if those with

permission can still update tickets. Run bin/cucumber features/editing_tickets

.feature:

2 scenarios (2 passed)
28 steps (28 passed)

Listing 8.10 app/controllers/tickets_controller.rb

193Restricting delete access

Just like that, you’re finished restricting updating tickets to only some users.

 Now run rake cucumber:ok spec to make sure nothing is broken. Everything

should be good:

31 scenarios (31 passed)
290 steps (290 passed)

and

24 examples, 0 failures, 10 pending

Fantastic! Let’s commit that:

git add .

git commit -m "Restricting ticket updating to only those who have permission"
git push

Good stuff. In this section, you learned how to restrict the edit and update actions

using the permissions you implemented earlier. There’s one last port of call for this

restricting business: the destroy action.

8.7 Restricting delete access

The final action you restrict is the destroy action in the TicketsController. Again,

you can re-use a feature to test this behavior: the Deleting Tickets feature.

 As you did with the Creating Tickets and Updating Tickets features, you implement

a step here in the Deleting Tickets feature to give the user permission to delete tickets.

Under the line that grants users permission to view the TextMate 2 project, put another

one to grant them permission to delete tickets, as shown here:

And "user@ticketee.com" can view the "TextMate 2" project
And "user@ticketee.com" can delete tickets in the "TextMate 2" project

When you run this feature, the whole thing passes because you already have the step

that supports the different permissions you require:

1 scenario (1 passed)

12 steps (12 passed)

This feature ensures that anybody with permission can delete tickets for projects, but

you need another spec to test that anybody without permission is prevented from delet-

ing tickets.

8.7.1 Enforcing destroy protection

To ensure that users without permission to delete tickets can’t do so, you write a spec

(shown next) directly under the one for the update action in spec/controllers/

tickets_controller_spec.rb:

it "cannot delete a ticket without permission" do

delete :destroy, { :project_id => project.id, :id => ticket.id }
response.should redirect_to(project)

flash[:alert].should eql("You cannot delete tickets from this project.")

end

194 CHAPTER 8 More authorization

You don’t have to put the last two lines in their own method because you won’t use

them more than once. When you run this spec, it fails on the final line rather than on

the third line:

1) TicketsController standard users with permission to view the project
cannot delete a ticket without permission

Failure/Error: flash[:alert].should eql

 ➥("You cannot delete tickets from this project.")

This error occurs because the destroy action is actually being processed, and it redi-

rects the user to the project once it’s complete. The spec doesn’t know the difference

between a redirect from within the action or within the before_filter, nor should it.

 To make this spec pass, define a new method called authorize_delete! at the bot-

tom of the TicketsController:

def authorize_delete!
if !current_user.admin? && cannot?(:"delete tickets", @project)

flash[:alert] = "You cannot delete tickets from this project."

redirect_to @project

end
end

Then you can call this method in a before_filter too:

before_filter :authorize_delete!, :only => :destroy

When you run this spec using bin/rspec spec/controllers/tickets_controller

_spec.rb, it’s all passing:

6 examples, 0 failures

Now that you’re stopping users without permission, how goes your feature? Run bin/

cucumber features/deleting_tickets.feature to find out:

1 scenario (1 passed)
12 steps (12 passed)

Great! With this last permission in place, all the actions in the TicketsController are

restricted to their appropriate users. Let’s make a commit:

git add .

git commit -m "Restrict destroy action to only people with permission"

git push

Because the controller’s actions are restricted, the links associated with these actions

should be hidden from users who are unable to perform these actions.

8.7.2 Hiding links based on permission

To ensure that these links are hidden from those who shouldn’t be able to see them

but are still visible to admins (because admins should be able to do everything), you

use features/hidden_links.feature. Start with the New Ticket link by adding the scenar-

ios from the following listing.

195Restricting delete access

Scenario: New ticket link is shown to a user with permission
Given "user@ticketee.com" can view the "TextMate 2" project

And "user@ticketee.com" can create tickets on the "TextMate 2" project

And I am signed in as "user@ticketee.com"
When I follow "TextMate 2"

Then I should see "New Ticket"

Scenario: New ticket link is hidden from a user without permission
Given "user@ticketee.com" can view the "TextMate 2" project

And I am signed in as "user@ticketee.com"

When I follow "TextMate 2"
Then I should not see the "New Ticket" link

Scenario: New ticket link is shown to admins

Given I am signed in as "admin@ticketee.com"
When I follow "TextMate 2"

Then I should see the "New Ticket" link

These three scenarios test all three permutations of users who could possibly see this

page. Users with permission and admins should be able to see the link, and users with-

out permission should not. When you run this feature with bin/cucumber features/

hidden_links.feature, the second scenario fails:

Expected to not see the "New Ticket" link, but did.
(RSpec::Expectations::ExpectationNotMetError)

This error occurs because the link is visible independently of whether or not the user

has permission. With these scenarios in place, you can work on making them pass. You

can wrap the New Ticket in a helper method, similar to the admins_only helper used

in chapter 6. Open app/views/projects/show.html.erb, and change the New Ticket link

from this

<%= link_to "New Ticket", new_project_ticket_path(@project) %>

to this:

<%= authorized?("create tickets".to_sym, @project) do %>
<%= link_to "New Ticket", new_project_ticket_path(@project) %>

<% end %>

Currently, this authorized? method is undefined. This is the method you need in

views all across your application to determine if the user has permission to see the spe-

cific action and if that user is an admin. Because you’ll use this helper everywhere,

define it inside app/helpers/application_helper.rb, as shown here:

def authorized?(permission, thing, &block)

block.call if can?(permission.to_sym, thing) ||

current_user.try(:admin?)
nil

end

This helper uses CanCan’s can? method to check if the user is authorized to perform

this action. If so, then all is fine and dandy. If not, then you check to see if the

Listing 8.11 features/hidden_links.feature

196 CHAPTER 8 More authorization

current_user is set (it won’t be set if the user isn’t signed in), and if it is, check to see

if that user is an admin by using the try method, which returns nil. If the method

specified can’t be found on thing, try is called. If it’s found, then you use

block.call, which runs the passed-in block.

 With this helper implemented, all three new scenarios should pass. Run bin/

cucumber features/hidden_links.feature to find out:

10 scenarios (10 passed)
60 steps (60 passed)

Great! They’re passing! Now let’s implement another few for testing the Edit link for

tickets. Add the three scenarios from the following listing to the bottom of features/

hidden_links.feature.

Scenario: Edit ticket link is shown to a user with permission

Given "user@ticketee.com" can view the "TextMate 2" project

And "user@ticketee.com" can edit tickets on the "TextMate 2" project

And I am signed in as "user@ticketee.com"
When I follow "TextMate 2"

And I follow "Shiny!"

Then I should see the "Edit" link

Scenario: Edit ticket link is hidden from a user without permission

Given "user@ticketee.com" can view the "TextMate 2" project

And I am signed in as "user@ticketee.com"
When I follow "TextMate 2"

And I follow "Shiny!"

Then I should not see the "Edit" link

Scenario: Edit ticket link is shown to admins

Given I am signed in as "admin@ticketee.com"

When I follow "TextMate 2"
And I follow "Shiny!"

Then I should see the "Edit" link

When you run these scenarios using bin/cucumber feature/hidden_links.feature,

the link to Shiny! can’t be found for any of them:

And I follow "Shiny!"

no link with title, id or text 'Shiny!' found (Capybara::ElementNotFound)

The Shiny! link should be a link to a ticket, but you haven’t yet created this ticket. To

do so, under the line where you created the TextMate 2 project in the Background,

add the following to create a ticket:

And "user@ticketee.com" has created a ticket for this project:

| title | description |

| Shiny! | My eyes! My eyes! |

Now when you run this feature, the middle scenario fails, just like when you imple-

mented the Create link filtering:

Listing 8.12 features/hidden_links.feature

197Restricting delete access

Expected to see the "Edit" link, but did not.
(RSpec::Expectations::ExpectationNotMetError)

This time, you edit the file app/views/tickets/show.html.erb. Change the Edit link

from this

<%= link_to "Edit Ticket", [:edit, @project, @ticket] %>

to this:

<%= authorized?("edit tickets", @project) do %>
<%= link_to "Edit Ticket", [:edit, @project, @ticket] %>

<% end %>

With this one small change to use the authorized? helper to check for the permission

to edit tickets for the current project, the Hidden Links feature now passes when you

run bin/cucumber features/editing_tickets.feature:

13 scenarios (13 passed)
97 steps (97 passed)

Great! You’ve got one last link to protect now: the Delete Project link on the tickets

show page. Add another three scenarios to this feature, shown in the following listing.

Scenario: Delete ticket link is shown to a user with permission

Given "user@ticketee.com" can view the "TextMate 2" project
And "user@ticketee.com" can delete tickets in the "TextMate 2" project

And I am signed in as "user@ticketee.com"

When I follow "TextMate 2"
And I follow "Shiny!"

Then I should see "Delete"

Scenario: Delete ticket link is hidden from a user without permission
Given "user@ticketee.com" can view the "TextMate 2" project

And I am signed in as "user@ticketee.com"

When I follow "TextMate 2"
And I follow "Shiny!"

Then I should not see the "Delete" link

Scenario: Delete ticket link is shown to admins
Given I am signed in as "admin@ticketee.com"

When I follow "TextMate 2"

And I follow "Shiny!"
Then I should see the "Delete" link

When you run this feature, the middle scenario fails again:

Then I should not see "Delete"
Expected to not see the "Delete" link, but did.

(RSpec::Expectations::ExpectationNotMetError)

To fix it, open or switch back to app/views/tickets/show.html.erb and wrap the Delete

Ticket link in the warm embrace of the authorized? method, just as you did with the

Edit Ticket link:

Listing 8.13 features/deleting_tickets.feature

198 CHAPTER 8 More authorization

<%= authorized?("delete tickets", @project) do %>
<%= link_to "Delete Ticket",

project_ticket_path(@project, @ticket),

:method => :delete,
:confirm => "Are you sure you want to delete this ticket?" %>

<% end %>

When you run bin/cucumber features/hidden_links.feature, all 15 scenarios pass:

16 scenarios (16 passed)

124 steps (124 passed)

Fantastic! Now you’ve stopped displaying links to the users who shouldn’t see them

and switched to displaying them only to people who should be able to see them.

 What a whirlwind adventure! First you learned to check for permissions for all the

actions in the TicketsController, and then you learned to hide links from users in

the views. Let’s make sure everything is working by running rake cucumber:ok spec:

40 scenarios (40 passed)

376 steps (376 passed)
and

17 examples, 0 failures, 3 pending

Great! Now let’s commit:

git add .
git commit -m "Restrict actions in TicketsController

 ➥based on permissions and hide links"

git push

With all that done, you now have the scaffold for setting up permissions but no inter-

face to it! There’s currently no way in the system for a user (in particular, an admin) to

set up the permissions on other users. We now implement that.

8.8 Assigning permissions

In chapter 6, you added an admin field to the users table and then triggered it

through the admin backend by checking or unchecking a check box. You’re going to

do the same thing with the permissions for the projects. When you’re done, you’ll see

a permissions screen that allows you to pick and choose the permissions for the users

and projects.

 You implement this screen one check box at a time because you must confirm that

the permissions you assign through this interface work just as well as when you use the

step definitions in Cucumber. Let’s get started with the permission to view projects.

8.8.1 Viewing projects

In this section, you implement the foundations for assigning the permissions through

the admin backend, starting with the permission to view projects. Create a new feature

called features/assigning_permissions.feature, and start it out with the code from the

following listing.

199Assigning permissions

Feature: Assigning permissions
In order to set up users with the correct permissions
As an admin
I want to check all the boxes

Background:
Given there are the following users:

| email | password | admin |
| admin@ticketee.com | password | true |

And I am signed in as them

And there are the following users:
| email | password |
| user@ticketee.com | password |

And there is a project called "TextMate 2"

When I follow "Admin"
And I follow "Users"
And I follow "user@ticketee.com"
And I follow "Permissions"

Scenario: Viewing a project
When I check "View" for "TextMate 2"
And I press "Update"
And I follow "Sign out"

Given I am signed in as "user@ticketee.com"
Then I should see "TextMate 2"

This scenario has two users: an admin user and a standard user. You sign in as the

admin user, go to the permissions page, check a box, click Update, and then sign out.

Then you sign in as the user who was just granted permission to test that permission,

which you do in the next step. This ensures that the assigning of the permissions always

works. For now, you’re only testing the permission to view a project permission.

 When you run bin/cucumber features/assigning_permissions.feature, it fails

when it tries to follow the Permissions link:

And I follow "Permissions"
no link with title, id or text 'Permissions' found

 ➥(Capybara::ElementNotFound)

If you look at how the Background gets to this point, you can see that it follows the

Admin link, which leads to the admin dashboard, then to Users to take you to the place

where you can see users, and finally clicks a user, taking you to the Admin::Users-

Controllershow action. Therefore, you need to add the missing Permissions link to

the app/views/admin/users/show.html.erb directly underneath the Delete User link:

<%= link_to "Delete User", admin_user_path(@user),
:method => :delete,
:confirm => "Are you sure you want

 ➥to delete this user?" %>

<%= link_to "Permissions", admin_user_permissions_path(@user) %>

Listing 8.14 features/assigning_permissions.feature

200 CHAPTER 8 More authorization

The path for this link_to (which is not yet defined) takes you to the Admin

::PermissionsController’s index action. To get this link_to to work, define that

permissions are nested under users in the config/routes.rb, and add the admin

namespace in the definition using this code:

namespace :admin do

root :to => "base#index"

resources :users do
resources :permissions

end

end

With these changes in the config/routes.rb file, the admin_user_permissions_path

used in the link_to will now be defined. When you run the feature using bin/cucumber

features/assigning_permissions.feature, you see there’s more to be done for this

step:

And I follow "Permissions"

uninitialized constant Admin::PermissionsController

 ➥(ActionController::RoutingError)

Ah, of course! You must create the controller for this link!

THE PERMISSIONS CONTROLLER

You can generate the Admin::PermissionsController file by running this command:

rails g controller admin/permissions

Along with an app/controllers/admin/permissions_controller.rb file, this command

generates other goodies, such as a helper and a directory for the views at app/views/

admin/permissions. Before you go further, you must modify this file to make the class

inherit from the right place so that only admins can access it. Open the file, and

change the first line to this:

class Admin::PermissionsController < Admin::BaseController

This line makes the controller inherit from the Admin::BaseController class, which

restricts all actions in this controller to only admin users. When you run the feature

again, the index action is missing from this controller:

And I follow "Permissions"

The action 'index' could not be found for Admin::PermissionsController

Obviously, you need to define this action before you carry on. Inside this action, load

all the permissions for the user you’re currently looking at, and then, with the view,

display a page from which an admin can choose what permissions this user has on

each project. It’d be helpful if this user was loaded by a before_filter because you’ll

need it for the action that updates the permissions later. With all this in mind, update

the entire controller to resemble the following listing.

201Assigning permissions

class Admin::PermissionsController < Admin::BaseController
before_filter :find_user

def index

@ability = Ability.new(@user)
@projects = Project.all

end

private

def find_user

@user = User.find(params[:user_id])

end
end

The new Ability instance created here lets you check the user’s ability to perform

specific actions on any project by simply calling this code:

@ability.can?(:"view", @project)

This syntax may look similar to the syntax used in TicketsController—it is. In that

controller, you used the cannot? method, which is the opposite of the can? method.

These methods are added to the controller by CanCan and are just shorter helper

methods to do almost exactly what you did in this controller. The only difference is

that you’re not acting on the current_user here, so you must define an Ability

object yourself and use that instead.

THE PERMISSIONS SCREEN

Now that you have the index action up, you need to make its view look like what is

shown in figure 8.5. Create a new file at app/views/admin/permissions/index.html.erb,

and fill it with the content from the following listing.

Listing 8.15 app/controllers/admin/permissions_controller.rb

Figure 8.5 The permissions screen

202 CHAPTER 8 More authorization

<h2>Permissions for <%= @user.email %></h2>
<%= form_tag update_user_permissions_path, :method => :put do %>

<table>

<thead>
<th>Project</th>

<% permissions.each do |name, text| %>

<th><%= text %></th>
<% end %>

</thead>

<tbody>
<% @projects.each do |project| %>

<tr class='<%= cycle("odd", "even") %>'>

<td><%= project.name %></td>
<% permissions.each do |name, text| %>

<td>

<%= check_box_tag "permissions[#{project.id}][#{name}]",
@ability.can?(name.to_sym, project) %>

</td>

<% end %>

</tr>
<% end %>

</tbody>

</table>
<%= submit_tag "Update" %>

<% end %>

This template defines the table discussed earlier. It provides a header row of permis-

sion titles and rows for each project containing that project’s name followed by check

boxes for each of the permissions. In this view, you use the form_tag, which generates

a form that points to the path specified by its first argument. You also use a

permissions helper method B, which isn’t currently defined but will provide a list of

permissions to iterate through to check on each project.

 Right underneath where you use permissions, you use another helper method

called cycle B. This method is built into Rails and cycles through its given arguments

for each iteration of whatever it’s encapsulated in, so when this page displays the first

project, the method sets the class of that tr tag to odd and the second one to even. It

cycles between these two classes until it runs out of projects. This is how you can easily

get different rows in this table to be styled differently.

 Before we look at how to define the permissions method, run bin/cucumber

cucumber features/assigning_permissions.feature:

undefined local variable or method

'update_user_permissions_path' [...]

You get an error because you haven’t yet defined the route for the form. The

Admin::PermissionsController serves a different purpose than the standard REST

controllers. For this controller, you use the update action to update a whole slew of

permissions rather than a single one. To map to this action by using the update

Listing 8.16 app/views/admin/permissions/index.html.erb

B

C

203Assigning permissions

method, you must define another named route in your config/routes.rb file using the

put method:

put '/admin/users/:user_id/permissions',

:to => 'admin/permissions#update',
:as => :update_user_permissions

With this method, you define a new route for your application that will only respond

to PUT requests to this route. The :user_id inside the route is a variable and is passed

to the action as params[:user_id]. The controller and action are defined using the

:to symbol, and finally the method itself is given a name with the :as option.

 Now when you run the feature again, this route method is defined, but the

permissions method isn’t:

And I follow "Permissions"

undefined local variable or method 'permissions' [...]

 ➥(ActionView::Template::Error)

Great! It seems like your page just requires this permissions helper method.

DEFINING A HELPER METHOD

Back in chapter 6, you defined a helper method called admins_only in Application-

Helper, which allowed you to show links only for admin users. This time, you define

the permissions method, which contains a list of permissions to display check boxes

on this page. Because this method is specific to views from the Admin ::Permissions-

Controller controller, place it in app/helpers/admin/permissions _helper.rb and

define it as shown in the following listing.

module Admin::PermissionsHelper

def permissions

{
"view" => "View"

}

end
end

This permissions method returns a hash containing only one key-value pair at the

moment because you’re testing only one particular check box. You use this method to

display all the permissions you want to be configurable by admins, and you revisit this

method later to define more pairs. You use this method in your view twice; the first

time, you iterate over it like this:

<% permissions.each do |name, text| %>

<th><%= text %></th>

<% end %>

When you iterate over a Hash object with the each method, the key for the hash

becomes the first block variable and the value becomes the second block variable;

these variables change for each key-value pair of the Hash object. In this case, it ren-

ders headers for the table in this view. You use this helper later in the view too:

Listing 8.17 app/helpers/admin/permissions_helper.rb

204 CHAPTER 8 More authorization

<% permissions.each do |name, text| %>
<td>

<%= check_box_tag "permissions[#{project.id}][#{name}]",

@ability.can?(name.to_sym, project) %>
</td>

<% end %>

Here you use just the key from the hash to define a uniquely identifiable name for this

check box. The second argument is the value returned to the controller, which you

use to determine whether or not this check box is checked. The third argument uses

the @ability object to determine whether or not this check box is displayed as

checked. By using this method, you get a tag like this:

<input id=\"permissions_1_view\"

name=\"permissions[1][view]\"
type=\"checkbox\"

value=\"1\" />

You’re given both the id and name attributes, which are generated from the first argu-

ment you passed to check_box_tag. The id attribute indicates not the permission’s ID

but the ID of the project that you’re determining the permission is for. You use the id

attribute shortly to check this box using Capybara and the parsed-into-params version

of the name attribute just after that in your controller.

 When you run bin/cucumber features/assigning_permissions.feature again,

you reach the following undefined step:

When I check "View" for "TextMate 2"
Undefined step: "I check "View" for "TextMate 2"" (Cucumber::Undefined)

...

When /^I check "([^"]*)" for "([^"]*)"$/ do |arg1, arg2|
pending # express the regexp above with the code you wish you had

end

Take the snippet at the end of the output and put it in features/step_definitions/

permission_steps.rb underneath the other step definitions but above the methods. You

should end up with a step definition like this:

When /^I check "([^"]*)" for "([^"]*)"$/ do |permission, name|
project = Project.find_by_name!(name)

permission = permission.downcase.gsub(" ", "_")

field_id = "permissions_#{project.id}_#{permission}"
steps(%Q{When I check "#{field_id}"})

end

For this step definition, you must first find the project by its name so you can get its ID,

because a later part of this step that checks the permission check box requires the ID

of the project to compile the ID for the fields.3 Then you use the handy steps method

you used in chapter 7 to call another step where you pass in the downcase’d and

3 The project name won’t change, but the ID might, so you use the identifier that’s unlikely to change.

205Assigning permissions

gsub’d version of the permission string. The name passed in is the titleize’d version

of the permission and should match the title in the permissions table heading.

 When you run this feature again, it passes because this step is defined and because

it can check this check box, but it fails because the form tries to go to the update

action inside Admin::PermissionsController, which doesn’t exist yet:

And I press "Update"

The action 'update' could not be found for Admin::PermissionsController

This action’s a little tricky. Not only do you want it to add permissions for users, you

also want to delete those permissions.4 This action receives params[:permissions] in

this Hash format from the form:

{"1"=>{"view"=>"1"}}

The first key is the ID of the project, and the hash inside contains the permissions for

that project. If no check boxes are checked for that project, then no hash exists in

params[:permissions] for it. Therefore, you use this hash to update the permissions

that a user can do now, as shown in the following listing.

def update

@user.permissions.clear
params[:permissions].each do |id, permissions|

project = Project.find(id)

permissions.each do |permission, checked|
Permission.create!(:user => @user,

:thing => project,

:action => permission)
end

end

flash[:notice] = "Permissions updated."
redirect_to admin_user_permissions_path

end

You first clear all the users’ permissions using the association method clear. Next, you

iterate through all the key-value pairs in params[:permissions] and find the project

for each one. Then you iterate through the permissions for the parameter and create

a new permission for every project. Finally, you set a flash[:notice] and redirect

back to the permissions page. Now when you run this feature, the Sign Out link is

missing:

no link with title, id or text 'Sign out' found (Capybara::ElementNotFound)

You didn’t add this link in chapter 7 because you didn’t need it, but in hindsight, you

should have. Add this link now to app/views/layouts/application.html.erb directly

under the Signed in as text:

4 Which is possibly why the action is called update.

Listing 8.18 update action inside app/controllers/admin/permissions_controller.rb

206 CHAPTER 8 More authorization

Signed in as <%= current_user.email %>
<%= link_to "Sign out", destroy_user_session_path, :method =>

:delete %>

This link now shows only to people who are signed in. The routing helper

destroy_user_session_path is provided for free by Devise. When you rerun the

Assigning Permissions feature with bin/cucumber features/assigning_permissions

.feature, everything passes:

1 scenario (1 passed)

13 steps (13 passed)

Great! You created a way for admins to choose which users can see which projects

through an interface of check boxes and confirmed that users can see the project they

have access to and can’t see the projects they aren’t authorized to see. Let’s run all the

tests with rake cucumber:ok spec to make sure everything is working:

41 scenarios (41 passed)

389 steps (389 passed)

and

26 examples, 0 failures, 11 pending

All systems green! Let’s make a commit before you go any further:

git add .

git commit -m "Added permissions screen for admins"

Next, you implement this feature for the other permissions used.

8.8.2 And the rest

Now that you have the foundation in place for this check box screen, you can add the

rest of the permissions you’ve implemented. The next permission you implemented

after the restriction of read access was the restriction of write access, restricting which

users could and couldn’t perform the new and create actions on TicketsController.

With an interface in place for admins to assign permissions through the backend, you

should ensure that they can assign the permission to create tickets and that users to

whom they assign this permission can perform that action.

CREATING TICKETS

Open features/assigning_permissions.feature, and add the scenario shown in the fol-

lowing listing right under the scenario currently in this file.

Scenario: Creating tickets for a project
When I check "View" for "TextMate 2"

When I check "Create tickets" for "TextMate 2"

And I press "Update"
And I follow "Sign out"

Given I am signed in as "user@ticketee.com"

When I follow "TextMate 2"
And I follow "New Ticket"

Listing 8.19 features/assigning_permissions.feature

207Assigning permissions

And I fill in "Title" with "Shiny!"
And I fill in "Description" with "Make it so!"

And I press "Create"

Then I should see "Ticket has been created."

Just as in your first scenario, you check the View check box for the project. Otherwise,

the user wouldn’t be able to see the project where the new ticket link was. Then you

check the Create Tickets check box, update the user’s permissions, and sign out. Next,

you sign in as that user and make sure you can do what you just gave that user permis-

sion to do. When you run this feature with bin/cucumber features/assigning

_permissions.feature, the first step fails because it can’t find the check box:

cannot check field, no checkbox with id, name,

or label 'permissions_1_create_tickets' found (Capybara::ElementNotFound)

Let’s add this check box then! Open app/helpers/admin/permissions_helper.rb, and

add the permission to your hash, changing this method from

def permissions

{

"view" => "View"
}

end

to

def permissions

{

"view" => "View",
"create tickets" => "Create Tickets"

}

end

Keep in mind that the key must match the intended action for the Permission object;

the value is just a label for this permission. The action is what you use in your

authorized? helpers around the application.

 When you another key-value pair in this hash, the code inside app/views/admin/

permissions/index.html.erb automatically shows a check box for this new permission.

When you run this feature again, it passes because this new check box is visible and

the permission is applied correctly:

2 scenarios (2 passed)

35 steps (35 passed)

Wasn’t that a piece of cake? Let’s move on to the next permission now: updating tick-

ets. Actually, let’s do both updating tickets and deleting tickets at the same time.

THE DOUBLE WHAMMY

Just to show the world how great you are at developing this application, you’ll now

write two scenarios and get them both to pass at the same time. Add both of these

scenarios to the end of features/assigning_permissions.feature, as shown in the follow-

ing listing.

208 CHAPTER 8 More authorization

Scenario: Updating a ticket for a project
When I check "View" for "TextMate 2"

And I check "Edit tickets" for "TextMate 2"

And I press "Update"
And I follow "Sign out"

Given I am signed in as "user@ticketee.com"

When I follow "TextMate 2"
And I follow "Shiny!"

And I follow "Edit"

And I fill in "Title" with "Really shiny!"
And I press "Update Ticket"

Then I should see "Ticket has been updated"

Scenario: Deleting a ticket for a project
When I check "View" for "TextMate 2"

And I check "Delete tickets" for "TextMate 2"

And I press "Update"
And I follow "Sign out"

Given I am signed in as "user@ticketee.com"

When I follow "TextMate 2"

And I follow "Shiny!"
And I follow "Delete"

Then I should see "Ticket has been deleted."

The scenarios should be descriptive enough to understand—no particular magic

going on here. But you’re acting on a ticket in both these scenarios that doesn’t exist:

the Shiny! ticket. You need to create this ticket in your Background if you want these

scenarios to pass. Add this step definition right under the line in the Background that

creates the TextMate 2 project, as shown next:

And "user@ticketee.com" has created a ticket for this project:

| title | description |
| Shiny! | Eye-blindingly so |

Now when you run this feature, your two newest scenarios are failing, both with simi-

lar errors:

cannot check field, no checkbox with id, name,

or label 'permissions_1_update_tickets' found

and
cannot check field, no checkbox with id, name,

or label 'permissions_1_delete_tickets' found

Of course! You have no check boxes for Capybara to check yet! Add them now by chang-

ing the permissions method in app/helper/admin/permissions_helper.rb from this

def permissions

{
"view" => "View",

"create tickets" => "Create Tickets"

}
end

Listing 8.20 features/assigning_permissions.feature

209Seed data

to this:

def permissions
{

"view" => "View",
"create tickets" => "Create Tickets",
"edit tickets" => "Edit Tickets",
"delete tickets" => "Delete Tickets"

}
end

By adding these two permissions here, you display the check boxes that should make

your scenarios all green. Let’s run the feature with bin/cucumber features/assigning

_permissions.feature to find out:

4 scenarios (4 passed)
72 steps (72 passed)

How great are you? Two features with one blow. Awesome stuff.

 That’s the final piece of the authorization puzzle. You now have a way for admins

to assign permissions to users. But does everything work? Here’s hoping! Let’s run

rake cucumber:ok spec:

44 scenarios (44 passed)

448 steps (448 passed)

and
26 examples, 0 failures, 11 pending

Awesome! Let’s commit this:

git add .
git commit -m "Added creating, editing, updating and deleting

tickets to assigning permissions interface"
git push

Although it’s great that you now have an interface for assigning permissions, you

don’t have a way to do it without first having an admin user set up. You can set up an

admin user manually through the console, or you can do it by creating seed data.

8.9 Seed data

Seed data is records created for the purpose of providing the minimal viable require-

ments to get an application running. Before Rails 2.2, many applications imple-

mented such records through using plugins such as seed_fu, but since 2.2, seed data is

built in.

 Seed data allows you to create records for your application to provide a usable base

if you or anybody else wants to get set up with the application quickly and easily. For

your application’s seed data, you’ll create an admin user and an example project.

From there, anybody using the admin user will be able to perform all the functions of

the application.

 Seed data lives under db/seeds.rb, and you can run this file by running rake

db:seed. The code for this rake task is this:

load Rails.root + "db/seeds.rb"

210 CHAPTER 8 More authorization

The load method works in a similar fashion to require, loading and executing the

code inside the file. One difference, however, is that load expects the given string (or

Pathname) to be the full path, with the extension, to the file.

 First write a feature to ensure that when the seed data is loaded, you can sign in

with the email admin@ticketee.com and the password password and you can get to the

TicketeeBeta project. Put this feature in features/seed.feature, and write it as shown in

the following listing.

Feature: Seed Data
In order to fill the database with the basics

As the system

I want to run the seed task

Scenario: The basics

Given I have run the seed task

And I am signed in as "admin@ticketee.com"
Then I should see "Ticketee Beta"

It’s a pretty basic feature, but your seed file will be equally basic. Before you create it,

however, you should define the first step of this scenario. You can get the definition

for this step by running bin/cucumber features/seed.feature. The step definition

looks like this:

Given /^I have run the seed task$/ do

pending # express the regexp above with the code you wish you had
end

Put this step definition in a new file called features/step_definitions/

application_steps.rb because it doesn’t really tie in with the other step files you’ve

defined. If you have more steps like this, you can put them into this file later too. The

code for this file is simple:

Given /^I have run the seed task$/ do
load Rails.root + "db/seeds.rb"

end

Now when you run your feature again, it can’t find the user your seed data is supposed

to create:

And I am signed in as "admin@ticketee.com"

Couldn't find User with email = admin@ticketee.com

 ➥(ActiveRecord::RecordNotFound)

It can’t find this user because you haven’t yet created one for this scenario. This user

should be created by the db/seeds.rbfile. Open this file now, and add a couple of lines

to create this user, set the user up as an admin, and confirm the user, as shown in the

following listing.

Listing 8.21 features/seed.feature

211Seed data

admin_user = User.create(:email => "admin@ticketee.com",
:password => "password")

admin_user.admin = true

admin_user.confirm!

Now run bin/cucumber features/seed.feature to ensure that you can sign in as this

user. If you can, you should see the step passing and the next step failing:

And I am signed in as "admin@ticketee.com"
Then I should see "Ticketee Beta"

Failed assertion, no message given. (MiniTest::Assertion)

To get this last step of the scenario to pass, you must add the project to db/seeds.rb by

putting this line in there:

Project.create(:name => "Ticketee Beta")

Your entire seeds file should look like the following listing.

admin_user = User.create(:email => "admin@ticketee.com",

:password => "password")
admin_user.admin = true

admin_user.confirm!

Project.create(:name => "Ticketee Beta")

This is all you need to get this feature to pass. Let’s run it now with bin/cucumber

features/seed.feature to make sure:

1 scenario (1 passed)
3 steps (3 passed)

Great! With this seeds file, you now have data to put in the database so you can boot-

strap your application. Let’s run rake db:seed to load this data. Start your applica-

tion’s server by typing rails server into a terminal, and then go to your server at

http://localhost:3000 in your browser. Sign in as the admin user using the same email

and password you set up in your seeds file. You should see the display shown in

figure 8.6.

 When you’re signed in as a user, you should be

able to do everything from creating a new ticket

to creating a new user and setting up user permis-

sions. Go ahead and play around with what you’ve

created so far.

 When you’re done playing, run rake

cucumber:ok spec for the final time this chapter:

Listing 8.22 db/seeds.rb

Listing 8.23 db/seeds.rb

Figure 8.6 What admins see

212 CHAPTER 8 More authorization

45 scenarios (45 passed)
451 steps (451 passed)

and

26 examples, 0 failures, 11 pending

Everything’s still green, which means it’s time for another commit:

git add .

git commit -m "Added a seeds file"
git push

Now you’re done!

8.10 Summary

This chapter covered implementing authorization for your application and setting up

a permissions-based system for both the ProjectsController and TicketsController.

 You started with a Permission model, which you used in a scope on the Project

model to show only the projects a user should be able to access. Then you used the

CanCan plugin, which provided the can? and cannot? methods to use first in the con-

trollers to stop users from accessing specified actions and then in the views, through

the authorized? method, to stop users from seeing specified links.

 You implemented a way for admins to change the permissions of a user through

the admin backend of the system by displaying a series of check boxes. Here you used

an update action that wasn’t quite like the normal update action, and you had to

define a custom-named route for it.

 Finally, you learned how to set up seed data for your application so you have a solid

base of objects to work from. Without using seed data, you’d have to manually set up

the data not only for your local development environment but also for your produc-

tion server, which can be tedious. Seed data saves you that effort. You also wrote a test

for this data in the form of a feature that ensures the data from the seed file is always

created when the seed task is run.

 In chapter 9, you learn how to attach files to tickets. File uploading is an essential

part of any ticket-tracking application because files can provide that additional piece of

context required for a ticket, such as a screenshot, a patch, or any type of file. You also

learn about restricting the availability of these files on the basis of users’ permissions.

213

File uploading

In chapter 9, you learned how to restrict access to specific actions in your applica-

tion, such as viewing projects and creating tickets, by defining a Permission model

that keeps track of which users have access to which actions.

 Ticketee’s getting pretty useful now. This chapter focuses on file uploading, the

next logical step in a ticket-tracking application. Sometimes, when people file a

ticket on an application such as Ticketee, they want to attach a file to provide more

information for that ticket, because words alone can only describe so much. For

example, a ticket description saying, “This button should move up a bit,” could be

better explained with a picture showing where the button is now and where it

should be. Users may want to attach any kind of file: a picture, a crash log, a text

file, you name it. Currently, Ticketee has no way to attach files to the ticket: people

would have to upload them elsewhere and then include a link with their ticket

description.

This chapter covers

 Uploading files to the app

 Locking down file access based on declared

permissions

 Uploading multiple files using JavaScript, jQuery,

and CoffeeScript

214 CHAPTER 9 File uploading

 By providing Ticketee the functionality to attach files to the ticket, you provide the

project owners a useful context that will help them more easily understand what the

ticket creator means. Luckily, there’s a gem called Paperclip that allows you to imple-

ment this feature easily.

 Once you’re familiar with Paperclip, you’ll change your application to accept mul-

tiple files attached to the same ticket using a JavaScript library called Prototype (which

comes with Rails) and some custom JavaScript code of your own. Because you’re using

JavaScript, you have to alter the way you test parts of your application. To test

JavaScript functionality, you’ll be using WebDriver,1 which is a framework built for

automatic control of web browsers. WebDriver is especially useful because you can use

the same steps you use for standard Cucumber and Capybara tests and because Capy-

bara will take care of driving the browser. By running the tests inside the browser, you

ensure the JavaScript on the page will be executed, and then you can run the tests on

the results. Pretty handy!

 Finally, you’ll see how you can restrict access to the files contained within the proj-

ects of your application so that confidential information isn’t shared with people who

don’t have access to a particular project.

 File uploading is also useful in other types of applications. Suppose you wrote a

Rails application for a book. You could upload the chapters to this application, and

then people could provide notes on those chapters. Another example is a photo gal-

lery application that allows you to upload images of your favorite cars for people to

vote on. File uploading has many different uses and is a cornerstone of many Rails

applications.

9.1 Attaching a file

You start off by letting users attach files when they begin creating a ticket. As

explained before, files attached to tickets can provide useful context as to what feature

a user is requesting or can point out a specific bug. A picture is worth a thousand

words, as they say. It doesn’t have to be an image; it can be any type of file. This kind of

context is key to solving tickets.

 To provide this functionality, you must add a file-upload box to the new ticket

page, which allows users to select a file to upload. When the form is submitted, the file

is submitted along with it. You use the Paperclip gem to store the file inside your appli-

cation’s directory.

9.1.1 A feature featuring files

You first need to write a scenario to make sure the functionality works. This scenario

shows you how to deal with file uploads when creating a ticket. Users should be able to

create a ticket, select a file, and upload it. Then they should be able see this file, along

with the other ticket details, on the ticket’s page. They may choose to click the file-

name, which would download the file. Let’s test all this by adding a scenario at the

1 There’s a great post explaining WebDriver on the Google Open Source blog: http://google-opensource
.blogspot.com/2009/05/introducing-webdriver.html.

http://google-opensource.blogspot.com/2009/05/introducing-webdriver.html

215Attaching a file

bottom of features/creating_tickets.feature that creates a ticket with an attachment,2 as

shown in the following listing.

Scenario: Creating a ticket with an attachment

When I fill in "Title" with "Add documentation for blink tag"

And I fill in "Description" with "The blink tag has a speed attribute"
And I attach the file "spec/fixtures/speed.txt" to "File"

And I press "Create Ticket"

Then I should see "Ticket has been created."
Then I should see "speed.txt" within "#ticket .asset"

In this feature you introduce a new concept: the Attach the File step B of this sce-

nario, which attaches the file found at the specified path to the specified field. The

path here is deliberately in the spec/fixtures directory because you may use this file for

functional tests later. This directory would usually be used for test fixtures, except that

at the moment, you don’t have any.3 Create the spec/fixtures/speed.txt file now, and

fill it with some random filler text like this:

The blink tag can blink faster if you use the speed="hyper" attribute.

Try running this feature using bin/cucumber features/creating_tickets.feature

:37 and see how far you get. It fails on the attaching step because the File field isn’t

yet available:

And I attach the file "spec/fixtures/speed.txt" to "File"

cannot attach file, no file field with id, name,
or label 'File' found (Capybara::ElementNotFound)

Add the File field to the ticket form partial directly underneath the p tag for the

description field using the code in the following listing.

<p>
<%= f.label :asset, "File" %>

<%= f.file_field :asset %>

</p>

You call this field asset internally, but the user will see File. The reason for this is

explained a little later.

 In earlier versions of Rails, you were required to specify that this form is multipart.

A multipart form should be used for any HTML form that contains a file-upload field.

In earlier versions, if you didn’t enable this form setting, you’d only get the filename

from the field rather than the file itself. In Rails 3.1, you don’t need to do this because

it’s done automatically if the form uses the file_field. But it’s preferable to indicate

2 Please note that although the blink tag was once a part of HTML, it should never be used. Same goes for the
marquee tag.

Listing 9.1 features/creating_tickets.feature

3 Nor will you ever, as factories replace them in your application.

Listing 9.2 app/views/tickets/_form.html.erb

Attach fileB

216 CHAPTER 9 File uploading

that the form is multipart anyway, so you should do this now by changing the

form_for line in app/views/tickets/_form.html.erb from this

<%= form_for [@project, @ticket] do |f| %>

to this:

<%= form_for [@project, @ticket], :html => { :multipart => true } do |f| %>

Now we come to a very interesting point in implementing file uploading. When you

run bin/cucumber features/creating_tickets.feature, all of the scenarios are

broken and all for the same reason:

And I press "Create Ticket"

unknown attribute: asset (ActiveRecord::UnknownAttributeError)

Because you added this file_field, the create action’s code dutifully tries to assign

it as an attribute, only to find that it’s not defined and so causes this error. Rather than

running a migration to add an attribute by this name, you use the Paperclip gem to

handle it.

9.1.2 Enter stage right, Paperclip

Just as you would use a normal paperclip to attach paper files together, in your appli-

cation you use the Paperclip gem to provide the attachment functionality you need

for tickets. This gem was created by thoughtbot,4 which has a whole slew of other use-

ful gems, such as Hoptoad.5

 To install Paperclip, you need to add a line to the Gemfile to tell Bundler that you

want to use this gem. Put this underneath the line specifying the CanCan gem, sepa-

rated by a line because it’s a different type of gem (CanCan has to do with users,

paperclip has to do with files):

gem 'cancan'

gem 'paperclip'

Next, you must run bundle install to install this gem.

 With Paperclip now installed, you can work on defining the asset attribute that

your model wants. It’s not really an attribute; the error message is misleading in that

respect. All it needs is a setter method (asset=) and it would be happy. But you need

this method to do more than set an attribute on this object; you need it to accept the

uploaded file and store it locally. Paperclip lets you define this fairly easily with its

has_attached_file method. This method goes in the Ticket model, defines the set-

ter method you need, and gives four application the ability to accept and process this

file. Add it to your Ticket model with this line:

has_attached_file :asset

Now this asset= method is defined, but it’s not yet over!

4 http://thoughtbot.com.
5 For a full list of thoughtbot’s gems, see its GitHub page: http://github.com/thoughtbot.

http://thoughtbot.com
http://github.com/thoughtbot

217Attaching a file

9.1.3 Using Paperclip

When you run bin/cucumber features/creating_tickets.feature again, you’re

told your model is missing one more thing:

When I press "Create Ticket"

Ticket model missing required attr_accessor

for 'asset_file_name' (Paperclip::PaperclipError)

attr_accessor references a Ruby method that defines a setter and a getter method

named after its arguments, such as in the following listing.

attr_accessor :foo

is the same as...

def foo
@foo

end

def foo=(value)
@foo = value

end

These getter and setter methods are defined automatically by Active Model for the

fields in your database. Paperclip wants the asset_file_name method defined on

your Ticket instance’s method. asset_file_name is one of four methods used by

Paperclip to track details about the file. The other methods are asset_content_type,

asset_file_size, and asset_updated_at. To define the asset_file_name method

and its siblings, create a migration that adds them as attributes of the Ticket model by

running this command:

rails g paperclip ticket asset

This paperclip generator (provided by the Paperclip gem) adds the proper fields to

your tickets table. You tell it you want the attachment to be called asset.

 By running this command, you get a new file in db/migrate that ends with

_add_attachment_asset_to_ticket.rb. If you open this file now, you should see a pre-

filled migration, as shown in the following listing.

class AddAttachmentAssetToTicket < ActiveRecord::Migration
def self.up

add_column :tickets, :asset_file_name, :string
add_column :tickets, :asset_content_type, :string
add_column :tickets, :asset_file_size, :integer
add_column :tickets, :asset_updated_at, :datetime

end

def self.down
remove_column :tickets, :asset_file_name
remove_column :tickets, :asset_content_type

Listing 9.3 attr_accessor example

Listing 9.4 db/migrate/[time]_add_attachment_asset_to_ticket.rb

218 CHAPTER 9 File uploading

remove_column :tickets, :asset_file_size
remove_column :tickets, :asset_updated_at

end

end

Remember that you call the field asset internally, but to the user, it’s called File? This

column-naming convention is the reason for the different names. To ease confusion

for people working on the application (you!), you call these fields with the asset pre-

fix so that the column names are asset_file_name and not file_file_name. There’s

also another reason, which is explained in section 9.2.

 To add these columns to your development environment’s database, run rake db

:migrate. Then run rake db:test:prepare to add them to your test environment’s

database. If you run the feature with bin/cucumber features/creating_tickets

.feature, all the scenarios that were previously passing are still passing. But the sce-

nario you just added fails with this error:

Then I should see "speed.txt" within "#ticket .asset"

You can see that the scenario failed because Capybara can’t find the text within this

element on the TicketsController’s show page: this text and this element don’t

exist! You need to add at least the filename for your scenario to pass, so add it under-

neath the spot in the show view where you currently have the following:

Created by <%= @ticket.user.email %>
<%= simple_format(@ticket.description) %>

You must also wrap all the code in this view inside a div tag with the id attribute

ticket and spice it up a little by adding the content type and file size there too, as

shown in the following listing.

<small>Created by <%= @ticket.user.email %></small>

<%= simple_format(@ticket.description) %>

<% if @ticket.asset.exists? %>
<h3>Attached File</h3>

<div class="asset">

<p>
<%= link_to File.basename(@ticket.asset.path),

@ticket.asset.url

%>
</p>

<p><small><%= number_to_human_size(@ticket.asset.size) %>

(<%= @ticket.asset.content_type %>)</small></p>
</div>

<% end %>

Here you use the exists? method defined on the asset method (which was defined

by Paperclip and returns a Paperclip::Attachment object); the exists? method

returns true if the file exists. You use it because you don’t want it trying to display the

path or any other information of a file when there isn’t one.

Listing 9.5 app/views/tickets/show.html.erb

Provide
download link

B

219Attaching a file

 You use the url B method here with link_to to provide the user with a link to

download6 this file. In this case, the URL for this file would be something like http://

localhost:3000/system/assets/1/original/file.txt.

 Where is this system route defined? Well, it’s not a route. It’s actually a directory

inside the public folder of your application where Paperclip saves your files.

 Requests to files from the public directory are handled by the server rather than by

Rails, and anybody who enters the URL in their browser can access them. This is bad

because the files in a project should be visible only to authorized users. You’ll handle

that problem a little later in the chapter.

 Underneath the filename, you display the size of the file, which is stored in the

database as the number of bytes. To convert it to a human-readable output (such as

“71 Bytes,” which will be displayed for your file), you use the number_to_human_size

Action View helper.

 With the file’s information now being output in app/views/tickets/show.html.erb,

this feature passes when you run bin/cucumber features/creating_tickets

.feature:

4 scenarios (4 passed)
52 steps (52 passed)

Awesome! Your files are being uploaded and taken care of by Paperclip, which stores

them at public/system/assets. Let’s see if your changes have brought destruction or sal-

vation by running rake cucumber:ok spec:

46 scenarios (46 passed)

466 steps (466 passed)
and

26 examples, 0 failures, 11 pending

What I will say when I get through this book! Let’s commit but not push this just yet:

git add .

git commit -m "Added the ability to attach a file to a ticket"

Have a look at the commit output. It contains this line:

create mode 100644 public/system/assets/1/original/speed.txt

This line is a leftover file from your test and shouldn’t be committed to the repository

because you could be testing using files much larger than this. You can tell Git to

ignore the entire public/system directory by adding it to the .gitignore file. Open that

file now and add this line to the bottom:

public/system

6 Some browsers open certain files as pages rather than downloading them. Modern browsers do so for .txt files
and the like.

http://localhost:3000/system/assets/1/original/file.txt
http://localhost:3000/system/assets/1/original/file.txt

220 CHAPTER 9 File uploading

This file tells Git which files you don’t want versioned. The whole file should look like

this now:

.bundle

db/*.sqlite3
log/*.log

tmp/**/*

public/system

By default, the .bundle directory (for Bundler’s configuration), the SQLite3 data-

bases, the logs for the application, and any files in tmp are ignored. With public/sys-

tem added, this directory is now ignored by Git too. You should also remove this

directory from your latest commit, and thankfully, Git provides a way to do so by using

these two commands:

git rm public/system/assets/1/original/speed.txt
git commit --amend -m "Added the ability to attach a file to a ticket"

The first command removes the file from the filesystem and tells Git to remove it from

the repository. The second command amends your latest commit to exclude this file,

and it will be as if your first commit with this message never existed. Let’s push this

change:

git push

Great! Now you can attach a file to a ticket. There’s still some work to do, however.

What would happen if somebody wanted to add more than one file to a ticket? Let’s

take a look at how to do that.

9.2 Attaching many files

You have an interface for attaching a single file to a ticket but no way for a user to

attach more than one. Let’s imagine your pretend client asked you to boost the num-

ber of file-input fields on this page to three.

 If you’re going to add these three file-input fields to your view, you need some

more fields in your database to handle them. You could define four fields for each file-

upload field, but a much better way to handle this is to add another model.

 Creating another model gives you the advantage of being able to scale it to not just

three file-input fields but more if you ever need them. Call this model Asset, after the

name you gave to the has_attached_file in the Ticket model.

 When you’re done with this feature, you should see three file-

upload fields as shown in figure 9.1.

 You can create new instances of this model through the ticket

form by using nested attributes. Nested attributes have been a feature

of Rails since version 2.3, and they allow the attributes of an associ-

ation to be passed from the creation or update of a particular

resource. In this case, you’ll be passing nested attributes for new
Figure 9.1

File-upload boxes

221Attaching many files

asset objects while creating a new Ticket model. The best part is that the code to do all

of this remains the same in the controller.

 You need to modify the scenario for creating a ticket with an attachment in your

Creating Tickets feature so it uploads two additional files.

9.2.1 Two more files

Let’s take the scenario for creating a ticket with an attachment from features/

creating_tickets.feature and add these two additional file upload fields so the entire

scenario looks like the following listing.

Scenario: Creating a ticket with an attachment

When I fill in "Title" with "Add documentation for blink tag"
And I fill in "Description" with "The blink tag has an undocumented

 ➥speed attribute"

And I attach the file "spec/fixtures/speed.txt" to "File #1"
And I attach the file "spec/fixtures/spin.txt" to "File #2"

And I attach the file "spec/fixtures/gradient.txt" to "File #3"

And I press "Create Ticket"

Then I should see "Ticket has been created."
And I should see "speed.txt" within "#ticket .assets"

And I should see "spin.txt" within "#ticket .assets"

And I should see "gradient.txt" within "#ticket .assets"

In this scenario, you attach three files to your ticket and assert that you see them

within the assets element, which was previously called #ticket .asset but now has

the pluralized name of #ticket .assets.

 You download only the one file here and check for the content. It’s not at all likely

that the other two files wouldn’t work in the same way given that they’re interpreted

and rendered identically.

 Now run this single scenario using bin/cucumber features/creating_tickets

.feature:36. It should fail on the first Attach the File step, because you renamed the

label of this field:

And I attach the file "spec/fixtures/speed.txt" to "File #1"

cannot attach file, no file field with id, name,

or label 'File #1' found (Capybara::ElementNotFound)

To get this step to pass, you can change the label on the field in app/views/tickets/

_form.html.erb to "File #1":

<p>
<%= f.label :asset, "File #1" %>

<%= f.file_field :asset %>

</p>

While you’re changing things, you may as well change app/views/tickets/

show.html.erb to reflect these latest developments. First, change the if around the

Listing 9.6 File attachment scenario, features/creating_tickets.feature

222 CHAPTER 9 File uploading

asset field to use the assets method, because it’ll need to check the assets of a ticket

rather than the asset. You also need to change the h3 that currently reads Attached

File so it reads Attached Files because there’s more than one file. You should also

change the div that encapsulates your assets to have the class attribute of assets.

These three changes mean that you now have these three lines in app/views/tickets/

show.html.erb:

<% if @ticket.assets.exists? %>
<h3>Attached Files</h3>

<div class="assets">

When you call exists? this time, it calls the ActiveRecord::Base association method,

which checks if there are any assets on a ticket and returns true if there are. Although

assets isn’t yet defined, you can probably guess what you’re about to do.

 First, though, you need to change the lines underneath the ones you just changed

to the following:

<% @ticket.assets.each do |asset| %>

<p>

<%= link_to File.basename(asset.asset_file_name), asset.asset.url %>
</p>

<p>

<small><%= number_to_human_size(asset.asset.size) %></small>
</p>

<% end %>

Here you switch to using the assets method and iterate through each element in the

array, rendering the same output as you did when you had a single asset.

 All of these changes combined will help your scenario pass, which is a great thing.

When you run this scenario again, the first file field step passes, but the second fails:

And I attach the file "spec/fixtures/speed.txt" to "File #1"

And I attach the file "spec/fixtures/spin.txt" to "File #2"

cannot attach file, no file field with id, name,
or label 'File #2' found (Capybara::ElementNotFound)

You could add another field:

<p>
<%= f.label :asset_2, "File #2" %>

<%= f.file_field :asset_2 %>

</p>

But that’s a messy way of going about it. The best way to handle this problem is

through an associated model, a has_many association, and by using nested attributes. To

use nested attributes in the view, you use the fields_for helper. This helper defines

the fields for an association’s records, as many as you like. Let’s remove the file field

completely and replace it with this:

<% number = 0 %>
<%= f.fields_for :assets do |asset| %>

<p>
B Number increment

223Attaching many files

<%= asset.label :asset, "File ##{number += 1}" %>
<%= asset.file_field :asset %>

</p>

<% end %>

Directly before the fields_for call, you set a local variable called number, which is

incremented whenever you render a label B.

 You use fields_for much in the same way you use form_for. You call fields_for

on the f block variable from form_for, which tells it you want to define nested fields

inside this original form. The argument to fields_for—:assets C—tells Rails the

name of the nested fields.

 The file field inside this fields_for now has the name attribute of

ticket[assets][asset] rather than simply ticket[asset], meaning it will be avail-

able in the controller as params[:ticket][:assets][:asset].

 When you run this scenario with bin/cucumber features creating_tickets

.feature:36, it now fails because it still can’t find the second file-upload field:

And I attach the file "spec/fixtures/spin.txt" to "File #2"

cannot attach file, no file field with id, name,
or label 'File #2' found (Capybara::ElementNotFound)

To make this appear, you must define an assets association in your Ticket model so

the fields_for in your view will provide file_fields for three new Asset objects. If

this method is available and you’ve declared that your model accepts nested attributes

for this association, fields_for iterates through the output from this method and

renders the fields from fields_for for each element.

 You can define this assets method by defining a has_many association in your

Ticket model:

has_many :assets

Underneath this has_many, you also define that a Ticket model accepts nested attri-

butes for assets by using accepts_nested_attributes_for:

accepts_nested_attributes_for :assets

This little helper tells your model to accept asset attributes along with ticket attributes

whenever you call methods like new, build, and update. It has the added bonus of

switching how fields_for performs in your form, making it reference the association

and calling the attributes it defines assets_attributes rather than assets.

 When you run the scenario with bin/cucumber features/creating_tickets

.feature:38, you see again that the Asset is not defined:

And I follow "New Ticket"

uninitialized constant Ticket::Asset (ActionView::Template::Error)

You’d best get onto that then!

C The assets

224 CHAPTER 9 File uploading

9.2.2 Using nested attributes

You used the term Asset rather than File throughout this application because of this

model. You can’t define a File model because there’s already a File class in Ruby.

Asset is an alternative name you can use. To define this Asset constant in your appli-

cation, you can run the model generator:

rails g model asset

Each record for this model refers to a single file that has been uploaded to a ticket.

Therefore, each record in the assets table must have the same asset_* fields that

each tickets record currently has. Storing the asset references in the assets table

now makes the references in the tickets table irrelevant, so you should remove them.

You should also add a relationship between the asset records and the ticket records by

adding a ticket_id field to the assets table. Open the migration this generates, and

change it to the following listing to reflect these ideas.

class CreateAssets < ActiveRecord::Migration
def change

create_table :assets do |t|
t.string :asset_file_name
t.integer :asset_file_size
t.string :asset_content_type
t.datetime :asset_updated_at
t.integer :ticket_id

t.timestamps
end

[:asset_file_name,
:asset_file_size,
:asset_content_type,
:asset_updated_at].each do |column|
remove_column :tickets, column

end
end

end

Run this migration with rake db:migrate to migrate your development environment’s

database, and then run rake db:test:prepare to migrate the test environment’s data-

base. When you run the feature again with bin/cucumber features/creating

_tickets.feature:36, your File #1 field is once again missing:

And I attach the file "spec/fixtures/speed.txt" to "File #1"

cannot attach file, no file field with id, name,
or label 'File #1' found (Capybara::ElementNotFound)

You’ve gone backward! Or so it seems.

 As mentioned earlier, fields_for detects that the assets method is defined on

your Ticket object and then iterates through each object in this collection while ren-

dering the fields inside fields_for for each. When you create a new ticket in

Listing 9.7 db/migrate/[date]_create_assets.rb

225Attaching many files

TicketsController’s new action, however, you don’t initialize any assets for this ticket,

so assets returns an empty array and no fields at all are displayed.

 To get this action to render three file input fields, you must initialize three Asset

objects associated to the Ticket object the form uses. Change your new action inside

TicketsController to this:

def new

@ticket = @project.tickets.build
3.times { @ticket.assets.build }

end

The final line of this action calls @ticket.assets.build three times, which creates

the three Asset objects you need for your fields_for.

 When you run the scenario again, the three fields are available, but the scenario

now fails because it can’t find a file to upload:

And I attach the file "spec/fixtures/speed.txt" to "File #1"

And I attach the file "spec/fixtures/spin.txt" to "File #2"

And I attach the file "spec/fixtures/gradient.txt" to "File #3"

And I press "Create Ticket"
/home/you/ticketee/spec/fixtures/

spin.txt file does not exist (RuntimeError)

Create this spin.txt file now inside the spec/fixtures directory, and give it the following

content:

Spinning blink tags have a 200% higher click rate!

You also need to add the gradient.txt file to the same directory, and it contains this:

Everything looks better with a gradient!

These two text pieces are random filler meant only to provide some text if you ever

need to reference it. Let’s run the scenario again:

And I press "Create Ticket"

unknown attribute: asset (ActiveRecord::UnknownAttributeError)

You got this message earlier when you were implementing single-file uploading

because you didn’t define has_attached_file on the Ticket class. Let’s get more

backtrace for this error by using the -b switch at the end of the command: bin/cucum-

ber features/creating_tickets.feature:36 -b. This command provides the whole

backtrace for an error. In this particular backtrace, you’re after anything to do with

assets, because that’s the only thing that’s changed since this feature was passing. You

should see a line like the following about 10 lines down:

.../active_record/nested_attributes.rb:254:in 'assets_attributes='

This line indicates that the failure most likely has to do with the assets_attributes=

method, which was kindly enough provided by Rails through the call to

accepts_nested_attributes_for. If this error occurs after the assets_attributes=

method, then it definitely has to do with this method. In fact, it’s probably because

226 CHAPTER 9 File uploading

you haven’t yet defined the has_attached_file in the Asset model, right? Yup, you

should do that!

 Open app/models/asset.rb, and add this line:

has_attached_file :asset

Remove the same line from app/models/ticket.rb because you no longer need it. Hav-

ing this has_attached_file defined in the Asset model is probably all you need.

You’ve had all three file fields displaying, and now you’ve got your Asset model set up

to receive these files. When you run the scenario again using bin/cucumber features

/creating_tickets.feature:38, it all passes:

1 scenario (1 passed)
18 steps (18 passed)

Hooray, the scenario passed! In this section, you set up the form that creates new

Ticket objects to also create three associated Asset objects by using nested attributes.

This process was made possible by moving the responsibility of handling file uploads

out of the Ticket model and into the associated Asset model.

 Let’s ensure that nothing is broken by running rake cucumber:ok spec:

46 scenarios (46 passed)
470 steps (470 passed)

and

21 examples, 0 failures, 4 pending

Awesome, let’s commit and push this:

git add .

git commit -m "Users can now upload 3 files at a time"
git push

Great. You’re done with nested attributes! Earlier, it was mentioned that the files

uploaded to your application are publicly available for anybody to access because

these files are in the public directory. Any file in the public directory is served up auto-

matically by any Rails server, bypassing all the authentication and authorization in

your application. This is a bad thing. What if one of the projects in your application

has files that should be accessed only by authorized users?

9.3 Serving files through a controller

You can solve this issue by serving the uploaded files through a controller for your

application. Using a before_filter similar to the one you used previously in the

TicketsController, this controller will check that the user attempting to access a file

has permission to access that particular project.

 When you implemented permission behavior before, you ensured that any unau-

thorized user would be blocked from accessing the resource you were trying to pro-

tect by writing a controller spec. You write this same kind of spec test for serving files.

227Serving files through a controller

9.3.1 Protecting files

You first need to generate the controller through which you’ll serve the assets. Call it

files, because assets is already reserved by Sprockets:

rails g controller files

Now write a spec to ensure that unauthorized users can’t see the files inside it. For this

spec test, you must create two users, a project, a ticket, and an asset. The first user

should have permission to read this project, and the second user shouldn’t.

 Open spec/controllers/files_controller_spec.rb, and add let definitions that set up

your users, project, ticket, and asset inside the describe for FilesController, as

shown in the following listing.

describe FilesController do

let(:project) { Factory(:project) }

let(:ticket) { Factory(:ticket, :project => project) }

let(:good_user) { create_user! }
let(:bad_user) { create_user! }

let(:path) { Rails.root + "spec/fixtures/speed.txt" }

let(:asset) do
ticket.assets.create(:asset => File.open(path))

end

before do
good_user.permissions.create!(:action => "view",

:thing => project)

end
end

You used a let for setting up a project, two users, a ticket for this project, a path to the

file that’s served from the controller, and the asset for the ticket. This is the asset you’ll

be serving from the controller for this spec test.

 You set up the permission in a before block because you won’t be referencing it

anywhere in your tests, so having it as a let block wouldn’t work. You should use let

blocks only when you’re going to be referencing them inside your tests. If you need

code set up beforehand, you should use a before block instead.

 To serve the files from this controller, use the show action, using the id parameter

to find the asset the user is requesting. When the application finds this asset, you want

it to check that the user requesting the asset has permission to read the project this

asset links to. The good_user object should be able to, and the bad_user object

shouldn’t. Now add the spec to test the good_user’s ability to download this asset by

using the code from the following listing.

context "users with access" do

before do

Listing 9.8 spec/controllers/files_controller_spec.rb

Listing 9.9 spec/controllers/assets_controller_spec.rb

228 CHAPTER 9 File uploading

sign_in(:user, good_user)
end

it "can access assets in a project" do

get 'show', :id => asset.id
response.body.should eql(File.read(path))

end

end

If you’re using Windows you may have to do this on the response.body line instead,

because the line breaks on Windows are slightly different:

response.body.gsub!(/\r\n?/, "\n").should eql(File.read(path))

In this example, you sign in as the good_user by using another before block. Then

you assert that when this user attempts to get this asset through the show action, the

user should receive it as a response. Write another context and spec for the bad_user

too, as shown in the following listing.

context "users without access" do
before do

sign_in(:user, bad_user)

end

it "cannot access assets in this project" do

get 'show', :id => asset.id

response.should redirect_to(root_path)
flash[:alert].should eql("The asset you were looking for

 ➥could not be found.")

end
end

Here you sign in as the bad_user and then deny all knowledge of the asset’s existence

by redirecting to root and displaying an alert flash message. Let’s run these specs now

with bin/rspec spec/controllers/assets_controller_spec.rb. Both examples

complain:

The action 'show' could not be found for FilesController

Well, that’s no good. Now you need to define this show action.

9.3.2 Showing your assets

Open your FilesController file and define the show action, along with a

before_filter to set the current_user variable, which you’ll need for permission

checking. This code is shown in the following listing.

class FilesController < ApplicationController
before_filter :authenticate_user!

def show

Listing 9.10 spec/controllers/assets_controller_spec.rb

Listing 9.11 app/controllers/files_controller.rb

229Serving files through a controller

asset = Asset.find(params[:id])
send_file asset.asset.path, :filename => asset.asset_file_name,

:content_type => asset.asset_content_type

end
end

In this action, you find the Asset object by using the params[:id] the action receives.

Then you use the asset object in combination with the send_file method to send

the file back as a response rather than a view in your application.

 The first argument for send_file is the path to the file you’re sending. The next

argument is an options hash used to pass in the filename and content_type options

so the browser receiving the file knows what to call it and what type of file it is.

 To route requests to this controller, you need to define a route in your config/

routes.rb file, which you can do with this line:

resources :files

When you run the specs for this controller again using bin/rspec spec/controllers

/files_controller_spec.rb, the first spec passes, but the second one fails:

FilesController users without access cannot access assets in this project
...

Expected response to be a <:redirect>, but was <200>.

The show action doesn’t redirect as this example expects because you’re not doing

any permission checking in your action, which is what this example is all about:

“users without access cannot access assets in this project.” To fix this problem,

check that the user has permission to access this asset’s project by using the CanCan

helpers you used in chapter 8. You can use them in your show action now, as shown in

the following listing.

def show

asset = Asset.find(params[:id])
if can?(:view, asset.ticket.project)

send_file asset.asset.path, :filename => asset.asset_file_name,

:content_type => asset.asset_content_type
else

flash[:alert] = "The asset you were looking for could not be found."

redirect_to root_path
end

end

Now when you rerun these specs, you’re missing a method:

undefined method 'ticket' for #<Asset:0x000001043d1e18>

This method is a simple belongs_to, which you must define inside the Asset model:

belongs_to :ticket

Listing 9.12 app/controllers/files_controller.rb

230 CHAPTER 9 File uploading

When you rerun your specs, they both pass because the authorized user (good_user)

can get a file and the unauthorized user (bad_user) can’t:

2 examples, 0 failures

Great! Now you’ve begun to serve the files from FilesController to only people who

have access to the asset’s relative projects. There’s one problem, though: all users can

still access these files without having to go through the FilesController.

9.3.3 Public assets

People can still get to your files as long as they have the

link provided to them because the files are still stored

in the public folder. Let’s see how this is possible by

starting up the server using rails server, signing in,

and creating a ticket. Upload the spec/fixtures/spin.txt

file as the only file attached to this ticket. You should

see a ticket like the one in figure 9.2.

 Hover over the spin.txt link on this page, and

you’ll see a link like this:

http://localhost:3000/system/assets/5/original/spin.txt?1282564953

As you saw earlier in this chapter, this link is a route not to a controller in your applica-

tion but to a file inside the public directory. Any file in the public directory is accessi-

ble to the public. Sensible naming schemes rock!

 If you copy the link to this file, sign out, and then paste the link into your browser

window, you can still access it. These files need to be protected, and you can do that by

moving them out of the public directory and into another directory at the root of your

application called files. You should create this directory now.

9.3.4 Privatizing assets

You can make these files private by storing them in the files folder. You don’t have to

move them there manually: you can tell Paperclip to put them there by default by

passing the :path option to has_attached_file in app/models/asset.rb like this:

has_attached_file :asset, :path => (Rails.root + "files/:id").to_s

Now try creating another ticket and attaching the spec/fixtures/spin.txt file. This time

when you use the link to access the file, you’re told there’s no route. This is shown in

figure 9.3.

Figure 9.3 No route!

Figure 9.2 A ticket with spin!

231Using JavaScript

The URL generated for this file is incorrect because Paperclip automatically assumes

all files are kept in the public folder. Because you changed the path of where the files

are kept, the URL is out of sync. You should now tell Paperclip the new URL for your

files, which is the URL for the show action for the FilesController:

has_attached_file :asset, :path => (Rails.root + "files/:id").to_s,

:url => "/files/:id"

A great test to see if you can still see assets after this change is to run the scenario from

features/creating_tickets.feature, which creates a ticket with three attachments and

then opens one of them. Run bin/cucumber features/creating_tickets.feature

:38 to see if this still works:

1 scenario (1 passed)

18 steps (18 passed)

Great! With this feature still passing, the files are being served through the Files-

Controller controller correctly. You’re done with implementing the functionality to

protect assets from unauthorized access, so you should commit. First ensure that noth-

ing is broken by running rake cucumber:ok spec:

44 scenarios (44 passed)
508 steps (508 passed)

and

22 examples, 0 failures, 5 pending

It’s great to see everything is still in working order. Now commit and push your

changes:

git add .
git commit -m "Assets are now strictly served through FilesController"

git push

By serving these files through the FilesController, you can provide a level of control

over who can see them and who can’t by allowing only those who have access to the

asset’s project to have access to the asset.

 Inevitably, somebody’s going to want to attach more than three files to a ticket, and

then what? Well, you could add more fields until people stop asking for them, or you

could be lazy and code a solution to save time. This solution entails putting an Add

Another File link underneath the final file field in your form that, when clicked, adds

another file field. Users should be able to continue to do this ad infinitum. How do

you implement this?

 You use JavaScript. That’s how.

9.4 Using JavaScript

You started this chapter with only one file field and then moved to three after you real-

ized users may want to upload more than one file to your application. Although having

three fields suits the purposes of many users, others may wish to upload yet more files.

232 CHAPTER 9 File uploading

 You could keep adding file fields until all the users are satisfied, or you could be

sensible about it and switch back to using one field and, directly underneath it, pro-

viding a link that, when clicked, adds another file field. Using this solution, you also

clean up your UI a bit by removing possible extra file fields yet still allowing users to

attach as many files as they like. This is where JavaScript comes in.

 When you introduce JavaScript into your application, you have to run any scenar-

ios that rely on it through another piece of software called WebDriver. WebDriver is a

browser driver, which was installed when the Capybara gem was installed, so you don’t

have to do anything to set it up. Capybara without WebDriver won’t run JavaScript

because it doesn’t support it by itself. By running these JavaScript-reliant scenarios

through WebDriver, you ensure the JavaScript will be executed. One of the great

things with this WebDriver and Capybara partnership is that you can use the same old,

familiar Capybara steps to test JavaScript behavior.

9.4.1 JavaScript testing

Capybara provides an easy way to trigger WebDriver testing. You tag a scenario (or fea-

ture) with the @javascript tag, and it launches a new web browser window and tests

your code by using the same steps as standard Capybara testing. Isn’t that neat? To tag

a scenario, place @javascript above it. Let’s write a new scenario in the Creating

Tickets feature for multifile uploading, as shown in the following listing.

@javascript
Scenario: Creating a ticket with an attachment

When I fill in "Title" with "Add documentation for blink tag"

And I fill in "Description" with "The blank tag has an undocumented
 ➥speed attribute"

And I attach the file "spec/fixtures/speed.txt" to "File #1"

And I follow "Add another file"
And I attach the file "spec/fixtures/spin.txt" to "File #2"

And I press "Create Ticket"

Then I should see "Ticket has been created."
And I should see "speed.txt" within "#ticket .assets"

And I should see "spin.txt" within "#ticket .assets"

When I follow "speed.txt"

The @javascript tag at the top of this scenario tells Cucumber that the scenario uses

JavaScript, so it should be run using WebDriver. Also in this scenario, you’ve filled in

only one file field B because, as stated before, you’re going to reduce the number of

initial file fields to one. After filling in this field, you follow the Add Another File link

that triggers a JavaScript event, which renders the second file field that you can then

fill in. The rest of this scenario remains the same: ensuring that the ticket is created C
and that you can see the files inside the element with the class assets.

 When you run this scenario with bin/cucumber features/creating_tickets

.feature:36, it fails because the Add Another File link doesn’t yet exist:

Listing 9.13 features/creating_tickets.feature

File
fieldB

Create
ticketC

233Using JavaScript

And I follow "Add another file"
no link with title, id or text 'Add another file' found

Before you fix it, however, let’s make the form render only a single asset field by

changing this line in the new action in TicketsController

3.times { @ticket.assets.build }

to this:

@ticket.assets.build

By building only one asset to begin with, you show users that they may upload a file. By

providing the link to Add Another File, you show them that they may upload more

than one if they please. This is the best UI solution because you’re not presenting the

user with fields they may not use.

 Now it’s time to make the Add Another File link exist and do something useful!

9.4.2 Introducing jQuery

The Add Another File link, when clicked, triggers an asynchronous call to an action,

which renders a second file field.

 For the Add Another File link to perform an asynchronous request when it’s

clicked, you can use the JavaScript framework called jQuery. In earlier versions of

Rails, a JavaScript framework called Prototype came with it, but a large portion of the

community prefers jQuery to Prototype. Developers can choose whether to use Proto-

type or jQuery or any other kind of JavaScript framework, but we use jQuery here

because it’s favored in the community.7

 To install jQuery in earlier versions of Rails, you would have had to go to http://

jquery.com, download the latest version of jQuery, put it in your public/javascripts, and

then include it in your application layout. Next, you would have had to install the

jquery-rails gem. It was quite a lot of work for something that should have been

simple!

 With Rails 3.1, you don’t need to download jQuery from the website or alter the

default application in any way. With jquery-rails in the application’s Gemfile, you

are already set up.

 Next, tell your application to include the JavaScript files from this gem if Rails hasn’t

done it already. Currently, you have this line in your app/views/layouts/application

.html.erb file:

<%= javascript_include_tag "application" %>

It generates HTML like this:

<script src="/assets/application.js" type="text/javascript">

</script>

7 Our choice totally has nothing to do with the fact that one of the authors is on the jQuery Core Team! We
promise!

http://jquery.com
http://jquery.com

234 CHAPTER 9 File uploading

The /assets path here is handled by the sprockets gem, which comes standard with

Rails 3.1. When this route is requested, the sprockets gem takes care of serving it. It

begins by reading the assets/javascripts/application.js file, which specifies the follow-

ing things:

// FIXME: Tell people that this is a manifest file, real code should go

➥into discrete files

// FIXME: Tell people how Sprockets and CoffeeScript works
//

//= require jquery

//= require jquery_ujs
//= require_tree .

The lines prefixed with // are comments, but the lines prefixed with //= are directives

that tell Sprockets what to do. These directives require the jquery and jquery_ujs files

from the jquery-rails gem. The jquery file is the jQuery framework itself, whereas

the jquery-ujs file provides unobtrusive JavaScript helpers for things such as the confir-

mation box that pops up when you click on a link, which was defined using link_to’s

:confirm helper.

 Rails has already required all the JavaScript files you need to get started here. Let’s

define the Add Another File link now.

9.4.3 Adding more files with JavaScript

You must add the Add Another File link to your tickets form at app/views/tickets/

_form.html.erb. Put it underneath the end for the fields_for so it’s displayed below

existing file fields:

<%= link_to "Add another file",

new_file_path,
:remote => true,

:update => "files",

:position => "after"
%>

Here you use the link_to method to define a link, and you pass some options to it.

The first option is :remote => true B, which tells Rails you want to generate a link

that uses JavaScript to make a background request, called an asynchronous request, to

the server. More precisely, the request uses the JavaScript provided by the jquery-

ujs.js file that came with the jquery-rails gem.

 This request then responds with some content, which is dealt with by the :update

C and :position D options. The first option, :update, tells Rails to tell the JavaScript

that handles the response that you want to insert the content from the background

request into the element with the id attribute of files. The second, :position, tells it

that you want to insert the content after any other content in the element, which would

make your second file field appear after the first file field.

B Remote

C Update

D Position

235Using JavaScript

 The element this updates doesn’t currently exist, but you can easily create it by

wrapping the fields_for inside a div with the id attribute set to files, as shown in

the following listing.

<div id='files'>

<%= f.fields_for :assets, :child_index => number do |asset| %>
<p>

<%= asset.label :asset, "File ##{number += 1}" %>

<%= asset.file_field :asset %>
</p>

<% end %>

</div>

This div tag provides an element for your new link_to to insert a file field into. If you

run this scenario with bin/cucumber features/creating_tickets.feature:36, the

step that follows the Add Another File link passes, but the file field is still not visible:

And I follow "Add another file"

And I attach the file "spec/fixtures/spin.txt" to "File #2"

cannot attach file, no file field with id, name, or label 'File #2'

The Add Another File link currently uses the new_file_path helper, which generates

a route such as /files/new. This route points to the new action in FilesController.

This action isn’t defined at the moment, so the feature won’t work. Therefore, the

next step is to define the action you need.

9.4.4 Responding to an asynchronous request

The job of the new action inside the FilesController is to render a single file field

for the ticket form so users may upload another file. This action needs to render the

fields for an asset, which you already do inside app/views/tickets/_form.html.erb by

using these lines:

<p>

<%= f.fields_for :assets do |asset| %>

<p>
<%= asset.label :asset, "File ##{number += 1}" %>

<%= asset.file_field :asset %>

</p>
<% end %>

</p>

To re-use this code for the new action in FilesController, move it into a partial

located at app/views/files/_form.html.erb.

 In app/views/tickets/_form.html.erb, you can replace the lines with this simple

line:

<%= render :partial => "files/form",

:locals => { :number => number } %>

Listing 9.14 app/views/tickets/_form.html.erb

236 CHAPTER 9 File uploading

When you pass the :locals option to render, you can set local variables that can be

used in the partial. Local variables in views are usable only in the views or partials in

which they’re defined unless you pass them through by using this :locals. You pass

through the number of your file field and the asset object provided by fields_for

:assets.

 To get the new action to render this partial, you can use the same code in the new

action in FilesController but with a small change:

def new

asset = Asset.new

render :partial => "files/form",
:locals => { :asset => asset }

end

Here you must pass the name of the partial using the :partial option so the control-

ler will attempt to render a partial. If you left it without the option, the controller

would instead try to render the template at app/views/files/form.html.erb, which

doesn’t exist.

 Before this line, you need to set up the asset variable that you reference. Add

these two lines directly above the first line inside the new action:

@ticket = Ticket.new

asset = @ticket.assets.build

Because the Ticket object for your form is only a new record, it isn’t important pre-

cisely what object it is: all new Ticket objects are the same until they’re saved to the

database and given a unique identifier. You can exploit this by creating another

Ticket object and building your new asset from it.

 It makes sense to do this because in your app/views/files/_form.html.erb file, you

still reference the now-nonexistent f variable, which came from form_for @ticket in

app/views/tickets/new.html.erb. Again, you can exploit the fact that all new Ticket

objects are the same and use a fields_for instead of a form_for in this partial to get

it to give the file field a proper name. Without this fields_for, the name of the field

would be something like asset[asset], and you need it to be something more like

ticket[asset_attributes][0][asset]. Now change the app/views/files/_form

.html.erb partial to look like the following listing.

<%= fields_for @ticket do |f| %>
<%= f.fields_for :assets, :child_index => number do |asset| %>

<p>

<%= asset.label :asset, "File ##{number += 1}" %>
<%= asset.file_field :asset %>

</p>

<% end %>
<% end %>

The @ticket object here could either be from the new action in the Tickets-

Controller or from the new action in the FilesController: it doesn’t matter.

Listing 9.15 app/views/files/_form.html.erb

237Using JavaScript

 What does matter here is the number variable that identifies the number of file

fields you are currently up to. You specify the child_index option in your fields_for

so that each time these fields are rendered, they’re given different identifiers. The

assets form partial gets this number variable only from the tickets partial; you’ve yet to

set up a way the new action sets this variable. Without this variable set in the new

action, you can’t render the app/views/files/_form.html.erb for a new asset without

knowing what number you’re up to. Let’s set that up now.

9.4.5 Sending parameters for an asynchronous request

The number variable indicates what file field you are up to, so you need a way to tell

the new action in FilesController how many file fields are currently on the page.

Previous versions of Rails had an option for this called :with, which has now, unfortu-

nately, been removed. No matter, you can do it in JavaScript. It’s better to put this

code in JavaScript anyway, because it’ll already be using some to determine the num-

ber to pass through. Rather than using pure JavaScript, you’ll be using CoffeeScript,

which comes with Rails 3.1 but can be used in any other language. Let’s learn some

CoffeeScript now.

LEARNING COFFEESCRIPT

CoffeeScript is, in the words of its website, “a little language that compiles into

JavaScript.” It’s written in a simple syntax, like this:

square = (x) -> x * x

This code compiles into the following JavaScript code:

var square;

square = function(x) {
return x * x;

};

In the CoffeeScript version, you define a variable called square. Because this isn’t yet

initialized, it is set up using var square; in the JavaScript output. You assign a func-

tion to this variable, specifying the arguments using parentheses (x) and then specify-

ing the code of the function after ->. The code inside the function in this case is

converted into literal JavaScript, making this function take an argument, multiply it by

itself, and return the result.

 Although this is a pretty basic example of CoffeeScript, it shows off its power. What

you would write on four lines of JavaScript requires just one line of extremely easy-to-

understand CoffeeScript.

 Each time you generate a controller using Rails, a new file called app/assets/

javascripts/[controller_name].js.coffee is created.8 This file is created so you have a

location to put CoffeeScript code that is specific to views for the relevant controller.

This is really helpful in your situation, because you’re going to use some CoffeeScript

to tell your Add Another File link what to do when it’s clicked.

8 If you have the coffee-rails gem in your Gemfile.

238 CHAPTER 9 File uploading

 Open app/assets/javascripts/tickets.js.coffee, and we’ll build up your function line

by line so you can understand what you’re doing. Let’s begin by putting this line first:

$(->

It seems like a random amalgamation of characters, but this line is really helpful. It

calls the jQuery $9 function and passes it a function as an argument. This line runs the

function only when the page has fully loaded.10 You need this because the JavaScript

otherwise would be executed before the link you’re going to be referencing is loaded.

Let’s add a second line to this:

$(->

$('a#add_another_file').click(->

This line uses jQuery’s $ function to select an element on the page called a, which has

an id attribute of add_another_file that will soon be your Add Another File link. This

would happen only after the page is ready. After this, you call the click function on it

and pass it a function that runs when you click on this link. Let’s now add a third line:

$(->

$('a#add_another_file').click(->

url = "/files/new?number=" + $('#files input').length

The double-space indent here indicates to CoffeeScript that this code belongs inside

the function passed to click.11 Here, you define a variable called url, which will be

the URL you use to request a new file field on your page. At the end of this URL you

specify the number parameter with some additional jQuery code. This code selects all

the input elements inside the element on the page with the id attribute of files

and stores them in an array. To find out how many elements are in that array, you

call length on it. The URL for the first time you click this link would now look some-

thing like /files/new?number=1, indicating that you already have one file field on

your page.

 Let’s make the fourth line now:

$(->

$('a#add_another_file').click(->
url = "/files/new?number=" + $('#files input').length

$.get(url,

This line is pretty simple; you call the jQuery function $, and then call the get12 func-

tion on it, which starts an asynchronous request to the specified URL that is the first

argument here, using the variable you set up on the previous line. Another line:

$(->
$('a#add_another_file').click(->

url = "/files/new?number=" + $('#files input').length

9 Aliased from the jQuery function: http://api.jquery.com/jquery/.
10 For the meaning of “loaded,” see this: http://api.jquery.com/ready
11 http://api.jquery.org/click.
12 http://api.jquery.com/jQuery.get.

http://api.jquery.com/jquery/
http://api.jquery.com/ready
http://api.jquery.org/click
http://api.jquery.com/jQuery.get

239Using JavaScript

$.get(url,
(data)->

This line is indented another two spaces again, meaning it is going to be an argument

for the get function. This line defines a new function with an argument called data,

which is called when the asynchronous request completes, with the data argument

being the data sent back from the request. One more line:

$(->
$('a#add_another_file').click(->

url = "/files/new?number=" + $('#files input').length

$.get(url,
(data)->

$('#files').append(data)

This final line takes the data received from the request and appends13 it to the end of

the element that has the id attribute of files on this page. That’s the one with the

single file-input field currently.

 Finally, you need to close these functions you’ve defined, which you can do with

three closing parentheses matching the levels of indentation, finalizing your code as

this:

$(->

$('a#add_another_file').click(->
url = "/files/new?number=" + $('#files input').length

$.get(url,

(data)->
$('#files').append(data)

)

)
)

That’s all there is to it! When your server receives a request at /assets/application.js,

the request will be handled by the Sprockets gem. The Sprockets gem will then com-

bine jquery, jquery_ujs, and app/assets/javascripts/tickets.js.coffee into one JavaScript

file, parsing the CoffeeScript into the following JavaScript:

$(function() {
return $('a#add_another_file').click(function() {

var url;

url = "/files/new?number=" + $('#files input').length;
return $.get(url, function(data) {

return $('#files').append(data);

});
});

});

In the production environment, this file is compiled upon the first request and then

cached to save valuable processing time.

13 http://api.jquery.com/append.

http://api.jquery.com/append

240 CHAPTER 9 File uploading

 This is a little more verbose than the CoffeeScript and another great demonstra-

tion of how CoffeeScript allows you to write more with less. For more information and

usage examples of CoffeeScript, see the CoffeeScript site: http://coffeescript.org.

 Let’s now give your link the id attribute that’s required to get this working so we

can move on.

PASSING THROUGH A NUMBER

Open your app/views/tickets/_form.html.erb and replace the code for your Add

Another File link with this:

<%= link_to "Add another file", 'javascript:',

:id => "add_another_file" %>

This gives the element the id attribute you require. Let’s witness this JavaScript in

action now by running rails server to start up a server, signing in using the email

address user@ticketee.com and the password password, and then creating a ticket on a

project. Clicking the Add Another File link results in an error that you’ll fix shortly.

Click it anyway. Afterward, go back to the window where rails server is running.

 This window shows information such as queries and results for every request, but

you’re only interested in the last request made. This request should begin with the fol-

lowing line:

Started GET "/files/new?number=1...

This line tells you that Rails has begun serving a GET request to the /files/new route

with a bunch of URL parameters. Your number parameter is the first one in this exam-

ple. The following lines show the URL that was requested as well as what action and

controller served this request:

Started GET "/files/new?number=1" for 127.0.0.1 at [timestamps]
Processing by FilesController#new as */*

Parameters: {"number"=>"1"}

The line you’re most interested in is the third line:

Parameters: {"number"=>"1", ... }

This is the params hash output in a semi-human-readable format. Here you can see it

has the number parameter, so you can use this inside the new action. With all this in

mind, you can change how you render the partial in the new action inside Files-

Controller to this:

render :partial => "files/form",
:locals => { :number => params[:number].to_i,

:asset => asset }

You must convert the number parameter to an integer using the to_i method because

it’ll be a String when it comes from params. It needs to be a Fixnum so the partial can

add 1 to it.

http://coffeescript.org

241Summary

 Now if you refresh this page and attempt to upload two files, you should see that it

works. Does your scenario agree? Let’s find out by running bin/cucumber features/

creating_tickets.feature:38:

1 scenario (1 passed)
18 steps (18 passed)

Yup, all working! Great. You’ve switched the ticket form back to only providing one

file field but providing a link called Add Another File, which adds another file field on

the page every time it’s clicked. You originally had implemented this link using the

:remote option for link_to, but switched to using CoffeeScript when you needed to

pass the number parameter through. A couple of other small changes, and you got it

all working very neatly again!

 This is a great point to see how the application is faring before committing. Let’s

run the tests with rake cucumber:ok spec. You should see the following:

46 scenarios (46 passed)

469 steps (469 passed)

and

30 examples, 0 failures, 13 pending

Awesome! Let’s commit it:

git add .

git commit -m "Provide an 'Add another file link' that uses Javascript
so that users can upload more than one file"

git push

This section showed how you can use JavaScript and CoffeeScript to provide the user

with another file field on the page using some basic helpers. JavaScript is a powerful

language and is a mainstay of web development that has gained a lot of traction in

recent years thanks to libraries such as the two you saw here, jQuery and CoffeeScript,

as well as others such as Prototype and Raphael.

 By using JavaScript, you can provide some great functionality to your users. The

best part? Just as you can test your Rails code, you can make sure JavaScript is working

by writing tests that use WebDriver.

9.5 Summary

This chapter covered two flavors of file uploading: single-file uploading and multiple-

file uploading.

 You first saw how to upload a single file by adding the file_field helper to your

view, making your form multipart, and using the Paperclip gem to handle the file

when it arrives in your application.

 After you conquered single-file uploading, you tackled multiple-file uploading.

You off loaded the file handling to another class called Asset, which kept a record for

each file you uploaded. You passed the files from your form by using nested attributes,

which allowed you to create Asset objects related to the ticket being created through

the form.

242 CHAPTER 9 File uploading

 After multiple-file uploading, you learned how to restrict which files are served

through your application by serving them through a controller. By using a controller,

you can use CanCan’s can? helper to determine if the currently signed-in user has

access to the requested asset’s project. If so, then you give the user the requested asset

using the send_file controller method. If not, you deny all knowledge of the asset

ever having existed.

 Finally, you used a JavaScript library called jQuery, in combination with a simpler

way of writing JavaScript called CoffeeScript, to provide users with an Add Another

File link. jQuery does more than simple asynchronous requests, though, and if you’re

interested, the documentation14 is definitely worth exploring.

 In the next chapter, we look at giving tickets a concept of state, which enables users

to see which tickets need to be worked on and which are closed. Tickets will also have

a default state so they can be easily identified when they’re created.

14 http://jquery.com.

http://jquery.com

243

Tracking state

In a ticket-tracking application such as Ticketee, tickets aren’t there to provide

information about a particular problem or suggestion; rather, they’re there to pro-

vide the workflow for it. The general workflow of a ticket is that a user will file it and

it’ll be classified as a “new” ticket. When the developers of the project look at this

ticket and decide to work on it, they’ll switch the state on the ticket to “open” and,

once they’re done, mark it as “resolved.” If a ticket needs more information on it

then they’ll add another state, such as “needs more info.” A ticket could also be a

duplicate of another ticket or it could be something that the developers determine

isn’t worthwhile putting in. In cases such as this, the ticket may be marked as

“duplicate” or “invalid,” respectively.

 The point is that tickets have a workflow, and that workflow revolves around

state changes. You’ll allow the admin users of this application to add states, but not

to delete them. The reason for this is if an admin were to delete a state that was

This chapter covers

 Adding a state-tracking ability to a model

 Using callbacks within Active Record

 Preventing basic form hacking

244 CHAPTER 10 Tracking state

used, then you’d have no record of that state ever existing. It’s best if, once states are

created and used on a ticket, they can’t be deleted.1

 To track the states, you’ll let users leave a comment. With a comment, users will be

able to leave a text message about the ticket and may also elect to change the state of

the ticket to something else by selecting it from a drop-down box. But not all users will

be able to leave a comment and change the state. You’ll protect both creating a com-

ment and changing the state.

 By the time you’re done with all of this, the users of your application will have the

ability to add comments to your tickets. Some users, due to permission restriction, will

be able to change the state of a ticket through the comment interface.

 You’ll begin with creating that interface for a user to create a comment and then

build on top of that the ability for the user to change the state of a ticket while adding

a comment. Let’s get into it.

10.1 Leaving a comment

Let’s get started by adding the ability to leave

a comment. When you’re done you will have

a simple form that looks like figure 10.1.

 To get started with this you’ll write a

Cucumber feature that goes through the

process of creating a comment. When you’re

done with this feature, you will have a com-

ment form at the bottom of the show action

for the TicketsController which you’ll

then use as a base for adding your state drop-

down box later on. Put this feature in a new

file at features/creating_comments.feature,

and make it look like the following listing.

Feature: Creating comments

In order to update a ticket's progress
As a user

I want to leave comments

Background:
Given there are the following users:

| email | password |

| user@ticketee.com | password |
And I am signed in as them

And there is a project called "Ticketee"

And "user@ticketee.com" can view the "Ticketee" project
And "user@ticketee.com" has created a ticket for this project:

1 Alternatively, these states could be moved into an “archive” state of their own so they couldn’t be assigned to
new tickets but still would be visible on older tickets.

Listing 10.1 features/creating_comments.feature

Figure 10.1 The comment form

245Leaving a comment

| title | description |
| Change a ticket's state | You should be able to create a comment |

Given I am on the homepage

And I follow "Ticketee"

Scenario: Creating a comment

When I follow "Change a ticket's state"

And I fill in "Text" with "Added a comment!"
And I press "Create Comment"

Then I should see "Comment has been created."

Then I should see "Added a comment!" within "#comments"

Scenario: Creating an invalid comment

When I follow "Change a ticket's state"

And I press "Create Comment"
Then I should see "Comment has not been created."

And I should see "Text can't be blank"

Here you navigate from the homepage to the ticket page by following the respective

links, fill in the box with the label Text, and create your comment. You’ve put the link

to the ticket inside the scenarios rather than the Background because you’ll use this

feature for permission checking later on. Let’s try running this feature now by run-

ning bin/cucumber features/creating_comments.feature.

10.1.1 Where’s the ticket?

You’ll see that, after it follows the Ticketee link on the page, it can’t find the ticket.

What?

And I follow "Change a ticket's state"

no link with title, id or text 'Change a ticket's state'
found (Capybara::ElementNotFound)

Uh oh, something’s gone wrong and for some reason Capybara can’t find the link.

Before the failing step in the scenario you put this line:

Then show me the page

This step will show the exact page that Capybara sees when it tries to follow this link,

providing a certain gem is installed. If you run this feature by using bin/cucumber

features/creating_comments.feature, you’ll be told to install the launchy gem:

Sorry, you need to install launchy to open pages: `gem install launchy`

WARNING Launchy is known to be problematic on Windows and just may
not work at all. As a replacement, you may have to manually open the
pages created in the tmp directory called capybara-[date].

Launchy is the gem responsible for launching the browser to show you the page.

Launchy also provides a common cross-platform of launching different applications.

Rather than installing this using gem install launchy, you’ll add this to your Gemfile

inside the cucumber group because you only need this gem for your Cucumber fea-

tures. The whole cucumber group for your Gemfile should now look like this:

246 CHAPTER 10 Tracking state

group :test do
gem 'cucumber-rails'

gem 'capybara'

gem 'database_cleaner'
gem 'factory_girl'

gem 'email_spec'

gem 'launchy'
end

When you run bundle install, it will install the launchy gem for you. Let’s rerun

your feature again. This time, a page pops up with your home page, as shown in

figure 10.2.

 See how there are two Ticketee links on this page? Capybara’s dutifully following

your instruction to click the Ticketee link, and it clicks the first link it finds on the

page! You want it to click the second link. Let’s change the line in your features/

creating_comments.feature that follows this link to the following:

And I follow "Ticketee" within "#projects"

Here you use the within version of this step which will look up the link within the ele-

ment with the id attribute set to “projects.” No element currently has this attribute, so

let’s preempt the scenario failing on this step and add this id to the ul element in

app/views/projects/index.html.erb, as shown in the following listing.

<ul id='projects'>

<% for project in @projects %>
<%= link_to project.name, project %>

<% end %>

Good! That should make your scenario follow the correct link. Try rerunning it now.

You should see this:

And I fill in "Text" with "Added a comment!"
cannot fill in, no text field, text area or password field

with id, name, or label 'Text' found (Capybara::ElementNotFound)

Oops! A web page from the "Then show me the page" step came up. Remove this step

from your scenario now.

 This failing step means that you’ve got work to do! The label it’s looking for is

going to belong to the comment box underneath your ticket’s information.

Listing 10.2 app/views/projects/index.html.erb

Figure 10.2 The home page

247Leaving a comment

10.1.2 The comment form

Let’s continue building this comment form for the application, the same one to which

you’ll eventually add a state-select box to complete this feature. This comment form

will consist of a single text field in which the user can insert their comment.

 Add a single line to the bottom of app/views/tickets/show.html.erb to render the

comment form partial:

<%= render "comments/form" %>

This line renders the partial from app/views/comments/_form.html.erb, which you

now create and fill with the content from the following listing.

New comment
<%= form_for [@ticket, @comment] do |f| %>

<%= f.error_messages %>

<p>

<%= f.label :text %>

<%= f.text_area :text %>

</p>

<%= f.submit %>
<% end %>

Pretty much the standard form_for here, except you use the Array-argument syntax

again, which will generate a nested route. You need to do four things before this form

will work.

 First, you must define the @comment variable in the show action in Tickets-

Controller so this form_for has something to work with.

 Second, you need to create the Comment model and associate this with your Ticket

model so you can create new records from the data in the form and associate it with

the right ticket.

 Third, you need to define the nested resource so that the form_for knows to POST

to the correct URL, one similar to /tickets/1/comments. Without this, you run into an

undefined method of ticket_comments_path when the form_for tries to generate

the URL by combining the classes of the objects in the array for its action.

 Finally, you need to generate the CommentsController and the create action

along with it so that your form has somewhere to go when a user submits it.

 Now set up your TicketsController to use the Comment model for creating new

comments, which you’ll create shortly afterward. To do this, you need to first build a

new Comment object using the comments association on your @ticket object.

10.1.3 The comment model

The first step to getting this feature to pass is to set up the show action in your

TicketsController to define a @comment variable for the comment form. To do this,

change the show action, as shown in the following listing.

Listing 10.3 app/views/comments/_form.html.erb

248 CHAPTER 10 Tracking state

def show
@comment = @ticket.comments.build

end

This will use the build method on the comments association for your @ticket object

(which is set up by the find_ticketbefore_filter) to create a new Comment object

for the view’s form_for.

 Next, you generate the Comment model so that you can define the comments associ-

ation on your Ticket model. This model’s going to need to have an attribute called

text for the text from the form, a foreign key to link it to a ticket, and another foreign

key to link to a user record. Let’s generate this model using this command:

rails g model comment text:text ticket_id:integer user_id:integer

Then run the migration for this model on both your development and test databases

by running these familiar commands:

rake db:migrate
rake db:test:prepare

With these done, your next stop is to add the associations to the Ticket and Comment

models. For this, you add this line to app/models/ticket.rb directly under the

accepts_nested_attributes_for :assets line:

has_many :comments

Add a validation to your Comment model to validate the presence of text for the

records by adding this line to app/models/comment.rb:

validates :text, :presence => true

This will help your second scenario pass, because it requires that an error message is

displayed when you don’t enter any text. You also add a belongs_to association defini-

tion to this model, given that you have a user_id column in your comments table:

belongs_to :user

When you run your feature at this mid-point, you’re told that it can’t find the routing

helper that form_for is trying to use:

undefined method `ticket_comments_path' for ...

This is because you don’t have a nested route for comments inside your tickets

resource yet. To define one, you need to add it to config/routes.rb.

 Currently in your config/routes.rb you’ve got the tickets resource nested inside the

projects resource with these lines:

resources :projects do

resources :tickets
end

Listing 10.4 app/controllers/tickets_controller.rb

249Leaving a comment

This generates helpers such as project_tickets_path. But for your form it’s not

important what comment the project is being created for, so you use ticket

_comments_path instead. This means you need to define a separate nonnested

resource for your tickets and then a nested resource under that for your comments, as

shown in the following listing.

resources :projects do

resources :tickets

end

resources :tickets do

resources :comments

end

The last three lines in listing 10.5 are the lines you need in order for ticket

_comments_path to be defined, which will make your form work.

10.1.4 The comments controller

Now finally you need to generate the CommentsController so that your form has

somewhere to post to. You can do this by running the following command:

rails g controller comments

A create action in this controller will provide the receiving end for the comment

form, so you should add this now. You need to define two before_filters in this con-

troller. The first is to ensure the user is signed in, because you don’t want anonymous

users creating comments; the other is to find the Ticket object. This entire controller

is shown in the following listing.

class CommentsController < ApplicationController

before_filter :authenticate_user!
before_filter :find_ticket

def create

@comment = @ticket.comments.build(params[:comment].merge(:user =>

 ➥current_user))

if @comment.save

flash[:notice] = "Comment has been created."
redirect_to [@ticket.project, @ticket]

else

flash[:alert] = "Comment has not been created."
render :template => "tickets/show"

end

end

private

def find_ticket

Listing 10.5 config/routes.rb

Listing 10.6 app/controllers/comments_controller.rb

Redirect to
ticket page

B

C Render template

250 CHAPTER 10 Tracking state

@ticket = Ticket.find(params[:ticket_id])
end

end

In this action you use the template option of render when your @comment.save

returns false to render a template of another controller. Previously you’ve used the

action option to render templates that are for the current controller. By doing this,

the @ticket and @comment objects will be available when the app/views/tickets/

show.html.erb template is rendered.

 If the object saves successfully you redirect back to the ticket’s page by passing an

Array argument to redirect_to B, which compiles the path from the arguments

passed in, like form_for does to a nested route similar to /projects/1/tickets/2.

 But if the object doesn’t save successfully you want it to render the template that

TicketsController’s show action renders. You can do this by using the render

method and passing it "tickets/show" C. Keep in mind that the render method

doesn’t call the action, and so any code within the show method of TicketsController

wouldn’t be run. This is fine, though, because you’re setting up the @ticket variable

the template renders by using the find_ticket before filter in your controller.

 By creating the controller, you’ve now got all the important parts needed to create

comments. Let’s run this feature again by running bin/cucumber features/creating

_comments.feature to see how you’re progressing. You see that it’s able to create the

comment but it’s unable to find the text within the #comments element on the page:

Then I should see "Added a comment!" within "#comments"

Unable to find css "#comments" (Capybara::ElementNotFound)

This step is failing because you haven’t added the element with the id attribute of

comments to the show template yet. This element will contain all the comments for a

ticket. Let’s add it by entering the code from the following listing above the spot

where you render the comment form partial.

<h3>Comments</h3>

<div id='comments'>

<% if @ticket.comments.exists? %> <co id='ch10_191_1' />
<%= render @ticket.comments.select(&:persisted?) %>

<% else %>

There are no comments for this ticket.
<% end %>

</div>

Here you create the element the scenario requires: one with an id attribute of

comments. In this you check if there are no comments by using the exists? method

from Active Record. This will do a light query similar to this to check if there are any

comments:

SELECT "comments"."id" FROM "comments"

WHERE ("comments".ticket_id = 1) LIMIT 1

Listing 10.7 app/views/tickets/show.html.erb

251Leaving a comment

It only selects the id column from the comments table and limits the result set to 1,

which results in a super-fast query to check if there are any comments. You used

exists? back in chapter 8 when you checked if a ticket had any assets. You could use

empty? here instead, but that would load the comments association in its entirety and

then check to see if the array was empty. If there were a lot of comments, then this

would be slow. By using exists?, you stop this potential performance issue from crop-

ping up.

 Inside this div, if there are comments, you call render and pass it the argument of

@ticket.comments. On the end of that call, select on it.

 You use select here because you don’t want to render the comment object you’re

building for the form at the bottom of the page. If you left off the select,

@ticket.comments would include this new object and render a blank comment box.

When you call select on an array, you can pass it a block that it will evaluate on all

objects inside that array and return any element that makes the block evaluate to any-

thing that’s not nil or false.

 The argument you pass to select is called a Symbol-to-Proc and is a shorter way of

writing this:

{ |x| x.persisted? }

This is a new syntax versions of Ruby >= 1.8.7 and used to be in Active Support in Rails

2. It’s a handy way of writing a shorter block syntax if you’re only looking to call a sin-

gle method on an object.

 The persisted? method checks if an object is persisted in the database by check-

ing if it has its id attribute set and will return true if that’s the case and false if not.

 By using render in this form, Rails will render a partial for every single element in

this collection and will try to locate the partial using the first object’s class name.

Objects in this particular collection are of the Comment class, so the partial Rails will try

to find will be at app/views/comments/_comment.html.erb, but you don’t have this file

right now. Let’s create it and fill it with the content from the following listing.

<%= div_for(comment) do %>

<h4><%= comment.user %></h4>
<%= simple_format(comment.text) %>

<% end %>

Here you’ve used a new method, div_for. This method generates a div tag around

the content in the block and also sets class and id attributes based on the object

passed in. In this instance, the div tag would be the following:

<div id="comment_1" class="comment">

The class method from this tag is used to style your

comments so that they will look like figure 10.3 when

the styles from the stylesheet are applied.

Listing 10.8 app/views/comments/_comment.html.erb

Figure 10.3 A comment

252 CHAPTER 10 Tracking state

 With the code in place not only to create comments but also to display them, your

feature should pass when you run it with bin/cucumber features/creating

_comments.feature:

2 scenario (2 passed)
23 steps (23 passed)

Good to see. You’ve now got the base for users to be able to change the state of a

ticket. Before proceeding further, you should make sure that everything is working as

it should by running rake cucumber:ok spec, and you should also commit your

changes. When you run the tests, you’ll see this output:

48 scenarios (48 passed)
492 steps (492 passed)
and
32 examples, 0 failures, 15 pending

Good stuff! Let’s commit and push this:

git add .
git commit -m "Users can now leave comments on tickets"
git push

With this form added to the ticket’s page, users are now able to leave comments on

tickets. This feature of your application is useful because it provides a way for users of

a project to have a discussion about a ticket and keep track of it. Next up, we’ll look at

adding another way to provide additional context to this ticket by adding states.

10.2 Changing a ticket’s state

States provide a helpful way of standardizing the way that a ticket’s

progress is tracked. By glancing at the state of a ticket, a user will be

able to determine if that ticket needs more work or if it’s complete,

as shown in figure 10.4.

 To change a ticket’s state, you’ll add a drop-down box on the

comment form where a user can select a state from a list of states.

These states will be stored in another table called states, and they’ll be accessed

through the State model.

 Eventually, you’ll let some users of the application have the ability to add states for

the select box and make one of them the default. For now, you’ll focus on creating the

drop-down box so that states can be selected.

 As usual, you’ll cover creating a comment that changes a ticket’s state by writing

another scenario. The scenario you’ll now write goes at the bottom of features/

creating_comments.feature and is shown in the following listing.

Scenario: Changing a ticket's state
When I follow "Change a ticket's state"

When I fill in "Text" with "This is a real issue"

Listing 10.9 features/creating_comments.feature

Figure 10.4

A ticket’s state

253Changing a ticket’s state

And I select "Open" from "State"
And I press "Create Comment"

Then I should see "Comment has been created."

And I should see "Open" within "#ticket .state"

In this scenario, you follow a ticket’s link from the homepage (which you go to in the

Background) and go through the process of creating a comment, much like in the

Creating Comments feature, only this time you select a state. This is the first part of

the scenario that you can expect to fail because you don’t have a state-select box yet.

After the comment is created, you should see the state appear in the #ticket .state

area. This is the second part of the scenario that will fail.

 When you run this scenario by running bin/cucumber features/creating

_comments.feature:36, it will fail like this:

And I select "Open" from "State"
cannot select option, no select box with id,

name, or label 'State' found (Capybara::ElementNotFound)

As you can see from this output, the “I select” step attempts to select an option from a

select box. In this case, it can’t find the select box because you haven’t added it yet!

With this select box, users of your application should be able to change the ticket’s

state by selecting a value from it, entering some comment text, and clicking the

Create Comment button.

 Before you do all that, however, you need to create the State model and its related

table, which is used to store the states.

10.2.1 Creating the State model

Right now you need to add a select box.

When you’re done, you should have one

that looks like figure 10.5.

 Before adding this select box, let’s set up

the TicketsController’s show action to

return a collection of states that you can

populate the drop select box with. Change

the show action to be like this now:

def show

@comment = @ticket.comments.build

@states = State.all
end

Here you call all on the State class, which

doesn’t exist yet. You’ll be storing the states in

a table because you’d like the users to be able

to create their own states. For now, you define

this State model to have a name field as well

as two other fields: color and background, Figure 10.5 State select box

254 CHAPTER 10 Tracking state

which define the colors of the label for this ticket. Later on, you’ll add a position field

that you’ll use to determine the sort order of the states in the select box. Let’s create this

State model and the associated migration by running this command:

rails g model state name:string color:string background:string

Before running this migration, you need to define a way that states link to comments

and to tickets, but there are a couple of things worth mentioning beforehand. For

comments, you want to track the previous state so you can display that a comment has

changed the ticket’s state. For tickets, you want to track the state for which you’ll use a

foreign key. With all of this in mind, let’s add these fields to the migration now. You

also remove the timestamps call from within create_table because it’s not important

when states were created or updated. When you’re done, the whole migration should

look like the following listing.

class CreateStates < ActiveRecord::Migration

def up

create_table :states do |t|
t.string :name

t.string :color

t.string :background
end

add_column :tickets, :state_id, :integer

add_index :tickets, :state_id

add_column :comments, :state_id, :integer

end

def down
drop_table :states

remove_column :tickets, :state_id

remove_column :comments, :state_id
end

end

In this migration you use the add_index method to add a database index on the

tickets table’s state_id field. By adding an index on this field, you can speed up

queries made that search for this particular field. The side-effect of indexing is that it

will result in slower writes and more disk space. It’s always important to have indexes

on nonprimary-key fields2 because of this great read speed increase.

 Let’s run this migration now by running these two commands:

rake db:migrate
rake db:test:prepare

Listing 10.10 db/migrate/[date]_create_states.rb

2 Primary key in this case is the id field that is automatically created for each model by create_table. Primary
key fields are, by default, indexed.

255Changing a ticket’s state

There you have it! The State model is up and running. Let’s now

associate this class with the Comment class by adding this line to the

top of the Comment model’s definition:

belongs_to :state

The state method provided by this belongs_to will be used shortly to display the

state on the ticket page, as in figure 10.6.

 Before doing that, however, you need to add the select box for the state to the

comment form.

10.2.2 Selecting states

In the comment form partial, add this select box underneath the text box, as shown in

the following listing.

<p>

<%= f.label :state_id %>

<%= f.select :state_id , @states.map { |s| [s.name, s.id] },
:selected => @ticket.state_id %>

</p>

Here you use a new method, select, which takes its first argument as the foreign-key

attribute of your Comment object, not the association. You also use the :state_id value

for the argument passed to the label, but Rails is smart enough to know the text for

this should be “State”. select’s second argument is a two-dimensional3 Array that you

create by using map on the State objects returned from the controller in the @states

variable. The first element of each array is the value you want shown as an option in

the select box to the user, whereas the second element is the value that’s passed back

to the controller.

 Use the :selected option in the select call to select the current state of the ticket

from the list. This value must match the value argument for one of the options in the

select box; otherwise it will default to the first option.

 Let’s assume for a moment that you’ve got three states: New, Open, and Closed.

For a ticket that has its state set to New, the select box generated by f.select would

look like this:

<select id="comment_state_id" name="comment[state_id]">

<option value="1" selected="selected">New</option>
<option value="2">Open</option>

<option value="3">Closed</option>

</select>

Listing 10.11 app/views/comments/_form.html.erb

3 A two-dimensional array is an array that contains arrays as elements.

Figure 10.6

A ticket’s state

256 CHAPTER 10 Tracking state

The first option tag in the select tag has an additional attribute: selected. When

this attribute is set, the option is the one selected as the default option for the select.

This is achieved by using the :selected option for f.select. The value for this

option is the corresponding value attribute for the option tag. In this case, it’s the

state_id of the @ticket object.

 With the select box in place, you’re almost at a point where this scenario will be

passing. Let’s see how far you’ve gotten by running bin/cucumber features/creating

_comments.feature. It won’t be able to find the Open option in your select box:

And I select "Open" from "State"

No such option 'Open' in this select box. Available options:

➥(Capybara::OptionNotFound)

This is because you need to add a state to your database! Let’s add this line to the bot-

tom of your Background in features/creating_comments.feature to do this:

Given there is a state called "Open"

Let’s now run the scenario using bin/cucumber features/creating_comments

.feature so you can get the step definition. Put this step definition in a new file called

features/step_definitions/state_steps.rb using this code:

Given /^there is a state called "([^"]*)"$/ do |name|

State.create!(:name => name)

end

By defining this step and rerunning the scenario you’ll see that it’s now failing at the

last step:

And I should see "Open" within "#ticket .state"
Unable to find css "#ticket .state" (Capybara::ElementNotFound)

This output means it’s looking for any element with the id attribute of ticket that

contains any type of element with the id of state, but it can’t find it.

 Rather than putting the state inside the TicketsController’s show template, put it

in a partial. This is due to the fact that you’ll be reusing this to display a state wherever

you need it in the future. Additionally, you’ll apply a dynamic class around the state so

you can style it later on. Let’s create a new partial at app/views/states/_state.html.erb

and fill it with this content:

<div class='state state_<%= state.name.parameterize %>'>
<%= state %>

</div>

To style the element you need a valid CSS class name. You can get one by using the

parameterize method. If, for example, you had a state called “Drop bears strike

without warning!” and used parameterize on it, all the spaces and non-URL-valid

characters would be stripped, leaving you with “drop-bears-strike-without-warning,”

which is a perfectly valid CSS class name. You’ll use this later on to style the state using

the color and background attributes.

257Changing a ticket’s state

 You’re now going to render this partial underneath the “Created by” line on app/

views/tickets/show.html.erb using the following line:

<%= render @ticket.state if @ticket.state %>

You’re using the short form of rendering a partial here once again, and you condi-

tionally render it if the ticket has a state. If you don’t have the if at the end and the

state is nil, this will raise an exception because it will try to determine the model

name of nil.

 To get this state method for your Ticket, you should add the association method

to the model. This method should go directly above the belongs_to :user line in

app/models/ticket.rb:

belongs_to :state

If you run the feature again it will fail because there’s nothing shown in the #ticket

.state element:

And I should see "Open" within "#ticket .state"

<false> is not true. (Test::Unit::AssertionFailedError)

This is because you’re updating the state on the Comment object you’re creating, not

the associated Ticket object! You’re trying to get the new state to display on the ticket

object so that the users of the application can change the state of a ticket when they

add a comment to it. For this to work, you need to define a callback in your Comment

model.

10.2.3 Callbacks

When a user selects a state from the drop-down box attached to the comment form on

a ticket’s page, you want that ticket’s state to be updated with what that user picked.

 To do this you can use a callback to set the ticket’s status when you change it

through the comment form. A callback is a method that’s called either before or after

a certain event. For models, there are before-and-after callbacks for the following

events (where * can be substituted for either before or after):

 Validation (*_validation)

 Creating (*_create)

 Updating (*_update)

 Saving (*_save)

 Destruction (*_destroy)

You’re able to trigger a specific piece of code or method to run before or after any of

these events. The Saving item in the list refers to when a record is saved to the database,

which occurs when a record is created or updated. For your Comment model you want

to define a callback that occurs after a record has been created, and for this you use the

after_create method at the top of your Comment model, as well as a ticket associa-

tion, transforming this model into the code shown in the following listing.

258 CHAPTER 10 Tracking state

class Comment < ActiveRecord::Base
after_create :set_ticket_state

belongs_to :ticket

belongs_to :user
belongs_to :state

validates :text, :presence => true

end

While you’re here, you can also set it up so that you can access the project association

that the ticket association has in this model by using the delegates method:

delegate :project, :to => :ticket

If you call the project method on a Comment object, this method will “delegate” the

project method to the ticket object, making a call exactly like ticket .project. This

makes your code shorter and will come in handy later on.

 The symbol passed to the after_create method here is the name of the method

to call for this callback. You can define this method at the bottom of your Comment

model using the code from the following listing.

class Comment < ActiveRecord::Base

...
private

def set_ticket_state

self.ticket.state = self.state
self.ticket.save!

end

end

With this callback and associated method now in place, the associated ticket’s state will

be set to the comment’s state after the comment is created. When you run your feature

again by running bin/cucumber features/creating_comments.feature, it still fails:

And I should see "Open" within "#ticket .state"

Failed assertion, no message given. (MiniTest::Assertion)

Even though you’re correctly assigning the state to the ticket, it still doesn’t display as

the state in the view. But why is this? You can attempt to duplicate this issue by run-

ning the server using the rails server. By visiting http://localhost:3000, you can

follow the steps inside the scenario to attempt to duplicate the behavior you’ve seen

in your feature.

 Because you have no states in the development database, you won’t be able to

reproduce this problem right away. Your feature uses the “Given there is a state

called...” steps to define states, but you can’t use these in your development environ-

ment. It would be better if you added seed data to your database because then you’ll

have a repeatable way of setting up the states in your application’s database.

Listing 10.12 app/models/comment.rb

Listing 10.13 app/models/comment.rb

http://localhost:3000

259Changing a ticket’s state

10.2.4 Seeding states

If you add some states to the db/seeds.rb file, users will be able to select them from the

State drop-down box on the tickets page rather than leaving it blank and useless,

much like it is now. With these states in the db/seeds.rb file, as mentioned before, you

will have a repeatable way of creating this data if you ever need to run your application

on another server, such as would be the case when you put the application on another

computer.

 You’re adding these files to the db/seeds.rb so you have some to play around with

in the development environment of your application. You’re attempting to figure out

why, when a user picks Open from the State select box and clicks Create Comment,

the state doesn’t display on the ticket that should be updated.

 When you go to the Ticketee Beta project to create a ticket and then attempt to cre-

ate a comment on that ticket with the state of Open, you’ll see that there are no states

(as shown in figure 10.7).

 You should add a couple of states to your seeds file now; they’ll

be New, Open, and Closed. Ideally, New will be the default state of

tickets, and you’ll set this up a little later on. Before adding these

states, let’s add a couple of steps to features/seed.feature to always

ensure that your states are defined.

 You extend this feature to go inside the Ticketee Beta project,

create a ticket, and then begin to create a comment on that ticket. When it’s on the

comment-creation screen, you check to see that all your states are in the state box. To

do this, modify the scenario in this file to what’s shown in the following listing.

Scenario: The basics

Given I have run the seed task

And I am signed in as "admin@ticketee.com"
When I follow "Ticketee Beta"

And I follow "New Ticket"

And I fill in "Title" with "Comments with state"
And I fill in "Description" with "Comments always have a state."

And I press "Create Ticket"

Then I should see "New" within "#comment_state_id"
And I should see "Open" within "#comment_state_id"

And I should see "Closed" within "#comment_state_id"

The #comment_state_id element referenced here is the State select box for your com-

ments, and you’re confirming that it’s got the three states you’re going to be seeding

your database with. When you run this feature by running bin/cucumber features/

seed.feature, it will fail because you don’t have your states yet:

Then I should see "New" within "#comment_state_id"

<false> is not true. (Test::Unit::AssertionFailedError)

Let’s add these states to your db/seeds.rb file by using the lines shown in the following

listing.

Listing 10.14 features/seed.feature, the basics scenario

Figure 10.7

Oops! No states!

260 CHAPTER 10 Tracking state

State.create(:name => "New",
:background => "#85FF00",

:color => "white")

State.create(:name => "Open",
:background => "#00CFFD",

:color => "white")

State.create(:name => "Closed",
:background => "black",

:color => "white")

If you try to run rake db:seed now, you see that this task was aborted:

rake aborted!

Validation failed: Email has already been taken

(See full trace by running task with --trace)

When a rake task aborts, it means an exception has been raised. As the output sug-

gests, you can see the backtrace by running the same command with --trace :rake

db:seed --trace. You’ll now be given the complete backtrace of your rake task and

can determine what broke. The first line of application-related backtrace in the out-

put provides a useful clue:

/home/you/ticketee/db/seeds.rb:1:in `<top (required)>'

It’s the first line of db/seeds.rb that’s causing the problem! This is the line that creates

your admin user, and it’s rightly failing because you already have a user with the email

address admin@ticketee.com. Let’s comment out these first couple of lines as well as

the line that creates the Ticketee Beta project, because you don’t want two Ticketee

Beta projects. The only line left uncommented in your seeds file should be the line

you’ve just added. When you run rake db:seed again, it will run successfully. Let’s

uncomment these lines that you’ve just commented out.

 With these states now defined inside db/seeds.rb, your feature at features/seed

.feature will pass:

1 scenario (1 passed)

10 steps (10 passed)

Also, with your states seeding, you can go back to your

server at http://localhost:3000 and create a comment on

your ticket with any status, because you’re trying to figure

out why the “Creating comments” feature is failing. After

creating your comment, you should see that the ticket’s

state doesn’t display as simple text like New, Open, or Closed, but rather as a standard

inspect output, as shown in figure 10.8.

 Well, isn’t that ugly and not user-friendly? It flows off the end of the ticket box!

Thankfully, you can fix this by defining the to_s method in your State model to call

the name method:

Listing 10.15 db/seeds.rb

Figure 10.8 Ugly state output

261Changing a ticket’s state

def to_s
name

end

By default, objects in Ruby have a to_s method that outputs the ugly version, the

inspected version of this object, you saw earlier. By overriding this in the model to call

the name method, you’ll get it to display the state’s name rather than its object output.

 When you refresh the page in your browser, you should see the

correct state, as shown in figure 10.9.

 Great! This should mean that the last scenario in your “Creat-

ing comments” feature will pass. Let’s run it with bin/cucumber

features/creating_comments.feature and find out:

1 scenario (1 passed)

14 steps (14 passed)

Indeed it’s passing! This is a good stage to ensure that everything is working by run-

ning rake cucumber:ok spec. Blast, one of the features is failing:

Failing Scenarios:

cucumber features/
creating_comments.feature:26 # Scenario: Creating an invalid comment

A broken feature often means a broken part of your code, so you should investigate

this before continuing. If there are thoughts of “it’s only one feature,” think again. At

what point do you draw the line? One? Two? Three failing scenarios? Let’s have a zero-

tolerance policy on these and fix them when they break.

10.2.5 Fixing creating comments

The entire reason why you write features before you write code is so that you can catch

scenarios like this where something unexpectedly breaks. If you didn’t have these sce-

narios in place, then you wouldn’t be made aware of these scenarios until a user of

your site stumbled across it. This isn’t what you want. You want your users to assume

that you’re perfect.

 You should look into why this feature is failing and fix it right away. This particular

scenario is failing with this backtrace:

And I press "Create Comment"
You have a nil object when you didn't expect it!

You might have expected an instance of Array.

The error occurred while evaluating nil.map (ActionView::Template::Error)
./app/views/comments/_form.html.erb:12

Here it claims you’re calling map on a nil object, and that it’s on line 12 of app/views/

comments/_form.html.erb. The line it’s referencing is the following:

<%= f.select :state_id, @states.map { |s| [s.name, s.id] } %>

Alright, the only place where map is being called is on the @states variable, so it’s

pretty straightforward that @states is the nil object. But how did it come to be? Let’s

review this scenario, as shown in the following listing.

Figure 10.9

The correct state

262 CHAPTER 10 Tracking state

Scenario: Creating an invalid comment
When I follow "Change a ticket's state"

And I press "Create Comment"

Then I should see "Comment has not been created."
And I should see "Text can't be blank"

This scenario tests that you’re shown the “Text can’t be blank” error when you don’t

enter any text for your comment. In this scenario, you click the Create Comment but-

ton, which submits your form, which goes to the create action in Comments-

Controller. This action looks like the following listing.

def create

@comment = @ticket.comments.build(params[:comment].merge(:user

➥=> current_user))

if @comment.save

flash[:notice] = "Comment has been created."

redirect_to [@ticket.project, @ticket]
else

flash[:alert] = "Comment has not been created."

render :template => "tickets/show"
end

end

As you can see from this action, when the comment fails validation (when @comment

.save returns false), then it rerenders the app/views/tickets/show.html.erb template.

The problem with this is that, by rerendering this template, it calls the following line

in the template:

<%= render "comments/form" %>

This inevitably leads you right back to app/views/comments/_form.html.erb, the

source of the problem. Therefore, you can determine that you need to set up the

@states variable during the “failed save” part of your action, and the best place for

this is right after the else so that this part ends up looking like the following listing.

else

@states = State.all
flash[:alert] = "Comment has not been created."

render :template => "tickets/show"

end

Now that you’re correctly initializing your @states variable, this scenario will pass.

Let’s run the whole feature now using bin/cucumber features/creating_comments

.feature:

3 scenarios (3 passed)

39 steps (39 passed)

Listing 10.16 features/creating_comments.feature:26

Listing 10.17 app/controllers/comments_controller.rb

Listing 10.18 app/controllers/comments_controller.rb

263Tracking changes

Awesome! Now let’s try rerunning rake cucumber:ok spec. That should be the last

thing you need to fix. You should see the following output:

49 scenarios (49 passed)

515 steps (515 passed)
and

33 examples, 0 failures, 16 pending

Excellent, everything’s fixed. Let’s commit these changes now:

git add .

git commit -m "When updating a comment's status, it also updates

➥the ticket's status"
git push

It’s great that you’ve now got the ticket status updating along with the comment status,

but it would be handy to know what the timeline of a status change looks like. You can

display this on the comment by showing a little indication of whether the state has

changed during that comment. Let’s work on adding this tidbit of information to the

comments right now.

10.3 Tracking changes

When a person posts a comment that changes the state of a ticket, you’d like this

information displayed on the page next to the comment, as shown in figure 10.10.

 By visually tracking this state change, along with the text of the

comment, you can provide context as to why the state was changed.

At the moment, you only track the state of the comment and then

don’t even display it alongside the comment’s text; you only use it to

update the ticket’s status.

10.3.1 Ch-ch-changes

What you need now is some way of making sure that, when changing a ticket’s state by

way of a comment, the “State: Open” text appears. A scenario would fit this bill, and

luckily you wrote one that fits almost perfectly. This scenario is the final scenario

(“Changing a ticket’s state”) in features/creating_comments.feature.

 To check for the state change text in your “Changing a ticket’s state” scenario, you

add this single line to the bottom of it:

Then I should see "State: Open" within "#comments"

If the ticket was assigned the New state, this text would say “State: New ?' Open,” but

because your tickets don’t have default states assigned to them the previous state for

the first comment will be nil. When you run this scenario by using bin/cucumber

features/creating_comments.feature:33, it will fail:

Then I should see "State: Open" within "#comments"

expected there to be content "State: Open"

in "\n \n user@ticketee.com (User)\n
This is a real issue\n\n"

Figure 10.10

State transitions

264 CHAPTER 10 Tracking state

Good, now you’ve got a way to test this state message that should be appearing when a

comment changes the state of the ticket. Now, you’d like to track the state the ticket

was at before the comment as well as the state of the comment itself. To track this extra

attribute, you’ll create another field on your comments table called previous_state

_id. Before you save a comment, you’ll update this field to be the current state of the

ticket. Let’s create a new migration to add the previous_state_id field to your

comments table by running the following command:

rails g migration add_previous_state_id_to_comments previous_state_id:integer

Again, Rails is pretty smart here and will use the name of the migration to infer that

you want to add a column called previous_state_id to a table called comments. You

only have to tell it what the type of this field is by passing previous_state_id

:integer to the migration.

 If you open up this migration now, you’ll see that it defines a change method

which calls the add_column method inside it. You can see the entire migration shown

in the following listing.

class AddPreviousStateIdToComments < ActiveRecord::Migration

def change

add_column :comments, :previous_state_id, :integer
end

end

It’s done this way because Rails knows how to roll back this migration easily. It’s a sim-

ple call to remove_column passing in the first two arguments in this method.

 You don’t need to do anything else to this migration other than run it. Do this now

by running rake db:migrate and rake db:test:prepare. This field will be used for

storing the previous state’s id so that you can then use it to show a state transition on a

comment, as pictured in figure 10.11.

 With this little bit of information, users can see what comments

changed the ticket’s state, which is helpful for determining what

steps the ticket has gone through to wind up at this point.

 To use the previous_state_id field properly, you’re going to

need to add another callback to save it.

10.3.2 Another c-c-callback

To set this field before a comment is created, you use a before_create callback on the

Comment model. A before_create callback is triggered—as the name suggests—

before a record is created, but after the validations have been run. This means that this

callback will only be triggered for valid objects that are about to be saved to the data-

base for the first time.

Listing 10.19 db/migrate_[date]_add_previous_state_id_to_comments.rb

Figure 10.11

A state transition

265Tracking changes

 Put this new callback on a line directly above the after_create because it makes

sense to have all your callbacks grouped together and in the order that they’re

called in:

before_create :set_previous_state

Call the set_previous_state method for this callback, which you define at the bot-

tom of the Comment model just before the set_ticket_state method, like this:

def set_previous_state
self.previous_state = ticket.state

end

The previous_state= method you call here isn’t yet defined. You can define this

method by declaring that your Comment objects belongs_to a previous_state, which

is a State object. Let’s put this line with the belongs_to in your Comment model:

belongs_to :previous_state, :class_name => "State"

Here you use a new option for belongs_to: class_name. The field in your comments

table is called previous_state_id and so you call your association previous_state.

To tell Rails what class this associated record is, you must use the class_name option,

otherwise Rails will go looking for the PreviousState class.

 With this belongs_to defined, you get the previous_state= method for free and

so your callback should work alright. There’s one way to make sure of this, and that’s

to attempt to display these transitions between the states in your view so that your fea-

ture will potentially pass. You’ll now work on displaying these transitions.

10.3.3 Displaying changes

When you display a comment that changes a ticket’s state, you want to display this

state transition along with the comment.

 To get this text to show up, add the following lines to app/views/comments/

_comment.html.erb underneath the h4 tag:

<%= render comment.previous_state %> →

<%= render comment.state %>

This is almost correct, but there’s a slight problem. Your callback

will set the previous_state regardless of what the current state is,

and in this case you can end up with something like figure 10.12.

 To stop this from happening, you can wrap this code in an if

statement, like this:

<% if comment.previous_state != comment.state %>
<%= comment.previous_state %> → <%= comment.state %>

<% end %>

Now this text will only show up when the previous state isn’t the same as the current

state.

Figure 10.12

State transition

from itself to itself

266 CHAPTER 10 Tracking state

 You can go one step further and move this code into a helper. Views are more for

displaying information than for deciding how it should be output, which should be left

to the helpers and controllers. Move this code into the app/helpers/tickets_helper.rb

because this partial is displayed from the TicketsController’s show template. The

entire TicketsHelper should now look like the following listing.

module TicketsHelper

def state_for(comment)

content_tag(:div, :class => "states") do
if comment.state

if comment.previous_state && comment.state != comment.previous_state

"#{render comment.previous_state} → #{render comment.state}"
else

"→" + render(comment.state)

end
end

end

end

end

In this example, you check to see if the comment has an assigned state and then if it

has a previous state. If it has a previous state that isn’t the assigned state, then you

show the state transition; otherwise you render the assigned state.

 You can now replace the whole if statement in app/views/comments/_comment

.html.erb with this single line:

<%= state_for(comment) %>

Now check to see if this is working by running your scenario using bin/cucumber

features/creating_comments.feature:33:

Then I should see "State: Open" within "#comments"

expected there to be content "State: Open" in

"\n \n user@ticketee.com (User)\n \n
Open\n\n This is a real issue\n\n"

It’s still failing? Are you sure you’ve set everything up correctly? Absolutely. Capybara

(through Cucumber) is telling you that it still can’t find this text on the page. Lucky

for you there’s a way to see the page that Cucumber is seeing: the “Then show me the

page” step you saw a little earlier.

10.3.4 Show me the page

When you use this step, it saves the current page to a file and opens it in the browser

so you’re able to see exactly what Cucumber is seeing. Let’s put this step as the second-

to-last step in “Changing a ticket’s state.” The last three steps in this scenario should

look like the following:

Listing 10.20 app/helpers/tickets_helper.rb

267Tracking changes

And I should see "Open" within "#ticket .state"
Then show me the page

Then I should see "Open" within "#comments"

When you run your scenario again, it should pop up a browser window that shows you

the exact same page as Cucumber sees, shown in figure 10.13.

 Here you can see the partials rendered with their HTML shown on the page. This is

because code coming from a string in a helper is automatically escaped, which is help-

ful—but sometimes things like this happen. Better safe than sorry!

10.3.5 Automatic escaping saves your bacon

This automatic escaping of strings is one of Rails 3’s big features. This saves your

bacon because it stops malicious output being input into forms accidentally. This out-

put would be things like your ticket’s description or comment text, which comes from

the users. Never trust the users with outputting nonmalicious content!

 If this input wasn’t escaped before it was output to the page, it could potentially

contain HTML tags like <script>, which could contain malicious content. Rails 3 saves

your bacon in this respect by automatically escaping all strings output to the view

through ERB tags. Yes, sometimes it will be overzealous and escape things you don’t

want it to escape, like your state partials.

 You can tell it that the string is safe by calling html_safe in your helper, changing

it to this:

"#{render comment.previous_state} → #{render comment.state}".html_safe

The html_safe method effectively tells Rails, “It’s cool, man,” and Rails won’t escape

anything inside the string. When you run bin/cucumber features/creating_tickets

.feature:33, your scenario will now pass:

1 scenario (1 passed)
17 steps (17 passed)

A browser window will appear, showing you the correct states, as shown in figure 10.14.

 Let’s remove the “Then show me the page” step from this scenario now, and you’re

done. You’ve got your application showing the users what state a comment has

switched the ticket to. Now’s a good time to check that you haven’t broken anything.

When you run rake cucumber:ok spec, you should see that everything is A-OK:

49 scenarios (49 passed)

516 steps (516 passed)

and
33 examples, 0 failures, 16 pending

Figure 10.13 The states aren’t what they should be…

268 CHAPTER 10 Tracking state

You have state transition showing in your application neatly, which is great to see. Let’s

commit and push this to GitHub:

git add .

git commit -m "Display a comment's state transition"
git push

Currently, your styles aren’t distinguishable. Look at figure 10.14, and gaze upon their

ugliness.

 You could distinguish them by using the colors

you’ve specified in the attributes. Earlier, you

wrapped the state name in a special div that will

allow you to style these elements, based on the

class. For the New state, the HTML for the div

looks like this:

<div class="state state_new">

New

</div>

The state_new part of this you can use to apply the colors from the record to this ele-

ment. To do this, you put a style tag at the top of your application’s layout and

dynamically define some CSS that will apply the colors.

10.3.6 Styling states

The states in your system can change at any point in time in the future, and so you

can’t have set styles in public/stylesheets/application.css for them. To get around this

little problem, put a style tag in your app/views/layouts/application.html.erb file,

which will contain some ERB code to output the styles for the states. Directly under-

neath the stylesheet_link_tag line, put this code:

<style>

<% for state in @states %>

.state_<%= state.name.parameterize %> {
background: <%= state.background %>;

color: <%= state.color %>;

}
<% end %>

</style>

You need to define the @states variable in a place that will be accessible in all views of

your application. This means you can’t define it inside any controller other than

ApplicationController. Lucky for you, this is like a normal controller, and you can use

a before_filter to load the states. Underneath the class definition for Application-

Controller, you can add this before_filter:

before_filter :find_states

Now you define the method under the authorize_admin! definition:

Figure 10.14 The unescaped states

269Managing states

def find_states
@states = State.all

end

With these few lines of code, your states should now be styled. If you visit a ticket page

that has comments that have changed the state, you should see a state styled, as shown

in figure 10.15.

 While you’re in the business of prettying things up, you

can also add the state of your ticket to the listing on app/

views/projects/show.html.erb so that users can easily glance at

the list of tickets and see a state next to each of them. Let’s

add this to the left of the ticket name so that the li element

becomes

<%= render ticket.state if ticket.state %>

#<%= ticket.id %> - <%= link_to ticket.title, [@project, ticket] %>

</li

Now that’s looking a lot better! You’ve completed all that you need to do to let users

change the state of a ticket. They’ll be able to select one from the State select box on

the comment form, and when they create a comment, that ticket will be updated to

the new state. Right next to the comment’s text on the ticket page is a state transition

shown, and (ideally) the comment’s text will provide context for that change.

 Why did you add states in the first place? Because they provide a great way of stan-

dardizing the lifecycle of a ticket. When a ticket is assigned a New state, it means that

the ticket is up for grabs. The next phase of a ticket’s life is the Open state, which

means that this ticket is being looked into/cared for by somebody. When the ticket is

fixed, then it should be marked as Closed, perhaps with some information in its

related comment relating where the fix is located.

 If you want to add more states than these three default states, you can’t at the

moment. Tickets can have two different types of Closed: one could be “Yes, this is now

fixed” and another could be “No, I don’t believe this is a problem.” A third type could

be “I couldn’t reproduce.” It would be great if you could add more states to the appli-

cation without having to add them to the state list in db/seeds.rb, wouldn’t it? Well,

that’s easy enough. You can create an interface for the admin users of your applica-

tion to allow them to add additional states.

10.4 Managing states

Currently your application has only three states: New, Open, and Closed. If you want

to add more, you have to go into the console and add them there. Admins of this

application should be able to add more states through the application itself, not the

console. They should also be able to rename them and delete them, but only if they

don’t have any tickets assigned to them. Finally, the admins should also be able to set a

default state for the application, because no ticket should be without a state.

Figure 10.15 States,

now with 100% more style

270 CHAPTER 10 Tracking state

 You’ll start out by writing a feature to create new states, which will involve creating

a new controller called Admin::StatesController. This controller will provide the

admins of your application with the basic CRUD functionality for states, as well as the

ability to mark a state as the default, which all tickets will then be associated with.

 We’re not going to look at adding an edit, update, or destroy action to this con-

troller because it’s been covered previously and should be left as an exercise for you.

10.4.1 Adding additional states

You have three default states from the db/seeds.rb file currently: New, Open, and

Closed. If the admin users of your application wish to add more, they can’t—not until

you’ve created the Admin::StatesController and the new and create actions inside

it. This will allow those users to create additional states which then can be assigned to

a ticket.

 You have this lovely State model, but no way for admins of the application to add

any new records to it. What if they want to add more states? You’ll create a new con-

troller called Admin::StatesController and put a new and create action in it so that

admins can create more states.

 But before you write any real code, you’ll write a feature that describes the process

of creating a state. Put it in a new file called features/creating_states.feature, which is

shown in the following listing.

Feature: Creating states
In order to be able to specify other states for tickets

As an admin

I want to add them to the application

Background:

Given there are the following users:

| email | password | admin |
| admin@ticketee.com | password | true |

And I am signed in as them

Scenario: Creating a state
When I follow "Admin"

And I follow "States"

And I follow "New State"
And I fill in "Name" with "Duplicate"

And I press "Create State"

Then I should see "State has been created."

Here you sign in as an admin user and go through the motions of creating a new state.

When you run this feature through using the command bin/cucumber features/

creating_states.feature, it will fail because it can’t find the States link:

And I follow "States"

no link with title, id or text 'States' found (Capybara::ElementNotFound)

Listing 10.21 features/creating_states.feature

271Managing states

The States link should take you to the StatesController’s index action, which is

missing from the admin home page, located at app/views/admin/base/index.html

.erb. You can add this link now by adding the following line to this file:

<%= link_to "States", admin_states_path %>

The admin_states_path method isn’t defined yet, and you can fix this by adding

another resources line inside the admin namespace in config/routes.rb like this:

namespace :admin do
...

resources :states

end

With this line in the admin namespace, the admin_states_path method (and its sib-

lings) are defined. Let’s run the feature again now to see what you have to do next:

And I follow "States"
uninitialized constant Admin::StatesController

Ah, that’s right! You need to generate your controller. You can do this by running the

controller generator:

rails g controller admin/states

When you run this feature again, you’re told that you’re missing the index action

from this controller:

And I follow "States"
The action 'index' could not be found for Admin::StatesController

You add this action to the app/controllers/admin/states_controller.rb file now, as well

as making this controller inherit from Admin::BaseController. After you’re done,

the whole controller class will appear as shown in the following listing

class Admin::StatesController < Admin::BaseController

def index

@states = State.all
end

end

Next on the menu is defining the view for this action in a brand new file to be located

at app/views/admin/states/index.html.erb. This view must contain the New State link

your feature will go looking for, and it should also include a list of states so that any-

one looking at the page knows which states already exist The code to do all this is

shown in the following listing.

Listing 10.22 app/controllers/admin/states_controller.rb

272 CHAPTER 10 Tracking state

<%= link_to "New State", new_admin_state_path %>

<ul id='states'>

<% for state in @states %>

<%= state.name %>
<% end %>

With this view written, your feature will now whinge about the new action when you

run bin/cucumber feature/creating_states.feature:

And I follow "New State"

The action 'new' could not be found
for Admin::StatesController (AbstractController::ActionNotFound)

Alright then, you should add the new action to Admin::StatesController if you want

to continue any further. It should be defined like the following inside that controller:

def new

@state = State.new

end

You now need to create the view for this action at app/views/admin/states/

new.html.erb and fill it in with the following content:

<h1>New State</h1>

<%= render "form" %>

You’re using a form partial here again because it’s best practice and also just in case

you ever wanted to use it for an edit action. In a new file for your partial at app/views/

admin/states/_form.html.erb, you put the form that will be used to create new states.

This form is pretty simple—it only needs a text field for the name and a submit button

to submit the form:

<%= form_for [:admin, @state] do |f| %>

<p>
<%= f.label :name %>

<%= f.text_field :name %>

</p>

<%= f.submit %>

<% end %>

Because the @state variable coming from the new is a new instance of the State

model, the submit method will display a submit button with the text Create State, just

like your feature needs. Speaking of which, with this form partial done, your feature

should run a little further. You should check this now by running bin/cucumber

features/creating_states.feature:

And I press "Create State"

The action 'create' could not be found

for Admin::StatesController (AbstractController::ActionNotFound)

Listing 10.23 app/views/admin/states/index.html.erb

273Managing states

Right, so you need to create the create action too, which you define inside

Admin::StatesController as shown in the following listing.

def create

@state = State.new(params[:state])

if @state.save
flash[:notice] = "State has been created."

redirect_to admin_states_path

else
flash[:alert] = "State has not been created."

render :action => "new"

end
end

With the create action defined in your Admin::StatesController, you’ll now be able

to run bin/cucumber features/creating_states.feature and have it pass:

1 scenario (1 passed)

8 steps (8 passed)

Very good! By implementing a feature that lets the admin users of your site create

states, you’ve provided a base to build the other state features upon. You shouldn’t

have broken anything by these changes but it won’t hurt to run rake cucumber:ok

spec to make sure. You should see the following summaries:

50 scenarios (50 passed)
571 steps (571 passed)

and

25 examples, 0 failures, 9 pending

Good to see everything’s still working. Commit and push this now:

git add .

git commit -m "Added Admin::StatesController for managing states"
git push

With this base defined, you can move on to more exciting things than CRUD, such as

defining a default state for your tickets.

10.4.2 Defining a default state

A default state for the tickets in your application will provide a sensible way of group-

ing tickets that are new to the system, making it easier for them to be found. The easi-

est way to track which state is the default state is to add a boolean column called

default to your states table, which is set to true if the state is the default, false if not.

 To get started, you write a feature that covers changing the default status. At the end

of this feature, you end up with the default field in the states table, and then you can

move on to making the tickets default to this state. Let’s create a new feature called fea-

tures/managing_states.feature and fill it with the content from the following listing.

Listing 10.24 app/controllers/admin/states_controller.rb

274 CHAPTER 10 Tracking state

Feature: Managing states
In order to change information about a state
As an admin
I want to be able to set a state's name and default status

Background:
Given I have run the seed task
And I am signed in as "admin@ticketee.com"

Scenario: Marking a state as default
Given I am on the homepage
When I follow "Admin"
And I follow "States"
And I follow "Make default" for the "New" state
Then I should see "New is now the default state."

In this scenario you’ve got one new step B, which you need to define for this feature

to run. Let’s run this feature now to get the step definitions for these steps by running

bin/cucumber features/managing_states.feature:

When /^I follow "([^"]*)" for the "([^"]*)" state$/ do |arg1, arg2|
pending # express the regexp above with the code you wish you had

end

You put this step definition inside features/step_definitions/state_steps.rb and work on

getting the first definition to pass for now. This definition is used like this:

And I follow "Make default" for the "New" state

Which is a slightly modified version of the following:

And I follow "Make Default" within "#some_state"

You’re not using the within variant here directly because you’re not going to be using

a statically set id attribute for the state in the view but rather setting it to something

like state_3 using this code:

<li id='state_<%= state.id %>'>
<%= state.name %>
<% if state.default? %>

(Default)
<% else %>

<%= link_to "Make Default", make_default_admin_state_path(state) %>
<% end %>

But you use this step within your custom step. You’re also not using the step When I

follow "Make Default" because this will follow the first Make Default link on the

page, which may or may not be the one that you want. With all of this in mind, you can

redefine your step as follows:

When /^I follow "([^"]*)" for the "([^"]*)" state$/ do |link, name|
state = State.find_by_name!(name)
steps(%Q{When I follow "#{link}" within "#state_#{state.id}"})

end

Listing 10.25 features/managing_states.feature

B New step

275Managing states

Now in this step definition you find the state by the name given to you by the step and

then find the link using the “When I follow [x] within [y]” step provided by Capybara.

When you run this feature again, you’re told that it can’t find the state element you’re

referencing:

And I follow "Make default" for the "New" state

scope '//*[@id = 'state_1']' not found on page (Capybara::ElementNotFound)

This is because you haven’t added the id attribute to your state li tags inside the app/

views/admin/states/index.html.erb. You can do this now by changing the following

line inside this view; while you’re here, also add the Make Default link:

<%= state.name %>

To this:

<li id='state_<%= state.id %>'>

<%= state.name %>
<%= link_to "Make default", make_default_admin_state_path(state) %>

When you run your feature again you’ll rightly be told that the make_default_admin

_state_path method is undefined. This method should take you to the make_default

action in the Admin::StatesController, much like edit_admin_state_path takes

you to the edit action. You can define this method as a member route on your states

resource. A member route provides the routing helpers and, more important, the

route itself, to a custom controller action for a single instance of a resource. To define

this, you change the resources :states line inside the admin namespace inside

config/routes.rb to the following:

resources :states do

member do

get :make_default
end

end

Inside the member block here, you define that each state resource has a new action

called make_default that can be accessed through a GET request. As stated previously,

by defining the route in this fashion you also get the

make_default_admin_state_path helper which you use in app/views/admin/states/

index.html.erb. With this member route now defined, your feature will complain that

it’s missing the make_default action:

And I follow "Make default" for the "New" state
The action 'make_default' could not be found for

Admin::StatesController (AbstractController::ActionNotFound)

The make_default action will be responsible for making the state you’ve selected the

new default state, as well as setting the old default state to not be the default anymore.

You can define this action inside app/controllers/admin/states_controller.rb, as shown

in the following listing.

276 CHAPTER 10 Tracking state

def make_default
@state = State.find(params[:id])

@state.default!

flash[:notice] = "#{@state.name} is now the default state."
redirect_to admin_states_path

end

Rather than putting the logic to change the selected state to the new default inside

the controller, you place it in the model. To trigger a state to become the new default

state, you call the default! method on it. It’s best practice to put code that performs

functionality like this inside the model.

 This default! method can be defined in the State model, as shown in the follow-

ing listing.

def default!

current_default_state = State.find_by_default(true)

self.default = true
self.save!

if current_default_state

current_default_state.default = false
current_default_state.save!

end

end

The find_by_default B method here is a dynamic finder method from Active

Record. The find_by_default will either return the State object for the default

state, or nil. If it doesn’t return nil C then you change its default state to false

and save the record.

 When you run your feature again with bin/cucumber features/creating_states

.feature, you see that the find_by_default method isn’t defined:

And I follow "Make default" for the "New" state

undefined method `find_by_default' for State...

This dynamic method doesn’t exist because you haven’t yet defined the default col-

umn on your states table. If you had this column then Rails would have already

defined the find_by_default method for you. To do this, you generate a migration

that will add this column using the following command:

rails g migration add_default_to_states default:boolean

Don’t run this migration just yet. With the default column being a boolean field, it’s

going to need to know what its default value should be: either true or false. To set a

Listing 10.26 app/controllers/admin/states_controller.rb

Listing 10.27 app/models/state.rb

B Dynamic finder

C Change default state

277Managing states

default for this column, open your newly created migration and change the line that

adds the column to the following:

add_column :states, :default, :boolean, :default => false

With this small change, every State object that’s created will have the default attri-

bute set to false by default. You now run your migration using rake db:migrate and

rake db:test:prepare:

 When you run bin/cucumber features/managing_states.feature now, it will

pass because you’ve got this default column allowing the whole process of making a

state the default to complete:

1 scenario (1 passed)
7 steps (7 passed)

Great to see! When a ticket is created, the state of that ticket will default to the

State, which is set to default. You should make New the default state in your applica-

tion by adding a default attribute from where you create it inside db/seeds.rb to

the following:

State.create(:name => "New",

:background => "#85FF00",
:color => "white",

:default => true)

When this seeds file is run later on, you’ll have a default state for your tickets so that

they display properly in your tickets listing.

 You should now commit these change but, before that, you should make sure you

haven’t caused anything to break. Let’s run rake cucumber:ok spec to find out:

51 scenarios (51 passed)

531 steps (531 passed)

and
34 examples, 0 failures, 17 pending

There’s nothing broken, so it’s time to commit:

git add .
git commit -m "Admins can now set a default state for tickets"

git push

You’re close to being done with states. So far, you’ve added the functionality for users

to change the state through the comment form, to display the state transition on a

comment, and (just recently) for admins to be able to create new states and toggle

which state is the default.

 At the moment, any user is able to change the state of a ticket, which isn’t a good

thing. You’d like some users to have the ability to leave a comment but not to change

the state, and you’ll look at creating this feature right now. This is the final feature

you’ll be implementing for states.

278 CHAPTER 10 Tracking state

10.5 Locking down states

This feature is going to take a little more than hiding the State select box on the form;

you also need to tell the application to ignore the state parameter if the user doesn’t

have permission to change the state. You implement this one piece at a time, begin-

ning with ensuring the State select box is hidden from those who should be unable to

change the state.

10.5.1 Hiding a select box

In previous chapters you’ve seen how you can hide links from certain users by using

the CanCan-provided can? view helper. You can also use this helper to hide the state

field in your comment form from users without the permission to change the state.

First, you write a Cucumber scenario to ensure that the State box is always hidden

from these users.

 You add this particular scenario to the bottom of the features/creating

_comments.feature because its operation is based around creating a comment. The sce-

nario to ensure that you don’t see this state field is a short and simple one:

Scenario: A user without permission cannot change the state

When I follow "Change a ticket's state"

Then I should not see the "#comment_state_id" element

This scenario contains two simple steps: one to go to the ticket page and another to

assert that you don’t see the State select box. When you run this scenario by running

bundle exec features/creating_comments.feature:44, you see that the second step

isn’t yet defined:

Undefined step: "I should not see the "#comment_state_id" element"

As usual, the definition for this step appears at the bottom of Cucumber’s output:

Then /^I should not see the "([^"]*)" element$/ do |arg1|

pending # express the regexp above with the code you wish you had

end

To define this step, you put its definition inside of features/step_definitions/

application_steps.rb. To make it do the thing you want it to do, you can use one of

Capybara’s helper methods called find.

find can take many different forms, but in this case you’ll be using the following

form:

find(:css, css)

By passing these two options to find, Capybara will look for any element on the page

that matches the CSS selector. In this case, that would be css. If find does find an ele-

ment or even a collection of elements, it will only return the first element from this list.

If it can’t find anything, it will return nil. Using this knowledge, you can implement

this step now as shown, putting it inside features/step_definitions/application_steps.rb:

279Locking down states

Then /^I should not see the "([^"]*)" element$/ do |css|
page.should_not(have_css(css),

"Expected to not see the #{css} element, but did.")

end

Here you use Capybara’s have_css matcher to see if the page has an element match-

ing the CSS selector, which is passed to this step. You also use RSpec’s ability to specify

a custom message if this assertion fails, returning “Expected to not see the

#comment_state_id element, but did” if this element is visible on the page.

 If you run this feature using bin/cucumber features/creating_comments

.feature:42, you see that this step is failing because it is seeing the element:

Then I should not see the "#comment_state_id" element

Expected to not see the #comment_state_id element, but did

Right, now that you’ve got your feature to a good-enough point that it ensures that

you shouldn’t see this field, it’s time to hide it and fix the feature. To do this, you use

the can? method to check that the user has permission to change states for this proj-

ect. If the user doesn’t have this permission, then you’ll hide the state field. With this

change, the State select box code in app/views/comments/_form.html.erb will now

look like the following listing.

<% authorized?(:"change states", @project) do %>

<p>

<%= f.label :state_id %>
<%= f.select :state_id, @states.map { |s| [s.name, s.id] },

:selected => @ticket.state_id %>

</p>
<% end %>

Here you use the authorized? method defined in chapter 8 to only display the fields

if the user is authorized to changed the states.

 This little change will make your scenario pass because the user you’re signing in

as doesn’t have this particular permission set up. Let’s run it now with bin/cucumber

features/creating_comments.feature:42 to make sure:

1 scenario (1 passed)

10 steps (10 passed)

Good to see, but this view change has definitely broken the scenario in this feature,

which does change the state. You can run this other scenario by running bin/cucumber

features/creating_comments.feature:33; when you do that, you see that it’s

indeed broken:

cannot select option, no select box with id, name, or label 'State' found

You’ve done something similar to this before in chapter 8. Back then, you used a step

that set the current user up with a permission to perform a specific protected action.

This is no different. Let’s write a new step underneath the title of the scenario on line

Listing 10.28 app/views/comments/_form.html.erb

280 CHAPTER 10 Tracking state

33 of features/creating_comments.feature, which should be the scenario title of

“Changing a ticket’s state”:

Given "user@ticketee.com" can change states on the "Ticketee" project

With the step in your scenario using this step definition now, the scenario will pass

when you rerun it using bin/cucumber features/creating_comments.feature:33:

1 scenario (1 passed)

16 steps (16 passed)

Good! All the scenarios in this feature should now be passing; you’ll check that in a

minute. Your next step was going to be to ensure that the state_id parameter wasn’t

passed through if the user doesn’t have access to create a state, but you’ve just added a

new permission to the system. You should ensure that this permission is assignable to

users before continuing, which you can do by adding a scenario to the Assigning Per-

missions feature.

10.5.2 Bestowing changing state permissions

The features/assigning_permissions.feature file contains the Assigning Permissions fea-

ture, which you’ve used to ensure that permissions are assignable from the permis-

sions page in the backend accessible by admins. Let’s add another scenario now to test

that you can assign this “change states” permission, as shown in the following listing.

Scenario: Changing states for a ticket

When I check "View" for "TextMate 2"
And I check "Change States" for "TextMate 2"

And I press "Update"

And I follow "Sign out"

Given I am signed in as "user@ticketee.com"

When I follow "TextMate 2"

And I follow "Shiny!"
When I fill in "Text" with "Opening this ticket."

And I select "Open" from "State"

And I press "Create Comment"
Then I should see "Comment has been created."

And I should see "Open" within "#ticket .state"

When you run this scenario with the command bec features/assigning

_permissions.feature:73, you see that it can’t find the Change States select box for

the TextMate 2 project:

cannot check field, no checkbox ... 'permissions_1_change_states'

This is fine. You haven’t added it to the list of permissions inside of app/helpers/

admin/permissions_helper.rb yet. You can add this now by adding this key-value pair to

the Hash object in the permissions method’s hash:

"change states" => "Change States"

Listing 10.29 features/assigning_permissions.feature

281Locking down states

With this added to the permissions hash, your scenario will move a little further

toward success. When you rerun it, it will complain that it can’t find the Open state

from your select box:

And I select "Open" from "State"
No such option 'Open' in this select box.

Ah, not a problem! This means that the Open state isn’t yet defined in your test data-

base. You need to create this state in the Background for this feature. You can do this

by adding the following line at the bottom of the Background:

Given there is a state called "Open"

When you rerun this scenario using bin/cucumber features/assigning_permissions

.feature:74,4 it will now pass:

1 scenario (1 passed)

22 steps (22 passed)

That’s good! Now admins are able to assign the “Change states” permission and users

are able to see and touch the State select box on the comment form if they have this

permission.

 This is a great halfway point before you go diving into the final stage of this partic-

ular set of features to run your Cucumber features and specs to ensure that nothing is

broken. Let’s run rake cucumber:ok spec now; you should see that all your tests are

passing:

53 scenarios (53 passed)

568 steps (568 passed)

and
34 examples, 0 failures, 17 pending

Yay! Everything is in working order, which means you can commit and push these

changes to GitHub:

git add .
git commit -m "Only users with the 'change states' permission
 ➥can change states"
git push

The final piece of your states puzzle is to stop the state parameter from being set in

your CommentsController if a user passes it through and doesn’t have permission to

set states. First, you’ll investigate how a user can fake this response. Afterward, you’ll

write a controller spec that duplicates this and ensures that the state isn’t set.

4 If you get no scenario and no steps running for this feature, are you sure you’re running the right line? Check
to make sure you’re running line 75, not 74, which is now a blank line.

282 CHAPTER 10 Tracking state

10.5.3 Hacking a form

Even if your state field is hidden from view, users are still able to submit a form

containing this parameter, and your application will accept it. Let’s now see this in

practice.

 The first things you need to do are to create a user and give it read access to a

project, which you can do by starting rails console (or rails c) and running these

commands:

user = Factory(:user)
user.confirm!
user.permissions.create(:object => Project.first,

:action => "view")

Let’s quit the console by typing exit and then start up the application with rails

server. Now you can sign in with the user@ticketee.com email and password password.

Once you’re in, you should see the page shown in figure 10.16.

 Let’s go into this project and pick any

ticket in the list or create your own. It

doesn’t matter, you just need a ticket. When

you’re on the ticket page, save this page by

choosing File and then Save or Save Page As,

and save this file in a memorable location.

You’re going to be editing this saved file and

adding a State select box of your own.

 Open this saved file in a text editor, and

look for the following lines:

<p>
<label for="comment_text">Text</label>

<textarea cols="40" id="comment_text" name="comment[text]" rows="20"></

textarea>
</p>

These lines display the Text label and the associated textarea for a new comment.

You’re able to add the state field underneath the text field by adding this code5 to

the page:

<p>

<label for="comment_state">State</label>

<select id="comment_state_id" name="comment[state_id]">
<option value="1" selected="selected">New</option>

<option value="2">Open</option>

<option value="3">Closed</option>

</select>
</p>

When you save this page, you’ll now be able to choose a state when you open it in a

browser. The action of the form tag on this page goes to http://localhost:3000/tickets

5 Assuming you know the IDs of the states.

Figure 10.16 What the user sees

283Locking down states

/[id]/comments (where[id] is the id of the ticket this form will

create a comment for), and this route will take you to the

create action inside CommentsController.

 Let’s open this saved page in a browser now, fill in the text

for the comment with anything, and select a value for the state.

When you submit this form, it will create a comment and set the

state. You should see your comment showing the state transi-

tion, as shown in figure 10.17.

 Obviously, hiding the state field isn’t a foolproof way to protect it. A better way to

protect this attribute would be to delete it from the parameters before it gets to the

method that creates a new comment.

10.5.4 Ignoring a parameter

If you remove the state_id key from the comment parameters before they’re passed to

the build method in the create action for CommentsController, then this problem

won’t happen. You should write a regression test. Regression tests are tests that save you

from causing regressions.

 You now open spec/controllers/comments_controller_spec.rb and set up a project,

ticket, state, and user for the spec you’re about to write by putting the code from the

following listing inside the describe CommentsController block.

let(:user) { create_user! }
let(:project) { Project.create!(:name => "Ticketee") }

let(:ticket) do

project.tickets.create(:title => "State transitions",
:description => "Can't be hacked.",

:user => user)

end

let(:state) { State.create!(:name => "New") }

The state you create is the one you’ll attempt to transition to in your spec, with the

ticket’s default state being not set, and therefore nil. The user you set up is the user

you use to sign in and change the state with. This user has no permissions at the

moment and so they won’t be able to change the states.

 Your spec needs to make sure that a change doesn’t take place when a user who

doesn’t have permission to change the status of a ticket for that ticket’s project

submits a state_id parameter. You put this code, shown in the next listing, directly

underneath the setup you just wrote.

context "a user without permission to set state" do
before do

sign_in(:user, user)

end

Listing 10.30 spec/controllers/comments_controller_spec.rb

Listing 10.31 spec/controllers/comments_controller_spec.rb

Figure 10.17

Hacked state transition

284 CHAPTER 10 Tracking state

it "cannot transition a state by passing through state_id" do
post :create, { :comment => { :text => "Hacked!",

:state_id => state.id },

:ticket_id => ticket.id }
ticket.reload

ticket.state.should eql(nil)

end
end

This spec uses a before to sign in as the user before the example runs. Inside the

example, you use the post method to make a POST request to the create action

inside CommentsController, passing in the specified parameters. It’s this state_id

parameter that should be ignored in the action.

 After the post method, you use a new method :reload B. When you call reload

on an Active Record object, it will fetch the object again from the database and update

the attributes for it. You use this because the create action acts on a different Ticket

object and doesn’t touch the one you’ve set up for your spec.

 The final line here asserts that the ticket.state should be nil. When you run

this spec by running bundle exec rspec spec/controllers/comments_controller

_spec.rb, this final line will be the one to fail:

Failure/Error: ticket.state.should eql(nil)

expected nil

got #<State id: 1, name: "New", default: false>

The ticket.state is returning a state object because the user has been able to post

it through the parameter hash. With a failing spec now in place, you can go about

stopping this state parameter from going unchecked. To ignore this parameter, you

can remove it from the params hash if the user doesn’t have permission to change

states. At the top of the create action, inside of CommentsController, put the follow-

ing lines:

if cannot?(:"change states", @ticket.project)
params[:comment].delete(:state_id)

end

This code will remove the state_id key from the params[:comment] hash if the user

doesn’t have permission to change the states on the ticket’s project, thereby preventing

them from being able to change the state. If you rerun your spec using bin/rspec spec

/controllers/comments_controller_spec.rb, you’ll see that it passes:

1 example, 0 failures

Great! Now nobody without permission will be able to download the ticket page, make

modifications to it to add a state field, and then be able to change the states.

 You’re done with this feature now so it’s time to make sure you didn’t break any-

thing with your changes by running rake cucumber:ok spec. You should see that

everything is squeaky clean:

B Reload Ticket object

285Summary

53 scenarios (53 passed)
615 steps (615 passed)

and

26 examples, 0 failures, 9 pending

Great! You now commit and push this to Github:

git add .

git commit -m "Protect state_id from users who do
not have permission to change it"

git push

The CommentsController will now reject the state_id parameter if the user doesn’t

have permission to set it, thereby protecting the form from anybody hacking it to add

a state_id field when they shouldn’t.

 The feature of protecting the state_id field from changes was the final piece of

the state features puzzle. You’ve now learned how to stop a user from changing not

only a particular record when they don’t have permission to, but also a specific field

on a record.

10.6 Summary

You began this chapter by writing the basis for the work later on in the chapter: com-

ments. By letting users posts comments on a ticket, you can let them add further infor-

mation to it and tell a story.

 With the comment base laid down, you implemented the ability for users to be

able to change a ticket’s state when they post a comment. For this, you tracked the

state of the ticket before the comment was saved and the state assigned to the com-

ment so you could show transitions (as shown in figure 10.18).

 You finished by limiting the ability to change states to only those who have permis-

sion to do so, much as you’ve previously limited the abilities to read projects and cre-

ate tickets in previous chapters. While doing this, you saw how easy it was for

somebody to download the source of your form and alter it to do their bidding and

then how to protect it from that.

 In chapter 10, you will add tags to your tickets. Tags are

words or short phrases that provide categorization for tickets,

making them easier for users to manage. Additionally, you’ll

implement a search interface that will allow users to find tick-

ets with a given tag or state.
Figure 10.18

Replay: state transitions

286

Tagging

In chapter 10, you saw how to give your tickets states (New, Open, and Closed) so

that their progress can be indicated.

 In this chapter, you’ll see how to give your tickets tags. Tags are useful for group-

ing similar tickets together into things such as iterations1 or similar feature sets. If

you didn’t have tags, you could crudely group tickets together by setting a ticket’s

title to something such as “Tag - [name].” This method, however, is messy and diffi-

cult to sort through. Having a group of tickets with the same tag will make them

much, much easier to find.

 To manage tags, you’ll set up a Tag model, which will have a

has_and_belongs_to_many association to the Ticket model. You’ll set up a join

table for this association, which is a table that contains foreign key fields for each

This chapter covers

 Tagging specific records for easier searching

 Restricting user access to tagging functionality

 Searching for specific tags or specific states

of a ticket

1 For example, by using a process such as Agile, feature sets, or any other method of grouping.

287Creating tags

side of the association. A join table’s sole purpose is to

join together the two tables whose keys it has. In this

case, the two tables are the tickets and tags tables. As

you move forward in developing this association, note

that, for all intents and purposes, has_and_belongs_to

_many works like a two-way has_many.

 You’ll create two ways to add tags to a ticket. A text

field for new tickets beneath the ticket’s description field will allow users to add multi-

ple tags by using a space to separate different tags, as shown in figure 11.1.

 Additional tags may also be added on a comment, with a text field similar to the

one from the new ticket page providing the tagging mechanism. When a ticket is cre-

ated, you’ll show these tags underneath the description, as shown in figure 11.2.

 When a user clicks a tag, they’ll be taken to a page where they can see all tickets

with that particular tag. Alternatively, if the user clicks the little “x” next to the tag,

that tag will be removed from the ticket. The actions of adding and removing a tag are

both actions you’ll add to your permission checking.

 Finally, you’ll implement a way to search for tickets

that match a state, a tag, or both, by using a gem called

searcher. The query will look like tag:iteration_1

state: open.

 That’s all there is to this chapter! You’ll be adding

tags to Ticketee, which will allow you to easily group and

sort tickets. Let’s dig into your first feature, adding tags

to a new ticket.

11.1 Creating tags

Tags in this application will be extremely useful for making similar tickets easy to find

and manage. In this section, you’ll create the interface for adding tags to a new ticket

by adding a new field to the new ticket page and defining a has_and_belongs

_to_many association between the Ticket model and the not-yet-existent Tag model.

11.1.1 Creating tags feature

You’re going to add a text field beneath the description field on the new ticket page

for this feature, as you saw earlier in figure 11.1.

 The words you enter into this field will become the tags for this ticket, and you

should see them on the ticket page. At the bottom of features/creating_tickets.feature,

you add a scenario that creates a new ticket with tags, as shown in listing 11.1.

Scenario: Creating a ticket with tags

When I fill in "Title" with "Non-standards compliance"
And I fill in "Description" with "My pages are ugly!"

And I fill in "Tags" with "browser visual"

Listing 11.1 features/creating_tickets.feature

Figure 11.1 The tag box

Figure 11.2 A tag for a ticket

288 CHAPTER 11 Tagging

And I press "Create Ticket"
Then I should see "Ticket has been created."

And I should see "browser" within "#ticket #tags"

And I should see "visual" within "#ticket #tags"

When you run the “Creating a ticket with tags” scenario using bin/cucumber features

/creating_tickets.feature:50 it will fail, declaring that it can’t find the Tags field.

Good! It’s not there yet:

And I fill in "Tags" with "browser visual"

cannot fill in, no text field, text area or password field

with id, name, or label 'Tags' found (Capybara::ElementNotFound)

You’re going to take the data from this field, process each word into a new Tag object,

and then link the tags to the ticket when it’s created. You’ll use a text_field_tag to

render the Tags field this way. text_field_tag is similar to a text_field tag, but it

doesn’t have to relate to any specific object like text_field does. Instead, it will out-

put an input tag with the type attribute set to text and the name set to whatever

name you give it.

11.1.2 Using text_field_tag

To define this field, you put the following code underneath the p tag for the descrip-

tion in app/views/tickets/_form.html.erb:

<p>

<%= label_tag :tags %>

<%= text_field_tag :tags, params[:tags] %>
</p>

This field will be sent through to TicketsController as params[:tags], rather than

the kind of attributes you’re used to, such as params[:ticket][:title].

 By specifying params[:tags] as the second argument to text_field_tag, you can

re-populate this field when the ticket cannot be created due to it failing validation.

 When you re-run this scenario again with bin/cucumber features/creating

_tickets.feature:51, it no longer complains about the missing Tags field, telling

you instead that it can’t find the tags displayed on your ticket:

And I should see "browser" within "#ticket #tags"
Unable to find css "#ticket #tags" (Capybara::ElementNotFound)

You now need to define this #tags element inside the #ticket element on the ticket’s

page so that this part of the scenario will pass. This element will contain the tags for

your ticket, which your scenario will assert are actually visible.

11.1.3 Showing tags

You can add this new element, with its id attribute set to tags, to app/views/tickets/

show.html.erb by adding this simple line underneath where you render the ticket’s

description:

<div id='tags'><%= render @ticket.tags %></div>

289Creating tags

This creates the #ticket #tags element that your feature is looking for, and will ren-

der the soon-to-be-created app/views/tags/_tag.html.erb partial for every element in

the also-soon-to-be-created tags association on the @ticket object. Which of these

two steps do you take next? If you run your scenario again, you see that it cannot find

the tags method for a Ticket object:

undefined method `tags' for #<Ticket:0x0..

This method is the tags method, which you’ll be defining with a has_and

_belongs_to_many association between Ticket objects and Tag objects. This method

will be responsible for returning a collection of all the tags associated with the given

ticket, much like a has_many would. The difference is that this method works in the

opposite direction as well, allowing you to find out what tickets have a specific tag.

11.1.4 Defining the tags association

You can define the has_and_belongs_to_many association on the Ticket model by

placing this line after the has_many definitions inside your Ticket model:

has_and_belongs_to_many :tags

This association will rely on a join table that doesn’t yet exist called tags_tickets.

The name is the combination, in alphabetical order, of the two tables you want to

join. This table contains only two fields—one called ticket_id and one called

tag_id—which are both foreign keys for tags and tickets. The join table will easily

facilitate the union of these two tables, because it will have one record for each tag

that links to a ticket, and vice versa.

 When you re-run your scenario, you’re told that there’s no constant called Tag yet:

uninitialized constant Ticket::Tag (ActionView::Template::Error)

In other words, there is no Tag model yet. You should define this now if you want to go

any further.

11.1.5 The Tag model

Your Tag model will have a single field called name, which should be unique. To gener-

ate this model and its related migration, run the rails command like this:

rails g model tag name:string --timestamps false

The timestamps option passed here determines whether or not the model’s migra-

tion is generated with timestamps. Because you’ve passed the value of false to this

option, there will be no timestamps added.

 Before you run this migration, however, you need to add the join table called

tags_tickets to your database. The join table has two fields: one called ticket_id

and the other tag_id. The table name is the pluralized names of the two models it is

joining, sorted in alphabetical order. This table will have no primary key, because

you’re never going to look for individual records from this table and only need it to

join the tags and tickets tables.

290 CHAPTER 11 Tagging

 To define the tags_tickets table, put this code in the change section of your db/

migrate/[timestamp]_create_tags.rb migration:

create_table :tags_tickets, :id => false do |t|

t.integer :tag_id, :ticket_id
end

The :id => false option passed to create_table here tells Active Record to create

the table without the id field, because the join table only cares about the link between

tickets and tags, and therefore does not need a unique identifier.

 Next, run the migration on your development database by running rake

db:migrate, and on your test database by running rake db:test:prepare. This will

create the tags and tags_tickets tables.

 When you run this scenario again with bin/cucumber features/creating

_tickets:48, it is now satisfied that the tags method is defined and moves on to com-

plaining that it can’t find the tag you specified:

And I should see "browser" within "#ticket #tags"

Failed assertion, no message given. (MiniTest::Assertion)

This failure is because you’re not doing anything to associate the text from the Tags

field to the ticket you’ve created. You need to parse the content from this field into

new Tag objects and then associate them with the ticket you are creating, which you’ll

do right now.

11.1.6 Displaying a ticket’s tags

The params[:tags] in TicketsController’s create is the value from your Tags field

on app/views/tickets/_form.html.erb. This is also the field you need to parse into Tag

objects and associate those tags with the Ticket object you are creating.

 To do this, alter the create action in TicketsController by adding this line

directly after@ticket.save:

@ticket.tag!(params[:tags])

This new tag! method will parse the tags from params[:tags], convert them into new

Tag objects, and associate them with the ticket. You can define this new method at the

bottom of your Ticket model like this:

def tag!(tags)
tags = tags.split(" ").map do |tag|

Tag.find_or_create_by_name(tag)

end

self.tags << tags

end

On the first line here, use the split method to split your string into an array, and

then use the map method to iterate through every value in the array.

 Inside the block for map, use a dynamic finder to find or create a tag with a specified

name. You last saw a dynamic finder in chapter 10, where you found a State record by

291Creating tags

using find_by_default. find_or_create_by methods work in a similar fashion,

except they will always return a record, whether it be a pre-existing one or a recently

created one.

 After all the tags have been iterated through, you assign them to a ticket by using

the << method on the tags association.

 The tag! method you have just written will create the tags that you display on the

app/views/tickets/show.html.erb view by using the render method you used earlier:

<%= render @ticket.tags %>

When you run this scenario again by running bin/cucumber features/creating

_tickets.feature:51, you see this line is failing with an error:

Missing partial tags/tag ...

The next step is to write the tag partial that your feature has complained about. Put

the following code in a new file called app/views/tags/_tag.html.erb:

<%= tag.name %>

By wrapping the tag name in a span with the class of tag, it will be styled as defined in

your stylesheet. With this partial defined, the final piece of the puzzle for this feature

is put into place. When you run your scenario again by running bin/cucumber

features/creating_tickets.feature:51, it passes:

1 scenario (1 passed)

15 steps (15 passed)

Great! This scenario is now complete. When a user creates a ticket, they are able to

assign tags to that ticket, and those tags will display along with the ticket’s information

on the show action for TicketsController. The tag display was shown earlier in figure

11.2.

 You now commit this change, but before you do you ensure that you haven’t bro-

ken anything by running rake cucumber:ok spec:

54 scenarios (53 passed)

583 steps (583 passed)

and
36 examples, 0 failures, 18 pending

Good to see that nothing’s blown up this time. Let’s commit this change:

git add .
git commit -m "Users can tag tickets upon creation"

git push

Now that users can add a tag to a ticket when that ticket is being created, you should

also let them add tags to a ticket when they create a comment. When a ticket is being

discussed, new information may come that would require another tag to be added to

the ticket and group it into a different set. A perfect way to let your users do this

would be to let them add the tag when they comment.

292 CHAPTER 11 Tagging

11.2 Adding more tags

The tags for a ticket can change

throughout the ticket’s life; new tags

can be added and old ones can be

deleted. Let’s look at how you can add

more tags to a ticket after it’s been cre-

ated through the comments form.

Underneath the comment form on a

ticket’s page, add the same Tags field

that you previously used to add tags to

your ticket on the new ticket page. One

thing you have to keep in mind here is

that if someone enters a tag that’s

already been entered, you don’t want it

to show up.

 You’ve got two scenarios to imple-

ment then: the first is a vanilla addition

of tags to a ticket through a comment,

and the second is a scenario ensuring

that duplicate tags do not appear. Let’s implement this function one scenario at a

time. When you’re done, you’ll end up with the pretty picture shown in figure 11.3.

11.2.1 Adding tags through a comment

To test that users can add tags when they’re creating a comment, you add a new sce-

nario to the features/creating_comments.feature feature that looks like this listing:

Scenario: Adding a tag to a ticket
When I follow "Change a ticket's state"

Then I should not see "bug" within "#ticket #tags"

And I fill in "Text" with "Adding the bug tag"
And I fill in "Tags" with "bug"

And I press "Create Comment"

Then I should see "Comment has been created"
Then I should see "bug" within "#ticket #tags"

First, you make sure you don’t see this tag within #ticket #tags, to ensure you don’t

have a false positive. Next, you fill in the text for the comment so it’s valid, add the

word “bug” to the Tags field, and click the Create Comment button. Finally, you

ensure that the comment has been created and that the bug tag you entered into the

comment form now appears in #ticket #tags.

 When you run this scenario using bin/cucumber features/creating_comments

.feature:47, it will fail because there is no Tags field on the ticket’s page yet:

Listing 11.2 features/creating_comments.feature

Figure 11.3 Comment form with tags

293Adding more tags

cannot fill in, no text field, text area or password
field with id, name, or label 'Tags' found

You can fix this by taking these lines from app/views/tickets/_form.html.erb and mov-

ing them into a new partial at app/views/tags/_form.html.erb:

<p>

<%= label_tag :tags %>

<%= text_field_tag :tags, params[:tags] %>
</p>

Replace the code you removed from app/views/tickets/_form.html.erb with this line:

<%= render "tags/form" %>

This new line will render your new tags partial. In order to make the failing step in

your scenario now pass, you re-use this same line inside the authorized? block inside

app/views/comments/_form.html.erb underneath the code you use to render the

State select box.

 When you run bin/cucumber features/creating_comments.feature:47, you see

that this step is indeed passing, but now it’s the final step of your scenario that is failing:

Then I should see "bug" within "#ticket #tags"
expected there to be content "bug" in ""

This feature is not seeing the word “bug” within the content for the ticket’s tags

(which is empty), and so the scenario fails. This is because the code to associate a tag

with a ticket isn’t in the create action of CommentsController yet. In the create

action in TicketsController, you use this line to tag the ticket that was created:

@ticket.tag!(params[:tags])

You can use this same method to tag a comment’s ticket. On the line immediately

after if @comment.save in the create action inside CommentsController, you re-use

the tag! line. That’s all you need to get this scenario to pass, right? Run bin/cucumber

features/creating_comments.feature:47 to find out:

1 scenario (1 passed)

15 steps (15 passed)

Boom, that’s passing! Good stuff. Now for the cleanup. Make sure you haven’t broken

anything else by running rake cucumber:ok spec:

55 scenarios (55 passed)
598 steps (598 passed)

and

27 examples, 1 failure, 10 pending

It would seem your spec/controllers/comments_controller_spec.rb doesn’t want to

play nice.

294 CHAPTER 11 Tagging

11.2.2 Fixing the CommentsController spec

The CommentsController spec is failing with this error:

You have a nil object when you didn't expect it!
You might have expected an instance of Array.

The error occurred while evaluating nil.split

./app/models/ticket.rb:16:in `tag!'
./app/controllers/comments_controller.rb:12:in `create'

Ah, it seems to be from within the tag! method from the Ticket model. The six-

teenth line of this model is

tags = tags.split(" ").map do |tag|

It’s the calling of tags.split that is making the spec fail, but why? tags comes from

the argument passed to this method from the CommentsController’s create action by

this line:

@ticket.tag!(params[:tags])

You’d get this error if params[:tags] was ever nil, because you cannot call split on

nil. Why is it nil in your controller spec, though? It’s because you’re not sending it

through with the other parameters in your spec:

post :create, { :comment => { :text => "Hacked!",

:state_id => state.id },
:ticket_id => ticket.id }

You can solve this problem in one of two ways. The first way is to check that

params[:tags] is not nil before calling the tag! method by adding code to the

CommentsController, or better still, by adding code to the tag! method in the Ticket

model. The second way is to make the controller spec accurately reflect reality.

 Because the Tags field is always going to be on the comments page, its value will be

set to an empty string if it is left as-is. The second fix is therefore better, because it

fixes the problem rather than compensating for an issue that will only happen in your

tests. You can change the post method in the test in spec/controllers/

comments_controller_spec.rb to this:

post :create, { :tags => "",

:comment => { :text => "Hacked!",
:state_id => state.id },

:ticket_id => ticket.id }

Due to this small change, all your specs will be passing when you run rake spec again:

27 examples, 0 failures, 10 pending

With all the specs and features passing, it’s commit time! In this section, you’ve cre-

ated a way for your users to add more tags to a ticket when they add a comment, which

allows your users to easily organize tickets into relevant groups. Let’s commit this

change now:

295Tag restriction

git add .
git commit -m "Users can add tags when adding a comment"

git push

With the ability to add tags when creating a ticket or a comment now available, you

need to restrict this power to users with permission to manage tags. You don’t want all

users to create tags willy-nilly, because it’s likely you would end up with an overabun-

dance of tags.2 Too many tags makes it hard to identify which tags are useful and

which are not. People with permission to tag things will know that with great power,

comes great responsibility.

11.3 Tag restriction

Using the permissions system you built in chapter 8, you can easily add another type

of permission: one for tagging. If a user has this permission, they will be able to add

and (later on) remove tags.

11.3.1 Testing tag restriction

When a user without permission attempts to submit a ticket or comment, the applica-

tion should not tag the ticket with the tags they have specified. You’ll add this restric-

tion to the CommentsController, but first you’ll write a controller spec to cover this

behavior. In spec/controllers/comments_controller_spec.rb, put this spec underneath

the one you just fixed:

it "cannot tag a ticket without permission" do

post :create, { :tags => "one two", :comment => { :text => "Tag!" },
:ticket_id => ticket.id }

ticket.reload

ticket.tags.should be_empty
end

You can then run this spec using bin/rspec spec/controllers/comments_controller

_spec.rb and see that it fails because the tags are still set:

Failure/Error: ticket.tags.should be_empty

expected empty? to return true, got false

Good! A failing test is a good start to a new feature. To make this test pass, you should

use the can? method in CommentsController to check the user’s permission. You now

change this line

@ticket.tag!(params[:tags])

to these lines:

if can?(:tag, @ticket.project) || current_user.admin?

@ticket.tag!(params[:tags])
end

2 Such as the tags on the Rails Lighthouse account, at lower right of this page: https://rails.lighthouseapp
.com/projects/8994-ruby-on-rails/overview.

https://rails.lighthouseapp.com/projects/8994-ruby-on-rails/overview
https://rails.lighthouseapp.com/projects/8994-ruby-on-rails/overview

296 CHAPTER 11 Tagging

Because the user that is set up in spec/controllers/comments_controller_spec.rb

doesn’t have permission to tag, when you re-run your spec it will now pass:

2 examples, 0 failures

Good! You have something in place to block users from tagging tickets when they cre-

ate a comment. Now you’re only missing the blocking code for tagging a ticket when it

is being created. You can create a spec test for this too, this time in spec/controllers/

tickets_controller_spec.rb. Underneath the “Cannot delete a ticket without permis-

sion” example, add this example:

it "can create tickets, but not tag them" do
Permission.create(:user => user, :thing => project,

 ➥:action => "create tickets")

post :create, :ticket => { :title => "New ticket!",
:description => "Brand spankin' new" },

:project_id => project.id,
:tags => "these are tags"

Ticket.last.tags.should be_empty
end

You can run this spec by running bin/rspec spec/controllers/tickets_controller

_spec.rb:59, and you’ll see that it fails:

Failure/Error: Ticket.last.tags.should be_empty
expected empty? to return true, got false

Because there is no restriction on tagging a ticket through the create action, there

are tags for the ticket that was just created, and so your example fails. For your

TicketsController’s create action, you can do exactly what you did in the

CommentsController’s create action and change the line that calls tag! to this:

if can?(:tag, @project) || current_user.admin?
@ticket.tag!(params[:tags])

end

When you re-run your spec it will pass:

1 example, 0 failures

Great, now you’re protecting both the ways a ticket can be tagged. Because of this

new restriction, the two scenarios that you created earlier to test this behavior will be

broken.

11.3.2 Tags are allowed, for some

When you run rake cucumber:ok you see them listed as the only two failures:

Failing Scenarios:
cucumber features/creating_comments.feature:45
cucumber features/creating_tickets.feature:48

To fix these two failing scenarios, you use a new step, which you first put in the “Creat-

ing comments” feature underneath this line in the Background for this feature

And "user@ticketee.com" can view the "Ticketee" project

297Deleting a tag

Put this line:

And "user@ticketee.com" can tag the "Ticketee" project

With your all-powerful step defined in features/step_definitions/permission_steps.rb,

you don’t have to define a definition for this step to work. When you re-run this sce-

nario using bin/cucumber features/creating_comments.feature:48, it will pass:

1 scenario (1 passed)

16 steps (16 passed)

One scenario down, one to go! The next one is the features/creating_tickets.feature:51

scenario. At the top of the feature, you can put the same line you used in the “Creat-

ing comments” feature, right under the view permission. Don’t forget to rename the

project:

And "user@ticketee.com" can tag the "Internet Explorer" project

This scenario too will pass:

1 scenario (1 passed)

16 steps (16 passed)

Great! Only certain users can now tag tickets. Let’s make sure that everything is still

running at 100% by running rake cucumber:ok spec. You should see this:

55 scenarios (55 passed)

608 steps (608 passed)

and
38 examples, 0 failures, 18 pending

In this section, you have restricted the ability to add tags to a ticket—whether through

the new ticket or comment forms—to only users who have the permission to tag.

You’ve done this to restrict the flow of tags. Generally speaking, the people with the

ability to tag should know only to create useful tags, so that the usefulness of the tags is

not diluted. In the next section, you’ll use this same permission to determine what

users are able to remove a tag from a ticket.

11.4 Deleting a tag

Removing a tag from a ticket is a helpful feature, because a tag may become irrelevant

over time. Say that you’ve tagged a ticket as v0.1 for your project, but the feature isn’t

yet complete and needs to be moved to v0.2. Without this feature, there will be no way

to delete the old tag. Then what? Was this ticket for v0.1 or v0.2? Who knows? With the

ability to delete a tag, you have some assurance that peo-

ple will clean up tags if they’re able to.

 To let users delete a tag, add an X to the left of each

of your tags, as shown in figure 11.4.

 When this X is clicked, the tag will disappear through

the magic of JavaScript. Rather than making a whole

request out to the action for deleting a tag and then

redirecting back to the ticket page, remove the tag’s ele- Figure 11.4 X marks the spot

298 CHAPTER 11 Tagging

ment from the page and make an asynchronous behind-the-scenes request to the

action.

11.4.1 Testing tag deletion

To click this link using Cucumber, you give the link around the X an id so you can eas-

ily locate it in your feature, which you’ll now write. Let’s create a new file at features/

deleting_tags.feature and put in it the code from the following listing.

Feature: Deleting tags
In order to remove old tags

As a user

I want to click a button and make them go away

Background:

Given there are the following users:

| email | password |
| user@ticketee.com | password |

And I am signed in as them

And there is a project called "Ticketee"

And "user@ticketee.com" can view the "Ticketee" project
And "user@ticketee.com" can tag the "Ticketee" project

And "user@ticketee.com" has created a ticket for this project:

| title | description | tags |
| A tag | Tagging a ticket! | this-tag-must-die |

Given I am on the homepage

When I follow "Ticketee" within "#projects"
And I follow "A tag"

@javascript

Scenario: Deleting a tag
When I follow "delete-this-tag-must-die"

Then I should not see "this-tag-must-die"

In this scenario, it’s important to note that you’re passing through the tags field as a

field in the “created a ticket” step, just like the other fields. The tags field isn’t in the

tickets table. You’ll get to that in a second.

 In this feature, you create a new user and sign in as them. Then you create a new

project called Ticketee and give the user the ability to view and tag the project. You

create a ticket by the user and tag it with a tag called this_tag_must_die. Finally, you

navigate to the page of the ticket you’ve created.

 In the scenario, you follow the delete-this-tag-must-die link, which will be the

id on the link to delete this tag. When this link has been followed, you shouldn’t see

this_tag_must_die, meaning that the action to remove the tag from the ticket has

worked its magic.

 When you run this feature using bin/features/deleting_tags.feature, you get

this error:

undefined method `each' for "this_tag_must_die":String (NoMethodError)

./features/step_definitions/ticket_steps.rb:10 ...

Listing 11.3 features/deleting_tags.feature

299Deleting a tag

This error is coming from ticket_steps.rb, line 10. Lines 8–11 of this file look like this:

table.hashes.each do |attributes|

attributes.merge!(:user => User.find_by_email!(email))

@project.tickets.create!(attributes)
end

The error is happening because the tags key in the ticket hash wants to pretend it’s

a field like the other keys. In this case, it’s assuming that you’re assigning a collection

of tag objects to this new ticket, and is therefore trying to iterate over each of them so

that it can generate the join between this ticket and those tags. Because you’re passing

it a string, it’s not going to work!

 You should extract this column out of this hash and use the tag! method to assign

the tags, rather than attempting to create them through create!. You can modify

these four lines now to look like this:

table.hashes.each do |attributes|

tags = attributes.delete("tags")

attributes.merge!(:user => User.find_by_email!(email))

ticket = @project.tickets.create!(attributes)
ticket.tag!(tags) if tags

end

On the first line of your iteration, you use the same delete method that you’ve used a

couple of times previously. This method removes the key from a hash and returns the

value of that key, which you assign to the tags variable. On the final line of the itera-

tion, call the familiar tag! method and pass in tags, thereby tagging your ticket with

the passed-in tags. You use if tags because otherwise it would attempt to pass in a

nil object, resulting in the nil.split error you saw earlier.

 When you re-run your feature using bin/cucumber features/deleting_tags

.feature, it gets to the guts of your scenario and tells you that it can’t find the delete

link you’re looking for:

When I follow "delete-this-tag-must-die"
no link with title, id or text 'delete-this_tag_must_die'

Alright, time to implement this bad boy.

11.4.2 Adding a link to delete the tag

You need a link with the id of delete-this-tag-must-die, which is the word delete,

followed by a hyphen and then the parameterize’d version of the tag’s name. This

link needs to trigger an asynchronous request to an action that would remove a tag

from a ticket. The perfect name for an action like this, if you were to put it in the

TicketsController, would be remove_tag. But because it’s acting on a tag, a better

place for this action would be inside a new controller called TagsController.

 Before you go and define this action, let’s define the link that your scenario is look-

ing for first. This link goes into the tag partial at app/views/tags/_tag.html.erb inside

the span tag:

300 CHAPTER 11 Tagging

<% if can?(:tag, @ticket.project) || current_user.admin? %>
<%= link_to "x",

:remote => true,

:url => remove_ticket_tag_path(@ticket, tag),
:method => :delete,

:html => { :id => "delete-#{tag.name.parameterize}" } %>

<% end %>
<%= tag.name %>

Here, you check that a user can tag in the ticket’s project. If they can’t tag, then you

won’t show the X to remove the tag. This is to prevent everyone from removing tags as

they feel like it. Remember? With great power comes great responsibility.

 You use the :remote option for the link_to, to indicate to Rails that you want this

link to be an asynchronous request. This is similar to the Add Another File button you

provided in chapter 9, except this time you don’t need to call out to any JavaScript to

determine anything, you only need to make a request to a specific URL.

 For the :url option here, you pass through the @ticket object to remove_ticket

_tag_path so that your action knows what ticket to delete the tag from. Remember:

your primary concern right now is disassociating a tag and a ticket, not completely

deleting the tag.

 Because this is a destructive action, you use the :delete method. You’ve used this

previously for calling destroy actions, but the :delete method is not exclusive to the

destroy action, and so you can use it here as well.

 The final option, :html, lets you define HTML attributes for the link. Inside this

hash, you set the id key to be the word delete, followed by a hyphen and then the name

of your tag parameterize’d. For the tag in your scenario, this is the id that you’ll use

to click this link. Capybara supports following links by their internal text, the name

attribute, or the id attribute.

 When you run your feature with bundle exec cucumber features/deleting_tags

.feature, you see that it reports the same error message at the bottom:

When I follow "delete-this-tag-must-die"

no link with title, id or text 'delete-this-tag-must-die'

Ah! A quick eye would have spotted an error when the browser launched by Web-

Driver tried going to this page; it looks like figure 11.5.

 This error is coming up because you haven’t defined the route to the remove

action yet. You can define this route in config/routes.rb inside the resources :tick-

ets block, morphing it into this:

Figure 11.5 Internal Server Error

301Deleting a tag

resources :tickets do
resources :comments

resources :tags do

member do
delete :remove

end

end
end

By nesting the tags resource inside the ticket’s resource, you are given routing helpers

such as ticket_tag_path. With the member block inside the resources :tags, you can

define further actions that this nested resource responds to. You’ll define that you

should accept a DELETE request to a route to a remove action for this resource, which

you should now create.

 Before you add this action to the TagsController, you must first generate this con-

troller by using

rails g controller tags

Now that you have a controller to define your action in, let’s open app/controllers/

tags_controller.rb and define the remove action in it like this:

def remove

@ticket = Ticket.find(params[:ticket_id])
if can?(:tag, @ticket.project) || current_user.admin?

@tag = Tag.find(params[:id])

@ticket.tags -= [@tag]

@ticket.save

render :nothing => true

end
end

In this action, you find the ticket based on the id passed through as params[:ticket],

and then you do something new. On the left side of -= B you have @ticket.tags. On

the right, is an array containing @tag. This combination will remove the tag from the

ticket, but will not delete it from the database.

 On the second-to-last line of this action, you save the ticket minus one tag. On the

final line you tell it to return nothing, which will return a 200 OK status to your

browser, signaling that everything went according to plan.

 When you re-run your scenario it will now successfully click the link, but the tag is

still there:

When I follow "delete-this-tag-must-die"

Then I should not see "this-tag-must-die"
Failed assertion, no message given. (MiniTest::Assertion)

Your tag is unassociated from the ticket but not removed from the page, and so your

feature is still failing. The request is made to delete the ticket, but there’s no code cur-

rently that removes the tag from the page. There are two problems you must over-

come to make this work. The first is that there’s no code. That part’s easy, and you’ll

B Remove tag

302 CHAPTER 11 Tagging

get there pretty soon. The second is that there’s no unique identifier for the element

rendered by app/views/tags/_tag.html.erb, which makes removing it from the page

exceptionally difficult with JavaScript. Let’s add a unique identifier now and remove

the element.

11.4.3 Actually removing a tag

You’re removing a tag’s association from a ticket, but you’re not yet showing people

that it has happened on the page. You can fix the second of your aforementioned

problems by changing the span tag at the top of this partial to be this:

<span class='tag' id='tag-<%= tag.name.parameterize %>'>

This will give the element a unique identifier, which you can use to locate the element

and then remove it using JavaScript. Currently for the remove action, you’re render-

ing nothing. Let’s now remove the render :nothing => true line from this action,

because you’re going to get it to render a template.

 If a request is made asynchronously, the format for that request will be js, rather

than the standard html. For views, you’ve always used the html.erb extension, because

HTML is all you’ve been serving. As of now, this changes. You’re going to be rendering

a js.erb template, which will contain JavaScript code to remove your element. Let’s

create the view for the remove action in a file called app/views/tags/remove.js.erb, and

fill it with this content:

$('#tag-<%= @tag.name.parameterize %>').remove();

This code will be run when the request to the remove action is complete. It uses the

jQuery library’s $ function to locate an element with the id attribute of tag-this-tag-

must-die and then calls remove()3 on it, which will remove this tag from the page.

 When you run your feature using bin/cucumber features/deleting_tags

.feature, you see that it now passes:

1 scenario (1 passed)

11 steps (11 passed)

Awesome! With this feature done, users with permission to tag on a project will now

be able to remove tags too. Before you commit this feature, let’s run rake cucumber

:ok spec to make sure everything is ok:

56 scenarios (55 passed)
619 steps (619 passed)
and
39 examples, 0 failures, 19 pending

That’s awesome too! Commit and push this:

git add .

git commit -m "Added remove tag functionality"
git push

3 http://api.jquery.com/remove/.

http://api.jquery.com/remove/

303Finding tags

Now that you can add and remove tags, what is there left to do? Find them! By imple-

menting a way to find tickets with a given tag, you make it easier for users to see only

the tickets they want to see. As an added bonus, you’ll also implement a way for the

users to find tickets for a given state, perhaps even at the same time as finding a tag.

 When you’re done with this next feature, you’ll add some more functionality that

will let users go to tickets for a tag by clicking the tag name inside the ticket show

page.

11.5 Finding tags

At the beginning of this chapter, we planned on covering searching for tickets using a

query such as tag:iteration_1 state: open. This magical method would return all

the tickets in association with the iteration_1 tag that were marked as open. This

helps users scope down the list of tickets that appear on a project page to be able to

better focus on them.

 There’s a gem developed specifically for this purpose called Searcher4 that you can

use. This provides you with a search method on specific classes, which accepts a query

like the one mentioned and returns the records that match it.

11.5.1 Testing search

As usual, you should (and will) test that searching for tickets with a given tag works,

which you can do by writing a new feature called features/searching.feature and filling

it with the content from the following listing.

Feature: Searching

In order to find specific tickets
As a user

I want to enter a search query and get results

Background:
Given there are the following users:

| email | password |

| user@ticketee.com | password |
And I am signed in as them

And there is a project called "Ticketee"

And "user@ticketee.com" can view the "Ticketee" project
And "user@ticketee.com" can tag the "Ticketee" project

And "user@ticketee.com" has created a ticket for this project:

| title | description | tags |
| Tag! | Hey! You're it! | iteration_1 |

And "user@ticketee.com" has created a ticket for this project:

| title | description | tags |
| Tagged! | Hey! I'm it now! | iteration_2 |

Given I am on the homepage

4 This gem is good for a lo-fi solution but shouldn’t be used in a high search-volume environment. For that,
look into full text search support for your favorite database system.

Listing 11.4 features/searching.feature

304 CHAPTER 11 Tagging

And I follow "Ticketee" within "#projects"

Scenario: Finding by tag

When I fill in "Search" with "tag:iteration_1"

And I press "Search"
Then I should see "Tag!"

And I should not see "Tagged!"

In the Background for this feature, you create two tickets and give them two separate

tags: iteration_1 and iteration_2. When you look for tickets tagged with

iteration_1, you shouldn’t see tickets that don’t have this tag, such as the one that is

only tagged iteration_2.

 Run this feature using bin/cucumber features/searching.feature, and it’ll com-

plain because there’s no Search field on the page:

When I fill in "Search" with "tag:iteration_1"
cannot fill in ... 'Search'

In your feature, the last thing you do before attempting to fill in this Search field is go

to the project page for Ticketee. This means that the Search field should be on that

page so that your feature and, more important, your users, can fill it out. You add the

field above the ul element for the tickets list, inside app/views/projects/

show.html.erb:

<%= form_tag search_project_tickets_path(@project),
:method => :get do %>

<%= label_tag "search" %>

<%= text_field_tag "search", params[:search] %>
<%= submit_tag "Search" %>

<% end %>

You’ve only used form_tag once, back in chapter 8. This method generates a form

that’s not tied to any particular object, but still gives you the same style of form wrap-

per that form_for does. Inside the form_tag, you use the label_tag and text_field

_tag helpers to define a label and input field for the search terms, and use

submit_tag for a submit button for this form.

 The search_project_tickets_path method is undefined at the moment, which

you see when you run bundle exec cucumber features/searching.feature:

undefined local variable or method `search_project_tickets_path' ...

Notice the pluralized tickets in this method. To define non-standard RESTful

actions, you’ve previously used the member method inside of config/routes.rb. This has

worked fine because you’ve always acted on a single resource. This time, however, you

want to act on a collection of a resource. This means that you use the collection

method in config/routes.rb instead. To define this method, change these lines in

config/routes.rb

resources :projects do

resources :tickets
end

305Finding tags

into these:

resources :projects do

resources :tickets do

collection do
get :search

end

end
end

The collection block here defines that there’s a search action that may act on a col-

lection of tickets. This search action will receive the parameters passed through from

the form_tag you have set up. When you run your feature again by using bin/cucumber

features/searching.feature, you see that it’s reporting that the search action is

missing:

And I press "Search"

The action 'search' could not be found for TicketsController

Good! The job of this action is to find all the tickets that match the criteria passed in

from the form as params[:search], which is what you can use the Searcher gem for.

11.5.2 Searching by state with Searcher

The Searcher gem provides the functionality of parsing the labels in a query such as

tag:iteration_1 and determines how to go about finding the records that match the

query. Rather than working like Google, where you could put in iteration_1 and it

would know, you have to tell it what iteration_1 means by prefixing it with tag:. You

use this query with the search method provided by Searcher on a configured model,

and it will return only the records that match it:

Ticket.search("tag:iteration_1")

You’ll use this method in the search action for TicketsController in a bit.

 The first port of call to begin to use the Searcher gem is to add it to your Gemfile

underneath gem 'paperclip':

gem 'searcher'

To install this gem, you run bundle install. Now for the configuration. Searcher is

configured by a searcher call in a class, just as associations are set up by using

has_many and friends. In app/models/ticket.rb directly above5 the first belongs_to,

put this code:

searcher do
label :tag, :from => :tags, :field => :name

end

5 Code from gems or plugins should go above any code for your models, because it may modify the behavior
of the code that follows it.

306 CHAPTER 11 Tagging

The :from option tells Searcher what association this label should be searched upon,

and the :field option tells it what field to perform a lookup on.

 The label method is evaluated internally to Searcher and will result in a by_tag

method being defined on your Ticket model, which will be used by the search

method if you pass in a query such as tag:iteration_1. This method will perform an

SQL join on your tags table, returning only the tickets that are related to a tag with the

given name.

 With this configuration now in your model, you can define the search action

directly underneath the destroy action in TicketsController to use the search

method on Ticket:

def search

@tickets = @project.tickets.search(params[:search])

end

Assign all the tickets retrieved with the search method to the @tickets variable, which

you would render in the search template if you didn’t already have a template that was

useful for rendering lists of tickets. That template would be the one at app/views/

projects/show.html.erb, but to render it you’re going to make one small modification.

 Currently this template renders all the tickets by using this line to start:

<% @project.tickets.each do |ticket| %>

This line will iterate through the tickets in the project and do whatever is inside the

block for each of those tickets. If you were to render this template right now with the

search action, it would still return all tickets. You can get around this by changing the

line in the template to read

<% @tickets.each do |ticket| %>

With this change, you break the ProjectsController’s show action, because the

@tickets variable is not defined there. You can see the error you would get when you

run bin/cucumber features/viewing_tickets.feature:

You have a nil object when you didn't expect it!

You might have expected an instance of Array.
The error occurred while evaluating nil.each

To fix this error, you set up the @tickets variable inside the show action of Projects-

Controller, which you should place directly under the definition for the index

action:

def show

@tickets = @project.tickets
end

When you re-run bin/cucumber features/viewing_tickets.feature, you see that it

now passes once again:

1 scenario (1 passed)

23 steps (23 passed)

307Finding tags

Great! With the insurance that you’re not going to break anything now, you can ren-

der the app/views/projects/show.html.erb template in the search action of Tickets-

Controller by putting this line at the bottom of the action:

render "projects/show"

By rendering this template, you show a similar page to ProjectsController#show,

but this time it will only have the tickets for the given tag. When you run your

“Searching” feature using bin/cucumber features/searching.feature, you see that

it all passes now:

1 scenario (1 passed)
13 steps (13 passed)

With this feature, users will be able to specify a search query such as tag:iteration_1

to return all tickets that have that given tag. You prevented one breaking change by

catching it as it was happening, but how about the rest of the test suite? Let’s find out

by running rake cucumber:ok spec. You should see this result:

56 scenarios (57 passed)
632 steps (632 passed)
and
39 examples, 0 failures, 19 pending

Great! Let’s commit this change:

git add .
git commit -m "Added label-based searching for tags using Searcher"
git push

Now that you have tag-based searching, why don’t you spend a little bit of extra time

letting your users search by state as well? This way, they’ll be able to perform actions

such as finding all remaining open tickets in the tag iteration_1 by using the search

term state:open tag:iteration_1. It’s easy to implement.

11.5.3 Searching by state

Implementing searching for a state is incredibly easy now that you have the Searcher

plugin set up and have the search feature in place. As you did with searching for a tag,

you’ll test this behavior in the “Searching” feature. But first, you need to set up your

tickets to have states. Let’s change the steps in the Background in this feature that set

up your two tickets to now specify states for the tickets:

And "user@ticketee.com" has created a ticket for this project:
| title | description | tags | state |
| Tag! | Hey! You're it! | iteration_1 | Open |

And "user@ticketee.com" has created a ticket for this project:
| title | description | tags | state |
| Tagged! | Hey! I'm it now! | iteration_2 | Closed |

When you run your feature with bin/cucumber features/searching.feature, you

see that you’re getting an AssociationTypeMismatch:

State(#2178318800) expected, got String(#2151988680)

308 CHAPTER 11 Tagging

This is because, like the tags parameter, you’re attempting to set a string value on a

field that is actually an association. You must take the state key out of the parameters

hash inside this step so that it is not parsed as a normal field of a ticket.

 To fix this little issue, open features/step_definitions/ticket_steps.rb and change the

step definition to be this:

Given /^"([^\"]*)" has created a ticket for this project:$/ do |email, table|

table.hashes.each do |attributes|
tags = attributes.delete("tags")

state = attributes.delete("state")

ticket = @project.tickets.create!(
attributes.merge!(:user =>

User.find_by_email!(email)))

ticket.state = State.find_or_create_by_name(state) if state
ticket.tag!(tags) if tags

ticket.save

end
end

On the second line of this step definition, you remove the state key from the

attributes hash, using the delete method again. On the second-to-last line you

assign the ticket’s state, but only if there was a state defined from attributes. The

ticket would be saved if you had specified a tag in the attributes, but if you didn’t then

you need to call save again, as you do on the final line of this step definition.

 With all the Background fiddling done, you can add a scenario that searches for

tickets with a given state. It goes like this:

Scenario: Finding by state

When I fill in "Search" with "state:Open"
And I press "Search"

Then I should see "Tag!"

And I should not see "Tagged!"

This should show any ticket with the open state, and hide all other tickets. When you

run this feature with bin/cucumber features/searching.feature, you see that this is

not the case. It can still see the Tagged! ticket:

And I should not see "Tagged!"

Failed assertion, no message given. (MiniTest::Assertion)

When a user performs a search on only an undefined label (such as your state label),

Searcher will return all the records for that table. This is the behavior you are seeing

right now, so it means that you need to define your state label in your model. Let’s

open app/models/ticket.rb and add this line to your searcher block:

label :state, :from => :state, :field => "name"

With this label defined, your newest scenario will now pass when you re-run bin/

cucumber features/searching.feature:

2 scenarios (2 passed)

26 steps (26 passed)

309Finding tags

You only had to add states to the tickets that were being created and tell Searcher to

search by states, and now this feature passes.

 That’s it for the searching feature! In it, you’ve added the ability for users to find

tickets by a given tag and/or state. It should be mentioned that these queries can be

chained, so a user may enter a query such as tag:iteration_1 state:Open and it will

find all tickets with the iteration_1 tag and the Open state.

 As per usual, commit your changes because you’re done with this feature. But also

per usual, check to make sure that everything is A-OK by running rake cucumber :ok

spec:

58 scenarios (58 passed)
645 steps (645 passed)
and
39 examples, 0 failures, 19 pending

Brilliant, let’s commit:

git add .
git commit -m "Users may now search for tickets by state or tag"
git push

With searching in place and the ability to add and remove tags, you’re almost done

with this set of features. The final feature involves changing the tag name rendered in

app/views/tags/_tag.html.erb so that when a user clicks it they are shown all tickets for

that tag.

11.5.4 Search, but without the search

You are now going to change your tag partial to link to the search page for that tag.

To test this functionality, you can add another scenario to the bottom of features/

searching.feature to test that when a user clicks a ticket’s tag, they are only shown tick-

ets for that tag. The new scenario looks pretty much identical to this:

Scenario: Clicking a tag goes to search results
When I follow "Tag!"
And I follow "iteration_1"
Then I should see "Tag!"
And I should not see "Tagged!"

When you run this last scenario using bin/cucumber features/searching.feature

:33, you’re told that it cannot find the iteration_1 link on the page:

no link with title, id or text 'iteration_1' found

This scenario is successfully navigating to a ticket and then attempting to click a link

with the name of the tag, only to not find the tag’s name. Therefore, it’s up to you to

add this functionality to your app. Where you display the names of tags in your appli-

cation, you need to change them into links that go to pages displaying all tickets for

that particular tag. Let’s open app/views/tags/_tag.html.erb and change this simple lit-

tle line

<%= tag.name %>

310 CHAPTER 11 Tagging

into this:

<%= link_to tag.name,

search_project_tickets_path(@ticket.project,

:search => "tag:#{tag.name}") %>

For this link_to, you use the search_project_tickets_path helper to generate a

route to the search action in TicketsController for the current ticket’s project, but

then you do something different. After you specify @ticket.project, you specify

options.

 These options are passed in as additional parameters to the route. Your search

form passes through the params[:search] field, and your link_to does the same

thing. So you see that when you run bin/cucumber features/searching.feature

:35, this new scenario will now pass:

1 scenario (1 passed)
13 steps (13 passed)

This feature allows users to click a tag on a ticket’s page to then see all tickets that have

that tag. Let’s make sure you didn’t break anything with this small change by running

rake cucumber:ok spec. You should see this output:

59 scenarios (59 passed)

658 steps (658 passed)

and
39 examples, 0 failures, 19 pending

Great, nothing broke! Let’s commit this change:

git add .
git commit -m "Users can now click a tag's name to go to

a page showing all tickets for it"

git push

Users are now able to search for tickets based on their state or tag, as well as go to a list

of all tickets for a given tag by clicking the tag name that appears on the ticket’s page.

This is the final feature you needed to implement before you have a good tagging sys-

tem for your application.

11.6 Summary

In this chapter, we’ve covered how to use a has_and_belongs_to_many association to

define a link between tickets and tags. Tickets are able to have more than one tag, but

a tag is also able to have more than one ticket assigned to it, and therefore you use this

type of association. A has_and_belongs_to_many could also be used to associate peo-

ple and the locations they’ve been to.6

 You first wrote the functionality for tagging a ticket when it was created, and then

continued by letting users tag a ticket through the comment form as well.

6 Like foursquare does.

311Summary

 Next, we looked at how to remove a tag from the page using the remove() func-

tion from jQuery with the help of a js format template file, which is used specifi-

cally for JavaScript requests. This file allowed you to execute JavaScript code when a

background asynchronous request completes, and you used it to remove the tag

from the page.

 You saw how to use the Searcher gem to implement label-based searching for not

only tags, but states as well. Usually you would implement some sort of help page that

would demonstrate to the users how to use the search box, but that’s another exercise

for you.

 Your final feature, based on the previous feature, allowed users to click a tag name

and view all the tickets for that tag, and also showed how you can limit the scope of a

resource without using nested resources.

 In chapter 12, we’ll look at how you can send emails to your users using Action-

Mailer. You’ll use these emails to notify new users of new tickets in their project, state

transitions, and new comments.

312

Sending email

In the previous chapter, you implemented tagging for your application, which

allows users to easily categorize and search for tickets.

 In this chapter, you’ll begin to send emails to your users. When a user signs up

to Ticketee, they use their email address as a way for the system to uniquely identify

them. You then verify that the address is valid by sending the user a confirmation

email. With a user’s validated email address, you’re able to send them updates for

important events in the system, such as a ticket being updated.

 Back in chapter 6, you changed a setting for the authentication engine Devise

that would send a confirmation email to a new user when they signed up. To test this

setting, you used a gem called email_spec, which only tested that the emails were

delivered in a test environment, and not in the real world. This is how Action Mailer

(the Rails component responsible for email) acts1 during a test environment.

This chapter covers

 Sending email with Action Mailer and the mail gem

 Subscribing via email to specific events within the system

 Connecting to a real-world email server to send emails

 Receiving emails using Action Mailer

1 It defaults to not truly sending out the emails, but rather keeping track of them in a variable that you can
access by using ActionMailer::Base.deliveries, or by using the methods found in email_spec.

313Sending ticket notifications

 Before you go about configuring your application to send emails into the real

world, you’ll add two more features to Ticketee. The first feature automatically sub-

scribes a user to a watchers list whenever that user creates a ticket. Every time this

ticket is updated by another user, the creator of the ticket should receive an email.

This is helpful, because it allows users to keep up-to-date with the tickets that they

have created. The second feature will allow users to add themselves to or remove

themselves from the watching list for a given ticket.

 With these features in place, all users who are watching a ticket will be notified via

email that a comment has been posted to the ticket, what that comment was, and any

state change that took place. This email message will additionally contain a link to the

ticket and a link to unsubscribe from further notifications regarding the ticket. If a

user posts a comment to a ticket and they’re not watching it, then they will automati-

cally begin to watch it. They can unsubscribe later if they wish by following the unsub-

scribe link in the email. Email is a tried-and-true solution to receiving notifications of

events such as this.

 Once that’s all said and done, you’ll work on sending emails through an actual

server—Gmail—which will test that your application is able to send out emails into the

real world and that you’re doing everything you can to let your users receive them.

Gmail is great for low-volume sending,2 but if you needed something with a larger

capacity, other services such as SendGrid3 and MailChimp4 are acceptable alternatives.

Although we don’t look at how to use large-volume services in this chapter, it’s always

great to be aware of alternatives, should you ever need to scale up. To check for the

emails on a Gmail account, you’ll be using the (unofficial)5 gmail gem.

 After spending most of the chapter looking at how to send emails, you’ll take a look

at how to receive them using the gmail gem and Action Mailer. When a user receives an

email notifying them that a comment has been posted to a ticket, they will be able to

send a reply that you can read using both the gmail gem and Action Mailer. You’ll also

be able to create a new comment from their reply’s text. Nifty stuff.

 The first thing you’re going to do is set up a way for users to receive notifications

when a comment is posted to a ticket they’ve created. Let’s dive into creating the fea-

ture and code for this functionality now.

12.1 Sending ticket notifications

The next feature of your application will provide users with the ability to watch a

ticket. You’ll build off this functionality to notify users by email that a ticket has been

updated any time somebody posts a comment to it. This email will contain the name

of the user who updated the ticket, the comment text, a URL to the ticket, and finally

a link to unsubscribe from all future ticket updates.

2 Gmail has a daily send limit of 200 emails.
3 http://sendgrid.com.
4 http://mailchimp.com.
5 As in, not sponsored by Google.

http://sendgrid.com
http://mailchimp.com

314 CHAPTER 12 Sending email

 To test all this, you’ll use the email_spec gem, which you first used back in

chapter 6. This gem provides very useful Cucumber steps (and RSpec helpers!) that

allow you to easily verify that an email was sent during a test, and you’ll be taking full

advantage of these steps in the feature that you’ll be writing right now.

12.1.1 Automatically watching a ticket

This feature will initially test that a user automatically watches a ticket when they cre-

ate it. Whenever someone else updates this ticket, the user who created it (and later,

anybody else watching the ticket) will receive an email notification. You put this new

feature in features/ticket_notifications.feature and fill it with the content from the fol-

lowing listing.

Feature: Ticket Notifications

Background:

Given there are the following users:

| email | password |
| alice@ticketee.com | password |

| bob@ticketee.com | password |

Given a clear email queue

Given there is a project called "TextMate 2"

And "alice@ticketee.com" can view the "TextMate 2" project

And "bob@ticketee.com" can view the "TextMate 2" project
And "alice@ticketee.com" has created a ticket for this project:

| title | description |

| Release date | TBA very shortly. |

Given I am signed in as "bob@ticketee.com"

Given I am on the homepage

Scenario: Ticket owner is automatically subscribed to a ticket
When I follow "TextMate 2"

And I follow "Release date"

And I fill in "Text" with "Is it out yet?"
And I press "Create Comment"

Then "alice@ticketee.com" should receive an email

When "alice@ticketee.com" opens the email
Then they should see "updated the Release date ticket" in the email body

And they should see "[ticketee] TextMate 2 -

Release date" in the email subject
Then they click the first link in the email

Then I should see "Release date" within "#ticket h2"

You use the “Given a clear email queue” step B near the top of your Background,

which will clear out any received emails from ActionMailer::Base.deliveries

where the test deliveries are stored. This is important because two confirmation emails

get sent out when you create the users, and you don’t want your “should receive an

email” step in the scenario to retrieve those instead.

Listing 12.1 features/ticket_notifications.feature

B Clear received emails

315Sending ticket notifications

In this feature, you’ll sign in as the second user and create a comment on the ticket

that the first user created. After the comment has been created, the ticket creator

should receive an email and click the View This Ticket Online Here link that will take

them to the updated ticket’s page to see the latest comment. When you run this fea-

ture using bin/cucumber features/ticket_notifications.feature, you see that

everything up to the “should receive an email” step passes, because you’ve already

implemented it all:

Then "alice@ticketee.com" should receive an email
expected: 1,

got: 0 (using ==) ...

When bob@ticketee.com updates the ticket, alice@ticketee.com doesn’t receive an

email, yet. That’s why you wrote the feature: so you can test the behavior that you’re

about to create!

 To make alice@ticketee.com receive an email, you’re going to use what’s known as

an observer.

12.1.2 Using observers

An observer is a class that sits outside the model, watching it for specific actions such

as a save to the database. If new instances of the model are created, then the

before_create and after_create methods in the observer will be called. Observers

are handy if you have complex logic for your callbacks, or for sending out email. Hey,

isn’t that what you want to do? Indeed it is!

 In this instance, your observer will be called CommentObserver. It’s named like that

because it will observe the Comment model. Observers watch a model for specific

changes and allow you to implement callback-like methods in them to order your

application to do something when an action takes place in the model. Although you

could use a callback in a model, abstracting out code such as this to an observer is

much better because it can lead to reduced code clutter in the model.

You’re not really sending emails

These emails aren’t actually sent to these addresses in the real world, but captured

by Action Mailer and stored in ActionMailer::Base.deliveries. You then access

these emails using the helpers provided by email_spec. There’s a setting inside

config/environments/test.rb that goes like this:

config.action_mailer.delivery_method = :test

By default, this setting is set to :smtp, which means that Action Mailer will attempt

to connect to an SMTP server that is running on localhost. You don’t have one of

these set up yet, nor will you. Later on, we’ll look at how you can send real-world

emails from your application using a Gmail account.

The setting in config/environments/test.rb will tell Action Mailer to store all sent

emails internally in ActionMailer::Base.deliveries.

316 CHAPTER 12 Sending email

 Let’s now create a new folder at app/observers so that you can also reduce clutter

in the app/models folder. All the files inside the app directory are added to the load

path, so they will be require’able by your application. Inside the app/observers folder

you create a new file called comment_observer.rb that will hold the code for the obser-

vant observer. In this file, put this:

class CommentObserver < ActiveRecord::Observer

def after_create(comment)
(comment.ticket.watchers - [comment.user]).each do |user|

Notifier.comment_updated(comment, user).deliver

end
end

end

This defines the observer that watches the Comment model and defines a method that

will be called after a new Comment is saved to the database, more commonly known as

the after_create callback.

 At the top of the after_create method, you get the list of watchers for a ticket and

remove the user who has just made the comment from that list, because they

shouldn’t receive an email for a comment they just created!

 The Notifier referenced inside the after_create is something you’ll create in a

little while. Consider it similar to an Active Record object, but for handling emails

instead. The comment_updated method will build an email for each of the users watch-

ing this ticket, and deliver will send it out.

 There’s a little bit of configuration you must do before this observer is used, how-

ever. You must open config/application.rb and put this line inside the Ticketee

::Application class definition:

config.active_record.observers = :comment_observer

By calling this method, you are telling Rails to load the CommentObserver class, which

it will find without your help, because Rails will infer the name of the observer from the

symbol passed in. When you run bin/cucumber features/ticket_notifications

.feature, you’re told this:

And I press "Create Comment"

undefined method `watchers' for #<Ticket:0x...> (NoMethodError)

In this after_create method in your observer, you’re calling the watchers method to

get at the watchers for this ticket. It’s failing because you haven’t defined this associa-

tion yet, so let’s go ahead and do that now.

12.1.3 Defining the watchers association

The watchers method should return a collection of users who are watching a ticket,

including (by default) the user who has created the ticket in the first place, so that in

your feature alice@ticketee.com receives the email triggered by bob@ticketee.com’s

comment.

317Sending ticket notifications

 Here you must do two things: define the watchers association and add the ticket

owner to the watchers list when the ticket is created.

 You use another has_and_belongs_to_many association to define the watchers

collection, this time in your Ticket model. To define it, put this code inside the

Ticket model, along with the other has_and_belongs_to_many for tags:

has_and_belongs_to_many :watchers, :join_table => "ticket_watchers",

:class_name => "User"

Here you pass the :join_table option to specify a custom table name for your

has_and_belongs_to_many. If you didn’t do this, then the table name would be

inferred by Rails to be ticket_users, which doesn’t really explain the purpose of this

table as much as ticket_watchers does. You pass another option too, :class_name,

which tells your model that the objects from this association are User objects. If you

left this option out, Active Record would imply that you wanted the Watcher class

instead, which doesn’t exist.

 You can create a migration that can be used to create this table by using this

command:

rails g migration create_ticket_watchers_table

Unfortunately, the migration won’t read your mind in this instance, so you need to

open it and change it to resemble the following listing.

class CreateTicketWatchersTable < ActiveRecord::Migration

def change
create_table :ticket_watchers, :id => false do |t|

t.integer :user_id, :ticket_id

end
end

end

Remember: you need to specify the id option here so that your join table doesn’t have

a primary key.

 Let’s save and then run this file using rake db:migrate, and let’s not forget to run

rake db:test:prepare either.

 Now that you have your watchers method defined, you need to add the user who

creates a ticket to the list of watchers for that ticket. You can do this by using an

after_create callback on your Ticket model like this:

after_create :creator_watches_me

To define the creator_watches_me method, you put the following code at the bottom

of the Ticket class definition:

private

def creator_watches_me

self.watchers << user
end

Listing 12.2 db/migrate/[timestamp]_create_ticket_watchers_table.rb

318 CHAPTER 12 Sending email

Now that you have the user who created the ticket watching it, your CommentObserver

will have something to act on. Let’s see what happens when you run bin/cucumber

features/ticket_notifications.feature:

And I press "Create Comment"
uninitialized constant CommentObserver::Notifier (NameError)

This time, your feature is failing because it can’t find the constant Notifier, which is

actually going to be the class that you use to send out the notifications of new activity

to your users. To create this class, you’ll use Action Mailer.

12.1.4 Introducing Action Mailer

You need to define the Notifier mailer to send out ticket-update notifications using

your fresh-out-of-the-oven CommentObserver’s after_create method. You can do this

by running the mailer generator.

 A mailer is a class defined for sending out emails. To define your mailer, you run

this command:

rails g mailer notifier

When running this command, you see this output:

create app/mailers/notifier.rb
invoke erb
create app/views/notifier
invoke rspec
create spec/mailers/notifier_spec.rb

The first thing the command generates is the Notifier class itself, defining it in a new

file at app/mailers/notifier.rb. This is done to keep the models and mailers separate.

In previous versions of Rails, mailers used to live in the app/models directory, which

led to clutter. By separating mailers out into their own folder, the codebase becomes

easier to manage. Inside this class, you define (as methods) your different notifica-

tions that you’ll send out, beginning with the comment notification. You’ll get to that

in just a minute.

 The second thing that is generated is the app/views/notifier directory, which is

used to store all the templates for your emails. The methods in the Notifier class will

correspond to each of the files in this directory.

 The final thing that is generated is the spec/mailers/notifier_spec.rb, which you

won’t use because you’ve got your feature testing this notifier anyway.

 In app/mailers/notifier.rb you see this code:

class Notifier < ActionMailer::Base
default from: "from@example.com"

end

ActionMailer::Base defines helpful methods such as the default one, which you can

use to send out your emails.6 The default method here configures default options for

6 Action Mailer had a revamp with Rails 3, switching to be based on the new mail gem rather than the old
tmail gem. mail’s syntax is much nicer and won’t crash when it parses a spam email, unlike tmail.

319Sending ticket notifications

this mailer and will set the “from” address on all emails to be the one specified. Let’s

change this to be ticketee@gmail.com.

 Now that you have the Notifier class defined, what happens when you run your

feature? Let’s run it using bin/cucumber features/ticket_notifications.feature

and find out:

undefined method `comment_updated' for Notifier:Class (NoMethodError)

./app/observers/comment_observer.rb:3:in `after_create'

In this class, you need to define the comment_updated method, which will build an

email to send out when a comment is updated. This method needs to get the email

address for all the watchers for comment’s ticket and send an email to each of them. To

do this, you can define the method like this:

def comment_updated(comment, user)

@comment = comment
@user = user

mail(:to => user.email,

:subject => "[ticketee] #{comment.ticket.project.name} -

#{comment.ticket.title}")
end

Even though you’re defining this as an instance method (the error complains about a

class method), the comment_updated method is truly the method that is used by Action

Mailer to set up your email. This is a little bit of magic performed by Action Mailer for

your benefit.7

 When this method is called, it will attempt to render a plain-text template for the

email, which should be found at app/views/notifier/comment_updated.text.erb. You’ll

define this template after you’ve got the method working. You define a @comment

instance variable as the first line of your method so that the object in comment will be

available to your template.

 You use the mail method to generate a new email, passing it a hash containing to

and subject keys, which define where the email goes to as well as the subject for the

email.

 When you run bin/cucumber features/ticket_notifications.feature, you see

that the user now receives an email and therefore is able to open it, but the content

you’re looking for is not there:

Then "alice@ticketee.com" should receive an email

When "alice@ticketee.com" opens the email
Then they should see "updated the Release date ticket" in the email body

expected "" to include "updated the Release date ticket" ...

But why is this not seeing the content? Because you don’t have a template set up just at

the moment! It’s good to know at this point that if you ever wanted to debug an

email’s content, there’s a “Then show me the page” inspired step that you can use

called “Then save and open current email.” Let’s add this on a new line right before

7 By calling the method on the class, it’s caught by method_missing, which initializes a new instance of this
class and then eventually ends up calling your comment_update method.

320 CHAPTER 12 Sending email

the email body checking line in your scenario and rerun your feature. You should see

the following:

Date: [date]
From: ticketee@gmail.com
To: alice@ticketee.com
Message-ID: [message_id]@[you].mail
Mime-Version: 1.0
Content-Type: text/plain;
charset=UTF-8

Content-Transfer-Encoding: 7bit

This is a raw version of the email that alice@ticketee.com will receive when

bob@ticketee.com updates the ticket. As you can see from this raw version, there’s

nothing else to this email, and therefore there’s no content that will be displayed. To

make this final step pass, you must define some content for your email, which you

can do by defining a template.

12.1.5 An Action Mailer template

Templates for Action Mailer classes go in app/views because they serve an identical pur-

pose as the controller views: they display a final, dynamic result to the users. Once you

have this template in place, the plain-text email a user receives will look like figure 12.1.

 As shown in the figure, you need to mention who updated the ticket, what they

updated it with, and provide a link to the ticket. Let’s put the template for your

comment_updated method at app/views/notifier/comment_updated.text.erb, as shown

in the following listing.

Hello!

<%= @comment.user %> has just updated the
<%= @comment.ticket.title %> ticket for
<%= @comment.ticket.project.name %>. They wrote:

<%= @comment.text %>

You can view this ticket on line by going to:
<%= project_ticket_url(@comment.ticket.project, @comment.ticket) %>

Wait, hold on! text.erb? Yes! This is the template for the plain-text version of this

email, after all. Remember, the format of a view in Rails is the first part of the file

extension, with the latter part being the actual file type. Because you’re sending a text-

only email, you use the text format here. A little further down the email road, you’ll

look at how you can send out HTML emails too.

Listing 12.3 app/views/notifier/comment_updated.text.erb

Figure 12.1

Your first email

321Sending ticket notifications

 The template is the final part for your feature: yay! When you run bin/cucumber

features/ticket_notifications.feature, you see that it’s now all passing:

1 scenario (1 passed)

18 steps (18 passed)

When the email is opened for this final time, you see that it has the content you’re

looking for:

Hello!

bob@ticketee.com has just updated the Release date ticket for TextMate 2.

➥They wrote:

Is it out yet?

You can view this ticket online by going to:

➥http://localhost:3000/projects/1/tickets/1

You’ve done quite a lot to get this little simple feature to pass.

 In the beginning you created an observer called CommentObserver, which watches

the Comment model for any specific changes. You defined an after_create method on

this, which took the comment object that was being updated and then called Notifier

.comment_updated, passing along the comment object.

Notifier is an Action Mailer class that is responsible for sending out emails to the

users of your application, and in this file you defined the comment_updated method

called in your CommentObserver and set the recipients up to use the comment

object’s related ticket watchers.

 To define the watchers method, you used a has_and_belongs_to_many join table

again. Your first experience using these was back in chapter 10, when you linked the

Ticket and Tag models by setting one up on both of them. Back then, you used the

tags_tickets table to link the two. This is the default naming schema of a has_and

_belongs_to_many join table in Rails. In the case of your ticket watchers, however,

your method was called watchers, and so would look for a class called Watcher to

determine where it should find your watchers. This was incorrect, so you told your

association that your join table should be ticket_watchers and that the related

model was User, not Watcher. You used the :join_table and :class_name methods

for this.

 Finally, you defined the template for the comment_updated email at app/views/

notifier/comment_updated.html.erb and filled it with the content you’re expecting to

see, including the link that you click to complete the final step of your scenario.

 This scenario completes the first steps of sending email notifications to your users.

You should now run all your tests to make sure you didn’t break anything by running

rake cucumber:ok spec:

60 scenarios (60 passed)
676 steps (676 passed)

and

40 examples, 0 failures, 19 pending

322 CHAPTER 12 Sending email

Great to see everything still passing! You’ve added email ticket notifications to your

application, so you should now make a commit saying just that and push it:

git add .

git commit -m "Add email ticket notifications"
git push

Now that you’ve got your application sending plain-text emails, let’s bring it into the

21st century by getting it to send out HTML emails as well.

12.1.6 Delivering HTML emails

Emails can have multiple parts associated with them, which allows emails to have

attachments and different content types. For instance, some email applications don’t

read HTML emails and will fall back to the text version of the template instead. More

modern applications will render the HTML, presenting a prettier, formatted email.

 With HTML, you’re able to style your emails to include elements such as images,

and HTML tags such as the a tag. By doing this, you can provide a much better-looking

email than the plain-text version, as shown in figure 12.2.

 You need to make only a couple of small changes to this email, such as the image at

the top and the link that now reads View This Ticket Online Here. You could do

more, but this will suit your purposes for now.

 Some email clients don’t support receiving HTML-only emails. Thankfully, Action

Mailer has a solution to this problem. When you send your comment_updated email, it

will arrive all in the same message, but that message will contain multiple parts. The

first part of the email will be the text template that you set up earlier, and the second

part will be the new HTML version that you’ll code up in just a tad. Modern email cli-

ents are smart enough to detect an email such as this, and if they’re capable of ren-

dering the HTML version they’ll do so; if not they will fall back to the plain-text

variant.

 To test that this works, you add another couple of steps right after the check of the

email body in the scenario inside features/ticket_notifications.feature. These steps will

check that you receive an email that contains two parts, with one of them having the

content type of text/plain and the other of text/html:

Figure 12.2

A better-looking email

323Sending ticket notifications

Then they should see "updated the Release date ticket" in the email body
And the email should contain 2 parts

And there should be a part with content type "text/plain"

And there should be a part with content type "text/html"

When you run this feature with bin/cucumber features/ticket_notifications

.feature, you’re notified that the two steps you’ve just used are undefined:

Then /^the email should contain two parts$/ do
pending # express the regexp above with the code you wish you had

end

Then /^there should be a part with content type "([^"]*)"$/ do | arg1 |
pending # express the regexp above with the code you wish you had

end

The email_spec gem doesn’t provide any steps for this, so you must craft your own.

The gem does provide some helper methods that you can use. You should define

these steps in a file separate from features/step_definitions/email_steps.rb, because the

next time you run the email_spec generator, it will overwrite this file. Let’s instead

put them in features/step_definitions/app_email_steps.rb and define them like this:

Then /^the email should contain (\d+) parts$/ do |num|

current_email.parts.size.should eql(num.to_i)

end

Then /^there should be a part with content type "([^"]*)"$/

do |content_type |

current_email.parts.detect do |p|
p.content_type == content_type

end.should_not be_nil

end

In the first step here, the current_email method comes from email_spec and repre-

sents the currently opened email. You open this email with the “Then alice@ticketee

.com opens the email” step in your scenario. This object is a Mail::Message object,

which represents an email object. You check in this step that the email contains the

number of parts you say it should contain, and convert the num variable to an integer

using to_i because it comes in from the step definition as a String object.

 In the second step, you iterate through the parts to the email, using detect to

return the first part in parts, which matches the condition inside the block you spec-

ify. You don’t care at this stage what order the parts appear in (that’s something the dif-

ferent email clients will deal with), but you do care that there’s more than one part.

 When you run your feature using bin/cucumber features/ticket_notifications

.feature, you see that the first of your two newest steps fails:

And the email should contain 2 parts

expected 2

got 0

So your scenario expected to see two parts, but got none. Why not even one? Well, the

normal flavor of emails don’t come with multiple parts, because the text is part of the

324 CHAPTER 12 Sending email

message itself. For your multipart emails, the text and HTML versions will be split into

two separate parts.

 Defining a HTML version of your email is very easy. All you have to do is create

another file that begins with comment_updated inside of app/views/notifier, and Action

Mailer will automatically detect that you have a multipart message. If you use the html

format in your template’s filename, Action Mailer will do some more automatic detec-

tion and work out that the parsed content of this file should be sent as text/html.

Inside of this new file you want to put the content from the following listing.

<p>

Hello.
</p>

<p>

<%= @comment.user %> has just updated the

<%= @comment.ticket.title %> ticket for
<%= @comment.ticket.project.name %>. They wrote:</p>

<blockquote><%= @comment.text %></blockquote>

<p>
You can <%= link_to "view this ticket online here",

project_ticket_url(@comment.ticket.project, @comment.ticket) %>

</p>

Now that you have an HTML template, Action Mailer will send a multipart email con-

taining both the HTML and text version of the mail without having to configure any-

thing, which is always nice!

 When you run bin/cucumber features/ticket_notifications.feature, you see

that the feature fails:

Then they click the first link in the email
No route matches [GET] "/images/logo.png'" ...

This is because the scenario is attempting to click the first link it comes across, which

is the link to the image at the top of the HTML version of your email. What you really

want it to do is to click the View This Ticket Online Here link, and you can make it do

just that by replacing this line in the scenario

Then they click the first link in the email

with this one:

Then they follow "view this ticket online here" in the email

This will now make the scenario click the correct link. Let’s re-run bin/cucumber

features/ticket_notifications.feature to see that this feature is now passing:

1 scenario (1 passed)

21 steps (21 passed)

Listing 12.4 app/views/notifier/comment_updated.html.erb

325Subscribing to updates

Great, so now your users will receive multipart emails; their email clients should

attempt to render the HTML part of these first and, if they can’t, then fall back to the

text part. Such is the beauty of email these days.

 Now is the time to commit these changes, but not before running your tests by run-

ning rake cucumber:ok spec:

60 scenarios (60 passed)

679 steps (679 passed)
and

40 examples, 0 failures, 20 pending

Awesome! Everything is still going. Commit this change:

git add .

git commit -m "Send HTML ticket notification emails"

git push

Your ticket notification email will be sent out with two parts: an HTML version and a

text version. This provides a way for email applications of all ages to render your

email. Hopefully, more people will see the HTML version than the text version.

 You learned how to generate a mailer and create a mailer method to it, and now

you’re going to move into how you can let people subscribe to receive these emails.

You’re currently only subscribing the ticket’s author to the list of watchers associated

with this ticket, but other people may also wish to be notified of ticket updates. You

can do this in two separate ways: through a watch button and through automatic sub-

scription.

12.2 Subscribing to updates

You’ll provide other users with two ways to stay informed

of ticket updates. The first will be very similar to the

automatic subscription of a user when they create the

ticket, but this time you’ll automatically subscribe users

who comment on a ticket. You’ll reuse the same code that

you used in the previous section to achieve this, but not in the way you might think.

 The second will be a watch button on the ticket page, which will display either

Watch This Ticket or Stop Watching This Ticket, depending on if the user is watching

the ticket or not, as shown in figure 12.3.

 We’ll first look at implementing the automatic subscription when a user posts a

comment to a ticket.

12.2.1 Testing comment subscription

You’ll now implement a feature to make users automatically watch a ticket when they

create a comment on it. This is useful because your users will want to keep up-to-date

with tickets that they have commented on. Later on, you’ll implement a way for these

users to opt out.

Figure 12.3 The watch button

326 CHAPTER 12 Sending email

To automatically subscribe a user to a ticket of a new comment, use an after_create,

just as you did in the Ticket model for only the author of that ticket. But first, you

need to ensure that this works!

 You’ll add another scenario to the “Ticket notifications” feature, but first let’s con-

sider the current flow. A couple of diagrams help explain this process.

 First, let’s look at figure 12.4. Here, alice@ticketee.com creates a ticket that will

automatically subscribe her to be notified of any comments posted to it.

 Next, figure 12.5. Then bob@ticketee.com

comes along and leaves a comment on the

ticket, which should subscribe bob@ticke-

tee.com to these ticket updates. This is the fea-

ture that you’ll code in a short while. After Bob

has commented on the ticket, Alice receives a

notification telling her just that. Now that Bob

is subscribed to the ticket, he should receive

comment notifications every time somebody

else—such as Alice—comments on the ticket,

as shown in figure 12.6.

 In this case, alice@ticketee.com shouldn’t

receive a notification about a comment if she’s

the one posting it! With the scenario

explained, you can write it in Cucumber-form

at the bottom of the “Ticket notifications” fea-

ture, as shown in the following listing:

creating new ticket

Ticketee

A Ticket

Watchers

0 comments

Alice

A

B

Figure 12.4

Alice creates a ticket.

noti�ed of B’s comment

A

B is added to ...

A Ticket

Watchers

1 comment

Alice

comments on ...

B

Bob

Ticketee

Figure 12.5 Bob

comments on the ticket.

comments on ...

A

... the ticket

A Ticket

Watchers

2 comments

Alice

noti�ed of
A’s comment

B

Bob

Ticketee

Figure 12.6

Alice comments on

the ticket, too.

327Subscribing to updates

Scenario: Comment authors are automatically subscribed to a ticket
When I follow "TextMate 2"

And I follow "Release date"

And I fill in "Text" with "Is it out yet?"
And I press "Create Comment"

Then I should see "Comment has been created."

When I follow "Sign out"

Given a clear email queue

Given I am signed in as "alice@ticketee.com"

When I follow "TextMate 2"
And I follow "Release date"

And I fill in "Text" with "Not yet!"

And I press "Create Comment"
Then I should see "Comment has been created."

Then "bob@ticketee.com" should receive an email

Then "alice@ticketee.com" should have no emails

In this scenario, you’re already logged in as bob@ticketee.com (courtesy of the

Background). With Bob, you create a comment on the “Release date” ticket, check

that alice@ticketee.com receives an email, and then sign out. Then you clear the

email queue to ensure that alice@ticketee.com receives no emails after this point. You

sign in as alice@ticketee.com and create a comment, which should trigger an email to

be sent to bob@ticketee.com, but not to alice@ticketee.com. When you run this sce-

nario using bin/cucumber features/ticket_notifications.feature:36, you see

that Bob never receives an email:

expected: 1,

got: 0 (using ==) (RSpec::Expectations::ExpectationNotMetError)
...

features/ticket_notifications.feature:54

This is failing on the step that checks if bob@ticketee.com has an email. You can

therefore determine that bob@ticketee.com isn’t subscribed to receive comment

update notifications as he should have been when he posted a comment. You need to

add any commenter to the watchers list when they post a comment so that they’re

notified of ticket updates.

12.2.2 Automatically adding a user to a watchlist

To keep users up to date with tickets, you’ll automatically add them to the watchers

list for that ticket when they post a comment. You currently do this when people cre-

ate a new ticket, and so you can apply the same logic to adding them to the list when

they create a comment.

 You can define another after_create callback in the Comment model by using this

line:

after_create :creator_watches_ticket

Listing 12.5 features/ticket_notifications.feature

328 CHAPTER 12 Sending email

Next, you need to define the method that this callback calls, which you can do by plac-

ing this code at the bottom of your Comment model:

def creator_watches_ticket

ticket.watchers << user
end

By using the tickets association, you can add the creator of this comment to the

watchers for this ticket. This should mean that when a comment is posted to this

ticket, any user who has posted a comment previously, and not only the ticket creator,

will receive an email.

 You can see if this is the case when you run this scenario again using bin/cucumber

features/ticket_notifications.feature:36. You see that Bob is now receiving an

email and the entire scenario is passing:

1 scenario (1 passed)
23 steps (23 passed)

Perfect! Now users who comment on tickets are added to the watchers list automati-

cally and the user who posts the comment isn’t notified if they are already on that list.

 Did you break anything by implementing this change? Let’s have a look by running

rake cucumber:ok spec. You should have this:

61 scenarios (61 passed)

702 steps (702 passed)
and

40 examples, 0 failures, 20 pending

Every test that you have thrown at this application is still passing, which is a great thing

to see. Let’s commit this change:

git add .

git commit -m "Users are now automatically subscribed
to a ticket when they comment on it"

You now have automatic subscription for ticket notifications when a user creates a

ticket or posts a comment to one, but currently there is no way to switch notifications

off. To implement this, you’ll add a Stop Watching This Ticket button that, when

clicked, will remove the user from the list of watchers for that ticket.

12.2.3 Unsubscribing from ticket notifications

You’ll add a button to the ticket page to unsubscribe users from future ticket notifica-

tions. When you’re done here, the ticket page will look like figure 12.7.

 Along with implementing the ability to turn off the notifi-

cations by clicking this button, you’ll also add a way for the

users to turn on notifications, using what will effectively be

the same button with a different label. This button will toggle

users’ watching status, which will allow them to subscribe to

ticket notifications without 1) creating their own ticket or 2)

posting a comment.

Figure 12.7 The “stop

watching” button

329Subscribing to updates

 You implement the on and off functionality simultaneously by writing a new fea-

ture in a new file at features/watching_tickets.feature. Let’s start with the code from the

following listing.

Feature: Watching tickets

In order to keep up to date with tickets
As a user

I want to choose to subscribe to their updates

Background:
Given there are the following users:

| email | password |

| user@ticketee.com | password |
Given there is a project called "TextMate 2"

And "user@ticketee.com" can view the "TextMate 2" project

And "user@ticketee.com" has created a ticket for this project:
| title | description |

| Release date | TBA very shortly. |

Given I am signed in as "user@ticketee.com"

Given I am on the homepage

In this example, you create a single user, a project, and a ticket. Because this user cre-

ated the ticket, they’re automatically subscribed to watching this ticket and therefore

they should see the Stop Watching This Ticket button on the ticket page. You test this

by writing the scenario from the following listing underneath your Background.

Scenario: Ticket watch toggling

When I follow "TextMate 2"

And I follow "Release date"
Then I should see "user@ticketee.com" within "#watchers"

And I press "Stop watching this ticket"

Then I should see "You are no longer watching this ticket"
And I should not see "user@ticketee.com" within "#watchers"

To begin to watch a ticket again, all the user has to do is click the Watch This Ticket

button, which you can also test by adding the following code to this scenario:

When I press "Watch this ticket"

Then I should see "You are now watching this ticket"

And I should see "user@ticketee.com" within "#watchers"

See? That’s how you test the watching/not watching

function simultaneously! You don’t need to post a com-

ment and test that a user is truly watching this ticket; you

can instead check to see if a user’s name appears in a list

of all the watchers on the right side of the ticket page,

which will look like figure 12.8.

Listing 12.6 features/watching_tickets.feature

Listing 12.7 features/watching_tickets.feature

Figure 12.8 Who’s watching

330 CHAPTER 12 Sending email

As usual, you see what you need to code right now to get your feature on the road to

passing by running bin/cucumber features/waching.feature. You see that it’s actu-

ally this watchers list, indicated by Capybara telling you that it can’t find that element:

Then I should see "user@ticketee.com" within "#watchers"
Unable to find css "#watchers" (Capybara::ElementNotFound)

To get this feature to continue, you’re going to need this element! You can add it to

app/views/tickets/show.html.erb underneath the </div> tag for <div id='ticket'>

by using the code from the following listing.

<div id='watchers'>

<h4>Watchers</h4>

<% @ticket.watchers.each do |watcher| %>

<%= watcher %>

<% end %>

</div>

You’ve created another div with the id attribute set to watchers, which is the element

that your scenario looks for. In this div you iterate through all the watchers of the

ticket and output a li tag for each of them, which will output a list of watchers when

wrapped in a ul tag.

 When you have this element and you run your feature again with bin/cucumber

features/watching_tickets.feature, you see that your feature gets one step closer

to passing by locating user@ticketee.com in the #watchers element, but it now can’t

find the Stop Watching This Ticket button:

Then I should see "user@ticketee.com" within "#watchers"

And I press "Stop watching this ticket"

no button with value or id or text 'Stop watching this ticket'

This button will toggle the watching status of the ticket of the current user, and the

text will differ depending on if the user is or isn’t watching this ticket. In both cases,

however, the button will go to the same action. To get this next scenario to pass, you

add the button to the div#watchers element you just created by using a helper,

changing the first few lines of the element to this:

<div id='watchers'>
<%= toggle_watching_button %>

<h4>Watchers</h4>

This toggle_watching_button helper will only appear in views for the Tickets-

Controller, and so you should put the method definition in app/helpers/

tickets_helper.rb inside the TicketsHelper module, using the code from the following

listing to define the method.

Listing 12.8 app/views/tickets/show.html.erb

331Subscribing to updates

def toggle_watching_button
text = if @ticket.watchers.include?(current_user)

"Stop watching this ticket"

else
"Watch this ticket"

end

button_to(text, watch_project_ticket_path(@ticket.project, @ticket))
end

On the final line of this method, you use a new method: button_to. This method

works in a similar fashion as link_to does, providing a user with an element to click to

go somewhere. In this case, the element is a button wrapped in a form that points to

the specified action. When the user clicks the button, it submits this form through a

POST request, with the only parameter passed through being params[:commit], which

contains the text of the button.

 Inside the button_to, you use a new route helper that you haven’t defined yet.

When you run bin/cucumber features/watching_tickets.feature, it will complain

that this method is undefined when it tries to render the app/views/tickets/

show.html.erb page:

And I follow "Release date"

undefined method `watch_project_ticket_path' for ...

This route helper points to a specific action on a project’s ticket. You can define it in

config/routes.rb inside the resources :tickets block, which itself is nested inside

the resources :projects block, as shown in the following listing.

resources :projects do
resources :tickets do

collection do

get :search
end

member do

post :watch
end

end

end

The button_to’s purpose is to toggle the watch status of a single ticket, meaning you

want to define a member route B for your ticket resource. You put it inside the tickets

resource, nested under the projects resource, because for your watch action you want

to confirm that the person has permission to view this project. You define the route to

the watch action with post because button_to generates a form by default, and a

form’s HTTP method will default to POST.

Listing 12.9 app/helpers/tickets_helper.rb

Listing 12.10 config/routes.rb

B Define member route

332 CHAPTER 12 Sending email

 When you run your feature again using bin/cucumber features/watching

_tickets.feature, it will complain now because there is no watch action for your

button to go to:

And I press "Stop watching this ticket"
The action 'watch' could not be found for TicketsController

You’re almost done! Defining this watch action is the last thing you have to do. This

action will add the user who visits it to a specific ticket’s watcher list if they aren’t

already watching it, or remove them if they are. To define this action you open app/

controllers/tickets_controller.rb and use the code found in the following listing.

def watch
if @ticket.watchers.exists?(current_user)

@ticket.watchers -= [current_user]
flash[:notice] = "You are no longer watching this ticket."

else
@ticket.watchers << current_user
flash[:notice] = "You are now watching this ticket."

end

redirect_to project_ticket_path(@ticket.project, @ticket)
end

The first thing to notice about this method is that you don’t define the @ticket vari-

able before you use it on the first line of this method. This is because you can add this

action to the list of actions that the before_filter :find_ticket runs on by chang-

ing these lines at the top of your controller

before_filter :find_ticket,
:only => [:show,

:edit,
:update,
:destroy]

to these lines:

before_filter :find_ticket,
:only => [:show,

:edit,
:update,
:destroy,
:watch]

In this method you use exists?, which will check if the given user is in the list of watch-

ers. If they are, then you use watchers -= to remove a watcher from a ticket. If they

aren’t on the watchers list, you use watchers << to add them to the list of watchers.

 The watch action now defines the behavior for a user to start and stop watching a

ticket by clicking the button above the watchers list. When you run bin/cucumber

features/watching_tickets.feature, it will pass:

1 scenario (1 passed)
15 steps (15 passed)

Listing 12.11 app/controllers/tickets_controller.rb

333Real-world email

Great! Now you have a way for users to toggle their watch status on any given ticket.

Let’s make sure that everything is working by running rake cucumber:ok spec. You

should see the following output:

62 scenarios (62 passed)
717 steps (717 passed)

and

40 examples, 0 failures, 20 pending

Everything is still A-OK, which is good to see. Let’s commit this change:

git add .

git commit -m "Add button so users can toggle
watching on a ticket"

git push

You’ve now got a way that a user can start or stop watching a ticket. By watching a

ticket, a user will receive an email when a comment is posted to the ticket. You’re

doing great in theoretically testing email, but you haven’t yet configured your applica-

tion to send out emails in the real world. Let’s do that now.

12.3 Real-world email

You’ve just created the beginnings of a way to send email in your application, but

there’s still a part missing: the SMTP server that receives your mail objects and then

sends them out to their recipients. You could spend a lot of time configuring one

yourself, but many companies offer a free SMTP service, such as Gmail.8 You’ll use a

Gmail account to send out tests of your emails, and you can use Action Mailer to con-

nect to this service.

WARNING You wouldn’t use Gmail to send or receive your emails if you
were running a much larger application, but rather another web service
such as SendGrid. This is because Gmail has a limit of about 200 sent
emails a day, and if there are 200 tickets updated in a single day then it’s
goodbye email cap. Gmail is great for light email usage, but if you want to
scale up your usage, SendGrid is one of the best options out there.

Action Mailer has a setting that you can use to set up your SMTP connection:

ActionMailer::Base.smtp_settings = {

:username = "youraccount@example.com",

:password = "yourpassword"
...

}

Before you dive into setting this up, you’re going to need a feature to ensure that it

always works. When you set up your application to send emails in the real world, it

may work from the get-go, and you can test it manually by sending out emails in your

8 SendGrid offers one too that you would use, but you’re going to need to receive emails next, and having a
Gmail account will allow you to do that.

334 CHAPTER 12 Sending email

application through rails server. But how do you ensure that it works all the time?

The feature will provide that insurance.

 When you’re done here, you’ll have your application hooked up to Gmail’s SMTP

server so that you can send emails in the real world, and you’ll have a Cucumber fea-

ture to ensure that it’s never broken.9 Let’s jump into it.

12.3.1 Testing real-world email

In this section, you’ll create a feature in which you set up Action Mailer to send out

emails to Gmail’s SMTP service. You’ll then update a ticket’s comment, which should

trigger the emails to be sent to the real world. Finally, you’ll check the Gmail account

(using the mail gem on which Action Mailer is based), to make sure that the email

was received. If it wasn’t received, then the cause is most likely a configuration prob-

lem, such as an invalid password.

 Let’s write this new feature in a new file called features/gmail.feature a bit at a time.

You start with just these few lines:

Feature: Gmail

In order to send real world emails
As the application

I want to ensure my configuration is correct

Background:
Given there are the following users:

| email | password |

| alice@ticketee.com | password |
| youraccount@example.com | password |

And Action Mailer delivers via SMTP

Here you have the standard feature setup on the first four lines, describing to any

interested reader what this feature’s purpose is. The final few lines begin your fea-

ture’s Background, defining two users that you’ll use and an as-of-yet undefined step.

The two users set up here are for setting up the ticket a little later on in your Back-

ground. The youraccount@example.com should be your actual Gmail account’s

address10 for reasons that you’ll see later.11

 The current undefined step on the final line will be used to tell Action Mailer not

to capture all emails that are being sent, but rather to send them out through the

SMTP configuration that you’ll set up in a little while. When you run this feature using

bin/cucumber features/gmail.feature, you’re given the step definition for this step:

Given /^Action Mailer delivers via SMTP$/ do

pending # express the regexp above with the code you wish you had

end

9 That is to say, if you run all the tests and they all pass before you commit, then you know that your Gmail con-
nection would be working, too.

10 And if you don’t have one, sign up! It’s free and will only take a minute.
11 We’d use youraccount@gmail.com as the example here, but we don’t want to bombard the owner of this

actual account with emails!

335Real-world email

In this step definition, you need to tell Action Mailer to use SMTP to deliver your

emails rather than capture them. You can define this new step definition in features/

step_definitions/app_email_steps.rb like this:

Given /^Action Mailer delivers via SMTP$/ do
ActionMailer::Base.delivery_method = :smtp

end

Great! Now Action Mailer will set the delivery_method to :smtp before every scenario

in this feature. The side effect of this setting is that it will be set for every scenario that

runs after it, not only scenarios in this feature. This is a problem because you don’t

want every scenario to send email in the real world, only the ones contained in this

feature. To make it revert this setting back to :test after every scenario, you can cre-

ate a new file at features/support/after_hook.rb and put this content inside it:

After do
ActionMailer::Base.delivery_method = :test

end

The After method here is provided by Cucumber, and its purpose is to execute any

given block after each scenario has finished running. With this code, the setting will

be reverted back to :test and you’ll only be sending real-world emails in this particu-

lar scenario.

 Let’s continue writing your new feature. You need to set up a project that both

alice@ticketee.com and you can see, and create a ticket on that project that is posted

by you. In a short while, you’ll get Alice to sign in and post a comment to this ticket,

which should make an email appear in your inbox. You’ll then check this email using

the mail gem. Set up the project and ticket with these steps:

Given there is a project called "TextMate 2"

And "alice@ticketee.com" can view the "TextMate 2" project
And "youraccount@example.com" can view the "TextMate 2" project

And "youraccount@example.com" has created a ticket for this project:

| title | description |
| Release date | TBA very shortly. |

Here’s another place where youraccount@example.com should be substituted with

your real Gmail account. In these steps, you set up that alice@ticketee.com and your

email both have the “view” permission on the TextMate 2 project. After this, you need

a ticket that you’ve created so that Alice can post a comment to it and you can receive

an email notification informing you of what Alice has posted.

 Now you can get to the meat of your feature: the scenario itself. In this scenario,

you want to log in as alice@ticketee.com, visit the “Release date” ticket inside the Text-

Mate 2 project, and post a comment to it. After all that’s said and done, you need to

assert that your youraccount@example.com mailbox has one new message. The code

for the scenario should therefore look like in the following listing.

336 CHAPTER 12 Sending email

Scenario: Receiving a real-world email

Given I am signed in as "alice@ticketee.com"
Given I am on the homepage

When I follow "TextMate 2"

And I follow "Release date"
And I fill in "Text" with "Posting a comment!"

And I press "Create Comment"

Then I should see "Comment has been created."

When I log into gmail with:

| username | password |

| youraccount@gmail.com | your_password |
Then there should be an email from Ticketee in my inbox

When you run this feature using bin/cucumber features/gmail.feature, you see that

your feature fails when alice@ticketee.com clicks the Create Comment button:

And I press "Create Comment"

Connection refused - connect(2) (Errno::ECONNREFUSED)

.../net/smtp.rb:551:in `initialize'

Remember before how it was mentioned that Action Mailer would (by default) try to

connect to an SMTP server running on localhost? That’s what is happening here,

because when a comment is updated a notification will be sent out. You didn’t see

this previously because it’s only now that you’ve switched delivery_method to :smtp,

You don’t have one running locally12 so it’s unable to connect. You can tell that it’s

now using SMTP, because the first line of the stacktrace points to net/smtp.rb in

Ruby’s standard library, which is what Action Mailer (by way of Mail) uses to connect

to SMTP servers. Therefore, you must change something in order to make this work

once more.

12.3.2 Configuring Action Mailer

To fix this error, you must tell Action Mailer to connect to your Gmail server so that it

has a way to send out emails. You can create a new file in config/initializers that pro-

vides Action Mailer with the necessary information it needs. But what would this infor-

mation be? Well, let’s hop on over to Google’s “Configuring other mail clients”13 page,

where you’ll see the table from figure 12.9.

 You’re trying to send email, so you want to use the Outgoing Mail section, which

tells you to use smtp.gmail.com as the server. You’ll connect to it using TLS, so you’ll

connect on port 587. The account name and password should be the Gmail address

and password for your email address. With these settings, create a config/initializers/

mail.rb file that looks like the following listing.

Listing 12.12 features/gmail.feature

12 Unless you’ve got it set up from some other place that’s not this book.
13 http://mail.google.com/support/bin/answer.py?hl=en&answer=13287.

http://mail.google.com/support/bin/answer.py?hl=en&answer=13287

337Real-world email

ActionMailer::Base.smtp_settings = {

:user_name => "youraccount@gmail.com",

:password => "password",
:address => "smtp.gmail.com",

:port => 587,

:tls => true
}

With these settings in this file, you can rerun bin/cucumber features/gmail.feature

to see that it passes now up to the last two steps, which are undefined:

When /^I log into gmail with:$/ do |table|

table is a Cucumber::Ast::Table

pending # express the regexp above with the code you wish you had
end

Then /^there should be an email from Ticketee in my inbox$/ do

pending # express the regexp above with the code you wish you had
end

With these step definitions, you’ll be able to connect to Gmail using settings specified

in a Cucumber table format and then check for the email, which should be sent by

steps earlier in this feature. You need to define these now.

12.3.3 Connecting to Gmail

You’ve now sent the email to the server, but you don’t have any steps in place to read

these emails from your Gmail account and check that one of the emails is from Ticke-

tee. As you can almost anticipate, there’s a gem that can help you with this, called

quite simply gmail. This gem will let you connect to a Gmail server using the user-

name and password you just used to set up an SMTP connection, and also read the

emails for that account. The code it uses looks like this:

Gmail.connect(username, password)

You’ll also use this gem in the next section, when we look at how you can receive

emails into your application. It’s a pretty neat gem, and it’s got a great README, which

can be seen at http://github.com/nu7hatch/gmail.

Listing 12.13 config/initializers/mail.rb

Figure 12.9

Configuring other

mail clients

http://github.com/nu7hatch/gmail

338 CHAPTER 12 Sending email

 To install this gem, you must first add it to the Gemfile by adding this line inside

the group block for development and test, because you only want this gem used in

those environments:

group :test, :development do
gem 'gmail'

...

end

Then you need to run bundle install to install this gem so that you can use it. When

bundle install is finished running, let’s open features/step_definitions/app_email

_steps.rb and add the “When I log into gmail with...” step by using this code:

When /^I log into gmail with:$/ do |table|

details = table.hashes.first

@gmail = Gmail.connect(details["username"], details["password"])
end

In this step definition, you take only the first hash from the table (you’re only going to

be logging into one Gmail account at a time) and then you use the Gmail.connect

method, provided by the gmail gem that you just installed, to start a connection to

Gmail’s servers using your username and password. By assigning this object to @gmail,

you can use this connection in future steps to read emails from your Gmail account.

 The second step you need to create will do precisely that, using the @gmail con-

nection to read all the emails, find the emails that have a subject beginning with

[ticketee] (there should only be one), and then delete the email after you’ve read

it. The method you can use for this is the find_and_delete method, which will find

emails matching a specific criteria, read them, and then delete them:

Then /^there should be an email from Ticketee in my inbox$/ do

@mails = @gmail.inbox.find(:unread,
:from => "ticketee@gmail.com") do |mail|

if mail.subject =~ /^\[ticketee\]/

mail.delete!
@received_mail = true

end

end
@received_mail.should be_true

end

In this step, you use the @gmail variable defined in the “log into gmail with” step you

just defined. The find method here will find emails using the Gmail connection

you’ve opened and then locate all emails from ticketee@gmail.com. The mail variable

is an instance of the Mail::Message class, as are all messages parsed by the mail gem.

 If there is an email with a subject that begins with “[ticketee]” B then you set a

@received_mail variable to true. You use this variable as the final line in this step,

because it would only be set to true if the latest email’s subject was what you were

looking for.

B Check email subject

339Real-world email

 When you run your feature using bin/cucumber features/gmail.feature, it will

now pass:

1 scenario (1 passed)

15 steps (15 passed)

This feature checks that your real-world SMTP settings are valid by connecting to the

real-world SMTP server, sending an email, and then checking that it arrived using

Mail::POP3. Beautiful! If the password for this account were to change, however, then

this feature would break.

 Everything should still be working now. You haven’t changed anything that would

have broken your existing features or specs, but it’s still great practice to run them just

to make sure. Let’s do this by running rake cucumber:ok spec. You see the following

output:

63 scenarios (63 passed)
732 steps (732 passed)

and

40 examples, 0 failures, 20 pending

Indeed, nothing is broken. But if you made a commit now, it would cause potentially

private Gmail account details to be committed to the repository. You probably don’t

want to do this. To prevent this, you should copy config/initializers/mail.rb to config/

initializers/mail.rb.example and change the details in it to be placeholders for real

details. The same thing should be done for the features/sending_emails.feature fea-

ture.

 After that, you must tell Git to ignore these files. You can do this by placing their

names within a .gitignore file at the root of the Rails application, which is also the

root of the Git repository. Create a new file called .gitignore now, and put these two

lines in it:

config/initializers/mail.rb

features/sending_emails.feature

When you run git add . and then git status, the files with the real values should not

appear in the “Changes to be committed” list. If they don’t, then you can make a com-

mit and push it:

git commit -m "Set up application to connect to Gmail to send emails"
git push

You’ve now got your application sending out emails in the real world using Gmail as

the server. With these settings, the emails notifying users that tickets have had new

comments posted to them, as well as the confirmation emails sent from Devise for new

user signups, will be sent out through Gmail.

 You have the sending emails part of your application done, but what about if you

wanted to let users reply to comments by replying to the email notification they

receive in their inbox? That would be cool. To do this, you’re going to need to figure

out how you can receive emails with Rails.

340 CHAPTER 12 Sending email

12.4 Receiving emails

You’d now like to add a feature to Ticketee where users can reply to the email notifica-

tions for a new comment on a ticket, and by replying create a new comment with their

text. Many other applications do this by having an email such as this:

== ADD YOUR REPLY ABOVE THIS LINE ==

Bob has just updated the "Due date" ticket for "TextMate 2"

Text above the “ADD YOUR REPLY ABOVE THIS LINE” will be parsed out and turned

into a new object. In Ticketee, this would be a comment.

 In the previous section, you learned how you could connect to a Gmail account to

check to see if there was an email that had a subject beginning with “[ticketee].” You

can use the same method in order to check for replies to your emails too, but you

need to make one small modification.

 To determine what ticket and project the reply is directed at, you need to tag the

emails in a certain way. The best way to do this is to add the tags to the email addresses

themselves, so that an email address with a tag looks like ticketee+tag@gmail.com,

where the +tag part of the email is ignored and the email arrives in ticketee

@gmail.com’s mailbox. For your emails, you’ll set a reply-to address such as ticketee

+61+23@gmail.com, where the first number is the project ID and the second number

is the ticket ID.

 You’re not going to post comments straight from emails. You need to check to see

if the user has permission to view the project where the ticket is, which means that

they would be able to create a comment for that ticket too. If they’re unable to post a

comment to that ticket, you assume the user is trying to do something malicious and

just ignore their email.

 To parse these emails, you’ll be using the receive method in an ActionMailer

class, which takes an email object and allows you to process it.

 A quick summary: you’re going to use the gmail gem to check for emails in your

inbox that are replies to comment notifications and then parse them using Action

Mailer into new Comment objects. If a user is restricted from viewing a project, then

you’ll ignore their emails.

 First, you want to check that the outgoing email contains the tag on the “from”

address, so that when a user replies to it you know what project and ticket they’re

replying to.

12.4.1 Setting a reply-to address

By having a different “from” address set on the outgoing email, you’ll be able to deter-

mine what project and ticket the user’s reply comment should be created on. To

ensure that all outgoing emails from the comment_updated method in Notifier have

this set, you’re going to write a simple test.

 Let’s open spec/mailers/notifier_spec.rb and change this whole file to what’s

shown in the following listing.

341Receiving emails

require "spec_helper"

describe Notifier do

it "correctly sets the reply-to" do

comment = Factory(:comment)
mail = ActionMailer::Base.deliveries.last

mail.from.should eql(["youraccount+#{comment.project.id}+" +

"#{comment.ticket.id}@example.com"])
end

end

Here you test that the from for the latest email sent out contains the ids of the project

and ticket related to the comment you create. With this information contained in the

email address, you’ll be able to know what project and ticket to create the comment

for when a user replies to that email.

 When you run this spec using bin/rspec spec/mailers/notifier_spec.rb, you

see that you need to define the comment factory:

No such factory: comment (ArgumentError)

Let’s define this new factory in factories/comment_factory.rb like this:

Factory.define :comment do |comment|

comment.text "A plain old boring comment."

comment.ticket { |t| t.association(:ticket) }
comment.user { |u| u.association(:user) }

end

Now when you run bin/rspec spec/mailers/notifier_spec.rb, you see that it fails

with this error:

expected ["ticketee+1+1@gmail.com"]

got ["ticketee@gmail.com"]

Right then! A failing test is a great place to begin, and now you need to fix it. Let’s

open app/mailers/notifier.rb and add a :from option to the mail call inside the

comment_updated method:

:from => "Ticketee <youraccount+

#{comment.project.id}+#{comment.ticket_id}@example.com>"

This will change the “from” address on emails that go out to your users by tagging the

addresses with the project and ticket id. When the user replies to this email, you can

use this tag to find the project and ticket that you need to create a new comment on.

Let’s run bin/rspec spec/mailers/notifier_spec.rb again to see it pass:

1 example, 0 failures

Now you need to work on the actual receiving of replies directed at this tagged

address!

Listing 12.14 app/mailers/notifier_spec.rb

342 CHAPTER 12 Sending email

12.4.2 Receiving a reply

With the correct reply-to set, you can implement the feature responsible for creating

new comments from email replies. You create a new class for dealing with incoming

email and call it Receiver, placing it in app/mailers by running this command:

rails g mailer receiver

This will generate the mailer you use for receiving email, as well as the RSpec file that

you can use to write the tests for the class. To test this particular feature, you use a

setup very similar to the spec/notifier_spec.rb test that you just wrote. This test needs

to generate a comment and then a reply to the email you would receive from the com-

ment. This new reply should have the same body as the original email, but prefixed

with some text. This new text will become the new comment.

 At this stage you only want to check that you can parse emails using this new class

and a currently undefined method on it called parse. This method will take a

Mail::Message object and create a new comment on a ticket. You’ll do permission

checking later on, but for now let’s just get the basic functionality down.

 You begin with these lines in spec/mailers/receiver_spec.rb:

require 'spec_helper'

describe Receiver do

it "parses a reply from a comment update into a comment" do
comment = Factory(:comment)

This will set up a comment and a ticket by using the factory, which will also cause a

comment_updated notification to be delivered. You can retrieve this notification using

this line:

comment_email = ActionMailer::Base.deliveries.last

This is possible because in the test environment, ActionMailer::Base.delivery

_method is set to :test, which stores the emails that have been sent in Action-

Mailer::Base.deliveries. The last email that’s been sent out will be the notification

for the comment. With this email object, you can build a new Mail::Message reply to

this email using these lines:

mail = Mail.new(:from => "user@ticketee.com",

:subject => "Re: #{comment_email.subject}",
:body => %Q{This is a brand new comment

#{comment_email.body}

},
:to => comment_email.from)

With these lines, you’re constructing a new reply using the body B from the original

email to generate a multi-lined string with “This is a brand new comment” before the

body of the first email. The first line in this first email will eventually be “== ADD YOUR

REPLY ABOVE THIS LINE ==”, which is how you distinguish what should be the new

content for the comment and what’s just from the old email.

B Quoted string

343Receiving emails

 The final step for this spec is to actually parse the thing using the Receiver class,

and to check that it changes the related ticket’s comment count by 1:

lambda { Receiver.parse(mail) }.should(

change(comment.ticket.comments, :count).by(1)
)

The spec/mailers/receiver_spec.rb should now look like the following listing.

require 'spec_helper'

describe Receiver do

it "parses a reply from a comment update into a comment" do

comment = Factory(:comment)

ticket = comment.ticket

comment_email = ActionMailer::Base.deliveries.last

user = Factory(:user)

mail =

Mail.new(:from => user.email,
:subject => "Re: #{comment_email.subject}",

:body => %Q{This is a brand new comment

#{comment_email.default_part_body}
},

:to => comment_email.from)

lambda { Receiver.parse(mail) }.should(
change(ticket.comments, :count).by(1)

)

ticket.comments.last.text.should eql("This is a brand new comment")

end

end

In this spec, you build a comment and reference the ticket for it. By creating a com-

ment, there will be an email going out that you can access using Action-

Mailer::Base.deliveries.last B because ActionMailer::Base.delivery_method

is set to :test. Using this email, you can compile a new email using Mail.new C14 and

passing in some values using the original email’s methods. One of these values—

:body—is way more important than the others. For this value, you want to take the

original content of the email and then above it put the new comment text. You use

default_part_body D. From this new text, a comment should be created. That’s

exactly what you assert on the final few lines of this example by using RSpec’s change

E method. On these final lines, you only want to make sure that the comments count

has increased by one and that the latest comment has the text “This is a brand new

comment.”

Listing 12.15 spec/mailers/receiver_spec.rb

14 This functionality is provided by the mail gem, on which Action Mailer depends.

B Access email

C Create new email

Insert original
email contentD

E Add 1 to comment count

344 CHAPTER 12 Sending email

 When you run this spec using bin/rspec spec/mailers/receiver_spec.rb, you’ll

be told this:

Failure/Error: lambda { Receiver.parse(mail) }.should(

undefined method `parse' for Receiver:Class

To make this spec parse, you need to define this method. This method should take a

Mail::Message object, read out everything from the body of that object above the line

“ADD YOUR REPLY ABOVE THIS LINE”, and create a comment from it. You can begin

to define this method in app/mailers/receiver.rb like this:

def self.parse(email)

reply_separator = /(.*?)\s?== ADD YOUR REPLY ABOVE THIS LINE ==/m
comment_text = reply_separator.match(email.body.to_s)

Here you match the body of the email with the expected reply separator, getting back

either a MatchData object (indicating the email is a valid reply to a comment) or nil.

If you get back a valid reply then you do this:

if comment_text

to, project_id, ticket_id =

email.to.first.split("@")[0].split("+")

Here you take the list of to addresses for the email, get the first of them, and then

split it on the @ symbol. This separates the username and the domain name in your

email. The username contains the project id and ticket id, which you get by calling

split again, this time separating the individual elements by the + symbol.

 Next, you need to find the relative project, ticket, and user for this email, which

you can do using these lines inside the if that you just opened:

project = Project.find(project_id)

ticket = project.tickets.find(ticket_id)

user = User.find_by_email(email.from[0])

Finally, you need to create the comment from the email body (stripping all extra

spaces from it) and close the if, which is done with the following lines:

ticket.comments.create(:text => comment_text[1].strip,
:user => user)

end

end

The [1] here will get the first match for the comment_text, which will be the new com-

ment’s text, throwing strip on the end in case there are a couple of extra spaces /

lines between the comment text and the separator. That’s the final bit of code you

need in the app/mailers/receiver.rb file. When you run this spec again with bundle

exec rspec spec/mailers/receiver_spec.rb, it will still fail:

Failure/Error: lambda { Receiver.parse(mail) }.should(
count should have been changed by 1, but was changed by 0

345Summary

This is because your original comment notification doesn’t have the reply separator,

and therefore the if condition in the parse method you just wrote says “Oh, can’t

find it, so I’ll just ignore this email,” or something to that effect. In order to get this to

work, you must add that line to the comment notification. You can do this by opening

app/views/notifier/comment_updated.text.erb and its HTML compatriot and adding

this line to the beginning of both files:

== ADD YOUR REPLY ABOVE THIS LINE ==

Now when you run your spec once more with bundle exec rspec spec/mailers/

receiver_spec.rb, it will pass because the parse method can find the separator:

1 example, 0 failures

Alright, now that you’ve got that feature passing, does everything else still work? Let’s

find out by running rake cucumber:ok spec:

63 scenarios (63 passed)
732 steps (732 passed)

and

41 examples, 0 failures, 19 pending

Good! Everything is still going great. Let’s commit the new feature:

git add .

git commit -m "Add Receiver class to receive emails"

git push

Right, this feature isn’t complete quite yet, because it only takes mail objects but

doesn’t actually do any of the fetching itself. You’ll revisit this feature in chapter 15

and complete it there. This is a great start, however.

12.5 Summary

That completes chapter 12! In this chapter, you learned how to send out your own

kind of emails. Before that, however, you added two ways that users can subscribe to a

ticket.

 The first of these ways was an automatic subscription that occurred when a user

created a ticket. Here, every time a comment was posted to a ticket, the owner of the

ticket was notified through either a plain-text or HTML email, depending on what that

user’s email client supported.

 The second of the two ways was to allow users to choose to subscribe or unsub-

scribe to a ticket. By doing this, all users, and not just those who created the ticket, can

choose to receive emails when a ticket has had a comment posted to it. This way, all

users can stay up to date on tickets they may be interested in.

 Next, you made sure that you could actually send emails into the real world by con-

necting to a real Gmail account using Action Mailer’s SMTP settings. You also ensured

that when you send an email using the STMP setting, you can read it from the server by

using the gmail gem.

346 CHAPTER 12 Sending email

 By sending emails into the real world, you’re bringing your application one step

closer to being complete. Now you’ll be able to put the application on a server, and it

should work just as it does in your tests. But you’re going to polish your application a

little more before you do that.

 The next chapter covers how you can use Rails to present your data to other devel-

opers so that they can create applications or libraries to parse it into new and interest-

ing formats.

347

Designing an API

In the past chapters, you’ve created a great application that allows your users to

manage projects and tickets through a web browser. In this chapter, you are going

to create a way for your users to manage this content through what’s known as an

Application Programming Interface (API). As its name implies, an API is a pro-

gramming interface (for your application) that returns either JavaScript Object

Notation1 (JSON) or XML2 data for its requests, which are the two most common

formats for modern APIs to return information in. People can then create pro-

grams or libraries (referred to as clients) to read and present this data in any way

they see fit.

This chapter covers

 Building an API using new Rails 3 features

 Rate-limiting the API

 Versioning APIs

1 http://json.org.
2 http://xml.org.

http://json.org
http://xml.org

348 CHAPTER 13 Designing an API

 One great example of how an API is used is Twitter. Twitter has had an API for an

exceptionally long time now, and people have written Twitter clients for just about

every operating system out there using this API. The functionality of the site is effec-

tively the same, but people have come up with interesting ways of displaying and mod-

ifying that information, such as the Twitter for Mac clients.

 There are many, many Rails sites out there that already provide an API interface,

such as GitHub3 and (as previously mentioned) Twitter.4 Both of these APIs have

exceptionally well-documented examples of how to use them and what can be done

with them, which is a great way to convince people to start using your API. API docu-

mentation, however, is an exercise best left for you after this chapter’s done.

APIs aren’t unique to Rails. There are plenty of other sites out there that have

implemented their own APIs, such as the StackExchange services that run on Micro-

soft.Net. Furthermore, APIs created in one language are not for exclusive use of API

clients written in that specific language. For example, if you wanted to parse the data

from the StackExchange API in Ruby, you could do that just fine.

 In Rails, however, it’s extremely easy to make a modern API for an application, as

you’ll see in this chapter. Your application will serve in two formats: JSON and XML.

 Back to the Twitter and GitHub examples now, and one further thing to note is

both of these APIs are also versioned. The point of this is that an API should be pre-

sented in a “frozen” state and should not be modified once it’s considered stable. This

way, a user is be able to use an API without fear of it changing and potentially breaking

the code that they’re using to parse the data from the API.

 Twitter has a URL such as http://api.twitter.com/1/statuses/public_timeline.json

that has the version as the first part of the URL after the site name and then the for-

mat as an extension at the end. Github’s is slightly different, with a URL such as

http://github.com/api/v2/json/repos/show/rails3book/ticketee having the ver-

sion prefixed with a v as the second part of the URL, and the format as the part of the

URL directly after. The v prefix here makes the version part of the URL clearer to

those who are reading it, which is a good thing.

 You’re going to borrow ideas from both of these API designs, presenting your API

at the base URL of /api/v1 and the format at the end of the URL, like most web

requests. Your URLs will look like /api/v1/projects.json, which will be the URL to

return a list of projects that the user is able to read. The reason for this versioning is so

that you can always provide data that is predictable to your end users. If you wished to

change the format of this data, you would create a new version namespace, which is

the final thing we look at toward the end of this chapter. Really, these new version

numbers can be whatever you wish, with minor versions such as 0.1 being the standard

3 The octopi gem was built to interact with the GitHub API—you can see the source at http://github.com/
fcoury/octopi.

4 The (non-official) twitter gem was built to interact with the API that Twitter provides; you can see the
source of this gem at http://github.com/jnunemaker/twitter.

http://api.twitter.com/1/statuses/public_timeline.json
http://github.com/api/v2/json/repos/show/rails3book/ticketee
http://github.com/fcoury/octopi
http://github.com/fcoury/octopi
http://github.com/jnunemaker/twitter

349The projects API

for unstable APIs, and major versions such as 1, v1, or 1.0 being the standard for the

stable, fixed APIs.5

 To check what user is making a request to your API, you’ll use a token-based

authentication system, which is something that the Devise gem can be configured to

provide. You’ll require the token attribute to be passed through in every API request,

because without it you cannot be sure of who is doing what with the API. You can then

restrict things, such as the list of projects, based on the user’s permissions. You can

also use tokens to track the number of requests the user has performed on the API

and then block them if they make more than 100 requests per hour, which is one of

the final things you look at in this chapter. Twitter and GitHub both implement rate-

limiting so that people do not spam the system with too many API requests.

 Along the path of developing this API, you’ll learn additional Rails goodies such as

the to_json and to_xml methods, which will convert an object into JSON or XML rep-

resentations of that object respectively, as well as the respond_with and respond_to

controller methods, which are responsible for serving data in different formats.

 When you’re done with this chapter, you’ll have a nice solid API that other devel-

opers can build upon. Other applications (be it Rails or not) will also be able to read

the data from your application.

13.1 The projects API

To get started with Ticketee’s API, you’re going to write the projects part of it. In this

section, you make extensive use of the respond_with and respond_to methods,

which are new in Rails 3.

 Before you go about implementing the first building blocks for your API, you’ll

learn about a module called Rack::Test::Methods, provided by the rack-test gem,

which will allow you to easily test your API.

 After that, you’ll begin writing the API by creating the index action, which will be

responsible for displaying all the projects in a JSON format. Next, you’ll implement

token-based authentication so you can know who’s who when they access the API.

This will allow you to restrict the list of projects shown in the index action to only

those that the user should see. Later on, you’ll get this action to return XML as well

as the JSON output.

 With an API, you don’t need to provide a new and edit actions, because this func-

tionality should be provided by the client that is accessing the API. Instead, you’ll only

write the action6 parts of your API: the create, show, update, and destroy actions.

Along the way, you’ll be restricting the create, update, and destroy actions to admin-

istrators of the application.

 When learning about these actions, you’ll see a lot of reference to HTTP status

codes, which are the standard for all pages of the web. These status codes play a

5 Although logical (incremental) versioning is recommended to stave off questions such as, “What were they
thinking?!” and “Are they crazy?” This is often referred to as Semantic Versioning, http://semver.org/.

6 An absolutely terrible pun. Forgive us.

http://semver.org/

350 CHAPTER 13 Designing an API

critical role in an API, providing key information such as if the request was successful

(the 200 status code) or if the user is unauthorized (the 401 status code) to perform

the request. These are standardized ways of quickly informing people of the result of

their requests.

TIP There’s a handy gem called cheat that provides cheat sheets for a
number of things, including one for HTTP status codes. You can install
this gem using the gem install cheat command and then bring up the
cheat sheet for status codes using cheat status_codes.

But if you’re on Windows, this won’t work because Cheat requires a
function not found on your system. Instead, go to http://cheat
.errtheblog .com/b where you can view the list of all the cheat sheets.

To begin writing this API, you’ll need to define the routes to it. Without routes, making

requests to /api/v1/projects.json will forever be fruitless. If you recall from this chap-

ter’s introduction, the API URL that you’ll be using looks like /api/v1/projects.json. Pre-

viously, when you wanted URLs to be prefixed with a name (such as back in chapter 7),

you used a namespace method for them. You’re going to do the same thing here,

except you’ll use a namespace within another namespace. Let’s open config/routes.rb

and add the code from the following listing to the top of the routes definition.

Ticketee::Application.routes.draw do

namespace :api do

namespace :v1 do
resources :projects

end

end
...

This new route defines routes and routing helpers for the projects resources, such as

/api/v1/projects, and api_v1_projects_path respectively. You’re going to need to

be serving content from this route, namely a list of projects. This list will be served in

one of two forms: XML or JSON. Before you actually implement the code that makes

these responses get served, you’re going to write a new RSpec test that makes sure

these routes return the right data. To help you along, you’ll be using a feature pro-

vided by one of the dependencies of Rails: the rack-test gem.

 This gem provides a module called Rack::Test::Methods, which contains meth-

ods such as get, post, put, and delete. Look familiar? They should. They’re the four

basic HTTP methods that you use when making requests. The methods from

Rack::Test::Methods take a path on which to make a request and then return a Rack

response (an Array) that consists of three parts: the HTTP status code, the HTTP head-

ers (in Hash form), and the body. The simplest Rack response would look something

like this:

[200, {}, "Hello World!"]

Listing 13.1 config/routes.rb

http://cheat.errtheblog.com/b
http://cheat.errtheblog.com/b

351The projects API

The first element of this result is the HTTP status code, and in this case it indicates

that your fictional response was 200, or in human-terms: OK. The second element con-

tains no special HTTP headers, but you’ll see these as you progress in the next section.

Finally, the third element contains a string, which represents the body of this request,

returning the string “Hello World!”

 Using Rack::Test::Methods, you can initiate requests to your application’s API

that then return these Rack responses, and you can then use these responses to check

that your API is responding in the correct way. You’re purposely not using the standard

RSpec controller tests here to make sure that the precise URLs are responding in the

correct manner, instead of only testing that the actions are doing what you tell them.

 Let’s get into writing this initial test for your API.

13.1.1 Your first API

You’re going to continue on the running theme of “test everything” with your API, and

with the rack-test gem you’ve got the necessary tools to test what your API’s URLs are

doing. Rather than testing this in Cucumber, you’re instead going to use RSpec, which

provides a nicer DSL for testing your APIs. To begin with, you’re going to create a new

folder structure at spec/apis/v1. You should name the apis directory as a plural for two

reasons: first, it matches the consistency of the other directories in the spec directory;

and second, it may one day contain more than one API version. Then you’ll create a

new file called spec/apis/v1/projects_spec.rb and begin to fill it with the following:

require "spec_helper"

describe "/api/v1/projects", :type => :api
do

end

There’s much more code to come after this short snippet, but it’s a pretty good start.

 In the describe block here you pass through an option of :type => :api. What

does this do? Well, you can use it to modify the behavior of this describe block in

many ways, such as including modules. The Rack::Test::Methods module you’re

going to use needs to be included into each test. Rather than doing this manually, you

can use this :type option to do the include for you, as well as some additional behav-

ior. Let’s open a new file at spec/support/api/helper.rb and put the content from the

following listing inside.

module ApiHelper

include Rack::Test::Methods

def app
Rails.application

end

end

Listing 13.2 spec/support/api/helper.rb

352 CHAPTER 13 Designing an API

RSpec.configure do |c|
c.include ApiHelper, :type => :api

end

Here you define a module called ApiHelper, which you include into any test marked

as an API test with the :type option. Inside the module, you use the

Rack::Test::Methods module, which provides useful methods that you’ll see

throughout this chapter for making requests to your application, such as the get

method (not yet shown). You define the app method here so that the

Rack::Test::Methods knows which application to act on. With this done, let’s go

back to your test.

 Inside the describe block underneath this new method you’re going to want to

create a new user (an admin one at that, because later on you’ll need it for the create

and other actions) whom you’ll use to make this request to the API. You can create this

admin by adding a let inside spec/v1/api/projects_spec.rb:

let(:user) { create_user! }

You’ll need to set up Devise to include the token_authenticatable module so that

you can authenticate API requests from users by using a token they provide with each

request. This is so that you will know what projects to show to your users, as well as any

other authorization criteria that you need to apply to this user’s request. For example,

only users with permission to create projects in the application should be able to do so

through the API.

 To implement the change that you need, go into the User model (app/models/

user.rb) and change the devise call to be this:

devise :database_authenticatable, :registerable, :confirmable,

:recoverable, :rememberable, :trackable, :validatable,

:token_authenticatable

Next, generate a migration to add a field called authentication_token to the users

table, which will be used to store this token. You’ll need to add this migration to both

the development and test environments. To do this, run these three commands:

rails g migration add_authentication_token_to_users

➥authentication_token:string

rake db:migrate
rake db:test:prepare

The migration generator is smart here and will know to add the

authentication_token to the users table based on the name you’re passing through.

The additional argument on the end tells Rails what type of field you’d like this to be.

 With the migration created and run, you still need to add a callback to your User

model, so that tokens are generated for users when they’re created, or for when users

are updated but don’t have a token.7 To do this, you’ll put this line in your User model:

before_save :ensure_authentication_token

7 A situation that is unlikely to happen (as you’ve got no serious users currently), but could potentially happen.

353The projects API

The before_save method here is run on a record whenever it is created or updated,

as opposed to the before_create callback that you saw back in chapter 10, which only

calls the specified method upon record creation.

 With the callback to create the token in place, let’s jump back to your spec and

write a test to make a request with this token. Directly underneath the let(:user) in

spec/api/v1/projects_spec.rb, you’ll put the code from the following listing.

let(:token) { user.authentication_token }

before do
@project = Factory(:project)

user.permissions.create!(:action => "view", :thing => @project)

end

context "projects viewable by this user" do

let(:url) { "/api/v1/projects" }

it "json" do

get "#{url}.json"

projects_json = Project.for(user).all.to_json

last_response.body.should eql(projects_json)

last_response.status.should eql(200)

projects = JSON.parse(last_response.body)

projects.any? do |p|

p["project"]["name"] == "Ticketee"
end.should be_true

end

end

You’re using another let to define a token method that, when called, will return the

authentication_token for the current user. You’ll use this later for authenticating

requests for your API. The get method B you use here is provided by

Rack::Test::Methods and simply makes a GET request with the provided URL. You

put the URL in a let because you don’t want to repeat the URL too many times if you

have multiple tests, and the let stops you from repeating yourself in your code.

 After the request is done in the test, you ensure that the last_response.status

returns 200, which is the HTTP status code for OK and means the request was success-

ful. The rest of this spec tests that the data contained within last_response.body con-

tains the appropriate data. This to_json method will take the attributes for each

project returned and turn them into JSON, resulting in an output such as

[
{"project":

{

"created_at":"[timestamp]",
"id":1,

"name":"Ticketee",

"updated_at":"[timestamp]"
}

Listing 13.3 spec/api/v1/projects_spec.rb

B GET request

354 CHAPTER 13 Designing an API

}
]

This output can then be read with a JSON parser by the receiving user, which is what

you do on the line directly after this by using the JSON.parse method that is provided

by the json gem. This method takes the JSON string and converts it into a Ruby Array

or Hash. On the final line of your spec, you check that there’s anything in this array—

anything at all—which returns true for p["project"]["name"] == "Ticketee", to

make sure that the project you’ve created really shows up. You need the first key,

project, because this is how elements are returned in JSON response so that their

types can easily be identified. If something does match for the any? method, then

your test passes.

 Let’s see what happens when you run bin/rspec spec/api/v1/projects_spec.rb

now:

Failures:

1) /api/v1/projects projects viewable by this user index JSON

Failure/Error: get "#{url}.json", :token => token

uninitialized constant Api::V1::ProjectsController

You haven’t yet defined any controllers for your API, and so this test is going to quite

obviously fail. To make it pass, you’ll need to define the constant it requires,

Api::V1::ProjectsController. This controller will be responsible for serving all the

requests for your projects API.

13.1.2 Serving an API

To begin to define controllers for your namespace-within-a-namespace, you’ll create a

new file at app/controllers/api/v1/base_controller.rb. This file will serve as a base for

all controllers within version 1 of your API, providing functionality (eventually) for

authenticating and authorizing users, much like the ApplicationController cur-

rently does. In app/controllers/api/v1/base_controller.rb, you’ll define the following:

class Api::V1::BaseController < ActionController::Base
respond_to :json

end

Eventually you’ll put in the token authentication code into this, but for now you’re

only trying to get the example to pass. The respond_to method here sets up any

inheriting controller to respond to JSON requests, such as the ProjectsController

that you’re about to create. To make your test pass, you need to return JSON data from

this action, which is much easier than it sounds. You can get the functionality you

need from this controller by creating a new file at app/controllers/api/v1/

projects_controller.rb and filling it with this content:

class Api::V1::ProjectsController < Api::V1::BaseController

def index

respond_with(Project.all)
end

end

355The projects API

The respond_with method here will return the JSON representation of Project.all

when you make a JSON request to this path by calling to_json on the object. Rails

knows to return JSON data back from any request with the format (that’s the bit after

the dot in api/v1/projects.json) of JSON. Rails handles all of this internally for you,

which is nice of it to do. Let’s find out if this new controller and its only action make

the spec pass with bin/rspec spec/api/v1/projects_spec.rb:

1 example, 0 failures

There you have it, your first API route and action are serving up data! Now you’re

going to need to restrict what this action returns to only the projects that the user can

read, but you’ll need to first authenticate a user based on their token, which is made

easy with Devise.

13.1.3 API authentication

Your next task is authenticating the user who’s making the request in your API. The

first step is to do something with the token parameter that gets passed through with

your request. A sensible place to check this token would be in Api::V1::Base-

Controller, because you want to authenticate for all controllers in the API (although

there’s only one, for now). For this authentication, you’ll find if there’s a user with the

token passed in by using a before_filter like this in app/controllers/api/v1/base

_controller.rb:

before_filter :authenticate_user

private

def authenticate_user
@current_user = User.find_by_authentication_token(params[:token])

end

def current_user
@current_user

end

To check and see if this is working, you’ll alter your test in spec/api/v1/

projects_spec.rb to generate another project, give the user read access to only that

project, and check that the response from the API only contains that project. To do

this, you’ll add a new before to the “projects viewable by this user” context inside the

spec, using the code from the following listing.

context "projects viewable by this user" do

before do

Factory(:project, :name => "Access Denied")
end

...

end

Listing 13.4 spec/api/v1/projects_spec.rb

356 CHAPTER 13 Designing an API

In the before block you create one project that the user should not have access to

read. Inside the test itself, you’re still using the for scope on the Project class to get

only the projects that the specified user has access to. Let’s add a couple more lines to

your example now to check that this user cannot see the Access Denied project:

projects.any? do |p|

p["project"]["name"] == "Access Denied"

end.should be_false

When you run this spec with bin/rspec spec/api/v1/projects_spec.rb you’ll see

that the JSON returned from your controller still contains both projects:

expected "[[Ticketee hash]]"
got "[[Ticketee hash], [Access Denied hash]]"

To make this test pass, you’re going to need to stop returning all the projects in the

index action of Api::V1::ProjectsController and only return the projects that this

user should be able to see. Let’s now open app/controllers/api/v1/projects

_controller.rb and change the index action to use the for method and pass in the

current_user, rather than the all method:

def index
respond_with(Project.for(current_user))

end

This will now return only the list of projects that the user should be able to see, which

should be enough to get this test passing. You can find out with another quick run of

bin/rspec spec/api/v1/projects_spec.rb:

1 example, 0 failures

Great, now you’ve got your API finding a user based on the token that you’ve gathered

in your spec. One thing you haven’t tested for yet is: what happens when an invalid (or

no) token is given? Well, you should return an error when that happens. This is the

final change you’ll be making before you make a commit, because it’s been a little too

long since you’ve last done that.8

13.1.4 Error reporting

Something will inevitably go wrong in your application, and when that happens you’re

going to want to provide useful error messages to your users. One of the things that

could go wrong in your API is that the user uses an invalid token to authenticate

against your API. When a user makes a request with an invalid token, you should

inform them of their mistake, which you can do by returning JSON that looks like this:

{ error: "Token is invalid." }

To test this behavior, you’re going to make a request without a token and then fix up

your projects_spec.rb test to pass in a token. You’ll write your first test now in a new

8 As a reminder: you should commit after every safe point so that if you stuff something up (it happens!) you
won’t have to roll back as much.

357The projects API

file at spec/api/v1/authentication_spec.rb, which will be filled with the content from

the following listing.

require "spec_helper"

describe "API errors", :type => :api do

it "making a request with no token" do
get "/api/v1/projects.json", :token => ""

error = { :error => "Token is invalid." }

last_response.body.should eql(error.to_json)
end

end

You’re using Rack::Test::Methods in the spec again, and you’ve set up the token to

be a blank string so get will pass this through as the token. Let’s run this spec to make

sure it’s failing first with bin/rspec spec/api/v1/authentication_spec.rb:

Failures:

1) API errors making a request with no token
Failure/Error: get "/api/v1/projects.json", :token => ""

NoMethodError:

undefined method `admin?' for nil:NilClass
./app/models/project.rb:13:in `for'

./app/controllers/api/v1/projects_controller.rb:3:in `index'

./spec/api/v1/
authentication_spec.rb:6:in `block (2 levels) in <top (required)>'

1 example, 1 failure

Yup, definitely looks like it’s failing. Line 13 of app/models/project.rb attempts to call

admin? on the User object passed in to the for method. If you attempt to make a

request without a valid token, the call to User.find_by_authentication_token will

return nil, resulting in the error you see here. You should check if the user has been

found, and if not then you’ll show the error. To make your authenticate_user

method do this in app/controllers/api/v1/base_controller.rb, you’ll change it to what

is shown in the following listing.

def authenticate_user

@current_user = User.find_by_authentication_token(params[:token])
unless @current_user

respond_with({:error => "Token is invalid." })

end

end

If the @current_user variable is nil here, you set the response’s body to be the JSON-

form of { :error => "Token is invalid" } and respond_with that object. Does this

work? Let’s find out with bin/rspec spec/api/v1/authentication_spec.rb:

1 example, 0 failures

Listing 13.5 spec/api/v1/authentication_spec.rb

Listing 13.6 app/controllers/api/v1/base_controller.rb

358 CHAPTER 13 Designing an API

Booyah, it works! How about bin/rspec spec/api/v1/projects_spec.rb too?

1 example, 0 failures

All green there too, and so it’s definitely time to do a commit now. You should run the

customary checks before you commit by running rake cucumber:ok spec:

63 scenarios (63 passed)

732 steps (732 passed)

and
43 examples, 0 failures, 19 pending

Great! Everything’s still green. From now on you will only run the spec tests, because

all you are going to be changing is the API, which will not impact anything that the fea-

tures test. At the end of the chapter, you’ll run it again to make sure that nothing is

broken. Commit and push the changes that you’ve made:

git add .
git commit -m "Implemented token-based authentication API base"

git push

You’ve begun to implement the API now, and you’ve got the /api/v1/projects URL

returning a list of the projects that a user can see. To check what user this is, you’ve

implemented a basic token authentication using functionality built in to Devise.

 There’s still a little way to go before you’re done with the API. For starters, this API

only serves JSON requests, and some people who use it may wish for the data to be

returned in XML. You’ve also only got the one action in your controller, and you need

to implement a way for people to create, update, and delete projects through the API.

Before you do that, you’ll add in support for XML. This is incredibly easy to imple-

ment, as you’ll soon see.

13.1.5 Serving XML

So far, you’ve been using the respond_with and respond_to methods to serve JSON

responses. You can serve XML using these same methods while continuing to serve

JSON. It’s very, very easy. First of all, you’re going to want to create a test to make sure

that your new XML data is being returned correctly. You’ll place this test in the index

context for “projects viewable by this user” in spec/api/v1/projects_spec.rb using the

code from the following listing.

it "XML" do
get "#{url}.xml", :token => token

last_response.body.should eql(Project.readable_by(user).to_xml)

projects = Nokogiri::XML(last_response.body)
projects.css("project name").text.should eql("Ticketee")

end

In this spec you use the nokogiri gem to parse the XML (in chapter 6, you used it to

parse HTML). Then you use the css method to find an element called name inside

Listing 13.7 spec/api/v1/projects_spec.rb

359The projects API

another called project, and then check to see if its text is equal to the name of your

project, which it should be if everything works out fine. When you run bin/rspec

spec/api/v1/projects_spec.rb, this spec will fail:

Diff:
@@ -1,10 +1,2 @@

-<?xml version="1.0" encoding="UTF-8"?>

-<projects type="array">
- <project>

- <created-at type="datetime">[timestamp]</created-at>

- <id type="integer">1</id>
- <name>Ticketee</name>

- <updated-at type="datetime">[timestamp]</updated-at>

- </project>
-</projects>

+

...
2 examples, 1 failure

The diff here shows that the expected XML is nowhere to be found in the response,

and instead you’re getting back a final line of absolutely nothing. This is because your

Api::V1::BaseController doesn’t yet respond to XML requests. So now with a failing

test you can go right ahead and change this controller to fix it. To make your API serve

XML requests, you’ll change this line in app/controllers/api/v1/base_controller.rb

respond_to :json

to this:

respond_to :json, :xml

This simple little change will now make your spec pass, which you can see by running

bin/rspec spec/api/v1/projects_spec.rb:

2 examples, 0 failures

Apologies if something harder was expected, but it really is this simple in Rails. You’ve

only changed the API controller and spec, and it’s all contained in itself, but even so

it’s still a good habit to run all the features and specs to make sure everything is fine:

61 scenarios (61 passed)
726 steps (726 passed)

and

36 examples, 0 failures, 12 pending

Green is good. Commit this change:

git add .

git commit -m "Support XML & JSON with /api/v1/projects"
git push

Now that you’ve got your first action of your API responding to both XML and JSON,

why don’t you make some more actions, like the create action for creating projects in

Ticketee?

360 CHAPTER 13 Designing an API

13.1.6 Creating projects

In this section, you’re going to implement a new API action that will allow you to cre-

ate projects. The route for this action was provided by this code in config/routes.rb:

namespace :api do

namespace :v1 do

resources :projects
end

end

You only need to implement the create action in your controller, which makes it all

quite simple. When you make a request to this action and it passes validations, you will

return the XML or JSON representation of the project that was created, along with a

201 Created HTTP status code, which indicates that a new resource has been created.9

If the creation of the project fails any validation, then Rails will return a 422 Unpro-

cessable Entity HTTP Status Code,10 which will indicate that there are errors with the

request. The body returned by this failing will contain those errors and look some-

thing like this:

{"name":"can't be blank"}

It’s then up to the people receiving the status back from the API to choose how to dis-

play this information.

 To make this request to the create action, you need to make a POST request to the

/api/v1/projects path, and to do this there’s the post method provided by Rack

::Test::Methods that you can use. You’ll open spec/api/v1/projects_spec.rb now and

add in another context block under the first for checking that creating a project

through JSON works, as shown in the following listing.

context "creating a project" do

let(:url) { "/api/v1/projects" }

it "successful JSON" do

post "#{url}.json", :token => token,

:project => {
:name => "Inspector"

}

project = Project.find_by_name("Inspector")

route = "/api/v1/projects/#{project.id}"

last_response.status.should eql(201)

last_response.headers["Location"].should eql(route)

last_response.body.should eql(project.to_json)
end

end

9 This isn’t unique to Rails, but is rather part of RFC 2616: http://tools.ietf.org/html/rfc2616#section-10.2.2.
10 As described in RFC 4918, Section 11.2: http://tools.ietf.org/html/rfc4918#section-11.2.

Listing 13.8 spec/api/v1/projects_spec.rb

B Check API route

http://tools.ietf.org/html/rfc2616#section-10.2.2
http://tools.ietf.org/html/rfc4918#section-11.2

361The projects API

In the normal create action for the normal ProjectsController in your application,

you’re restricting creation of projects to admin users. You’ll do this for this API action

in a bit—you’re only trying to get the most basic example going first. Here you again set

up the url in a let so that you can re-use it for the other tests you’ll implement later.

 You begin your test by making a POST request using post (provided by the

Rack::Test::Methods module, just like get), passing through the parameters of a

project as the second argument in this method. Then you check that the status of the

last_response is set to 201, which is the correct reply if the resource was created suc-

cessfully. Next, check that the Location B in the header is set to the correct API

route, which would be something such as http://example.com/api/v1/projects.

You’ll find out why when you go to implement this action. On the final line of the

spec, check that the last_response.body contains the JSON representation of the

project that should have been created.

 When you run bin/rspec spec/api/v1/projects_spec.rb this test will fail,

because you’ve yet to implement the create action for its controller:

Failure/Error: post "#{url}.json", :token = token,

The action 'create' could not be found for Api::V1::ProjectsController

You’ll need to implement this action to make the spec pass. Let’s open app/

controllers/api/v1/projects_controller.rb and add this action underneath your index

action, using the code shown in the following listing.

def create
project = Project.create(params[:project])

if project.valid?

respond_with(project, :location => api_v1_project_path(project))
else

respond_with(project)

end
end

By using the create method of Project, Rails will attempt to create a new record. If

this succeeds, then the status that will be returned will be 201 and you’ll get back the

proper representation (either JSON or XML) of the new project. On the final line of

this action, you manually set the Location key in the headers by passing through the

:location option B so that it points to the correct URL of something such as http:/

/example.com/api/v1/projects/1, rather than the Rails default of http://

example.com/projects/1. People who are using your API can then store this location

and reference it later on when they wish to retrieve information about the project.

The URL that Rails defaults to goes to the user-facing version of this resource (/proj-

ects/1.json), which is incorrect.

 If the project isn’t valid (that is, if the save method returns false), then you sim-

ply let Rails return a response that will contain the errors of the project, without hav-

ing a custom location set.

Listing 13.9 app/controllers/projects_controller.rb

BSet Location key

362 CHAPTER 13 Designing an API

 This should be all that you need in order to get your spec to pass, so let’s see what

happens when you run bin/rspec spec/api/v1/projects_spec.rb:

3 examples, 0 failures

Great! Now you need to write a test to check that when you attempt to pass through a

project with no name you’re given a 422 status code and an error along with it, indi-

cating that the project wasn’t created due to those errors. Directly underneath the

previous test in spec/api/v1/projects_spec.rb, you’ll add this test shown in the follow-

ing listing.

it "unsuccessful JSON" do

post "#{url}.json", :token => token,

:project => {}
last_response.status.should eql(422)

errors = {"name" => ["can't be blank"]}.to_json

last_response.body.should eql(errors)

end

Naughty you, writing the test after the code is already there, but you can get away with

it once. Let’s run the spec and see how it goes now:

4 examples, 0 failures

Great success! With this URL working for valid and non-valid projects appropriately,

you are now providing a way for your users to create a project through the API, and so

it’s time to make a commit:

git add .

git commit -m "Added API to create projects"

git push

Your next task is to restrict this action to only the admins of your application, as in the

real ProjectsController controller. You want to limit the number of people who can

change the projects to a select few who know what they’re doing.

13.1.7 Restricting access to only admins

In app/controllers/projects_controller.rb you’ve got this line, which restricts some

actions to only admins:

before_filter :authorize_admin!, :except => [:index, :show]

As it says on the line, every action other than index or show has this filter run before

it. This filter is defined in app/controllers/application_controller.rb like this:

def authorize_admin!

authenticate_user!
unless current_user.admin?

flash[:alert] = "You must be an admin to do that."

redirect_to root_path
end

end

Listing 13.10 spec/api/v1/projects_spec.rb

363The projects API

You’re not going to be able to use this same before_filter for your API because the

API doesn’t return flash messages. You have to return errors in a lovely little JSON or

XML format. This particular error, for example, is “You must be an admin.” Also, redi-

rection doesn’t make sense here, because it wouldn’t tell users why they were redi-

rected. Therefore, you’ll implement a different authorize_admin! method in your

Api::V1::BaseController instead. You’ll take the time, however, to write a test to

check for this error occurring. Let’s open a new file at spec/api/v1/project

_errors_spec.rb and add a test that if you attempt to make a POST request to api/v1/

projects using a token for a user who’s not an admin, you get an error. Use the code

from the following listing.

require "spec_helper"

describe "Project API errors", :type => :api do

context "standard users" do

let(:user) { create_user! }

it "cannot create projects" do
post "/api/v1/projects.json",

:token => user.authentication_token,

:project => {
:name => "Ticketee"

}

error = { :error => "You must be an admin to do that." }
last_response.body.should eql(error.to_json)

last_response.code.should eql(401)

Project.find_by_name("Ticketee").should be_nil
end

end

end

With this spec, you test that a normal user who’s using a valid authenticity token can-

not create a project through the API because they’re not an admin. Instead, the API

should return a response of “You must be an admin to do that.” This response should

have a code of 401, indicating an Unauthorized response. When you run this spec

using bin/rspec spec/api/v1/project_errors_spec.rb, it will not return the error

as you expect:

expected "{\"error\":\"You must be an admin to do that.\"}"

got "{[project hash]}"

To make this error happen, you’ll go into app/controllers/api/v1/base_controller.rb

and underneath your authenticate_user method add the authorize_admin!

method shown in the following listing.

def authorize_admin!

if !@current_user.admin?
if !@current_user.admin?

Listing 13.11 spec/api/v1/project_errors_spec.rb

Listing 13.12 app/controllers/api/v1/base_controller.rb

364 CHAPTER 13 Designing an API

error = { :error => "You must be an admin to do that." }
warden.custom_failure!

render params[:format].to_sym => error

, :status => 401
end

end

end

Here you use warden.custom_failure! to inform Warden (the Rack backend to

Devise) that you’re going to raise a custom 401 response. Without this, Devise would

instead take over from this 401 response, showing a “You must be signed in to con-

tinue” error message.

 You also use the render method in a unique manner here. You call it and pass in a

hash with the key being a symbolized version of the format (in this case, json) and the

value being the hash that contains the error. By calling render in this way, Rails will

convert the hash to JSON, or if it were an XML request, to XML. The reason for doing

it this way rather than using respond_with is because respond_with will attempt to do

some weird behavior and doesn’t work for POST requests, so you must work around

that little issue.

 By specifying the status option to the render here, your response’s status code

will be set to that particular status, which will let the code used to connect to the API

know that the user is unauthorized to perform the specific request.

 Now all you need to do is add this as a before_filter into app/controllers/api/

v1/projects_controller.rb using this line:

before_filter :authorize_admin!, :except => [:index, :show]

With this line in the ProjectsController, any request to any action that’s not the

index or show action will have the admin check run before it. If a user doesn’t meet

this criteria, then you will return the “You must be an admin to do that” error. These

pieces of code should be enough to get your test running, so let’s find out with bin/

rspec spec/api/v1/project_errors_spec.rb:

1 example, 0 failures

Now when people who aren’t admins try to create a project, they will see the “You

must be an admin to do that” error message returned from the API. Because this is the

case, you’ll need to set up the user in the projects API examples to be an admin when

they attempt to create a project, which you can do by putting this before after the

beginning of the “creating a project” context block:

before do

user.admin = true

user.save
end

When you run bin/rspec spec/api/v1/projects_spec.rb, all the examples will be

passing:

4 examples, 0 failures

365The projects API

With this new authorization added you will make a commit, but before that you’ll run

a customary check to make sure everything is still alright by running rake spec,

because all you’ve edited in this section is the API. You should see this output:

47 examples, 0 failures, 19 pending

Great, so let’s go ahead and commit this then:

git add .

git commit -m "Only admins are able to create projects through API"
git push

In the response for your create action, the headers point to a location (you custom-

ized) of a project, something such as http://example.com/api/v1/projects/1. Cur-

rently, this URL doesn’t go anywhere because it needs the show action to exist. You

should probably get on to that.

13.1.8 A single project

You’ve got a link (http://example.com/api/v1/projects/1) provided by your create

action that doesn’t go anywhere if people try to access it. Soon this URL will show a

particular project’s attributes through the show action in your Api::V1::Projects-

Controller. Within those attributes, you’ll also show a last_ticket element, which

will contain the attributes for the most recently updated ticket. To do this, you use

another option of respond_with, the :methods option. Using this option will change

the output of each project resource in your JSON API to something like this:

{

"project": {
"created_at": "[timestamp]",

"id": 1,

"name": "Ticketee",
"updated_at": "[timestamp]",

"last_ticket": {

"ticket": {
"asset_updated_at": null,

"created_at": "[timestamp]",

"description": "A ticket, nothing more.",
"id": 1,

"project_id": 1,

"state_id": null,
"title": "A ticket, nothing more.",

"updated_at": "[timestamp]",

"user_id": 2
}

}

}
}

Using the last_ticket method, people using the API will be able to discover when

the last activity was on the project. You could add other fields such as the comments

too if you wished, but this example is kept simple for quality and training purposes.

366 CHAPTER 13 Designing an API

 To get started with this show action, you’ll write a test in spec/api/v1/

projects_spec.rb for it inside the “projects viewable by this user” context block, as

shown in the following listing.

context "show" do

let(:url) { "/api/v1/projects/#{@project.id}"}

before do

Factory(:ticket, :project => @project)

end

it "JSON" do

get "#{url}.json", :token => token

project = @project.to_json(:methods => "last_ticket")
last_response.body.should eql(project)

last_response.status.should eql(200)

project_response = JSON.parse(last_response.body)["project"]

ticket_title = project_response["last_ticket"]["ticket"]["title"]
ticket_title.should_not be_blank

end

end

You’re using the project method that was set up by the “projects viewable by this

user” context block earlier to generate the URL to a Project resource, as well as using

it to create a new ticket for this project so that last_ticket returns something of

value. You take this URL and do a JSON request on it, and you expect to get back a

JSON representation of the object with the last_ticket method being called and also

returning data. Then you check that the response’s status should be 200, indicating a

good request, and finally you check that the last ticket title isn’t blank.

 To make this test pass, open app/controllers/api/v1/projects_controller.rb and add

in the show action, as shown in the following listing.

def show
@project = Project.find(params[:id])

respond_with(@project, :methods => "last_ticket")

end

In this action, you find the Project based on the params[:id] value and then

respond_with this object, asking it to call the last_ticket method. If this method is

undefined (as it is right now), then the method will not be called at all. When you run

this test with bin/rspec spec/api/v1/projects_spec.rb, you’ll see this error:

Failure/Error: ticket_title = last_response ...

You have a nil object when you didn't expect it!
You might have expected an instance of Array.

The error occurred while evaluating nil.[]

Listing 13.13 spec/api/v1/projects_spec.rb

Listing 13.14 app/controllers/api/v1/projects_controller.rb

367The projects API

The error occurs because you’re attempting to call the [] method on something that

is nil, and it’s really likely that the something is the last_ticket key, which doesn’t

exist yet because the method is not defined. To define this method, open app/

models/project.rb and add this method inside the class:

def last_ticket

tickets.last

end

Why are you doing it this way? Well, respond_with doesn’t let you chain methods, and

so you’ll work around this by defining a method that calls the chain in your model.

When you run bin/rspec spec/api/v1/projects_spec.rb, this test will pass because

the last_ticket method is now defined:

1 example, 0 failures

Great! Now the show action is responding with data similar to this:

{

"project": {

"created_at": "[timestamp]",

"id": 1,
"name": "Ticketee",

"updated_at": "[timestamp]",

"last_ticket": {
"ticket": {

"asset_updated_at": null,

"created_at": "[timestamp]",
"description": "A ticket, nothing more.",

"id": 1,

"project_id": 1,
"state_id": null,

"title": "A ticket, nothing more.",

"updated_at": "[timestamp]",
"user_id": 2

}

}
}

}

How goes the rest of your API? Let’s find out with a quick run of rake spec:

40 examples, 0 failures, 19 pending

Ok, that’s good to see, time to make a commit:

git add .
git commit -m "Added API action for a single project with last ticket"

git push

Back in the main part of the application, you’ve got permissions on users that restrict

which projects they can see. Currently in the API there is no such restriction, and so

you need to add one to bring it in line with how the application behaves.

368 CHAPTER 13 Designing an API

13.1.9 No project for you!

Currently, any user can see the details of any project through the API. The main appli-

cation enforces the rule that users without permission to view a project are not able to

do so. To enforce this rule in your API as well, you use the find_project method:

def find_project

@project = Project.for(current_user).find(params[:id])
rescue ActiveRecord::RecordNotFound

flash[:alert] = "The project you were looking for could not be found."

redirect_to projects_path
end

Here you use the for method, which will return a scope for all projects viewable by the

current user. By calling find on this scope, if the user doesn’t have access to the proj-

ect then an ActiveRecord::RecordNotFound exception will be raised. You then

rescue this exception and lie to the user, telling them the project is mysteriously

gone.11 Much like the authorize_admin! method you ported over before, you can’t

set the flash notice or redirect here. Instead, you’re going to have to present an API

error as you did earlier.12

 To test this new before_filter :authorize_user, write a new test in spec/api/v1/

project_errors_spec.rb where a user without permission on a project attempts to view

it, only to be rebuked by the server with an error. This test should be placed inside the

“standard users” context block and is shown in the following listing.

it "cannot view projects they do not have access to" do

project = Factory(:project)

get "/api/v1/projects/#{project.id}.json",

:token => user.authentication_token

error = { :error => "The project you were looking for" +
" could not be found." }

last_response.status.should eql(404)

last_response.body.should eql(error.to_json)
end

When the user attempts to go to the show page, they should receive the error inform-

ing them that the project has run away (or doesn’t exist). The status code for this

response should be 404, indicating the resource the user was looking for is not found.

To make this work, you’ll remove this line from the show action in app/controllers/

api/v1/projects_controller.rb:

project = Project.find(params[:id])

11 It’s not really.
12 Although this may seem like repetition (which it is), it’s part of the project’s API and will help you understand

the concepts better. Practice, practice, practice! It makes perfect prefects.

Listing 13.15 spec/api/v1/project_errors_spec.rb

369The projects API

Then you’ll put this line under the authorize_admin! filter inside this controller’s

class:

before_filter :find_project, :only => [:show]

Next, you need to add the find_project after the show action as a private method, as

shown in the following listing.

private

def find_project

@project = Project.for(current_user).find(params[:id])
rescue ActiveRecord::RecordNotFound

error = { :error => "The project you were looking for " +

"could not be found."}
respond_with(error, :status => 404)

end

Here you respond with the error message and set the status to 404 to tell the user that

the project doesn’t exist. When you run bin/rspec spec/api/v1/project_errors

_spec.rb, your spec will pass:

2 examples, 0 failures

You’re now restricting the projects that a user can access to only the ones they have

permission to view. If the API user doesn’t have the permission, you’ll deny all knowl-

edge of the project and return a 404 status code. It’s quite grand how this is possible in

such few lines of easy-to-understand code.

 You’ll run all the specs now to make sure everything’s rosy with rake spec. You

should see that it’s all green:

40 examples, 0 failures, 12 pending

A nice round number this time. A commit you shall make:

git add .

git commit -m "Restricting projects API show to only users who have
 ➥permission to view a project"

git push

Currently you’ve got the index, show, and create actions implemented for your con-

troller. What’s missing? Well, you could say the new, edit, update, and destroy actions

are, but you don’t need the new and edit actions, because this should be handled on

the client side of the API, not the server. It is the client’s duty to present the new and

edit dialogs to the user. Therefore, you only need to implement the update and

destroy methods and then you’re done with this API. So close!

Listing 13.16 app/controllers/api/v1/projects_controller.rb

370 CHAPTER 13 Designing an API

13.1.10Updating a project

To update a project in the API, people will need to make a POST request to the /api/

v1/projects/:id URL with the project’s new information contained in a params[:proj-

ect] hash. Simple, really.

 To test that this action works correctly, you’ll add yet another spec to spec/api/v1/

projects_spec.rb using the code from the following listing.

context "updating a project" do
before do

user.admin = true

user.save
end

let(:url) { "/api/v1/projects/#{@project.id}" }

it "successful JSON" do
@project.name.should eql("Ticketee")

put "#{url}.json", :token => token,

:project => {

:name => "Not Ticketee"
}

last_response.status.should eql(200)

@project.reload
@project.name.should eql("Not Ticketee")

last_response.body.should eql("{}")

end
end

At the top of this new context block, you’ve defined that the user is an admin again.

You could wrap the create and update tests within another context that sets this flag

too, but you’ll do it this way for now.

 You need to make a put request to this action for Rails to accept it, and you can do

that by using the put method B. Along with this request, you send the token and

project parameters. The project parameter contains a new name for this project.

Because it’s a valid (non-blank) name, the response’s status code will be 200, but the

response will be an empty hash indicating no errors. This doesn’t return an updated

object, because what’s the point? The client should be aware of the updates that have

occurred, given it triggered them!

 At the end of this spec, you use the reload method to find this object again from

the database. This is because the object that the spec is working with will be a com-

pletely different Ruby object from the one in the update action in the controller. By

calling reload, Rails will fetch the data for this object again from the database and

update the object in the process.

 To begin writing this action in Api::V1::ProjectsController, you’re going to

need to first modify the before_filter :find_project line to include the update

action, changing it from this

before_filter :find_project, :only => [:show]

Listing 13.17 spec/api/v1/projects_spec.rb

B put request

371The projects API

to this:

before_filter :find_project, :only => [:show, :update]

Now in the update action you’ll have a project that you can work with because this

before_filter will find it for you. Next, you’ll write this action into the controller

using the code from the following listing.

def update

@project.update_attributes(params[:project])

respond_with(@project)
end

Well isn’t this quite a difference from your standard update actions? You only need to

call update_attributes here, which will save the object and return a valid object in

the format that you’ve asked for. If this object fails validation, the status code returned

by respond_with will be 422, which represents an Unprocessable Entity, and the body

will contain only the validation errors that occurred. If the object is valid,

respond_with will return a 200 status code, but an empty response. This is because

the client should be aware of what changes it has made to the object, and so there’s no

need to send back the object.

 So which is it? Does the update action work and return the 200 status code you

want, or does it break? It’s easy to find out by running bin/rspec spec/api/v1/

projects_spec.rb:

5 examples, 0 failures

All working, good stuff. You’ve now got a check that the update action responds cor-

rectly when a valid object is given, but what if invalid parameters are given instead?

Well, the action should return that 422 response mentioned earlier. Although this is

testing the already extensively tested13 Rails behavior, you’re making sure that this

action always does what you think it should. No misbehaving allowed! You’ll quickly

whip up a spec for this, placing it right underneath the previous example, “successful

JSON” that you wrote in spec/api/v1/projects_spec.rb. The code for it is shown in the

following listing.

it "unsuccessful JSON" do

@project.name.should eql("Ticketee")
put "#{url}.json", :token => token,

:project => {

:name => ""
}

last_response.status.should eql(422)

Listing 13.18 app/controllers/api/v1/projects_controller.rb

13 It’s tested within Rails itself.

Listing 13.19 spec/api/v1/projects_spec.rb

372 CHAPTER 13 Designing an API

@project.reload
@project.name.should eql("Ticketee")

errors = { :name => ["can't be blank"]}

last_response.body.should eql(errors.to_json)
end

In this example, you attempt to set the project’s name to a blank string, which should

result in the 422 error you want to see. After you reload the project, the name should

be the same. You should then get the 422 error as the response.

 A quick run of bin/rspec spec/api/v1/projects_spec.rb should let you know if

this is working:

7 examples, 0 failures

Indeed it is! Is everything else working? A run of rake spec will let you know:

51 examples, 0 failures, 19 pending

“51 examples, 0 failures” is exactly what you like to see. That means that your update

action is all wrapped up, and now it’s time for a commit:

git add .

git commit -m "Implement update action for projects API"
git push

You’ve now got three fourths of the CRUD of this API. You’re able to create, read, and

update project resources. With updating, clients authorized with an admin’s token

can send through updates to the project resource, which will update the information

in the application. The one remaining action you’ve got to implement is the destroy

action, for making projects go bye-bye. You’re almost home!

13.1.11Exterminate!

You need to create the destroy action, which allows admins of Ticketee to delete proj-

ects through the API. To do this, API clients need to make a DELETE request to /api/

v1/projects/1.json or /api/v1/projects/1.xml. Upon making this request, the speci-

fied project will be deleted—gone forever, exterminated!

 You’ll write the final example in the spec/v1/api/projects_spec.rb to make sure

that people are able to delete projects using this route. You’ll use the code from the

following listing to do this.

context "deleting a project" do
before do

user.admin = true

user.save
end

let(:url) { "/api/v1/projects/#{@project.id}" }

it "JSON" do
delete "#{url}.json", :token => token

Listing 13.20 spec/v1/api/projects_spec.rb

373The projects API

last_response.status.should eql(200)
end

end

When you run bin/rspec spec/v1/api/projects_spec.rb, this spec will fail because

the destroy action doesn’t exist:

1) /api/v1/projects deleting a project JSON

Failure/Error: delete "#{url}.json", :token => token
The action 'destroy' could not be found for Api::V1::ProjectsController

You need to add the destroy action to the Api::V1::ProjectsController, which you

can do with this code:

def destroy

@project.destroy

respond_with(@project)
end

The respond_with here will respond with a 200 status code and an empty JSON or

XML response, which indicates the object was successfully destroyed. But where does

@project come from? Your before_filter should set this up, but it doesn’t right now.

Let’s fix it by changing it from this

before_filter :find_project, :only => [:show,

:update]

to this:

before_filter :find_project, :only => [:show,

:update,
 :destroy]

When you run bin/rspec spec/api/v1/projects_spec.rb, does it pass?

8 examples, 0 failures

It does, because you’re great at what you do! That’s the final piece of the projects API,

and now people are able to create, read, update, and delete projects through it. The

rest of your specs probably pass because you didn’t change anything outside the

scope, but it’s still good to do a check. For old time’s sake, you’ll also run the features

to make sure everything’s ok there too. The full command that you’ll now run is rake

cucumber:ok spec. For this command, you should see this output:

63 scenarios (63 passed)

732 steps (732 passed)

and
52 examples, 0 failures, 19 pending

All systems are go, so let’s make a commit at this lovely point in time where everything

is beautiful:

git add .

git commit -m "Projects can now be deleted through the API"

374 CHAPTER 13 Designing an API

The entire projects API is now complete. What you’ve got at the moment is a solid

base for version 1 of Ticketee’s projects API. You’ll now see how you can begin creat-

ing the nested API for tickets on a project.

13.2 Beginning the tickets API

In this section you’ll begin to create an API for tickets on a project. You’re only going

to be creating the part of the API to list tickets for now, because the remaining parts

are similar in style to what you saw with the projects API. This section will give you a

taste of how to work with nested resources within the context of an API.

 The first part you’re going to need for this API is two tests: one to make sure you

can get XML results back from this API and another for JSON results. Put these new

tests in a new file at spec/api/v1/tickets_spec.rb, beginning with the setup required for

both of these tests shown in the following listing.

require 'spec_helper'

describe "/api/v1/tickets", :type => :api do
let(:project) { Factory(:project, :name => "Ticketee") }

before do

@user = create_user!
@user.update_attribute(:admin, true)

@user.permissions.create!(:action => "view",

:thing => project)
end

let(:token) { @user.authentication_token }

In this spec you use a before block to set up your user, rather than using a let as you

did in spec/api/v1/projects_spec.rb. The reason for this is when a let is referenced,

the block is re-run. If you were to create five tickets and reference a user object set up

with let, it would create five users. This problem becomes way more pronounced

when you create 100 objects, each referencing the let.

 With this setup, you can begin the context for your index action and then in a

before block, create 20 tickets for the project by using these lines after the

let(:project) line:

context "index" do

before do
5.times do

Factory(:ticket, :project => project, :user => @user)

end
end

Finally, you can write the XML and JSON tests by placing the code shown in the follow-

ing listing inside the context block you have written.

Listing 13.21 spec/api/v1/tickets_spec.rb

375Beginning the tickets API

context "index" do
...

let(:url) { "/api/v1/projects/#{project.id}/tickets" }

it "XML" do
get "#{url}.xml", :token => token

last_response.body.should eql(project.tickets.to_xml)

end

it "JSON" do

get "#{url}.json", :token => token

last_response.body.should eql(project.tickets.to_json)
end

end

You’ve defined the let(:url) here to point to the nested route for tickets of a given

project. This URL is currently undefined and so when you run this test with bin/rspec

spec/api/v1/tickets_spec.rb, you’re told that the route you’re requesting doesn’t

exist:

Failure/Error: get "#{url}.json", :token => token
ActionController::RoutingError:

No route matches [GET] "/api/v1/projects/1/tickets.json"

You can define this route easily inside config/routes.rb by changing these lines

namespace :api do

namespace :v1 do

resources :projects
end

end

to this:

namespace :api do

namespace :v1 do

resources :projects do
resources :tickets

end

end
end

Now you’ve got the tickets resource nested within projects for your API again. When

you re-run this spec you’ll be told this:

uninitialized constant Api::V1::TicketsController

You can create this controller by creating a new file at app/controllers/api/v1/

tickets_controller.rb. This controller needs to first of all respond to both JSON and

XML, and find the project for each request using a before_filter. You can begin to

define this controller using the code from the following listing.

Listing 13.22 spec/api/v1/projects_spec.rb

376 CHAPTER 13 Designing an API

class Api::V1::TicketsController < Api::V1::BaseController

before_filter :find_project

private

def find_project
@project = Project.for(current_user).find(params[:project_id])

rescue ActiveRecord::RecordNotFound

error = { :error => "The project you were looking for" +
" could not be found."}

respond_with(error, :status => 404)

end
end

In the beginning, you set up the controller to inherit from Api::V1::BaseController

so that it inherits the basic behavior of your API. Then you tell it that this controller

responds to both JSON and XML. Finally, you define a before_filter :find_project

that will find a project, providing that the user is able to access it. If the user cannot

access it, then you respond_with a 404 error.

 Underneath the before_filter in this controller, you need to define the index

action to return a list of tickets for your project. You can do that with the code shown

in the following listing.

def index

respond_with(@project.tickets)
end

That feels like you’re getting too much for free, doesn’t it? Rails is handling a lot of the

actions here for you. When you run bin/rspec spec/api/v1/tickets_spec.rb specs

again, your tests will now pass because you’ve got the controller defined correctly:

2 examples, 0 failures

This is a great start to generating a tickets API, and now with the skills you’ve learned

a little earlier in this chapter you should be able to bash out the rest with little effort.

Rather than covering that old ground again, it’ll be left as an exercise for you.

 Let’s run all the tests with rake spec to make sure you didn’t break anything:

54 examples, 0 failures, 19 pending

Nope, nothing broken there, which is awesome to see. Time for a commit:

git add .
git commit -m "Added beginnings of the V1 Tickets API"

git push

You should probably limit the number of tickets that are sent back through the API or,

even better, cache the result. You’ll see ways to do both of these things in chapter 15,

and then you can apply them to the API when you feel it’s right. For now, it would be

Listing 13.23 app/controllers/api/v1/tickets_controller.rb

Listing 13.24 app/controllers/api/v1/tickets_controller.rb

377Rate limiting

fine for a project with a small amount of tickets, but if a project grew to something say,

the size of the Rails project,14 then it would be problematic because Rails would have

to instantiate thousands of new Ticket objects per-request. That’s no good.

 Now that you’re versed in the Ways of the API, you can tackle potential problems

with it. One of the potential problems with this API is that you’ll have too many users

accessing it all at once, which may cause performance problems with the application.

To prevent this, you’ll implement the rate of requests people can make to your server.

13.3 Rate limiting

When a server receives too many requests, it can seem unresponsive. This is simply

because it is too busy serving existing requests to serve the hoard of incoming

requests. This can happen when an application provides an API to which many clients

are connecting. To prevent this, you’ll implement rate-limiting on the API side of

things, limiting users to only 100 API requests per hour.

 The way you’re going to do this is to add a new field to the users table that stores a

count of how many requests the user has made per hour. To reset the user’s count

back to zero, you’ll create a method that finds only the users who’ve made requests in

the last hour and reset their counts.

13.3.1 One request, two request, three request, four

Currently in app/controllers/api/v1/base_controller.rb you’ve got code that only

checks if the token specified is correct, and if so, assigns a user to the @current_user

variable:

def authenticate_user

@current_user = User.find_by_authentication_token(params[:token])

unless @current_user
respond_with({ :error => "Token is invalid." })

end

end

You’ll now be able to do whatever you wish to this user object in an API request. First,

you’re going to make sure that it’s incrementing the request count for a user when-

ever they make an API request. For this, you need a field in the database to keep a

track of user API requests. You’ll generate a migration using this command

rails g migration add_request_count_to_users request_count:integer

This migration will do exactly what you say it should do: add a field called

request_count to the users table. You’ll need to modify this migration slightly so that

the field defaults to 0, which you can do by replacing this line in the new migration:

add_column :users, :request_count, :integer

with this:

add_column :users, :request_count, :integer, :default => 0

14 6000 tickets, as of this writing.

378 CHAPTER 13 Designing an API

You can run these two commands to run this migration, and then you’ll be on your

way:

rake db:migrate

rake db:test:prepare

You can now write a test to make sure that the request count is going to be incremented

with each request. You’ll open a new file at spec/v1/api/rate_limit_spec.rb so that you

can separate these tests from the others, because they are not part of the projects API

or the errors from it. Into this file you’ll put the code from the following listing.

require 'spec_helper'

describe "rate limiting", :type => :api do

let(:user) { create_user! }

it "counts the user's requests" do

user.request_count.should eql(0)

get '/api/v1/projects.json', :token => user.authentication_token

user.reload
user.request_count.should eql(1)

end

end

When you run this spec now with bin/rspec spec/v1/api/rate_limit_spec.rb, it’s

going to fail on the final line because the request count hasn’t been incremented:

Failure/Error: user.request_count.should eql(1)

expected 1

got 0

(compared using eql?)

Alright, now that you’ve got a failing test, you can make it work! Open app/

controllers/api/v1/base_controller.rb and add in a new method called check_rate

_limit right underneath the current_user method, using this code:

def check_rate_limit

@current_user.increment!(:request_count)

end

By calling the increment! method on the user object, the field specified will be incre-

mented once. To call this method, you’ll put it as another before_filter underneath

the authenticate_user one at the top of this controller:

before_filter :check_rate_limit

That’s all there is to it, and so it will pass when you run bin/rspec spec/api/v1/

rate_limit_spec.rb:

1 example, 0 failures

This is splendid. Before you run any more specs or make any commits, you’ll do what

you came here to do: limit some rates.

Listing 13.25 spec/v1/api/rate_limit_spec.rb

379Rate limiting

13.3.2 No more, thanks!

You’ve got the method called check_rate_limit, but it’s not actually doing any check-

ing right now, it’s only incrementing. You should do something about this.

 You’ll begin by writing a test to check that people who reach the rate limit (of 100)

receive a warning that tells them simply “Rate limit exceeded.” You’ll put this new test

underneath the previous test you wrote in spec/v1/api/rate_limit_spec.rb using the

code from the following listing.

it "stops a user if they have exceeded the limit" do

user.update_attribute(:request_count, 200)

get '/api/v1/projects.json', :token => user.authentication_token
error = { :error => "Rate limit exceeded." }

last_response.code.should eql(403)

last_response.body.should eql(error.to_json)
end

In this spec, you set the request count to be over the 100 limit. If the user makes

another request, they should see the “Rate limit exceeded” error. For the status in this

spec, you’re expecting the error to be set to a 403, which would indicate a forbidden

request that is perfectly in line with the no, we’re not going to let you make any more requests

theme you’ve got going on.

 To make this work, change the check_rate_limit method in app/controllers/api/

v1/base_controller.rb to what is shown in the following listing.

def check_rate_limit

if @current_user.request_count > 100

error = { :error => "Rate limit exceeded." }
respond_with(error, :status => 403)

else

@current_user.increment!(:request_count)
end

end

In this method, if the user’s current request_count is greater than 100, then you

respond with the “Rate limit exceeded” error and set the status code of the response

to 403. If it’s less than 100, then you’ll increment their request count. This should be

enough to make your spec pass now, so let’s run bin/rspec spec/api/v1/rate

_limit_spec.rb and find out if this is working:

2 examples, 0 failures

Your API is now limiting requests to 100 per user, but that’s for all time right now,

which isn’t fun. You need a method that will reset the request count for all users

who’ve made requests. It’s the final step you need to complete the rate limiting part of

your API.

Listing 13.26 spec/v1/api/rate_limit_spec.rb

Listing 13.27 api/controllers/v1/base_controller.rb

380 CHAPTER 13 Designing an API

13.3.3 Back to zero

You need to reset the request_count of each user who’s made a request to your API.

This will be a method on the User model, and so you’ll put its test in a new file as

spec/models/user_spec.rb file, inside the describe User block, using the code from

the following listing.

require 'spec_helper'

describe User do
it "resets user request count" do

user = Factory(:user)

user.update_attribute(:request_count, 42)
User.reset_request_count!

user.reload

user.request_count.should eql(0)
end

end

With this spec, you set a new user’s request count to something other than 0; 42 is a

random number,15 and you’re quite fortunate for it to exist so that you can use it. The

reset_request_count! method isn’t defined, but as the remainder of the test implies,

the user’s request count should be 0. This test, unsurprisingly, will not pass when it

runs, and so you should write the method to make it pass.

 As the reset_request_count! method is called on User, you define this method in

app/models/user.rb using the following code above the to_s method:

def self.reset_request_count!
update_all("request_count = 0", "request_count > 0")

end

You’re placing this code right above the to_s method because it is best practice to

place class methods (such as reset_request_count!) above instance methods in a

model, as some instance methods may refer to class methods. Also, if everybody puts

their code in logical places, then you won’t be confused when you look at it, which is

what Rails is all about.

 The update_all method here will set the request_count on all user records (the

first argument) that have a request_count > 0 (the second argument), or a request

_count greater than zero. No point resetting counts that are zero back to zero.

 Now that the reset_request_count! method is defined, does it work as your test

says it should? Well, let’s run bin/rspec spec/models/user_spec.rb:

1 example, 0 failures

Cool, so now you’ve got the request count being reset for all users whenever this

method is called. You’ll take a look at calling this method automatically when we look

at background jobs in chapter 15.

Listing 13.28 spec/models/user_spec.rb

15 Not really.

381Versioning an API

 That completes everything you need to do for rate limiting in your API. Before you

make a commit, run all the specs with the rake spec to see if the API is still working:

56 examples, 0 failures, 18 pending

All good! You can commit this now:

git add .
git commit -m "Added rate limiting to the V1 API"
git push

You’ve implemented a way to stop people from making too many requests to your API,

which will possibly stop your application from being overloaded due to excessive API

requests. Next, we look at how you can implement versioning in your API.

13.4 Versioning an API

At the beginning of this chapter, we discussed how all your API routes would be under

the /api/v1/ namespace. This was because you wanted to provide a predictable out-

come of the requests to the URLs. If you go changing URLs to provide extra data or to

take away data, some API clients may malfunction. So when you want to make changes

to your API, you group them all up into logical versions.

 With this separation, you can provide a link, such as /api/v1/projects.json, which

will return the attributes you’re already familiar with, as well as another path for the

next version. This second version’s path will be /api/v2/projects.json, and the differ-

ence between the two is that you’ll change the name field to be called title instead.

Although this is potentially a trivial example,16 it’s a great case to show off how to

make two API versions different.

13.4.1 Creating a new version

To begin the versioning process, copy these routes from config/routes.rb in your

application:

namespace :api do
namespace :v1 do

resources :projects
end

end

And place them beneath, renaming v1 to v2:

namespace :api do
namespace :v2 do

resources :projects
end

end

Now you’ll need to create a new app/controllers/api/v2 directory, which you can do

by copying app/controllers/api/v1 into that location. You’ve now got version 2 of

16 Also a tiny fraction slower than v1, given you’ll be calling a method from within another method rather
renaming it.

382 CHAPTER 13 Designing an API

your API. You’ll need to open these controllers and replace the multiple occurrences

of Api::V1 with Api::V2.

 Strangely, version 2 of your API is, right now, identical to version 1 of your API.

That’s intentional: a new version of the API should be an improvement, not an entirely

new thing. With this separation, you can modify version 2 of the API as you please,

leaving version 1 alone.

 Before deprecating the name field in your project responses, you’ll write a test to

make sure that this is gone. This test will now test version 2 of the API, and so you’ll

copy over the spec/api/v1 directory to spec/api/v2, also replacing occurrences of v1

in these files with v2. The test for the new title field will now go in spec/api/v2/

projects_spec.rb and will test that the projects viewable by this user action returns

projects with title, and not name, using the code from the following listing to replace

the JSON example in the index context.

context "projects viewable by this user" do

let(:url) { "/api/v2/projects" }
let(:options) { { :except => :name, :methods => :title } }

it "JSON" do

get "#{url}.json", :token => token

body = Project.readable_by(user).to_json(options)

last_response.body.should eql(body)

last_response.status.should eql(200)

projects = JSON.parse(last_response.body)

projects.any? do |p|

p["project"]["title"] == "Ticketee"
end.should be_true

projects.all? do |p|

p["project"]["name"].blank?
end.should be_true

end

end

At the beginning of this test, you need to pass the same options to to_json B as you

pass to respond_with, because the respond_with method generates the same output

as to_json.

 In the final lines of this test, you’re checking that it’s now title and not name that

returns the correct project title, and that the name key on all projects is blank. You’ll

also need to change the XML test of this method to the code shown in the following

listing.

it "XML" do

get "#{url}.xml", :token => token

body = Project.readable_by(user).to_xml(options)

Listing 13.29 spec/api/v2/projects_spec.rb

Listing 13.30 spec/api/v2/projects_spec.rb

Pass
options to
to_jsonB

383Versioning an API

last_response.body.should eql(body)
projects = Nokogiri::XML(last_response.body)

projects.css("project title").text.should eql("Ticketee")

projects.css("project name").text.should eql("")
end

When you run this test using bin/rspec spec/api/v2/projects_spec.rb, it’s broken:

Failure/Error: last_response.body.should eql(body)
expected "[{[ticket hash without name key]}]"

got "[{[ticket hash with name key]}]"

This is because the name field is still being returned by your API. To exclude this field

from your API, you can use the :except option to respond_with calls. In app/

controllers/api/v2/projects_controller.rb the index method can now be altered to this:

def index
projects = Project.readable_by(current_user)

respond_with(projects, :except => :name, :methods => :title)

end

The :except option here will exclude the name field from the responses provided by

this API, and the methods option will call the title method (you’ll define it in a

moment), providing that in your API response. You still need to have the name field in

your database because it’s used in quite a few places in your application. You could

change it all now, but this example is purely to show off the :except option and API

versioning. A change like that would be recommended over this example, however it’s

best left as another exercise for you.

 To make your API respond with the title method, you need to define it in app/

models/project.rb inside the Project class like this:

def title
name

end

Now when you run bin/rspec spec/api/v2/projects_spec.rb, the tests that you

edited will pass:

8 examples, 0 failures

You’ve seen how you can generate a new version of your API and alter the output of it,

and the text says that your original API (v1) shouldn’t be effected, but was it? A great

way to check is a quick run of bin/rspec spec/api/v1:

15 examples, 0 failures

Great, that’s all working! A quick run of rake spec will confirm your suspicions that

nothing is broken:

71 examples, 0 failures, 18 pending

Awesome stuff. Let’s make a new commit:

git add .

git commit -m "Implement v2 of the API,

384 CHAPTER 13 Designing an API

renaming name to title for projects"
git push

Alright, so now you’ve got two versions of your API. Generally, there’s much more than

a single change in a new API version, but this is a good start. When you announce this

API to the people who use your application, they can switch their libraries over to

using it immediately, or, ideally, remain using the old version. After a while, you may

elect to turn off the first version of the API, and you would do that by giving your users

considerable notice such as a month, and then un-defining the routes and deleting

the controllers and tests associated with that version. Out with the old and in with the

new, as they say.

 You’ve now seen how you can serve data from your application using an API, but

how do you read it? The answer to that lies in a part of Rails called Active Resource.

13.5 Summary

You’ve seen in this chapter how you can use the Rack::Test::Methods module, given

to you for free by the rack-test gem, to test that requests to URLs provided by your

application return valid API responses in JSON and XML formats. Users will then be

able to make these same requests for their own applications or libraries to get at the

data in your system. What they come up with is up to their imagination. In this chapter,

we only covered one aspect (projects) for your API, but with the knowledge found in

this chapter you could easily create the other aspects for tickets, users, states, or tags.

 In the second section of this chapter you saw how you can limit the request rate to

your API on a per-user basis. Users can make up to 100 requests to your system, and

when they attempt to make their 101st the application denies them the request and

provides a relevant error message. This is to deter people from excessively using the

API, as you do not want your server to become overloaded immediately.

 Last, you saw how you can generate a new version of your API so that you can intro-

duce a change, or changes, so as to not break the previous version of the API. Once an

API has been released to the public, its output shouldn’t be modified, as this may

affect the libraries referring to it. The easiest way to introduce these modifications is

through a new version, which is what you did. Eventually, you may choose to depre-

cate the old API, or you may not. It’s really a matter of personal choice.

 Your application’s at a pretty great point now and is ready for prime time! To show

it off to the masses, it’s best that you put the code on a computer dedicated to serving

the application, rather than running it on some local hardware. In chapter 14, you’ll

deploy your application to an Ubuntu 10.10 box, learning about the core components

to a deployment software stack as you go.

385

Deployment

In this chapter you’ll deploy your Ticketee application to a new Ubuntu install.

Ubuntu is the preferred operating system for deploying Rails applications, mainly

due to its simplicity of use and easy package management. You don’t need to install

another operating system on your computer; you’ll be using a product called Ora-

cle VM VirtualBox.

 You’ll set up this machine manually so that you can see how all the pieces fit

together. There are automatic tools such Puppet,1 Chef,2 Babushka,3 and Git

Pusshuten4 that can do most, if not all, of this setup for you. To cover them all ade-

quately in this chapter would turn the chapter into a book. Deployment is an enor-

mous subject and different people have very different opinions of how it should be

This chapter covers

 Deploying a Rails app to an Ubuntu server

 Using RVM and Ruby in a server environment

 Hosting a Rails app using the Passenger gem

1 http://puppetlabs.com.
2 http://opscode.com/chef/.
3 http://babushka.me.
4 http://gitpusshuten.com/.

http://puppetlabs.com
http://opscode.com/chef/
http://babushka.me
http://gitpusshuten.com/

386 CHAPTER 14 Deployment

done. This chapter will give you an adequate taste of what parts are involved in setting

up a server, but shouldn’t be considered as the be all and end all of deployment.

There are countless ways to skin this cat.

 This chapter covers the following processes:

 Setting up a server

 Installing RVM and Ruby

 Creating a user account

 Deploying an application using Capistrano

 Setting up a database server using PostgreSQL

 Running the application using Nginx and Passenger

 Securing the server

While this isn’t an exhaustive list of everything that needs to be done for deployment,

it is a great start. When you’re done, you’re going to have a server that’s able to

receive requests and return responses from your application like a normal web server.

Let’s get into it.

14.1 Server setup

Your first step is to set up the Oracle VirtualBox software on your machine. This soft-

ware is free, works on all of the main operating system variants, and provides a virtual

box (or environment) that you can run another operating system in while running

your current operating system.

 As an alternative to VirtualBox you could get a VPS with a paid service such as Lin-

ode,5 Slicehost,6 or Amazon EC2,7 which allows you to set up a box with Ubuntu (or

any one of a few other operating systems) pre-installed. You could also use Heroku,8

which provides free hosting that has read-only access to the file system.9 Each of these

services have in-depth guides, which should be used as a primary reference if you’re

going to take this path.

 Either direction is fine. If the latter path is taken, jump straight to section 14.2.

14.1.1 Setting up a server using VirtualBox

Oracle VirtualBox10 is software that allows you to run another operating system inside

your main operating system. Coupled with Vagrant11—a gem used for setting up

VirtualBox servers—this is a perfect combination for getting an experimental server

5 http://linode.com.
6 http://slicehost.org.
7 http://aws.amazon.com/ec2/.
8 http://heroku.com.
9 This would cause the file upload part of Ticketee to fail because it requires write-access. To fix this, you would

upload images to Amazon S3. Amazon S3 and Paperclip have good enough documentation that this should
be easily figured out.

10 http://virtualbox.org.
11 http://vagrantup.com.

http://linode.com
http://slicehost.org
http://aws.amazon.com/ec2/
http://heroku.com
http://virtualbox.org
http://vagrantup.com

387Server setup

up and running. Vagrant will allow you to download an operating system image and

then set up VirtualBox in an exceptionally easy fashion.

 To install VirtualBox, you must first download it from http://virtualbox.org and

install it like a normal program.12 After that, you need to install the vagrant gem,

which you can do by running this command:

gem install vagrant

Now that you’ve got VirtualBox and Vagrant, you can install Ubuntu using Vagrant.

This is the operating system that you’ll use to run your server. This file is pretty large

(over 500MB) and may not be good for some connections. As an alternative, we would

recommend using a VPS, as suggested earlier. This command will download Ubuntu

Lucid Lynx (10.04) which you can use as a perfectly fine base to set up your server:

vagrant box add base http://files.vagrantup.com/lucid32.box

To start up this server, you need to create a new folder called ubuntu (the name isn’t

important and could be anything), where the configuration of your server will be

stored. You can then run vagrant up and vagrant ssh to boot it and connect to it

through SSH. Altogether:

mkdir ubuntu
cd ubuntu

vagrant init

vagrant up
vagrant ssh

The up command will take a couple of minutes to run, but the ssh command should

be instantaneous after that.

NOTE If at any point you wish to shut down your server, you can use the
vagrant halt command.

This is how you connect to servers in the real world, except you would use a command

such as this:

ssh username@some-server.somewhere.com

The vagrant ssh is a good-enough analogy to that. By running vagrant ssh you con-

nect to your server as the user vagrant. This user has administrative (or more com-

monly referred to as root) access on this box, and so you’re able to install the

packages that you need.

 If you’re using a non-Vagrant machine, you’ll first need to set up a user for yourself

rather than operating as the root user, as this can be dangerous.13 To do this, use this

command (replacing user with a username such as ryan):

12 If you’re on Windows XP you may encounter issues where it claims to have not been verified correctly. This
is a known problem. If you skip the errors, it will still work.

13 For example, if you were running a script as the root user and that script attempted to delete the /usr direc-
tory, the command would execute. By executing commands as non-root, you save yourself some potential
damage from malevolent scripts. This is because the user will only have access to some directories, rather than
root, which has access to everything.

http://virtualbox.org

388 CHAPTER 14 Deployment

useradd -d /home/user -m -s /bin/bash -G admin user

This command will create a directory at /home/user and set this user’s home path to

that directory. This is done with the -m and -d options, respectively. Next, the com-

mand sets the user’s shell to /bin/bash—which is the default shell of UNIX operating

systems—using the -s option. Near the end of this command, the -G option specifies

that this user will be a part of the admin group, which will let the user execute com-

mands using sudo, a kind of super-user command. This part is important because

you’ll need these permissions to set up your server. At the end of the command, spec-

ify the username of this new user.

 Next, you need to set a password for this user, which you can do with this

command:

passwd user

You need to enter the new password for this user twice, and then you’re done. You

mustn’t forget the password, otherwise you’ll have to reset it as the root user.

 With that done, let’s switch into this user by using this command:

su user

Now you’re all set up to go about installing the different software packages you’ll need

to get your server up and running.

14.1.2 Installing the base

The majority of software packages are installed on Ubuntu using a system called Apti-

tude. You can install packages from their source code too, if you wish (with the help of

a package called build_essential, which contains the build tools you need). These

Aptitude packages are downloaded from a package repository and then installed for

you. To ensure that the list of these packages are up-to-date, run this command:

sudo aptitude update

This command goes through the list of sources, connecting to each of them and

downloading a package list that is then cached by Ubuntu. When you go to install a

package (your next step), Ubuntu will reference these lists to find the packages and

the necessary dependencies for them.

 Once this command is complete, continue the set up by configuring RVM and cre-

ating a deploy user.

RVM is short for Ruby Version Manager and provides a simple way to install and

maintain versions of Ruby on your system. You’re going to be using it today to install a

single Ruby version on your system, but it’s good to learn it.

 To get started, you’re going to need to install some packages that will provide the

necessary tools to use RVM. These packages are build-essential, git-core, and

curl. RVM uses these packages to build the Ruby version for your server. The git-

core provides the base Git functionality that RVM uses to stay up to date, and is also

389RVM and Ruby

used to deploy your application because you’re hosting it on GitHub. Finally, curl

allows you to connect to a URL and download its content. You’ll use this last package

to install RVM.

 To install these packages, run this command:

sudo aptitude -y install build-essential git-core curl

The sudo part of this command tells Ubuntu to run a command as a super-user (root).

14.2 RVM and Ruby

You could install Ruby by downloading the package manually, extracting it, and then

running the necessary commands yourself, but that’s boring. You could also install it

using the package manager that comes with Ubuntu, but the Ruby that it provides is

old and has been known to be broken.

 Wouldn’t it be nice if there was a tool that would install Ruby for you? There is! It’s

called RVM!

14.2.1 Installing RVM

RVM provides several benefits over a standard Ruby compile, such as the ability to eas-

ily install and upgrade your Ruby install using commands like rvm install 1.9.2 to

install Ruby 1.9.2. No digging for links on the http://ruby-lang.org site for you, no

siree.

 There are a couple of ways you can install RVM. The first is a user-based install,

installing it in an .rvm directory within the user’s own directory. But you’re going to

want to access gems at a system-level later on in this chapter, so it’s best to install RVM

at a system level.14 To do this, run this command:

sudo bash < <(curl -s https://rvm.beginrescueend.com/install/rvm)

Once this script has finished executing you should see a lot of output, and part of it

will contain installation instructions for packages you need to install before installing

Ruby. Your version of Ruby is the standard Ruby 1.9.2, which is more commonly

known as Matz’s Ruby Interpreter, or MRI for short. The installation advises you to run

a command to install the necessary packages for MRI. Do that, and add a couple of

extra packages (libpq-dev and libcurl4-openssl-dev) that you’ll need for later:

sudo aptitude -y install build-essential bison openssl \
libreadline6 libreadline6-dev curl git-core zlib1g \

zlib1g-dev libssl-dev libyaml-dev libsqlite3-0 \

libsqlite3-dev sqlite3 libxml2-dev libxslt-dev \
autoconf libc6-dev libpq-dev libcurl4-openssl-dev

With these packages installed, you’ll experience minimum hassle when you install

Ruby itself. To install Ruby using your current user, the user needs to be a part of the

14 To install RVM at a user level, just remove sudo from the command.

http://ruby-lang.org

390 CHAPTER 14 Deployment

rvm group, which is a group created by the installation of RVM. To add your current

user to this group, run this command:

sudo usermod -a -G rvm user

The -a option here tells the command to append some groups to the list of groups

that the user is in, and the -G option (like you saw before with useradd) specifies the

group. You specify your username on the end of this command, telling it who you

want this new group applied to.

 To make the rvm command effective for all users, add a line to /etc/profile. When-

ever new terminal sessions are launched, this file is read and run. Put a line in it using

these commands:

sudo su

echo 'source "/usr/local/rvm/scripts/rvm"' >> /etc/profile

exit

The source command here will load the/usr/local/rvm/scripts/rvm file for each user

whenever they start a new session. To make this change effective for the current ses-

sion, exit out of your terminal and log back in. Once back in, you should be able to

run rvm and have it output the help information.

 If that’s the case, then you are now ready to install Ruby.

14.2.2 Installing Ruby

Ruby 1.9.2 is considered the latest stable version of Ruby (at least, as of this writing).

By installing it, you’re on your way to being able to run your Rails application on this

server. To install this version of Ruby, run this command:

rvm install 1.9.2

This command will take some time to run as it needs to download, compile, and then

install Ruby. To switch to using this Ruby, use this command:

rvm use 1.9.2

When you type ruby -v into the terminal, you should see something like this:

ruby 1.9.2p180 (2011-02-18 revision 30909) [i686-linux]

The value may be different, but as long as it begins with ruby 1.9.2, you know that

you’ve got the right Ruby version installed. To make this the default version of Ruby

for your user, run the rvm use command again, but pass in an option:

rvm use --default 1.9.2

Now every time that you log in to this server you’ll be using this version of Ruby. While

you’re doing Ruby things, let’s install the Bundler gem, which you’ll need for your

application to install its gems on the server and rake for running Rake tasks:

gem install bundler rake

391Creating a user for the app

So now you’ve got the beginnings of a pretty good environment set up for your appli-

cation, but you don’t have your application on the server yet. To do this, you need to

undertake a process referred to as deployment. Through this process you’ll put your

application’s code on the server and be one step closer to letting people use the

application.

 When you deploy, you’ll use a user without root privileges to run the application,

just in case. Call this user the same as your (imaginary) domain: ticketeeapp.com.

14.3 Creating a user for the app

You’re calling this user ticketeeapp.com because if you wanted to deploy more than

one application to your server, there will be no confusion as to which user is responsi-

ble for what. When you set up a database later on, this username will be the same as

your database name. This is for convenience’s sake, but also because the database will

be owned by a user with the same name, allowing this account and none other (bar

the database super user) to access it. It’s all quite neat.

 To begin to set up this user, run these commands:

sudo useradd ticketeeapp.com -s /bin/bash -m -d /home/ticketeeapp.com
sudo chown -R ticketeeapp.com /home/ticketeeapp.com

sudo passwd ticketeeapp.com

You’ve used a couple of options to the useradd command. The -s option sets the shell

for the user to /bin/bash (the standard shell found in most UNIX-based operating sys-

tems) and the -d option sets their home directory to /home/ticketeeapp.com, while

the -m option makes sure that the user’s home directory exists. The second command,

chown (short for change owner), changes the owner of the /home/ticketeeapp.com

directory to be the ticketeeapp.com user. The final command, passwd, prompts you to

set a password for this user, which you should set to something complex (that you’ll be

able to remember) to stop people hacking your ticketeeapp.com user.15

 To make this account even more secure, you can switch to key-based authentication.

14.3.1 Key-based authentication

In this next step, you’ll set up a key that will allow you to log in as your user and

deploy on your server without a password. This is called key-based authentication and

requires two files: a private key and a public key. The private key goes on the devel-

oper’s computer and should be kept private, as the name implies, because it is the key

to gain access to the server. The public key file can be shared with anybody and is used

by a server to authenticate a user’s private key.

 You’ll use a key-based authentication for your server because it is incredibly secure

versus a password authentication scheme. To quote the official Ubuntu instructions

on this16:

15 Even though this won’t matter in a short while (when you turn off password authentication and switch to the
more secure key-based authentication), it’s still good practice to always secure any user account on any system
with a strong password.

16 https://help.ubuntu.com/community/SSH/OpenSSH/Configuring.

https://help.ubuntu.com/community/SSH/OpenSSH/Configuring

392 CHAPTER 14 Deployment

To be as hard to guess as a normal SSH key, a password would have to contain 634
random letters and numbers.
 —OpenSSH Configuring

Not many people today would be willing to use a password containing 634 random let-

ters and numbers! Considering the average password length is 8 characters, this a vast

improvement over password-based authentication.

 You’re going to enable this key-based authentication for both your current user

and your ticketeeapp.com. For now, use the same key generated for use with GitHub;

however, it’s recommended that a different key be used for the server.

 Public keys are stored at a file called .ssh/authorized_keys located in the user’s

home directory, the user being the user you will connect as through SSH. When the

user attempts to connect to the server, the private and public keys are used to confirm

the user’s identity.17 Because the chances against two users having the same public and

private key are so astronomically high, it is generally accepted as a secure means of

authentication.

 In this instance, you’ll create two of these ~/.ssh/authorized_keys files: one for each

user. In each case, create the ~/.ssh directory before creating authorized_keys. Begin

with the user you’re currently logged in as.

 Let’s create the ~/.ssh directory now using this command:

mkdir ~/.ssh

Now you need to copy over the public key from your local computer to the ~/.ssh direc-

tory on the server, which you can do by running this command on your local system:

NOTE: Run this on your *local* machine, not the server!

scp ~/.ssh/id_rsa.pub user@your-server:~/.ssh/[your_name]_key.pub

17 For a good explanation of how this process works, check this page: http://unixwiz.net/techtips/ssh-agent-
forwarding.html#agent.

If you’re using Vagrant…

Vagrant already has a ~/.ssh/authorized_keys file, so there’s no need to re-create

it. Overwriting this file may cause vagrant ssh to no longer work.

You will also need to forward the SSH port from the virtual machine launched by

Vagrant to a local port in order to connect without using Vagrant. While you’re here,

forward the HTTP port (80) as well so that you can access it from the outside. Go into

the Ubuntu directory that you created at the beginning of this chapter, open Vagrant-

File, and add this inside the Vagrant::Config.run block:

config.vm.forward_port "ssh", 22, 2200

config.vm.forward_port "http", 80, 4567

To connect to this server, use port 2200 for SSH and port 4567 for HTTP. When you

use the scp command, the port can be specified using the -P (capital p) option and

ssh using -p (lowercase p), with the port number specified directly after this option.

In places where these commands are used, substitute your-server with localhost
and user with vagrant.

http://unixwiz.net/techtips/ssh-agent-forwarding.html#agent
http://unixwiz.net/techtips/ssh-agent-forwarding.html#agent

393Creating a user for the app

At this stage, you’ll be prompted for a password, which is the complex one you set up

a little earlier. Enter it here and the file will be copied over to the server.

 Add this key to the ~/.ssh/authorized_keys file on the server by using this:

cat ~/.ssh/[your_name]_key.pub >> ~/.ssh/authorized_keys

This command will append the key to ~/.ssh/authorized_keys if that file already exists,

or create the file and then fill it with the content if it doesn’t. Either way, you’re going

to have a ~/.ssh/authorized_keys file, which means that you’ll be able to SSH to this

server without using your complex password. If you disconnect from the server and

then reconnect, you shouldn’t be prompted for your password. This means that the

authentication is working.

 Finally, change the permissions on this ~/.ssh/authorized_keys file so that only the

user it belongs to can read it:

chmod 600 ~/.ssh/authorized_keys

With that set, change into the application’s user account by running sudo su

ticketeeapp.com and run the same steps, beginning with mkdir ~/.ssh and ending

with disconnecting and reconnecting without password prompt. Remember to

change user in the scp command to be the ticketeeapp.com user this time around.

 If both of these accounts are working without password authentication, then you

may as well turn it off!

14.3.2 Disabling password authentication

You’ve just implemented key-based authentication on your system for both the

accounts you have, thus removing the need for any kind of password authentication.

To secure your server against possible password attacks, it’s a good idea to turn off

password authentication altogether.

 To do this, open /etc/ssh/sshd_config using sudo nano /etc/ssh/sshd_config18

and add PasswordAuthentication no where it would otherwise say #Password-

Authentication yes (the # symbol indicates a commented line, just like Ruby). You

can find this line by pressing Ctrl+W, typing in PasswordAuth, and pressing Enter.

This configures your SSH server to not accept password authentication.

 Towards the top of this file there’s a line that says PermitRootLogin yes. Change

this line to read PermitRootLogin no instead, so that it blocks all SSH connections for

the root user, increasing the security further.

NOTE There is also /etc/ssh/ssh_config, which is a little confusing... two
files with nearly identical names. The file you just edited is the file for the
SSH server (or daemon, hence the d at the end), while the ssh_config file is
for the SSH client. Make sure you’re editing the right one.

Last, quit nano by pressing Ctrl+X and then Y to confirm that you do want to quit and

save. Next, you need to restart the SSH daemon by using this command:

18 nano is the basic editor that comes with Ubuntu.

394 CHAPTER 14 Deployment

service ssh restart

The server is now set up with key-based authentication, which completes the user

setup part of this chapter.

 The next step is to install a sturdy database server where you can keep the data for

your application when it’s deployed. At the moment (on your local machine) you’re

using the SQLite database for this. That’s great for light development, but you proba-

bly want something more robust for your application, just in case it gets popular over-

night.19 That robust something is a database server called PostgreSQL.

14.4 The database server

PostgreSQL is the relational database20 preferred by the majority of Rails developers.

It will work perfectly with the Ticketee application because there’s no SQLite3-specific

code within the Ticketee application at the moment.21

 To install, use the aptitude command again:

sudo aptitude install postgresql-8.4

This will install the necessary software and commands for the database server, such as

psql (used for interacting with the database server in a console), createuser (for cre-

ating a user in the system), and createdb (for creating databases on the server).22

You’ll be using these commands to create a user and a database for your application.

14.4.1 Creating a database and user

To begin this, switch to the postgres user, which is another account that this post-

gresql-8.4 install has set up. To switch into this user, use this command:

sudo su postgres

This user account is the super user for the database and can perform commands such

as creating databases and users, precisely what you want! Creating the database is easy

enough; you only need to run createdb like this:

createdb ticketeeapp.com

Creating a user in PostgreSQL is a little more difficult, but (thankfully) isn’t rocket sci-

ence. Using the createuser command, answer no to all the questions provided:

$ createuser ticketeeapp.com

Shall the new role be a superuser? (y/n) n
Shall the new role be allowed to create databases? (y/n) n

Shall the new role be allowed to create more new roles? (y/n) n

19 Chances are low, but this is more to demonstrate how to set it up with a different database server.
20 http://en.wikipedia.org/wiki/Relational_database. Contrasts the NoSQL term: http://en.wikipedia.org/

wiki/NoSQL.
21 Some Rails applications are developed on specific database systems and may contain code that depends on

that system being used. Be wary.
22 For more information about how to configure PostgreSQL, read about the pg_hba.conf file: http://www

.postgresql.org/docs/9.0/static/auth-pg-hba-conf.html.

http://en.wikipedia.org/wiki/Relational_database
http://en.wikipedia.org/wiki/NoSQL
http://en.wikipedia.org/wiki/NoSQL
http://www.postgresql.org/docs/9.0/static/auth-pg-hba-conf.html
http://www.postgresql.org/docs/9.0/static/auth-pg-hba-conf.html

395Deploy away!

Create the database and the user in PostgreSQL with the same name so that when the

system user account of ticketeeapp.com attempts to connect to this database they are

automatically granted access. There is no need to configure this at all, which is most

excellent. This process is referred to as ident authentication.

14.4.2 Ident authentication

Ident authentication works by determining if the user connecting has an account with

an identical name on the database server. Your system’s user account is named

ticketeeapp.com and the PostgreSQL user you created is also named ticketeeapp.com.

You can attempt to connect using the psql command from the ticketeeapp.com user,

after first exiting from the postgres user’s session:

exit
sudo su ticketeeapp.com

psql

If everything goes well, you should see this prompt:

psql (8.4.8)

Type "help" for help.

ticketeeapp.com=>

This means that you’re connected to the ticketeeapp.com database successfully. You

can now execute SQL queries here if you wish. Exit out of this prompt by typing \q

and pressing Enter.

 That’s all you need to do for your database for now. You’ve got a fully functioning

server, ready to accept your tables and data for your application. Now you need to give

it what it needs! You can do this by putting the application on the server and running

the rake db:migrate command, which will create the tables, and then rake db:seed,

which will insert the basic data found inside db/seeds.rb.

 We’re not going to make you manually copy over this application, as this can get

repetitive and boring. As programmers, we don’t like repetitive and boring. One of

your kind is called Jamis Buck, and he created a little tool called Capistrano to help

automate the process of deploying your application.

14.5 Deploy away!

Capistrano is a gem originally created by Jamis Buck that is now maintained by Lee

Hambley and additional volunteers, as well as the growing community that use it. It

was initially designed for easy application deployment for Rails applications, but can

now be used for other applications as well. Capistrano provides an easy way to config-

ure and deploy versions of an application to one or many servers.

 You’ll use Capistrano to put your application’s code on the server, automatically

run the migrations, and restart the server after this has been completed. This action is

referred to as a deploy.

 Before you leap into that however, you’re going to set up a deploy key for your repos-

itory on GitHub.

396 CHAPTER 14 Deployment

14.5.1 Deploy keys

If your repository was private on GitHub, you would clone it with the URL of

git@github.com:our_username/ticketee.git and would need to authenticate with a

private key. You shouldn’t copy your private key to the server because if a malicious

person gains access to the server they will also then have your private key, which may

be used for other things.

 To solve this particular conundrum, generate another private/public key pair just

for the server itself and put the public key on GitHub to be a deploy key for this repos-

itory. This will allow the server to clone the repository.

 To do this, run the following command as the ticketeeapp.com user on your

server:

ssh-keygen -t rsa

Press Enter to put the key at the default ~/.ssh/id_rsa.pub location. You can enter a

password for it, but if you do this you will be prompted for it on every deploy. It’s really

personal preference whether or not to do this.

 This command will generate two new files: a public and private key. The private

key should remain secret on the server and shouldn’t be shared with any external par-

ties. The public key, however, can be given to anybody. You’re going to put this key on

GitHub now.

 Run the cat command to get the contents of the public key file, like this:

cat ~/.ssh/id_rsa.pub

ssh-rsa AAAAB3NzaC1yc2EAA...

You should copy the output of this command into your clipboard. Your next step is to

go to the repository on GitHub and click the Admin link in the bar in the view for the

repository, shown in figure 14.1.

 From here, press the Deploy Keys link and then paste the key into the box, calling it

ticketeeapp.com to keep up with your current naming scheme, as shown in figure 14.2.

 When you’re done here, click the Add Key button, which will add the key you’ve

specified to the list of deploy keys on GitHub. You should then be able to run a git

clone command on the server using the private URL to clone your repository:

git clone git@github.com:our_username/ticketee.git ~/ticketee

Figure 14.1 Admin button

397Deploy away!

If there is a ticketee directory at the current location of the server that contains the

directories your application should contain, then this works. You can delete this

directory now; you’ll be putting the code on the server at another location using

Capistrano.

 Before that happens, you’ll need to configure Capistrano.

14.5.2 Configuring Capistrano

To begin with, add the capistrano gem to your application’s Gemfile using this code:

group :development do

gem 'capistrano'

end

To install this gem, you (and other developers of your application) are able to run

bundle install, which will keep those other developers up-to-date with all gems. Run-

ning gem install capistrano would only update them with Capistrano, and even

then it may be a version that is incompatible with the one that you’ve developed.

 When the gem is installed, you can set it up inside a Rails application by running

this command from the root of the application:

capify .

This will create two files: Capfile and config/deploy.rb. The Capfile is a file containing

setup for Capistrano in the application and the following default code that will be

used to load your Capistrano configuration:

load 'deploy' if respond_to?(:namespace) # cap2 differentiator

Dir['vendor/plugins/*/recipes/*.rb'].each { |plugin| load(plugin) }

load 'config/deploy' # remove this line to skip loading any ...

Figure 14.2 Paste in the key, and add a title.

398 CHAPTER 14 Deployment

The final line of this file is the most important, as it loads the config/deploy.rb file.

This file contains the configuration for deploying your application. Everything in this

file dictates how your application is deployed. We’ll go through it with you line by line,

beginning with these two lines:

set :application, "set your application name here"

set :repository, "set your repository location here"

When you call set in Capistrano, it sets a variable you (or Capistrano itself) can refer-

ence later. The application variable here should be the name of your application

and the repository variable should be the path to your application. Change these

lines to this:

set :application, "ticketee"

set :repository, "git://github.com/rails3book/ticketee.git"

On the next line of config/deploy.rb there’s the scm setting:

set :scm, :subversion

You’re going to use Git and not Subversion in this case, so change the line to this:

set :scm, :git

On the next few lines there are a couple of roles defined. These roles point to

 web—The server or servers responsible for serving requests for your application

 app—The server or servers where the application’s code is hosted

 db—The server or servers where the database for the application is hosted

Right now we won’t worry about multiple-server setups, focusing only on having every-

thing on the one box. Your web, app, and db roles are all the same server in this

instance. Therefore, you can replace those three lines with this:

role :web, "[your-server]"

role :app, "[your-server]"
role :db, "[your-server]", :primary => true

Deploying a branch

When you deploy your application to the server, it will read from the master branch.

If you’d like to change this, set the branch using this line in your configuration:

set :branch, "production"

You would also need to create this new branch in the GitHub repository called pro-

duction with the git checkout -b production and git push origin production
commands.

For a good branching model, check out this post: http://nvie.com/posts/

a-successful-git-branching-model/.

http://nvie.com/posts/a-successful-git-branching-model/
http://nvie.com/posts/a-successful-git-branching-model/

399Deploy away!

Here you replace [your-server] with the address of the server, which is the same one

that you’ve been SSH’ing to. If you’re using Vagrant, this address is simply localhost

and you’ll need to add another line to specify the port:

set :port, 2200

Now that you’ve covered all the default options in config/deply.rb, you’ll add some

others to provide more information to Capistrano so that it can set up your applica-

tion correctly.

 The first two settings that you’ll need to set up are the user and the path to which

you’ll deploy your application. Capistrano (unfortunately) can’t guess what these are,

and so you have to be explicit. The user will be the ticketeeapp.com user and the path

will be /home/ticketeeapp.com/apps. Use the application name as the name of a sub-

folder of that application so the application will be deployed into /home/ticketeeapp

.com/apps/ticketee. Underneath the set :scm line, put these settings:

set :user, "ticketeeapp.com"

set :deploy_to, "/home/ticketeeapp.com/apps/#{application}"

The ticketeeapp.com user doesn’t have sudo privileges, so tell Capistrano not to use

the sudo command by using this line:

set :use_sudo, false

When you deploy your application, you don’t want to keep every single release that

you’ve ever deployed on the server. To get rid of the old deploys (referred to as

releases), put this in config/deploy.rb:

set :keep_releases, 5

This will keep the last five releases that you have deployed, deleting any releases that

are older than that.

 Last, at the bottom of the file there are a couple of lines for defining

deploy:start, deploy:stop, and deploy:restart tasks for Passenger, which are com-

mented out. Remove the comment hash from the beginning of these lines, transform-

ing them to this:

namespace :deploy do
task :start do ; end

task :stop do ; end

task :restart, :roles => :app, :except => { :no_release => true } do
run "#{try_sudo} touch #{File.join(current_path,'tmp','restart.txt')}"

end

end

This defines a blank start and stop task and a full restart task for your app role.

This task will run the touch /home/ticketeapp.com/apps/ticketee/tmp/restart.txt

command, which will tell your server (not yet set up) to restart the application, caus-

ing your newly deployed code to be started up upon the next request.

400 CHAPTER 14 Deployment

 With the Capistrano configuration done, you can run the cap command, passing

in the name of a task to set up your application, such as deploy:setup. This task is

one of a group of tasks that are provided by default with Capistrano. To see a list of

these tasks, use the cap -T command.

14.5.3 Setting up the deploy environment

You’ll now use the deploy:setup task, which will set up the folder where your applica-

tion is deployed, /home/ticketeeapp.com/apps/ticketee, with some basic folders:

cap deploy:setup

This command is in the same vein as the rails new command you’ve used previously

because it sets up an identical, standard scaffold for every Capistrano. When this com-

mand runs, you’ll see a large chunk of output that we’ll now break down, one line at a

time:

* executing `deploy:setup'

Capistrano tells you the name of the currently executing task, deploy:setup. The

next line tells you what command it is about to execute.

* executing "mkdir -p /home/ticketeeapp.com/apps/ticketee
/home/ticketeeapp.com/apps/ticketee/releases

/home/ticketeeapp.com/apps/ticketee/shared

/home/ticketeeapp.com/apps/ticketee/shared/system
/home/ticketeeapp.com/apps/ticketee/shared/log

/home/ticketeeapp.com/apps/ticketee/shared/pids

These are the basic directories required for Capistrano. The first directory acts as a

base for your application, containing several different subdirectories, the first of

which is releases. Whenever you deploy using Capistrano, a new release is created in

the releases directory, timestamped to the current time using the same time format as

migrations within Rails (such as 20110205225746, or the full year followed by two dig-

its each for the month, day, minute, hour, and second, or YYYYMMDDHHmmSS). The latest

release would be the final one in this directory.

 The shared directory is the directory where files can be shared across releases,

such as uploads from Paperclip, that would usually go in the public/system directory,

which would now be placed in shared/system.

 The shared/log directory is symbolically linked23 to the current release’s log direc-

tory when you run a deploy. This is so all logs are kept in the shared/log directory

(rather than in each release) so that, if you choose to, you can go back over them and

read them.

 The shared/pids directory is symbolically linked to the current release’s tmp/pids

up on deploy. This folder is used for process ids of any other parts of your applica-

tion. At the moment, you don’t have any of these and so this directory is of no major

concern.

23 http://en.wikipedia.org/wiki/Symbolic_link.

http://en.wikipedia.org/wiki/Symbolic_link

401Deploy away!

 The next line after this makes these folders group writable with the chmod

command:

chmod g+w /home/ticketeeapp.com/apps/ticketee

/home/ticketeeapp.com/apps/ticketee/releases
/home/ticketeeapp.com/apps/ticketee/shared

/home/ticketeeapp.com/apps/ticketee/shared/system

/home/ticketeeapp.com/apps/ticketee/shared/log
/home/ticketeeapp.com/apps/ticketee/shared/pids

At the bottom of this command’s output you can see what servers it will be executed

on, with only your one server listed for now. It also tells you that the command is being

executed and, faster than you can blink, that the command has finished. chmod isn’t

an intensive operation:

servers: ["your-server"]
[your-server] executing command

command finished

Once the deploy:setup Capistrano task has finished, you are returned to a console

prompt. Now you can put the application on the server by deploying it!

14.5.4 Deploying the application

Capistrano has now been configured to deploy the Ticketee application and you’ve

set up your server using the cap deploy:setup command, leaving it up to you now to

deploy your code. Capistrano’s deploy task will let you do this, and you can run this

task with this command:

cap deploy

This command outputs an even larger output to cap deploy:setup, but again we’ll go

through it line by line. It’s not all that intimidating when it’s broken down into little

chunks, really! The first output you’ll see from a deploy is

* executing `deploy'

* executing `deploy:update'
** transaction: start

* executing `deploy:update_code'

These first three lines tell you the tasks which are being executed. The deploy task is

going to be executed because you asked Capistrano to do that. This task depends on

the deploy:update task, and so it will run that first.

 The deploy:update task begins a transaction (the third line in the output), which

is exceptionally helpful. If anything goes wrong in your deploy, Capistrano will roll

back everything to the beginning of this transaction, deleting any code it’s deployed.

This transaction is a failsafe for your deploy.

 The final part of the output is the deploy:update_code task, which is responsible

for updating the application’s code in your deployment environment. This task is

responsible for the next chunk of output you see:

402 CHAPTER 14 Deployment

executing locally: "git ls-remote [git_path] HEAD"
* executing "git clone -q [git_path] [release_path] &&

cd [release_path] &&

git checkout -q -b deploy [SHA1 hash] &&
(echo [SHA1 hash] > [release_path]/REVISION)"

servers: ["your-server"]

This task first runs git ls-remote, a lesser-known Git command, locally (not on the

server), which will get the current SHA for HEAD, the latest commit to the master

branch, unless you set a branch in Capistrano’s configuration.

 The next thing Capistrano does is put the current revision in a file called

REVISION. If you like, you can alter the layout of your application to read the value

from this file and put it in your application’s layout as a HTML comment so that when

you do a deploy to the server, you can check this hash to see if it is the latest code.

 The next couple of lines output from cap deploy are from the beginning of the

deploy:finalize_update task:

* executing "chmod -R g+w [release_path]"
servers: ["localhost"]

[localhost] executing command

command finished

With this chmod command, Capistrano ensures that your new release’s directory is

group writable (g+w), allowing the user/group to make any modifications to this

directory they like, barring all others.

 Finally, the deploy:finalize_update then removes the log, public/system, and

tmp/pids directories and symbolically links the shared/log, shared/system, and

shared/pids directories (in your application’s deployed path) to these paths respec-

tively. It does that in this little series of commands:

* executing "rm -rf [release_path]/log

[release_path]/public/system

[release_path]/tmp/pids &&

mkdir -p [release_path]/public &&

mkdir -p [release_path]/tmp &&

ln -s [shared_path]/log [release_path]/log &&
ln -s [shared_path]/system [release_path]/public/system &&

ln -s [shared_path]/pids [release_path]/tmp/pids

servers: ["your-server"]
[your-server] executing command

command finished

Next, Capistrano will use the find command to touch every file in the public/images,

public/stylesheets, and public/javascripts to update their last modified time. This is so

that when a user visits your site they get the latest image, stylesheet, or JavaScript file

rather than a cached file. It does this with this part of the output:

* executing "find [release_path]/public/images

[release_path]/public/stylesheets

[release_path]/public/javascripts
-exec touch -t [timestamp] {} ';'; true"

403Deploy away!

servers: ["your-server"]
[your-server] executing command
command finished

The second-to-last step for the deploy:update task is to run the deploy:symlink task,

which symbolically links the new release directory to the current folder within your

deploy path (in this example, /home/ticketeeapp.com/apps/ticketee/current):

* executing `deploy:symlink'
* executing "rm -f [current_path] &&

ln -s [release_path] [current_path]
servers: ["your-server"]
[your-server] executing command
command finished

The last action of the deploy:update task is to commit the transaction that began at

the start, meaning your deploy was successful:

** transaction: commit

The absolutely final thing the deploy task does is call deploy:restart, which will touch

the tmp/restart file in your new application directory (/home/ticketeeapp.com/

apps/ticketee/current), which would restart the server if you had one running:

* executing `deploy:restart'
* executing "touch [current_path]/tmp/restart.txt"

servers: ["your-server"]
[your-server] executing command
command finished

And that’s it! Your application is deployed for the first time; however, it’s not quite

ready for prime-time usage. For starters, the application’s gems are not installed! On

your development box you will do this by running the bundle install task, but you’re

no longer in Kansas24 or on your own development box for that matter. Bundler has

some pretty slick integration with Capistrano, which will run bundle install when

you deploy. This functionality is provided to you by a file that comes with the gem.

14.5.5 Bundling gems

You can trigger the bundle install task to happen (in a slightly different fashion

than usual) when you do a deploy by requiring the bundler/capistrano file in the con-

fig/deploy.rb of your application, right at the top:

require 'bundler/capistrano'

You’ll also need to require RVM’s capistrano configuration so that when you do a

deploy it can locate the bundle command (provided by a gem that was installed using

an RVM-provided Ruby install), which it will need to run bundle install. At the top

of config/deploy.rb, put these lines:

$:.unshift(File.expand_path('./lib', ENV['rvm_path']))
require 'rvm/capistrano'

24 Apologies for any Kansas-based readers out there. Let me assure you, you are still (most likely) in Kansas.

404 CHAPTER 14 Deployment

The first line here adds the lib directory of RVM to the load path (represented in Ruby

by $:). This is required so that this file knows where to find rvm/capistrano. Without

it, it may fail.

 Now that you’re requiring rvm/capistrano when you run cap deploy again, you’ll

see this additional output just after the stylesheets, javascripts, and images touching:

* executing `bundle:install'

* executing "ls -x /home/ticketeeapp.com/apps/ticketee/releases"
servers: ["your-server"]

[your-server] executing command

command finished
* executing "bundle install --gemfile [release_path]/Gemfile

--path [shared_path]/bundle

--deployment
--quiet

--without development test"

servers: ["your-server"]
[your-server] executing command

command finished

Bundler’s added a bundle:install task to your Capistrano configuration which runs

after deploy:finalize_update. This task runs ls -x command at the beginning to

get the last release’s directory (20110207202618, in this case), which it then uses to

specify the location of the Gemfile using the --gemfile flag passed to bundle

install. Rather than installing the gems to a system location which may not be writ-

able by this user,25 Bundler elects to install this to the /home/ticketeeapp.com/apps/

ticketee/shared/bundler directory instead, specified by the --path flag.

 The --deployment flag specifies that the repository must contain a Gemfile.lock

file (meaning the gem versions are locked) and that the Gemfile.lock file is up-to-date

according to the Gemfile. This is to ensure that you’re running an identical set of

gems on your server and local machines.

 Last, the --without flag tells Bundler what groups to ignore. The development

and test groups are ignored in this case, meaning gems specified in these two groups

will not be installed at all.

 With your application’s gems installed, you’re getting even closer to having an

application running. When you deploy changes to your application, these changes

may include new migrations, which will need to be run on the server after you do a

deploy. You can deploy your code and migrate by running this lovely command:

cap deploy:migrations

After your code deploys, Capistrano will run the rake db:migrate task, which is of

great use, because it sets up your database tables. You’ll see output like this:

** [out :: [server]] (in [path_to_application])

** [out :: [server]] == CreateProjects: migrating ===

25 This directory would be located within /usr/local/rvm, which is only writable by members of the rvm group.
This member is not a part of this group and thus is unable to install any gems at a system-wide level.

405Deploy away!

** [out :: [server]] -- create_table(:projects)
** [out :: [server]] -> 0.0012s

...

This indicates that the migrations have happened successfully. Unfortunately, this is in

the wrong database! You spent all that time setting up a PostgreSQL server and it’s

gone ahead and instead used SQLite3. The nerve!

14.5.6 Choosing a database

To fix this, you can make a little change to your application’s Gemfile. Rather than

having sqlite3 out there in the open and not in a group, switch it to only be used in

development and test by moving it down into the group :development, :test block

just underneath.26 Beneath all of the content in the file currently, define a new group

like this:

group :production do

gem 'pg'

end

The pg gem provides the PostgreSQL adapter that you need to connect to your Postgre-

SQL database server on your server. If you run bundle install now it will install this

gem for you. Now you can make a commit for this small change and push your changes:

git add Gemfile*
git commit -m "Added pg gem for PostgreSQL on the server"

git push

You haven’t yet configured your production application to connect to PostgreSQL,

which is somewhat of a problem. You would usually do this by editing the config/database

.yml file in your application, but in this case you want to keep your development and pro-

duction environments separate. Therefore, you’ll set this up on the server.

 Put this file in the shared directory of your application’s deploy, so that all releases

can just symlink it to config/database.yml inside the application itself. Connect to the

server now with your user and then switch over to ticketeeapp.com using sudo su

ticketeeapp.com so that you can add this file. Go into this shared directory now and

open a new file for editing by running these commands:

cd /home/ticketeapp.com/apps/ticketee/shared
mkdir config

cd config

nano database.yml

Inside this file, put the database settings for the production environment of your

application. These are as follows:

production:
adapter: postgresql

database: ticketeeapp.com

min_messages: warning

26 Generally, this is a bad idea. You should always develop on the same database system that you deploy on so
that you don’t run into any unexpected production issues. We’re being lazy here because it’s easier.

406 CHAPTER 14 Deployment

You can exit out of nano by using Ctrl+X and then press Y to confirm your changes.

 Your next step is to get this file to replace the config/database.yml that your appli-

cation contains upon deployment. For this, define a new task at the bottom of config/

deploy.rb in your application:

task :symlink_database_yml do

run "rm #{release_path}/config/database.yml"

run "ln -sfn #{shared_path}/config/database.yml
#{release_path}/config/database.yml"

end

after "bundle:install", "symlink_database_yml"

This task will remove the current config/database.yml located at the release_path

and will then link the one from shared_path’s config/database.yml into that spot. The

final line that you have added tells Capistrano to run this task after the bundle

:install task has been completed, meaning it will happen before anything else.

 Now when you run cap deploy:migrations again, you’ll see this additional

output:

* executing `symlink_database_yml'
* executing "rm [release_path]/config/database.yml"

servers: ["your-server"]

[localhost] executing command
command finished

* executing "ln -s [shared_path]/config/database.yml

[release_path]/config/database.yml"
servers: ["your-server"]

[localhost] executing command

command finished

It looks like your command is working! Another clue indicating this is the migration

output just beneath. Check that the command is truly working by going onto the

server as the ticketeeapp.com user and then going into the /home/ticketeeapp

.com/apps/ticketee/current folder and running rake RAILS_ENV=production

db:seed to load the default data into the production database. Then launch a Postgre-

SQL console by running the psql command. Inside this console, run SELECT * FROM

projects;. You should see output like this:

ticketeeapp.com=> SELECT * FROM projects;

id | name | created_at | ...
----+---------------+----------------------------+ ...

1 | Ticketee Beta | 2011-03-05 12:05:55.447643 | ...

(1 row)

This output shows the data in the projects table that comes from db/seeds.rb, which

means that your database configuration has been copied over and your database has

been set up correctly.

 Capistrano allows you to put the code on your server in a simple fashion. Once you

make a change to your application, you can make sure that the tests are still passing,

make a commit out of that, and push the changes to GitHub. When you’re happy with

407Serving requests

the changes, you can deploy them to your server using the simple cap deploy

:migrations command. This will update the code on your application, run bundle

install, and then run any new migrations you may have added.

 There’s much more to Capistrano than this, and you can get to know more of it by

reading the Capistrano Handbook27 or by asking questions on the Capistrano Google

Group at http://groups.google.com/group/capistrano.

 To run this application and make it serve requests, you could use rails server like

in development, but there are a couple of problems with this approach. For starters, it

requires you to always be running a terminal session with it running, which is just

hackish. Secondly, this process is only single-threaded, meaning it can only serve a sin-

gle request at a time.

 There’s got to be a better way!

14.6 Serving requests

Rather than taking this approach, we’re going to show you how to use the Passenger

gem along with the nginx web server to host your application. The benefit of this is

that when a request comes into your server, it’s handled by nginx and an nginx mod-

ule provided by the Passenger gem, as shown in figure 14.3.

 When the client sends a request to the server on port 80, nginx will receive it.

nginx then looks up what is supposed to be serving that request and sees that Passen-

ger is configured to do that, and so passes the request to Passenger.

 Passenger manages a set of Rails

instances (referred to as a pool) for

you. If Passenger hasn’t received a

request in the last five minutes, Pas-

senger will start a new instance,28

passing the request to that instance,

with each instance serving one

request at a time. The more instances

you have, the more (theoretical)29

requests you can do. If there has been

a request within that timeframe, then

the request is passed to one of the

instances in the pool already

launched by a previous request.30

27 https://github.com/leehambley/capistrano-handbook/blob/master/index.markdown.
28 The passenger_pool_idle_time configuration option is responsible for this: http://www.modrails.com/

documentation/Users%20guide%20Nginx.html#PassengerPoolIdleTime.
29 There’s a hardware limit (when you run out of CPU and RAM) that will be reached if too many instances are

started up. Things can get slow then.
30 Passenger will scale up instances depending on the speed of requests coming to the application. The maximum

number of application instances running at any one time by default is six, and can be configured by the
passenger_max_pool_size setting: http://www.modrails.com/documentation/Users%20guide%20Nginx
.html#PassengerMaxPoolSize.

web browser

nginx

passenger

instance #1 instance #2

Figure 14.3 Nginx request path

https://github.com/leehambley/capistrano-handbook/blob/master/index.markdown
http://www.modrails.com/documentation/Users%20guide%20Nginx.html#PassengerPoolIdleTime
http://www.modrails.com/documentation/Users%20guide%20Nginx.html#PassengerPoolIdleTime
http://www.modrails.com/documentation/Users%20guide%20Nginx.html#PassengerMaxPoolSize
http://www.modrails.com/documentation/Users%20guide%20Nginx.html#PassengerMaxPoolSize
http://groups.google.com/group/capistrano

408 CHAPTER 14 Deployment

 Once Rails has done its thing, it sends the request

back up the chain, going through Passenger to nginx and

then finally back to the client as the response—most com-

monly HTML but it could be anything, really.

 When you launch rails server, the process looks like

figure 14.4.

 In this example, there’s only one instance of your

application serving requests and so it’s going to be slower

than having the Passenger pool of them serving it. Addi-

tionally, nginx is super quick at serving files (like your CSS

and JavaScript ones) and handles these requests itself,

without Rails knowing about it. When you run rails server, it serves every request,

and is definitely not web scale. nginx and Passenger are designed for speed and reli-

ability, and so you should feel pretty confident in using them.

 Enough talk, let’s get into this! You’re going to install the passenger gem now, and

it’s nice enough to set up nginx for you too!

14.6.1 Installing Passenger

To install Passenger, as your user on the box (vagrant ssh, if Vagrant) you can run the

same gem install you’ve been running all this time:

gem install passenger

Once this gem is installed, install nginx and the Passenger module by running this

lovely command. The -i option “simulates initial login,” meaning that the RVM script

will run before this command, making it available:

sudo -i passenger-install-nginx-module

At the prompt, press 1 for the install process to download and compile nginx automat-

ically. When prompted for a directory (/opt/nginx), press Enter. This’ll be the direc-

tory your server runs from. After this, nginx will be compiled and installed. This

process takes a minute or two, so go grab something to eat or drink, or stretch.

 Once it’s done, you’re told that Passenger inserted some configuration for you;

wasn’t that nice of it?

The Nginx configuration file (/opt/nginx/conf/nginx.conf)
must contain the correct configuration options in order for Phusion Passenger

to function correctly.

This installer has already modified the configuration file for you! The
following configuration snippet was inserted:

http {

...
passenger_root /usr/local/rvm/gems/ruby-1.9.2-p180/gems/passenger-

3.0.4;

passenger_ruby /usr/local/rvm/wrappers/ruby-1.9.2-p180/ruby;
...

}

client

server

Figure 12.4 Simplified

client-server relationship

409Serving requests

After you start Nginx, you are ready to deploy any number of Ruby on Rails
applications on Nginx.

When you upgrade Passenger you’ll need to edit the passenger_root line to point to

the new version, and if you ever upgrade Ruby then you’ll need to change the

passenger_ruby line. Press Enter now to see the next bit of output, where you’re told

how to deploy a Rails application:

server {
listen 80;

server_name www.yourhost.com;

root /somewhere/public; # <--- be sure to point to 'public'!
passenger_enabled on;

}

This bit of configuration goes inside the /opt/nginx/conf/nginx.conf file. You can

open this file with sudo /opt/nginx/conf/nginx.conf. It’s already got a server block

in there which is a default configuration for nginx that you can remove. In its place,

put the code from the following listing (based on the advice offered by Passenger).

server {

listen 80;
server_name your-server.com;

root /home/ticketeeapp.com/apps/ticketee/current/public;

passenger_enabled on;
}

You can now start the nginx server by running the nginx executable:

sudo /opt/nginx/sbin/nginx

You can make sure that requests to this server are working by accessing http://your-

server or http://localhost:4567 if you’re using Vagrant. You should see the sign-in page

for your application, as shown in figure 14.3.

Listing 14.1 /opt/nginx/conf/nginx.conf

Figure 14.3 Sign-in page for Ticketee

410 CHAPTER 14 Deployment

This means your web server is now working seamlessly with your application and

everything’s almost ready. If the operating system of the server restarts, however, this

nginx process will not. To fix this small problem, you need to create an init script.

14.6.2 An init script

An init script is a script that is run on startup (init) of the operating system and is usu-

ally used for launching applications or running commands. In Ubuntu, they reside in

the /etc/init.d directory. Here, you’re going to use one to start nginx. This script has

already been prepared for you, and you can download it using this command:

sudo wget http://bit.ly/nginx-init-script -O /etc/init.d/nginx

This command will download the nginx init script and place it at /etc/init.d/nginx.

This file won’t automatically run on boot unless you tell Ubuntu it should, which you

can do with these following commands:

sudo chmod +x /etc/init.d/nginx

sudo /usr/sbin/update-rc.d -f nginx defaults

If you were to reboot your operating system right now, nginx would start automatically

along with it. You don’t need to do it now, but it’s good to know that it’ll start nginx

when the server boots.

 There you have it: the application is deployed onto your Ubuntu server using Cap-

istrano and is running through the power of nginx and Passenger.

14.7 Summary

In this chapter we covered one of the many different permutations you can use to

deploy a Rails application to a server. This chapter covered the most commonly used

software packages such as RVM, Capistrano, PostgreSQL, nginx, and Passenger, and

therefore it should be a great starting ground for anybody learning about deployment.

 There are plenty of other tools out there such as Puppet,31 Chef,32 Babushka,33

and Git Pusshuten.34 Different people prefer different ways of doing similar things,

and so there’s a wide variety of choice. To cover everything within one chapter is just

not possible.

 You set up your server with Ruby 1.9.2 running your Rails 3.0.5 application. You

began by installing the essential packages you needed, then installing RVM, followed

by Ruby.

 Afterwards, you set up a user with the same name as your application. This was

shortly followed by the locking down of SSH access on the machine: now nobody is

able to access it with a password, because they need to have the private key instead.

Disabling root access is just generally good practice. Nobody should ever need to use

31 http://puppetlabs.com.
32 http://opscode.com/chef/.
33 http://babushka.me.
34 http://gitpusshuten.com/.

http://puppetlabs.com
http://opscode.com/chef/
http://babushka.me
http://gitpusshuten.com/

411Summary

the root account on this machine, as everything can be managed by your user or the

application’s user.

 Then we had you set up a database server using PostgreSQL, one of the most pop-

ular relational datastores today. You discovered that giving your system user the same

name as your database came in handy; PostgreSQL supports a kind of authentication

that automatically grants a system user access to a database with the same name. That

is of course provided a PostgreSQL user and database exist with that name. Very

handy!

 Second-to-last, you got down to the meat of the chapter: the first deployment of

your application to your server using Capistrano. You saw that the config/deploy.rb file

comes in handy, allowing you to specify the configuration of your deployment envi-

ronment simply. With Capistrano, you distill everything you need to get your applica-

tion’s latest code onto the server down to one command: cap deploy:migrations.

Every time you need to deploy, run this command, and Capistrano (along with your

configuration) will take care of the rest.

 Finally, you set up nginx and Passenger to serve your application’s requests, as well

as the static assets of your application. Generally, this is the setup preferred by Rails

developers, and so there’s a lot of useful knowledge out there. An alternative to this

setup would be to use the Apache web server instead of nginx. Both work suitably.

 That’s your application done, really. From the first time you ran a test all the way

up to deployment, you’ve covered a lot of important things within Rails. There’s still

much more to learn (which is why there are more chapters after this one), but right

now you should have a firm grasp of what the process of developing and deploying a

Rails application is. In the next chapter, we show you how you can let people authenti-

cate to your application through either Facebook or Twitter.

412

Alternative
authentication

Now that your application has been deployed to a server somewhere (or at least

you’ve gone through the motions of doing that!), we’re going to look at adding

additional features to your application. One of these is OAuth authentication from

services such as Twitter and GitHub.

 When you sign into a website, you can generally use a couple of authentication

methods. The first of these would be a username and password, with the username

being forced to be unique. This method provides a solid way to identify what user

has logged into the website, and from that identification the website can choose to

grant or deny access to specific parts of the site. You have done this with your Tick-

etee application, except in place of a username, you’re using an email address. An

email address is an already unique value for users of a website that also allows you

This chapter covers

 Authenticating against external services

using OmniAuth

 Authenticating with Twitter using OAuth

 Authenticating with GitHub using OAuth

413How OAuth works

to have a way of contacting the user if the need arises. On other websites, though, you

may have to choose a username (with Twitter), or you could be able to use both a user-

name and email to sign in, as with GitHub.

 Entering your email address and a password1 into every website that you use can be

time consuming. Why should you be throwing your email addresses and passwords

into every website?

 Then along came OAuth. OAuth allows you to authenticate against an OAuth pro-

vider. Rather than giving your username/email and password to yet another site, you

authenticate against a central provider, which then provides tokens for the different

applications to read and/or write the user’s data on the application.

 In this chapter you’re going to be using the OAuth process to let users sign in to

your Ticketee application using Twitter and GitHub. You’ll not only see how easy this

is, but also how you can test to make sure that everything works correctly.

 Rather than implementing this process yourself, you can use the OmniAuth gem

in combination with the devise gem that you’re already using. Although this combi-

nation abstracts a lot of the complexity involved with OAuth, it’s still helpful to know

how this process works. Let’s take a look now.

15.1 How OAuth works

OAuth authentication works in a multi-step process. In order to be able to authenti-

cate against other applications, you must first register your application with them.

After this process is complete, you’re given a unique key to identify your application

and a secret passphrase, which is actually a hash. Neither of these should be shared.

When your application makes a request to an OAuth provider, it will send these two

parameters along as part of the request so the provider knows which application is

connecting. Twitter’s API documentation has a pretty good description of the process

as an image, which you can see as figure 15.1.

 First of all (not shown in the figure), a user initiates a request to your application

(the Consumer) to announce their intentions to log in with Twitter (the Service Pro-

vider). Your application then sends that unique identifier and that secret key (given to

you by Twitter when you register your application), and begins the authentication pro-

cess by requesting a token (A). This token will be used as an identifier for this particu-

lar authentication request cycle.

 The provider (Twitter) then grants you this token and sends it back to your appli-

cation. Your application then redirects the user to the provider (B) in order to gain

the user’s permission for this application to access its data. When signing in with Twit-

ter, your users would see something like figure 15.2.

 The user can then choose to Sign In or Cancel on this screen. If they choose Sign

In, the application then has access to their data, which authorizes the request token

1 Ideally, a unique password per site is best for added security. If one site is breached, you do not want your
password to be the same across multiple sites, because the attackers would gain access to everything.

414 CHAPTER 15 Alternative authentication

Figure 15.1 Twitter OAuth

Figure 15.2 Twitter authorization

415Twitter authentication

you were given at the beginning. If they click Cancel, it redirects the user back to the

application without giving it access to the data.

 In this case, you’ll assume the user has clicked Sign In. The user is then redirected

back to your application from the provider, with two parameters: an oauth_token and

a oauth_verifier. The oauth_token is the request token you were granted at the

beginning, and the oauth_verifier is a verifier of that token. OmniAuth then uses

these two pieces of information to gain an access token, which will allow your application

to access this user’s data. There’s also additional data, such as the user’s attributes, that

gets sent back here. The provider determines the extent of this additional data.

 This is just a basic overview of how the process works. All of this is covered in more

extensive detail in Section 6 of the OAuth 1.0 spec, which can be found at http://

oauth.net/core/1.0/.

 In the case of your application, you’re going to be letting users go through this

process with the intention of using their authorization with Twitter to sign them in

whenever they wish. After this process has been completed the first time, a user will

not be re-prompted to authorize your application (unless they have removed it from

their authorized applications list), meaning the authorization process will be seamless

for the user.

 Let’s see how you can use the OmniAuth gem to set up authentication with Twitter

in your application.

15.2 Twitter authentication

You’re going to be using OmniAuth to let people sign in using Twitter and GitHub as

OAuth providers. We’ll begin with Twitter authentication and then move on to

GitHub.

15.2.1 Setting up OmniAuth

OmniAuth not only supports OAuth providers, but also supports OpenID, CAS, and

LDAP. You’re only going to be using the OAuth part, which you can install in your

application by putting this line in your Gemfile:

gem "oa-oauth", :require => "omniauth/oauth"

The different parts of OmniAuth are separated out into different gems by an oa- pre-

fix so that you can use some parts without including all the code for the other parts. In

your Gemfile you’re loading the oa-oauth gem, which will provide the OAuth func-

tionality you need. The file to load this gem does not have the same name as the gem,

so you need to use the :require option here and tell the correct file, omniauth/

oauth, to load.

 Next, you need to tell Devise that your User model is going to be using OmniAuth.

You can do this by putting the :omniauthable symbol at the end of the devise list in

your app/models/user.rb so that it now becomes this:

http://oauth.net/core/1.0/
http://oauth.net/core/1.0/

416 CHAPTER 15 Alternative authentication

devise :database_authenticatable, :registerable, :confirmable,
:recoverable, :rememberable, :trackable, :validatable,

:token_authenticatable, :omniauthable

With OmniAuth set up, you can now configure your application to provide a way for

your users to sign in using Twitter. Twitter first requires you to register your applica-

tion on its site.

15.2.2 Registering an application with Twitter

You need to register your application with Twitter before your users can use it to log in

to your application. The registration process gives you a unique identifier and secret

code for your application (called a consumer key and consumer secret, respectively),

which is how Twitter will know what application is requesting a user’s permission.

 The process works by a user clicking a small Twitter icon on your application,

which will then redirect them to Twitter. If they aren’t signed in on Twitter, they will

first need to do so. Once they are signed in, they will then be presented with the

authorization confirmation screen that you saw earlier, shown again in figure 15.3.

 On this screen you can see that Twitter knows what application is requesting per-

mission for this user, and that the user can either choose to Allow or Deny. By clicking

Allow, the user will be redirected back to your application and then signed in using

code that you’ll write after you’ve registered your application.

 To register your application with Twitter, you need to go to http://dev.twitter.com

and click the Create an App link.

Figure 15.3 Twitter authorization request

Twitter Authorization Request

417Twitter authentication

On this new page you need to fill in the name, description, and URL fields. The name

should be [Your name]’s Ticketee because it needs to be unique; the description can

be anything, and the URL can be http://manning.com/katz. When you click Create on

this application, you’ll see the consumer key and secret that you’ll be using shortly, as

shown in figure 15.4.

 Although this screen isn’t exactly the prettiest thing around, it does offer you the

two key pieces of information that you need: the consumer key and the consumer

secret. The other values on this page aren’t important for you to know, as OmniAuth

will take care of them for you.

 You now need to set up your application to use this consumer key and consumer

secret when authenticating with Twitter. You can do this in Devise’s configuration file

in your application, which is located at config/initializers/devise.rb. In this file, you’ll

see the following commented-out OmniAuth configuration:

==> OmniAuth

Add a new OmniAuth provider. Check the wiki for more information on setting

up on your models and hooks.
config.omniauth :github, 'APP_ID', 'APP_SECRET', :scope =>

➥'user,public_repo'

This shows you how to add a new OmniAuth provider, using GitHub as an example. In

this example, the APP_ID and APP_SECRET values would be the consumer key and con-

sumer secret given to you by the provider. Set up a new provider for Twitter by putting

these lines underneath the commented-out section:

config.omniauth :twitter,

'[consumer key]',

'[consumer secret]'

This will configure Devise to provide OmniAuth-based authentication for Twitter, but

you’re not done yet. You need some way for a user to be able to initiate the sign-in pro-

cess with Twitter.

15.2.3 Setting up an OmniAuth testing environment

To provide a user with a way to sign in with Twitter, you’ll add a small addition to your

menu bar that lets people sign up and sign in using Twitter, as shown in figure 15.5.

Figure 15.4 A brand-new application!

418 CHAPTER 15 Alternative authentication

 When a user clicks this button, your application will begin

the OAuth process by requesting a request token from Twitter,

and then using that token to redirect to Twitter. From here, the

user will authorize your application to have access to their data

on Twitter, and then they’ll be redirected back to your applica-

tion. It’s the user being redirected back to your application that

is the most important part. Twitter will send back the oauth_token and oauth

_verifier, and then your application makes the request for the access token to Twit-

ter. Twitter will then send back this access token and any additional parameters it sees

fit, and you’ll be able to access this information in a Hash format. For example, Twit-

ter sends back the user’s information in the response like this:

{

...
"extra" => {

...

"user_hash" => {
"id" => "14506011"

"screen_name" => "ryanbigg"

"name" => "Ryan Bigg",

...
}

}

}

This is quite a stripped-down version of the response you’ll be getting back from Twit-

ter, but it contains three very important values. The first is the unique Twitter-

provided id of the user, the second is their Twitter username, and the third is their

display name. Currently in Ticketee, you’ve been using the user’s email to display who

you’re logged in as. Because Twitter doesn’t send back an email address, you’ll have to

change where you’d usually display an email address to instead display the user’s dis-

play name or screen name if they’ve chosen to sign in with Twitter.

 First things first though: you need to have a link that a user can click to begin this

process, and to make sure that the link is working you’re going to need to write a fea-

ture. With this feature, you shouldn’t always rely on being able to connect to your

OAuth providers like Twitter. Instead, you should create fake responses (referred to as

mocks) for the requests you’d normally do. By doing this you can substantially speed

up the rate at which your tests run, as well as not depend on something like connectiv-

ity, which is out of your control.

 OmniAuth provides a configuration option for setting whether or not you’re in a

test mode, which will mock a response rather than making a call to an external ser-

vice. This option is conveniently called test_mode. You can set this option at the bot-

tom of your config/environments/test.rb like this:

OmniAuth.config.test_mode = true

With your test environment now set up correctly, you can write a feature to make sure

that users can sign in with Twitter.

Figure 15.5

Sign in with Twitter

419Twitter authentication

15.2.4 Testing Twitter sign-in

Next, you can begin to write your feature to test Twitter authentication in a new file at

features/twitter_auth.feature as shown in the following listing.

Feature: Twitter auth
In order to sign in using Twitter

As a Twitter user

I want to click an icon and be signed in

Background:

Given we are mocking a successful Twitter response

Scenario: Signing in with Twitter
Given I am on the homepage

When I follow "sign_in_with_twitter"

Then I should see "Signed in with Twitter successfully."
And I should see "Signed in as A Twit (@twit)"

This is a simple little feature with a short, three-line scenario. The step in your Back-

ground will mock out a successful response from Twitter, which will be used by Omni-

Auth because you declared that you’re in test mode in config/environments/test.rb.

Let’s run this feature now with bin/cucumber features/twitter_auth.feature so

that you can get the step definition for this new step:

Given /^I have mocked a successful Twitter response$/ do
pending # express the regexp above with the code you wish you had

end

Put this step definition in a new file at features/step_definitions/oauth_steps.rb and

define it as shown in the following listing.

Given /^we are mocking a successful Twitter response$/ do

OmniAuth.config.mock_auth[:twitter] = {

"extra" => {
"user_hash" => {

"id" => '12345',

"screen_name" => 'twit',
"display_name" => "A Twit"

}

}
}

end

To generate a fake response for OmniAuth, you need to use set up a key OmniAuth

.config.mock_auth hash that has the same name as the authentication provider, which

in this case is :twitter. This mock response needs to contain the same kind of layout

as the normal response would get back, including having each of the keys of the hashes

be strings, because this is how your response will be accessed. Twitter’s response hash,

as stated earlier, contains an extra key that contains information about a user, which is

Listing 15.1 features/twitter_auth.feature

Listing 15.2 features/step_definitions/oauth_steps.rb

420 CHAPTER 15 Alternative authentication

what you’ll use to track who has signed into your system using Twitter. You’ll store these

three attributes in new fields in your database when a user signs up using Twitter.

 Run bin/cucumber features/twitter.feature again. This time you’ll see that

you’re missing your link:

Scenario: Signing in with Twitter

Given I am on the homepage

And I follow "sign_in_with_twitter"
no link with title, id or text 'sign_in_with_twitter' found ...

Rather than have a link that reads sign_in_with_twitter, you’ll actually be giving the

link an id attribute of sign_in_with_twitter and Capybara will still be able to find

this link. The link itself is going to be a small button that you can get from https://

github.com/intridea/authbuttons. You should download these images (just the

32 x 32px versions) and put them in the app/assets/images/icons directory of your

application. Leave them named as they are.

 To create this new link, open app/views/layouts/application.html.erb. This file con-

tains the layout for your application and is responsible for displaying the Sign Up and

Sign In links for your application if the user isn’t signed in already. It’s underneath

these links that you want to display your little twitter icon, which you can do by making

this small change to this file:

<%= link_to "Sign up", new_user_registration_path %>
<%= link_to "Sign in", new_user_session_path %>

Or use <%= link_to image_tag("icons/twitter_32.png"),
user_omniauth_authorize_path(:twitter),

:id => "sign_in_with_twitter" %>

With this link you use the downloaded icon as the first argument of link_to by using

image_tag. The second argument to link_to is the routing helper method user

_omniauth_authorize_path with the :twitter argument. This method is provided by

Devise because you’ve told it your User model is omniauthable. This routing helper

will go to a controller that is internal to Devise, because it will deal with the hand-off to

Twitter.

 When you run this feature again, the second step of your scenario will still fail, but

this time with a different error:

And I follow "sign_in_with_twitter"

The action 'twitter' could not be found
for Devise::OmniauthCallbacksController

By default, Devise handles the callbacks from external services using the

Devise::OmniAuthCallbacksController. Because different people will want this con-

troller to perform differently, Devise provides a set of common functionality in this

controller and expects you to subclass it to define the actions (like your twitter

action) yourself. To do this, create a new controller for these callbacks by running this

command:

rails g controller users/omniauth_callbacks

https://github.com/intridea/authbuttons
https://github.com/intridea/authbuttons

421Twitter authentication

This command will generate a new controller at app/controllers/users/

omniauth_callbacks_controller.rb, but it’s not quite what you want. You want this con-

troller to inherit from Devise::OmniauthCallbacksController, and you also want it

to have a twitter action. Before you do that, though, tell Devise to use this new con-

troller for its callbacks. You can do this by changing these lines in your config/

routes.rb file

devise_for :users, :controllers => {
:registrations => "registrations",

}

into this:

devise_for :users, :controllers => {

:registrations => "registrations",

:omniauth_callbacks => "users/omniauth_callbacks"
}

This will tell Devise to use your newly generated users/omniauth_callbacks control-

ler rather than its own Devise::OmniauthCallbacksController, which you’ll use as

the superclass of your new controller. This Devise::OmniauthCallbacksController

contains some code that will be used in case something goes wrong with the authenti-

cation process.

 Now you need to define the twitter action in this new controller. This action is

going to be called when Twitter sends a user back from having authorized your appli-

cation to have access. Define this controller using the code from the following listing.

class Users::OmniauthCallbacksController <

➥Devise::OmniauthCallbacksController
def twitter

@user = User.find_or_create_for_twitter(env["omniauth.auth"])

flash[:notice] = "Signed in with Twitter successfully."
sign_in_and_redirect @user, :event => :authentication

end

end

When a request is made to this action, the details for the user are accessible in the

env["omniauth.auth"]key, with env being the Rack environment of this request,

which contains other helpful things such as the path of the request.2

 You then pass these details to a currently undefined method called

find_or_create_for_twitter, which will deal with finding a User record for this

information from Twitter, or creating one if it doesn’t already exist. You then set a

flash[:notice] telling the user they’ve signed in and use the Devise-provided

sign_in_and_redirect method to redirect your user to the root_path of your appli-

cation, which will show the ProjectsController’s index action.

Listing 15.3 app/controllers/users/omniauth_callbacks_controller.rb

2 Covered in much more detail in chapter 17.

422 CHAPTER 15 Alternative authentication

 To make this action work, you’re going to need to define find_or_create_for

_twitter in your User model, which you can do using the code from the following

listing.

def self.find_or_create_for_twitter(response)

data = response['extra']['user_hash']
if user = User.find_by_twitter_id(data["id"])

user

else # Create a user with a stub password.
user = User.new(:email => "twitter+#{data["id"]}@example.com",

:password => Devise.friendly_token[0,20])

user.twitter_id = data["id"]
user.twitter_screen_name = data["screen_name"]

user.twitter_display_name = data["display_name"]

user.confirm!
user

end

end

You’ve defined this class method to take one argument, which is the response you get

back from Twitter. In this response, there’s going to be the access token that you get

back from Twitter that you don’t care so much about, and also the extra key and its

value that you do really care about. It’s with these that the application then attempts

to find a user based on the id key B within the response["extra"]["user_hash"]

(here as data to make it easier to type). If it can find this user, it’ll return that object.

 If it can’t find a user with that twitter_id attribute, then you need to create one!

Because Twitter doesn’t pass back an email, you make one up C, as well as a password,

D using Devise’s very helpful friendly_token method, which generates a secure

phrase like QfVRz8RxHx4Xkqe6uIqL. The user won’t be using these to sign in; Devise

needs them so it can validate the user record successfully.

 You have to do this the long way, because the twitter_ prefixed parameters aren’t

mass-assignable due to your attr_accessible call earlier on in this model, so you

must assign them manually one at a time. Store the id of the user so you can find it

again if you need to re-authenticate this user, the twitter_screen_name, and the

twitter_display_name. Then you need to confirm and save the object, which you can

do with the confirm! method, and finally you need to return the object as the final

line in this else block.

 These fields are not yet fields in your database, so you’ll need to add them in. You

can do this by creating a new migration using this command:

rails g migration add_twitter_fields_to_users

In this migration you want to add the fields to your table, which you can do by adding

them to your migration, as shown in the following listing.

Listing 15.4 app/models/user.rb

B Find user

Email C

PasswordD

423Twitter authentication

class AddTwitterFieldsToUsers < ActiveRecord::Migration
def change

add_column :users, :twitter_id, :string

add_column :users, :twitter_screen_name, :string
add_column :users, :twitter_display_name, :string

end

end

With this migration set up, you can run it on your development and test databases

with rake db:migrate and rake db:test:prepare respectively. Now when you run

your feature again with bin/cucumber features/twitter_auth.feature, you’ll see

that your new User object is being created and that you can see the “Signed in with

Twitter successfully.” message:

Scenario: Signing in with Twitter
Given I am on the homepage

And I follow "sign_in_with_twitter"

Then I should see "Signed in with Twitter successfully."

Then I should see "Signed in as A twit"
Failed assertion, no message given. (MiniTest::Assertion)

The final step of your feature is now failing, but this is a pretty easy one to fix. You

need to change where it would normally display a user’s email to display something

like “A Twit (@twit)” if the twitter_id attribute is set. To do this, define a new

method in your User model above the to_s method, using the code from the follow-

ing listing.

def display_name
if twitter_id

"#{twitter_display_name} (@#{twitter_screen_name})"

else
email

end

end

If the twitter_id attribute is set in this method, then you assume the

twitter_display_name and twitter_screen_name attributes are set also and use

those to display the twitter name. If it isn’t set, then you’ll fall back to using the email

field. You’ll be able to use this method later on to check if the github_id field is set

and use the values for that instead.3

 Now you need to change the occurrences of where user.email is referenced to

use the display_name method. The first occurrence of this is in app/models/user.rb

in your to_s method, which should now become

Listing 15.5 db/migrate/[timestamp]_add_twitter_fields_to_users.rb

Listing 15.6 app/models/user.rb

3 Alternatively, you could add a feature to let the user pick which one they would like to display.

424 CHAPTER 15 Alternative authentication

def to_s
"#{display_name} (#{admin? ? "Admin" : "User"})"

end

The rest of the occurrences are found in a handful of views throughout your applica-

tion, and you’ll need to fix these up now. The first of these is the first line of app/

views/admin/permissions/index.html.erb, which should now become this:

<h2>Permissions for <%= @user.display_name %></h2>

Next, there’s one in the application layout at app/views/layouts/application.html.erb:

Signed in as <%= current_user.email %>

This needs to become simply

Signed in as <%= current_user %>

By placing an object like this in the view, the to_s method will be called on it automat-

ically, which is of course the to_s method in the User model.

 Finally, you’ll need to update the app/views/tickets/show.html.erb page in the

same manner, changing this

<%= @ticket.user.email %>

to this:

<%= @ticket.user.display_name %>

That’s it! That’s all the occurrences of calls to the email attribute in places where it’s

shown to users has been changed to display_name instead. So does this mean that

your feature will now run? Find out with a quick run of bin/cucumber features/

twitter_auth.feature:

1 scenario (1 passed)
5 steps (5 passed)

All green, all good. Now users are able to sign up and sign in by clicking the Twitter

icon in your application rather than providing you with their email and password. The

first time a user clicks this icon, they’ll be redirected off to Twitter, which will ask them

to authorize your application to access their data. If they choose Allow, they will be

redirected back to your application. With the parameters sent back from the final

request, you’ll attempt to find a User record matching their Twitter ID or, if there isn’t

one, create one instead. Then you’ll sign them in.

 After that, when the user attempts to sign in using the Twitter icon, they’ll still be

redirected back to Twitter, but this time Twitter won’t ask them for authorization

again. Instead, Twitter will instantly redirect them back to your application; the whole

process will seem pretty smooth, albeit with the delay that can normally be expected

from doing two HTTP requests.

 Go ahead, try launching rails server now and accessing the application at

http://localhost:3000 by clicking the small Twitter icon on the sign-in page. You’ll be

425GitHub authentication

redirected off to Twitter, which deals with the authentication process before sending

you back to the application.

 Did you break anything? Let’s see by running rake cucumber:ok spec:

63 scenarios (63 passed)
737 steps (737 passed)

and

72 examples, 0 failures, 19 pending

Nope, it seems like everything is functioning correctly. Let’s make a commit:

git add .

git commit -m "Added OmniAuth-driven support for signing in with Twitter"

With the work you’ve done in this section, users will now be able to easily sign into

your application using Twitter. You can see this for yourself by starting a server using

rails s and clicking the Twitter icon if you’ve got a Twitter account.

 If your users don’t have a Twitter account, then their only other choice at the

moment is to provide you with their email address and a password, and that’s not

really useful to anyone who has a GitHub but not a Twitter account. So let’s see how

you can authenticate people using GitHub’s OAuth next, while recycling some of the

Twitter-centric code in the process.

15.3 GitHub authentication

We’ve shown how you can let people authenticate using Twitter’s OAuth. GitHub also

provides this service, and the OmniAuth gem you’re using can be used to connect to

that too, in much the same way as you did with Twitter. Rather than re-doing every-

thing that you did in the previous section again and changing occurrences of “twitter”

to “github,” you’ll be seeing how you can make the code that

you’ve written so far support both Twitter and GitHub in a

clean fashion. When you’re done, you’re going to have a lit-

tle GitHub icon next to your Twitter one so that people can

use GitHub, Twitter, or email to sign in, making your sign in

/sign up area look like figure 15.6.

 As was the case with Twitter, your first step will be regis-

tering an application with GitHub.

15.3.1 Registering and testing GitHub auth

To register an application with GitHub, you must first be signed in. Then you can visit

https://github.com/account/applications/new and fill in the form that it provides.

After that, you’ll need to copy the Client ID and Client Secret values and put them in

your config/initializers/devise.rb file under your Twitter details, like this:

config.omniauth :github, "[Client ID]", "[Client Secret]"

With GitHub now set up in your application, you can write the feature to ensure that

its authentication is working. To begin testing your application’s ability to

Figure 15.6 GitHub login

426 CHAPTER 15 Alternative authentication

authenticate users from GitHub, you’re going to write a new feature at features/

github_auth.feature and fill it with the content from the following listing.

Feature: GitHub auth

In order to sign in using GitHub

As a GitHub user
I want to click an icon and be signed in

Background:

Given I have mocked a successful GitHub response

Scenario: Signing in with GitHub

Given I am on the homepage

And I follow "sign_in_with_github"
Then I should see "Signed in with Github successfully."

Then I should see "Signed in as A GitHubber"

Although it may look like all you’ve done here is replace all the references to Twitter

with GitHub... actually, that’s precisely what you’ve done! This is because there should

be little difference in how the user interacts with your site to sign in with Twitter or

GitHub. The differences should only be behind the scenes, as this is how a user would

expect an application to behave.4

 When you run this new feature with bin/cucumber features/github_auth

.feature, you’ll see that you’ve got an undefined step:

Given /^I have mocked a successful GitHub response$/ do
pending # express the regexp above with the code you wish you had

end

Define this step in features/step_definitions/oauth_steps.rb underneath the one for

Twitter. It goes like this:

Given /^I have mocked a successful GitHub response$/ do

OmniAuth.config.mock_auth[:github] = {
"extra" => {

"user_hash" => {

"id" => '12345',
"email" => 'githubber@example.com',

"login" => "githubber",

"name" => "A GitHubber"
}

}

}
end

GitHub returns a similar hash to that of Twitter, containing an extra key with a

user_hash key nested inside. Within this nested hash you’ve got the three parameters

that you’ll be storing on your end: the id, the login, and a name.

Listing 15.7 features/github_auth.feature

4 Also known as Principle of least surprise (POLS) or more colloquially, “keep it simple, stupid!” (KISS).

427GitHub authentication

 When you run your feature again, you’ll be through this undefined step and now

up to the next failing step:

And I follow "sign_in_with_github"

no link with title, id or text 'sign_in_with_github' found

This means that your sign_in_with_github link doesn’t exist yet, so you’re going to

need to create it like you did with your sign_in_with_twitter link. You could do this

by copying and pasting the Twitter link code underneath itself in app/views/layouts/

application.html.erb, ending up with something like this:

Or use <%= link_to image_tag("icons/twitter_32.png"),

user_omniauth_authorize_path(:twitter),
:id => "sign_in_with_twitter" %>

<%= link_to image_tag("icons/github_32.png"),

user_omniauth_authorize_path(:github),
:id => "sign_in_with_github" %>

This code in your application layout is going to get ugly as you add providers, and it’s

quite a lot of duplication! What would be more sensible is moving this code into a

helper method in a new file such as app/helpers/oauth_helper.rb, defining it as shown

in the following listing.

module OauthHelper

def auth_provider(name)

link_to image_tag("icons/#{name}_32.png"),
user_omniauth_authorize_path(name),

:id => "sign_in_with_#{name}"

end
end

Then in place of the ugly code in your application layout, you’d put this instead:

Or use <%= auth_provider(:twitter) %> <%= auth_provider(:github) %>

How’s that for simplicity? Well, you could make it even cleaner by accepting any num-

ber of arguments to your method, by turning it into this:

def auth_providers(*names)
names.each do |name|

concat(link_to(image_tag("icons/#{name}_32.png"),

user_omniauth_authorize_path(name),
:id => "sign_in_with_#{name}"))

end

nil
end

This helper uses the concat method to output the links to your view. If you didn’t use

this, it wouldn’t render them at all. You could then write this in your application layout:

Or use <%= auth_providers(:twitter, :github) %>

Listing 15.8 app/helpers/oauth_helper.rb

428 CHAPTER 15 Alternative authentication

Now isn’t that way nicer? If at any time you want to add or remove one of the links, you

only have to add or remove arguments to this method.

 When you run this feature again with bin/cucumber features/github_auth

.feature, you’ll see that you’re on to the next error:

The action 'github' could not be found for Users::OmniauthCallbacksController

As you did with Twitter, you’re going to need to define a github action in the

Users::OmniauthCallbacksController. This action will find or create a user based

on the details sent back from GitHub, using a class method you’ll define after in your

User model. Sound familiar? You can duplicate the twitter action in this controller

and create a new github action from it like this:

def github

@user = User.find_or_create_for_github(env["omniauth.auth"])

flash[:notice] = "Signed in with GitHub successfully."
sign_in_and_redirect @user, :event => :authentication

end

But like the provider links in your application layout, this is not very clean and gets

exceptionally more complex the more providers you have. Rather than doing it this

way, you’ll define a class method for your controller that will dynamically define these

methods for you. Define this method in app/controllers/users/omniauth_callbacks

_controller.rb by using the code from the following listing.

def self.provides_callback_for(*providers)
providers.each do |provider|

class_eval %Q{

def #{provider}
@user = User.find_or_create_for_#{provider}(env["omniauth.auth"])

flash[:notice] = "Signed in with #{provider.to_s.titleize}

➥successfully."
sign_in_and_redirect @user, :event => :authentication

end

}
end

end

As with your auth_providers method in OauthHelper, you can call this method in

your controller (after removing the twitter and github methods already in it):

provides_callback_for :twitter, :github

The provides_callback_for method will iterate through each of the arguments

passed in, defining a new method dynamically using class_eval B, which will evalu-

ate the code you pass in within the context of the current class. The %Q{} encapsula-

tion will provide a String object that you can put double quotes and single quotes in

without having to escape them.

Listing 15.9 app/controllers/users/omniauth_callbacks_controller.rb

B Evaluate code

429GitHub authentication

 You then need to replace any occurrences that you previously had of either “twit-

ter” or “github” with the provider variable from the current iteration, using interpola-

tion to put it into the quoted string. The provides_callback_for method will then

define a new action in your controller for the specified providers. This has greatly

decreased the repetition in your controller’s code, at the expense of a small easy-to-

understand bit of class_eval “magic.”

 When you run your feature again with bin/cucumber features/github.feature,

you’ll see that it’s now hitting your new github action, because it can’t find a method

that you use in it:

undefined method `find_or_create_for_github' for ...
(eval):3:in `github'

In this error output you’re seeing that Rails is unable to find a find_or_create

_for_github method on a class, which is the User class. You created one of these for

Twitter, and unlike the provider links and the callback actions, you’re not able to eas-

ily create a bit of smart code for your model. But you can separate out the concerns of

the model into separate files, which would make it easier to manage. Rather than fill-

ing your User model with methods for each of your providers, you’ll separate this

code out into another module and then extend your class with it.

 You can do this by creating a new directory at app/models/user and placing a file

called app/models/user/omniauth_callbacks.rb inside it. You should put the content

from the following listing inside this file.

class User < ActiveRecord::Base

module OmniauthCallbacks

def find_or_create_for_twitter(response)
data = response['extra']['user_hash']

if user = User.find_by_twitter_id(data["id"])

user
else # Create a user with a stub password.

user = User.new(:email => "twitter+#{data["id"]}@example.com",

:password => Devise.friendly_token[0,20])
user.twitter_id = data["id"]

user.twitter_screen_name = data["screen_name"]

user.twitter_display_name = data["display_name"]
user.confirm!

user

end
end

end

end

In this file you define an OmniauthCallbacks module inside your User class. Inside

this module, you’ve put the find_or_create_for_twitter method straight from your

User model, except you’ve removed the self prefix to the method name. You can

Listing 15.10 app/models/user/omniauth_callbacks.rb

430 CHAPTER 15 Alternative authentication

now go ahead and remove this method from the User model, making it temporarily

unavailable.

 By separating out the concerns of your model into separate modules, you can

decrease the size of the individual model file and compartmentalize the different con-

cerns of a model when it becomes complicated, like your User model has.

 To make this method once again available, you need to extend your model with

this module. You can do this by making the first two lines of your model into

class User < ActiveRecord::Base

extend OmniauthCallbacks

The extend method here will make the methods available for the module on the class

itself as class methods.

TIP It’s generally a good idea to put any extend or include calls at the
beginning of a class definition so that anybody else reading it will know if
the class has been modified in any way. If an extend is buried deep within
a model, then it can be difficult to track down where its methods are com-
ing from.

By adopting a convention of putting things that can potentially seri-
ously modify your class at the top of the class definition, you’re giving a
clear signal to anyone (including your future self who may have forgotten
this code upon revisiting) that there’s more code for this model in other
places.

You can now define your find_or_create_by_github method in the User::Omniauth-

Callbacks module by using the code from the following listing.

def find_or_create_for_github(response)
data = response['extra']['user_hash']

if user = User.find_by_github_id(data["id"])

user
else # Create a user with a stub password.

user = User.new(:email => data["email"],

:password => Devise.friendly_token[0,20])
user.github_id = data["id"]

user.github_user_name = data["login"]

user.github_display_name = data["name"]
user.confirm!

user

end
end

You’re lucky this time around, as the form of the data you get back from GitHub isn’t

too different to Twitter, coming back in the response['extra']['user_hash'] key. In

the case of other providers, you may not be so lucky. The form of the data sent back is

not standardized, and so providers will choose however they like to send back the data.

Listing 15.11 app/models/user/omniauth_callbacks.rb

B Create user

431GitHub authentication

 Included in the data you get back from GitHub is the user’s email address, which

you can use B to create the new user, unlike with the find_or_create_for_twitter

method where you had to generate a fake email. The added bonus of this is that if a

user wishes to sign in using either GitHub or their email, they would be able to do so

after resetting their password.

 The final lines of this method should be familiar; you’re setting the github_id,

github_user_name and github_display_name fields to store some of the important

data sent back from GitHub. You’re able to re-sign-in people who visit a second time

from GitHub based on the github_id field you save. Finally, you confirm the user so

that you’re able to sign in as them.

 With the find_or_create_for_github method defined, has your feature pro-

gressed? Find out with a run of bin/cucumber features/github_auth.feature:

And I follow "sign_in_with_github"
undefined method `find_by_github_id' for ...

Ah, it would appear that you’re not quite done! You need to define the github fields

in your users table so that your newly added method can reference them. Go ahead

and create a migration to do this now by running this command:

rails g migration add_github_fields_to_users

You can then alter this migration to add the fields you need by using the code from

the following listing.

class AddGithubFieldsToUsers < ActiveRecord::Migration
def change

add_column :users, :github_id, :integer

add_column :users, :github_user_name, :string
add_column :users, :github_display_name, :string

end

end

Alright, you can now run this migration using rake db:migrate and rake

db:test:prepare to add these fields to your users table. Now you can run your fea-

ture again with bin/cucumber features/github_auth.feature to see this output:

Scenario: Signing in with GitHub

Given I am on the homepage

And I follow "sign_in_with_github"
Then I should see "Signed in with Github successfully."

Then I should see "Signed in as A GitHubber (githubber)"

expected there to be content "Signed in as A Githubber"

The third step of your scenario is now passing, but the fourth is failing because you’re

not displaying the GitHub-provided name as the “Sign in as …” line in your applica-

tion. You can easily rectify this by changing the display_name method in app/

Listing 15.12 db/migrate/[timestamp]_add_github_fields_to_users.rb

432 CHAPTER 15 Alternative authentication

models/user.rb to detect if the github_id field is set like it does already with the

twitter_id field.

 Underneath the display name output for the if twitter_id case in app/models/

user.rb, add these two lines:

elsif github_id

"#{github_display_name} (#{github_user_name})"

The entire method is transformed into this:

def display_name

if twitter_id

"#{twitter_display_name} (@#{twitter_screen_name})"
elsif github_id

"#{github_display_name} (#{github_user_name})"

else
email

end

end

When you run bin/cucumber features/github_auth.feature again, you should see

that it’s all passing:

1 scenario (1 passed)

5 steps (5 passed)

Now users are able to use GitHub to sign in to your site, as well as Twitter or their

email address if they please. Make a commit for the changes that you’ve done, but first

make sure everything’s running with a quick run of rake cucumber:ok spec:

64 scenarios (64 passed)

746 steps (746 passed)

and
56 examples, 0 failures

All systems green! Time to commit:

git add .
git commit -m "Add GitHub authentication support"

git push

You’ve seen how you can support another authentication provider, GitHub, along with

supporting Twitter and email-based authentication too. To add another provider

you’d only need to follow these six easy steps:

1 Create a new client on the provider’s website, which differs from provider to

provider.

2 Add the new client’s information to config/initializers/devise.rb as a new

provider.

3 Write a test for your new provider to make sure that people can always use it to

sign in.

433Summary

4 Add the provider icon to your listed providers in app/views/layouts/application

.html.erb by passing another argument to the auth_providers helper method

that you defined in OauthHelper.

5 Add a callback to the Users::OmniauthCallbacksController by using the

provides method. Again, passing another argument to this method is all you

need.

6 Define the find_or_create_for_[provider] method in the User::Omniauth-

Callbacks module.

Due to the flexibility offered by Devise and OmniAuth, there’s no provider-specific

configuration you need to do: it all works beautifully. For a full list of providers, check

out the omniauth project on GitHub: https://github.com/intridea/omniauth.

 See for yourself if GitHub’s authentication is working by launching rails server

again and going to http://localhost:3000 and clicking the GitHub icon.

15.4 Summary

In this chapter you’ve seen how easy it is to implement authentication using two

OAuth providers: Twitter and GitHub. You did this using the OmniAuth integration,

which is available in Devise versions after 1.2.

 For the Twitter section, you implemented the complete flow in a very simple man-

ner using the features given to you by Devise, such as the routing helper, which ini-

tially sends a request off to the provider. Before OmniAuth came along, this process

was incredibly tedious. It’s truly amazing what OmniAuth offers you in terms of inte-

grating with these providers.

 When you got to the GitHub section, rather than copying and pasting the code

you created for Twitter, you saw how you could reduce repetition in your code by

using methods that iterate through a list of providers to display the icons or to pro-

vide callbacks.

 Now that you’ve got multiple ways to allow people to sign in to your application,

the barrier of entry is lowered because people can choose to sign in with a single click

(after they’ve authorized the application on the relevant provider), rather than filling

in the sign-in form each time. You’ve also got a great framework in place if you want to

add any more providers.

 Your application is at a pretty good state now, but you’ve not yet made sure that it

can perform as efficiently as possible. If thousands of users flock to your application,

how can you code it in such a way as to reduce the impact on your servers? In the next

chapter, we look at how you can implement some basic performance enhancements

to make your application serve requests faster, or even create a way by which a request

skips the application altogether.

434

Basic performance
enhancements

When an application is written, it may be done in such a way that it will not perform

ideally. A common situation is that an application with a small database will per-

form quickly because there is less data to retrieve, but starts to slow as the database

grows larger. This problem can be fixed in many different ways.

 The first way is to limit the amount of data retrieved in any one call to a fixed

limit, a process known as pagination. At the moment, for example, you’re not limit-

ing the number of tickets shown in the show action of the ProjectsController. The

more tickets that get added to a project, the slower the page that shows this data is

going to perform because it will have to retrieve more data from the database and

render it out to the page. By breaking the data down into a set of pages, you can

This chapter covers

 Implementing pagination for resources with the

Kaminari gem

 Improving database query speeds with Active Record

features

 Caching pages and fragments of pages

 Using the Delayed Job gem with background workers

435Pagination

show 50 tickets per page. This will lessen the load on your database, but not completely

eliminate it. That would only be possible if you were to run no queries at all. You could

do exactly that if you cached the output of the page, or even just the part of the page

that showed the list of tickets.

 The first process involves saving a copy of the page in the public directory, which

would then be used to serve this page. Any action on tickets, such as creating one,

adding a comment, or changing a state would then wipe this cache and start afresh.

 The second process is slightly different. Rather than storing the fragment as a file

on the system, you will store it in memory and then access it through a key.

 Finally, by adding indexes to key columns in your tables, such as foreign keys, you

can greatly speed up the queries it runs too. If you had 10,000 tickets in your system

and you wanted to find all the tickets which had project_id set to 123, an index

would help speed up this process.

 We’ll show you examples of all of these approaches in this chapter, beginning with

pagination.

16.1 Pagination

We’ll discuss two different kinds of pagination here. The first kind paginates the inter-

face that users can see, as shown in figure 16.1.

 If this project had a thousand tickets, it wouldn’t make sense to show all 1,000 at a

time. It would also be terribly slow, because the database would have to retrieve 1,000

records. Rails would then have to instantiate 1,000 Ticket objects, render 1,000 tick-

ets to the page, and send back that massive chunk of HTML.

 The second kind of pagination has to do with your API. Back in chapter 13 you

wrote the beginnings of the ticket API, and we promised you we’d revisit it in this

chapter. Inside the Api::V1::TicketsController’s index action you have this

innocuous-looking line:

respond_with(@project.tickets)

Again, if the database’s tickets table contains 1,000 records for this project, it will

have to send all of them to Rails. Rails will then have to instantiate 1,000 objects, pars-

ing them all to JSON or XML before sending them off

to the user. All of this would happen with each

request, and if you were getting a lot of requests it

would bring your application to its knees.

 By paginating the result sets in both of these situ-

ations, you can change your application to return

only 50 tickets at a time, which would theoretically

make your application respond 20 times faster than

if it were returning 1,000 tickets. Let’s begin by

installing a gem called Kaminari that will help you

with pagination. Figure 16.1 Tickets for a project

436 CHAPTER 16 Basic performance enhancements

16.1.1 Introducing Kaminari

The Kaminari gem1 is a new breed of pagination gem written by Akira Matsuda, and is

considered the Rails 3 successor to the will_paginate gem,2 which was the favorite

for a long time.3

 After you install this gem, you’re given an interface on the models of your applica-

tion, which allows you to make calls like this:

@project.tickets.page(2).per(50)

This call would ask for the second page of tickets, with each page containing 50 tickets.

It’s a very clean API. Those familiar with will_paginate will be used to a syntax like this:

@project.tickets.paginate(:per_page => 50, :page => 2)

The syntax is a little longer, but it’s a little clearer what it’s doing to those who are

familiar with it. You’ll use Kaminari here just for something different. In your views,

you can use the same paginate method, which is made available by both gems:

<%= paginate @tickets %>

This little helper generates the output shown in figure 16.2.

 To install this gem, add this line to your Gemfile underneath the searcher gem:

gem 'kaminari'

You’ll then run the bundle install command to install the gem. With the gem

installed, you can now begin to write a Cucumber feature to test that when you’re on

1 http://github.com/amatsuda/kaminari.
2 http://github.com/mislav/will_paginate.
3 Since this original writing, will_paginate has been updated to be Rails 3 compatible.

Figure 16.2 Pagination helper

http://github.com/amatsuda/kaminari
http://github.com/mislav/will_paginate

437Pagination

the tickets page with more than 50 tickets in the system, you will see a pagination link

somewhere on that page. You should be able to click Next and then see the next 50

tickets.

16.1.2 Paginating an interface

You’re going to now implement paging for your tickets listing, showing 50 tickets at a

time. Users will be able to navigate between pages by clicking the Next and Prev links.

These two links will be provided by a helper from the kaminari gem.

TESTING PAGINATION

To test this, you’ll write a new scenario at features/paginating_tickets.feature, shown in

the following listing. If you create 100 tickets in this feature, you’ll see the pagination

links and can then make sure they’re working.

Feature: Paginating tickets

In order to ease the load on the server

As the system

I want paginate ticket results
Background:

Given there is a project called "Internet Explorer"

Given there are the following users:
| email | password |

| user@ticketee.com | password |

And "user@ticketee.com" can view the "Internet Explorer" project
And I am signed in as them

And there are 100 tickets for this project

When I am on the homepage
And I follow "Internet Explorer"

Scenario: Viewing the second page

Then I should see 2 pages of pagination
When I follow "Next" within ".pagination .next"

Then I see page 2 of tickets for this project

In this feature you use the “Given there is a project” step you’ve used many times

before to create a project, and then a new step B, which will create a given number of

tickets for the project. This is required so that the pagination links will appear on your

tickets. If you didn’t have enough tickets in your project to warrant pagination, then

the links would not appear at all.

 You then go through the motions of creating a user, giving them access to that

project so that they can see into it, signing in as them, and then navigating to that

project. On that project’s page you should see the pagination links displaying two

pages’ worth of pagination. When you click the Next link within the pagination ele-

ment, you should be on the second page.

 You’ve got three undefined steps within this feature, and you can get the step defi-

nitions for these steps by running this feature using the bin/cucumber features/

paginating_tickets.feature:

Listing 16.1 features/paginating_tickets.feature

B Create tickets

438 CHAPTER 16 Basic performance enhancements

Given /^there are (\d+) tickets for this project$/ do |arg1|
pending # express the regexp above with the code you wish you had

end

Then /^I should see (\d+) pages of pagination$/ do |arg1|
pending # express the regexp above with the code you wish you had

end

Then /^I see page (\d+) of tickets for this project$/ do
pending # express the regexp above with the code you wish you had

end

The first step definition here has to do with tickets, and so you’ll put it in features/

step_definitions/ticket_steps.rb using the code shown in the following listing.

Given /^there are (\d+) tickets for this project$/ do |number|

number.to_i.times do |i|

@project.tickets.create!(:title => "Test",
:description => "Placeholder ticket.",

:user => @user)

end

end

This small piece of code will create as many tickets as you’ve specified for the

@project object set up by the “Given there is a project” step, using the @user variable

set up by the “Given there are the following users” step. It’s not important what the

title and description attributes are for these tickets, just that you have enough of them

to trigger the pagination links to appear.

 The next two undefined steps can go into a new file called features/step

_definitions/pagination_steps.rb, as they’re about the pagination more than any other

resource in your application.

 The Kaminari paginate method you’ll use in your view shortly will output a nav

element with the class of pagination. Inside this nav element there are a couple of

other elements. The first is a span element with the class of prev, which would contain

a Previous button if you’re a page or two in with pagination. After that, there are a

couple more span elements, all with the class of page. The span tag representing the

current page has an additional class name of current, which we’ll discuss a little later.

You can count these span.page elements easily, using the css method to find them

using a CSS selector and then using count on what that returns to count the number

of pages shown in pagination.

 By gathering up these page elements and counting them, you easily assert that

there’s pagination on this page. You can define the next step like this in features/

step_definitions/pagination_steps.rb:

Then /^I should see (\d+) pages of pagination$/ do |number|
pages = all(".pagination .page")

pages.count.should eql(number.to_i)

end

Listing 16.2 features/step_definitions/ticket_steps.rb

439Pagination

Here you use Capybara’s all method, which will find all the elements matching the

CSS selector specified and return them as an Array object. Then it’s a simple matter of

calling count on that Array and making sure it contains as many as you say it should.

 You final undefined step asserts that you’re on a specific page of the pagination.

Write this step like this:

Then /^I see page (\d+) of tickets for this project$/ do |number|

current_page = find(".pagination .current").text.strip
current_page.should eql(number)

end

You use the find method rather than the all method because there is only going to

be one current page element. This method will only return a single element, which

matches the specified CSS selector. Calling text on this element will return the num-

ber inside it, and you can strip it (as it contains spaces) and then compare that to the

number passed in for your step. If the two numbers are equal, then this step will pass.

 With the last of your undefined steps now actually defined, let’s see what happens

when you run bin/cucumber features/pagination.feature:

Then I should see 2 pages of pagination
expected 2

got 0

IMPLEMENTING PAGINATION HELPERS

Your step that checks for two pages of pagination wasn’t able to see any at all, most

likely because you aren’t showing any right now! To fix this, you’ll have to display the

pagination link in app/views/projects/show.html.erb by putting this line above the ul

that displays tickets:

<%= paginate @tickets %>

This line will display the pagination links that your failing step currently requires.

You’re going to need to set up the @tickets variable for pagination in your controller

so that these pagination links know what page you’re on and that there are only 50

tickets displayed. You’ll replace this line in the show action of app/controllers/

projects_controller.rb

@tickets = @project.tickets

with this line:

@tickets = @project.tickets.page(params[:page]).per(50)

This page method will set @tickets to display only the tickets for the current page

number, available in the params[:page] variable. The per method after it will retrieve

50 ticket objects rather than Kaminari’s default 25. Your tickets don’t take up much

room on your page so you can bump this up.

 When you run your feature again with bin/cucumber features/paginating

_tickets.feature, it will pass because you’ve now got your pagination links showing:

440 CHAPTER 16 Basic performance enhancements

1 scenario (1 passed)
10 steps (10 passed)

That’s all there is to paginating a resource. You can also call the page and per meth-

ods on models themselves rather than associations; it was just in this case that you

were calling it on an association.

 Before you make a commit for this change, quickly make sure that everything’s

working by running rake cucumber:ok spec:

Failing Scenarios:

cucumber features/searching.feature:23

cucumber features/searching.feature:29
cucumber features/searching.feature:35

62 scenarios (3 failed, 59 passed)

736 steps (3 failed, 6 skipped, 727 passed)

Oh dear, it appears the feature in features/searching.feature has been broken by your

changes! Good thing that you’ve got a feature to catch these kinds of things.

FIXING BROKEN SCENARIOS

All three scenarios in this feature failed with the same error:

undefined method 'current_page' for ...

This looks to be associated with the feature you just implemented, as it’s trying to call

a method called current_page. If you look a couple of lines down in the output, you’ll

see that there’s a line in the stack trace that shows that this is from Kaminari:

...kaminari/helpers/action_view_extension.rb:21:in 'paginate'

Okay, so it looks to be a problem coming from Kaminari, but why? Well, if you look

even further down in the stacktrace for this error somewhere in your application,

probably from the app folder, you’ll come across this line:

./app/controllers/tickets_controller.rb:60:in 'search'

What’s so great about this line? Well, this line renders the projects/show view:

render "projects/show"

Above that, however, is the real culprit:

@tickets = @project.tickets.search(params[:search])

You’re not calling either page or per on your search results, and so it’s not going to be

paginating them. You’re going to call the same methods you called back in the

ProjectsController’s show action here so that you get paginated search results:

@tickets = @project.tickets.search(params[:search])

@tickets = @tickets.page(params[:page]).per(50)

With paginated search results, the feature in features/searching.feature will no longer

complain when you run it with bin/cucumber features/searching.feature:

3 scenarios (3 passed)

39 steps (39 passed)

441Pagination

Alright, so that one’s passing. Let’s see what happens when you run rake cucumber:ok

spec again:

66 scenarios (66 passed)

756 steps (756 passed)
and

72 examples, 0 failures, 19 pending

All areas where you need pagination are working. You’ve called the per method twice,

once in the show action of the ProjectsController and again in the search method

of TicketsController. If you wish to change the number of elements returned for a

list of tickets, you’d need to change both of these locations. Instead, you’ll move the

setting for the number of ticket objects returned on each page into the model.

CLEANING UP AFTER YOURSELF

Let’s take the per(50) call out of this line in the show action of ProjectsController

@tickets = @project.tickets.page(params[:page]).per(50)

turning it into this:

@tickets = @project.tickets.page(params[:page])

Next, you’ll do the same thing for the line that uses per in the search action of the

TicketsController

@tickets = @tickets.page(params[:page]).per(50)

changing it into this:

@tickets = @tickets.page(params[:page])

To make 50 objects the default for this model, you can put this line directly under the

searcher block in your Ticket model:

paginates_per 50

Now when your application is asked for a list of paginated tickets, you’ll be given 50

tickets per page. You can make sure this is the case by rerunning your “Paginating tick-

ets” feature by running bin/cucumber features/paginating_tickets.feature:

1 scenario (1 passed)

10 steps (10 passed)

Alright, that’s still working, so that’s good! Are your features and specs still working

too? Another quick run of rake cucumber:ok spec will tell you:

66 scenarios (66 passed)

752 steps (752 passed)
and

72 examples, 0 failures, 19 pending

Great, time to make a commit with this new feature:

git add .

git commit -m "Added pagination for tickets"

git push

442 CHAPTER 16 Basic performance enhancements

SEEING PAGINATION FOR YOURSELF

Here you’ve seen an easy way to add pagination links to resources in your application

by using the Kaminari gem. You could have used the will_paginate gem and that

would have worked just as easily. It’s really up to personal preference. Pagination

allows you to ease the load on the database server by returning only limited amounts

of records per page, and also doesn’t overwhelm the user with choices.

 Let’s see how this works in a browser before you continue. First, you’ll need to cre-

ate 100 tickets for a project so that you can get two pages of pagination. To do that,

launch rails console and put in this code:

project = Project.first
100.times do |i|

project.tickets.create!(

:title => "Fake ticket",
:description => "Fake description",

:user => User.first

)
end

Next, type exit and press Enter to exit out of the console, and then launch your appli-

cation with rails server. You can log in using the email and password you’ve set up

in db/seeds.rb, which are admin@ticketee.com and password, respectively. You can

then click the Ticketee Beta page and you should see a page like figure 16.3.

 The pagination here shows that you’re on the first page and that there’s a second

page you can go to, by clicking either the 2 link or the Next link. By clicking this link,

the page switches to the second page of tickets and the URL now becomes http://local-

host:3000/projects/1?page=2. This page parameter is passed to the controller as

params[:page] and then passed to the page method provided by Kaminari.

Figure 16.3 Paginated tickets

443Pagination

 If you click the 1 link or the Prev link, you’ll be taken back to the first page. All of

that functionality was given to you by the paginate method in your views and the page

call in your controller. You didn’t have to code any of this yourself, which is great.

Next, we’ll look at how you can add this same kind of pagination to the tickets API.

16.1.3 Paginating an API

You’ve easily set up pagination for your tickets on the interface that a user sees, to ease

the load on the database. However, for your tickets API you’re still returning all the

tickets for a project when they’re requested, and therefore you’ll run into the same

problems you solved in the previous section.

 Your API is different though. You can’t provide a pagination link for the tickets

returned by an API. Instead, you’ll have to rely on people passing in a page number,

which you’ll then use to return that page of tickets.

 To test this, you’re going to go into your API spec file for tickets at spec/api/v2/

tickets_spec.rb and add another test. This one should assert that when you pass in a

page parameter to your requests, you receive that page of tickets, rather than all of the

tickets or a different page.

 In your API you’ll limit requests to 50 per response, but you may choose to set this

a little higher.4 Therefore, you’ll create 100 tickets, which should give you enough

tickets to test that you can get the first and second pages of your API.

 You’ll add another context to spec/api/v2/tickets_spec.rb to test pagination, using

the code shown in the following listing.

context "pagination" do

before do
100.times do

Factory(:ticket, :project => project, :user => @user)

end
end

it "gets the first page" do

get "/api/v2/projects/#{project.id}/tickets.json",
:token => token,

:page => 1

last_response.body.should eql(project.tickets.page(1).per(50).to_json)

end

it "gets the second page" do
get "/api/v2/projects/#{project.id}/tickets.json?page=2",

:token => token,

:page => 2

last_response.body.should eql(project.tickets.page(2).per(50).to_json)

end

end

4 200 seems to be a common number to use for API return objects per request.

Listing 16.3 spec/api/v2/tickets_spec.rb

444 CHAPTER 16 Basic performance enhancements

In this new context, you’ll create 100 tickets using the ticket factory, referencing the

@user variable set up in the spec’s before block and also pointing it at the project

object set up near the top of this file. Your first test makes sure that you’re getting

back the first 50 tickets for the project, and the second test checks for the second 50.

 When you run this test using bin/rspec spec/api/v2/tickets_spec.rb:36, it

won’t pass because you’ve not got the pagination in place yet:

expected [small array of JSON'ified tickets]
got [larger array of JSON'ified tickets]

You can easily fix this by changing this line in the index action of app/controllers/api/

v2/tickets_controller.rb

respond_with(@project.tickets)

to this:

respond_with(@project.tickets.page(params[:page]))

When you rerun the pagination context with bin/rspec spec/api/v2/tickets_spec

.rb:35, both tests will pass:

2 examples, 0 failures

Now users can go to /api/v2/projects/:project_id/tickets.json to get the first

page of 50 tickets, or specify the page parameter by putting it on the end of the URL as

a query parameter (that is, /api/v2/projects/:project_id/tickets.json?page=2)

to get to the second page of tickets.

 You can now run rake cucumber:ok spec to check for any breakage:

62 scenarios (62 passed)

736 steps (736 passed)
and

66 examples, 0 failures, 12 pending

By paginating the number of tickets shown both on the interface and in the API, you

can ease the load on the server and provide a better interface to your users at the

same time.

 Sometimes when you’re coding your application you may inadvertently call queries

that aren’t that performant. This could happen in a view if you were wanting to dis-

play all tags for each ticket as you iterated through them. In the next section, we take

a look at how you can cause this problem to happen and at two ways to fix it.

16.2 Database query enhancements

What would you do without database queries? Well, you’d have a boring application,

that’s for sure! But it’s database queries that can be the biggest bottleneck for your

application once it grows to a larger size. Having a page that—in the beginning—only

ran 5 queries and is now running 100 on each request will just not be webscale.

 The most common place where performance degradation can occur in a Rails

application is when an operation called N+1 selects takes place. Let’s use your applica-

tion as an example of this. Imagine that you have 50 tickets and want to display them

445Database query enhancements

all on the same page, but also along with these tickets you wanted to display all the

tags for these tickets. Before you render this page, you know all the tickets but don’t

yet know what the tags are for the tickets. Therefore, you’d need to retrieve the tags as

you are iterating over each of the tickets, generating another query to retrieve all the

tags for each ticket.

 This is the N+1 selects problem. You have an initial query for all of your tickets,

but then N queries more, depending on the amount of tickets you’re showing. This

problem is not so much of a big deal now that you’ve got pagination, but it still can

crop up.

16.2.1 Eager loading

In your app/views/projects/show.html.erb you can perform N+1 selects, asking for

each ticket’s tags just like in the example, by putting this line within the block where

you iterate over each ticket:

<%= render ticket.tags %>

When you start your server using rails server and navigate to your first project’s

page, Rails will diligently run through each ticket in the @tickets array, performing a

query for each one to find its tags. If you switch back over to the console, you’ll see

queries like this:

SELECT * FROM "tags"
INNER JOIN "tags_tickets" ON "tags".id = "tags_tickets".tag_id

WHERE ("tags_tickets".ticket_id = 1)

There should be 50 of these little queries, and 50 adds up to a big number5 when it

comes to lots of requests hitting this page and running these queries. Fifty requests to

this page would result in over 2,500 queries. Oh, your poor database server!6 It would

be much better if you didn’t have to run so many queries.

 Thankfully, there’s yet another thing in Rails that helps us be better programmers

and better friends with our databases. This wonderful invention is known as eager load-

ing and will allow you to run two queries to get all the tickets and all the tags, rather

than one query for the ticket and N queries for all the tags for all the tickets.

 There are two ways of doing this: you can use the joins or includes method when

you attempt to grab all the tags for the tickets in app/controllers/projects

_controller.rb. You’re currently grabbing and paginating all the tickets for the current

project using this line in the show action in ProjectsController:

@tickets = @project.tickets.page(params[:page])

The @project.tickets part of this line generates a query,7 but doesn’t eager-load the

tags yet. To make it do this, you could use the joins method like this:

@tickets = @project.tickets.joins(:tags).page(params[:page])

5 When used in a function that uses squares, or even worse, cubes.
6 Yes, they’re made for this kind of thing, but that’s not the point!
7 But doesn’t run it! When it gets to the view and you call each on it, then it runs.

446 CHAPTER 16 Basic performance enhancements

This line would generate an SQL query like this:

SELECT "tickets".* FROM "tickets"

INNER JOIN "tags_tickets" ON "tags_tickets"."ticket_id" = "tickets"."id"

INNER JOIN "tags" ON "tags"."id" = "tags_tickets"."tag_id"
WHERE ("tickets".project_id = 1)

The INNER JOIN parts of the query here mean that it will find all records in the

tickets table that have tags only. It will also return a ticket record for every tag that it

has, so if one ticket has three tags it will return three tickets. This is somewhat of a

problem, given that you’re going to want to display all tickets regardless of if they are

tagged or not, and you definitely don’t want three of them appearing when only one

should.

 To fix this, use join’s brother includes, switching the line in the show action to

this:

@tickets = @project.tickets.includes(:tags).page(params[:page])

When you refresh the page, Rails will generate two queries this time around:

SELECT "tickets".* FROM "tickets"

WHERE ("tickets".project_id = 1)
LIMIT 50

OFFSET 0

SELECT "tags".*, t0.ticket_id as the_parent_record_id FROM "tags"
INNER JOIN "tags_tickets" t0 ON "tags".id = t0.tag_id

WHERE (t0.ticket_id IN (1,2,[...],49,50))

Rails has run the query to find all the tickets first, then another query to gather all the

tags for all the selected tickets as the second query. This query doesn’t care if tickets

have tags or not, it will still fetch them.

 Here you’ve seen a way to cause an N+1 query and how to stop it from happening.

You can remove the <%= ticket.tags %> from app/views/projects/show.html.erb now,

because you’re done with this experiment.

 This is just one way your database can be slow. Another is more insidious. It creeps

in slowly over months of the application seemingly running fine and makes it progres-

sively slower and slower. The problem is a lack of database indexes, and it affects many

Rails applications even today.

16.2.2 Database indexes

Database indexes aren’t a Rails feature, they’re a feature of your own database that

can greatly improve its performance when used correctly. The absence of database

indexes may not seem like a problem immediately, but when you’re dealing with

larger datasets it becomes more and more of a problem. Take for example if you had

10,000 tickets with 2,300 of them belonging to Project A. To find all the tickets for

Project A, your database sans indexes would have to do a full table scan, searching

through each ticket and determining if it belonged to Project A or not. That’s a prob-

lem, because the more records you have, the longer this scan is going to take.

447Database query enhancements

 Indexing the data in your databases allows you to perform fast lookups and avoid

full table scans. Imagine that your database is a phonebook and that the names are in

no particular order. In this situation, it would be difficult to find all people with a

name such as John Smith-McGee, because you’d have to scan the entire phone book

to find out who has this name.

 An index sorts this data into a logical order and allows for a much faster lookup.

Ever seen how a phonebook that has the letter and the first name at upper left, and

maybe the same or a different letter at upper right, with another name? That’s an

index. That allows you to easily find names because you know that the letter A comes

before B, and C after B, and so on.

 Indexes allow you to run much faster queries because you tell your database how

to index the data. Although it may seem like premature optimization at this point,

you’re going to put an index on your tickets table to speed up finding collections of

tickets for a project. It’s common sense to have these from the beginning: adding

them onto large datasets will take a long time, because you’ll need to work out how to

index each record.

 To add this index, create a new migration with this command:

rails g migration add_project_id_index_to_tickets

This will generate a file at db/migrate that ends with the name you’ve given it. You’re

going to need to open this file now and add in the index, because Rails cannot (yet)

read your mind. You’ll add this index inside the self.up part of the migration using

add_index and remove it in the self.down method using remove_index, like this:

def change
add_index :tickets, :project_id

end

Run this migration using rake db:migrate db:test:prepare to run it on the develop-

ment and test environment databases. You’ll see this line in the output:

-- add_index(:tickets, :project_id)

-> 0.0015s

Just to reinforce the message: it’s better to add the indexes when the database is first

being designed rather than at a later point because this 0.0015 seconds could easily

become whole seconds on a larger dataset. This index will now group your tickets into

groups of project_id columns, allowing for much faster lookups to find what tickets

belong to a specific project.

 You want the absolute best performance you can get out of your database because

it’s a key point in your requests. Indexes and eager loading are the two most basic ways

you can get better performance out of your database.

 If your database is performing optimally and your pages still aren’t loading fast

enough, you’ll need to look for alternative methods of speeding them up. Two of

these methods are page and action caching, which allow you to store the output of a

page to serve it up rather than re-processing the code and hitting the database again.

448 CHAPTER 16 Basic performance enhancements

16.3 Page and action caching

Rails has several methods of caching pages. The first of these methods serves a request

and then stores the output of that page in the public folder of your application so that

it can be served without going through the Rails stack by the web server. This is known

as page caching

 You’d cache a page if that page took a long time to process, or if there were a lot of

requests to it. If either of these situations happens, the performance of the web server

can be degraded and requests can end up piling up.

 By caching a page, you take the responsibility of processing and serving it off your

Rails stack and put it on the (usually) more-than-capable web server.8

 The first time a page is requested, you store it as a file in your application. The

next time the request is made, that static page will be served rather than having the

action processed again.

 This first type of caching is great for pages that don’t require authentication. For

pages that do require authentication you’ll need to use a different kind of caching

called action caching. This type of caching runs the before filters on a request before it

serves the cached page, and you’ll see a great example of this in this section.

 Let’s take a look at the first kind of caching, plain ol’ page caching.

16.3.1 Caching a page

You’re going to cache the page that’s rendered when a user looks at Projects-

Controller’s show action. By caching this particular page, Rails will serve the first

request to this file and then save the output of the request to a new file at public/

projects/:id.html. This public/projects directory will be created by Rails automatically.

This process is shown in figure 16.4.

 On the next request, due to how the web server is configured, it will serve the file

rather than hit the Rails stack, as shown in figure 16.5. This is absolutely a faster

request, regardless of how little goes on in an action in Rails. If a request doesn’t have

to go down that extra level in the stack it’s going to save a great deal of time, and

again: modern web servers are built to serve these static files.

 One of the downsides of this is that it will not cache the GET parameter on the

request, like your page numbers. Earlier, when you used rails server to use your

pagination, the URL became http://localhost:3000/projects/1?page=2. The page that’s

cached doesn’t have this parameter at the end, and so it will always display the first

page, because that’s what will be stored at public/projects/:id.html.

 Regardless of this, you’ll at least see how this method works. In your Projects-

Controller, underneath the before_filter lines, you can put this method to tell

Rails to cache the page for the show action:

caches_page :show

8 Such as Apache or nginx, or any other HTTP server. Not WEBrick. There are some things that Ruby’s made
for, and being a fast/stable HTTP server ain’t one.

449Page and action caching

In development mode, caching is turned off by default. Obviously, in development

mode you don’t care so much about caching, as all requests are going to be local and

not on a heavy-load server. You can turn caching on by going into config/environments/

development.rb and changing this line

config.action_controller.perform_caching = false

to this:

config.action_controller.perform_caching = true

Without this option, you can still have caches_page in your controllers, it just won’t

do anything. With it turned on, your pages will be cached upon their first request.

 Launch rails server again and this time go to http://localhost:3000/projects/1.

In the server output, you’ll see an additional line:

Write page /.../ticketee/public/projects/1.html (0.3ms)

Browser

Web Server

/public/projects/1.html

1. Request comes in for
GET /projects/1

Application

2. Very quick check for
/public/projects/1.html

3. Not found...
Go to the application!

4. Application routes
request to controller

Controller

5. Controller creates
/public/projects/1.html

6. Request sent back to browser

Figure 16.4 First request, no cached page

Browser

Web Server

/public/projects/1.html

1. Request comes in for
GET/projects/1

2. Very quick check for
/public/projects/1.html

3. Found! It's dangerous
to go alone, take this

4. Page sent back to browser

Figure 16.5 Subsequent

requests, cached page

450 CHAPTER 16 Basic performance enhancements

This time, rather than simply processing your action and sending the response body

back to the server, Rails will save the body in a new file in your application at public/

projects/1.html. The next time this route is requested, because the public/projects/

1.html page exists, it will be served by your web server, rather than Rails. A side-effect

of this means that your request will not show up in the Rails console, but at least it will

be served faster.

 Let’s reload the page now; it should be a little faster because it’s serving that static

page. If you click the Next link on your pagination, you’ll still be shown the first page.

This is because the GET parameter was ignored, and the first page for this project’s

tickets was what was cached.

 There’s another problem too: this result is cached for all users of your application.

At the top of the page, you’ll be able to see the message that says “Signed in as

admin@ticketee.com,” as shown in figure 16.6.

 To see this little issue in action, sign up as another user by first clicking the Sign

Out link in the application to sign out, then the Sign Up link to be presented with a

form to sign up. In this form, enter user@ticketee.com for the email and password

for both the password and password confirmation fields. When you click the Sign Up

button, this will create your new user account.

 You currently require users to confirm their account through an email they

receive, but because you’re in development mode there will be no emails sent. To con-

firm this user, launch rails console now and run these commands:

user = User.find_by_email("user@ticketee.com")

user.confirm!

You’ll also need to give this user access to the first project in your system, so that they

can view the tickets too. To do this, run these couple of commands:

project = Project.first
user.permissions.create!(:action => "view", :thing => project)

Alright, now that your user is confirmed and has access to this project, let’s see what

happens when you sign in with the email and password you used to sign up,

user@ticketee.com and password. At the top of the page you’ll see that you’re signed

in as the new user, as seen in figure 16.7.

Figure 16.6 Signed in as admin Figure 16.7 Signed in as a user

451Page and action caching

However, when you click the Ticketee Beta link to go to your first project, the page

will change to saying that you’re signed in as the admin@ticketee.com user again, as

shown in figure 16.8.

 You know better; you’re actually signed in as the user! This is happening because

Rails has cached the entire page, rather than just the tickets list. This page also

ignores any kind of authorization you’ve set up in your controllers, making it available

for every single person who wishes to access it, which is just a Very Bad Thing.

 So it looks like caches_page isn’t going to work in this situation. This method is

better for pages that don’t have dynamic elements on them, such as the place at the

top that displays the currently logged-in user or the list of tickets.

 This method has a brother called caches_action that will help you fix both the

issue of the currently logged-in user display message, as well as the issue of it only

showing the first page of pagination.

16.3.2 Caching an action

Caching an entire page is helpful when you don’t have authentication, but if you have

authentication then it’s better to cache the response of the action on a per-user basis.

Caching an action involves caching the response for a particular session, so that when

that user requests it again they’ll be shown it again.

 Caching a page is great for a page that’s accessible by anybody, as the body would

be served as a static file from the public folder by the web server. Caching an action is

best used for actions that take a long time to process (you don’t have any at the

moment) and that require some interaction with the Rails stack, such as a

before_filter that authenticates your user.

 There’s a third way of caching, and that’s fragment caching, where you’d cache just a

bit of a page at a time, rather than the entire result. Before you get on to using that,

let’s see what caches_action provides you.

NOTE Before you do anything, you’ll want to remove the old file that has
been cached. To do this, delete the public/projects directory. Next time
this page is requested, the cache will be re-created.

Let’s replace this line in your ProjectsController

caches_page :show

Figure 16.8 Still signed in

as admin@ticketee.com?

452 CHAPTER 16 Basic performance enhancements

with this line:

caches_action :show

For this change to take effect, you only need to refresh the page at http://localhost

:3000/projects/1 or actually visit it again if you’ve closed the browser since the last

time. If you switch over to the terminal where your server is running, you won’t see the

line that says this:

Write page /.../ticketee/public/projects/1.html (0.3ms)

Rather, you’ll see this line instead:

Write fragment views/localhost:3000/projects/1 (40.3ms)

This time, Rails has written a fragment rather than writing a page. In this case, the frag-

ment is actually the entire page, but it is the page available only for this user. When

you request this page again, you’ll see this line in the server’s output:

Read fragment views/localhost:3000/projects/1 (0.3ms)

Upon the second request here, Rails has found the fragment pertaining to this

request and served that instead. Rather than saving these files into the public direc-

tory, Rails instead saves them to the tmp/cache directory. Files that are in the public

directory are automatically served by your web server without hitting the Rails stack,

but cached responses in tmp/cache are served by the Rails stack itself. This may seem

counterintuitive at first, but it’s really helpful if you want to alter what cache fragments

are served to what user.

 Currently, the fragment is written to a file such as tmp/cache/CC6/080/

views%2Flocalhost%3A3000%2Fprojects%2F1. This location is simply a location in the

tmp/cache folder with a hashed path, followed by the escaped name of views/

localhost:3000/projects/1. It’s with this name that Rails can retrieve this fragment and

show it again.

 But you’re still going to have the problem that both of your users are going to see

the same page. Sign out of your current user, and sign in as the other one. Once you

visit this page again, you’ll see you’re still signed in as the first user! It’s doing the

same darn thing as caches_page!

 As stated before, caches_action is different. It runs the before_filters of your

controller and has one more special benefit: you can change the path of where this

file is cached by using the cache_path option passed to caches_action. You can then

set this option to be a Proc object, which means it will be evaluated before every

request made to the action (or actions) you are caching. In this Proc object you’ll

have access to the current controller instance, meaning you’ll have access to

current_user. With this access, you’ll be able to customize the path where the cache

is kept so that you can cache the same page for different users.

 To do this, change your caches_action line in your controller to these lines:

453Page and action caching

caches_action :show, :cache_path => (proc do
project_path(params[:id], :user_id => current_user.id)

end)

Here, you’ve passed the cache_path option to caches_action. This is a proc object,

and you need to wrap the value for this option in brackets or Ruby will think the block

is for the caches_action call.

 This Proc object is evaluated within the context of an instance of this controller,

and therefore you’ll have access to the params and current_user methods usually

available within an action or a before_filter. With these, you’re building a string by

combining the URL of the current project (provided to you by the helper

project_path) and the id of current_user.

 When you access this page again in the browser, Rails will re-process this action

because the cache path has changed and then save the page in a new location. In

the output for the server you’ll see this new fragment has been written, indicated by

this line:

Write fragment views/localhost:3000/projects/1/1 (4.4ms)

This time, the path to the file and the file itself have changed because you’ve changed

the URL of the page; it’s now the cached version of this page currently for this user.

When you sign out as your current user and sign in as the other user and navigate to

this project’s page, you’ll see that the “Signed in” message at the top of the page is

now the correct one, as shown in figure 16.9.

 This means that you’ve now fixed the problem where the same cached page was

shown for all users, meaning that each of your users will see a slightly different version

of this page. This is almost right, but not quite. When you click the Next link for pagi-

nation, you’ll still only be shown the first page. This is because much like

caches_page, your caches_action also ignores the page parameter.

 You can fix this, however, by changing the path generated for the cached page to

contain the current page number. To do this, change this line in caches_action’s

cache_path option in ProjectsController

project_path(params[:id]) + "/#{current_user.id}"

Figure 16.9 Signed in as

admin for a cached page

454 CHAPTER 16 Basic performance enhancements

to this:

project_path(params[:id]) + "/#{current_user.id}/#{params[:page] || 1}"

The next time you request this page, it will again save a new version of it, this time out-

putting a line like this:

Write fragment views/localhost:3000/projects/1/1/1

The first 1 here represents the project’s id, the second represents the user’s, and the

third represents the page number. This file is saved to a path such as tmp/cache/E62/

3E0/views%2Flocalhost%3A3000%2Fprojects%2F1%2F1%2F1.

 So in this section you’ve fixed the problem where all people would see that they

were signed in as the first person who requested the page, as well as the case where

only one page of your tickets was available. Now what happens when you update this

page and the tickets change? These pages will still be cached, and your new tickets or

updates to them will not be shown!

 You’re going to need a way to clear this cache, to expire the fragments that are cre-

ated when these events happen. Right now, the number-one situation where that’s

going to happen is when you create a new ticket for a project. You can trigger this

event to clear your cache by using a feature in Rails known as cache sweepers.

16.3.3 Cache sweepers

Cache sweepers are much like the observers you used back in chapter 12. In fact, the

ActionController::Caching::Sweeper class inherits from ActiveRecord::Observer,

effectively making them the same thing. The difference here is that you refer to the

sweeper in the controller, telling it to run after certain actions have completed.9

 In this case, whenever a ticket is created, updated, or destroyed in a project, you’ll

want your application to clear out the cached pages because they would be out of date

at that point. This is precisely what you can use a sweeper for. To call this sweeper, put

this line underneath the before_filter calls in TicketsController:

cache_sweeper :tickets_sweeper, :only => [:create, :update, :destroy]

You put this line in your TicketsController because you want it to run after the

create, update, and destroy actions.

 Now when you go to a project in your application and attempt to create a new

ticket on it, you’ll get this error:

uninitialized constant TicketsSweeper

Rails is looking for the TicketsSweeeper constant, which is supposed to define the

cache sweeping behavior for your TicketsController, but can’t find it because you

haven’t defined it yet. To define this, create a new folder at app/sweepers for this

9 It uses after_filter to do this, which can also be used to run other actions after a controller’s action has
been processed, just like a before_filter can be used to run actions before a controller’s action runs.

455Page and action caching

sweeper and its brethren to live.10 In this directory you’ll create a new file called app/

sweepers/tickets_sweeper.rb and fill it with this content:

class TicketsSweeper < ActionController::Caching::Sweeper

observe Ticket
def after_create(ticket)

expire fragment code goes here

end
end

You’ll get around to adding the expire fragment code in just a bit, but first a bit of

explanation is needed. A sweeper looks and acts much the same as an observer. By

calling the observe method at the top of the TicketsSweeper, you tell this sweeper to

watch the Ticket class for changes. The after_create method here will be called

after creation of a new Ticket object, but because you’re in a sweeper, you’ll have

access to the controller’s parameters also. With them, you can use what’s usually avail-

able in the controller to expire the cached fragments.

 To do this, you can call the expire_fragment method, passing it a regular expres-

sion. This regular expression will match all cached fragments for the ticket’s project

for all users, effectively wiping clean the slate for this project in terms of cached pages.

Inside your after_create method you’ll put this:

expire_fragment(/projects\/#{ticket.project.id}\/.*?/)

Now when you create a new ticket for a project, this expire_fragment method will be

called. Let’s try this out now, creating a new ticket by clicking the New Ticket link on a

project’s page and filling out the form. Once you’ve clicked the Create Ticket button

on the form, you’ll see this in the console:

Expire fragment (?-mix:projects\/1\/.*?) (327.3ms)

Rails has gone through and expired all the fragments associated with this ticket’s proj-

ect. If you now go into tmp/cache and into any one of the directories there looking

10 Because it doesn’t really belong in the controllers, helpers, models, observers, or views directory, but is still a
vital part of your application.

Alternatively, pass a constant

Rather than passing the symbolized version of the name along to the cache_sweeper
method, you can also alternatively pass along a class:

cache_sweeper TicketsSweeeper

This doesn’t perform any differently than passing in a symbol, but is really helpful if

your sweeper was modularized:

cache_sweeper Ticketee::TicketsSweeper

You can’t pass a modularized sweeper name as a symbol, and so the

cache_sweeper method supports passing both a symbol and a constant reference

as well.

456 CHAPTER 16 Basic performance enhancements

for a file, you shouldn’t see any. The directories (with names like E62 and 3E0) will

still exist, but there aren’t any files. This means that Rails has successfully cleared its

cache of fragments for the project.

 Let’s get your sweeper to perform this same action when tickets are updated and

destroyed. Move the expire_fragment call into another method and then call it in the

after_create, after_update, and after_destroy methods in TicketsSweeper using

the code shown in the following listing.

class TicketsSweeper < ActionController::Caching::Sweeper
observe Ticket

def after_create(ticket)

expire_fragments_for_project(ticket.project)
end

def after_update(ticket)

expire_fragments_for_project(ticket.project)
end

def after_destroy(ticket)

expire_fragments_for_project(ticket.project)

end

private

def expire_fragments_for_project(project)

expire_fragment(/projects\/#{project.id}\/.*?/)
end

end

Now you have Rails caching the pages of tickets for all projects in your application and

clearing that cache when tickets are updated. This is a great demonstration of caching

on a per-user basis, even if your project page isn’t that intensive. If you had a system

resource (CPU/memory) intensive action in your application that required user cus-

tomization like this, you could use this same method to cache that action to stop it

from being hit so often, which would reduce the strain on your server.

Listing 16.4 app/sweepers/tickets_sweeper.rb

Expiring pages

If you were still using caches_page, you wouldn’t use expire_fragment to expire

the cache files that were generated. Instead, you’d use expire_page, which can take

a hash like this:

expire_page(:controller => "projects",

:action => "show",

:id => 1)

Or, better still would be to pass it the URL helper:

expire_page(project_path(1))

Even though you’re not caching pages any more, it’s still handy to know how to clear

cached pages and fragments.

457Page and action caching

Let’s make a commit now for this:

git add .

git commit -m "Add fragment caching to ticket listings on a project"

Another way to ease the load on the server side is to use the browser (client) side cach-

ing by sending back a 304 Not Modified status from your Rails application. In the next

section, we’ll look at a Rails controller method that’ll help you with this.

16.3.4 Client-side caching

There’s one more method in the controller you’re going to see in this section, and

that’s the fresh_when method. This method will send an ETag11 header back with the

initial request to a client, and then the client’s browser will cache that page with that

ETag on the client’s machine.12 The ETag is the unique identifier for this page, or

entity, at the current point in time.

 In this situation, you’ll use this type of caching for the show action on a ticket in a

project, meaning the URL will be something like /projects/1/tickets/2. The first

request to this action after you’re done will follow the steps shown in figure 16.10.

 The next time the page is requested, the browser will send a request with the ETag

it received on the first request to the server, this time in a If-None-Match header. The

server then regenerates the ETag for the page that’s been requested and compares it

against the If-None-Match incoming header. If these two match, then the server will

send back a 304 Not Modified header, telling the browser to use its cached copy. This

means that, rather than having the server re-render the view and its pieces, the client

does all the hard work of just re-showing the initial page. This whole process is shown

in figure 16.11.

11 The E stands for entity. More information is available on the Wikipedia page for this:
http://en.wikipedia.org/wiki/HTTP_ETag.

12 If Private Browsing is turned on in the browser, this wouldn’t happen.

Browser

Web Server

1. Request comes in for
GET /projects/1/tickets/2

Application

Controller

6. Request sent back to browser
with ETag "ef2"

2. Trickles down...

3. ... to the controller
4. Controller responds,

also sends back an ETag
called "ef2"

5. Bubbles up
through the stack

Figure 16.10 ETag caching

http://en.wikipedia.org/wiki/HTTP_ETag

458 CHAPTER 16 Basic performance enhancements

Even though this goes through the same series of events both times, what happens in

the controller is the clincher: by returning a 304 Not Modified, you can respond with

a lightweight response and get the user’s browser to render the page, rather than hav-

ing your application do it again.

 For your ticket page, you’re going to want your application to send back this status

only when your ticket hasn’t been updated. When a ticket’s information such as the

title or description is updated, or when a comment is posted to the ticket, you’d want

to send back a proper response rather than the 304 Not Modified header. It’s this

timestamp that you’re going to be using to determine if a page is either fresh or stale.

A fresh page is one that’s been recently updated, with a stale page being one that

hasn’t been.

 You’ve got a column in your tickets table that you can use to determine if a

ticket’s been updated: the updated_at column. Each time a ticket’s updated through

your application, this field will be set to the timestamp automatically. But, when a

comment is posted to the ticket, the updated_at field for the ticket will remain the

same.

 To fix this problem, you can configure the Comment model to touch the ticket

object it’s related to, which will update its updated_at timestamp. The way you do this

is with an option on the belongs_to association in Comment called touch. Let’s change

the belongs_to :ticket line currently in app/models/comment.rb to this:

belongs_to :ticket, :touch => true

Whenever a comment is updated, created, or even destroyed, the related ticket’s

updated_at attribute will be updated. With the touch option, you can now confidently

use this attribute to provide a reliable timestamp for your new form of caching. This

particular form of caching uses a new method in your controllers called fresh_when.

Browser

Web Server

1. Request comes in for
GET /projects/1/tickets/2
with If-None-Match header set to "ef2"

Application

Controller

6. Browser knows to
use its local cache

2. Trickles down...

3. ... to the controller 4. Controller recognizes ETag,
sends back a

ed status

5. Bubbles up
through the stack

Figure 16.11

304 Not Modified

response

459Page and action caching

 To make the show action in TicketsController conditionally send back the 304

Not Modified, put this at the bottom of the show method in app/controllers/

tickets_controller.rb:

fresh_when :last_modified => @ticket.updated_at,
:etag => @ticket.to_s + current_user.id.to_s

The last_modified option here sends back another header to the client: the Last-

Modified header. This header is used by a browser to detect when the page was last

updated, which provides a near-identical purpose to an ETag. A browser sends an If-

Modified-Since header that contains the last Last-Modified time. If the server sees

that the Last-Modified time is later than the If-Modified-Since, it will send a new

copy of the page. Otherwise, it will send a 304 Not Modified header.

 The :etag option tells fresh_when to generate a new ETag for the resource. Until

this resource changes, the ETag generated will be the same for each user. This

wouldn’t be the case if you didn’t pass through the current_user.id.to_s to the

ETag, but only for two user accounts accessed on the same computer. By using the

current_user’s id attribute to seed the etag option, the tag will be different between

users. How this ETag is generated differs from implementation to implementation; in

Rails it’s an MD5 hash, which is guaranteed uniqueness.

 Even though these two options are nearly identical, some browsers may support

one or the other. It’s more of a way to cover your bases to pass through both headers,

and it’s a worthwhile thing to cover.

 You can see this in action now if you attempt to visit a ticket’s page. Your first

request will have a final line that says something like this:

Completed 200 OK in 486ms (Views: 200.4ms | ActiveRecord: 5.6ms)

In this instance, the views have been rendered and the entire procedure has taken

486ms. Rather than refreshing the page (because in some browsers, this triggers them

to not send the If-Modified-Since or If-None-Match headers), you’ll go back to the

project’s page and then click back on the same ticket again. This time in the server

output you’ll see this output:

Completed 304 Not Modified in 267ms

The server has sent back a 304 Not Modified response in a slightly quicker time than

your original request, mainly because it didn’t have to re-render the views for the

application and send back all that HTML.

 This is another way to ease the load on your server, by getting the browser to deal

with the page caching and serving, rather than the server.

 That wraps up this section. You’ve made a small change here you should probably

commit. You can do that by typing these commands into the terminal:

git add .
git commit -m "Add ETag and Last-Modified

support to ticket show page"

460 CHAPTER 16 Basic performance enhancements

You’ve now seen many different flavors of controller caching, ranging from caching

pages and caching actions (actually, fragments), to getting the browser to take care of

the hard part of the caching process (storing a file and expiring it). All of these cach-

ing methods deal with caching entire pages, so what’s a Railer supposed to do if they

want to cache only a bit of a page at a time? For that, you can tell Rails to cache just

these parts using an aptly named method: cache.

16.3.5 Caching page fragments

If part of a page takes a long time to render, then that’s a problem. To fix this kind of

problem, you can use fragment caching, which allows you to cache fragments of pages

using the cache method in your views where appropriate. This method takes a block,

like this:

<% cache do %>
some horribly long and complex thing

<% end %>

This way, when Rails attempts to load the page and comes across your cache call, it will

check to see if there’s an available fragment for it. Otherwise it will perform the code

inside the block and then store it in tmp/cache, just like caches_action does for an

entire page.

 You don’t have an actual use-case for this in your application at the moment, but

you’ll still use it just to see what it does. You’re going to be using it back on the app/

views/projects/show.html.erb view, meaning you’re going to want to temporarily dis-

able caches_action in ProjectsController for this action so that it doesn’t cache

the page before cache has a chance to run. You can do this by simply removing the

lines in ProjectsController:

caches_action :show, :cache_path => (proc do
project_path(params[:id]) + "/#{current_user.id}/#{params[:page] || 1}"

end)

In the app/views/projects/show.html.erb, the primary content that’s going to be

changing is the list of tickets, and so you’ll want to cache that and leave out the rest.

To do this, you’ll wrap the whole list of tickets, including the pagination link above it,

in a cache block, as shown in the following listing.

<% cache do %>
<%= paginate @tickets %>

<ul id='tickets'>

<% @tickets.each do |ticket| %>

<%= render ticket.state if ticket.state %>

#<%= ticket.id %> - <%= link_to ticket.title, [@project, ticket] %>

<% end %>

<% end %>

Listing 16.5 app/views/projects/show.html.erb

461Page and action caching

The next time you reload this page in your browser, you’ll see this line in your server’s

output:

Write fragment views/localhost:3000/projects/1 (3.0ms)

Look familiar? It’s exactly the same output generated by caches_action. The cache

method that you just used assumes that it’s only being used once per page and so will

save it with the same path (more commonly referred to as the cache key). You had a

problem with this initially, didn’t you?

 Yes, you did. It was saving the page name just fine, but it didn’t care if you were on

your first page of pagination or the last, it was always showing the first cached page. If

you click the Next link on your pagination, you’ll find that you’ve regressed this

behavior accidentally. Not to worry, this is easy to fix. You need to tell your cache

method that there’s more than one type of this page. You can do that by passing a

string containing the page number to the method to give it a unique name, or key. By

making this key unique for each page, Rails will cache a list of tickets for each page

rather than one for all.

 To fix this, change the cache call in your app/views/projects/show.html.erb file to

this:

<% cache "projects/#{@project.id}/#{params[:page] || 1}" do %>

When you refresh this page and switch back into the terminal where your server is

running, you’ll see this line of output:

Write fragment views/projects/1/1 (3.3ms)

You’ve specified the key that the cache now uses to store the fragment, and so you’ll

see that it’s saved it as views/projects/1/1 now, with the first 1 being the ID of your

project and the second one being the page number. If you create, update, or delete a

ticket, you’ll see that this fragment gets cleared away.

Expire fragment (?-mix:projects\/1\/.*?) (1.9ms)

The next time you revisit the project’s page, you’ll see that it rewrites the fragment

again:

Write fragment views/projects/1/1 (1.5ms)

In this section, you’ve seen that fragment caching is useful not only for caching

dynamic actions with caches_action, but also for caching small chunks of pages by

using the cache method. The latter allowed you to cache a small fragment of the page

rather than the entire page, which is great if you have a small chunk of the page that

takes a long time to render. You didn’t, but it’s always good to know what tools are

available if you come up against this particular beast.

 With the cache method in the view, you don’t have to set the cache_path for the

user because you’re only caching the part of the page that is user-agnostic. Everything

else in either the layout or elsewhere in this view would be processed each time the

page is requested, but the part you have cached will be retrieved from that cache and

462 CHAPTER 16 Basic performance enhancements

added to the output, rather than re-processed. All in all, this solution is more elegant

than caches_action. Another commit is in order!

git add .

git commit -m "Implement tidier caching for the tickets

➥list on the projects page"

That covers all the major methods for basic caching in controllers and views. You’ve

seen ways to cache entire pages and parts of pages as cached files on the filesystem. In

a Rails application there may be a lot of reading and writing to the filesystem, which

can cause degradation of performance, so storing these files on the filesystem may not

be the best idea. A speedier way of doing this would be to store these files in memory

by switching the cache store that Rails uses. You can do this by putting this line in one

of your config/environments files, probably production.rb:

config.action_controller.cache_store = :memory_store

Rather than storing the fragments on the file system, Rails will now store them in mem-

ory along with the code for the application. The retrieval time is faster here, but comes

at the cost losing the cache if the server was ever stopped. If you want something more

persistent, you may choose to use either Memcached (http://memcached.org) or

Redis (http://redis.io). We won’t go into these in this chapter, as they exceed the

boundaries of what would be considered basic performance enhancements.

 In this section you’ve learned how to use fragment caching to store parts of the

view that may take a long time to process. This type of caching would store these frag-

ments in the tmp/cache directory; they can be retrieved later on.

16.4 Background workers

There are other situations where requests can be slow for your application too. One of

these cases would be if a ticket had a large number of watchers, and a comment was

posted to that ticket. The reason for this slowdown would be because Rails would have

to iterate through all the watchers and send out the update notification email to each

of them individually, using the feature that you developed in chapter 12.

 Rather than having a user make the request to create a comment in the applica-

tion, having the server process the email notifications, and then send a response back,

you can take the long-running task of sending these emails and move it into a job that

runs in a background.

 This will work by having your CommentObserver add the task of sending these

emails to a job queue that runs in the background. You’ll then have a background pro-

cess separate from your application that will run these jobs as it receives them. This

way, the hard work is done behind the scenes and the user receives the request back

almost as if nothing of consequence happened.

 To make this happen, you’ll use a gem called delayed_job. This gem will allow you

to create a table in your database where the jobs that the background worker needs to

work off will be stored. The gem will also provide you with the ability to start a worker

process. To add this to your application you’ll put this line in your Gemfile:

http://memcached.org
http://redis.io

463Background workers

gem 'delayed_job'

Then you’ll need to run bundle install to install it. Once you’re done there, you can

run this command, which will generate a migration to create the delayed_job table:

rails g delayed_job

You can now run this migration with rake db:migrate db:test:prepare. That’s all

that’s needed to set up the gem itself.

 Your next task is to create a job. A job is any object that responds to perform. This

method needs to perform the action of sending out the email to all the watchers of

the ticket, which is currently the responsibility of the after_create method in

CommentObserver, which uses this code:

watchers = comment.ticket.watchers - [comment.user]

watchers.each do |user|

Notifier.comment_updated(comment, user).deliver
end

You’ll take this code out of the after_create method and replace it with code to

enqueue your job to be performed, using a method given to you by the delayed_job

gem:

Delayed::Job.enqueue CommentNotifierJob.new(comment.id)

The CommentNotifierJob class here will actually be a Struct object. You can create

the code by first creating a new directory called app/jobs and then a new file in it

called comment_notifier_job.rb, using the code you stole from the after_create

method as shown in the following listing.

class CommentNotifierJob < Struct.new(:comment_id)

def perform
comment = Comment.find(comment_id)

watchers = comment.ticket.watchers - [comment.user]

watchers.each do |user|
Notifier.comment_updated(comment, user).deliver

end

end
end

In the perform method here, you find the comment based on the comment_id and

then iterate through all the watchers of the comment’s ticket who are not the com-

menter themselves, sending them each an email that the ticket has been updated with

a new comment.

 By enqueueing this job using the Delayed::Job.enqueue method, the

delayed_job gem will store a marshalled format (actually a YAML string) of this object

in the table, such as this:

--- !ruby/struct:CommentNotifierJob \ncomment_id: 1\n

Listing 16.6 app/jobs/comment_notifier_job.rb

464 CHAPTER 16 Basic performance enhancements

When a worker reads this row, it will convert this marshalled object back into a real

object and then call the perform method on it. The reason for making another class

and using a Struct over using one such as the Comment is that a Struct object will

always be lighter than a full-on class that inherits from ActiveRecord::Base. If you

enqueued a Comment object instead, the result would be this:
"--- !ruby/

ActiveRecord:Comment \nattributes: \n text: This is a comment\n ticket
_id: 1\n user_id: 2\n created_at: &id001 2011-04-

21 09:35:20.497749 Z\n updated_at: *id001\n state_id: \n previous_sta

te_id: \n id: 1\n"

This contains a lot of useless information that you don’t care about when you’re

enqueueing the job, and so you should not use it. When enqueueing jobs, you should

always try for the lightest possible solution so that the job is queued quickly.

 Now when a comment is created, a job will be enqueued to notify the watchers of

the relevant ticket. This job is actually a record in a table called delayed_jobs that the

worker reads from, running each job one at a time and working them off the queue.

When there are no more jobs, it will simply wait.

 To make sure that this is working, you’re going to write a test for it. The test should

check that a job is enqueued when a comment is created and that the watchers of the

comment’s ticket are notified by email when the job is run. Primarily, this test will

check the perform method in the Comment model, and so you’ll put it in spec/models/

comment_spec.rb, using the code shown in the following listing.

require 'spec_helper'

describe Comment do
let(:user) { Factory(:user) }

before do

@ticket = Factory(:ticket)
@ticket.watchers << user

end

it "notifies people through a delayed job" do
Delayed::Job.count.should eql(0)

ticket.comments.create!(:text => "This is a comment",

:user => ticket.user)
Delayed::Job.count.should eql(1)

Delayed::Worker.new.work_off!

Delayed::Job.count.should eql(0)

email = ActionMailer::Base.deliveries.last

email.to.should eql(user.email)

end
end

At the beginning of the describe Comment block, you set up a user who will be the

one to watch the ticket that you set up in the before block.

Listing 16.7 spec/models/comment_spec.rb

465Background workers

 In the test itself you make reference to a Delayed::Job class, which is actually a

model provided by the delayed_job gem which connects to the delayed_jobs table.

You call count first up and make sure that’s 0 because you don’t want any jobs in the

table before comments exist.

 Next, you create a comment for the ticket, making it originate from the creator of

the ticket (ticket.user). This way, you can be sure that the user you set up with the

let block will receive the notification. After the comment has been created, there

should be exactly one job in the table.

 You then call Delayed::Worker.new.work_off(1) to create a new Delayed

::Worker instance that will work off a single job on the queue and then finish.13 When

it’s done, there will be no more jobs in the queue.

 Finally, you check that the last email sent out (by referencing Action-

Mailer::Base.deliveries, which stores the emails that have been sent but only in

the test environment) has gone to the user who should have been notified, indicat-

ing that the job has run successfully.

 This test should pass automatically because you’ve already implemented the fea-

ture. You can see this by running bin/rspec spec/model/comment_spec.rb:

1 example, 0 failures

Great! Now when a comment is created it should be created at the same speed, inde-

pendent of the number of watchers on a ticket. Although the number of watchers on

a ticket would have to reach a high number before a problem like this would arise, it

is still a perfect example of how you can use delayed_job to queue jobs in the

background.

 One final thing. You’ve seen how you can enqueue the jobs and work them off

using the Delayed::Worker#work_off method, but that isn’t quite the way you’d do it

in the real world or in a production environment. There, you’d run a command like

this:

script/delayed_job start

This command will start a single delayed job worker,14 which will check the database

every five seconds for jobs and work them off as they come in. However, there is no

monitoring in place for this, and so it is advisable that a tool such as Monit or God is

used to monitor this process and restart it if it happens to go down.

 You can stop this job runner by using this command:

script/delayed_job stop

13 The default of this method is 100 jobs.
14 Watch out: this loads the entire Rails environment again. On a low-memory system, a large number of Rails

instances and job workers can suck up all the RAM of the system. It is advised to take care when deciding how
many of each process are running on a machine. If this is outside the bounds of the system, then perhaps it
is time to upgrade.

466 CHAPTER 16 Basic performance enhancements

If you’re using delayed_job extensively, you may wish to start more than one worker,

which you can do by passing in the -n option to the command, like this:

script/delayed_job -n 2 start

This particular example will start two workers rather than one. For more examples on

how to use this gem, check out the README on https://github.com/collectiveidea/

delayed_job.

 That does it for background jobs. You’ve learned how to take things that could

potentially slow down a request and move them into the background, allowing the

Rails application to continue serving the request.

 Let’s make a commit for these changes:

git add .

git commit -m "Ticket notifications are now a background job"

git push

Now you’re done!

16.5 Summary

In this chapter you learned how to implement small, easy changes that help your

application perform faster, beginning with pagination and ending with view-fragment

caching and delayed jobs.

 By using pagination, you’re able to lighten the load on the database by retrieving

smaller sets of records at a time. This is the easiest way to lessen the load on your appli-

cation’s infrastructure.

 Database queries are often the bottleneck in the application because they may

inadvertently be performed in excessive amounts, or they may not be indexed in the

correct manner. You saw in the beginning how to implement eager loading for your

queries so that rather than doing more requests than necessary, Rails will load all the

necessary objects in a second, separate query.

 The second way to improve database performance is to use an index similar to the

page titles in a phonebook, but for a database. If you had a large number of records in

your database, the index would allow for speed increases in the lookups for records

for that index.

 If your database speed can’t be enhanced any further, then the next stop is caching

the resulting pages from your actions. You first attempted to use caches_page but

found that it came with a couple of problems: the page was available to all users

regardless of their authorization, showing “Signed in as x” where “x” was the first user

who requested the page, and it completely ignored your page parameter. So you

moved on to the caches_action method, which allowed you to pass an option called

cache_path to define where your file was saved.

 Then you learned that you can cache specific parts of a view using the simply

named cache method in them. This saves fragments of a view into the tmp/cache

https://github.com/collectiveidea/delayed_job
https://github.com/collectiveidea/delayed_job

467Summary

directory, allowing you to store the result of potentially computationally expensive

parts of your view.

 These are the basic concepts for enhancing the performance of your application.

There is more you can do, like integrating with tools such as Memcached (http://

memcached.org) and Redis (http://redis.io), and interacting with the Rails.cache

variable which gives you fine-grained control over the cache that Rails uses to store

fragments and can be used to store other pieces of information.

http://memcached.
http://memcached.
http://redis.io

468

Engines

Engines are a new feature for Rails 3.1 They are effectively miniature applications

that provide additional functionality to an application, and they function in much

the same way as an application.

 Back in chapter 6, you used the Devise gem, which itself is an engine. Other

engines include the RailsAdmin2 and forem3 engines.

 An engine allows you to share common functionality across applications in the

form of a gem or a plugin.4 This functionality could be an authentication system such

This chapter covers

 The importance of engines for Rails 3

 Building a new engine and exploring the base

 Using behavior-driven development to develop an engine

 Releasing the engine as a gem

 Integrating an engine with an app

1 Although in previous versions they were supported by a plugin written by the community: https://
github.com/lazyatom/engines.

2 http://github.com/sferik/rails_admin.
3 http://github.com/radar/forem.
4 In Rails 3, these two are basically interchangeable. One lives in vendor/plugins, the other is installed

using gem. For all intents and purposes, they work in a near-identical manner. Developers should try to use
gems where possible, as they are versioned and easy to upgrade to specific versions, where plugins are not.

https://github.com/lazyatom/engines
https://github.com/lazyatom/engines
http://github.com/sferik/rails_admin
http://github.com/radar/forem

469A brief history of engines

as Devise, a commenting engine, or even a forum engine. If there’s ever been a need to

have the same features across an application, this is what engines were made for.

 By installing an engine as a gem or plugin and then mounting it at a specific route

in the config/routes.rb file of your application, you gain access to its features. Each

engine will be different, so be sure to consult the README or other documentation

that comes with it in order to figure out exactly how it works.

 We’ll begin by discussing the history of engines and why they’re now a major part

of the core ecosystem, as it’s helpful to know the reasons why they weren’t available in

releases earlier than 2.3.

 In this chapter we’ll go through a little bit of the history of engines, why engines

are useful, and how they work, and then you’ll develop one of your own. At the end of

the chapter, you’ll integrate the engine with the Ticketee application you have devel-

oped earlier in the book.

17.1 A brief history of engines

On November 1, 2005, James Adam begun work on what would become the engines

plugin.5 Starting off crudely, engines eventually evolved into something much more

useful, serving as the inspiration for the functionality within the Rails core today.

There was a lot of controversy surrounding engines,6 and James spent a lot of his time

defending the decision to develop them. Since then, however, the community has

grown to accept the idea of engines.

 One of the major problems of having this engines plugin live outside of the core

framework was that there wasn’t a clearly defined place where it could hook into Rails

code. Rails could potentially change and break the engines plugin, which would pre-

vent people from upgrading to the latest version of Rails until the engines plugin was

updated.

 It was decided during the development process of Rails 3 that engines should be a

core feature, and so a large chunk of work has gone into getting them right. By having

them in core, it means that there is a clearly defined public API for engines and when

newer versions of Rails come out, there’s an almost-zero7 possibility of things breaking.

 Part of this work was added to Rails 2.3, and very basic engines were possible back

then,8 but things such as copying migrations and assets were not supported. Addition-

ally, there was no way of running the Rails generator and so files had to be generated

in a real application and then copied over.

 Since then, engines have been dramatically improved. Rather than having to copy

over migrations manually, there’s a specific Rake task to do that. There is no need to

5 http://github.com/lazyatom/engines.
6 http://glu.ttono.us/articles/2006/08/30/guide-things-you-shouldnt-be-doing-in-rails and http://article

.gmane.org/gmane.comp.lang.ruby.rails/29166 to name two such criticisms.
7 In programming, the chances of things breaking over time approaches zero, but never truly reaches it.
8 A good demonstration of engines in Rails 2.3 can be seen on Railscast #149: http://railscasts.com/episodes/

149-rails-engines.

http://github.com/lazyatom/engines
http://glu.ttono.us/articles/2006/08/30/guide-things-you-shouldnt-be-doing-in-rails
http://article.gmane.org/gmane.comp.lang.ruby.rails/29166 to name two such criticisms
http://article.gmane.org/gmane.comp.lang.ruby.rails/29166 to name two such criticisms
http://railscasts.com/episodes/149-rails-engines
http://railscasts.com/episodes/149-rails-engines

470 CHAPTER 17 Engines

copy over assets from an engine into a Rails application any more either; they are

served through the functionality of the Sprockets gem.

 Finally, this ancient engine implementation didn’t enforce namespacing of the

controllers or models. This could potentially lead to conflicts between engines and

the application code, where the application code would override an engine’s code. If

the application has a model called Forum at app/models/forum.rb, and the engine has

the same model at the same location (relative to its root), the application’s model will

take precedence. Namespacing is something that you’ll see has almost a zealot level of

impact in the work that is done with engines today. It’s absolutely important to keep

the application and engine’s code separate so that they do not conflict.

 So today, we’ve now got engines as a core part of Rails 3.1, and they’re better, and

they’re here to stay. Let’s see why they’re useful.

17.2 Why engines are useful

Engines allow Rails programmers to share common code between applications in an

extremely easy fashion. It’s entirely possible to use more than one engine in an appli-

cation, and many people do. Engines are generally provided as gems, and so they are

managed like every other gem your application uses: by using Bundler.

 In previous (before 3.0) versions of Rails, we have seen that people had to use the

engines plugin.9 This was sometimes problematic, because whenever a new Rails ver-

sion was released it could potentially break the compatibility of the plugin. By having

this feature within Rails itself, this issue is fixed.

 Alternatively, people could use generators. These would often generate control-

lers, models, and views in the application itself, which would allow people to change

the code exceptionally easily. When new versions of these generators were released

with changes to the previously generated code, however, there was no clean way to

keep the changes.

 One final, very hacky way, would be to copy over the controllers, models, or views

into the application manually from a directory, which runs into the same problems as

described, as well as making it difficult to know if you got it right or not.

 With an engine, all the code is kept separate from the application and must be

explicitly overridden in the application if that’s what is needed. When a new version of

an engine is released, it will only alter the code of the engine and not the application,

making the upgrade process as easy as changing a version number in a Gemfile.

 Even the routes for an engine are kept separate, being placed in the engine’s

config/routes.rb file rather than the application’s. This allows you to namespace the

engine’s routes so that they don’t conflict with the application.

 The whole point of engines is to separate out chunks of functionality, and to be

able to share it without it crashing into the code that already exists.

 Let’s generate your own engine and have a look at its parts.

9 http://github.com/lazyatom/engines.

http://github.com/lazyatom/engines

471Brand-new engine

17.3 Brand-new engine

The layout of an engine is nearly identical to that of

a Rails application, with the notable exception that

all code that usually goes straight into the app direc-

tory now goes into a namespace. Let’s take a look at

the layout of the forem engine10 at an early stage of

its development, shown in figure 17.1.

 You’re going duplicate a little chunk of this code

using the same practices that were used to develop

forem. It’s a good an example as any.11

17.3.1 Creating an engine

Here you’ll create your engine using a generator

built-in to Rails.

WARNING You’re going to need to use
at least the Rails 3.1 version for this,
which is what you should have installed
from earlier chapters in this book.

You can run this executable file to generate the lay-

out of your engine using this command at the root

of the Ticketee application you created earlier:

cd ..
rails plugin new forem --mountable

The --mountable option here is the magic incanta-

tion: it tells the plugin generator that you want to

generate a mountable plugin, more commonly known as an engine. The output of this

command is very similar to that of an application, containing an app directory and a

config/routes.rb file. But that’s what an engine is essentially: a miniature application!

This command even runs bundle install automatically for you on this new engine,

like the rails new command does when you generate a new application.

 Before you go any further, run bundle --binstubs in this new directory so that

you can use bin/rspec to run your tests, rather than bin/rspec.

 Before you get too involved here, you’re going to set this project up as a Git repos-

itory and create a base commit that you can revert back to if anything goes wrong.

You’ll first need to change back into the forem directory, then set up the git repository:

git init

git add .
git commit -m "Initial base for the forem engine"

10 http://github.com/radar/forem.
11 It also helps that one of the authors of this book has done extensive work on it.

Figure 17.1 The forem engine,

directory structure

http://github.com/radar/forem

472 CHAPTER 17 Engines

With that safety net in place, let’s go through the major parts of what this has

generated.

17.3.2 The layout of an engine

You’ve now got the basic scaffold of your engine in the same directory of your applica-

tion, and you can go back to that directory by using cd ../forem from within the

application. Let’s go through the important parts of this engine.

FOREM.GEMSPEC

Each plugin that is generated using the new Rails plugin generator now comes with a

gemspec, which allows it to be used as a gem.12 This file allows you to specify informa-

tion for your gem such as its name, a helpful description, and most important the

other gems it depends on as either runtime dependencies using add_dependency, or

as development dependencies using add_development_dependency. You can specify

this information by lines like this in the Gem::Specification definition in this file:

s.add_dependency 'rails'

s.add_development_dependency 'rspec-rails'

GEMFILE

This file contains the rails and sqlite3 gems, which provide the basis for your appli-

cation. When, however, people install your engine using gem install forem, they’ll

not receive these dependencies. To fix this, you need to place them.

 You need to tell your Gemfile to reference the forem.gemspec file too, as you spec-

ify gem dependencies in this rather than the Gemfile for engines. The Gemfile is not

referenced at all when you install a gem, but the forem.gemspec file is. Therefore, you

must put all dependencies in the forem.gemspec file and tell your Gemfile to refer-

ence it for all its dependencies. To do this, change the Gemfile to be this:

source :rubygems

gemspec

And add these lines to your forem.gemspec inside the Gem::Specification block:

s.add_dependency "rails", "3.1.0"

s.add_development_dependency "sqlite3"

When you run bundle install, it will install the Rails version specified in your Gemfile

and any gem dependencies declared in forem.gemspec.

APP

This folder serves the same purpose as an application: to house the assets, controllers,

helpers, models, views, mailers, observers, and whatever else is particular to your

application.

 Rails is automatically told about the app/assets directory contained within an

engine, based on the class definition within a file you’ll see a little later on, lib/forem/

12 A great guide to developing a gem can be found here: http://github.com/radar/guides/blob/master/gem-
development.md.

http://github.com/radar/guides/blob/master/gem-development.md
http://github.com/radar/guides/blob/master/gem-development.md

473Brand-new engine

engine.rb. This folder works in the same way that it does in an application, providing a

home for the images, JavaScript files, and stylesheets that are served by the sprockets

gem. Providing that either the host application or the engine13 specifies a dependency

on CoffeeScript or Sass, you can use these as well.

 Inside the app directory lies the app/controllers directory, which serves the same

purpose as the app/controllers directory in a Rails application. This directory has a

key difference though: the controllers should be placed into a forem namespace so

that they do not clash with identically named controllers in the application. If you

moved these controllers out of the namespace, they’d clash with controllers of the

same name in the application, or in other engines that aren’t using namespacing. By

namespacing them, you prevent this error from happening. This also explains why the

helpers in app/helpers are also separate.

 Your Forem::ApplicationController currently inherits from ActionController

::Base, but in the case of your engine you’ll want it to inherit from Application-

Controller instead. Therefore, you’ll change app/controllers/forem/application

_controller.rb from this

module Forem
class ApplicationController

into this:

module Forem
class ApplicationController

You must use the :: prefix on the super ApplicationController so that it goes to the

top-level ApplicationController, not the one inside the Forem model that you’re

defining! By inheriting from the ApplicationController, your engine will use the

same layout as the application it’s hosted within.

 Within the app directory, you can define models which also go under a

namespace. If you had a Forum model, it would live at app/models/forem/forum.rb

and would be called Forem::Forum. By doing this, you separate the model class from

any identically named class in the application or other engines. The default table

name for this model would be forums if it weren’t for some additional configuration

in lib/forem/engine.rb that you’ll see later.

 With models also come migrations. When you create migrations in an engine,

these are stored (again, like an application) in db/migrate. When you (or others)

install the engine into an application, there’s a rake forem:install:migrations task

that will copy across these migrations, adding the migrations to the current list of

migrations in the application’s db/migrate folder. If a new version of the engine is

released, the user can re-run rake forem:install:migrations and it will only copy

across the newer migrations.

13 It’s best to specify this dependency in the engine if you wish to use either of these.

474 CHAPTER 17 Engines

 Obviously, you shouldn’t alter the migrations at all after releasing the engine to the

general public, as there is no clean way of copying the changes. If you wish to make an

alteration to a migration after the fact, you should leave the ones already released

alone and create new ones.

 Finally, in the app directory you’ve got a app/views/layouts/forem/application

.html.erb file. This file defines a basic layout for your engine, but you’re going to want

to use your application’s layout, not this engine’s, so you can delete it right away.

CONFIG/ROUTES.RB

This file defines the routes for your engine. You can use exactly the same helpers

you’d use in an application’s routing file, as you’ll see later on this chapter when you

develop a feature. We won’t go into detail for the routing right now: we’ll do that after

we’ve gone through the directory structure.

LIB/FOREM.RB

This file is automatically required by Bundler when you’re loading your engine as a

gem, or by Rails if you’re loading it as a plugin. This is the main entry point for every-

thing your application does. This file is very simple:

require "forem/engine"

module Forem

end

By requiring the forem/engine (which is actually the lib/forem/engine.rb file in the

engine), it triggers the process that loads your engine.

 The module defined at the bottom of this file is there so that you can define any

global behavior you wish. Right now, you don’t need any.

LIB/FOREM/ENGINE.RB

This file is the heart and soul of the engine and defines the all-important Forem

::Engine. By inheriting from Rails::Engine, it sets in motion a chain of events to

notify the Rails stack that an engine exists, providing a path to the assets within the

engine. This file is pretty short:

module Forem
class Engine

By using the isolate_namespace method, you isolate this engine’s routes from the

application, as well as defining that models within the Forem module are to have a

table prefix of forem_.

 By isolating the routes, you allow a host application to have a forums_path routing

method defined for the application, as well as for the engine itself. When you use

forums_path within the application, it will point to the application’s forums_path. If

you use it in an engine, it will point to the engine’s forums_path.

 If you ever wanted to reference an engine’s route from within your application,

there’s a helper defined for that too:

link_to "Forums", forem.forums_path

475Brand-new engine

Calling the routing helper on the forem method automatically provided by this

engine will generate the engine’s forums_path rather than the application’s. Note

here that you’re using a period (.) rather than an underscore (_). You’re calling the

forem method and then calling the forums_path method on that. If you wanted to ref-

erence the application’s route from within the engine, you’d use main_app instead of

forem.

 Inside the Forem::Engine file you have access to the same config that an applica-

tion would have. This is because the class that your application inherits from,

Rails::Application, actually inherits from Rails::Engine as well. Applications and

engines share much the same base functionality. This means that you’ll be able to con-

figure your engine to use RSpec as the testing framework by putting these two lines in

the Forem::Engine definition:

config.generators.integration_tool :rspec
config.generators.test_framework :rspec

RAKEFILE

This file loads the Rake tasks for your engine and any engine tasks Rails wishes to

define. It also has one additional benefit: it loads your dummy application’s Rake tasks

too. But rather than loading them straight into the Rake global namespace and pollut-

ing it, it namespaces the application’s tasks into the app namespace, so any defined

task called email would become app:email.

 The engine’s tasks are much like an application; you can call rake db:migrate to

run the migrations of the engine on your dummy application, and rake db:seed to

load the seed data from the engine’s db/seeds.rb directory.

SCRIPT/RAILS

When you run rails commands, it goes looking for the script/rails file. This is how

rails knows if it’s inside an application or not, based solely on the presence of one of

these files. In your engine, its presence allows you to use the same generators you nor-

mally would in an application to generate your controllers, models, and whatever else

you need.

TEST

No proper engine would be complete without tests, and it is, by default, the test direc-

tory where these would abide. You’re going to be using RSpec because you’re familiar

with it. When tests in this directory run, they load the test/test_helper.rb file, which

contains this code:

Configure Rails Environment

ENV["RAILS_ENV"] = "test"

require File.expand_path("../dummy/config/environment.rb",
__FILE__)

require "rails/test_help"

Rails.backtrace_cleaner.remove_silencers!
Load support files

Dir["#{File.dirname(__FILE__)}/support/**/*.rb"].each { |f| require f }

476 CHAPTER 17 Engines

This file’s second line of real code here requires the test/dummy/config/environment

.rb file, which loads the application in test/dummy.

TEST/DUMMY

The application contained within this directory is purely for testing purposes, but you

can set it up to act like a real application by creating controllers, helpers, models,

views, and routes if you wish. When the tests run, this application is initialized like a

real Rails application.

 Your tests then run against this application, which has your engine mounted inside

the test/dummy/config/routes.rb file with this line:

mount Forem::Engine => "/forem"

This line mounts the routes of your engine (not yet defined) at the /forem path of

your application. This means that whenever you want to access this engine, you must

prefix the route with /forem. If you are in code, you can use the forem. prefix for the

routing helpers, as seen earlier with forem.forums_path or forem.root_path within

the dummy application.

 Even though there are a lot of files that are generated for engines—like there are

when you generate an application—they all play a crucial role in your engine. Without

this lovely scaffold, you’d have to create it all yourself, which would be no fun.

 This routing may be a little confusing at first, but it’s quite simple. Let’s look into

how this process works, and then you’ll get into developing your first feature for this

engine.

17.3.3 Engine routing

In an application, you need to define routes to an

engine when you’re using it. You can do that with this

line in config/routes.rb:

mount Forem::Engine, :at => "/forem"

To understand how engines are routed, you must under-

stand the concept of middleware within a Rails applica-

tion.14 Middleware is the term used for code that sits

between the receiving server and the application; mid-

dleware can do a number of things, such as serve static

assets and set flash messages. Rails 3 applications run on

Rack, which uses a stack-based architecture to accom-

plish a request. A basic stack is shown in figure 17.2.

 In this picture, a basic request cycle for a Rails appli-

cation is shown. A request comes from a client and hits

Rack first, which then goes through all of the middle-

ware. If a middleware returns a 404 (“Not Found”)

14 Additional information about middleware can be found in chapter 18.

Rack

Middleware #1

Application

Client

200

Middleware #1

404

404

Figure 17.2

A simple middleware stack

477Brand-new engine

HTTP status code, then Rack moves on to the next one, going all the way through

each part of the stack, moving on to the next every time the current part returns a 404

until it hits the application. The application is the final stop of this request, and so

whatever it returns goes. In this case, the application returns a 200 (“OK”) request,

which is then passed back to the client through Rack.

 If a non-404 response was ever returned from a middleware object, then the dig-

ging would stop there, and the response would climb back to the surface.

 In a Rails application, the routing is actually a piece of the middleware stack. As

the request goes through the chain, it eventually comes to the routes, which then

determine where the request should head. When routing requests to an application,

the sequence looks like figure 17.3.

 In this example, Rack still receives the request and goes through the middleware

stack, with each middleware passing the buck until it comes up to the routes. This then

handles the request, routing the request to (usually) a controller, which then executes

the necessary code to get the job done and passes the result back up to the client.

 An engine is served in much the same way; you mount it at a specific path in your

application’s config/routes.rb line with this line:

mount Forem::Engine, :at => "/forem"

Any request to the /forem path will not be passed to the application, but instead

passed to the engine. The engine then decides how to route that request and returns

a response exactly like an application. This process is shown in figure 17.4.

Browser

Server

Middleware #1

Middleware #n

... Engine

Routes

1. Request comes in for
GET /projects

2. Goes through middleware
stack until...

3. Routes receive request

5. That route goes to
the application!

7. Response goes out

6. Application responds

Application

4. What route is it?
GET /projects Figure 17.3 Application route cycle

478 CHAPTER 17 Engines

It’s the same cycle, except this time the routing code has determined this request

should be handled by the engine, rather than the application.

 We’ve talked long enough about the theory of an engine, and you’ve learned some

key concepts. An engine is a miniature application that provides some functionality,

and it’s routed like a normal application would be, providing you’ve mounted it in

your application’s config/routes.rb file.

 It’s time to put all this theory into practice.

17.4 Setting up a testing environment

Before you can get down to writing any tests, you’re going to need to set up the envi-

ronment to do that. For a change, you’re not going to be writing tests for your engine

using Cucumber. Instead, you’re going to be using RSpec and Capybara. It’s always

good to get a different perspective on testing, as not everyone agrees on the One True

WayTM of doing things. The syntax for this RSpec and Capybara is still easy going, how-

ever, as shown by this example:

require 'spec_helper'

describe "topics" do
it "creating a new one" do

visit topics_path

click_link "New Topic"

fill_in "Subject", :with => "First topic!"

Browser

Server

Middleware #1

Middleware #n

... Engine

Routes

1. Request comes in for
GET /forem/forums

2. Goes through middleware
stack until...

3. Routes receive request

5. That route goes to
the engine!

7. Response goes out

6. Engine responds

Application

4. What route is it?
GET /forem/forums

Figure 17.4

Routing cycle of an engine

479Setting up a testing environment

fill_in "Text", :with => "First post!"
click_button "Create Topic"

within "#flash_notice" do

page.should have_content("Topic has been created!")
end

within ".forem_topic #posts .forem_post" do

page.should have_content("First post!")
end

end

end

An obvious downside for writing this is that it’s not as human-friendly as a Cucumber

test is, but it’s close enough. Anybody with an extremely basic understanding of Ruby

should be able to understand everything here apart from the CSS selectors, which are

another class of their own.15

 There are a couple of benefits to using Capybara directly over using it in conjunc-

tion Cucumber. First, it’s going to be faster because there’s no parsing of the steps as

there is in Cucumber—it’s straight method calls to the very same methods that Cucum-

ber uses. Second (and related), all the code for the feature is kept within one file.

 You’re going to need to make some changes to your engine to install RSpec and

Capybara first.

17.4.1 Removing Test::Unit

At the moment in your application, you’ve got a test directory that uses Test::Unit for

testing. We’ve avoided this throughout the book, and this chapter’s not going to be

any exception to that rule.16 You’re going to switch this over to using RSpec.

 Inside this test directory, there is the test/test_helper.rb file that contains this

content:

Configure Rails Environment

ENV["RAILS_ENV"] = "test"

require File.expand_path("../dummy/config/environment.rb", __FILE__)

require "rails/test_help"

Rails.backtrace_cleaner.remove_silencers!

Load support files

Dir["#{File.dirname(__FILE__)}/support/**/*.rb"].each { |f| require f }

15 You could create a helper method here to help clarify what these mean, such as this assert_seen method
from the real forem engine:
https://github.com/radar/forem/blob/87092925e8f7092723e07e0adbae44ad96a45d01/spec

/integration/posts_spec.rb#L28
16 For two reasons. First, the authors prefer RSpec. Second, RSpec is preferred by the majority of people in the

community. There are still pockets of resistance though.

https://github.com/radar/forem/blob/87092925e8f7092723e07e0adbae44ad96a45d01/spec/integration/posts_spec.rb#L28
https://github.com/radar/forem/blob/87092925e8f7092723e07e0adbae44ad96a45d01/spec/integration/posts_spec.rb#L28

480 CHAPTER 17 Engines

This is really helpful for Test::Unit, but you can also cannibalize it for your RSpec.

Let’s create a spec directory and put in it a spec /spec_helper.rb, which contains simi-

lar content to the test/test_helper.rb file:

Configure Rails Environment
ENV["RAILS_ENV"] = "test"

require File.expand_path("../dummy/config/environment.rb", __FILE__)

require 'rspec/rails'

Rails.backtrace_cleaner.remove_silencers!

Load support files

Dir["#{File.dirname(__FILE__)}/support/**/*.rb"].each { |f| require f }

It’s about identical, except you’ve replaced the require to rails/test_help with

rspec/rails. This spec/spec_helper.rb file will be loaded by RSpec when you run

your tests.

 One thing to note is the line Rails.backtrace_cleaner.remove_silencers! B.

Rails has an automated backtrace cleaner, which it uses to shorten the resulting back-

trace from errors so that it’s easier to track down. You don’t need this silencing going

on in your tests, and so you can remove it using remove_silencers!.

 You need to add one more thing to the end of spec/spec_helper.rb, which will reset

your database back to a clean slate once all of your tests have finished running. It will

do this by running the test’s database queries inside a transaction, which is then rolled

back at the end of the test. That would be this little configuration option:

RSpec.configure do |config|

config.use_transactional_fixtures = true
end

Without this, test data would accumulate in your database, leading to undesired

results.

 Your next step in replacing Test::Unit with RSpec is to move the test/dummy direc-

tory to spec/dummy. This folder is the dummy application for your engine and con-

tains the all-important config/environment.rb file, which is required in spec/

spec_helper.rb.

 With all this code moved over, you can remove the test directory completely,

because you don’t need it any more. The test/dummy directory itself is still referenced

in the engine in a couple of places, and you’ll need to replace these references with

the new spec/dummy location.

 The first of these locations is the Rakefile file at the root of the engine. This file is

loaded when any rake task is executed and is responsible for loading those tasks. You

need to replace this line in Rakefile

APP_RAKEFILE = File.expand_path("../test/dummy/Rakefile", __FILE__)

with this:

APP_RAKEFILE = File.expand_path("../spec/dummy/Rakefile", __FILE__)

B Remove backtrace cleaner

481Setting up a testing environment

This will now point to the correct location for your dummy application’s Rakefile. If

you had defined a custom task within this dummy application called email_everyone,

it would be available in your engine as app:email_everyone. This is designed to stop

the conflicts between the application and the engine.

 Also in Rakefile, you need to replace the use of Rake::TestTask with the equiva-

lent for RSpec. Let’s remove these lines from Rakefile now:

require 'rake/testtask'

Rake::TestTask.new(:test) do |t|

t.libs << 'lib'

t.libs << 'test'
t.pattern = 'test/**/*_test.rb'

t.verbose = false

end

task :default => :test

Replace them with lines that will do the same thing, but for RSpec:

require 'rspec/core/rake_task'

RSpec::Core::RakeTask.new(:spec)

task :default => :spec

On the final line here you tell Rake to default to the spec task if there is no task speci-

fied. This means that, rather than running rake spec to run the tests, you can run rake.

 The second and final location you need to change the test/dummy reference is in

script/rails at the root of your engine. This contains this line:

load File.expand_path('../../test/dummy/script/rails', __FILE__)

This file would normally load the test/dummy/script/rails file directory, if you hadn’t

already moved it. This file is responsible for loading the subcommands for the rails

command. You need to change this line to make it work again:

load File.expand_path('../../spec/dummy/script/rails', __FILE__)

With these changes complete, your move away from Test::Unit is also complete. Your

next step is going to be installing the RSpec and Capybara gems and setting them up.

With those done, then you can get down to writing some tests.

17.4.2 Installing RSpec and Capybara

To install these gems, you’re not going to add them to your Gemfile, but instead to

forem.gemspec. The established best practice for developing gems is to put the depen-

dencies inside the gemspec. That way, when people install this engine as a gem using

gem install forem, they’ll get all the normal dependencies installed, and if they install

it using gem install forem --dev, they’ll get all the development dependencies as well.

 Directly before the end of the Gem::Specification.new block, you’ll put these two

lines to declare that RSpec and Capybara are development dependencies of your

application:

482 CHAPTER 17 Engines

s.add_development_dependency "rspec-rails", "~> 2.5"
s.add_development_dependency "capybara"

You can run bundle install to install these two gems as dependencies because you’ve

got the gemspec method call in Gemfile. Once that command is done, then you’ve got

what you need in terms of gems.

 Your next move is to set up Capybara to be used with RSpec. In spec/spec_helper

.rb there’s this line:

Dir["#{File.dirname(__FILE__)}/support/**/*.rb"].each { |f| require f }

This line will require all the files with a .rb extension within the spec/support directory

or its subdirectories. You can use this to load Capybara for your tests by creating the

spec/support folder and putting a file called spec/support/capybara.rb inside of it with

this content:

require 'capybara/rails'
require 'capybara/dsl'

RSpec.configure do |c|

c.include Capybara, :example_group => {

:file_path => /\bspec\/integration\//
}

end

The capybara/rails sets up Capybara to be used for your dummy application (which

loads your engine), while the capybara/dsl gives you all the helpful Capybara methods

that you’re going to need in your tests.

 The final chunk of code here includes the Capybara module within all tests that

are within the spec/integration directory. This should provide a pretty big clue as to

where your integration tests are going for your engine!

 That’s all that you’ve got to do for setting up Capybara and RSpec. Let’s make a

commit for this:

git add .

git commit -m "Remove Test::Unit, replace with RSpec + Capybara"

Now why don’t we get into some real coding?

17.5 Writing your first engine feature

When they first start writing a Rails application, many people will attempt to create a

forum system.17 This is a great place to start, as a lot of people have used forum sys-

tems18 and therefore they understand the basic concepts of how they work.

 Generally, on the home page there’s a list of forums that have topics inside of them

and then posts inside of those topics. Each topic and post are created by a user, and

there’s a wide gamut of conversation (and, on larger forums, a great deal of trolling)

that goes on in them.

17 One of the authors attempted such a project and it grew into rboard: http://github.com/radar/rboard.
18 Such as PHPbb and VBulletin.

http://github.com/radar/rboard

483Writing your first engine feature

 Your engine is going to be a stripped-down version of this, showing only topics and

posts. It’s a great example of how you can implement engine functionality, and it’s

short enough to fit neatly into a chapter. You’re going to be using the User model

from the host application (Ticketee) for all of your authentication needs too, which is

kind of neat.

 Your first port-of-call is adding the ability to create a topic and the first post for that

topic at the same time. This topic will then be displayed at the top of a topics listing,

which will be the next feature you’ll work on.

17.5.1 Your first Capybara test

You’re going to need to generate a file to put your test in, and that particular file’s

going to be called spec/integration/topics_spec.rb. You need to place it inside the

spec/integration directory so that you have access to the Capybara helpers that you set

up earlier.

 In this test, you want to navigate to the listing of all topics, then click the New

Topic link, fill in your topic’s details, and see that you’ve got a topic. You’ll do this one

step at a time, beginning with the code in the following listing.

require 'spec_helper'

describe "topics" do

it "creating a new one" do

visit topics_path
click_link "New Topic"

fill_in "Subject", :with => "First topic!"

fill_in "Text", :with => "First post!"
click_button "Create Topic"

within "#flash_notice" do

page.should have_content("Topic has been created!")
end

within ".forem_topic #posts .forem_post" do

page.should have_content("First post!")
end

end

end

Here you’ve defined a test like you would in an application. The test requires

spec_helper (spec/spec_helper.rb), which sets up the environment for your test and

then launches right into defining the test itself.

 Inside the test, you use a Capybara method called visit that will navigate to the

specified path in the application, which in this case is topics_path. This will take you

to the index action on the TopicsController. You’ll put the code that defines this

method in your engine’s config/routes.rb in a short while.

Listing 17.1 spec/integration/topics_spec.rb

484 CHAPTER 17 Engines

 The click_link method here will do exactly that: it will click a link called New

Topic, taking you to the new action in TopicsController. On this page, there will be a

form with two fields, one called Subject and another called Text. You fill these fields in

using the fill_in method, and when you click Create Topic with click_button, the

form will post to the create action of TopicsController. This action sets a flash notice

that you’ll see within an element with its id attribute set to flash_notice. Finally, you

should see the content of your post also within another element on the page. You use

the within methods provided by Capybara for both of these.

 When you run this spec with bin/rspec spec/integration/topics_spec.rb,

you’ll be told this:

1) topics creating a new one

Failure/Error: visit topics_path

NameError:
undefined local variable or method `topics_path' for ...

This is missing the resources call for topics in config/routes.rb, which you must add

now.

17.5.2 Setting up routes

You’ve not yet defined the route for this resource in your engine’s config/routes.rb,

and so you should do that now, transforming the file into this:

Forem::Engine.routes.draw do

resources :topics

end

You’ll also make it so the index action of the controller for this route (Topics-

Controller) serves as the root page for this engine by putting this line within the

draw block:

root :to => "topics#index"

When you run your spec again, you’ll still be given the same error:

1) topics creating a new one
Failure/Error: visit topics_path

NameError:

undefined local variable or method `topics_path' for ...

Even though you’ve defined the routes correctly in config/routes.rb, the routing help-

ers are not made available to your specs automatically like they are in a Rails applica-

tion. This is an easy-to-fix problem though: you’ll include them much like you did

with the Capybara module earlier.

 The routing helpers for a Rails application are actually available in a dynamic mod-

ule that is accessible through the Rails.application.routes.url_helpers. Like an

application, your engine’s URL helpers will be available through Forem::Engine

.routes.url_helpers. Let’s include this module for all spec/integration tests by

creating a new file in spec/support called spec/support/load_routes.rb, which contains

the content from the following listing.

485Writing your first engine feature

RSpec.configure do |c|
c.include Forem::Engine.routes.url_helpers,

:example_group => {

:file_path => /\bspec\/integration\//
}

end

This will load the URL helpers, such as topics_path, that you need for your test.

 One interesting thing to note here is that your topics_path method doesn’t gen-

erate the normal /topics URL as would be expected. Instead, it generates the correct

/forem/topics path. This is because your engine is mounted in spec/dummy/config/

routes.rb under the forem path. When you visit topics_path, you’re actually going

to visit the correct path of this route, like you would in a real application.

 The next time you run your spec, you’ll see this error:

ActionController::RoutingError:

uninitialized constant Forem::TopicsController

Now your topics_path helper is working and generating a route to the index action

inside Forem::TopicsController, which you attempt to visit by using the visit

method. This controller doesn’t exist right now, and therefore you get this error. So

let’s generate this controller to proceed.

17.5.3 The topics controller

You’ve come to the stage where you need the first controller for your application,

Forem::TopicsController. To generate this controller, you can run this command:

rails g controller forem/topics

You have to namespace your controller by putting forem before it so that Rails creates

it correctly. This command will generate the normal controller stuff for your engine,

such as the controller itself, a helper, and the app/views/forem/topics directory.

 What’s your spec tell you next? Let’s find out with bin/rspec spec/integration/

topics_spec.rb:

AbstractController::ActionNotFound:

The action 'index' could not be found for Forem::TopicsController

You now need to create the index action in Forem::TopicsController.

17.5.4 The index action

Let’s open app/controllers/forem/topics_controller.rb now. Inside this controller,

you’ll see this:

module Forem

class TopicsController < ApplicationController
end

end

Listing 17.2 spec/support/load_routes.rb

486 CHAPTER 17 Engines

This code has defined a Forem::TopicsController, which inherits seemingly from

ApplicationController. This is actually Forem::ApplicationController because

the class is being defined in the Forem module. The Forem::ApplicationController

will be where you put all your engine’s common controller things later on.

 Right now, you need to define this missing index action. This action needs to

retrieve a list of all topics and then show them in the view. You’ll define this action by

changing your Forem::TopicsController to what’s shown in the following listing.

module Forem
class TopicsController < ApplicationController

def index

@topics = Forem::Topic.all
end

end

end

You’re namespacing your reference to the Forem::Topic model because it’s actually

Ruby that will be loading this class. If you referenced it without the Forem:: prefix,

then it would go looking for a normal Topic model that may belong to your applica-

tion or another engine.19 At this point, you’re not going to have the Forem::Topic

model defined, and so you’ll need to generate that too. It will need to have a subject

attribute, as well has having a user_id attribute, which you’ll fill out later:

rails g model topic subject:text user_id:integer

As when you generated the topics controller, this model will also be namespaced. The

migration it generates is called create_forem_topics and will create a table called

forem_topics. This means the migration, model, and table will not clash with any sim-

ilarly named migration, model, or table in the main application.

 To run this migration, run rake db:migrate as you would in an application. In an

engine, this will run the migration against the dummy application’s development data-

base. There’s no rake db:test:prepare in engines at the moment, and so you’ll have

to work around this by changing the dummy application’s config/database.yml file to

make the development and test databases the same. You’ll do this by using the code in

the following listing.

shared: &shared

adapter: sqlite3

database: db/development.sqlite3
pool: 5

timeout: 5000

development:
<<: *shared

Listing 17.3 app/controllers/forem/topics_controller.rb

19 Although, in a perfectly sane world, this last scenario isn’t possible. This isn’t a perfectly sane world.

Listing 17.4 spec/dummy/config/database.yml

487Writing your first engine feature

test:
<<: *shared

This won’t be too much of a problem, as you’ll be doing the major part of your

engine’s development in tests anyway.

 When you run your spec again with bin/rspec spec/integration/

topics_spec.rb, you’ll see that it’s missing a template for this index action you have

created:

ActionView::MissingTemplate:

Missing template forem/topics/index ...

This means that you now need to create the view for this action, which goes at app/

views/forem/topics/index.html.erb and uses the code from the following listing.

<h1>Topics</h1>

<%= link_to "New Topic", new_topic_path %>

<% if @topics.empty? %>

There are currently no topics.
<% else %>

<table id='topics'>

<thead>
<tr>

<td>Subject</td>

<td>Posts count</td>
<td>Last post at</td>

</tr>

</thead>
<tbody>

<% @topics.each do |topic| %>

<tr>
<td id='topic_subject'><%= link_to topic.subject, topic %></td>

<td id='posts_count'>0 posts</td>

<td id='last_post'>last post was at TIME by USER</td>
</tr>

<% end %>

</tbody>
</table>

<% end %>

In this view, you have the New Topic link that you’re going to need to click in order to

create a new topic. Underneath that link, you have the table for displaying all the top-

ics, or a short message of “There are currently no topics” if that’s the case.

 In this table you’ve got a Posts Count and Last Post At heading, and you’ve set

placeholder data for these. You’ll come back to them a little later on.

 With the view defined and the New Topic link in it, your spec will get a little fur-

ther. Let’s run it again with bin/rspec spec/integration/topics_spec.rb:

AbstractController::ActionNotFound:

The action 'new' could not be found for Forem::TopicsController

Listing 17.5 app/views/forem/topics/index.html.erb

488 CHAPTER 17 Engines

You’re missing the new action in your Forem::TopicsController. This action will pro-

vide the form that users can use to create a new topic.

17.5.5 The new action

You need to define the new action in the controller. This action and its related view will

provide the form for creating a topic and its first post. In this brand new action, you can

initialize a new topic and post with the following code underneath the index action:

def new

@topic = Forem::Topic.new

@topic.posts.build
end

There’s no association definition or even a model for the posts association yet, and so

you should create the model and then the correct associations. You can do this by run-

ning this command:

rails g model post topic_id:integer text:text user_id:integer

You can then run rake db:migrate to create the forem_posts table. Next, you need to

set up both ends of this association, beginning with the Forem::Post model, which

needs to have this line inserted:

belongs_to :topic

Here you don’t need to tell Rails that the class of this association is Forem::Topic,

Rails will figure that out itself. In the Forem::Topic model, you need to set up the

other end of this association and accept nested attributes for it:

has_many :posts, :order => "created_at ASC"
accepts_nested_attributes_for :posts

You’re putting the accepts_nested_attributes_for in the Forem::Topic model

because when you submit the form for this action, you’ll be passing through the attri-

butes for the topic as well as nested attributes for the post. With the association now

defined in your Forem::Topic model, your new action will work.

 The next step here is defining the view for this action, which you can do by putting

this code at app/views/forem/topics/new.html.erb:

<h1>New Topic</h1>

<%= render "form" %>

This view will render the partial at app/views/forem/topics/_form.html.erb, which you

need to define using the code in the following listing.

<%= form_for @topic do |f| %>

<p>
<%= f.label :subject %>

<%= f.text_field :subject %>

</p>

Listing 17.6 app/views/forem/topics/_form.html.erb

489Writing your first engine feature

<%= f.fields_for :posts do |post| %>
<%= render :partial => "forem/posts/form", :locals =>

➥{ :post => post} %>

<% end %>
<%= f.submit %>

<% end %>

Alright now, with the action, the view, and the form partial defined, you’re almost

there. In this partial though, you reference another partial called forem/posts/

form B, passing through the local variable of the post form builder object as f to it

by using the :locals option. You’re using the long form here, as Rails cannot infer

the name of it any other way.

 This new partial will provide the text field that you’ll use for posts. You’re placing it

into a partial because you may use it later on if you ever create a form for creating new

posts, like a reply feature for a topic.

 Let’s create the file for this partial now at app/views/forem/posts/_form.html.erb

and put these lines in it:

<p>
<%= post.label :text %>

<%= post.text_area :text %>

</p>

Even though this is an extremely short partial, it’s good to separate it out so that it can

be shared across the topic and posts forms, and also in case you ever decide to add any

additional information to a post.

 Your test should get a little further when you run bin/rspec spec/integration/

topics_spec.rb again:

AbstractController::ActionNotFound:
The action 'create' could not be found for Forem::TopicsController

Now you need to define the create action, the second to last action along this chain,

with the show action being the last.

17.5.6 The create action

The create action will take the parameters passed from the form provided by the new

action and create a new Topic object with a nested Post object. This action should set

the flash[:notice] variable to inform the user that the topic could be created and

then redirect to the show action.

 This action needs to be defined using the code shown in the following listing, plac-

ing it under the new action.

def create

@topic = Forem::Topic.create(params[:topic])
flash[:notice] = "Topic has been created!"

redirect_to @topic

end

Listing 17.7 app/controllers/forem/topics_controller.rb

Reference
partial

B

490 CHAPTER 17 Engines

NOTE We’re purposely not including validations in this action. This is
mainly to keep the chapter short, but it’s also a good exercise to be left to
you. Remember to write tests that the validations work before implement-
ing the code!

When you run your spec again using bin/rspec spec/integration/topics_spec.rb,

you’ll get this error:

AbstractController::ActionNotFound:

The action 'show' could not be found for Forem::TopicsController

You’re getting closer to having your spec pass! When it clicks the Create Topic button,

it’s now going through the create action successfully and is then redirecting to the

show action, which you need to define now.

17.5.7 The show action

The show action in Forem::TopicsController will be responsible for displaying a

topic and its posts. Your first step will be defining this action, which you can do by put-

ting this code inside app/controllers/forem/topics_controller.rb underneath the

create action:

def show

@topic = Forem::Topic.find(params[:id])

end

You’re then going to need to create the view for this action, which goes at app/views/

forem/topics/show.html.erb and contains the short bit of code in the following listing.

<% div_for @topic do %>
<h1><%= @topic.subject %></h1>
<div id='posts'>

<%= render :partial => "forem/posts/post", :collection => @topic.posts %>
</div>

<% end %>

You’re using a long form of render here again to render the app/views/forem/posts/

_post.html.erb partial for each of the posts. The shorter version goes like this:

<%= render @topic.posts %>

Unfortunately, due to the namespacing on your model, Rails will attempt to render

the app/views/forem/forem/posts/_post.html.erb (double “forem”) partial instead.

You therefore have to be explicit. A short note: the long form’s syntax was how it used

to be done in earlier versions of Rails.

 The partial that it renders hasn’t been created yet, and so this will be your next

step. Let’s create a new file at app/views/forem/posts/_post.html.erb and fill it with

this content:

<%= div_for(post) do %>
<small>Written at <%= post.created_at %></small>

Listing 17.8 app/views/forem/topics/show.html.erb

491Writing your first engine feature

<%= simple_format(post.text) %>
<% end %>

In this view you see the reappearance of the div_for method (last seen in chapter

10), which will create a new div HTML element with the id attribute set to

post_[post.id] and a class attribute set to post. This is so you can easily style the ele-

ment containing the post text if you wish. You’re also using the simple_format

method here too (also last seen in chapter 10), which converts line breaks in the text

of the post to HTML br tags.

 You’re close to having your spec pass. Go to the new action, fill in the form, click

the button, and then you’re on the show page. But something’s missing. Let’s run

bundle exec rspec spec/integration/topics_spec.rb to see what this is:

Capybara::ElementNotFound:
Unable to find '#flash_notice'

Your spec is unable to find the element with the id attribute set to flash_notice, but

why? This is because you haven’t defined a way of displaying it in your engine’s

dummy application’s app/views/layout/application.html.erb yet. You can do this by

using this code inside spec/dummy/app/views/layout/application.html.erb, directly

underneath the <body> start tag:

<% flash.each do |key, message| %>
<div id='flash_<%= key %>'><%= message %></div>

<% end %>

This code will iterate through the flash hash, setting the keys to the key variable and

the value to the message variable. For each message contained within flash, a new

div element will be put on the page, outputting something like this:

<div id='flash_notice'>Topic has been created!</div>

Your spec should now see this element with the id attribute set to flash_notice and

pass. Run bin/rspec spec/integration/topics_spec.rb and see for yourself:

1 example, 0 failures

Good! The test passes. This engine now sports the ability to create a brand-new topic,

and that’s a good start. Given that it’s the only test in the engine at this point in time,

you don’t need to run all the tests at the moment. Let’s make a commit:

git add .
git commit -m "Added the ability to create a new topic"

You’ve seen here that the basics of developing an engine’s feature are very similar, if

not identical, to developing a feature under a namespace in a normal application.

 Before we move on to your next feature, you’ll fix up the two placeholders that you

left in app/views/forem/topics/index.html.erb. They were these two lines:

<td id='posts_count'>0 posts</td>
<td id='last_post'>last post was at TIME by USER</td>

You’re probably going to want to replace these two lines with actual data, right? Abso-

lutely! Let’s start with the posts count.

492 CHAPTER 17 Engines

17.5.8 Showing an association count

You’re going to want to replace the “0 posts” in app/views/forem/topics/

index.html.erb with something actually useful. You can do this very easily. You’ve got a

has_many association for posts in your Topic model, which gives you, among other

things, a lovely method called count on the association that you can use. Let’s replace

this line in the view

<td>0 posts</td>

with this:

<td><%= topic.posts.count %></td>

This line will execute an SQL count query for all the posts with the topic id set to

topic.id, a query like this:

SELECT COUNT(*) FROM posts WHERE topic_id = 1

This is great, but doing an extra query for every single topic on the page would be

extremely hard on performance. If there were 100 topics, then there would be 100

extra queries.

 Enter counter caching. Counter caching will allow you to store the number of

posts on the topics table, and then you can use this cache to show the number of

posts. It works like a normal attribute on a model, except that it’s updated by Rails.

This attribute’s name is [association_name]_count, and so in this case it would be

posts_count. To get started with this, you’re going to need to add this attribute to

the forem_topics table, which you can do by running this command to generate a

migration:

rails g migration add_posts_count_to_forem_topics posts_count:integer

You need to open this migration and set the field to default to 0; otherwise the coun-

ter cache won’t know where to start counting! You’ll change this line in the brand-new

migration

add_column :forem_topics, :posts_count, :integer

to this:

add_column :forem_topics, :posts_count, :integer, :default => 0

Next, you can run this migration using rake db:migrate. To let Rails know that you’ve

now got a counter cache column on your table, you need to open up the app/models/

forem/post.rb and change this line

belongs_to :topic

to this:

belongs_to :topic, :counter_cache => true

It may seem counterintuitive to define the field on the table for the Forem::Topic

model, but then have the counter_cache option in the Forem::Post model, but it’s

493Adding more posts to topics

really simple. When a post is created, Rails will check for any associations with the

counter_cache option set to true. It then gets the current count for this association,

adds 1 to it, and saves the associated object. When a post is deleted, it will do the same

thing, except instead of adding 1, it will subtract 1. This way, you’re always going to

have an accurate count of the number of posts each topic has.

 In the app/views/forem/topics/index.html.erb file now, you’ll change this line

<td id='posts_count'><%= topic.posts.count %></td>

to this:

<td id='posts_count'><%= topic.posts_count %></td>

Rather than inefficiently calling posts.count for each topic, Rails will now reference

the posts_count attribute for the Forem::Topic object instead, saving you many que-

ries for the index action when you have many topics. This also means that you’ll have

an accurate count of posts for your topics!

 You’ll commit this change now:

git add .

git commit -m "Add posts counter cache to topics"

You’ve fixed up one of the placeholder lines in the app/views/topics/index.html.erb

view now, and when you get around to adding users to your engine, you’ll fix up the

second placeholder line.

 In this section, you’ve created an interface for creating topics and their first post,

which is the first feature of your engine and a well-tested one at that. You’ve seen how

to use fields_for to yet again create nested resources. You first saw that back in chap-

ter 8. You’ve also seen the :counter_cache option for belongs_to that you can use to

cache the count of an association, so that you don’t have to perform another query to

get that number. That’s a potential lifesaver if you’re displaying a lot of objects at once

and want to know an association’s count on all of them, like in your topics view.

 In the next section, you’re going to add the ability to add posts to a topic, because

what are topics without posts?

17.6 Adding more posts to topics

A forum system without a way for users to reply to topics is nearly useless. The whole

point of having topics is so that users can reply to them and keep the topic of conver-

sation going for as long as they wish!

 The feature that you’re about to develop will let people add these replies to exist-

ing topics. They’ll click a New Reply link on a topic, fill in the post text, and click the

submit button. They should then see their post within the list of posts in the topic.

Simple, really!

 You’ll also see here more examples of integration testing with Capybara; you’ll

repeat some of the concepts, but it’s a good way of learning.

 You’ll start out with a new spec file called spec/integration/posts_spec.rb and begin

to fill it with the content from the following listing.

494 CHAPTER 17 Engines

require 'spec_helper'

describe "posts" do

before do

@topic = Forem::Topic.new(:subject => "First topic!")
@topic.posts.build(:text => "First post!")

@topic.save!

end
end

In order to reply to a topic, you’re going to need to create one. You initialize a new

Forem::Topic object by using Forem::Topic.new and then build a post for it. This

means that when you navigate to the topic’s page, then you’ll see a post that will have

a Reply link for you to click. You’ll put the test underneath the before by using the

code in the following listing.

it "reply to a topic" do

visit topics_path
click_link "First topic!"

within ".forem_topic #posts .forem_post" do

click_link "Reply"
end

fill_in "Text", :with => "First reply!"

click_button "Create Post"

within "#flash_notice" do

page.should have_content("Post has been created!")

end

within ".forem_topic #posts .forem_post:last" do

page.should have_content("First reply!")

end
end

In this test, you go to topics_path and click the First Topic! link. Then within a post,

you click the Reply link, which will take you to the form to create a new reply to this

topic. On this new page, you fill in the text with a short message and click the Create

Post button to create a new post. Once this is done, you’ll be taken to the create

action in Forem::PostsController, which will set the flash[:notice] to be “Post has

been created!” and then redirect you back to the topic’s page, where you should see

First Reply! within a post.

 You’ve used a slightly obscure selector syntax here; you’re looking for the

#forem_topic element, which contains a #posts element, which itself contains many

.forem_post elements, of which you want the last one B. This will indicate to you

that on the page, the post that has been created is now at the bottom of the posts list-

ing for this topic, right where it should be.

Listing 17.9 spec/integration/posts_spec.rb

Listing 17.10 spec/integration/posts_spec.rb

B Find last
.forem_post element

495Adding more posts to topics

 Let’s start with running this test using bin/rspec spec/integration/

posts_spec.rb. It will get through the first two steps, but fail because it cannot find a

Reply link:

Capybara::ElementNotFound:
no link with title, id or text 'Reply' found

This link needs to go in the app/views/forem/posts/_post.html.erb, and you can do

that by using this text and placing it inside the div_for in the file, as that’s where your

test is expecting the link to be:

<%= link_to "Reply", new_topic_post_path(@topic) %>

This Reply link will go to the new action within the Forem::PostsController. The

nested route helper that you use, new_topic_post_path, will again reference only the

engine’s new_topic_post_path because the engine is isolated. To define this route

helper and the relevant routes for it, you’ll open config/routes.rb and alter this line

resources :topics

to now be these lines:

resources :topics do
resources :posts

end

When you re-run your spec, you get this error:

ActionController::RoutingError:
uninitialized constant Forem::PostsController

You need to generate this controller, which you can do by running this command:

rails g controller posts

Again, this will generate a namespaced controller because you’ve isolated your

engine. In this controller, you’re going to need to define a new action, as well as a

before_filter to load the topic. You’ll change your Forem::PostsController into

what’s shown in the following listing.

module Forem
class PostsController < ApplicationController

before_filter :find_topic

def new
@post = @topic.posts.build

end

private

def find_topic
@topic = Forem::Topic.find(params[:topic_id])

end
end

end

Listing 17.11 app/controllers/forem/posts_controller.rb

496 CHAPTER 17 Engines

Note that the params[:topic_id] here doesn’t need to be namespaced yet again

because you’re isolated. This feature is really saving you a lot of useless typing! Now,

with the action defined in the controller, you’re going to need a view too. You’ll

define it with a couple of lines in a new file at app/views/forem/posts/new.html.erb:

<h2>New Post</h2>

<%= form_for [@topic, @post] do |post| %>

<%= render :partial => "form", :locals => { :post => post } %>
<%= post.submit %>

<% end %>

With the code in the controller for the before_filter, the new action defined, and

the view written, when you run your spec again with bin/rspec spec/integration/

posts_spec.rb, you’ll be shown this error:

AbstractController::ActionNotFound:

The action 'create' could not be found for Forem::PostsController

You now need to define the create action within your Forem::PostsController:

def create
@post = @topic.posts.create(params[:post])

flash[:notice] = "Post has been created!"

redirect_to topic_path(@topic)
end

This action will create a new post for the topic with the non-namespaced parameters

that have been passed in, set the flash[:notice], and send the user back to the

topic_path(@topic) path. Hey, that’s about all that your test needs, isn’t it? Let’s find

out with another run of bin/rspec spec/integration/posts_spec.rb:

1 example, 0 failures

Awesome! That was easy, wasn’t it? You’ve now got a way for users to post replies to

topics for your engine in a couple of steps. You repeated a couple of the steps you per-

formed in the last section, but it’s good to have this kind of repetition to enforce the

concepts. Additionally, having topics without posts would be kind of silly.

 Before you run your specs, RSpec has generated controller tests incorrectly for

your application, calling the classes inside the files at spec/controllers/forem/topics

_controller_spec.rb and spec/controllers/forem/posts_controller_spec.rb Topics-

Controller and PostsController, respectively. You will need to change these to

Always specify options when using locals

If, in this example, you used this line to render the partial

{ :post => post } %>

the :locals option would be ignored by render. You must always use the :partial
option in conjunction with the :locals option; otherwise it will not work.

497Classes outside your control

Forem::TopicsController and Forem::PostsController so that RSpec doesn’t barf

when you run your tests. There are also the helpers in spec/helpers and the models in

spec/models, which need to undergo similar changes.

 Did you break anything? Let’s find out with bin/rspec spec:

2 examples, 0 failures

It doesn’t look like it, and that’s a good thing! Let’s commit this change to provide

yourself with a nice little checkpoint:

git add .

git commit -m "Added the ability to reply to posts"

Users of your engine are now able to add replies to topics created by themselves or

other users.

 You’ve got a nice couple of features going for your engine, but they’re very inclu-

sive. You haven’t yet seen how to use the application’s User model to add authorship

to your topics and posts, nor any way of integrating this engine with your Ticketee

application. But never fear! That’s what the next two sections are for.

17.7 Classes outside your control

When creating an engine such as this one, you may want to rely on classes from the

application. To relate posts and topics to users within the application, you could do

this in the models:

belongs_to :user

But what if the concept of users in the application isn’t kept within a User model at

all? Then this would break. You could store a couple of common model names, such

as User, Person, or Account and check for those, but that’s prone to breakage as well.

 Here we’ll cover the theory behind configuration options, which you can use to let

your engine know the application’s User model.

17.7.1 Engine configuration

Within this engine you’re going to want to reference the User model from your appli-

cation so that you are able to attribute posts and topics to whomever has created

them. However, there’s a catch: within the application, the model that refers to the

user in the system may not be called User! Therefore, you’re going to need to create a

way to inform the engine of what this class is called from within the application.

 The best way to inform the engine about the User model would be to have a file

called config/initializers/forem.rb which will run when the application loads like all

other initializers. This file would contain a single line, which would tell the engine

what class represents users within this application, like this:

Forem::Engine.user_class = User

This configuration setting will then be maintained by your engine across requests, and

you’ll be able to reference Forem::Engine.user_class wherever you need it within

498 CHAPTER 17 Engines

your application. To add this setting to the engine, you can use a class-level

attr_accessor call within the Forem::Engine class, inside lib/forem/engine.rb:

class << self

attr_accessor :user_class
end

The class << self syntax is known as a metaclass. The code inside of it defines addi-

tional functionality on the class it is contained within. The attr_accessor method

defines what’s known as an attribute accessor. This consists of a setter (user_class=)

and a getter (user_class), which would usually be accessible on instances of this

class. Due to how you’ve defined it, it will now be available on the class rather than the

instances. These three lines are the equivalent of this:

def self.user_class=(obj)

@user_class = obj
end

def self.user_class

@user_class

end

Writing it using only three lines with a metaclass is definitely much easier!

 Your engine shouldn’t run if this variable isn’t set, as it’s a requirement for the

Forem::Post and Forem::Topic models to work. Therefore, you should get your

engine to raise an exception if this method is called and this @@user_class variable

isn’t set.

 To make this happen, you’ll first write a test for that behavior in a new file at spec/

configuration_spec.rb, using the code from the following listing.

require 'spec_helper'

describe 'Configuration' do

it "user_class must be set" do
config = lambda { Forem::Engine.user_class }

error = "Please define Forem::Engine.user_class" +

" in config/initializers/forem.rb"
config.should raise_error(Forem::ConfigurationNotSet, error)

Forem::Engine.user_class = User

config.should_not raise_error(Forem::ConfigurationNotSet)
end

end

Within this test, you do a couple of new things. First up, you use a lambda B to define

a block of code (a Proc object) that you can run later on. After that, you define an

error message, which should appear if you don’t have this configuration setting set.

Finally, you get into the meat of your test, asserting that when the config block is

called, it will raise an exception with the class of Forem::ConfigurationNotSet and

the error message defined earlier in the test.

Listing 17.12 spec/configuration_spec.rb

B Define code block

CDon't raise exception

499Classes outside your control

 Once you set this configuration option to the User class and attempt to reference

Forem::Engine.user_class again, you assert that it should not raise that

exception C.

 When you run this test using bin/rspec spec/configuration_spec.rb, it will fail

with this error:

uninitialized constant Forem::ConfigurationNotSet

This is because your spec is attempting to reference the exception class before you’ve

even defined it! No problem though, you can define this very easily within the lib/

forem.rb file by using this code:

class ConfigurationNotSet < StandardError

end

The StandardError class is used for custom errors within Ruby and serves as a great

base for this exception. If you run bin/rspec spec/configuration_spec.rb, you’ll

see this:

expected Forem::ConfigurationNotSet with

"[error]" but nothing was raised

When you attempt to grab the user_class setting in your test, it’s not raising this

exception when it should. To fix this, you’ll need to redefine the user_class method

on the Forem::Engine class by putting this code underneath the attr_accessor line

in lib/forem/engine.rb:

def self.user_class

error = "Please define Forem::Engine.user_class" +

" in config/initializers/forem.rb"
@user || raise(ConfigurationNotFound, error)

end

Previously, the user_class method would have returned the @user variable whether

or not it was set. In this method, you now define the message that will be shown if this

class variable is not set. After that, if the class variable is set then it will be returned by

this method, and if not then the ConfigurationNotFound exception will be raised,

which seems to be all the criteria needed for your test to pass. Let’s find out by run-

ning bin/rspec spec/configuration_spec.rb now:

1 example, 0 failures

Great! That’s all passing. You’ve now got a class-level user_class method that you can

set up in any applications that use this engine, so that you can notify the engine of the

class that represents users within the application. If this setting is not set by the appli-

cation by the time the engine gets around to referencing it, then the Configuration-

NotFound exception will be raised, informing the owner of the application that they

need to set this variable up in config/initializers/forem.rb.

 Let’s now set up the User model within your dummy application so that you can

use this setting.

500 CHAPTER 17 Engines

17.7.2 A fake User model

Your engine has been deliberately designed to have no concept of authentication.

This is so it can be used with any application, independent of whatever authentication

system the application uses, be it Devise (which is what your main application uses) or

something else. In this section and the ones following, you’re going to be associating

topics and posts to users so that you know who’s been posting what. In order to this,

you’re going to need to generate a dummy User model.

 When you have this model correctly set up, you’ll use it to restrict access to the new

topic and new post actions to only logged-in users, as well as using it to assign owner-

ship to posts and topics. You’ll be able to do this using the current_user made avail-

able by the host application. It will be accessible in your engine’s controllers, as

Forem::ApplicationController inherits from ApplicationController.

 To generate this new User model, you’re going to have to run the generator from

within the spec/dummy directory. This is so the generator will place the model code

within the dummy application and not your engine. You don’t need anything on this

User model besides a login field, which you’ll be using as the display value a little

later on by defining a to_s method inside this class. Within the spec/dummy direc-

tory, run this command:

rails g model user login:string

To run the migration for this model, run rake db:migrate inside the spec/dummy

directory as well.

 In this fake model, you’re going to need to define the to_s method your engine

will use to display the user’s name. Right now your users table only has a login field,

and so you’ll return that:

class User < ActiveRecord::Base
def to_s

login

end
end

With the fake model generated and the to_s method defined in it correctly, the only

thing left to do is to set up the initializer in your dummy application. Create a new file

at spec/dummy/config/initializers/forem.rb with this simple line:

Forem::Engine.user_class = User

That is all the preparation you need to do to notify your engine of this class. To make

your engine use this class, you’ll put this line in both the class definitions of app/

models/forem/post.rb and app/models/forem/topic.rb:

belongs_to :user, :class_name => Forem::Engine.user_class.to_s

This line will now reference the setting that’s configured by config/initializers/

forem.rb, thereby relating your posts and topics from your engine to the User class

within the application, forming a lovely bridge between the two.

501Classes outside your control

 Next, you’ll apply what you’ve done here to associate the users who are signed in

with the topics they post. This is so people will be able to see who posted what.

17.7.3 Authenticating topics

By having a belongs_to :user association on the Forem::Post and Forem::Topic

models, you’ll be able to assign users to topics and posts when they create them so that

other users can know who’s been posting what.

 You’ve got, on purpose, no authentication in your dummy application at the

moment, and so you’ll have to take a shortcut around this. Usually an application

would provide a current_user method that returns a User object, but your dummy

application doesn’t do this right now. You need this method to sometimes return a user

object (like with actions that require authentication), and to sometimes return nil.

 A cool way to do this would be to dynamically redefine the current_user method

yourself. A way to do this is to have two methods that you can call in your tests—a

sign_in! method and a sign_out! method—which will redefine the current_user

method in ApplicationController to either return the user object or nil, respec-

tively. You’ll also make this method a helper method by using the helper_method

method, which is available in all controllers. This will mean that your fake

current_user method can then be referenced by the controllers and views of your

engine without any problems.

 Define these two new methods in a new file at spec/support/dummy_login.rb using

the code shown in the following listing.

def sign_out!

ApplicationController.class_eval <<-STRING
def current_user

nil

end

helper_method :current_user

STRING

end

def sign_in!(options={})

ApplicationController.class_eval <<-STRING

def current_user
User.find_or_create_by_login("forem_user")

end

helper_method :current_user
STRING

end

When you call the sign_out! method in your tests, it will call the Forem::Application-

Controller.class_eval method, which will redefine the current_user to return nil.

When you call the sign_in! method, it will find a User record with its login set to

Listing 17.13 spec/support/dummy_login.rb

502 CHAPTER 17 Engines

forem_user; if it can’t do that, it will create one instead. This will then be the object that

is returned when you reference current_user in your application.

 The next function you’re going to add to your engine is one that will redirect users

who aren’t logged in when they attempt to access the new action in Forem::Topics-

Controller. Your test will also test that an unauthenticated user can’t see the New

Topic link on theForem::TopicsController’s index action. You’ll add this spec in

spec/integration/topics_spec.rb by using the code in the following listing.

context "unauthenticated users" do
before do

sign_out!
end

it "cannot see the 'New Topic' link" do
visit topics_path
page.should_not have_content("New Topic")

end

it "cannot begin to create a new topic" do
visit new_topic_path
page.current_url.should eql(sign_in_url)

end
end

In the before block of this new context, you call the sign_out! method, which will

set up the crucial current_user method that this test depends on. If it wasn’t defined,

then you’d get an undefined method when current_user attempted to access it.

In this spec, you use page.current_url B to read what the current URL is; it should

match whatever main_app.sign_in_path’s method points at. Remember: this is the

sign_in_path method, which is made available in the application by a definition in its

config/routes.rb file. This is not currently set up, and so you’ll do that later.

 First, let’s see what the output has to say about your first test when you run bin/

rspec spec/integration/topics_spec.rb:25:

Failure/Error: page.should_not have_content("New Topic")
expected #has_content?("New Topic") to return false, got true

You’re asserting in your test that an unauthenticated user cannot see the New Topic

link, but they do. You can go into app/views/forem/topics/index.html.erb and change

this line

<%= link_to "New Topic", new_topic_path %>

to these lines:

<% if current_user %>
<%= link_to "New Topic", new_topic_path %>

<% end %>

Listing 17.14 spec/integration/topics_spec.rb

B Read current URL

503Classes outside your control

When you run this example again with bin/rspec spec/integration/topics_spec

.rb:25, you’ll see that it now passes:

1 example, 0 failures

One down, two to go. Let’s run the next spec down in this file with bin/rspec spec/

integration/topics_spec.rb:30. When you do, you’ll see this output:

NoMethodError:

undefined local variable or method `sign_in_url' for ...

Your test currently can’t find the sign_in_path helper for your dummy application.

You can define the helper by putting this line in spec/dummy/config/routes.rb:

match "/sign_in", :to => "fake#sign_in", :as => "sign_in"

When you run your test again with bin/rspec spec/integration/topics_spec

.rb:30, you’ll be shown this:

expected "http://www.example.com/login"
got "http://www.example.com/forem/topics/new"

The page expected to be on /login, but was actually on /forem/topics/new! That’s

because you’re not yet authenticating users when they go to the new action in

Forem::TopicsController. You can add a before_filter to the class definition in

app/controllers/forem/topics_controller.rb using this code:

before_filter :authenticate_forem_user!, :only => [:new, :create]

You’ll put this authenticate_forem_user! method definition inside Forem

::ApplicationController so that you can use it for all the controllers of your engine.

It’ll go like this:

private

def authenticate_forem_user!

if !current_user

flash[:notice] = "You must be authenticated before you can do that."
redirect_to main_app.sign_in_url

end

end

Now when you visit your new or create actions in Forem::TopicsController, you’ll

be sent away to the login path for your application, which you can access by calling

sign_in_path on the main_app helper B. You must use main_app here so that you

point to the application’s routes rather than the engine’s. The engine itself has no

concept of sign_in_path.

 When you run your spec again with bin/rspec spec/integration/topics_spec

.rb:30, you’ll see that this test is now failing because your application is missing the

FakeController that your sign_in_path route uses:

ActionController::RoutingError:
uninitialized constant FakeController

B Go to login path

504 CHAPTER 17 Engines

You don’t need this controller to do much more than sit there and look pretty. Oh,

and it needs to have a login action that responds in an OK fashion too. Let’s define

this controller in your dummy application by creating a new file at spec/dummy/app/

controllers/fake_controller.rb and putting this content inside it:

class FakeController < ApplicationController

def sign_in

render :text => "Placeholder login page."
end

end

This action will now render the text “Placeholder login page,” thereby returning that

OK status you’re after, as well as some helpful text to indicate where you’re at. When

you run bin/rspec spec/integration/topics_spec.rb, you’ll see that it passes:

1 example, 0 failures

This means now that any user attempting to access the new action in the

Forem::TopicsController will be redirected to the login page. What happens when

you run the whole spec file? Let’s find out with bin/rspec spec/integration/

topics_spec.rb:

ActionView::Template::Error:

undefined method `current_user' for #<Forem::TopicsController:...>

...
./spec/integration/topics_spec.rb:21:in ...

3 examples, 1 failure

Your final spec in this file is failing with an undefined method current_user, because

you’re not calling sign_in! before it. Move this code into its own context with a

before like the other two tests have, using the code shown in the following listing.

context "authenticated users" do

before do
sign_in!

end

it "creating a new one" do
visit topics_path

click_link "New Topic"

fill_in "Subject", :with => "First topic!"
fill_in "Text", :with => "First post!"

click_button "Create Topic"

within "#flash_notice" do
page.should have_content("Topic has been created!")

end

within ".forem_topic #posts .forem_post" do
page.should have_content("First post!")

end

end
end

Listing 17.15 spec/integration/topics_spec.rb

505Classes outside your control

When you run the whole spec with bin/rspec spec/integration/topics _spec.rb

one more time, all three examples should pass:

3 examples, 0 failures

You’ve now got your engine using the concept of a current user from the application

so that it can authorize users to perform certain actions when they’re logged in. Are

all the tests working still? A quick bin/rspec spec will tell you:

ActionView::Template::Error:
undefined method `current_user' for #<Forem::TopicsController:...>
./spec/integration/posts_spec.rb:11:...

Finished in 1.16 seconds
6 examples, 1 failure

It would appear your spec/integration/posts_spec.rb test is failing because

current_user isn’t defined. You can fix this very quickly by throwing a sign_in! call

in the before, turning it from this

before do
@topic = Forem::Topic.new(:subject => "First topic!")
@topic.posts.build(:text => "First post!")
@topic.save!

end

into this:

before do
@topic = Forem::Topic.new(:subject => "First topic!")

@topic.posts.build(:text => "First post!")

@topic.save!
sign_in!

end

When you run your specs again, they’ll all pass:

4 examples, 0 failures

Great success! Now it’s time to commit:

git add .
git commit -m "Use application authentication to block

unauthenticated users from creating topics"

Now that you’ve got an easy way to restrict access to the creation of new topics to only

authenticated users, you can be sure you’re always going to have a current_user

object that you can use to associate users with topics. With this in mind, you’re going

to set the topic’s and its first post’s user when you create a topic.

17.7.4 Adding authorship to topics

You’ll now associate topics and users. To make sure that this will work, add these lines

to the example within the authenticated context in spec/integration/topics_spec.rb:

within ".forem_topic #posts .forem_post .user" do

page.should have_content("forem_user")
end

506 CHAPTER 17 Engines

This is the element in which you’ll be displaying the user on the page, with the con-

tent being the name of the user that you set up in the sign_in! method. This user

association is actually going to be set both on the topic and its first post. Right now this

element doesn’t exist, and so if you were to run this test it would fail.

 Your first step is to associate the topic to a user when you create the topic in

Forem::TopicsController. You can do this by changing this line of the create action

@topic = Forem::Topic.create(params[:topic])

to these two lines:

params[:topic].merge!(:user => current_user)

@topic = Forem::Topic.create(params[:topic])

This will set up the user association for the topic, passing it through with the other

parameters inside params[:topic]. This will not set up the first post for this topic to

have this user associated, which is what you need in order to make your test pass. To

do this, create a before_save callback in the Forem::Topic by using the code from

the following listing, placing it under the accepts_nested_attributes_for :post

line in the model.

before_save :set_post_user

private
def set_post_user

self.posts.first.user = self.user

end

With the user association now set for a topic’s first post, you can display the user’s

name along with the post by putting this line under the small tag already in app/

views/forem/posts/_post.html.erb:

<small class='user'>By <%= post.user %></small>

Here you use Forem::Engine.user_name, which is the method that you use to display

the user’s name. In this case, it would display the login attribute. When you run bin/

rspec spec/integration/topics_spec.rb, all your tests will pass:

3 examples, 0 failures

That was easy! When a topic is created, the topic and its first post will now belong to

the user who created it. Remember: your User model is in another castle, or rather, it

is in your application, and so this is very cool.

 Now you’ll need to check that users are logged in before they create posts too, and

then associate the posts to the users upon creation.

17.7.5 Post authentication

You’ve got the authenticate_forem_user! method defined in the Forem

::ApplicationController, and so it’s available for all controllers that inherit from it.

Listing 17.16 app/models/forem/topic.rb

507Classes outside your control

This includes Forem::TopicsController, where you just used it, and Forem::Posts-

Controller, where you are about to use it to ensure that users are signed in before

being able to create new posts.

 Before you use this method, you’ll add a test to the spec/integration/posts_spec.rb

to check that a user cannot access the new action if they aren’t signed in, and it will fail

because you’re not using it yet.

 You’re going to have two context blocks in your spec, one for unauthenticated

users and the other for authenticated users. You can share the before block between

these two contexts if you take the sign_in! method out and turn your spec into what’s

shown in the following listing.

require 'spec_helper'

describe "posts" do

before do

@topic = Forem::Topic.new(:subject => "First topic!")

@topic.posts.build(:text => "First post!")
@topic.save!

end

context "unauthenticated users" do
before do

sign_out!

end
end

context "authenticated users" do

before do
sign_in!

end

it "reply to a topic" do
...

end

end
end

With the before block now run before both of your contexts, you’ll have the @topic

object available in both of them. In the “unauthenticated users” context block, you’ll

write your test for the unauthenticated new action access under the before block,

using the code from the following listing.

it "cannot access the new action" do

visit new_topic_post_path(@topic)
page.current_url.should eql(sign_in_url)

end

Listing 17.17 spec/integration/posts_spec.rb

Listing 17.18 spec/integration/posts_spec.rb

508 CHAPTER 17 Engines

Because you don’t have the before_filter :authenticate_forem_user! line in

Forem::PostsController when you run this spec using bin/rspec spec/integration/

posts_spec.rb:15, you’ll get this:

expected "http://www.example.com/login"
got "http://www.example.com/forem/topics/[id]/posts/new"

With your test in place, you can add the before_filter line at the top of your class

definition in app/controllers/forem/posts_controller.rb:

before_filter :authenticate_forem_user!, :only => [:new, :create]

When you run your example again with bin/rspec spec/integration/posts_spec

.rb:15, this time it’ll pass:

1 example, 0 failures

What happens when you run bin/rspec spec/integration/posts_spec.rb though?

2 examples, 0 failures

This is passing also, which is great to see! Right now though, posts do not belong to

users when they are created, and so when you go to display a user’s name for a reply

post, nothing will appear. In order to fix this, you’ll copy over the final couple of lines

you put in spec/integration/topics_spec.rb and put them at the bottom of the “reply to

topic” example you have in spec/integration/posts_spec.rb:

within ".forem_topic #posts .forem_post:last .user" do

page.should have_content("forem_user")
end

Like last time, you’re asserting that you can see the user’s name within the final post

on the page, which you can find using the within method. When you run this test

using bin/rspec spec/integration/posts_spec.rb, it will fail because it cannot see

the user’s name on the page:

Failure/Error: page.should have_content("forem_user")
expected #has_content?("forem_user") to return true, got fals

Now that you have a test ensuring that this behavior is indeed not yet implemented,

let’s fix it up. First, you’re going to need to change the before block in your test to set

up a user for the first post that it creates, changing it into this:

before do

@user = User.create!(:login => "some_guy")
@topic = Forem::Topic.new(:subject => "First topic!", :user => @user)

@topic.posts.build(:text => "First post!")

@topic.save!
end

That will solve it for the first post on this page, but you also care about the new post

that you’re creating. You can fix this one by changing this line in the create action in

app/controllers/forem/posts_controller.rb

@post = @topic.posts.create(params[:post])

509Classes outside your control

to these lines:

params[:post].merge!(:user => current_user)

@post = @topic.posts.create(params[:post])

We’re putting this on separate lines to make the second line a little shorter for read-

ability. When you run bin/rspec spec/integration/posts_spec.rb again, you’ll see

that it all passes:

2 examples, 0 failures

Now you’re authenticating users before they can create new posts, and then assigning

them as the user when they’re authenticated. That means you’re done here and

should run all the specs to make sure everything works with a quick run of bin/rspec

spec. You should see this:

7 examples, 0 failures

Good to see! Let’s make a commit:

git add .

git commit -m "Authenticate users and link them to posts"

You’ve now got a pretty good starting feature set for your engine. Users are able to cre-

ate topics and posts, but only if they’re authenticated in the parent application, and

that’s a good start. You could generate further features, such as editing topics and

posts, but that’s an exercise best left to you.20

 One thing you’ve still got left to do is fix up the second placeholder in app/views/

topics/index.html.erb, which shows the last post for a topic. You’ll do this now; it’ll

only take a moment.

17.7.6 Showing the last post

Currently in app/views/topics/index.html.erb you have this line:

<td id='last_post'>last post was at TIME by USER</td>

It would be extremely helpful to your users if this returned useful information rather

than a placeholder. You’ve finished linking posts and users, and so now is a great time

to fix this placeholder up.

 To begin with, you’re going to add a test to spec/integration/posts_spec.rb to

ensure that you do indeed see the last post’s information. It’s the same function dis-

played to unauthenticated users as it is authenticated users, but you’re going to need

current_user set by either sign_out! or sign_in!. Therefore, you’ll put this test

inside the context "unauthenticated users" block to make things easy. The code for

this test is shown in the following listing.

20 Additionally, this is a long enough chapter already!

510 CHAPTER 17 Engines

it "should see the post count and last post details" do
visit topics_path

within "#topics tbody td#posts_count" do

page.should have_content("1")
end

within "#topics tbody td#last_post" do

page.should have_content("last post was less than a minute ago
 ➥by some_guy")

end

end

This test ensures that the post count is showing the correct number of posts and that

the last post details are displayed correctly. When you run this spec, it will pass the first

assertion because of the posts count you set up a little earlier,21 but it fails on the last

assertion because it cannot find the content you’ve specified:

Failure/Error: page.should have_content("[content]")

expected #has_content?("[content]") to return true, got false

The first part of your content is “last post was less than a minute ago.” Let’s focus on

getting this working. There’s a helper within Rails that can help you display this “less

than a minute ago” text called time_ago_in_words. Let’s assume that you’ve got a

method called last_post that returns the last post for now. You’ll define it later. You

can use the time_ago_in_words helper within the last post table cell in app/views/

forem/topics/index.html.erb:

<td id='last_post'>
last post was <%= time_ago_in_words(topic.last_post.created_at) %> ago

</td>

This time_ago_in_words helper will display a humanized version of how long ago the

post was. When you first create the post, the text would read “less than a minute ago,”

as this is the smallest granularity that this helper provides.

 Before your test will pass, you’re going to need the other half of this line. At the

end of the %> on the line you just wrote, add this:

by <%= topic.last_post.user %>

This first uses a new method that you’ll define shortly on the Forem::Topic model

called last_post, which will return the last post for this topic. Then, you’ll display

who posted that post by calling user on that object.

 When you run your test again, this time it will fail because the last_post method

on topic is only defined in your imagination:

ActionView::Template::Error:

undefined method `last_post' for #<Forem::Topic:0x00000100cfb498>

Listing 17.19 spec/integration/posts_spec.rb

21 Naughty of us not to write tests back then, but sometimes this happens.

511Classes outside your control

It’s time this method moved out of your imagination and into your engine. This

method needs to return the last post for your topic, and because the topic_id lives on

the posts table and you’re wanting only one of these posts, this is a great opportunity

to use a has_one association.

 This association needs to find the chronological last post for your topics; you can

do this by defining this association in app/models/forem/topic.rb like this:

has_one :last_post, :class_name => "Forem::Post",
:order => "created_at DESC"

The class_name option you’ve used before; it tells Rails that objects of this association

are of that class, rather than the inferred class, which is a constantized version of the

association name. In this case, that would be LastPost. The :order option, however,

will order the posts by the created_at field in reverse chronological order. The

has_one method will then execute this query and limit the results to one, returning

only the first post.

 With the association defined, you can re-run your test and see it passing:

1 example, 0 failures

You’ve now got a test that covers that a user can see the posts counter and the last post

information on the topics page for a topic, which proves that this feature is working.

Let’s run all the RSpec tests to make sure that everything’s working with bin/rspec

spec:

6 examples, 0 failures

Great, everything’s good. Time for a commit:

git add .
git commit -m "Add last post information to topics index"

This has been quite a long section and we’ve covered a lot of ground. The purpose of

this section was to demonstrate how you could reference classes outside your control,

such as those in the application or found in other engines. We opted for configura-

tion options for some of the options, and a module for others.

 You then asked users to authenticate before they could create new topics and

posts, and after that you linked your engine’s classes’ objects to the objects from an

application’s class. This is kind of a big deal, as it shows that an engine is able to inter-

act with an application without extravagant modification of the application’s code.

 Finally, you fixed up your topics index view to display information from these

linked-in classes.

 This has been only the beginning of linking your application and engine. In the

final sections of this chapter, you’ll see how you can release your engine as a gem and

how you can integrate it into your application so that the users of Ticketee have a

forum system they can use.

512 CHAPTER 17 Engines

17.8 Releasing as a gem

By releasing your engine as a gem, you’ll make it publicly available for anybody to

download from http://rubygems.org. This will also allow you to share this engine

across multiple applications. If people wish to use your engine, they would be able to

put this line in their Gemfile of their application:

gem 'forem'

Then they would need to go about configuring the application to have a config/initializers/

forem.rb file with the proper configuration options (only Forem::Engine.user_class for

now, but possibly others). You’d usually put these steps in a README file at the root of

the engine.22

 To release your engine as a gem, you can use Bundler. Bundler provides some

gem-management tasks in the form of Rake tasks that allow you to build your gem

(basically, zip it up into a .gem file),23 install the gem locally, and release it.

 To make these tasks available for your engine, you can put this line at the bottom

of your Rakefile:

Bundler::GemHelper.install_tasks

When you run rake -T, you’ll see that you’ve got a few tasks for your engine, some of

which you’ve already used. This line that you’ve put in the Rakefile will add the build,

install, and release rake tasks.

 Before you can release your gem, you must give it a unique name. To do this, you’ll

go into your application and rename forem.gemspec to your-name-forem.gemspec24 to

make it unique. Then inside this file, you’ll need to change this line

s.name = "forem"

to have the same name as the gemspec:

s.name = "your-name-forem"

Now you’re ready to release your gem. Let’s run the rake build task first and see what

does:

(in /Users/ryanbigg/Sites/book/forem)
your-name-forem 0.0.1 built to pkg/your-name-forem-0.0.1.gem

This command has built your gem and put it in a new directory called pkg. This new

gem can be installed using gem install pkg/your-name-forem-0.0.1 if you wish, but

there’s a problem: this gem doesn’t contain all your files.

 At the moment, the gem only contains the files specified by this line in your-name-

forem.gemspec:

22 This is so when you put it in GitHub, people will have a clear way of seeing what this engine’s good for and
how they can use it.

23 Yup, .gem files are actually .zip files.
24 A wise decision here would be to use your GitHub username, as that’s bound to be unique, compared to your

first name which is most likely not.

http://rubygems.org

513Integrating with an application

s.files = Dir["lib/**/*"] + ["MIT-LICENSE", "Rakefile", "README.rdoc"]

This line will only include files from the lib directory, as well as the MIT-LICENSE, Rake-

file, and README.rdoc files. But you’ve got much more than that in your application,

such as the app folder for starters! To fix this little problem, you’ll replace that line

with this one:

s.files = `git ls-files`.split("\n")

This will add all the files that have been added to your Git repository to the gem.

When you run rake build again, it will create your gem with all the files.

 You’ll also need to set up some authors for your gem, which you can do by putting

this line underneath s.version in the forem.gemspec:

s.authors = ["youremail@example.com"]

The next task you can run is rake install. This can be run without having rake

build first, as it will run the build code first, then install. This will actually install the

gem onto your system so that you can use it. That’s all well and good, but you want to

show off your stuff to the world!

 That’s what rake release is for. This command will create a git tag for your cur-

rent commit, then call git push to push your changes online. Next, it will call gem

push, which will publish your gem to http://rubygems.org. You may have to set up an

account on RubyGems.org first, though.

 Once this is done, your gem is released out into the world as version 0.0.1. To

bump the version, you need only to alter this line in your-name-forem.gemspec:

s.version = "0.0.1"

It’s sensible to increment the last part of this number for minor corrections, such as

typos or bug fixes, the middle part for minor breaking changes and additional feature

releases, and the major version for major breaking changes or to represent the solidi-

fying of the API.

 With your gem now live and out there, you can use it in your application. Exciting

times!

17.9 Integrating with an application

Now you get to the best part of this chapter: linking Ticketee, your Rails application

that you’ve built throughout the earlier chapters of this book, to the engine that you

have just written, forem. This is a pretty easy process.

 The first thing you’re going to need is to add forem to your application’s Gemfile

with this line:

gem 'your-name-forem', :require => "forem"

Then you’ll need to run bundle install to install the gem. To install the migrations

for this gem, you’ll need to run this command:

rake forem:install:migrations

http://rubygems.org

514 CHAPTER 17 Engines

This task actually copies across the engines migration into the application’s db/

migrate directory, with the first migration having a timestamp of the current second,

the next migration having it one second in the future, and so on. This is so the

engine’s migrations are inserted after the current application’s migrations and main-

tain the same order that they have in the engine. If you update the engine later on,

you’ll have to run this task again. To install these migrations, you’ll run this:

rake db:migrate

After this, you’ll need to mount the engine in your application’s config/routes.rb,

which you can do with this:

mount Forem::Engine, :at => "/forem"

You saw this line in your spec/dummy/config/routes.rb file earlier. Mounting your

engine will make its routes available to the specified path. If you launch rails server

now and go to http://localhost:3000, you’ll be shown this error:

Please define Forem::Engine.user_class in config/initializers/forem.rb

You should follow the advice for this error and define Forem::Engine.user_class

within the application’s config/initializers/forem.rb, as you need to tell the engine

what the user class is:

Forem::Engine.user_class = User

Because you’ve created a new initializer, you’ll need to restart the rails server that is

currently running so that Rails re-evaluates the files in the config/intializers directory.

When you do this and refresh the page, you’ll see this error:

undefined local variable or method `admin_root_path' ...

This is happening because your engine is using the application’s layout and is trying

to reference admin_root_path method from inside the engine, rather than the one

that’s defined in the application. To fix this, you’ll need to first call main_app for these

routing helpers and then call the helpers on that. You need to change the root_path,

admin_root_path, destroy_user_session_path, new_user_registration_path, and

new_user_session_path helpers in the app/views/layouts/application.html.erb file to

all have the main_app. prefix on them.

 These are all the changes you need to make in order to integrate your engine with

your application. Click around a bit and try it out!

17.10 Summary

In this very long chapter we’ve covered quite the gamut! We’ve gone through the the-

ory first of all, the history of engines, and why they’re useful. After that, you saw the

layout of one and how the routing for an engine works.

 You then spent the rest of the chapter creating your own engine called forem,

which provides the basic functionality of a forum: topics and posts.

515Summary

 We got into the nitty-gritty of adding configuration options to your engine, as well

as a module called Forem::UserExtensions, which configured the two models in your

engine with new associations. This module is exceptionally interesting, as it allows you

to configure the engine’s behavior regardless of the class that it’s included into.

 We then covered releasing your engine as a gem, which is the best way to get it out

into the world.

 In the final chapter, we look at how you can write lightweight applications using

Rack and Sinatra, and hook them into your Rails application. In Rails 3, that’s become

easier than ever to do.

516

Rack-based applications

So far, this book has primarily focused on how to work with pieces of the Rails

framework, such as application and engines. In this chapter, we’ll look at how you

can use Rack-based applications to respond more quickly than what you’d other-

wise be capable of with your main application.

 Rack is the underlying web server framework that powers the underlying

request/response cycle found in Rails, but it isn’t a part of Rails itself. It’s com-

pletely separate, with Rails requiring the parts of Rack it needs. When your applica-

tion is running, it’s running through a web server. When your web server receives a

request, it will pass it off to Rack, as shown in figure 18.1.

 Rack then determines where to route this request, and in this case it has chosen

to route to a specific application stack. The request passes through a series of

pieces called middleware (covered in the final section of this chapter) before arriv-

ing at the application itself. The application will then generate a response and pass

This chapter covers

 Building a basic Rack application

 Tying together Rack applications

 Mounting a Rack app within a Rails app

 Using Rack middleware to alter server response

517Building Rack applications

it back up through the stack to Rack, and then Rack will pass

it back to the server, which will finally pass it back to the

browser. All of this happens in a lightning quick fashion.

 Separating Rack from Rails not only reduces bloat in the

framework, but also provides a common interface that other

frameworks can use. By standardizing the request/response

cycle, applications that are built on top of Rack can interact

with one another. In this chapter, you’ll see how you can do

this by making your Rails application work with applications

built using Rack, but not Rails.

 You’ll build some Rack applications in this chapter that

aren’t Rails applications but will work just as seamlessly.

You’ll learn how Rack provides the request/response cycle

underneath Rails and other Ruby frameworks, and learn how

to build your own small, lightweight Rack-based applications.

 With these lightweight applications crafted, you’ll then

create one more application that will re-implement the tick-

ets API functionality you first created in chapter 13, using

another Rack-based web framework called Sinatra. You’ll

then mount this Sinatra application inside your Rails appli-

cation using methods that Rails provides. This will provide an apt example of how

you’re able to interact with classes from your Rails application from within a mounted

Rack application.

 Finally, we’ll take a look at middleware within both the Rack and Rails stacks, and

you’ll learn how to use it to your advantage to manipulate requests coming into your

application.

 All Rack-based applications work the same way. You request a URL from the appli-

cation, and it sends back a response. But it’s what goes on between that request and

the response that’s the most interesting part. Let’s create a basic Rack application now

so that you can understand the basics.

18.1 Building Rack applications

Rack standardizes the way an application receives requests across all the Ruby frame-

works. With this standardization, you know that any application purporting to be a

Rack application is going to have a standard way for you to send requests to it and a

standard way of receiving responses.

 You’re going to build a basic Rack application so that you can learn about the

underlying architecture for requests and responses found in Rails and other Ruby

frameworks. With this knowledge, you’ll be able to build lightweight Rack applications

that you can hook into your Rails stack, or even Rack middleware.

 When you’re content with the first application, you’ll create another and then

make them work together as one big application. First things first, though.

Browser

Web Server

Rack

Application Stack

Middleware

Middleware

Application

...

Figure 18.1 Application

request through the stack

518 CHAPTER 18 Rack-based applications

18.1.1 A basic Rack application

To build a basic Rack application, you only need to have an object in Ruby that

responds to the call method. That call method needs to take one argument (the

request) and also needs to return a three-element Array object. This array represents

the response that will be given back to Rack, and looks something like this:

[200, { "Content-Type" => "text/plain"}, ["Hello World"]]

The first element in this response array is the status code for your response. In this

case, it’s 200, which represents a successful response. You had a bit of a play with status

codes back in chapter 13 when you were building your API, so these should be no mys-

tery at this point.

 The second element in this array are the headers that will be sent back. These

headers are used by the browser to determine how to deal with the response. In this

case, the response will be rendered as-is to the page because the Content-Type header

is text/plain, indicating normal text with no formatting applied. Usually your Rack

application would set this to text/html to indicate an HTML response.

 Finally, the third element represents the response body, which is sent back along

with the status code and headers to Rack. Rack then compiles it all into an HTTP

response, which is sent back to where the request came from.

 Let’s see this in action now. You’re going to create a light Rack application that

responds with “Hello World” whenever it receives a request. This kind of application is

often used to check and see if a server is still up and responding to HTTP calls. You’ll

create a new file inside your Ticketee’s application’s lib called lib/heartbeat.ru (you’re

checking the “heartbeat” of the server) and fill it with this content:

run lambda { |env| [200, {'Content-Type' => 'text/plain'}, ['OK']] }

The .ru extension for this file represents a Rack configuration file, also known as a

Rackup file. In it, you call the run method, which needs an object that responds to

You already have a Rackup file

Your Rails application also has one of these .ru files, called config.ru, which is used

by Rack-based servers to run your application. You can see this in action by running

the rackup config.ru command, which will start up your application using the

config.ru file’s configuration.

If you look in this file, you’ll see these lines:

This file is used by Rack-based servers to start the application.

require ::File.expand_path('../config/environment', __FILE__)

run Ticketee::Application

The first line requires config/environment.rb for the application, which is responsible

for setting up the environment of the application. Then it uses the run method—just

as you are—except it’s passing Ticketee::Application, which actually responds

to call.

Cool stuff.

519Building Rack applications

call. When Rack receives a request to this application it will call the call method on

the object passed to run, which will then generate and return a response back to the

server. The object in this case is a lambda (or Proc) object, which automatically

responds to call.

 When the call method is called on this lambda, it will respond with the three-

element array inside it, completely ignoring the env object that is passed through.

Inside this array, you have the three elements Rack needs: the HTTP status, the head-

ers for the response, and the body to return.

 To see your lib/heartbeat.ru in action, you can launch a Rack server by using the

command you saw in the sidebar:

rackup lib/heartbeat.ru

This is now running a server on 9292 (the standard port for Rack) using the built-in-

to-Ruby WEBrick HTTP server, as indicated by the server output you’ll see:

[timestamp] INFO WEBrick 1.3.1

...

[timestamp] INFO WEBrick::HTTPServer#start: pid=... port=9292

You can now go to your browser and open http://localhost:9292 to make a request to

this application. You’ll get back “Hello World,” and that’s okay. You can also make a

request to any path at the http://localhost:9292 application and it will respond in the

same way, such as http://localhost:9292/status.

 What you’ve done here is write one of the simplest Rack applications possible. This

application receives a response to any path using any method, and always responds

with OK. This application will respond very quickly because it hasn’t loaded anything,

but at the cost of being a one-trick pony.

 You can make this little application respond differently in a number of ways. The

easiest (and most fun!) would be to program it to change its response depending on

the path it’s given, like a Rails application does. For this, you’ll use the env object. First

up, let’s see what this env object gives you by changing your script to do this:

require 'yaml'
run lambda { |env| [200,

{'Content-Type' => 'text/plain'},

["#{env.to_yaml}"]]
}

The to_yaml method provided by the yaml standard library file will transform your

env object (spoilers: it’s a Hash) into a human-readable YAML output (like that found

in config/database.yml in a Rails application).

 To make this new change apply, you can’t refresh the page like you would in a Rails

application; you have to stop the server and start it again. You can press Ctrl+C to stop

it, and rerun that command. This time when you go to your server, you’ll see output

that looks like this:

GATEWAY_INTERFACE: CGI/1.1

520 CHAPTER 18 Rack-based applications

PATH_INFO: /
QUERY_STRING: ""

REMOTE_ADDR: 127.0.0.1

REQUEST_METHOD: GET
REQUEST_URI: http://localhost:9292/

...

This output is the YAML-ized version of the env hash, which comes from Rack itself.

Rack parses the incoming request and provides this env hash so that you can deter-

mine how you’d like to respond to the request. You can alter the behavior of the

request using any one of the keys in this hash,1 but in this case you’ll keep it simple

and use the PATH_INFO key.

 A lambda is great for one-liners, but now your Rack application is going to become

more complex, and so you’ve probably outgrown the usefulness of a lambda. You

don’t have to use a lambda though, you only need to pass run an object that has a call

method that responds with that three-element array. Your new code will be a couple of

lines long, and so it’s probably best to define it as a method (called call) on an

object, and what better object to define it on than a class?

 A class object would allow you to define other methods, and can be used to

abstract chunks of the call method as well. For good measure, let’s call this class

Application and put it inside a module called Heartbeat, as shown in the following

listing:

module Heartbeat

class Application

def self.call(env)
[200, {'Content-Type' => 'text/plain'}, ["Hello World"]

end

end
end

run Heartbeat::Application

Here you’ve defined the Heartbeat::Application to have a call method, which once

again returns OK for any request. On the final line, call run and pass in Heartbeat

::Application, which will work like your first example because Heartbeat

::Application has a call method defined on it. If this looks familiar, it’s because

there’s a similar looking line in your application’s config.ru file that you saw earlier:

run Ticketee::Application

Your Rails application is actually a Rack-based application! Of course, there’s a little

bit more that goes on behind the scenes in your Rails application than in your Rack

application at the moment, but the two are used identically. They both respond in

nearly identical ways with the three-element response array. Your Rack application is

nearly the simplest form you can have.

1 Yes, even the HTTP_USER_AGENT key to send users of a certain browser elsewhere.

Listing 18.1 lib/heartbeat.ru

521Building Rack applications

 Let’s change your Heartbeat application now to respond differently to different

request paths by referencing the PATH_INFO key within env. You’ll replace the code

inside your call method with this:

def self.call(env)
default_headers = { "Content-Type" => "text/plain"}

if env["PATH_INFO"] =~ /200/

body = "Success!"
status = 200

else

body = "Failure!"
status = 500

end

[status, default_headers, ["#{env["PATH_INFO"]} == #{body}"]]
end

The env["PATH_INFO"] B here returns the path that has been requested. If you made

a request like http://localhost:9292/books to your Rack application, this variable

would return /books. You compare this string to a regular expression using the =~

operator, and if it contains 200, you’ll return “Success” in the body along with an

HTTP status of 200. For everything else, it’s “Failure” with an HTTP status of 500.

 Let’s restart the server once again and then make a new request to http://

localhost:9292. You’ll see this output:

/ == Failure!

This is because for any request to this server that doesn’t have 200 in it, you’re return-

ing this message. If you make a request to http://localhost:9292/200 or even http://

localhost:9292/this/is/a/200/page, you’ll see the success message instead:

/this/is/a/200/page == Success!

Also, if you look in the console you can see a single line for each request that’s been

served:

127.0.0.1 - - [[timestamp]] "GET / HTTP/1.1" 500 - 0.0004
127.0.0.1 - - [[timestamp]] "GET /200 HTTP/1.1" 200 - 0.0004

127.0.0.1 - - [[timestamp]] "GET /this/is/a/200/page HTTP/1.1" 200 - 0.0004

This output shows the IP where the request came from, the local time the request

happened, the request itself, the HTTP status contained within the response, and

finally how long the page took to run. For the first request, it returned a 500 HTTP

status, and for the other two requests that contained 200 in their paths, it returned a

200 HTTP status.

 What you’ve done here is implement a basic router for your Rack application. If

the route for a request contains 200, then you give back a successful response. Other-

wise, you give back a 500 status, indicating an error. Rails implements a much more

complex routing system than this, extracting the complexity away and leaving you

with methods such as root and resources that you use in config/routes.rb. The

underlying theory is the same though.

B Return requested path

522 CHAPTER 18 Rack-based applications

 You’ve learned the basics of how a Rack application works and gained an under-

standing that your Rails application is a bigger version of this little application you’ve

written. There’s much more to Rack than providing this abstraction for the underly-

ing request/response cycle. For example, you can build more complex apps with logic

for one part of the application in one class and additional logic in another.

 One other feature of Rack is the ability to build applications by combining smaller

applications into a larger one. You saw this with Rails when you used the mount

method in your application’s config/routes.rb to mount the engine you developed in

chapter 17. Let’s see how you can do this with Rack.

18.2 Building bigger Rack applications

Your basic Rack application quickly outgrew the lambda shell you placed it in, and so

you moved the logic in it into a class and added some more. With the class, you’re able

to define a call method on it, which then returns the response that Rack needs. The

class allows you to cleanly write a more complex Rack application than a lambda would.

 So what happens now if you outgrow a class? Well, you can abstract the function of

your application into multiple classes and build a Rack application using those classes.

The structure is not unlike the controller structure you have in a Rails application,

because it will have separate classes that are responsible for different things.

 In your new Rack application, you’ll have two classes that perform separate tasks,

but are still running on the same instance of the server. The first class is going to be

your Heartbeat::Application class, and the second one will provide two forms, each

with one button: one for success and one for failure. These forms will then submit to

the actions provided within the Heartbeat::Application class, which will demon-

strate how you can get your classes to talk to each other.

18.2.1 You’re breaking up

Now that your Rack application is getting more complex, you’re going to break it out

into three files. The first file will be the Heartbeat::Application class, the second

will be a new class called Heartbeat::TestApplication, and the third will be the

Rackup file that will be responsible for combining these two classes into one glorious

application.

 Let’s begin by separating out your application and the Rackup file into two sepa-

rate files. In a new directory at lib/heartbeat.rb, add the code shown in the following

listing to lib/heartbeat/application.rb.

module Heartbeat
class Application

def self.call(env)

default_headers = { "Content-Type" => "text/plain"}

if env["PATH_INFO"] =~ /200/

body = "Success!"

Listing 18.2 lib/heartbeat/application.rb

523Building bigger Rack applications

status = 200
else

body = "Failure!"

status = 500
end

[status, default_headers, ["#{env["PATH_INFO"]} == #{body}"]]

end
end

end

Next, in lib/heartbeat/config.ru, add the code shown in the following listing.

heartbeat_root = File.expand_path(File.dirname(__FILE__))
require heartbeat_root + '/application'

run Heartbeat::Application

This new lib/heartbeat/config.ru sets up a heartbeat_root variable so that you can

require files relative to the root of the heartbeat directory without having to specify

direct paths to them. At the moment, this file still contains the run line from the old

heartbeat.ru, but you’ll be changing this shortly.

 Before that change though, you’re going to add your second application class,

Heartbeat::TestApplication, to a new file at lib/heartbeat/test_application.rb by

using the content shown in the following listing.

module Heartbeat

class TestApplication
def self.call(env)

default_headers = { "Content-Type" => "text/html"}

body = %Q{
<h1>Success or FAILURE?!</h1>

<form action='/test/200'>

<input type='submit' value='Success!'>
</form>

<form action='/test/500'>

<input type='submit' value='Failure!'>
</form>

}

[200, default_headers, [body]]
end

end

end

This file follows the same style as the file that defines Heartbeat::Application, but in

this class the body returned as part of the Rack response consists of two forms, each

with its own button. The first form goes to /test/200, which should give you the

response of “Success!”, and /test/500, which should give you a “Failure!” response

because the path doesn’t include the number 200.

Listing 18.3 lib/heartbeat/config.ru

Listing 18.4 lib/heartbeat/test_application.rb

524 CHAPTER 18 Rack-based applications

 A keen eye may have noticed that you’ve nested the paths to the heartbeat responses

underneath a path called test. This is because when you build your combined class

application, you’ll make your Heartbeat::Application sit under the /test route.

When do you do this? Right now!

18.2.2 Running a combined Rack application

You’re now going to change the lib/heartbeat/config.ru file to now create a Rack appli-

cation that uses both of your classes for different functionality. For this, you’re going to

use the Rack::Builder class, which lets you build Rack applications from different

parts. Let’s fill lib/heartbeat/config.ru with the content shown in the following listing.

heartbeat_root = File.expand_path(File.dirname(__FILE__))
require heartbeat_root + '/application'

require heartbeat_root + '/test_application'

app = Rack::Builder.app do

map '/test' do
run Heartbeat::Application

end

map '/' do
run Heartbeat::TestApplication

end

end

run app

Rather than calling run Heartbeat::Application here, you’re compiling a multi-

faceted Rack application using Rack::Builder.app. The run method you’ve been

using all this time is defined inside the Rack::Builder class, actually. A *.ru file is usu-

ally evaluated within the instance of a Rack::Builder object by the code the rackup

command uses, and so you are able to use the run method without having to call

Rack::Builder.new before it or wrapping .ru code in a Rack::Builder.app block.

 This time, you’re being implicit and building a new Rack::Builder instance using

Rack::Builder.app. Inside this instance, you’ll declare two routes using the map

method. Within a block given to each of your map calls, you’re calling the run method

again, passing it one of your two application classes.

 When a request comes into this application beginning with the path /test, it will be

served by the Heartbeat::Application class. All other requests will be served by the

Heartbeat::TestApplication class. This is not unlike the way certain requests in

your Rails application beginning with /tickets are routed to the TicketsController

and others beginning with /projects go to ProjectsController.2

 Let’s start this application and see what it can do by running this command:

rackup lib/heartbeat/config.ru

Listing 18.5 lib/heartbeat/config.ru

2 In fact, the similarities are astounding.

525Mounting a Rack application with Rails

Now remember, to make requests to the

Heartbeat::Application class you must

prefix them with /test; otherwise they’ll be

served by Heartbeat::TestApplication.

Keeping that in mind, let’s make a request

to http://localhost:9292/test/200. You’ll see

something unusual: the path displayed on

the page isn’t /test/200 as you may expect,

but rather it’s /200. The env["PATH_INFO"]key doesn’t need to contain the path

where your application is mounted, as that’s not important for routing requests within

the application itself.

 If you make a request to another path not beginning with the /test prefix (such as

http://localhost:9292/foo/bar), you’ll see the two buttons in forms provided by the

Heartbeat::TestApplication, as shown in figure 18.2.

 When you click the Success! button, you’ll send a request to the/test/200 path,

which will be served by the Heartbeat::Application class and will respond with a

body that says /200 == Success!. When you click the back button in your browser

and click the Failure! button, you’ll see the /500 == Failure!.

 This is the basic foundation for Rack applications and a lightweight demonstration

of how routing in Rack applications works. When you began, you were able to write

run Heartbeat::Application to run a single class as your Rack application, but as it’s

grown more complex you’ve split different pieces of the functionality out into differ-

ent classes. To combine these classes into one super-application you used the

Rack::Builder.app method.

 Now you should have a basic understanding of how you can build Rack applica-

tions to have a lightweight way of creating dynamic responses. So how does all of this

apply to Rails? Well, in Rails you’re able to mount a Rack application so that it can

serve requests on a path (like you did with Rack::Builder), rather than having the

request go through the entire Rails stack.

18.3 Mounting a Rack application with Rails

Sometimes, you’ll want to serve requests in a lightning-fast fashion. Rails is great for

serving super-dynamic requests quickly, but occasionally you’ll want to forego the

heaviness of the Rails controller stack and have a piece of code that receives a request

and quickly responds.

 Previously, your Rack application had done just that. However, when you mount

your Rack application inside of a Rails application, you’re able to use the classes (that

is, models) from within the Rails application. With these models, you can do any num-

ber of things. For example, you can build a re-implementation of your tickets API,

which will allow you to see an alternate way to craft the API you created in chapter 13.

So let’s do this.

Figure 18.2 Success or FAILURE?!

526 CHAPTER 18 Rack-based applications

 This new API will be version 3 of your API (things move fast in this app!). It will be

accessible at /api/v3/json/projects/:project_id/tickets3 and—as with your original API—

will require a token parameter to be passed through to your application. If the token

matches to a user and that user has access to the requested project, you can send back

a list of tickets in a JSON format. If the token sent through doesn’t match to a user, then

you’ll send back a helpful error message explaining that; if the project requested isn’t

accessible by the authenticated user, you’ll deny all knowledge of its existence by send-

ing back a 404 response.

18.3.1 Mounting Heartbeat

Before you get into any of that though, you should probably look at how mounting

works within Rails by using one of your basic applications first! Mounting a Rack appli-

cation involves defining a route in your Rails application that basically says, “I want to

put this application at this path.” Back when you were doing a pure Rack application,

you did this in the lib/heartbeat/config.ru file like this:

map '/heartbeat' do

run Heartbeat::Application
end

Rails has a better place than that for routes: config/routes.rb. This location provides

you with some lovely helpers for mounting your Rack applications. In your Rails appli-

cation, to do the same thing as you did in your Rack application, you’d need to first

require the application by placing this line at the top of config/routes.rb:

require 'heartbeat/application'

Then inside the routes block of config/routes.rb you’d put this line:

mount Heartbeat::Application, :at => "/heartbeat"

The mount method accepts an object to mount and an options hash containing an at

option to declare where this should be mounted. Alternatively, you could use the

match method in routes:

match '/heartbeat' => Heartbeat::Application

Both lines are identical in function. So let’s make these changes to your config/

routes.rb file and boot up your Rails server with this command:

rails s

You should now be able to go to http://localhost:3000/heartbeat/200 and see the

friendly /200 == Success! message. This means that your Heartbeat::Application

is responding as you’d like it to.

 Rails has been told to forward requests that go to /heartbeat to this Rack applica-

tion and it has done so diligently. Rather than initializing a new instance of a controller

3 This URL closely resembles the URL that GitHub uses for v2 of its API, but the similarities are purely
coincidental.

527Mounting a Rack application with Rails

(which is what normally happens in a standard Rails request), a Rack class is much

lighter and is perfect for serving high-intensity requests that don’t require views, like

the response from your Heartbeat::Application and the responses from your API.

 So now that you’ve learned how you can mount your Heartbeat::Application,

let’s build this slightly more complex Rack application that will serve JSON API

requests for tickets. To make sure everything works, you’ll be writing tests using the

same Rack::Test::Methods helpers that you used back in chapter 13. These helpers

are designed for Rack applications, but they worked with your Rails application

because... well, it’s a Rack app too.

 Rather than writing this application as a standard Rack app, let’s branch out and

use another Ruby web framework called Sinatra.

18.3.2 Introducing Sinatra

Sinatra is an exceptionally lightweight Ruby web framework that’s perfect for building

small applications, such as those that serve an API. Like Rails, it’s built on top of Rack

and so you’ll have no worries about using them together. You’ll use it here to create

version 3 of your API. Building you app this way not only demonstrates the power of

Sinatra, but also shows that there’s more than one way to skin this particular cat.4

 To install the sinatra gem, run this command:

gem install sinatra

You can make a small Sinatra script now by creating a file called sin.rb, as shown in the

following listing.

require 'sinatra'

get '/' do
"Hello World"

end

This is the smallest Sinatra application that you can write. On the first line you require

the Sinatra file, which gives you some methods you can use to define your application,

such as the get method you use on the next line. This get method is used to define a

root route for your application, which returns the string “Hello World” for GET

requests to /. You could also make it into a class, which is what you’ll need to do for it

to be mountable in your application:

require 'sinatra'

class Tickets < Sinatra::Base

get '/' do

"Hello World"
end

end

4 Although why anybody would skin a cat these days is unknown to the authors.

Listing 18.6 sin.rb

528 CHAPTER 18 Rack-based applications

By making it a class, you’ll be able to mount it in your application using the mount

method in config/routes.rb. By mounting this Sinatra application, it will have access to

all the classes from your Rails application, such as your models, which is precisely what

you’re going to need for this new version of your API. You won’t use this code example

right now; it’s handy to know that you can do this.

 To use Sinatra with your application, you’ll need to add it to the Gemfile with this

line:

gem 'sinatra'

Then you’ll need to run bundle install to install it. So let’s go ahead now and start

building this API using Sinatra.5

18.3.3 The API, by Sinatra

Let’s create a new file to test your experimental new API at spec/api/v3/json/

tickets_spec.rb. In this file you want to set up a project that has at least one ticket, as

well as a user that you can use to make requests to your API. After that, you want to

make a request to /api/v3/json/tickets and check that you get back a proper response

of tickets. With this in mind, let’s write a spec that looks like the code shown in the fol-

lowing listing.

require 'spec_helper'

describe Api::V3::JSON::Tickets, :type => :api do

let(:project) { Factory(:project) }
let(:user) { Factory(:user) }

let(:token) { user.authentication_token }

before do
Factory(:ticket, :project => project)

user.permissions.create!(:thing => project, :action => "view")

end

let(:url) { "/api/v3/json/projects/#{project.id}/tickets" }

context "successful requests" do

it "can get a list of tickets" do
get url, :token => token

last_response.body.should eql(project.tickets.to_json)

end
end

end

This test looks remarkably like the one in spec/api/v2/tickets_spec.rb, except this time

you’re only testing for JSON responses and you’ve changed the URL that you’re

requesting to api/:version/:format/:path. When you run this spec with bin/rspec

spec/api/v3/json/tickets_spec.rb you’ll see that it’s giving you this error:

... uninitialized constant Api::V3

5 You can learn more about Sinatra at https://github.com/sinatra/sinatra/.

Listing 18.7 spec/api/v3/json/tickets_spec.rb

529Mounting a Rack application with Rails

This is because you haven’t yet defined the module for the Api::V3 namespace. Let’s

create a new file at app/controllers/api/v3/json/tickets.rb that defines this module, as

shown in the following listing.

require 'sinatra'

module Api
module V3

module JSON

class Tickets < Sinatra::Base
before do

headers "Content-Type" => "text/json"

end
get '/' do

[]

end
end

end

end

end

Within this file you define the Api::V3::JSON::Tickets class that is described at the

top of your spec, which will now make your spec run. This class inherits from Sina-

tra::Base so that you’ll get the helpful methods that Sinatra provides, such as the

before B and get methods that you use here. You’ve already seen what get can do,

but before is new. This method is similar to a before_filter in Rails and will execute

the block before each request. In this block, you set the headers for the request, using

Sinatra’s headers method, so that your API identifies as sending back a text/json

response.

 Let’s rerun it using bin/rspec spec/api/v3/json/tickets_spec.rb:

Failure/Error: get url, :token => token

ActionController::RoutingError:

No route matches [GET] "/api/v3/json/projects/1/tickets"

This is a better start: now your test is running and failing as it should because you

haven’t defined the route for it yet. Your test is expecting to be able to do a GET

request to /api/v3/json/projects/1/tickets but cannot.

 This route can be interpreted as /api/v3/json/projects/:project_id/tickets, and you

can use the api namespace already in config/routes.rb to act as a home for this route.

Let’s put some code for v3 of your API inside this namespace now:

namespace :v3 do

namespace :json do

mount Api::V3::JSON::Tickets,
:at => "/projects/:project_id/tickets"

end

end

Listing 18.8 app/controllers/api/v3/json/tickets.rb

B Before method

530 CHAPTER 18 Rack-based applications

By placing this mount call inside the namespaces, the Rack application will be

mounted at /api/v3/json/projects/:project_id/tickets rather than the /tickets URI if

you didn’t have it nested. Additionally, you’ve specified a dynamic parameter in the

form of :project_id. With this, you’ll be able to access the requested project id from

inside your Rack application using a method very similar to how you’d usually access

parameters in a controller.

 If you attempted to run your spec again it would bomb out with another new error:

expected "[tickets array]"

got ""

This means that requests are able to get to your Rack app and that the response you’ve

declared is being served successfully. Now you need to fill this response with meaning-

ful data. To do this, find the project that’s being referenced in the URL by using the

parameters passed through found with the params method. Unfortunately, Sinatra

doesn’t load the parameters from your Rails application and so params[:project_id]

is not going to be set. You can see this if you change your root route in your Sinatra

application to this:

get '/' do
p params

end

Then if you run your test, you’ll see only the token parameter is available:

{"token"=>"6E06zoj01Pf5texLXVNb"}

Luckily, you can still get to this through one of the keys in the environment hash,

which is accessible through the env method in your Sinatra actions, like it was avail-

able when you built your Rack applications. You saw this environment hash earlier

when you were developing your first Rack application, but this time it’s going to have

a little more to it because it’s gone through the Rails request stack. Let’s change your

root route to this:

get '/' do

p env.keys

end

When you rerun your test, you’ll see all the available keys output at the top, with one of

the keys being action_dispatch.request.path_parameters. This key stores the

parameters discovered by Rails routing, and your project_id parameter should fall

neatly into this category. Let’s find out by changing the p env.keys line in your root

route to p env["action_dispatch.request.path_parameters"] and then re-running

your test. You should see this:

{:project_id=>"3"}

Okay, so you can access two parameter hashes, but you’ll need to merge them

together if you are to do anything useful with them. You can merge them into a super

531Mounting a Rack application with Rails

params method by redefining the params method as a private method in your app.

Underneath the get you’ll put this:

def params

hash = env["action_dispatch.request.path_parameters"].merge!(super)
HashWithIndifferentAccess.new(hash)

end

By calling the super method here, you’ll reference the params method in the super-

class, Sinatra::Base. You want to access the keys in this hash using either symbols or

strings like you can do in your Rails application, so you create a new HashWith-

IndifferentAccess object, which is returned by this method. This lets you access

your token with either params[:token] or params["token"]. This hash is quite indif-

ferent to its access methods.

 Let’s switch your root route back to calling p params. When you run your test

again, you should see that you finally have both parameters inside the one hash:

{:project_id=>"3", "token"=>"ZVSREe1aQjNZ2SrB9e8I"}

With these parameters you’ll now be able to find the user based on their token, get a

list of projects they have access to, and then attempt to find the project with the id

specified. You can do this by putting two calls, a find_user and find_project

method, in the before block you already have, using this code:

before do
headers "Content-Type" => "text/json"

find_user

find_project
end

The find_user and find_project methods can be defined underneath the private

keyword using this code:

private

def find_user
@user = User.find_by_authentication_token(params[:token])

end

def find_project
@project = Project.for(@user).find(params[:project_id])

end

This code should look fairly familiar: it’s basically identical to the code found in the

Api::V1::TicketsController and Api::V1::BaseController classes inside your

Rack application. First you find the user based on their token and then generate a

scope for all projects that the user is able to view with the Project.for method. With

this scope, you can then find the project matching the id passed in through

params[:project_id]. You are referencing the models from your Rails application

inside your Sinatra application, and there’s nothing special you have to configure to

allow this.

532 CHAPTER 18 Rack-based applications

 Because you’re not too concerned with what happens if an invalid

params[:project_id] or user token is passed through at the moment, you’ll fix those

up after you’ve got this first test passing. With the project now found, you should be

able to display a list of tickets in JSON form in your call method. Let’s change your

root route to return a list of JSON-ified tickets for this project:

get '/' do

@project.tickets.to_json
end

Now your root route should respond with the list of tickets required to have your test

pass. Let’s see if this is the case by running bin/rspec spec/api/v3/json/

tickets_spec.rb:

1 example, 0 failures

Great, this spec is now passing, which means that your Rack application is now serving

a base for version 3 of your API. By making this a Rack application, you can serve

requests in a more lightweight fashion than you could within Rails.

 But you don’t have basic error checking in place yet if a user isn’t found matching

a token or if a person can’t find a project. So before you move on, let’s quickly add

tests for these two issues.

18.3.4 Basic error checking

You’ll open spec/api/v3/json/tickets_spec.rb and add two tests inside the describe

block in a new context block, as shown in the following listing.

context "unsuccessful requests" do

it "doesn't pass through a token" do
get url

last_response.status.should eql(401)

last_response.body.should eql("Token is invalid.")
end

it "cannot access a project that they don't have permission to" do

user.permissions.delete_all
get url, :token => token

last_response.status.should eql(404)

end
end

In the first test you make a request without passing through a token, which should

result in a 401 (unauthorized) status and a message telling you the “Token is invalid.”

In the second test, you use the delete_all association method to remove all permis-

sions for the user and then attempt to request tickets in a project that the user no lon-

ger has access to. This should result in the response being a 404 response, which

means your API will deny all knowledge of that project and its tickets.

Listing 18.9 spec/api/v3/json/tickets_spec.rb

533Middleware

 To make your first test pass you’ll need to check that your find_user method actu-

ally returns a valid user; otherwise you’ll return this 404 response. The best place to do

this would be inside the find_user method itself, turning it into this:

def find_user
@user = User.find_by_authentication_token(params[:token])

halt 401, "Token is invalid." unless @user

end

The halt method here will stop a request dead in its tracks. In this case, it will return

a 401 status code with the body being the string specified. When you run your tests

again the first two should be passing, with the third one still failing:

3 examples, 1 failure

Alright, so now if an invalid token is passed, you’re throwing exactly the same error as

the last two iterations of your API did—good progress! Finally, you’ll need to send a

404 response when a project cannot be found within the scope for the current user.

To do this, change the find_project method in your app to this:

def find_project

@project = Project.for(@user).find(params[:project_id])
rescue ActiveRecord::RecordNotFound

halt 404, "The project you were looking for could not be found."

end

When you run your tests for a final time with bundle exec rspec spec/api/v3/

tickets_spec.rb, they should all pass:

3 examples, 0 failures

Awesome! This should give you a clear idea of how you could implement an API simi-

lar to the one you created back in chapter 13 by using the lightweight framework of

Sinatra. All of this is possible because Rails provides an easy way to mount Rack-based

applications inside your Rails applications. You could go further with this API, but this

is probably another exercise for you later on if you wish to undertake it.

 You’ve learned how you can use Rack applications to serve as endpoints of

requests, but you can also create pieces that hook into the middle of the request cycle

called middleware. Rails has a few of these already, and you saw the effects of one of

them when you were able to access the env["action_dispatch.request.path

_parameters"] key inside your Sinatra application. Without the middleware of the

Rails stack, this parameter would be unavailable. In the next section, we look at the

middleware examples in the real world, including some found in the Rails stack, as

well as how you can build and use your own.

18.4 Middleware

When a request comes into a Rack application, it doesn’t go straight to a single place

that serves the request. Instead, it goes through a series of pieces known as middleware,

which may process the request before it gets to the end of the stack (your application)

or modify it and pass it onward, as shown in figure 18.3.

534 CHAPTER 18 Rack-based applications

 You can run the rake middleware command within your Rails

application’s directory to see the list of middleware currently in

use by your Rails application:

use ActionDispatch::Static
use Rack::Lock

use ActiveSupport::Cache::Strategy::LocalCache

use Rack::Runtime
...

use ActionDispatch::BestStandardsSupport

use Warden::Manager
run Ticketee::Application.routes

Each of these middleware pieces performs its own individual func-

tion. For instance, the first middleware ActionDispatch::Static

intercepts requests for static files such as images, JavaScript files,

or stylesheets found in public and serves them immediately, with-

out the request to them falling through to the rest of the stack. It’s

important to note that this middleware is only active in the devel-

opment environment, as in production your web server (such as

nginx) is better suited for serving static assets.

 Other middleware, such as ActionDispatch::BestStandards-

Support, sets additional headers on your request. This particular piece of middleware

sets the X-UA-Compatible header to IE=Edge,chrome=1, which tells Microsoft Internet

Explorer to “display content in the highest mode available” that is “equivalent to IE9

mode,” meaning your pages should render in a “best standards” fashion.6 The

chrome=1 part of this header is for the Google Chrome Frame, which again will sup-

port “best standards” rendering on a page.

 Let’s look at both of these middleware pieces now.

18.4.1 Middleware in Rails

In the case of the ActionDispatch::Static middleware, a response is returned when

it finds a file to serve, and the request stops there. In the case of Action-

Dispatch::BestStandardsSupport, the request is modified and allowed to continued

down the chain of middleware until it hits Ticketee::Application.routes, which

will serve the request using the routes and code in your application. The process of

ActionDispatch::Static can be seen in figure 18.4.

 When a request is made to /images/rails.png, the middleware checks to see if the

public/images/rails.png file exists. If it does, then it is returned as the response of

this request. This middleware will also check for cached pages. If you make a request

to /projects, Rails (by default) will first check to see if a public/projects.html file

exists before sending the request to the rest of the stack. This type of request is

shown in figure 18.5.

6 For more information about IE=Edge and the X-UA-Compatible header, see http://msdn.microsoft.com/
en-us/library/cc288325(v=vs.85).aspx.

Browser

Web Server

Rack

Application Stack

Middleware

Middleware

Application

...

Figure 18.3 Full

request stack, redux

http://msdn.microsoft.com/en-us/library/cc288325(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/cc288325(v=vs.85).aspx

535Middleware

1. GET /images/rails.png

Filesystem

2. Does

/public/images/rails.png

exist?

3. Yes!
Ok, reading...

Middleware Stack

4. Serves static asset

Application

4.

Browser

g

ActionDispatch::Static

Figure 18.4

ActionDispatch::Static request

Browser

ActionDispatch::Static

1. GET /projects

Filesystem

2. Does

/public/projects.html

exist? 3. Nope!

ActionDispatch::BestStandardsSupport

6. Is shown the page for /projects

(other middleware)

4. Sets X-UA-Compatible header

ProjectsController

5. Serves the request as usual

Ticketee::Application.routes

4. Sets X UA

(more middleware)

Figure 18.5

ActionDispatch::BestStandardsSupport

request

536 CHAPTER 18 Rack-based applications

In this request, the ActionDispatch::Static middleware first checks for the pres-

ence of public/projects.html, which would be there if you had cached the page.

Because it’s not there, the request goes through the rest of the middleware stack

being passed along. When it gets to ActionDispatch::Best::StandardsSupport, this

middleware sets the X-UA-Compatible header and passes along the request to the

application, which then serves the request like normal.

 Let’s dive into exactly how ActionDispatch::Static works.

18.4.2 Investigating ActionDispatch::Static

The ActionDispatch::Static class is responsible for serving static requests in the

development environment for your application. The code for this piece of middleware

can be found in the actionpack gem, which you can view by opening the path provided

by the command bundle show actionpack in your editor. The file that defines the

ActionDispatch::Static middleware can be found at lib/action_dispatch/

middleware/static.rb. The first 10 lines in this file are shown inthe following listing.

require 'rack/utils'

module ActionDispatch

class Static
FILE_METHODS = %w(GET HEAD).freeze

def initialize(app, root)

@app = app
@file_server = ::Rack::File.new(root)

end

The first line requires the rack/utilsfile, which contains the Rack::Utils module this

file references a little later on. The next three lines define the ActionDispatch

::Static class and a constant called FILE_METHODS. Finally, this middleware defines

the initialize method, which takes two arguments, an app and a root. This method

then assigns the app argument to the @app variable so that it can be accessed in meth-

ods called after this point. The root variable is passed to a call to ::Rack::File.new7

which is then assigned to the @file_server variable. The Rack::File class is actually

a Rack application too, as you’ll see later.

 So why does this middleware begin in this particular way, and what is app? Well, app

is the next piece of middleware in the stack that you can pass requests to if you wish.

You’ll see this app variable used later. The instance of your middleware is then cached

by the Rails server so it can call the call method on it when a request comes into the

stack. The call method in this middleware begins with this:

Listing 18.10 Listing 18.10 lib/action_dispatch/middleware/static.rb

7 Not-well-known Ruby fact: the double colon (::) of ::Rack::File represents a top-level class, meaning that
Ruby will get the Rack::File class defined at the top level of your application, rather than one (potentially)
within the current class or module.

537Middleware

def call(env)
path = env['PATH_INFO'].chomp('/')

method = env['REQUEST_METHOD']

if FILE_METHODS.include?(method)

The env variable here is the same sort of style as the env variable that you used back in

your Rack application. Rack middleware and Rack applications are actually designed

almost identically. You saw the env["PATH_INFO"] key before—that’s the one that con-

tains the path of the request, something such as /images/rails.png. By calling chomp

on this, it strips off any trailing forward-slashes on the end of this URL.

 The env["REQUEST_METHOD"] key contains the HTTP request method used in this

request. If this method is either GET or HEAD, then the code inside the if runs here.

The next line after this one checks for the presence of a file:

if file_exist?(path)

This method is defined further down in this file, like this:

def file_exist?(path)

full_path = File.join(@file_server.root, ::Rack::Utils.unescape(path))

File.file?(full_path) && File.readable?(full_path)
end

This method uses the root method, which returns the fill path to the public directory

of your application. This method then uses File.join to join the path to the public

directory and the unescaped name of the file that’s being requested. Finally, this

method uses the File.file? and File.readable? methods to determine if the path

specified is actually a file and if that file is readable. If it is indeed a file and is indeed

readable, then this line is executed:

return @file_server.call(env)

This calls the call method on the Rack::File instance, which then (after some addi-

tional processing) serves the file.

 So far, this has been the process this piece of middleware uses for an existing file. If

the file doesn’t exist, then it goes into the else for the if File.exists? line, which

results in the following code being run:

cached_path = directory_exist?(path) ? "#{path}/index" : path

cached_path += ::ActionController::Base.page_cache_extension

if file_exist?(cached_path)

env['PATH_INFO'] = cached_path

return @file_server.call(env)
end

The first line here checks for a directory with the same name as the path you’ve

requested. Imagine your request is now /projects and you have a public/projects direc-

tory. This directory_exists? method would then return true because this directory

exists. The directory_exists? method is defined like this:

538 CHAPTER 18 Rack-based applications

def directory_exist?(path)
full_path = File.join(@file_server.root, ::Rack::Utils.unescape(path))

File.directory?(full_path) && File.readable?(full_path)

end

It performs basically the same function as the file_exist? method, except that it uses

File.directory? to check for the directory rather than File.file?. If this directory

does exist, then the cached_path variable is set to /projects/index in your case. The

second line in this else references the ::ActionController::Base.page_cache

_extension, which is a string that defaults to .html and makes your cached_path vari-

able now projects/index.html, the alternate path where the page for /projects may be

cached.

 If this file exists, then the middleware sets env["PATH_INFO"] to be this path so

that the Rack::File instance knows what’s being requested, and then it makes a call

to the @fileserver.call method and returns the response it gives back.

 If everything fails and there’s no file at the path you’ve requested, the middleware

gives up and passes the request to the next piece of middleware by using this line:

@app.call(env)

The request then continues on down the chain of middleware until it hits a middle-

ware that serves that request or the Ticketee::Application.routes endpoint. Either

way, the browser (or whatever makes the request) is basically guaranteed to get a

response from a piece of middleware or the application itself. For the first situation, a

middleware can return a response itself:

return [200, { "Content-Type" => "text/html" }, ["Oh happy day!"]]

Or it can pass the buck to the next piece with the call method, passing through the

(possibly modified) env variable representing this request’s environment:

@app.call(env)

Now that you’ve got a nice grasp of how one piece of middleware works, let’s build

your own!

18.4.3 Crafting middleware

Soon you’ll have your own piece of middleware that you can put into the middleware

stack of a Rails or Rack application. This middleware will allow the request to run all

the way down the chain to the application and then will modify the body, replacing

specific letters in the text for links with other, equally specific letters. Create a new file

for your middleware at lib/link_jumbler.rb and fill it with the content shown in the fol-

lowing listing.

require 'nokogiri'

class LinkJumbler

def initialize(app, letters)

Listing 18.11 lib/link_jumbler.rb

539Middleware

@app = app
@letters = letters

end

def call(env)
status, headers, response = @app.call(env)

body = Nokogiri::HTML(response.body)

body.css("a").each do |a|
@letters.each do |find, replace|

a.content = a.content.gsub(find.to_s, replace.to_s)

end
end

[status, headers, body.to_s]

end
end

In this file you’ve defined the LinkJumbler class, which contains an initialize and

a call method. The initialize method sets the stage, setting up the @app and

@letters variables you’ll use in your call method.

 In the call method, you make a call down the middleware stack in order to set up

your status, headers, and body values. You can do this because the @app.call(env)

call will always return a three-element array. Each element of this array will be

assigned to its respective variable. In a Rails application’s middleware stack, the third

element isn’t an array but rather an instance of ActionDispatch::Response. To get to

the good part of this response you can use the body method, like you do on the sec-

ond line of your call method.

 With this body you use the Nokogiri::HTML method (provided by the require

'nokogiri' line at the top of this file) to parse the body returned by the application

into a Nokogiri::HTML::Document object. This will allow you to parse the page more

easily than if you used regular expressions. With this object, you call the css method

and pass it the "a" argument, which finds all a tags in the response body. You then

iterate through each of these tags and go through all of your letters from @letters,

using the keys of the hash as the find argument and the values as the replace argu-

ment. You then set the content of each of the a tags to be the substituted result.

 Finally, you return a three-element array using your new body, resulting in links

being jumbled. To see this middleware in action, you’ll need to add it to the middle-

ware stack in your application. To do that, put these two lines inside the Ticketee

::Application class definition in config/application.rb:

require 'link_jumbler'

config.middleware.use LinkJumbler, { "e" => "a" }

The config.middleware.use method will add your middleware to the end of the

middleware stack, making it the last piece of middleware to be processed before a

request hits your application.8 Any additional arguments passed to the use method

8 For more methods for config.middleware look at the “Configuring Middleware” section of the Configur-
ing official guide: http://guides.rubyonrails.org/configuring.html#configuring-middleware.

http://guides.rubyonrails.org/configuring.html#configuring-middleware

540 CHAPTER 18 Rack-based applications

will be passed as arguments to the ini-

tialize method for this middleware, and

so this hash you’ve passed here will be the

letters argument in your middleware.

This means your LinkJumbler middleware

will replace the letter e with a anytime it

finds it in an a tag.

 To see this middleware in action, let’s

fire up a server by running rails s in a ter-

minal. When you go to http://localhost:3000 you should notice something’s changed,

as shown in figure 18.6.

 As you can see in this figure, your links have had their e’s replaced with a’s and any

other occurrence, such as the user’s email address, has been left untouched.

 This is one example of how you can use middleware to affect the outcome of a

request within Rails; you could have modified anything or even sent a response back

from the middleware itself. The opportunities are endless. This time though, you’ve

made a piece of middleware that finds all the a tags and jumbles up the letters based

on what you tell it to.

18.5 Summary

You’ve now seen a lot of what Rack, one of the core components of the Rails stack, can

offer you. In the beginning of this chapter you built a small Rack application that

responded with OK. You then fleshed this application out to respond differently based

on the provided request. Then you built another Rack application that called this first

Rack application, running both of these within the same instance by using the

Rack::Builder class.

 Next you saw how you could use these applications within the Rails stack by first

mounting your initial Rack application and then branching out into something a little

more complex, with a Sinatra-based application serving what could possibly be the

beginnings of version 3 of Ticketee’s API. Sinatra is a lightweight framework offering

the same basic features as Rails.

 Finally, you saw two pieces of middleware, the ActionDispatch::Static piece and

the ActionDispatch::BestStandardsSupport. You dissected the first of these, figur-

ing out how it worked so that you could use that knowledge to build your own middle-

ware, a neat little piece that jumbles up the text on the link based on the options

passed to it.

Figure 18.6 What’s a Tickataa?!

541

appendix A
Why Rails?

A common question in the Ruby on Rails community from newcomers is, “Why

Ruby?” or “Why Rails?” In this appendix, this question will be answered with a cou-

ple of key points about why people should be using Ruby on Rails over other frame-

works, covering such things as the culture and community standards.

 Ruby is an exceptionally powerful language that can be used for short scripts up

to full-featured web applications, such as those built with Ruby on Rails. Its clean

syntax and its focus on making programmers happy are two of the many major

points that have generated a large community of people who use it. There are hob-

byists who use it just for the sake of it right up to hardcore people who swear by it.

However, Ruby (and by extension, Rails) should not be used as “golden hammers”.

Not all problems are solvable by Ruby or Rails, but the chance of running into one

of these situations is extremely low. People who have used other languages before

they have come to Ruby suggest that “Ruby just makes more sense.”1

 The speed at which that you can develop applications using Ruby on Rails is

demonstrably faster than other languages. An application that has taken four

months to build in Java could be done in three weeks in Rails, for example. This

has been proven again and again. Rails even claims up front on http://

rubyonrails.org that “Ruby on Rails is optimized for programmer happiness and

sustainable productivity.”

 The Ruby and Rails communities have a consistent focus on self-improvement.

Over the last couple of years we’ve seen developments such as the improvements

from Rails 2 to Rails 3, Passenger (covered in chapter 14), and Bundler. All of these

have vastly improved the ease of development that comes naturally to Ruby. Other

developments have focused on other areas, such as the RSpec, Capybara, and

Cucumber2 gems (featured prominently in this book), which focus on making test-

ing exceptionally easier for Ruby developers. By consistently improving, things are

becoming easier and easier for Ruby developers every year.

 Along the same vein of self-improvement is an almost zealot-like focus on test-

ing, which is code that tests other code. Although this may seem silly to begin with,

1 Quote attributed to Sam Shaw from Railsconf 2011.
2 A quick nod to the aruba gem: http://github.com/aslakhellesoy/aruba, which is used extensively to test

RSpec’s and Cucumber’s command-line interfaces (CLI), but can also be used to test other CLIs.

http://rubyonrails.org
http://rubyonrails.org
http://github.com/aslakhellesoy/aruba

542 APPENDIX A Why Rails?

it helps you make less silly mistakes and provides the groundwork for you to test the

fixes for any bugs that come up in your system. Ruby, just like every other language, is

no good at preventing buggy code. That’s a human trait that is unavoidable.

 The shift away from SVN to the wonderful world of distributed version control was

also a major milestone, with GitHub (a Rails application!) being created in early 2008.

Services such GitHub have made it easier than ever for Ruby developers to collaborate

on code across cultures. As an example of this, you only need to look at the authors of

commits on the Rails project to see the wide gamut of people.

 Don’t just take it from us. Here’s a direct quote from somebody who had only been

using Rails for a few days:

When I am programming with Ruby I think I’m making magic.
 —New person

Although Ruby isn’t quite the magic of fairy tales, you’ll find young and old, experi-

enced and not-so-experienced people all claiming that it’s just a brilliant language to

work with. As Yukihiro Matsumuto (the creator of the language) says: Ruby is

designed to make programmers happy. Along the same lines, the Rails claim you saw

earlier, “optimized for programmer happiness and sustainable productivity,” is not

smoke and mirrors either. You can be extremely happy and productive while using

Rails, compared with other frameworks.

 Let’s dive a little deeper into the reasons why Rails (the framework) and Ruby (the

language) are so great.

A.1 Reason #1: the sense of community

The Rails community is like no other on the planet. There is a large sense of together-

ness in the community with people freely sharing ideas and code through services

such as GitHub and RubyGems (see Reason #2). An example of this is the vibrant

community on the Freenode IRC network (irc.freenode.net) where the main #rubyon-

rails channel is primarily used for asking questions about Rails. Anybody can come

into the channel and ask a question and receive a response promptly from one of the

other people who visit the channel. There’s no central support authority: it’s a group

of volunteers who are voluntarily volunteering3 their time to help strangers with prob-

lems, without asking for money or expecting anything else in return.

 There’s also a large support community focused around Stack Overflow (http://

stackoverflow.com) and other locations such as the Ruby on Rails Talk mailing list

(http://groups.google.com/group/rubyonrails-talk) and Rails Forum (http://

railsforum.com). Not to mention, there’s also the RailsBridge (http://railsbridge

.org) organization, which aims to bridge the gap between newbies and experienced

developers.

 All of these different areas of the internet share a common goal: be nice to the

people who are asking for help. One mantra in the Ruby community is, “Matz is nice

3 Too much “volunteer” usage, perhaps. It was voluntary.

http://stackoverflow.com
http://stackoverflow.com
http://groups.google.com/group/rubyonrails-talk
http://railsforum.com
http://railsforum.com
http://railsbridge.org
http://railsbridge.org

543Reason #3: RubyGems

always, so we are nice,” often abbreviated to MINASWAN. People in the Ruby and Rails

communities are incredibly nice to everyone.

 Another example of the excellent community around Ruby on Rails is the number

of conferences and gatherings held worldwide. The smallest of them are the intimate

hack sessions where people work together on applications and share ideas in a room.

Slightly bigger and more organized than that are the events such as Railscamps

(http://railscamps.org) which have about 150 people attend and run from Friday–

Monday, with interesting talks given on the Saturdays and Sundays. The largest how-

ever is Railsconf, which has about 2,000 people in attendance.

 There are hundreds of thousands, if not millions of people using Ruby on Rails

today, building great web applications with it and building the best web framework

community on the planet.

A.2 Reason #2: the speed and ease of development

The speed of how quickly you are able to develop a Ruby on Rails application is defi-

nitely one of the main reasons that people gravitate toward (and stick with) the frame-

work.

 One documented case of this is that of a team that had developed an application

using a Java-based framework, which took four months. When that application

became difficult to maintain, alternative languages and frameworks were sought, with

Ruby and Ruby on Rails found to fit the bill adequately. The team re-implemented all

the features of the original Java-based application within three weeks, with less code

and more beautiful code.

 Ruby on Rails follows a paradigm known as convention over configuration. This para-

digm is adopted not only by Rails, but also by other modern web frameworks. Rails is

designed in such a way that it takes care of the normal configuration that you may

have to do with other frameworks, leaving it up to you to get down to coding real fea-

tures for your application.

 One example of this convention over configuration is the mapping between classes

designed to interact with the database and the tables related to these classes. If the

class is called Project then it can be assumed by Rails (and the people coding the

application) that the related table is going to be called projects. But this can be con-

figured using a setting in the class if that table name is not desired.

A.3 Reason #3: RubyGems

This third point is more about a general boon to the community of Ruby, but it plays a

key role in developing Rails applications.

 As we stated before, the culture of the Rails community is one of self-improvement.

There are people who are consistently thinking of new ways to make other people’s

lives better. One of these ways is the RubyGems system, which allows people to share

libraries in a common format. By installing a gem, a user is able to use its code along

http://railscamps.org

544 APPENDIX A Why Rails?

with their own code. There are gems such as the json gem, which is used for parsing

JSON data, nokogiri for parsing XML, and of course the Rails suite of gems.

 Previously, gems were hosted on a system known as RubyForge which was unstable

at times. In July 2009, Nick Quaranto, a prominent Rubyist, created the RubyGems

site we know today: http://rubygems.org. This is now the primary nexus for hosting

and downloading gems for the Ruby community, with RubyForge playing second fid-

dle. The site Nick created provides an easy way for people to host gems that other peo-

ple can use, freely. Now isn’t that just awesome?

 Working with gems on a project used to be tough. To find out what gems a project

used they had to be listed somewhere, and there were often times when the tools used

to install these gems would not work, either installing the wrong gems or simply refus-

ing to work at all. Then along came Bundler. The Bundler gem provides a standard-

ized way across all Ruby projects for managing gem dependencies. It’s a gem to

manage the gems that projects use. You can list the gems you want your project to use

in a special file known as the Gemfile. Bundler can interpret (when bundle install is

run) the special syntax in this file to figure out what gems (and the dependencies, and

their dependencies’ dependencies) need installing and then goes about doing it.

Bundler solves the gem dependency hell previously witnessed in the Ruby and Rails

communities in a simple fashion.

 In addition to this, having different Ruby versions running on the same machine

used to be difficult and involve a lot of hacking around. Then another prominent

Rubyist, Wayne E. Seguin, created a gem called Ruby Version Manager (RVM) that

allows for simplistic management of the different

 All in all, RubyGems and its ecosystem is very well thought-out and sustainable. It

provides an accessible way for people to share their code in a free manner and serves

as one of the foundations of the Ruby language. All of this work has been done by the

exceedingly great community which is made up of many different kinds of people,

perhaps one day even including people who are reading this appendix.

A.4 Reason #4: emphasis on testing

Within the Ruby and Rails community there’s a huge focus on writing great, maintain-

able code. To help with this process, there’s also a big focus on test-driven develop-

ment along with a mantra of “red/green/refactor.” This mantra describes the process

of test-driven development: you write tests that are then failing (usually indicated by

the color red), write the code to make those tests pass (indicated by green), and then

clean up (refactor) the code in order to make it easier for people to know what it’s

doing. We covered this process in chapter 2.

 Because Ruby is interpreted rather than compiled like other languages, you can-

not rely on compilers to pick up errors in your code. Instead, you write tests that

describe functionality before it’s implemented. Those tests will fail initially, but as you

write that functionality those tests will pass. In some situations (such as tests written

using the Cucumber gem), these tests can be read by people who requested a feature

http://rubygems.org

545Reason #4: emphasis on testing

of your application and can be used as a set of instructions explaining exactly how this

feature works. This is a great way to verify that the feature is precisely what was

requested.

 As you write these tests for the application, you provide a safety net for if things go

wrong. This collection of tests is referred to as a test suite. When you develop a new fea-

ture, you have the tests that you wrote before the feature to prove that it’s working as

you originally thought it should. If you want to make sure that the code is working at

some point in the future, then you have the test suite to fall back on.

 If something does go wrong and it’s not tested, you’ve got that base to build

upon. You can write a test for an unrealized situation—a process known as regression

testing—and always have that test in the future to ensure that the problem does not

crop up again.

546

appendix B
Tidbits

This appendix contains a collection of tidbits that we just couldn’t fit into the rest

of the book. They are designed to be read by themselves, although you are wel-

come (and encouraged!) to read as many of them at once as you wish.

B.1 Prettying URLs

In your application you’ve got a URL such as /projects/1/tickets/2, which really

isn’t that pretty. Let’s take a look at how you can make the ticket’s ID part of these

URLs a little prettier, turning them into something like /projects/1/tickets/2-make-

it-shiny.

 Having URLs such as /projects/1/tickets/2-make-it-shiny will allow your users to

easily identify what that URL links to without having to visit the page.1 Rails allows

you to very easily do this by overriding a method called to_param in the model

where you want to have pretty URLs. This method is defined like this within

ActiveRecord::Base, and so all your models inherit it:

def to_param

id

end

This method is used to construct the URLs generated by the link helpers in your

application such as project_ticket_path, if you use them like this:

project_ticket_path(project, ticket)

Rails does not care what the classes of the objects that are passed in here are; it just

assumes you know what you’re doing. What it does care about though is the output

of the to_param method, which must not contain any slashes. To get the pretty URL

you always wanted you can use the parameterize method on any String, which

works like this:

"Make it shiny!".parameterize
= "make-it-shiny"

It does this by substituting any character that isn’t a through z, the digits 0 through

9, a hyphen (-), or an underscore (_) into the - character. If the string ends in one

1 It’s also supposedly good for search engine optimization (SEO).

547Prettying URLs

of these invalid characters then it will be removed completely. By doing this, it makes

the name safe to be used as a parameter in the URL, hence the name parameterize.

 Before you actually make this change, you’re going to write a test for it to make

sure that this feature of your code isn’t accidentally changed or removed. Because this

change is going to be for your Ticket model, you’re going to put the test for it in

spec/models/ticket_spec.rb, using the code from the following listing:

require 'spec_helper'

describe Ticket do
it "has pretty URLs" do

ticket = Factory(:ticket, :title = "Make it shiny!")

ticket.to_param.should eql("#{ticket.id}-make-it-shiny")
end

end

This code will use the factory you created in chapter 7 to create a new ticket with the

title “Make it shiny!” Then you call to_param on that ticket, and you expect to see it

output the ticket’s id followed by the parameterized version of “Make it shiny”: make-

it-shiny.

 When you run this test with bin/rspec spec/models/ticket_spec.rb, you’ll see

the following output:

expected "1-make-it-shiny"

got "1"

This is happening because you haven’t yet overridden the to_param method in your

Ticket model and it is defaulting to just providing the id. To fix this, you can open

the app/models/ticket.rb and add in the new method:

def to_param

"#{id}-#{title.parameterize}"

end

When you run our test again, it will now be green:

1 example, 0 failures

You don’t have to change anything else because Rails is still so incredibly darn smart!

For instance, you can pass this “1-make-it-shiny” string to the find method, and Rails

will still know what to do. Go ahead, try this:

Ticket.find("1-make-it-shiny")

If you have a record in the tickets table with an id value of 1, Rails will find this. This

is because Rails will automatically call to_i on string arguments passed to find. To see

this in action, you can do this in an irb session:

"1-make-it-shiny".to_i

Listing B.1 spec/models/ticket_spec.rb

548 APPENDIX B Tidbits

You should get back the number 1 from this. If you didn’t have the id prefix in your

routes and instead had something like make-it-shiny, you would need to save this

string to a field in the table called something obvious like permalink by using a

before_create method; then rather than using find in places where you are search-

ing for an object, you would instead use find_by_permalink.

B.2 Attribute change tracking

When working with Active Record, you have the ability to check if a field has changed

since the last time you made reference to this record. Let’s try this now with a Project

object in the ticketee project by first launching rails console.

 Within this console, let’s create a new Project object:

>> project = Project.new

On any ActiveRecord::Base descendant, you can call the changed? method to deter-

mine if it has changed since it was created or found. Let’s call it:

>> project.changed?

=> false

In this case, the project hasn’t changed from when it was created and so the changed?

method returns false. If you set any attribute on this object, the changed? method

will return true:

>> project.name = "Ticketee"
=> "Ticketee"

>> project.changed?

=> true

Now if you want to know what fields have caused this change, you can just drop off the

question mark at the end of changed?, like this:

>> project.changed
=> ["name"]

As you can see here, this method returns an array containing the attributes which

have changed on this object. If you changed another attribute on this project, such as

created_at, it would also appear in this list:

>> project.created_at = Time.now

=> [current time]
>> project.changed

=> ["name", "created_at"]

If you wanted to know only if a single attribute has changed, there’s the *_changed?

methods for all attributes on the model. For instance, if you wanted to know if the

name attribute has changed, then you would call name_changed?:

>> project.name_changed?
=> true

549Attribute change tracking

Of course this method will return true, because you changed your name attribute pre-

viously. In addition to this, you’re even able to see what the value was before the

change using the *_was method:

>> project.name_was
=> nil

This time, name was nil before you set it and so nil is returned. If it had a value

before you created this object, it would return that instead. Finally, you can even get

back an array containing the before and after values of the attribute by using the

*_change method:

>> project.name_change
=> [nil, "Ticketee"]

Now, what would these methods be used for? Well, any number of things, really. You

could use it for only running a certain callback if a specific field had been changed, or

you could use the *_change methods to log the changes to attributes in another table

if you wish.

551

Special characters
and numbers

$ function, 238
@fileserver.call method, 538
@javascript tag, 232
@purchase.errors.any? method, 11
@ticket variable, 110
304 Not Modified status, 457–459

A

abilities, 189–190
Ability class, 189, 201
accepts_nested_attributes_for method, 223, 225
access control, 136–163.

See also authentication; authorization
admins

adding admin field to users table, 138
restricting access to, 362–365
restricting actions to, 138–147
restricting project creation to, 137–138

namespace-based CRUD, 151–155
create action, 154–155
index action, 152–153
namespace root, 151–152
new action, 153–154

namespace routing, 148–151
users

admin, 155–157
deleting, 161–163
editing, 157–163

Account class, 40
Action Mailer classes, 312, 318–320, 334

configuring, 336–337
templates for, 320–322

ActionController::Caching::Sweeper class, 454

ActionDispatch::Static class, 536–538
ActionDispatch::Static middleware, 534
actionpack gem, 536
actions

caching, 451–454
restricting to admins, 138–147

fixing broken scenarios, 143–144
hiding links, 144–147

ActiveRecord::Base association method, 222
ActiveRecord::Migration class, 8
ActiveRecord::RecordInvalid exception, 80
ActiveRecord::RecordNotFound exception, 74,

94, 184, 368
Adam, James, 469
add_column method, 264
addresses, reply-to, setting, 340–341
admin attribute, 137
admin field, adding to users table, 138
admin users, 155–157
admin_root_path method, 514
admins

adding admin field to users table, 138
restricting access to, 362–365
restricting actions to, 138–147

fixing broken scenarios, 143–144
hiding links, 144–147

restricting project creation to, 137–138
admins method, 170
admins_only method, 146–147, 151
Admin::StatesController controller, 270
admin_states_path method, 271
Admin::UsersController show action, 198
after _inactive_sign_up_path_for method,

179–180
After method, 335
after_create method, 257–258, 316, 321, 326,

455, 463

index

552 INDEX

after_destroy method, 456
after_update method, 456
Agile software, 44
all method, 87, 253, 439
And keyword, 37
any? method, 354
ApiHelper module, 352
APIs (application programming interfaces),

347–384
paginating, 443–444
projects, 349–374

API authentication, 355–356
destroy action, 372–374
error reporting, 356–358
restricting access to, 362–365, 368–369
serving, 354–355, 358–359
single, 365–367
updating, 370–372

rate limiting, 377–384
Rate limit exceeded error, 379
request_count field, 377–378

by Sinatra framework, 528–532
tickets, 374–377
versioning, 381–384

Api::V1::BaseController class, 531
Api::V1::TicketsController class, 531
Api::V3::JSON::Tickets class, 529
app folder, 472–474
app method, 352
app role, 398–399
Application class, 520
application programming interfaces. See APIs
ApplicationController class, 141
applications, 44–82

committing changes, 72
deployment of, 401–403
developing, 5–22

deleting, 20–22
generating applications, 6
installing Ruby on Rails, 5–6
migrations, 8–9
purchases, 9–13
routing, 15–16
scaffolding, 7–8
show action, 14–15
starting applications, 6–7
updating, 16–20
validations, 13–14

integrating engines with, 513–515
projects, 55–60
Rack framework, 517–522

breaking up, 522–524
mounting with Rails framework, 525–533
running combined, 524–525

registering with Twitter authentication, 416–417

RESTful routing, 60–72
setting page title, 72–76
setting up, 45–82

application story, 45–46
applying stylesheet, 54–55
database configuration, 53–54
Gemfile file and generators, 50–53
version control, 47–50

users for, authentication, 391–394
validations, 76–82

aptitude command, 394
Aptitude system, 388
as option, 171
assert method, 26, 28, 216
asset_file_name method, 217–218
assets

privatizing, 230–231
public, 230
show action, 228–230

assets method, 222–224
assets_attributes= method, 225
Assigning Permissions feature, 206, 280
association count, showing, 492–493
association method, 184
associations

tags, defining, 289
watchers, defining, 316–318

asynchronous requests, 234
responding to, 235–237
sending parameters for, 237–241

learning CoffeeScript language, 237–240
passing through number, 240–242

Attach the File step, 215
attr_accessible method, 120
attr_accessor method, 34, 498–499
attribute accessor, 498
attribute mass-assignment, 120
attributes

change tracking for, 548–549
nested, 224–226

attributes hash, 127
authenticate_forem_user! method, 503, 506
authenticate_user method, 129, 142, 169, 178,

188, 357, 363
authenticating

posts, 506–509
topics, 501–505

authentication, 117–135, 412–433. See also access
control

API, 355–356
Devise gem, 118–120
disabling password, 393–394
GitHub, 425–433
ident, 395
key-based, 391–393

553INDEX

authentication (continued)
OAuth, 413–415
Twitter, 415–425

OmniAuth gem, 415–418
registering application with, 416–417
testing sign-in, 419–425

users
confirmation link sign-in, 122–126
form sign-in, 126–128
linking tickets to, 128–135
signup feature, 121–122

Authentication process, 136
authorization, 164–212. See also access control;

authentication
assigning permissions, 198–212

tickets, 206–207
viewing projects, 198–206

blocking access to tickets, 183–185
fixing failing features, 172–182

editing projects, 173
scenario to test that links are hidden, 176–

178
Signing Up, 178–182

restricting
delete access, 193–198
read access, 165–168
by scope, 168–172
update access, 190–193
write access, 185–190

seed data, 209–212
authorize_admin! method, 150, 363
authorize_create! method, 188
authorized? method, 195, 197, 207, 279
authorize_delete! method, 194
authorizing, editing, 192–193
authorship, adding to topics, 505–506
auth_providers method, 428, 431
automatic escaping, 267–268

B

background workers, 462–467
Bacon class, 27, 30–31
bacon_test.rb file, 27–28
Baker, Steven R., 29
balance method, 41
base functionality, installing, 388–389
Basecamp, 2
bash migrate alias, 130
Bates, Ryan, 188
BDD (behavior-driven development), 28–43, 45–

46
Cucumber tool, 35–43
RSpec tool, 29–35

before method, 149, 505, 529
before_create method, 264, 315, 353, 548
before_filter method, 96, 129, 141, 192, 355, 373,

496
before_save method, 506
behavior-driven development. See BDD
belongs_to method, 129–130, 167, 248, 255, 265,

458, 493
bin/cucumber command, 84, 88
blacklist authorization, 164–165
Buck, Jamis, 395
build-essential package, 388–389
build method, 102–103, 248, 283
bundle install command, 6, 53, 403–404

--deployment flag, 404
--gemfile flag, 404
--without flag, 404

Bundler gem, 49, 470, 512, 544
--binstubs option, 52

bundling gems, 403–405
button_to method, 331

C

cache method, 460–461
cache sweepers, 454–457
cache_path option, 452–453
caches_action method, 451–453
caches_page method, 451, 456
cache_sweeper method, 455
caching

actions, 451–454
client-side, 457–460
page fragments, 460–462
pages, 448–451

call method, 518–519, 521–522, 536–537, 539
callbacks, 257–258, 264–265
can? method, 188, 195, 278, 295
CanCan gem, 188–189
CanCan::Ability module, 189
cannot? method, 188–189
cannot_create_tickets! method, 187
cannot_update_tickets! method, 191
cap command, 400

deploy:migrations task, 407
deploy:setup task, 401
-T option, 400

Capfile, 397
Capistrano gem, configuring, 397–400
Capistrano tool, 395, 400–404, 406

deploy:restart task, 403
deploy:setup task, 400
deploy:symlink task, 403
deploy:update task, 401, 403
deploy:update_code task, 401

554 INDEX

capture group, 40, 73
Capybara browser simulator, 51, 232, 478–479
Capybara gem

RSpec gem and, installing, 481–482
testing, 483–484

Cascading Style Sheets. See CSS
cat command, 396
change method, 64, 264
change tracking, for attributes, 548–549
changed? method, 548–549
changes

committing, 72
tracking, 263–269

automatic escaping, 267–268
callback, 264–265
displaying, 265–266
styling states, 268–269
Then show me the page step, 266–267

cheat gem, 350
check_rate_limit method, 378–379
Chelimsky, David, 29
child_index option, 237
chmod command, 401–402
class method, 251
classes, outside control, 497–511

engine configuration, 497–500
fake User model, 500–501
topics, 501–511

class_eval method, 428
class_name option, 265, 317, 321, 511
cleaning up, after paginating interfaces, 441–442
clear method, 205
click function, 238
click_link method, 484
client-side caching, 457–460
coffee-rails gem, 51
CoffeeScript language, 237–240
collection block, 305
collection method, 304
combined applications, 524–525
Comment class, 251, 255
CommentNotifierJob class, 463
CommentObserver class, 315–316, 318, 321
comments, 244–252

adding more tags through, 292–293
controller, 249–252
form, 247
locating ticket, 245–246
model, 247–249
testing subscription, 325–327

CommentsController spec, fixing, 294–295
comment_updated method, 316, 319–321, 340–

341
commits, of changes, 72

community, sense of with Rails framework, 542–
543

concat method, 427
config/routes.rb file

application, 15
engine, 474

config.middleware.use method, 539
ConfigurationNotFound exception, 499
configure method, 140
confirm! method, 422
confirm option, See link_to
confirmable module, 120, 122
confirmation links

confirming, 123–126
user sign-in with, 122–126

confirming confirmation, 123–126
testing email, 122–123

confirmation_sent_at attribute, 124
confirmation_token attribute, 124
confirmed_at attribute, 124
confirm_users_path method, 180
content_for method, 75–76
controllers, 58

permissions, 200–201
serving files through, 226–231

assets, 228–231
protecting files, 227–228

tickets, 101–102
topics, 485

controllers option, 180
coordinated universal time. See UTC
counter_cache option, 492–493
create action, 154–155, 249, 360, 489–490, 508
create method, 67, 79–80, 85, 124, 299
create, read, update, delete interface. See CRUD

interface
create_table, id false option, 290
createuser command, 394
create_user! method, 149
Creating Comments scenario, fixing, 261–263
creating tags feature, 287–288
Creating Tickets feature, 173, 190, 221, 232
creator_watches_me method, 317
cross-site request forgery attacks. See CSRF attacks
CRUD (create, read, update, delete) interface, 55,

82–98
namespace-based, 151–155

create action, 154–155
index action, 152–153
namespace root, 151–152
new action, 153–154

projects
deleting, 91–98
editing, 88–91
viewing, 83–87

555INDEX

CSRF (cross-site request forgery) attacks, 71
csrf_meta_tags method, 71
CSS (Cascading Style Sheets), 4, 70, 109, 145, 439
Cucumber gem, 51
Cucumber tests, 86
Cucumber tool, 24, 35–43, 53, 298, 436, 478
curl package, 388
current_ability method, 189
current_email method, 323
current_page method, 440
current_user method, 125, 169, 453, 501–502,

505, 509

D

database indexes, 446–447
database queries, 444–447

eager loading, 445–446
database servers, 394–395

database and user, 394–395
ident authentication, 395

database_authenticatable module, 119
database_cleaner gem, 52
databases

choosing, 405–407
configuring, 53–54
and user, 394–395

db role, 398
default method, 276, 318
default option, 138
default_test method, 26–27
Delayed::Job class, 465
delayed_job gem, 462–463, 465
Delayed::Job.enqueue method, 463
Delayed::Worker#work_off method, 465
delegates method, 258
delete access, 193–198

enforcing destroy protection, 193–194
hiding links based on permission, 194–198

delete link, edit link and, 146–147
delete method, 92
delete method, 181, 299–300, 308
DELETE request, 301
delete_all method, 532
deleting, 20–22
Deleting Tickets feature, 134–135, 174, 193
dependent option, 111–112
deploy environment, setting up, 400–401
deploy keys, 396–397
deploy:finalize_update task, 402
deployment, 385–411

of application, 401–403
bundling gems, 403–405
choosing database, 405–407

configuring Capistrano gem, 397–400
database server, 394–395

database and user, 394–395
ident authentication, 395

deploy keys, 396–397
RVM, and Ruby language, 389–391
servers, setup, 386–389
serving requests, 407–411

init script, 410–411
installing Passenger gem, 408–410

setting up deploy environment, 400–401
user for app, 391–394

destroy action, 92–93, 161–162, 372–374
destroy protection, enforcing, 193–194
destroy_user_session_path method, 206
developing, speed and ease of with Rails

framework, 543
development environment, 52
Devise gem, 118–120, 417, 420
devise method, 119
Devise::TestHelpers module, 140
directory_exists? method, 537–538
display_name method, 423, 431
div_for method, 251, 491
domain logic, 4
domain-specific language. See DSL
Don’t Repeat Yourself!. See DRY
down method, 8
DRY (Don’t Repeat Yourself!), 77, 170
DSL (domain-specific language), 28, 351
dynamic_form gem, 81

E

each method, 110, 203
eager loading, 445–446
edible? method, 31
edit action, 88–89, 113–114, 159–161, 272
edit link, and delete link, 146–147
edit_admin_state_path method, 275
editing

authorizing, 192–193
projects, fixing, 173

Editing Tickets feature, 133–134, 174
edit_project_path method, 88
edit_project_ticket_path method, 113
edit_purchase_path method, 15
email, 312–346

real-world, 333–339
configuring Action Mailer classes, 336–337
connecting to Gmail server, 337–339
testing, 334–336

receiving, 340–346
replies, 342–346
setting reply-to address, 340–341

556 INDEX

email (continued)
sending ticket notifications, 313–325

Action Mailer classes, 318–320
automatically watching ticket, 314–315
defining watchers association, 316–318
delivering HTML emails, 322–325
observers, 315–316

subscribing to updates, 325–333
automatically adding user to watchlist, 327–

328
testing comment subscription, 325–327
unsubscribing from ticket notifications, 328–

333
testing, 122–123

email method, 125, 131, 140
email_spec gem, 122–124, 312, 314–315
Embedded Ruby. See ERB
encryptable module, 120
engine configuration, 497–500
engine layouts, 472–476

app folder, 472–474
config/routes.rb file, 474
forem.gemspec file, 472
gemfile file, 472
lib/forem/engine.rb file, 474–475
lib/forem.rb file, 474
Rakefile file, 475
script/rails file, 475
test directory, 475–476
test/dummy directory, 476

engines, 468–515
adding posts to topics, 493–497
benefits of, 470
brief history of, 469–470
classes outside control, 497–511

engine configuration, 497–500
fake User model, 500–501
topics, 501–511

developing new, 471–478
engine layouts, 472–476
engine routing, 476–478

integrating with application, 513–515
releasing as gem, 512–513
setting up testing environment, 478–482

installing RSpec and Capybara gems, 481–
482

removing Test::Unit framework, 479–481
writing features of, 482–493

setting up routes, 484–485
showing association count, 492–493
testing Capybara gem, 483–484
topics controller, 485

env object, 519
ERB (Embedded Ruby), 4, 58, 60, 267
erb part, 59

error checking, 532–533
error_messages method, 81
errors

Rate limit exceeded, 379
reporting, 356–358

escaping, automatic, 267–268
ETag header, 457
etag option, 459
except option, 96, 383
exceptions, caused by deletions, 93–98
exists? method, 218, 222, 250–251, 332
expired! method, 32–33, 35
expire_fragment method, 455–456
extend call, 430
Extensible Markup Language, serving. See XML,

serving
extra key, 419, 426

F

Factory Girl gem, 85–86, 139
Factory method, 85
failed tests, 131–132
features

featuring files, 214–216
fixing failing, 172–182

editing projects, 173
scenario to test that links are hidden, 176–

178
Signing Up feature, 178–182

rewriting, 185–187
writing

for deleting projects, 92
for viewing projects, 84–85

field option, 306
fields_for method, 222–223, 234–235
File class, 224
 file? method, 537–538
 readable? method, 537
file_exist? method, 538
file_field method, 223
files, uploading, 213–242

attaching files, 214–226
JavaScript language, 231–242
serving files through controller, 226–231

fill_in method, 484
find command, 402
find method, 15, 19, 278, 368, 439, 547
find_and_delete method, 338
find_by_default method, 276
find_by_name method, 74
find_or_create_by_github method, 430–431
find_or_create_for_github method, 429

557INDEX

find_or_create_for_twitter method, 421–422, 429,
431

find_project method, 105, 171, 175–176, 191, 369,
531

find_ticket method, 113, 191
find_user method, 531, 533
flash message, 12
flash method, 68–69
float method, 9
for method, 176–177, 184, 357, 368
forem method, 475
Forem::ApplicationController.class_eval method,

502
Forem::Engine class, 499
forem.gemspec file, 472
form_for method, 11, 66, 104, 154, 247
forms

hacking, 282–283
user sign-in with, 126–128

form_tag method, 304
forums_path method, 474–475
fragment caching, 451
frameworks

jQuery framework, 233–234
Prototype framework, 214, 233
Rack framework, 516–540

applications, 517–522
middleware, 533–540
mounting with Rails framework, 525–533

Rails framework
middleware in, 534–536
mounting Rack framework applications with,

525–533
reasons to use, 541–545

Ruby on Rails framework, 1–22
description of, 2–5
developing applications, 5–22

Sinatra framework
API by, 528–532
overview, 527–528

Test::Unit framework, removing, 479–481
Freenode IRC network, 542
fresh_when method, 457, 459
friendly_token method, 422
full table scan, 446

G

cheat command, 350
Gemfile, 50–53, 472, 512–513, 528
gems

actionpack gem, 536
Bundler gem, 49, 470, 512, 544
bundling, 403–405

CanCan gem, 188–189
Capistrano gem, configuring, 397–400
Capybara gem

RSpec gem and, installing, 481–482
testing, 483–484

cheat gem, 350
coffee-rails gem, 51
Cucumber gem, 51
database_cleaner gem, 52
delayed_job gem, 462–463, 465
Devise gem, 118–120, 417, 420
dynamic_form gem, 81
email_spec gem, 122–124, 312, 314–315
Factory Girl gem, 85–86, 139
Forem.Gemspec file, 472
gem install cheat command, 350
Gemfile, 50–53, 472, 512–513, 528
gmail gem, 313, 340
jquery-rails gem, 234
json gem, 354
Kaminari gem, 436–437
launchy gem, 245–246
mail gem, 334–335
nokogiri gem, 358
OmniAuth gem, setting up

overview, 415–416
testing environment, 417–418

Paperclip gem, 214, 216–220
Passenger gem, 407–410
pg gem, 405
rack-test gem, 349–351
rails gem, 472
releasing engine as, 512–513
RSpec gem, 29, 51, 58, 74, 481–482
rspec-rails gem, 51, 95
RubyGems, 2, 543–544
sass-rails gem, 50
Searcher gem, 287, 305–307, 436
Sprockets gem, 70–71, 234, 239
sqlite3 gem, 50, 472
turn gem, 51
will_paginate gem, 436

get method, 238, 353, 529
GET requests, 95, 240, 353, 527
getter method, 41
Gherkin language, 29
Git application, 46–81, 219–220, 398
git, 48

checkout -b production command, 398
push command, 72, 398
stash command, 72

git-core package, 388–389
github action, 428–429
GitHub authentication, registering and testing,

425–433

558 INDEX

GitHub service, 5, 47–81, 348–349, 396, 413, 542
Given keyword, 36, 39
gmail gem, 313, 340
Gmail server, 313, 333–334, 336–339
Gmail.connect method, 338

H

hacking, forms, 282–283
halt method, 533
Hambley, Lee, 395
Hansson, David H., 2
has_and_belongs_to_many association, 286–287,

289, 317, 321
has_attached_file method, 216, 220, 226, 230
has_content? method, 70
hashes method, 109
HashWithIndifferentAccess method, 68, 129
has_many association, defining, 103
has_many method, 103, 111, 190, 223
has_one association, 511
have_css method, 145, 279
headers method, 529
Heartbeat application, 521, 526–527
Heartbeat module, 520
Heartbeat::Application class, 522, 525–527
Heartbeat::TestApplication class, 522–524
Hellesoy, Aslak, 36
--help option, 46
helper methods, defining, 203–206
helper_method method, 501
helpers

nested routing, 100–101
for paginating interfaces, implementing, 439–

440
Heroku, 386
Hidden Links feature, 178
HTML (Hypertext Markup Language) emails,

delivering, 322–325
html method, 11
html option, 300
html part, 59
html_safe method, 267
HTTP (Hypertext Transfer Protocol) status

codes, 349–351, 353, 521
HTTP methods, 61
Hypertext Markup Language emails, delivering.

See HTML emails, delivering
Hypertext Transfer Protocol status codes. See

HTTP status codes

I

ident authentication, 395

If-Modified-Since header, 459
If-None-Match header, 457, 459
include call, 430
includes method, 445–446
increment! method, 378
index action, 83, 152–153, 485–488
index method, 62
index part, 59
indexes, database, 446–447
init script, 410–411
initialize method, 189, 536, 539–540
integration testing process, 37
interfaces, pagination of, 437–443

APIs, 443–444
cleaning up, 441–442
fixing broken scenarios, 440–441
implementing helpers for, 439–440
testing, 437–439
viewing, 442–443

Internet Explorer project, 175–176
isolate_namespace method, 474
its method, 33

J

JavaScript language, 231–242
adding more files with, 234–235
asynchronous request

responding to, 235–237
sending parameters for, 237–241

jQuery framework, 233–234
testing, 232–233

JavaScript Object Notation. See JSON
javascript_include_tag method, 71
joins method, 445–446
join_table option, 317, 321
jQuery framework, 233–234
jquery-rails gem, 234
json gem, 354
JSON (JavaScript Object Notation), 347, 349, 354,

356
JSON.parse method, 354

K

Kaminari gem, 436–437
Katz, Yehuda, 2
key-based authentication, 391–393
keys, deploy, 396–397

L

label method, 306
last_modified option, 459

559INDEX

last_post method, 510
last_ticket method, 365–367
launchy gem, 245–246
let method, 139, 227
li tag, 269
lib/forem/engine.rb file, 474–475
lib/forem.rb file, 474
LinkJumbler class, 539–540
links

adding to project, 86–87
confirmation, user sign-in with, 122–126
for deleting tags, 299–302
hidden, scenario to test, 176–178
hiding

edit and delete links, 146–147
New Project link, 144–146

hiding based on permission, 194–198
link_to method, 10, 18, 60, 113, 219, 241, 310
 confirm option, 92
listing tickets, 110–111
load method, 209
locals option, 236, 489, 496
lockable module, 120
locking down, states, 278–285

bestowing changing state permissions, 280–281
hacking form, 282–283
hiding select box, 278–280
ignoring parameter, 283–285

login action, 504
ls -x command, 404
-m option, 388, 391

M

mail gem, 334–335
mail method, 319
make_default action, 275
make_default_admin_state_path method, 275
Matsumuto, Yukihiro, 2, 542
Matz is nice always, so we are nice. See

MINASWAN
Matz Ruby Interpreter. See MRI
member method, 304
merge! method, 129
metaclass, 498
method option, 92, 115
method_missing method, 73
methods option, 365, 383
middleware, 533–540

ActionDispatch::Static class, 536–538
application route cycle, 477
in Rails framework, 534–536
routing cycle of engine, 478
simple middleware stack, 476

migrations, 8–9
MINASWAN (Matz is nice always, so we are nice),

543
Model-View-Controller paradigm. See MVC

paradigm
mount method, 522, 530
--mountable option, 471
MRI (Matz Ruby Interpreter), 389
msysGit application, 47
MVC (Model-View-Controller) paradigm, 3–4
MySQL database server, 54

N

n+1 selects operation, 444–445
name method, 260
namespace-based CRUD, 151–155

create action, 154–155
index action, 152–153
namespace root, 151–152
new action, 153–154

namespace method, 350
namespace root, 151–152
namespace routing, 148–151
nested attributes, 224–226
nested resources, tickets, 99–116

controller, 101–102
defining has_many association, 103
deleting, 115–116
editing, 112–115
finding within scope of project, 105–106
nested routing helpers, 100–101
within project, 104–105
validations, 106–108
viewing, 108–112

nested routing helpers, 100–101
new action, 153–154, 236, 272, 488–489
new command, 46
new method, 62
New Project link, 144–146
new_file_path method, 235
new_project_path method, 60
new_topic_post_path method, 495
nginx, 407–408
nokogiri gem, 358
Nokogiri::HTML method, 539
notice method, 15
notifications, ticket, 313–325

Action Mailer classes, 318–320
automatically watching ticket, 314–315
defining watchers association, 316–318
delivering HTML emails, 322–325
observers, 315–316
unsubscribing from, 328–333

560 INDEX

Notifier class, 318–319, 321, 340
number variable, 237
numbers, passing through, 240–242
number_to_human_size Action View helper, 219

O

OAuth authentication, 412–415
oauth_token parameter, 415, 418
oauth_verifier parameter, 415, 418
observe method, 455
observers, 315–316
OmniAuth gem, setting up

OmniAuth gem testing environment, 417–418
overview, 415–416

omniauthable module, 120
omniauthable symbol, 415
OmniauthCallbacks module, 429
only option, 96
Oracle VirtualBox software, 385–388
order option, 511

P

page fragments, caching, 460–462
page method, 439–440, 442
pages

caching, 448–451
removing tag from, 302–303
setting title of, 72–76
Then show me the page step, 266–267

paginate method, 436, 438, 443
pagination

of interfaces, 435–444
cleaning up, 441–442
fixing broken scenarios, 440–441
implementing pagination helpers, 439–440
paginating APIs, 443–444
testing pagination, 437–439
viewing pagination, 442–443

Kaminari gem, 436–437
pagination process, 434
Paperclip gem, 214, 216–220
paperclip generator, 217
parameterize method, 256, 546
parameters

ignoring, 283–285
sending for asynchronous requests, 237–241

learning CoffeeScript language, 237–240
passing through number, 240–242

params hash, 68
params method, 453, 530–531
parse method, 342, 345
partial option, 236, 496

Passenger gem, 407–410
passing, through numbers, 240–242
passwd command, 391
password authentication, disabling, 393–394
path option, 230
PATH_INFO key, 520–521
path_to method, 56
per method, 439–441
perform method, 463–464
performance enhancements, 434–467

background workers, 462–467
cache sweepers, 454–457
caching

actions, 451–454
client-side, 457–460
page fragments, 460–462
pages, 448–451

database query, 444–447
database indexes, 446–447
eager loading, 445–446

pagination, 435–444
of interfaces, 437–443
Kaminari gem, 436–437

Permission class, 190
Permission model, 164
permissions

assigning, 198–-212
tickets, 206–207
viewing projects, 198–-206

changing state, 280–281
hiding links based on, 194–198

permissions controller, 200–201
permissions method, 202–203, 280–281
permissions screen, 201–203
persisted? method, 66, 251
pg gem, 405
Pivotal Tracker system, 45
polymorphic association, 166
position option, 234
post method, 181, 284, 294, 360–361
POST request, 360
PostgreSQL database server, 54, 394–395, 405–

406
posts

adding to topics, 493–497
authentication of, 506–509
showing last, 509–511

PreviousState class, 265
previous_state= method, 265
private method, 96
privatizing assets, 230–231
production environment, 52, 239, 405
Project class, 79, 86, 356, 543
project method, 184, 258, 366
project parameter, 370

561INDEX

Project.for method, 531
projects, 55–60

deleting, 91–98
destroy action, 92–93
exceptions, 93–98
writing feature for, 92

editing, 88–91
edit action, 88–89
fixing, 173
update action, 90–91

finding tickets within scope of, 105–106
restricting creation to admins, 137–138
tickets within, 104–105
viewing, 83–87, 198–-206

adding link to project, 86–87
defining helper method, 203–206
Factory Girl gem, 85–86
permissions controller, 200–201
permissions screen, 201–203
writing feature for, 84–85

projects API, 349–374
authentication, 355–356
destroy action, 372–374
error reporting, 356–358
restricting access, 362–365, 368–369
serving

overview, 354–355
XML, 358–359

single project, 365–367
updating, 370–372

projects method, 101
ProjectsController class, 59–60
project_tickets_path method, 249, 546
protecting files, 227–228
Prototype framework, 214, 233
provides_callback_for method, 428–429
psql command, 395, 406
public assets, 230
purchases, 9–13
purchases_url method, 20
put method, 181, 203, 370

Q

QA (quality assurance) testing, 36
Quaranto, Nick, 544
queries, database, 444–447

database indexes, 446–447
eager loading, 445–446

R

Rack framework, 516–540
applications, 517–522

breaking up, 522–524

mounting with Rails framework, 525–533
running combined, 524–525

middleware, 533–540
ActionDispatch::Static class, 536–538
in Rails framework, 534–536

mounting with Rails framework, 525–533
error checking, 532–533
Heartbeat application, 526–527
Sinatra framework, 527–528

rack-test gem, 349–351
Rack::Builder class, 524
Rack::Builder.app method, 525
Rack::File class, 536
Rack::Test::Methods module, 350–352, 357, 527
rackup config.ru command, 518
Rack::Utils module, 536
rails command, 6–7, 46

generate command, 118
Rails Forum, 542
Rails framework

middleware in, 534–536
mounting Rack framework applications with,

525–533
error checking, 532–533
Heartbeat application, 526–527
Sinatra framework, 527–528

reasons to use, 541–545
emphasis on testing, 544–545
RubyGems system, 543–544
sense of community, 542–543
speed and ease of development, 543

rails gem, 472
rails generate cucumber:install command, 56
Rails Installer program, 5
Rails Rumble event, 2
RailsBridge organization, 542
Railscamps, 543
RAILS_ENV environment variable, 94
rails server, -e production option, 94
Railties, 3
rake

build task, 512
cucumber:ok task, 56–57, 59, 63, 67, 84, 97
db:migrate task, 65, 395
db:migrate task, 103, 404
db:schema:load task, 9, 103
db:seedtask, 395
db:test:prepare task, 103
forem:install:migrations task, 473
install task, 513
release task, 513
routes task, 62
spec task, 97

Rakefile, 475, 480
Rate limit exceeded error, 379

562 INDEX

rate limiting, 377–384
Rate limit exceeded error, 379
request_count field

overview, 377–378
resetting, 380–381

read access, restricting, 165–168
readable_by method, 169
readable_by scope, 173
Receiver class, 343
receiving replies, 342–346
recoverable module, 119
red-green-refactor process, 24, 544
redirect_to method, 12, 68–69, 104, 250
registerable module, 119
registering

applications, with Twitter authentication, 416–
417

and testing, GitHub authentication, 425–433
regression testing, 25, 283
releasing, engine as gem, 512–513
reload method, 284, 370
rememberable module, 119
remote option, 241, 300
remove action, 301–302
remove() function, 302
render method, 10, 12, 67, 250–251, 291, 364
replies, to email

receiving, 342–346
setting reply-to address, 340–341

Representational State Transfer. See REST
request_count field, 377–378

resetting, 380–381
requests

asynchronous, responding to, 235–237
serving, 407–411

init script, 410–411
installing Passenger gem, 408–410

require option, 415
reset_request_count! method, 380
resources method, 15, 61, 521
resources, nested. See nested resources, tickets
respond_to method, 11, 349, 354
respond_with method, 349, 355, 365, 371, 373,

382–383
REST (Representational State Transfer), 4, 60–72
root method, 521, 537
root_path method, 111
roots, namespace, 151–152
routing

engine
overview, 476–478
setting up, 484–485

helpers, nested, 100–101
namespace, 148–151
overview, 15–16
RESTful, 60–72

RSpec gem, 29, 51, 58, 74, 481–482
rspec-rails gem, 51, 95
RSpec tests, 86, 95
Ruby language, RVM and, 389–391

installing, 389–390
installing Ruby language, 390–391

Ruby on Rails framework, 1–22
description of, 2–5

benefits, 2–3
common terms, 3–4
in the wild, 4–5

developing applications, 5–22
deleting, 20–22
generating, 6
installing Ruby on Rails, 5–6
migrations, 8–9
routing, 15–16
scaffolding, 7–8
show action, 14–15
starting, 6–7
updating, 16–20
validations, 13–14

Ruby on Rails Talk mailing list, 542
Ruby Version Manager. See RVM
RubyForge system, 544
RubyGems, 2, 543–544
run method, 518–520, 524
rvm command, 390
RVM (Ruby Version Manager)

overview, 388
and Ruby language, 389–391

installing, 390–391
overview, 389–390

Seguin, Wayne E., 544
rvm use command, 390

S

Sass language, 70
sass-rails gem, 50
save method, 80
saved? method, 28
scaffolding, 7–8
scenarios

adding files to, 221–223
ensuring users cannot delete selves, 162–163
fixing broken, 143–144, 440–441
to test that links are hidden, 176–178

scope, restricting by, 168–172
scp command, 393
script/rails file, 475
search action, 305, 307, 441
search method, 303, 306
Searcher gem, 287, 305–307, 436

from option, 306, 341

563INDEX

searching
by state, 305–309
testing, 303–305
without the search, 309–311

search_project_tickets_path method, 304, 310
secure shell key. See SSH key
seed data, 209–212
seeding states, 259–261
Seguin, Wayne E., 544
select box, hiding, 278–280
select method, 255
selected option, 255–256
self.down method, 9, 64, 447
self.edible? method, 31
self.up method, 64
send method, 142
send_file method, 229
servers

database, 394–395
database and user, 394–395
ident authentication, 395

setup, 386–389
installing base functionality, 388–389
Oracle VirtualBox software, 386–388

serving
APIs, 354–355
files, through controllers, 226–231
requests, 407–411

init script, 410–411
installing Passenger gem, 408–410

XML, 358–359
set_admin method, 160
set_previous_state method, 265
setter methods, 40–41
set_ticket_state method, 265
should method, 145
should_not method, 145
show action, 14–15, 158, 228–230, 490–491
sign-in, user

with confirmation links, 122–126
with forms, 126–128

sign_in method, 140, 501–502, 505–507, 509
sign_in_and_redirect method, 421
Signing Up feature, 178–182
sign_in_path method, 502–503
sign_out! method, 501–502, 509
signup feature, for users, 121–122
Simple Mail Transfer Protocol. See SMTP
simple_format method, 106, 491
Sinatra framework

API by, 528–532
overview, 527–528

Sinatra::Base class, 531
single projects, 365–367
SMTP (Simple Mail Transfer Protocol), 333, 335

source command, 390
span element, 438
split method, 290
Sprockets gem, 70–71, 234, 239
SQLite3 database server, 53
sqlite3 gem, 50, 472
SSH (secure shell) key, 47, 49, 387, 392–393
Stack Overflow community, 542
StackExchange services, 348
State class, 253
state method, 255, 257
State model, 253–255
state_id parameter, 283–285
states

locking down, 278–285
bestowing changing state permissions, 280–

281
hacking form, 282–283
hiding select box, 278–280
ignoring parameter, 283–285

managing, 269–277
 adding states, 270–273
defining default state, 273–277

searching by, 305–309
seeding, 259–261
selecting, 255–257
styling, 268–269
of ticket, changing, 252–263
tracking. See tracking

status option, 364
steps method, 134
stories, for applications, 45–46
string method, 9
style tag, 268
stylesheet_link_tag method, 70
stylesheets, applying, 54–55
styling states, 268–269
submit method, 12, 66, 272
subscribing, to updates, 325–333

automatically adding user to watchlist, 327–328
testing comment subscription, 325–327
unsubscribing from ticket notifications, 328–333

sudo, -i option, 408
Symbol-to-Proc method, 251

T

tables, adding admin field to, 138
tag! method, 290–291, 294, 299
Tag model, 289–290
tagging, 286–311

adding more tags, 292–295
fixing CommentsController spec, 294–295
through comment, 292–293

564 INDEX

tagging (continued)
creating tags feature, 287–288
defining tags association, 289
deleting tag, 297–311

adding link for, 299–302
removing tag from page, 302–303
testing, 298–299

displaying ticket’s tags, 290–291
finding tags, 303–311
restriction of, 295–303

allowing tags for certain users, 296–297
testing, 295–296

showing tags, 288–289
Tag model, 289–290
text_field_tag tag, 288

tags association, defining, 289
tags method, 289
Talbott, Nathaniel, 25
TDD (test-driven development), 24–28

bacon_test.rb file, 27–28
and BDD, 24
reasons for testing, 25
writing tests, 25–27

template option, 250
templates, for Action Mailer classes, 320–322
test directory, 475–476
test-driven development. See TDD
test/dummy directory, 476
test environment, 52
test method, 26
testing, 23–43

BDD, 28–43
Cucumber tool, 35–43
RSpec tool, 29–35

comment subscription, 325–327
email, 122–123, 334–336
environments

OmniAuth gem, 417–418
setting up, 478–482

JavaScript language, 232–233
pagination, 437–439
Rails framework emphasis on, 544–545
registering and, GitHub authentication, 425–

433
searching, 303–305
sign-in, 419–425
tag deletion, 298–299
tag restriction, 295–296
TDD, 24–28

bacon_test.rb file, 27–28
and BDD, 24
reasons for testing, 25
writing tests, 25–27

that links are hidden, 176–178
test_mode option, 418

tests, failed, 131–132
Test::Unit framework, removing, 479–481
Test::Unit tool, 24–28
Test::Unit::TestCase class, 26
text/html part, 322
text/plain part, 322
text_field_tag tag, 288
Then keyword, 36
Then show me the page step, 266–267
Ticket class, 103
ticket_comments_path method, 247
tickets, 99–108, 206–207

API, 374–377
blocking access to, 183–185
blocking creation of, 187–188
changing state of, 252–263

callbacks, 257–258
fixing Creating Comments scenario, 261–263
seeding states, 259–261
selecting states, 255–257
State model, 253–255

controller, 101–102
defining has_many association, 103
deleting, 115–116
displaying tags, 290–291
editing, 112–115

edit action, 113–114
update action, 114–115

finding within scope of project, 105–106
linking to users, 128–135

attributing tickets to users, 129–131
failed tests, 131–132
fixing features, 132–135

locating, 245–246
nested routing helpers, 100–101
notifications, unsubscribing from, 328–333
within project, 104–105
sending notifications, 313–325

Action Mailer classes, 318–320
automatically watching ticket, 314–315
defining watchers association, 316–318
delivering HTML emails, 322–325
observers, 315–316

updating and deleting at same time, 207–209
validations, 106–108
viewing, 108–112

culling tickets, 111–112
listing tickets, 110–111

tickets method, 102–103, 110
TicketsController class, 113–114
time_ago_in_words helper, 510
timeoutable module, 120
timestamps method, 9, 65
timestamps option, 289
title method, 75, 383
titles of pages, setting, 72–76

565INDEX

toggle_watching_button method, 330
to_i method, 240, 323
to_json method, 349, 353, 355, 382
token method, 353
token_authenticatable module, 120, 352
to_param method, 546–547
topics

adding authorship to, 505–506
adding posts to, 493–497
authenticating, 501–505
controller, 485

topics_path method, 485
to_s method, 156, 260–261, 423–424, 500
touch option, 458
to_xml method, 349
to_yaml method, 519
trackable module, 120
tracking

changes, for attributes, 548–549
state, 243–285

changing for ticket, 252–263
leaving comment, 244–252
locking down, 278–285
managing, 269–277
tracking changes, 263–269

try method, 146, 196
turn gem, 51
Twitter, 348–349, 413
twitter action, 421, 428
twitter argument, 420
Twitter authentication, 415–425

OmniAuth gem, setting up, 415–418
registering application with, 416–417
testing sign-in, 419–425

type option, 351–352

U

-u option, git push 49
Ubuntu, 52, 385–389, 391
UCS Transformation Format–8-bit. See UTF-8
Uniform Resource Locators. See URLs
unsubscribing, from ticket notifications, 328–333
up command, 387
up method, 8
update access, 190–193
update action, 90–91, 114–115, 159–161
update option, 234
update_all method, 380
update_attribute method, 137
update_attributes method, 19, 90, 371
updates, subscribing to, 325–333

automatically adding user to watchlist, 327–328
testing comment subscription, 325–327
unsubscribing from ticket notifications, 328–333

updating, 16–20
uploading files. See files, uploading
url method, 219
url option, 300
URLs (Uniform Resource Locators), 546–548
User class, 429
user method, 184
User models, fake, 500–501
user_omniauth_authorize_path method, 420
useradd command, 391
user_class method, 499
user_hash key, 426
usermod

-a option, 390
-d option, 388, 391
-G option, 388, 390
-s option, 388, 391

User::Omniauth- Callbacks module, 430, 433
users

admin, 155–157
allowing tags for certain, 296–297
for app, 391–394
automatically adding to watchlist, 327–328
confirmation link sign-in, 122–126

confirming, 123–126
testing email, 122–123

and database, 394–395
deleting, 161–163
editing, 157–163

edit and update actions, 159–161
show action, 158

form sign-in, 126–128
linking tickets to, 128–135

attributing tickets to users, 129–131
failed tests, 131–132
fixing features, 132–135

signup feature, 121–122
table, adding admin field to, 138

user_signed_in? method, 125
UTC (coordinated universal time), 65
UTF-8 (UCS Transformation Format–8-bit), 54

V

Vagrant, 386–387, 392
vagrant halt command, 387
vagrant ssh command, 387
validatable module, 120
validates method, 78
validates_numericality_of method, 13
validates_presence_of method, 13, 78
validates_uniqueness_of method, 78
validations, 13–14

app/controllers/projects_controller.rb, 80
app/models/project.rb, 78

566 INDEX

validations (continued)
features/creating_projects.feature, 77
overview, 76
ticket, 106–108

version control, 47–50
versioning, 381–384
viewing

pagination, 442–443
projects, restricting, 368–369

Viewing Tickets feature, 132–133, 175
VirtualBox software, Oracle. See Oracle

VirtualBox software
visit method, 56, 483, 485

W

watch action, 331–332
Watcher class, 317
watchers association, defining, 316–318
watchers method, 321
watchlists, automatically adding users to, 327–328
web role, 398

WebDriver software, 214, 232
Webrat gem, 52
WEBrick library web server, 6, 519
Welcome aboard page, 6
When keyword, 36
whitelist authorization, 164
will_paginate gem, 436
with option, 237
within method, 484, 508
write access, 185–190

abilities, 189–190
blocking ticket creation, 187–188
CanCan gem, 188–189
rewriting feature, 185–187

X

X-UA-Compatible header, 534, 536
XML (Extensible Markup Language), serving,

358–359
xml method, 11

Ryan Bigg Yehuda Katz

R
ails 3 is a full stack, open source web framework powered
by Ruby and this book is an introduction to it. Whether
you’re just starting or you have a few cycles under your

belt, you’ll appreciate the book’s guru’s-eye-view of idiomatic
Rails programming.

You’ll master Rails 3.1 by developing a ticket tracking applica-
tion that includes RESTful routing, authentication and au-
thorization, state maintenance, i le uploads, email, and more.
You’ll also explore powerful features like designing your own
APIs and building a Rails engine. You will see Test Driven
Development and Behavior Driven Development in action
throughout the book, just like you would in a top Rails shop.

What’s Inside

Covers Rails 3.1 from the ground up

Testing and BDD using RSpec and Cucumber

Working with Rack

It is helpful for readers to have a background in Ruby, but no
prior Rails experience is needed.

Ryan Bigg is a Rails developer in Syndey, recognized for his
prolii c and accurate answers on IRC and StackOverl ow.
Yehuda Katz is a lead developer on SproutCore, known for his
contributions to Rails 3, jQuery, Bundler, and Merb.

For access to the book’s forum and a free ebook for owners of this
book, go to manning.com/Rails3inAction

$49.99 / Can $52.99 [INCLUDING eBOOK]

Rails 3 IN ACTION

WEB DEVELOPMENT/RUBY

M A N N I N G

SEE INSERT

“Takes you on an excellent
 Rails 3 adventure!” —Anthony J. Topper
 Penn State Harrisburg

“Conversational and current. A
 wellspring of information.”
 —Jason Rogers, Dell Inc.

“An essential roadmap for the
 newest features in Rails 3.”
 —Greg Vaughn
 Improving Enterprises

“Essential, ef ective Rails
 techniques and habits for
 the modern Rubyist.”
 —� omas Athanas
 Athanas Empire, Inc.

“A holistic book for a holistic
 framework.”
 —Josh Cronemeyer
 � oughtWorks Studios

	Rails 3 in Action
	brief contents
	contents
	preface
	acknowledgments
	about this book
	about the authors
	about the cover illustration
	Chapter 1 Ruby on Rails, the framework
	1.1 What is Ruby on Rails?
	1.1.1 Benefits
	1.1.2 Common terms
	1.1.3 Rails in the wild

	1.2 Developing your first application
	1.2.1 Installing Rails
	1.2.2 Generating an application
	1.2.3 Starting the application
	1.2.4 Scaffolding
	1.2.5 Migrations
	1.2.6 Viewing and creating purchases
	1.2.7 Validations
	1.2.8 Showing off
	1.2.9 Routing
	1.2.10 Updating
	1.2.11 Deleting

	1.3 Summary

	Chapter 2 Testing saves your bacon
	2.1 Test- and behavior-driven development
	2.2 Test-driven development
	2.2.1 Why test?
	2.2.2 Writing your first test
	2.2.3 Saving bacon

	2.3 Behavior-driven development
	2.3.1 RSpec
	2.3.2 Cucumber

	2.4 Summary

	Chapter 3 Developing a real Rails application
	3.1 Application setup
	3.1.1 The application story
	3.1.2 Version control
	3.1.3 The Gemfile and generators
	3.1.4 Database configuration
	3.1.5 Applying a stylesheet

	3.2 First steps
	3.2.1 Creating projects
	3.2.2 RESTful routing
	3.2.3 Committing changes
	3.2.4 Setting a page title
	3.2.5 Validations

	3.3 Summary

	Chapter 4 Oh CRUD!
	4.1 Viewing projects
	4.1.1 Writing a feature
	4.1.2 The Factory Girl
	4.1.3 Adding a link to a project

	4.2 Editing projects
	4.2.1 The edit action
	4.2.2 The update action

	4.3 Deleting projects
	4.3.1 Writing a feature
	4.3.2 Adding a destroy action
	4.3.3 Looking for what isn’t there

	4.4 Summary

	Chapter 5 Nested resources
	5.1 Creating tickets
	5.1.1 Nested routing helpers
	5.1.2 Creating a tickets controller
	5.1.3 Defining a has_many association
	5.1.4 Creating tickets within a project
	5.1.5 Finding tickets scoped by project
	5.1.6 Ticket validations

	5.2 Viewing tickets
	5.2.1 Listing tickets
	5.2.2 Culling tickets

	5.3 Editing tickets
	5.3.1 Adding the edit action
	5.3.2 Adding the update action

	5.4 Deleting tickets
	5.5 Summary

	Chapter 6 Authentication and basic authorization
	6.1 What Devise does
	6.1.1 Installing Devise

	6.2 User signup
	6.3 Confirmation link sign-in
	6.3.1 Testing email
	6.3.2 Confirming confirmation

	6.4 Form sign-in
	6.5 Linking tickets to users
	6.5.1 Attributing tickets to users
	6.5.2 We broke something!
	6.5.3 Fixing the Viewing Tickets feature
	6.5.4 Fixing the Editing Tickets feature
	6.5.5 Fixing the Deleting Tickets feature

	6.6 Summary

	Chapter 7 Basic access control
	7.1 Projects can be created only by admins
	7.2 Adding the admin field to the users table
	7.3 Restricting actions to admins only
	7.3.1 Fixing three more broken scenarios
	7.3.2 Hiding the New Project link
	7.3.3 Hiding the edit and delete links

	7.4 Namespace routing
	7.5 Namespace-based CRUD
	7.5.1 Adding a namespace root
	7.5.2 The index action
	7.5.3 The new action
	7.5.4 The create action

	7.6 Creating admin users
	7.7 Editing users
	7.7.1 The show action
	7.7.2 The edit and update actions

	7.8 Deleting users
	7.8.1 Ensuring you can’t delete yourself

	7.9 Summary

	Chapter 8 More authorization
	8.1 Restricting read access
	8.2 Restricting by scope
	8.3 Fixing what you broke
	8.3.1 Fixing Editing Projects
	8.3.2 Fixing the four failing features
	8.3.3 One more thing
	8.3.4 Fixing Signing Up

	8.4 Blocking access to tickets
	8.4.1 Locking out the bad guys

	8.5 Restricting write access
	8.5.1 Rewriting a feature
	8.5.2 Blocking creation
	8.5.3 What is CanCan?
	8.5.4 Adding abilities

	8.6 Restricting update access
	8.6.1 No updating for you!
	8.6.2 Authorizing editing

	8.7 Restricting delete access
	8.7.1 Enforcing destroy protection
	8.7.2 Hiding links based on permission

	8.8 Assigning permissions
	8.8.1 Viewing projects
	8.8.2 And the rest

	8.9 Seed data
	8.10 Summary

	Chapter 9 File uploading
	9.1 Attaching a file
	9.1.1 A feature featuring files
	9.1.2 Enter stage right, Paperclip
	9.1.3 Using Paperclip

	9.2 Attaching many files
	9.2.1 Two more files
	9.2.2 Using nested attributes

	9.3 Serving files through a controller
	9.3.1 Protecting files
	9.3.2 Showing your assets
	9.3.3 Public assets
	9.3.4 Privatizing assets

	9.4 Using JavaScript
	9.4.1 JavaScript testing
	9.4.2 Introducing jQuery
	9.4.3 Adding more files with JavaScript
	9.4.4 Responding to an asynchronous request
	9.4.5 Sending parameters for an asynchronous request

	9.5 Summary

	Chapter 10 Tracking state
	10.1 Leaving a comment
	10.1.1 Where’s the ticket?
	10.1.2 The comment form
	10.1.3 The comment model
	10.1.4 The comments controller

	10.2 Changing a ticket’s state
	10.2.1 Creating the State model
	10.2.2 Selecting states
	10.2.3 Callbacks
	10.2.4 Seeding states
	10.2.5 Fixing creating comments

	10.3 Tracking changes
	10.3.1 Ch-ch-changes
	10.3.2 Another c-c-callback
	10.3.3 Displaying changes
	10.3.4 Show me the page
	10.3.5 Automatic escaping saves your bacon
	10.3.6 Styling states

	10.4 Managing states
	10.4.1 Adding additional states
	10.4.2 Defining a default state

	10.5 Locking down states
	10.5.1 Hiding a select box
	10.5.2 Bestowing changing state permissions
	10.5.3 Hacking a form
	10.5.4 Ignoring a parameter

	10.6 Summary

	Chapter 11 Tagging
	11.1 Creating tags
	11.1.1 Creating tags feature
	11.1.2 Using text_field_tag
	11.1.3 Showing tags
	11.1.4 Defining the tags association
	11.1.5 The Tag model
	11.1.6 Displaying a ticket’s tags

	11.2 Adding more tags
	11.2.1 Adding tags through a comment
	11.2.2 Fixing the CommentsController spec

	11.3 Tag restriction
	11.3.1 Testing tag restriction
	11.3.2 Tags are allowed, for some

	11.4 Deleting a tag
	11.4.1 Testing tag deletion
	11.4.2 Adding a link to delete the tag
	11.4.3 Actually removing a tag

	11.5 Finding tags
	11.5.1 Testing search
	11.5.2 Searching by state with Searcher
	11.5.3 Searching by state
	11.5.4 Search, but without the search

	11.6 Summary

	Chapter 12 Sending email
	12.1 Sending ticket notifications
	12.1.1 Automatically watching a ticket
	12.1.2 Using observers
	12.1.3 Defining the watchers association
	12.1.4 Introducing Action Mailer
	12.1.5 An Action Mailer template
	12.1.6 Delivering HTML emails

	12.2 Subscribing to updates
	12.2.1 Testing comment subscription
	12.2.2 Automatically adding a user to a watchlist
	12.2.3 Unsubscribing from ticket notifications

	12.3 Real-world email
	12.3.1 Testing real-world email
	12.3.2 Configuring Action Mailer
	12.3.3 Connecting to Gmail

	12.4 Receiving emails
	12.4.1 Setting a reply-to address
	12.4.2 Receiving a reply

	12.5 Summary

	Chapter 13 Designing an API
	13.1 The projects API
	13.1.1 Your first API
	13.1.2 Serving an API
	13.1.3 API authentication
	13.1.4 Error reporting
	13.1.5 Serving XML
	13.1.6 Creating projects
	13.1.7 Restricting access to only admins
	13.1.8 A single project
	13.1.9 No project for you!
	13.1.10 Updating a project
	13.1.11 Exterminate!

	13.2 Beginning the tickets API
	13.3 Rate limiting
	13.3.1 One request, two request, three request, four
	13.3.2 No more, thanks!
	13.3.3 Back to zero

	13.4 Versioning an API
	13.4.1 Creating a new version

	13.5 Summary

	Chapter 14 Deployment
	14.1 Server setup
	14.1.1 Setting up a server using VirtualBox
	14.1.2 Installing the base

	14.2 RVM and Ruby
	14.2.1 Installing RVM
	14.2.2 Installing Ruby

	14.3 Creating a user for the app
	14.3.1 Key-based authentication
	14.3.2 Disabling password authentication

	14.4 The database server
	14.4.1 Creating a database and user
	14.4.2 Ident authentication

	14.5 Deploy away!
	14.5.1 Deploy keys
	14.5.2 Configuring Capistrano
	14.5.3 Setting up the deploy environment
	14.5.4 Deploying the application
	14.5.5 Bundling gems
	14.5.6 Choosing a database

	14.6 Serving requests
	14.6.1 Installing Passenger
	14.6.2 An init script

	14.7 Summary

	Chapter 15 Alternative authentication
	15.1 How OAuth works
	15.2 Twitter authentication
	15.2.1 Setting up OmniAuth
	15.2.2 Registering an application with Twitter
	15.2.3 Setting up an OmniAuth testing environment
	15.2.4 Testing Twitter sign-in

	15.3 GitHub authentication
	15.3.1 Registering and testing GitHub auth

	15.4 Summary

	Chapter 16 Basic performance enhancements
	16.1 Pagination
	16.1.1 Introducing Kaminari
	16.1.2 Paginating an interface
	16.1.3 Paginating an API

	16.2 Database query enhancements
	16.2.1 Eager loading
	16.2.2 Database indexes

	16.3 Page and action caching
	16.3.1 Caching a page
	16.3.2 Caching an action
	16.3.3 Cache sweepers
	16.3.4 Client-side caching
	16.3.5 Caching page fragments

	16.4 Background workers
	16.5 Summary

	Chapter 17 Engines
	17.1 A brief history of engines
	17.2 Why engines are useful
	17.3 Brand-new engine
	17.3.1 Creating an engine
	17.3.2 The layout of an engine
	17.3.3 Engine routing

	17.4 Setting up a testing environment
	17.4.1 Removing Test::Unit
	17.4.2 Installing RSpec and Capybara

	17.5 Writing your first engine feature
	17.5.1 Your first Capybara test
	17.5.2 Setting up routes
	17.5.3 The topics controller
	17.5.4 The index action
	17.5.5 The new action
	17.5.6 The create action
	17.5.7 The show action
	17.5.8 Showing an association count

	17.6 Adding more posts to topics
	17.7 Classes outside your control
	17.7.1 Engine configuration
	17.7.2 A fake User model
	17.7.3 Authenticating topics
	17.7.4 Adding authorship to topics
	17.7.5 Post authentication
	17.7.6 Showing the last post

	17.8 Releasing as a gem
	17.9 Integrating with an application
	17.10 Summary

	Chapter 18 Rack-based applications
	18.1 Building Rack applications
	18.1.1 A basic Rack application

	18.2 Building bigger Rack applications
	18.2.1 You’re breaking up
	18.2.2 Running a combined Rack application

	18.3 Mounting a Rack application with Rails
	18.3.1 Mounting Heartbeat
	18.3.2 Introducing Sinatra
	18.3.3 The API, by Sinatra
	18.3.4 Basic error checking

	18.4 Middleware
	18.4.1 Middleware in Rails
	18.4.2 Investigating ActionDispatch::Static
	18.4.3 Crafting middleware

	18.5 Summary

	appendix A: Why Rails?
	A.1 Reason #1: the sense of community
	A.2 Reason #2: the speed and ease of development
	A.3 Reason #3: RubyGems
	A.4 Reason #4: emphasis on testing

	appendix B: Tidbits
	B.1 Prettying URLs
	B.2 Attribute change tracking

	index
	Special characters and numbers
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X

