
www.allitebooks.com

http://www.allitebooks.org

Rails 4 Application
Development HOTSH T

Build simple to advanced applications in Rails 4
through 10 exciting projects

Saurabh Bhatia

BIRMINGHAM - MUMBAI

www.allitebooks.com

http://www.allitebooks.org

Rails 4 Application Development HOTSH T

Copyright © 2014 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system,
or transmitted in any form or by any means, without the prior written permission of the
publisher, except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the author, nor Packt Publishing, and its dealers
and distributors will be held liable for any damages caused or alleged to be caused directly
or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: April 2014

Production Reference: 1030414

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78328-629-4

www.packtpub.com

Cover Image by Faiz Fattohi (faizfattohi@gmail.com)

www.allitebooks.com

http://www.allitebooks.org

Credits

Author

Saurabh Bhatia

Reviewers

Gabriel Hilal

Andrew Montgomery-Hurrell

Peter F. Philips

Philip De Smedt

Acquisition Editors

Nikhil Chinnari

Rubal Kaur

Content Development Editor

Priya Singh

Technical Editors

Venu Manthena

Mrunmayee Patil

Shruti Rawool

Copy Editors

Alisha Aranha

Mradula Hegde

Gladson Monteiro

Alfida Paiva

Project Coordinator

Leena Purkait

Proofreaders

Simran Bhogal

Maria Gould

Paul Hindle

Indexers

Rekha Nair

Priya Subramani

Production Coordinator

Aparna Bhagat

Cover Work

Aparna Bhagat

www.allitebooks.com

http://www.allitebooks.org

About the Author

Saurabh Bhatia has been developing professional software since 2005. However, his
programming interests date back to his school days. Starting with Java, he quickly moved to
Ruby on Rails in 2006, and it has been his primary choice of development framework since
then. He built a Ruby on Rails consulting company and ran it for five years. He has worked
with several companies in the tech industry, from getting two-person startups off the ground
to developing software for large corporates. He is currently the CTO of Ruling Digital Inc., a
software company that develops software for universities.

He has been an open source enthusiast and has helped Ubuntu penetrate the Indian market
since 2007. He was a part of the open source promotion society called Twincling Society for
Open Source in Hyderabad. He started and moderated Bangalore Ruby Users Group and also
moderates the Mumbai Ruby Users Group. He is also a part of the RailsBridge initiative for
mentoring new Rails developers.

Over the years, he has written several articles online and in print for different publications,
such as Linux User and Developer, Linux For You, Rails Magazine, Developer.com (http://
www.developer.com/), and SitePoint Ruby (http://www.sitepoint.com/ruby/). He
currently resides in Taiwan. He wishes to continue writing and share his knowledge as much
as possible with budding developers.

I would like to thank my parents, my sister, and my wife for being very
understanding while I was writing this book. They have been pushing me
to do better on this front and have inspired me to write more and more. I
would also like to thank my boss for encouraging and supporting me during
the process.

www.allitebooks.com

http://www.allitebooks.org

About the Reviewers

Gabriel Hilal is a full stack web developer who specializes in Ruby on Rails and related
technologies. He has a bachelor's degree in Information Systems (Internet business) and
a master's degree in Information Systems with Management Studies, both from Kingston
University, London. During his time at the university, he developed a passion for Ruby on
Rails and has since then done freelance work using behavior-driven development and agile
methodologies to build high-quality Rails applications. Gabriel can be contacted on his
website (www.gabrielhilal.com) or by e-mail at gabriel@gabrielhilal.com.

Andrew Montgomery-Hurrell is a software developer, hacker, and an all-round geek
who enjoys everything from Dungeons and Dragons to DevOps. From an early age, he was
fascinated with computers, and after cutting his teeth on BASIC with aging Amstrad CPCs
and Amigas, he moved on to Linux admin, C/C++, followed by Python and then Ruby. Since
the early 2000s, he has worked on a number of web applications in a range of languages and
technologies, right from small company catalog sites to large web applications that serve
thousands of people across the globe. Trained and interested in computing from the bottom
up and coming from a background in electronics and computer interfacing, Andrew has
experience in the full stack of computing technology, from ASICs to applications.

When he isn't working on web applications or infrastructure tools for gaming events and
hosting company Multiplay, he can be found hacking code, reading or writing fiction,
playing computer games, or slaying dragons with his wife, Laura.

www.allitebooks.com

http://www.allitebooks.org

Peter F. Philips is a software engineer, data scientist, and problem solver from New
York City who now resides in San Francisco, CA. He is the founder of TechForProgress and
cofounder of Planet (http://planet.io/) and Recognize (https://recognizeapp.
com/) apps. Peter has been working with Ruby on Rails for seven years since Version 1.6.
He is determined to use technology to improve the planet. In his spare time, Peter enjoys
photography, hiking, rock climbing, and travelling to remote areas of the globe.

Philip De Smedt is a freelance full-stack developer and cofounder of Compete Hub, the
definitive database of all endurance races. His main focus is on API-driven development
using Rails and AngularJS. Philip is also the author of Upgrading to Rails 4, a step-by-step
guide on upgrading your Rails 3 application to Rails 4. He is a Bitcoin and Dogecoin advocate
and has spoken at multiple user groups on Rails and cryptocurrencies. When he's not coding
or creating products, he likes to cycle, read books, or go for a run.

www.allitebooks.com

http://www.allitebooks.org

www.PacktPub.com

Support files, eBooks, discount offers and more
You might want to visit www.PacktPub.com for support files and downloads related to
your book.

Did you know that Packt offers eBook versions of every book published, with PDF and ePub
files available? You can upgrade to the eBook version at www.PacktPub.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up
for a range of free newsletters and receive exclusive discounts and offers on Packt books
and eBooks.

TM

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital book
library. Here, you can access, read and search across Packt's entire library of books.

Why Subscribe?
ff Fully searchable across every book published by Packt

ff Copy and paste, print and bookmark content

ff On demand and accessible via web browser

Free Access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view nine entirely free books. Simply use your login credentials for
immediate access.

www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

Table of Contents

Preface	 1

Project 1: A Social Recipe-sharing Website	 9
Mission briefing	 9
Creating mockups	 11
Adding test data and creating tests	 17
Adding categories	 23
Creating and adding recipes	 26
Creating associations – recipes and categories	 29
Adding authentication	 31
Beautifying your views	 34
Mission accomplished	 39
Hotshot challenges	 39

Project 2: Conference and Event RSVP Management	 41
Mission briefing	 41
Creating and administrating events	 44
Creating search-friendly URLs for events	 49
Adding tags to events	 52
Tagging-based search and tag cloud	 57
Adding Gravatar for a user	 61
Creating RSVPs for events	 63
Adding event moderation	 66
Creating "My events" to manage events created by users 	 72
Mission accomplished	 75
Hotshot challenges	 76

www.allitebooks.com

http://www.allitebooks.org

ii

Table of Contents

Project 3: Creating an Online Social Pinboard	 77
Mission briefing	 77
Creating file uploads and image resizing	 79
Creating an infinitely scrollable page	 87
Creating a responsive grid layout	 91
Adding a full-text search	 95
Resharing the pins and creating modal boxes using jQuery	 102
Enabling the application to send a mail	 105
Securing an application from cross-site scripting or XSS	 112
Mission accomplished	 113
Hotshot challenges	 113

Project 4: Creating a Restaurant Menu Builder	 115
Mission briefing	 115
Creating organizations with sign up	 117
Creating restaurants, menus, and items	 124
Creating user roles	 130
Creating plans	 134
Creating subdomains	 139
Adding multitenancy and reusable methods	 144
Creating a monthly payment model, adding a free trial plan, and
generate a monthly bill	 146
Exporting data to a CSV format	 150
Mission accomplished	 152
Hotshot challenges	 152

Project 5: Building a Customizable Content Management System	 153
Mission briefing	 153
Creating a separate admin area	 155
Creating a CMS with the ability to create different types of pages	 160
Managing page parts	 168
Creating a Haml- and Sass-based template	 172
Generating the content and pages	 177
Implementing asset caching	 182
Mission accomplished	 185
Hotshot challenges	 186

Project 6: Creating an Analytics Dashboard using Rails and Mongoid	 187
Mission briefing	 187
Creating a MongoDB database	 190
Creating a click-tracking mechanism	 193

iii

Table of Contents

Creating a visit-tracking mechanism	 195
Writing map-reduce and aggregation to fetch and analyze data	 199
Creating a dashboard to display clicks and impression values	 205
Creating a line graph of the daily click activity	 207
Creating a bar graph of the daily visit activity	 210
Creating a demographic-based donut chart	 213
Mission accomplished	 218
Hotshot challenges	 218

Project 7: Creating an API Mashup – Twitter and Google Maps	 219
Mission briefing	 219
Creating an application login with Twitter	 221
Calling all Twitter friends	 227
Getting latitude and longitude details of the user's location	 232
Passing Twitter data to the Google Maps API using Rails	 234
Displaying friends on the map using the Google API	 237
Creating points of interest – filter users based on their location	 241
Mission accomplished	 247
Hotshot challenges	 247

Project 8: API Only Application – Backend for a Mobile App	 249
Mission briefing	 249
Creating, editing, and deleting notes	 251
Arranging notes category wise	 261
Sending join data via JSON	 264
Creating an OAuth2 provider	 268
Generating API keys	 273
Securing the application	 279
Mission accomplished	 282
Hotshot challenges	 283

Project 9: Video Streaming Website using Rails and HTML5	 285
Mission briefing	 285
Uploading the video	 287
Encoding the video	 291
Displaying the video panel and playing the video	 299
Caching the content – text and video	 304
Queuing the job	 310
Mission accomplished	 316
Hotshot challenges	 317

iv

Table of Contents

Project 10: A Rails Engines-based E-Commerce Platform	 319
Mission briefing	 319
Creating a category and product listing	 321
Creating a shopping cart and an Add to Cart feature	 329
Packaging the engine as a gem	 339
Mounting the engine on a blank Rails application	 345
Customizing and overriding the default classes	 349
Mission accomplished	 354
Hotshot challenges	 354

Index	 355

Preface

In the past few years, Rails has emerged as one of the most popular choices of framework
for developing web applications. It is also one of the most popular courses on all the major
websites that teach web development, and a lot of developers have built a career out of it.
Rails is known for providing productivity to developers and allows them to write clean and
functional human-readable code. The latest major version of Rails, Rails 4, is a feature-packed
update with a lot of new syntaxes and patterns.

Rails 4 Application Development Hotshot presents a practical approach to upgrade your
Rails knowledge to Rails 4. This is done by building the most popular types of applications
that people usually build using Rails and highlighting the new ways of doing this as opposed
to the old ones in the latest version. The book also closely follows best practices and the
commonly used gems and their compatibility with the latest Rails version. While working
on these projects, we will also see some new design patterns and get ideas to refactor our
current codebase. This book will help you write basic applications that are customizable
and scalable and introduce you to a wide spectrum of concepts and ideas.

What this book covers
Project 1, A Social Recipe-sharing Website, explains how to create a website where many
users can sign up, log in, create food recipes, and categorize them into different types.

Project 2, Conference and Event RSVP Management, explains how to create an application
where users can create events, organize meetups for different topics and themes, and other
users can join them in these events.

Preface

2

Project 3, Creating an Online Social Pinboard, covers how to create an online pinboard,
where a user can pin whatever he/she likes on to it and organize these objects. These pins
can be repinned by other users on to their pinboards and thus create an online collection
of the things or objects that people like.

Project 4, Creating a Restaurant Menu Builder, covers how to build a fully responsive system
to create and manage menus for a restaurant. This project will port restaurant menus to
tablets and smartphones and also demonstrate how to make an SaaS application in Rails.

Project 5, Building a Customizable Content Management System, explains how to create a
customizable content management system to power simple content-driven websites. We will
effectively create a system where designers will have the freedom to choose the frontend
they want and end users can easily manage the content for that frontend.

Project 6, Creating an Analytics Dashboard using Rails and Mongoid, will cover tracking
clicks, page views, and the location of the visitors who read the content generated from
the website. We will analyze the data and generate different types of graphs that represent
different types of data.

Project 7, Creating an API Mashup – Twitter and Google Maps, will dive into an API mashup
of Twitter and Google Maps that will generate an application to map the locations of your
friends who are tweeting. We will also filter these people based on country names.

Project 8, API Only Application – Backend for a Mobile App, explains an application where the
entire backend is in the form of an API. The entire data will be available on the frontend in
the form of JSON through API endpoints. The frontend can be a web or mobile application.

Project 9, Video Streaming Website using Rails and HTML5, explains how to create an
application to upload and encode videos. This application will allow visitors to stream and
watch videos using an HTML5-based player.

Project 10, A Rails Engines-based E-Commerce Platform, explains how to create a Rails engine
for generating an e-commerce application. This is mountable inside a blank Rails application.

What you need for this book
In order to work with the projects in this book, you will need the following installed on
your system:

ff Ruby 1.9.3

ff Rails 4

ff MySQL 5+

ff MongoDB

Preface

3

ff jQuery

ff ImageMagick

ff RMagick

ff Git

ff Morris.js

ff Apache Solr

ff Apache Tomcat

ff Bootstrap

ff Sass

ff Sublime Text

ff A tool for mock-ups

ff Haml

ff Memcached

ff Twitter API keys

ff Google Maps API keys

ff The Rails API

ff FFmpeg

ff Redis

ff Video.js

ff A GitHub account

ff Devise

ff Doorkeeper

All projects have been upgraded and tested with Ruby 2.0 and Rails 4.1.0 beta.

Who this book is for
This book is aimed at developers who are already familiar with the basics of the Rails
framework and have worked with Rails 3.2 or earlier versions. As the book follows a practical
approach and uses terminology specific to Rails and web programming, it is assumed you
have some prior experience with the development of applications. This book will help you
upgrade your knowledge and improve its applicability.

Preface

4

Conventions
In this book, you will find several headings that appear frequently. To give clear instructions
of how to complete a procedure or task, we use:

Mission briefing
This section explains what you will build, with a screenshot of the completed project.

Why is it awesome?
This section explains why the project is cool, unique, exciting, and interesting. It describes
what advantage the project will give you.

Your Hotshot objectives
This section explains the eight major tasks required to complete your project:

ff Task 1

ff Task 2

ff Task 3

ff Task 4

ff Task 5

ff Task 6

ff Task 7

ff Task 8

Mission checklist
This section explains any prerequisites for the project, such as resources or libraries that
need to be downloaded, and so on.

Task 1
This section explains the task that you will perform.

Prepare for lift off
This section explains any preliminary work that you may need to do before beginning work
on the task.

Preface

5

Engage thrusters
This section lists the steps required in order to complete the task.

Objective complete - mini debriefing
This section explains how the steps performed in the previous section allow us to complete
the task. This section is mandatory.

Classified intel
This section provides extra information that is relevant to the task.

You will also find a number of styles of text that distinguish between different kinds of
information. Here are some examples of these styles and an explanation of their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows: "In
case the form validation fails, the file field is reset."

In all code blocks, the first line is the name of the file kept there for your reference, followed
by the code. An example of a code block is shown as follows:

app/models/event.rb
class Event < ActiveRecord::Base
 belongs_to :organizers, class_name: "User"
end

Database migrations that appear in the book appear without the filename as the generated
filename varies from system to system. Following is how it is defined in the book:

class AddPlanIdToUsers < ActiveRecord::Migration
 def change
 add_column :users, :plan_id, :integer
 end
end

Any command-line input or output is written as follows:

:~/pinpost$ rails g jquery:install

Preface

6

New terms and important words are shown in bold. Words that you see on the screen,
in menus or dialog boxes for example, appear in the text like this: "We are going to select
From Scratch and build our wireframes using the given set of tools."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about this
book—what you liked or may have disliked. Reader feedback is important for us to develop
titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com, and
mention the book title via the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing or
contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to help you
to get the most from your purchase.

Downloading the example code
You can download the example code files for all Packt books you have purchased from your
account at http://www.packtpub.com. If you purchased this book elsewhere, you can
visit http://www.packtpub.com/support and register to have the files e-mailed directly
to you.

http://www.PacktPub.com/
http://www.PacktPub.com/support

Preface

7

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes do
happen. If you find a mistake in one of our books—maybe a mistake in the text or the
code—we would be grateful if you would report this to us. By doing so, you can save other
readers from frustration and help us improve subsequent versions of this book. If you find
any errata, please report them by visiting http://www.packtpub.com/submit-errata,
selecting your book, clicking on the errata submission form link, and entering the details
of your errata. Once your errata are verified, your submission will be accepted and the
errata will be uploaded on our website, or added to any list of existing errata, under the
Errata section of that title. Any existing errata can be viewed by selecting your title from
http://www.packtpub.com/support.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media. At Packt,
we take the protection of our copyright and licenses very seriously. If you come across any
illegal copies of our works, in any form, on the Internet, please provide us with the location
address or website name immediately so that we can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with any
aspect of the book, and we will do our best to address it.

www.allitebooks.com

mailto:copyright@packtpub.com
http://www.allitebooks.org

Project 1
A Social Recipe-sharing

Website

Food-recipe websites have been in existence since the advent of the Internet. Food.com,
thefoodnetwork.com, and bbcgoodfood.com are some of most visited sites. Food is also
one of the most popular searched categories on the Internet. Most of these websites have
experts writing content for them. In this project, we will develop a website where amateur
users can upload their recipes and those recipes can be viewed and shared by others and
generated by several users. The recipes can be shared over various social networking sites
by the readers.

Mission briefing
Our goal is to create a very basic social website where users can sign up and create recipes they
know the best. Other users can filter these recipes based on their interests, tastes, and food
preferences and share it on Facebook, Twitter, or other social networking sites of their choice.
At the end of this project, we should be able to perform the following tasks:

ff Create an application

ff Know what's the best way for creating an application

ff Make use of some of the new features available for creating the application

User stories are a very important part of the entire project. They can make or break project
schedules and have a drastic effect on the product in the long run. Once defined, our use
cases will have steps on how a user interacts with the application and the validations required
for it to pass. It will be much easier for us to keep this as a reference while coding. A good
specification, both visual and technical, goes a long way in helping developers save time.

A Social Recipe-sharing Website

10

The home page will contain feed of the entire system—users who have newly joined the
system, created new recipes, and edited new recipes. The screenshot of the home page of
the final system is as follows:

Why is it awesome?
Everyone loves food, and some of us like to cook food too. The simplest and the most
interesting way to build momentum for development is with a simple project. We will
use this project to lay the foundation of Rails 4 comprehensively and build a base for the
upcoming projects. Developers who have been using earlier versions of Rails will get a
chance to work with new features in Version 4.0.0. Also, this will set the tone for the rest
of the book, in terms of the process we will follow or we should follow while building our
applications. We are following a test-driven development approach in the context of Rails 4.
So, we will get a fair amount of exposure to the minitest framework, which has been newly
introduced, and we will follow it up with some basics of ActiveRecord. While running
through this, we will also work with Bootstrap 3.0 to style our views.

Your Hotshot objectives
While building this application, we will complete the following tasks:

ff Creating mockups

ff Adding test data and creating tests

ff Adding categories

Project 1

11

ff Creating and adding recipes

ff Creating associations – recipes and categories

ff Adding authentication

ff Beautifying your views

Mission checklist
We need the following software installed on the system before we start with our mission:

ff Ruby 1.9.3 / Ruby 2.0.0

ff Rails 4.0.0

ff MySQL 6

ff Bootstrap 3.0

ff Sass

ff Devise

ff Git

ff A tool for mockups; I personally use MockFlow

Creating mockups
Before we actually start developing the application, we will build two types of specifications:
visual specifications called mockups and technical specifications called user stories. Visual
imagination needs a fair bit of creativity and is best left to the designers; however, for
our reference here, we will see how to create mockups in case you are working on an
end-to-end process.

Prepare for lift off
There are several mockup tools available online and are free to download and install.
Balsamiq (https://www.mybalsamiq.com), MockFlow (http://mockflow.com), and
mockingbird (https://gomockingbird.com/) are some of the tools that I have explored
and are fairly useful. We will use MockFlow for our projects. Sign up and create a free
account with MockFlow.

A Social Recipe-sharing Website

12

Engage thrusters
For creating mockups, we will perform the following steps:

1.	 Setting up a project in MockFlow is pretty straightforward. As soon as we log in to
the account, we will be able to see an Add Project button. Once we click on it, the
following screen shows up with various options for setting up different kinds of
projects. We are going to select From Scratch and build our Wireframes using the
given set of tools.

2.	 We will select the From Scratch option present under the Wireframe Project screen,
name it, and proceed with the setup of the pages we want in our application.

3.	 The tool to the right contains two tabs:

�� pages: With this option, you can Create, Sort, Duplicate, and Delete pages
in your application

�� components: With this option, the textboxes, text areas, scrollbars, logos,
images, and different elements of the page can be simply dragged-and-
dropped from the component panel to the canvas on the center of the page
to create a Wireframe

Project 1

13

4.	 Let's start building our first mockup. Drag-and-drop the Layout Builder icon located
in the components panel, and using your mouse, create and resize it so it fits on
the page.

5.	 This layout suits our application needs because our aim is to build an application
with a filter bar to the left that would allow users to filter categories with ease. The
central portion will display the content and will contain the list of various recipes.
The portion to the left will contain the list of various categories.

A Social Recipe-sharing Website

14

6.	 The header will contain the logo, login details, and dashboard links, whereas the
footer will contain copyright information and company information links.

7.	 After resizing the layout builder, we will add the logo and images to the header.
In order to do so, we will first drag-and-drop the Image component from the
components panel and double-click on it. We will be presented with a modal box
to manage and upload images. Browse and upload images using this tool. Once an
image is selected, just drag and move it to the position where you want to see the
logo placed.

Project 1

15

8.	 The next step would logically be to build the inner page. This page will have some
text on it. We will drag the title and text from the components bar and drop it to the
central part of the layout.

9.	 Add checkboxes and the remaining elements to the mockup.

A Social Recipe-sharing Website

16

10.	 We will finally add some checkboxes to the left bar for filters. This includes food
type, food preferences, and cuisines in order to properly categorize our recipes.

11.	 We can now figure out other elements of the page, for example, in order to create
links such as Login/Signup, and About Us, we can use the Label component from
the components panel.

Objective complete – mini debriefing
As seen in the previous steps, we added various page elements, including text areas, a title, and
checkboxes to our page. We can use these page elements to create mockups for all the pages.
Mockups for the home page and recipe page are shown in the following two screenshots:

Project 1

17

The home page now looks complete with different links and information in the footer shown
as follows:

Classified intel
The options offered in MockFlow include building mockups for the following:

ff Web applications

ff Mobile applications

ff Themes specific to a particular CMS, or using a particular CSS framework such
as Bootstrap

ff Simple Wireframing from scratch or from templates

Adding test data and creating tests
Rails does a lot of work for us by providing us with generators, right from a blank application
to different parts of the application. The trick lies in using it only when required. Our first
application will consider a very simple use case of generators, but we will scarcely use them
in subsequent projects. In this task, we will generate our application and write tests before
we write the code.

www.allitebooks.com

http://www.allitebooks.org

A Social Recipe-sharing Website

18

Prepare for lift off
As MySQL and PostgreSQL are the most common RDBMS around, we're going to use either
of them for building most of our applications. The default database in the development
mode with Rails is SQLite. Make sure you have one of these databases working on your
system and also make sure that the connection with Rails is working. We will use MySQL for
most of our projects including this one.

Engage thrusters
The steps for creating a new application and setting up the database (db) are as follows:

1.	 Let us first create a blank application with a MySQL database as the default database
using the following command:

:~/$ rails new curry-nation -d mysql

2.	 Now we can go ahead and set up the application's database.yml file under
config to connect to the system's database. You would need to make this file suit
the database that you are using. We are using MySQL; likewise, you can edit the file
for the database of your choice.

config/database.yml
development
 adapter: mysql2
 encoding: utf8
 database: curry-nation_development
 pool: 5
 username: root
 password:
 socket: /var/run/mysqld/mysqld.sock
test:
 adapter: mysql2
 encoding: utf8
 database: curry-nation_test
 pool: 5
 username: root
 password:
 socket: /var/run/mysqld/mysqld.sock

production:
 adapter: mysql2
 encoding: utf8
 database: curry-nation_production
 pool: 5
 username: root
 password:
 socket: /var/run/mysqld/mysqld.sock

Project 1

19

3.	 Once the database is set up, we need to create the database using the following
commands:

:~/curry-nation$ rake db:create

:~/curry-nation$ rake db:migrate

4.	 We will first prepare our fixtures. Fixtures contain test data that loads into the test
database. These are placed in the fixtures folder under test with the filename
recipes.yml:

test/fixtures/recipes.yml
curry:
 title: Curry
 food_preference_id: 1
 food_type: 1
 cuisine_id: 1
 servings: 1
 cooking_time: 1
 level_of_difficulty: Easy
 ingredients: Onions Tomatoes Salt Oil
 procedure: Heat Oil Chop Onions, tomatoes and
 Salt to it.

5.	 Once the fixtures are ready, we can populate the db with fixtures. However, we have
not yet created the models and tables. Hence, we will load the fixtures' data once
we create our models.

6.	 We can now go ahead and write integration tests. We will now add an integration
test and create it line by line:

~/test/integration$ recipe_test.rb

7.	 We will load the test helper that will load the test database and other dependencies
for the test:

require 'test_helper'

8.	 Load the test record and navigate to the new recipe page:

test/integration/recipe_test.rb
 curry = recipes(:curry)
 get "/recipes/new"

9.	 Post the data to the new method and assert for a success response. At this point,
it even checks for validations if they are defined. Depending on this, it would be
redirected to the index page:

test/integration/recipe_test.rb
 assert_response :success
 post_via_redirect "/recipes/new", title:
 recipes(:curry).title

A Social Recipe-sharing Website

20

10.	 We can now prepare the database and run the test:

:~/curry-nation/test/integration$ rake db:create RAILS_ENV="test"

(in /curry-nation)

r:~/curry-nation/test/integration$ rake test recipe_test.rb
 10 tests, 10 assertions, 10 failures, 0 success, 0 skips

11.	 The final integration test looks like this:

test/integration/recipe_test.rb
class RecipeFlowsTest < ActionDispatch::IntegrationTest
 fixtures :recipes
 test "create recipes" do
 https!
 curry = recipes(:curry)
 get "/recipes/new"
 assert_response :success
 post_via_redirect "/recipes/new", title:
 recipes(:curry).title
 assert_equal '/recipes', path
 assert_equal 'Create Recipe', flash[:notice]
 https!(false)
 get "/recipes"
 assert_response :success
 assert assigns(:recipes)
 end
end

12.	 Our integration tests look at the way the pages and routes work with each other.
Controller tests look at how data is passed between these calls, and the methods
call themselves.

13.	 Set up a recipe variable and get the index method:

test/integration/recipe_test.rb
class RecipesControllerTest < ActionController::TestCase
 setup do
 @recipe = recipes(:one)
 end
 test "should get index" do
 get :index
 assert_response :success
 assert_not_nil assigns(:recipes)
 end

14.	 We will use assert to get a new page in our controller test:

test/controllers/recipes_controller_test.rb
 test "should get new" do
 get :new
 assert_response :success
 end

Project 1

21

15.	 We will also perform a test for creating a recipe:

test/controllers/recipes_controller_test.rb
 test "should create recipe" do
 assert_difference('Recipe.count') do
 post :create, recipe: { cooking_time:
 @recipe.cooking_time, cuisine_id:
 @recipe.cuisine_id, food_preference_id:
 @recipe.food_preference_id, food_type:
 @recipe.food_type, ingredients:
 @recipe.ingredients, level_of_difficulty:
 @recipe.level_of_difficulty, procedure:
 @recipe.procedure, servings: @recipe.servings,
 title: @recipe.title }
 end

 assert_redirected_to recipe_path(assigns(:recipe))
 end

16.	 Add a test for showing a recipe using the following code:

test/controllers/recipes_controller_test.rb
 test "should show recipe" do
 get :show, id: @recipe
 assert_response :success
 end

17.	 We will test the edit and update methods:

test/controllers/recipes_controller_test.rb
 test "should get edit" do
 get :edit, id: @recipe
 assert_response :success
 end

 test "should update recipe" do
 patch :update, id: @recipe, recipe: { cooking_time:
 @recipe.cooking_time, cuisine_id:
 @recipe.cuisine_id, food_preference_id:
 @recipe.food_preference_id, food_type:
 @recipe.food_type, ingredients:
 @recipe.ingredients, level_of_difficulty:
 @recipe.level_of_difficulty, procedure:
 @recipe.procedure, servings: @recipe.servings,
 title: @recipe.title }
 assert_redirected_to recipe_path(assigns(:recipe))
 end

A Social Recipe-sharing Website

22

18.	 Lastly, we will check for deletions:

test/controllers/recipes_controller_test.rb
 test "should destroy recipe" do
 assert_difference('Recipe.count', -1) do
 delete :destroy, id: @recipe
 end

 assert_redirected_to recipes_path
 end
end

Downloading the example code

You can download the example code files for all Packt books you have purchased
from your account at http://www.packtpub.com. If you purchased this
book elsewhere, you can visit http://www.packtpub.com/support and
register to have the files e-mailed directly to you.

Objective complete – mini debriefing
As we saw in the previous task, the structure of the default testing framework in Rails 4
includes the respective style folder structure, which is much cleaner and nicely abstracted
compared to the earlier versions. This is how it looks:

:~/curry-nation/test$ ls
controllers fixtures helpers integration mailers models
 test_helper.rb

The test folder is self-descriptive in terms of the folder structure and clearly denotes which
test belongs to which part of the system.

Here, we have prepared the test data and written tests that match the specifications. This
will help us emulate our functionality. We are now ready to write some code in order to run
our tests. The tests in this case failed because there is no code for the tests to run.

Classified intel
Testing is the backbone of your application. If you don't write tests, you are opening a
Pandora's box for yourself.

Project 1

23

Adding categories
To make the content of the website easily browsable, it makes sense to categorize it in
different ways according to the diversity of choice a user has regarding food recipes. In this
task, we will build navigation bars that would be visible on the left-hand side. Actually, it goes
much deeper than just being the navigation bar. This is because it has to be built in a way that
allows us to effectively search for data in future. So, for us, categories are a way to arrange
data and make it more accessible, and in this task, we will see how to create categories.

Categories in our application are divided into three parts:

ff Food preferences: Food preferences include the value system of users. They might
like dairy free, vegan, vegetarian, meat, and so on. Recipes are categorized on the
basis of this.

ff Food types: Food types denote whether the food is a main course, a curry, a side
dish, or a dessert.

ff Cuisines: The final categorization is on the basis of cuisine.

Engage thrusters
The steps for adding categories are as follows:

1.	 We first need to create models that can be associated with the recipes:

:~/curry-nation$ rails g model food_type name:string
 invoke active_record
 create db/migrate/20130803103254
 _create_food_types.rb
 create app/models/food_type.rb
 invoke test_unit
 create test/models/food_type_test.rb
 create test/fixtures/food_types.yml

2.	 We can't leave the categories blank, and they need some default data. We do not
have an interface to load categories so we will use the seeds' data by adding default
data using seed scripts.

3.	 This generates a food type model, fixtures, blank tests, and table migrations. These
values have to be available in the database in order to be used with the recipes. We
will load them using seeds.rb.

db/seeds.rb
food_types = ["Curry", "Dessert", "Sides","Breakfast"]
food_types.each{|d| FoodType.where(:name => d).create}

A Social Recipe-sharing Website

24

Once done, we'll run the following code:

rake db:migrate
rake db:seed

The following steps will help us to modify seeds:

1.	 The default seeds, if simply defined, can create duplicate records in the database
and might fail validations. This is because every time we run rake db:seeds, it
runs all the queries again. In order to avoid this, we can add first_or_create
after the data, which checks for the record in the database before adding it to
the database:

db/seeds.rb
food_types.each{|d| FoodType.where(:name => d).first_or_create}

2.	 Likewise, we can create other models related to categories in the same way:

:~/curry-nation$ rails g model food_preference
 name:string
 invoke active_record
 create
 db/migrate/20130803110704_create
 _food_preferences.rb
 create app/models/food_preference.rb
 invoke test_unit
 create test/models/food_preference_test.rb
 create test/fixtures/food_preferences.yml
:~/curry-nation$ rake db:migrate
== CreateFoodPreferences: migrating =============================
=============
-- create_table(:food_preferences)
 -> 0.1313s
== CreateFoodPreferences: migrated (0.1315s) ====================
=============

:~/curry-nation$ rails g model cuisine name:string
 invoke active_record
 create
 db/migrate/20130803111845_create_cuisines.rb
 create app/models/cuisine.rb
 invoke test_unit
 create test/models/cuisine_test.rb
 create test/fixtures/cuisines.yml
:~/curry-nation$ rake db:migrate
== CreateCuisines: migrating ====================================
======
-- create_table(:cuisines)
 -> 0.1107s
== CreateCuisines: migrated (0.1109s) ===========================
========

Project 1

25

3.	 Load them into the database as follows:

db/seeds.rb
food_preferences = ["Vegetarian", "Vegan",
 "Meat","Dairy"]
food_preferences.each{|d| FoodPreference.where(:name =>
 d).first_or_create}

cuisines = ["Italian", "Mexican", "Indian","Chinese"]
cuisines.each{|d| Cuisine.where(:name =>
 d).first_or_create}
:~/curry-nation$ rake db:seed

4.	 For accessing the console and checking the entered data, we can load the Rails
console and check whether all the values are present in the database or not:

:~/curry-nation$ rails c
Loading development environment (Rails 4.0.0)
1.9.3-p327 :002 > FoodType.all
 FoodType Load (0.9ms) SELECT `food_types`.* FROM
 `food_types`
 => #<ActiveRecord::Relation [#<FoodType id: 1, name:
 "Curry", created_at: "2013-08-03 10:57:37",
 updated_at: "2013-08-03 10:57:37">, #<FoodType id: 2,
 name: "Dessert", created_at: "2013-08-03 10:57:37",
 updated_at: "2013-08-03 10:57:37">, #<FoodType id: 3,
 name: "Sides", created_at: "2013-08-03 10:57:37",
 updated_at: "2013-08-03 10:57:37">, #<FoodType id: 4,
 name: "Breakfast", created_at: "2013-08-03 10:57:37",
 updated_at: "2013-08-03 10:57:37">]>
1.9.3-p327 :003 > FoodPreference.all
 FoodPreference Load (0.7ms) SELECT
 `food_preferences`.* FROM `food_preferences`
 => #<ActiveRecord::Relation [#<FoodPreference id: 1,
 name: "Vegetarian", created_at: "2013-08-03
 11:15:56", updated_at: "2013-08-03 11:15:56">,
 #<FoodPreference id: 2, name: "Vegan", created_at:
 "2013-08-03 11:15:56", updated_at: "2013-08-03
 11:15:56">, #<FoodPreference id: 3, name: "Meat",
 created_at: "2013-08-03 11:15:56", updated_at: "2013-
 08-03 11:15:56">, #<FoodPreference id: 4, name:
 "Dairy", created_at: "2013-08-03 11:15:56",
 updated_at: "2013-08-03 11:15:56">]>
1.9.3-p327 :004 > Cuisine.all
 Cuisine Load (0.6ms) SELECT `cuisines`.* FROM
 `cuisines`

A Social Recipe-sharing Website

26

 => #<ActiveRecord::Relation [#<Cuisine id: 1, name:
 "Italian", created_at: "2013-08-03 11:28:54",
 updated_at: "2013-08-03 11:28:54">, #<Cuisine id: 2,
 name: "Mexican", created_at: "2013-08-03 11:28:54",
 updated_at: "2013-08-03 11:28:54">, #<Cuisine id: 3,
 name: "Indian", created_at: "2013-08-03 11:28:54",
 updated_at: "2013-08-03 11:28:54">, #<Cuisine id: 4,
 name: "Chinese", created_at: "2013-08-03 11:28:54",
 updated_at: "2013-08-03 11:28:54">]>

Objective complete – mini debriefing
We have successfully created category-related models and loaded values to them using
seeds. We also saw the best practice for creating seeds so that we can avoid loading
duplicate data in the database.

Seeds should be defined for all kinds of default data in the system. Also, the process of
adding seeds should be incremental and ongoing. Some might argue that it is very close
to fixtures; however, fixtures belong to the test bed, whereas seeds are generic data that
should be loaded by default in the system.

Creating and adding recipes
Scaffolding is the easiest way to start, but as the word itself suggests, it's just scaffolding.
Rails goes much beyond that. Also, whether to use it or not in practical projects is a huge
debate. However, I feel that we can use it to start but it's important that we build our
functionalities in it. This will provide us with a template that adheres to best practices to
start with, and then builds our code upon it.

Engage thrusters
After successfully writing our tests, we will write our code to make sure our tests run.

1.	 We will first understand our use case:

�� User story; that is, to create a recipe

�� User enters the title

�� Users selects food preferences, food type, cuisine, and the level of difficulty

�� User enters servings, cooking time, ingredients, and procedure

�� User saves the recipe

Project 1

27

Make sure that the validations required are as follows:
ff Title is mandatory
ff Food preferences, food type, and cuisine are mandatory

2.	 We will start with generating a scaffold. The general format is to write the command
followed by the name of model, fields, and datatype of each field shown as follows:

:~/curry-nation$ rails g scaffold recipe title:string
 cooking_time:string difficulty_level:string
 food_type_id:integer food_preference_id:integer
 cuisine_id:integer ingredients:text procedure:text

This will create files that include model, controller, basic views, and skeleton tests.

3.	 We can now see what we have already created. In order to see what we have
created so far, let's fire up our server and see what we just created by navigating
to localhost:3000.

www.allitebooks.com

http://www.allitebooks.org

A Social Recipe-sharing Website

28

4.	 Now, as we can see, the category values that we added previously are blank
textboxes in our form. We would need to create dropdowns for each one of
them so that they are selected and sent to the db.

 <div class="form-group">
 <%= f.label :food_preference %>

 <%= f.select(:food_preference_id,
 options_from_collection_for_select(FoodPreference.all,
 :id, :name), {:prompt => 'Please Choose'}, :class =>
 "form-control") %>
 </div>

<div class="form-group">
 <%= f.label :food_type %>

 <%= f.select(:food_type_id,
 options_from_collection_for_select(FoodType.all, :id,
 :name), {:prompt => 'Please Choose'}, :class => "form-
 control") %>
 </div>

 <div class="form-group">
 <%= f.label :cuisine %>

 <%= f.select(:cuisine_id,
 options_from_collection_for_select(Cuisine.all, :id,
 :name), {:prompt => 'Please Choose'}, :class => "form-
 control") %>
 </div>

5.	 As you can see in the preceding code, we are able to populate the values in
the select box from our database tables and pass the IDs to the recipe table
of the database.

6.	 We will define an array in the recipe model and access it in the view. There is also
another dropdown required for "level of difficulty" to be defined inside the recipe
model. We can create a simple array with the names of difficulty levels as follows:

app/models/recipe.rb
DIFFICULTY=%w(Easy Medium Hard)

7.	 We can now call the level of difficulties directly inside our views and access the
array values by calling it on the model name using Recipe::DIFFICULTY, shown
as follows:

app/views/recipes/_form.html.erb
 <div class="form-group">
 <%= f.label :difficulty_level %>

 <%=f.select :difficulty_level, Recipe::DIFFICULTY,{} ,
 :class => "form-control"%>
 </div>

Project 1

29

Objective complete – mini debriefing
At the end of this task, we will be able to create a recipe and add them to categories.
However, we have not yet created a real association between them as we discussed earlier.
We also saw that we can define arrays and call them directly from our model class like we
did in the case of food type, food preferences, and cuisines.

Creating associations – recipes and
categories

Associations are important in order to pass and access data between the models.
ActiveRecord adds one of the major productivity boosts by avoiding writing SQL by hand.
In this task, we will define relationships between different models and tell them how they
should behave with each other.

A Social Recipe-sharing Website

30

Engage thrusters
We will discuss creating an association between the recipe and category models in this
section.

1.	 According to our use case, each food type can have multiple recipes associated to it.
This is because logically speaking, a category will have many recipes associated to it.

app/models/food_type.rb
class FoodType < ActiveRecord::Base
 has_many :recipes
end

2.	 Also, each recipe belongs to a particular food type, which we can define by adding a
belongs_to rule to the recipe model.

app/models/recipe.rb
class Recipe < ActiveRecord::Base
 belongs_to :food_type
end

3.	 In the same way, we can associate other categories to the recipe model too, shown
as follows:

app/models/food_preference.rb
class FoodPreference < ActiveRecord::Base
 has_many :recipes
end
app/models/cuisine.rb
class Cuisine < ActiveRecord::Base
 has_many :recipes
end

4.	 We can now display these values in our views in the following ways:

app/views/recipes/index.html.erb
 <td><%= recipe.food_preference.name %></td>
 <td><%= recipe.food_type.name %></td>
 <td><%= recipe.cuisine.name %></td>

Objective complete – mini debriefing
We have successfully set up associations between the models, and they can now be accessed
seamlessly between controllers and views.

Right associations are not only important for properly passing data between controllers and
models, but also for critical tasks such as searching.

Project 1

31

Adding authentication
We want legitimate people to post on our website and avoid spam. In order to do so,
authentication is a must. In this task, we will see how to use devise to add authentication
to the application. The choice of devise is quite obvious because it is a very complete
authentication engine in every sense. It is also very easily extensible and hence the best
choice for this.

Prepare for lift off
Devise is the most popular and up-to-date solution of authentication with Rails. We will use
it to add user authentication to our website.

Engage thrusters
Let's have a look at how can we use devise to add user authentication to our website.

1.	 The use case for devise is as follows:

�� User story; that is, user sign-up

�� User clicks on sign-up

�� User fills in the e-mail

�� User enters and confirms the password

�� If validations are passed, the user gets a valid account

The points that are checked for validations are:
ff Is the e-mail format valid?
ff Does the password comprise a minimum of eight characters

in length?
ff Does the information entered in the password and confirm

password fields match?

2.	 We can add devise and generate the basic authentication by adding the following
code to the Gemfile and running the bundle:

gem 'devise', github: 'plataformatec/devise'

3.	 We can install devise using the following command line. We can then go ahead and
perform the installation of basic configuration files of devise:

:~/curry-nation$rails g devise:install

A Social Recipe-sharing Website

32

4.	 This will create two files for us: initializers/devise.rb and locales/
devise.en.yml. We can now generate our user model:

:~/curry-nation$rails g devise user

5.	 The following command line will mount the Devise application routes on the
routes.rb file:

config/routes.rb

 devise_for :users

6.	 We will now protect selected methods. Devise comes with a set of methods that can
be readily used with user-related resources in our application. We will first proceed
with the protection of our specific methods inside our recipe model:

app/controllers/recipes_controller.rb

 before_filter :authenticate_user!, only: [:new, :edit, :create,
 :update, :destroy]

7.	 This will allow us to protect the new, edit, create, update, and destroy
methods using user authentication. The current_user method allows access
to the logged-in user in the session. We can display the e-mail of the user using
this method.

8.	 Let's write a "create user login" user story as follows:

�� User story; that is, user login

�� User clicks on the login link

�� User fills in the username and password

�� Validations are applied to check whether both the username and password
are present in the database

Project 1

33

9.	 We can also protect specific methods in views. The if user_signed_in? method
is a conditional method provided by Devise. We can use it to check whether the user
session is in progress or not. If it is, then we can display the e-mail of the user and
the logout link; if not, then display the login and sign-up links:

app/views/layouts/application.html.erb
<ul class="nav navbar-nav pull-right">
 <% if user_signed_in? %>
 <%=link_to "#{current_user.email}" %>
 <li class="active"><%= link_to "Logout",
 destroy_user_session_path%>
 <%else%>
 <%= link_to "Login", new_user_session_path %>
 <li class="active"><%= link_to "SignUp",
 new_user_registration_path%>
 <%end%>

10.	 We can make the methods visible only to the logged-in users. Also, though we have
already protected our new and edit methods using authentication, we can hide them
altogether from the views, again by using the if user_signed_in? method:

app/views/recipes/index.html.erb
 <% if user_signed_in? %>
 <td><%= link_to 'Edit', edit_recipe_path(recipe),
 :class=>"btn btn-success btn-small"%></td>
 <td><%= link_to 'Delete', recipe, method: :delete,
 data: { confirm: 'Are you sure?' }, :class=>
 "btn btn-danger btn-small" %></td>
 <%end%>

A Social Recipe-sharing Website

34

Objective complete – mini debriefing
At the end of this task, our application has devise-based authentication for login and sign-
up functionalities. We also protected certain methods and made them accessible only after
we completed the login process. Lastly, we looked at various methods to pass user data to
session objects such as current_user.

Devise also supports OpenLDAP and API methods for extending authentication for our apps
on the mobile platform.

Beautifying your views
Proper styling is equally important as it can make or break your website despite writing all
of the code correctly. With a myriad of websites at a user's disposal and so many new user
experiences, the user interface takes on a huge role.

We will use Twitter's Bootstrap framework not only for our convenience, but also to ensure
good quality code for the markup. The main advantages Bootstrap has to offer are as follows:

ff Clean and high performing markup

ff Responsiveness

ff HTML4 and HTML5 doctype standards compliant

ff Easily customizable

ff Uses the latest design practices

Prepare for lift off
Read Bootstrap's Getting started task at http://getbootstrap.com/getting-
started/ and get started with Version 3.

Engage thrusters
In this task, we will see some of the styling classes of Bootstrap and use it to style
our application:

1.	 Add Bootstrap to the asset pipeline.

We will use the bootstrap-rails gem in order to add Bootstrap to our asset
pipeline. Add the following line to the Gemfile and bundle install:

gem 'anjlab-bootstrap-rails', :require => 'bootstrap-rails'

Project 1

35

2.	 Make CSS and JavaScript available to the asset pipeline. Then add the following line
to application.css. This is for informing the asset pipeline to access Bootstrap
files from this folder:

app/assets/application.css
 *= require twitter/bootstrap

3.	 Add the required directive to the application.js file to make all the Bootstrap
JavaScripts available to the Rails application:

app/assets/application.js
//= require twitter/bootstrap

Then add the necessary style to the layouts.

4.	 Once we've added these, all the CSS and .js files in Bootstrap are ready to be used
in our application. This is how our code looks at the moment. There is practically no
styling and only the default methods of scaffold.css are being used:

app/views/layouts/application.html.erb
<body>

 <%= link_to "Recipes", recipes_path %>

 <% if user_signed_in? %>
 <%=link_to "#{current_user.email}" %>
 <%= link_to "Logout",
 destroy_user_session_path%>
 <%else%>
 <%= link_to "Login", new_user_session_path
 %>
 <%= link_to "SignUp",
 new_user_registration_path%>
 <%end%>

 <%= yield %>
</body>

5.	 Create a layout that consists of two columns.

6.	 According to our mockup, we intend to make a two-column layout for our
application. The left bar contains various categories, and the central portion is
present for rendering the content.

7.	 Bootstrap does this by creating rows and then dividing them into columns of
different sizes. All these classes are inherited from a class called container,
which has all body-related classes:

app/views/layouts/application.html.erb
 <div class="container">
 <div class="row">

A Social Recipe-sharing Website

36

 <div class="col-lg-2">
 </div>
 <div class="col-lg-9">
 </div>
 </div>
 </div>

8.	 The col-lg-2 class will create a div tag with a width of 16.6667 percent, and col-
lg-9 will create a div tag with a width of 75 percent.

9.	 Then you can style the navigation. The top-level class for creating a navigation bar
is navbar, and the specific class to create a menu that sticks to the top is navbar-
static-top. The navbar-brand class is the logo class:

app/views/layouts/application.html.erb
 <!-- Static navbar -->
 <div class="navbar navbar-static-top">
 <div class="container">
 <button type="button" class="navbar-toggle"
 data-toggle="collapse" data-target=".nav-
 collapse">

 </button>
 <%= image_tag
 "currynation.png"%>
 <div class="nav-collapse collapse">
 <ul class="nav navbar-nav">
 <li class="active"><%= link_to "Recipes",
 recipes_path %>

 <ul class="nav navbar-nav pull-right">
 <% if user_signed_in? %>
 <%=link_to "#{current_user.email}"
 %>
 <li class="active"><%= link_to "Logout",
 destroy_user_session_path%>
 <%else%>
 <%= link_to "Login", new_user_session_path
 %>
 <li class="active"><%= link_to "SignUp",
 new_user_registration_path%>
 <%end%>

 </div><!--/.nav-collapse -->
 </div>

Project 1

37

10.	 Add styles to individual pages and the customizing buttons.

11.	 We will also style our index page by inheriting the table class:

<table class="table">

12.	 We can also customize the links in our app so they look like buttons by adding a class
called btn, following the btn-primary class, which defines the color and size of
the button. So, for example, we will apply the color blue to the button and assign a
small size to it using the btn-small class:

app/views/recipes/index.html.erb
 <td><%= link_to 'Show', recipe, :class=>"btn btn-
 primary btn-small"%></td>
 <% if user_signed_in? %>
 <td><%= link_to 'Edit', edit_recipe_path(recipe),
 :class=>"btn btn-success btn-small"%></td>
 <td><%= link_to 'Delete', recipe, method: :delete,
 data: { confirm: 'Are you sure?' }, :class=>"btn
 btn-danger btn-small" %></td>
 <%end%>

13.	 Now we'll look at how to style sublinks and wrap them into Rails' loops:

Our left bar for displaying categories can be displayed as a panel with several
sublinks. These are generated in loop using the Rails' each loop. We will first define
the values for the sidebar in our application_controller.rb file:

app/controllers/application.rb
 helper_method :sidebar_values

 def sidebar_values
 @food_preferences = FoodPreference.all
 @food_types = FoodType.all
 @cuisines = Cuisine.all
 end

In app/views/layouts/application.html.erb, we must define the sidebar
as rows :

app/views/layouts/application.html.erb
<div class="row">
 <div class="col-lg-2">
 <div class="panel panel-primary" id="panels">
 <div class="panel-heading">Food Preferences
 </div>
 <% @food_preferences.each do |fp| %>
 <p><%= fp.name%></p>
 <%end%>
 </div>

www.allitebooks.com

http://www.allitebooks.org

A Social Recipe-sharing Website

38

 <div class="panel panel-primary" id="panels">
 <div class="panel-heading">Food Type
 </div>
 <% @food_types.each do |ft| %>
 <p><%= ft.name%></p>
 <%end%>
 </div>
 <div class="panel panel-primary" id="panels">
 <div class="panel-heading">Cuisine
 </div>
 <% @cuisines.each do |c| %>
 <p><%= c.name%></p>
 <%end%>
 </div>
 </div>
 <div class="col-lg-9">
 <%= yield %>
 </div>
 </div>

Project 1

39

Objective complete – mini debriefing
We have our completely styled page at the end of this iteration with the help of Bootstrap
3. We will use Bootstrap throughout our book and see many facets of it in the coming
applications. However, this is a good start, as the first step in styling always belongs
to HTML elements.

Bootstrap 3 uses a flat UI design, which is the latest trend in web designing. Also, it is not
backward compatible with earlier versions.

Mission accomplished
We have created a simple recipe-sharing application by using the default Rails' methods
and looked at the basics of testing. Practically, these websites can work like multiuser blogs
similar to a WordPress installation, meant only for creating recipes.

Hotshot challenges
Now that we have seen how to create a simple, social recipe-sharing application, it is time to
try out some challenges on our own:

ff Filter recipes by clicking on food preferences, food type, cuisine, and display
the results.

ff Write an ActiveRecord query for recipe finders.

ff Create another filter based on the level of difficulty, cuisine, food type, and food
preferences. Also, create a radio-button field for each level of difficulty.

ff Use Bootstrap to style the radio-button fields.

Project 2
Conference and Event

RSVP Management

In the past 4 to 5 years, the number of events have increased manifold. This is due to the
mushrooming of several different types of user groups around the world. Also, gatherings
of people with similar interests are becoming commonplace nowadays. People with similar
interests, for example, biking, food, movies, and blogging, also meet up and discuss topics of
their interests.

Mission briefing
In this project, we will create an event and an RSVP creation website. Users of this
application can sign up, log in, and create events. Once logged in, users can create, edit,
and join events by creating an RSVP for it. Other users can also join events created by other
users. The event can be edited only by the event owner.

We will also create a simple admin functionality where we can edit and delete these events.
We will allow the admin users to approve or reject users who want to join the events. In the
home page, we will have a system-wide feed of the recent events. When a user logs in, he or
she will see the edit and delete options in front of the events they have created.

Conference and Event RSVP Management

42

Also, the users will have a section called My Events, as shown in the following screenshot,
where they can manage all events and RSVPs in one place:

Why is it awesome?
Meet-ups are a great way to meet people with similar interests. The Internet has been
a catalyst in bringing people together beyond boundaries, grabbing the attention of
entrepreneurs. A number of websites enable people to create events and also allow them
to register for events for free or for a fee. In a way, we are enabling people to easily organize
gatherings, share, and enjoy together. They might end up making friends and having a lot
of fun.

Project 2

43

We will look at various features such as tagging and tag-based search, go further into
ActiveRecord migrations, creating search-friendly URLs, adding states to objects, and
using class methods.

Your Hotshot objectives
While building this application, we will go through the following tasks:

ff Creating and administrating events

ff Creating search-friendly URLs for events

ff Adding tags to events

ff Tagging-based search and tag cloud

ff Adding Gravatar for a user

ff Creating RSVPs for events

ff Adding event moderation

ff Creating "My events" to manage events created by users

Mission checklist
We need the following software installed on the system before we start with our mission:

ff Ruby 1.9.3 / Ruby 2.0.0

ff Rails 4.0.0

ff MySQL 6

ff Bootstrap 3.0

ff Sass

ff Sublime Text

ff Devise

ff Git

ff A tool for mockups

Conference and Event RSVP Management

44

Creating and administrating events
Before we begin developing our application, we will take a cue from our previous project and
build mockups for our events before we start. Again, we will use MockFlow for our purpose
and build it.

Also, we will create a mockup for the event page, as shown in the following screenshot:

Project 2

45

In this task, we will look at customizing our event views and also adding the custom
before_filter object to protect our events.

Prepare for lift off
Taking a cue from the previous project, add a scaffold for events. The events schema looks
as follows:

 create_table "events", force: true do |t|
 t.string "title"
 t.datetime "start_date"
 t.datetime "end_date"
 t.string "location"
 t.text "agenda"
 t.text "address"
 t.integer "organizer_id"
 t.datetime "created_at"
 t.datetime "updated_at"
 end

Add devise gem and generate authentication methods for the application.

We will have to associate the user and event; however, the trick here is we will have
multiple associations between them. Hence, we create an association with a different
name as follows:

app/models/event.rb
class Event < ActiveRecord::Base
 belongs_to :organizers, class_name: "User"
end

app/models/user.rb
class User < ActiveRecord::Base
 devise :database_authenticatable, :registerable,
 :recoverable, :rememberable, :trackable, :validatable
 has_many :organized_events, class_name: "Event", foreign_key:
 "organizer_id"

end

In order to pass the organizer_id object, we will use our create method, as shown in
the following code:

app/controllers/events_controller.rb
 def create
 @event = current_user.organized_events.new(event_params)

Conference and Event RSVP Management

46

 respond_to do |format|
 if @event.save
 format.html { redirect_to @event, notice: 'Event was
 successfully created.' }
 format.json { render action: 'show', status: :created,
 location: @event }
 else
 format.html { render action: 'new' }
 format.json { render json: @event.errors, status:
 :unprocessable_entity }
 end
 end
 end

However, as this method depends on the current_user object, we will add a
before_filter object in the following code snippet to allow only the logged in
users to create an event:

app/controllers/events_controller.rb
before_filter :authenticate_user!

The following screenshot shows how our form should look when we begin this task:

Project 2

47

Engage thrusters
In this task, we will customize our event date formats by performing the following steps:

1.	 We will start by customizing the date formats. The default format of date is
datetime in Rails; hence, the date is displayed as the date and time function,
as shown in the following screenshot:

2.	 We will customize these events using the strftime function available in Ruby for
converting the date to a more human-readable format in the following manner:

Config/locales/en.yml
en:
 time:
 formats:
 date_format: "%m/%d/%Y"

app/views/index.html.erb

<%= l event.start_date, :format => :date_format %>

<%= l event.start_time, :format => :date_format %>

www.allitebooks.com

http://www.allitebooks.org

Conference and Event RSVP Management

48

This will convert datetime to the date in the format of MM/DD/YYYY, as shown in
the following screenshot:

3.	 Now that dates are formatted, we have a complete event creation and display
format with us. However, because it's a Web 2.0 system, a lot of users will log in. We
need to protect the events created by particular users and allow only these users
to update or delete them, as we want to allow only the event owner to edit and
delete the event. In order to do so, we will first add a before_filter method. This
method has to be private to keep it protected and has to be called inside the same
controller, as shown in the following code snippet:

app/controllers/events_controller.rb
private
 def event_owner!

 authenticate_user!
 if @event.organizer_id != current_user.id
 redirect_to events_path
 flash[:notice] = 'You do not have enough
 permissions to do this'
 end
 end

This will make a method called event_owner available for the events controller.
This method will authenticate users using devise and check if the current user ID is
the same as the organizer ID of the event. If yes, then it will allow the edit, else it
will redirect to all events path. Now that we will have the before_filter event_
owner! method in place, we will protect specific methods as follows:

 before_action :event_owner!, only:
 [:edit,:update,:destroy]

This will restrict the edit, update, and destroy methods so that it can be
accessed only by the event owner.

Project 2

49

Objective complete – mini debriefing
In the preceding task, we added a custom method to authenticate our specific edit,
update, and destroy methods so that only the event owners can do that. This is the kind
of admin facility available only to the event owners. The before_action method is a new
way to write before_filter in Rails 3.2. The main functionality of before_action is the
same; however, both can be used based on the context:

before_action :event_owner!, only: [:edit,:update,:destroy]

We also customized the date format to a more human readable format than the default
datetime format of Rails. We defined the format in our locale file and called it in the
view directly.

<%= l event.start_date, :format => :date_format %>

This will allow dates to be localized. Apart from this, there are multiple ways to set the
datetime format. We can also define the date format inside our helper and call it in the
view. We will continue to customize our events in the following tasks.

Creating search-friendly URLs for
events

A lot of libraries have now become standard in Rails since the past few versions. Their
development and maintenance activity have also caught up with various versions of Ruby
and Rails, as there is a lot of community backing these libraries too. A FriendlyId gem is one
of the most standard libraries for creating search-friendly URLs also known as slugs. It is
highly extensible and customizable.

Engage thrusters
We will go ahead and add slugs to our application in this task:

1.	 We will add a friendly_id gem and migrations now, as follows:

gem 'friendly_id', '5.0.0.beta1'

Only Version 5.0.0 or above is compatible with Rails 4.

Conference and Event RSVP Management

50

2.	 We will first add the friendly_id gem to the Gemfile and bundle it. Once done,
we will have to first set up the migrations for slugs. For every model we have, we
need to have a column for maintaining slugs:

:~/evenstr$ rails g migration add_slug_to_events slug:string

 invoke active_record

 create db/migrate/20130811083714_add_slug_to_events.rb

:~/evenstr$ rake db:migrate

== AddSlugToEvents: migrating ===================================
=============

-- add_column(:events, :slug, :string)

 -> 0.2797s

== AddSlugToEvents: migrated (0.2799s) ==========================
=============

3.	 We will then enable slug creation on a model. After adding a column for slugs, we
need to enable slugging in the model as follows:

 extend FriendlyId
 friendly_id :title, use: :slugged

This will create a slug based on the title of the event. However, if the slug history
feature is not enabled, the old URLs will give 404s. In order to maintain the old URLs
intact, we need to enable history.

4.	 In this step, we will enable the history option for slugs.

In case we need to set up the history and version feature for slugs, we need to
generate another migration. This helps us to maintain slugs and their history in a
different table and still keeping it unique. This is in case we want to allow the user to
edit the URL and still want to resolve the old URLs. This is particularly helpful for use
cases such as blogs where a lot of URLs are bookmarked frequently:

:~/eventstr$ rails generate friendly_id

rwub@rwub:~/eventstr$ rake db:migrate

== CreateFriendlyIdSlugs: migrating =============================
=============

-- create_table(:friendly_id_slugs)

 -> 0.1736s

-- add_index(:friendly_id_slugs, :sluggable_id)

 -> 0.1894s

-- add_index(:friendly_id_slugs, [:slug, :sluggable_type])

 -> 0.1778s

Project 2

51

-- add_index(:friendly_id_slugs, [:slug, :sluggable_type, :scope],
{:unique=>true})

 -> 0.1669s

-- add_index(:friendly_id_slugs, :sluggable_type)

 -> 0.1451s

== CreateFriendlyIdSlugs: migrated (0.8537s) ====================
=============

5.	 If there are some existing records already, we would like to create slugs for them.

Now, as soon as we create events, we get a generated slug for our new events. In
case we have events created before adding this functionality, we would have to
manually update the slugs. Fire up the console and run the method to save the slugs:

1.9.3-p327 :001 > User.find_each(&:save)
 User Load (0.4ms) SELECT `users`.* FROM `users` ORDER BY
`users`.`id` ASC LIMIT 1000
 (0.2ms) BEGIN
 (0.3ms) COMMIT
 => nil

This will create slugs for all the events that were previously created.

Objective complete – mini debriefing
We created functionalities for creating slugs and also gave users the option to keep a history
of slugs. Slugs in the preceding task are created from the attribute(s) defined in our case's
title. These slugs are created because it is easier to get crawled by search engines and
provide better visibility, and in turn user experience to the app user. We used the FriendlyId
Version 5 to create slugs. The friendly_id Version 5 is not compatible with the earlier
versions. Two major changes in this version are as follows:

ff Slugs do not get updated on the update method. In order to do this, we need to
pass a nil value.

ff There are multiple options to create slugs in case one of them is not unique.
As shown in the following code, if a slug created with title is not unique, the
friendly_id gem will combine title and location to make a slug:

friendly_id :slug_candidates, use: :slugged

 def slug_candidates
 [
 :title,
 [:title, :location],
]
 end

Conference and Event RSVP Management

52

The following screenshot shows how a typical slug looks:

Adding tags to events
Tags are quite an interesting way to organize the content. As opposed to categories, tags are
created and assigned by the user. In this task, we will enable our application so that we can
create and save tags for each event. In our case, tags work as a primary way to search and
categorize content. Acts_as_taggable is a formidable solution to this problem; however,
we will look into building our own tagging method that is similar to acts_as_taggable.
This could be a fun challenge as we are trying to emulate the behavior of an advanced
gem from scratch.

Engage thrusters
We will now learn how to create tags in the following steps:

1.	 Generate a tag model with a single attribute called name:

 :~/eventstr$ rails g model tag name:string
 invoke active_record
 create db/migrate/20130818094312_create_tags.rb
 create app/models/tag.rb
 invoke test_unit
 create test/models/tag_test.rb
 create test/fixtures/tags.yml
db/migrations/create_tags.rb
class CreateTags < ActiveRecord::Migration
 def change
 create_table :tags do |t|
 t.string :name, index: true

 t.timestamps
 end
 end
end

Project 2

53

Once we have a table to store tags, we would like multiple tags to be associated
with an event. Hence, we need to create a join table that will handle multiple tags
and events.

2.	 Generate a model called taggings to create a join on events and tags, as shown in
the following code:

 :~/eventstr$ rails g model tagging tag:belongs_to event:belongs_
to
 minvoke active_record
 create db/migrate/20130818095026_create_taggings.rb
 create app/models/tagging.rb
 invoke test_unit
 create test/models/tagging_test.rb
 create test/fixtures/taggings.yml

This will create a table with the following migration:

db/migrations/create_taggings.rb
class CreateTaggings < ActiveRecord::Migration
 def change
 create_table :taggings do |t|
 t.belongs_to :tag, index: true
 t.belongs_to :event, index: true

 t.timestamps
 end
 end
end

Also, it will generate the table in the backend with the respective IDs of the tag and
the event.

The tagging model already has the association with the event and tag models:

 belongs_to :tag
 belongs_to :event

Conference and Event RSVP Management

54

3.	 So, now we need to create an association between events and tags for them to use
the ActiveRecord join. Add associations between events and tags.

4.	 Inside your event model, define the association with tags:

 has_many :taggings
 has_many :tags, through: :taggings

5.	 Now, inside your tag model, define the association with events:

 has_many :taggings
 has_many :events, through: :taggings

This will create a join between an event and a tag through the taggings table. We
now have to write a method to create tags as a part of event creation.

6.	 Write a method in the event to enter the tags in a list as comma-separated values,
as shown in the following code snippet. These values will be stripped and entered
into the database:

 def all_tags=(names)
 self.tags = names.split(",").map do |t|
 Tag.where(name: t.strip).first_or_create!
 end
 end

7.	 Now, we need to add these values to the form because that's where we will enter
the tags. The tags here are case sensitive, so "Awesome" and "awesome" will be
treated as two different tags.

8.	 These tags should be mounted to a model like an attribute of it. Rails 4 has a new
way to set up whitelisted attributes. Strong parameters are no longer supported
and attribute_accessor methods. These are now defined in the controller as
a private method. We will add all_tags as a whitelisted virtual attribute to
events_controller.rb:

App/controllers/events_controller.rb
 private
 # Never trust parameters from the scary internet, only allow
the white list through.
 def event_params
 params.require(:event).permit(:title, :start_date,
 :start_time, :location, :agenda, :address,
 :organizer_id, :all_tags)
 end

Project 2

55

9.	 Add a list of tags to the form:

app/views/events/_form.html.erb
 <div class="field">
 all_tags
 <%= f.label :all_tags, "List All Tags, separate each
 tag by a comma" %>

 <%= f.text_field :all_tags %>
 </div>

After the values are entered into the the database, we will have to retrieve them
and display them somewhere.

10.	 Retrieve the tag values from the database.

Inside the event model, add a method to call the tags by name and display them as
comma-separated values:

app/models/event.rb
 def all_tags
 tags.map(&:name).join(", ")
 end

11.	 Display these values in the view by simply making a call on this method via
the object:

app/views/events/show.html.erb
 <%= event.all_tags %>

12.	 We can alternatively display this list using the map method as follows:

app/views/events/show.html.erb
 <%=raw event.tags.map(&:name).map { |t| t }.join(', ')
 %>

Objective complete – mini debriefing
We have added tags to the events now. We used two tables, tags, and taggings to achieve
this. The tags table saves the tag values, whereas the taggings table saves the association
between tags and the records. We used index:true in our migration here. The
index:true migration option is the same as add_index.

Conference and Event RSVP Management

56

We then associated our tags and events via the taggings table. The taggings table is basically
a join table to save the related values of tags and events. We then called all the tag values
and displayed them as a comma-separated value list. The first_or_create method in
ActiveRecord searches for a tag in the database. If it is not present, then a new tag is created,
as shown in the following code snippet:

 self.tags = names.split(",").map do |t
 Tag.where(name: t.strip).first_or_create!
 end

We had to pass tags as an attribute in the form, hence we had to add it to the attribute
whitelist. Depreciation of strong parameters is a major change in Rails 4. An older way to
define parameters was using attr_accessor :all_tags.

In Rails 3.2, parameters lead to a lot of security vulnerabilities for Rails apps; hence, it was
moved to protected methods inside a controller. Also, a method called permit is introduced
in order to create a whitelist of parameters to be allowed to pass. Only when this is done,
forms will accept a certain attribute.

params.require(:event).permit(:title, :start_date, :start_time,
 :location, :agenda, :address, :organizer_id, :all_tags)

We also saw how to add them to the views in both the form and displaying the final values.
We will now go ahead and create a tag-based search and tag cloud.

The following screenshot shows how our events page looks with a list of Tags:

Project 2

57

Tagging-based search and tag cloud
We will continue from our earlier task where we created tags and entered them in the
database to create scope-based searches on tags. We will also count the number of times a
particular tag exists and will generate the size of the tag name in the tag cloud based on this.
We will do all these tasks using the class methods inside our events model.

Engage thrusters
We will now create a tag cloud from the tags that have been saved.

1.	 Add a tag search scope to the event controller.

Pass the value of tag as params and use the tagged_with scope to find all the
records that contain a particular tag. Also, we are factoring for the records that do
not have any tags associated with them:

app/controllers/events_controller.rb
 def index
 if params[:tag]
 @events = Event.tagged_with(params[:tag])
 else
 @events = Event.all
 end
 end

2.	 Add links to tags for searching.

We need to add a link to a tag and a path to search a method for tags:

app/views/events/index.html.erb
<%= event.all_tags.map { |t| link_to t, tag_path(t
 }.join(', ') %>

However, we have not defined tag_path yet, so our next step will be to add
a route.

3.	 Add a get route to the method where we added a search method for tag that points
to the index action in the events controller:

config/routes.rb
 get 'tags/:tag', to: 'events#index', as: :tag

www.allitebooks.com

http://www.allitebooks.org

Conference and Event RSVP Management

58

This will pass :tag as params to the index method and generate a link to the
search results page.

4.	 Until now, we did not have the tagged_with method that would search the tagged
events. Let's write that now in the event method:

app/models/event.rb
 def self.tagged_with(name)
 Tag.find_by_name!(name).events
 end

We can now list the events based on our tags:

Project 2

59

To generate a crowd, we need to count the number of occurrences of tags in
the database.

5.	 Add a method to count the number of tags associated with all the events:

app/models/event.rb
 def self.tag_counts
 Tag.select("tags.name, count(taggings.tag_id) as
 count").
 joins(:taggings).group("taggings.tag_id")
 end

Now that we have the tag counts, we need to find a way to style them according
to the sizes.

6.	 Add a helper method to connect this to the view for counting and rounding off in
application_helper.rb, as shown in the following code:

app/helper/application_helper.rb
def tag_cloud(tags, classes)
 max = tags.sort_by(&:count).last
 tags.each do |tag|
 index = tag.count.to_f / max.count * (classes.size -
 1)
 yield(tag, classes[index.round])
 end
 end

7.	 Add styles to different sizes of tags based on the tag count:

app/assets/tags.css
 .css1 { font-size: 1.0em; }
 .css2 { font-size: 1.2em; }
 .css3 { font-size: 1.4em; }
 .css4 { font-size: 1.6em; }

We will add this tags.css file to our application.css manifest file:

app/assets/stylesheets/application.css

 *= require tags

Finally, we will display the tags and apply the CSS classes to them.

Conference and Event RSVP Management

60

8.	 Create a loop by calling the tag_counts method on the event model. We will also
pass an array of CSS classes based on the tag count to resize our text. This loop will
identify the number of times a tag appears in a model class and applies the CSS
class accordingly:

app/views/events/index.html.erb
 <div class="col-lg-4">
 <h3>Search Tags</h3>
 <div>
 <% tag_cloud Event.tag_counts, %w{css1 css2 css3
 css4} do |tag, css_class| %>
 <%= link_to tag.name, tag_path(tag.name), class:
 css_class %>
 <% end %>
 </div>
 </div>

Objective complete – mini debriefing
In the preceding task we saw how to create a tag-based search and tag cloud. In order to
create our tag cloud, we created a CSS-based tag cloud, where the size of the tag term will
be determined by that tag's number of occurrences in the database.

We then created the tagged_with method in order to search events with a particular tag,
as shown in the following code snippet:

def self.tagged_with(name)
 Tag.find_by_name!(name).events
end

In order to count the tags and generate a tag cloud, we wrote the following code snippet:

def tag_cloud(tags, classes)
 max = tags.sort_by(&:count).last
 tags.each do |tag|
 index = tag.count.to_f / max.count * (classes.size - 1)
 yield(tag, classes[index.round])
 end
end

The tags variable returns an array. We run the sort_by(&count) method, which counts
the number of occurrences of each tag, sorts the tags, and places the max-counted tag in
the max variable. We then matched this max value of tag count with the value of the other
tags; classes pass the value of the event in this case. The index variable includes the relative
value of popularity of each tag in proportion to the other tags. The yield method finally
returns the value of the tag and the popularity index of each tag.

Project 2

61

We can refactor these methods to a concern and pass any class we want. Finally, we applied
a style to the tag cloud according to the tag count, as shown in the following code snippet:

 <% tag_cloud Event.tag_counts, %w{css1 css2 css3 css4} do |tag,
 css_class| %>
 <%= link_to tag.name, tag_path(tag.name), class: css_class
 %>
 <% end %>

We get the following output:

For tags whose related events have been deleted, the tags will still remain but their taggings
will be deleted. The ones with no events will generate a zero-search result.

Adding Gravatar for a user
Gravatar (also known as globally recognized avatar) is an avatar system where you can
register your e-mail and upload your avatar image accordingly. This image is automatically
displayed based on the e-mail on the websites where the gravatar is available. We will add a
facility to automatically display the gravatar image based on the user ID.

Engage thrusters
1.	 Add a helper method to make a call on the gravatar method using the user's e-mail,

as shown in the following code snippet:

app/helpers/application_helpers.rb
 def avatar_url(user)
 gravatar_id = Digest::MD5::hexdigest(user.email).downcase
 "http://gravatar.com/avatar/#{gravatar_id}.png"
 end

Conference and Event RSVP Management

62

2.	 Add a method in the event model to find the event owner. We need this to display
the gravatar of the event owner:

app/models/event.rb
def self.event_owner(organizer_id)
 User.find_by id: organizer_id
end

3.	 In the controller, make a call on this method to call the event owner:

app/controllers/events_controller.rb
def show
 @event_owners = @event.organizers
end

4.	 Call the helper method in the view to display the gravatar:

app/views/events/show.html.erb
 <label>Organized By:</label>

 <% @event_owners.each do |event_owner|%>
 <%= image_tag avatar_url(event_owner) %>
 <%= event_owner.email %>

Objective complete – mini debriefing
We have successfully added the gravatar image system to our application and displayed
avatars of the users now. We used the gravatar API to search for the gravatar ID according
to the user e-mail, as shown in the following code snippet:

def avatar_url(user)
 gravatar_id = Digest::MD5::hexdigest(user.email).downcase
 "http://gravatar.com/avatar/#{gravatar_id}.png"
 end

The gravatar ID accepts an e-mail as a unique field; hence, if the e-mail address of the person
is present on the gravatar site, then it will return a gravatar ID. The image can be directly
browsed from a direct link to the gravatar ID.

Project 2

63

Creating RSVPs for events
Now we have events and they can also be searched. In order to create RSVPs, we need to
allow requests for joining events. In this task, we will allow users to make a request to join an
event. This will generate a list of users joining a particular event. This is quite helpful in many
ways. We will have to create a model called attendance where we will make a join of events
and users. This is because we want to allow many users to join many events.

Engage thrusters
The following steps are performed to create RSVPs for events:

1.	 Create a model for attendance with the user ID and event ID. This is a simple join
model, and we generate it as follows:

:~/eventstr$ rails g model attendance user_id:integer event_
id:integer

 invoke active_record

 create db/migrate/20130818045351_create_attendances.rb

 create app/models/attendance.rb

 invoke test_unit

 create test/models/attendance_test.rb

Conference and Event RSVP Management

64

 create test/fixtures/attendances.yml

:~/eventstr$ rake db:migrate

== CreateAttendances: migrating =======
=======================================

-- create_table(:attendances)

 -> 0.1784s

== CreateAttendances: migrated (0.1786s) ========================
=============

2.	 Add associations for the user and event in the attendance model:

app/models/attendance.rb
belongs_to :event
belongs_to :user

Do the same respectively for the event and user model too. So, in our user model,
we can add:

 app/models/user.rb
 has_many :attendances
 has_many :events, :through => :attendances

And the event model looks as follows:

 app/models/event.rb
 has_many :attendances
 has_many :users, :through => :attendances

3.	 In the controller, add a method to create attendance and pass event ID and user ID
as params, as shown in the following code:

app/models/attendance.rb
def self.join_event(user_id, event_id,state)
 self.create(user_id: user_id, event_id: event_id,
 state: state)
end
app/controllers/events_controller.rb
 def join
 @attendance = Attendance.join_event(current_user.id,
 params[:event_id], 'request_sent')
 'Request Sent' if @attendance.save
 respond_with @attendance
 end

Project 2

65

4.	 Add a link to the Join event for a user to click and send the join request:

app/views/events/show.html.erb
 <%= link_to "Join", event_join_path(:event_id =>
 @event.id), :class=>"btn btn-success btn-small" %>

This, of course, is not complete without a route.

5.	 Now, we will go ahead and add the route:

config/routes.rb
 resources :events do
 get :join, to: 'events#join', as: 'join
 end

Objective complete – mini debriefing
We have now created a way for users to join events. However, in the current scenario, any
user can click on Join and join the event, as shown in the following screenshot. This, in
particular, is not a great thing as sometimes seats are limited and there is room only for
relevant people in the meet-up. Hence, we need some sort of moderation for our events.

Conference and Event RSVP Management

66

Adding event moderation
Event moderation is an extremely critical feature that allows only the right kind of people to
join the events. We will also look at the state machine in this task. We will use the workflow
gem to build a state machine in order to create and manage our states.

A state machine is defined as a predefined sequence of actions that leads a process from one
state to another. An event triggers the transition and changes the state.

In the classic example of a traffic signal, we have three states: stop, wait, and move. Each
state is defined by a color. So, a signal turning green is a transition event, and this changes
the state from stopped to moving.

In our use case, a state machine helps in the moderation process. Moderation is a multistep
process, which involves the following steps:

ff The user sends a request to join the event

ff The event owner accepts or rejects the request

A state machine facilitates this process, where the request is an event and moderation is
another event.

Engage thrusters
To add an event moderation, we will perform the following steps:

1.	 Add the workflow gem and bundle:

gem 'workflow', :github => 'geekq/workflow'

2.	 Add a column called state in the attendance table to save the current states of
our users:

:~/eventstr$ rails g migration add_state_to_attendance
state:string

 invoke active_record

 create db/migrate/20130818052628_add_state_to_attendance.
rb

:~/eventstr$ rake db:migrate

== AddStateToAttendance: migrating ==============================
=============

-- add_column(:attendances, :state, :string)

 -> 0.2810s

== AddStateToAttendance: migrated (0.2812s) =====================
=============

Project 2

67

We need to define the states and transitions in order to accept and reject
the requests.

3.	 Include the workflow method in the attendance model and inherit it from the gem.
We will create a column called state in our attendance model:

app/models/attendance.rb
include Workflow
 workflow_column :state

4.	 Define states in the attendance model:

app/models/attendance.rb
 workflow do
 state :request_sent do
 event :accept, :transitions_to => :accepted
 event :reject, :transitions_to => :rejected
 end
 state :accepted
 state :rejected
 end

However, we need to persist the initial state, that is, request_sent. We will do this
by saving it with the join method.

5.	 Persist the state on the join method. This will allow the user to send the request by
clicking on the join link:

app/controllers/events_controller.rb
 def join
 @attendance = Attendance.join_event(current_user.id,
 params[:event_id], 'request_sent')
 end
)

In order to accept or reject the user, we need to toggle this state value to accept
or reject.

6.	 Toggle the state of the user attendance for accept and reject:

app/controllers/events_controller.rb
 before_action :set_event, only: [:show, :edit, :update,
 :destroy, :accept_request, :reject_request]
 def accept_request

 @attendance = Attendance.find_by(id:
 params[:attendance_id]) rescue nil
 @attendance.accept!

Conference and Event RSVP Management

68

 'Applicant Accepted' if @attendance.save
 respond_with(@attendance)

 end

 def reject_request

 @attendance =
 Attendance.where(params[:attendance_id]) rescue nil
 @attendance.reject!
 'Applicant Rejected' if @attendance.save
 @respond_with(@attendance)
 end

Accepting and rejecting the events will also have to be wired to the views.

7.	 Add routes to toggle the event states:

config/routs.rb
resources :events do
 get :join, to: 'events#join', as: 'join'
 get :accept_request, to: 'events#accept_request', as:
'accept_request'
 get :reject_request, to: 'events#reject_request', as:
'reject_request'
 end

8.	 Display the requests for the event owner. We will do this by adding a class method
in the event model:

app/views/event.rb
 def self.pending_requests(event_id)
 Attendance.where(event_id: event_id, state:
 'request_sent')
 end

We will now display them in the view:

app/views/events/show.html.erb
<% if user_signed_in? && @event.organizer_id ==
 current_user.id%>
<label>Join Requests</label>
<% if @pending_requestss.present? %>
 <% @pending_requests.each do |p|%>
 <%= image_tag avatar_url(p.user) %>
 <%= p.user.email%>
 <%= link_to 'Accept',
 event_accept_request_path(:event_id => @event.id,
 :attendance_id => p.id), :class=>"btn btn-success
 btn-small" %>

Project 2

69

 <%= link_to 'Reject',
 event_reject_request_path(:event_id => @event.id,
 :attendance_id => p.id), :class=>"btn btn-danger
 btn-small" %>
 <%end%>
<%else%>
 <p>No Pending Requests for this event</p>
<%end%>
<%end%>

9.	 Display the accepted members.

In order to do this, we will first create a scope in our attendance model and a model
class method in the event model:

app/model/attendance.rb
 scope :accepted, -> {where(state: 'accepted')}
app/model/
 def self.show_accepted_attendees(event_id)
 Attendance.accepted.where(event_id: event_id)
 end

Call this scope in the controller:

 @attendees = Event.show_accepted_attendees(@event.id)

Conference and Event RSVP Management

70

Display the attendees on the event page:

<label>Attendees</label>
<% @attendees.each do |a|%>
 <%= image_tag avatar_url(a.user) %>
 <%= a.user.email%>
<%end%>

Objective complete – mini debriefing
We have created methods to accept and reject the event membership based on moderation.
We used the workflow gem to do so. We defined the states and events in the attendance
model:

 workflow do
 state :request_sent do
 event :accept, :transitions_to => :accepted
 event :reject, :transitions_to => :rejected
 end
 state :accepted
 state :rejected
 end

When we created an attendance, that is, when a user clicks on the Join button, we wrote a
method to create a new attendance with event_id, user_id, and the state. We associated
attendance with events and users. This is because we need to track who wants to attend
which event. In order to toggle the state, we just need to call the transition event on the
object. This will update the attendance column of the state as follows:

@attendance.accept!

We have also displayed the accepted members and hence we have a confirmed attendee list.
In order to do this, we created scopes according to different states:

scope :accepted, -> {where(state: 'accepted')}

We made a call on this scope and passed event_id in the argument to find all the
attendances who have been accepted by the moderator for a particular event:

Attendance.accepted.where(event_id: event_id)

Likewise, we have also defined a scope for the members whose moderation is pending:

scope :pending, -> {where(state: 'request_sent')}

We made a query on the scope in our controller:

Attendance.pending.where(event_id: @event.id)

Project 2

71

Finally, the pending requests were displayed in our view using the loop:

<% if @pending_request.present? %>
 <% @pending_requests.each do |p|%>
 <%= image_tag avatar_url(p.user) %>
 <%= p.user.email%>

In order to accept the request, we passed event_id and attendance_id to the accept
method in our events controller. This method will toggle the state of our attendance to
accepted and likewise for rejected. Here, p.id is the the ID of the attendance whose
state is request_sent and confirmation is pending:

 <%= link_to 'Accept',
 event_accept_request_path(:event_id => @event.id,
 :attendance_id => p.id),:class=>"btn btn-success
 btn-small" %>
 <%= link_to 'Reject',
 event_reject_request_path(:event_id => @event.id,
 :attendance_id => p.id), :class=>"btn btn-danger
 btn-small" %>
<%end%>

The accepted members of an event are shown in the following screenshot:

Conference and Event RSVP Management

72

Creating "My events" to manage
events created by users

"My events" is a task where a user can see all the events created by him/her. This is sometimes
very critical as the system feed is shown in the general list, and it is not convenient for a user
to search for his events every time he/she needs to edit it. This task will provide them with all
those events under one tag, and hence it is very convenient for them.

Engage thrusters
We will now create a separate section to display events created by a particular user:

1.	 We already have an association between users and events:

app/models/event.rb
 belongs_to :organizers, class_name: "User"
app/models/user.rb
 has_many :organized_events, class_name: "Event",
 foreign_key: "organizer_id"

We will retrieve all the events organized by a user via the association, but we need
to make a call on this method in the controller.

2.	 So, we go ahead and make a call on it by passing the current user ID as a parameter
to it in the events controller:

App/controllers/events_controller.rb
 def my_events
 @events = current_user.organized_events
 end

Now, we have the controller method in place, so we need to display this
task somewhere.

3.	 What we need is a view for my_events under the events views. We will create a
blank file called my_events.html.erb. The code in my_events will essentially be
the same as index.html.erbb because even here we are making a list of events.
We will also refactor tag cloud into a different partial:

app/views/events/_tag_cloud.html.erb
<!-- Displaying the tag cloud div-->

<div class="col-lg-4">
 <h3>Search Tags</h3>
 <div>

Project 2

73

 <!-- Generating the tag cloud -->

 <% tag_cloud Event.tag_counts, %w{css1 css2 css3 css4}
 do |tag, css_class| %>
 <%= link_to tag.name, tag_path(tag.name), class:
 css_class %>
 <% end %>
 </div>
 </div>
</div>

app/views/events/my_events.html.erb
<div class="row">
 <div class="col-lg-8">
 <!--List Recently Created Events-->

 <h3>Recently Created Events</h3>
 <% @events.each do |event| %>
 <h3><%= event.title %></h3>
 <label>Start Date:</label><%= l event.start_date,
 :format => :date_format %>
 <label>End Date:</label><%= l event.start_time,
 :format => :date_format %>

 <label>Location:</label><%= event.location
 %>

 <label>Address:</label>
 <address>
 <%= event.address %>

 </address>
 <label>Agenda:</label>
 <%= event.agenda %>

 <label>Organized By:</label>

 <%@event_owner =
 Event.event_owner(event.organizer_id)%>
 <%= image_tag avatar_url(@event_owner) %>
 <%= @event_owner.email %>

 <!-- Display Tags-->

 <label>Tags:</label>

 <%=raw event.tags.map(&:name).map { |t| link_to
 t, tag_path(t) }.join(', ') %>

 <%= link_to 'Show Details', event, :class=>"btn
 btn-info btn-small" %>

Conference and Event RSVP Management

74

 <% if user_signed_in? && event.organizer_id ==
 current_user.id%>
 <%= link_to 'Edit', edit_event_path(event),
 :class=>"btn btn-primary btn-small" %>
 <%= link_to 'Delete', event, method: :delete,
 data: { confirm: 'Are you sure?' },
 :class=>"btn btn-danger btn-small" %>
 <%end%>

 <% end %>

 </div>
 <%= render "tag_cloud"%>

<%= link_to 'Create an Event', new_event_path,
 :class=>"btn btn-default btn-primary" %>

4.	 Finally, wire this up using a route in routes.rb and we are good to go:

config/routes.rb
get :my_events, to: 'events#my_events', as: 'my_events'

Objective complete – mini debriefing
We created a separate "My events" area where a user can manage their events with ease.
We did this by first creating an association between user and events. This association created
a method called user_object.organized_events to retrieve all the events organized
by a particular user. We used it in our controller by calling this on the current_user object:

current_user.organized_events

It is noteworthy that we have created two different types of associations between the user
and event models:

ff One is a named association, where we denoted users as organizers and events
as organized_events. In order to identify the models, we use the attribute
called class.

ff The other is a has_many :through attendance association, where we made
a join table to manage attendees for a particular event.

Project 2

75

We also added a navigation called "My events", which is only visible once the user logs in to
the system, as shown in the following screenshot:

Mission accomplished
We have successfully created an event RSVP application, where users can create, administer,
and moderate their events. Other users can send requests to join the events. We looked at
various concepts such as tagging, tag-based search, tag cloud, and gravatar during the course
of this project. Some of the topics we broadly covered in this project are as follows:

ff Creating multiple associations between the same models

ff Adding named associations and the has_many_:through association

ff Using the friendly_id gem to create slugs for each user

ff Creating tags for each event

ff Counting the tags and creating a tag cloud from it

ff Adding a state machine in order to create RSVP for an event

ff Displaying the gravatar of a user

ff Creating joins, usage of scopes, chained queries with scope, and additional conditions

Conference and Event RSVP Management

76

Hotshot challenges
We have a few exercises to look into at the end of this project:

ff Setting the visibility of the Join events button should not be visible to the owners of
the events

ff Restricting the owners of the event to join the event

ff Creating a tag-based search in a textbox

ff Displaying similar events for users based on tags

ff Adding validations and tests for the entire application

Project 3
Creating an Online

Social Pinboard

Every now and then, there are changes that alter our perspective of how we do things.
One of these things is pinterest.com. The idea of an online pinboard to collect what we
like is so appealing. It is a great way to organize personal information. For entrepreneurs, it
gives direct insight into the likes and dislikes of a consumer. Hence, pinboards have gained
importance and are now becoming specific to interests.

Mission briefing
We will create an online pinboard where users can collect and pin up what they like by
uploading pictures. These pictures can also pinned by other users on their own pinboards.

During the course of this project, we will work with some popular jQuery plugins that have
common use cases. The grid layout, infinite scroll, and modal box are some of the plugins
we will look at. We will also create a mailer daemon that runs a job in the backend to send a
weekly mail. Also, we will look at the basics of full-text searching and implement one in our
app. Lastly, we will look at some tricks to prevent cross-site scripting and Rails security.

Creating an Online Social Pinboard

78

Our finished applications looks as shown in the following screenshot:

Why is it awesome?
An online platform to pin up things is a great way to look at the kind of fashion, food, design,
and photography, among many others, that is trending. It is also a very visual medium to
market one's creations. It is more effective than any textual medium as it creates direct
impact on the seeker. Repinning a post also allows us to track trends related to various
topics as the pins are arranged in boards by an individual's area of interest.

Your Hotshot objectives
We will have to perform the following tasks while building this application:

ff Creating file uploads and image resizing

ff Creating an infinitely scrollable page

ff Creating a responsive grid layout

ff Adding a full-text search

ff Resharing the pins and creating modal boxes using jQuery

ff Enabling the application to send e-mail

ff Securing application from cross-site scripting or XSS

Project 3

79

Mission checklist
We need the following installed on the system before we start with our mission:

ff Ruby 1.9.3 / Ruby 2.0.0

ff Rails 4.0.0

ff MySQL 6

ff Bootstrap 3.0

ff Sass

ff Sublime Text

ff Devise

ff Git

ff A tool for mockups

ff jQuery

ff ImageMagick and RMagick

ff Solr

Creating file uploads and image
resizing

As seen in previous projects, we will mockup our application page and create a sample layout
similar to Pinterest as follows:

Creating an Online Social Pinboard

80

In this section, we will use the carrierwave gem to upload images and resize them into
different sizes in order to display them on different pages. For example, we will display
thumbnails on listing pages and larger images on individual pages.

Prepare for lift off
Before we start off with creating the upload methods, we will create two models and
controllers for board and pin as follows:

$ rails g scaffold board title:string description:text

$rails g scaffold pin name:string image:string board_id:integer

We will create an association between pin and board as follows:

models/pin.rb
 belongs_to :board
models/board.rb
 has_many :pins

A user model is generated using the devise gem. We will also create an association
between user and boards:

models/board.rb
 belongs_to :user
models/user.rb
 has_many :boards

We will also use friendly_id to create slugs for board and pin:

models/board.rb
 extend FriendlyId
 friendly_id :title, use: :slugged
models/pin.rb
 extend FriendlyId
 friendly_id :name, use: :slugged

Board is a way to organize pins, so all pins belong to a particular board. Also, these pins are a
visual medium and hence full of images. So, we first need to get the images right. We will use
the carrierwave gem to build the file uploading methods. It is a very standard method to
add file uploads of all kinds.

ImageMagick is a dependency for our project, and we need to install it from source. Detailed
installation instructions for ImageMagick can be found at http://www.imagemagick.
org/script/advanced-unix-installation.php.

Project 3

81

Once ImageMagick is installed and tested, install RMagick:

$ gem install rmagick

Engage thrusters
To create the file uploads, we will perform the following steps:

1.	 Add carrierwave to Gemfile and run bundle:

Gemfile

gem 'carrierwave'

2.	 Generate the uploader file:

:~/pinpost$ rails g uploader image

 create app/uploaders/image_uploader.rb

This will create a new folder inside the app folder called uploader and generate
the file under it.

3.	 We will use the filesystem to store and serve files here. The files are renamed
to suit the models:

app/uploaders/image_uploader.rb
 storage :file
 def store_dir
 Rails.env.production? ? (environment_folder = "production") :
(environment_folder = "test")
 "uploads/#{environment_folder}/#{model.class.to_s.
underscore}/#{mounted_as}/#{model.id}"
 end

4.	 These uploaders are reusable and the same one can be mounted on multiple models
in our pin model:

app/uploaders/image_uploader.rb
 mount_uploader :image, ImageUploader

5.	 At this point, we need to add image attributes to our pin model:

$ rails g migration add_image_to_pins image:string

 invoke active_record

 create db/migrate/20140130025412_add_image_to_pins.rb

6.	 We will need to whitelist the image attributes so that they can be retrieved from
a form and stored in the database.

Creating an Online Social Pinboard

82

7.	 Add the image parameters to the whitelist in your pins_controller file:

app/controllers/pins_controller.rb
def pin_params
 params.require(:pin).permit(:name, :image, :image_cache,
:board_id)
 end

8.	 The carrierwave gem maps the f.file_field form helper to the carrierwave
uploader method in order to upload the files. So we can add this to our form:

app/views/pins/show.html.erb
<div class="field">
 <%= @pin.image_url if @pin.image? %>
 <%= f.file_field :image %>
 <%= f.hidden_field :image_cache %>
 </div>

The form to create a pin looks like what is shown in the following screenshot:

9.	 Once the images are uploaded, we can display them.

10.	 In order to do so, we can directly make a call on the uploader name with a helper
method called url to get the image file path:

app/views/pins/index.html.erb
<%=link_to(image_tag(pin.image.url, :width=>"200",
:height=>"200"), pin) %>

11.	 However, instead of manually defining width and height of the image, it's better
to have them defined as a geometry and scale them during the time of upload.

12.	 Define geometries to resize the images to multiple sizes on different pages:

�� Add the rmagick gem and install it:

Gemfile

gem 'rmagick'

�� Configure it inside your uploader file:

app/uploaders/image_uploader.rb
include CarrierWave::RMagick

Project 3

83

�� Define different geometries for your image sizes:

app/uploaders/image_uploader.rb
Create different versions of your uploaded files:
 version :thumb do
 process :resize_to_fit => [200, 200]
 end
 version :normal do
 process :resize_to_fit => [350, 350]
 end

13.	 Now that we have defined different sizes, we need to resize all the existing images
and new ones to same sizes. In order to do so, we need a method that allows us to
do this in one batch.

14.	 After defining the geometries, we need our already uploaded files to be resized to
the specified geometries. In order to do so, we will first create a migration:

$ rails g migration recreate_old_thumbnails

 invoke active_record

 create db/migrate/20140130033618_recreate_old_thumbnails.
rb

db/migrate/20140130033618_recreate_old_thumbnails.rb

class RecreateOldThumbnails < ActiveRecord::Migration

 def up

 Pin.all.each {|p| p.image.recreate_versions! if p.image}

 end

 def down

 end

end

15.	 For the index page, modify views to call certain geometries on a certain page:

app/views/pins/index.html.erb
<%=link_to(image_tag(pin.image.thumb.url), pin) %>

16.	 Similarly for the show page, modify views as explained in the preceding point:

app/views/pins/show.html.erb
 <%=image_tag @pin.image.normal.url %>

Creating an Online Social Pinboard

84

17.	 We will write a test for our uploader file as follows:

test/uploaders/image_uploader_test.rb
require_relative '../test_helper'
require 'rubygems'
require 'RMagick'
require 'carrierwave'
require_relative '../../app/uploaders/image_uploader'
class ImageUploaderTest < MiniTest::Unit::TestCase
 FILENAME = 'well.jpeg'
 STORE_DIR = 'tmp/uploads/store'
 CACHE_DIR = 'tmp/uploads/cache'
 STORE_PATH = File.join __dir__, '..', '..', STORE_DIR
 CACHE_PATH = File.join __dir__, '..', '..', CACHE_DIR

 class ::ImageUploader
 storage :file
 def store_dir; STORE_PATH; end
 def cache_dir; CACHE_PATH; end
 end
 def setup
 @file = File.new "#{__dir__}/../test_files/#{FILENAME}"
 end
 def clear_after_test
 FileUtils.rm_rf STORE_PATH
 FileUtils.rm_rf CACHE_PATH
 end
 def test_image_upload
 uploader = ImageUploader.new
 uploader.store!(@file)
 assert_equal Digest::SHA2.file(@file).hexdigest, Digest::SHA2.
file("#{STORE_PATH}/#{FILENAME}").hexdigest
 end
 def after_tests
 end
end

Objective complete – mini debriefing
The carrierwave gem creates a separate folder for the upload-related code:

app/uploaders/image_uploader.rb

Project 3

85

In many ways, it's a very clean way to keep the uploader-related code abstracted from the
rest of the code. The code to upload images is reusable and maintainable:

storage :file
 def store_dir
 "uploads/#{model.class.to_s.underscore}/#{mounted_as}/#{model.id}
 end

The storage rule defines the storage mechanism to store files. We can also use Amazon S3
or Rackspace with the help of the fog gem.

The storage_dir defines the directory where the program stores the image. It generates
the directories according to the model class, the type of asset (image, file, and so on), and
the record number.

In case the form validation fails, the file field is reset. For the form to remember the
filename even when the validation fails, we add a image_cache field in the form.
We also add it to the permitted params in our controller.

We then create different versions of the same file during the upload. We use RMagick, which
is Ruby's interface for ImageMagick, in order to read and process the image files:

 include CarrierWave::Rmagick

Another option is to use MiniMagick, another interface for ImageMagick, known to consume
less memory than RMagick:

include CarrierWave::MiniMagick

The version rule in uploader helps to identify and create versions according to the
defined geometry. In order to scale the image to the specified dimensions, we defined the
:resize_to_fit method. This method will alter the dimensions of the image:

 version :thumb do
 process :resize_to_fit => [200, 200]
 end

In order to crop a part of the image, we can define the :resize_to_fill method. This will
keep the dimensions of the image intact, while cropping out the defined dimensions from
the image:

process :resize_to_fill => [200, 200]

In order to display the image, we accessed it via the following rule:

pin.image.thumb.url

Creating an Online Social Pinboard

86

It can be read as follows:

Object Name. Uploader Name. Url

To test our uploader, we first load all the required classes, RMagick to resize, carrierwave
to upload, and our uploader class:

require_relative '../test_helper'
require 'rubygems'
require 'RMagick'
require 'carrierwave'
require_relative '../../app/uploaders/image_uploader'

We then set up all the parameters required to create the upload method:

class ImageUploaderTest < MiniTest::Unit::TestCase
 FILENAME = 'well.jpeg'
 STORE_DIR = 'tmp/uploads/store'
 CACHE_DIR = 'tmp/uploads/cache'
 STORE_PATH = File.join __dir__, '..', '..', STORE_DIR
 CACHE_PATH = File.join __dir__, '..', '..', CACHE_DIR

We then create our storage directories:

class ::ImageUploader
 storage :file
 def store_dir; STORE_PATH; end
 def cache_dir; CACHE_PATH; end
 end

We add a method to delete the directories after the upload test passes:

 def clear_after_test
 FileUtils.rm_rf STORE_PATH
 FileUtils.rm_rf CACHE_PATH
 end

We actually send the file to upload and match by assertion depending on whether it has
been uploaded:

def test_image_upload
 uploader = ImageUploader.new
 uploader.store!(@file)
 assert_equal Digest::SHA2.file(@file).hexdigest, Digest::SHA2.
file("#{STORE_PATH}/#{FILENAME}").hexdigest
 end

Project 3

87

Creating an infinitely scrollable page
We are creating a social website and hope to attract several users. Very soon, with the
increase in data, we will have to figure out how to arrange the data in the form of pages. We
will now add pagination and see how to create and fit it in the context of our website. We
will first look at creating pagination using Kaminari as the solution. We will then convert it
to an infinitely scrollable page by identifying the end of a page and rendering the next page
immediately after that.

Engage thrusters
We will now create an infinitely scrollable page for our application:

1.	 First add the kaminari gem and set it up.

2.	 Add the kaminari gem to your Gemfile and run bundle install:

gem 'kaminari'

3.	 Generate the configuration file in the initializers:

rails g kaminari:config

4.	 Once it is set up, we will add the pagination methods.

5.	 The kaminari gem methods bind to models, so we need to define the per_page
method in each mode. This will define the number of records after which a new
page will be generated:

app/models/pin.rb
paginates_per 10

6.	 In your controller, find and arrange the pins with the latest ones on the top and
make a call on the paginates per method.

app/controller/pins_controller.rb
 def index
 @pins = Pin.order(:created_at).page(params[:page])
 end

7.	 Once the pagination methods are in place, we will render these records into pages
by inserting the following at the end of the page:

app/views/pins/index.html.erb
<%= paginate @pins %>

8.	 We now have a working pagination in our application. We will now create an
infinitely scrollable page using the jQuery library called jQuery infinitescroll.
We will now have to generate jQuery files and add the jQuery infinitescroll
jQuery library to the application.

Creating an Online Social Pinboard

88

9.	 First generate jQuery files in the Rails public folder using the Rails jQuery
generator command:

:~/pinpost$ rails g jquery:installl

 remove public/javascripts/prototype.js

 remove public/javascripts/effects.js

 remove public/javascripts/dragdrop.js

 remove public/javascripts/controls.js

 copying jQuery (1.10.2)

 create public/javascripts/jquery.js

 create public/javascripts/jquery.min.js

 copying jQuery UJS adapter (e9e8b8)

 remove public/javascripts/rails.js

 create public/javascripts/jquery_ujs.js

10.	 Once this is done, download infinite scroll (https://github.com/paulirish/
infinite-scroll) and add the jQuery infinitescroll library to the application:

:~/pinpost/vendor/assets/javascripts$ ls
jquery.infinitescroll.js

11.	 Then require the infinitescroll library in application.js:

app/assets/application.js
//= require jquery.infinitescroll

12.	 We need this script to only run on the page where we have to display all the pins.
Thus, we add the following script to pins.js.coffee:

app/assets/pins.js.coffee
$(document).ready ->
 $("#posts").infinitescroll
 navSelector: "nav.pagination"
 nextSelector: "nav.pagination a[rel=next]"
 itemSelector: "#posts tr.post"

13.	 The next item selector binds to a particular tag inside your tag structure. The nav.
pagination method will fire the next page to bring the next batch of records in
order to display them.

14.	 We will now find the end of the page, generate a div element, and append it
to the page.

Project 3

89

15.	 For the page to look infinitely scrollable, we will have to identify the end of the page
and generate a div element in order to display the next page. We will create an
index.js.erb file inside our views/pins folder:

app/views/pins/index.js.erb
$("#posts").append("<div class='page'><%= escape_
javascript(render(@pins)) %></div>");

16.	 Finally, we will modify the index page to display pagination.

17.	 We will assign an ID called posts to table, so the index.js.erb file can bind to
it. Each page will have a tbody class page and each pin will bind to a post class:

app/views/pins/index.html.erb
<table id="posts">
 <tbody class="page">
 <% @pins.each do |pin| %>
 <tr class="post">
 <td> <%=link_to(image_tag(pin.image.thumb.url), pin) %><p>
 Board:<%= pin.board.title %>
<%= pin.
board.user.email %></p></td>
 </tr>
 <% end %>
 </tbody>
</table>

18.	 We will add a validation to make sure title is present. User e-mail is a mandate to
create the account, so the devise gem has already taken care of it:

app/models/board.rb
validates :title, presence: true

19.	 This is all we need need to create an infinitely scrollable page.

Objective complete – mini debriefing
We just created a page with endless pagination. We looked at normal pagination that
sorts several records page-wise. We used the kaminari gem to create the pagination
inside our application. When we generate the configuration, a kaminari_config.rb
file is generated:

config/initializers/kaminari_config.rb
Kaminari.configure do |config|
 # config.default_per_page = 25
 # config.max_per_page = nil
 # config.window = 4
 # config.outer_window = 0
 # config.left = 0

Creating an Online Social Pinboard

90

 # config.right = 0
 # config.page_method_name = :page
 # config.param_name = :page
end

The config.param_name option changes the page name required for pagination. By
default, it is page. Then, we defined the paginates_per method to limit the number
of records to be displayed in a page:

paginates_per 10

In order to render the pagination, we add the partial call in our view:

<%= paginate @pins %>

We then looked at making these pages paginate one after another and append at the end of
each page. We used JavaScript in order to create the infinite scroll. We used a combination
of jQuery and CoffeeScript in order to create the infinite scroll. It is noteworthy that
CoffeeScript is a language that compiles to JavaScript. So jQuery-related code or any other
code related to the JavaScript framework can be written as CoffeeScript and then compiled
to JavaScript. Also, it is neatly integrated with the Rails framework, so all controllers have a
CoffeeScript associated with them.

There are several libraries that provide similar functionalities, for example, sausage.js
is a simple jQuery library with similar functions. Also, Masonry and Wookmark come
with in-built methods to generate infinite scrolls. We used a jQuery plugin called jquery_
infinitescroll in order to implement it. The plugin can be downloaded from GitHub
(http://www.infinite-scroll.com/infinite-scroll-jquery-plugin/).

The first selector is meant for the page navigation and this will be hidden:

navSelector: "nav.pagination"

The next page is automatically identified by nextSelector and it looks for the next set of
posts to render:

 nextSelector: "nav.pagination a[rel=next]"

Also, ItemSelector will render the next page or the next set of posts right after the end of
the page is reached:

 itemSelector: "#posts tr.post"

In Rails, to bind a JavaScript to a controller method, we have to create an action-specific
JavaScript file. Thus, we create index.js.erb. We will be able to retrieve the posts and
append them to the bottom of the page:

$("#posts").append("<div class='page'><%= escape_javascript(render(@
pins)) %></div>");

Project 3

91

In order to bind the JavaScript method to HTML, we have to create a table (as tr and td
are inside the table HTML attribute) and call the post class on it. This will make the infinite
scroll method applicable to the HTML:

<table id="posts">
 <tbody class="page">
 <% @pins.each do |pin| %>
 <tr class="post">
 <td> <%=link_to(image_tag(pin.image.thumb.url), pin) %><p>
 Board:<%= pin.board.title %>
<%= pin.
board.user.email %></p></td>
 </tr>
 <% end %>
 </tbody>
</table>

Creating a responsive grid layout
One of the most eye catching features of Pinterest and several other online pinboards is the
way pins are displayed. They are arranged as a grid of images alongside each other. This is
one of the greatest innovations and turning points in the creation of user experience. As
previously mentioned, Masonry and Wookmark are some of the libraries that generate
these kind of grids.

Prepare for lift off
Download the Wookmark from its GitHub repository (https://github.com/GBKS/
Wookmark-jQuery). Place the jquery.wookmark.js file in the app/assets folder.

Engage thrusters
We will add the Pinterest-style grid layout in this task:

1.	 First add the Wookmark library to the JavaScript files.

2.	 Add the jquery.wookmark.js file in the JavaScript files and require in
application.js:

:~/pinpost/app/assets/javascripts$ jquery.wookmark.js

3.	 In application.js, add the following line:

 //= require jquery.wookmark

4.	 Then initiate the JavaScript and generate a grid.

Creating an Online Social Pinboard

92

5.	 Initiate the function and bind it to the tiles ID. Also, bind it to a td so that we have
all the images inside the td. We will also handle clicks and randomize the height of
an image so that it looks like the images flow into one another. This will also help to
resize images in a responsive format:

app/views/pins/index.html.erb
<script type="text/javascript">
 var $handler = $('#tiles td');
 $handler.wookmark({
 autoResize: true,
 container: $('#main'),
 offset: 5,
 outerOffset: 10,
 itemWidth: 210
 });
 $handler.click(function(){
 var newHeight = $('img', this).height() + Math.round(Math.
random() * 300 + 30);
 $(this).css('height', newHeight+'px');
 // Update the layout.
 $handler.wookmark();
 });
</script>

6.	 Next, we will create the div element with ID as main and call the grid inside it.

7.	 Create a div element called main as mentioned in the Wookmark initializer and
bind tbody to tiles. The <td> tags under it will inherit the styles from this class:

app/views/pins/index.html.erb
<div id="main" role="main">
<table id="posts">
 <tbody id="tiles" class="page">
 <% @pins.each do |pin| %>
 <tr class="post">
 <td> <%=link_to(image_tag(pin.image.thumb.url), pin) %><p>
 Board:<%= pin.board.title %>
<%=
pin.board.user.email %></p></td>
 </tr>
 <% end %>
 </tbody>
</table>
<%= paginate @pins %>
</div>

Project 3

93

Objective complete – mini debriefing
In order to generate the grid layout to display all the pins, we used a jQuery plugin called
wookmark.js. We first created a variable called handler that binds to the td element of
the table, which is each cell of the row:

var $handlerr = $('#tiles td');

Then, we defined the variables required for each cell to be generated using wookmark.
Container is the element based on which the width of each column is calculated. The
offset element is used to define the distance between the two objects in a row:

 $handler.wookmark({
 autoResize: true,
 container: $('#main'),
 offset: 5,
 outerOffset: 10,
 itemWidth: 210
 });

Then, we created an event that randomizes the event size and creates grid
variable-sized images:

$handler.click(function(){
 var newHeight = $('img', this).height() + Math.round(Math.
random() * 300 + 30);
 $(this).css('height', newHeight+'px');
 // Update the layout.
 $handler.wookmark();
 });

As soon as we created the td element, our JavaScript automatically identified the element
and generated it:

<td> <%=link_to(image_tag(pin.image.thumb.url), pin) %><p>
 Board:<%= pin.board.title %>
<%= pin.
board.user.email %></p></td>

Creating an Online Social Pinboard

94

We have successfully generated the grid layout, which looks like that of Pinterest and is
shown in the following screenshot:

The preceding layout is responsive too, so we will resize our browser as shown in the
following screenshot and check it:

Project 3

95

The layout being responsive also depends on Bootstrap as it contains media queries as a part
of the CSS; however, Wookmark automates image resizing and grid size required for different
window sizes. Hence, it is a completely responsive layout.

Adding a full-text search
Search is one of the most important functionalities today. Because sites are targeted at
millions of users, there is a much larger volume of content. For a user to find what he or
she is looking for, a full-text search is created. The idea of a search is to call the text, break
it word by word, and match it with the key term supplied to it. We will use Apache Solr
to create our search engine. In this section, we add a search option to our models using
Sunspot, a Ruby-based library for Solr, indexing, and search methods in our Rails application.

Prepare for lift off
We will need to install Solr and Tomcat Solr before we start working with it. Solr relies
on Java, so you need to have an updated version of OpenJDK before you proceed. Solr is
generally a process bound with the sunspot gem and can be initiated using Rake. However,
the Solr server depends on Tomcat and JDK, so they need to be installed before we start
using Solr:

$ sudo apt-get install openjdk-6-jdk

Then install Tomcat and start the server:

sudo apt-get install solr-tomcat

sudo service tomcat6 start

Engage thrusters
We will add a full-text search engine to our application:

1.	 Add sunspot and the supporting libraries to Gemfile and bundle install:

gem 'sunspot', :require => 'sunspot'

gem 'sunspot_rails'

gem 'sunspot_solr'

2.	 The main library Sunspot; sunspot_rails is specific to the interface with Rails
applications and attaches it to the models. Sunspot Solr provides a Solr-related
configuration interface.

Creating an Online Social Pinboard

96

3.	 Generate the configuration file:

:~/pinpost$ rails generate sunspot_rails:install

 create config/sunspot.yml

4.	 The file looks like the following:

config/sunspot.yml
production:
 solr:
 hostname: localhost
 port: 8983
 log_level: WARNING
 # read_timeout: 2
 # open_timeout: 0.5
development:
 solr:
 hostname: localhost
 port: 8982
 log_level: INFO
test:
 solr:
 hostname: localhost
 port: 8981
 log_level: WARNING

5.	 In case your Solr server is running on a different port, edit the port number in this
file to match that. This will allow Solr to bind to that port and run on it.

6.	 We will load the Rake tasks manually. In Rails 4, the Rake tasks for Solr are not
loaded by default. Thus, we will need to add them to our Rake file:

require 'sunspot/solr/tasks'

7.	 Start the Solr server using the Rake task:

:~/pinpost$ rake sunspot:solr:start

java version "1.7.0_25"

OpenJDK Runtime Environment (IcedTea 2.3.10) (7u25-2.3.10-
1ubuntu0.13.04.2)

OpenJDK 64-Bit Server VM (build 23.7-b01, mixed mode)

Removing stale PID file at /home/user/pinpost/solr/pids/
development/sunspot-solr-development.pid

Successfully started Solr

Project 3

97

8.	 Solr is now up and running on your system. Let's go ahead and add indexes on the
fields we need to search.

9.	 Sunspot Solr accesses the database for full-text search through the models. We
need to define these in our board and pin models:

models/board.rb
 searchable do
 text :title, :description
 integer :user_id
 end
models/pin.rb
 searchable do
 text :name, :image
 integer :board_id
 endOnce

10.	 The indices are set up; we will index the data to Solr.

11.	 Indexing is a Rake task of sunspot, so just run the following Rake command:

:~/pinpost$ rake sunspot:reindex

*Note: the reindex task will remove your current indexes and start
from scratch.

If you have a large dataset, reindexing can take a very long time,
possibly weeks.

This is not encouraged if you have anywhere near or over 1 million
rows.

Are you sure you want to drop your indexes and completely reindex?
(y/n)

y

[###
##
###############] [88/88] [100.00%] [00:01] [00:00] [67.55/s]

12.	 We will now write our search methods in our model. We will then add a search
method in order to search our indexed data.

13.	 In order to search the indexed data, Sunspot provides us with a search method. We
will create a class method in our model to search through them. Our board model
will look as follows:

app/models/board.rb
def self.search_board(search_key)
 @search = self.search do
 fulltext "#{search_key}"
 end
 @search.results
 end

Creating an Online Social Pinboard

98

14.	 Our pin model will look like as shown in the following code snippet:

app/models/pin.rb
def self.search_pin(search_key)
 @search = self.search do
 fulltext "#{search_key}"
 end
 @search.results
 end

15.	 We will call the search and fulltext methods as a self class method using a
search term in the search_key variable. The @search object cannot be inspected.
Hence, we call @search.results to output our results in the form of an object.
Call the search method through the controller.

16.	 We will create a home controller in order to set up a home page for our application:

$ rails g controller home index

17.	 We will add our search method to the home controller as we want to create
a site-wide search. First, check if the search term is blank. Also, we will check for
a condition in which there are no results, and then display the message; else, we
will add the results of the board and pin into one object:

app/controllers/home_controller.rb
def search
 if params[:search].blank?
 flash[:notice] = "Please Supply a Search term"
If it is present, then search for board and pin
 else
 @board_results = Board.search_board(params[:search])
 @pin = Pin.search_pin(params[:search])
 if @board.nil? && @pin.nil?
 flash[:notice] = "No Results Found matching your query"
 else
 flash[:notice] = "Following are the search results"
 @search = @board + @pin
 end
 end
 end

18.	 We now have the search results. In order to search from a form, we need a route.
Our search method route will look like the following:

config/routes.rb
get :search, :to => 'home#search', :as => 'search'

Project 3

99

19.	 However, to search from a form, we need to create a search form in layouts/
application.html.erb.

20.	 This form will send the search term as params[:search], which will be passed to
the controller method:

app/views/layouts/application.html.erb
<%= form_tag(search_path, :class=>"navbar-form navbar-left",
:method => :get) do%>
 <div class="form-group">
 <%=text_field_tag :search, params[:search], :class =>
'form-control', :placeholder => 'Search'%>
 </div>
 <button type="submit" class="btn btn-default">
 <i class="icon-search"></i>
 </button>
 <%end%>

We have used the Font Awesome icon to create the search icon. We can now see a
Search bar on the top of our page as shown in the following screenshot:

21.	 We will now display the search results by creating a search results page.

22.	 We can run the loop over our search object and identify if the class name is Board
or Pin. In this way, we can differentiate between the different search results:

app/views/layouts/application.html.erb
<% @search.each do |s|%>
 <%if s.kind_of?(Board)%>

Creating an Online Social Pinboard

100

 <p><%= s.title%>
<%= s.description%>
<%=
s.user.email%></p>
 <%else if s.class.name == "Pin" %>
 <%=image_tag s.image.url%><p><%= s.board.title%></
p>
 <%end%>
 <%end%>

This is how it looks after applying the Wookmark grid layout to the view:

Objective complete – mini debriefing
In this task, we added a full-text search engine to our application. We used Solr as our choice
of search engine. Solr's website defines it as follows:

SolrTM is the popular, blazing, fast, open source, enterprise search
platform in the Apache LuceneTM project. Its major features include
powerful full-text search, hit highlighting, faceted search, near real-time
indexing, dynamic clustering, database integration, rich document (for
example, Word, PDF, and so on) handling, and geospatial search.

Although Solr has more dependencies than other counterparts (Sphinx and Elasticsearch), it
is highly scalable and can handle complex queries with ease.

We first defined an index in the pin model:

 searchable do
 text :name, :image
 integer :board_id
 end

Project 3

101

In a search engine, indexing is a process to collect, parse, and store data such that it is
matched and retrieved really quickly using the defined matching algorithms. A query on
an index is much faster than a query on the database because an index remembers only a
particular set of data, not the entire data set. An index is generally a data structure. Solr uses
an inverted index data structure technique (a hash table or a binary tree) to implement the
indexing function.

Once the index is defined, Sunspot generates an incremental index as soon as a new record
is saved.

The fulltext method performs the search on the index created using the search term:

 @search = self.search do
 fulltext "#{search_key}"
 end

The results are returned as objects inside @search. In order to get the search results as a
hash from the object, we called the following method:

 @search.results

The terminal shows the Solr query once we try to search according to the search term:

Started GET "/search?utf8=%E2%9C%93&search=blade" for 127.0.0.1 at 2014-02-02
16:02:15 +0800

Processing by HomeController#search as HTML

 Parameters: {"utf8"=>"✓", "search"=>"blade"}

 SOLR Request (96.9ms) [path=#<RSolr::Client:0x007f352c0d5008> parameters={data:
fq=type%3ABoard&q=blade&fl=%2A+score&qf=title_text+description_text&defType=di
smax&start=0&rows=30, method: post, params: {:wt=>:ruby}, query: wt=ruby, headers:
{"Content-Type"=>"application/x-www-form-urlencoded; charset=UTF-8"}, path: select,
uri: http://localhost:8982/solr/select?wt=ruby, open_timeout: , read_timeout: , retry_503:
, retry_after_limit: }]

 SOLR Request (27.0ms) [path=#<RSolr::Client:0x007f352c0d5008> parameters={data: fq
=type%3APin&q=blade&fl=%2A+score&qf=name_text+image_text&defType=dismax&sta
rt=0&rows=30, method: post, params: {:wt=>:ruby}, query: wt=ruby, headers: {"Content-
Type"=>"application/x-www-form-urlencoded; charset=UTF-8"}, path: select, uri: http://
localhost:8982/solr/select?wt=ruby, open_timeout: , read_timeout: , retry_503: , retry_
after_limit: }]

Creating an Online Social Pinboard

102

Rails 4.2 upgrade tip

In Rails 4.2, the require path, active_support/core_ext/object/
to_json, is depricated instead of active_support/core_ext/
object/json.

Sunspot Rails gives the following deprication warning:

DEPRECATION WARNING: You have required `active_support/core_ext/
object/to_json`. This file will be removed in Rails 4.2. You should require
`active_support/core_ext/object/json` instead. (called from <top (required)>
at /home/rwub/rails4-book/book/6294OS_Chapter_03/project-3/config/
application.rb:7)

sunspot_rails/lib/sunspot_rails.rb
require 'active_support/core_ext/object/json'

Resharing the pins and creating
modal boxes using jQuery

One of the most important features in our application is resharing. This is the most attractive
feature businesswise and a USP of our application. If a user likes an image or pin, he or
she would like to pin it up on their board. In this section, we will look at creating this
functionality. This is the social aspect and also the business model. How do we check the
most trending items? The number of times a pin has been shared can serve as a strong
metric when suggesting a trending topic.

A user should be able to select the board on which you have put up the pin. These are the
users' own boards. We can do this by creating a modal box with a list of users' boards in it.

Engage thrusters
In this task, we will add the functionality to repin the post:

1.	 Create a pin_post method in the pins controller:

�� This method will call the pin and find it using the pin ID. Create a new pin
and assign values to various attributes. We can save this pin once we build
the complete object:

app/controllers/pins_controller.rb
 def pin_post
 @current_pin = Pin.friendly.find(params[:id])
 @pin = @current_pin.repin_post (params[:board_id])
 respond_to do |format|

Project 3

103

 if @pin.save
 format.js {render :layout => false}
 else
 format.js
 end
 end
 end

2.	 We will create a new pin in the pin model:

app/models/pin.rb
def repin_post(board_id)
 pin = Pin.new
 pin.name = self.name
 pin.board_id = board_id
 pin.image = self.image
 pin.save
end

3.	 Create a route to access this method from the controller.

4.	 We will pass the ID of the pin along with the route:

config/route.rb
 post 'pin_post/:id', :to => 'pins#pin_post', :as => 'pin_post'

5.	 We will add a modal box using jQuery Facebox:

�� Add the Facebox jQuery plugin using the facebox-rails gem:

Gemfile

 gem 'facebox-rails'

�� Add JavaScript to the application.js file:

app/assets/application.js
//= require jquery.facebox

�� Also add the stylesheet to the application.css file

app/assets/application.css
 *= require jquery.facebox

�� Initiate facebox and ask it to bind to a tag with rel="facebox":

app/views/pins/index.html.erb
<script>
jQuery(document).ready(function($) {
 $('a[rel*=facebox]').facebox()
})
</script>

Creating an Online Social Pinboard

104

6.	 In order to make this form reusable, create a partial called pin_post.html.erb:

app/views/pins/_pin_post.html.erb
<%= form_tag(pin_post_path(pin)) do%>
 <p>Select a board for Pinning</p>
<% if current_user.boards%>
 <% current_user.boards.each do |b|%>
 <%= radio_button_tag :board_id, b.id %>
 <%= b.title %>

 <%end%>
 <%= submit_tag 'Save', :class => "btn btn-primary"%>
 <%end%>
<%end%>

7.	 Create a link to the info box to display the boards.

8.	 We can call the Pin This link and use the share icon from the Font Awesome
icon library:

app/views/pins/index.html.erb
 <i class="icon-share-sign"></i>Pin
This

9.	 Add a hidden div and call the partial pin_post.html.erb in the div:

app/views/pins/index.html.erb
<div id="info" style="display:none;">
 <%= render partial: 'pin_post', locals: {pin: pin}%>
 </div>

Objective complete – mini debriefing
We have now added the modal box and allowed users to repin a particular pin they like on
their own boards. The idea behind a repin is that users will save the same pin on the board
that's associated with them. So, in order to repin, we created a class method in the model.
We called the current pin in an object using ID:

@current_pin = Pin.friendly.find(params[:id])

Then, we called a method to generate a new pin based on the information of the existing pin:

def repin_post(board_id)
 pin = Pin.new
 pin.name = self.name
 pin.board_id = board_id
 pin.image = self.image
 pin.save
end

Project 3

105

We displayed the boards in a modal box. We used the jQuery Facebox plugin as the modal
box. We used Facebox (https://github.com/defunkt/facebox) to load a partial with a
form that contains the list of boards selectable using radio buttons. The form_tag binds to
the controller action via the route. The remote=>true enables the AJAX form submission.
Also, radio_button_tag generates the radio button to select the board value:

<%= form_tag(pin_post_path(pin), :remote=>true) do%>
 <p>Select a board for Pinning</p>
 <% Board.my_board(current_user).each do |b| %>
 <%= radio_button_tag :board_id, b.id %>
 <%= b.title %>

 <%end%>
 <%= submit_tag 'Save', :class => "btn btn-primary" %>
<%end%>

The modal box for resharing a pin looks like what is shown in the following screenshot:

Enabling the application to send a mail
Mailers are the oldest way of marketing and still prove to be one of the most effective ways
to reach out to users. As a part of the user engagement model, we can create a weekly
mailer with a list of recent pins. This will keep the user updated with the latest information
posted on our website and enhance users' engagement.

Creating an Online Social Pinboard

106

Engage thrusters
In the coming steps, we will create a mailer service for our application. To do so, we need to set
up Action Mailer and use the Google apps e-mail service to send the mails via our application:

1.	 Add the following lines inside your development.rb/production.rb file:

config/environments/development.rb
config.action_mailer.smtp_settings = {
 :enable_starttls_auto => true,
 :address => "smtp.gmail.com",
 :port => '587',
 :domain => "smtp.gmail.com",
 :authentication => "plain",
 :user_name => "foobar@pinpost.com",
 :password => "myawesomepw" }

2.	 We will have to make sure that we do not commit the credentials of our mailer
system in our version control; you can use dummy credentials. We can also avoid
sending out mail in the development mode by using MailCatcher. We can install it
using the gem command first:

$ gem install mailcatcher

Fetching: skinny-0.2.3.gem (100%)

Fetching: mailcatcher-0.5.12.gem (100%)

Successfully installed skinny-0.2.3

Successfully installed mailcatcher-0.5.12

2 gems installed

Then, start the MailCatcher service using the mailcatcher command:

$ mailcatcher

Starting MailCatcher

==> smtp://127.0.0.1:1025

==> http://127.0.0.1:1080

*** MailCatcher runs as a daemon by default. Go to the web
interface to quit.

3.	 Now we will edit our mailer settings in our environments/development.rb file:

config/environments/development.rb
config.action_mailer.delivery_method = :smtp
config.action_mailer.smtp_settings = { :address => "localhost",
:port => 1025 }

Project 3

107

4.	 We will then generate a mailer called newsletter:

:~/pinpost$ rails g mailer newsletter

 create app/mailers/newsletter.rb

 invoke erb

 create app/views/newsletter

 invoke test_unit

 create test/mailers/newsletter_test.rb

5.	 We will add a mailer method called letter in order to send the e-mail.

6.	 Then, we will pass the user e-mail and pin as the argument and pick up the e-mail
from it:

app/mailers/newsletter.rb
class Newsletter < ActionMailer::Base
 default from: "noreply@pinpost.com"
 def letter(user, pin)
 @user = user
 @pins = pin
 mail(:to => @user.email, :subject => "Latest Pins from Our
Users")
 end
end

7.	 Next up, we will create a controller method to retrieve these objects and pass them
to the mailer method.

8.	 We will create a pins_newsletter method, calling the last five pins into an object
and looping them over all users:

app/models/pin.rb
 def self.send_newsletter
 @user = User.all
 @user.each do |u|
 @pins = self.all(:limit => 5)
 Newsletter.letter(u, @pins).deliver
 end
 end

9.	 We will need to add e-mail views to the newsletter folder located under views.

Creating an Online Social Pinboard

108

10.	 The newsletter folder was created when we generated the mailer earlier. This
folder will hold the views for the e-mail, that is, how the e-mail will look. In our
case, we will call the last five pins and directly link to them via e-mail and call the
letter.text.erb file:

app/Views/newsletter/letter.text.erb
 <h3>Our Latest Pins</h3>
<% @pins.each do |p|%>
 <%=link_to p.name, p %>
<%end%>

11.	 Now that we are ready with our methods, we need to create a Rake task as we want
this functionality to run in the backend.

12.	 Create a newsletter.rake file in lib/tasks.

13.	 This will basically invoke a new method with an instance called pins_newsletter
and send an e-mail to all the users:

lib/tasks/newsletter.rake
namespace :newsletter do
 desc "Send Newsletter"
 task :send => :environment do
 Pin.send_newsletter
 end

We will bind the preceding Rake task to cron using the whenever gem.

14.	 Add the whenever gem to Gemfile and bundle:

gem 'whenever', :require => false

15.	 Generate the configuration file called schedule.rb:

:~/pinpost$ wheneverize .

[add] writing `./config/schedule.rb'

[done] wheneverized!

16.	 Configure the Rake task to run every seven days in order to send a weekly mail:

config/schedule.rb

every 7.days do

 rake "newsletter:send"

 end

Project 3

109

17.	 Update the crontab file:

:~/pinpost$ whenever --update-crontab store

[write] crontab file updated

18.	 Check if the crontab file has been updated by listing the cron jobs:

:~/pinpost$ crontab -l

Begin Whenever generated tasks for: store

0 0 1,8,15,22 * * /bin/bash -l -c 'cd /home/rwub/rails4-book/
book/6294OS_Chapter_03/project-3 && bin/rails runner -e production
'\''Send Newsletter Email'\'''

0 0 1,8,15,22 * * /bin/bash -l -c 'cd /home/rwub/rails4-book/
book/6294OS_Chapter_03/project-3 && RAILS_ENV=production bundle
exec rake newsletter:send --silent'

Objective complete – mini debriefing
In this task, we saw how to create a mailer using Action Mailer and bind it to cron in order
to send weekly e-mails.

We first created a mailer in our application. The mailer then creates a class under the
mailers folder. We defined the default from e-mail in our mailer class. Next, as a part
of the e-mail, we defined a method with user and pins as attributes. Finally, we added the
subject of our e-mail and sent it to all the users in the system:

app/mailers/newsletter.rb
class Newsletter < ActionMailer::Base
 default from: "noreply@pinpost.com"
 def letter(user, pin)
 @user = user
 @pins = pin
 mail(:to => @user.email, :subject => "Latest Pins from Our Users")
 end
end

Then we defined the text for the e-mail to be sent out. In that, we displayed the list of the
last five pins that have been created:

app/views/newsletter/letter.text.erb
<h3>Our Latest Pins</h3>
<% @pins.each do |p|%>
 <%=link_to p.name, p %>
<%end%>

Creating an Online Social Pinboard

110

In order to fetch this information and fire the method, we created a class method in the Pin
controller. This method will fetch all the users and the last five pins. We will pass the user
object and pins object to the Newsletter mailer class. Also, Model.all is depricated in
Rails 4. A direct replacement for the Model.all call is Model.to_a. In order to limit the
number of records to be selected in the query, we will first have to pass the order argument
and then the limit argument:

 def self.send_newsletter
 @user = User.all.to_a
 @user.each do |u|
 @pins = self.order('id ASC').limit(5)
 Newsletter.letter(u, @pins).deliver
 end
 end

We fired this using a Rake task that directly calls the send_newsletter method in the
Pin model:

namespace :newsletter do
 desc "Send Newsletter"
 task :send => :environment do
 Pin.send_newsletter
 end
end

In order to send e-mails on a periodic basis, we added the cron jobs to our application and
used the whenever gem for it. The whenever gem uses a file called schedule.rb to define
that our task will run every seven days:

Config/schedule.rb

every 7.days do

 rake "newsletter:send"

 end

The whenever gem edits the Linux cron jobs in order to send e-mails from time to time.
The e-mails in our terminal look like the following:

Sent mail to myawesomeuser@gmail.com (15.8ms)

Date: Mon, 02 Sep 2013 07:11:29 +0800

From: noreply@pinpost.com

To: myawesomeuser@gmail.com

Message-ID: <5223c9a1d7189_ed53fb18a55acb44652d@rwub.mail>

Project 3

111

Subject: Latest Pins from Our Users

Mime-Version: 1.0

Content-Type: text/plain;

 charset=UTF-8

Content-Transfer-Encoding: 7bit

<h3>Our Latest Pins</h3>

 Zombie Tshirt

 Kyoto Ginkakuju Temple

 Spaghetti Cheese

 Pasta Au Gratin

 Long road

We can also browse to localhost:1080 to see the sent e-mails in our MailCatcher web
console. The screenshot shows the output of the previous code:

Creating an Online Social Pinboard

112

We can set weekly mail as a background job as well using Sidekiq or Resque. We will look
at Sidekiq in later projects. It is a much advanced version of creating background jobs and
job queues and is used in cases where there are several asynchronous jobs to be run in the
background.

Securing an application from
cross-site scripting or XSS

The Internet comes with its share of security concerns. There are several types of attacks you
will have to avoid while working with your Rails application: session hacking, cookie stealing,
SQL injections, and cross-site scripting. In this section, we will only look at cross-site scripting
and how to avoid it in our application.

Engage thrusters
The following steps will give us some security tips:

1.	 Check for vulnerability by adding a simple alert box in your text area field.

2.	 Create a new board and add the following code in your description area:

<h1>Board</h1>
 <p>This is a vulnerability test</p>
 <p><script>alert('This is a vulnerability test!');</script></p>

3.	 If your application gives out an alert whenever the page loads, your site is vulnerable
to cross-site scripting:

4.	 This can occur even if we apply the html_safe filters and allow HTML to be passed
as part of the text. By default, Rails sanitizes all HTML to text and uses the latest
HTML5 standards in order to do so.

Project 3

113

5.	 We need to escape HTML in order to stop the JavaScript execution.

6.	 We will use the Rails HTML escape helper in order to escape the HTML in textboxes
and prevent the execution of JavaScript in our text area. This will ensure the security
of our application from JavaScript attacks:

 <%=(@board.description) %>%>

Objective complete – mini debriefing
We have sanitized the HTML so that JavaScript is not inserted into our textboxes and
executed every time the page is loaded. Cross-site scripting is a very serious issue. It could
lead to concerns such as session and cookie stealing. A malicious user can enter such a
JavaScript in our database and steal session information every time the page is loaded.

Rails has several forms of security built into the framework; let's be smart enough and
use them.

Mission accomplished
In this project, we have created a simple social sharing website. We discussed creating pins
and boards and resharing the pins. We looked at various jQuery libraries—Infinite scroll,
Facebox, and Wookmark—and how to quickly use them to our advantages. We also used
Solr to create a full-text search engine for our website.

We created a weekly mailer to increase our user engagement and used the cron job
to make it a periodic task that runs in the background. Last but not least, we looked at
potential security vulnerabilities and a simple way to fix these issues.

Hotshot challenges
Great! We have achieved a lot at the end of this project. Give yourself a pat on your back.
Now it's time to take these concepts ahead and try out new things with what we've seen in
this project:

ff Use Amazon S3 instead of the filesystem to upload files

ff Count the number of repins for each pin

ff Add facets

ff Write integration tests for the search option using minitest

ff Create a mailer with the five most shared pins

Project 4
Creating a Restaurant

Menu Builder

Tablets and smartphones are becoming cheaper by the day. They have better screens,
faster processors, and better graphics. Hence, it makes perfect sense to port the restaurant
menus to tablets and smartphones. It will save a lot of issues related to print and design
and also save a lot of cost by making the menus easy to update. It will also make the process
of ordering much faster and less prone to human errors. In this project, we will build a
SaaS-based product to create restaurant menus online.

Mission briefing
In this project, we will create a SaaS-based software to create restaurant menus. Users can
sign up and will have their own subdomain and area; they will also have plans to select from.
Along with this, they can also create products and menus and assign them to a restaurant.

While building this project, we will take a look at concepts such as concerns, subdomains,
creating plans, and managing a SaaS-based product. We will also see various ways to add
roles to our application users, multitenancy in applications, and import and export data in
various formats. Using these techniques, we can end up refactoring our code.

Creating a Restaurant Menu Builder

116

Our SaaS application's home page looks like the following at the end of our project:

Why is it awesome?
SaaS-based applications (such as http://basecamp.com/) are one of the most popular
business models these days. As a lot of offline businesses are moving towards cloud, we will
build a SaaS-based restaurant management application. We will create a multiple plan-based
system where users can pay on a monthly basis after a free trial for a limited set of resources.
The system will also allow data to be imported and exported in the CSV format.

At the end of this project, we will be able to build a framework for a SaaS-based application.

Your Hotshot objectives
While building this application, we will have to go through the following tasks:

ff Creating organizations with signup

ff Creating restaurants, menus, and items

ff Creating user roles

Project 4

117

ff Creating plans

ff Creating subdomains

ff Adding multitenancy and reusable methods

ff Creating a monthly payment model, adding a free trial plan, and monthly billing

ff Exporting data to a CSV format

Mission checklist
We need the following installed on the system before we start with our mission:

ff Ruby 1.9.3 / Ruby 2.0.0

ff Rails 4.0.0

ff MySQL 6

ff Bootstrap 3.0

ff Sass

ff Sublime Text

ff Devise

ff Git

ff A tool for mockups

ff jQuery

ff ImageMagick and RMagick

Creating organizations with sign up
Every user who creates a SignUp for our application will need an organization. This is
because a business is not run in isolation, and there will be different stakeholders in the
system; the service staff, chefs, and managers will all need access to the system. Now that we
have defined the roles of different types of users of the system, we will bring them together
on one level of abstraction called organization. In this task, we will build a wizard to set up an
organization as a part of the SignUp process. We will use the wicked gem to create a wizard
in our application.

Creating a Restaurant Menu Builder

118

The following is our standard protocol of mocking up our page—we will first use our
wireframing tool to create a mockup of our home screen. Our mockup for the home
screen looks like the following screenshot:

Prepare for lift off
Before we begin this task, we need to generate a blank application. Then, we need to create
models for organization and user. We can create a users model using the devise gem. In
order to create organizations, we first create the model:

gotable$ rails g model name:string description:text

Then, we will create a relationship between users and organizations:

app/models/organization.rb
 has_and_belongs_to_many :users
app/models/user.rb
 has_and_belongs_to_many :organizations

In order to store the association data, we will create a table:

gotable$ rails g migration organizations_users organization_id:integer
user_id:integer

Project 4

119

Engage thrusters
To create an organization, we will perform the following steps:

1.	 We will first add the wicked gem to the Rails Gemfile and run bundle install:

Gemfile

 gem 'wicked'

:~/gotable$ bundle install

2.	 We will then generate a controller in order to define these steps:

:~/gotable$ rails g controller setup_organization

 create app/controllers/setup_organization_controller.rb

 invoke erb

 create app/views/setup_organization

3.	 We will start by defining the steps inside setup_organization_controller.rb
and include the wicked wizard module in it to autoload the wicked module as soon
as this controller is called:

app/controllers/setup_organization_controller.rb
class SetupOrganizationController < ApplicationController
 include Wicked::Wizard
 steps :organization_setup
end

4.	 The first step of our wizard is signup. Hence, we will modify the signup method
so that it redirects to the step defined in wicked once it is executed. We will edit
devise/registrations_controller to suit our needs:

app/views/devise/registrations_controller.rb
def after_sign_up_path_for(resource)
 session[:plan_id] = params[:plan_id]
 setup_organization_path(:organization_setup)
 end

5.	 The wicked gem uses the show and update actions in order to perform most
of the tasks. The show action is used in order to initiate the step and render
the page. Then, the update action is used in order to send the variables to the
respective model:

app/controllers/setup_organization_controller.rb
 def show
 @user = current_user
 case step
 when :organization_setup

Creating a Restaurant Menu Builder

120

 @organization = Organization.new
 end
 render_wizard
 end

6.	 We need a form to submit these values to the database, and the form resource
needs to point to the wizard path.

7.	 The form for the organization setup submits to the wizard path as a put method
instead of a post method:

app/views/organizations/_wizard.html.erb
<%= form_for(@organization , :url => wizard_pathh, :method =>
:put) do |f| %>
 <% if @organization.errors.any? %>
 <div id="error_explanation">
 <h2><%= pluralize(@organization.errors.count, "error") %>
prohibited this organization from being saved:</h2>

 <% @organization.errors.full_messages.each do |msg| %>
 <%= msg %>
 <% end %>

 </div>
 <% end %>
 <div class="form-group">
 <%= f.label 'Organization Name' %>
 <%= f.text_field :name, :class=>"form-control", :placeholder
=> "Organization Name" %>
 </div>
 <div class="form-group">
 <%= f.label :description %>
 <%= f.text_area :description, :class=>"form-control",
:rows=>"3", :placeholder => "Description" %>
 </div>
 <%= f.submit 'Create', :class=>"btn btn-default" %>
<% end %>

8.	 However, once the form is filled and submitted, we need to send the params
to the organization table. We will do so via the update action of wicked
in our controller.

Project 4

121

9.	 In our case, we have a has_and_belong_ to_many (HABTM) relationship between
organization and users. Hence, we will create @organization.users
as a hash:

app/controllers/setup_organizations_controller.rb
 def update
 @user = current_user
 @organization = Organization.new(organization_params)
 @organization.users << @user
 render_wizard @organization
 end

10.	 However, we need to whitelist organization_params in our controller to access
them in the method:

app/controllers/setup_organizations_controller.rb
 private
 # Never trust parameters from the scary internet, only allow
the white list through.
 def organization_params
 params.require(:organization).permit(:name, :description,
:plan_id, {:user_ids => []})
 end

11.	 Note that we have added user_ids as an array because it points to the
join_table representing has_and_belongs_to_many relationship.

12.	 We need to end the wizard once the steps are completed:

app/controllers/setup_organizations_controller.rb
 private
 def redirect_to_finish_wizard
 redirect_to dashboard_path, notice: "Thank you for signing up.
You can now build beautiful menus"
 end

13.	 Lastly, we need a route to tie this all up. The route will build the resource according
to the controller name and will be assigned to the wizard_path in our view:

config/routes.rb
resources :setup_organization

Creating a Restaurant Menu Builder

122

14.	 The following screenshot shows what Step 1 in the form looks like now:

Objective complete – mini debriefing
In the previous task, we looked at how to create a wizard in our application. We saw the
concept of has_and_belongs_to_many in the context of Rails 4 in this task. HABTM is a
special case of relationships in which both models have a many-to-many relationship with
each other. In our users and organizations models, we wrote the following:

 has_and_belongs_to_many :organizations
 has_and_belongs_to_many :users

We created a table with organization_id and user_id. This table will store the data
for the organizers and associated users. We chose to do it this way because we did not
want to do anything further with the association. In case we want to do more with the
association of the two models, we can create a third model and define the relationship
in the following way:

 has_many :organizations, :through => :members
 has_many :users, :through => :members

We will have to create a separate members model with the following associations:

belongs_to :organization
belongs_to :user

Project 4

123

Coming back to our code, in order to assign a user to organizations, we need to pass it as
an array:

@organization.users << @user

In our organization controller, we added a user_ids array to our params user so that
multiple users can be associated to an organization:

 params.require(:organization).permit(:name, :description,
:plan_id, {:user_ids => []})

A wizard significantly improves the engagement and user experience in a website because it
decreases the number of fields in a form. However, too many steps can also lead to the same
problem. Hence, a balance needs to be attained between the steps and fields that will go as
a part of our wizard. The wicked gem is quite a comprehensive solution as far as wizards are
concerned, as you can also build a single object across different steps.

In this task, we included the wicked gem and defined the steps for our wizard. The wicked
gem completely relies on the ActionController module of Rails. We created a new
controller called setup_organizations to define the steps required for the wizard.
The wizard identifies the controller using a module inclusion:

 include Wicked::Wizard

When we define steps, they are called one by one inside the show action. This is because
wicked binds itself to the object ID in order to create the flow of steps. In order to access
the ID, we need to prefix it with the object name; for example, plan_id. The wizard_path
picks up the path of the current step in the wizard. Once the include method is defined
in the controller, the controller and step path are substituted in wizard_path. The same
procedure follows for the subsequent steps.

As wicked relies on the object ID, it uses show and update methods to generate the steps.
Each step will have a view of the same name. The show action initializes and starts the
wizard. The update action updates the params at each step. At the end of the wizard,
runs the update query for the record.

In order to end the wizard, we used a custom private method called redirect_to_
finish_wizard. This method in wicked allows us to redirect to the page we want to:

def redirect_to_finish_wizardd
end

Finally, we added a route to access all the methods inside the setup_organization
controller.

Creating a Restaurant Menu Builder

124

Step 2 in the form in the wizard looks like the following screenshot:

Creating restaurants, menus, and
items

The organization in our case is a company that owns the restaurants. There can be one or
more restaurants inside an organization. These restaurants will have different menus; for
example, a menu for dessert, a menu for the main course, and a menu for the drinks. These
menus are going to have many items. We will add these items by creating nesting between
menus and items.

Prepare for lift off
We first have to create models for restaurants, menus, and items with their
respective attributes:

rails g scaffold restaurant name:string description:text slug:string

rails g scaffold menu title:string description:text

rails g model item name:string description:text price:float

Engage thrusters
1.	 We will add restaurants, menus, and menu items to our application. For the sake

of convenience, we will generate a scaffold of the restaurant model. Please be
sure to delete the scaffold.css.scss file because it conflicts with the existing
CSS file in the system and tends to override it in places. The following code shows
what the model for a restaurant looks like:

app/models/restaurant.rb
class Restaurant < ActiveRecord::Base

Project 4

125

 extend FriendlyId
 friendly_id :name, use: :slugged
 has_many :menus
 belongs_to :organization
 validates :name, presence: true
end

2.	 We will pass organization_id in the create method in the restaurant
controller. The organization ID is our way to lock down all restaurants, menus,
and items according to a single organization:

controllers/restaurants_controller.rb
 def create
 @restaurant = Restaurant.new(restaurant_params)
 @restaurant.organization_id = current_user.organizations.
first.id
 respond_to do |format|
 if @restaurant.save
 format.html { redirect_to @restaurant, notice: 'Restaurant
was successfully created.' }
 format.json { render action: 'show', status: :created,
location: @restaurant }
 else
 format.html { render action: 'new' }
 format.json { render json: @restaurant.errors, status:
:unprocessable_entity }
 end
 end
 end
def restaurant_params
 params.require(:restaurant).permit(:name, :description,
:organization_id)
 end

app/views/_form_errors.html.erb
 <% if @restaurant.errors.any? %>
 <div id="error_explanation">
 <h2><%= pluralize(@restaurant.errors.count, "error") %>
prohibited this restaurant from being saved:</h2>

 <% @restaurant.errors.full_messages.each do |msg| %>
 <%= msg %>
 <% end %>

 </div>
 <% end %>

Creating a Restaurant Menu Builder

126

views/restaurants/_form.html.erb
<%= form_for(@restaurant) do |f| %>
 <%= render 'form_errors'%>
 <div class="form-group">
 <%= f.label :name %>

 <%= f.text_field :name, :class=>"form-control", :placeholder
=> "Restaurant Name" %>
 </div>
 <div class="form-group">
 <%= f.label :description %>

 <%= f.text_area :description , :class=>"form-control",
:placeholder => "Description" %>
 </div>
 <div class="actions">
 <%= f.submit :class=>"btn btn-default" %> <%= link_to
'Cancel', restaurants_path, :class=>"btn btn-default" %>
 </div>
<% end %>

At the end of this iteration, our restaurant view looks like the following screenshot:

3.	 The Menu class is similar to the restaurant class. The main difference here is
that we will add support for nesting with items. We will add accepts_nested_
attributes_for :items so that we can access parameters of items within the
menu model:

app/models/menu.rb
class Menu < ActiveRecord::Base
 belongs_to :restaurant
 has_many :items
 accepts_nested_attributes_for :items
end

Project 4

127

4.	 On the restaurants show page, we need to add restaurant_id as a parameter so
that it is passed as a parameter to find the menus related to a particular restaurant:

controllers/restaurants_controller.rb
 def show
 @menus = Menu.where(:restaurant_id => @restaurant.id)
 end
views/restaurants/show.html.erb
<h3>Menus</h3>
<% @menus.each do |m|%>
 <%=link_to m.title, menu_path(m)%>
<%end%>
<%= link_to "Add a Menu", new_menu_pathh(:restaurant_id => @
restaurant.id), :class=>"btn btn-default" %>

5.	 Items do not have a controller and view separately. They will reside as a part of
menu in our application. So, the attributes of items need to be whitelisted inside
our menus_controller class:

app/controllers/menus_controller.rb
Never trust parameters from the scary internet, only allow the
white list through.
 def menu_params
 params.require(:menu).permit(:title, :description,
:restaurant_id,
 :items_attributes => [:id, :name, :description,
:price,
_:destroy]
)
 end

6.	 Associate the item model with the menu:

app/model/item.rb
class Item < ActiveRecord::Base
 belongs_to :menu
end

7.	 We now need to build the views. At this point, we need to add the nested_form
gem to our application:

Gemfile

gem "nested_form"

Creating a Restaurant Menu Builder

128

8.	 Add jquery_nested_form script to assets/application.js:

app/assets/application.js
//= require jquery_nested_form

9.	 We will first convert our menu form to a nested form by adding nested_form_for:

app/views/menus/_form.html.erb
<%= nested_form_for(@menu) do |f| %>
 <% if @menu.errors.any? %>
 <div id="error_explanation">
 <h2><%= pluralize(@menu.errors.count, "error") %> prohibited
this menu from being saved:</h2>

 <% @menu.errors.full_messages.each do |msg| %>
 <%= msg %>
 <% end %>

 </div>
 <% end %>
 <div class="form-group">
 <%= f.label :title %>

 <%= f.text_field :title, :class=>"form-control", :placeholder
=> "Title" %>
 </div>
 <div class="form-group">
 <%= f.label :description %>

 <%= f.text_area :description, :class=>"form-control",
:placeholder => "Description" %>
 </div>
 <%= f.hidden_field :restaurant_id, :value => params[:restaurant_
id]%>
 <div class="actions">
 <%= f.submit 'Create Menu', :class=>"btn btn-default" %>
 </div>
<% end %>

10.	 In order to add items, we will add fields_for to the nested form:

app/views/menus/_form.html.erb
<%= f.fields_for :items do |i| %>
 <div class="form-group">
 <%= i.label :name %>

 <%= i.text_field :name, :class=>"form-control", :placeholder
=> "Name" %>

Project 4

129

 </div>
 <div class="form-group">
 <%= i.label :price %>

 <%= i.text_field :price, :class=>"form-control", :placeholder
=> "Price" %>
 </div>
 <div class="form-group">
 <%= i.label :description %>

 <%= i.text_area :description, :class=>"form-control",
:placeholder => "Description" %>
 </div>
 <%= i.link_to_remove "Remove this item", :class=>"btn btn-
default" %>
 <% end %>
 <p><%= f.link_to_add "Add an Item", :items, :class=>"btn btn-
default" %></p>

Objective complete – mini debriefing
In this task, we first created models for our restaurant, menu, and item.

Using a nested form is a very useful technique and helps reduce a lot of unnecessary code.
It is helpful also because it keeps the application structure easy to understand and the flow
logical. We used the nested_form gem to create a form for items within our menu form.
The gem depends on jQuery and allows the developer to create multiple nested forms
inside a model. In order to make it work with strong parameters, we added the :_destroy
method to our parameters. This will allow the deletion of the nested model records. In
order to make our form recognize methods from the gem, we have to modify form_for to
nested_form_for:

<%= nested_form_for(@menu) do |f| %>

The gem add extra form helpers (such as nested_form_for) on top of Rails in order
to generate the nested form. Some other form helper methods are link_to_add or
link_to_remove that add or remove the tasks. The gem also creates an interface to
jQuery in order to add and remove the form using the form helpers that generate add
and remove links.

Creating a Restaurant Menu Builder

130

The following screenshot shows what the menu page looks like with a nested form to
add items:

Creating user roles
Our aim here is to create a role-based authentication structure, where we will define various
roles for the users. We will use a combination of the rolify gem to define roles and cancan
gem, which includes methods to restrict users according to their roles.

Prepare for lift off
As in our previous projects, we have used the devise gem for creating the authentication
system. We looked at authentication in Project 1, A Social Recipe-sharing Website, and
have included it in every project ever since. So now, it is assumed that you will install and
configure devise before you begin this step.

Project 4

131

Engage thrusters
We will add the basics of the permissions framework in these steps:

1.	 Add the cancan gem and rolify gem to our Gemfile in order to use in
conjunction with devise:

Gemfile

gem 'cancan'

gem 'rolify', '3.4'

2.	 Run the bundler and then generate the ability model to define authorizations:

:~/gotable$ rails g cancan:ability
 create app/models/ability.rb

3.	 This will create a new file inside the models folder called ability. We will now
generate the role model and related migrations using the rolify generator:

:~/gotable$ rails generate rolify:role
 create app/models/role.rb
 insert app/models/user.rb
 create config/initializers/rolify.rb
 create db/migrate/20130929082020_rolify_create_roles.rb

4.	 This will also generate an initializer file and insert the rolify method in the
user model:

app/models/user.rb
class User < ActiveRecord::Base
 rolify
 # Include default devise modules. Others available are:
 # :confirmable, :lockable, :timeoutable and :omniauthable
 devise :database_authenticatable, :registerable,
 :recoverable, :rememberable, :trackable, :validatable
end

5.	 Also, the role model has a reference to the join_table between users
and roles:

app/model/role.rb
class Role < ActiveRecord::Base
 has_and_belongs_to_many :users, :join_table => :users_roles
 belongs_to :resource, :polymorphic => true
 scopifyy
end

Creating a Restaurant Menu Builder

132

6.	 Once the role methods are generated, we will define the abilities of each user role:

app/models/ability.rb
class Ability
 include CanCan::Ability
 def initialize(user)
 user ||= User.new # guest user (not logged in)
 if user.has_role? :admin
 can :manage, :all
 else
 can :read, Organization
 can :manage, Organization if user.has_role?(:owner,
Organization)
 can :write, Organization, :id => Organization.with_
role(:manager, user).map(&:id)
 end
 end

7.	 Let's try and add a role to our user. We will fire up our Rails console and call our last
user in a variable:

1.9.3-p327 :001 > user = User.last

 User Load (0.7ms) SELECT `users`.* FROM `users` ORDER BY
`users`.`id` DESC LIMIT 1

 => #<User id: 4, email: "admin@laboncafe.com", encrypted_
password: "$2a$10$n7lb8ivkcnAFZZ5rSV0eOuhFWv7sU.HkrU0/
OespLOzh...", reset_password_token: nil, reset_password_sent_at:
nil, remember_created_at: nil, sign_in_count: 8, current_sign_in_
at: "2013-09-29 07:52:10", last_sign_in_at: "2013-09-29 07:51:47",
current_sign_in_ip: "127.0.0.1", last_sign_in_ip: "127.0.0.1",
created_at: "2013-09-29 04:22:11", updated_at: "2013-09-29
07:52:10", name: "laboncafe">

8.	 Once the variable value is set, we will add a role to it. As the user is the owner of the
organization, we will add a role called owner:

1.9.3-p327 :003 > user.add_role "owner"

 Role Load (0.7ms) SELECT `roles`.* FROM `roles` WHERE
`roles`.`name` = 'owner' AND `roles`.`resource_type` IS NULL AND
`roles`.`resource_id` IS NULL ORDER BY `roles`.`id` ASC LIMIT 1

 (0.6ms) BEGIN

 SQL (0.7ms) INSERT INTO `roles` (`created_at`, `name`,
`updated_at`) VALUES ('2013-09-29 08:38:26', 'owner', '2013-09-29
08:38:26')

 (41.1ms) COMMIT

 Role Exists (0.5ms) SELECT 1 AS one FROM `roles` INNER JOIN
`users_roles` ON `roles`.`id` = `users_roles`.`role_id` WHERE
`users_roles`.`user_id` = 4 AND `roles`.`id` = 1 LIMIT 1

Project 4

133

 (0.4ms) SELECT `roles`.id FROM `roles` INNER JOIN `users_
roles` ON `roles`.`id` = `users_roles`.`role_id` WHERE `users_
roles`.`user_id` = 4

 Role Load (0.4ms) SELECT `roles`.* FROM `roles` WHERE
`roles`.`id` = 1 LIMIT 1

 Role Load (0.5ms) SELECT `roles`.* FROM `roles` INNER JOIN
`users_roles` ON `roles`.`id` = `users_roles`.`role_id` WHERE
`users_roles`.`user_id` = 4

 (0.2ms) BEGIN

 (0.3ms) INSERT INTO `users_roles` (`user_id`, `role_id`)
VALUES (4, 1)

 (45.9ms) COMMIT

 => #<Role id: 1, name: "owner", resource_id: nil, resource_type:
nil, created_at: "2013-09-29 08:38:26", updated_at: "2013-09-29
08:38:26">

9.	 To see what the user can or cannot do, we will use the Ability model method:

1.9.3-p327 :002 > ability = Ability.new(user)
 (0.7ms) SELECT COUNT(*) FROM `roles` INNER JOIN `users_
roles` ON `roles`.`id` = `users_roles`.`role_id` WHERE `users_
roles`.`user_id` = 4 AND (((roles.name = 'admin') AND (roles.
resource_type IS NULL) AND (roles.resource_id IS NULL)))
 (1.2ms) SELECT COUNT(*) FROM `roles` INNER JOIN `users_
roles` ON `roles`.`id` = `users_roles`.`role_id` WHERE `users_
roles`.`user_id` = 4 AND ((((roles.name = 'owner') AND (roles.
resource_type IS NULL) AND (roles.resource_id IS NULL)) OR
((roles.name = 'owner') AND (roles.resource_type = 'Organization')
AND (roles.resource_id IS NULL))))
 (0.8ms) SELECT COUNT(*) FROM `roles` INNER JOIN `users_
roles` ON `roles`.`id` = `users_roles`.`role_id` WHERE `users_
roles`.`user_id` = 4 AND `roles`.`name` = 'manager'
 Organization Load (0.6ms) SELECT `organizations`.* FROM
`organizations` INNER JOIN `roles` ON `roles`.resource_type =
'Organization' AND
 (`roles`.resource_id IS NULL OR `roles`.resource_id =
`organizations`.id) WHERE (`roles`.name IN ('manager') AND
`roles`.resource_type = 'Organization') AND (`roles`.id IN (NULL)
AND ((resource_id = `organizations`.id) OR (resource_id IS NULL)))
1.9.3-p327 :003 > ability.can? :manage, :all
 => false
1.9.3-p327 :004 > ability.can? :manage, Organization
 => true

Creating a Restaurant Menu Builder

134

10.	 Load up the roles in the organization model so that these are applied to the
organization model once it is initiated:

app/models/organization.rb
class Organization < ActiveRecord::Base
 resourcify
end

Objective complete – mini debriefing
In this task, we used the rolify gem to define different roles in the system. It provides a
DSL (domain-specific language) that integrates with cancan and devise with ease. We
also used the cancan gem to define the authorization and access for each role.

In order to do this, we first bundled our application with cancan and rolify gem. We then
generated a model called ability. In the ability model, the initialize model directly
hooks up to the user model:

def initialize(user)
 user ||= User.new # guest user (not logged in)
end

After this, we generated the role model using the rolify generator. The rolify
generator depends on two methods: scopify and resourcify. The scopify method is
defined in the role model. It loads the scopes (https://github.com/EppO/rolify/
blob/master/lib/rolify/adapters/active_record/scopes.rb) and associates
them with the role model. The resourcify method, once defined in a model, applies
the roles to that model. Another advantage of using rolify is that it integrates well with
cancan. In the ability model, we defined an authorization such that if the user has a role
owner, he or she can manage an organization. The manage method allows a user to edit and
delete a particular resource. Likewise, read, write, and other specific actions can be defined
for users. If a user has this role, they will be allowed to perform only that action.

The user.has_role? method is a method from rolify that calls the role inside cancan.

Creating plans
The most important part of SaaS is a multitier plan. A lot of companies now keep one
plan for the sake of simplicity. However, plans are created so that our application fits the
requirement of companies of different sizes. This section will cover creating a plan and
associating it with organizations.

Project 4

135

Engage thrusters
We will create plans stepwise and associate it with our application resources:

1.	 Generate a plan model by running the Rails generator:

$ rails g model plan name:integer restaurants:integer price:float
tables:integer menu_items:integer storage:integer

2.	 Now run Rake db:migrate to add a plans table. Load seed data to the
plans table:

db/seeds.rb
plans = [
 ["Small", 1, 10, 20, 5, 10],
 ["Medium", 5, 50, 50, 10, 30],
 ["Large", 10, 100, 50, 50, 50]
]
plans.each do |name, restaurants, tables, menu_items, storage,
price|
 Plan.find_or_create(name: name, restaurants: restaurants,
tables:tables, menu_items:menu_items, storage:storage, price:price
)
end

3.	 Plans will now be added in our database.

4.	 We will now display these plans in the home page so that the user can compare
them before signing up. For this, we will first create a home controller and
home page:

Gotable$ rails g controller home index

app/controllers/home_controller.rb
class HomeController < ApplicationController
 def index
 @plans = Plan.all.to_a
 end
end
app/views/home/index.html.erb
<div class="row">
 <% @plans.each do |plan|%>
 	<div class="col-sm-4">
 <div class="list-group">

 <%= plan.name %> - <%= number_to_currency(plan.
price)%> / Month

Creating a Restaurant Menu Builder

136

 <%= plan.
restaurants %> Restaurant
 <%= plan.tables %>
tables / Restaurant
 <%= plan.menu_
items %> Menu Items / Restaurant
 <%= plan.storage
%> GB storage
 <%= link_to new_user_registration_path(:plan_id =>
plan.id), :class=>"list-group-item" do%><button class="btn btn-
success">Sign Up</button><%end%>
 </div>
 </div><!-- /.col-sm-4 -->
 <% end %>
 </div>

5.	 Here, we are passing plan_id as a parameter in the link for Sign Up. After adding
the Plans section, our home page will look like the following screenshot:

6.	 We need to display the selected plan on our registration page. In order to do so,
we will use pluck. As we need only the plan name, we will just use pluck to call
the name of the plan with ID as the parameter. We will add the following in our
registrations_controller.rb file:

app/holders/application_helper.rb
module ApplicationHelper
 def plan_name(plan_id)
 	 plan_name = Plan.where(:id=> plan_id).pluck(:name).first
 end
end

app/controllers/devise/registrations_controllers.rb
private
def update_sanitized_params

Project 4

137

 devise_parameter_sanitizer.for(:sign_up) {|u| u.permit(:name,
:organization_name, :email, :password, :password_confirmation,
:plan_id)}
 end

7.	 We will now display the plan in the form as follows:

 app/views/devise/registrations/new.html.erb
<h3>Plan Selected: <%= plan_name(params[:plan_id]) %></h3>

8.	 Associate plan and user. In order to associate an organization to a plan, we
will associate it via user. This will give a user the freedom to create multiple
organizations and get billed for it through their own account. We will define
them in our models:

models/plan.rb
 belongs_to :user

models/user.rb
has_one :plan

Creating a Restaurant Menu Builder

138

9.	 We will now save plan IDs along with the user details. This is essential in order to
keep a track of the subscription of each plan in accordance with the resources being
used by each subscriber. In order to do so, we will first add plan_id to the user:

:~/gotable$ rails g migration add_plan_id_to_users plan_id:integer

 invoke active_record

 create db/migrate/20130930030144_add_plan_id_to_users.rb

10.	 The following is how the migration looks:

db/migrate/20130930030144_add_plan_id_to_users.rb
class AddPlanIdToUsers < ActiveRecord::Migration
 def change
 add_column :users, :plan_id, :integer
 end
end

11.	 Pass plan_id as a hidden field in the user signup form. We passed plan_id as
parameter along with our link to plan in the home page:

app/views/devise/registrations/new.html.erb
<%= f.hidden_field :plan_id, :value => params[:plan_id]%>

Objective complete – mini debriefing
In the previous task, we created a structure for plans and defined them in the database. In
order to do so, we created a model and table for plans and loaded some seed data into it.
Seed data is used to add some default data to the application.

We also saw how to associate our user to a plan. In this way, we will be able to set up a
monthly billing account for a particular plan for a specific user. We also saw the use of pluck:

plan_name = Plan.where(:id=> plan_id).pluck(:name).first

Pluck is an ActiveRecord query method that selects only a particular column; in this case it
calls the column called name. We added some extra parameters to devise. In order to do so,
we added a method called update_sanitized_params in our registrations controller. This
method overrides the default params in devise:

def update_sanitized_params
 devise_parameter_sanitizer.for(:sign_up) {|u| u.permit(:name,
:organization_name, :email, :password, :password_confirmation, :plan_
id)}
 end

We created a helper method to call the plan name in our application helper, which accepts
plan_id as an argument. This is to display the plan name in views.

Project 4

139

We also displayed the selected plan on the Sign Up page so that the user is clear about what
he or she is signing up for.

Creating subdomains
One of the main functions of a SaaS-based application is to provide the users with a separate
area completely owned by them. This area is completely abstracted from others and is visible
only to the owners and users of the organization. In this task, we will create subdomains and
associate them with an organization. We will also explore the definition of a concern in detail
and how can it be used to create reusable code components. We will use Tim Pope's solution
(http://tbaggery.com/2010/03/04/smack-a-ho-st.html) of extending a domain
name called local virtual host (lvh.me) in order to make subdomains work on our localhost.

Engage thrusters
Let us create subdomains for our application users:

1.	 We will first save the domain as a part of our SignUp form:

app/views/devise/registrations/new.html.erb
<div class="form-group">
 <%= f.label 'domain name' %>

 <%= f.text_field :domain_name, :autofocus => true,
:class=>"form-control", :placeholder => "Domain Name" %>
 </div>

Creating a Restaurant Menu Builder

140

2.	 Domain names should not have spaces between the words. In order to avoid these,
we will add a validation to the user model:

 app/models/user.rb
validates :name, presence: true, format: { without:
/^((http|https):\/\/)[a-z0-9]*(\.?[a-z0-9]+)\.[a-z]{2,5}(:[0-9]
{1,5})?(\/.)?$/ix, multiline: true }

3.	 In order to create subdomains, we need a class that passes the value of the request
and matches the format of a subdomain. As www is not considered a valid subdomain
rule, we will check for this and make it nil:

lib/subdomain.rb
class Subdomain
 def self..matches?(request)
 case request.subdomain
 when 'www', '', nil
 false
 else
 true
 end
 end
end

Project 4

141

4.	 Once this method is set up, we will make a call inside our controller. In order to
make only the authenticated user log in, we will create dashboard_controller
and add an authenticate_user! filter to it. Dashboard is the page where we
can see our activity stream:

gotable$ rails g controller dashboard
controllers/dashboard_controller.rb
 before_filter :authenticate_user!

5.	 We will also check if the user belongs to that subdomain or not:

app/controllers/dashboard_controller.rb
 before_filter :load_subdomain
 def show
 @user = User.where(:name => request.subdomain).first || not_
found
 @user.organizations.each do |o|
 @organization_name = o.name
 end
 end
 def not_found
 raise ActionController::RoutingError.new('User Not Found')
 end
 def load_subdomain
 @user = User.where(:domain_name => request.subdomain).first
 end

6.	 Wire this concern to the route. We will pass our subdomain class as a constraint in
order to check the subdomain format as soon as the request is made. Also, we will
see if the user has been authenticated or not and based on this, we will redirect him
or her to the respective organization's dashboard:

config/routes.rb
 authenticated do
 get '/' => 'dashboard#show', :constraints => Subdomain, :as
=> 'dashboard'
 end

7.	 Create a method in order to first check if there is a value of subdomain supplied or
not. If it is present, it will append the subdomain, domain, and port. We also check
for the presence of a hash key called subdomain. If the key is present, it will add the
value of the host to the value of the with_subdomain method:

app/controllers/concern/subdomain.rb
module Concerns
 module Url

Creating a Restaurant Menu Builder

142

 extend ActiveSupport::Concern
 def with_subdomain(subdomain)
 subdomain = (subdomain || "")
 subdomain += "." unless subdomain.empty?
 [subdomain, request.domain, request.port_string].join
 end
 def url_for(options = nil)
 if options.kind_of?(Hash) && options.has_key?(:subdomain)
 options[:host] = with_subdomain(options.delete(:subdomain))
 end
 super
 end
 end
end

8.	 In order to execute this Url manipulation, we will need to include this in the
application controller and extend it:

controllers/application_controller.rb
class ApplicationController < ActionController::Base
 include Concerns::Url
end

9.	 Now that domains are there, we will have to ensure that the sessions of each
subdomain are different from the other. By adding a :domain => :all method,
we will have a different session store for each subdomain:

config/initializers/session_store.rb
Gotable::Application.config.session_store :cookie_store, key:'_
gotable_session', :domain => :all

Objective complete – mini debriefing
At the end of this section, we have successfully created subdomains, abstracted their
sessions, and made sure all the redirects are in place. We first validated our domain_name
with a regex. In Rails 4, the multiline option is mandatory for the regex to work as it contains
anchors such as the dollar sign:

format: { without: /^((http|https):\/\/)[a-z0-9]*(\.?[a-z0-9]+)\.[a-z]
{2,5}(:[0-9]{1,5})?(\/.)?$/ix, multiline: true }

Project 4

143

The preceding regex matches the format of the domain with numbers, letters, and also the
protocol used in the URL. We created a Subdomain class, which we used in our route as
a constraint. This constraint will make the www request on a subdomain nil, as www is an
invalid request for a subdomain:

class Subdomain
 def self.matches?(request)
 case request.subdomain
 when 'www', '', nil
 false
 else
 true
 end
 end
end
:constraints => Subdomain

We then added a rule for searching the domain once the request is made. This will ensure
that the domain is present in the database:

before_filter :load_subdomain
 def load_subdomain
 @user = User.where(:name => request.subdomain).first
 end

In case it was not found, we sent a custom routing error:

def not_found
 raise ActionController::RoutingError.new('User Not Found')
end

We also restricted all our work according to the domain owned by a user. The session is
owned by a user and an organization. In order to do so, we used the concerns pattern.
In Rails 4, concerns comes as a default folder. It is used to define the code that is reusable
in different contexts across the application. Subdomain is defined as a module with a
collection of classes and methods. This module can then be included in any controller or
model of our choice. We defined a controller concern to request and extract the subdomain
from the URL. We then ensured that this concern is loaded across the entire application. It is
important to understand that sometimes the same concern can be used in different ways.

Creating a Restaurant Menu Builder

144

If we have categories across multiple models, we can create a concern for it and load it
across different models. Lastly, we separated out sessions for each subdomain because each
organization has a different one:

Gotable::Application.config.session_store :cookie_store, key:'_
gotable_session', :domain => :all

Adding multitenancy and reusable
methods

We have already set up subdomains in order to create separate areas for each organization.
However, we have to make sure that the users from one organization do not see data
from another organization. A clear separation of this data visibility is called multitenancy.
The concept can be compared to renting out apartments to multiple tenants. We will add
multitenancy in our application by adding a simple method in our model concern.

Engage thrusters
1.	 Next up, we will create the multitenant model of our application. Let's see how. We

will first create a separate class to handle the tenants. This class will handle all the
code related to tenancy:

 :~/gotable/app/models$ touch tenant.rb

2.	 Tenant is a simple ruby class. We will first initialize a user object and extend it
in the subsequent steps. We will also pass roles to the user object as we will also
check the visibility according to roles:

app/models/tenant.rb
class Tenant
 def initialize user
 @user = user
 end
 private
 def admin?
 @user.has_role? "admin"
 end
 def owner?

Project 4

145

 @user.has_role? "owner"
 end
end

3.	 Now, we will show only the restaurants that are available to a particular organization
for a particular role. For this, we will first check for the role associated with the
user object. Then, we will create a scope to find the restaurants with a particular
organization_id associated with them:

App/models/tenant.rb
 def restaurants
 admin? ? Restaurant.all.all : Restaurant.where('organization_
id = ?', user.organizations.first.id).all
 end

4.	 We will then set this as a filter for our entire application. We will pass
current_user from devise as the user object:

controllers/application_controller.rb
 before_filter :enable_tenant
 def enable_tenant
 @current_tenant ||= Tenant.new(current_user.organization)
 end

5.	 Finally, make a call in the controller and call the Tenant class before finding the
value of restaurants. In this way, if a user is the owner of a restaurant, only the
restaurants owned by him or her are visible to them:

app/views/controllers/restaurants_controller.rb
def index
 if params[:id].present?
 @restaurants = @current_tenant.restaurants.find(params[:id])
 end
end

Objective complete – mini debriefing
Quoting from Wikipedia (https://en.wikipedia.org/wiki/Multitenancy):

Multitenancy refers to a principle in software architecture where a single instance
of the software runs on a server, serving multiple client-organizations (tenants).

In order to achieve this, we need to create tenants. Tenants have been extracted into a
separate class which checks for the user with the role owner or admin.

Creating a Restaurant Menu Builder

146

We then checked for restaurants associated to a particular tenant. We first queried for the
owner role as the organization is associated to a user. If the user is an admin, we return all
the restaurants. The colon (:) here represents the if else condition. If the user is not an
admin, we chained the query for finding restaurants over the restaurant scope. The following
query finds the current user according to the organization ID for all restaurants:

admin? ? Restaurant.all.all : Restaurant.where('organization_id =
?', user.organizations.first.id).all

Rails.scoped was a method used earlier to define a chained query format. However,
with Rails 4, it has been deprecated and removed. Instead, Restaurant.all behaves in
the same way. In order to achieve what we previously did in Restaurant.all(select
* from restaurants), we now need to either do Restaurant.all.to_a or
Restaurant.all.all. We then instantiated a new tenant instance as a soon a
user logs in to create current_tenant:

@current_tenant = Tenant.new(current_user)

We separated the data of each user depending on their organization_id and their role
in that organization. This will help us set up a clear policy framework based on the roles of
different users and their rights. This will also help us in tracking things such as billing and
checking the limits of plans because all of this is calculated as per the organization.

Creating a monthly payment model,
adding a free trial plan, and generate
a monthly bill

The most important part of a SaaS application is the ability to bill every month. A lot of
applications also give out free trials in order to allow the user to actually try out these
applications before they are billed for it. This section will cover how to generate a monthly
bill. However, we will not cover an actual payment gateway in this section.

Engage thrusters
1.	 We will add the monthly billing code now. Add the credit card details to users

table, update the parameters, and validate them:

controllers/devise/registrations_controller.rb
def update_sanitized_params
 devise_parameter_sanitizer.for(:sign_up) {|u| u.permit(:name,
:organization_name, :email, :password, :password_confirmation,
:plan_id, :active, :first_name, :last_name)}
 end

Project 4

147

2.	 In order to check whether we have a free trial, we need to get the time difference
between the date of joining of the user and the current date. A free trial is valid only
if the difference is less than a month. This is because we want the free trial to last
for one month:

app/models/user.rb
 def date_difference(date1,date2)
 month = (date2.year - date1.year) * 12 + date2.month - date1.
month - (date2.day >= date1.day ? 0 : 1)
 end

3.	 The preceding code will return a value in months and will take two dates as
parameters. In order to check whether we have a free trial, we will use the date
difference method we just created. We will return a value true or false based on
our condition. If it is false, then we will generate an error message about the trial
being ended:

app/models/user.rb
 def free_trial
 month = date_difference(self.created_at, Date.today)
 if month >= 1
 return false
 errors.add(:trial_end, "Your Free Trial Has Ended, please
select from a plan")
 elsif month < 1
 return true
 end

 end

4.	 At this point, we will generate a model to record transactions and save them in our
database for future references:

$ rails g migration transactions user_id:integer status:boolean
created_at:datetime updated_at:datetime amount:decimal first_
name:string last_name:string

The following code shows what our transactions table looks like:

 create_table "transactions", force: true do |t|
 t.integer "user_id"
 t.boolean "status"
 t.datetime "created_at"
 t.datetime "updated_at"
 t.decimal "amount", precision: 10, scale: 0
 t.string "first_name"
 t.string "last_name"
 end

Creating a Restaurant Menu Builder

148

5.	 We will also check if there is an outstanding amount or not. We will check the last
transaction date and find the date difference. If it is over a month, we will generate
an error message:

app/models/user.rb
def if_amount_pending
 trial = self.free_trial
 if (trial == false && self.active?)
 last_transaction = Transaction.where(:user_id => self.id).
last
 if date_difference(last_transaction.created_at,Date.today) >=
1
 	 errors.add(:pending, "You have an outstanding
invoice, kindly pay at the earliest.")
 true
 end
 end
 end

6.	 Before charging the card, we will double check if it is valid or not. Sometimes it so
happens that the card is valid at the signup and expires later. In such cases, we need
to check for the card validity every time it is charged:

app/models/user.rb
 def credit_card_valid
 date = Date.today
 year = self.year
 month = self.month
 expiry_month = (date.year - year) * 12 + date.month - month
 if expiry_month > 6
 true
 elsif expiry_month < 6
 false
 errors.add(:transaction, "Credit Card not valid")
 end
 end

7.	 In this case, we are checking if the expiry date of a card is less than six months
or not.

8.	 Finally, we will put all this together to generate a transaction object. The condition
needed to change a user will be he or she has a valid credit card, has finished the trial
period, has an active account, and has an outstanding amount to be paid:

app/models/user.rb
 def charge_credit_card
 trial = self.free_trial

Project 4

149

 amount_pending = self.amount_pending
 credit_card_valid = self.credit_card_valid
 if (trial == false && self.active? && amount_pending == true
&& credit_card_valid == true)
 plan_id = self.plan_id
 plan = Plan.where(:id => plan_id).first
 transaction = Transaction.new
 transaction.attributes(user_id: self.id, first_name: self.
first_name, last_name: self.last_name, card_type: self.card_type,
card_number: self.card_number, cvv: self.cvv, month: self.month,
year: self.year, amount: plan.price)
 if transaction.save!
	 transaction.status = true
	 transaction.update
 else
	 transaction.status = false
	 transaction.update
	 errors.add(:transaction, "Credit Card Could not be
Charged")
 end
 end
 end

Objective complete – mini debreifing
This section is highly subjective and can also be deemed as optional. It applies to a lot of use
cases where billing and invoicing is separate from the charges of the credit card. A lot of this
code, especially, the way transactions and credit card details are handled, may significantly
differ from what we have covered here. A lot of payment gateways store the credit card
details so that we don't have to handle it for PCI compliance. There are other gateways as
well that tokenize the credit card details.

Here we saw how to create a monthly charge method and check whether there are any free
trials in our plans. Although this code is very generic, it can be used readily with custom
methods that are specific to payment gateways written right inside these methods. Also,
errors, PCI compliance techniques, the structure of the object, and validations are mostly
specific to the payment gateway and hence not covered. We also looked at transactions,
which are important because we need to create an object for sending to the payment
gateway regardless of the provider. So, the transaction model we looked at in the
preceding task serves a dual purpose of sending the information to the payment gateway
and also recording the transaction in our database.

Creating a Restaurant Menu Builder

150

Exporting data to a CSV format
We often need to transfer data between different systems. Also, sometimes we need to send
data to different people in different formats, whom we may or may not want to give our
system's access directly. In order to do so, we generally export the data into formats that
are commonly readable. One of the most common formats is CSV, or the comma separated
values format. It's quick to export because its a text-only format and most files are small in
size. Also, it is compatible with most text editors.

Engage thrusters
The final task contains steps to add the Export to CSV functionality. Let's go ahead and
add them:

1.	 Ruby natively supports the CSV mime type, so it is quite easy and quick to get
started with. As it is available as a module of Ruby, we will make a call on it in
our application.rb in order to load it for our application:

config/application.rb
require File.expand_path('../boot', __FILE__)
require 'rails/all

2.	 CSV is like just another format for rendering and is similar to XML and HTML:

app/controllers/restaurants_controllers.rb
require 'csv'
 def export_menus
 @menus = Menu.where(:restaurant_id => params[:restaurant_id])
 respond_to do |format|
 format.html
 format.csv { render text: @menus.export_to_csv }
 end
 end

3.	 However, there is no export_to_CSV method as yet. We will generate an array,
loop over all the column names, and convert them to a CSV file:

app/models/menu.rb
require 'csv'
def self.export_to_CSV
 CSV.generate do |CSV|
 CSV << column_names
 all.each do |menu|

Project 4

151

 CSV << menu.attributes.values_at(*column_names)
 end
 end
 end

4.	 In order to export, we need a link to do so. This link will generate and save a CSV file:

config/routes.rb
 resources :restaurants do
 collection do
 get 'export_menus'
 end
 end
app/views/restaurants/show.html.erb
 <%= link_to "Export to CSV", export_menus_restaurants_
path(format: "csv", :restaurant_id => @restaurant.id),
:class=>"btn btn-default" %>

Objective complete – mini debriefing
In this section, we saw how to generate and export a CSV file from records in our database.
This helps a lot in several enterprise applications. We may extend this to other data formats
as well; for example, Excel. This helps in interoperability of various systems. For example,
there is an existing application Xero (xero.com) for accounting, which works in tandem
with our application; this could be a very useful feature.

The CSV mime type is a part of the ActionController::Renders module. In order to use
this in a controller, we included it at the top of the controller.

We then queried and copied all the values of the menus into a single array. This array of
menu objects is then rendered as CSV.

Just like we define the response format in our application as HTML, JSON, or XML, CSV can
also be defined as a rendering format.

Creating a Restaurant Menu Builder

152

As soon as we click on Export to CSV, we will get a prompt to save it as shown in the
following screenshot. We extended our resource by adding a collection route to it. This
collection route calls the export_menus format in order to call the export method for CSV.
We can export the menu data as shown in the following screenshot:

Mission accomplished
In this project, we created a simple SaaS-based application and saw how it is structured. We
focused more on concepts of SaaS-based applications such as multitenancy, abstraction,
roles and policy framework, and customizing the signup process into a wizard. We solved
various issues related to the separation of data and privacy for each user. We also created
plans and ways to set up a basic system with plans and pricing. Finally, we learned how to
export data from the system for interoperability and work with existing applications.

Hotshot challenges
Of course, we need to enhance what we just learned. The following are some exercises that
will help us do so:

ff Use Stripe to add a payment gateway

ff Add a method to cancel the billing of a user and discontinue it

ff Create the export to spreadsheet option along with CSV

ff Add errors to the payment gateway and display them in the frontend

ff Add integration tests for testing subdomains

Project 5
Building a

Customizable Content
Management System

Content is the backbone of the Internet. A Content Management System (CMS) is essentially
a software that helps you to easily and effectively manage the content of a website or a web
application. There are several perspectives on CMS, with Drupal, Joomla!, and WordPress
being the really popular ones. However, people still build tailor-made CMSes, because they
want something that fits their needs exactly.

Mission briefing
This project deals with the creation of a Content Management System. This system will
consist of two parts:

ff A backend that helps to manage content, page parts, and page structure

ff A frontend that displays the settings and content we just entered

We will start this by creating an admin area and then create page parts with types. Page
parts, which are like widgets, are fragments of content that can be moved around the page.
Page parts also have types; for example, we can display videos in our left column or display
news. So, the same content can be represented in multiple ways. For example, news can be a
separate page as well as a page part if it needs to be displayed on the front page. These parts
need to be enabled for the frontend. If enabled, then the frontend makes a call on the page
part ID and renders it in the part where it is supposed to be displayed. We will do a frontend
markup in Haml and Sass.

Building a Customizable Content Management System

154

The following screenshot shows what we aim to do in this project:

Why is it awesome?
Everyone loves to get a CMS built from scratch that is meant to suit their needs really closely.
We will try to build a system that is extremely simple as well as covers several different types
of content. This system is also meant to be extensible, and we will lay the foundation stone
for a highly configurable CMS. We will also spice up our proceedings in this project by using
MongoDB instead of a relational database such as MySQL.

At the end of this project, we will be able to build a skeleton for a very dynamic CMS.

Your Hotshot objectives
While building this application, we will have to go through the following tasks:

ff Creating a separate admin area

ff Creating a CMS with the ability of handling different types of content pages

ff Managing page parts

ff Creating a Haml- and Sass-based template

ff Generating the content and pages

ff Implementing asset caching

Project 5

155

Mission checklist
We need to install the following software on the system before we start with our mission:

ff Ruby 1.9.3 / Ruby 2.0.0

ff Rails 4.0.0

ff MongoDB

ff Bootstrap 3.0

ff Haml

ff Sass

ff Devise

ff Git

ff A tool for mockups

ff jQuery

ff ImageMagick and RMagick

ff Memcached

Creating a separate admin area
Since we have used devise for all our projects so far, we will use the same strategy in this
project. The only difference is that we will use it to log in to the admin account and manage
the site's data. This needs to be done when we navigate to the URL/admin. We will do this
by creating a namespace and routing our controller through the namespace. We will use our
default application layout and assets for the admin area, whereas we will create a different
set of layout and assets altogether for our frontend. Also, before starting with this first step,
create an admin role using CanCan and rolify and associate it with the user model. We are
going to use memcached for caching, hence we need to add it to our development stack. We
will do this by installing it through our favorite package manager, for example, apt on Ubuntu:

sudo apt-get install memcached

Memcached is a key-value cache store that stores small fragments of data.

Building a Customizable Content Management System

156

Prepare for lift off
In order to start working on this project, we will have to first add the mongoid gem
to Gemfile:

Gemfile
gem 'mongoid'4', github: 'mongoid/mongoid'

Bundle the application and run the mongoid generator:

rails g mongoid:config

You can edit config/mongoid.yml to suit your local system's settings as shown in the
following code:

config/mongoid.yml
development:
 database: helioscms_development
 hosts:
 - localhost:27017
 options:
 test:
 sessions:
 default:
 database: helioscms_test
 hosts:
 - localhost:27017
 options:
 read: primary
 max_retries: 1
 retry_interval: 0

We did this because ActiveRecord is the default Object Relationship Mapper (ORM). We will
override it with the mongoid Object Document Mapper (ODM) in our application. Mongoid's
configuration file is slightly different from the database.yml file for ActiveRecord. The
session's rule in mongoid.yml opens a session from the Rails application to MongoDB.
It will keep the session open as long as the server is up. It will also open the connection
automatically if the server is down and it restarts after some time. Also, as a part of the
installation, we need to add Haml to Gemfile and bundle it:

Gemfile
gem 'haml'
gem "haml-rails"

Project 5

157

Engage thrusters
Let's get cracking to create our admin area now:

1.	 We will first generate our dashboard controller:

rails g controller dashboard index
create app/controllers/dashboard_controller.rb
route get "dashboard/index"
invoke erb
create app/views/dashboard
create app/views/dashboard/index.html.erb
invoke test_unit
 create test/controllers/dashboard_controller_test.rb
invoke helper
create app/helpers/dashboard_helper.rb
invoke test_unit
create test/helpers/dashboard_helper_test.rb
invoke assets
invoke coffee
 create app/assets/javascripts/dashboard.js.coffee
invoke scss
 create app/assets/stylesheets/dashboard.css.scss

2.	 We will then create a namespace called admin in our routes.rb file:

config/routes.rb
namespace :admin do
 get '', to: 'dashboard#index', as: '/'
end

3.	 We have also modified our dashboard route such that it is set as the root page in the
admin namespace.

4.	 Our dashboard controller will not work anymore now. In order for it to work, we
will have to create a folder called admin inside our controllers and modify our
DashboardController to Admin::DashboardController. This is to match
the admin namespace we created in the routes.rb file:

app/controllers/admin/dashboard_controller.rb
class Admin::DashboardController < ApplicationController
 before_filter :authenticate_user!

 def index
 end
end

Building a Customizable Content Management System

158

5.	 In order to make the login specific to the admin dashboard, we will copy our
devise/sessions_controller.rb file to the controllers/admin path and
edit it. We will add the admin namespace and allow only the admin role to log in:

app/controllers/admin/sessions_controller.rb
class Admin::SessionsController < ::Devise::SessionsController

 def create
 user = User.find_by_email(params[:email])
 if user && user.authenticate(params[:password]) &&
 user.has_role? "admin"
 session[:user_id] = user.id
 redirect_to admin_url, notice: "Logged in!"
 else
 flash.now.alert = "Email or password is invalid /
 Only Admin is allowed "
 end
 end
end

Objective complete – mini debriefing
In the preceding task, after setting up devise and CanCan in our application, we went ahead
and created a namespace for the admin.

In Rails, the namespace is a concept used to separate a set of controllers into a completely
different functionality. In our case, we used this to separate out the login for the admin
dashboard and a dashboard page as soon as the login happens. We did this by first creating
the admin folder in our controllers. We then copied our Devise sessions controller
into the admin folder. For Rails to identify the namespace, we need to add it before the
controller name as follows:

class Admin::SessionsController < ::Devise::SessionsController

In our route, we defined a namespace to read the controllers under the admin folder:

 namespace :admin do
end

We then created a controller to handle dashboards and placed it within the admin
namespace:

 namespace :admin do
 get '', to: 'dashboard#index', as: '/'
 end

Project 5

159

We made the dashboard the root page after login. The route generated from the preceding
definition is localhost:3000/admin. We have already seen how to add roles in our
previous project, hence we assumed here that the admin role can be created. We ensured
that if someone tries to log in by clicking on the admin dashboard URL, our application
checks whether the user has a role of admin or not. In order to do so, we used has_role
from rolify along with user.authenticate from devise:

if user && user.authenticate(params[:password]) && user.has_role?
"admin"

This will make devise function as part of the admin dashboard. If a user tries to log in, they
will be presented with the devise login page as shown in the following screenshot:

After logging in successfully, the user is redirected to the link for the admin dashboard:

Building a Customizable Content Management System

160

Creating a CMS with the ability to
create different types of pages

A website has a variety of types of pages, and each page serves a different purpose. Some
are limited to contact details, while some contain detailed information about the team. Each
of these pages has a title and body. Also, there will be subpages within each navigation; for
example, the About page can have Team, Company, and Careers as subpages. Hence, we
need to create a parent-child self-referential association. So, pages will be associated with
themselves and be treated as parent and child.

Engage thrusters
In the following steps, we will create page management for our application. This will be the
backbone of our application.

1.	 Create a model, view, and controller for page. We will have a very simple page
structure for now. We will create a page with title, body, and page type:

app/models/page.rb
class Page
 include Mongoid::Document

 field :title, type: String
 field :body, type: String
 field :page_type, type: String

 validates :title, :presence => true
 validates :body, :presence => true

 PAGE_TYPE= %w(Home News Video Contact Team Careers)
end

2.	 We need a home page for our main site. So, in order to set a home page, we will
have to assign it the type home. However, we need two things from the home page:
it should be the root of our main site and the layout should be different from the
admin. In order to do this, we will start by creating an action called home_page in
pages_controller:

app/models/page.rb
 scope :home, ->{where(page_type: "Home")}

app/controllers/pages_controller.rb
 def home_page

Project 5

161

 @page = Page.home.first rescue nil

 render :layout => 'page_layout'
end

3.	 We will find a page with the home type and render a custom layout called
page_layout, which is different from our application layout. We will do the same
for the show action as well, as we are only going to use show to display the pages
in the frontend:

app/controllers/pages_controller.rb
 def show
 render :layout => 'page_layout'
 end

4.	 Now, in order to effectively manage the content, we need an editor. This will make
things easier as the user will be able to style the content easily using it. We will use
ckeditor in order to style the content in our application:

Gemfile
gem "ckeditor", :github => "galetahub/ckeditor"
gem 'carrierwave', :github => "jnicklas/carrierwave"

gem 'carrierwave-mongoid', :require => 'carrierwave/mongoid'

gem 'mongoid-grid_fs', github: 'ahoward/mongoid-grid_fs'

5.	 Add the ckeditor gem to Gemfile and run bundle install:

helioscms$ rails generate ckeditor:install --orm=mongoid
--backend=carrierwave

 create config/initializers/ckeditor.rb
 route mount Ckeditor::Engine => '/ckeditor'
 create app/models/ckeditor/asset.rb
 create app/models/ckeditor/picture.rb
 create app/models/ckeditor/attachment_file.rb
 create app/uploaders/ckeditor_attachment_file_uploader.
rb

6.	 This will generate a carrierwave uploader for CKEditor, which is compatible
with mongoid.

7.	 In order to finish the configuration, we need to add a line to application.js
to load the ckeditor JavaScript:

app/assets/application.js
//= require ckeditor/init

Building a Customizable Content Management System

162

8.	 We will display the editor in the body as that's what we need to style:

views/pages/_form.html.haml
 .field
 = f.label :body
 %br/
 = f.cktext_area :body, :rows => 20, :ckeditor => {:uiColor =>
"#AADC6E", :toolbar => "mini"}

9.	 We also need to mount the ckeditor in our routes.rb file:

config/routes.rb
mount Ckeditor::Engine => '/ckeditor'

10.	 The editor toolbar and text area will be generated as seen in the following
screenshot:

11.	 In order to display the content on the index page in a formatted manner, we will add
the html_safe escape method to our body:

views/pages/index.html.haml
 %td= page.body.html_safe

Project 5

163

12.	 The following screenshot shows the index page after the preceding step:

13.	 At this point, we can manage the content using pages. However, in order to add
nesting, we will have to create a parent-child structure for our pages. In order to do
so, we will have to first generate a model to define this relationship:

helioscms$ rails g model page_relationship

Building a Customizable Content Management System

164

14.	 Inside the page_relationship model, we will define a two-way association with
the page model:

app/models/page_relationship.rb
class PageRelationship
 include Mongoid::Document
 field :parent_idd, type: Integer
 field :child_id, type: Integer

 belongs_to :parent, :class_name => "Page"
 belongs_to :child, :class_name => "Page"
end

15.	 In our page model, we will add inverse association. This is to check for both parent
and child and span the tree both ways:

 has_many :child_page, :class_name => 'Page',
 :inverse_of => :parent_page
 belongs_to :parent_page, :class_name => 'Page',
 :inverse_of => :child_page

16.	 We can now add a page to the form as a parent. Also, this method will create a tree
structure and a parent-child relationship between the two pages:

app/views/pages/_form.html.haml
 .field
 = f.label "Parent"
 %br/
 = f.collection_select(:parent_page_id, Page.all, :id,
 :title, :class => "form-control")
.field

 = f.label :body

 %br/

 = f.cktext_area :body, :rows => 20, :ckeditor =>
 {:uiColor => "#AADC6E", :toolbar => "mini"}

 %br/

 .actions

 = f.submit :class=>"btn btn-default"

 =link_to 'Cancel', pages_path, :class=>"btn btn-danger"

Project 5

165

17.	 We can see the the drop-down list with names of existing pages, as shown in the
following screenshot:

18.	 Finally, we will display the parent page:

views/pages/_form.html.haml
 .field
 = f.label "Parent"
 %br/
 = f.collection_select(:parent_page_id, Page.all, :id,
 :title, :class => "form-control")

19.	 In order to display the parent, we will call it using the association we created:

app/views/pages/index.html.haml
 - @pages.each do |page|

 %tr

 %td= page.title

 %td= page.body.html_safe

 %td= page.parent_page.title if page.parent_page

Building a Customizable Content Management System

166

Objective complete – mini debriefing
Mongoid is an ODM that provides an ActiveRecord type interface to access and use
MongoDB. MongoDB is a document-oriented database, which follows a no-schema and
dynamic-querying approach. In order to include Mongoid, we need to make sure we have
the following module included in our model:

include Mongoid::Document

Mongoid does not rely on migrations such as ActiveRecord because we do not need to create
tables but documents. It also comes with a very different set of datatypes. It does not have
a datatype called text; it relies on the string datatype for all such interactions. Some of the
different datatypes are as follows:

ff Regular expressions: This can be used as a query string, and matching strings are
returned as a result

ff Numbers: This includes integer, big integer, and float

ff Arrays: MongoDB allows the storage of arrays and hashes in a document field

ff Embedded documents: This has the same datatype as the parent document

We also used Haml as our markup language for our views. The main goal of Haml is to
provide a clean and readable markup. Not only that, Haml significantly reduces the effort
of templating due to its approach.

In this task, we created a page model and a controller. We added a field called page_type
to our page. In order to set a home page, we created a scope to find the documents with
the page type home:

scope :home, ->{where(page_type: "Home")}

We then called this scope in our controller, and we also set a specific layout to our show
page and home page. This is to separate the layout of our admin and pages.

The website structure can contain multiple levels of nesting, which means we could have a
page structure like the following: About Us | Team | Careers | Work Culture | Job Openings

In the preceding structure, we were dealing with a page model to generate different pages.
However, our CMS should know that About Us has a child page called Careers and in turn
has another child page called Work Culture. In order to create a parent-child structure,
we need to create a self-referential association. In order to achieve this, we created a new
model that holds a reference on the same model page.

Project 5

167

We first created an association in the page model with itself. The line inverse_of allows us
to trace back in case we need to span our tree according to the parent or child:

 has_many :child_page, :class_name => 'Page', :inverse_of => :parent_
page

 belongs_to :parent_page, :class_name => 'Page', :inverse_of =>
:child_page

We created a page relationship to handle this relationship in order to map the parent ID and
child ID. Again, we mapped it to the class page:

 belongs_to :parent, :class_name => "Page"

 belongs_to :child, :class_name => "Page"

This allowed us to directly find parent and child pages using associations.

In order to manage the content of the page, we added CKEditor, which provides a feature-
rich toolbar to format the content of the page. We used the CKEditor gem and generated the
configuration, including carrierwave. For carrierwave to work with mongoid, we need
to add dependencies to Gemfile:

gem 'carrierwave', :github => "jnicklas/carrierwave"

gem 'carrierwave-mongoid', :require => 'carrierwave/mongoid'

gem 'mongoid-grid_fs', github: 'ahoward/mongoid-grid_fs'

MongoDB comes with its own filesystem called GridFs. When we extend carrierwave,
we have an option of using a filesystem and GridFs, but the gem is required nonetheless.
carrierwave and CKEditor are used to insert and manage pictures in the content
wherever required.

We then added a route to mount the CKEditor as an engine in our routes file. Finally, we
called it in a form:

 = f.cktext_area :body, :rows => 20, :ckeditor => {:uiColor =>
"#AADC6E", :toolbar => "mini"}

CKEditor generates and saves the content as HTML. Rails sanitizes HTML by default and
hence our HTML is safe to be saved.

Building a Customizable Content Management System

168

The admin page to manage the content of pages looks like the following screenshot:

Managing page parts
This task deals with the creation and management of page parts. Page parts are snippets
of code, which we will use to render in the page. These parts can be banners, YouTube
video channels, photos, polls, and so on. We will create a model for page parts and this
will effectively manage content for different parts of our page.

Engage thrusters
We will begin by adding page parts to our CMS system:

1.	 Generate the page parts model:

heliouscms$rails g model part title:string content:string
meta:string part_type_id:string
 invoke mongoid
 create app/models/part.rb
 invoke test_unit
 create test/models/part_test.rb
 create test/fixtures/parts.yml

2.	 We will now generate the model for part_types:

:~/helioscms$ rails g model part_type name:string
 invoke mongoid
 create app/models/part_type.rb
 invoke test_unit

Project 5

169

 create test/models/part_type_test.rb
 create test/fixtures/part_types.yml

3.	 We will now associate the parts and part_types fields:

app/models/part_type.rb
class PartType
 include Mongoid::Document
 field :name, type: String

 has_many :parts

end

app/models/part.rb
class Part
 include Mongoid::Document
 field :title, type: String
 field :part_type_id, type: String
 field :content, type: String
 field :meta, type: String
 field :user_id, type: String

 belongs_to :page
 belongs_to :part_type

end

4.	 Let's add some parts by firing up the Rails console:

helioscms$ rails c
Loading development environment (Rails 4.0.0)
1.9.3-p327 :001 > part = Part.new
 => #<Part _id: a833e8207277751d1a000000, title: nil, part_type_
id: nil, content: nil, meta: nil, user_id: nil,>
1.9.3-p327 :002 > part.title = "YouTube Channel"
 => "YouTube Channel"
1.9.3-p327 :003 > part.save!
 MOPED: 127.0.0.1:27017 COMMAND database=admin
command={:ismaster=>1} runtime: 3.5448ms
 MOPED: 127.0.0.1:27017 INSERT database=project5_
development collection=parts documents=[{"_id"=>BSON::ObjectId('a8
33e8207277751d1a000000'), "title"=>"YouTube Channel"}] flags=[]
 COMMAND database=project5_
development command={:getlasterror=>1, :w=>1} runtime: 1.3837ms
 => true

Building a Customizable Content Management System

170

5.	 We will now add part types to the part form so that we can save it during
their creation:

app/views/parts/_form.html.haml
 .field
 = f.label :part_type_id
 = f.select(:part_type_id, options_from_collection_for_
select(PartType.all, :id, :name), {:prompt => 'Please Choose'},
:class => "form-control")

6.	 The following code shows what the full form looks like:

views/plans/_form.html.haml

= form_for @part do |f|
 - if @part.errors.any?
 #error_explanation
 %h2= "#{pluralize(@part.errors.count, "error")} prohibited this
part from being saved:"
 %ul
 - @part.errors.full_messages.each do |msg|
 %li= msg

 .field
 = f.label :title
 = f.text_field :title, :class=>"form-control"
 .field
 = f.label :part_type_id
 = f.select(:part_type_id, options_from_collection_for_
select(PartType.all, :id,
 :name), {:prompt => 'Please Choose'}, :class => "form-
 control")
 .field
 = f.label :content
 = f.cktext_area :content, :rows => 20, :ckeditor =>
 {:uiColor => "#AADC6E", :toolbar => "mini"}
 .field
 = f.label :meta
 = f.text_field :meta, :class=>"form-control"
 .field
 = f.hidden_field :user_id, :value=>current_user.id
 %br/
 .actions
 = f.submit 'Save',:class=>"btn btn-default"
 = link_to 'Cancel', parts_path,:class=>"btn btn-
 danger

7.	 In order to call the page_parts extension, we will use the association between
page and page_parts.

Project 5

171

8.	 To see this, we will make a call on page and then call the parts related to that page.
As a result, you will see the following screenshot:

Objective complete – mini debriefing
We created a page parts model in this task. We also created page part types in order to
classify and arrange them. We have also created an association between page and page
parts. Hence, we can now assign a single page part to multiple pages. Also, we can see
all the parts associated with a page.

At the end of this task, our page part creation page should look like the following screenshot:

Building a Customizable Content Management System

172

Creating a Haml- and Sass-based
template

Now that we have the content defined for our pages, we will start building the frontend.
We will keep the frontend as simple as possible and just render the information we have
created using our CMS. This task deals with the creation of the frontend and how to separate
it from the backend.

Engage thrusters
Let's get started with the process of frontend creation:

1.	 Inside your app/assets folder, create a file called front.css. In Rails we have an
advantage of asset pipeline. We can use this to separate the frontend assets. We will
create a manifest file called front.css and define front end-related stylesheets
under it:

app/assets/stylesheets/front.css
/*
 * This is a manifest file that'll be compiled into front.css,
which will include all the files
 * listed below.
 *

 * indicates any CSS and SCSS file within the lib/assets/
stylesheets/front_end, vendor/assets/stylesheets/front_end
directory.
 * or vendor/assets/stylesheets of plugins, if any, can be
referenced here using a relative path.
 *
 * You're free to add application-wide styles to this file and
they'll appear at the top of the
 * compiled file, but it's generally better to create a new file
per style scope.
 *
 *= require_self
 */

2.	 We will also place these files under the folder called front_end and create a blank
SCSS file under it:

helioscms/app/assets/stylesheets$ mkdir front_end
helioscms/app/assets/stylesheets/front_end$ touch structure.scss

Project 5

173

3.	 We will now load the structure.scss file from our manifest file:

app/assets/stylesheets/front.css	
/*
 * This is a manifest file that'll be compiled into front.css,
which will include all the files
 * listed below.
 *
 * Any CSS and SCSS file within this directory, lib/assets/
stylesheets, vendor/assets/stylesheets,
 * or vendor/assets/stylesheets of plugins, if any, can be
referenced here using a relative path.
 *
 * You're free to add application-wide styles to this file and
they'll appear at the top of the
 * compiled file, but it's generally better to create a new file
per style scope.
 *
 *= require_self
*= require font-awesome
 *= require front_end/structure

 */

4.	 We will follow the same procedure to create a front.js manifest file in
assets/javascripts.

5.	 Let's quickly define a simple three column layout with a header, footer, and a
container. We will do this inside our structure.scss file:

app/assets/stylesheets/front_end/structure.scss
#primary, #content, #secondary {
 height: 300px;
 padding: 50px 0;
}

#container {
 width: 1200px;
 margin: 0 auto;
}

#primary {
 float: left;
 width: 150px;
 background: #eee;
 padding-right: 10px;
 padding-left: 10px;

Building a Customizable Content Management System

174

}

#content {
 float: left;
 width: 800px;
 height: 300px;
 background: #ccc;
 padding-left: 10px;
 padding-right: 10px;
}

#secondary {
 float: left;
 width: 150px;
 background: #ddd;
 padding-left: 10px;
 padding-right: 10px;
}

#footer {
 clear: both;
 padding-top:3px;
}

#header {
 background: #fff;
 height: 100px;
}

6.	 We will also add a basic horizontal menu to the application:

app/assets/stylesheets/front_end/structure.scss
#menu ul
{
 margin: 0px;
 padding: 0px;
 list-style-type: none;
}

#menu a
{
 display: block;
 width: 8em;
 color: white;
 background-color: #000099;
 text-decoration: none;

Project 5

175

 text-align: center;
}

#menu a:hover
{
 background-color: #6666AA;
}
#menu li
{
 float: left;
 margin-right: 0.5em;
}

7.	 Our front end layout is currently different. We will make a call on the manifest
CSS and JS files in our header and define sections in the page. Also, we should
change our extension's layout to Haml because the first layout created is
html.erb by default:

app/views/layouts/page_layout.html.haml
!!!
%html
 %head
 %title
 = stylesheet_link_tag "front"
 = javascript_include_tag "front"
 = csrf_meta_tags
 %body
 #container
 #header

 #menu

 #primary
 %p Primary Sidebar
 #content

 #secondary
 %p Secondary Sidebar
 #footer

Building a Customizable Content Management System

176

8.	 Finally, we will add some fonts before we start rendering the content into our page.
We will use Google Fonts for simple usage:

views/layouts/page_layout.html.haml
 %link{href: "http://fonts.googleapis.com/
css?family=Cherry+Swash", rel: "stylesheet", type: "text/css"}/
 %link{href: "http://fonts.googleapis.com/css?family=Flamenco",
rel: "stylesheet", type: "text/css"}/

9.	 We need to apply this layout only to the limited actions in our controller:

app/controllers/pages_controllers.rb

 layout 'page_layout', only: [:home_page, :show]

Objective complete – mini debriefing
In this task, we concentrated on creating a frontend and separated it completely from the
backend in terms of look and feel. The advantage of this approach is that we can use any
CSS and JS framework we want in the frontend without interfering with the backend. Zurb
Foundation, Bootstrap, Less, or any other HTML5 and CSS3 framework can be used for
the frontend.

= stylesheet_link_tag "front" = javascript_include_tag "front"
= javascript_include_tag "front"

Finally, we had to apply this layout to some select actions in our controller. This is because
our page controller's actions—index, new, edit, create, and update—are administrator's
actions. The actions show and home_page are supposed to display the page. Hence, the
layout is applied to only these actions:

 layout 'page_layout', only: [:home_page, :show]

The final output of our work in creating the frontend page is as seen in the following
screenshot:

Project 5

177

Generating the content and pages
We have already created the backend and also set the base for the frontend. However, we
need to start rendering the content in the front end. We also want a dynamically generated
menu from the pages we have created. We want the backend to play well with the front end
page we just created. In this task, we will add site-related information that renders all the
content on the front end page.

Engage thrusters
The following steps are used to render the content and also add some general site details:

1.	 We will first create a scaffold for the site details:

 $ rails g scaffold site_detail title:string organization:string
address:string facebook:string twitter:string google_
plus:string skype:string linkedin:string google_analytics:string
telephone:string
 invoke mongoid
 create app/models/site_detail.rb
 invoke test_unit
 create test/models/site_detail_test.rb
 create test/fixtures/site_details.yml
 invoke resource_route
 route resources :site_details
 invoke inherited_resources_controller
 create app/controllers/site_details_controller.rb
 invoke erb
 create app/views/site_details
 create app/views/site_details/index.html.erb
 create app/views/site_details/edit.html.erb
 create app/views/site_details/show.html.erb
 create app/views/site_details/new.html.erb
 create app/views/site_details/_form.html.erb
 invoke test_unit
 create test/controllers/site_details_controller_test.rb
 invoke helper
 create app/helpers/site_details_helper.rb
 invoke test_unit
 create test/helpers/site_details_helper_test.rb
 invoke jbuilder

Building a Customizable Content Management System

178

 create app/views/site_details/index.json.jbuilder
 create app/views/site_details/show.json.jbuilder
 invoke assets
 invoke coffee
 create app/assets/javascripts/site_details.js.coffee
 invoke scss
 create app/assets/stylesheets/site_details.css.scss
 invoke scss
 identical app/assets/stylesheets/scaffolds.css.scss

2.	 Be sure to remove the scaffolds.css.scss file, otherwise it will conflict with
our default CSS.

3.	 First generate the carrierwave uploader and call the uploaded file:

helioscms$ rails g uploader file

4.	 We will then add a field to the SiteDetail model:

app/models/site_detail.rb
class SiteDetail
 include Mongoid::Document
 field :title, type: String
 field :organization, type: String
 field :address, type: String
 field :facebook, type: String
 field :twitter, type: String
 field :google_plus, type: String
 field :skype, type: String
 field :linkedin, type: String
 field :google_analytics, type: String
 field :telephone, type: String

 mount_uploader :logo, FileUploader
end

Project 5

179

5.	 The form to save the site details looks as follows:

6.	 Now, in order to display these values in our site frontend, we will first make a call on
SiteDetail and Page. We will call the SiteDetail and page value:

app/controllers/pages_controllers.rb

 before_action :set_site, only: [:home_page, :show]

 layout 'page_layout', only: [:home_page, :show]

Building a Customizable Content Management System

180

def home_page
 @page = Page.find_by(page_type: "Home") rescue nil
 @pages = Page.all

end

 # GET /pages/1
 # GET /pages/1.json
 def show

 @pages = Page.all

end

 private
 def set_site

 @site = SiteDetail.first

end

7.	 We will then add these values to the page. First add the page and site value in the
title bar:

"app/" before the path "views/layouts/page_layout.html.haml"
views/layouts/page_layout.html.haml
 !!!
%html
 %head
 %title
 = @page.title
 | #{@site.title}

8.	 We will then add site values to the footer, site title, and logo to the header.

9.	 We will also call all the pages and loop them in line to generate our page
navigation. We will lastly call the body inside the content tag so that the
content is rendered there:

app/views/layouts/page_layout.html.haml
%body
 #container
 #header
 %p= image_tag @site.logo_url.to_s,
 :alt=>"#{@site.title}"
 #menu
 %ul
 - @pages.each do |page|
 %li= link_to page.title, page
 #primary
 %p Primary Sidebar

Project 5

181

 #content
 %p= @page.body.html_safe
 #secondary
 %p Secondary Sidebar
 #footer
 %h3= @site.organization
 %p
 = link_to '<i class="fa fa-facebook"></i>'.html_safe,
 @site.facebook, :target=>"blank"
 | #{link_to '<i class="fa fa-twitter"></i>'.html_safe,
 @site.twitter, :target=>"blank"} | #{link_to '<i
 class="fa fa-linkedin"></i>'.html_safe,
 @site.linkedin, :target=>"blank"} | #{link_to '<i
 class="fa fa-skype"></i>'.html_safe, @site.skype,
 :target=>"blank"}
 %p
 = @site.address
 %br/
 = @site.telephone

Objective complete – mini debriefing
At the end of this task, we created a model for storing the site details. In our controller,
we called the site details and assigned the instance variable to actions where we need our
site object:

before_action :set_site, only: [:home_page, :show]

private
 def set_site

 @site = SiteDetail.first

end

We called the values of site title, address, and contact details in the footer, and content
in the content tag. The advantage of using Haml and Sass is clean markup, with very good
indentation and code readability. Sass is like an extension of CSS, which compiles to CSS
code. One of the main advantages of using Sass is the usage of a variable to make some of
the code reusable. Values such as font sizes, colors, and font-family can easily be made dry
using Sass variables. We can do a quick refactor of our Sass using a variable for defining the
font-family as follows:

app/assets/stylesheets/front_end/structure.scss
$primary-font: 'Cherry Swash', cursive;

#footer {

Building a Customizable Content Management System

182

 clear: both;

 padding-top:3px;

 font-family: $primary-font;

}

#header {

 background: #fff;

 height: 100px;

 font-family: $primary-font;

}

The other option to keep the CSS code clean is using Less CSS (http://lesscss.org/). This
extends the CSS to use features such as functions and mixins too. We can see in the following
screenshot how Sass is compiled into and is rendered with the site details also displayed:

Implementing asset caching
In our CMS there are several kinds of assets. As we build themes we will beautify them
with varied JavaScript, CSS, and images. In order to keep the speed of our sites fast in the
frontend, we will use asset caching in Rails.

Project 5

183

Engage thrusters
The steps to follow will be to cache the content and speed up our site, as follows:

1.	 We will first make sure we have the right asset-related gems in Gemfile:

gem 'sass-rails', '~> 4.0.0'
gem 'uglifier', '>= 1.3.0'
gem 'coffee-rails', '~> 4.0.0'

This will enable all kinds of assets and make it ready for production.

2.	 We will first enable asset compression inside our production.rb file:

config/environments/production.rb.
config.assets.compress = true

3.	 We will continue to edit the same file:

config.assets.compress = true
Compress JavaScripts and CSS.
config.assets.js_compressor = :uglifier
config.assets.css_compressor = :sass

4.	 We will now fix the asset folder to tmp/cache/assets:

config/environments/production.rb
config.assets.cache =
 ActiveSupport::Cache::FileStore.new("tmp/cache/assets")

5.	 We need to make sure that we run the following step before deployment:

helioscms$rake assets:precompile

6.	 In order to make use of memcached in our application, we will add a gem called
dalli. The dalli gem is a replacement of the memcache client:

gem 'dalli'

7.	 We will configure the cache in our production.rb file:

config/environments/production.rb
config.cache_store = :dalli_store
config.action_controller.perform_caching = true

8.	 We will also add a simple action cache so that we always cache the layout along
with the cache. In our pages_controller.rb file, we will add an action caching
method:

app/controllers/pages_controller.rb
def home_page

 expires_in 5.minutes

Building a Customizable Content Management System

184

 sleep 15

 @page = Page.home.first
 cache_client = Dalli::Client.new('localhost:11211')

 @pages = Page.all

end

9.	 Lastly, we will initiate a cache client and store a cached object in it:

app/controllers/pages_controller.rb
 @page = Page.find_by(page_type: "Home")
 cache_client = Dalli::Client.new('localhost:11211')

 cache_client.set('Home', @page)
 value = cache_client.get('Home')

10.	 So, finally our method for home page looks as follows:

def home_page

 expires_in 5.minutes

 sleep 15

 @page = Page.home.first
 cache_client = Dalli::Client.new('localhost:11211')

 cache_client.set('Home', @page)

 value = cache_client.get('Home')

 @pages = Page.all

end

Objective complete – mini debriefing
This is an extremely basic caching technique that comes as an extension to Rails. We added
memcached for caching the page beforehand. This will help us to speed up our site's
frontend. We looked at how to enable memcached for the application using the dalli gem.
Memcached is a distributed key-value store for storing memory objects like objects, sessions,
strings, API, and data calls. In a way it's a technique to store and retrieve temporary data.
This data is stored in the form of an array and is quickly retrieved as soon as the page loads,
instead of going back to the database and calling the page again. This avoids unnecessary
queries and thus reduces the database load. This technique also saves API calls because for
applications such as Twitter clients, the number of requests is a very important criterion.
Hence, we first installed memcached on our local system. We then enabled Dalli in our
production.rb file:

Dalli::Client.new('localhost:11211')

Project 5

185

This will directly access the memcached at its port number and initiate a new client object.
We first defined the time for cache expiry:

expires_in 5.minutes

In order to keep the transaction fast, the application pre-fills the cache with a value. This,
however, can lead to another problem. It is quite possible that the same key is being
accessed by multiple clients. Also, if the cache is empty, it could be filled with multiple keys.
Hence, memcached gives an option called sleep, which provides a lock for the time defined
in sleep:

 sleep 15

If two processes are accessing the same key at the same time, then sleep will tell the other
process that the cache is empty, while waiting for the sleep time to finish. Once done, the
lock is released and autoassigned to the next value in the queue. In order to store a value in
memcached, we used the following set method:

 cache_client.set('Home', @page)

The set method includes the key ('Home') and the value (@page). For retrieving the value
of the page, we used a simple get method:

 value = cache_client.get('Home')

This value is retrieved using a key called Home. We must note that action caching is
deprecated in Rails 4. We will have to use a third-party caching technique such as
memcached to perform action caching. Fragment caching is another strategy where we
cache certain parts of a page instead of the entire page, which is also a very commonly used
technique and works nicely out of the box in Rails. We will cover this in our later projects.

Mission accomplished
We laid down the foundation for a dynamic CMS in this project. We built a backend admin
with a functionality that could create pages and parts. We also created a frontend and did
the markup using Haml and SCSS. SCSS is fast to load and easy to manage. It also fits neatly
in the Rails asset pipeline. Hence, it is a recommended form of markup with Rails. Some of
the ideas we looked at in this project were as follows:

ff We replaced ActiveRecord with Mongoid for our database and model

ff We created an admin area and made devise function only for the admin

ff We saw how namespaces in controllers and routes work

ff We created a self referential association, a parent and a child association on the
same model

Building a Customizable Content Management System

186

ff We integrated CKEditor with our application

ff We then created different layouts and manifests for our frontend and backend

ff We looked at how Haml and Sass markup are done and their probable advantages

ff Lastly, we looked at a memcached-based caching strategy for caching our actions

Hotshot challenges
We need to take our CMS to the next level. The exercise contains a few ideas worth
trying out:

ff Using nested attributes assign parts to a page.

ff Adding a responsive HTML5 layout to the frontend.

ff Adding validation for the home page. There should always be only one page
called home.

ff Adding tests to test content created with CKEditor.

Project 6
Creating an Analytics

Dashboard using Rails
and Mongoid

We rely a lot on various analytics tools in our web applications. Google Analytics, Mixpanel,
Kissmetrics, and Crazy Egg are some of the most popular web-analytics tools that give a deep
insight into who's visiting the website, from where, and what pages are getting the most hits.
These analytics help in addressing demographic-based issues, improving the user experience
on the site.

Mission briefing
In this project, we will create an analytics dashboard, which will give the user an insight on
which kind of content is getting what kind of traffic. There are three types of behavior that
we will track with our application:

ff Clicks

ff Views

ff Visits

Clicks and views will be tracked for the users who have logged in. Visits are for the users who
unknown and are are not logged in. We will use MongoDB to track and store this data. Also,
we will create charts of different types in order to visualize our data. MongoDB is scalable
and is meant to be fault tolerant.

Creating an Analytics Dashboard using Rails and Mongoid

188

We will name our application Authorly and the following is a glimpse of what we are going
to achieve:

Why is it awesome?
Sometimes analytics and visibility for our data needs to be part of our system. Also, if this
dashboard is easy to roll out and manage, you can build an entire highly customized system
in the long term. This data is valuable for the administrators of the system. In our application,
we will create articles and give users the flexibility to track clicks and views to their articles
through a dashboard.

Project 6

189

Analytics comprises the following three tasks:

ff Collecting the data

ff Analyzing the collected data

ff Reporting the data

At the end of this project, we will be able to build a fully functional analytics dashboard.

Your Hotshot objectives
While building this application, we will go through the following tasks:

ff Creating a MongoDB database

ff Creating a click-tracking mechanism

ff Creating a visit-tracking mechanism

ff Writing map-reduce and aggregation to fetch and analyze the data

ff Creating a dashboard to display clicks and impression values

ff Creating a line graph of the daily clicking activity

ff Creating a bar graph of the daily visit activity

ff Creating a demographic-based donut chart

Mission checklist
We need the following software installed on the system before we start with our mission:

ff Ruby 1.9.3 / Ruby 2.0.0

ff Rails 4.0.0

ff MongoDB

ff Bootstrap 3.0

ff Sass

ff Devise

ff morris.js for charts

ff Git

ff A tool for mockups

ff jQuery

ff ImageMagick and RMagick

Creating an Analytics Dashboard using Rails and Mongoid

190

Creating a MongoDB database
In this task, we will work towards setting up the base for our application. This includes
setting up mongoid, rolify, and creating articles. This task is more like a revision of some of
the concepts that we have covered in the book already. The new thing here is that we are
doing it all with Mongoid.

Prepare for lift off
In order to start working on this project, we will first have to add the mongoid gem to
the Gemfile:

Gemfile
gem 'mongoid', github: 'mongoid/mongoid'

Bundle the application and run the mongoid generator:

$ rails g mongoid:config

At the time of writing this book, the master branch of rolify is compatible only with the
master branch of mongoid. So, in order to ensure that both work well together, we need to
keep both our Mongoid and rofily on the master branch.

Engage thrusters
The steps for creating a MongoDB database are as follows:

1.	 We will take the first step in this task by setting up the skeleton of the application.

2.	 We will install rolify from the master branch by adding it to the Gemfile and
run bundle:

Gemfile
gem 'rolify', :github => 'EppO/rolify'

authorly $bundle install

3.	 We will then generate the configuration file for rolify:

 authorly$rails g rolify Role User -o mongoid
 invoke mongoid
 create app/models/role.rb
 invoke test_unit
 create test/models/role_test.rb
 create test/fixtures/roles.yml
 insert app/models/role.rb
 insert app/models/user.rb
 create config/initializers/rolify.rb

Project 6

191

4.	 The initializers generated in order to access mongoid instead of ActiveRecord
looks like the following code:

config/initializers/rolify.rb

Rolify.configure do |config|
 config.use_mongoid
end

5.	 We will generate an article's model, view, and controller. This will allow the users
to create articles:

authorly$ rails g scaffold article title:string body:text

6.	 MongoDB generates pretty ugly URLs, with 12-byte long Binary JSON (BSON) type
IDs trailing them. We need to create good looking URLs with MongoDB. For this, we
will use the mongoid_slug gem with our application. Again, here we are using the
master branch of GitHub to maintain the compatibility with Rails 4 and mongoid 4
beta versions:

Gemfile

gem 'mongoid_slug', github: 'digitalplaywright/mongoid-slug'

7.	 After adding it to Gemfile, run bundle install.

8.	 In order to set up the slugging mechanism, we will first include the Mongoid::Slug
module in our article model:

app/models/article.rb

class Article
 include Mongoid::Document
 include Mongoid::Slug

 field :title, type: String
 field :body, type: String
 field :user_id, type: String
 belongs_to :user
end

9.	 Also, we need to store the history of our URL slugs to avoid 404 errors in case
the slug changes. This will be stored in an array inside the _slug field in the
article model:

app/models/article.rb

class Article
 include Mongoid::Document

Creating an Analytics Dashboard using Rails and Mongoid

192

 include Mongoid::Slug

 field :title, type: String
 field :body, type: String
 field :_slugs, type: Array, default: []
 field :user_id, type: String
 slug :title, :history => true
end

10.	 We will set up an article list such that it can be viewed by anyone without logging in
as well as by people who are logged in. Before this step, please make sure devise is
installed on your system:

app/controllers/articles_controller.rb

before_filter :authenticate_user!, except: [:show, :index]
def index

 @articles = Article.all

 end

11.	 Lastly, do not forget to add a slug and user ID to the permitted parameters in your
articles_controller file:

app/controllers/articles_controller.rb

 private
 # Use callbacks to share common setup or constraints between
actions.
 def set_article
 @article ||= Article.find(params[:id])
 end

 # Never trust parameters from the scary internet, only allow
the white list through.
 def article_params
 params.require(:article).permit(:title, :body, :_slugs,
:user_id)
 end

Objective complete – mini debriefing
In this task, we started by assuming that devise and cancan have already been installed, as
there was no change needed for any of them to work with mongoid. We directly proceeded
to the step where we installed rolify with mongoid. We created a model for articles and
restricted the access for the show and index pages being accessed by anyone. We then saw
the use of a mongoid slug, a library that is used to create pretty and search-friendly URLs.

Project 6

193

A good solution for slugs not only makes the URL pretty and search friendly, but also
maintains a history of the changes done to the URLs. There are chances that the slug might
change as it is dependent on the article's title. If a user edits the title, the slug is bound to
change. However, if the article is popular and is used by several people, they might have
bookmarked it. We used the history feature to maintain both old as well as new URLs, thus
avoiding the 404 (URL not found) errors. We also added _slugs to the parameter's whitelist.

Creating a click-tracking mechanism
There is a difference between tracking clicks and tracking impressions. Clicks can be the
traffic that is received through an organic search via search engines such as Google, or
via searching the website, or whenever a click action is performed. Impression, on the
other hand, is how many times the page has been viewed. It is possible that someone
has bookmarked the page and repeatedly read an article. In this case, the act will be the
counting of impressions. In our application, both clicks and impressions will be bound to the
show method because that's what is mainly required to render the page.

Engage thrusters
We will now go ahead and create a click-tracking mechanism for our articles:

1.	 We will first create a model for clicks and associate it with the article:

app/models/click.rb

class Click
 include Mongoid::Document
 field :ip, type: String
 field :url, type: String
 field :article_id, type: String
 field :user_id, type: String

 belongs_to :article
end

2.	 In our article, we will associate our article model with the clicks too:

app/models/article.rb

has_many :clicks

Creating an Analytics Dashboard using Rails and Mongoid

194

3.	 We will first add methods to get the full path of the URL and get the IP address of
the user clicking in our show method, inside our articles_controller file:

app/controllers/articles_controller.rb
def show
@url = request.fullpath.to_s
 @ip = request.remote_ip
end

4.	 Now, we will track the click action whenever it is performed and the show method
is fired. Also, we will save article_id with our click. We will do this with the
following code:

app/models/concerns/record_data.rb
module RecordData

 extend ActiveSupport::Concern

 included do

 def self.record(url, ip, article_id, user_id)

 self.create!(url: url, ip: ip, article_id: article_id, user_
id: user_id)

 end

 end

end

app/controllers/articles_controller.rb
 def show

 @clicks = @article.track_clicks_per_article

 url = request.fullpath.to_s

 ip = request.remote_ip

 if user_signed_in? && (current_user.id != @article.user_id)

 Click.record(url, ip, @article.id, current_user.id.to_s)

 elsif !user_signed_in?

 Click.record(url, ip, country, city, @article.id,
"anonymous")

 end

 end

5.	 Now, we will have the click recorded every time a user clicks on the show method.
For an anonymous user, the query looks like the following code:

 MOPED: 127.0.0.1:27017 INSERT
database=project6_development collection=clicks
documents=[{"_id"=>BSON::ObjectId
('528243f37277750cd90a0000'), "url"=>"/articles/
the-body-of-lies", "ip"=>"127.0.0.1",
"article_id"=>BSON::ObjectId('528011687277750d4a000000'),
"user_id"=>"anonymous"}] flags=[]

Project 6

195

6.	 For a logged-in user, the query looks like the following code:

 MOPED: 127.0.0.1:27017 INSERT
database=project6_development collection=clicks
documents=[{"_id"=>BSON::ObjectId
('5283648d7277750b6a050000'), "url"=>"
/articles/the-body-of-lies", "ip"=>"127.0.0.1",
"article_id"=>BSON::ObjectId('528011687277750d4a000000'),
"user_id"=>"527ce7927277750d00000000"}] flags=[]

Objective complete - mini debriefing
In the preceding task, we created a simple click-tracking mechanism that executes and saves
every time the show link is clicked in the frontend. We saved the ID of the article along with
our click in order to see which article gets how many clicks:

@url = request.fullpath.to_s
 @ip = request.remote_ip

We created a model concern to create a new click record every time the user clicks on the
show action. In our previous project (Project 4, Creating a Restaurant Menu Builder), we
created a controller concern for the subdomain. Here, we created a reusable class method
that we can call on different models if we have to create a scorecard with those attributes. In
order to include the class method in our model, we just included the module in our model
and called the class method on our Click model. We also took measures to track the ID of
the user if they are logged in. If the user is anonymous, we will know that the traffic is from
a source where the user is not logged in. This will give us wholesome statistics on the clicks
received on the article.

Creating a visit-tracking mechanism
In order to track visits and impressions, we will take a slightly different approach. We will
use a gem called impressionist to track the page impressions. At the end of the task, we
will also debate whether the solution is scalable or not. The difference between impressions
and clicks lies in how the article is accessed. So, for example, if a user writes an article that
is linked in another website and someone clicks on the link, this would count as a click.
However, if a link is bookmarked and the user tries to access it from the bookmarks, it
would count as an impression. Hence, we have tied both impressions and clicks to the
show method.

Creating an Analytics Dashboard using Rails and Mongoid

196

Engage thrusters
We will now create view tracking for our articles:

1.	 We will first add the impressionist gem to our Gemfile and run bundle. Even
here, we will keep our gem to master head so that we grab the latest version that is
compatible with Rails 4 and mongoid 4:

gem 'impressionist', github: 'charlotte-
ruby/impressionist'

2.	 We will now generate the impressionist initializer:

:~/authorly$ rails g impressionist --orm mongoid
 invoke mongoid
 create config/initializers/impression.rb

3.	 The is_impressionable method in the article model will allow
impressionist to access the article mode:

app/models/article.rb
class Article
 include Mongoid::Document
 include Mongoid::Slug

 field :title, type: String
 field :body, type: String
 field :_slugs, type: Array, default: []
 field :user_id, type: String

 is_impressionable

 slug :title, :history => true
 belongs_to :user
 has_many :clicks
end

4.	 After associating with the model, we will have to pass the article object to
impressionist:

app/controllers/articles_controller.rb
 def show
 impressionist(@article,message:"A User has viewed your
article")

 url = request.fullpath.to_s

 ip = request.remote_ip

 if user_signed_in? && (current_user.id != @article.user_id)

 Click.record(url, ip, @article.id, current_user.id.to_s)

 elsif !user_signed_in?

Project 6

197

 Click.record(url, ip, @article.id, "anonymous")

 end

 end

5.	 Also, we can set a filter to run impressionist for specific actions:

app/controllers/articles_controller.rb
class ArticlesController < ApplicationController
 before_action :set_article, only: [:show, :edit, :update,
:destroy]
 before_filter :authenticate_user!, except: [:show, :index]
 impressionist :actions=>[:show]
end

6.	 We are now ready to track the page views. We, however, do not have a collection for
the impressions yet. So, we will generate a model for impression:

authorly$ rails g model page_impression
impressionable_type:string impressionable_id:string
user_id:string controller_name:string action_name:string
view_name:string request_hash:string ip_address:string
session_hash:string message:string referrer:string

7.	 The impression model should also include the timestamps with it:

app/models/page_impression.rb
class PageImpression
 include Mongoid::Document
 include Mongoid::Timestamps::Created

 field :impressionable_type, :type => String
 field :impressionable_id, :type => String
 field :user_id, :type => String
 field :controller_name, :type => String
 field :action_name, :type => String
 field :view_name, :type => String
 field :request_hash, :type => String
 field :ip_address, :type => String
 field :session_hash, :type => String
 field :message, :type => String
 field :referrer, :type => String
end

8.	 We just need to ensure that the model is being saved properly. So, we will navigate
to the show method to see the queries:

Processing by ArticlesController#show as HTML
 Parameters: {"id"=>"the-body-of-lies"}
 MOPED: 127.0.0.1:27017 QUERY database=project6_
development collection=articles selector={"_slugs"=>{"$in"=>["the-
body-of-lies"]}} flags=[] limit=1 skip=0 batch_size=nil fields=nil

Creating an Analytics Dashboard using Rails and Mongoid

198

runtime: 0.8295ms
 MOPED: 127.0.0.1:27017 QUERY database=project6_
development collection=users selector={"$query"=>{"_id"=>BSON:
:ObjectId('527ce7927277750d00000000')}, "$orderby"=>{:_id=>1}}
flags=[] limit=-1 skip=0 batch_size=nil fields=nil runtime:
0.5881ms
 MOPED: 127.0.0.1:27017 INSERT database=project6_
development collection=impressions documents=[{"_id"=>BSON::Object
Id('5283648d7277750b6a030000'), "impressionable_type"=>"Article",
"impressionable_id"=>"the-body-of-lies", "controller_
name"=>"articles", "action_name"=>"show", "user_id"=>BSON::Object
Id('527ce7927277750d00000000'), "request_hash"=>"871961ef69818fd7
f9e0be0f510f583fd387144ef4e919ed132982144e930f8a", "session_hash"
=>"457126f191ff2b6da6d92c9f6ceaa62f", "ip_address"=>"127.0.0.1",
"referrer"=>"http://localhost:3000/articles", "updated_at"=>2013-
11-13 11:37:49 UTC, "created_at"=>2013-11-13 11:37:49 UTC}]
flags=[]
 COMMAND database=project6_
development command={:getlasterror=>1, :w=>1} runtime: 0.7574ms

9.	 In order to display the impressions, we just need to make a call to the
impressionist_count method on the article object:

app/views/articles/show.html.erb
<%= "#{@article.impressionist_count} views so far!" %>

Objective complete – mini debriefing
This task included setting up the impressionist gem and associating it with the model
and object. We generated an initializer to associate it with mongoid. In our controller, we
added the impressionist method to record the impressions. We also added a page_
impression model in order to save the impression-related data. The impressionist
method, however, is not the best and the most scalable solution. The reason for this is every
time the method counts, it starts counting from the beginning. With a large recordset of 8
to 10 million records to count, it would take more than 10 seconds just to fetch the count.
A good way to save and count from our previous saved values is to use the ensureIndex
option in MongoDB:

db.collection.ensureIndex

In order to add this to our model, we used the index method in mongoid. This method fires
ensureIndex in MongoDB:

 index ({impressionable_type: 1, impressionable_id: 1 ,user_id:
1, controller_name: 1, action_name: 1, view_name: 1, request_hash:
1, ip_address: 1, session_hash: 1, referrer: 1, message: 1}, {
name: "page_impression_index" })

Project 6

199

If there are multiple fields to index, make sure to add a name to the index. This will keep
the last counted value indexed and run the impressionist query after the value is
indexed. This will also bring up the performance and decrease the count query time
to less than 1 second.

Also, the default model generated does not have dates in it by default. In order to add
created_at and updated_at, we added the following code to our model:

 include Mongoid::Timestamps::Created

The following screenshot shows how the impressions will be displayed on the show page:

Writing map-reduce and aggregation
to fetch and analyze data

The data is in the database now. However, we still need to read and analyze it. We will query
our database in different ways and get the data based on this. We will track the total number
of clicks on an article, the total number of impressions on an article, and the total number of
unique impressions per day. We will use MongoDB queries and the map-reduce function to
achieve this.

Creating an Analytics Dashboard using Rails and Mongoid

200

The map-reduce function is a combination of two procedures:

ff Map: This is a procedure that filters and sorts the records

ff Reduce: This is an operation that performs the remaining function, for example,
counting

Clicks and impressions increase really quickly in huge volumes, and normal queries can be
too slow; the performance could take a beating because of this. In case we need to collect
our data in different ways, we can use the map-reduce function.

Engage thrusters
Let us first work with getting the data for the number of clicks and then for the number of
impressions in this task:

1.	 In order to get the number of clicks, we will get all the clicks associated with a
particular article and count them. This is an instance method:

app/models/article.rb

 def track_clicks_per_article
 clicks = Click.where(article_id: "#{self.id}")
 click_count = clicks.count

 end

2.	 For a logged-in user, we can display the click count on the article's show page;
however, this will be displayed only to the logged-in user. The following code
describes how we do this inside the show method:

app/controllers/articles_controller.rb

def show

 impressionist(@article,message:"A User has viewed your
article")

 url = request.fullpath.to_s

 ip = request.remote_ip

 if user_signed_in? && (current_user.id != @article.user_id)

 @clicks = @article.track_clicks_per_article
 Click.record(url, ip, @article.id, current_user.id.to_s)

 elsif !user_signed_in?

Project 6

201

 Click.record(url, ip, @article.id, "anonymous")

 end

 end

3.	 In show.html.erb, @clicks displays the number of clicks:

<% if user_signed_in? %><%= @clicks %> clicks so far!<% end %>

4.	 In order to count the daily clicks, we will use the map-reduce function of
MongoDB. We will first write the map function. The this.created_at and
this.article_id methods will basically select these fields from the click
collection. They will also initiate a count:

app/models/click.rb

def self.clicks_per_article_per_day
 map = %Q{
 function() {
 emit({created_at: this.created_at, article_id: this.article_
id}, {count: 1});
 }
 }
end

5.	 Our reduce function will count the number of times article_id has occurred on
a created_at date. This will generate an array with a daily count of clicks:

app/models/click.rb

reduce = %Q{
 function(key, values) {
 var count = 0;
 values.forEach(function(v) {
 count += v['count'];
 });
 return {count: count};
 }
 }

6.	 Finally, we will run map-reduce and return the value in a variable form:

app/models/click.rb

def self.clicks_per_article_per_day
 map = %Q{
 function() {

Creating an Analytics Dashboard using Rails and Mongoid

202

 emit({created_at: this.created_at, article_id: this.article_
id}, {count: 1});
 }
 }

 reduce = %Q{
 function(key, values) {
 var count = 0;
 values.forEach(function(v) {
 count += v['count'];
 });
 return {count: count};
 }
 }
 click_count = self.map_reduce(map, reduce).out(inline: true)
 return click_count
 end

7.	 We will fire up the console now and try to run map-reduce:

1.9.3-p327 :004 > @daily_clicks = Click.clicks_per_article_per_
day
 => #<Mongoid::Contextual::MapReduce
 selector: {}
 class: Click
 map:
 function() {
 emit({created_at: this.created_at, article_id: this.article_
id}, {count: 1});
 }
 reduce:
 function(key, values) {
 var count = 0;
 values.forEach(function(v) {
 count += v['count'];
 });
 return {count: count};
 }
 finalize:
 out: {:inline=>true}>

8.	 Since daily_clicks is an array, we will use the each method to loop over it and
print the clicks on our command line:

 MOPED: 127.0.0.1:27017 COMMAND database=project6_
development command={:mapreduce=>"clicks", :map=>"\n function()
{\n emit({created_at: this.created_at, article_id: this.

Project 6

203

article_id}, {count: 1}); \n } \n ", :reduce=>"\n
function(key, values) {\n var count = 0;\n values.
forEach(function(v) {\n count += v['count'];\n
});\n return {count: count};\n }\n ", :query=>{},
:out=>{:inline=>true}} runtime: 112.6887ms
{"_id"=>{"created_at"=>#<BSON::Undefined:0x0000000399fd88>,
"article_id"=>BSON::ObjectId('528011687277750d4a000000')},
"value"=>{"count"=>22.0}}
{"_id"=>{"created_at"=>2013-11-13 15:18:00 UTC, "article_id"=>BSON
::ObjectId('528011687277750d4a000000')}, "value"=>{"count"=>1.0}}
{"_id"=>{"created_at"=>2013-11-13 15:18:00 UTC, "article_id"=>BSON
::ObjectId('528011687277750d4a000000')}, "value"=>{"count"=>1.0}}
{"_id"=>{"created_at"=>2013-11-13 23:14:43 UTC, "article_id"=>BSON
::ObjectId('528011687277750d4a000000')}, "value"=>{"count"=>1.0}}
{"_id"=>{"created_at"=>2013-11-13 23:56:30 UTC, "article_id"=>BSON
::ObjectId('528011687277750d4a000000')}, "value"=>{"count"=>1.0}}
{"_id"=>{"created_at"=>2013-11-13 23:56:30 UTC, "article_id"=>BSON
::ObjectId('528011687277750d4a000000')}, "value"=>{"count"=>1.0}}

9.	 In order to track the daily impressions, we will essentially use the same functions.
The only difference here is that we will define it in the page_impression model,
as we have already included the impressionist models in it:

app/models/page_impression.rb

def self.unique_impressions_per_day

 map = %Q{

 function() {

 emit(this['_id']['created_at'], {count: 1});

 }

 }

 reduce = %Q{

 function(key, values) {

 var count = 0;

 values.forEach(function(v) {

 count += v['count'];

 });

 return {count: count};

 }

Creating an Analytics Dashboard using Rails and Mongoid

204

 }

 unique_impressions = self.map_reduce(map, reduce).out(inline:
true)

 return unique_impressions

 end

Objective complete – mini debriefing
In this task, we started by counting the number of clicks on a particular article. We created a
map-reduce function to count the number of unique impressions created on a daily basis.
The first part of the map-reduce function is map. It is basically a function that creates an
association between a key and a value and emits the key-value pair subsequently:

map = %Q{
 function() {
 emit({created_at: this.created_at, article_id: this.article_id},
{count: 1});
 }
 }

The map function shown in the preceding example emits the key-value pairs and its value
using created_at and similar other pairs. The this attribute in this.created refers to
the document on which map-reduce is supposed to run; in this case, PageImpression.
So, we see that the this function is exactly the same as the self function. After that, the
reduce function basically reads the key and value and counts the occurrences of the key-
value pairs to return the count. We then initialize the count at zero (0) and increment it as
and when we hit the identical values:

 reduce = %Q{
 function(key, values) {
 var count = 0;
 values.forEach(function(v) {
 count += v['count'];
 });
 return {count: count};
 }
 }

The map-reduce function is a practice used very specifically for extremely large datasets.
For relatively smaller datasets, it might be an overkill. Also, map-reduce generates an array
of objects as a result of this. We have to loop over this array and extract the value of the click
attributes from it. We also use map-reduce to find the unique impressions per day. Some of
the other use cases include a data clustering, distributed data processing, and search based
on specific patters in the use cases.

Project 6

205

The following screenshot displays the count of both clicks and impressions on the article's
show page:

Creating a dashboard to display
clicks and impression values

Until now, we have created various ways in the previous tasks to record, calculate, and
analyze the data. As a result, we now have the data and also the count of clicks as well
as impressions, and we need a dashboard to display these values. In this task, we will create
a dashboard for this purpose. We have to create a dashboard controller and an
admin namespace similar to the one we created in our previous project.

Engage thrusters
In the following steps, we will add an admin dashboard to the application:

1.	 In dashboard_controller, we will call all the articles:

app/controllers/admin/dashboard_controller.rb
class Admin::DashboardController < ApplicationController
 before_filter :authenticate_user!

 def index
 @articles = Article.all
 end
end

Creating an Analytics Dashboard using Rails and Mongoid

206

2.	 We will now loop over these articles and call on the methods to calculate clicks on
each article:

app/views/admin/dashboard/index.html.erb
<h3>Clicks and Impressions Per article</h3>
<table class="table"><thead><tr><th>Article</th><th>Cicks</th></
tr></thead>

<tbody><% @articles.each do |article| %><tr><td><%=link_to
article.title, article %></td><td><%= article.track_clicks_per_
article %></td></tr><% end %></tbody>
</table>

3.	 We will also count the number of impressions and display them in the table:

app/views/admin/dashboard/index.html.erb
<h3>Clicks and Impressions Per article</h3>
<table class="table"><thead><tr><th>Article</th><th>Cicks</
th><th>Impressions</th></tr></thead>

<tbody><% @articles.each do |article| %><tr><td><%=link_to
article.title, article %></td><td><%= article.track_clicks_per_
article %></td><td><%= article.impressionist_count %></td></tr><%
end %></tbody>
</table>

Objective complete – mini debriefing
We have created a table to display all the articles and the corresponding values of clicks and
impressions on them. This is one part of the reporting structure that we're going to provide
to the content creators. In the next tasks, we're going to plot our data and make better
looking reports for our system.

Project 6

207

Creating a line graph of the daily
click activity

For content creators, "clicks per day" is a very important metric. They love to see the
interaction and engagement happening on a day-to-day basis. We can plot the click data for
the authors of the articles using the morris.js charts where morris.js is a library for
plotting the data as line charts, bar charts, and donut charts. This is the reporting part of
our analytics dashboard.

Engage thrusters
We will now plot the data that we have collected and analyzed in our previous tasks:

1.	 The morris.js library comes packaged as a gem. It also depends on an SVG that
renders a canvas library called raphael js.

Gemfile
gem 'morrisjs-rails'
gem 'raphael-rails'

2.	 We will add this to the Gemfile and run bundle.

3.	 We will then define the JavaScript in our application.js file. We have to ensure
that these lines are placed before require turbolinks and require_tree:

app/assets/javascripts/application.js
//= require raphael
//= require morris
//= require turbolinks
//= require_tree .

4.	 Also, we will add the morris.js style sheet to our asset pipeline:

app/assets/stylesheets/application.css
 *= require morris
 *= require_tree .

5.	 In order to feed data to the JavaScript charts, we will have to prepare our data in the
JSON format. To do this, first call the clicks_per_article_per_day method. As
you can see, we have created a new method called clicks for this:

app/controllers/admin/dashboard_controller.rb
 def clicks
 @daily_clicks = Click.clicks_per_article_per_day
 end

Creating an Analytics Dashboard using Rails and Mongoid

208

6.	 We need the count of clicks and the date in order to plot this graph. Hence, we will
get the results of the clicks_per_article_per_day method and generate a
json hash for morris.js to read. For this, we will first create a model class
method that loops over the data to generate a hash:

app/models/click.rb
def self.get_click_data

 daily_clicks = self.clicks_per_article_per_day

 click_data = []

 daily_clicks.each do |d|

 id = d["_id"]

 daily_clicks = d["value"]

 date = d["_id"]["created_at"]

 clicks = daily_clicks["count"]

 click_data << {:date => date.to_i, :clicks => clicks.to_i}

 end

 return click_data

 end

app/controllers/admin/dashboard_controller.rb
 def clicks

 @click_data= Click.get_click_data

 respond_to do |format|

 format.json { render json: @click_data }

 end

 end

7.	 Despite the availability of data in JSON, we need a way to access it. So, we will write
a route to access the data using the this method.

config/routes.rb
 namespace :admin do
 get '', to: 'dashboard#index', as: '/'
 get "dashboard/clicks"
 end

8.	 In our app/views/admin/dashboard/index.html.erb file, we will initiate the
script for clicks. The Morris.Line function is a function to create a line graph. We
will keep the date as the key for the x axis and clicks as the key for y axis:

app/views/admin/dashboard/index.html.erb
<script>
var url = "/admin/dashboard/clicks.json"
var click_json= $.getJSON(url, null, function(data) {

Project 6

209

var get_click_data = click_json.responseText;

new Morris.Line({
 element: 'click_chart',
 data: $.parseJSON((get_click_data)),
 xkey: 'date',
 ykeys: ['clicks'],
 labels: ['Clicks']
});
done();

});
</script>

9.	 Lastly, we will render this in a div tag. Make sure <div id> and the element name
in the Morris.Line definition are the same:

app/views/admin/dashboard/index.html.erb
<h3>Clicks Per Day</h3>
<div id="click_chart" style="height: 250px;"></div>

Objective complete – mini debriefing
The previous task included the creation of JSON from the data we already have, and
morris.js accepts this data in a particular format. We had to extract the data from our
map-reduce function and format it according to the format accepted by morris.js.
Please see the following screenshot for the acceptable format:

You will notice that date is in the integer format because or to get the date, we did the
following in our map function:

 map = %Q{
 function() {

Creating an Analytics Dashboard using Rails and Mongoid

210

 emit({created_at: this.created_at.getDate()}, {count: 1});
 }
 }

The getDate() function will return the date in the float format. In order to render it on the
frontend, we will convert the float datatype to the integer datatype:

@click_data << {:date => date.to_i, :clicks => clicks.to_i}

This method generates json, which can be directly read by visiting the /admin/
dashboard/clicks.json URL. To display the clicks, we made a call on the clicks.json
data by directly calling this URL:

var url = "/admin/dashboard/clicks.json"

To extract the data from json, we will use the function(data) jQuery method and store
the data text in get_click_data:

var click_json= $.getJSON(url, null, function(data) {
var get_click_data = click_json.responseText;
click_json.responseText;

Finally, we passed the data to the Morris.Line method to generate the line graph. The
morris.js line graph accepts xkey and ykeys as axes and labels to represent data
at each data point. You can set colors, customize the text, set the line width, and set data
formats and units for each datapoint:

new Morris.Line({
 element: 'click_chart',
 data: $.parseJSON((get_click_data)),
 xkey: 'date',
 ykeys: ['clicks'],
 labels: ['Clicks']
});
});
});
Insert

Creating a bar graph of the daily visit
activity

In the previous task, we already learned how to display the daily click data on a line graph.
In this task, we will use bar charts to display the daily visit activity of the impression data.
We will also create json from the impression data we have and feed it to the morris.js
method to generate our graph.

Project 6

211

Engage thrusters
We will now use the following steps to create a bar chart of the impression data:

1.	 In dashboard_controller, we will create a method called impressions to
construct the impressions JSON:

app/controllers/admin/dashboard_controller.rb
 def impressions
 @daily_impressions = Article.impressions_per_article_per_day
 end

2.	 In the article model, we will edit our map method and change the format of
created_at to getDate():

app/models/article.rb
def self.impressions_per_article_per_day
 map = %Q{
 function() {
 emit({created_at: this.created_at.getDate()}, {count: 1});
 }
 }
end

3.	 In the impressions method, we will construct JSON and render it:

app/controllers/admin/dashboard_controller.rb
def impressions
 daily_impressions = Article.impressions_per_article_per_day
 @impressions_data = []

 daily_impressions.each do |d|
 id = d["_id"]
 daily_impressions = d["value"]
 date = d["id"]["created_at"]
 impressions = daily_impressions["count"]
 @impressions_data << {:date => date.to_i, :impressions =>
impressions.to_i}
 end
 respond_to do |format| format.json { render json: @
impressions_data }
 end
 end

4.	 We will tie this to a route in order to generate the URL:

config/routes.rb
 namespace :admin do
 get '', to: 'dashboard#index', as: '/'

Creating an Analytics Dashboard using Rails and Mongoid

212

 get "dashboard/clicks"
 get "dashboard/impressions"
 end

5.	 The function to generate a bar graph is quite similar to the one for a line graph. The
axis key definitions are also the same:

app/views/admin/dashboard/index.html.erb
<script>
var url = "/admin/dashboard/impressions.json"
var json=json= $.getJSON(url, null, function(data) {
var get_impression_data = json.responseText;json.responseText;

new Morris.Bar({
 element: 'impressions_chart',
 data: $.parseJSON((get_impression_data)),
 xkey: 'date',
 ykeys: ['impressions'],
 labels: ['Impressions']
});
});
</script>

6.	 With the JavaScript method ready to create a bar chart, we just need to render
our graph:

<h3>Impressions Per Day</h3>
<div id="impressions_chart" style="height: 250px;"></div>

Objective complete – mini debriefing
In this task, we used a bar chart to represent the impression data that we collected in our
previous tasks. We used the same method as clicks to generate JSON. We used Morris.
Bar to generate the bar graph. We used xkey and ykeys to represent the x and y axes. We
used labels to represent data against each bar. Some of the other options provided in the
morris.js bar graph are as follows:

ff You can enable or disable grid lines by setting the grid option to true or false

ff You can enable or disable the display of axes by setting the axes option to true
or false

ff To manipulate the text properties of the grid you have gridTextColor,
gridTextSize, and gridTextWeight

ff You have a stacked option—a Boolean value—to allow bars to be vertically stacked

ff You have a BarColors option, which is an array to set the colors of the bars

Project 6

213

ff You have a HideHower option to show or hide the data on Hower

ff You also have a HowerCallback option that allows additional functions to generate
custom howers

The following screenshot shows a bar graph:

Creating a demographic-based donut
chart

We have already plotted our click and impression data as both a line and bar graph.
However, we also have to track the demographics of our user visits. One of the parameters
for demographics is the location of the visitor. As a part of our requests, we can easily track
the country and city of the user based on the user's IP address. We will add these methods
for our tracking mechanisms and generate a donut chart to visualize our visitor's locations.

Prepare for lift off
In order to proceed with this section, we will be using a Geocoder to track the location of the
visitor. A Geocoder is a very comprehensive library to not only locate the user and get the
coordinates, but also run the Geospatial queries; for example, to find nearby users. For this,
we will add the geocoder gem to Gemfile and run bundle install:

Gemfile
gem 'geocoder'

Creating an Analytics Dashboard using Rails and Mongoid

214

Engage thrusters
The following steps include the methods to generate and represent the demographic data of
our visitors:

1.	 In order to get the demographics, we need to get the country data. In order to
record the country data, we will add two fields to our click collection:

app/models/click.rb
 field :country, type: String

 field :city, type:String

2.	 We will add request.location.country and request.location.city to our
show method inside articles_controller.rb. We will also save these as part
of our click objects:

app/controllers/articles_controller.rb
 def show
 @country = request.location.country
 @city = request.location.city

 click.country = @country
 click.city = @city
 end

3.	 So, our final show method will look like the following code:

app/controllers/articles_controller.rb
def show
 @clicks = @article.track_clicks_per_article
 impressionist(@article,message:"A User has viewed your
article")
 @url = request.fullpath.to_s
 @ip = request.remote_ip
 @country = request.location.country
 @city = request.location.city

 url = request.fullpath.to_s

 ip = request.remote_ip

 country = request.location.country

 city = request.location.city

 if user_signed_in? && (current_user.id != @article.user_id)

 Click.record(url, ip, country, city, @article.id, current_
user.id.to_s)

 elsif !user_signed_in?

Project 6

215

 Click.record(url, ip, country, city, @article.id,
"anonymous")

 end

 end

4.	 Also, we will modify our record_data concern to save these values to the
database:

app/models/concerns/record_data.rb

module RecordData

 extend ActiveSupport::Concern

 included do

 def self.record(url, ip, country, city, article_id, user_id)

 self.create!(url: url, ip: ip, country: country, article_id:
article_id, user_id: user_id)

 end

 end

end

5.	 Once we have the mechanism set up to record the data, we will write a map-
reduce function to count the number of visits from a particular country:

app/models/click.rb
 def self.clicks_per_country
 map = %Q{
 function() {
 emit({country: this.country}, {count: 1});
 }
 }

 reduce = %Q{
 function(key, values) {
 var count = 0;
 values.forEach(function(v) {
 count += v['count'];
 });
 return {count: count};
 }
 }
 unique_clicks = self.map_reduce(map, reduce).out(inline: true)
 return unique_clicks
 end

Creating an Analytics Dashboard using Rails and Mongoid

216

6.	 In dashboard_controller, we will add a demographics method to generate JSON
for our recorded data:

 def demographics
 demographics = Click.clicks_per_country
 @impressions_data = []

 demographics.each do |d|
 id = d["_id"]
 demographics = d["value"]
 country = id["country"]
 visits = demographics["count"]
 @impressions_data << {:country => country, :visits =>
visits.to_i}

 end
 respond_to do |format| format.json { render json: @
impressions_data }
 end
 end

7.	 We will add a route for this to generate the URL:

config/routes.rb
 namespace :admin do
 get '', to: 'dashboard#index', as: '/'
 get "dashboard/clicks"
 get "dashboard/impressions"
 get "dashboard/demographics"
 end

8.	 We will initialize a donut chart to display this data:

app/views/admin/dashboard/index.html.erb
var url = "/admin/dashboard/demographics.json"
var demographic_json=demographic_json= $.getJSON(url, null,
function(data) {
var get_demographic_data = demographic_json.responseText;

Morris.Donut({
 element: 'demographic',
 data: get_demographic_data
});

9.	 Lastly, display the chart in div:

app/views/admin/dashboard/index.html.erb
<h3>Demographics</h3>
<div id="demographic" style="height: 250px;"></div>

Project 6

217

Objective complete – mini debriefing
We first used the request.location.country and request.location.city methods
to look for the country and city based on the IP address of the visitor. These methods were
available as soon as we bundled the geocoder gem in our applications. We wrote a map-
reduce function to count the number of visits from a particular country. The map function
aggregated all the impressions based on the country and the reduce function in this case
counted the size of each aggregation.

A donut chart is very similar to a pie chart. In our case, it represents the break up of visits
from a particular country. We created a method called demographic in our dashboard
controller. We generated a json hash that included demographics that were consumed
by the morris.js donut chart method. Donut charts do not have axes. The data here is
represented as a label and a value. It also accepts the colors and formatter parameters.
Colors contain the HTML color code for the donut segment.

The following is how a donut chart looks when generated using morris.js:

Creating an Analytics Dashboard using Rails and Mongoid

218

Mission accomplished
We have created a fully functional analytics dashboard in this project. As mentioned earlier,
the analytics dashboard has three main parts:

ff Recording: We created a mechanism to track clicks, visits or impressions, and
demographics of the user

ff Analyzing: We wrote various queries and map-reduce methods to count visits,
clicks, unique visits, and visits from each country

ff Reporting: We created tables and charts of different types in order to represent and
visualize the data we recorded and analyzed

Hotshot challenges
In an analytics dashboard, the possibilities are endless as to how you can imagine the data.
We can improve our dashboard with some exercises:

ff Write map-reduce to make a leaderboard for articles and display the top 10 articles

ff Create localized slugs for our articles

ff Use ensureindex to create an index and improve the performance of the
impressionist query

ff Display the article names on the line and bar charts

ff Create an area chart to compare the activities of the top three articles by a
particular user

Project 7
Creating an API

Mashup – Twitter and
Google Maps

Social media is an important tool these days, and with the developer APIs available for most
services such as Facebook, Twitter, and Google, the possibilities are endless. There are so
many applications of these APIs, especially when you do not want a user to create a new
login and when you want to give your application a social twist by sharing the data from
multiple social networks inside your application.

Mission briefing
In this project, we will create an application that utilizes Twitter and Google Maps API. We
will use Twitter OAuth2 to authenticate the user using Twitter, and we will use Google Maps
API v3 to display the friends of the user on a Google map. We will visualize the location of
the user's Twitter friends using this application. As shown in the following screenshot, we
will see our friends with their corresponding locations on the map:

Creating an API Mashup – Twitter and Google Maps

220

Why is it awesome?
APIs are an important part of many web applications nowadays. It not only builds a loyal
developer community, thereby backing the web application, but also improves the user
engagement with the application. Facebook, Twitter, and Google APIs are the most commonly
used because of their extremely high user base, clean API methods, and a huge developer
community to back them up. These APIs are also easy to include in the application through
community-contributed interfaces. We will look at some of them while building this project.

At the end of this project, we will be able to mashup Twitter and Google map APIs and make
a fun little application.

Your Hotshot objectives
While building this application, we will have to go through the following tasks:

ff Creating an application login with Twitter

ff Calling all Twitter friends

ff Getting latitude and longitude details of the user's location

ff Passing Twitter data to the Google Maps API using Rails

ff Displaying friends on the map using the Google API

ff Creating points of interest—filter users based on their location

Mission checklist
We need the following installed on the system, and we also need to sign up for the API keys
before we start with our mission:

ff Ruby 1.9.3 / Ruby 2.0.0

ff Rails 4.0.0

ff MongoDB

ff Bootstrap 3.0

ff Sass

ff Devise

ff Twitter API keys

ff Google Maps API keys

ff Git

ff A tool for mock-ups

ff jQuery

Project 7

221

Creating an application login with
Twitter

In the first task, we will create a login using Twitter and allow the users to authenticate using
this. We will use the omniauth gem and add some custom methods in order to handle the
session. OmniAuth is a solution for authentication that uses rack via multiple third-party OAuth
providers such as Google, Twitter, Facebook, and GitHub. The omniauth gem (https://
github.com/intridea/omniauth) provides the rack-based methods of authentication
and sessions. Individual access methods for each provider is called a strategy. Each strategy
is extracted into different gems. So, if we want to implement Twitter and Facebook, we need
three gems: omniauth, omniauth-twitter, and omniauth-facebook.

Prepare for lift off
Before we start the work on this project, we will have to sign up for the API keys on Twitter
and Google. Log in to Twitter as a developer and create an application by navigating to
https://dev.twitter.com/apps/new. The page will look like the following screenshot:

Creating an API Mashup – Twitter and Google Maps

222

Once we submit the form after filling in the details, it will generate an application token and
an application secret for us. As a part of our application details, we need to fill a field called
Callback URL. Callback is defined as the URL where Twitter sends back the session details
after you log in. By design, Twitter API does not support localhost, so in order to work with
the application locally, we will define the Callback URL as http://lvh.me:3000. We
have seen the various ways in which this dummy domain is used in Project 4, Creating a
Restaurant Menu Builder.

Engage thrusters
We will take the first steps in this task to set up the base of the application:

1.	 We will install omniauth and omniauth-twitter, the Twitter strategy gem from
the master branch, by adding it to the Gemfile and run bundle install, as
shown in the following code:

Gemfile
gem 'omniauth'
gem 'omniauth-twitter', :github => 'arunagw/omniauth-twitter'
tweetmap$ bundle install

Project 7

223

2.	 We will create a file called secrets.yml inside the config folder. This file should
contain secret_key_base and all the secret keys to be used in the app. We will
explore this feature in detail in our debriefing section. Make sure you generate a
different set of keys for development and production:

config/secrets.yml
development:
secret_key_base: APPLICATION_SECRET TOKEN
twitter_consumer_key: CONSUMER_KEY
twitter_consumer_secret: CONSUMER_SECRET

test:
 secret_key_base: APPLICATION_SECRET
_TOKEN
 twitter_consumer_key: CONSUMER_KEY
 twitter_consumer_secret: CONSUMER_SECRET

production:
 secret_key_base: APPLICATION_SECRET
_TOKEN
 twitter_consumer_key: CONSUMER_KEY
 twitter_consumer_secret: CONSUMER_SECRET

config/initializers/omniauth.rb
Rails.application.config.middleware.use OmniAuth::Builder do
 provider :twitter, Rails.application.secrets.twitter_consumer_
key, Rails.application.secrets.twitter_consumer_secret
end

3.	 We will generate a model for the user. This model will hold the values for the
provider (Twitter), such as the name of the user, the screen name, or the Twitter
handle, oauth_token, expires_at (expiration time of oauth_token), and
location of the user:

tweetmap$rails g model user provider:string uid:string name:string
oauth_token:string oauth_secret:string oauth_expires_at:datetime
avatar:string address:string

4.	 Our migration looks like the following code:

20131123144240_create_users.rb
class CreateUsers < ActiveRecord::Migration
 def change
 create_table :users do |t|
 t.string :provider
 t.string :uid
 t.string :name
 t.string :oauth_token

Creating an API Mashup – Twitter and Google Maps

224

 t.string :oauth_secret
 t.string :avatar
 t.string :address
 t.datetime :oauth_expires_at
 t.timestamps
 end
 end
end

5.	 In our user model, we will access certain values from the Twitter API's response
hash and store it in the user table we just created:

app/models/user.rb
class User < ActiveRecord::Base
 def self.create_with_omniauth(auth)
 create! do |user|
 user.provider = auth["provider"]
 user.uid = auth["uid"]
 user.name = auth["info"]["name"] || ""
 user.address = auth["info"]["location"] || ""
 user.avatar = auth["info"]["image"] || ""
 user.oauth_token = auth["credentials"]["token"] || ""
 user.oauth_secret = auth["credentials"]["secret"] || ""
 end
 end
end

6.	 After adding it to the user model, we need a mechanism to get these values. This is
possible only when we are able to start a session with Twitter.

7.	 To set up and handle a Twitter session, we will need a controller for sessions called
session_controller.rb. We will add methods to create and destroy the
session, that is, the signup, login, and sign out options:

tweetmap$ rails g controller sessions

app/controllers/session_controller.rb
class SessionsController < ApplicationController
 def create
 auth = request.env["omniauth.auth"]
 user = User.find_by_provider_and_uid(auth["provider"],
auth["uid"]) || User.create_with_omniauth(auth)
 session[:user_id] = user.id
 redirect_to root_url, :notice => Logged In Successfully"
 end
 def destroy
 session[:user_id] = nil

Project 7

225

 redirect_to root_url, :notice =>"Logged Out Successfully"
 end
end

8.	 For the controller to work, we need to add the routes in our routes.rb file:

config/routes.rb
match "/auth/:provider/callback" =>"sessions#create", via: [:get,
:post]
 match 'signout', to: 'sessions#destroy', as: 'signout', via:
[:get, :p

9.	 Now that we have created a session, we will have to add a method to access
the user object while in the session. We will do this by creating an object called
current_user in our application_controller.rb file:

app/controllers/application_controller.rb
 class ApplicationController < ActionController::Base
 # Prevent CSRF attacks by raising an exception.
 # For APIs, you may want to use :null_session instead.
 protect_from_forgery with: :exception
 helper_method :current_user
 private
 def current_user
 @current_user ||= User.find(session[:user_id]) if
session[:user_id]
 end
end

10.	 Also, we need to create a link to log in using Twitter. In our views/layouts/
application.html.erb file, we will add a Sign In with Twitter link:

app/views/layouts/application.html.erb
<div class="navbar-collapse collapse" id="navbar-main">
<ul class="nav navbar-nav navbar-right">
<% if current_user %>
Welcome, <%= current_user.name %><%= image_tag "#{current_
user.avatar}" %><%= link_to "Sign Out", signout_path %>
<% else %>
<%= link_to "Sign in with Twitter", "/auth/twitter" %>
<% end %>

</div>

Creating an API Mashup – Twitter and Google Maps

226

11.	 We will now click on Sign in with Twitter and see where it takes us. Once we do this,
we are presented with the Twitter login screen as shown in the following screenshot:

Objective complete – mini debriefing
This task dealt with the addition of OmniAuth to the application. OmniAuth supports all the
major services such as Facebook, Twitter, and Google. In the current version of OmniAuth,
that is 1.2.1, we need to add the omniauth gem and also the gem that supports the
respective provider strategy. In our case, the provider strategy uses Twitter. The same
user table can be used to implement Facebook and Google strategies too.

In Rails 4.1, there is a new way to handle all the API keys and secrets in a much more secure
way. When you generate a new project in Rails 4.1, Rails generates a secrets.yml file for
us. This is a replacement to secret_token.rb that was earlier generated inside config/
initializers. In Rails 3.2, the parameter was called secret_token too. In Rails 4, this
has been renamed to secret_key_base and moved to a completely different file. We
added lines for Twitter credentials in the secrets.yml file:

twitter_consumer_key
twitter_consumer_secret

Project 7

227

In order to access the value of the preceding field in the controller, we can directly call
Rails.application.secrets followed by the name of the field:

Rails.application.secrets.twitter_consumer_key

We then created a model for user and table to store all the callback values. Twitter or any
API that uses OAuth for authentication returns oauth_token and oauth_expires_at.
The token is a unique string that expires after a particular time interval of idleness. This is
to terminate the session when not in use and keep the token from being stolen. To save the
user to the database and create a session, we ran the create_with_omniauth method
with the auth hash as an argument:

def self.create_with_omniauth(auth)

We created a controller to handle sessions against provider's Twitter user ID. This method
works similar to the find_or_create_by method in Rails. It looks for the presence of the
user ID and provider. If found, it creates a session; otherwise, it asks for permission to allow
or reject the application from the user ID.

We then set the current_user object and persisted it in the session. We finally added
a method to handle the user object during the course of the session. In the following
screenshot, we can see the user logged in with the Twitter credentials:

Calling all Twitter friends
In order to get the details of a user from Twitter, we will use the interface to the Twitter
API, the twitter gem. In this task, we will pull some details of the user such as the Twitter
username, the Twitter handle, the location of the user, and the user's avatar. We will store
this information as a part of our user table. Friends are the users that are either followed
by the user or follow the user.

Engage thrusters
We will now go ahead and access the Twitter data using the Twitter API:

1.	 We will first add some more columns to our user table with the following code:

tweetmap$ rails g add_details_to_users address:string
avatar:string

Creating an API Mashup – Twitter and Google Maps

228

2.	 The migration file that is generated looks like the following code:

class AddDetailsToUsers < ActiveRecord::Migration
 def change
 add_column :users, :address, :string
 add_column :users, :avatar, :string
 end
end

3.	 We will save the link to avatar of the user and the user's location.

4.	 We will now add the twitter gem to the Gemfile and run bundle install,
as shown in the following code:

Gemfile
gem 'twitter', :github => 'sferik/twitter'

5.	 We will now generate a model to save the friends' data:

Tweetmap$ rails g model friend name:string screen_name:string
location:string latitude:float longitude:float user_id:integer

6.	 We will also edit the migration to add decimal precision in our latitude and
longitude fields:

class CreateFriends < ActiveRecord::Migration
 def change
 create_table :friends do |t|
 t.string :name
 t.string :screen_name
 t.string :location
 t.integer :user_id
 t.float :lat, {:precision=>10, :scale=>6}
 t.float :lng, {:precision=>10, :scale=>6}
 t.timestamps
 end
 end
end

7.	 We will first create a home controller with an index action:

tweetmap $ rails g controller home index

8.	 In our home controller, we will create a client for our Twitter API. This will require
the consumer key and consumer secret. Twitter supplies the OAuth token and
OAuth secret as a part of the session parameters. We also need to initiate this in
order to get the data related to the user's friends:

app/controllers/home_controller.rb
def fetch_friend_data

Project 7

229

 client = Twitter::REST::Client.new do |config|
 config.consumer_key = "Rd5s5s82FAiUD1KufnrnQ"
 config.consumer_secret =
"6q8LouMcq8qE1aZa5Mn5nONdwpzchrmXOIlqEYl9CU"
 config.access_token = "#{current_user.oauth_token}"
 config.access_token_secret = "#{current_user.oauth_secret}"
 end
end

9.	 We will make a call on the Twitter API to fetch the last 20 friends of the user who is
logged in:

app/controllers/home_controller.rb
@friends = client.friends.take(20)

10.	 We will create a class method in which the user ID, the array of the friend's location
coordinates, and the friend object will be passed as arguments. This method will
save the friends' data to the friends table in the database:

app/models/friend.rb
def self.get_friend_data(friend,location_value,user_id)
 self.where(
 name: friend.name,
 screen_name: friend.screen_name,
 location: friend.location,
 user_id: user_id).first_or_create
 end

11.	 We will loop through the friends' data, geocode their location, and get the
coordinates. We will save these values to the database:

app/controllers/home_controller.rb
 @friends.each do |f|
 location = f.location
 Friend.get_friend_data(f,current_user.id)
 end

12.	 As you can see, we are saving the values to the database using a method called
get_friend_data and passing some arguments to this. We need to define that
method in our model:

app/controllers/home_controller.rb
Friend.get_friend_data(f,current_user.id)

13.	 We will create a route and a link to run this from the home page, as shown in the
following code:

config/routes.rb
get "home/fetch_friend_data"

Creating an API Mashup – Twitter and Google Maps

230

app/views/home/index.html.erb
<div class="row">
<div class="col-lg-6">
<h2 id="type-blockquotes"><%= link_to "Fetch My Friends", home_
fetch_friend_data_path, :class=>"btn btn-primary" %></h2>
</div>
</div>

14.	 We will first log in and then click on the Fetch My Friends link to fetch our
friends' data.

15.	 In order to check whether the data is being saved correctly or not, we will query our
friends table:

1.9.3-p327 :001 > Friend.first

 Friend Load (0.5ms) SELECT `friends`.* FROM `friends` ORDER BY
`friends`.`id` ASC LIMIT 1

 => #<Friend id: 1, name: "John Doe", screen_name: "johndoe",
location: "Christchurch, New Zealand", user_id:user_id: 1,
created_at: "2013-12-07 09:12:01", updated_at: "2013-12-07
09:12:01">

Objective complete – mini debriefing
In the context of Twitter, friends are all the people a user follows. In the previous task,
we made a call on the Twitter API to fetch the data related to a user and saved it in the
database. We added the twitter gem to the application and initiated a client based on the
Twitter credentials we signed up for, in the beginning of the project. With these in place,
we will call the friends from the Twitter API. Twitter, as a part of its API, allows very limited
number of calls per hour (350) and a maximum of 180 in 15 minutes. Hence, we need to be
careful about how we make a call on the data. One way to call all the friends on Twitter is to
call all friends as shown in the following code:

client.friends.all

The drawback of the preceding method is that we might end up exhausting our limit,
quite possibly in one go, because it makes the number of requests equal to the number of
friends on Twitter. An alternative way is to call a limited number of friends, as shown in the
following code:

client.friends.take(20)

The preceding method issues only a single request to the Twitter API and fetches data of 20
friends in one go. This is a better way to do the same thing.

Project 7

231

Once the friends are fetched, they need to be saved to the friends table. As we are
making an API call, the API does not tell us that the records we are fetching are the same as
previous API calls. To save the friends to the database, we will use the find_or_create_
by method in Rails. The Rails 4 syntax is significantly different from its earlier versions. It
is a combination of two ActiveRecord methods called chaining of queries as shown in the
following code:

 self.create_with(
 name: friend.name,
 location: friend.location,
 latitude: location_value.first,
 longitude: location_value.second).find_or_create_by(
 user_id: user_id, screen_name: friend.screen_name)
 end

The find_or_create_by method looks for the user ID and screen name of the user to
check whether it exists or not. If there are extra parameters that need to be checked, we
can use create_with, which runs a create query in case the record is not found with the
passed attributes. We finally created a route and a link to fetch the friends. The following
screenshot shows the link as it would appear on the home page:

Creating an API Mashup – Twitter and Google Maps

232

Getting latitude and longitude details
of the user's location

To map the friends of the user to the map, the most important information required is the
latitude and longitude. As we saw previously, Twitter provides the location of the user, and
we will geocode it to find the coordinates. We will use a Ruby gem called geocoder in order
to get this.

Engage thrusters
We will now find and save the location coordinates of our user's friends:

1.	 We will first add the geocoder gem to our Gemfile and run bundle install:

gem 'geocoder'

2.	 In the home controller, when we're saving friends, we will find the coordinates of the
location using the Geocoder.coordinates method:

app/controllers/home_controller.rb
@friends.each do |f|
 location = f.location
 location_value = Geocoder.coordinates("#{location}")
 if location_value.present?
 Friend.get_friend_data(f,location_value,current_user.id)
 end
end

We also added the location_value argument that passes the coordinates to
the model.

3.	 We will now modify the model to add the argument and save the location values
with the other values:

app/models/friend.rb
class Friend < ActiveRecord::Base
 geocoded_by :location
 def self.get_friend_data(friend,location_value,user_id)
 self.create_with(
 name: friend.name,
 location: friend.location,
 latitude: location_value.first,
 longitude: location_value.second).find_or_create_by(
 user_id: user_id, screen_name: friend.screen_name)
 end
end

Project 7

233

4.	 Now, we are able to save our friend's location coordinates:

1.9.3-p327 :001 > Friend.first

 Friend Load (0.5ms) SELECT `friends`.* FROM `friends` ORDER BY
`friends`.`id` ASC LIMIT 1

 => #<Friend id: 1, name: "John Doe", screen_name: "johndoe",
location: "Christchurch, New Zealand", user_id: 1, created_
at: "2013-12-07 09:12:01", updated_at: "2013-12-07 09:12:01",
latitude: -43.5321, longitude: 172.636>

5.	 We will also use the Geocoder.coordinates method to find the location of the
user. First, we will add the migration to save our OAuth credentials:

$rails g migration add_omniauth_and_location_to_users

class AddCoordinatesToUsers < ActiveRecord::Migration
 def change
 add_column :users, :latitude, :string
 add_column :users, :longitude, :string
 end
end
app/model/user.rb
class User < ActiveRecord::Base
 def self.create_with_omniauth(auth)
 location = auth["info"]["location"] || ""
 user_location = Geocoder.coordinates("#{location}")
 create! do |user|
 user.provider = auth["provider"]
 user.uid = auth["uid"]
 user.name = auth["info"]["name"] || ""
 user.address = auth["info"]["location"] || ""
 user.avatar = auth["info"]["image"] || ""
 user.oauth_token = auth["credentials"]["token"] || ""
 user.oauth_secret = auth["credentials"]["secret"] || ""
 user.latitude = user_location.first
 user.latitude = user_location.second
 end
 end
end

Note that in order to do this step, you need to add the latitude and longitude
columns to the database. The users saved will be as follows:

1.9.3-p327 :002 > User.first

 User Load (0.6ms) SELECT `users`.* FROM `users` ORDER BY
`users`.`id` ASC LIMIT 1

Creating an API Mashup – Twitter and Google Maps

234

 => #<User id: 1, provider: "twitter", uid:
"415386785", name: "Saurabh Bhatia", OAuth_token:
"415386785-URRXAJQSyyJ1FkJQt2eSyg4hpXajoAj6PxVpzUPI", OAuth_
expires_at: nil, created_at: "2013-12-07 09:11:49", updated_at:
"2013-12-07 09:11:49", address: "Zhubei City, Taiwan", avatar:
"http://pbs.twimg.com/profile_images/3408461966/ec48...", OAuth_
secret: "oIx2ddTLd19vVj8i5xNYcxX6gtqlXu6WY14RFSXywDZJD", latitude:
"121.0119444", longitude: "24.8333333">

Objective complete – mini debriefing
We used a Ruby-based geocoder API gem called geocoder. After we added and bundled
it, we used the Geocoder.coordinates method to fetch the coordinates of the user's
location and friends' location. In order to save it, we added the latitude and longitude
columns in our friends table.

Another method that we can use to fetch and save the location coordinates of a friend is
shown in the following code:

geocoded_by :location

The preceding method will run on an after_save callback to fetch the coordinates of a
location. The method also fires an update query to save the latitude and longitude values
in the database.

We will use the location coordinates in the upcoming tasks for various uses, such as creating
markers on the Google map, and the geocoder API to create points of interest in our app.

Passing Twitter data to the Google
Maps API using Rails

Now, we already have the Twitter data of the user, the data of user's friends, and also their
location coordinates. From here on, we need to prepare the data to be displayed on the
Google map. We need to display multiple markers on the map and associate our data with
the markers.

Engage thrusters
In this task, we will prepare the data for the map:

1.	 We will start by creating a controller for the map. This controller will be responsible
for passing the data required for the map to the Google Maps JavaScript API:

tweetmap$ rails g controller map_display index

Project 7

235

2.	 The markers include four types of data: the screen name, the name, the latitude,
and longitude. Before that, we will initiate a blank array:

app/controllers/map_display_controller.rb
class MapDisplayController < ApplicationController
 def index
 @markers = []
 end
end

3.	 We will first find all the friends of the current user:

app/controllers/map_display_controller.rb
class MapDisplayController < ApplicationController
 def index
 @markers = []
 @friends = current_user.friends
 end
end

4.	 We will loop over the friends data and call the screen_name, name, latitude, and
longitude from it. With each loop iteration, we will add each record to the loop.
We will also create a helper method to generate the marker data:

app/helper/map_display_helper.rb
module MapDisplayHelper
 def get_marker_data(screen_name, name) "Twit:</
strong>#{screen_name}
Name: Name: #{name}"
 end
end

app/controllers/map_display_controller.rb
class MapDisplayController < ApplicationController
 def index
 @markers = []
 @friends = current_user.friends
 @friends.each do |f|
 marker_data = get_marker_data(f.screen_name, f.name)
 @markers << [marker_data, f.latitude, f.longitude]
 end
 end
end

Creating an API Mashup – Twitter and Google Maps

236

5.	 Our final data will be an array of arrays with three keys; data to be displayed in the
information box of the marker, the latitude, and the longitude:

[["Twitter Handle:...ong> Name: John Doe1", -43.5321,
172.636], ["Twitter Handle:...ong> Name: John Doe2",
-38.6656, 178.034], ["Twitter Handle:...g> Name: John
Doe3", -37.8141, 144.963], ["Twitter Handle:.../strong>
Name: John Doe4", 37.7749, -122.419], ["Twitter Handle:...
rong> Name: John Doe5", 37.7141, -122.25], ["Twitter
Handle:...rong> Name: John Doe6", 23.6978, 120.961],
["Twitter Handle:...> Name: John Doe7", 19.076, 72.8777],
["Twitter Handle:.../strong> Name: John Doe8", 30.2301,
-93.0122], ["Twitter Handle:...me: John Doe9", 22.3964,
114.109], ["Twitter Handle:... Name: John Doe10",
40.7124, -74.0087], ["Twitter Handle:...trong> Name:
John Doe11", 37.7749, -122.419], ["Twitter Handle:...g>
Name: John Doe12", 52.52, 13.405], ["Twitter Handle:...e:
John Doe13", 35.6528, -97.4781], ["Twitter Handle:...
trong> Name: John Doe14", 39.9626, -76.7277], ["Twitter
Handle:...rong> Name: John Doe15", 32.2617, 76.3068],
["Twitter Handle:...strong> Name: John Doe16", -37.8141,
144.963]]

6.	 The following screenshot shows the preceding data where the Firebug extension of
the Chrome browser is used. Check the location variable:

Objective complete – mini debriefing
Google Maps requires the marker data to be sent as a hash. The JavaScript reads and
understands the data in a particular format. We collected the data we've stored in the
database and created a hash such that it can be passed directly to Google Maps. Google
Maps will treat this data as the array of markers:

[marker_data, f.latitude, f.longitude]

Project 7

237

The first field in the array will be picked up, converted into HTML, and used for the
information box. We added the HTML containing the Twitter handle and username to display
the data properly in the Google Maps information box. Then, we added the latitude and
longitude of the user's friend. The second and third fields are the latitude and longitude on
which the marker is supposed to be pinned and centered. We will display these markers on
the map now.

Displaying friends on the map using
the Google API

We now have the data in the format that is ready for the Google map. We will use Google
Maps v3, the JavaScript API, in order to generate the map and display the markers. We will
use the gmaps4rails gem but to a very limited capacity. We could use it to generate the
entire map. However, considering our scenario, the JavaScript API looks like a better choice.
So, we will use the gmaps4rails gem to load the basic JavaScript of Google Maps in the
asset pipeline.

Engage thrusters
In the following steps, we will create a map and display our friend's data on it using the
Google Maps JavaScript API:

1.	 Add the gmaps4rails gem to the Gemfile and run bundle install:

Gemfile
gem 'gmaps4rails', :github =>'apneadiving/Google-Maps-for-Rails'

2.	 We will then load the Google Maps v3 JavaScript in our asset pipeline:

app/assets/javascripts/application.js
//= require jquery
//= require jquery_ujs
//= require twitter/bootstrap
//= require underscore
//= require gmaps/google
//= require turbolinks
//= require_tree

Google Maps for the Rails JavaScript has been rewritten using
CoffeeScript and depends on underscore.js. Hence, it is
essential to load underscore.js as a dependency.

Creating an API Mashup – Twitter and Google Maps

238

We will also load the necessary dependencies in our view file:

app/views/map_display/index.html.erb
<script src="//maps.google.com/maps/api/js?v=3.13&sensor=false
&libraries=geometry" type="text/javascript"></script>
<script src='//google-maps-utility-library-v3.googlecode.com/svn/
tags/markerclustererplus/2.0.14/src/markerclusterer_packed.js'
type='text/javascript'></script>

3.	 We need these two files in order to call the geometry.js and Google Maps
JavaScript API and Google Maps utility to generate a marker cluster on the map.

4.	 In order to call the markers data we generated in our previous task, we will initiate
a variable in the JavaScript:

app/views/map_display/index.html.erb
<script>
 var locations = <%=raw @markers %>;
</script>

5.	 Initiate a script and bind it to an element with the ID map. We will tie this to a div
element. We will center the map at (0, 0), that is, at the center of the world:

app/views/map_display/index.html.erb
<script>
 var locations = <%=raw @markers %>;
 var map = new google.maps.Map(document.getElementById('map'), {
 zoom: 2,
 center: new google.maps.LatLng(0, 0),
 mapTypeId: google.maps.MapTypeId.ROADMAP
 });
</script>

6.	 We will now create a marker and assign our latitude and longitude values to the
marker in a loop. We will also set the content for the information window on
each marker:

app/views/map_display/index.html.erb
<script>
var marker, i;
 for (i = 0; i < locations.length; i++) {
 marker = new google.maps.Marker({
 position: new google.maps.LatLng(locations[i][1],
locations[i][2]),
 map: map
 });
 google.maps.event.addListener(marker, 'click',
(function(marker, i) {
 return function() {

Project 7

239

 infowindow.setContent(locations[i][0]);
 infowindow.open(map, marker);
 }
 })(marker, i));
 }
</script>

7.	 The final script with all the dependencies looks like the following code:

app/views/map_display/index.html.erb
<script src="//maps.google.com/maps/api/js?v=3.13&sensor=false
&libraries=geometry" type="text/javascript"></script>

<script src='//google-maps-utility-library-v3.googlecode.com/svn/
tags/markerclustererplus/2.0.14/src/markerclusterer_packed.js'
type='text/javascript'></script>
<script>
 var locations = <%=raw @markers %>;
 var map = new google.maps.Map(document.getElementById('map'),
{
 zoom: 2,
 center: new google.maps.LatLng(0, 0),
 mapTypeId: google.maps.MapTypeId.ROADMAP
 });
 var infowindow = new google.maps.InfoWindow();
 var marker, i;
 for (i = 0; i < locations.length; i++) {
 marker = new google.maps.Marker({
 position: new google.maps.LatLng(locations[i][1],
locations[i][2]),
 map: map
 });
 google.maps.event.addListener(marker, 'click',
(function(marker, i) {
 return function() {
 infowindow.setContent(locations[i][0]);
 infowindow.open(map, marker);
 }
 })(marker, i));
 }
</script>

8.	 Finally, we will display the map in the div element. We will bind the JavaScript to
the div element using the ID name map:

app/views/map_display/index.html.erb
<div id="map" style='width: 1200px; height: 600px;'></div>

Creating an API Mashup – Twitter and Google Maps

240

Objective complete – mini debriefing
In this task, we created the JavaScript for generating the Google map and plotting all the
data in the form of markers for us. We used the gmap4rails gem to load the Google
Maps JavaScript API into our asset pipeline. Google Maps for Rails is wrapped on top of
the Google Maps JavaScript API. It is completely rewritten in Coffee and underscore.
js. Underscore.js is a library that provides a set of specialized functional programming
helper methods. Some of the methods that Google Maps for Rails uses are as follows:

ff _.extend

ff _.map

ff _.isFunction

ff _.each

ff _.isObject

Then, we defined some geometry and marker-specific JavaScript in our views. We initiated a
map and associated it with an element with the map ID. Then, the loop will read the collection
of marker data represented as @marker variable in our map_display_controller and call
the location coordinates from there. The locations[i][1] and locations[i][2],
the second and the third element of the locations array are called as the collection is
looped over:

var marker, i;
 for (i = 0; i < locations.length; i++) {
 marker = new google.maps.Marker({
 position: new google.maps.LatLng(locations[i][1], locations[i]
[2]),
 map: map
 });

Then, we will pass the first value of the array to the information window on the map and
bind it to the click event:

google.maps.event.addListener(marker, 'click', (function(marker, i) {
 return function() {
 infowindow.setContent(locations[i][0]);
 infowindow.open(map, marker);
 }
 })(marker, i));
 }

Project 7

241

We used the raw tag to pass the marker data to the Google Maps JavaScript. By default, Rails
escapes the executable script within the objects:

<%=raw @markers %>

The raw tag is equivalent to the html_safe tag in Rails. The difference lies in how they
handle the nil object. The html_safe tag gives an exception, whereas raw gives out an
empty string in return. Also, in some cases raw is susceptible to an XSS attack. This can be
a use case where we have a text area and the attacker inserts an executable JavaScript in
it. We should avoid the use of raw in those cases. In our case, raw is handled to output
the data from a hash that we build. The marker data is now being displayed in blurb on the
marker as shown in the following screenshot:

Creating points of interest – filter
users based on their location

Grouping similar information on the map according to a specific criteria is called points of
interest. This is a term used for markers or points on the maps that can be categorized or
grouped together. We will use locations as the points of interest in our application. We will
call all the locations in our system and search the friends according to it. We will use the
geocoder API to do this.

Creating an API Mashup – Twitter and Google Maps

242

Engage thrusters
We will create location-based filters for our users in this task:

1.	 The geocoder gem has a method called near, which takes the location string as
the parameter and runs a spatial query on the database:

1.9.3p327 :001 > user = User.first

1.9.3p327 :002 > user.friends.near("NY")

2.	 We got six results when we searched for the term NY:

1.9.3p327 :003 > user.friends.near("NY").length

 Friend Load (1.6ms) SELECT friends.*, 3958.755864232 * 2 *
ASIN(SQRT(POWER(SIN((40.7143528 - friends.latitude) * PI() / 180
/ 2), 2) + COS(40.7143528 * PI() / 180) * COS(friends.latitude *
PI() / 180) * POWER(SIN((-74.00597309999999 - friends.longitude)
* PI() / 180 / 2), 2))) AS distance, CAST(DEGREES(ATAN2(
RADIANS(friends.longitude - -74.00597309999999), RADIANS(friends.
latitude - 40.7143528))) + 360 AS decimal) % 360 AS bearing FROM
`friends` WHERE `friends`.`user_id` = 1 AND (friends.latitude
BETWEEN 40.4248892337783 AND 41.0038163662217 AND friends.
longitude BETWEEN -74.38786578682475 AND -73.62408041317524 AND
3958.755864232 * 2 * ASIN(SQRT(POWER(SIN((40.7143528 - friends.
latitude) * PI() / 180 / 2), 2) + COS(40.7143528 * PI() / 180) *
COS(friends.latitude * PI() / 180) * POWER(SIN((-74.00597309999999
- friends.longitude) * PI() / 180 / 2), 2))) <= 20) ORDER BY
distance ASC

Project 7

243

3.	 Now, as we know that we can find people based on their locations, we will add the
location of the friend as a parameter called place in our query:

app/controllers/map_display_controller.rb
if params[:place].present?
 @friends = current_user.friends.near(params[:place])
 @friends.each do |f|
 end
end

4.	 So, our final method looks like the following code:

app/controllers/map_display_controller.rb
class MapDisplayController < ApplicationController
 include MapDisplayHelper
 def index
 @markers = []
 if params[:place].present?
 @friends = current_user.friends.near(params[:place])
 @friends.each do |f|
 marker_data = get_marker_data(f.screen_name, f.name)
 @markers << [marker_data, f.latitude, f.longitude]
 end
 else
 @friends = current_user.friends
 @friends.each do |f|
 marker_data = get_marker_data(f.screen_name, f.name)
 @markers << [marker_data, f.latitude, f.longitude]
 end
 end
 end
end

5.	 In our view, we need to pass the place parameter to the controller method:

app/views/map_display/index.html.erb
<div class="col-lg-12"><% @friends.each do |f|%><h3 id="type-
blockquotes"><%= link_to "#{f.location}", map_display_index_
path(:place =>"#{f.location}")%></h3><%end %></div>

Creating an API Mashup – Twitter and Google Maps

244

6.	 The loop will generate a list of location links with the place parameter. The
following screenshot displays the list of places as links:

Project 7

245

7.	 When we click on one of the preceding locations, we will get a map with the filtered
values and the location values:

Objective complete – mini debriefing
In the previous task, we used the geocoder API to search our database. It extends spatial
queries in the database to search the friends table according to the location coordinates.
The near query first finds the coordinates of the location according to which it is searched.
Then, it converts the latitude and longitude to degrees and radians in order to match it to
the location coordinates of the friends. The following is an example of geo query we can run
using the geocoder:

Creating an API Mashup – Twitter and Google Maps

246

The geocoder API provides a host of other features, such as finding the distance between
two friends and the nearbys query. The nearbys query is run as follows:

Friend.last.nearbys(30)

We can also find distance in miles between two friends. The results are as shown in the
following screenshot:

Geocoder::Calculations.distance_between(friend1, friend2)

The following screenshot shows the result of a near query when clicked on San Fransisco:

Project 7

247

Mission accomplished
We have successfully created a fun app that will map our friends on Twitter. We can broadly
divide what we did into four parts:

ff Used OmniAuth to sign up and log in with Twitter

ff Created sessions with Twitter and maintained our user in the session

ff Used Twitter v1.1 API and the twitter gem to call the users and their friends' data

ff Used the Ruby geocoding API to find the location coordinates of each friend and
used mapping to display these friends on the Google map using Google Maps v3

Hotshot challenges
We can still have a lot of fun with these APIs:

ff Display the last tweet of each user in the information window

ff Display the user avatar in the information window

ff Change the location filter to a checkbox

ff Use jQuery to send the parameters to the controller

ff Find the distance between two friends

Project 8
API Only

Application – Backend
for a Mobile App

Android and iOS have taken smartphones to a new level of sophistication, and their
respective application ecosystems have created a huge movement among developers. In
order to do so, a lot of these applications need background processing, data storage, and
data manipulation, along with authentication and authorization. In such cases, we need an
API only application, where the application handles the processing load and returns data
to a mobile client using an API.

Mission briefing
In an API only application, only models and controllers exist. This kind of application provides
an interface to the data, apart from a full-blown application with business logic in the
backend. The application can serve as a backend to a mobile application. The application
only behaves like an API, with no UI layer present for the data. We will create an application
to make notes and send data to an application using a REST client. As we create an API,
we will also see how to create an OAuth2 provider to authorize applications with it.

API Only Application – Backend for a Mobile App

250

The following screenshot shows how our application's OAuth provider screen will look at the
end of our project:

Why is it awesome?
Rails has a subproject called Rails API that takes a leaner approach to the creation of
these applications. It strips off a lot of middleware components and the view layer out
of the application. We can conditionally add some middleware and controller modules
wherever required. We will also convert our application into the OAuth provider so that the
authentication on our mobile applications happens via OAuth. We will use the doorkeeper
gem to create an OAuth application ID and OAuth secret, along with a callback URL.

At the end of this project, we will be able to create an API only application with OAuth end
points to authorize applications for the data API.

Your Hotshot objectives
While building this application, we will have to go through the following tasks:

ff Creating, editing, and deleting notes

ff Arranging notes category wise

ff Sending join and association data via JSON

ff Creating an OAuth2 provider

ff Generating API keys

ff Securing the application

Project 8

251

Mission checklist
We need to install the following on the system and sign up for the API keys before we start
with our mission:

ff Ruby 1.9.3 / Ruby 2.0.0

ff Rails 4.0.0

ff MySQL

ff Rails API

ff Devise

ff Git

ff Doorkeeper

ff jQuery

Creating, editing, and deleting notes
Our first task involves certain tasks that have already been done in the previous projects, but
now we are going to do it in a slightly different way. As the main aim of our application is to
be leaner and faster than a normal application, we will add some rack, action controller,
and action view modules only when required. Some middleware stack (rack modules) and
view-related stack (assets and views) components are stripped off. Please be sure to go
through the Readme section of Rails API in detail (https://github.com/rails-api/
rails-api/blob/master/README.md). It contains a list of modules that are included in
a default Rails API application and what they are used for. It also has a list of modules that
can be included in order to extend the default stack as and when required.

Engage thrusters
We will start by installing Rails API and generating our skeleton application by performing
the following steps:

1.	 We will install Rails API first using the following command:

$ gem install rails-api

2.	 Once the gem is installed, we will generate a blank application using the gem. We
will use MySQL to develop our application as follows:

 rails-api new notely -d mysql

 create

 create README.rdoc

 create Rakefile

API Only Application – Backend for a Mobile App

252

 create config.ru

 create .gitignore

 create Gemfile

 create app

 create app/controllers/application_controller.rb

 create app/assets/images/.keep

 create app/mailers/.keep

 create app/models/.keep

 create app/controllers/concerns/.keep

 create app/models/concerns/.keep

 create bin

 create bin/bundle

 create bin/rails

 create bin/rake

 create config

 create config/routes.rb

 create config/application.rb

 create config/environment.rb

 create config/environments

 create config/environments/development.rb

 create config/environments/production.rb

 create config/environments/test.rb

 create config/initializers

 create config/initializers/secret_token.rb

 create config/initializers/wrap_parameters.rb

 create config/locales

 create config/locales/en.yml

 create config/boot.rb

 create config/database.yml

 create db

 create db/seeds.rb

 create lib

 create lib/tasks

 create lib/tasks/.keep

 create lib/assets

 create lib/assets/.keep

Project 8

253

 create log

 create log/.keep

 create public

 create public/404.html

 create public/422.html

 create public/500.html

 create public/favicon.ico

 create public/robots.txt

 create test/fixtures

 create test/fixtures/.keep

 create test/controllers

 create test/controllers/.keep

 create test/mailers

 create test/mailers/.keep

 create test/models

 create test/models/.keep

 create test/helpers

 create test/helpers/.keep

 create test/integration

 create test/integration/.keep

 create test/test_helper.rb

 run bundle install

Fetching gem metadata from https://rubygems.org/

Fetching gem metadata from https://rubygems.org/..

Resolving dependencies...

Using rake (10.1.0)

Using i18n (0.6.9)

Using minitest (4.7.5)

Using multi_json (1.8.2)

Using atomic (1.1.14)

Using thread_safe (0.1.3)

Using tzinfo (0.3.38)

Using activesupport (4.0.1)

Using builder (3.1.4)

Using erubis (2.7.0)

Using rack (1.5.2)

API Only Application – Backend for a Mobile App

254

Using rack-test (0.6.2)

Using actionpack (4.0.1)

Using mime-types (1.25.1)

Using polyglot (0.3.3)

Using treetop (1.4.15)

Using mail (2.5.4)

Using actionmailer (4.0.1)

Using activemodel (4.0.1)

Using activerecord-deprecated_finders (1.0.3)

Using arel (4.0.1)

Using activerecord (4.0.1)

Using bundler (1.3.5)

Using hike (1.2.3)

Using mysql2 (0.3.14)

Using thor (0.18.1)

Using railties (4.0.1)

Using tilt (1.4.1)

Using sprockets (2.10.1)

Using sprockets-rails (2.0.1)

Using rails (4.0.1)

Using rails-api (0.1.0)

Your bundle is complete!

Use `bundle show [gemname]` to see where a bundled gem is
installed.

3.	 Rails API is under constant development, and its compatibility with Rails 4 is being
improved day by day. In order to avoid some bugs and pitfalls, we will bundle Rails
API from the master as follows:

Gemfile

gem 'rails', '4.0.1'

gem 'rails-api', git: 'https://github.com/rails-api/rails-api.
git', branch: 'master'

4.	 Set up database.yml according to your local machine credentials.

Project 8

255

5.	 Now that our Rails API base project is set up, we will generate a model and a
controller to create our notes as follows:

 notely$rails g scaffold note title:string body:string

 invoke active_record

 create db/migrate/20131211143114_create_notes.rb

 create app/models/note.rb

 invoke test_unit

 create test/models/note_test.rb

 create test/fixtures/notes.yml

 invoke api_resource_route

 route resources :notes, except: [:new, :edit]

 invoke scaffold_controller

 create app/controllers/notes_controller.rb

 invoke test_unit

 create test/controllers/notes_controller_test.rb

6.	 We will add a very basic version for our API. In order to do this, we will create a
namespace in routes:

config/routes.rb

 Notely::Application.routes.draw do

 namespace :api do

 namespace :v1 do

 resources :notes

 end

 end

end

7.	 This will give an error because we need to create the same namespace in the
controllers folder and move our notes_controller.rb file to api/v1
as follows:

notely/app/controllers$mkdir api

notely/app/controllers$ cd api

notely/app/controllers/api$mkdir v1

notely/app/controllers/$cd ..

notely/app/controllers/$mv notes_controller.rb api/v1

API Only Application – Backend for a Mobile App

256

8.	 Our application_controller.rb file extends from ActionController::API
as follows:

app/controllers/application_controller.rb

class ApplicationController < ActionController::API

end

9.	 Now that we have created a namespace, we also need to convert our controller to
work with this namespace. We will also refactor the code to use before_action in
order to set the note id for multiple actions as follows:

app/controllers/api/v1/notes_controller.rb

#namespace for api

module Api

 module V1

 class NotesController < ApplicationController

 def index

 @notes = Note.all

 render json: @notes

 end

 def new

 @part = Part.new

 end

 def show

 @note = Note.find(params[:id])

 render json: @note

 end

 def create

 @note = Note.new(params[:id])

 if @note.save

 render json: @note, status: :created, location:
 @note

Project 8

257

 else

 render json: @note.errors, status:
 :unprocessable_entity

 end

 end

 def update

 @note = Note.find(params[:id])

 if @note.update(params[:id])

 head :no_content

 else

 render json: @note.errors, status:
 :unprocessable_entity

 end

 end

 def destroy

 @note.destroy

 head :no_content

 end

 end

 end

end

10.	 We have to make Rails API and Rails 4 compatible with strong parameters because
we need to post data to the API and pass the data as parameters in our client. We
will first create an initializer to load a StrongParameters module along with the
ActionController::API module as follows:

config/initializers/strong_parameters.rb

ActionController::API.send :include, ActionController::StrongParam
eters

API Only Application – Backend for a Mobile App

258

11.	 We also need to modify our controller to the Rails 4 format by passing params
through a private method. The default controller generated by Rails API is not in
accordance with the Rails 4 format to accept the parameters:

app/controllers/api/v1/notes_controller.rb

private

 def set_note

 @note = Note.find(params[:id])

 end

 # Never trust parameters from the scary internet, only allow the
white list through.

 def note_params

 params.require(:note).permit(:title,
 :body,:category_id) if params[:note]

 end

12.	 To use these params, we need to modify the create and update methods to
accept parameters through the note_params variable:

app/controllers/ap1/v1/notes_controller.rb

POST /notes

 # POST /notes.json

 def create

 @note = Note.new(note_params)

 if @note.save

 render json: @note, status: :created, location: @note

 else

 render json: @note.errors, status:
 :unprocessable_entity

 end

 end

 # PATCH/PUT /notes/1

 # PATCH/PUT /notes/1.json

 def update

Project 8

259

 if @note.update(note_params)

 head :no_content

 else

 render json: @note.errors, status:
 :unprocessable_entity

 end

 end

13.	 We will add a module in order to serialize the JSON data input and output of
our API. It adds a more object-oriented approach as opposed to a hash-oriented
approach to JSON:

Gemfile

gem "active_model_serializers"

notely$bundle install

14.	 We already have a model before adding the serializer, hence we will run the
following command to generate a serializer for our existing model:

notely$ rails g serializer note

 create app/serializers/note_serializer.rb

15.	 We will modify our serializer in order to accept all the attributes:

app/serializers/note_serializer.rb

class NoteSerializer < ActiveModel::Serializer

 attributes :id, :title, :body

end

Objective complete – mini debriefing
In this task, we generated a Rails API project with Rails 4.1 and MySQL as the database.
We can use any database we want, such as PostgreSQL and MongoDB. However, we
chose MySQL for the sake of simplicity of demonstration. It would be noteworthy to know
that in the application generated by Rails API, the application controller inherits from
ActionController::API instead of the ActionController::base class:

class ApplicationController < ActionController::API

end

API Only Application – Backend for a Mobile App

260

We also developed a skeleton to create the notes. We created a very basic API with this
version. We bridged the gap between Rails 4 and Rails API to accept the parameters.

We used the active serializer module in order to serialize JSON, generating a serializer for the
existing model. We added attributes for note to the serializer using the following method:

def note_params
 params.require(:note).permit(:title, :body,:category_id) if
 params[:note]
end

There are several JSON template options such as JBuilder and Rabl to name a couple.
JBuilder comes by default with Rails, whereas Rabl can be added as a gem. One of the
primary reasons to select the ActiveModel serializer over the other two is performance.
As the dataset increases in size, the process of JSON generation slows down, thus affecting
the overall performance of the API. The ActiveModel serializer, however, has been known
to perform better than these libraries.

In the preceding method, we have enabled the posting of params only if they are present.
We also added a serializer to package this JSON hash as an object and posted it to the
params method. This attribute definition will make params an attribute of an object
called note, which is posted to params[:note]:

class NoteSerializer < ActiveModel::Serializer
 attributes :id, :title, :body

end

When we visit notes.json, we will see the following code snippet:

{"notes":
 [
 {"id":1,"title":"First Note","body":"Buy a new ram"},
 {"id":2,"title":"Second Note","body":"Buy Macbook pro"}
]
}

The complete URL looks like http://localhost:3000/api/v1/notes.json. Since we
have created a controller namespace and added a version, we created versioned endpoints
for our API. When we write Version 2, we can simply create a new namespace for v2 with the
same controllers, methods, and updated code. In that way, we can keep both versions of the
API live parallely:

 namespace :api do
 namespace :v1 do
 resources :notes

Project 8

261

 end
 end
 resources :notes

In order to make this namespace work in the controller, we need to define our controller like
a module. By default, Rails treats the path elements as modules.

From time to time, we are expected to make major changes in our application. As and when
our application is updated, there are several changes it goes through, such as the structure
of data, changes in fields, and so on. Sometimes the changes are not backward compatible
and there are clients already using our application. In order for them to keep using our
application effectively, we need a new version of the API, rather than changing the entire
API entity itself.

Arranging notes category wise
In our application, users will need to arrange their notes category wise. A category will act as
a search filter to keep the notes. We will add an association via the models. This task deals
with the creation of the category model and its association with the note model.

Engage thrusters
We will now add categories to our note application:

1.	 We will first create a category model for our application using the
following command:

notely$ rails g model category title:string

2.	 The migration file generated looks as follows:

class CreateCategories < ActiveRecord::Migration

 def change

 create_table :categories do |t|

 t.string :title

 t.timestamps

 end

 end

end

:~/notely$bundle exec rake db:migrate

API Only Application – Backend for a Mobile App

262

3.	 We will save the category title for now and we will try to add categories using our
Rails console:

:~/notely$ rails c

Loading development environment (Rails 4.0.1)

1.9.3-p327 :001 > category = Category.new

 => #<Category id: nil, title: nil, created_at: nil, updated_at:
nil>

1.9.3-p327 :002 > category.title = "Personal"

 => "Personal"

1.9.3-p327 :003 > category.save

 (0.4ms) BEGIN

 SQL (38.1ms) INSERT INTO `categories` (`created_at`, `title`,
`updated_at`) VALUES ('2013-12-26 00:02:21', 'Personal', '2013-12-
26 00:02:21')

 (53.9ms) COMMIT

 => true

4.	 We will then add a has_many relation in the category model as follows:

app/models/category.rb

class Category < ActiveRecord::Base
 has_many :notes
end

5.	 Likewise, we will add a belongs_to relationship in our note model:

app/models/note.rb

class Note < ActiveRecord::Base
 belongs_to :category
end

6.	 In order for the association to work, we will add a category_id column to our
note table:

notely$ rails g migration add_category_id_to_notes category_
id:integer

 invoke active_record

 create db/migrate/20131226000927_add_category_id_to_
notes.rb

Project 8

263

7.	 The migration will look as follows:

db/migrate$ nano 20131214094532_add_category_id_to_notes.rb
class AddCategoryIdToNotes < ActiveRecord::Migration
 def change
 add_column :notes, :category_id, :integer
 end
endFinally run bundle exec rake db:migratedb:migrate to generate
the table
notely$ bundle exec rake db:migrate

8.	 So, our schema now looks like the following:

db/schema.rb
create_table "categories", force: true do |t|
 t.string "title"
 t.datetime "created_at"
 t.datetime "updated_at"
 end

 create_table "notes", force: true do |t|
 t.string "title"
 t.string "body"
 t.datetime "created_at"
 t.datetime "updated_at"
 t.integer "category_id"
 end

9.	 Now that we have added the category_id column, we will also have to update
our serializer:

app/serializers/note_serializer.rb

class NoteSerializer < ActiveModel::Serializer
 attributes :id, :title, :body, :category_id
end

Objective complete – mini debriefing
In the preceding task, we created a category model. We created an association between
the category and note models. The association is such that a category has many notes
and a note belongs to a category. We also created the required migrations and added the
respective fields to the database.

API Only Application – Backend for a Mobile App

264

Sending join data via JSON
In the previous tasks, we created notes and then associated them with the categories. Now,
we will customize our serializer class in order to work with the association. We will also
use a REST client to see how to get data and post data to our API. Of course, using it in the
client is the best way; however, in order to see if the data is being inserted correctly or not,
we need a command-line interface. We will use the REST client's command-line interface to
interact with our API.

Engage thrusters
We will serialize our data and prepare to get, post, and put the data by performing the
following steps:

1.	 We will first add the association data to our ActiveModel serializer. We will add
the has_one :category method and embed it in order to automatically add
category_id to our JSON object as follows:

app/serializers/note_serializer.rb
class NoteSerializer < ActiveModel::Serializer
 embed :id

 attributes :id, :title, :body
 has_one :category
end

2.	 When we navigate to our notes URL, we get the following JSON values with
category_id appended to them. An alternate way to check the response is via the
curl command:

http://localhost:3000/api/v1/notes
{"notes":
 [
 {"id":1,"title":"First Note","body":"Buy a new
 ram","category_id":1},
 {"id":2,"title":"Second Note","body":"Buy Macbook
 pro","category_id":2}
]
}

3.	 The first step to start testing whether our API works is to install the REST client:

$ gem install rest-client

Project 8

265

4.	 The REST client is accessible as a command-line tool. So, we will open our interactive
Ruby shell and try calling our API:

$ irb

1.9.3-p327 :001 > require 'rubygems'

 => false

1.9.3-p327 :002 > require 'rest-client'

 => true

1.9.3-p327 :004 > response = RestClient.get 'http://
localhost:3000/api/v1/notes'

 => "{\"notes\":[{\"id\":1,\"title\":\"First Note\",\"body\":\"Buy
a new ram\",\"category_id\":1},{\"id\":2,\"title\":\"Second
Note\",\"body\":\"Buy Macbook pro\",\"category_id\":2},{\"id\":3,\
"title\":"note",\"body\":"study",\"category_id\":1}"

5.	 We stored our response in a variable so that we can see some of the common
attributes of the response. We can return the reponse code and headers for the
sake of testing:

1.9.3-p327 :005 > response.code
 => 200
1.9.3-p327 :006 > response.headers
 => {:x_frame_options=>"SAMEORIGIN", :x_xss_protection=>"1;
mode=block", :x_content_type_options=>"nosniff", :x_ua_
compatible=>"chrome=1", :content_type=>"application/json;
charset=utf-8", :etag=>"\"852ad43f6964fa588ce190c8fc8c7239\"",
:cache_control=>"max-age=0, private, must-revalidate", :x_
request_id=>"20bed29f-bffb-4743-9887-f427686c7187", :x_
runtime=>"0.030178", :transfer_encoding=>"chunked"}

6.	 We will try posting our first note using the API:

1.9.3-p327 :013 > RestClient.post('http://localhost:3000/api/v1/
notes', {:note => {:title => 'test', :body => 'body', :category_id
=> 2}})

 =>

"{\"note\":{\"id\":8,\"title\":\"test\",\"body\":\"body\",
\"category_id\":2}}"

7.	 In our server log, we can see the post request and the 201 response code:

Started POST "/api/v1/notes" for 127.0.0.1 at 2013-12-27 07:43:04
+0800

Processing by Api::V1::NotesController#create as XML

 Parameters: {"note"=>{"title"=>"test", "body"=>"body",
"category_id"=>"2"}}

 (0.3ms) BEGIN

API Only Application – Backend for a Mobile App

266

 SQL (2.8ms) INSERT INTO `notes` (`body`, `category_id`,
`created_at`, `title`, `updated_at`) VALUES ('body', 2, '2013-12-
26 23:43:04', 'test', '2013-12-26 23:43:04')

 (49.0ms) COMMIT

 Category Load (0.5ms) SELECT `categories`.* FROM `categories`
WHERE `categories`.`id` = 2 ORDER BY `categories`.`id` ASC LIMIT 1

Completed 201 Created in 131ms (Views: 10.3ms | ActiveRecord:
52.6ms)

8.	 Once we see the 201 response code, we can check if the value has been inserted
successfully in our database or not:

$ rails c

Loading development environment (Rails 4.0.1)

1.9.3-p327 :001 > Note.last

 Note Load (0.8ms) SELECT `notes`.* FROM `notes` ORDER BY
`notes`.`id` DESC LIMIT 1

 => #<Note id: 8, title: "test", body: "body", created_at: "2013-
12-26 23:43:04", updated_at: "2013-12-26 23:43:04", category_id:
2>

9.	 We will now check both the index and show methods using our REST client:

1.9.3p327 :010 > RestClient.get 'http://localhost:3000/api/v1/
notes'

 => "{\"notes\":[{\"id\":1,\"title\":\"First Note\",\"body\":\"Buy
a new ram\",\"category_id\":1},{\"id\":2,\"title\":\"Second
Note\",\"body\":\"Buy Macbook pro\",\"category_id\":2},{\"id\":3,\
"title\":null,\"body\":null,\"category_id\":null},{\"id\":4,\
"title\":\"test\",\"body\":\"body\",\"category_id\":2}]}"

10.	 In our show method, we can directly call our resource ID:

1.9.3p327 :011 > RestClient.get 'http://localhost:3000/api/v1/
notes/1'

 => "{\"note\":{\"id\":1,\"title\":\"First Note\",\"body\":\"Buy a
new ram\",\"category_id\":1}}"

Objective complete – mini debriefing
In this task, we modified our serializer to add the note and category association to it. As you
will notice, the association here looks slightly different from our traditional model association:

class Note < ActiveRecord::Base
 belongs_to :category
end

Project 8

267

class Category < ActiveRecord::Base
 has_many :notes
end

In the case of the serializer, the same association looks as follows:

class NoteSerializer < ActiveModel::Serializer
 embed :id

 attributes :id, :title, :body
 has_one :category
end

As opposed to models, serializers are not concerned with the ownership of a record and
rather focus on multiplicity. This means if many notes have one category, the serializer still
treats it as a multiple record with the value of 1. So, belongs_to makes way for has_one
in serializers; it is just a different perspective to the same concept of association. The
embed :id parameter will give access to the category_id field so that we do not have to
worry about the attributes explicitly. The associated data is also embedded inside our JSON
hash. Hence, the serializer will generate a nested JSON hash for an embedded association
data. The following code snippet is the JSON object that is returned when we access
localhost:3000/api/v1/notes:

Embedding an association also gives the advantage of access to the entire category object
from the note. This removes the need for another serializer for the categories. Also, in our
use case, we have the has_one association. In case we want a has_many association, the
embed will change as follows:

embed :ids
has_many :categories

This will supply an array of category_id fields to each record of notes. Now that we have
formatted our data in the JSON format, we can secure our API.

API Only Application – Backend for a Mobile App

268

Creating an OAuth2 provider
The most important reason underlying API development is the creation of the developer
community. The applications contributed by different developers not only increase the
popularity of the app, but also bring out several creative things people can do with the data;
Twitter API is one such example. People have made amazing desktop clients and mobile apps
that analyze tweets for trends and sentiments based on data. However, all these applications
need to be genuine and should not spam the users. In order to avoid that, we will allow only
OAuth-authorized applications to build clients for our API. Therefore, we will have to create
an OAuth2 provider.

Prepare for lift off
Before we start working on this task, we will install devise. For the most part, the devise
installation is pretty standard. In this case, we will use devise with warden as we will
allow token-based authentication via warden using our doorkeeper gem:

Gemfile

gem 'devise'
gem 'warden'

However, as Rails API removes the middleware layer and devise has some middleware
dependencies, we will have to include them in our application controller:

app/controllers/application_controller.rb

class ApplicationController < ActionController::API
 include ActionController::MimeResponds
 include ActionController::ImplicitRender
end

ActionController::MimeResponds includes the respond_to and respond_with
methods of Rails. ActionController::ImplicitRender includes methods such as
default_render, method_for_action, and send_action. We also need to include the
middleware flash module for our application to work. Doorkeeper uses Flash to display
notices and alerts as shown in the following code:

config/application.rb

module Notely
 class Application < Rails::Application
 config.middleware.use ActionDispatch::Flash
 end
end

Project 8

269

Engage thrusters
We will make our application an OAuth2 provider in the following steps:

1.	 We will use the doorkeeper gem to create our OAuth2 provider:

Gemfile

gem 'doorkeeper', '~> 0.7.0'

notely$ bundle install

2.	 We will run the doorkeeper generator once the gem is bundled successfully:

$ rails generate doorkeeper:install

 create config/initializers/doorkeeper.rb

 create config/locales/doorkeeper.en.yml

 route use_doorkeeper

3.	 This will create an initializer, a locale file, and add a route for endpoints in
our application.

4.	 The doorkeeper gem also generates a migration. It creates a table to store OAuth
access tokens and access grants:

notely$ rails generate doorkeeper:migration

 create db/migrate/20131222100518_create_doorkeeper_tables.
rb

5.	 Now, create tables with the rake task:

notely$ rake db:migrate

== CreateDoorkeeperTables: migrating ============================
=============

-- create_table(:oauth_applications)

 -> 0.1671s

-- add_index(:oauth_applications, :uid, {:unique=>true})

 -> 0.2556s

-- create_table(:oauth_access_grants)

 -> 0.1107s

-- add_index(:oauth_access_grants, :token, {:unique=>true})

 -> 0.2004s

-- create_table(:oauth_access_tokens)

 -> 0.1109s

-- add_index(:oauth_access_tokens, :token, {:unique=>true})

 -> 0.2001s

API Only Application – Backend for a Mobile App

270

-- add_index(:oauth_access_tokens, :resource_owner_id)

 -> 0.2004s

-- add_index(:oauth_access_tokens, :refresh_token,
{:unique=>true})

 -> 0.1899s

== CreateDoorkeeperTables: migrated (1.4364s) ===================
=============

6.	 We will need to modify the initializer created here and make it use warden in order
to access the user's resource from devise's current_user method:

config/initializers/doorkeeper.rb

Doorkeeper.configure do
 orm :active_record

 resource_owner_authenticator do

 current_user || warden.authenticate!(:scope => :user)
 end

end

Be sure to comment out or delete the following line from the code, else it
will raise an error during execution:

#raise "Please configure doorkeeper resource_owner_
authenticator block located in #{__FILE__}"

7.	 We need to create a method to access the resource for doorkeeper to identify
whether the logged-in user is authenticated against a valid application or not. This
means it defines the owner of access_token which our application returns to
each user:

app/controllers/application_controller.rb

class ApplicationController < ActionController::API
 include ActionController::MimeResponds
 include ActionController::ImplicitRender

 def current_resource_owner
 User.find(doorkeeper_token.resource_owner_id) if
 doorkeeper_token

 end
end

Project 8

271

8.	 We can now protect our API methods using the doorkeeper_for method:

 app/controllers/api/v1/notes_controller.rb
class NotesController < ApplicationController
 before_action :set_page, only: [:show, :edit, :update,
 :destroy]
 doorkeeper_for :index, :show, :update, :create

9.	 However, different methods require different levels of access. In order to abstract
the different access levels, the doorkeeper gem has scopes. When a client requests
for access, allowed actions are displayed. So first, we will have to enable the scopes
in our doorkeeper initializer:

config/initializers/doorkeeper.rb

Doorkeeper.configure do

 orm :active_record

 resource_owner_authenticator do

 current_user || warden.authenticate!(:scope => :user)
 end

 default_scopes :public
 optional_scopes :write, :update
end

10.	 We have defined the following two scopes:

�� Public: This scope is for all the data that is publicly available

�� Write and update: This scope is only for users who are authenticated
against the API

11.	 We need to add these scopes to the controller to bring them into play:

$app/views/api/v1/notes_controller.rb

class NotesController < ApplicationController

 before_action :set_page, only: [:show, :edit, :update,
:destroy]

 doorkeeper_for :index, :show, :scopes => [:public]

 doorkeeper_for :update, :create, :scopes => [:write,
 :update, :destroy]

API Only Application – Backend for a Mobile App

272

Objective complete – mini debriefing
In the preceding task, we first prepared our application with devise and added some
middleware components for devise and doorkeeper to function properly. We loaded this in
our application_controller.rb and application.rb files. The doorkeeper gem is
a solution to make our application an OAuth2 provider. We first installed and generated an
initializer for doorkeeper.

We defined the object-relational modeling for the application. It even supports
different versions of Mongoid. In our case, we use active_record. Hence, we will
define it as follows:

config/initializers/doorkeeper.rb
Doorkeeper.configure do
 orm :active_record

We then added resource_owner_authenticator, which is where we connect devise
and doorkeeper. We made doorkeeper use the current_user method of devise and used
warden to connect to the devise methods for authentication:

 # This block will be called to check whether the resource owner is
authenticated or not.
 resource_owner_authenticator do
 #raise "Please configure doorkeeper resource_owner_authenticator
block located in #{__FILE__}"
 current_user || warden.authenticate!(:scope => :user)
 end
end

We added current_resource_owner to check for the owner of the doorkeeper resource:

def current_resource_owner
 User.find(doorkeeper_token.resource_owner_id) if
 doorkeeper_token
 end

Under the hood, doorkeeper_token accesses the token generated upon a successful
authentication request and returns it:

def doorkeeper_token

 methods = Doorkeeper.configuration.access_token_methods

 @token ||= OAuth::Token.authenticate request, *methods

end

Project 8

273

We finally added scopes so that we can protect the resource and give limited access to
the different types of users based on their roles and ownership. For public methods, such
as index and show, we defined a scope called public. We can define this for users who
want to just read without logging in. For users who want to create notes, we added scopes
called write and update. In order to activate these scopes, we added them as a filter
method, doorkeeper_for in our controller so that they are checked before the methods
are executed.

Generating API keys
Doorkeeper is a complete solution for API authorization as well as app management using
the OAuth2 protocol. In the previous task, we added doorkeeper and configured it to our
needs. In this task, we will see how to generate API keys and do some final integration with
devise for authentication. Only logged-in users can create applications. This is a use case for
when we want to give freedom to several developers to create applications using our API.

Engage thrusters
In the following steps, we will add the devise layer above doorkeeper and generate API
keys for the first time:

1.	 We need to generate the polymorphic association and addition to the
application owner:

notely$rails generate doorkeeper:application_owner

 create db/migrate/20131228141233_add_owner_to_application.rb'

2.	 Run the migration:

notely$ rake db:migrate

== AddOwnerToApplication: migrating =============================
=============

-- add_column(:oauth_applications, :owner_id, :integer,
{:null=>true})

 -> 0.1840s

-- add_column(:oauth_applications, :owner_type, :string,
{:null=>true})

 -> 0.2002s

-- add_index(:oauth_applications, [:owner_id, :owner_type])

 -> 0.4107s

== AddOwnerToApplication: migrated (0.7954s) ====================
=============

API Only Application – Backend for a Mobile App

274

3.	 The table now looks like the following:

 create_table "oauth_applications", force: true do |t|
 t.string "name", null: false
 t.string "uid", null: false
 t.string "secret", null: false
 t.string "redirect_uri", limit: 2048, null: false
 t.datetime "created_at"
 t.datetime "updated_at"
 t.integer "owner_id"
 t.string "owner_type"
 end

4.	 We will add enable_application_owner in order to enable the ownership
of created applications. This is false by default because we would not want the
application owner to confirm his/her membership to use the application. If the
value is true, the owner will be asked to authenticate against the application just
like other users:

Doorkeeper.configure do

 orm :active_record

 resource_owner_authenticator do

 current_user || warden.authenticate!(:scope => :user)
 end

 enable_application_owner :confirmation => false

 default_scopes :public
 optional_scopes :write, :update
end

5.	 In order to access the current_user object, we need to authenticate and log in
before we create the apps:

 class User < ActiveRecord::Base
 # Include default devise modules. Others available are:
 # :confirmable, :lockable, :timeoutable and :omniauthable
 devise :database_authenticatable, :registerable,
 :recoverable, :rememberable, :trackable, :validatable
 has_many :oauth_applications, class_name:
'Doorkeeper::Application', as: :owner
end

Project 8

275

6.	 We will have to modify our controller so that we can access current_user in
it. As doorkeeper is a Rails engine, we will create a folder called OAuth inside our
controllers and copy the application controller to the folder:

notely$mkdir oauth
notely$cd oauth

app/controllers/oauth/applications_controller.rb
class Oauth::ApplicationsController < Doorkeeper::ApplicationsCont
roller
 before_filter :authenticate_user!

 def index
 @applications = current_user.oauth_applications
 end

 # only needed if each application must have owner
 def create
 @application = Doorkeeper::Application.new(application_params)
 @application.owner = current_user if Doorkeeper.configuration.
confirm_application_owner?
 if @application.save
 flash[:notice] = I18n.t(:notice, :scope => [:doorkeeper,
:flash, :applications, :create])
 respond_with [:oauth, @application]
 else
 render :new
 end
 end

end

7.	 We will now boot our server and log in. In order to create the OAuth2 application,
we will have to browse to localhost:3000/oauth/applications. We will
be presented with the application management dashboard as shown in the
following screenshot:

API Only Application – Backend for a Mobile App

276

8.	 For example, in all OAuth2 providers, we will have to add the application name and
callback URL for our application. It is better to enter either a real and valid domain
name or a domain that resolves at localhost (lvh.me).

9.	 Lastly, we will add a devise authentication so that a user needs to pass the username
and password to get an access token:

config/initializeres/doorkeepr.rb

resource_owner_from_credentials do |routes|

 request.params[:user] = {:email =>
 request.params[:username], :password =>
 request.params[:password]}

 request.env["devise.allow_params_authentication"] =
 true

 request.env["warden"].authenticate!(:scope => :user)

 end

Objective complete – mini debriefing
Up until now, we have created a devise-based authentication and doorkeeper authorization
for the applications. However, we had to allow the users to create authorizable applications.
The doorkeeper project resides on GitHub (https://github.com/applicake/
doorkeeper) and the documentation can be found at the project wiki (https://github.
com/applicake/doorkeeper/wiki). There are several other tutorials that can be found
on it, including ones to build a client application.

Project 8

277

Doorkeeper allows us to create ownership for the applications that developers want to
create. We ran a generator task in doorkeeper to create the migration for that:

notely$rails generate doorkeeper:application_owner

This generates the following migration by adding owner_id and owner_type to the
oauth_applications table:

class AddOwnerToApplication < ActiveRecord::Migration
 def change
 add_column :oauth_applications, :owner_id, :integer, :null => true
 add_column :oauth_applications, :owner_type, :string, :null =>
true
 add_index :oauth_applications, [:owner_id, :owner_type]
 end
end

We then enabled application ownership. We have set confirmation to false so that the
application owner does not need to connect and confirm the app before using it.

enable_application_owner :confirmation => false

If we change this to true, then even the application owner will have to grant access to the
application in order to use it.

We then created an association between the user model and doorkeeper's oauth_
applications model:

 has_many :oauth_applications, class_name: 'Doorkeeper::Application',
as: :owner

After the association, we had to make sure a logged-in user creates the application, hence
we added before_filter. We also used the current_user method of devise to call all
the applications by a particular user in the index page:

 before_filter :authenticate_user!

 def index
 @applications = current_user.oauth_applications
 end

Our create method also ensures that every application has to have an owner using
the confirm_application_owner? method. This is a use case for when we want a lot
of users to use our application:

def create
 @application = Doorkeeper::Application.new(application_params)

API Only Application – Backend for a Mobile App

278

 @application.owner = current_user if Doorkeeper.configuration.
confirm_application_owner?
 if @application.save
 flash[:notice] = I18n.t(:notice, :scope => [:doorkeeper,
 :flash, :applications, :create])
 respond_with [:oauth, @application]
 else
 render :new
 end

Then we went ahead and created an application. An application ID and secret are created
upon submitting the application form. The callback URL is generally a valid URL because the
application has to return to it after authorization:

In order to test our API, we will use curl and send a request. This request includes
client_id, client_secret, username, and password and is formatted as follows:

$curl -i http://localhost:3000/oauth/token \

 -F grant_type=password \

 -F client_id="5885177a47013eda93464fb764567d1ebe8ba411001e798fc1745d
22e839ce36" \

 -F client_secret="8f131eceab62a2bdf149f74a33c0bd24ad616d84617ab10673
c1a433ef81c7ba" \

 -F username="saurabh.a.bhatia@gmail.com" \

 -F password="safew123"

Project 8

279

We can view the response in the following screenshot:

The response of the API includes access_token, token_type, and expires_in
(expiry time). This means our application is successfully authenticating as well as authorizing
using OAuth:

{
"access_token":"54ca3950883abcb50a4e1e04dff94114dc3e561b452eaed753957
9e3c3f12026",
"token_type":"bearer",
"expires_in":7200,
"scope":"public"
}

This check is done using the rule that we added in the previous step:

resource_owner_from_credentials do |routes|

The previous (resource_owner_from_credentials) method matches the supplied credentials
using the devise user model.

Securing the application
Security is one of the primary concerns of an API application. We have already provided
some level of security with authentication and authorization. However, we still need to
add extra layers of security to our application. Doorkeeper and warden allow token-based
authentication, and hence a user has to have an authentication token. Also, the application
is authenticated against the application ID and secret.

API Only Application – Backend for a Mobile App

280

Engage thrusters
We will now add some security-related tricks to our application by performing the
following steps:

1.	 The first level of security we will provide is against session fixation. In our devise
initializer, we need to add the following lines:

config/initializers/devise.rb

Warden::Manager.after_authentication do |record, warden, options|
 warden.request.session.try(:delete, :_csrf_token)
end

2.	 We will now set up the session timeout in our application so that the session is
deleted after the specified time interval:

app/models/user.rb

class User < ActiveRecord::Base
 devise :database_authenticatable, :registerable,
 :recoverable, :rememberable, :trackable,
 :validatable, :timeoutable, :timeout_in =>
 15.minutes

 has_many :oauth_applications, class_name:
 'Doorkeeper::Application', as: :owner
end

3.	 SQL injection attacks are pretty common in web applications. However, Rails
provides enough protection against SQL injection. Rails already provides one
level of protection in the controllers by whitelisting parameters:

app/views/api/v1/notes_controller.rb

def note_params
 params.require(:note).permit(:title,
 :body,:category_id) if 	 params[:note]
 end

4.	 In case we need to pass a parameter, we need to pass it as a string:

Note.where(:title => "'#{params[:title]}'")

5.	 The right way to avoid SQL injection using the parameter is as follows:

Note.where("title=?", title)

Project 8

281

Objective complete – mini debriefing
Security is an extremely critical aspect of our applications in today's world. In this task, we
looked at some of the ways Rails already provides security to the application by default,
and some other ways in which we can secure our application.

The first thing we looked at was session fixation. Wikipedia defines session fixation
as follows:

In computer network security, session fixation attacks are an attempt to exploit
the vulnerability of a system, which allows one person to fixate another person's
session identifier. Most session fixation attacks are web based, and most rely on
session identifiers being accepted from URLs or POST data.

Devise out of the box is quite secure. However, this scenario can occur in the following
two cases:

ff When the attacker uses subdomain cookies to enter the target session

ff When the attacker exploits the same Wi-Fi network for fixation

In order to avoid this, we delete the following unique session CSRF token as soon as the
authentication is complete:

 warden.request.session.try(:delete, :_csrf_token)

The preceding line of code will clear the CSRF token. So, if an attacker is trying to steal the
token, they are not able to, and hence the session is secure.

Another way that we looked at was timing out our sessions. Sessions are most susceptible
to attack when they have some idle time on them. In order to avoid these attacks, we can
clear the session. The timeoutable module in devise allows us to define when to expire
the session:

:timeoutable, :timeout_in => 15.minutes

We defined in our application that the session should expire if it is idle for 15 minutes. This
setting should use a much higher value in a real-world application because we would not
want a user to log in again if they are idle for 15 minutes.

Lastly, we secured our application against SQL injection. Rails has been vulnerable to
SQL injections owing to the mass assignment parameters in 3.2.x Versions, and there were
serious security concerns related to it. Rails 4 sanitizes the parameters out of the box by
using the standard blacklisting and whitelisting technique. Only the whitelisted parameters
are allowed to pass to the controller. However, the nature of injection attacks is such that
people can still insert malicious SQL statements inside params and allow them to be passed
inside the query string.

API Only Application – Backend for a Mobile App

282

Wikipedia defines SQL injection as follows:

SQL injection is a code injection technique used to attack data-driven applications,
in which malicious SQL statements are inserted into an entry field for execution.

In Rails, a lot of times parameters are directly passed from a query string to the active
record query interface using the params[:title] format. This makes the SQL statement
vulnerable as someone can pass a string with an SQL statement, such as OR or AND, and
execute SQL inside it.

We rephrased this query to a different format. We will first pass the SQL statement into
a variable. Then, instead of directly passing the query string, we will sanitize the variable
and pass it to a query as follows:

Note.where("title=?", title)

Another way is to pass the variable through the sanitize_sql() method before passing
it to the query.

Also, in a real-world application, it is highly advisable to use an SSL certificate in order to
provide secure access to your server, especially for transactions that involve passing your
application's application_id and application_secret.

Mission accomplished
We have successfully created an API only application with an OAuth2 provider. We also
looked at various security aspects in this project.

Some of the areas we covered in this project are as follows:

ff We used the Rails API gem to create an API only application that does not contain
rack middleware modules and frontend modules.

ff We adapted some of the methods to Rails 4, for example, strong parameters.

ff We used a JSON serializer to create clean JSON APIs that are interactive. We can
read, write, and update the data using JSON.

ff We also looked at how associations work in the serializer and how it is different from
the regular models.

ff We also saw how to read and post to the API using a REST client.

ff Once we had a fully functional API in place, we used the doorkeeper gem in order
to protect these API methods.

Project 8

283

ff We saw how doorkeeper in conjunction with devise turned the application into a
full-fledged OAuth2 provider, thus providing it with an authentication as well as
a conditional authorization framework.

ff We created our own application using the newly created OAuth framework.

ff We also worked on how to secure our application from different types of attacks.

Hotshot challenges
We have our API in place and a lot of functionalities to play around with. However, we would
still like to take things to the next level with the following exercises:

ff Allow and delete notes in the API and delete a note using the REST client.

ff A different mime type to the API post method. By this I mean that you should
allow a user to post an image using the post method in our API.

ff Make sure that this method works only with Ajax requests using doorkeeper.

ff Create a client application using HTTParty to read the notes of a user.

ff Log in and authorize using the devise token authentication and the OAuth2 provider.

Project 9
Video Streaming

Website using Rails
and HTML5

Video as a medium is quite appealing to a lot of users. It is a very effective way of
communication, and the effect can be very long lasting. YouTube (http://www.youtube.
com), Vimeo (http://www.vimeo.com), Dailymotion (http://www.dailymotion.com),
and Khan Academy (http://www.khanacademy.org) are some of the most popular sites
where a variety of content exists. Advertising, raising awareness, organizing campaigns,
distributing films, and providing education are some of the most common uses of these.
This has increased the accessibility of the content and allowed content creators of various
languages to reach a very wide and diverse set of audiences.

Mission briefing
This project is a video-streaming website where a user uploads the video and the video is
encoded to a HTML5 friendly format. We will also take screenshots of the video post their
upload so that we can make thumbnails out of it. We will work on caching and performance
improvement with videos. We will also take a look at process queues in Rails.

Video Streaming Website using Rails and HTML5

286

Why is it awesome?
A lot of ideas have been tried around video. With the advent of HTML5, the video standards
are becoming much more flexible and device friendly. HTML5 reduces external dependencies
and plugins in order to display and run videos. This will make the video and audio protocols
more standardized and open. We will use some standards that work seamlessly with HTML5
video and make sure it works on different devices. Once this is in place, we will cache the
video and text. We will use Russian Doll caching, a technique introduced in Rails 3.2 but
carried forward in Rails 4. We will also see queues in Rails. We will allow our application
to simultaneously process videos as jobs. The final project screen with a list of videos will
appear as shown in the following screenshot:

At the end of this project, we will have a basic video-streaming web application.

Your Hotshot objectives
While building this application, we will have to go through the following tasks:

ff Uploading the video

ff Encoding the video

ff Displaying the video panel and playing the video

ff Caching the content – text and video

ff Queuing the job

Mission checklist
We need the following installed on the system and also need to sign up for the API keys
before we start with our mission:

ff Ruby 1.9.3 / Ruby 2.0.0

ff Rails 4.0+

Project 9

287

ff MySQL

ff FFmpeg

ff Devise

ff Git

ff Redis

ff Sidekiq

ff jQuery

ff Video.js

ff Bootstrap 3.0

Uploading the video
We will begin our project with video-uploading methods. We have already seen file
uploading with the carrierwave gem in our previous projects (Project 3, Creating an
Online Social Pinboard). In this project, we will take it one step forward by uploading videos.

We will also add the friendly_id gem to our application in order to create slugs:

Gemfile

gem 'carrierwave', :github => "jnicklas/carrierwave"

gem 'friendly_id', '5.0.3'

gem 'anjlab-bootstrap-rails', :require => 'bootstrap-rails',

 :github => 'anjlab/bootstrap-rails',

 :branch => '3.0.0'

Only Version 5.0.3 friendly_id is compatible with Rails 4.1. Also, at this step, make sure
you have devise installed and have generated a user model to handle user authentication.

Engage thrusters
We will start by installing Rails API and generating our skeleton application:

1.	 We will first generate a video model and controller. Be sure to write tests before
that, as follows:

mutube$ rails g scaffold video title:string description:string

 invoke active_record

 create db/migrate/20140105125840_create_videos.rb

 create app/models/video.rb

 invoke test_unit

Video Streaming Website using Rails and HTML5

288

 create test/unit/video_test.rb

 create test/fixtures/videos.yml

 invoke resource_route

 route resources :videos

 invoke scaffold_controller

 create app/controllers/videos_controller.rb

 invoke erb

 create app/views/videos

 create app/views/videos/index.html.erb

 create app/views/videos/edit.html.erb

 create app/views/videos/show.html.erb

 create app/views/videos/new.html.erb

 create app/views/videos/_form.html.erb

 invoke test_unit

 create test/functional/videos_controller_test.rb

 invoke helper

 create app/helpers/videos_helper.rb

 invoke test_unit

 create test/unit/helpers/videos_helper_test.rb

 invoke assets

 invoke coffee

 create app/assets/javascripts/videos.js.coffee

 invoke scss

 create app/assets/stylesheets/videos.css.scss

 invoke scss

 identical app/assets/stylesheets/scaffolds.css.scss

2.	 Once we have the skeleton for the video, we will add the carrierwave gem to
Gemfile and run bundle install:

Gemfile

gem 'carrierwave', :github => "jnicklas/carrierwave"

3.	 We will then generate the video uploader using the carrierwave generator:

 mutube$rails g uploader Video

 create app/uploaders/video_uploader.rb

Project 9

289

4.	 Mount the video uploader on the video model:

app/model/video.rb
class Video < ActiveRecord::Base
 mount_uploader :video, VideoUploader
 extend FriendlyId
 friendly_id :title, use: :slugged
end

5.	 Now we will add a column for video file parameters to our videos table:

class AddVideoToVideos < ActiveRecord::Migration
 def change
 add_column :videos, :media, :string
 end
end

6.	 We also need to pass the parameters for the video as a whitelist in our controller
and add the friendly_id association to our set_video action:

app/controllers/videos_controller.rb
 private
 # Use callbacks to share common setup or constraints between
actions.
 def set_video
 @video = Video.friendly.find(params[:id])
 end
 # Never trust parameters from the scary internet, only allow
the white list through.
 def video_params
 params.require(:video).permit(:title, :description, :media,
:media_cache)
 end

7.	 We will edit the form to add the upload field for the video:

app/views/_form.html.erb
<%= form_for(@video, :html => {:multipart => true}) do |f| %>
 <% if @video.errors.any? %>
 <div id="error_explanation">
 <h2><%= pluralize(@video.errors.count, "error") %>
prohibited this video from being saved:</h2>

 <% @video.errors.full_messages.each do |msg| %>
 <%= msg %>
 <% end %>

 </div>

Video Streaming Website using Rails and HTML5

290

 <% end %>
 <div class="form-group">
 <label >Title</label>
 <%= f.text_field :title, :class=>"form-control", :placeholder
=> "title" %>
 </div>
 <div class="form-group">
 <label >Description</label>
 <%= f.text_area :description, :class => "form-control" %>
 </div>
 <div class="form-group">
 <label for="InputFile">Upload Video</label>
 <%= f.file_field :media %>
 <%= f.hidden_field :media_cache %>
 <p class="help-block"></p>
 </div>
 <%= f.submit "Save", :class => "btn btn-default" %> <%= link_to
'Cancel', videos_path, :class => "btn btn-danger" %>
<% end %>

8.	 Lastly, we will restrict our video formats to MP4, OGV, and AVI. This will only allow
the whitelisted file formats to be uploaded:

app/uploaders/video_uploader.rb
encoding: utf-8
class VideoUploader < CarrierWave::Uploader::Base
 include CarrierWave::MimeTypes
 def store_dir
 "uploads/#{model.class.to_s.underscore}/#{mounted_as}/#{model.
id}"
 end
 def extension_white_list
 %w(mp4 ogv avi)
 end
end

Objective complete – mini debriefing
This task was a recap of things we have already done in our past projects. We created
model and controllers views for the video. We added the carrierwave uploader and
restricted the formats for a video upload in order to avoid malicious uploads as shown
in the following code:

def extension_white_list
 %w(mp4 ogv avi)
end

Project 9

291

Please keep in mind that we have chosen the storage mechanism as file only for the sake of
convenience. Video files are generally big in size, hence, we do not want to select them again
and again. Therefore, we added media_cache to the video_params so that the form retains
the selected video, even if the validation fails and the form reloads afterwards. There are
several other mechanisms such as Amazon S3 and Rackspace Block Storage to store the files.

The form for video upload with the upload video file field looks like the following screenshot:

Encoding the video
Video encoding should be part of the upload process. We need to encode the uploaded video
files to an HTML5-friendly format, basically the MP4 format, which is fully implemented in the
new HTML standard. We will use the ffmpeg on the system side and carrierwave-video
extensions on our application side to do so. During the implementation of this process, we
will also update the library for carrierwave-video to ensure it suits our needs.

Prepare for lift off
We will first install the dependencies for ffmpeg. We'll also need to install the Theora and
Vorbis protocols for audio and video respectively.

1.	 The best way to install ffmpeg on Mac OS X is through the use of homebrew:

$ brew install ffmpeg --with-fdk-aac --with-ffplay --with-freetype
--with-frei0r --with-libass --with-libvo-aacenc --with-libvorbis
--with-libvpx --with-opencore-amr --with-openjpeg --with-opus
--with-rtmpdump --with-schroedinger --with-speex --with-theora –
with-tools

Video Streaming Website using Rails and HTML5

292

==> Installing dependencies for ffmpeg: texi2html, yasm, x264,
faac, lame, xvid, libpng, freetype, libogg, xz, libvorbis, theora,
libvpx, rtmp

==> Installing ffmpeg dependency: texi2html

2.	 Following are the instructions for building ffmpeg on Ubuntu:

mutube$ sudo apt-get -y install autoconf automake build-essential
git libass-dev libgpac-dev \

 libsdl1.2-dev libtheora-dev libtool libva-dev libvdpau-dev
libvorbis-dev libx11-dev \

 libxext-dev libxfixes-dev pkg-config texi2html zlib1g-dev

3.	 It is most preferable to install all dependencies by compiling them from the source.
The first dependency is yasm, an assembler used by video and audio encoders:

$wget http://www.tortall.net/projects/yasm/releases/yasm-
1.2.0.tar.gz

yasm$ tar xvzf yasm.tar.gz

yasm$ sed -i 's#) ytasm.*#)#' Makefile.in &&

./configure --prefix=/usr &&

make

yasm$ make install

4.	 Check whether yasm is installed or not:

yasm $ sudo which yasm

/usr/bin/yasm

5.	 Now, we will install x264, the video encoder:

$wgetftp://ftp.videolan.org/pub/x264/snapshots/last_x264.tar.bz2

$tar xvjf last_x264.tar.bz2

x264$./configure --prefix="$HOME/ffmpeg_build" --bindir="$HOME/
bin" --enable-static

x246$ make

x264$ sudo make install

6.	 After the installation of the video encoder, we will install the audio encoder, aac.
The newer version of ffmpeg uses aac instead of the earlier library, libfaac:

$ git clone git@github.com:mstorsjo/fdk-aac.git

$cd fdk-aac

fdk-aac$autoreconf -fiv

fdk-aac$./configure --prefix="$HOME/ffmpeg_build" --disable-
shared

fdk-aac$ make

fdk-aac$ make install

Project 9

293

7.	 Next, we will add support for .mp3 audio:

$ sudo apt-get install libmp3lame-dev

8.	 We also need to add Opus's encoder and decoder support:

$ sudo apt-get install libopus-dev

9.	 We need support for V8/V9 video formats, so we will compile the libvpx project
extracted from Android:

$git clone http://git.chromium.org/webm/libvpx.git

cd libvpx

/configure --prefix="$HOME/ffmpeg_build" --disable-examples

make

make install

10.	 After all the dependencies are installed, we will compile ffmpeg using different
protocol supports such as aac, x264, and x11 compatibilities:

$ git clone --depth 1 git://source.ffmpeg.org/ffmpeg

$ cd ffmpeg

ffmpeg$ PKG_CONFIG_PATH="$HOME/ffmpeg_build/lib/pkgconfig"

ffmpeg$ export PKG_CONFIG_PATH

ffmpeg$./configure --prefix="$HOME/ffmpeg_build" \

 --extra-cflags="-I$HOME/ffmpeg_build/include" --extra-ldflags="-
L$HOME/ffmpeg_build/lib" \

 --bindir="$HOME/bin" --extra-libs="-ldl" --enable-gpl --enable-
libass --enable-libfdk-aac \

 --enable-libmp3lame --enable-libopus --enable-libtheora
--enable-libvorbis --enable-libvpx \

 --enable-libx264 --enable-nonfree --enable-x11grab

ffmpeg$ make

ffmpeg$ make install

11.	 We will test our ffmpeg installation with a simple command to check if aac support
is installed or not:

$ ffmpeg -formats 2>&1 | grep aac

 configuration: --prefix=/home/rwub/ffmpeg_build --extra-
cflags=-I/home/rwub/ffmpeg_build/include --extra-ldflags=-L/
home/rwub/ffmpeg_build/lib --bindir=/home/rwub/bin --extra-libs=-
ldl --enable-gpl --enable-libass --enable-libfdk-aac --enable-
libmp3lame --enable-libopus --enable-libtheora --enable-libvorbis
--enable-libvpx --enable-libx264 --enable-nonfree --enable-x11grab
--enable-libfaac

 D aac raw ADTS AAC (Advanced Audio Coding)

Video Streaming Website using Rails and HTML5

294

12.	 The command will return the configuration details of AAC and hence we know that
ffmpeg is installed properly.

13.	 For installation on Windows, the builds are available at http://ffmpeg.
zeranoe.com/builds/. For using the archive, we need 7-zip installed on our
machine. In order to install it, we need to download and unzip the archive first.
From the bin folder inside our unzipped archive, we will see a file called ffmpeg.
exe. We need to copy it to the path C:/Tools/bin in our filesystem.

Engage thrusters
In this task, we will encode our video during our upload process:

1.	 We will use a plugin called carrierwave-video that in turn uses the streamio-
ffmpeg gem to connect to and subsequently use ffmpeg features. Before we
proceed with its installation, we will customize it a bit. I have forked the original
gem to my GitHub ID and cloned the repository on my local machine as follows:

$ git clone https://github.com/saurabhbhatia/carrierwave-video.git

2.	 We will change the custom option under default options, and remove qscale from
the options:

carrierwave_video/lib/carrierwave/video/ffmpeg_options.rb
h[:custom] = '-qscale 0 -preset slow -g 30'
+ h[:custom] = "-strict experimental -preset slow -g
30"

3.	 We will also remove the default audio codec from MP4 and let ffmpeg autodetect
the audio codec by itself:

carrierwave_video/lib/carrierwave/video/ffmpeg_options.rb
- h[:audio_codec] = 'aac'

4.	 So our method now looks like the following:

lib/carrierwave/video/ffmpeg_options.rb
private
 def defaults
 @defaults ||= { resolution: '640x360', watermark: {} }.tap do
|h|
 case format
 when 'mp4'
 h[:video_codec] = 'libx264'
 h[:custom] = "-strict experimental -preset slow -g 30"
 when 'ogv'
 h[:video_codec] = 'libtheora'
 h[:audio_codec] = 'libvorbis'
 h[:custom] = '-b 1500k -ab 160000 -g 30'
 when 'webm'
 h[:video_codec] = 'libvpx'

Project 9

295

 h[:audio_codec] = 'libvorbis'
 h[:custom] = '-b 1500k -ab 160000 -f webm -g 30'
 end
 end
end

5.	 Once it is ready, we can commit and push these changes to the repository. We will
now bundle directly from our forked repository to pick up the changes we just did:

Gemfile

gem "streamio-ffmpeg"

gem 'carrierwave-video', :github => 'saurabhbhatia/carrierwave-
video'

6.	 We will add an encode process to encode our video to MP4:

app/uploaders/video_uploader.rb
def encode
 process encode_video: [:mp4, callbacks: { after_transcode: :set_
success }]
end

7.	 In our video_uploader.rb file, we will have to include the CarrierWave video
module. We will also have to add our encode method as a process to generate the
MP4 version of the video:

app/uploaders/video_uploader.rb
class VideoUploader < CarrierWave::Uploader::Base
 include CarrierWave::MimeTypes
 include CarrierWave::Video
 storage :file

 def store_dir
 "uploads/#{model.class.to_s.underscore}/#{mounted_as}/#{model.
id}"
 end

 version :mp4 do
 process :encode
 end

 def encode
 process encode_video: [:mp4, callbacks: { after_transcode:
:set_success }]
 end

 def extension_white_list
 %w(mp4 ogv avi)
 end
end

This will encode the video and convert it into MP4 once it is uploaded.

Video Streaming Website using Rails and HTML5

296

8.	 We would also like to add a watermark to our video after it is uploaded. This is to
avoid plagiarism as much as possible. We will first set the path for the watermark
image:

app/uploaders/video_uploader.rb
DEFAULTS = {
 watermark: {
 path: Rails.root.join('mutube.png')
 }
 }

9.	 Now we will modify the encode method we previously wrote to add a watermark to
the video:

app/uploaders/video_uploader.rb
def encode
 encode_video(:mp4, DEFAULTS) do |movie, params|
 if movie.height < 720
 params[:watermark][:path] = Rails.root.join('mutube.png')
 end
 end
end

10.	 So finally, our uploader looks like the following:

app/uploaders/video_uploader.rb
encoding: utf-8
class VideoUploader < CarrierWave::Uploader::Base
 include CarrierWave::MimeTypes
 include CarrierWave::Video
 storage :file

 def store_dir
 "uploads/#{model.class.to_s.underscore}/#{mounted_as}/#{model.
id}"
 end

 DEFAULTS = {
 watermark: {
 path: Rails.root.join('mutube.png')
 }
 }
 version :mp4 do
 process :encode
 end

]
 def encode
 encode_video(:mp4, DEFAULTS) do |movie, params|
 if movie.height < 720
 params[:watermark][:path] = Rails.root.join('mutube.png')

Project 9

297

 end
 end
 end

 def extension_white_list
 %w(mp4 ogv avi)
 end
end

11.	 We will generate a screenshot for our video now. We will directly access and use
the streamio-ffmpeg library in order to generate a screenshot and save it to the
specified path:

app/models/video.rb
def video_screenshot
 screenshot_path = Rails.root+"/app/assets/images/
screenshots/#{self.slug}_#{self.id}.jpg"
 if FileTest.exists?(screenshot_path)
 @screenshot = screenshot_path
 else
 video_file = FFMPEG::Movie.new("#{Rails.root}/public"+self.
video.url(:mp4))
 @screenshot = video_file.screenshot("#{screenshot_path}")
 end
 end

12.	 When we upload the video, we can see the following parameters:

Video Streaming Website using Rails and HTML5

298

Objective complete – mini debriefing
In this task, we began with the installation of ffmpeg. Their website (http://ffmpeg.org)
defines it as:

FFmpeg is a complete, cross-platform solution to record, convert and stream audio
and video.

We installed all the dependencies required to run ffmpeg and compiled it from the source.
Be sure to check more command-line options at the following links:

ff Generic options: http://ffmpeg.org/ffmpeg.html#Generic-options

ff Customizing videos: http://ffmpeg.org/ffmpeg.html#Video-Options

ff Advanced options: http://ffmpeg.org/ffmpeg.html#Advanced-Video-
Options

We then customized the carrierwave-video (https://github.com/rheaton/
carrierwave-video) plugin. We updated the protocols for video and audio encoding to aac.
The earlier version of ffmpeg used a libfaac to connect to the audio protocol. It has been
deprecated in the newer version. We allowed ffmpeg to autodetect the audio protocol and
encode accordingly. Next, we added the ability to watermark our videos in our application. The
uploader will call the watermark image and send it along with the encoding command. You can
see the following command, which is being fired to encode our video to MP4:

ffmpeg -y -i /home/user/mutube/public/uploads/tmp/1389051112-8075-3957/
mp4_scroll_index.mp4 -vcodec libx264 -s 640x358 -strict experimental
-preset slow -g 30 -vf "movie=/home/user/mutube/mutube.png [logo]; [in]
[logo] overlay= [out]" -aspect 1.7877094972067038 /home/user/mutube/
public/uploads/tmp/1389051112-8075-3957/tmpfile.mp4

We also generated a screenshot. We first checked whether the file already exists or not. We
used FileTest and pointed it to the exact path:

 screenshot_path = "#{Rails.root}/app/assets/images/
screenshots/"+"#{self.slug}_#{self.id}.jpg"

 if FileTest.exists?(screenshot_path)

 @screenshot = screenshot_path

To generate the screenshot, we used the streamio-ffmpeg library:

 video_file = FFMPEG::Movie.new("#{Rails.root}/public/"+self.video.
url(:mp4))

 @screenshot = video_file.screenshot("#{Rails.root}/app/assets/
images/screenshots/"+"#{self.slug}_#{self.id}.jpg")

 end

 end

Project 9

299

Displaying the video panel and
playing the video

Displaying and playing videos has been a challenge for a long time. Flash has dominated the
game all along and still powers most of the major websites. However, flash has not been
good at optimization for mobile devices. HTML5 then released a fresh set of standards
including MP4 and OGV for video, AAC, and OGG for audio. We will use these standards to
display the video along with the video.js library.

Engage thrusters
We will display the uploaded videos in this task:

1.	 We will first download the latest version of video.js (download it from http://
www.videojs.com/downloads/video-js-4.4.2.zip) and unzip it. We will
place it under ourjavascripts folder under app/assets/. We will load it to our
manifest file:

app/assets/javascripts/application.js
//= require jquery
//= require jquery_ujs
//= require twitter/bootstrap
//= require video
//= require turbolinks
//= require_tree

2.	 We will copy the video-js.css file to the stylesheets folder under app/
assets/ and add it's reference to the CSS manifest file:

app/assets/stylesheets/application.css
*= require_self
 *= require twitter/bootstrap
 *= require video-js
 *= require sticky-footer-navbar
 *= require font-awesome
 *= require_tree .
 */

3.	 We will also have to place video-js.swf in our Rails application root.

4.	 We will start by adding the initialization code to the show.html.erb file:

app/views/videos/show.html.erb
<script>
 videojs.options.flash.swf = "#{Rails.root}/video-js.swf";
</script>

Video Streaming Website using Rails and HTML5

300

5.	 We will need to create a video element in our show.html.erb and load video.js
default skin. We will also load the MP4 version of the video:

app/views/videos/ show.html.erb
<div class="row">
 <div class="col-lg-8">
 <h3><%= @video.title %></h3>
 <video id="video_1" class="video-js vjs-default-skin"
controls preload="none" width="640" height="264"
 data-setup="{}">
 <source src="<%=@video.video.url(:mp4)%>" type='video/mp4' />
 </video>

 <p><%= @video.description %></p>
 </div>
 </div>

We will now reload our page to see the video:

6.	 In order to increase the engagement of our website, we will display all the videos
other than the current video in our show page.

7.	 We will first write a class method to find all videos other than the current video
being viewed:

 app/models/video.rb
 def self.get_other_videos(video_id)
 videos = Video.where.not(id: video_id) rescue []
 return videos
 end

Project 9

301

8.	 We will make a call on this method in the videos_controller.rb file:

app/controllers/videos_controller.rb
def show
 @videos = Video.get_other_videos(@video.id)
end

9.	 Then, we will loop through these videos and display them as a list on the right-hand
side of the page. We will also create a helper to display the screenshot for
each video:

app/helpers/videos_helper.rb
module VideosHelper
 def display_screenshot(video_slug,video_id)
 "screenshots/#{video_slug}_#{video_id}.jpg"
 end
end
app/views/app/show.html.erb
 <div class="row">
 <div class="col-lg-8">
 <h3><%= @video.title %></h3>
 <video id="example_video_1" class="video-js vjs-default-
skin" controls preload="none" width="640" height="264"
 data-setup="{}">
 <source src="<%=@video.video.url(:mp4)%>" type='video/mp4' />
 </video>

 <p><%= @video.description %></p>
 </div>
 <div class="col-lg-4">
 <h3>Other Videos</h3>
 <% @videos.each do |video| %>
 <h3><%=link_to video.title, video %></h3>
 <% video.video_screenshot%>
 <p><%= image_tag display_screenshot(video.slug,video.id)
, :width => 200, :height => 150 %></p>
 <p><%= link_to 'See this Video »'.html_safe
,video, :class=>"btn btn-success"%></p>
 <%end%>
 </div>
 </div>

Video Streaming Website using Rails and HTML5

302

10.	 The following screenshot displays the videos on the right-hand side of the screen:

Objective complete – mini debriefing
In this task, we used the video.js library to display the uploaded and encoded video. We
added the appropriate JavaScript and CSS to the application.js and application.css
files. After that, we initiated videojs with options. We kept video-js.swf in order to keep
a fallback for browsers that do not support the HTML5 video as yet:

<script>
 videojs.options.flash.swf = "#{Rails.root}/video-js.swf";
</script>

Then we created a video element to load the video on it:

 <video id="video_1" class="video-js vjs-default-skin" controls
preload="none" width="640" height="264"
 data-setup="{}">
 <source src="<%=@video.video.url(:mp4)%>" type='video/mp4' />
 </video>

We also created a helper method to create our screenshot path and called it in our view.

The video element has been introduced in HTML5 as a native HTML tag. By default, it
supports MP4 and OGV formats. The work on video support is still in progress but most
modern browsers such as Chrome and Firefox support it fully. Video.js forms a layer on
top of the HTML5 element and modifies it to fall back to flash for older browsers and provide
more advanced options for video control. It also gives a lot of flexibility to change the skins
of the video player.

Project 9

303

As part of HTML5 video standard, multiple device compatibility comes inbuilt. We will test
our application on devices other than the desktop. The first test is done on iPad Retina,
running iOS 7. The video works flawlessly on it as shown in the following screenshot:

We will do the second test on an Android phone, running the Android 4.2.2 Jelly Bean as
shown in the following screenshot:

Video Streaming Website using Rails and HTML5

304

We are using the friendly_id gem to generate slugs, so the params[:id] will pass the
name of slug instead of id as the gem modifies the to_param method in Rails to call the
name attribute instead of id. In order to access the id attribute in the show method, we
have used the video object directly:

def show
 @videos = Video.get_other_videos(@video.id)
 end

We queried our database to get videos other than the current video. Our query omits the
video_id and finds all videos except the current one. We will use the catch a nil exception
using rescue.nil in order to avoid failures caused due to nil records:

videos = Video.where.not(id: video_id) rescue nil

Also, we can see the watermark now, the one we created in our previous task, on the top-left
side of the screen in the following screenshot:

Caching the content – text and video
In this task, we will look at some of the newer techniques of caching. Russian Doll Caching
was introduced in Rails 3.2 and is now used in Rails 4 as the main mechanism of page and
fragment caching. It also implements the usage of cache digest. This will lead to effective
versioning of cached items even if someone misses out on adding the right version of cache
while writing the code.

Project 9

305

Engage thrusters
We will now take steps to add specific caching mechanisms to our application:

1.	 In our video model, we will add ActiveRecord's touch method to keep the served
content fresh:

class Video < ActiveRecord::Base
 belongs_to :user, touch: true
 mount_uploader :video, VideoUploader
 extend FriendlyId
 friendly_id :title, use: :slugged

 def video_screenshot
 screenshot_path = "#{Rails.root}/app/assets/images/
screenshots/"+"#{self.slug}_#{self.id}.jpg"
 if FileTest.exists?(screenshot_path.to_s)
 @screenshot = screenshot_path.to_s
 else
 video_file = FFMPEG::Movie.new("#{Rails.root}/public"+self.
video.url(:mp4))
 @screenshot = video_file.screenshot(screenshot_path.to_s)
 end
 end

 def self.get_other_videos(video_id)
 videos = Video.where.not(id: video_id) rescue nil
 return videos
 end
end

2.	 We will then cache the various fragments of our view. Our home page has two parts
as shown in the following screenshot:

Video Streaming Website using Rails and HTML5

306

3.	 In order to keep up with the template changes, we will create versions for our
cache. The first segment is the video itself. We will cache video.title, video.
description, and video object:

app/views/videos/show.html.erb
 <% cache ["v1",@video] do %>
 <div class="row">
 <div class="col-lg-8">
 <h3><%= @video.title %></h3>
 <video id="example_video_1" class="video-js vjs-default-
skin" controls preload="none" width="640" height="264"
 data-setup="{}">
 <source src="<%=@video.video.url(:mp4)%>" type='video/mp4' />
 </video>

 <p><%= @video.description %></p>
 </div>
 <% end %>

4.	 The second segment for caching is the right-hand side bar where we display the
videos. We will cache the @videos object, video title, and also the screenshot
for all the videos:

app/views/videos/show.html.erb
<% cache ["v1",@videos] do%>
 <div class="col-lg-4">
 <h3>Other Videos</h3>
 <% @videos.each do |video| %>
 <h3><%=link_to video.title, video %></h3>
 <% video.video_screenshot%>
 <p><%= image_tag "screenshots/#{video.slug}_#{video.id}.
jpg", :width => 200, :height => 150 %></p>
 <p><%= link_to 'See this Video »'.html_safe
,video, :class=>"btn btn-success"%></p>
 <%end%>
 </div>
 </div>
 <% end %>

5.	 We will precompile our assets, boot them into production, and reload our page:

$ bundle exec rake assets:precompile

Project 9

307

6.	 We can see the command-line output, as shown in the following screenshot, after
booting into production:

7.	 In case someone misses the version number in the cache definition, it will lead to
an error. Hence, we will make our application version free by removing the versions
that are not required:

app/views/videos/show.html.erb
<% cache @video do %>
 <div class="row">
 <div class="col-lg-8">
 <h3><%= @video.title %></h3>
 <video id="example_video_1" class="video-js vjs-default-
skin" controls preload="none" width="640" height="264"
 data-setup="{}">
<source src="<%=@video.video.url(:mp4)%>" type='video/mp4' />
 </video>

 <p><%= @video.description %></p>
 </div>
 <% end %>
 <% cache @videos do%>
 <div class="col-lg-4">
 <h3>Other Videos</h3>
 <% @videos.each do |video| %>
 <h3><%=link_to video.title, video %></h3>
 <% video.video_screenshot%>

Video Streaming Website using Rails and HTML5

308

 <p><%= image_tag "screenshots/#{video.slug}_#{video.id}.
jpg", :width => 200, :height => 150 %></p>
 <p><%= link_to 'See this Video »'.html_safe
,video, :class=>"btn btn-success"%></p>
 <%end%>
 </div>
 </div>
 <% end %>

8.	 We need to prepare our production configuration to load our asset pipeline first:

config/environments/production.rb
Precompile additional assets.
 # application.js, application.css, and all non-JS/CSS in app/
assets folder are already added.
 config.assets.precompile += ['*.js', '*.css', '*.css.erb']

9.	 After we have prepared our production environment for the cache and asset
pipeline, we will boot our production server and render our show page, where we
enabled the cache. We can see the cache digest for our videos in the page that will
appear in the following screenshot:

Objective complete – mini debriefing
In this task, we used the Russian Doll caching technique to divide the page into fragments
and cache them separately. In order to keep our caching objects free from the complexity of
logged in objects, we have cached only those sections that do not need logging in and ones
that don't depend on session objects whatsoever. We started by adding the touch method
to our video-model association:

 belongs_to :user, touch: true

Project 9

309

The touch method is used to keep the data in the cache fresh. It is particularly useful for
associations. So in our use case, whenever a new video is created by a particular user, the
cache expires and loads with the details of the new video. Also, when a video has been
updated or deleted, the touch method automatically resets the cache and updates it.

Then, we added versioned caching to our page fragments:

<% cache ["v1",@videos] do%>
<% end %>

The cache generates fragments with version numbers as follows:

I, [2014-01-07T07:49:18.018543 #10073] INFO -- : Cache digest for
videos/show.html: 17d26e8a6e5adce61cf3a6d90e1eabd5
I, [2014-01-07T07:49:18.020463 #10073] INFO -- : Read fragment views/
v1/videos/6-20140106233228000000000/17d26e8a6e5adce61cf3a6d90e1eabd5
(0.3ms)
I, [2014-01-07T07:49:18.026462 #10073] INFO -- : Write fragment
views/v1/videos/6-20140106233228000000000/17d26e8a6e5adce61cf3a6d90e1
eabd5 (4.2ms)
I, [2014-01-07T07:49:18.030010 #10073] INFO -- : Read fragment views/
v1/videos/5-20140106233152000000000/17d26e8a6e5adce61cf3a6d90e1eabd5
(0.3ms)

Then we removed the version numbers in order to avoid pitfalls due to versioning. By
default, Rails generates a unique ID and version for cache digests with every render:

<% cache @videos do%>
<% end %>

The cache now generates fragments without version numbers:

I, [2014-01-07T07:33:13.491723 #8193] INFO -- : Read fragment views/
videos/6-20140106233228000000000/8d8424568d7560f7eb85717b3b6e8a71
(0.4ms)
I, [2014-01-07T07:33:13.494620 #8193] INFO -- : Read fragment views/
videos/5-20140106233152000000000/8d8424568d7560f7eb85717b3b6e8a71
(0.3ms)

In order to expire or invalidate the cache, we can simply add the expires_in option:

 <% cache [@videos, expires_in: 30.minutes] do%>

It should also be noted that we can add race_condition_ttl along with our expires_
in option to avoid something called the dogpile effect. This happens when there are two
simultaneous requests and there is a possibility that the cache ID generated for both
requests could be the same.

Video Streaming Website using Rails and HTML5

310

Queuing the job
Video uploading and encoding might sometimes take a lot of time while processing,
depending on the size of the video, the kind of Internet connection, and upload bandwidth
of the user. In this case, waiting for the video to upload in order to go to other pages could
be a very annoying experience for the user. In order to enhance the user experience, we can
run our encoding as a background job and make an asynchronous queue of videos in order
to schedule and encode them as we do other tasks. We will use Sidekiq to generate queues
and manage the background processing; we will connect it to the carrierwave gem.

Prepare for lift off
1.	 We will start by installing Redis on our machine. We will download the latest copy of

the Redis source and build it from its source:

$ wget http://download.redis.io/redis-stable.tar.gz

$ tar xvzf redis-stable.tar.gz

$ cd redis-stable

redis-stable$ make

We will then start the Redis server:

$ redis-server

2.	 This installation works for Linux- and Mac OS X-based systems. For further details on
this, you can visit the Redis download page at http://redis.io/download.

3.	 We will test the Redis configuration by pinging the redis-cli command:

$ redis-cli ping

PONG

4.	 Add redis to our application's Gemfile and run bundle install:

'redis', '>= 3.0.6'

'redis-namespace', '>= 1.3.1'

5.	 Create an initializer to connect to the local redis instance:

config/initializers/redis.rb

$redis = Redis.new(:host => 'localhost', :port => 6379)

Project 9

311

6.	 We will test the connection to Redis from our Rails console:

mutube$ rails c

Loading development environment (Rails 4.0.2)

1.9.3-p327 :001 > $redis

 => #<Redis client v3.0.6 for redis://localhost:6379/0

7.	 Redis is now working within our application, and we can now go ahead with our
Sidekiq installation.

Engage thrusters
In the following steps, we will add a queuing mechanism to our application:

1.	 Add sidekiq to the Gemfile and run bundle install:

Gemfile

gem 'sidekiq'

2.	 Once the bundle is successful, we will also need to add a carrierwave extension
to run the background job:

Gemfile

gem 'carrierwave_backgrounder'

3.	 We will generate the initializer once the gem is successfully installed:

 mutube$ rails g carrierwave_backgrounder:install

 create config/initializers/carrierwave_backgrounder.rb

By default, delayed_job is used as the backend for carrierwave_
backgrounder with :carrierwave as the queue name.

To change this, edit config/initializers/carrierwave_backgrounder.rb.

4.	 In the initializer for carrierwave_backgrounder.rb, we will define sidekiq as
the queuing methodology and carrierwave as the default queue name:

config/initializers/carrierwave_backgrounder.rb
CarrierWave::Backgrounder.configure do |c|
 #c.backend :delayed_job, queue: :carrierwave
 # c.backend :resque, queue: :carrierwave
 c.backend :sidekiq, queue: :carrierwave
 # c.backend :girl_friday, queue: :carrierwave
 # c.backend :sucker_punch, queue: :carrierwave
 # c.backend :qu, queue: :carrierwave
 # c.backend :qc
end

Video Streaming Website using Rails and HTML5

312

5.	 We will include the CarrierWave::Backgrounder module in our uploader:

app/uploaders/video_uploader.rb
class VideoUploader < CarrierWave::Uploader::Base
 include CarrierWave::MimeTypes
 include CarrierWave::Video
 include ::CarrierWave::Backgrounder::Delay
 storage :file
 def store_dir
 "uploads/#{model.class.to_s.underscore}/#{mounted_as}/#{model.
id}"
 end
 DEFAULTS = {
 watermark: {
 path: Rails.root.join('mutube.png')
 }
 }
 version :mp4 do
 process :encode
 end
 version :screenshot do
 process :screenshot
 end
 def encode
 encode_video(:mp4, DEFAULTS) do |movie, params|
 if movie.height < 720
 params[:watermark][:path] = Rails.root.join('mutube.png')
 end
 end
 end
 def extension_white_list
 %w(mp4 ogv avi)
 end
end

6.	 We will load this module onto our model using a method called process_in_
background and call our uploader in it:

app/models/video.rb
class Video < ActiveRecord::Base
 belongs_to :user, touch: true
 mount_uploader :video, VideoUploader
 extend FriendlyId
 friendly_id :title, use: :slugged
 process_in_background :video

Project 9

313

def video_screenshot
 screenshot_path = "#{Rails.root}/app/assets/images/
screenshots/"+"#{self.slug}_#{self.id}.jpg"
 if FileTest.exists?(screenshot_path.to_s)
 @screenshot = screenshot_path.to_s
 else
 video_file = FFMPEG::Movie.new("#{Rails.root}/public"+self.
video.url(:mp4))
 @screenshot = video_file.screenshot(screenshot_path.to_s)
 end
end
def self.get_other_videos(video_id)
 videos = Video.where.not(id: video_id) rescue nil
 return videos
 end
end

7.	 We will now load our console and make a test call on our Sidekiq method to check
whether everything is fine or not:

Loading development environment (Rails 4.0.2)

1.9.3-p327 :001 > Sidekiq::Client.registered_workers

2014-01-05T10:56:01Z 20119 TID-2dbz4 INFO: Sidekiq client using
redis://localhost:6379/0 with options {}

 => []

8.	 Looks good! So we can now fire up our Sidekiq server:

$ bundle exec sidekiq -q carrierwave,5 default

2014-01-06T23:10:41Z 4735 TID-5rkyo INFO: Booting Sidekiq 2.14.0
using redis://localhost:6379/0 with options {}

2014-01-06T23:10:41Z 4735 TID-5rkyo INFO: Running in ruby
1.9.3p327 (2012-11-10 revision 37606) [x86_64-linux]

2014-01-06T23:10:41Z 4735 TID-5rkyo INFO: See LICENSE and the
LGPL-3.0 for licensing details.

2014-01-06T23:10:41Z 4735 TID-5rkyo INFO: Starting processing, hit
Ctrl-C to stop

2014-01-06T23:10:43Z 4735 TID-c6ffw CarrierWave::Workers::ProcessA
sset JID-c565e44604416585b8a01a8e INFO: start

2014-01-06T23:10:43Z 4735 TID-c8hgc CarrierWave::Workers::ProcessA
sset JID-7491d6a930d19b5f593197d8 INFO: start

2014-01-06T23:10:44Z 4735 TID-c6ffw CarrierWave::Workers::ProcessA
sset JID-c565e44604416585b8a01a8e INFO: done: 1.044 sec

2014-01-06T23:10:44Z 4735 TID-c8hgc CarrierWave::Workers::ProcessA
sset JID-7491d6a930d19b5f593197d8 INFO: done: 1.04 sec

Video Streaming Website using Rails and HTML5

314

9.	 We will now try to upload a video and see how the process looks in our console:

10.	 We will also enable the web interface for Sidekiq. For this, we need sinatra. In our
Gemfile, add sinatra and run bundle install:

Gemfile

gem 'sinatra', '>= 1.3.0', :require => nil

11.	 Mount the Sidekiq route in our application routes:

config/routes.rb
require 'sidekiq/web'
MuTube::Application.routes.draw do
 devise_for :users
 get "home/index"
 resources :videos
 mount Sidekiq::Web => '/sidekiq'
 root 'videos#index'
end

Project 9

315

12.	 Reboot the server and browse to http://localhost:3000/sidekiq/. We can
now see the Sidekiq job management dashboard in the following screenshot:

Objective complete – mini debriefing
Before we began the task, we prepared our system to run Redis. This is a dependency to run
Sidekiq. It is worth noting that most of the job queues use Redis as a choice of persistence.
This is because Redis is fast, easy to manage, and is document-oriented. Sidekiq has other
popular alternatives as well, for example, resque and delayed job. The reasons we chose
Sidekiq over the other two were as follows:

ff Delayed job has no management dashboard

ff Resque is known to be more memory inefficient than Sidekiq

Though we need to make sure our code is threadsafe with Sidekiq, as it inherently does not
protect itself from non-threadsafe objects, it still is good enough for most tasks as it occupies
much less memory than its peers. The following is an example of the Sidekiq dashboard,
which even provides reports for jobs:

Video Streaming Website using Rails and HTML5

316

We first enabled sidekiq with the carrierwave queue.

c.backend :sidekiq, queue: :carrierwave

Then, we loaded the module for queues in our uploader:

include ::CarrierWave::Backgrounder::Delay

Furthermore, we enabled a background job in the model. So now when we upload a video, it
is immediately sent to a queue. Untill then, we can proceed to do other tasks as the video is
being encoded and worked on in the backend. We do have to make sure, however, that the
server for Sidekiq needs to be up all the time. The other purposes of using queues could be
mailing newsletters or reindexing solr.

Mission accomplished
We have successfully created an app where we can upload and encode a video, then display
it. Let's have a quick recap of what we did.

Some of the areas we covered in this project are as follows:

ff We created a Rails app, video model, and uploader. We also added methods to
create slugs using the friendly_id gem.

ff We restricted the formats of videos to be uploaded.

ff We installed ffmpeg and its dependencies.

ff We used customized carrierwave-video to suit our needs for encoding the
video. We transcoded the videos to the MP4 format.

ff In order to display the video, we used video.js.

ff We made sure it works on multiple devices and platforms.

ff We used Russian Doll caching to cache our videos, screenshots, and text.

ff We used Sidekiq to create and manage queues for multiple video uploads.

We are using ffmpeg that is compiled from the source. If we are using it for production, we
need to be very sure about fixing a version for a long time. This is because command-line flags
and encoding filenames in ffmpeg change very often, and there are several deprecations
between versions. To check the current configuration of ffmpeg, we will run the following
code:

$ ffmpeg
ffmpeg version git-2014-01-01-07728a1 Copyright (c) 2000-2013 the
FFmpeg developers
 built on Jan 1 2014 20:16:31 with gcc 4.8 (Ubuntu/Linaro
4.8.1-10ubuntu9)

Project 9

317

 configuration: --prefix=/home/rwub/ffmpeg_build --extra-cflags=-I/
home/rwub/ffmpeg_build/include --extra-ldflags=-L/home/rwub/ffmpeg_
build/lib --bindir=/home/rwub/bin --extra-libs=-ldl --enable-gpl
--enable-libass --enable-libfdk-aac --enable-libmp3lame --enable-
libopus --enable-libtheora --enable-libvorbis --enable-libvpx
--enable-libx264 --enable-nonfree --enable-x11grab --enable-libfaac
 libavutil 52. 59.100 / 52. 59.100
 libavcodec 55. 47.100 / 55. 47.100
 libavformat 55. 22.102 / 55. 22.102
 libavdevice 55. 5.102 / 55. 5.102
 libavfilter 4. 0.103 / 4. 0.103
 libswscale 2. 5.101 / 2. 5.101
 libswresample 0. 17.104 / 0. 17.104
 libpostproc 52. 3.100 / 52. 3.100
Hyper fast Audio and Video encoder
usage: ffmpeg [options] [[infile options] -i infile]... {[outfile
options] outfile}...
Use -h to get full help or, even better, run 'man ffmpeg'

MP4 encoding is a tricky thing using ffmpeg. By default, MP4 hinting is not set (hinting
allows the video to be streamed as soon as it completes to load by setting a flag). This
disables the autoplay completely, as it looks to download the entire file before it starts
playing. MP4Box or Nginx MP4 streaming can be used for this purpose. We need to make
sure of the following factors:

ff Make sure the file size limit is defined and is enough for videos to be uploaded

ff Allow incoming files while uploading

Hotshot challenges
We created a fully functional video platform that can be used to upload and manage videos.
We can extend it further to make it even cooler:

ff Allow encoding to the OGV and Theora format of the uploaded videos

ff Expire the cache key after 5 minutes

ff Add custom skins to video.js

ff Enable automatic retry in case the job fails

ff If the file size of video is very small, then bypass the background job

Project 10
A Rails Engines-based
E-Commerce Platform

Rails provides an effective way to extend the functionality of applications in a plug-and-play
fashion. This is called Rails Engines. Earlier Rails versions had engines and plugins (which are
located at app/vendor/plugins), but Rails 4 has completely deprecated the use of plugins
in Rails apps. Compared to plugins, engines are cleaner in terms of their definition, have a
proper testing structure, and can be more easily customized.

Mission briefing
In this section, we will create a Rails engine to generate an e-commerce application. Once
ready, we will add the entire application as a gem and mount it on the main application. As
soon as we do this, we will get all the basic features of a shopping cart application. This will
allow users to maintain the application and maintain a collection of multiple modules. The
application will have different moving parts that need to be upgraded on a frequent basis,
as and when they are updated by their respective maintainers.

Why is it awesome?
There are several examples of successful, feature-packed Rails engines such as Devise, Spree
Commerce, and LocomotiveCMS. These engines have given users an easy way to incorporate
really advanced functionality such as an authentication system, a fully featured e-commerce
engine, and a content management system tucked inside a Ruby gem.

A Rails Engines-based E-Commerce Platform

320

The following screenshot shows us what the designed application looks like:

At the end of these tasks, we will have a Rails engine that can be mounted on a
Rails application.

Your Hotshot objectives
While building this application, we will go through the following tasks:

ff Creating a category and product listing

ff Creating a shopping cart and an add to cart feature

ff Packaging the engine as a gem

ff Mounting the engine on a blank Rails application

ff Customizing and overriding the default classes

Mission checklist
We need the following software installed on the system before we start with our mission:

ff Ruby 1.9.3 / Ruby 2.0.0

ff Rails 4.0+

ff MongoDB 2.4

ff Devise

ff Bootstrap 3.0

ff Git

ff jQuery

Project 10

321

Creating a category and product
listing

In the first task, we will deal with the creation of a Rails engine. We will create a product and
category to list our products as we are creating an e-commerce engine. We will see how to
add a carrierwave uploader for uploading product images inside the engine and add it as
a dependency to our application. At the end of this, we will understand why we selected a
mountable Rails engine instead of a full Rails engine.

Engage thrusters
We will first create the backbone of our Rails engine by performing the steps:

1.	 We will generate a mountable engine as opposed to a full Rails engine.

$rails plugin new ecom --mountable --O
 create
 create README.rdoc
 create Rakefile
 create ecom.gemspec
 create MIT-LICENSE
 create .gitignore
 create Gemfile
 create app
 create app/controllers/ecom/application_controller.rb
 create app/helpers/ecom/application_helper.rb
 create app/mailers
 create app/models
 create app/views/layouts/ecom/application.html.erb
 create app/assets/images/ecom
 create app/assets/images/ecom/.keep
 create config/routes.rb
 create lib/ecom.rb
 create lib/tasks/ecom_tasks.rake
 create lib/ecom/version.rb
 create lib/ecom/engine.rb
 create app/assets/stylesheets/ecom/application.css
 create app/assets/javascripts/ecom/application.js
 create bin
 create bin/rails
 create test/test_helper.rb
 create test/ecom_test.rb

A Rails Engines-based E-Commerce Platform

322

 append Rakefile
 create test/integration/navigation_test.rb
 vendor_app test/dummy
 run bundle install
Fetching gem metadata from https://rubygems.org/...........
Fetching gem metadata from https://rubygems.org/..
Resolving dependencies...
Using rake (10.1.1)
Using i18n (0.6.9)
Using minitest (4.7.5)
Using multi_json (1.8.2)
Using atomic (1.1.14)
Using thread_safe (0.1.3)
Using tzinfo (0.3.38)
Using activesupport (4.0.2)
Using builder (3.1.4)
Using erubis (2.7.0)
Using rack (1.5.2)
Using rack-test (0.6.2)
Using actionpack (4.0.2)
Using mime-types (1.25.1)
Using polyglot (0.3.3)
Using treetop (1.4.15)
Using mail (2.5.4)
Using actionmailer (4.0.2)
Using activemodel (4.0.2)
Using activerecord-deprecated_finders (1.0.3)
Using arel (4.0.1)
Using activerecord (4.0.2)
Using bundler (1.3.5)
Using thor (0.18.1)
Using railties (4.0.2)
Using hike (1.2.3)
Using tilt (1.4.1)
Using sprockets (2.10.1)
Using sprockets-rails (2.0.1)
Using rails (4.0.2)
Using ecom (0.0.1) from source at /home/rwub/rails4-book/
book/6294OS_Chapter_10/ecom
ecom at /home/rwub/rails4-book/book/6294OS_Chapter_10/ecom did not
have a valid gemspec.
This prevents bundler from installing bins or native extensions,
but that may not affect its functionality.
The validation message from Rubygems was:

Project 10

323

 "FIXME" or "TODO" is not an author
Your bundle is complete!
Use `bundle show [gemname]` to see where a bundled gem is
installed.

2.	 As we have skipped ActiveRecord, we need an ORM, so, we will add Mongoid to our
Gemfile and bundle install:

Gemfile

gem 'mongoid', github: 'mongoid/mongoid'

ecom$ bundle install

3.	 We will not run mongoid:config in the Rails engine; we will do this after this
engine is installed in an application.

4.	 In order to use mongoid to generate our models, we need to add it as a module
dependency in our Rails binary. Currently, it looks like the following code:

bin/rails

#!/usr/bin/env ruby
This command will automatically be run when you run "rails" with
Rails 4 gems installed from the root of your application.

ENGINE_ROOT = File.expand_path('../..', __FILE__)
ENGINE_PATH = File.expand_path('../../lib/ecom/engine', __FILE__)

Set up gems listed in the Gemfile.

ENV['BUNDLE_GEMFILE'] ||= File.expand_path('../../Gemfile', __
FILE__)

require 'bundler/setup' if File.exist?(ENV['BUNDLE_GEMFILE'])

require "rails/all"
require 'rails/engine/commands'

5.	 We will modify "rails/all" to load all the modules separately and especially
load mongoid. We will also load rubygems from the gemspec file directly onto the
bin/rails file.

bin/rails

#!/usr/bin/env ruby
This command will automatically be run when you run "rails" with
Rails 4 gems installed from the root of your application.

ENGINE_ROOT = File.expand_path('../..', __FILE__)
ENGINE_PATH = File.expand_path('../../lib/ecom/engine', __FILE__)

Set up gems listed in the Gemfile.

A Rails Engines-based E-Commerce Platform

324

ENV['BUNDLE_GEMFILE'] ||= File.expand_path('../../Gemfile', __
FILE__)

require 'rubygems'

require 'bundler/setup' if File.exist?(ENV['BUNDLE_GEMFILE'])

require "action_controller/railtie"
require "action_mailer/railtie"
require "sprockets/railtie"
require "rails/test_unit/railtie"
require 'rails/engine/commands'
require "mongoid"

6.	 In Rails 4, active_resource/railties is not required, so we will have to make
sure the following line is not included:

require "active_resource/railtie"

7.	 We will also add mongoid as a dependency in our gemspec file:

 ecom/ecom.gemspec

 s.add_dependency "rails", "~> 4.1.0.rc1"
 s.add_dependency "mongoid", "4.0.0.beta1"

8.	 Generate rails scaffold for the products. This will create a model, view, and
controller under the ecom namespace as shown in the following code:

ecom$ rails g scaffold product name:string description:string
base_price:float sku:string
 invoke mongoid
 create app/models/ecom/product.rb
 invoke test_unit
 create test/models/ecom/product_test.rb
 create test/fixtures/ecom/products.yml
 invoke resource_route
 route resources :products
 invoke scaffold_controller
 create app/controllers/ecom/products_controller.rb
 invoke erb
 create app/views/ecom/products
 create app/views/ecom/products/index.html.erb
 create app/views/ecom/products/edit.html.erb
 create app/views/ecom/products/show.html.erb
 create app/views/ecom/products/new.html.erb
 create app/views/ecom/products/_form.html.erb
 invoke test_unit
 create test/controllers/ecom/products_controller_test.rb

Project 10

325

 invoke helper
 create app/helpers/ecom/products_helper.rb
 invoke test_unit
 create test/helpers/ecom/products_helper_test.rb
 invoke assets
 invoke js
 create app/assets/javascripts/ecom/products.js
 invoke css
 create app/assets/stylesheets/ecom/products.css
 invoke css
 create app/assets/stylesheets/scaffold.css

9.	 At this point, we will also set up a mechanism to create search-friendly URLs also
known as slugs for our products:

Gemfile

gem 'mongoid_slug', "3.2"

10.	 In order to make it work on the product model, we will have to include the module
for Mongoid::Slug. We will tell the module to use names to create the slug and
enable the history feature in the URL.

module Ecom

 class Product

 include Mongoid::Document

 include Mongoid::Slug

 field :name, type: String

 field :description, type: String

 field :base_price, type: Float

 field :sku, type: String

 slug :name, history: true

 end
end

11.	 Likewise, we will create a model for categories too.

ecom$ rails g model category title:string
 invoke mongoid
 create app/models/ecom/category.rb
 invoke test_unit
 create test/models/ecom/category_test.rb
 create test/fixtures/ecom/categories.yml

A Rails Engines-based E-Commerce Platform

326

12.	 We will associate categories and products:

app/models/ecom/category.rb

module Ecom
 class Category
 include Mongoid::Document
 field :title, type: String

 has_many :products
 end
end

13.	 We will also associate the product with the category.

app/models/ecom/product.rb

Module Ecom
 class Product
 include Mongoid::Document
 include Mongoid::Slug

 field :name, type: String
 field :description, type: String
 field :base_price, type: Float
 field :sku, type: String
 field :category_id, type: String

 slug :name, history: true
 belongs_to :category
 end
end

14.	 We will follow the same steps to include the carrierwave uploader as we did in our
previous projects. We will run the generator for carrierwave as follows:

ecom$ rails g uploader image
 create app/uploaders/ecom/image_uploader.rb

15.	 Note that the uploader is created in the namespace for the ecom/image_
uploader.rb plugin.

16.	 In order to take our plugin for a test drive, we will directly navigate to the
test/dummy folder, where a dummy application has been created for us
when we generated a new mountable plugin.

17.	 We will run bundle install and configure our database as per Mongoid:

ecom/test/dummy:~/rails g mongoid:config

Project 10

327

18.	 This will generate the mongoid config file. We will then start the server. However,
we will receive the following error:

Unable to autoload constant Ecom::ImageUploader, expected /home/
rwub/.rvm/gems/ruby-1.9.3-p327/bundler/gems/ecom-ed9e6082e731/app/
uploaders/ecom/image_uploader.rb to define it

19.	 This is because carrierwave, by default, creates the engine namespace folder
and places the uploader file in it, but does not modify the uploader file with the
module name.

app/uploaders/ecom/image_uploader.rb
encoding: utf-8
module Ecom
 class ImageUploader < CarrierWave::Uploader::Base

 # Choose what kind of storage to use for this uploader:
 storage :file

 # Override the directory where uploaded files will be stored.
 # This is a sensible default for uploaders that are meant to be
mounted:
 def store_dir
 "uploads/#{model.class.to_s.underscore}/#{mounted_as}/#{model.
id}"
 end
 end
end

Objective complete – mini debriefing
In this task, we created a mountable Rails engine. There are two types of Rails
engines available:

ff A full engine

ff A mountable engine

A full engine is a tightly coupled application, which works as a direct augmentation to the
existing Rails application. This happens because it shares the classes across the application
once included due to the lack of a different namespace. As shown in the following code, a
full Rails engine initializer has a regular engine initializer rule:

ecom/lib/ecom/engine.rb
module Ecom
 class Engine < ::Rails::Engine
 end
end

A Rails Engines-based E-Commerce Platform

328

In our case, we are using a mountable engine so the initializer will have a method called
isolate_namespace. This method will separate model, views, controllers, and all methods
into a namespace called Ecom.

module Ecom
 class Engine < ::Rails::Engine
 isolate_namespace Ecom
 end
end

Everything we see here is included with that namespace.

ecom/app/controllers/ecom$ ls
application_controller.rb categories_controller.rb products_
controller.rb

Because of the namespace, application_controller is added to the controller as a
dependency before it is extended to make the ActionController::Base class available
to all the controllers.

ecom/app/controllers/ecom/products_controller.rb

require_dependency "ecom/application_controller"

module Ecom
 class ProductsController < ApplicationController
 end
end

The main purpose of our engine is to augment an existing application and avoid conflicts
with an application's existing model and controller classes. Hence, we decided to go for
an isolate_namespace mountable engine.

While the plugin was being generated, we saw that a full application to test drive the engine
was also created inside the test folder. We, however, need to add the database config files
in order to run it.

In order to use mongoid inside the Rails engine, we had to manually include the mongoid
module and hence the other Rails modules in it. This is because ActiveRecord is loaded in the
rails/all module inclusion by default. Hence, we explicitly require specific railties that
include mongoid. We also added a method to load rubygems inside our Rails bin file. We
also added mongoid as a dependency to our Rails engine. Railtie is the core of the Rails
framework. ActiveRecord, ActionController, and ActionMailer are all examples
of Railtie and are responsible for initializing themselves. Railtie is essential when
the component needs to communicate with the Rails framework at the time of boot
or even after that.

Project 10

329

We created a method to generate search-friendly URLs using the mongoid-slug gem. We
defined the name field to create the slug and enabled history to retain the URLs even after
they have been updated.

Creating a shopping cart and an Add
to Cart feature

A shopping cart is the most important feature of an e-commerce application. We need
to create a temporary session object in order to store the value of items in the cart. The
standard terminology for products that have been added to the cart is line items. When a
user successfully checks out, line items get transitioned into orders, and they generally live
between sessions. They are also dependent on the completion of the transaction. Once the
transaction is completed or the session is cleared, the line items are deleted.

Prepare for lift off
We will install devise and generate a model for the user as follows:

ecom$ rails g devise:install
 create config/initializers/devise.rb
 create config/locales/devise.en.yml

ecom$ rails g devise user

This will generate the following route in our engine's routes:

config/routes.rb

devise_for :users, :class_name => "Ecom::User"

Engage thrusters
We will create a checkout process in this task, as shown in the following steps:

1.	 We will first add devise to the application. However, we need to modify a few things
in order for it to function seamlessly inside an engine. First, modify the routes:

app/config/routes.rb
 devise_for :users, {
 :class_name => "Ecom::User",
 module: :devise
 }

A Rails Engines-based E-Commerce Platform

330

2.	 Add a router name inside the devise initializer. We will also need to uncomment
secret_key as follows:

app/config/initializer/devise.rb
Devise.setup do |config|
 config.secret_key =
'1c17867bf2d8e469ed713b1249eab0f87c918e0e09b265be6a0ed8bc
01c8f0ebd192387418d60542c96ad42b61fdc8a167ec5843f6cd94e9d
66ee39b33ede703'
 config.parent_controller = 'ActionController::Base'
 config.mailer_sender = 'please-change-me-at-config-initializers-
devise@example.com'
 require 'devise/orm/mongoid'
 config.case_insensitive_keys = [:email]
 config.strip_whitespace_keys = [:email]
 config.skip_session_storage = [:http_auth]
 config.stretches = Rails.env.test? ? 1 : 10
 config.reconfirmable = true
 config.password_length = 8..128
 config.reset_password_within = 6.hours
 config.sign_out_via = :delete
 config.router_name = :ecom
end

3.	 Finally, add devise as a gem dependency as follows:

ecom/ecom.gemspec

 s.add_dependency "rails", "~> 4.1.0.rc1"

 s.add_dependency "mongoid", "4.0.0.beta1"

 s.add_dependency "devise"

4.	 We will generate a model for line items as follows:

$ rails g model line_item product_id:string price:float
 invoke mongoid
 create app/models/ecom/line_item.rb
 invoke test_unit
 create test/models/ecom/line_item_test.rb
 create test/fixtures/ecom/line_items.yml

5.	 We will also generate a model called purchases as shown in the following code.
This model stores the value of orders that are generated as soon as the transaction
is complete:

rails g model purchase user_id:string checked_out_at:time total_
price:float
 invoke mongoid

Project 10

331

 create app/models/ecom/purchase.rb
 invoke test_unit
 create test/models/ecom/purchase_test.rb
 create test/fixtures/ecom/purchases.yml

6.	 First, we will create two associations: the first one between line items and
purchases, and the second one between line items and products. This is because a
product data is imported into a line item, and upon a successful checkout, the line
item is then transformed into a purchase. So, a line item belongs to product and
a purchase has many line items.

app/model/ecom/line_item.rb
module Ecom
 class LineItem
 include Mongoid::Document
 include Mongoid::Timestamps

 field :purchase_id, type: String
 field :product_id, type: String
 field :price, type: Float

 belongs_to :purchase
 belongs_to :product
 end
end

app/model/ecom/product.rb

module Ecom
 class Product
 include Mongoid::Document
 include Mongoid::Slug

 field :name, type: String
 field :description, type: String
 field :base_price, type: Float
 field :sku, type: String

 slug :name, history: true
 belongs_to :category
 has_many :line_items
 mount_uploader :image, ImageUploader
 end
end

A Rails Engines-based E-Commerce Platform

332

app/models/ecom/purchase.rb

module Ecom
 class Purchase
 include Mongoid::Document
 include Mongoid::MultiParameterAttributes
 include Mongoid::Timestamps

 field :user_id, type: String
 field :checked_out_at, type: DateTime
 field :total_price,type: Float

 has_many :line_items, :dependent => :destroy
 belongs_to :user
 end
end

7.	 Finally, we will add an association between the user and the purchase:

app/models/ecom/user.rb

module Ecom
 class User
 include Mongoid::Document
 include Mongoid::Timestamps

 # Include default devise modules. Others available are:
 # :confirmable, :lockable, :timeoutable and :omniauthable
 devise :database_authenticatable, :registerable,
 :recoverable, :rememberable, :trackable, :validatable

 ## Database authenticatable
 field :email, :type => String, :default => ""
 field :encrypted_password, :type => String, :default => ""

 ## Recoverable
 field :reset_password_token, :type => String
 field :reset_password_sent_at, :type => Time

 ## Rememberable
 field :remember_created_at, :type => Time

 ## Trackable
 field :sign_in_count, :type => Integer, :default => 0
 field :current_sign_in_at, :type => Time
 field :last_sign_in_at, :type => Time
 field :current_sign_in_ip, :type => String
 field :last_sign_in_ip, :type => String

Project 10

333

 ## Confirmable
 # field :confirmation_token, :type => String
 # field :confirmed_at, :type => Time
 # field :confirmation_sent_at, :type => Time
 # field :unconfirmed_email, :type => String # Only if using
reconfirmable

 ## Lockable
 # field :failed_attempts, :type => Integer, :default => 0 # Only
if lock strategy is :failed_attempts
 # field :unlock_token, :type => String # Only if unlock
strategy is :email or :both
 # field :locked_at, :type => Time

 has_many :purchases, :dependent => :destroy
 end
end

8.	 We will now create a cart controller to display the cart and carry out certain
functions such as checkout:

$ rails g controller cart show
 create app/controllers/ecom/cart_controller.rb
 route get "cart/show"
 invoke erb
 create app/views/ecom/cart
 create app/views/ecom/cart/show.html.erb
 invoke test_unit
 create test/controllers/ecom/cart_controller_test.rb
 invoke helper
 create app/helpers/ecom/cart_helper.rb
 invoke test_unit
 create test/helpers/ecom/cart_helper_test.rb
 invoke assets
 invoke js
 create app/assets/javascripts/ecom/cart.js
 invoke css
 create app/assets/stylesheets/ecom/cart.css

9.	 In order to create the line item, we will add a class method in our line_item
model as follows:

app/models/line_item.rb

 def self.make_items(purchase_id, product_id, price)

 LineItem.create(purchase_id: purchase_id, product_id:
product_id, price: price)

 end

A Rails Engines-based E-Commerce Platform

334

10.	 While shopping, a user can add multiple products to the cart. Every time the user
adds an item, the price is recalculated, as shown in the following code:

app/models/ecom/purchase.rb

def recalculate_price!

 self.total_price = line_items.inject(0.0){|sum, line_item| sum
+= line_item.price }

 save!

 end

11.	 We will now create methods to add and remove line items from the cart and add a
way to pass the objects to the checkout page:

app/controllers/ecom/cart_controller.rb
require_dependency "ecom/application_controller"

module Ecom
 class CartController < ApplicationController
 before_filter :authenticate_user!
 before_action :get_cart_value

 def add
 @cart.save
 session[:cart_id] = @cart.id
 product = Product.find(params[:id])
 item = LineItem.new
 item.make_items(@cart.id, product.id, product.base_price)
 @cart.recalculate_price!

 flash[:notice] = "Product Added to Cart"
 redirect_to cart_path
 end

 def remove
 item = @cart.line_items.find(params[:id])
 item.destroy
 @cart.recalculate_price!
 flash[:notice] = "Product Deleted from Cart"
 redirect_to cart_path
 end

 protected

 def get_cart_value
 if session[:cart_id].nil?
 @cart = Purchase.create
 session[:cart_id] = @cart.id

Project 10

335

 @cart
 else
 @cart = Purchase.find(session[:cart_id])
 end
 end

 end
end

12.	 We will display all the items in the cart on the cart page:

app/views/ecom/cart/show.html.erb
<h1>Shopping Cart</h1>

<% unless @cart.line_items.any? %>
 <p>You don't have any items in your cart. <%= link_to "Go Add
Some", products_path %>
<% end %>

<table width="100%">
 <tr>
 <th>Product</th>
 <th>Price</th>
 </tr>
 <% for line_item in @cart.line_items %>
 <tr>
 <td><%= line_item.product.name %></td>
 <td><%= number_to_currency line_item.price %></td>
 <td><%= link_to "Remove", remove_from_cart_path(line_item),
:method => :post %></td>
 </tr>
 <% end %>
 <tr>
 <td>Total:</td>
 <td><%= number_to_currency @cart.total_price %></td>
 </tr>
</table>

<hr />
<%= form_tag checkout_path, :style => "text-align: right" do |f|
%>
 <%= link_to "Continue Shopping", root_path %>
 or
 <%= submit_tag "Checkout" %>
<% end %>

A Rails Engines-based E-Commerce Platform

336

13.	 To tie it all together, we will add routes for our cart controller:

config/routes.rb
 get "cart" => "cart#show"
 post "cart/add/:id" => "cart#add", :as => :add_to_cart
 post "cart/remove/:id" => "cart#remove", :as => :remove_from_
cart

14.	 In our product page, we will add a button for adding items to the cart:

app/views/ecom/products/index.html.erb
<div class="row">
 <% @products.each do |product| %>
 <div class="col-lg-4">
 <h3><%=link_to product.name, product %></h3>
 <p><%= image_tag product.image.url %></p>
 <p>Price: <%= product.base_price %></p>
 <p><%= product.description %></p>
 <p><%=link_to(image_tag("ecom/add-to-cart-button.png"),
add_to_cart_path(product.id)) %></p>
 </div>
 <%end%>

app/views/ecom/products/show.html.erb
<p id="notice"><%= notice %></p>

<p>
 <h2><%= @product.name %></h2>
</p>

<p>
 Sku:
 <%= @product.sku %>
</p>

<p>
 Price:
 <%= @product.base_price %>
</p>

<p>
 <%=image_tag @product.image.url %>
</p>

<p><%=link_to(image_tag("ecom/add-to-cart-button.png"), add_to_
cart_path(@product.id)) %></p>

Project 10

337

Objective complete – mini debriefing
In this task, we created a very basic cart function. The logic behind a cart function is
that it should be valid throughout the user session. That way the user has the flexibility to
add and remove products at will while shopping. In addition, we added two more models:
line_item and purchase. While in the cart, we need to keep a track of the details of the
products that are in the cart; we used the line item to do this.

We first made devise aware of the namespace of our model through our routes:

Ecom/config/routes.rb
App/config/routes.rb
 devise_for :users, {
 :class_name => "Ecom::User",
 module: :devise
 }

We want to check whether devise is bundled with the engine or not, so we will add it as a
dependency in our gemspec file:

ecom/ecom.gemspec

 s.add_dependency "devise"

In order to stick with a specific version to retain its compatibility, we can define the version
of the dependency:

s.add_dependency "devise", "3.2.3"

We added a protected method to check if the session variable for cart_id has a value or
not. If the value is not present, we will create a new object for the order, as shown in the
following code:

ecom/controllers/ecom/cart_controller.rb
 before_action :get_cart_value

protected

 def get_cart_value
 if session[:cart_id].nil?
 @cart = Purchase.create
 session[:cart_id] = @cart.id
 @cart
 else
 @cart = Purchase.find(session[:cart_id])
 end
 end

A Rails Engines-based E-Commerce Platform

338

Furthermore, we created an add method in cart_controller.rb. We will persist
cart_id in the session. The purchase or order is the collection of products that a user
is purchasing. So, all those values will be associated to session[:cart_id].

def add
 @cart.save
 session[:cart_id] = @cart.id
 product = Product.find(params[:id])
 item = LineItem.new
 item.make_items(@cart.id, product.id, product.base_price)
 @cart.recalculate_price!
 flash[:notice] = "Product Added to Cart"
 redirect_to cart_path
end

We also added a method to call the line_item model, and call this model on the item
object in cart_controller. Mongoid's create method allows us to directly pass the
parameters and create a record, as shown in the following code:

 def self.make_items(purchase_id, product_id, price)

 LineItem.create(purchase_id: purchase_id, product_id: product_
id, price: price)

 end

Every time a product is added to the cart, we need to recalculate the total price of the order.
We created line_items.inject and recursively added the product prices to calculate the
total price. The inject method accepts an array (line_items) as the input. It reads the
entire array element by element (line_item) and accepts a block (sum). So, the inject
method will load the entire line_items array and initiate a block called sum with a value
0.0. When the first line_item array is read, the sum function is encountered and the value
is added to the sum block. When the inject method traverses the next line_item array,
the value is added to the last updated value in the sum block, as shown in the following code:

ecom/model/ecom/purchase.rb

 def recalculate_price!
 self.total_price = line_items.inject(0.0){|sum, line_item| sum
+= line_item.price }
 save!
 end

Project 10

339

Packaging the engine as a gem
GitHub and RubyGems are the best way to host our Gems. Rubygems hosts the gem server
from where people can directly install it. GitHub can be used to host the source code of
the gem. We will first edit our gem and make it ready for packaging. Then, we will pack
and upload it on the rubygems website.

Prepare for lift off
In order to perform this task you need to have a rubygems account and need to set it up on
your local machine, as mentioned in the following steps:

1.	 First sign up for your account at http://rubygems.org/sign_up.

2.	 Then, you need to set it up on your machine through your console. Please make sure
you put your handle in place of <handle> in the following code:

$ curl -u <handle>
https://rubygems.org/api/v1/api_key.yaml >
~/.gem/credentials; chmod 0600 ~/.gem/credentials

Enter host password for user '<handle>':

A Rails Engines-based E-Commerce Platform

340

Engage thrusters
We will pack our newly created gem in this task:

1.	 In order to run the Rails engine, we need to add its base route to the routes.rb
file of our Rails application. However, instead of asking the user to do this manually,
we will create a generators folder inside the lib folder:

Ecom/lib$ mkdir generators
Ecom/lib$ cd generators
ecom/lib/generators$ mkdir ecom
ecom/lib/generators$ mkdir templates

2.	 Inside ecom/lib/generators, we will create our install generator, as shown in
the following code:

class Ecom::InstallGenerator < ::Rails::Generators::Base
 include Rails::Generators::Migration
 source_root File.expand_path('../templates', __FILE__)
 desc "Installs Ecom Store"

end

3.	 We will create an install method to add a line to the routes.rb file of our
application and copy our locales to the application's locales folder:

Ecom/lib/generators/ecom/install_generator.rb

class Ecom::InstallGenerator < ::Rails::Generators::Base
 include Rails::Generators::Migration
 source_root File.expand_path('../templates', __FILE__)
 desc "Installs Ecom Store"

 def install
 route 'mount Ecom::Engine => "/store"'
 copy_file "../../../../config/locales/en.yml", "config/
locales/ecom.en.yml"
 end
end

4.	 We will edit the ecom.gemspec file to add details. Make sure you add all the
dependencies for the application here. Without these dependencies, the gem will
not work.

$:.push File.expand_path("../lib", __FILE__)

Maintain your gem's version:
require "ecom/version"

Project 10

341

Describe your gem and declare its dependencies:
Gem::Specification.new do |s|
 s.name = "ecom"
 s.version = Ecom::VERSION
 s.authors = ["Saurabh Bhatia"]
 s.email = ["saurabh.a.bhatia@gmail.com"]
 s.homepage = "http://fedible.org"
 s.summary = "A Complete Ecommerce Application"
 s.description = "A Rails plugin to create an Ecommerce
Application"

 s.files = Dir["{app,config,db,lib}/**/*", "MIT-LICENSE",
"Rakefile", "README.rdoc"]
 s.test_files = Dir["test/**/*"]

 s.add_dependency "rails", "~> 4.1.0.rc1"

 s.add_dependency "mongoid", "4.0.0.beta1"

 s.add_dependency "mongoid_slug", "3.2"

 s.add_dependency "carrierwave", "0.10.0"

 s.add_dependency "devise"
end

5.	 After the gemspec file is defined clearly, build the gem using gemspec:

ecom$ gem build ecom.gemspec
 Successfully built RubyGem
 Name: ecom
 Version: 0.0.1
 File: ecom-0.0.1.gem

6.	 In order to upload your gem on the rubygems server, you first need to sign up for it.
If your rubygems account is correctly set up on your system, just push the gem:

$ gem push ecom-0.0.1.gem
Pushing gem to https://rubygems.org...
Successfully registered gem: ecom (0.0.1)

A Rails Engines-based E-Commerce Platform

342

7.	 You will have a page created on the rubygems server for your gem, which is shown
as follows:

Project 10

343

8.	 We will now install a gem from our remote gem server:

 $ gem install ecom -v 0.0.1
1 gem installed
Installing ri documentation for ecom-0.0.1...
Building YARD (yri) index for ecom-0.0.1...

Objective complete – mini debriefing
In this task, we prepared our application for show time by packaging it as a gem. We first
began by creating a generator in our engine. This generator copies the locale files to their
path and also inserts a route in the routes.rb file of our application. In our task, we
created the generator manually. However, we can also use a generator to create a
generator, shown as follows:

ecom$ rails g generator install
 create lib/generators/install
 create lib/generators/install/install_generator.rb
 create lib/generators/install/USAGE
 create lib/generators/install/templates

Then, we can add the description and tasks that the generator needs to perform. In a
lot of Rails engines such as devise, the generator is used extensively to generate a user
model, perform migrations, add routes to routes.rb, and copy locale files to the path.
As you might have already seen, generators have a folder called templates. This folder
contains templates of files that need to be copied to a particular path. For example, we
need to generate a model. The generator will accept the name of the file as a command-line
argument like the following code:

rails g model User

This command will copy the model for the user in the templates folder to the specified
path and will rename it as User.

Rubygems has been the primary way to package and distribute Ruby programs from the
beginning, be it Sinatra, only Ruby-based, or Rails engines. Rails gives us a lot of freedom to
distribute a Rails engine. In case we use rubygems to distribute the engine, we will need to
package the gem using the gem build command, as we saw in the previous task. We will
then need an account on rubygems.org and will need to push the gem to the remote gem
host. Within less than a minute, our gem is ready to be downloaded and installed. Rubygems
also give some stats with the download, such as total downloads and how many downloads
per day. The other way to distribute your Rails engine is directly via GitHub. If you think
creating a gem is not something you want, you can host your code on GitHub and directly
bundle it from there in your Gemfile.

A Rails Engines-based E-Commerce Platform

344

The following is the screenshot of what the GitHub repository of our ecom engine looks like:

In the Gemfile, we will need to add something like the following code:

gem 'ecom', github: 'saurabhbhatia/ecom'

We can also bundle a specific version, branch, tag, or a commit as follows:

gem 'ecom', '0.0.1', github: 'saurabhbhatia/ecom'

gem 'ecom', github: 'saurabhbhatia/ecom', :branch => 'rails4'

gem 'ecom', github: 'saurabhbhatia/ecom', :tag => '0.0.1rc2'

gem 'ecom', github: 'saurabhbhatia/ecom', :ref => '151e0516'

Any part of the previous code can be used to bundle the gem directly from GitHub. However,
we need to be sure that all values are correctly entered in gemspec so that it does not throw
an invalid gem spec error during installation.

Project 10

345

Mounting the engine on a blank Rails
application

We have created a Rails engine with a product and cart function and even packaged it as a
gem. Now, we need to take the engine for a test drive. In order to do this, we will mount it
onto a blank Rails application. In this task, we will prepare and install the engine in a Rails
application. We will then generate a blank Rails application and mount it onto the application.

Engage thrusters
In this task, we will mount and run a Rails engine in a Rails app. Once this is done, we will
generate a blank Rails application called Storezilla and add our engine to the Gemfile by
performing the following steps:

1.	 After adding our engine to the Gemfile, we will need to run the bundle install.

Gemfile
 gem 'ecom', github: 'saurabhbhatia/ecom'

2.	 We will then run the generator we just created as follows:

$ rails g ecom:install
 route mount Ecom::Engine => "/store"
 create config/locales/ecom.en.yml

3.	 We can now open our routes.rb file and see the newly created entry as follows:

Storezilla::Application.routes.draw do
 get "home/index"
 mount Ecom::Engine => "/store"

 root 'home#index'
end

4.	 We will now run rake routes to check what routes have been created already,
as follows:

$ rake routes
 Prefix Verb URI Pattern Controller#Action
home_index GET /home/index(.:format) home#index
 ecom /store Ecom::Engine
 root GET / home#index

Routes for Ecom::Engine:
 categories GET /categories(.:format)
ecom/categories#index

A Rails Engines-based E-Commerce Platform

346

 POST /categories(.:format)
ecom/categories#create
 new_category GET /categories/new(.:format)
ecom/categories#new
 edit_category GET /categories/:id/edit(.:format)
ecom/categories#edit
 category GET /categories/:id(.:format)
 ecom/categories#show
 PATCH /categories/:id(.:format)
ecom/categories#update
 PUT /categories/:id(.:format)
ecom/categories#update
 DELETE /categories/:id(.:format)
ecom/categories#destroy
 new_user_session GET /users/sign_in(.:format)
devise/sessions#new
 user_session POST /users/sign_in(.:format)
devise/sessions#create
 destroy_user_session DELETE /users/sign_out(.:format)
devise/sessions#destroy
 user_password POST /users/password(.:format)
devise/passwords#create
 new_user_password GET /users/password/new(.:format)
devise/passwords#new
 edit_user_password GET /users/password/edit(.:format)
devise/passwords#edit
 PATCH /users/password(.:format)
devise/passwords#update
 PUT /users/password(.:format)
devise/passwords#update
cancel_user_registration GET /users/cancel(.:format)
devise/registrations#cancel
 user_registration POST /users(.:format)
devise/registrations#create
 new_user_registration GET /users/sign_up(.:format)
devise/registrations#new
 edit_user_registration GET /users/edit(.:format)
devise/registrations#edit
 PATCH /users(.:format)
devise/registrations#update
 PUT /users(.:format)
devise/registrations#update
 DELETE /users(.:format)
devise/registrations#destroy
 products GET /products(.:format)
ecom/products#index
 POST /products(.:format)
ecom/products#create

Project 10

347

 new_product GET /products/new(.:format)
ecom/products#new
 edit_product GET /products/:id/edit(.:format)
ecom/products#edit
 product GET /products/:id(.:format)
ecom/products#show
 PATCH /products/:id(.:format)
ecom/products#update
 PUT /products/:id(.:format)
ecom/products#update
 DELETE /products/:id(.:format)
ecom/products#destroy
 root GET /
ecom/products#index
 cart GET /cart(.:format)
ecom/cart#show
 add_to_cart GET /cart/add/:id(.:format)
ecom/cart#add
 remove_from_cart POST /cart/remove/:id(.:format)
ecom/cart#remove
 checkout POST /cart/checkout(.:format)
ecom/cart#checkout

5.	 We will now navigate to the URL where we mounted our Rails engine, that is,
localhost:3000/store. As shown in the following screenshot, we will see a
blank store page:

6.	 As we can see the store is empty, we will fill it with some products.

A Rails Engines-based E-Commerce Platform

348

7.	 The Products page, after we created some products, can be browsed at
http://localhost:3000/store/products/do-androids-dream-of-
electric-sheep-philip-k-dick as shown in the following screenshot:

8.	 We will also see our cart page, which when empty looks like what is shown in the
following screenshot:

Project 10

349

Objective complete – mini debriefing
This task deals with the mounting of the engine in our application.

The first thing we did in this task was we added our engine to the Gemfile and bundle
install. Then, we ran generator to install our ecom engine. This created route in our
application where all the engine's routes will be mounted, as shown in the following code:

 mount Ecom::Engine => "/store"

This route will generate all routes with the namespace ecom but will mount at /store. Also,
to query the models from the Rails console within the application, we will have to prefix the
namespace to the model name.

storezilla$ rails c
Loading development environment (Rails 4.0.2)
1.9.3-p327 :001 > ecom = Ecom::Product.new
 => #<Ecom::Product _id: 52d970207277751d36000000, name: nil,
description: nil, base_price: nil, sku: nil, _slugs: [], category_id:
nil, image: nil>

If users add some products to the cart and want to view the current items in it, they can
browse to /store/cart, as shown in the following screenshot:

Customizing and overriding the
default classes

Until now, we have seen how to create a Rails engine, how to prepare and package it, and
finally, how to mount it onto an application and use it. There are times when you need to
add some custom code to the existing application. The engine code is not really seen in the
folder. So, what do we do if we need to add new methods inside our engine classes? This
task will deal with the customization of classes inside the engine. We will first create a state
machine-based checkout system, without which our cart functionality is incomplete.

A Rails Engines-based E-Commerce Platform

350

Engage thrusters
We will finally customize our methods by performing the following steps in order to add a
checkout process:

1.	 First, we will create a namespace in the way we created our engine, as follows:

Storezilla/app/models$mkdir ecom
 Inside this namespace we will create our own model with the
same name – purchase.rb .

2.	 In order to create a simple checkout process, we will need a state machine. We will
use the state_machine library to add the following code:

Gemfile
gem 'state_machine', github: 'pluginaweek/state_machine'

3.	 In order to use state_machine with Rails 4.1, we need to monkey patch our
state_machine library. We will place this inside our config/initializers
folder, as follows:

config/initiailizers/state_machine_patch.rb

module StateMachine

 module Integrations

 module ActiveModel

 public :around_validation

 end

 end

end

4.	 To override our model, we will use a decorator in Rails. We will first have to modify
our engine to read the decorator directory:

lib/ecom/engine.rb

module Ecom

 class Engine < ::Rails::Engine

 isolate_namespace Ecom

 config.to_prepare do

 Dir.glob(Rails.root + "app/decorators/**/*_decorator*.rb").
each do |c|

 require_dependency(c)

Project 10

351

 end

 end

 end

end

5.	 We will have to create an appropriate directory in our app folder, as follows:

$ storezilla/app~/$mkdir decorators
$ storezilla/app~/$ cd decorators
$ storezilla/app/decorators~/$ mkdir models
$ storezilla/app/decorators~/$ cd models
$ storezilla/app/decorators/models~/$ mkdir ecom
$ storezilla/app/decorators/models~/$ cd ecom
$storezilla/app/decoratos/models/ecom~/$ touch purchase_decorator.
rb

6.	 Once the gem is bundled, we will define states in our purchase model as follows:

app/decorators/model/ecom/purchase.rb

state_machine :initial => :cart_in_progress do
 event :transaction_successful do
 transition :cart_in_progress => :order_placed
 end
end

7.	 We will open the Rails console and check how the state transition works with the
following code:

1.9.3-p327 :004 > purchase = Ecom::Purchase.new
 => #<Ecom::Purchase _id: 52dfdb787277752b8d010000, created_at:
nil, updated_at: nil, user_id: nil, checked_out_at: nil, total_
price: nil, state: "cart_in_progress">

8.	 We will check for state transition and see if it works as desired or not:

1.9.3-p327 :005 > purchase.transaction_successful!
 => true
1.9.3-p327 :006 > purchase
 => #<Ecom::Purchase _id: 52dfdb787277752b8d010000, created_at:
2014-01-22 14:56:04 UTC, updated_at: 2014-01-22 14:56:04 UTC,
user_id: nil, checked_out_at: nil, total_price: nil, state:
"order_placed">

9.	 We will put the state toggle inside an instance method in our model as follows:

app/decorators/model/ecom/purchase_decorator.rb
def checkout!
 self.transaction_successful!
end

A Rails Engines-based E-Commerce Platform

352

10.	 Now, we need a controller method to fire this state transition. So, we need to
create a controller called cart and extend it from our existing CartController,
as follows:

app/controllers/cart_controller.rb
class CartController < Ecom::CartController

 def checkout
 @cart.checkout!
 session.delete(:cart_id)
 flash[:notice] = "Thank your for the Order! We will e-mail you
with the shipping info."
 redirect_to root_path
 end
end

11.	 We will add a custom route for the checkout method as follows:

 post "cart/checkout" => "cart#checkout", :as => :checkout

12.	 We will try to check out and inspect the output of our checkout method as follows:

Project 10

353

13.	 Now that we have the status of the product, we can create a simple filter to see
which orders have been completed. For this, we will add a scope to our purchase
model as follows:

app/models/ecom/purchase.rb
 scope :order_complete, -> {where(state: "order_placed")}

14.	 We will now see the result of this scope in the Rails console as follows:

1.9.3-p327 :001 > purchase = Ecom::Purchase.order_complete
 => #<Mongoid::Criteria
 selector: {"state"=>"order_placed"}
 options: {}
 class: Ecom::Purchase
 embedded: false>

1.9.3-p327 :002 > purchase = Ecom::Purchase.order_complete.last
 => #<Ecom::Purchase _id: 52dfcff772777526cf000000, created_at:
2014-01-22 14:04:46 UTC, updated_at: 2014-01-22 14:04:46 UTC,
user_id: 52d5d19c72777517c8000000, total_price: 10.0, state:
"order_placed">

Objective complete – mini debriefing
In this task, we used a pattern in Rails called decorators. Decorators are used to extend
the engine model and the controller functionality. In our case, we enhanced our model's
functionality by creating a decorator for that model. One of the ways to write a decorator is
using a class_eval function, shown as follows:

Ecom::Purchase.class_eval do

end

This function will look for the model class inside the ecom engine and decorate it with the
methods in the decorator. In the decorator, we defined the methods for state_machine.
We have seen state machines and state transition in Project 2, Conference and Event RSVP
Management. At the time of this writing, state_machine is not maintained as required;
hence, it is recommended that you use other similar libraries with the same purposes such
as aasm and workflow.

In order to override the controller, we created a controller called cart in our controllers. We
extended cart_controller in our application from our engine's cart controller. This will
retain all the methods just as they are, and we can write more methods inside the controller.
Also, if we want to override a specific method, we will define only that method (just as we
defined the checkout in our case) and the other methods will remain intact, which is shown
as follows:

class CartController < Ecom::CartController

end

A Rails Engines-based E-Commerce Platform

354

Then, we created our controller method for the checkout. We called the checkout method in
our model to toggle the state of the cart. We deleted the cart ID from the session variable once
our transaction was complete after the state toggled successfully, using the following code:

 @cart.checkout!
 session.delete(:cart_id)
Lastly, we created scope in our model. Scope in mongoid has a slightly
different syntax than the scope in ActiveRecord.
scope :order_complete, -> {where(state: "order_placed")}

We created a scope called order_complete, which fetches all the purchases whose state is
order_placed. The where query is written in braces, preceded by an arrow. This is a Ruby
2 project and is the updated syntax for both mongoid and ActiveRecord.

Mission accomplished
We have successfully created a Rails engine. Good work! We managed to package quite a lot
of features in our shopping cart engine. In this project, we worked on the following aspects:

ff We created a mountable Rails engine without ActiveRecord

ff We modified the engine to work with mongoid

ff We generated the models for a product and categories

ff We created a shopping cart with an add to cart functionality

ff We also added the remove from cart and line items functions

ff We prepared the package for gem and uploaded it to rubygems

ff We loaded the gem in the Gemfile and mounted the engine onto the
Rails application

ff We customized the controller and model to add the functions that we needed

Hotshot challenges
We created a cool shopping cart project. You can enhance it with a lot of features:

ff Create an administrator area and separate the devise login based on the roles

ff Add product variants as nested attributes for a product

ff Create a scope filter based on the categories

ff Add checkout forms and customize the user sign up form

ff Add another state of cart in progress and cart failure to checkout

Index
Symbols
:domain => :all method 142
:resize_to_fit method 85

A
About Us | Team | Careers | Work Culture | Job

Openings 166
ActionController::API module 257
ActionController::Base class 328
ActionController::Renders module 151
add method 338
Add Project button 12
admin dashboard

adding 205
creating, for clicks displaying 205, 206
creating, for impression values displaying 205,

206
advanced video options

URL 298
analytics dashboard

about 187
analyzing part 218
building, tasks 189
improving 218
recording part 218
reporting part 218
required software 189
tasks 189

API application
challenges 283
security-related tricks, adding to 280, 281

API keys
about 273
creating 273-279

API only application
about 249
checklist 251
creating 250
OAuth provider screen 250

APIs
features 220
using 247

app folder 351
application_controller.rb file 37
application

securing, from cross-site scripting 112, 113
application login

creating, with Twitter 221-226
application page management

creating 160-165
arrays 166
asset caching

implementing 182, 183
association

about 29
creating, between recipe and category models

30
authentication

adding 31

B
Balsamiq

URL 11
bar graph

creating, for displaying daily visit activity 210-
212

Binary JSON (BSON) 191
blank Rails application

Rails engine, mounting on 345-349

356

board
about 80
models, creating 80

Bootstrap
advantages 34

Bootstrap 3 39
btn-small class 37

C
cancan gem

using 134
carrierwave gem 80
carrierwave-video

about 294
URL 298

cart function 337
cart page 348
categories

adding 23
adding, steps 23-25
cuisines 23
food preferences 23
food types 23

checkout method 354
class_eval function 353
click event 240
clicks_per_article_per_day method 208
clicks per day data

line graph, creating for 207-210
click-tracking mechanism

creating 193-195
CMS

about 153
backend 153
challenges 186
features 154
frontend 153
hotshot objectives 154
page parts 153
system installation, requirements 155

CoffeeScript 90
col-lg-2 class 36
components bar 15
components option 12
components panel 13, 14
config.param_name option 90

confirm_application_owner? method 277
content

generating 177
rendering 177-182

Content Management System. See CMS
create method 338
create_with_omniauth 227
cross-site scripting 112, 113
CSS 182
CSV format

data, exporting to 150
cuisines category 23
current_user method 32, 272, 277

D
Dailymotion

URL 285
daily visit activity

displaying, bar graph used 210-212
dalli gem 183
database (db)

setting up 18-21
datatypes, Mongoid

Arrays 166
Embedded documents 166
Numbers 166
Regular expressions 166

decorator directory 350
decorators

using 353
demographic-based donut chart

about 213
creating 213-216

devise
about 31-34
used, for user authentication addition 31-33

doorkeeper_for method 271
DSL (domain-specific language) 134

E
each method 202
edit methods 33
embedded documents 166
embed :id parameter 267
encode method 295, 296

357

ensureIndex option 198
event moderation

about 66
accepted members 71
adding 66-70

event page
about 56
mockup, creating for 44, 45

event RSVP application
features 42
system installation requirements 43
tasks 43

events
administrating 44, 45
creating 44-46
date formats, customizing 47-49
RSVP, creating for 63
search-friendly URLs, creating 49-51
tags, adding 52-56

export_menus format
adding 152

Export to CSV functionality
adding 150, 151

export_to_CSV method 150

F
Facebox

URL 105
facebox-rails gem 103
ffmpeg

installing 298
URL 298

ffmpeg builds
URL 294

file uploads
creating 79-84

find_or_create_by method 227, 231
fixtures folder 19
food preferences category 23
food-recipe websites 9
food types category 23
free trial plan

creating 146-148
From Scratch option 12

frontend
creating, steps 172-176
final output 176

fulltext method 101
full-text search

about 95
adding 95-99

G
gem build command 343
Generic options

URL 298
Geocoder.coordinates method 234
geocoder gem 242
getDate() function 210
GitHub

URL 90, 276
using 339

globally recognized avatar. See gravatar
Google API

used, for friends display on Google map 237-
241

Google Maps
data passing to, with Rails 234-236
friends displaying, with Google API 237-241

Google-Maps-for-Rails, methods
_.each 240
_.extend 240
_.isFunction 240
_.isObject 240
_.map 240

gravatar
about 61
adding, for user 61, 62

H
Haml 166
has_and_belong_ to_many (HABTM) 121
helper method 235, 302
Home key 185
home page

mockups 16
viewing 17

home page, final system 10
html_safe tag 241

358

I
id attribute 304
if user_signed_in? method 33
image

resizing 80
Image component 14
ImageMagick

URL 80
impressionist method 198
index 101
indexing 101
index method 20
infinitely scrollable page

creating 87-89
infinite scroll

downloading 88
inject method 338
install method 340
instance method 200, 351
is_impressionable method 196
isolate_namespace method 328
item model

creating 124-128

J
job

queuing 310-316
jquery_infinitescroll 90
JSON

join data, sending via 264-266

K
Kaminari

using 87
kaminari_config.rb file 89
Khan Academy

URL 285

L
Layout Builder icon 13
line graph

creating, for clicks per day data plotting 207-
210

location-based filters
creating 242-247

M
mailcatcher command 106
MailCatcher web console 111
mailer service

creating 106-111
manage method 134
map function 201
map-reduce

about 200
writing 200-204

Meet-ups 42
memcached

about 183, 184
sleep 185

menu model
creating 124-127

menu page
with nested form 130

MiniMagick
using 85

MockFlow
mockups, building 17

mockingbird
URL 11

mockups
about 11
creating, steps 12-16
for homepage 16
for recipe page 16

mockups, tools
Balsamiq 11
MockFlow 11
mockingbird 11

modal box
creating, jQuery used 102-104
for pin resharing 105

model class 353
MongoDB

using 187
MongoDB database

about 190
creating, tasks 190-192

359

Mongoid
about 166
datatypes 166

monthly billing
generating 146

monthly payment model
creating 146-148

morris.js method 210
Morris.Line method 210
multitenancy

adding 144, 145
defining 145

multitier plan
about 134
creating 135-138

My Events 42

N
navbar-brand class 36
nav.pagination method 88
nearbys query 246
nested form

using 129
new application

creating, steps 18-22
new video

adding 290, 291
notes

arranging, category wise 261
categories, adding to 261-263
creating 251-261
deleting 251-261
editing 251-261

numbers 166

O
OAuth2 provider

about 268
creating 268-273

Object Document Mapper (ODM) 156
Object Relationship Mapper (ORM) 156
online pinboard

creating 77
features 78
system installation requirements 79
tasks 78

P
page parts

about 168
image 171
managing 169-171

page_relationship model 164
pages

generating 177
pages option 12
paginates_per method 90
per_page method 87
pinboard 77
Pin model

index, defining 100
pins

controllers, creating 80
resharing 102-104

pins_newsletter method 107
Pinterest

feature 91
Pinterest-style grid layout

adding 91-93
Pluck 138
post

repining 78
Products page 348

R
Rails

activities 17
used, for passing Twitter data to Google Maps

234-236
Rails 4 319
Rails 4.2 upgrade 102
Rails API 250

installing 287-290
Rails engine

about 319
backbone, creating 321-326
building, tasks 320
category, creating 321
features 319, 320
mounting, on blank Rails application 345-349
packaging, as gem 339-344
product listing 321

360

shopping cart, creating 329
software requirements 320
type, full engine 327, 328
type, mountable engine 328

raw tag 241
recipes

adding 26-28
creating 26-28

recipe variable 20
redirect_to_finish_wizard method 123
Redis

installing 310, 311
URL 310

reduce function 201
regular expressions 166
request.location.city method 217
request.location.country method 217
resharing feature 102
restaurants model

creating 124-128
reusable methods

adding 144, 145
RMagick

installing 81
using 85

rolify 192
rolify gem 134
RSVP for events

creating, steps 63-65
Rubygems 339

S
SaaS-baSaaS-based applications

URL 116
SaaS-based restaurant management application

building 116
system installation, requirements 117
tasks 116, 117

sanitize_sql() method 282
scaffolding 26
scopify method 134
search-friendly URLs

creating, for events 49-51
search functionality 95
search method 98
seeds 26

send_newsletter method 110
separate admin area

creating 155-159
serializer class 264
set method 185
shopping cart

about 329
checkout process, creating 329, 330
creating 329-336
features, adding to 354

show method 200, 304
Sidekiq 112
Sidekiq method 313
SignUp

organizations, creating 117-123
skeleton application

generating 287-290
slugs

about 49
adding 49-51
image 52

social recipe-sharing website
application, building 10, 11
features 10
required software 11
tasks 9

software requirements 11
Solr 95
Solr query 101
SolrTM 100
sort_by(&count) method 60
state machine-based checkout system

creating 350-353
state_machine library 350
storage_dir 85
storage rule 85
Storezilla 345
styling classes, Bootstrap

using 34-39
subdomains

creating 139-143

T
tag based events

about 58, 59
creating 57-59

361

tag cloud
creating, from tags 57, 58

tagged_with method 60
tags

creating 52-56
events, adding to 52-56

technical specifications. See user stories
text

caching 304-309
this function 204
timeoutable module 281
Tomcat 95
to_param method 304
touch method 305, 308, 309
Twitter

used, for application login creating 221-226
Twitter API

used, for Twitter data accessing 227-230
Twitter data

accessing, Twitter API used 227-230

U
update_sanitized_params method 138
uploaded videos

displaying 299-304
uploader

testing 86
upload method 86
user

gravatar, creating for 61, 62
user authentication

adding, to website, devise used 31-33
user.has_role? method 134
user roles

creating 130
permissions framework basics, adding 131-133

user's friend
latitude details, finding 232-234
longitude details, finding 232, 233

user stories 9-11

V
validations

checklist 31
video

caching 304-309
playing 299
uploading 287

video encoding 291-298
video.js

URL 299
video panel

displaying 299
videos customization

URL 298
video-streaming website 285, 286
Vimeo

URL 285
visit-tracking mechanism

about 195
creating 196-198

visual specifications. See mockups

W
web-analytics tools 187
whenever gem 110
where query 354
Wireframe Project screen 12
with_subdomain method 141
Wookmark

downloading 91
Wookmark grid layout

applying, to view 100
wookmark.js. jQuery plugin 93

X
Xero 151

Y
YouTube

URL 285

Thank you for buying

Rails 4 Application Development HOTSH T

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective MySQL
Management" in April 2004 and subsequently continued to specialize in publishing highly focused
books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting and
customizing today's systems, applications, and frameworks. Our solution based books give you the
knowledge and power to customize the software and technologies you're using to get the job done.
Packt books are more specific and less general than the IT books you have seen in the past. Our
unique business model allows us to bring you more focused information, giving you more of what
you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike.
For more information, please visit our website: www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order
to continue its focus on specialization. This book is part of the Packt Open Source brand, home
to books published on software built around Open Source licences, and offering information to
anybody from advanced developers to budding web designers. The Open Source brand also runs
Packt's Open Source Royalty Scheme, by which Packt gives a royalty to each Open Source project
about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should
be sent to author@packtpub.com. If your book idea is still at an early stage and you would like
to discuss it first before writing a formal book proposal, contact us; one of our commissioning
editors will get in touch with you.

We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

Learning Devise for Rails
ISBN: 978-1-78216-704-4 Paperback: 104 pages

Use Devise to make your Rails application accessible,
user friendly, and secure

1.	 Use Devise to implement an e-mail-based sign-in
process in a few minutes.

2.	 Override Devise controllers to allow username-
based sign-ins, and customize default Devise
HTML views to change the look and feel of the
authentication system.

3.	 Test your authentication codes to ensure stability.

RubyMotion iOS Development
Essentials
ISBN: 978-1-84969-522-0 Paperback: 262 pages

Create apps that utilize iOS device capabilities without
learning Objective-C

1.	 Get your iOS apps ready faster with RubyMotion.

2.	 Use iOS device capabilities such as GPS, camera,
multitouch, and many more in your apps.

3.	 Learn how to test your apps and launch them
on the App Store.

4.	 Use Xcode with RubyMotion and extend your
RubyMotion apps with gems.

Please check www.PacktPub.com for information on our titles

CoffeeScript Programming
with jQuery, Rails, and Node.js
ISBN: 978-1-84951-958-8 Paperback: 140 pages

Learn CoffeeScript programming with the three most
popular web technologies around

1.	 Learn CoffeeScript, a small and elegant language
that compiles to JavaScript and will make your life
as a web developer better.

2.	 Explore the syntax of the language and see how it
improves and enhances JavaScript.

3.	 Build three example applications in CoffeeScript
step by step.

Ruby and MongoDB Web
Development Beginner's
Guide
ISBN: 978-1-84951-502-3 Paperback: 332 pages

Create dynamic web applications by combining the
power of Ruby and MongoDB

1.	 Step-by-step instructions and practical
examples to create web applications
with Ruby and MongoDB.

2.	 Learn to design the object model in a
NoSQL way.

3.	 Create objects in Ruby and map them
to MongoDB.

Please check www.PacktPub.com for information on our titles

	Cover

	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Project 1: A Social Recipe-sharing Website
	Mission briefing
	Creating mockups
	Adding test data and creating tests
	Adding categories
	Creating and adding recipes
	Creating associations – recipes and categories
	Adding authentication
	Beautifying your views
	Mission accomplished
	Hotshot challenges

	Project 2: Conference and Event RSVP Management
	Mission briefing
	Creating and administrating events
	Creating search-friendly URLs for events
	Adding tags to events
	Tagging-based search and tag cloud
	Adding Gravatar for a user
	Creating RSVPs for events
	Adding event moderation
	Creating "My events" to manage events created by users
	Mission accomplished
	Hotshot challenges

	Project 3: Creating an Online Social Pinboard
	Mission briefing
	Creating file uploads and image resizing
	Creating an infinitely scrollable page
	Creating a responsive grid layout
	Adding a full-text search
	Resharing the pins and creating modal boxes using jQuery
	Enabling the application to send a mail
	Securing an application from
cross-site scripting or XSS
	Mission accomplished
	Hotshot challenges

	Project 4: Creating a Restaurant Menu Builder
	Mission briefing
	Creating organizations with sign up
	Creating restaurants, menus, and items
	Creating user roles
	Creating plans
	Creating subdomains
	Adding multitenancy and reusable methods
	Creating a monthly payment model, adding a free trial plan, and generate a monthly bill
	Exporting data to a CSV format
	Mission accomplished
	Hotshot challenges

	Project 5: Building a Customizable Content Management System
	Mission briefing
	Creating a separate admin area
	Creating a CMS with the ability to create different types of pages
	Managing page parts
	Creating a Haml- and Sass-based template
	Generating the content and pages
	Implementing asset caching
	Mission accomplished
	Hotshot challenges

	Project 6: Creating an Analytics Dashboard using Rails and Mongoid
	Mission briefing
	Creating a MongoDB database
	Creating a click-tracking mechanism
	Creating a visit-tracking mechanism
	Writing map-reduce and aggregation to fetch and analyze data
	Creating a dashboard to display clicks and impression values
	Creating a line graph of the daily click activity
	Creating a bar graph of the daily visit activity
	Creating a demographic-based donut chart
	Mission accomplished
	Hotshot challenges

	Project 7: Creating an API Mashup – Twitter and Google Maps
	Mission briefing
	Creating an application login with Twitter
	Calling all Twitter friends
	Getting latitude and longitude details of the user's location
	Passing Twitter data to the Google Maps API using Rails
	Displaying friends on the map using the Google API
	Creating points of interest – filter users based on their location
	Mission accomplished
	Hotshot challenges

	Project 8: API Only
Application – Backend for a Mobile App
	Mission briefing
	Creating, editing, and deleting notes
	Arranging notes category wise
	Sending join data via JSON
	Creating an OAuth2 provider
	Generating API keys
	Securing the application
	Mission accomplished
	Hotshot challenges

	Project 9: Video Streaming Website using Rails and HTML5
	Mission briefing
	Uploading the video
	Encoding the video
	Displaying the video panel and playing the video
	Caching the content – text and video
	Queuing the job
	Mission accomplished
	Hotshot challenges

	Project 10: A Rails Engines-based E-Commerce Platform
	Mission briefing
	Creating a category and product listing
	Creating a shopping cart and an Add
to Cart feature
	Packaging the engine as a gem
	Mounting the engine on a blank Rails application
	Customizing and overriding the default classes
	Mission accomplished
	Hotshot challenges

	Index

