
Build a Rails Application from Scratch

By GLENN GOODRICH

ruby source.com

www.allitebooks.com

http://www.sitepoint.com?utm_source=pdf&utm_medium=link&utm_campaign=deep-dive
http://www.rubysource.com?utm_source=pdf&utm_medium=link&utm_campaign=deep-dive
http://www.allitebooks.org

Summary of Contents
Preface . xi
1. Ruby Version Manager . 1
2. Installing Rails . 7
3. App Generation . 17
4. Application Setup: Loccasions . 23
5. Home Page . 29
6. Authentication . 37
7. Spork, Events, and Authorization . 49
8. Making Events . 59
9. Pair Programming . 71
10. Hiring a Foreman, Inheriting Resources, and Occasions 81
11. Going Client-side with Leaflet, Backbone, and Jasmine 89
12. Getting to Occasions . 105
13. Bubbly Map Events . 115
14. Retrospective . 125

www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

Rails Deep Dive
by Glenn Goodrich

Copyright © 2012 SitePoint Pty. Ltd.

Cover Designer: Alex WalkerCover Illustrator: Matthew Magain

Notice of Rights
All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted
in any form or by any means without the prior written permission of the publisher, except in the case
of brief quotations included in critical articles or reviews.

Notice of Liability
The authors and publisher have made every effort to ensure the accuracy of the information herein.
However, the information contained in this book is sold without warranty, either express or implied.
Neither the authors and SitePoint Pty. Ltd., nor its dealers or distributors, will be held liable for any
damages to be caused either directly or indirectly by the instructions contained in this book, or by the
software or hardware products described herein.

Trademark Notice
Rather than indicating every occurrence of a trademarked name as such, this book uses the names only
in an editorial fashion and to the benefit of the trademark owner with no intention of infringement of
the trademark.

Published by SitePoint Pty. Ltd.

48 Cambridge Street Collingwood
VIC Australia 3066

Web: www.sitepoint.com
Email: business@sitepoint.com

ISBN 978-0-9872478-9-6

iv

www.allitebooks.com

http://www.allitebooks.org

Table of Contents

Preface . xi

What’s in this book? . xi
Code Samples . xii

Chapter 1 Ruby Version Manager 1

Installing RVM . 1

Chapter 2 Installing Rails . 7

Selecting the Interpreter . 7
Installing Rails . 8
RubyGems . 9
Other Gems Installed . 10

MultiJSON . 11
ActiveSupport . 11
Builder . 11
i18n . 11
BCrypt Ruby . 11
ActiveModel . 12
The Rack Gems . 12
Hike . 12
Tilt . 12
Sprockets . 12
TZInfo . 13
Erubis . 13
ActionPack . 13
Arel . 13

www.allitebooks.com

http://www.allitebooks.org

ActiveRecord . 13
ActiveResource . 14
MIME Types . 14
Polyglot . 14
Treetop . 14
Mail and ActionMailer . 14
Thor . 15
Rack SSL . 15
RDoc . 15
Railties . 15
Bundler . 15
Rails . 16

Chapter 3 App Generation . 17

Ruby Path (-r, --ruby) . 18
Application Builder (-b, --builder) . 19
Application Template (-m, --template) . 19
Things You Can Skip . 19
Specify a Database (-d, --database) . 20
Specify a Rails Location . 20
Specify a JavaScript library (-j, --javascript=JAVASCRIPT) 21
Runtime Options . 21

Chapter 4 Application Setup: Loccasions 23

User Stories . 23
Gems . 24
Client-side Stuff . 25
Testing . 25
Source Control . 26

rubysource.com

vi

www.allitebooks.com

http://www.rubysource.com?utm_source=pdf&utm_medium=link&utm_campaign=deep-dive
http://www.allitebooks.org

Other Resources . 26
The Starting Line . 26

Chapter 5 Home Page . 29

Mocking Up the Home Page . 29
Prepare the Test Environment . 30

Setup RSpec . 30
Our First Test . 32

Chapter 6 Authentication . 37

Create a Branch . 37
Write the Test . 38
Set up Devise . 39
Decision Point: User Names . 43
Test Sign In . 45

Chapter 7 Spork, Events, and
Authorization . 49

Event Model . 50
Adding Spork . 52
Back to Testing . 53
Testing That a User Has Events . 53
Events Controller . 54
Wrap Up . 58

Chapter 8 Making Events . 59

CRUDdy Events . 59
Creating Events . 60

sitepoint.com

vii

www.allitebooks.com

http://www.sitepoint.com?utm_source=pdfamp;&utm_medium=link&utm_campaign=deep-dive
http://www.allitebooks.org

Clean up the Signed In Navigation . 62
Adding More CRUD to Events . 63
MUST DESTROY EVENTS . 67

Chapter 9 Pair Programming . 71

Let There Be (Evan) Light . 72
Am I Worthy? . 72
The Day Arrives . 72
Revelations . 73
Oh Yeah, We’re Supposed to Program . 74
Feature of the Day . 76
Okay, Okay, the ACTUAL Code . 77
Time Flies . 78
Go and Pair . 79

Chapter 10 Hiring a Foreman, Inheriting
Resources, and Occasions 81

Hiring a Foreman . 81
Occasions . 83
Changing Our Spork Configuration . 85
You Say Potatoe “Hurry up”, and I Say Potahtoe “Occasions
Controller” . 86
Inherited Resources . 86
Loccasions.map do { |its| about.time()} . 88

Chapter 11 Going Client-side with Leaflet,
Backbone, and Jasmine 89

Libraries, Frameworks, and Maps, OH MY! . 89

rubysource.com

viii

www.allitebooks.com

http://www.rubysource.com?utm_source=pdf&utm_medium=link&utm_campaign=deep-dive
http://www.allitebooks.org

Setup . 91
Client-side Directory Structures, and the Women Who Love Them 94
Setup Complete, Now What? . 95
Gentleman, Right Now on Stage 3, Put Your Hands Together for
JAAASSSMMIIIIINE . 96
I’m the Map[View]! . 99
Do You Know the Way to Map, Jose? . 100
Start Me Up . 102
Update . 102
My Blogger Went All Over the Place and All I Got Was This Lousy
Map . 103

Chapter 12 Getting to Occasions 105

Deleting Events . 110
One Event at a Time . 110
Finally, an Occasion for Occasions . 112

Chapter 13 Bubbly Map Events . 115

Responding to Map Clicks . 115
Change the Event Show View . 118
Remove the CreateOccasionView Call from EventRouter 118
Create a CreateOccasionView When the Map is Clicked 119
More Housekeeping . 121
Basic Occasion Functionality . 124

Chapter 14 Retrospective . 125

What is a Retrospective? . 126
What Went Wrong? . 127
What Went Right? . 128

sitepoint.com

ix

www.allitebooks.com

http://www.sitepoint.com?utm_source=pdfamp;&utm_medium=link&utm_campaign=deep-dive
http://www.allitebooks.org

How to Get Better? . 129
What’s the Plan? . 129

rubysource.com

x

http://www.rubysource.com?utm_source=pdf&utm_medium=link&utm_campaign=deep-dive

Preface
This book started life simply, as a series of blog posts on Rubysource.com.1 When
I came up with the concept, I wanted a series about Rails that was beyond the “blog
in 15 minutes” examples, dealing with the decisions, issues, and challenges that
pop up when creating a “real” Rails application. Also, I wanted to level up, so to
speak, in my own Rails development. At the time, I was much more on the beginner
side of intermediate, which I felt was an advantage in writing the series. Once you've
improved your knowledge of a technology, it's difficult to remember what beginners
need to help them improve as well. In this way, I believe Loccasions and the Rails
Deep Dive series was successful. After a year of using Rails in my day job, I am not
sure I could write a beginner/intermediate series.

As with anything I write (code or articles) looking back on this series, I can only
see the places it needs improvement. I was tempted, for this book, to almost rewrite
each post to make it more accurate or better or whatever. However, I think that
would remove the original goal of what I was trying to do, which is write a deeper
Rails tutorial series from the perspective of someone who was learning (a great deal)
along the way. As such, you may find issues or may disagree with an approach
taken by the series. That's OK. Actually, that's great. Especially if you publish your
approach to the problem. It is in this way that the Ruby and Rails community grows
and learns together.

I'd like to thank the great folks and SitePoint and RubySource for being desperate
enough for a Ruby writer to allow me to publish my thoughts. The experience has
led to a metamorphosis of my career and life. I'd like to especially thank Aaron
Osteraas for his never-ending patience, almost constant availability on Skype, and
(what must have been difficult) much-needed encouragement.

What’s in this book?
This book will guide you in creating a Rails application. It will focus on setting
your system up properly (for those systems that support it) and will fly a little lower
than the typical 50,000 foot level of many tutorials.

1 http://rubysource.com

http://rubysource.com

By the end of the book, you’ll have learned how to:

■ set up Ruby Version Manager (RVM) to maintain sandboxed2 development en-
vironments

■ install Ruby 1.9.3

■ install Rails 3.1

■ create a Rails application

■ determine what Rails IDEs exist, as well as their pros and cons

■ generate a resource for your application to create, retrieve, update, and delete

■ modify a view template

■ know what’s next

While Rails is often touted as a good web development framework for beginners,
there are rumblings in the community that Rails has outgrown that moniker;3 the
changes in Rails 3.1 are a result of a more mature community being in need of an
advanced web framework.

We’re going to focus on Rails 3.1 (RC4 at the time of writing), highlighting some of
the changes at 3.1 as we go. I’ll assume that you’re comfortable on the command
line; that is, “curl” is more than a Canadian verb.

Code Samples
Code in this book will be displayed using a fixed-width font, like so:

<h1>A Perfect Summer's Day</h1>
<p>It was a lovely day for a walk in the park. The birds
were singing and the kids were all back at school.</p>

2 http://en.wikipedia.org/wiki/Sandbox_%28software_development%29
3 http://intridea.com/2011/6/16/what-if-rails-isnt-for-beginners-anymore

rubysource.com

xii

http://en.wikipedia.org/wiki/Sandbox_%28software_development%29
http://intridea.com/2011/6/16/what-if-rails-isnt-for-beginners-anymore
http://www.rubysource.com?utm_source=pdf&utm_medium=link&utm_campaign=deep-dive

Some lines of code are intended to be entered on one line, but we’ve had to wrap
them because of page constraints. A ➥ indicates a line break that exists for formatting
purposes only, and should be ignored:

URL.open("http://www.sitepoint.com/blogs/2007/05/28/user-style-she
➥ets-come-of-age/");

sitepoint.com

xiii

http://www.sitepoint.com?utm_source=pdfamp;&utm_medium=link&utm_campaign=deep-dive

rubysource.com

http://www.rubysource.com?utm_source=pdf&utm_medium=link&utm_campaign=deep-dive

Chapter1
Ruby Version Manager
In this chapter, we’ll start from scratch and end up with a Rails application. Although
there are many posts out there on this subject, basic Rails tutorials—especially in
the wake of the Rails 3.1 changes—fall into a more-the-merrier category. So let’s get
started with the first step.

Installing RVM
I can’t stress enough how invaluable Ruby Version Manager (RVM) is to Ruby and
Rails development. In a nutshell, RVM basically allows you to create as many Ruby
sandboxes as you need for development or projects or whatever. You can separate
versions of Ruby as well as sets of gems (called, funnily enough, gemsets), so you
can do this tutorial without hawking your base Ruby or gems. Then, you can just
delete the gemset and/or the version of Ruby if it’s no longer needed, or create a
new Rails 3.0.8 application so that you can live in the present. Ruby development
starts with RVM, so learning how to use it is a best practice you should pick up
now. Unfortunately for my Windows friends, you don’t have an RVM.

First, let’s get some terminology out of the way. RVM refers to the different inter-
preters as “rubies”. Each rubie has one or more gemsets associated with it. You
cannot have a single gemset serving two different rubies, but you can import/export
or copy gemsets between rubies. Here, we are going to use RVM to install the latest
1.9.2 rubie and create a gemset for our Rails applications.

Now that we are speaking the same language, let’s install1 RVM. Looking at the
prerequisites2, most of the things you’ll need are core to Mac OS X and Linux. If
you have not installed Git, then you should do so now3, as Git is the source control
of most open source and Rails developers. Also, you’ll need the gcc compiler to allow
RVM to compile different Ruby interpreters in your environment. For Mac users,
this means installing XCode (you can install Xcode 34 for free or pay $5 for Xcode
4 in the Mac App Store. Either one is fine with RVM.). On Linux, make sure you
have make and the C compiler, which you can install with:

sudo apt-get install build-essential

and:

curl sudo apt-get install curl

Okay, that should handle the prereqs.

There are a couple of ways to install RVM, either single-user or multi-user. We will
install it in the single-user fashion, which is the way to go for developers. The multi-
user install of RVM is more for server administrators, allowing for the system wide
install of rubies and gemsets.

Installing RVM is just running a bash script at the command line. So, fire up your
terminal and type:

bash < <(curl -s https://rvm.beginrescueend.com/install/rvm)

1 https://rvm.io/rvm/install/
2 https://rvm.beginrescueend.com/rvm/prerequisites/
3 http://book.git-scm.com/2_installing_git.html
4 http://developer.apple.com/devcenter/mac/

rubysource.com

Rails Deep Dive2

https://rvm.io/rvm/install/
https://rvm.beginrescueend.com/rvm/prerequisites/
http://book.git-scm.com/2_installing_git.html
http://developer.apple.com/devcenter/mac/
http://www.rubysource.com?utm_source=pdf&utm_medium=link&utm_campaign=deep-dive

This will run the rvm install bash script in your current session, installing in your
home directory at ~/.rvm. Also, the output of the script will have some instructions
for your .bashrc (or .profile or .bash_profile) startup scripts. RVM has to load into
your shell environment when you open a terminal, so add this to the end of your
startup script:

[[-s "$HOME/.rvm/scripts/rvm"]] && . "$HOME/.rvm/scripts/rvm"

If you are interested there is a good explanation5 of what that statement does on
startup. Once you have modified the startup script, you can either reload your
startup script:

source ~/.bash_profile

Or close your terminal and open a new one. Now type:

type rvm | head -1

And you should see:

rvm is a function

Now, we can go get some rubies (YAR! That makes me feel like a pirate!):

First, let’s review our choices, which can be seen in Figure 1.1:

rvm list known

5 [[-s "$HOME/.rvm/scripts/rvm"]] && . "$HOME/.rvm/scripts/rvm"

sitepoint.com

3Ruby Version Manager

http://www.sitepoint.com?utm_source=pdfamp;&utm_medium=link&utm_campaign=deep-dive

Figure 1.1. RVM Known Interpreters

Wow. I had no clue there were that many. Let’s install them all … BWA-
HAHAHAHAHA … no, wait, (smooths back hair) let’s just install one. I vote for
1.9.2, and my vote is the only one that counts:

rubysource.com

Rails Deep Dive4

http://www.rubysource.com?utm_source=pdf&utm_medium=link&utm_campaign=deep-dive

rvm install 1.9.2

Figure 1.2. Installing Ruby 1.9.2

As you can see in Figure 1.2, this installs the latest patch level of MRI (Matz’s Ruby
Interpreter), which is 180 in this case. With RVM, you can target patch levels or the
latest (head) stable build. Either one serves our purposes here, so p180 it is. When
the install is complete, RVM will install the “default” gemsets, which you can define
in ~/.rvm/gemsets/default.gems. Currently, all I have in there is rake, but you
can add others as needed.

We have to tell RVM that we want to use that newly loaded 1.9.2 Ruby interpreter.
This is done with:

rvm use 1.9.2

Awesome. Now, if you type gem list, you should just see the default gems. My
results are seen in Figure 1.3:

Figure 1.3. RVM Gem List

This validates that rake is the only gem in my current rubie. Obviously, we’re going
to want Rails installed, but before we do that, let’s create a gemset for this tutorial
called “rubysource”:

rvm gemset create rubysource

RVM tells us that our gemset is created, now we have to use that. Can you guess
how that’s done? If you said:

rvm gemset use rubysource

sitepoint.com

5Ruby Version Manager

www.allitebooks.com

http://www.sitepoint.com?utm_source=pdfamp;&utm_medium=link&utm_campaign=deep-dive
http://www.allitebooks.org

… then you’re a winner! So, as we’re working, how do we know what rubie and
gemset combination is the current one? If only RVM had an easy way to give us that
kind of (hint, hint) info:

rvm info

Figure 1.4. RVM Info

As seen in Figure 1.4, that command gives us all kinds of great information, like
which interpreter we’re using, the current gemset, where the binaries for the current
rubie reside, and the relevent Ruby environment variables. It’s worth noting that
the syntax for indicating rubie and gemset is rubie@gemset, which you can also
use as a shortcut when switching rubies/gemsets. For example, if you type:

rvm use 1.9.2@rubysource

… it will switch the current ruby to 1.9.2 and the current gemset to rubysource. For
homework, go figure out how to use that shortcut to automatically create the gemset
if it’s yet to exist.

So, that’s RVM in a nutshell. Next, we’ll finish installing Rails 3.1, as well as create
our Rails app. In the meantime, feel free to play with RVM and get comfortable using
it for all your Ruby development.

rubysource.com

Rails Deep Dive6

http://www.rubysource.com?utm_source=pdf&utm_medium=link&utm_campaign=deep-dive

Chapter2
Installing Rails
This book attempts to go a bit deeper when starting with Rails, so we’ll now cover
some of the options available when first creating your world-changing Rails applic-
ation, as well as the gems that are installed with Rails.

Selecting the Interpreter
First things first, make sure you open a terminal and switch to our RVM Ruby inter-
preter and gemset, which is MRI 1.9.2 and rubysource, respectively. We do that
with:

rvm 1.9.2@rubysource

… and you can verify with a quick rvm info. As you probably know, the way to
generate a new Rails application is by typing this at the command prompt:

rails new application_name

Installing Rails
What you may not know is where Rails executable lives. In fact, it may surprise
you to know that the only thing the Rails gem includes is the rails executable. The
Rails gem has many dependencies, which are satisfied by other gems, but the actual
Rails gem is just an executable. Let’s install it now:

gem install rails

Figure 2.1. Filler

The --pre option tells RubyGems to install the latest prerelease gem, which is not
a stable version of Rails. In my case, I got Rails 3.1 RC4. “RC4” stands for Release
Candidate 4, which was the last of the release candidates before Rails became stable.
We can see the general release cycle that Rails follows by looking at the tags on
GitHub.1

1 http://github.com/rails/rails

rubysource.com

Rails Deep Dive8

http://github.com/rails/rails
http://www.rubysource.com?utm_source=pdf&utm_medium=link&utm_campaign=deep-dive

Figure 2.2. Rails 3.1 Release Candidates

Where we can see that Rails follows a pattern of starting with a “beta” release, fol-
lowed by 4 or 5 release candidates, before going stable. Thanks to RVM, we can
muck about with any of the pre-release software without contaminating the rest of
our development environment.

Now you know what the “–pre” option does when installing the Rails gem, but what
other options are there? “gem install” takes many options.2

RubyGems
RubyGems allows us to specify items, such as, a specific version (which we’ve seen),
an install destination, whether or not to install documentation, whether or not to
install dependencies, as well as specifying a source for searching for gems. Looking
over the available options, it’s easy to see how RVM leverages RubyGems to keep
gemsets isolated. Finally, you can put any of these options into your ~/.gemrc file
if you find yourself typing the same options over and over again. As a special bonus,

2 http://docs.rubygems.org/read/chapter/10#page33

sitepoint.com

9Installing Rails

http://docs.rubygems.org/read/chapter/10#page33
http://www.sitepoint.com?utm_source=pdfamp;&utm_medium=link&utm_campaign=deep-dive

here is a way to significantly speed up your gem installs by setting options in your
Gem configuration file.3

Other Gems Installed
When we installed Rails, it also installed several other gems. What are those gems?
What is their purpose?

Figure 2.3. Gems Installed with Rails

Let’s briefly run through each one.

3 http://www.rubyinside.com/speed-up-gem-installs-significantly-1605.html

rubysource.com

Rails Deep Dive10

http://www.rubyinside.com/speed-up-gem-installs-significantly-1605.html
http://www.rubyinside.com/speed-up-gem-installs-significantly-1605.html
http://www.rubysource.com?utm_source=pdf&utm_medium=link&utm_campaign=deep-dive

MultiJSON
MultiJSON4 (by Intridea, who do great stuff) allows for multiple JSON backends,
detecting and leveraging the best one. In the case of the vanilla Rails install, it uses
the json_pure gem.

ActiveSupport
ActiveSupport5 is “a collection of various utility classes and standard library exten-
sions that were found useful for Rails. All these additions have hence been collected
in this bundle as way to gather all that sugar that makes Ruby sweeter.” This means,
in essense, that ActiveSupport is THE building blocks of Rails, including abstractions
for caching, JSON support, unicode support, and notifications. It also defines Act-
iveSupport::Railtie, which is one of the ways to extend your Rails application. The
breadth of ActiveSupport is far too large to cover here, so check it out in your spare
time.

Builder
Builder6 provides a Domain Specific Language (DSL) for generating markup.

i18n
The i18n7 gem provides all the localization support for Rails. As you can imagine,
this is a large topic, and one worth studying as you grow in your Rails knowledge.

BCrypt Ruby
BCrypt8 is new to Rails 3.1, providing encryption for securing persisted passwords.9

4 http://intridea.com/2010/6/14/multi-json-the-swappable-json-handler?blog=company
5 http://as.rubyonrails.org/
6 http://ruby.about.com/od/gems/a/builder.htm
7 https://github.com/svenfuchs/i18n
8 http://bcrypt-ruby.rubyforge.org/
9 http://bcardarella.com/post/4668842452/exploring-rails-3-1-activemodel-securepassword

sitepoint.com

11Installing Rails

http://intridea.com/2010/6/14/multi-json-the-swappable-json-handler?blog=company
http://as.rubyonrails.org/
http://ruby.about.com/od/gems/a/builder.htm
https://github.com/svenfuchs/i18n
http://bcrypt-ruby.rubyforge.org/
http://bcardarella.com/post/4668842452/exploring-rails-3-1-activemodel-securepassword
http://www.sitepoint.com?utm_source=pdfamp;&utm_medium=link&utm_campaign=deep-dive

ActiveModel
ActiveModel10 provides the the interface for models in Rails. ActiveModel was
provided starting in Rails 3.0, allowing the developer to go through the buffet line
of the syntactic sugar provided to models in Rails and only put the desired bits on
the plate.

The Rack Gems
Rack11 provides the interface to the web server from Ruby applications. One of the
items supported by Rack is middleware, allowing for bits of code to be dropped
into the web request/response pipeline and provide functionality. rack-cache12 is
middleware providing HTTP caching. rack-test13 provides an API for testing Rack
apps (which is what Rails is) in the form of a nice DSL. rack-mount14 provides the
routing for Rails, which drives the nice RESTful interface of a standard Rails applic-
ation.

Hike
Hike15 handles the load and search paths for Rails.

Tilt
Tilt16 provides an interface to different Ruby templating engines, like ERB and
Haml.

Sprockets
Sprockets17 is new at Rails 3.1, providing the new asset packaging pipeline for
JavaScript and CoffeeScript, as well as SASS and CSS.

10 https://github.com/rails/rails/tree/master/activemodel
11 http://rack.rubyforge.org/
12 http://rtomayko.github.com/rack-cache/
13 https://github.com/brynary/rack-test
14 http://rubydoc.info/gems/rack-mount/0.8.1/frames
15 http://rubydoc.info/gems/hike/1.1.0/frames
16 http://net.tutsplus.com/tutorials/ruby/ruby-for-newbies-the-tilt-gem/
17 https://github.com/sstephenson/sprockets

rubysource.com

Rails Deep Dive12

https://github.com/rails/rails/tree/master/activemodel
http://rack.rubyforge.org/
http://rtomayko.github.com/rack-cache/
https://github.com/brynary/rack-test
http://rubydoc.info/gems/rack-mount/0.8.1/frames
http://rubydoc.info/gems/hike/1.1.0/frames
http://net.tutsplus.com/tutorials/ruby/ruby-for-newbies-the-tilt-gem/
https://github.com/sstephenson/sprockets
http://www.rubysource.com?utm_source=pdf&utm_medium=link&utm_campaign=deep-dive

TZInfo
TZInfo18 is a timezone library for Ruby.

Erubis
Erubis19 is an implementation of eRuby, which is the Ruby expressions between
the <% %> in Ruby views.

ActionPack
ActionPack20 is kind of a big deal. The rubydoc for ActionPack states that it
“provides the view and controller layers in the MVC paradigm”. You could argue
that it is two-thirds of Rails. It includes ActionDispatch (routing and HTTP goodness,
like caching, sessions, and cookies), ActionController (provides the base class for
Rails controllers). ActionView (handles the views and rendering of formats like
HTML or ATOM feeds).

If you want to really learn about Rails, doing a deep dive on ActionPack will take
you far.

Arel
Arel21 is what gives ActiveRecord its cool syntax. It is a “SQL AST manager,” where
“AST” meaning “Abstract Syntax Tree.” An AST22 is one of those super-nerd con-
cepts that separates the Geniuses from the rest. Explaining an AST is way outside
the scope of this article (not to mention the scope of my brain).

ActiveRecord
ActiveRecord23 is the default object-relational mapper (ORM) used by Rails. Basic-
ally, it maps your model to the database structure. You can use other ORMs such
as DataMapper24 if you prefer.

18 http://tzinfo.rubyforge.org/
19 http://www.kuwata-lab.com/erubis/
20 http://rubydoc.info/gems/actionpack/3.0.9/frames
21 https://github.com/rails/arel
22 http://en.wikipedia.org/wiki/Abstract_syntax_tree
23 http://ar.rubyonrails.org/
24 http://ar.rubyonrails.org/

sitepoint.com

13Installing Rails

http://tzinfo.rubyforge.org/
http://www.kuwata-lab.com/erubis/
http://rubydoc.info/gems/actionpack/3.0.9/frames
https://github.com/rails/arel
http://en.wikipedia.org/wiki/Abstract_syntax_tree
http://ar.rubyonrails.org/
http://ar.rubyonrails.org/
http://www.sitepoint.com?utm_source=pdfamp;&utm_medium=link&utm_campaign=deep-dive

ActiveResource
ActiveResource25 is for mapping RESTful26 resources as models in a Rails applica-
tion. Understanding REST is key to being a good web developer. A great place to
start learning REST is in the O’Reilly book, RESTful Web Services.27

MIME Types
The MIME Types28 gem is used by Rails to identify the MIME type of a request,
such as mapping text/html to HTML, etc.

Polyglot
Polyglot29 registers file extensions to be used with Ruby require statements. So, if
you wanted to load files with a .funk extension, the .funk extenstion can be registered
with Polyglot. Then, require 'wegotthe' would find a file named wegotthe.funk.

Treetop
Treetop30 is another gem that handles a guru-level concept, allowing the developer
to create syntax and parse “expression grammars” easily. Treetop is used, in its
most basic way, to add syntax to a language (I would explain more, but there isn’t
the room for it here).

Mail and ActionMailer
The Mail31 and ActionMailer32 gems focus on (you guessed it) sending mail from
Rails. Mail handles the generation, sending, parsing of e-mail, while ActionMailer
creates the “mailers” (think: controllers for e-mail) and views for mail templates.

25 http://api.rubyonrails.org/classes/ActiveResource/Base.html
26 http://en.wikipedia.org/wiki/Representational_State_Transfer
27 http://oreilly.com/catalog/9780596529260
28 http://mime-types.rubyforge.org/
29 http://polyglot.rubyforge.org/
30 http://treetop.rubyforge.org/
31 https://github.com/mikel/mail
32 http://api.rubyonrails.org/classes/ActionMailer/Base.html

rubysource.com

Rails Deep Dive14

http://api.rubyonrails.org/classes/ActiveResource/Base.html
http://en.wikipedia.org/wiki/Representational_State_Transfer
http://oreilly.com/catalog/9780596529260
http://mime-types.rubyforge.org/
http://polyglot.rubyforge.org/
http://treetop.rubyforge.org/
https://github.com/mikel/mail
http://api.rubyonrails.org/classes/ActionMailer/Base.html
http://www.rubysource.com?utm_source=pdf&utm_medium=link&utm_campaign=deep-dive

Thor
Thor33 helps build command line tools and utilities. It is one of those gems you
would do well to research and incorporate into your Ruby arsenal (by Odin’s Beard!).

Rack SSL
The Rack SSL34 gem provides a middleware to support Transport Level Security
(TLS), the most common is Secure Socket Layer (SSL). For more on its use, see
Daniel Morrison’s article, SSL with Rails.35

RDoc
RDoc36 simplifies the creation of HTML-based documentation and it is used to
document Rails itself.

Railties
Railties,37 starting at 3.0, has been included in core Rails. Railties are (arguably)
THE way to extend Rails, and many of the major components, like ActionMailer,
ActionController, and ActionView are Railties. Understanding how Railties work
is another key task for the budding Rails developer. Here is a good article on Railtie
& Creating Plugins38 to whet your appetite.

Bundler
Bundler39 is the way Rails manages its gem dependencies. Bundler uses the Gemfile
in the root of the Rails app to make sure all the necessary gems are available and
any conflicts are identified. Spend some time on the Bundler site40 to see how many
options for loading gems are available.

33 https://github.com/wycats/thor
34 https://github.com/josh/rack-ssl
35 http://collectiveidea.com/blog/archives/2010/11/29/ssl-with-rails/
36 http://docs.seattlerb.org/rdoc/
37 http://rubydoc.info/gems/railties/3.0.9/frames
38 http://www.igvita.com/2010/08/04/rails-3-internals-railtie-creating-plugins/
39 http://gembundler.com/
40 http://gembundler.com/

sitepoint.com

15Installing Rails

www.allitebooks.com

https://github.com/wycats/thor
https://github.com/josh/rack-ssl
http://collectiveidea.com/blog/archives/2010/11/29/ssl-with-rails/
http://docs.seattlerb.org/rdoc/
http://rubydoc.info/gems/railties/3.0.9/frames
http://www.igvita.com/2010/08/04/rails-3-internals-railtie-creating-plugins/
http://www.igvita.com/2010/08/04/rails-3-internals-railtie-creating-plugins/
http://gembundler.com/
http://gembundler.com/
http://www.sitepoint.com?utm_source=pdfamp;&utm_medium=link&utm_campaign=deep-dive
http://www.allitebooks.org

Rails
Previously, I mentioned that the Rails41 gem only includes the Rails executable,
which is slightly misleading. If you inspect the source on GitHub, you can see that
it includes many of the gems discussed in these two articles. You may want to start
your code browsing here.

We’ve now covered gem dependencies in Rails 3.1. Even though Rails has a reputa-
tion of being a simple web framework, there is a lot of work that goes into building
that simplicity.

Next, we’ll go over each of the options for creating a new rails application and why
you might want to use them. My goal is to generate our Rails application so that we
have something tangible. I hope you’re enjoying this more in-depth look at starting
with Rails.

41 http://github.com/rails/rails

rubysource.com

Rails Deep Dive16

http://github.com/rails/rails
http://www.rubysource.com?utm_source=pdf&utm_medium=link&utm_campaign=deep-dive

Chapter3
App Generation
The rails new command is probably the first part of the Rails command line we
all learned. Give it an application name, and that command will create a fully
functional (sic) Rails web application. Much of the convention over configuration
plays out in the generated structure, with the app directory holding our model,
view, controller, and (now, at Rails 3.1) client–side assets.

My added emphasis on “fully functional” in the previous statement exists to point
out that the site is hardly production-ready. More often than not, there are database,
security, or other concerns, but the generated app is a great foundation. So, how
can we tweak this foundation to put us a bit further us down more specific develop-
ment paths?

The options available to rails new are shown in Figure 3.1.

Figure 3.1. Options for rails new

Let’s go through each one and discuss what it does, and why you may want to use
it.

Ruby Path (-r, --ruby)
The PATH to the Ruby binary that will be used for this Rails application. You might
use this to test your app against another version of Ruby or lock it into certain ver-
sion. On the development side, this is unnecessary due to tools like RVM, but your
production or staging environments may have multiple Ruby versions.

rubysource.com

Rails Deep Dive18

http://www.rubysource.com?utm_source=pdf&utm_medium=link&utm_campaign=deep-dive

Application Builder (-b, --builder)
In the last section, I briefly mentioned the ability to specify an application builder.
The builder is responsible for creating the application structure, so providing your
own builder allows you to change that structure and content as you see fit. In short,
you create a class that inherits from Rails::AppBuilder and overrides the things
you want to change. You can specify a different Test framework (say, RSpec) or
automatically include your favorite gems or rake tasks … well, you get the idea.
Here is the best post I could find on the process1 (thanks Mike Barinek!).

Application Template (-m, --template)
Application Templates are another way to change how the application is generated.
In this case, the parameter you pass to -m is a Ruby file that allows the addition of
gems or initializers to a generated Rails application. The major difference between
using a builder and using a template is when the customizations occur. Using a
builder, you could modify the structure of the app as it is generated (for example,
I could call the lib directory “bibloteca”), which you can’t (read: shouldn’t) do with
a template.

Application Templates are more about selecting the right gems, running rake tasks,
and adding initializers to the base application structure. Templates seem to be the
much more popular method for customizing Rails application generation, and there
is even RailsWizard2 to make creating templates a breeze. Also, I feel any mention
of Rails application templates is incomplete without highlighting the awesome work
of Daniel Kehoe and his RailsApp3 repository.

Things You Can Skip
Many of the options to the rails new command allow you to NOT do something.

■ (--skip-gemfile): Do not create the Gemfile, because I am bringing my own or
I am not using Bundler.

1 http://pivotallabs.com/users/mbarinek/blog/articles/1437-rails-3-application-builders
2 http://railswizard.org/
3 http://railsapps.github.com/

sitepoint.com

19App Generation

http://pivotallabs.com/users/mbarinek/blog/articles/1437-rails-3-application-builders
http://railswizard.org/
http://railsapps.github.com/
http://www.sitepoint.com?utm_source=pdfamp;&utm_medium=link&utm_campaign=deep-dive

■ (--skip-bundle): Do not run bundle install after generating the app, because
I want to do something before Bundler does its thing.

■ (-G, --skip-active-record): Don’t include ActiveRecord, because I am using
a different ORM or a NoSQL database.

■ (-J, --skip-javascript): Don’t supply the default JavaScript files, because I
am bringing my own.

■ (-T, --skip-test-unit): Don’t create the default Test::Unit test files (BTW, this
doesn’t even create the test directory), because I am using a different test
framework (like RSpec).

■ (-F, --skip-git): Don’t create Git files (.gitignore and .gitkeep) because I am
using a different source control system or (NOOOO!) none at all. It’s interesting
to note, that, in the official guides,4 a --git option is mentioned. From what I
can tell, this option is not valid (and is ignored by the command) but must be a
hangover from when the Git files were not created by default.

Specify a Database (-d, --database)
By default, Rails presumes a new application will be using a database and that
database will be SQLite. This allows for easy spiking of Rails apps without brining
in the overhead of a typical RDBMS. However, the cases for which you want to use
a different RDBMS, you can specify one of them using this option and supplying
one of the supported parameters. Those supported parameters are:
mysql/oracle/postgresql/sqlite3/frontbase/ibm_db/jdbcmysql/jdbcsqlite3/jdbcpostgresql.
Supply one of these and your Gemfile and config/database.yml will be generated
appropriately.

Specify a Rails Location
There are two options (--dev and --edge) that allow you to point to a particular
version of Rails. Using --dev that allows you to point to a local Rails Git repository.
In this case, the version of Rails from your local repository either needs to be in the

4 http://guides.rubyonrails.org/command_line.html#rails-with-databases-and-scm

rubysource.com

Rails Deep Dive20

http://guides.rubyonrails.org/command_line.html#rails-with-databases-and-scm
http://www.rubysource.com?utm_source=pdf&utm_medium=link&utm_campaign=deep-dive

PATH or needs to be specified as the full path when generating the application. For
example:

ruby /path/to/rails/bin/rails new theapp --dev # from
➥ rubyonrails.org

The --edge option will point to the HEAD version of the main Rails GitHub repos-
itory. In either case, you want to freeze your Rails version.

Specify a JavaScript library (-j,
--javascript=JAVASCRIPT)
If you don’t want to use a different option beside jQuery, you can specify ‘prototype’
to the -j option and get an app with the Prototype library.

Runtime Options
The various runtime options affect the feedback of the command, as well as how
to treat existing files. The parameters -f and --force will overwrite any existing
files. You might want to do this if you’ve corrupted some of the base files and (for
shame!) aren’t using source control. The parameters -s and --skip are the opposite
of force and will not overwrite any existing files. Perhaps my favorite command
line switch is -p, --pretend, which doesn’t actually create anything, but still emits
the output of the command so you can see what it would do. And finally, -q,
--quiet suppresses all output. I like to run rails new existential_app -p -q

and wonder aloud if it every really existed … To finish up, let’s generate an applic-
ation to be used by the remainder of this book. Sadly, we’ll just use all the defaults.

rails new deep_dive

The output of this command can be seen in this GitHub gist.5

Before we go, let’s make sure we are up and running. Change into the deep_dive

directory and type rails s. You should see output similar to Figure 3.2:

5 https://gist.github.com/1117147

sitepoint.com

21App Generation

https://gist.github.com/1117147
http://www.sitepoint.com?utm_source=pdfamp;&utm_medium=link&utm_campaign=deep-dive

Figure 3.2. Rails Server Output

Now if you open http://localhost:3000, you should see the familiar “Ruby on Rails:
Welcome Aboard” page. We’ll be deleting this with extreme prejudice in the next
chapter, where we’ll really start creating our own app.

rubysource.com

Rails Deep Dive22

http://www.rubysource.com?utm_source=pdf&utm_medium=link&utm_campaign=deep-dive

Chapter4
Application Setup: Loccasions
Up to this point, we’ve focused on digging down into the entrails of the framework,
attempting to uncover some of the ways that Rails accomplishes its magic. Going
forward, we want to create a Rails 3.1 application, focusing on how we’d set up the
application, perform the development, and deploy the application.

Our application will be called Loccasions. The purpose of Loccasions is to allow
users to create Events and Occasions. An Event might be “I cleaned my room” or
“It rained” or “A comet sighting.” Events contain Occasions, marking a time and
place where the Event occurred. The application will present the occasions on a
map, allowing the user to see how often and where an Event occurs. The idea is
simple and the use case specific, so creating the app should be a snap (he says,
knowing he will hit roadblocks …)

User Stories
When creating a new Rails application (or any application, really) it’s a good idea
to have some user stories1 to direct the application and ensure we are staying on

1 http://en.wikipedia.org/wiki/User_story

http://en.wikipedia.org/wiki/User_story

task. Normally, you would meet with the client and generate the high level user
stories together. The key with user stories is to capture just enough detail to start
working, avoiding the “analysis paralysis” that can cripple progress. For Loccasions,
we will keep the user stories pretty high level, adding more as we go. Our first
stories are:

■ As an unregistered user, I want to see the home/landing page

■ As an administrator, I want to be able to invite users to Loccasions

■ As an invited user, I want to be able to create an account

■ As a registered user, I want to be able to create Events

■ As a registered user, I want to be able to create Occasions

■ As a registered user, I want to see Occasions on a map

I think that is a good start.

Gems
The next decision concerns the gems we are going to leverage to take care of some
of our functional needs. Obviously, Loccasions will need some kind of authentica-
tion, and the community has great gems in this area. Probably the most well known
authentication gem is Devise2 written by Jose Valim and the incredible folks at
Plataformatec. I think using Devise gives us a well-tested gem and a fantastic com-
munity for support.

One of the decisions I have made for Loccasions is how persistence will be handled.
Rather than go the standard relational database route, like PostgreSQL or MySQL,
I have chosen MongoDB for our back-end persistence store. First, I think the Event
==> Occasions model makes a good document db model. Second, I am relatively
certain that Loccasions will use the spatial functionality3 that MongoDB provides.
Also, if I am being honest, I really want to use MongoDB in a “realish” Rails app
and this is opportunity knocking.

2 https://github.com/plataformatec/devise
3 http://www.mongodb.org/display/DOCS/Geospatial+Indexing

rubysource.com

Rails Deep Dive24

https://github.com/plataformatec/devise
http://www.mongodb.org/display/DOCS/Geospatial+Indexing
http://www.rubysource.com?utm_source=pdf&utm_medium=link&utm_campaign=deep-dive

The use of MongoDB leads to another area where gems can help. In this case, I
looked at MongoMapper4 and Mongoid5 and settled on Mongoid because it seems
to have slightly better support for the spatial parts of MongoDB, as well as the exist-
ence of mongoid_spacial.6

It’s worth noting that this conclusion is based on a few minutes of looking at both
sets of docs, so there may be better options. However, this is how decisions are
made, sometimes, when starting an application. Pick a direction and go. Also, it is
likely that we’ll run into version issues between gem dependencies. If this happens,
we may have to either sacrifice a gem or fork it and fix the issue ourselves—in any
case, you might learn something.

Client-side Stuff
I am relatively sure that we’ll use a decent amount of JavaScript in Loccasions. My
initial vision sees each Event page as a Single Page Application, allowing the user
to create Occasions and add them to the map. The map and list of Occasions will
stay in sync, which means we have two “views with our view”. This vision pushes
me toward a client-side framework, and my current favorite is Backbone.js.7 The
rails-backbone gem8 simplifies using Backbone with Rails, so we’ll put that gem on
the list as well. (Note: There are two Backbone gems that are very closely named,
ensure you are using codebrew’s gem.)

Also, I have become a fan of Haml9 so I think we’ll use Haml instead of ERB for our
view templates.

Testing
We will, as much as possible, employ a test-driven approach to creating Loccasions.
In essence, this means we’ll write tests first to drive the design and implementation
of the app. With that in mind, we need to select a testing approach, and I’ve decided

4 http://mongomapper.com/
5 http://mongoid.org/
6 https://github.com/ryanong/mongoid_spacial
7 http://documentcloud.github.com/backbone/
8 https://github.com/codebrew/backbone-rails
9 http://rubysource.com/an-introduction-to-haml/

sitepoint.com

25Application Setup: Loccasions

www.allitebooks.com

http://mongomapper.com/
http://mongoid.org/
https://github.com/ryanong/mongoid_spacial
http://documentcloud.github.com/backbone/
https://github.com/codebrew/backbone-rails
http://rubysource.com/an-introduction-to-haml/
http://www.sitepoint.com?utm_source=pdfamp;&utm_medium=link&utm_campaign=deep-dive
http://www.allitebooks.org

on RSpec and Capybara. Also, there is a gem that integrates Mongoid and Rspec
(mongoid-rspec) that will simplify our testing.

The test-driven approach extends to the client-side of the application, as well, and
using something like Jasmine10 keeps the specification approach consistent.

Source Control
I will be creating a GitHub repository for the Loccasions source. Before you start
any development process, you should have a plan for source control. Git makes it
criminally easy to get going with SCM, so there is no excuse.

Other Resources
One of the best tools in your Rails toolbelt is the Internet and standing on the
shoulders of those that came before. For example, my inspiration for the Devise and
Mongoid setup is one of Daniel Kehoe’s fantastic tutorials.11 I am sure we will be
scouring the web for help and resources, and I hope to highlight what we find.

The Starting Line
Alright, I think that is enough planning. Time to stop dipping our toes in the water
and jump in up to our necks. Of course, we need MongoDB running locally. Go install
MongoDB12 on your platform … I’ll wait.

Done? Hopefully you have a default MongoDB setup ready to go. The last thing to
do before we generate the application is to create a GitHub repository13 for our app
(see my GitHub repository14).

We are getting closer. I am using Rails 3.1 RC5 and Ruby 1.9.2. Also, I am using
RVM (see Chapter 1) and I strongly recommend you set up RVM and a gemset before
continuing:

10 http://pivotal.github.com/jasmine/
11 https://github.com/RailsApps/rails3-devise-rspec-cucumber
12 http://www.mongodb.org/display/DOCS/Quickstart
13 http://learn.github.com/p/setup.html
14 https://github.com/ruprict/loccasions

rubysource.com

Rails Deep Dive26

http://pivotal.github.com/jasmine/
https://github.com/RailsApps/rails3-devise-rspec-cucumber
http://www.mongodb.org/display/DOCS/Quickstart
http://www.mongodb.org/display/DOCS/Quickstart
http://learn.github.com/p/setup.html
https://github.com/ruprict/loccasions
http://www.rubysource.com?utm_source=pdf&utm_medium=link&utm_campaign=deep-dive

rvm use 1.9.2@loccasions --create
will create and switch to loccasions gemset and Ruby 1.9.2

We have a clean gemset, so we need to install a couple of gems before we can get
to Rails:

gem install bundler
gem install rails --version=3.1.0.rc5 # We want 3.1

Remember, we are using MongoDB, so we don’t need any ActiveRecord pieces (-O)
(we won’t be using migrations). Also, we are using RSPec, so no need to generate
the Test::Unit files (-T):

rails new loccasions -O -T
cd loccasions

Now that we finally have an application structure, we need to pull in the aforemen-
tioned gems. Open Gemfile in your favorite editor (I use vim, b/c it is fantasmic) and
make it look like:

source 'http://rubygems.org'
gem 'rails', '3.1.0.rc5'
gem 'devise', "~> 1.4.2"
gem 'mongoid', "~> 2.1.8"
gem 'mongoid_spacial', "~> 0.2.13"
gem 'haml', '~> 3.1.2'
gem 'bson_ext', '~> 1.3.1'
gem 'rails-backbone', "~> 0.5.3"
Gems used only for assets and not required
in production environments by default.
group :assets do
 gem 'sass-rails', "~> 3.1.0.rc"
 gem 'coffee-rails', "~> 3.1.0.rc"
 gem 'uglifier'
end
gem 'jquery-rails'
group :test, :development do
 gem 'rspec-rails', '~> 2.6.1'
 gem 'mongoid-rspec', '~> 1.4.4'
 gem 'capybara', '~> 1.0.1'

sitepoint.com

27Application Setup: Loccasions

http://www.sitepoint.com?utm_source=pdfamp;&utm_medium=link&utm_campaign=deep-dive

 gem 'factory_girl_rails', '~> 1.1.0'
 gem 'database_cleaner', '~> 0.6.7'
 gem 'jasmine', '~> 1.0.2.1'
end

A quick bundle install and we are ready to attack our first user story. Before we
do that, let’s do the initial commit to our Git repository and push it up to GitHub.
First, edit the .gitignore and make sure it makes sense:

.bundle
db/*.sqlite3
log/*.log
tmp/
.sass-cache/
*.swp
.DS_Store

I added the *.swp and .DS_Store lines so that my vim buffers and Mac artifacts
don’t get added to the repository:

git add .
git commit -m "Initial commit"

Now, add your GitHub remote repository as ‘origin’:

git remote add origin
➥ https://ruprict@github.com/ruprict/loccasions.git
git push origin master

Note: you will need to adjust the origin accordingly. The minute I did that, I realized
I had forgotten to create a .rvmrc file, so let’s do that and push it up as well:

rvm --rvmrc --create ruby-1.9.2-p290@loccasions

Now, cd .. and then cd loccasions to make the .rvmrc file trusted. It will prompt
you to review the file, then type yes.

In the next chapter, we’ll start with the “unregistered user” story, which should
lead us to make decisions about how we’ll lay out the app.

rubysource.com

Rails Deep Dive28

http://www.rubysource.com?utm_source=pdf&utm_medium=link&utm_campaign=deep-dive

Chapter5
Home Page
We have our application structure. Now, we’ll start with our first user story “As an
unregistered user, I want to see the home/landing page.” There are a few items to
point out in this short user story. First, we’ve identified a role of the application in
the form of an unregistered user. Additionally, the story tells us that we need to
have a home page that is not protected by authorization.

Mocking Up the Home Page
This page is the front door of our application, and anyone can knock on it. At this
point, it’d be nice to have a talented web designer on the team who could crank out
a simple, elegant page. Unfortunately, we just have me, and my design skills are,
um, raw. coughs.

I like to sketch out wireframes when someone can’t afford a real designer, er, I mean,
when I am designing a page. There are a plethora of mockup tools on the interwebs
(and there are paper and pencils virtually everywhere) and I’ve settled on
MockupBuilder1 because my usual tool (Pencil) is on sabbatical or something.

1 http://mockupbuilder.com/

http://mockupbuilder.com/

I have cranked out a quick mockup shown in Figure 5.1.

Figure 5.1. Our blueprint

It’s a simple, if criminally familiar, home page. There are links to sign in and register,
a largish image to promote the site, and a divided area below to put information
about the awesome of Loccasions. The layout feeds into a grid system nicely, which
is no mistake.

Prepare the Test Environment
Before we take that mockup through the looking glass, we need to setup our test
environment and write a test (or two) to validate our page. I mentioned Daniel Ke-
hoe’s (@rails_apps2) excellent tutorials3 in the last chapter, and I am relying heavily
on them to set up the test environment for Loccasions.

Setup RSpec
RSpec comes with generators to set up the environment, so open up a terminal, cd
into the loccasions directory and type:

rails g rspec:install

2 http://twitter.com/rails_apps
3 https://github.com/railsapps

rubysource.com

Rails Deep Dive30

http://twitter.com/rails_apps
https://github.com/railsapps
http://www.rubysource.com?utm_source=pdf&utm_medium=link&utm_campaign=deep-dive

The output to this command complained that the Mongoid config didn’t exist (ugh,
first mistake), so we need to generate it:

rails g mongoid:config

That gives us a config/mongoid.yml that will drive the creation of our databases in
MongoDB. Re-running rails g rspec:install and rspec is happy (unless, Mon-
goDB is not running) again.

We aren’t going to use ActiveRecord in Loccasions, so we have to comment out a
couple of lines in the spec/spec_helper.rb file. Comment out these lines:

config.fixture_path = "#{::Rails.root}/spec/fixtures"
config.use_transactional_fixtures = true

In between test suites, we want RSpec to clean up the database. The
database_cleaner gem performs this task for us. Add the following to the
spec/spec_helper.rb file:

Clean up the database
require 'database_cleaner'
config.before(:suite) do
 DatabaseCleaner.strategy = :truncation
 DatabaseCleaner.orm = "mongoid"
end
config.before(:each) do
 DatabaseCleaner.clean
end

Also in the spec_helper.rb file, add:

require 'capybara/rspec'</code>

… to get the capybara RSpec matchers.

The mongoid-rspec gem gives us some nice RSpec matchers to help our tests com-
municate their purpose more effectively. These matchers are added to RSpec by
creating a spec/support/mongoid.rb (you’ll have to create the support directory too)
file with the following:

sitepoint.com

31Home Page

http://www.sitepoint.com?utm_source=pdfamp;&utm_medium=link&utm_campaign=deep-dive

RSpec.configure do |config|
 config.include Mongoid::Matchers
end

That gets our test environment into a state that we can get going. There are still a
couple of things to set up, but we’ll do that when it’s more pressing. Just to make
sure that we haven’t broken anything, run rake -T at the command prompt and
make sure you see the RSpec tasks. If all is well, run rake spec and RSpec should
tell you that it has nothing to do, which is a good thing.

Our First Test
Looking at our current user story, an unregistered user needs to see our home page.
How do we measure that we’ve met this story? What will the home page have that
we can confirm and know we’re okay? My first thoughts on what to measure include
that:

■ the page has a Sign In link

■ the page title is Loccasions: Home

■ the page has a What is Loccasions? section on it

We’ll start by using Capybara’s new feature syntax4 in our first acceptance test.
Create a file called spec/acceptance/home_page_spec.rb (you’ll have to create the
acceptance directory as well) with the following content:

require ‘spec_helper’
feature 'Home Page', %q{
 As an unregistered user
 I want to see the home/landing page
} do
 background do
 # Nothing to do here
 end
 scenario "Home page" do
 visit "/"
 page.should have_link('Sign In')

4 http://jeffkreeftmeijer.com/2011/acceptance-testing-using-capybaras-new-rspec-dsl/

rubysource.com

Rails Deep Dive32

http://jeffkreeftmeijer.com/2011/acceptance-testing-using-capybaras-new-rspec-dsl/
http://www.rubysource.com?utm_source=pdf&utm_medium=link&utm_campaign=deep-dive

 page.should have_selector('title', :content => "Loccasions")
 page.should have_content('What is Loccasions?')
 end
end

This spec is very easy to read and looks for the items we are using to measure suc-
cess. By starting with an acceptance test, we are driving the design from the user’s
perspective. Running rake spec results in the output shown in Figure 5.2:

Figure 5.2. Awww … our first spec …

As expected, the spec fails trying to find a “Sign In” link. Right now, we are still
using the default index.html in the public directory, so let’s delete it. Running the
spec again, we now see a “Routing error” which, again, makes sense as we have no
root route. Based on previous Rails apps and convention, let’s make a “Home”
controller with an “index” action:

rails g controller Home index

Figure 5.3. ERB? Que pasa?

sitepoint.com

33Home Page

http://www.sitepoint.com?utm_source=pdfamp;&utm_medium=link&utm_campaign=deep-dive

Hmmm… something is not right. The generator created an ERB template instead of
a Haml template. I swear I’ve read that, at 3.1, including Haml in your Gemfile will
automatically make it the default template_engine. Seems I am incorrect. Oh well,
the quick solution is to add gem "haml-rails", "~> 0.3.4" to our Gemfile and
bundle install. Now, rerun the rails g controller Home index and voila!, we
have a Haml template. (Oh, and go ahead and remove the
app/views/home/index.html.erb file.)

Next, we need to point our root path to the index method on our new controller.
Open up config/routes.rb, remove the get "home#index" line and replace it with
root :to => "home#index". Running the spec again brings the return of the no
“Sign In” link error.

In the interests of time and effort, I’m going to jump ahead and create the layout for
our home page. I’m using Skeleton,5 and have modified the
app/views/layouts/application.html.haml (I migrated the ERB layout file to Haml) and
the app/views/home/index.html.haml files accordingly. Here is what you need to do
to catch up:

■ Download and uncompress Skeleton.

■ Copy the files from the JavaScript and stylesheets directories to those same dir-
ectories in app/assets/.

■ Replace the contents of your app/views/layouts/application.html.haml file with the
content here.

■ Replace the contents of your app/views/home/index.html.haml file with the content
here.

■ Replace the contents of your app/assets/stylesheets/home.css.sass file with the
content here.

■ Copy Figure 5.4 to your app/assets/images directory.

5 http://getskeleton.com/

rubysource.com

Rails Deep Dive34

http://getskeleton.com/
http://www.rubysource.com?utm_source=pdf&utm_medium=link&utm_campaign=deep-dive

Figure 5.4. Loccasions header 150 x 150 pixels

If you rerun the spec, it passes as in Figure 5.5.

Figure 5.5. Pass me on the left-hand side

Just like that, our first user story is complete. It’s Miller Time!

Feel free to look over the layout and index Haml files and see how I met our spec.
Once you are comfortable with Haml’s syntax, the details of our layout is much less
interesting. Don’t forget:

git add .
git commit -am "Added home page and layout"
git push origin master

In the next chapter, we’ll start with another user story and see where that takes
Loccasions.

By the way, the font used for the Loccasions header is Eight One by glue.6

6 http://glue.deviantart.com/art/Eight-One-45198536

sitepoint.com

35Home Page

www.allitebooks.com

http://glue.deviantart.com/art/Eight-One-45198536
http://www.sitepoint.com?utm_source=pdfamp;&utm_medium=link&utm_campaign=deep-dive
http://www.allitebooks.org

rubysource.com

http://www.rubysource.com?utm_source=pdf&utm_medium=link&utm_campaign=deep-dive

Chapter6
Authentication
In the previous chapter, we finished our first user story. That user story was fairly
simple, but it flushed out the design of our home page. The next user story, “As an
administrator, I want to invite users to Loccasions” is not quite so simple.

The implications from this user story are big: First, we have a new role, administrator,
which brings our roles to two (unregistered user and administrator). Second, the
administrator role brings out the idea of authorization, where functionality of the
site is restricted based on the user’s role. Of course, this points us to authentication,
because we need to know who the user is before we can figure out what the user
can do. By the end of this user story, we should have authentication and authoriza-
tion set up and ready to go.

Create a Branch
Something I neglected in the last chapter was to create a Git branch for our new
story. This keeps our code isolated to the branch and allows us to make unrelated
changes to master if needed. Here is a good article on Git workflow.1

1 http://thinkvitamin.com/code/source-control/git/our-simple-git-workflow/

http://thinkvitamin.com/code/source-control/git/our-simple-git-workflow/

Git makes branching easy:

git checkout -b inviting_users

… and we’re in our new branch, ready to go.

Write the Test
Continuing with our test-driven approach, let’s write a test for signing in to the ap-
plication. Here, we will start to break our user story into smaller stories to facilitate
testing. Breaking a problem or piece of functionality down into smaller parts makes
the bigger problem easier to tackle. Here’s our first sub user story: As an adminis-
trator, I want to sign in to Loccasions.

Since we are writing specs from the user’s perspective, each story (and sub story)
has implications. In this story, the act of “signing in” can mean many things, so
how do we measure it to match what we/our client wants? In this case, I conferred
with the client who wants a cool drop down to come down (a la Twitter) with a
sign-in form. While I agreed that is cool, I talked the client into progressive enhance-
ment,2 allowing us to develop a separate page for the sign-in form, for now, and
return to make it sexier later.

With our client expectations in hand, we can make our sign-in form test. At first,
we’ll just make sure the sign-in page has a form and a title:

require 'spec_helper'
feature 'Sign In', %q {
 As an administrator
 I want to sign in to Loccasions
} do
 background do
 visit "/"
 end
 scenario "Click Sign In" do
 click_link "Sign In"
 page.should have_selector("title",
 :text => "Loccasions: Sign In")

2 http://www.alistapart.com/articles/understandingprogressiveenhancement

rubysource.com

Rails Deep Dive38

http://www.alistapart.com/articles/understandingprogressiveenhancement
http://www.alistapart.com/articles/understandingprogressiveenhancement
http://www.rubysource.com?utm_source=pdf&utm_medium=link&utm_campaign=deep-dive

 page.should have_selector('form')
 end
end

(Remember to fire up mongodb before running your specs.) This spec fails, com-
plaining about the title not matching. Also, I noticed I was getting the following
message when I ran my specs:

NOTE: Gem.available? is deprecated, use
 Specification::find_by_name. It will be removed on or after
 2011-11-01.
Gem.available? called from /Users/ggoodrich/.rvm/gems/ruby-1.9.2-
➥p290@loccasions/gems/jasmine-1.0.2.1/lib/jasmine/base.rb:64.

HMMMM … I don’t like that. A quick trip to the jasmine-gem GitHub repo3 shows
they are on version 1.1.0.rc3. For now, I will bump the version in my Gemfile and
hope it works when we get to client-side testing. Bumping the version fixes that
warning, so immediate needs met.

Here, I rely on experience to drive my next step. I am keen on using Devise for au-
thentication, and I know it has it’s own views for signup, signin, etc. In other words,
it’s time to set up Devise.

Set up Devise
Tipping my hat to the awesome RailsApps4 yet again, let’s prepare RSpec for Devise.
Create a spec/support/devise.rb file with:

RSpec.configure do |config|
 config.include Devise::TestHelpers, :type => :controller
end

Now, on to the typical Devise setup:

rails g devise:install

3 https://github.com/pivotal/jasmine-gem
4 https://github.com/RailsApps/rails3-mongoid-devise/wiki/Tutorial

sitepoint.com

39Authentication

https://github.com/pivotal/jasmine-gem
https://github.com/RailsApps/rails3-mongoid-devise/wiki/Tutorial
http://www.sitepoint.com?utm_source=pdfamp;&utm_medium=link&utm_campaign=deep-dive

This creates config/initializers/devise.rb and config/locales/devise.en.yml. If we look in
the initializer file, we can see require 'devise/orm/mongoid', so we know that
Devise is aware of our choice to use Mongoid. The output of the devise:install

generator gives some instructions:

■ Set up default_url_options for ActionMailer

■ Set up a default route (we have done this already)

■ Make sure we handle our flash/notice messages in our layout.

Let’s do this stuff while it’s fresh. I added:

config.action_mailer.default_url_options = {
 :host => 'localhost:3000'
}

… to config/environments/development.rb. Also, I added:

%p.notice = notice
%p.alert = alert

… to app/views/layouts/application.html.haml just above the call to yield. It may not
stay there, but we aren’t worried about that right now.

Devise will generate a User model for us:

rails g devise User

The output of this command shows that we get a model (User), a user_spec, and a
new route (devise_for :users). If we do a quick rake routes at the command
line, we see:

new_user_session GET /users/sign_in(.:format)
{:action=>"new", :controller=>"devise/sessions"}

… which is where we want our “Sign In” link to go. Let’s change it in the application
layout:

rubysource.com

Rails Deep Dive40

http://www.rubysource.com?utm_source=pdf&utm_medium=link&utm_campaign=deep-dive

#sign_in.sixteen.columns
 %a(href= new_user_session_path) Sign In

Rerunning our spec, and we still have the same error. At this point, let’s fire up the
server and see what is happening.

Figure 6.1. Sign Up page

Wow … that looks pretty good. However, the title isn’t what we want, and it has a
‘Sign Up’ link, which we may want later, but not yet. We need to customize the
Devise views and, thankfully, Devise gives us an easy way to do just that:

rails g devise:views

sitepoint.com

41Authentication

http://www.sitepoint.com?utm_source=pdfamp;&utm_medium=link&utm_campaign=deep-dive

Figure 6.2. Output of Devise Views

That creates quite a few views, and they are all ERB not Haml … UGH. Googling
around, I found this on the Devise wiki5 detailing how to get Haml views for Devise.
Check it out.

First, let’s change the title. Since the Devise views will use the same application
layout, we need a way to change the title for each page. Enter the
ApplicationHelper. Add this method to app/helpers/application_helper.rb:

def title(page_title)
 content_for(:title) { page_title }
end

Now, replace the title tag in the application layout with:

%title= "Loccasions: #{content_for?(:title) ? content_for(:title) :
 ➥'Home' }"

Finally, add this to the top of app/views/devise/session/new.html.haml:

- title('Sign In')

5 https://github.com/plataformatec/devise/wiki/How-To:-Create-Haml-and-Slim-Views

rubysource.com

Rails Deep Dive42

https://github.com/plataformatec/devise/wiki/How-To:-Create-Haml-and-Slim-Views
http://www.rubysource.com?utm_source=pdf&utm_medium=link&utm_campaign=deep-dive

Now, the specs all pass.

Decision Point: User Names
After some deliberation with the client, we are going to add a name attribute to the
users. Let’s add a test for our new attribute. Devise was kind enough to create a
user_spec, so let’s create a test for name (in spec/models/user_spec.rb):

describe User do
 it "should have a 'name' attribute" do
 user = User.new
 user.should respond_to(:name)
 user.should respond_to(:name=)
 end
end

That spec fails, as expected. We can make it pass by adding this to app/models/user.rb:

field :name
attr_accessible :name

I want name to be unique and required. Tests (with a bit of refactoring):

describe User do
 describe "the 'Name' attribute" do
 before(:each) do
 @user = Factory.build(:user)
 end
 it "should exist on the User model" do
 @user.should respond_to(:name)
 @user.should respond_to(:name=)
 end
 it "should be unique" do
 @user.save
 user2 = Factory.build(:user, :email=>'diff@example.com')
 user2.valid?.should be_false
 user2.errors[:name].should include("is already taken")
 end
 it "should be required" do
 @user.name=nil
 @user.valid?.should be_false

sitepoint.com

43Authentication

http://www.sitepoint.com?utm_source=pdfamp;&utm_medium=link&utm_campaign=deep-dive

 @user.errors[:name].should include("can't be blank")
 end
 end
end

The Alert Reader has notice the calls to Factory in the refactored spec. We need a
user for this test, and we’ll turn to Factory Girl to get one. Add the file spec/factories.rb

with:

require 'factory_girl'
FactoryGirl.define do
 factory :user do
 name 'Testy'
 email 'testy@test.com'
 password 'password'
 end
end

Running the spec gives us 2 failures:

Figure 6.3. User Name Spec Fails

Add some quick validation to our name field:

rubysource.com

Rails Deep Dive44

http://www.rubysource.com?utm_source=pdf&utm_medium=link&utm_campaign=deep-dive

validates :name, :presence => true, :uniqueness => true

… and all our specs pass. We can now move on to actually testing sign in.

Test Sign In
The first item to determine for our sign-in test is, what happens when a user suc-
cessfully signs in?

The customer thinks that the user should be redirected to their individual “home”
page. What is on the user home page, then? We know our main business objects are
Event and Occasion, and that Occasions live inside Events. The user home page,
then, should probably list the user’s events, to start. The spec, then, should fill out
and submit the form, then redirect to the user home page.

Before we write this spec, I want to make the spec task the default Rake task (I am
tired of typing rake spec) so add this to the bottom of your Rakefile:

Rake::Task[:default].prerequisites.clear
task :default => [:spec]

Now, we can just type rake and our specs will run. AAAAAH, that’s better.

Here is our sign-in spec:

scenario "Successful Sign In" do
 click_sign_in
 fill_in 'Email', :with => 'testy@test.com'
 fill_in 'Password', :with => 'password'
 click_on('Sign in')
 current_path.should == user_root_path # used by Devise
end

Notice the click_sign_in method? I made a quick helper
(spec/support/request_helpers.rb) so I didn’t need to keep typing the lines to click
get to the sign in page:

sitepoint.com

45Authentication

www.allitebooks.com

http://www.sitepoint.com?utm_source=pdfamp;&utm_medium=link&utm_campaign=deep-dive
http://www.allitebooks.org

module RequestHelpers
 module Helpers
 def click_sign_in
 visit "/"
 click_link "Sign In"
 end
 end
end
RSpec.configure.include (RequestHelpers::Helpers,
 :type => :acceptance,
 :example_group => {
 :file_path => config.escaped_path(%w[spec acceptance])
})

This will only include our helper in the acceptance tests, meaning, any specs in
spec/acceptance. (Note: RSpec defines a bunch of spec “types”, such as request,
controller, models, etc. Here, we are just adding acceptance.)

Running rake (Yay! Isn’t that better?) and we get an expected error about
user_root_path being undefined. Just to get the test passing, add this to
config/routes.rb:

match 'events' => 'home#index', :as => :user_root

We’ll call the route /events, since we know events will be the main course of the
user home page. The spec now fails because the URLs don’t match. After we submit
the form, the URL is unchanged. This is because we have no users in the database.
Add this to the “Successful Sign In” scenario, just after click_sign_in:

FactoryGirl.create(:user)

Yay! The spec now passes. The user_root route, by the way, is a Devise convention
to override where the user is redirected after successful sign in. We haven’t fully
tested authentication, but it’s working. For completeness sake, let’s make sure a bad
login fails. Add this under the “Successful Sign In” scenario:

scenario "Unsuccessful Sign In" do
 click_sign_in
 fill_in 'Name', :with => "BadUser"

rubysource.com

Rails Deep Dive46

http://www.rubysource.com?utm_source=pdf&utm_medium=link&utm_campaign=deep-dive

 fill_in 'Email', :with => 'hacker@getyou.com'
 fill_in 'Password', :with => 'badpassword'
 click_on 'Sign in'
 current_path.should == user_session_path
 page.should have_content("Invalid email or password")
end

Yup, the new scenario passes, as expected. Let’s go ahead and push this to GitHub:

git add .
git commit -m "Basic authentication"
git checkout master
git merge inviting_users

Run your specs here, just to make sure everything is okay, then:

git push origin master
git branch -d inviting_users

This is becoming a bit too long, so we’ll stop here and pick up with our user Events
page in the next chapter.

sitepoint.com

47Authentication

http://www.sitepoint.com?utm_source=pdfamp;&utm_medium=link&utm_campaign=deep-dive

rubysource.com

http://www.rubysource.com?utm_source=pdf&utm_medium=link&utm_campaign=deep-dive

Chapter7
Spork, Events, and
Authorization
Previously, we ended with very basic authentication working. However, we’re faking
out the events_path in our sign_in spec, which is where we’ll start. A successful
sign-in redirects to the user events page which, presumably, has a list of the events
owned by that user. Let’s go back to Mockbuilder and crank out a layout for our
events page.

Figure 7.1. Events Page Mockup

The page has a different layout than the home page, with the main content being a
map. The latest occasions will be visible on the map, and the users’ Events will be
listed below the map. It’s another very simple layout, helping us drive the imple-
mentation of the site. At this point, we can identify Events as a resource and start
developing the items that will represent this resource. Of course, we’ll need an
Event model and an Event controller.

Event Model
At this stage, it might be a good idea to solidify what the client wants to track on
each Event. This calls for the addition of some more user stories:

“As a registered user, I would like to see my Events by Name, De-
scription, and last occurrence.”

That story lists our attributes explicitly, so we have enough to generate our model.
First, let’s make a Git branch:

git checkout -b adding_events

Before we generate the model, a quick thought on the “last occurrence” attribute.
Knowing that Events will have Occurrences, it seems to me that we won’t actually

rubysource.com

Rails Deep Dive50

http://www.rubysource.com?utm_source=pdf&utm_medium=link&utm_campaign=deep-dive

store a value for last_occurrence, but will grab the latest date from the Occurrences.
This makes last occurrence a “virtual attribute”, as it’s generated when you ask for
it. However, part of me worries about the need to query on this attribute. Another
design decision: Create a Virtual Attribute or a Real Attribute that has to be updated
whenever an occurrence is created. Well, premature optimization is the root of all
evil. We’ll go with a virtual attribute … for now.

rails g model Event name:string description:string user:references

… which generates a model and spec. We have a couple of tests to write for Event.
Events belong to users (thus, the user:references in our generator) and can’t exist
without a Name. I went ahead and added a Factory for events:

factory :event do
name "Test Event"
user
end

Here is the test for user:

describe Event do
 it "should belong to a user" do
 event = Factory.build(:event, :user=>nil)
 event.valid?.should be_false
 event.errors[:user].should include("can't be blank")
 event.user = User.new
 event.valid?.should be_true
 end
end

… which fails, until we add this to our Event model:

validates :user, :presence => true

Before we continue with the Event specs, I am getting frustrated with how long it
is taking each time I run my specs. The spin-up time is too long, so I want to do
something to speed this up. My instincts tell me that the specs have to load the
Rails application environment, and that is what is taking the most time. I tried just

sitepoint.com

51Spork, Events, and Authorization

http://www.sitepoint.com?utm_source=pdfamp;&utm_medium=link&utm_campaign=deep-dive

running the model specs (rake spec:models), but the startup time is still bothering
me. After much googling, I am going to try adding Spork1 to our test environment.

Adding Spork
Add gem ‘spork-rails’ to the development portion of your Gemfile and bundle

install. Now, we need to setup the spec environment for Spork. Thankfully, Spork
has some helpers for this. From your project root, type spork --bootstrap, which
will add some instructions into your spec/spec_helper.rb file, so open that file. Basic-
ally, we need to split our spec_helper into two blocks, prefork and each_run.
Anything we only need to run once for each spec run goes in the prefork block.
For now, I am putting everything in the prefork block, so my spec/spec_helper.rb

file looks like:

require 'rubygems'
require 'spork'
Spork.prefork do
 �
 ENV["RAILS_ENV"] ||= 'test'
 require File.expand_path("../../config/environment", __FILE__)
 require 'rspec/rails'
 require 'capybara/rspec'
 �
 Dir[Rails.root.join("spec/support/**/*.rb")].each {|f| require f}
 RSpec.configure do |config|
 �
 config.mock_with :rspec
 �
 require 'database_cleaner'
 config.before(:suite) do
 DatabaseCleaner.strategy = :truncation
 DatabaseCleaner.orm = "mongoid"
 end
 config.before(:each) do
 DatabaseCleaner.clean
 end
 end
end

1 http://github.com/timcharper/spork

rubysource.com

Rails Deep Dive52

http://github.com/timcharper/spork
http://www.rubysource.com?utm_source=pdf&utm_medium=link&utm_campaign=deep-dive

Spork.each_run do
 # This code will be run each time you run your specs.
end

We may run into issues having to restart Spork to pick up changes, but we’ll deal
with that if it happens. Running a quick time check on before and after (time rake
vs time rspec --drb spec/), my spec run time dropped by 20 SECONDS!
Wow…that is a worthy of a nerdgasm. To finish our Spork changes, add --drb to
your .rspec file so that it uses Spork by default. By the way, since Spork loads up
the Rails environment, it will be necessary to restart Spork when that environment
changes (new route added, etc.) Something to bear in mind.

Back to Testing
Okay, now we can finish our Event specs. Let’s add a quick test making sure ‘name’
is a required attribute.

it "should require a name" do
 event = Factory.build(:event, :name=>nil)
 event.valid?.should be_false
 event.errors[:name].should include("can't be blank")
 event.name ="Event Name"
 event.valid?.should be_true
end

This fails, because we are not validating the name. Change the line we added to
validate the user to:

validates :user, :name, :presence => true

… and the spec passes.

Testing That a User Has Events
Since we want to be able to build events for Users, let’s put in some tests to make
sure that works:

sitepoint.com

53Spork, Events, and Authorization

http://www.sitepoint.com?utm_source=pdfamp;&utm_medium=link&utm_campaign=deep-dive

describe "User Event" do
 it "can be built for a user" do
 lambda {
 @user.events.build(:name=>"A new event")
 }.should change(@user.events, :length).by(1)
 end
 it "can be removed from a user" do
 @user.events.build(:name => "A short event")
 lambda {
 @user.events.first.destroy
 }.should change(@user.events, :length).by(-1) end
end

These specs pass without further coding, so, um, yay?

Wait!

This is not true … Alert Reader Nicolas rightly points out that we still have two
things to do:

1. Add embeds_many :events to the User model.

2. Either restart spork or add ActiveSupport::Dependencies.clear to our
Spork.each section in spec_helper.rb.

Events Controller
Now we need to display our events on the user events page. We’ll need an
EventsController and an index action/view. Generators, ho!

rails g controller events index

rubysource.com

Rails Deep Dive54

http://www.rubysource.com?utm_source=pdf&utm_medium=link&utm_campaign=deep-dive

Figure 7.2. EventsController and index action/view

Let’s undo our route cheat from the last chapter, and point the events_path to our
events#index action. Delete get "events#index" and change the ‘events’ route to
match 'events' => 'events#index', :as => :events and run the specs. HMMM
… they fail.

Figure 7.3. Events spec fails!

I wasn’t expecting that to fail. Wait a sec, I didn’t write that
events_controller_spec. Stupid generators … I don’t want that spec. Delete the
spec/controllers directory with extreme prejudice. There, our specs are passing
again. As I mentioned in the setup, we are, as much as possible, driving the testing
through acceptance tests. Because of that, we won’t have specific controller/view
specs.

Create the file specs/acceptance/user_events_spec.rb to hold the specs for our user
events page. In order to see the user events page, we’ll have to sign in from our spec.
Since we are using request specs, we need to, basically, simulate the posting of
credentials to the server. We can do that with a quick mixin, which we’ll include
in our feature. Add this to spec/support/request_helpers.rb:

sitepoint.com

55Spork, Events, and Authorization

www.allitebooks.com

http://www.sitepoint.com?utm_source=pdfamp;&utm_medium=link&utm_campaign=deep-dive
http://www.allitebooks.org

def login_user(user)
 visit new_user_session_path
 fill_in "Email", :with => "testy@test.com"
 fill_in "Password", :with => "password"
 click_button "Sign in"
end

As you can see, we are literally signing into the application.

Now, let’s create the spec/acceptance/user_events_spec.rb file with:

require 'spec_helper'
feature 'User Events Page', %q{
 As a signed in user
 I want to see my events
 on my events page
} do
 background do
 @user = Factory(:user)
 @event = Factory(:event, :user => @user)
 end
 scenario "User is not signed in" do
 visit events_path
 current_path.should == new_user_session_path
 end
end

We are going to test the negative path first, meaning, what happens when we don’t
sign in and try to go to the user events page. In this case, the app should redirect to
the Sign In page (which is the new_user_session_path) Run this spec, and the path
points to a (rather ugly, make a note to fix that) events URL, so it’s not redirecting.
We need to tell the EventsController to authenticate the user. Thanks to Devise, all
we have to do is add this (put it right under the class statement):

before_filter :authenticate_user!

... and the spec passes. Now, let’s create the positive path:

rubysource.com

Rails Deep Dive56

http://www.rubysource.com?utm_source=pdf&utm_medium=link&utm_campaign=deep-dive

feature 'Signed In User Events Page', %q{
 As a signed in user
 I want to see my events
 on my events page
} do
 background do
 @user = Factory(:user)
 @event = Factory(:event, :user => @user)
 login_user(@user)
 end
 scenario "User is signed in" do
 visit events_path
 page.should have_content(@user.name)
 page.should have_content(@event.name)
 end
end

We are measuring success here by simply making sure the user name and event
name are on the page. It’s likely that we’ll have to strengthen this test later.

Run the spec, and it will complain that the user’s name was not found on the page.
Let’s open up the app/views/events/index.html.haml file and see what’s up. That view
is still the basic, generated view, so we need to match it to our mockup as much as
possible. First off, the “sign in area” in the mockup has a greeting and the user name.
That bit is in the app/views/layouts/application.html.haml file. I changed the #sign_in
div to:

#sign_in.sixteen.columns
 %span
 -if user_signed_in?
 Hullo #{current_user.name}
 |
 = link_to "Sign Out", destroy_user_session_path, :method =>
➥:delete
 - else
 = link_to "Sign In", new_user_session_path

Run the spec, and now it complains about the event name. Progress. Here, we’ll
open up the app/views/events/index.html.haml view and change it to

sitepoint.com

57Spork, Events, and Authorization

http://www.sitepoint.com?utm_source=pdfamp;&utm_medium=link&utm_campaign=deep-dive

%ul#events
 - for event in @events
 %li= event.name

Which leads to the spec complaining about You have a nil object when you
didn't expect it! (I hate that error, it has caused my hours of frustration) because
we are looping over an @events object that does not exist. To the controller!

class EventsController < ApplicationController
 before_filter :authenticate_user!
 def index
 @events = current_user.events
 end
end

We’re back to passing specs.

Wrap Up
Although we’re still just coming out of the gate with Loccasions, we’re picking up
speed. The next chapter will, I hope, allow us to flush out the rest of the Events
page, and enable us to create and modify events.

rubysource.com

Rails Deep Dive58

http://www.rubysource.com?utm_source=pdf&utm_medium=link&utm_campaign=deep-dive

Chapter8
Making Events
The last chapter flushed out the Events model and created a very basic home page.
By the end of this chapter, we’ll be able to add, modify, and delete events from our
user home page.

CRUDdy Events
Unless you’ve just been unfrozen from a decades long, icy slumber, you know what
CRUDifying a model entails. In Rails land, more often than not, a model is trans-
formed into a REST1ful resource. (Note: If you don’t have a great grasp on REST, I
would HIGHLY recommend the O’Reilly book RESTful Web Services,2 I won’t be
covering REST in detail in this book.) For the Event model, we’ll need HTTP end-
points that allow us to add (POST), modify (PUT), retrieve (GET), and delete (Um,
DELETE) events.

1 http://en.wikipedia.org/wiki/Representational_state_transfer
2 http://oreilly.com/catalog/9780596529260/

http://en.wikipedia.org/wiki/Representational_state_transfer
http://oreilly.com/catalog/9780596529260/

Creating Events
Since an Event is such a simple object, we can place the form for creating them right
on our user home page. With the agility of a cat, I jump back into MockupBuilder
and change our events page to add a form at the bottom.

Figure 8.1. Add Event

Time to write a test to fill in that form. I have added a
spec/acceptance/add_events_spec.rb with:

require 'spec_helper'
feature 'Add Events', %q{
 As a registered user
 I want to add Events
} do
 background do
 login_user Factory(:user)
 end
 scenario "Add Basic Event" do
 fill_in "Name", :with => "New Event"
 fill_in "Description", :with => "This is my new event"
 click_button "Create Event"
 page.should have_content("New Event")
 page.should have_content("This is my new event")

rubysource.com

Rails Deep Dive60

http://www.rubysource.com?utm_source=pdf&utm_medium=link&utm_campaign=deep-dive

 page.should have_selector("ul > li")
 end
end

Running this spec results in complaints about ElementNotFound because we haven’t
created our form yet. So, let’s add a form to our app/views/events/index.html.haml

(add to the end of the file):

= form_for Event.new do |f|
 = f.label :name
 = f.text_field :name
 = f.label :description
 = f.text_field :description
 = f.submit

Since we want this form “inline” we need to override the base styles. In the
app/assets/stylesheets/events.css.scss file add:

.new_event label, input[type='text'] {
 display: inline;
}
input#event_description {
 width: 500px;
}

(Note: Rails adds the new_event class to the form). Now, the spec complains about
there being no create action on EventsController. Okey dokey, we can add that
(in app/controlles/events_controller.rb):

def create
 event = current_user.events.build(params[:event])
 event.save
end

Now the spec says we don’t have a events/create template, which is true. But, we
don’t want that template, we want the create action to just render the home page.
So, for now, let’s redirect to the events index page. I added:

page.current_path.should == events_path

sitepoint.com

61Making Events

http://www.sitepoint.com?utm_source=pdfamp;&utm_medium=link&utm_campaign=deep-dive

… to our spec and:

redirect_to events_path

… to the EventsController#create method. The spec complains about the descrip-
tion text not being on the page. Oops, looks like I neglected that when I created the
list of events. Change the app/views/events/index.html.haml to:

%h2 Your Events
map.sixteen_columns
%ul#events
 - for event in @events
 %li
 %span.event_name= event.name
 %span.event_description= event.description
= form_for Event.new do |f|
 = f.label :name
 = f.text_field :name
 = f.label :description
 = f.text_field :description
 = f.submit

… and the spec passes.

At points like this, I like to fire up the server (rails s) and look around. The first
thing I notice is, when I am signed in and on the home page, there is no clear nav-
igation to the user events page. Also, when I am on the user events page, the list of
events looks like crap. I am not too hung up on the latter issue, but I’d like to get
some visual clues in there to make them a bit nicer for now. Finally, the space where
our map is going to go is a big void, but I am not going to deal with that until we
get to creating Occasions.

Clean up the Signed In Navigation
Dealing with the first issue from above, when a user is signed in there should be a
link to get to the user’s events. I am going to call it “My Events”. First, though, we
need to write a test to make sure it’s there. In fact, we can just add it to the “Success-
ful Sign In” scenario in spec/acceptance/sign_in_spec.rb:

rubysource.com

Rails Deep Dive62

http://www.rubysource.com?utm_source=pdf&utm_medium=link&utm_campaign=deep-dive

current_path.should == user_root_path # This line already exists
page.should have_selector("a", :text => "My Events",
 :href => user_root_path)

Figure 8.2. My Events Link Spec

Making this spec pass is simply a matter of adding this “My Events” link to the
sign_in conditional in the app/views/layout/application.html.haml file. (Note: just add
the lines commented with #Add this line):

-if user_signed_in?
 Hullo #{current_user.name}
 |

 = link_to "My Events", user_root_path #Add this line
 | #Add this line
 = link_to "Sign Out", destroy_user_session_path, :method =>
➥:delete
 - else
 = link_to "Sign In", new_user_session_path

… and the spec passes. If you want to fire up the server and look at our new sign-
in area, go for it.

Adding More CRUD to Events
We can create and retrieve Events, but we can’t edit or delete events. Let’s add the
ability to do that now. My initial thoughts with editing are to just load the “selected”
event into the same form we are using to create events. I doubt it will stay this way,
but it gives us a quick way to test the update capabilities. Using this workflow, the

sitepoint.com

63Making Events

http://www.sitepoint.com?utm_source=pdfamp;&utm_medium=link&utm_campaign=deep-dive

edit action of our EventsController will fetch the selected Event from the database
and hydrate a @event instance variable. The edit view will then render that Event
information into the form. A significant takeaway, then, is that our user events page
is also going to be our edit view. Also, the user will need a way to “select” a partic-
ular event. For now, we’ll make the Event name in the list of events a hyperlink
that fires the event view. Let’s write some more tests to flush this out. I have created
a spec/acceptance/edit_events_spec.rb file with:

require 'spec_helper'
feature 'Select Event', %q {
 As a registered user
 I want to select an Event
} do
 background do
 @user = Factory(:user)
 @event = Factory(:event, :user => @user)
 login_user @user
 end
scenario "Select Event" do
 page.should have_selector("a", :text=> @event.name)
 click_link @event.name
 page.should have_selector("li.selected", :text=> @event.name)
 page.should have_selector("input[name='event[name]']",
 :value => @event.name)
 page.should have_selector("input[name='event[description]']",
 :value => @event.description)
 end
end

Of course, the spec fails because there is no link with “Test Event” (remember, that’s
our factory Event object name) on the page. Open app/views/events/index.html.haml

and change:

%span.event_name= event.name

… to:

%span.event_name
 = link_to event.name, edit_event_path(event)

rubysource.com

Rails Deep Dive64

http://www.rubysource.com?utm_source=pdf&utm_medium=link&utm_campaign=deep-dive

The spec complains The action 'edit' could not be found for
EventsController, which makes sense. So, add an edit method to the
EventsController:

def edit
end

And now, the spec complains about the edit template missing. As a quick tangent,
Rails tells you where it looked, and you can see that Devise has modified our views
search path … pretty cool.

Figure 8.3. Where's the edit_template?

As I previously mentioned, we aren’t going to have a separate edit template, but
rather, we are going to use our existing events index template and just load the se-
lected event into an instance variable:

def edit
 @events = current_user.events
 @event = @events.find(params[:id])
 render 'index'
end

The next issue is that there is no li with a class selected, so open up the events
index template and change it to:

%h2 Your Events
map.sixteen_columns
%ul#events
 - for event in @events
 %li{:class => @event == event ? :selected : nil} #FIRST

sitepoint.com

65Making Events

http://www.sitepoint.com?utm_source=pdfamp;&utm_medium=link&utm_campaign=deep-dive

 %span.event_name
 = link_to event.name, edit_event_path(event)
 %span.event_description= event.description
= form_for @event || Event.new do |f| #SECOND
 = f.label :name
 = f.text_field :name
 = f.label :description
 = f.text_field :description
 = f.submit

In the interest of time, I’ve made all the changes to make our spec pass. First, the
events loop checks to see if the current event matches our @event instance variable
and adds the selected CSS class name to the list item when it does. Second, we
have the form_for test for the existence of the @event instance variable, and fall
back to a plain Event.new if it’s not there.

The spec now passes. We can select an event, which loads it into the form. Test
HO! (By “HO!” I mean, add this feature to the same edit_event_spec.rb file):

feature 'Edit Event', %q {
 As a registered user
 I want to edit a selected Event
} do
 background do
 @user = Factory(:user)
 @event = Factory(:event, :user => @user)
 login_user @user
 click_link @event.name
 end
 scenario "Edit Event" do
 fill_in "Name", :with=> "Edited Event"
 click_button "Update Event"
 page.should have_selector("a", :text => "Edited Event")
 end
end

You can see that we select our event in the background block (sniff, sniff, I smell
helper …), followed by the scenario of changing the Event’s name. This spec fails
because there is no update action on EventsController. Just like the edit action,
we need to add our new action to the controller. However, before we do that, I want
to point out something cool that Rails just did for us, free of charge. Notice in the

rubysource.com

Rails Deep Dive66

http://www.rubysource.com?utm_source=pdf&utm_medium=link&utm_campaign=deep-dive

“Edit Event” scenario, we look for an “Update Event” button. However, we haven’t
put any code in the view to differentiate between a create form and an update form.
Rails and form_for do this for us, making the form do the right thing based on the
object passed into it. Some of the little things Rails does, like this, makes me want
to give it a great big hug.

Adding the update action follows the same steps as adding the edit action. Add
the empty update method to EventsController, watch the spec complain about
the missing update template, then add the guts to the update method, redirect to
the index view, and rock out. The redirect is a slight difference, because after an
update we just want to go back to the events page to refresh our updated event in
the events list:

def update
 event = current_user.events.find(params[:id])
 event.update_attributes(params[:event])
 event.save
 redirect_to events_path
end

Specs pass and we can create and update Events. Progress is fun.

MUST DESTROY EVENTS
Once Loccasions can destroy events, we’ll be done with the manipulation of events.
First, we’ll need something for the user to indicate that an event is a goner. A “De-
lete” button sounds like a good start, as does writing a test for said button. Here’s
the spec:

require 'spec_helper'
feature "Delete Event", %q{
 As a registered user,
 I want to delete an event
} do
 background do
 Capybara.current_driver = :selenium #FIRST
 @user = Factory(:user)
 @event = Factory(:event, :user => @user,
 :name => "Dead Event Walking")
 login_user @user

sitepoint.com

67Making Events

http://www.sitepoint.com?utm_source=pdfamp;&utm_medium=link&utm_campaign=deep-dive

 end
 after do #afterFIRST
 Capybara.use_default_driver
 end
 scenario "Delete Event" do
 page.should have_content("Dead Event Walking")
 page.should have_selector("form[action='/events/#{@event.id}']
input[value='delete']") #SECOND
 # auto confirm the dialog
 page.execute_script(
 'window.confirm = function() {return true;}'
)
 click_button "X"
 page.should_not have_content("Dead Event Walking")
 end
end

I’ve done that thing where I jump ahead a bit with the “Delete Event” spec, so I’ll
try to explain what is happening. FIRST, I am switching the test_driver for Capybara
to http://seleniumhq.org/, telling the page to just auto confirm all dialogs, and then
switching back to the default test driver. SECOND, you might be wondering why I
am testing for the existing of a form with those strange attributes. Due to Rails
RESTful nature, the destroy route for a resource requires the use of the HTTP DELETE
method. The only way to perform an HTTP request that does not use GET is to use
a form. However, support for the HTTP DELETE method amongst browsers is spotty
and http://www.w3.org/Bugs/Public/show_bug.cgi?id=10671, so we need a conven-
tion. A current convention, and what Rails will do for you, is to create a POST form
including a hidden input called _method that has the value of the HTTP verb we
want to use. The Rails routing middleware then checks for that parameter and routes
the request appropriately. That’s why I wrote this spec that way, even if it goes a
bit deeper than a normal accepetance test might. Again, this test will likely change
down the road. The spec, of course, will complain about the view not having a form
with those attributes. Here’s our new index view:

%h2 Your Events
map.sixteen_columns
%ul#events
 - for event in @events
 %li{:class => @event == event ? :selected : nil}
 %span.del_form

rubysource.com

Rails Deep Dive68

http://www.rubysource.com?utm_source=pdf&utm_medium=link&utm_campaign=deep-dive

 =button_to "X", event, :confirm => "Are you sure?", :method
➥=> :delete
 %span.event_name
 = link_to event.name, edit_event_path(event)
 %span.event_description= event.description
 %div.clear
= form_for @event || Event.new do |f|
 = f.label :name
 = f.text_field :name
 = f.label :description
 = f.text_field :description
 = f.submit

If you ran rails s now, signed in, and went to the user events page, you could see
(provided an Event exists) the delete button. Viewing the source of that page shows
the delete form:

 <form method="post" action="/events/4e67812841574e0462000002"
 class="button_to">
 <div>
 <input name="_method" type="hidden" value="delete" />
 <input data-confirm="Are you sure?" type="submit" value="X" />
 <input name="authenticity_token" type="hidden"
 value="..elided.." />
 </div>
 </form>

Rails is giving us all kinds of help here: the hidden _method input, the data-confirm
attribute for our confirmation box, and an authenticity_token to help avoid cross-
site scripting attacks. And what did YOU get Rails? Nothing, eh?

Run the spec, and we get the familiar complaint about EventsController missing
an action, destroy in this case. At this point, you should know what’s coming. Add
the blank method, watch it fail, add the destroy and redirect logic, watch it pass,
and, finally, feel good about yourself. Once you’ve added the destroy method:

sitepoint.com

69Making Events

http://www.sitepoint.com?utm_source=pdfamp;&utm_medium=link&utm_campaign=deep-dive

def destroy
 event = current_user.events.find(params[:id])
 event.destroy
 redirect_to events_path
end

… all specs will pass. You may have been a bit startled by the browser popping up
when you ran the specs, eh? That’s Selenium, and it’s awesome. (But, we’ll probably
get rid of it later …) So, if you fire up the server, you should be able to add, modify,
and destroy events. Next time, we’ll add Occasions and, maybe (DUN DUN DU-
UUUUN) the map. Oh, and don’t forget:

git add .
git commit -am "CRUDed events"
git push origin adding_events
git checkout master
git merge adding_events
git push origin master

rubysource.com

Rails Deep Dive70

http://www.rubysource.com?utm_source=pdf&utm_medium=link&utm_campaign=deep-dive

Chapter9
Pair Programming
On a day like any other, I was scanning through my Twitter feed searching for
knowledge and inspiration. Although I didn’t know it yet, this day of tweet fishing
would prove fruitful and change the direction of Loccasions forever. (You should
imagine some dramatic music here, complete with a cutaway of a Loccasions screen
shot fading to black.)

The tweet that would change everything was about rubypair.com.1 RubyPair.com
is a “searchable directory of developers who are looking to pair, in-person or re-
motely, on topics that they’ve expressed an interest in through their profile.” In
other words, it’s a way to find someone to pair program2 on your (or their or some
open-source) Ruby project. I read this tweet, and it struck me like a thunderbolt! I
need to pair program on Loccasions! I mean, I had one (arguable) programmer, I
just needed to find another. Where would I find such a soul? Well, I thought that
the creator of RubyPair.com would surely be keen. I’d offer up free publicity on
RubySource.com,3 THE (read: a) place to read about all things Ruby.

1 http://rubypair.com/
2 http://rubysource.com/loccasions-pair-programming/linky
3 http://rubysource.com

http://rubypair.com/
http://rubysource.com/loccasions-pair-programming/linky
http://rubysource.com

Looking on the About4 page, I saw Evan Light’s name. I’ve followed Evan on Twitter
(@elight5) for awhile now, and I know that he holds “office hours”6 where program-
mers seeking pairing can sign up. I sprang at the opportunity and snagged Evan’s
Office Hours on September 20th. Now, all I had was the crazy anticipation of waiting
for that day, like it was my own Ruby Christmas.

Let There Be (Evan) Light
Evan Light has been doing software development a long time. You can tell by
reading his highly informative blog7 and his bio8. Evan hasn’t always done Ruby,
and in fact took a great risk to get to his current station in life.9 Evan, in my opinion,
exemplifies why the Ruby community is, how-you-say?, super-fantastic. He is smart,
approachable, and passionate about helping others learn Ruby. If you need an
awesome Ruby resource, he is available for hire (with all the blessings of Rubysource)
at TripleDogDare.10 He is one cool cat (that loves cats).

Am I Worthy?
Being honest, I was a bit apprehensive. I’ve never really paired before. Especially
not with a stranger. Especially not with a stranger that is more experi-
enced/smarter/better at this Ruby stuff than yours truly. It was a distinct possibilty,
in my brain, that the session would be highly frustrating for him and that I, quite
possibly, would cry. (Continuing with the dramatic theme …) I stood firm, though,
knowing that sacrificing for your art is a sign of greatness.

The Day Arrives
As 9:50pm I start the stare-blankly-at-my-screen-worrying-about-my-impending-
embarrassment trance at my desk. Ten minutes later, the Skype ring jolts me back
to reality. It’s Evan. I answer, “Hi.”

4 http://rubypair.com/about
5 http://twitter.com/elight
6 http://goo.gl/0Txzn
7 http://evan.tiggerplace.com/
8 http://www.tripledogdare.net/
9 http://evan.tiggerpalace.com/articles/2011/08/28/getting-free/
10 http://tripledogdare.net/

rubysource.com

Rails Deep Dive72

http://rubypair.com/about
http://twitter.com/elight
http://goo.gl/0Txzn
http://evan.tiggerplace.com/
http://www.tripledogdare.net/
http://evan.tiggerpalace.com/articles/2011/08/28/getting-free/
http://tripledogdare.net/
http://www.rubysource.com?utm_source=pdf&utm_medium=link&utm_campaign=deep-dive

“Hello, Glenn. Are you ready to go?” he asks.

“Um, sort of. I have to be honest, here, I’ve never done this before.”

“What? Programmed?” he chuckles. “It’s okay, I’ll get us going.”

I had previously told Evan about Loccasions, and he had cloned my GitHub repos-
itory. He told me that all he needed from me was my SSH public key. I sent him
the key, and he tells me to ssh to his box (he set me up a user and he has a cool
DynDNS-type domain), which I do. My next instruction was to type tmux -S

/tmp/glenn attach. I had not heard of tmux before, but I threw caution to the wind
and typed the command.

Revelations
So, tmux is insanely fantastic. The command I entered connected me to a tmux session
that Evan had started. The terminal window was split into a command line and an
editor (vim) window with the Loccasions source in it. The kicker? We both can
control/type/etc the session in real time.

Figure 9.1. TMUX Session Window

There is no handing control back and forth. It’s real-time editing and hacking as if
you were sitting next to each other. Actually, it’s better than that, because we don’t
have to swap seats. You can split the window as much as needed, so we can run

sitepoint.com

73Pair Programming

http://www.sitepoint.com?utm_source=pdfamp;&utm_medium=link&utm_campaign=deep-dive

spork in one window, vim in another, and the command-line in another. I can’t relay
how freaking cool this is for remote code-sharing/pairing.

To make it even cooler, Evan forwarded a port to his development rails server on
his box, so when he ran rails s, I could open up a local browser and see our
changes to the site, again, in real time. I was blown away. Evan, who must be used
to seeing mouth-agape, gaffawing dopes like me in a Skype video chat window,
shrugs like it’s no big deal. The pairing session was already worth it, and we hadn’t
touched any code. I told him that he needs to blog about this pairing approach. The
masses must be informed.

Oh Yeah, We’re Supposed to Program
With considerable effort, Evan talked me down off my cloud and put us on task. He
had, as I mentioned, cloned the repository, but had not run bundle install yet.
Here is where we hit our first issue. I hadn’t, yet, upgraded Loccasions to Rails 3.1
final (it started life on rc5), so that was step one. Evan cranked open the Gemfile
and complimented me for using “twiddle-waka” (~>) the gems in the file. Being
honest, I’ve always done that, but couldn’t really explain why, but Evan can:
Twiddle-waka is usually a safe choice in Gemfiles because tiny releases (The Z in
X.Y.Z) are supposed to be safe updates that won’t cause breakage as I understand
it. Apparently, that’s THE thing to do with your Gemfile, and my tension about being
a moron eased a bit. Maybe that’s why Evan mentioned it, maybe not. Either way,
I ceased to worry about the possibility of being told I was worthless and weak and
started to get really excited about the session.

(I realize that the approach to gem versioning with Bundler is somewhat debatable.
For another approach, read Gem Versioning and Bundler: Doing it Right.11)

Evan changed the gem rails line in the Gemfile to gem rails ~>'3.1.0', which
caused Bundler to complain about the sass-rails gem. To make Bundler happy
again, Sass-rails and coffee-rails also had to point to their respective 3.1.0 versions.
The final version change for Rails 3.1.0 was Devise, moving from 1.4.2 to 1.4.6.

Mongoid had recently released 2.2.0, so we changed that too. That last change
brought on messages about bson_ext needing to be 1.4.0, not 1.3.1. You have to

11 http://yehudakatz.com/2011/05/30/gem-versioning-and-bundler-doing-it-right/

rubysource.com

Rails Deep Dive74

http://yehudakatz.com/2011/05/30/gem-versioning-and-bundler-doing-it-right/
http://www.rubysource.com?utm_source=pdf&utm_medium=link&utm_campaign=deep-dive

luuuuuv Bundler (and I do). A quick change of the bson_ext version and bundle

install finished successfully. We’re at Rails 3.1.0 Final, progress in pair program-
ming.

The next suggestion Evan had was to use the guard_rspec12 (based on guard13) gem
to have the tests automatically run as files are modified. I had been toying with the
idea of using autotest, so this was good timing. Neither of us were sure if spork and
guard would play nicely, and after our session I went and found guard_spork.14

Long story short, add:

gem 'guard-rspec', '~> 0.4.5'
gem 'guard-spork', '~> 0.2.1'

… to the development group of your Gemfile. Finally, update spork to 0.9.0.rc9 (gem
'spork', '~> 0.9.0.rc9') or you'll get a C error when spork builds and bundle

install`. [Note: I am not adding the Mac OS X specific stuff (the fsevents and
growl_notify) gems to the Gemfile. Please read the README at the guard GitHub
repository and install the file system events for your system.] With guard installed,
we need to tell it about spork and rspec, and we do that with a Guardfile in the root
of the app:

guard 'spork', :cucumber_env => { 'RAILS_ENV' => 'test' },
 :rspec_env => { 'RAILS_ENV' => 'test' } do
 watch('config/application.rb')
 watch('config/environment.rb')
 watch(%r{^config/environments/.+.rb$})
 watch(%r{^config/initializers/.+.rb$})
 watch('spec/spec_helper.rb')
end
guard 'rspec', :version => 2 do
 watch(%r{^spec/.+_spec.rb$})
 watch(%r{^lib/(.+).rb$}) { |m| "spec/lib/#{m[1]}_spec.rb" }
 watch('spec/spec_helper.rb') { "spec" }
Rails example
 watch(%r{^spec/.+_spec.rb$})
 watch(%r{^app/(.+).rb$}) { |m| "spec/#{m[1]}_spec.rb" }

12 https://github.com/guard/guard-rspec
13 https://github.com/guard/guard
14 https://github.com/guard/guard-spork

sitepoint.com

75Pair Programming

https://github.com/guard/guard-rspec
https://github.com/guard/guard
https://github.com/guard/guard-spork
http://www.sitepoint.com?utm_source=pdfamp;&utm_medium=link&utm_campaign=deep-dive

 watch(%r{^lib/(.+).rb$}) { |m| "spec/lib/#{m[1]}_spec.rb" }
 watch(%r{^app/controllers/(.+)_(controller).rb$}) { |m|
 ["spec/routing/#{m[1]}_routing_spec.rb",
 "spec/#{m[2]}s/#{m[1]}_#{m[2]}_spec.rb",
 "spec/acceptance/#{m[1]}_spec.rb"] }
 watch(%r{^spec/support/(.+).rb$}) { "spec" }
 watch('spec/spec_helper.rb') { "spec" }
 watch('config/routes.rb') { "spec/routing" }
 watch('app/controllers/application_controller.rb')
➥{ "spec/controllers" }
 # Capybara request specs
 watch(%r{^app/views/(.+)/.*.(erb|haml)$}) { |m|
"spec/requests/#{m[1]}_spec.rb" }
end

Opening up a new terminal and typing guard should fire up a guard (and spork)
session.

Figure 9.2. On Guard!

Now, as we modify test and application files, the specs should run automatically.
I like that feature – another notch on the stick for pair programming. (After our
session, I noticed that my Selenium tests were unable to connect to Firefox 7, so I
updated Capybara to 1.1.1 in the Gemfile as well. Do that too.)

Feature of the Day
Once we had the environment up and running with guard, Evan asked me what
feature I wanted to add during our session. I had very ambitious ideas of what we
could do, but we’d start with creating the page to show a singular Event. In Rails
terms, I wanted to create the events#show sequence (here I am using “sequence” to
refer to the controller => view needs to satisfy the show ing of an event). So, I moved

rubysource.com

Rails Deep Dive76

http://www.rubysource.com?utm_source=pdf&utm_medium=link&utm_campaign=deep-dive

to the spec directory and created an acceptence/show_event_spec.rb. This was Evan’s
first chance to see how I was, basically, relying entirely on acceptance tests to exer-
cise the app. He told me how he was moving away from acceptance tests for per-
formance and syntactical reasons. Evan wants something like Cucumber, but not
Cucumber. He actually wrote a DSL, called Couda15 that emphasizes the Given-
When-Then approach to testing, but doesn’t rely on regular expressions like Cucum-
ber. Check it out.

Evan told me of experiences of having hundreds of specs to run, where he had to
use things like parallel_tests16 to get the tests to run within 15 minutes. In fact, we
talked about all kinds of stuff, which is probably the biggest takeaway of the session.
Sure, we added a feature to Loccasions, but it was the chatter around what we were
doing and around Ruby/Rails that I found fascinating.

Okay, Okay, the ACTUAL Code
Rather than step through the actual sequence of events that led to creating the Show
Event page, I’ll simply put the code in here. At a high level, Evan did some coding,
I did some coding (he was really good about making me do some of the work, as I
was content to sit back and watch) and we ended up with a basic page. Here is the
spec for the page:

require 'spec_helper'
feature 'Show Event', %q{
 As a registered user
 I want to see an Event
 so I can see my Event Details
} do
background do
 @user = Factory(:user)
 @event = Factory(:event, :user => @user)
 login_user @user
 end
scenario "Show Event" do
 click_link "Show Details"
 page.current_path.should == event_path(@event)
 page.should have_content(@event.name)

15 http://coulda.tiggerpalace.com/
16 https://github.com/grosser/parallel_tests

sitepoint.com

77Pair Programming

http://coulda.tiggerpalace.com/
https://github.com/grosser/parallel_tests
http://www.sitepoint.com?utm_source=pdfamp;&utm_medium=link&utm_campaign=deep-dive

 page.should have_content(@event.description)
 end
end

Add the “Show Details” link to app/views/events/index.haml.html (Thanks Alert
Reader rsludge!) Here is the new ul and loop for events.

%ul#events
 - for event in @events
 %li{:class => @event == event ? :selected : nil}
 %span.del_form
 =button_to "X", event, :confirm => "Are you sure?", :method => :delete
 %span.event_name
 = link_to event.name, edit_event_path(event)
 %span.event_details
 = link_to "Show Details", event_path(event)
 %span.event_description= event.description
 %div.clear

If you've been keeping up, then you know what is coming. The spec fails, because
there is no events_controller#show method:

def show
 @event = current_user.events.find(params[:id])
end

Next, it’ll ask for the view template (app/views/events/show.html.haml):

%h2= @event.name
.description= @event.description

Yes, I know it isn’t much, but it won’t be until we add Occasions (next chapter, I
promise!). Creating this view makes the spec pass, and we had a new feature.

Time Flies
At the end of this spec, we had just about reached an hour. I mentioned adding
Occasions, and Evan (understandably) said we were at a good place to stop. I agreed,

rubysource.com

Rails Deep Dive78

http://www.rubysource.com?utm_source=pdf&utm_medium=link&utm_campaign=deep-dive

and he sent me the code. You can see all the changes,17 which actually include
some minor changes from previous comments (thanks Alert Readers!)

Go and Pair
All in all, I really enjoyed the pairing session with Evan. I learned a ton in an hour,
and Loccasions is better for it. Evan is passionate about helping the Ruby community,
and he has found a manner (the tmux/Skype crazy-awesome) and a message
(RubyPair18). I encourage you to sign up at RubyPair, find another programmer, and
do some work. Evan is always looking for pairers to work on RubyPair, so sign up
on his Office Hours19 and help out. Finally, I can’t adequately express my appreci-
ation to Evan for allowing me to document this experience and for being gracious
and understanding. Right, now pair up!

17 https://github.com/ruprict/loccasions/commit/515f6aa255e9a0d3d838d5da8207269a387c76fd
18 http://rubypair.com/
19 http://goo.gl/0Txzn

sitepoint.com

79Pair Programming

https://github.com/ruprict/loccasions/commit/515f6aa255e9a0d3d838d5da8207269a387c76fd
http://rubypair.com/
http://goo.gl/0Txzn
http://www.sitepoint.com?utm_source=pdfamp;&utm_medium=link&utm_campaign=deep-dive

rubysource.com

http://www.rubysource.com?utm_source=pdf&utm_medium=link&utm_campaign=deep-dive

Chapter10
Hiring a Foreman,
Inheriting Resources, and Occasions
In this chapter, I want to finish the Occasions MVC sequence. First, though, let’s
make firing up the development environment a bit easier. Maybe that will kick-start
our productivity …

Hiring a Foreman
Every time I want to hack on Loccasions, I have to fire up guard, a web server (rails
s, for now), and mongodb along with my vim session. Without fail, I forget to fire
up mongodb, so guard blows up all over the place. It’s an annoying time-waster and
also puts me in a bad mindset at the start of my hack session. I would like to clean
this up a bit, so I am bringing in Foreman.1 Foreman is a “manager for Procfile-based
applications”, which Google will tell you means you can create a Procfile (we’ll put
ours in the root of the app) and list out the processes we want Foreman to start up.

1 http://rubydoc.info/gems/foreman/0.24.0/frames

http://rubydoc.info/gems/foreman/0.24.0/frames

That’s sounds positively smashing to me, so I add gem foreman, "~> 0.24.0" to
the :development and :test groups in my Gemfile, quick bundle install and
foreman is officially on the payroll. I have three processes I want to run in develop-
ment: mongod, guard, and rails s, so my Procfile looks like:

web: rails s
test: guard
db: mongod --dbpath=/Users/ggoodrich/db/data

Now, I can type foreman start in my application directory and Foreman will start
these three processes.

Figure 10.1. No hard hat here

I like to imagine a scruffy, hard-hat wearing dude screaming at the processes (“ALL
RIGHT, Database! Get off your lazy shard and prepare for data!”) Although, being
honest, I think a better name for Formean would have been Procadile. I can already
see the logo…maybe I need to get a non-programming hobby…

rubysource.com

Rails Deep Dive82

http://www.rubysource.com?utm_source=pdf&utm_medium=link&utm_campaign=deep-dive

Figure 10.2. Okay, maybe the logo would be better than this …

Occasions
We’re finally to a point where we can design how we’ll add Occasions. Occasions,
as you may remember, belong to an Event. An Occasion is an individual occurrence
of that Event. So, if your Event is “Selling Girl Scout Cookies”, then an Occasion
for that event might be “February 2nd, 2010 with the lat/long of 35.223/-85.443
(My Neighbor’s House), and a note of “2 boxes of Samoas”. Another Occasion for
that Event could, then, have a date of February 10th, 2010, with the lat/long of
(lat/long for my kid’s school), and a note that says “Mrs. Whatsherface bought 1 box
of Thin Mints.”

Let’s write some unit tests around that idea. Put this in spec/models/occasion_spec.rb:

require 'spec_helper'
describe 'Occasion' do
 before do
 @event = Factory.build(:event)
 @occasion = @event.occasions.build
 end
 it "should belong to an event" do
 @occasion.event.should_not be_nil
 end
 it "should have a time and date of occurrence" do
 dt = Time.now

sitepoint.com

83Hiring a Foreman, Inheriting Resources, and Occasions

http://www.sitepoint.com?utm_source=pdfamp;&utm_medium=link&utm_campaign=deep-dive

 @occasion.occurred_at = dt
 @occasion.occurred_at.to_s.should == dt.to_s
 end
 it "should have a latitude and longitude" do
 @occasion.latitude = -85.000
 @occasion.longitude = 35.3232
 @occasion.latitude.should == -85.000
 @occasion.longitude.should == 35.3232
 end
 it "should have a note" do
 @occasion.note = "This thang went down"
 @occasion.note.should == "This thang went down"
 end
end

These tests fail, because we haven’t created an Occasion model and Event doesn’t
have a occasions method. A quick rails g model Occasion

occurred_at:datetime latitude:float longitude:float note:text -s will
take care of that. (Note: the -s skips existing files, which is our spec file that we
already created). We have to modify the generated model file to tell it that it lives
in Events. Here is our app/models/occasion.rb file (I’ve gone ahead and added valid-
ations and accessors):

class Occasion
 include Mongoid::Document
 field :occurred_at, :type => Time
 field :latitude, :type => Float
 field :longitude, :type => Float
 field :note, :type => String
 embedded_in :event, :inverse_of => :occasions
 validates :occurred_at, :latitude, :longitude, :presence => true
 attr_accessible :occurred_at, :latitude, :longitude, :note
end

Also, open up models/event.rb and add embeds_many :occasions below the
embedded_in :user line. I realized, looking at this file again, that I had neglected
to define which attributes on Event should be accessible. This is bad mojo, so I added
attr_accessible :name, :description to the Event model.

rubysource.com

Rails Deep Dive84

http://www.rubysource.com?utm_source=pdf&utm_medium=link&utm_campaign=deep-dive

Changing Our Spork Configuration
In the midst of writing the Occasion model spec, I added a new factory to create an
Occasion in spec/factories.rb:

factory :occasion do
 latitude 35.1234
 longitude -80.1234
 occurred_at DateTime.now
 note "Test Occasion"
 event
end

With my new factory, I changed the before block in the occasion spec to use it.
This resulted in my specs blowing up all over the place with errors like:

Figure 10.3. Donde esta mi factory?

So, my new-fangled Spork/Guard super fantastic environment wasn’t reloading the
factories. I frantically turned to Google and asked “WHAT NOW??!?” Google calmly
replied, “Put this in the Spork.each_run block in your spec/spec_helper.rb file, my
man.”:

Reload our factories
FactoryGirl.factories.clear
Dir[Rails.root.join("spec/factories.rb")].each{|f| load f}

Guard knows to reload the RSpec environment when you mess with spec_helper.rb,
so my tests were happy again. While we are in there, let’s add something to reload
the routes too:

Reload routes
Loccasions::Application.reload_routes!

Now that we have a model, we need a way to create them.

sitepoint.com

85Hiring a Foreman, Inheriting Resources, and Occasions

http://www.sitepoint.com?utm_source=pdfamp;&utm_medium=link&utm_campaign=deep-dive

You Say Potatoe “Hurry up”, and I Say
Potahtoe “Occasions Controller”
At this point, we should all be Olympic Gold Medalists at creating the vanilla Rails
Controller for a resource. In this case, our resources are Occasions. Go ahead and
try to get a working (and spec’d) controller for Occasions up and running. You can
check what I did with this gist2 and see how it came out.

Inherited Resources
WHOA! What’s up with THAT gist? That doesn’t look like what we did for the
events controller. You’re right, it doesn’t look like that. I tricked you. Jose Valim of
Plataformatec (and Crafting Rails Applications3) fame created the inherited_re-
sources4 gem to address the fact that 95% of all RESTful controllers in Rails do the
same stuff. Using Jose’s gem, we can have our OccasionsController inherit from
InheritedResources::Base and we get the 7 ~~Deadly~~common controller actions
for free. I heart this community. (BTW, now we be a good time to add gem

"inherited_resources", "~> 1.3.0" to your Gemfile and bundle install that
baby.)

In this case, it’s not totally free, though, as we have to do some configuration to
handle our “special” circumstances. These circumstances relate mostly to our using
MongoDB and the fact that Occasions are embedded within a document hierarchy
(User ==> Events ==> Occasions). If you try to do something like
Occasion.where(:event_id => @event.id) or whatever, you get the following
error that scares the hell out of you the first time you see it:

Mongoid::Errors::InvalidCollection: Access to the collection for
Occasion is not allowed since it is an embedded document, please
access a collection from the root document.

Once you calm down, you realize that this makes total sense. Because we are using
a document database, occasions are embedded within events and events are embed-

2 https://gist.github.com/1352047
3 http://pragprog.com/book/jvrails/crafting-rails-applications
4 https://github.com/josevalim/inherited_resources

rubysource.com

Rails Deep Dive86

https://gist.github.com/1352047
http://pragprog.com/book/jvrails/crafting-rails-applications
https://github.com/josevalim/inherited_resources
https://github.com/josevalim/inherited_resources
http://www.rubysource.com?utm_source=pdf&utm_medium=link&utm_campaign=deep-dive

ded within users. So, rather than use the regular ActiveModel class methods to access
the collections, you have to walk down the document hierarchy. We need a user
(current_user, which we are already using to scope events), and an event. Where
do we get the event?

The route parameters have a :event_id entry so, if we were doing this ourselves,
we’d grab that and query the current_user.events collection. This is a pretty
common scenario, and the inherited resources gem is crazy smart about common
scenarios. Let’s take a look at this configuration in the
app/controllers/occasionscontroller.rb file:

belongs_to :event
actions :all, :except => [:show, :index]
def begin_of_association_chain
 current_user
end

But wait! There’s more!! You see that action method call up there? That tells inher-
ited_resources which actions we want (or don’t want, in this case) for our controller.
Occasions will only ever been seen through an Event, so there is no point in creating
the show and index actions (we will change our mind when we get to the Loccasions
API) right now. The truly perceptive among you are now asking “But, what about
redirects?”, which is a great question. A common idiom for Rails RESTful controllers
is to redirect to the index or show page after resource creation. Again, we aren’t
going to do that here, we want to go to the events#show action. The inherited_re-
sources gem has a feature called “Smart redirects” that (from their GitHub page5:)

Redirects in create and update actions calculates in following order
resourceurl, collectionurl, parenturl (which we are going to see
later), rooturl. Redirect in destroy action calculate in following order
collectionurl, parenturl, root_url.

In other words, it figures out what we want. I squealed like a little girl when I found
that feature. (To be fair, though, I squeal a lot.)

5 http://github.com/josevalim/inherited_resources

sitepoint.com

87Hiring a Foreman, Inheriting Resources, and Occasions

http://github.com/josevalim/inherited_resources
http://www.sitepoint.com?utm_source=pdfamp;&utm_medium=link&utm_campaign=deep-dive

Pretty straightforward, and we’ve reduced the amount of code we need to write.
Occasions can be added to an event. I’ve written the
spec/acceptance/add_occasions_spec.rb and delete_occasions_spec.rb. I am not currently
going to worry about update, because I am having a problem seeing the use case. I
am sure we’ll be back to update later, but right now I want to get to the map.

Update: Alert Reader Nicholas Henry points out in the comments that you need to:

■ Amend events/show.html.haml with the Occasion form GitHub6

■ Add occasions/_occasion.html.haml GitHub7

■ Add the route for occasions GitHub8

Loccasions.map do { |its| about.time()}
Well, almost … the map will be covered in the next chapter.

6 https://github.com/ruprict/loccasions/blob/master/app/views/events/show.html.haml
7 https://github.com/ruprict/loccasions/blob/master/app/views/occasions/_occasion.html.haml
8 https://github.com/ruprict/loccasions/blob/master/config/routes.rb

rubysource.com

Rails Deep Dive88

https://github.com/ruprict/loccasions/blob/master/app/views/events/show.html.haml
https://github.com/ruprict/loccasions/blob/master/app/views/occasions/_occasion.html.haml
https://github.com/ruprict/loccasions/blob/master/config/routes.rb
http://www.rubysource.com?utm_source=pdf&utm_medium=link&utm_campaign=deep-dive

Chapter11
Going Client-side with
Leaflet, Backbone, and Jasmine
We’ve finally arrived at the moment of the map. For the last few chapters, I’ve
promised things like “in the next chapter we will deal with the map” and “I will
lower taxes,” and I haven’t delivered. Here, I’ll fulfill at least one of those promises.

Adding the map to this application is almost completely a client-side proposition.
As such, this chapter (and one or two following it) will be a metric ton of JavaScript
and a thimble’s worth of Ruby.

Libraries, Frameworks, and Maps, OH MY!
As I mentioned when setting up this application in Chapter 4, I use Backbone1 as
the framework for the JavaScript and Jasmine2 as my client-side testing framework.
My justifications for this choice is that I like both frameworks… a lot.

1 https://github.com/documentcloud/backbone
2 http://pivotal.github.com/jasmine/

https://github.com/documentcloud/backbone
http://pivotal.github.com/jasmine/

I do not, however, use a gem to generate Backbone files or magically hook up
Backbone to the server. The plan is to write the Backbone classes from scratch,
adding in the config to get them talking to the server as needed. I have absolutetly
nothing against using a gem for Backbone and rails, other than there seems to be
confusion about which one does what (If you go to the rails-backbone3 repo, it tells
you to use gem "backbone-rails", but if you go to the backbone-rails4 repo, it tells
you to use gem "rails-backbone". I was in an infinite loop looking at both of them,
saved only my wife cutting the power to my office.

Also, I won’t cover the basics of Backbone, as that has5 been6 done.7 If you don’t
understand Backbone, spend some time learning the basics, which should more
than prepare you for this article.

For Jasmine, I use the jasmine gem8 because it’s backed by Pivotal and they rock.
However, for Loccasions I’ll employ a specific branch9 of the gem, which is capable
of running the specs and JavaScript source files through the asset pipeline. We are,
after all, using Rails 3.1.

Web-based maps are all JavaScript, all the time these days. Choosing the right js-
map framework was a bit daunting, especially since I’ve spent much of my career
using one (ESRI’s ArcGIS Server, if you’re interested. You’re not.)

■ Google Maps is out, due to the possibility of Google pulling a Crazy Ivan10 about
licensing.

■ Yahoo is out, because frankly, because it’s dead.

■ I briefly looked at OpenLayers11 and may yet use it, since it’s true open source,
which I like.

3 https://github.com/ivanvanderbyl/rails-backbone
4 https://github.com/ivanvanderbyl/rails-backbone
5 http://liquidmedia.ca/blog/2011/01/Backbone-js-part-1/
6 http://thomasdavis.github.com/tutorial/Backbone-introduction.html
7 http://backbonetutorials.com/
8 https://github.com/pivotal/jasmine-gem
9 https://github.com/pivotal/jasmine-gem/tree/1.2.rc1
10 http://googlegeodevelopers.blogspot.com/2011/10/introduction-of-usage-limits-to-maps.html
11 http://openlayers.org/

rubysource.com

Rails Deep Dive90

https://github.com/ivanvanderbyl/rails-backbone
https://github.com/ivanvanderbyl/rails-backbone
http://liquidmedia.ca/blog/2011/01/Backbone-js-part-1/
http://thomasdavis.github.com/tutorial/Backbone-introduction.html
http://backbonetutorials.com/
https://github.com/pivotal/jasmine-gem
https://github.com/pivotal/jasmine-gem/tree/1.2.rc1
http://googlegeodevelopers.blogspot.com/2011/10/introduction-of-usage-limits-to-maps.html
http://openlayers.org/
http://www.rubysource.com?utm_source=pdf&utm_medium=link&utm_campaign=deep-dive

■ I also tried to use Mapstraction,12 which abstracts away the provider and let’s
you change providers on the fly. However, when I tried using OpenLayers with
Mapstraction, I couldn’t figure out how to change the theme, so I moved on.

■ Finally, I settled on Leaflet,13 mainly because it looks great and I like the api so
far.

The last bit is a bleeding-and-we’re-taking-blood-thinners addition to the application.
I’ve used Backbone a few times and you usually need templates to present your
model and collection data in the HTML. I really didn’t want to bring in another
templating language (in addition to haml) if I could avoid it, so I found haml-coffee.14

This gem allows you to write your templates using HAML, and then makes them
available in your JavaScript on the client. We’ll run through at least one scenario
soon that shows this clearly.

Setup
Whew! Now, let’s get the application setup with all our new client-side yummies.
First, download all the code we’ll need:

■ Leaflet15 put this in vendor/assets/javascripts/leaflet/leaflet.js. Leaflet also has a
CSS stylesheet and images. Put these (css files and images directory) in
vendor/assets/stylesheets/leaflet

■ Backbone16 put this in vendor/assets/javascripts/Backbone/Backbone-min.js

■ Underscore17 put this in vendor/assets/javascripts/Backbone/underscore-min.js

I also created a vendor/javsascripts/vendor.js file that will load these files. The asset
pipeline will do this automatically, but, um, I am a control freak:

12 http://mapstraction.com/
13 http://leaflet.cloudmade.com/
14 https://github.com/9elements/haml-coffee
15 http://leaflet.cloudmade.com/download.html
16 http://documentcloud.github.com/backbone/backbone-min.js
17 http://documentcloud.github.com/underscore/underscore-min.js

sitepoint.com

91Going Client-side with Leaflet, Backbone, and Jasmine

http://mapstraction.com/
http://leaflet.cloudmade.com/
https://github.com/9elements/haml-coffee
http://leaflet.cloudmade.com/download.html
http://documentcloud.github.com/backbone/backbone-min.js
http://documentcloud.github.com/underscore/underscore-min.js
http://www.sitepoint.com?utm_source=pdfamp;&utm_medium=link&utm_campaign=deep-dive

// vendor/assets/javascripts/vendor.js
//= require leaflet/leaflet
//= require Backbone/underscore-min
//= require Backbone/Backbone-min

Similarly, I created a vendor/stylesheets/vendor.css file for the Leaflet CSS:

/*
 * This is the vendor.css in our vendor/assets/stylesheets dir
 *=require leaflet/leaflet
 *
*/

Finally, add a couple of gems to our Gemfile:

group :assets do
 ...
 gem 'haml-coffee'
end
group :test, :development do
 ...
 gem 'jasmine', :git => 'git://github.com/pivotal/jasmine-gem.git',
 :branch => '1.2.rc1'
end

The aforementioned (I luuuv using that word) haml-coffee and jasmine (remember,
we’re using a branch) gems. Oh, and I am sure you remembered to bundle install,
right?

Now, it’s time to set up jasmine, so run rails g jasmine:install to set up Jasmine
support in the application. Jasmine comes with its own server, which is launched
by typing rake jasmine. Being super-savvy users of Foreman (remember Chapter 10)
we’ll add it to our Procfile:

web: rails s
db: mongod --dbpath=/Users/ggoodrich/db/data
test: guard
jasmine: bundle exec rake jasmine

rubysource.com

Rails Deep Dive92

http://www.rubysource.com?utm_source=pdf&utm_medium=link&utm_campaign=deep-dive

Next time you foreman start, Jasmine will be running. The Jasmine server runs
at http://localhost:8888, but it won’t be very interesting until we get some specs
added.

Spec files are added to Jasmine in the spec/javascript/support/jasmine.yml file. Because
we are using a branch that supports the asset pipeline, our jasmine.yml file is a bit
different than the one used in the current release. Here is a gist of the one I’ve set
up for Loccasions.18 One change I made was to pull in our CoffeeScript files (this
is what the branch gives us) and manually add our vendor JavaScripts (jQuery,
Underscore, Backbone, and Leaflet). The other change is the last line of the file,
identifying app/assets as a path to be served by the asset pipeline.

Lastly, I want to leverage Sinon19 for mocking and stubbing when needed in my
JavaScript tests. There is a nice plugin to Jasmine for Sinon20 here. Download both
those files into our spec/javascripts/helpers/ directory. You’ll need to add the
spec/javascripts/helpers/jquery.js file (you can copy it from the jQuery site21 or from
the jquery-rails gem) because Jasmine won’t load jQuery yet (they’re working on
it…).

I would suggest reading through this series about Jasmine and Sinon22 to become
familiar with how this all fits together. You’ll no doubt notice its influence on
Loccasions.

Whew… easy as, um, really hard pie.

18 https://gist.github.com/461e8d238a38562e92d2#file_jasmine.yml
19 http://sinonjs.org/
20 https://github.com/froots/jasmine-sinon
21 http://code.jquery.com/jquery-1.7.1.min.js
22 http://tinnedfruit.com/2011/03/03/testing-backbone-apps-with-jasmine-sinon.html

sitepoint.com

93Going Client-side with Leaflet, Backbone, and Jasmine

https://gist.github.com/461e8d238a38562e92d2#file_jasmine.yml
https://gist.github.com/461e8d238a38562e92d2#file_jasmine.yml
http://sinonjs.org/
https://github.com/froots/jasmine-sinon
http://code.jquery.com/jquery-1.7.1.min.js
http://tinnedfruit.com/2011/03/03/testing-backbone-apps-with-jasmine-sinon.html
http://www.sitepoint.com?utm_source=pdfamp;&utm_medium=link&utm_campaign=deep-dive

Client-side Directory Structures, and the
Women Who Love Them
For every two Backbone introductory articles, there is one on structuring23 your24

Backbone25 code. The structure of the files is a development-only concern, since
the asset pipeline will smush all the JavaScript into one application.js file. After
reading through some of the articles, I’ve come up with this:

Figure 11.1. Our, um, Backbone

In a nutshell, the collections, models, views, and templates all get their own direct-
ory. The lib directory is for code that is not part of the Backbone structure.

23 http://backbonetutorials.com/organizing-Backbone-using-modules/
24 http://weblog.bocoup.com/organizing-your-Backbone-js-application-with-modules
25 http://jguimont.com/post/11890935147/structuring-and-organizing-a-Backbone-js-app-with

rubysource.com

Rails Deep Dive94

http://backbonetutorials.com/organizing-Backbone-using-modules/
http://weblog.bocoup.com/organizing-your-Backbone-js-application-with-modules
http://jguimont.com/post/11890935147/structuring-and-organizing-a-Backbone-js-app-with
http://www.rubysource.com?utm_source=pdf&utm_medium=link&utm_campaign=deep-dive

As I mentioned, the asset pipeline in Rails 3.1 will load all this stuff for you, but I
want to control the order of how things are loaded. As such, we need to make a
change to your app/assets/javascript/application.js file, like so:

//= require jquery
//= require jquery_ujs
//= require vendor
//= require ./app
//= require ./router
//= require_tree ./lib
//= require_tree ./models
//= require_tree ./collections
//= require_tree ./views
//= require_tree ./templates

Setup Complete, Now What?
With all of our client-side whatsits in place, we can look at the design of our Events
page from the perspective of Backbone. We’ll now flush out the Events#index page,
as shown in the following screenshot.

Figure 11.2. What You See

One way to approach this page with Backbone is to slice the page into views, like
so:

sitepoint.com

95Going Client-side with Leaflet, Backbone, and Jasmine

http://www.sitepoint.com?utm_source=pdfamp;&utm_medium=link&utm_campaign=deep-dive

Figure 11.3. What Backbone Sees

This is the approach taken, and should be enough for us to start writing tests.

Gentleman, Right Now on Stage 3, Put Your
Hands Together for JAAASSSMMIIIIINE
Let’s start with the map view. Here is our first Jasmine test:

// spec/javascripts/views/mapView_spec.js
describe("MapView", function() {
 describe("initialize", function() {
 beforeEach(function() {
 loadFixtures("map.html");
 });
 it("should use the #map element by default",
 sinon.test(function() {}));
 it("should create a map", sinon.test(function() {
 }));
 });
});

You can see that Jasmine looks a lot like RSpec syntax. There are “describe” blocks
(which can be nested) and “it” blocks to test specific behavior. Also, our beforeEach
allows us to load a fixture file. In this case, our fixture file is adding a div#map to
the page (really, it’s just <div id='map'></div>), which will hold our map for the

rubysource.com

Rails Deep Dive96

http://www.rubysource.com?utm_source=pdf&utm_medium=link&utm_campaign=deep-dive

tests. Client-side testing is often dependent on the structure of the markup, so being
able to load fixture files (which Jasmine will unload after the test) is really nice.

Our map views tests are simple. First, make sure that the view uses the #map DOM
element. Second, make sure it creates a “map.”

As quick side note, you may have noticed the it functions are wrapped with
sinon.test(). This creates a “sandbox” for the test. If the MapView has any depend-
encies (and it does), we’ll be stubbing/mocking them as needed. The sandbox makes
it easy to restore any stubbed or mocked objects when a test completes.

What is a map, though? I mentioned before that we will use Leaflet, but I am not
sure that we won’t change map providers. As such, we should hide the map behind
an abstraction in the view. Also, I don’t really need to bootstrap an actual Leaflet
map for my tests. Therefore, I have created the concept of a “MapProvider,” which
I pass to the view on initialize. We can use Sinon to mock/stub the provider, keeping
out tests light.

The MapProvider interface/protocol is very simple right now:

App.MapProviders.Leaflet = ->
 # Create new map
 createMap: (elementId) ->
 addBaseMap: ()->
 addLayerToMap: (layer) ->
 setViewForMap: (options) ->

Just four functions, named to make their purpose very obvious. The implementation
of the Leaflet provider26 is here if you’re interested.

Let’s complete our 2 map view tests:

 it("should use the #map element by default", sinon.test(function() {
 // Arrange
 var mp = new App.MapProviders.Leaflet();
 var mapSpy = this.stub(mp, "createMap");
 var setViewSpy = this.stub(mp,"setViewForMap");
 //Act

26 https://gist.github.com/461e8d238a38562e92d2#file_app.map_providers.leaflet.js.coffee

sitepoint.com

97Going Client-side with Leaflet, Backbone, and Jasmine

https://gist.github.com/461e8d238a38562e92d2#file_app.map_providers.leaflet.js.coffee
https://gist.github.com/461e8d238a38562e92d2#file_app.map_providers.leaflet.js.coffee
http://www.sitepoint.com?utm_source=pdfamp;&utm_medium=link&utm_campaign=deep-dive

 var view = new App.MapView({
 mapProvider: mp
 });
 //Assert
 expect(view.el.id).toEqual("map");
 mapSpy.restore();
 setViewSpy.restore();
 </code></pre>
}));
it("should create a map", sinon.test(function() {
 //Arrange
 var mp = new App.MapProviders.Leaflet();
 var mapProviderMock = this.mock(mp);
 mapProviderMock.expects("createMap").withArgs("map").once();
 mapProviderMock.expects("setViewForMap").once();
 //Act
 var view = new App.MapView({
 mapProvider: mp
 });
 //Assert
 mapProviderMock.verify();
}));

These two test show different types of testing. The first test ensures that the MapView
does the right thing, provided it’s dependency does the right thing. We don’t really
care what the MapProvider does for this test, because it’s not pertinent to the outcome
of the test. So, we stub those methods out, which stops the calls from getting to the
Leaflet API while making sure they don’t throw an error.

The second test is an example of “Expectation Based Unit Testing.” Here, we DO
care how the MapView interacts with its dependency. We expect it to call certain
methods, and we ask our mock object to verify that those methods were, indeed,
called.

Reloading our Jasmine test page (http://localhost:8888, remember?) we see:

rubysource.com

Rails Deep Dive98

http://www.rubysource.com?utm_source=pdf&utm_medium=link&utm_campaign=deep-dive

Figure 11.4. Fail

We can fix that.

I’m the Map[View]!
Any Dora fans out there? No? coughs Right, me neither. Here’s the MapView imple-
mentation:

###
app/assets/javascripts/views/mapView.js
###
class App.MapView extends Backbone.View
 el: "div#map",
 initialize: ->
 @mapProvider = this.options.mapProvider
 @initialCenter = this.options.initialCenter ||
 { latitude: 51.505, longitude: 0.09 }
 @render()
 setInitialView: ->
 @mapProvider.setViewForMap
 latitude: @initialCenter.latitude,

sitepoint.com

99Going Client-side with Leaflet, Backbone, and Jasmine

http://www.sitepoint.com?utm_source=pdfamp;&utm_medium=link&utm_campaign=deep-dive

 longitude: @initialCenter.longitude
 zoomLevel: 13
 render: ->
 @mapProvider.createMap(@el.id)
 @setInitialView()

Once you add this file, reloading the Jasmine test page looks like:

Figure 11.5. Pass

Do You Know the Way to Map, Jose?
Okay, so, we have a MapView. How do we get our page to use it? I mean, I don’t
see a map when I go to my ‘/events’ page in Loccasions. This is where Backbone’s
“Router” (or the Artist-Formally-Known-as-Controller) comes into play. In this case,
we want to route the “root route” or “/” to a place where it knows to create our
MapView. I’ve written a couple of specs to fulfill this requirement:

// spec/javascripts/appRouter_spec.js
describe("AppRouter", function() {
 describe("index", function() {
 beforeEach(function() {
 loadFixtures("map.html");
 this.mapViewStub = sinon.spy(App.MapView.prototype,
 "initialize");
 window.bootstrapEvents = [];
 });
 afterEach(function(){
 this.mapViewStub.restore();
 });
 it("should create a map view", function() {
 this.router = new App.Router();
 this.router.index();
 expect(this.mapViewStub).toHaveBeenCalled();
 });

rubysource.com

Rails Deep Dive100

http://www.rubysource.com?utm_source=pdf&utm_medium=link&utm_campaign=deep-dive

 });
 describe("/", function () {
 it("should respond to empty hash with index", function() {
 this.router = new App.Router();
 this.routeSpy = sinon.spy();
 try {
 Backbone.history.start({silent:true, pushState:true});
 } catch(e) {}
 this.router.navigate("elsewhere");
 this.router.bind("route:index", this.routeSpy);
 this.router.navigate("", true);
 expect(this.routeSpy).toHaveBeenCalledOnce();
 expect(this.routeSpy).toHaveBeenCalledWith();
 });
 });
});

In this case, we use a third Sinon stubby/mocky thingy called a “spy”. A spy is like
a mock, but you can’t set a return value on it. A spy exists just to record if it was
called and what arguments were used to call it. That works well for our first test,
where we are making sure the initialize method on our MapView is called. The
second test uses a spy to make sure that, when the user goes to the “root route”, the
AppRouter#index function is called.

Reloading our Jasmine page gives us the appropriate failures, so let’s write our Ap-
pRouter class:

###
app/assets/javascripts/router.js.coffee<
###
class App.Router extends Backbone.Router
 routes:
 "" : "index"
 index: ->
 if $('#map').length > 0
 @mapView = new App.MapView(
 mapProvider: new App.MapProviders.Leaflet()
)

Done. The specs pass.

sitepoint.com

101Going Client-side with Leaflet, Backbone, and Jasmine

http://www.sitepoint.com?utm_source=pdfamp;&utm_medium=link&utm_campaign=deep-dive

Start Me Up
The last bit we need to put in place is to bootstrap our Backbone application code.
In other words, we need to tell Backbone to get the Router in place, create all the
views, and whatever else it needs to do. I created a little CoffeeScript file for this:

###
app/assets/javascripts/app.js.coffee
###
window.App =
 start: ->
 new App.Router()
 Backbone.history.start(
 pushState: true, root: "/events"
)
$(App.start)

This file defines my application namespace (App) and creates our start function.
The start function simply creates our router and tells Backbone to start handling
the routing. If you want to understand exactly what Backbone.history.start is
doing, look here.27

Update
Mr. Henry (from the comments below) pointed out the following:

■ Add the div #map to your events/index.html.haml

■ Add #map { height: 350px } to the app/assets/stylesheets/events.css.scss

Here’s the page with the map:

27 http://documentcloud.github.com/backbone/#History-start

rubysource.com

Rails Deep Dive102

http://documentcloud.github.com/backbone/#History-start
http://www.rubysource.com?utm_source=pdf&utm_medium=link&utm_campaign=deep-dive

Figure 11.6. What You See

We still have a lot of work to do on this page. However, it’s a good stopping point,
and I want to play with the map for a bit.

My Blogger Went All Over the Place and
All I Got Was This Lousy Map
I know, that was a ton of work just to get a map. However, we also now have:

■ A structure for our client-side code.

■ A way to drive out the client-side code with tests (TDD/BDD/ETC)

■ A MAP!

We’ll finish out the Events index page in the next chapter, and then highlight how
the Occasions page is different. After that, v0.0.1 of Loccasions should just about
be done.

sitepoint.com

103Going Client-side with Leaflet, Backbone, and Jasmine

http://www.sitepoint.com?utm_source=pdfamp;&utm_medium=link&utm_campaign=deep-dive

rubysource.com

http://www.rubysource.com?utm_source=pdf&utm_medium=link&utm_campaign=deep-dive

Chapter12
Getting to Occasions
Last time we completed the client–side items needed to display the Events on the
User Events page. Our focus now turns to adding and removing events asynchron-
ously using Backbone.

In our screenshot of the Events page, the only part of the view we have not imple-
mented is the EventFormView. Obviously, this view will be responsible for display-
ing a form to the user that allows the creation of a new Event. The form is simple:

Figure 12.1. The Event Form

The first thing I want to change is the name. Putting “Form” in the view name seems
brittle to me, so let’s change it to what we are doing, which is creating an event:
CreateEventView.

The CreateEventView should:

■ Contain a form.

■ Create an Event.

I think it’s worth pointing out that we are not testing the event hook-up (meaning,
how the form submission event is handled), because that would be testing the
Backbone framework. Our tests look like:

describe("CreateEventView", function() {
 beforeEach(function() {
 loadFixtures("eventForm.html");
 this.view = new App.CreateEventView();
 this.form = $(this.view.el).find("form")[0];
 });
 it("should provide a form", function() {
 expect($(this.view.el).find("form").length).toEqual(1);
 });
 describe("creating an event", function() {
 beforeEach(function() {
 window.eventCollection = new Backbone.Collection();
 this.createStub = sinon.stub(window.eventCollection, "create");
 $(this.form).find("#event_name").val("Test Event");
 $(this.form).find("#event_description")
 .val("Test Event Description");
 this.view.createEvent();
 });
 it("should call create on the EventCollection", function() {
 expect(this.createStub).toHaveBeenCalled();
 });
 });
});

Running these tests, the jasmine specs go red, as they should. Looking at the “creating
an event” spec, we are putting some data into the form, then making sure the
window.eventCollection.create() is called. Backbone offers the create method
on collections as a convenience to both create the object and add it to the collection.
Nice.

These tests flushed out an issue in dealing with the form. In order to create a
App.TestEvent, we have to parse the attribute values out of the form. There are
many utilities out there that will serialize a form to JSON, but I think we’ll handle
this ourselves for now.

rubysource.com

Rails Deep Dive106

http://www.rubysource.com?utm_source=pdf&utm_medium=link&utm_campaign=deep-dive

Unfortunately, we can’t just use something as simple as jQuery’s
form.serializeArray() method, because there are values in the form that are not
attributes on an Event. An example is the “authenticity_token” used by Rails to
help find off CSRF attacks. We don’t want that on our Event. I am going to write a
utility method to do what I think we need. Test ahoy:

describe("parsing form attributes", function() {
 it("should have the correct attribute values", function() {
 $(this.form).find("#event_name").val("Test Event");
 $(this.form).find("#event_description")
 .val("Test Event Description");
 var attributes = this.view.parseFormAttributes().event;
 expect(attributes.name).toEqual("Test Event");
 expect(attributes.description).toEqual("Test Event Description");
 });
});

Implementation:

parseFormAttributes: ->
 _.inject(
 @form.serializeArray(),
 (memo, pair) ->
 key = pair.name
 return memo unless /^event/.test(key)
 val = pair.value
 if key.indexOf('[') > 0
 parentKey = key.substr(0, key.indexOf('['))
 childKey = key.split('[')[1].split(']')[0]
 if typeof memo[parentKey] == "undefined"
 memo[parentKey] = {}
 memo[parentKey][childKey] = val
 else
 memo[key] = val
 return memo
 ,{})

With parseFormAttributes() in place, we can finish the createEvent(). Here is
the entire CreateEventView:

sitepoint.com

107Getting to Occasions

http://www.sitepoint.com?utm_source=pdfamp;&utm_medium=link&utm_campaign=deep-dive

App or= {}
App.CreateEventView = Backbone.View.extend(
 el: "#edit_event"
 initialize: ->
 @form = $(this.el).find("form")
 events:
 "submit form" : "handleFormSubmission"
 handleFormSubmission: (e) ->
 e.stopPropagation()
 @createEvent()
 false
 createEvent: ()->
 evento = new App.Event(@parseFormAttributes().event)
 has_id = @form.attr("action").match(/\/events\/(\w*)/)
 if has_id
 evento.id = has_id[1]
 evento.save()
 else
 eventCollection.create(evento)
 parseFormAttributes: ->
 _.inject(
 @form.serializeArray(),
 (memo, pair) ->
 key = pair.name
 return memo unless /^event/.test(key)
 val = pair.value
 if key.indexOf('[') > 0
 parentKey = key.substr(0, key.indexOf('['))
 childKey = key.split('[')[1].split(']')[0]
 if typeof memo[parentKey] == "undefined"
 memo[parentKey] = {}
 memo[parentKey][childKey] = val
 else
 memo[key] = val
 return memo
 ,{})
)

Lastly, we have to tell our router to create this view along with the other views:

// spec/javscripts/router_spec.js
describe("index", function() {
 beforeEach(function() {

rubysource.com

Rails Deep Dive108

http://www.rubysource.com?utm_source=pdf&utm_medium=link&utm_campaign=deep-dive

 ...
 this.createViewSpy = sinon.stub(App, "CreateEventView")
 .returns(this.mockView);
 this.router.index();
 });
 afterEach(function() {
 ...
 App.CreateEventView.restore();
 });
 ...
 it("should create the CreateEventView", function() {
 expect(this.createViewSpy).toHaveBeenCalled();
 });
 });
});

Remembering from the previous chapter, we need to add a method in the index

method of the router, like so:

app/assets/javascripts/router.js.coffee
index: ->
 @eventListView = new App.EventListView(
 {collection: window.eventCollection or=
➥ new App.EventsCollection()})
 @eventListView.render()
 @createEventView = new App.CreateEventView()
 if $('#map').length > 0
 @mapView = new App.MapView(App.MapProviders.Leaflet)
 @mapView.render()

UPDATE: An alert reader (see comments) found some omissions in the article that
made it harder to complete… sorry! I really appreciate people finding stuff like this.

You need to make sure your EventsController#create method looks like:

def create
 event = current_user.events.build(params[:event])
 event.save!
 respond_with(event) do |format|
 format.html { redirect_to events_path }
 end
end

sitepoint.com

109Getting to Occasions

http://www.sitepoint.com?utm_source=pdfamp;&utm_medium=link&utm_campaign=deep-dive

Also, make sure this is at the top of the EventsController class definition:

respond_to :html, :json

If you don’t, the wrong HTTP status is returned and Backbone won’t update the
view. (Thanks Nicholas!)

If you go to http://localhost:3000 and click through the “My Events” page, you
should be able to add Events, and watch them show up in our list.

Deleting Events
The Yin to our adding Events Yang (that sounds kinda dirty…) is deleting events.
I am torn on whether or not to include delete functionality on the events#index
page as a part of the list. While I can see use cases of wanting to delete, I can also
see making them click-thru to the event page to delete the event as a more explicit
you-better-know-what-the-hell-you-are-doing UI flow. Let’s assume our users are
not too click-happy and are grown up enough to handle deleting the events from
the list.

One Event at a Time
Awhile back, I decided that the events#show page was going to be a separate page
from the events#index page, rather than trying to do a Single Page Application1

approach. That decision led to the question on how to execute the correct JavaScript
on each page. In the event#index case, we have an EventsCollection and views
around listing and creating Events. For the events#show page, we’ll be focused on
a list of Occasions and views around manipulating the Occasions for the current
Event.

A bit of searching led me to this post by Jason Garber2 that expands upon an ap-
proach (by the incomparable Paul Irish) to this problem. You should read the post
for full details, but the crux of the approach is to create a utility class that calls a
load method based on some data-* attributes written on the body element. Following

1 http://en.wikipedia.org/wiki/Single-page_application
2 http://www.viget.com/inspire/extending-paul-irishs-comprehensive-dom-ready-execution/

rubysource.com

Rails Deep Dive110

http://en.wikipedia.org/wiki/Single-page_application
http://www.viget.com/inspire/extending-paul-irishs-comprehensive-dom-ready-execution/
http://www.rubysource.com?utm_source=pdf&utm_medium=link&utm_campaign=deep-dive

that post’s lead, we change our body element in the
app/views/layout/application.haml.html as follows:

%body{:"data-controller" => controller_name,
 :"data-action" => action_name }

With that in place, I changed the app/assets/javascripts/app.js.coffee to include our
new util class:

window.App =
 common:
 init: ->
 events:
 init: ->
 index: ->
 window.eventCollection = new App.EventsCollection(bootstrapEvents)
 new App.EventsShowRouter()
 Backbone.history.start
 root: "/events"
 show:
 new App.EventRouter()
 ev_id = location.href.match(/\/events\/(.*)/)[1]
 Backbone.history.start
 root: "/events/"+ev_id
UTIL =
 exec: (controller, action)->
 ns = App
 action or= "init"
 if (controller != "" &&
 ns[controller] &&
 typeof ns[controller][action] == "function")
 ns[controller][action]()
 init: ->
 body = document.body
 controller = body.getAttribute("data-controller")
 action = body.getAttribute("data-action")
 UTIL.exec("common")
 UTIL.exec(controller)
 UTIL.exec(controller, action)
$(UTIL.init)

sitepoint.com

111Getting to Occasions

http://www.sitepoint.com?utm_source=pdfamp;&utm_medium=link&utm_campaign=deep-dive

As a part of this change, I renamed App.Router to App.EventsRouter, created a
app/assets/javascripts/routers folder and copied the newly renamed
eventsRouter.js.coffee into that directory. I also had to rename the spec to
eventsRouter_spec.js and modify both files, changing App.Router to
App.EventsRouter. After each change, I reran my Jasmine suite and fixed things
until the suite passed. I love having tests!

The last accommodation for this change was to change app/assets/applications/js,
removing:

//= require router

//= require_tree ./routers

… and removing the $(App.start) call from the bottom of that file.

All the specs should pass, and the existing functionality should work again. Now
we can focus on a single Event and its Occasions.

Finally, an Occasion for Occasions
We can officially call this the “downhill slope.” Once we can add occasions and
see them on a map, we are very close to done.

The approach to this page will be very similar to the Events page. As such, I think
it’s a fine opportunity for you, the Loccasions reader, to attempt to create the
event#show page on your own. At a minimum, the page should be able to:

■ Add Occasions

■ Delete Occasions

■ List out all the Occasions for the Event

As a starting point, here is what mine looks like:

rubysource.com

Rails Deep Dive112

http://www.rubysource.com?utm_source=pdf&utm_medium=link&utm_campaign=deep-dive

Figure 12.2. Shoot for this, but make it “yours”

Again, we have three Backbone view areas: the map, the list of Occasions, and the
form to create a new Occasion. I put the list off to the right of the map in this view,
just to be different. For extra credit, you can layout your page differently too.

For a couple of more clues, I created an App.EventRouter for the event show page
(which you see mentioned in our UTIL code above). After that, it was almost a
matter of copying the Event specs, changing them to handle Occasions, and then
making those specs pass. If you get stuck, go to the Git repository3 and see where I
ended up.

The next chapter will cover interacting with the map, where we’ll take the Occasion
form and integrate it with some map functionality. The last chapter will be a retro-
spective of what could have been done better (wow… that could be a LOOOOOONG
one) and what could still be done with Loccasions.

3 http://github.com/ruprict/loccasions

sitepoint.com

113Getting to Occasions

http://github.com/ruprict/loccasions
http://www.sitepoint.com?utm_source=pdfamp;&utm_medium=link&utm_campaign=deep-dive

rubysource.com

http://www.rubysource.com?utm_source=pdf&utm_medium=link&utm_campaign=deep-dive

Chapter13
Bubbly Map Events
We’ll now focus on reacting to map events; in this case, the user interacting with
the map to add Occasions. Specifically, I want the user to be able to add an Occasion
by clicking on the map. I’ll use a cool map bubble to present the attributes form for
the Occasion, and we’ll post the new Occasion back to the server once the user
submits the form. Easy, right?

Responding to Map Clicks
The first task is to respond to the user clicking on the map. All these new-fangled
JavaScript map frameworks make this a piece of cake.

Going way back to one of the first articles, I have abstracted the Leaflet map frame-
work into a provider object. In order to allow the code to set a handler for the map
click event, I am going to add a addClickHandler event to that provider object.
Since all it does is delegate the call to Leaflet, I am not going to write a test for it:

// in app/assets/lib/leafletMapProvider.js.coffee
...
addClickHandler: (map, callback) ->
 map.on('click', callback)

This method will be called in the render method of our map view:

// the test
// in spec/javascripts/views/mapView_spec.js
describe("render", function() {
 beforeEach(function() {
 this.mock = this.mapProviderSpy
 });
 it("should add a click handler to the map", function() {
 this.view.render();
 expect(this.mapProviderSpy.addClickHandler)
 .toHaveBeenCalled();
 });
 });

// in app/assets/javascripts/views/map_view.js.coffee
...
render: ->
 @map = new @mapFactory.Map(@el.id)
 @mapFactory.addClickHandler(@map,@newOccasion.bind(@))
 @addBaseLayer()
 @setInitialView()

Our render method is getting pretty busy, but I can live with it. You can see that I
am passing in a newOccasion method as the handler. This is the function that will
receive our map event and, by my estimation, it needs to do two things:

1. Put a marker on the map where the click occurred.

2. Show the new Occasion form.

Here are our tests:

// in spec/javascripts/views/map_view.js.coffee
describe("When a new Occasion is requested", function() {
 beforeEach(function() {

rubysource.com

Rails Deep Dive116

http://www.rubysource.com?utm_source=pdf&utm_medium=link&utm_campaign=deep-dive

 var e = {
 latlng: {lat: 100.00, lng: 100.00}
 };
 this.view.newOccasion(e);
 });
 it("should have a form", function() {
 expect($("#new_occasion_form").length).toEqual(1);
 });
 it("should add a marker to the map", function () {
 expect(this.mapProviderSpy.addNewOccasionMarker)
 .toHaveBeenCalled();
 });
});

And the code:

// in app/assets/javascripts/views/mapView.js.coffee
newOccasion: (e) ->
 @mapFactory.addNewOccasionMarker(@map, e)

I neglected to show you the implementation of the addNewOccasionMarker on the
Leaflet map provider, so here it is:

// in app/assets/lib/leafletMapProvider.js.coffee
...
addNewOccasionMarker: (map, e) ->
 ll = new L.LatLng(e.latlng.lat,e.latlng.lng)
 marker = new L.Marker(ll)
 map.addLayer(marker)

At this point, if you go to a specific event page, you should be able to click on the
map and markers will show up where you click. Kinda fun, isn’t it?

The second part of adding a new Occasion is to show the form. We already have a
form to create Occasions on the page, but we don’t want it there. We want the form
in our fancy map bubble. To make our map bubble dreams come true, I did the fol-
lowing:

sitepoint.com

117Bubbly Map Events

http://www.sitepoint.com?utm_source=pdfamp;&utm_medium=link&utm_campaign=deep-dive

Change the Event Show View
The event#show HAML template currently has:

%div.clear
%div#edit_occasion{ :style => "display:none"}
 = form_for [@event,
 current_user.events.find(@event.id).occasions.build()]
➥do |f|
 %div.coordinate_input
 = f.label :latitude
 = f.text_field :latitude
 %div.coordinate_input
 = f.label :longitude
 = f.text_field :longitude
 %div.date_field
 = f.label :occurred_at
 = f.text_field :occurred_at
 %div.note_field
 = f.label :note
 = f.text_area :note
 = f.submit "Add"

I changed the form from having an ID of “edit_occasion” to a class of “edit_occasion”.
In other words, change the “#” to a “.”.

Remove the CreateOccasionView Call from
EventRouter
I was new-ing up an the CreateOccasionView inside our EventRouter. I don’t want
to do that anymore, so take that call out:

App.EventRouter = Backbone.Router.extend
 routes:
 "" : "index"
 index: ->
 @occasionListView = new App.OccasionListView
 collection: window.occasionCollection or= new
➥App.OccasionsCollection()
 @occasionListView.render()
 @createOccasionView = new App.CreateOccasionView() # REMOVE

rubysource.com

Rails Deep Dive118

http://www.rubysource.com?utm_source=pdf&utm_medium=link&utm_campaign=deep-dive

 if $('#map').length > 0
 @mapView = new App.MapView(App.MapProviders.Leaflet)
 @mapView.render()

Create a CreateOccasionView When the
Map is
Clicked
Since I want the view to show on map click, we can put a call to show that view in
the same place we create the marker:

// in app/assets/javascripts/view/mapView.js
newOccasion: (e) ->
 view = new App.CreateOccasionView()
 view.render()
 @mapFactory.addNewOccasionMarker(@map, e,view.el)

I pass the event and the view render into the map provider, because I don’t want
my mapView to know anything about the event contents. The
addNewOcccasionMarker function will deal with getting the coordinates and popu-
lated the form inputs. This is, admittedly, a bit messy, but we’re on a fake deadline
here.

Because we are showing the form every time the user clicks, I am going to clone the
original form and use it as a template for each CreateOccasionView:

//in app/assets/javascripts/lib/leafletMapProvider.js.coffee
...
addNewOccasionMarker: (map, e, content) ->
 ll = new L.LatLng(e.latlng.lat,e.latlng.lng)
 marker = new L.Marker(ll)
 marker.bindPopup(content)
 map.addLayer(marker)
 marker.openPopup()
 $("#occasion_latitude").val(e.latlng.lat)
 $("#occasion_longitude").val(e.latlng.lng)
 $("#occasion_occurred_at").val(new Date())

sitepoint.com

119Bubbly Map Events

http://www.sitepoint.com?utm_source=pdfamp;&utm_medium=link&utm_campaign=deep-dive

This (overly) busy function is creating our marker and putting the latitude, longitude,
and occurred date into the form. I should probably hide those form inputs from the
user, eh?

%div.edit_occasion{ :style => "display:none"}
 = form_for [@event, current_user.events.find(@event.id)
➥.occasions.build()] do |f|
 %div.coordinateinput
 = f.hidden_field :latitude
 %div.coordinate_input
 = f.hidden_field :longitude
 %div.date_field
 = f.hidden_field :occurred_at
 %div.note_field
 = f.label :note
 = f.text_area :note
 = f.submit "Add"

I went ahead and removed the labels, too. This is what our cool new form looks
like:

Figure 13.1. OOOO… Pretty map form…

The even cooler thing is, it works. Type in a note and hit ‘Add’ and blammo! you
have a new Occasion show up on the map and in the list next to the map. Backbone
is just cool.

rubysource.com

Rails Deep Dive120

http://www.rubysource.com?utm_source=pdf&utm_medium=link&utm_campaign=deep-dive

More Housekeeping
I am sure you have spent the last 45 minutes creating Occasions like a maniac. I
can’t blame you, really, it’s pretty danged exciting. I bet you said, at least once, “I
wish the form would go away when I create the Occasion.” Well, strap in, sporto,
today is your lucky day.

The question of making the form disappear lead me to the realization that part of
my design was, um, how do I put this mildy…, dog vomit. First of all, the MapPro-
vider is an okay idea, but it should have returned a Map object with all the methods
I need. The current approach of calling methods on the MapProvider and passing
in the map is, as I said, vomitus caninus.

If I ever refactor this app, I will likely start there. As it stands, I need to get this
working using the current design so I can finish this article.

Back to making the form disappear. It’s easy enough to do, and it has given me the
opportunity to show a cool Backbone feature: custom events. As you might’ve
guessed, custom events allow you to trigger your very own named events and then
bind to them as needed. I am going to use this to indicate to the MapView that an
Occasion has been created.

The CreateOccasionView is in charge of creating the new Occasion (duh) so I am
going to raise a custom event from that view called “map:occasionAdded.”:

// in app/assets/javascripts/views/createOccasionView.js.coffee
...
createOccasion: ()->
 occasion = new App.Occasion(UTIL.parseFormAttributes(@form,
➥ "occasion").occasion)
 has_id = @form.attr("action").match(/\/occasions\/(\w*)/)
 if has_id
 occasion.id = has_id[1]
 occasion.save()
 else
 occasionCollection.create(occasion)
 $(this.el).trigger('map:occasionAdded', occasion)

All it takes is one line and we’re cooking with custom events. I’ll bind to this event
in the MapView and tell the MapProvider (ugh) to hide the popup:

sitepoint.com

121Bubbly Map Events

http://www.sitepoint.com?utm_source=pdfamp;&utm_medium=link&utm_campaign=deep-dive

//in app/assets/javascripts/mapView.js.coffee
App.MapView = Backbone.View.extend
 el: "div#map"
 events:
 "map:occasionAdded" : "handleSubmit"
...
 handleSubmit: ->
 @mapFactory.hidePopup(@map)

And the method called in the map provider:

// in app/assets/javascripts/lib/leafletMapProvider.js.coffee
...
 hidePopup: (map)->
 map.closePopup()

So, that’s great, the popup is gone, baby, gone. However, we have a remaining issue.
If you click on the marker you just created, it shows the form. I don’t want that, I
want it to show the note like the other markers, like so:

Figure 13.2. Things Happen

This issue led me to another faux paus where I am not binding the map markers to
the Occasion collection. That’s just silly, because that kind of binding is the WHOLE
REASON to use something like Backbone. It was easy enough to fix, because Back-
bone is the bees knees (which, I think, is a good thing.)

In a nutshell, I bound the ‘add’ and ‘all’ events of the occasionCollection to methods
on the MapView. These methods then add the new Occasion or regenerate all the
markers, as needed. Here they are:

rubysource.com

Rails Deep Dive122

http://www.rubysource.com?utm_source=pdf&utm_medium=link&utm_campaign=deep-dive

App.MapView = Backbone.View.extend
...
 initialize: (mapProvider) ->
 @mapFactory = mapProvider
 @collection = window.occasionCollection
 @collection.bind("add", @addOccasion, this)
 @collection.bind("all", @drawOccasions, this)
 drawOccasions: () ->
 self = this
 @mapFactory.removeAllMarkers(@map)
 window.occasionCollection.each((occ)->
 self.mapFactory.addOccasion(self.map,occ)
)
 addOccasion: (occ) ->
 @mapFactory.addOccasion(@map, occ)
...

There, now when an Occasion is born (they’re so cute when they’re new…) the map
will add a marker. The ‘all’ method covers an Occasion being deleted.

The more astute among you realize that, now, adding an Occasion leaves two
markers in the new spot. So, along with hiding the popup after creating an occasion,
we need to delete the map marker that we used to show the form. Again, not too
bad:

App.MapProviders.Leaflet =
...
 addOccasion: (map,occ) ->
 if not @layerGroup?
 @layerGroup = new L.LayerGroup()
 map.addLayer(@layerGroup)
 ll = new L.LatLng(
 parseFloat(occ.get("latitude")),
 parseFloat(occ.get("longitude"))
)
 marker = new L.Marker(ll)
 marker.bindPopup(occ.get("note"))
 @layerGroup.addLayer(marker)
 addNewOccasionMarker: (map, e, content) ->
 ll = new L.LatLng(e.latlng.lat,e.latlng.lng)
 @marker = new L.Marker(ll)
 @marker.bindPopup(content)

sitepoint.com

123Bubbly Map Events

http://www.sitepoint.com?utm_source=pdfamp;&utm_medium=link&utm_campaign=deep-dive

 map.addLayer(@marker)
 @marker.openPopup()
 $("#occasion_latitude").val(e.latlng.lat)
 $("#occasion_longitude").val(e.latlng.lng)
 $("#occasion_occurred_at").val(new Date())
 hidePopup: (map)->
 map.closePopup()
 map.removeLayer(@marker)
 removeAllMarkers: (map) ->
 if @layerGroup?
 @layerGroup.clearLayers()

There is a fair amount going on here:

I have added a layerGroup property to the provider. A layer group is a Leaflet
concept that allows you to group a bunch of layers (or, in this case, markers)
together. The LayerGroup object in the Leaflet API has a clearLayers() func-
tion, and that is what I need when I want to clear out all the markers so I can
regenerate them.

In addNewOccasionMarker(), I add another property called marker and store
our “temporary” marker for the form. Now, I can get it back when I want to
clear it out.

In hidePopup(), I remove the temporary marker after I hide the popup.

removeAllMarkers() clears out the layer group, as I previously mentioned.

All in all, it’s not terrible, but those last additions really show the design flow in
my provider approach. A factory would have been better, and it will be the first
refactor.

Basic Occasion Functionality
Loccasions now has all the basic functionality that I envisioned those many months
ago. It’s not groundbreaking, but it does show some nice technical concepts, and I
certainly learned a ton. The last chapter will be a retrospective, where I’ll look at
where Loccasions could go and how I could have done things better.

I am sure I’ll have plenty of content for that one.

rubysource.com

Rails Deep Dive124

http://www.rubysource.com?utm_source=pdf&utm_medium=link&utm_campaign=deep-dive

Chapter14
Retrospective
The Loccasions application now allows most of the basic functionality that I wanted
to produce. Back in Chapter 4, I set out with the following user stories:

■ As an unregistered user, I want to see the home/landing page

■ As an administrator, I want to be able to invite users to Loccasions

■ As an invited user, I want to be able to create an account

■ As a registered user, I want to be able to create Events

■ As a registered user, I want to be able to create Occasions

■ As a registered user, I want to see Occasions on a map

Figure 14.1. Shuttershock

We did them all, except the second story dealing with inviting users. Since the first
round of user stories is complete, I think it’s time for a retrospective.

What is a Retrospective?
If you’ve never been a part of a real retrospective, this won’t change that. While
there are many definitions of the term in the context of software development, I
take “retrospective” to mean a “short or time-boxed meeting where you discuss
what went well, what went not so well, what we can do better, and how have our
priorities changed.” Usually, you have a team made of of product owners, developers,
and other stakeholders to help review the latest iteration of your application. In this
case, it’s just little ol’ me and 15 or so articles. In both cases, however, a retrospective
is very useful and should be a mandatory part of any development process.

If you are the kind of person that is down with more formal definitions and the like,
here’s a few to get you going:

■ James Shore, from The Art of Agile Development1

■ Ian Burgess chimes in with a definition here2

■ Matthew Bussa runs through an example retrospective.3

I’d be lying if I said I did more than just randomly pick a few from a quick Google
search, but looking through each of these, I saw the common ingredients:

■ A cup of How’d We Do? But not too much, it’ll ruin the dish.

1 http://jamesshore.com/Agile-Book/retrospectives.html
2 http://www.ianburgess.me.uk/en/software-development/agile-retrospective-lessons-learned
3 http://www.matthewbussa.com/2010/10/agile-retrospective-example.html

rubysource.com

Rails Deep Dive126

http://jamesshore.com/Agile-Book/retrospectives.html
http://www.ianburgess.me.uk/en/software-development/agile-retrospective-lessons-learned
http://www.matthewbussa.com/2010/10/agile-retrospective-example.html
http://www.rubysource.com?utm_source=pdf&utm_medium=link&utm_campaign=deep-dive

■ A cup of What Went Wrong?

■ A dash of What Went Right?

■ A smidgeon of Planning Our Next Iteration.

That’s it. If you put in too much of any of these ingredients, it is likely your retro-
spective will come out burnt, raw, or in some other inedible form. Under no circum-
stances are any of the following ingredients to be used:

■ Blame

■ Anger

■ Hyperbole (“Since X went right we should use it for everything!”)

In the end, the retrospective is about getting better, not assigning blame. We get
better by learning from our mistakes and planning (“Plans are worthless, but planning
is everything.”—Dwight D. Eisenhower) a bit better. Also, if your retrospective is
more than 4 hours long, I would seriously question the value of anything beyond
that time. Remember, the one time you aren’t improving the app is when you’re all
sitting in a meeting overanalyzing/fighting/etc.

What Went Wrong?
I set out to make this an expose on developing a “real” Rails application, as opposed
to the many contrived examples we see on the Web. After my first “iteration”, I
don’t think I fulfilled this goal. First off, it is the rare application that is the brainchild
and work of a single developer. Also, I made many decisions on technology, gems,
and the like based on shaky rationale. If you remember, I chose MongoDB, basically,
because I wanted to play with it. If this were a “real” app, I would have never made
a decision like that.

In many cases, I became a bit careless with the code and the examples. This caused
some of the articles to be very difficult to follow and me to end up with the dreaded
“Well, It Runs on MY Laptop” type of application. It was only through the efforts
of some Alert Readers (especially, Nicholas Henry… that guy is a machine) that this
issue was mitigated somewhat.

sitepoint.com

127Retrospective

http://www.sitepoint.com?utm_source=pdfamp;&utm_medium=link&utm_campaign=deep-dive

I think I should have selected a deployment platform (which would have been
Heroku, because it is how-you-say? SUPERFANTASTIC) early on and continuously
deployed the application to it. That may have encouraged some more participation
from the community, as well as made sure my technical decisions weren’t tromping
all over deployment.

In addition, towards the end, I all but forgot about the use cases. In a real application,
I’d have constantly been checking the user scenarios to make sure I wasn’t deviating
from the path. In the end, Loccasions may have turned out to simply be a more
complicated and contrived example of a Rails app, rather than the real app that I
initially had in my sights.

What Went Right?
With the negative out of the way, I think a lot of things went well with Loccasions.
First, and most important, I learned a ton and had a good time writing this book.
As developers, when we are enjoying our craft and we care about the problem we
are solving, life is good. Also, I think the choice of Backbone for the client-side code
was a perfect choice. The more I use Backbone, the more I like it. It’s just enough
framework and just enough out of the way, resulting in a great coding experience.

I echo that sentiment about Jasmine. I have been hooked on Jasmine since I first
found it, and it continues to impress. Again, Jasmine focuses on the bits that I don’t
want to worry about, so I can just test my application. Furthermore, I think Jasmine
encourages good JavaScript design, exactly like a testing framework should.

Lastly on the client, I really like LeafletJS. If you need a map in your web application,
I can’t recommend Leaflet highly enough. Beautiful maps that are a pleasure to code
against make it my current “slippy” map of choice.

On the server, choosing Devise was easy and has proven to be a great choice. Quite
often, gems with the popularity of Devise can morph into Sasquatchian mounds of
unusable code, but Devise doesn’t feel that way to me.

Foreman, is almost an imperative now, in my opinion. Especially if you are deploying
to Heroku, Forman just makes life easier.

rubysource.com

Rails Deep Dive128

http://www.rubysource.com?utm_source=pdf&utm_medium=link&utm_campaign=deep-dive

Finally, I thought the pair programming episode with Evan Light in Chapter 8 was,
arguably, the highlight. In my new job, I work with Evan quite a bit, and he is every
bit the Ruby brain and all-round good chap that I met writing that article. I wish I
had done more of this.

How to Get Better?
The easiest, and likely most effective way, to improve Loccasions is to involve
other folks. By adding another developer or two, this application would improve
tenfold. One of the mantras I live by is the importance of developer collaboration.
My best work has never been done solo.

Another group of people whose involvement would massively improve Loccasions
are users. Getting people to actually use the application and give feedback would
drive the direction of the app, and of this retrospective. In my many years of devel-
oping custom applications, I’ve watched our industry/community evolve from
treating users as necessary evils to appropriately putting them in the driver’s seat.
I remember reading a blog post (the author of which I cannot find … sorry!), which
stated that (paraphrasing) “You can always tell when a developer has designed your
application.” This is certainly true of Loccasions—it could use a Designer’s Touch.

What’s the Plan?
Whenever I start the next iteration of Loccasions, there will be no shortage of things
to do and improvements to make. However, I need to plan where I would focus
next. After careful consideration, I think I would focus on:

■ deployment

■ UX/Design

These are broad terms, obviously. Drilling down a bit, for deployment I would push
the app out to Heroku. As a part of it, I think looking into some kind of Continuous
Integration server would also help iron out deployment and development scenarios.
Investigating CI Servers is also on the immediate planning list.

For the UX/Design tasks, I think recruiting a couple of users and a bonafide web
designer would be in the cards. If I could get some users to run through the applic-

sitepoint.com

129Retrospective

http://www.sitepoint.com?utm_source=pdfamp;&utm_medium=link&utm_campaign=deep-dive

ation, give feedback, and get a designer to give the application a once over, Locca-
sions would be exponentially better.

Of course, there are specific tasks that go with each of these higher level planning
items, but we’ll stop here. Loccasions was a lot of fun to write, and to write about.
It may not be a seminal Rails work, but it covered a lot of topics and answered a lot
of questions. Thanks for reading, those of you that stuck with it. Maybe I’ll pick it
up again in a few months.

rubysource.com

Rails Deep Dive130

http://www.rubysource.com?utm_source=pdf&utm_medium=link&utm_campaign=deep-dive

Hey ...

sitepoint.com/friends

Save over 40% with this link:

Password: friends

Link:

Thanks for buying this book. We really
appreciate your support!

We’d like to think that you’re

now a “Friend of SitePoint,”

and so would like to invite

you to our special “Friends of

SitePoint” page.

Here you can SAVE up to 43%

on a range of other super-cool

SitePoint products.

gallery-replace-generic.indd 2 1/03/12 5:13 PM

	Cover
	Summary of Contents
	Rails Deep Dive
	Credits
	Table of Contents
	Preface
	What’s in this book?
	Code Samples

	Ruby Version Manager
	Installing RVM

	Installing Rails
	Selecting the Interpreter
	Installing Rails
	RubyGems
	Other Gems Installed
	MultiJSON
	ActiveSupport
	Builder
	i18n
	BCrypt Ruby
	ActiveModel
	The Rack Gems
	Hike
	Tilt
	Sprockets
	TZInfo
	Erubis
	ActionPack
	Arel
	ActiveRecord
	ActiveResource
	MIME Types
	Polyglot
	Treetop
	Mail and ActionMailer
	Thor
	Rack SSL
	RDoc
	Railties
	Bundler
	Rails

	App Generation
	Ruby Path (-r, --ruby)
	Application Builder (-b, --builder)
	Application Template (-m, --template)
	Things You Can Skip
	Specify a Database (-d, --database)
	Specify a Rails Location
	Specify a JavaScript library (-j, --javascript=JAVASCRIPT)
	Runtime Options

	Application Setup: Loccasions
	User Stories
	Gems
	Client-side Stuff
	Testing
	Source Control
	Other Resources
	The Starting Line

	Home Page
	Mocking Up the Home Page
	Prepare the Test Environment
	Setup RSpec

	Our First Test

	Authentication
	Create a Branch
	Write the Test
	Set up Devise
	Decision Point: User Names
	Test Sign In

	Spork, Events, and Authorization
	Event Model
	Adding Spork
	Back to Testing
	Testing That a User Has Events
	Events Controller
	Wrap Up

	Making Events
	CRUDdy Events
	Creating Events
	Clean up the Signed In Navigation
	Adding More CRUD to Events
	MUST DESTROY EVENTS

	Pair Programming
	Let There Be (Evan) Light
	Am I Worthy?
	The Day Arrives
	Revelations
	Oh Yeah, We’re Supposed to Program
	Feature of the Day
	Okay, Okay, the ACTUAL Code
	Time Flies
	Go and Pair

	Hiring a Foreman, Inheriting Resources, and Occasions
	Hiring a Foreman
	Occasions
	Changing Our Spork Configuration
	You Say Potatoe “Hurry up”, and I Say Potahtoe “Occasions Controller”
	Inherited Resources
	Loccasions.map do { |its| about.time()}

	Going Client-side with Leaflet, Backbone, and Jasmine
	Libraries, Frameworks, and Maps, OH MY!
	Setup
	Client-side Directory Structures, and the Women Who Love Them
	Setup Complete, Now What?
	Gentleman, Right Now on Stage 3, Put Your Hands Together for JAAASSSMMIIIIINE
	I’m the Map[View]!
	Do You Know the Way to Map, Jose?
	Start Me Up
	Update
	My Blogger Went All Over the Place and All I Got Was This Lousy Map

	Getting to Occasions
	Deleting Events
	One Event at a Time
	Finally, an Occasion for Occasions

	Bubbly Map Events
	Responding to Map Clicks
	Change the Event Show View
	Remove the CreateOccasionView Call from EventRouter
	Create a CreateOccasionView When the Map is Clicked
	More Housekeeping
	Basic Occasion Functionality

	Retrospective
	What is a Retrospective?
	What Went Wrong?
	What Went Right?
	How to Get Better?
	What’s the Plan?

