
www.allitebooks.com

http://www.allitebooks.org

Rails Recipes

Chad Fowler

The Pragmatic Bookshelf
Raleigh, North Carolina Dallas, Texas

www.allitebooks.com

http://www.allitebooks.org

B o o k s h e l fP r a g m a t i c
Many of the designations used by manufacturers and sellers to distinguish their products

are claimed as trademarks. Where those designations appear in this book, and The

Pragmatic Programmers, LLC was aware of a trademark claim, the designations have

been printed in initial capital letters or in all capitals. The Pragmatic Starter Kit, The

Pragmatic Programmer, Pragmatic Programming, Pragmatic Bookshelf and the linking g

device are trademarks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher

assumes no responsibility for errors or omissions, or for damages that may result from

the use of information (including program listings) contained herein.

Our Pragmatic courses, workshops, and other products can help you and your team

create better software and have more fun. For more information, as well as the latest

Pragmatic titles, please visit us at

http://www.pragmaticprogrammer.com

Copyright © 2006 The Pragmatic Programmers LLC.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmit-

ted, in any form, or by any means, electronic, mechanical, photocopying, recording, or

otherwise, without the prior consent of the publisher.

Printed in the United States of America.

ISBN 0-9776166-0-6

Printed on acid-free paper with 85% recycled, 30% post-consumer content.

P1.0 printing, June, 2006

Version: 2006-5-15

www.allitebooks.com

http://www.pragmaticprogrammer.com
http://www.allitebooks.org

Contents
Introduction vii

What Makes a Good Recipe Book? vii

Who’s It For? . viii

Rails Version . viii

Resources . viii

Acknowledgments . ix

Tags and Thumb tabs . xi

Part I—User Interface Recipes 1

1. In-Place Form Editing . 2

2. Making Your Own JavaScript Helper 8

3. Showing a Live Preview 15

4. Autocomplete a Text Field 18

5. Creating a Drag-and-Drop Sortable List 20

6. Update Multiple Elements with One Ajax Request 26

7. Lightning-Fast JavaScript Autocompletion 31

8. Cheap & Easy Theme Support 36

9. Trim Static Pages with Ajax 37

10. Smart Pluralization . 38

11. Debugging Ajax . 39

12. Creating a Custom Form Builder 41

13. Make Pretty Graphs . 45

Part II—Database Recipes 49

14. Rails without a Database 50

15. Connecting to Multiple Databases 55

16. Integrating with Legacy Databases 63

17. DRY Up Your Database Configuration 66

18. Self-referential Many-to-Many Relationships 68

19. Tagging Your Content . 71

www.allitebooks.com

http://www.allitebooks.org

CONTENTS v

20. Versioning Your Models 78

21. Converting to Migration-Based Schemas 83

22. Many-to-Many Relationships with Extra Data 89

23. Polymorphic Associations—has_many :whatevers 94

24. Add Behavior to Active Record Associations 99

25. Dynamically Configure Your Database 103

26. Use Active Record Outside of Rails 104

27. Perform Calculations on Your Model Data 105

28. DRY Up Active Record Code with Scoping 107

29. Make Dumb Data Smart with composed_of() 108

30. Safely Use Models in Migrations 112

Part III—Controller Recipes 114

31. Authenticating Your Users 115

32. Authorizing Users with Roles 121

33. Cleaning Up Controllers with Postback Actions 126

34. Monitor Expiring Sessions 127

35. Rendering Comma-Separated Values from Your Actions 129

36. Make Your URLs Meaningful (and Pretty) 131

37. Stub Out Authentication 136

38. Convert to Active Record Sessions 137

39. Write Code That Writes Code 138

40. Manage a Static Site with Rails 143

Part IV—Testing Recipes 144

41. Creating Dynamic Test Fixtures 145

42. Extracting Test Fixtures from Live Data 150

43. Testing Across Multiple Controllers 155

44. Write Tests for Your Helpers 161

Part V—Big-Picture Recipes 163

45. Automating Development with Your Own Generators . . 164

46. Continuously Integrate Your Code Base 171

47. Getting Notified of Unhandled Exceptions 176

48. Creating Your Own Rake Tasks 180

49. Dealing with Time Zones 186

50. Living on the Edge (of Rails Development) 192

51. Syndicate Your Site with RSS 196

52. Making Your Own Rails Plugins 204

www.allitebooks.com

http://books.pragprog.com/titles/fr_rr/errata/add?pdf_page=v
http://www.allitebooks.org

CONTENTS vi

53. Secret URLs . 208

54. Quickly Inspect Your Sessions’ Contents 212

55. Sharing Models between Your Applications 214

56. Generate Documentation for Your Application 216

57. Processing Uploaded Images 217

58. Easily Group Lists of Things 221

59. Keeping Track of Who Did What 222

60. Distributing Your Application As One Directory Tree . . 227

61. Adding Support for Localization 230

62. The Console Is Your Friend 236

63. Automatically Save a Draft of a Form 238

64. Validating Non–Active Record Objects 241

65. Easy HTML Whitelists . 244

66. Adding Simple Web Services to Your Actions 247

Part VI—Email Recipes 252

67. Send Gracefully Degrading Rich-Content Emails 253

68. Testing Incoming Email 257

69. Sending Email with Attachments 265

70. Handling Bounced Email 268

Part VII—Appendix 275

A Resources 276

A.1 Bibliography . 276

A.2 Source Code . 276

www.allitebooks.com

http://books.pragprog.com/titles/fr_rr/errata/add?pdf_page=vi
http://www.allitebooks.org

Introduction
What Makes a Good Recipe Book?

If I were to buy a real recipe book—you know, a book about cooking

food—I wouldn’t be looking for a book that tells me how to dice vegeta-

bles or how to use a skillet. I can find that kind of information in an

overview about cooking.

A recipe book is about how to make food you might not be able to easily

figure out how to make on your own. It’s about skipping the trial and

error and jumping straight to a solution that works. Sometimes it’s

even about making food you never imagined you could make.

If you want to learn how to make great Indian food, you buy a recipe

book by a great Indian chef and follow his or her directions. You’re not

just buying any old solution. You’re buying a solution you can trust to

be good. That’s why famous chefs sell lots and lots of books. People

want to make food that tastes good, and these chefs know how to make

(and teach you how to make) food that tastes good.

Good recipe books do teach you techniques. Sometimes they even teach

you about new tools. But they teach these skills within the context and

with the end goal of making something—not just to teach them.

My goal for Rails Recipes is to teach you how to make great stuff with

Rails and to do it right on your first try. These recipes and the tech-

niques herein are extractions from my own work and from the “great

chefs” of Rails: the Rails core developer team, the leading trainers and

authors, and the earliest of early adopters.

I also hope to show you not only how to do things but to explain why

they work the way they do. After reading through the recipes, you

should walk away with a new level of Rails understanding to go with a

huge list of successfully implemented hot new application features.

www.allitebooks.com

http://www.allitebooks.org

WHO’S IT FOR? viii

Not all of these recipes are long and involved. To spice things up, I’ve

included a number of smaller offerings, which I’ve called snacks. Typi-

cally one or two pages long, these snacks will help satisfy those cravings

we all get between meals.

Who’s It For?

Rails Recipes is for people who understand Rails and now want to see

how an experienced Rails developer would attack specific problems.

Like with a real recipe book, you should be able to flip through the

table of contents, find something you need to get done, and get from

start to finish in a matter of minutes.

I’m going to assume that you know the basics or that you can find

them in a tutorial or an online reference. When you’re busy trying to

make something, you don’t have spare time to read through introduc-

tory material. So if you’re still in the beginning stages of learning Rails,

be sure to have a copy of Agile Web Development with Rails [TH05] and

a bookmark to the Rails API documentation handy.1

Rails Version

The examples in this book, except where noted, should work with Rails

1.0 or higher. Several recipes cover new features that were released

with Rails 1.1.

Resources

The best place to go for Rails information is the Rails website.2 From

there, you can find the mailing lists, irc channels, and weblogs.

The Pragmatic Programmers have also set up a forum for Rails Recipes

readers to discuss the recipes, help each other with problems, expand

on the solutions, and even write new recipes. While Rails Recipes was

in beta, the forum served as such a great resource for ideas that more

than one reader-posted recipe made it into the book! You can find the

forum at http://fora.pragprog.com/rails-recipes.

1http://api.rubyonrails.org
2http://www.rubyonrails.org

www.allitebooks.com

http://fora.pragprog.com/rails-recipes
http://api.rubyonrails.org
http://www.rubyonrails.org
http://books.pragprog.com/titles/fr_rr/errata/add?pdf_page=viii
http://www.allitebooks.org

ACKNOWLEDGMENTS ix

The book’s errata list is at http://books.pragprog.com/titles/fr_rr/errata. If

you submit any problems you find, we’ll list them there.

You’ll find links to the source code for almost all the book’s examples

at http://www.pragmaticprogrammer.com/titles/fr_rr/code.html.

If you’re reading the PDF version of this book, you can report an error

on a page by clicking the “erratum” link at the bottom of the page,

and you can get to the source code of an example by clicking the gray

lozenge containing the code’s file name that appears before the listing.

Acknowledgments

Dave Thomas is a mentor and role model to a constantly growing seg-

ment of our industry—particularly within the Ruby world. I can’t imag-

ine writing a book for another publisher. Anything else would undoubt-

edly be a huge step backward. If this book helps you, it’s due in no

small part to the influence Dave Thomas and Andy Hunt have had on

the book and on me.

David Heinemeier Hansson created Rails, which led me and a legion

of Rubyists to fulltime work pursuing our passion. David has been a

friend and supporter since we met through the Ruby community. His

ideas and encouragement made Rails Recipes better.

Thanks to Shaun Fanning and Steve Smith for building a great com-

pany around a great product and having the guts and vision to start

over from scratch in Rails. As a software developer, Naviance is the

work environment I’ve dreamt of, and the depth and complexity of what

we do has been a growth catalyst for me as a software developer in

general and as a Rails developer in particular.

Mike Clark seemed to pop up on my IM client with an inspiring com-

ment or a killer recipe idea as if he could read my mind and knew when

I needed it most.

Sean Mountcastle, Frederick Ros, Bruce Williams, Tim Case, Marcel

Molina Jr., Rick Olson, Jamis Buck, Luke Redpath, David Vincelli, Tim

Lucas, Shaun Fanning, Tom Moertel, Jeremy Kemper, Scott Barron,

David Alan Black, Dave Thomas, and Mike Clark all contributed either

full recipes or code and ideas that allowed the recipes to write them-

selves. This book is a community effort, and I can’t thank the contrib-

utors enough.

www.allitebooks.com

http://books.pragprog.com/titles/fr_rr/errata
http://www.pragmaticprogrammer.com/titles/fr_rr/code.html
http://books.pragprog.com/titles/fr_rr/errata/add?pdf_page=ix
http://www.allitebooks.org

ACKNOWLEDGMENTS x

The Rails core team members served as an invaluable sounding board

during the development of this book. As I was writing the book, I spent

hours talking through ideas and working through problems with the

people who created the very features I was writing about. Thanks to

Scott Barron, Jamis Buck, Thomas Fuchs, David Heinemeier Hansson,

Jeremy Kemper, Michael Koziarski, Tobias Lütke, Marcel Molina Jr.,

Rick Olson, Nicholas Seckar, Sam Stephenson, and Florian Weber for

allowing me to be a (rather loud) fly on the wall and to witness the

evolution of this great software as it happened.

Rails Recipes was released as a Beta Book early in its development.

We Ruby authors are blessed with what must be the most thoughtful

and helpful audience in the industry. Rails Recipes was shaped for the

better by these early adopters. Thanks for the bug reports, suggestions,

and even full recipes.

Most important, thanks to Kelly for tolerating long days of program-

ming Ruby followed by long nights and weekends of writing about it. I

couldn’t have done this without you.

Chad Fowler

May 2006

chad@chadfowler.com

www.allitebooks.com

http://books.pragprog.com/titles/fr_rr/errata/add?pdf_page=x
http://www.allitebooks.org

XML

Troubleshooting

Testing

Style

Security

Search

Rails 1.1+

Plugins

Mail

Rails Internals

Integration

HTML

Extending Rails

Development Process

Database

Configuration

Automation

API Tips

Ajax

TAGS AND THUMB TABS xi

Tags and Thumb tabs

I’ve tried to assign tags to each recipe. If you want to find

recipes that have something to do with Mail, for example,

find the Mail tab at the edge of this page. Then look down

the side of the book: you’ll find a thumb tab that lines up

with the tab on this page for each appropriate recipe.

http://books.pragprog.com/titles/fr_rr/errata/add?pdf_page=xi

Part I

User Interface Recipes

1

Recipe 1

In-Place Form Editing

Problem

Your application has one or more pieces of data that are often edited by

your users—usually very quickly. You want to give your users an easy

way to edit application data in place without opening a separate form.

Solution

Rails makes in-place editing easy with the script.aculo.us InPlaceEditor

control and accompanying helpers. Let’s jump right in and give it a try.

First, we’ll create a model and controller to demonstrate with. Let’s

assume we’re doing a simple address book application. The following is

the Active Record migration we’ll use to define the schema:

Download InPlaceEditing/db/migrate/001_add_contacts_table.rb

class AddContactsTable < ActiveRecord::Migration

def self.up

create_table :contacts do |t|

t.column :name, :string

t.column :email, :string

t.column :phone, :string

t.column :address_line1, :string

t.column :address_line2, :string

t.column :city, :string

t.column :state, :string

t.column :country, :string

t.column :postal_code, :string

end

end

def self.down

drop_table :contacts

end

end

Second, we’ll use the default generated model for our Contact class. To

get things up and running quickly, we can generate the model, con-

troller, and some sample views by just using the Rails scaffolding:

chad> ruby script/generate scaffold Contact

exists app/controllers/

: : :

create app/views/layouts/contacts.rhtml

create public/stylesheets/scaffold.css

http://media.pragprog.com/titles/fr_rr/code/InPlaceEditing/db/migrate/001_add_contacts_table.rb

1. IN-PLACE FORM EDITING 3

Now we can start script/server, navigate to http://localhost:3000/contacts/,

and add a contact or two. Click one of your freshly added contacts’

“Show” links. You should see a plain, white page with an undecorated

dump of your chosen contact’s details. This is the page we’re going to

add our in-place editing controls to.

The first step in any Ajax enablement is to make sure you’ve included

the necessary JavaScript files in your views. Somewhere in the <head>

of your HTML document, you can call the following:

<%= javascript_include_tag :defaults %>

I usually put that declaration in my application’s default layout (in

app/views/layouts/application.rhtml) so I don’t have to worry about includ-

ing it (and other application-wide style settings, markup, etc.) in each

view I create. If you need Ajax effects in only certain discrete sections

of your application, you might choose to localize the inclusion of these

JavaScript files. In this case, the scaffolding generator has created the

contacts.rhtml layout for us in the directory app/views/layouts. You can

include the JavaScript underneath the stylesheet_link_tag() call in this

layout.

Open app/views/contacts/show.rhtml in your editor. By default, it should

look like this:

Download InPlaceEditing/app/views/contacts/show.rhtml.default

<% for column in Contact.content_columns %>

<p>

<%= column.human_name %>: <%=h @contact.send(column.name) %>

</p>

<% end %>

<%= link_to 'Edit', :action => 'edit', :id => @contact %> |

<%= link_to 'Back', :action => 'list' %>

The default show() view loops through the model’s columns and dis-

plays each one dynamically, with both a label and its value, rendering

something like Figure 1.1, on the following page.

Let’s start with this file and add the in-place editing controls to our

fields. First we’ll remove the “Edit” link, since we’re not going to need it

anymore. Then we wrap the displayed value with a call to the in-place

editor helper. Your show.rhtml should now look like this:

http://localhost:3000/contacts/
http://media.pragprog.com/titles/fr_rr/code/InPlaceEditing/app/views/contacts/show.rhtml.default
http://books.pragprog.com/titles/fr_rr/errata/add?pdf_page=3

1. IN-PLACE FORM EDITING 4

Figure 1.1: Basic scaffold view

Download InPlaceEditing/app/views/contacts/show.rhtml

<% for column in Contact.content_columns %>

<p>

<%= column.human_name %>:

<%= in_place_editor_field :contact, column.name, {}, :rows => 1 %>

</p>

<% end %>

<%= link_to 'Back', :action => 'list' %>

We’re telling the in_place_editor_field() helper that we want it to create

an editing control for the instance variable called @contact with the

attribute that we’re currently on in our loop through the model’s col-

umn names. To make things a little more concrete, if we weren’t in

the dynamic land of scaffolding, we would create an edit control for a

Contact’s name with the following snippet:

<%= in_place_editor_field :contact, :name %>

Note that the in_place_editor_field() method expects the name of the

instance variable as its first parameter—not the instance itself (so we

use :contact, not @contact).

Refresh the show() page, and you should be able to click one of the

contact’s values to cause the edit control to automatically open in the

current view:

http://media.pragprog.com/titles/fr_rr/code/InPlaceEditing/app/views/contacts/show.rhtml
http://books.pragprog.com/titles/fr_rr/errata/add?pdf_page=4

1. IN-PLACE FORM EDITING 5

Clicking the ok button now should result in a big, ugly error in a

JavaScript alert. That’s OK. The in-place edit control has created a

form for editing a contact’s data, but that form has no corresponding

action to submit to. Quickly consulting the application’s log file, we see

the following line:

127.0.0.1 . . . "POST /contacts/set_contact_name/1 HTTP/1.1" 404 581

So the application tried to POST to an action called set_contact_name()

(notice the naming convention) and received a 404 (not found) response

code in return.

Now we could go into our ContactsController and define the method

set_contact_name(), but since we’re doing something so conventional, we

can rely on a Rails convention to do the work for us! Open the controller

app/controllers/contacts_controller.rb, and add the following line right after

the beginning of the class definition (line 2 would be a good place):

in_place_edit_for :contact, :name

Now if you return to your browser, edit the contact’s name, and click

“ok” again, you’ll find that the data is changed, saved, and redisplayed.

The call to in_place_edit_for() dynamically defines a set_contact_name()

action that will update the contact’s name for us. The other attributes

on the page still won’t work, because we haven’t told the controller to

generate the necessary actions. We could copy and paste the line we

just added, changing the attribute names. But since we want edit con-

trols for all the attributes of our Contact model and the scaffolding has

already shown us how to reflect on a model’s column names, let’s keep

it DRY and replace the existing in_place_edit_for() call with the following:

Download InPlaceEditing/app/controllers/contacts_controller.rb

Contact.content_columns.each do |column|

in_place_edit_for :contact, column.name

end

Now all the attributes should save properly through their in-place edit

controls. Since, as we’ve seen, in_place_edit_for simply generates appro-

priately named actions to handle data updates, if we needed to imple-

ment special behavior for a given edit, we could define our own cus-

tom actions to handle the updates. For example, if we needed special

processing for postal code updates, we would define an action called

http://media.pragprog.com/titles/fr_rr/code/InPlaceEditing/app/controllers/contacts_controller.rb
http://books.pragprog.com/titles/fr_rr/errata/add?pdf_page=5

1. IN-PLACE FORM EDITING 6

raise() Is Your Friend

If I hadn’t just told you how to implement your own custom in-
place edit actions, how would you have known what to do?

As we saw in the recipe, we can see what action the Ajax
control is attempting to call by looking at our web server log.
But since it’s making a POST, we can’t see the parameters
in the log. How do you know what parameters an auto-
generated form is expecting without reading through piles of
source code?

What I did was to create an action with the name that I saw in
the logs that looked like the following:

def set_contact_name
raise params.inspect

end

When I submitted the form, I saw the Rails error message with a
list of the submitted parameters at the top.

set_contact_postal_code(). The in-place edit control form will pass two

notable parameters: the contact’s id, aptly named id and the new value

to use for the update with the parameter key, value.

The in-place edit control uses Active Record’s update_attribute() method

to do database updates. This method bypasses Active Record model val-

idations. If you need to perform validations on each update, you’ll need

to write your own actions for handling the in-place edits.

OK, so these edit fields work. But they’re kind of ugly. How would

you, for example, make the text field longer? An especially long email

address or name would not fit in the default text field size. Many Rails

helpers accept additional parameters that will be passed directly to

their rendered HTML elements, allowing you to easily control factors

such as size.

The InPlaceEditor does things a little differently (and some might say

better). It sets a default class name on the generated HTML form, which

you can then use as a CSS selector. So to customize the size of the

generated text fields, you could use the following CSS:

.inplaceeditor-form input[type="text"] {

width: 260px;

}

http://books.pragprog.com/titles/fr_rr/errata/add?pdf_page=6

1. IN-PLACE FORM EDITING 7

Of course, since we’re using CSS here, we could do anything possible

with CSS.

Discussion

You’ll notice that our example here assumes that you want to edit all

your data with a text box. In fact, it’s possible to force the InPlaceEditor

to create either a text field or a <textarea> field, using the :rows option

to the fourth parameter of the in_place_editor_field() method. Any value

greater than 1 will tell InPlaceEditor to generate a <textarea>.

What if you want to edit with something other than free-form text con-

trols? InPlaceEditor doesn’t ship with anything for this by default. See

Recipe 2, Making Your Own JavaScript Helper, on the next page, to

learn how to do it yourself.

Also, you’ll quickly notice that if a field doesn’t already have a value, the

InPlaceEditor will not allow you to click to edit that field. This limitation

can be worked around by populating empty fields with default values,

such as “Click to edit”.

http://books.pragprog.com/titles/fr_rr/errata/add?pdf_page=7

Recipe 2

Making Your Own JavaScript

Helper

Problem

One of the things I love about Rails is that, though I enjoy taking advan-

tage of many of the user interface benefits that JavaScript provides, it

saves me from writing JavaScript code that I really don’t like to write.

Rails is full of magical one-liners that create exciting user interface

effects—all without having to touch a line of JavaScript.

Sadly, Rails doesn’t solve every user interface problem I might ever

have. And though its JavaScript helper libraries will continue to grow

(either through the core distribution or through user-contributed plu-

gins), no matter how much freely available code is available, if you’re

doing web applications with rich user interfaces, you’re going to even-

tually encounter something application-specific for which you’ll have to

write your own JavaScript code.

But most of the time, though not reusable outside your own project

or company, these little JavaScript snippets will be reusable for you in

your own context.

How can you turn these ugly little inline JavaScript snippets into your

own magical one-liners?

Solution

This recipe calls for a little bit of JavaScript and a little bit of Ruby.

We’re going to write a small JavaScript library, and then we’re going to

wrap it in a Ruby helper that we can then call from our views.

If you’ve read Recipe 1, In-Place Form Editing, on page 2, you know that

the built-in InPlaceEditor control supplies a mechanism for generating

only text boxes for content editing. To demonstrate how to make a

JavaScript helper, we’re going to extend the InPlaceEditor, giving it the

ability to also generate an HTML <select> tag, so clicking an element

to edit it could present the user with a list of valid options, as opposed

to just a text box into which they can type whatever they like.

2. MAKING YOUR OWN JAVASCRIPT HELPER 9

We’ll assume we’re using the same contact management application

described in Recipe 1, In-Place Form Editing, on page 2. If you haven’t

already, set the application up, create your migrations, and gener-

ate scaffolding for the Contact model. Also, since we’re going to be

using Ajax, be sure to include the required JavaScript files in your

app/views/layouts/contacts.rhtml layout file. We’ll start with a simplified

view for our show() action. Here’s how your app/views/contacts/show.rhtml

file should look:

Download MakingYourOwnJavaScriptHelper/app/views/contacts/show.rhtml.first_version

<p>

Name: <%= in_place_editor_field :contact, :name %>

Country: <%= in_place_editor_field :contact, :country %>

</p>

<%= link_to 'Back', :action => 'list' %>

This view gives us in-place editing of the name() and country() attributes

of any Contact in our database. Clicking the country name will open a

text box like the one in the following image:

The call to in_place_editor_field() in the view simply generates the follow-

ing JavaScript (you can see it yourself by viewing the HTML source of

the page in your browser):

Country:

United States of America

<script type="text/javascript">

new Ajax.InPlaceEditor('contact_country_1_in_place_editor',

'/contacts/set_contact_country/1')

</script>

All these magic helpers are really not so magical after all. All they

do is generate JavaScript and HTML fragments for us. It’s just text

generation, but the text happens to be JavaScript.

www.allitebooks.com

http://media.pragprog.com/titles/fr_rr/code/MakingYourOwnJavaScriptHelper/app/views/contacts/show.rhtml.first_version
http://books.pragprog.com/titles/fr_rr/errata/add?pdf_page=9
http://www.allitebooks.org

2. MAKING YOUR OWN JAVASCRIPT HELPER 10

As you’ll remember, our goal is to create our own extension of the

InPlaceEditor that will render a <select> tag instead of a text box. Since,

as we can see from the HTML source we just looked at, InPlaceEditor

generates only a JavaScript call, we’re going to have to get into the guts

of the InPlaceEditor control to implement this feature.

The InPlaceEditor is defined in the file public/javascripts/controls.js. Brows-

ing its source, we can see that its initializer binds the click event to

the function enterEditMode(). We can follow this function’s definition

through calls to createForm() and then createEditField(). So to summarize

(and spare you the details), clicking the text of an in-place edit control

calls the createForm() JavaScript function that relies on the createEdit-

Field() to set up the actual editable field. The createEditField() function

creates either an <input> field of type "text" or a <textarea> and adds

it to the form.

This is good news, because createEditField() is a nice, clean entry point

for overriding InPlaceEditor’s field creation behavior. We have many ways

to accomplish this in JavaScript. We won’t go into detail on the imple-

mentation. The approach we’ll use is to take advantage of the Prototype

JavaScript library’s inheritance mechanism to subclass InPlaceEditor.

We’ll make our own class called InPlaceSelectEditor, which will simply

override InPlaceEditor’s createEditField() method.

Let’s create our new JavaScript class in the file in_place_select_editor.js

in the directory public/javascripts. We can include this file in any page

that needs it. Here’s what that file should look like:

Download MakingYourOwnJavaScriptHelper/public/javascripts/in_place_select_editor.js

Line 1 Ajax.InPlaceSelectEditor = Class.create();

- Object.extend(Object.extend(Ajax.InPlaceSelectEditor.prototype,

- Ajax.InPlaceEditor.prototype), {

- createEditField: function() {

5 var text;

- if(this.options.loadTextURL) {

- text = this.options.loadingText;

- } else {

- text = this.getText();

10 }

- this.options.textarea = false;

- var selectField = document.createElement("select");

- selectField.name = "value";

- selectField.innerHTML=this.options.selectOptionsHTML ||

15 "<option>" + text + "</option>";

- $A(selectField.options).each(function(opt, index){

- if(text == opt.value) {

http://media.pragprog.com/titles/fr_rr/code/MakingYourOwnJavaScriptHelper/public/javascripts/in_place_select_editor.js
http://books.pragprog.com/titles/fr_rr/errata/add?pdf_page=10

2. MAKING YOUR OWN JAVASCRIPT HELPER 11

- selectField.selectedIndex = index;

- }

20 }

-);

- selectField.style.backgroundColor = this.options.highlightcolor;

- this.editField = selectField;

- if(this.options.loadTextURL) {

25 this.loadExternalText();

- }

- this.form.appendChild(this.editField);

- }

- });

Without getting too deep into a discussion of the internals of InPlace-

Editor, let’s quickly walk through this JavaScript to understand the key

points. We start off creating our new InPlaceSelectEditor class, extending

InPlaceEditor, and then overriding the createEditField() method. The lines

starting at 6 set the text variable to the current value of the field. We

then create a new <select> element at line 12 and set its name to "value"

on the next line. The generated InPlaceEditor actions on the server will

be expecting data with the parameter name "value".

At line 14, we get the value of the selectOptionsHTML parameter, which

can be passed into InPlaceSelectEditor’s constructor in the third argu-

ment (which is a JavaScript Hash). We set the innerHTML of our freshly

generated <select> tag to either the options block passed in or a single

option containing the current value of the field.3

Finally, the loop starting on line 16 goes through each option until it

finds the current value of the field and sets that option to be selected.

Without this block of code, the select field would unintuitively have a

different initial value than the field is actually set to.

Now we have defined our JavaScript, we need to include it in the page

via our layout file, app/views/layouts/contact.rhtml. Include it like this:

Download MakingYourOwnJavaScriptHelper/app/views/layouts/contacts.rhtml

<%= javascript_include_tag "in_place_select_editor" %>

Now let’s make a simple demo view to see this new JavaScript class

in action. Create a new view in app/views/contacts/demo.rhtml with the

following code:

3Although this code works as advertised in the Firefox and Safari browsers, Internet

Explorer is a bit more finicky when it comes to the use of innerHTML. To make this work

with Internet Explorer, you’ll need to construct DOM elements programmatically. For the

sake of brevity and simplicity, we’ll leave that to you as an exercise in JavaScript.

http://media.pragprog.com/titles/fr_rr/code/MakingYourOwnJavaScriptHelper/app/views/layouts/contacts.rhtml
http://books.pragprog.com/titles/fr_rr/errata/add?pdf_page=11

2. MAKING YOUR OWN JAVASCRIPT HELPER 12

Download MakingYourOwnJavaScriptHelper/app/views/contacts/demo.rhtml

Some Value

<script type="text/javascript">

new Ajax.InPlaceSelectEditor(

'an_element_we_want_to_edit',

'/an/update/url',

{ selectOptionsHTML: '<option>Blah</option>' +

'<option>Some Value</option>' +

'<option>Some Other Value</option>'});

</script>

Its parameters are the same as those passed to the original InPlaceEditor,

except that the third (optional) Hash argument can accept the additional

selectOptionsHTML key.

Now we have the JavaScript side working, how can we remove the need

for JavaScript programming altogether? It’s time to make a helper!

As we saw earlier, the Rails JavaScript helpers essentially just generate

text that happens to be JavaScript. What do we need to generate for

this helper? Basically, we just need to generate the equivalent code that

we wrote manually in the previous demo example.

We’ll cheat a little by looking at (and copying) the definition of the

method in_place_editor_field() from the java_script_macros_helper.rb file in

Action Pack. We’ll implement our new helpers as a pair of methods, fol-

lowing the pattern of the InPlaceEditor implementation. We’ll put them

in app/helpers/application_helper.rb to make them available to all our

views. We’ll call the first method in_place_select_editor_field(). Since

we want to be able to pass in an object and a field name, the job of

in_place_select_editor_field() is to set up the id and url parameters to pass

to the InPlaceSelectEditor JavaScript class, based on the supplied object

and field name. Here’s the implementation:

Download MakingYourOwnJavaScriptHelper/app/helpers/application_helper.rb

def in_place_select_editor_field(object, method, tag_options = {},

in_place_editor_options = {})

tag = ::ActionView::Helpers::InstanceTag.new(object, method, self)

tag_options = { :tag => "span",

:id => "#{object}_#{method}_#{tag.object.id}_in_place_editor",

:class => "in_place_editor_field"}.merge!(tag_options)

in_place_editor_options[:url] =

in_place_editor_options[:url] ||

url_for({ :action => "set_#{object}_#{method}", :id => tag.object.id })

tag.to_content_tag(tag_options.delete(:tag), tag_options) +

in_place_select_editor(tag_options[:id], in_place_editor_options)

end

http://media.pragprog.com/titles/fr_rr/code/MakingYourOwnJavaScriptHelper/app/views/contacts/demo.rhtml
http://media.pragprog.com/titles/fr_rr/code/MakingYourOwnJavaScriptHelper/app/helpers/application_helper.rb
http://books.pragprog.com/titles/fr_rr/errata/add?pdf_page=12

2. MAKING YOUR OWN JAVASCRIPT HELPER 13

Now as you can see, this method delegates to in_place_select_editor(),

whose job is to generate the JavaScript text that will be inserted into

the rendered view. Here’s what in_place_select_editor() should look like:

Download MakingYourOwnJavaScriptHelper/app/helpers/application_helper.rb

def in_place_select_editor(field_id, options = {})

function = "new Ajax.InPlaceSelectEditor("

function << "'#{field_id}', "

function << "'#{url_for(options[:url])}'"

function << (', ' + options_for_javascript(

{

'selectOptionsHTML' =>

%('#{escape_javascript(options[:select_options].gsub(/\n/, ""))}')

}

)

) if options[:select_options]

function << ')'

javascript_tag(function)

end

A fortunate side effect of the way the selectOptionsHTML parameter is

implemented is that it’s easy to use with the Rails form options helpers.

Putting all our work together, here’s app/views/contacts/show.rhtml mod-

ified to use our new helper. Notice that we are supplying the country

list via the built-in Rails country_options_for_select() helper.

Download MakingYourOwnJavaScriptHelper/app/views/contacts/show.rhtml

<p>

Name:

<%= in_place_editor_field :contact, :name %>

Country:

<%= in_place_select_editor_field(

:contact,

:country,

{},

:select_options => country_options_for_select) %>

</p>

<%= link_to 'Back', :action => 'list' %>

After clicking the country name, the form now looks like Figure 2.2, on

the following page.

http://media.pragprog.com/titles/fr_rr/code/MakingYourOwnJavaScriptHelper/app/helpers/application_helper.rb
http://media.pragprog.com/titles/fr_rr/code/MakingYourOwnJavaScriptHelper/app/views/contacts/show.rhtml
http://books.pragprog.com/titles/fr_rr/errata/add?pdf_page=13

2. MAKING YOUR OWN JAVASCRIPT HELPER 14

Figure 2.2: Our JavaScript Helper in Action

Discussion

Our in_place_select_editor_field() and in_place_select_editor() helpers con-

tain an ugly amount of duplication. The built-in in_place_editor_field()

and in_place_editor() JavaScript helpers were not made to be extensible.

It wouldn’t be hard to refactor them to be more pluggable, making our

custom helpers smaller and simpler. That would be the right thing to

do, but it wouldn’t serve the purpose of demonstration in a book as

well. So here’s your homework assignment: refactor the in-place editor

helpers to make them extensible, and then plug this helper in. Submit

your work.

http://books.pragprog.com/titles/fr_rr/errata/add?pdf_page=14

Recipe 3

Showing a Live Preview

Credit

I extracted the technique for this recipe from the Typo weblog engine

(see http://typosphere.org/).

Problem

You’d like to give your users the ability to see a live preview of their data

as they are editing it. You don’t want them to have to wait until they

submit a form to find out that they’ve bungled the formatting of, say, a

diary entry that’s going to be displayed to the world.

Solution

We can easily accomplish a live preview effect using the built-in Rails

JavaScript helpers. For this recipe, we’ll create a live preview of an

extremely simple form for creating a diary entry.

The first step in creating any “Ajaxy” Rails effect is to make sure you’re

including the right JavaScript libraries. For the live preview effect, we

need to include only the Prototype library. I recommend adding it to

your application’s main layout (in our case, layouts/standard.rhtml) like

this:

<html>

<head>

<%= javascript_include_tag "prototype" %>

</head>

<body>

...

</body>

</html>

Now that we have the necessary JavaScript libraries loaded, we’ll create

the model and controller to support our diary entries. We’ll call the

model class Entry, giving it title and body attributes. If you’d like to

follow along without defining the necessary Active Record table, your

app/models/entry.rb file should look like this:

class Entry

attr_accessor :title, :body

end

http://typosphere.org/

3. SHOWING A LIVE PREVIEW 16

The controller will be called DiaryController. We’ll create it in the file

app/controllers/diary_controller.rb. We’ll be radical and name the action

for creating a new entry new():

def new

@entry = Entry.new

end

Now comes the fun part. This action’s view is where the magic hap-

pens. Create the file, app/views/diary/new.rhtml, and edit it to look like

the following:

<%= start_form_tag({:action => "save"},

:id => "entry-form")

%>

<%= text_field :entry, :title %>

<%= text_area :entry, :body %>

<%= submit_tag "Save" %>

<%= end_form_tag %>

<%= observe_form "entry-form",

:frequency => 1,

:update => "live-preview",

:complete => "Element.show('live-preview')",

:url => { :action => "preview" } %>

<div id="live-preview" style="display: none; border: 1px solid"></div>

What we’ve created is a standard, vanilla form. We’ve given the form

an id of entry-form so we can reference it from our code. Below the

form definition, we have a call to the observe_form() helper. This helper

generates the necessary JavaScript to poll each element of a form on the

page (referenced by id) looking for a change. It will poll at the interval

specified (in seconds) by the :frequency parameter. When it detects a

change, it calls the URL specified by the :url parameter, passing the

form’s values as parameters. Its :update parameter specifies the HTML

element (again, by id) to update with the results of the URL call. In

this case, the contents of the live preview <div> will be updated with

whatever the call to the preview() action ends up rendering.

We have used inline CSS to set the live-preview element to be invis-

ible when the page is initially loaded. Since the user wouldn’t have

entered any data yet, the live-preview would have nothing to display.

The :complete parameter to observe_form() says to execute a snippet of

JavaScript after the call to the preview() action completes, which will

cause the live-preview element to be displayed.

http://books.pragprog.com/titles/fr_rr/errata/add?pdf_page=16

3. SHOWING A LIVE PREVIEW 17

If only we had a single field element for which we wanted to show a live

preview, we could have used the observe_field() helper instead.

The only part left to implement is the preview() action. Here’s the code

from the controller:

def preview

render :layout => false

end

The only job of the action code is to short-circuit the application’s usual

rendering. Since we’re going to be updating the live-preview element of

our diary entry creation page with the full results of the preview() action,

we don’t want it returning a full HTML page. We just want a snippet

that will make sense in the larger context of our entry screen.

The preview() action’s view, in app/views/diary/preview.rhtml, should look

like this:

<h2>Diary entry preview</h2>

<h3><%= params[:entry][:title] %></h3>

<%= textilize params[:entry][:body] %>

That’s all there is to it! This view prints the entry’s title as an HTML

heading and then generates HTML output via the textilize() method. This

method uses the RedCloth library internally to transform simple text

markup to HTML.

You can now load the diary entry form and watch your plain text get

transformed into HTML before you ever hit the Save button!

Discussion

You can set the :frequency parameter of the methods observe_field() and

observe_form() to zero or less, which will cause the field to be observed

in real time. Although this might sound like a good way to make your

user interface snappier, it will actually drag it down, not to mention

add a heavy load to your servers. If you observe changes in real time,

every change will result in a request to your server, for which you’ll

have to wait for a result to see the screen update. The changes queue

up, and you end up watching the live preview update slowly behind

your changes, waiting for it to catch up.

http://books.pragprog.com/titles/fr_rr/errata/add?pdf_page=17

Recipe 4

Autocomplete a Text Field

Problem

You’ve seen those nifty “autocomplete” widgets. You know the ones—

you start typing, and the application dynamically starts looking for a

match before you’ve finished. They’re all the rage, and anything less

will make you look oh so 1990s.

For your new killer app, you naturally want to serve your search in

style.

Solution

As part of the script.aculo.us JavaScript library, Rails ships with a won-

derfully easy-to-use autocompletion widget. With it, you’ll be up and

running with a sexily modern search box in fewer than 10 lines of code.

Imagine you have a cookbook application and would like to quickly

search for a recipe by name. We’ll assume that we’ve already created

the necessary database tables and model classes and that the Active

Record migration to create this table looks like the following:

Download 3_add_recipes.rb

def self.up

create_table "recipes" do |t|

t.column "name", :string

t.column "region", :string

t.column "instructions", :text

end

create_table "ingredients" do |t|

t.column "recipe_id", :integer

t.column "name", :string

t.column "unit", :string

t.column "quantity", :integer

end

end

Let’s create a new controller and view for our search code:

app> script/generate controller Search

: : :

We’ll create a new view for the search controller—let’s call it search.rhtml

for now—from which to perform our fancy autocomplete. As you can

see, there’s not much to it:

http://media.pragprog.com/titles/fr_rr/code/3_add_recipes.rb

4. AUTOCOMPLETE A TEXT FIELD 19

Download live_search/search.rhtml

<html>

<head>

<%= javascript_include_tag :defaults %>

</head>

<body>

<%= text_field_with_auto_complete :recipe, :name %>

</body>

</html>

The first thing you should notice is the line near the top that says

javascript_include_tag :defaults. This line is really easy to forget and even

harder to troubleshoot once you’ve forgotten it. This is the line that

includes the JavaScript files that make Rails–Ajax magic. Without this

line, depending on your browser, you’ll see anything from a cryptic

error message to a lifeless HTML form with no explanation for its lack

of fanciness. In fact, it can be so annoying that I’ll say it again, really

loudly: DON’T FORGET TO INCLUDE THE JAVASCRIPT FILES!

Now that the magic spells are included, we can invoke them:

<%= text_field_with_auto_complete :recipe, :name %>

This causes Rails to create a text box for you with all the required

JavaScript attached to it. As with most Rails helpers, the method

text_field_with_auto_complete() isn’t doing anything you couldn’t do man-

ually. But, if you’ve ever had to attach JavaScript events to HTML ele-

ments, you know what a blessing these helpers really are.

We’ve got the client all wired up with JavaScript to observe a text field

and make a request back to the server as the user types into the

browser. The one final ingredient is to tell the server what to do when

it receives these requests. Wiring these client-side requests to a model

in your application is trivial. A single line in the SearchController will do

the trick:

Download live_search/search_controller.rb

class SearchController < ApplicationController

auto_complete_for :recipe, :name

end

This tells Rails to dynamically generate an action method with the name

auto_complete_for_recipe_name() that will search for objects matching

the entered text and render the results. Those results will fill the inner-

HTML of the autocomplete’s DHTML <div> element in the browser, cre-

ating a lovely pop-up effect.

www.allitebooks.com

http://media.pragprog.com/titles/fr_rr/code/live_search/search.rhtml
http://media.pragprog.com/titles/fr_rr/code/live_search/search_controller.rb
http://books.pragprog.com/titles/fr_rr/errata/add?pdf_page=19
http://www.allitebooks.org

Recipe 5

Creating a Drag-and-Drop

Sortable List

Credit

Thanks to Bruce Williams for code that inspired this recipe.

Problem

Your application has a model with a list that should be sortable. You

want to manage the sort order of the list in the database, and you

want to give your users a snazzy, modern, drag-and-drop interface with

which to maintain the sort order.

Solution

Let’s say we’re creating an application for managing grocery lists. With

the size of today’s American grocery superstore, it’s important to devise

a shopping strategy before you hit the aisles. Otherwise, you can waste

precious hours of your life following unoptimized shopping routes.

The Active Record migration file for our shopping optimization applica-

tion will look like the following:

Download DragAndDropSortableList/db/migrate/001_add_person_and_grocery_lists_and_food_items_tables.rb

class AddPersonAndGroceryListsAndFoodItemsTables < ActiveRecord::Migration

def self.up

create_table :people do |t|

t.column :name, :string

end

create_table :grocery_lists do |t|

t.column :name, :string

t.column :person_id, :integer

end

create_table :food_items do |t|

t.column :grocery_list_id, :integer

t.column :position, :integer

t.column :name, :string

t.column :quantity, :integer

end

end

http://media.pragprog.com/titles/fr_rr/code/DragAndDropSortableList/db/migrate/001_add_person_and_grocery_lists_and_food_items_tables.rb

5. CREATING A DRAG-AND-DROP SORTABLE LIST 21

def self.down

drop_table :people

drop_table :grocery_lists

drop_table :food_items

end

end

As you can see, we have tables to support people, their grocery lists,

and the items that go on each list (along with the quantity we need of

each item). This is all standard Active Record has_many() fare, except

for the position column in the food_items table. This column is special,

as we’ll see in a moment.

The associated model files are similarly short and sweet. A Person has

many GroceryList objects:

Download DragAndDropSortableList/app/models/person.rb

class Person < ActiveRecord::Base

has_many :grocery_lists

end

And each GroceryList has a list of FoodItem objects on it, which will be

retrieved by the food_items table’s position column:

Download DragAndDropSortableList/app/models/grocery_list.rb

class GroceryList < ActiveRecord::Base

has_many :food_items, :order => :position

belongs_to :person

end

Finally, we get to the spice. Class FoodItem contains Active Record’s

acts_as_list() declaration, which allows its containing object (GroceryList)

to “automagically” manage its sort order:

Download DragAndDropSortableList/app/models/food_item.rb

class FoodItem < ActiveRecord::Base

belongs_to :grocery_list

acts_as_list :scope => :grocery_list

end

The :scope parameter tells acts_as_list() that the sort order is relevant

within the context of a single grocery_list_id. This is so one grocery list’s

sort order doesn’t affect any other list’s order.

The column name position is special to acts_as_list(). By convention, Rails

will automatically use this column name to manage sort order when

a model is declared acts_as_list(). If we needed to use a nonstandard

column name here, we could have passed the :column parameter, but

http://media.pragprog.com/titles/fr_rr/code/DragAndDropSortableList/app/models/person.rb
http://media.pragprog.com/titles/fr_rr/code/DragAndDropSortableList/app/models/grocery_list.rb
http://media.pragprog.com/titles/fr_rr/code/DragAndDropSortableList/app/models/food_item.rb
http://books.pragprog.com/titles/fr_rr/errata/add?pdf_page=21

5. CREATING A DRAG-AND-DROP SORTABLE LIST 22

position makes sense for our humble grocery list manager, so we’ll leave

well enough alone.

After running the migration and creating the model files, let’s fire up

the Rails console and play with this new structure:

chad> ruby script/console

>> kelly = Person.create(:name => "Kelly")

=> #<Person:0x26ec854 ...>>

>> list = kelly.grocery_lists.create(:name => "Dinner for Tibetan New Year Party")

=> #<GroceryList:0x26b9788 ...>>

>> list.food_items.create(:name => "Bag of flour", :quantity => 1)

=> #<FoodItem:0x26a8898 ...>>

>> list.food_items.create(:name => "Pound of Ground Beef", :quantity => 2)

=> #<FoodItem:0x269b60c ...>>

>> list.food_items.create(:name => "Clove of Garlic", :quantity => 5)

=> #<FoodItem:0x26937e0 ...>>

So we now have a person named Kelly in our database who seems to be

planning a party for the Tibetan New Year celebration. So far, she has

three items on her list. She’s not done with the list yet, obviously—you

can’t make momos with just these three ingredients! Let’s see what

happened to that position column when we created these objects:

>> list.food_items.find_by_name("Pound of Ground Beef").position

=> 2

>> list.food_items.find_by_name("Bag of flour").position

=> 1

Cool! Active Record has updated the position column for us! acts_as_list()

also sets up a bunch of nice convenience methods for performing tasks

such as selecting the next item (in order) in the list or moving an item’s

position up or down. Let’s not get all caught up in the model just

now, though. We have enough implemented that we can get to the fun

stuff—drag and drop!

As always, if you’re going to do fancy Ajax stuff, you need include the

necessary JavaScript libraries somewhere in your HTML. I usually cre-

ate a standard layout and throw the JavaScript in there. Let’s create

the layout in app/views/layouts/standard.rhtml and then fill it in as follows:

Download DragAndDropSortableList/app/views/layouts/standard.rhtml

<html>

<head>

<%= javascript_include_tag :defaults %>

</head>

<body>

<%= yield %>

</body>

</html>

http://media.pragprog.com/titles/fr_rr/code/DragAndDropSortableList/app/views/layouts/standard.rhtml
http://books.pragprog.com/titles/fr_rr/errata/add?pdf_page=22

5. CREATING A DRAG-AND-DROP SORTABLE LIST 23

Next, pretending that we already have some kind of interface for cre-

ating a list and associating it with a person, let’s create the controller

and action from whence we’ll reorder our list. We’ll create a controller in

app/views/controllers/grocery_list_controller.rb with an action called show().

The beginning of the controller should look like the following:

Download DragAndDropSortableList/app/controllers/grocery_list_controller.rb

class GroceryListController < ApplicationController

layout "standard"

def show

@grocery_list = GroceryList.find(params[:id])

end

...

Note that we’ve included the standard.rhtml layout, and we’ve defined a

basic action that will simply find a grocery list based on a supplied

parameter:

Next we create the associated view in app/views/grocery_list/show.rhtml:

Download DragAndDropSortableList/app/views/grocery_list/show.rhtml

<h2><%= @grocery_list.person.name %>'s Grocery List</h2>

<h3><%= @grocery_list.name %></h3>

<ul id="grocery-list">

<% @grocery_list.food_items.each do |food_item| %>

<li id="item_<%= food_item.id %>">

<%= food_item.quantity %> units of <%= food_item.name %>

<% end %>

http://media.pragprog.com/titles/fr_rr/code/DragAndDropSortableList/app/controllers/grocery_list_controller.rb
http://media.pragprog.com/titles/fr_rr/code/DragAndDropSortableList/app/views/grocery_list/show.rhtml
http://books.pragprog.com/titles/fr_rr/errata/add?pdf_page=23

5. CREATING A DRAG-AND-DROP SORTABLE LIST 24

Again, this is nothing too fancy. This is standard Action View read-

only material. Do note, though, that we are autogenerating unique

element ids for the tags. This is necessary when we move on to the

sorting code, so don’t skip it in this step. We can see what this page

looks like by starting our development server and pointing our browser

to (assuming the default port) http://localhost:3000/grocery_list/show/listid,

where listid is the id of the GroceryList model object we created in the

console.

Now let’s make the list sortable. At the end of our show.rhtml, we’ll add

the following:

Download DragAndDropSortableList/app/views/grocery_list/show.rhtml

<%= sortable_element 'grocery-list',

:url => { :action => "sort", :id => @grocery_list },

:complete => visual_effect(:highlight, 'grocery-list')

%>

This helper generates the JavaScript necessary to turn our unordered

list into a dynamic, drag-and-drop sortable form. The first parameter,

grocery-list, refers to the ID of the item on the current HTML page that

should be transformed into a sortable list. The :url option specifies the

elements, such as action and controller, that will make up the URL

that will be called when a sorting change is made. We have specified

the sort() action of the current controller, appending the current grocery

list’s ID. Finally, the :complete option sets up a visual effect to take

place when the sort() action has finished.

Let’s get that sort() action implemented so we can watch this thing in

action! In the grocery_list_controller.rb, we’ll add a sort() action that looks

like this:

Download DragAndDropSortableList/app/controllers/grocery_list_controller.rb

def sort

@grocery_list = GroceryList.find(params[:id])

@grocery_list.food_items.each do |food_item|

food_item.position = params['grocery-list'].index(food_item.id.to_s) + 1

food_item.save

end

render :nothing => true

end

First we select the grocery list by the supplied ID. Then we iterate

through the items on the list and change each item’s position to match

its index in the grocery-list parameter. The grocery-list parameter is gen-

erated automatically by the sortable_element() helper and creates an

http://media.pragprog.com/titles/fr_rr/code/DragAndDropSortableList/app/views/grocery_list/show.rhtml
http://media.pragprog.com/titles/fr_rr/code/DragAndDropSortableList/app/controllers/grocery_list_controller.rb
http://books.pragprog.com/titles/fr_rr/errata/add?pdf_page=24

5. CREATING A DRAG-AND-DROP SORTABLE LIST 25

ordered Array of the list items’ IDs. Since our position columns start

with 1 and an Array’s index starts with 0, we add 1 to the index value

before saving the position.

Finally, we explicitly tell Rails that this action should not render any-

thing. Since the visual output of sorting a list is the list itself (which

we’re already displaying), we let the action complete its work silently.

Had we wanted to update the HTML page with the action’s results, we

could have added the :update option to our sortable_element() call, pass-

ing it the ID of the HTML element to populate with our action’s results.

If we refresh the grocery list show() page with the sortable_element() addi-

tion, we can now drag items up and down the list to change their order

both on the page and in the database.

Also See

Chapter 15 of Agile Web Development with Rails [TH05] contains a more

thorough introduction to acts_as_list().

http://books.pragprog.com/titles/fr_rr/errata/add?pdf_page=25

Recipe 6

Update Multiple Elements

with One Ajax Request

Problem

You’ve seen how the Ajax form helpers allow you to update a section of

the page you’re working on with the results of a remote action. For most

Ajax actions, you can use the :update parameter to specify an HTML ele-

ment ID that should be updated with the response of the remote action.

This is extremely easy to use and is sufficient in most situations. If you

want to add an item to a list, you just update the list’s HTML with a

rerendered version from the server. If you want to edit a form in place,

it’s the same thing.

This model starts to break down if you need to update several poten-

tially disconnected elements on the same page with the result of one

click or action. For example, the mock-up in Figure 6.3, on the next

page, shows a fictional shopping cart application. The top of the page

displays the number of items in a user’s cart, and each product can be

added to or removed from the cart without having to refresh the page.

Potential solutions to this problem using the :update parameter are

messy and problematic.

Ingredients

• Rails 1.1 or higher

Solution

Rails 1.1 introduces a new type of template called Remote JavaScript,

or RJS. Just as with Builder templates and their .rxml extension, tem-

plates with a file name extension of .rjs are automatically handled as

RJS templates.

RJS provides simple, succinct Ruby methods that generate verbose

JavaScript code for you. You call methods such as

page.hide 'element-id'

6. UPDATE MULTIPLE ELEMENTS WITH ONE AJAX REQUEST 27

Figure 6.3: Mock-up of Shopping Cart

and RJS generates the JavaScript to set the display of the named ele-

ment to none and then streams that JavaScript to the browser. The

content is returned to the browser with a Content-type of text/javascript.

The Prototype JavaScript library that ships with Rails recognizes this

Content-type and calls JavaScript’s eval() with the returned content.

Let’s cook up a quick example to see this in action. Assuming we

already have an application generated, we’ll generate a new controller

to play with:

chad> ruby script/generate controller AjaxFun

exists app/controllers/

: :

Next we’ll make a simple index.rhtml view for this controller, which will

serve as our Ajax playground. The index.rhtml should look like the follow-

ing, keeping in mind that the HTML element ID names are important:

http://books.pragprog.com/titles/fr_rr/errata/add?pdf_page=27

6. UPDATE MULTIPLE ELEMENTS WITH ONE AJAX REQUEST 28

Download UpdateMultiplePageElementsWithAjax/app/views/ajax_fun/index.rhtml

<html>

<head>

<%= javascript_include_tag :defaults %>

</head>

<body>

<h2 id="header">Ajax Fun</h2>

<div>

This page was initially loaded at <%= Time.now %>

</div>

<div>

This page was updated at <%= Time.now %>

</div>

<ul id="the_list">

Initially, the first item

Another item

<li id="item_to_remove">This one will be removed.

<div id="initially_hidden" style="display: none;">

This text starts out hidden.

</div>

<%= link_to_remote "Ajax Magic", :url => {:action => "change"} %>

</body>

</html>

We’ve taken the time to label the elements that we want to be dynami-

cally updated with HTML ID attributes. The remote link at the bottom

of the page will fire an XMLHttpRequest to the controller’s change()

method. That’s where we’ll have our fun. Notice there’s no :update

parameter given to link_to_remote(). Let’s look first at the controller:

Download UpdateMultiplePageElementsWithAjax/app/controllers/ajax_fun_controller.rb

class AjaxFunController < ApplicationController

def change

@rails_version = Rails::VERSION::STRING

end

end

We simply set an instance variable called @rails_version that we’ll use in

our view. The real work happens in the view for this action, change.rjs:

Download UpdateMultiplePageElementsWithAjax/app/views/ajax_fun/change.rjs

Line 1 page.replace_html 'time_updated', Time.now.to_s

- page.visual_effect :shake, 'time_updated'

-

- page.insert_html :top, 'the_list', 'King of the Hill'

5 page.visual_effect :highlight, 'the_list'

-

- page.show 'initially_hidden'

http://media.pragprog.com/titles/fr_rr/code/UpdateMultiplePageElementsWithAjax/app/views/ajax_fun/index.rhtml
http://media.pragprog.com/titles/fr_rr/code/UpdateMultiplePageElementsWithAjax/app/controllers/ajax_fun_controller.rb
http://media.pragprog.com/titles/fr_rr/code/UpdateMultiplePageElementsWithAjax/app/views/ajax_fun/change.rjs
http://books.pragprog.com/titles/fr_rr/errata/add?pdf_page=28

6. UPDATE MULTIPLE ELEMENTS WITH ONE AJAX REQUEST 29

-

- page.delay(3) do

10 page.alert @rails_version

- end

-

- page.remove 'item_to_remove'

You’ll notice that RJS implicitly supplies an object called page that

provides all the JavaScript generation methods. Line 1 replaces the

HTML for the time-updated span tag with the current time. The following

line alerts the user with a not-so-subtle shake, indicating that the time

was updated.

Line 4 inserts a new list item into the page’s unordered list element,

followed by an instance of the 37signals-coined Yellow Fade Technique.

Note that insert_html() and replace_html() can each accept either a String

as we’ve supplied here or the same parameters that render() accepts.

So you could, for example, insert the result of rendering a partial view

template into the page.

On line 7, we cause the page’s hidden element to appear. The opposite

of this is the hide() method, not to be confused with remove(), which we

use on line 13 to actually delete an element from the HTML page.

Finally, on line 9, we use the rather unusual delay() method to cause

a JavaScript alert to pop up three seconds after the page has loaded.

The delay() method generates a JavaScript timeout function, which will

execute any JavaScript generated inside its supplied block.

Notice that the alert() method uses the instance variable, @rails_version,

that we set in the controller. Instance variables and helper methods are

available in an RJS template, just like in any other view.

As we said earlier, the RJS template generates JavaScript and passes

it back to the browser for evaluation. For this particular RJS template,

the generated JavaScript would look something like the following:

Element.update("time-updated", "Sat Jan 28 15:40:45 MST 2006");

new Effect.Shake('time-updated',{});

new Insertion.Top("the-list", "King of the Hill");

new Effect.Highlight('the-list',{});

Element.show("initially-hidden");

setTimeout(function() {

alert("0.14.3");

}, 3000);

["item-to-remove"].each(Element.remove);

And there it is. Easy as pie. With RJS, Ajax is no longer an ordeal.

www.allitebooks.com

http://books.pragprog.com/titles/fr_rr/errata/add?pdf_page=29
http://www.allitebooks.org

6. UPDATE MULTIPLE ELEMENTS WITH ONE AJAX REQUEST 30

Discussion

The Content-type of an RJS template must be set to text/javascript. The

RJS handler does this for you, but if you have any code in your appli-

cation that explicitly sets the Content-type, you may find that your RJS

templates aren’t doing anything. If your RJS templates don’t seem to

be doing anything at all, make sure your application doesn’t have an

after filter that’s setting the Content-type.

Another issue you need to be aware of when you’re dealing with RJS

templates is that since RJS templates generate JavaScript to be evalu-

ated by the browser, errors can be a little harder to detect. For exam-

ple, if you were to create a syntax error in your controller or view, Rails

would return its usual HTML-formatted stack trace. The problem with

this is that it’s fired in the background, and since there’s no JavaScript

to evaluate, nothing will end up happening in the browser. So if you

find yourself staring at your browser’s lifeless face as you wait infinitely

for an RJS-powered Ajax action to complete, you might want to check

the log to find out whether the request ended in an error.

http://books.pragprog.com/titles/fr_rr/errata/add?pdf_page=30

Recipe 7

Lightning-Fast JavaScript

Autocompletion

Problem

When your users have to perform a function over and over again, you

want it to be as fast as it possibly can be. Google understood this when

it designed the email address autocompletion feature of Gmail. You

start typing, and there’s no lag. The addresses pop up almost as fast

as you can type.

How does Google do it so fast? How does Google do it without beating its

servers to death? Google prefetches the addresses and autocompletes

them from an in-browser cache.

Solution

First we need to serve up something that the browser can download

once and that an autocompleter can access. How about a JavaScript

Array? The JavaScript source files we usually include at the top of our

HTML files, such as prototype.js, controls.js, and effects.js, are static text

files that get directly served to the browser. But there’s no reason we

can’t serve up a dynamically generated JavaScript file too.

Say we were trying to do an autocompleted search field for all the

authors who write for a publisher. We might have, say, a BookController

with the following action:

Download LightningFastJavaScriptAutoCompletes/app/controllers/book_controller.rb

def authors_for_lookup

@authors = Author.find(:all)

@headers['content-type'] = 'text/javascript'

end

We selected all of the authors and then, most important, set the content-

type to text/javascript. Some browsers don’t care, but some do. We might

as well do it right. Also note that if you are using layouts, you’ll need to

call the following at the end of the action to make sure the JavaScript

doesn’t get mixed with your application’s HTML layout:

render :layout => false

http://media.pragprog.com/titles/fr_rr/code/LightningFastJavaScriptAutoCompletes/app/controllers/book_controller.rb

7. LIGHTNING-FAST JAVASCRIPT AUTOCOMPLETION 32

Now let’s look at the corresponding view:

Download LightningFastJavaScriptAutoCompletes/app/views/book/authors_for_lookup.rhtml

var authors = new Array(<%= @authors.size %>);

<% @authors.each_with_index do |author, index| %>

authors[<%= index %>] = "<%= author.name %>";

<% end %>

You see, even though we tend to put HTML in our ERb templates, ERb

really doesn’t care what we’re dynamically generating as long as it’s

text and it doesn’t contain syntactically incorrect ERb code. So in this

template, we’re generating a little JavaScript snippet that takes our

Ruby Array and turns it into the source code for a JavaScript one.

Now that we’re able to serve it up, we can include it in our templates

just like any other JavaScript file. Here’s the top of a template from

which we’ll use this file. Note that we also include the default Rails

JavaScript files, since we’re going to need them for our dynamic auto-

complete.

Download LightningFastJavaScriptAutoCompletes/app/views/book/search_page.rhtml

<head>

<%= javascript_include_tag :defaults %>

<script src="/book/authors_for_lookup" type="text/javascript"></script>

We inserted a <script> tag. In it we put relative path to our JavaScript

action. It’s as easy as pie. Now we have access to the authors vari-

able from our dynamically generated script. We can do as many Ajax

requests as we want on this page, and we won’t have to reload this Array

again. The browser already has it.

Now that the authors variable is accessible to our browser, we can put

it to use. Rails ships with an easy-to-use autocompletion library, com-

plete with Ruby helper methods and a rich JavaScript library to back it

up. The Ruby helper methods assume that we want to perform our

autocompletion against the results of a remote request back to the

server. However, the JavaScript library that supports this functionality

also has a “local” mode.

The JavaScript class we need to use is called Autocompleter.Local4. Its

constructor accepts three mandatory arguments: the id of the text ele-

ment to attach itself to, the id of a <div> element to update with the

4http://wiki.script.aculo.us/scriptaculous/show/Autocompleter.Local has the official documen-

tation.

http://media.pragprog.com/titles/fr_rr/code/LightningFastJavaScriptAutoCompletes/app/views/book/authors_for_lookup.rhtml
http://media.pragprog.com/titles/fr_rr/code/LightningFastJavaScriptAutoCompletes/app/views/book/search_page.rhtml
http://wiki.script.aculo.us/scriptaculous/show/Autocompleter.Local
http://books.pragprog.com/titles/fr_rr/errata/add?pdf_page=32

7. LIGHTNING-FAST JAVASCRIPT AUTOCOMPLETION 33

autocompletion results, and a JavaScript Array of character strings to

use as the data source for the control (this is our authors variable).

An example invocation of the local autocompleter might look like this:

<%= javascript_tag("new Autocompleter.Local('author_lookup',

'author_lookup_auto_complete',

authors);") %>

The first two arguments to the Autocompleter.Local constructor imply the

existence of two HTML elements that we haven’t yet created. The first is

the text field into which our users will type their searches. The second

is a (initially empty) <div> to fill with the autocompletion results. We

can define those like this:

<input type="text" id="author_lookup" name="author_lookup" />

<div class="auto_complete" id="author_lookup_auto_complete"></div>

Notice the class attribute we applied to the empty <div>. To give our

autocompletion results a look that our users are familiar with, we’ll

need to style the <div> ourselves. The Rails autocompletion helpers

give us the necessary styling by default, but since we’re creating our

own JavaScript autocompleter, we can’t use the helpers.

Not wanting to re-invent the wheel (which is a euphemism for “I suck

at CSS”), I temporarily added the built-in autocompletion helper to my

template, viewed it in my browser, and snagged the generated <style>

tag to add to the template here. To save you that work, here it is:

Download LightningFastJavaScriptAutoCompletes/app/views/book/search_page.rhtml

<style>

div.auto_complete {

width: 350px;

background: #fff;

}

div.auto_complete ul {

border:1px solid #888;

margin:0;

padding:0;

width:100%;

list-style-type:none;

}

div.auto_complete ul li {

margin:0;

padding:3px;

}

div.auto_complete ul li.selected {

background-color: #ffb;

}

http://media.pragprog.com/titles/fr_rr/code/LightningFastJavaScriptAutoCompletes/app/views/book/search_page.rhtml
http://books.pragprog.com/titles/fr_rr/errata/add?pdf_page=33

7. LIGHTNING-FAST JAVASCRIPT AUTOCOMPLETION 34

div.auto_complete ul strong.highlight {

color: #800;

margin:0;

padding:0;

}

</style>

Just add that anywhere in your page’s <head> tag, and your autocom-

pleters should behave as you expect them to behave.

Putting it all together, here’s the entire page with the form, JavaScript,

and necessary CSS:

Download LightningFastJavaScriptAutoCompletes/app/views/book/search_page.rhtml

<html>

<head>

<%= javascript_include_tag :defaults %>

<script src="/book/authors_for_lookup" type="text/javascript"></script>

<style>

div.auto_complete {

width: 350px;

background: #fff;

}

div.auto_complete ul {

border:1px solid #888;

margin:0;

padding:0;

width:100%;

list-style-type:none;

}

div.auto_complete ul li {

margin:0;

padding:3px;

}

div.auto_complete ul li.selected {

background-color: #ffb;

}

div.auto_complete ul strong.highlight {

color: #800;

margin:0;

padding:0;

}

</style>

</head>

<body>

<label for="author_lookup">Author Search</label>

<input type="text" id="author_lookup" name="author_lookup" />

<div class="auto_complete" id="author_lookup_auto_complete">

</div>

<%= javascript_tag("new Autocompleter.Local('author_lookup',

'author_lookup_auto_complete',

http://media.pragprog.com/titles/fr_rr/code/LightningFastJavaScriptAutoCompletes/app/views/book/search_page.rhtml
http://books.pragprog.com/titles/fr_rr/errata/add?pdf_page=34

7. LIGHTNING-FAST JAVASCRIPT AUTOCOMPLETION 35

authors,

{fullSearch: true,

frequency: 0,

minChars: 1

}

);") %>

</body>

</html>

I wanted the autocompleter to be really responsive, so I added a fourth

argument to the Autocompleter.Local initializer. The fourth argument is

a Hash of options, similar to the convention followed by many of the

Rails helper methods. I wanted to be able to match a first name or a

last name, so I set fullSearch to true. To minimize the delay in a result

coming up, I set the polling frequency to 0 (which makes it event-based

rather than time-based) and minChars to 1. This means as soon as our

users start typing, they’ll start seeing matching results. Very snappy!

Viewing this action against the Pragmatic Bookshelf authors list gives

us a really fast and responsive autocompleter that looks like this:

http://books.pragprog.com/titles/fr_rr/errata/add?pdf_page=35

Snack Recipe 8

Cheap & Easy Theme Support

Thanks to David Alan Black for the idea for this recipe.

It’s possible to spend a lot of time adding theme support to your appli-

cation. If an application requires different layouts for different themes,

this level of effort might be worthwhile.

More often than not, though, you can get by with a lightweight, entirely

CSS-driven approach to themes.

Simply add a String field called style to your application’s User (or equiv-

alent) model, and you can implement theme support in a matter of

minutes with an application layout like the following:

Download CheapAndEasyThemeSupport/app/views/layouts/application.rhtml

<html>

<head>

<%= stylesheet_link_tag(session[:user].style || "default") %>

</head>

<body>

<div id='main'>

<div id='header'>

<h1>Welcome, <%= session[:user].name %>!</h1>

</div>

<div id='content'>

<%= yield %>

</div>

</div>

</body>

</html>

Any user who doesn’t have a configured style attribute will get the

default CSS style sheet (literally called default.css). All it takes to alter a

user’s visual experience is the following:

chad> ruby script/console

>> User.find_by_name("Chad").update_attribute(:style, "hideous")

=> true

The next time poor Chad reloads the page, he’ll be confronted with the

usual page, styled using public/stylesheets/hideous.css.

http://media.pragprog.com/titles/fr_rr/code/CheapAndEasyThemeSupport/app/views/layouts/application.rhtml

Snack Recipe 9

Trim Static Pages with Ajax

With the heavy emphasis on Ajax being used to drive ultradynamic

Web applications, you might overlook one of its simpler benefits. If you

have a page with both summary and detail data for a set of items (for

example, a product catalog), you might want to enable users to view an

overview of each item in a list and then click for details without having

to refresh the page. You could just, for example, assign an empty <div>

to each product to store its detail information and then show that <div>

when the user clicks the “detail” link.

You could just embed all of this detail in every listing, but the result-

ing HTML pages could get really big and lead to long download times

and browser instability. So, grabbing the detail from a remote location

makes a lot of sense.

Remote links can even be made to static HTML pages. Take the follow-

ing view snippet as an example:

Download StaticAjax/app/views/products/index.rhtml

<div id="product-1" class="product-overview">

Learn to Program (Chris Pine)

<%= link_to_remote "detail",

:update => 'product-1-detail',

:method => 'get',

:url => '/catalog/details/1.html' %>

</div>

<div id='product-1-detail'></div>

When a user clicks the “detail” link, an Ajax request will be made that

will simply retrieve the file, 1.html, from the web server and replace the

product-1-detail HTML <div> with its contents.

Notice that we’ve instructed Rails to make an HTTP GET request to the

server. It defaults to a POST for remote links, which is not appropriate

for getting static files.

http://media.pragprog.com/titles/fr_rr/code/StaticAjax/app/views/products/index.rhtml

Snack Recipe 10

Smart Pluralization

An annoying little problem that we all have to deal with sometimes in

application development occurs when you need to conditionally use the

plural or singular version of a word depending on how many items were

returned from a database. How many messages does a user have in his

or her inbox? How many failed transactions does a financial operations

team need to resolve?

Rails comes with a wonderful tool called the Inflector, which is the thing

that (among doing other tasks) figures out what a table name should

be called based on the name of its associated model. This logic involves

a great deal of smarts, and it has thankfully been exposed for use

anywhere in a Rails application. In fact, a handy wrapper method in

Action View was made to handle the most common pluralization need

as described previously. Here’s how you use it:

Download SmartPluralizationOfWords/app/views/recipes/index.rhtml

Hi <%= @user.name %>.

You have <%= pluralize @recipes.size, "unread recipe" %> in your inbox.

What if your application isn’t in English or you want to support the

(horrible) geek-culture tendency to refer to server boxes as boxen? Cast-

ing aside good taste, you can do that by customizing the Inflector’s plu-

ralization rules. Just add something like the following to your con-

fig/environment.rb:

Download SmartPluralizationOfWords/config/environment.rb

Inflector.inflections do |inflect|

inflect.plural /(ox)$/i, '\1en'

inflect.singular /(ox)en/i, '\1'

end

Now, the plural form of box is boxen and vice versa.

You can also use the Inflector’s uncountable() method to signify words

that have no plural and the irregular() method to configure words whose

pluralization rules don’t follow a pattern:

inflect.uncountable "fish", "information", "money"

inflect.irregular "person", "people"

http://media.pragprog.com/titles/fr_rr/code/SmartPluralizationOfWords/app/views/recipes/index.rhtml
http://media.pragprog.com/titles/fr_rr/code/SmartPluralizationOfWords/config/environment.rb

Snack Recipe 11

Debugging Ajax

All of this fancy Ajax stuff is cool. But because Ajax is something that

has recently taken hold, the methods of developing software with these

techniques are still maturing. This immaturity shows most strongly

when trouble strikes.

A bad Ajax request can leave you staring at a lifeless screen for precious

minutes and hours of your life while you try to figure out why a list isn’t

updating or an effect isn’t being applied.

Here are three simple tips you can use to make Ajax debugging easier.

First, if you’re running Rails 1.1 and using RJS templates, you can add

the following line to your config/environments/development.rb:

config.action_view.debug_rjs = true

For applications generated with Rails 1.1 or higher, this is the default

behavior, as configured in config/environments/development.rb. If you

really need to, you can turn on debugging for your production envi-

ronment in the corresponding file, but it’s best not to do that unless it’s

absolutely necessary.

This will result in some helpful JavaScript alerts when there is an RJS-

driven JavaScript exception. Don’t be alarmed if you add this line and

no alerts pop up when there is an exception raised in the RJS template

itself. These alerts show up only when there is a JavaScript exception,

for example when referencing a nonexistent element by ID.

Second, you can register your own Ajax responder to update the page

with every Ajax request. Rick Olson suggests something like this:

Download DebuggingAjax/app/views/ajax/index.rhtml

<% if ActionView::Base.debug_rjs %>

<script type="text/javascript">

Ajax.Responders.register({

onComplete: function(request, transport) {

new Insertion.Bottom('debug',

'<div style="border: 1px solid">' +

transport.responseText.escapeHTML() +

'</div>')

}

});

</script>

<% end %>

www.allitebooks.com

http://media.pragprog.com/titles/fr_rr/code/DebuggingAjax/app/views/ajax/index.rhtml
http://www.allitebooks.org

11. DEBUGGING AJAX 40

Now in your template, simply add an empty <div> with id="debug", and

if you have configured your application to be in RJS debug mode, every

Ajax request will result in a line being appended to this <div>. Seeing

the raw contents of every request can be an incredible time saver.

Finally, if you’re using Firefox, you shouldn’t be without Joe Hewitt’s

FireBug.5 FireBug lets you log JavaScript errors, inspect the elements

of a page, and inspect XMLHttpRequest output (similar to our <debug>

trick).

5Available from http://www.joehewitt.com/software/firebug/

http://www.joehewitt.com/software/firebug/
http://books.pragprog.com/titles/fr_rr/errata/add?pdf_page=40

Recipe 12

Creating a Custom Form

Builder

Credit

Thanks to Mike Clark and Bruce Williams for the ideas they contributed

to this recipe.

Problem

You have your own style of form that your application needs to use

constantly. You want to create a helper that can be used to create

customized form types.

Ingredients

• Rails 1.1 or higher

Solution

Through the new form_for() family of helpers, Rails 1.1 introduces the

notion of a form builder. A vanilla Rails 1.1 form might look like this:

<% form_for :contact do |f| %>

<%= f.text_field :name %>

<%= f.text_field :email %>

<%= f.text_field :phone %>

<% end %>

This generates a form for the variable contact. The syntax is much

nicer, but this generates the same tired old HTML form we’ve seen since

Rails introduced start_form_tag() in its initial release. It gets more excit-

ing when you take advantage of form_for()’s :builder option. The builder

is the object that is yielded to form_for()’s block. Because you call the

helpers on that object, it’s the builder that actually generates the HTML

for the form and its tags.

What if we wanted to always generate a tabular form, with each field

getting its own table row (<tr>) containing columns for a field label and

the field itself? The form_for() call would look something like this:

12. CREATING A CUSTOM FORM BUILDER 42

<% form_for :contact, :builder => TabularFormBuilder do |f| %>

<%= f.text_field :name %>

<%= f.text_field :email %>

<%= f.text_field :phone %>

<% end %>

Then we would define the TabularFormBuilder in a helper. I’ve put this one

in application_helper.rb, because I want it to be available to all my views.

Here’s its definition:

Download CustomFormBuilder/app/helpers/application_helper.rb

class TabularFormBuilder < ActionView::Helpers::FormBuilder

(field_helpers - %w(check_box radio_button hidden_field)).each do |selector|

src = <<-END_SRC

def #{selector}(field, options = {})

@template.content_tag("tr",

@template.content_tag("td", field.to_s.humanize + ":") +

@template.content_tag("td", super))

end

END_SRC

class_eval src, __FILE__, __LINE__

end

end

If you haven’t done a lot of metaprogramming in Ruby, this class might

be a little jarring at first. It’s OK to take this on faith to some extent, so

don’t let it bog you down. You can use this as a template for creating

your own builders. Just know that what we’re doing is looping through

all the helpers defined on FormBuilder and overriding them with our own

autogenerated method definitions. If you turn your head to the side and

squint at this code, you can see that, in the loop, it defines a method

with the same name as each helper (such as text_field() and text_area())

that sets up a table row, a table column with a label in it, and an

empty table column into which the output of the original helper from

FormBuilder is placed.

Our new form_for() now generates the following (some newlines were

added to make this listing fit the width of the page):

<form action="/contacts/new" method="post">

<tr>

<td>Name:</td>

<td>

<input id="contact_name" name="contact[name]" size="30" type="text" />

</td>

</tr>

<tr>

<td>Email:</td>

<td>

http://media.pragprog.com/titles/fr_rr/code/CustomFormBuilder/app/helpers/application_helper.rb
http://books.pragprog.com/titles/fr_rr/errata/add?pdf_page=42

12. CREATING A CUSTOM FORM BUILDER 43

<input id="contact_email" name="contact[email]" size="30" type="text" />

</td>

</tr>

<tr>

<td>Phone:</td>

<td>

<input id="contact_phone" name="contact[phone]" size="30" type="text" />

</td>

</tr>

</form>

Now we’re getting somewhere! The only problem is that our form_for() is

generating table rows but no enclosing table. We could, of course, sim-

ply insert <table> tags wherever we use this builder, but that would

lead to a lot of ugly duplication. Instead, let’s create our own wrap-

per for form_for(), which will not only take care of inserting the <table>

tags but will also save us from having to enter the builder option every

time we create a form. We’ll put this method definition in applica-

tion_helper.rb:

Download CustomFormBuilder/app/helpers/application_helper.rb

def tabular_form_for(name, object = nil, options = nil, &proc)

concat("<table>", proc.binding)

form_for(name,

object,

(options||{}).merge(:builder => TabularFormBuilder),

&proc)

concat("</table>", proc.binding)

end

This method is simple. It wraps the same old standard call to form_for()

with concat() calls, which concatenate the opening and closing <table>

tags to the output.

Our view code would now create the form like this:

Download CustomFormBuilder/app/views/contacts/new.rhtml

<html>

<head>

<%= stylesheet_link_tag "application" %>

</head>

<body>

<% tabular_form_for :contact do |f| %>

<%= f.text_field :name %>

<%= f.text_field :email %>

<%= f.text_field :phone %>

<% end %>

</body>

</html>

http://media.pragprog.com/titles/fr_rr/code/CustomFormBuilder/app/helpers/application_helper.rb
http://media.pragprog.com/titles/fr_rr/code/CustomFormBuilder/app/views/contacts/new.rhtml
http://books.pragprog.com/titles/fr_rr/errata/add?pdf_page=43

12. CREATING A CUSTOM FORM BUILDER 44

Now that you have that working, you can’t help but ask yourself what

other elements you constantly find yourself putting into forms. How

about alternate the color of each row in a form? Here’s a form builder

that does that:

Download CustomFormBuilder/app/helpers/application_helper.rb

class TabularAlternatingColorFormBuilder < ActionView::Helpers::FormBuilder

(field_helpers - %w(check_box radio_button hidden_field)).each do |selector|

src = <<-END_SRC

def #{selector}(field, options = {})

@template.content_tag("tr",

@template.content_tag("td", field.to_s.humanize + ":") +

@template.content_tag("td", super),

:class => (@alt = (@alt ? false : true)) ? "alt-row" : "")

end

END_SRC

class_eval src, __FILE__, __LINE__

end

end

def tabular_form_with_alternating_colors_for(name,

object = nil,

options = nil,

&proc)

concat("<table>", proc.binding)

form_for(name,

object,

(options||{}).merge(:builder => TabularAlternatingColorFormBuilder),

&proc)

concat("</table>", proc.binding)

end

This builder uses the instance variable @alt to toggle the CSS class

name with each table row. Adding a CSS snippet like the following to

your application’s style sheet will give you a nice, readable alternating

table row effect:

.alt-row {

background: #fab444;

}

http://media.pragprog.com/titles/fr_rr/code/CustomFormBuilder/app/helpers/application_helper.rb
http://books.pragprog.com/titles/fr_rr/errata/add?pdf_page=44

Recipe 13

Make Pretty Graphs

Problem

You want to dynamically generate attractive graphs of data in your

application.

Ingredients

• ImageMagick. Get it from http://www.imagemagick.org.

• Ruby’s ImageMagick binding, RMagick. Installable via gem install

rmagick. ImageMagick and RMagick can be a bit difficult to set

up (sometimes). Have a look at the RMagick installation FAQ

at http://rmagick.rubyforge.org/install-faq.html before you try to install

them. You’ll be glad you did.

• Geoffrey Grosenbach’s beautiful Gruff graphing library, installable

via gem install gruff.

Solution

In this recipe, we’ll see how to use Gruff to make pretty graphs and

how to include them in our application’s views. Let’s get right down to

business.

We’ll put all our graph logic together in a controller called GraphCon-

troller. Although it’s not necessary to put graphing logic in a separate

controller, we’ll do so in this case so that we can keep all our Gruff-

related code together. Generate the controller now.

Gruff supports several different types of graphs: line, bar, area, pie,

and stacked bar graphs. We’ll start with a simple pie chart. Normally

you would graph data that you calculated based on model objects or

some other statistic relevant to your domain.6 To keep this example

simple and relevant to all Rails programmers, we’ll use our application’s

statistics as the data model for our graphs.

Let’s add the following stats() action to our new GraphController:

6See Recipe 27, Perform Calculations on Your Model Data, on page 105 for further

information.

http://www.imagemagick.org
http://rmagick.rubyforge.org/install-faq.html

13. MAKE PRETTY GRAPHS 46

Download MakePrettyGraphs/app/controllers/graph_controller.rb

require 'gruff'

STATS_DIRECTORIES = [

%w(Helpers app/helpers),

%w(Controllers app/controllers),

%w(APIs app/apis),

%w(Components components),

%w(Functional\ tests test/functional),

%w(Models app/models),

%w(Unit\ tests test/unit),

%w(Libraries lib/),

%w(Integration\ tests test/integration)

].collect { |name, dir|

[name, "#{RAILS_ROOT}/#{dir}"]

}.select { |name, dir|

File.directory?(dir)

}

def stats

code_stats = CodeStatistics.new(*STATS_DIRECTORIES)

statistics = code_stats.instance_variable_get(:@statistics)

g = Gruff::Pie.new(500)

g.font = "/Library/Fonts/Arial"

g.title = "Code Stats"

g.theme_37signals

g.legend_font_size = 10

0xFDD84E.step(0xFF0000, 1500) do |num|

g.colors << "#%x" % num

end

statistics.each do |key, values|

g.data(key, [values["codelines"]])

end

send_data(g.to_blob,

:disposition => 'inline',

:type => 'image/png',

:filename => "code_stats.png")

end

#END

end

Running this action results in a beautiful graph that looks like Fig-

ure 13.4, on the next page.

Let’s walk through the code. First we require the gruff library and then

set up the STATS_DIRECTORIES constant. I ripped this out of the stats()

Rake task that ships with Rails. Its function is simply to supply a list

of directories for the CodeStatistics class to process.

Then, moving into the stats() action, the first two lines set up our model

data that will be fed to the graphing engine. We have to play an ugly

http://media.pragprog.com/titles/fr_rr/code/MakePrettyGraphs/app/controllers/graph_controller.rb
http://books.pragprog.com/titles/fr_rr/errata/add?pdf_page=46

13. MAKE PRETTY GRAPHS 47

Figure 13.4: Gruff Produced a Pie Chart

trick to get access to the raw statistics data, since there is no acces-

sor for it. That’s why we’re using instance_variable_get() here. In your

own applications, this part would be replaced with a call to select your

application-specific models.

We spend the next several lines setting up the graph. The number 500,

which we pass into the constructor, indicates the width of the image.

We set the font and the title and then select (optionally) from one of

Gruff’s included themes. The other theme choices are theme_keynote,

theme_rails_keynote, and theme_odeo. Next, since our legend contains

some pretty long words, we set the font size of the legend. To finish up

the graph configuration, we loop through a series of hexadecimal values

to set a range of graph colors. With a small data set, this isn’t necessary

because the default themes have enough colors to accommodate every

row of data.

Our last bit of graph work is to actually populate the graph with data.

We loop through our code statistics Hash and add one row of data to the

graph for each entry in the Hash. The second parameter of the graph’s

data() method is an Array of actual values. In this case, we’re tracking

only one value for each row, but we still need to pass an Array, so we

pass a single-value Array containing the number of lines of code for this

directory.

http://books.pragprog.com/titles/fr_rr/errata/add?pdf_page=47

13. MAKE PRETTY GRAPHS 48

Finally, to avoid having to write a file to the file system, we use the

Rails built-in send_data() method to stream the raw image data to the

browser.

What if we wanted to convert this graph to a bar chart? Simple! Just

change the line that reads Gruff::Pie to read Gruff::Bar. That’s it! The

same is true of the other Gruff-included graph types, though there are

some, such as Line and Area, that wouldn’t make sense to use with our

two-dimensional data set.

Once you have the basics down (and ImageMagick installed properly!),

Gruff is an easy-to-use, consistent graphing library. The interface is

basically the same throughout the various types of graphs, making it

really easy to explore and experiment with.

http://books.pragprog.com/titles/fr_rr/errata/add?pdf_page=48

Part II

Database Recipes

49
www.allitebooks.com

http://www.allitebooks.org

Recipe 14

Rails without a Database

Problem

“Opinionated software” as it is, Rails assumes you want to develop with

a database. This is usually the case, which is the reason the assump-

tion. But what if you’re developing an application with a file-based back

end? Or perhaps you’re simply front-ending an external service-based

API. Rails is a little less friendly to you in this case—particularly when

testing your application.

Solution

By default, Rails assumes that you want to connect to and initialize a

database whenever you run your tests. This means that if you don’t

have a database, testing is difficult to do. Of course, you could just

create a database for nothing, but that would mean you’d have extra

infrastructure to support for no reason. A little hacking on a generated

Rails application will get it into testable shape without a database.

To keep things simple and repeatable, we’ll start with a fresh appli-

cation. You’ll be able to easily apply what we do here to your own

application. Let’s generate an application now. You can call it whatever

you like. Mine is named DatabaselessApplication.

Next we’ll create a simple class in lib for which to write some tests. Let’s

be really simple and create a class called Adder that adds numbers

together:

Download DatabaselessApplication/lib/adder.rb

class Adder

def initialize(first, second)

@first = first

@second = second

end

def sum

@first + @second

end

end

Now we’ll create a simple test case for it in test/unit/adder_test.rb:

http://media.pragprog.com/titles/fr_rr/code/DatabaselessApplication/lib/adder.rb

14. RAILS WITHOUT A DATABASE 51

Download DatabaselessApplication/test/unit/adder_test.rb

require File.join(File.dirname(__FILE__), "..", "test_helper")

require 'adder'

class AdderTest < Test::Unit::TestCase

def test_simple_addition

assert_equal(4, Adder.new(3,1).sum)

end

end

Let’s try to run the test:

chad> rake test_units

(in /Users/chad/src/FR_RR/Book/code/DatabaselessApplication)

rake aborted!

#42000Unknown database 'databaselessapplication_development'

It seems that the Rails test_units() Rake task does some database initial-

ization. In fact, rake -P confirms this:7

chad> rake -P |tail

prepare_test_database

rake stats

rake test_functional

prepare_test_database

rake test_plugins

environment

rake test_units

prepare_test_database

rake unfreeze_rails

rake update_javascripts

Sure enough, test_units() depends on the prepare_test_database() task.

What if we tried to run the tests directly, not using our Rake task?

chad> ruby test/unit/adder_test.rb

Loaded suite test/unit/adder_test

Started

EE

Finished in 0.052262 seconds.

1) Error:

test_simple_addition(AdderTest):

Mysql::Error: #42000Unknown database 'databaselessapplication_test'

(abbreviated)

7Note that a significant upgrade of Rake was released during the development of

this book. Rake now supports the ability to place tasks in a namespace. You may

find that the task names displayed here are syntactically different. For example, the

prepare_test_database task has been renamed to db:test:prepare.

http://media.pragprog.com/titles/fr_rr/code/DatabaselessApplication/test/unit/adder_test.rb
http://books.pragprog.com/titles/fr_rr/errata/add?pdf_page=51

14. RAILS WITHOUT A DATABASE 52

Some digging shows that somewhere in the chain of having required

test_helper.rb, we inherited the database-centric setup() and teardown()

methods. We could just use require "test/unit" manually right here in the

test, but then we’d have to replicate this in every test we create. We

would also find that this wouldn’t initialize the Rails environment as

necessary. So instead, we’ll modify test_helper.rb itself.

Specifically, test_helper.rb’s inclusion of test_help.rb is the source of the

problem. So instead of the require() call to test_help.rb, we’ll just cherry-

pick what we want from it. And since we’re removing the fixture-related

definitions, we’ll remove all of the generated fixture-related code as well.

Here’s our new test_helper.rb:

Download DatabaselessApplication/test/test_helper.rb

ENV["RAILS_ENV"] = "test"

require File.expand_path(File.dirname(__FILE__) + "/../config/environment")

require 'application'

require 'test/unit'

require 'action_controller/test_process'

require 'action_web_service/test_invoke'

require 'breakpoint'

If you don’t plan to use ActionWebService, it’s safe to remove the line

that requires action_web_service/test_invoke.

Running our test as we did before now passes!

chad> ruby test/unit/adder_test.rb

Loaded suite test/unit/adder_test

Started

.

Finished in 0.002703 seconds.

1 tests, 1 assertions, 0 failures, 0 errors

Now that we have a unit test working, let’s try a functional test. We’ll

first need to generate a controller (and the related tests):

chad> ruby script/generate controller MyController

exists app/controllers/

exists app/helpers/

create app/views/my_controller

create test/functional/

create app/controllers/my_controller_controller.rb

create test/functional/my_controller_controller_test.rb

create app/helpers/my_controller_helper.rb

http://media.pragprog.com/titles/fr_rr/code/DatabaselessApplication/test/test_helper.rb
http://books.pragprog.com/titles/fr_rr/errata/add?pdf_page=52

14. RAILS WITHOUT A DATABASE 53

Let’s just try to run this test as is. Maybe it’ll work:

chad> ruby test/functional/my_controller_controller_test.rb

Loaded suite test/functional/my_controller_controller_test

Started

.

Finished in 0.002624 seconds.

1 tests, 1 assertions, 0 failures, 0 errors

Well, that was easy, wasn’t it? All that’s left is to get these tests work-

ing with Rake. Having to manually invoke our test files one at a time

is a real step backward from the default Rails way of testing. The Rails

built-in testing tasks work really well, so we’d rather not lose any func-

tionality as we implement our own tasks. We also don’t want to have to

copy and paste their code into our own Rake tasks. If we did that, we

wouldn’t receive the benefits of bug fixes and upgrades to the built-in

tasks. If only the built-in tasks didn’t have that prepare_test_database()

prerequisite!

Fortunately, with the way Rails loads user-defined Rake tasks, we

aren’t limited to simply defining our own new tasks. We can also

use drop-in Rakefiles to modify the behavior of the built-in Rake tasks

before they are executed. The three tasks we’re specifically interested

in are test_units(), test_functional(), and recent() (a really handy task that

runs only those tests that have recently changed). If we create the fol-

lowing file in lib/tasks/clear_database_prerequisites.rake, it will do the trick

for us:

Download DatabaselessApplication/lib/tasks/clear_database_prerequisites.rake

[:test_units, :test_functional, :recent].each do |name|

Rake::Task[name].prerequisites.clear

end

Rake 0.7.0 introduced a slight incompatibility in its API. If you’re using

a Rake version prior to 0.7.0, you’ll need this instead:

Download DatabaselessApplication/lib/tasks/clear_database_prerequisites.rake

[:test_units, :test_functional, :recent].each do |name|

Rake::Task.lookup(name).prerequisites.clear

end

This single line looks up each Task using Rake’s API and clears the Task’s

dependencies. With this file installed, we can now successfully run any

of the three built-in testing tasks without a database!

http://media.pragprog.com/titles/fr_rr/code/DatabaselessApplication/lib/tasks/clear_database_prerequisites.rake
http://media.pragprog.com/titles/fr_rr/code/DatabaselessApplication/lib/tasks/clear_database_prerequisites.rake
http://books.pragprog.com/titles/fr_rr/errata/add?pdf_page=53

14. RAILS WITHOUT A DATABASE 54

Discussion

Though it’s not necessary to get our application running without a

database, we can save memory and improve performance by controlling

which Rails frameworks get loaded when our applications initialize. In

a freshly generated Rails 1.0 application, the file config/environment.rb

contains a section that looks like the following:

Skip frameworks you're not going to use

config.frameworks -= [:action_web_service, :action_mailer]

If we uncomment this line, we can specify any of the frameworks that

we do not plan on using. For this recipe, it would make sense to add

:active_record to this list.

http://books.pragprog.com/titles/fr_rr/errata/add?pdf_page=54

Recipe 15

Connecting to Multiple

Databases

Credit

Thanks to Dave Thomas for the real-world problem and the inspiration

for this solution.

Problem

The simple default Rails convention of connecting to one database per

application is suitable most of the time. That’s why it was made so

easy to do. The task you most often want to do should be easy. The

problem, though, is that sometimes it’s so easy that you don’t know

how it works. Rails is full of magic, and database connectivity is a

particularly magical area of the framework.

By default, on initialization a Rails application discovers which environ-

ment it’s running under (development, test, or production) and finds a

database configuration in config/database.yml that is named for the cur-

rent environment. Here’s a simple sample:

Download ConnectingToMultipleDatabases/config/typical-database.yml

development:

adapter: mysql

database: ConnectingToMultipleDatabases_development

username: root

password:

socket: /tmp/mysql.sock

test:

adapter: mysql

database: ConnectingToMultipleDatabases_test

username: root

password:

socket: /tmp/mysql.sock

production:

adapter: mysql

database: ConnectingToMultipleDatabases_production

username: root

password:

socket: /tmp/mysql.sock

http://media.pragprog.com/titles/fr_rr/code/ConnectingToMultipleDatabases/config/typical-database.yml

15. CONNECTING TO MULTIPLE DATABASES 56

If you’ve done any database work with Rails, you’ve already seen (and

probably configured) a file that looks like this. The naming conventions

make it quite obvious what goes where, so you may find yourself blindly

editing this file and achieving the desired effect.

But what if you need to step outside the norm and connect to multiple

databases? What if, for example, you need to connect to a commer-

cial application’s tables to integrate your nifty new Web 2.0–compliant

application with a legacy tool that your company has relied on for

years? How do you configure and create those connections?

Solution

To understand how to connect to multiple databases from your Rails

application, the best place to start is to understand how the default

connections are made. How does an application go from a YAML con-

figuration file to a database connection? How does an Active Record

model know which database to use?

When a Rails application boots, it loads its config/environment.rb file.

This file invokes the Rails Initializer. The Initializer has the big job of mak-

ing sure all the components of Rails are properly set up and glued

together. One of its jobs is to initialize database connections.

With the default Rails configuration, the Initializer then calls the method

ActiveRecord::Base.establish_connection(). If you call this method with no

arguments, it will check the value of the RAILS_ENV constant and will

look that value up in the loaded config/database.yml. The default value

for RAILS_ENV is development. So, by default, if you start a Rails appli-

cation, it will look up the database configuration section named devel-

opment in its config/database.yml file and set up a connection to that

database.

Note that an actual connection has not yet been established. Active

Record doesn’t actually make the connection until it needs it, which

happens on the first reference to the class’s connection() method. So if

you’re following along and watching open database connections, don’t

be surprised if you don’t see an actual connection made immediately

after your application boots.

Having set up a connection to a database solves only part of the puz-

zle. That connection still has to be referenced by the model classes that

need it. Things get interesting here. When the default connections are

made by the Initializer, they are made directly from the ActiveRecord::Base

http://books.pragprog.com/titles/fr_rr/errata/add?pdf_page=56

15. CONNECTING TO MULTIPLE DATABASES 57

class, which is the superclass of all Active Record models. Because

the call to establish_connection() was made on ActiveRecord::Base, the

connection is associated with the ActiveRecord::Base class and is made

available to all of its child classes (your application-specific) models.

So, in the default case, all your models get access to this default con-

nection. But, ActiveRecord::Base. If you make a connection from one

of your model classes (by calling establish_connection()), that connection

will be available from that class and any of its children but not from its

superclasses, including ActiveRecord::Base.

The behavior of a model when asked for its connection is to start with

the exact class the request is made from and work its way up the inher-

itance hierarchy until it finds a connection. This is a key point in work-

ing with multiple databases.

Now that we know how Active Record connections work, let’s put our

knowledge into action. We’ll contrive a couple of example databases

with which to demonstrate. The following is our config/database.yml

file. We have two databases. One is labeled as development and will

be our default database. The other is called products, simulating the

hypothetical scenario of having an existing, external product database

for a new application.

Download ConnectingToMultipleDatabases/config/database.yml

development:

adapter: mysql

database: myrailsdatabase_development

username: root

password:

socket: /tmp/mysql.sock

products:

adapter: mysql

database: products

username: root

password:

socket: /tmp/mysql.sock

We’ll also create some tables in these databases so we can hook them

up to Active Record models. For our default Rails database, we’ll create

a migration defining tables for users and shopping carts.

http://media.pragprog.com/titles/fr_rr/code/ConnectingToMultipleDatabases/config/database.yml
http://books.pragprog.com/titles/fr_rr/errata/add?pdf_page=57

15. CONNECTING TO MULTIPLE DATABASES 58

Download ConnectingToMultipleDatabases/db/migrate/001_add_tables_for_users_and_carts.rb

class AddTablesForUsersAndCarts < ActiveRecord::Migration

def self.up

create_table :users do |t|

t.column :name, :string

t.column :email, :string

end

create_table :carts do |t|

t.column :user_id, :integer

end

create_table :carts_products, :id => false do |t|

t.column :cart_id, :integer

t.column :product_id, :integer

end

end

def self.down

drop_table :users

drop_table :carts

drop_table :carts_products

end

end

In a typical scenario like this, the second database would be one that

already exists and that you wouldn’t want to (or be able to) control

via Active Record migrations. As a result, Active Record’s migrations

feature wasn’t designed to manage multiple databases. That’s OK. If

you have that level of control over your databases, you’re better off

putting them all together anyway. For this example, we’ll assume that

the products database already has a table called products, with a varchar

field for the product name and a float for the price. For those following

along, the following simple DDL can be used to create this table on a

MySQL database:

Download ConnectingToMultipleDatabases/db/products.sql

DROP TABLE IF EXISTS ‘products‘;

CREATE TABLE ‘products‘ (

‘id‘ int(11) NOT NULL auto_increment,

‘name‘ varchar(255) default NULL,

‘price‘ float default NULL,

PRIMARY KEY (‘id‘)

) ENGINE=InnoDB DEFAULT CHARSET=latin1;

Now that we have our databases set up, we’ll generate models for User,

Cart, and Product. The User model can have an associated Cart, which

can have multiple Products in it. The User class is standard Active

Record fare:

http://media.pragprog.com/titles/fr_rr/code/ConnectingToMultipleDatabases/db/migrate/001_add_tables_for_users_and_carts.rb
http://media.pragprog.com/titles/fr_rr/code/ConnectingToMultipleDatabases/db/products.sql
http://books.pragprog.com/titles/fr_rr/errata/add?pdf_page=58

15. CONNECTING TO MULTIPLE DATABASES 59

Download ConnectingToMultipleDatabases/app/models/user.rb

class User < ActiveRecord::Base

has_one :cart

end

Things start to get a little tricky with the Cart class. It associates with

User in the usual way. We’d like to use has_and_belongs_to_many() to link

to :products but we can’t, because our products table is not in the same

database. The has_and_belongs_to_many() method will result in a table

join, which we can’t do across database connections. Here’s the Cart

without any association with the Product class:

Download ConnectingToMultipleDatabases/app/models/cart.rb

class Cart < ActiveRecord::Base

end

Before we deal with hooking Carts to Products, let’s look at our Product

model:

Download ConnectingToMultipleDatabases/app/models/product.rb

class Product < ActiveRecord::Base

establish_connection :products

end

As we learned earlier, by Active Record establishes connections in a

hierarchical fashion. When attempting to make a database connection,

Active Record models looks for the connection associated with either

themselves or the nearest superclass. So in the case of the Product

class, we’ve set the connection directly in that class, meaning that when

we do database operations with the Product model, they will use the

connection to our configured products database.

If we were to load the Rails console now, we could see that we are

indeed connecting to different databases depending on the model we’re

referencing:

chad> ruby script/console

>> Cart.connection.instance_eval {@config[:database]}

=> "myrailsdatabase_development"

>> Product.connection.instance_eval {@config[:database]}

=> "products"

Great! Now if we were to call, say, Product.find(), we would be performing

our select against the products database. So how do we associate a Cart

with Products? We have many different ways to go about doing this, but

I tend to favor the laziest solution.

www.allitebooks.com

http://media.pragprog.com/titles/fr_rr/code/ConnectingToMultipleDatabases/app/models/user.rb
http://media.pragprog.com/titles/fr_rr/code/ConnectingToMultipleDatabases/app/models/cart.rb
http://media.pragprog.com/titles/fr_rr/code/ConnectingToMultipleDatabases/app/models/product.rb
http://books.pragprog.com/titles/fr_rr/errata/add?pdf_page=59
http://www.allitebooks.org

15. CONNECTING TO MULTIPLE DATABASES 60

To make the connection, we’ll create a mapping table in our applica-

tion’s default database (the same one the cart table exists in):

Download ConnectingToMultipleDatabases/db/migrate/002_add_product_reference_table.rb

class AddProductReferenceTable < ActiveRecord::Migration

def self.up

create_table :product_references do |t|

t.column :product_id, :integer

end

end

def self.down

drop_table :product_references

end

end

This table’s sole purpose is to provide a local reference to a product. The

product’s id will be stored in the product reference’s product_id field. We

then create a model for this new table:

Download ConnectingToMultipleDatabases/app/models/product_reference.rb

class ProductReference < ActiveRecord::Base

belongs_to :product

has_and_belongs_to_many :carts,

:join_table => "carts_products",

:foreign_key => "product_id"

def name

product.name

end

def price

product.price

end

end

We’ve created the has_and_belongs_to_many() relationship between our

new ProductReference class and the Cart class, and we’ve associated

each ProductReference with a Product. Since our Product class is sim-

ple, we have also manually delegated calls to name() and price() to the

Product, so for read-only purposes, the product reference is functionally

equivalent to a Product.

All that’s left is to associate the Cart with its products:

Download ConnectingToMultipleDatabases/app/models/cart.rb

class Cart < ActiveRecord::Base

has_and_belongs_to_many :products,

:class_name => "ProductReference",

:join_table => "carts_products",

:association_foreign_key => "product_id"

end

http://media.pragprog.com/titles/fr_rr/code/ConnectingToMultipleDatabases/db/migrate/002_add_product_reference_table.rb
http://media.pragprog.com/titles/fr_rr/code/ConnectingToMultipleDatabases/app/models/product_reference.rb
http://media.pragprog.com/titles/fr_rr/code/ConnectingToMultipleDatabases/app/models/cart.rb
http://books.pragprog.com/titles/fr_rr/errata/add?pdf_page=60

15. CONNECTING TO MULTIPLE DATABASES 61

We can now say things such as User.find(1).cart.products.first.name and get

the desired data. This solution would, of course, require the necessary

rows to be created in the product_references table to match any products

we have in the alternate database. This could be done either in batch

or automatically at runtime.

Now what if you would like to connect to multiple tables in the same

external database? Based on what we’ve done so far, You’d think you

could add calls to establish_connection() in the matching models for each

of the new tables. But, what you might not expect is that this will result

in a separate connection for every model that references your external

database. Given a few tables and a production deployment that load

balances across several Rails processes, this can add up pretty quickly.

Thinking back to what we learned about how database connections are

selected based on class hierarchy, the solution to this problem is to

define a parent class for all the tables that are housed on the same

server and then inherit from that parent class for those external mod-

els. For example, if we wanted to reference a table called tax_conversions

on the products database, we could create a model called External as

follows:8

Download ConnectingToMultipleDatabases/app/models/external.rb

class External < ActiveRecord::Base

self.abstract_class = true

establish_connection :products

end

Then, our Product and TaxConversion models could inherit from it like so:

Download ConnectingToMultipleDatabases/app/models/product.rb

class Product < External

end

Download ConnectingToMultipleDatabases/app/models/tax_conversion.rb

class TaxConversion < External

end

8At the time of this writing, the Oracle connection adapters don’t seem to be very

well behaved when calling establish_connection(). The code as presented here may cause

a new connection to be opened with every subclass of External. To work around this

limitation, you can wrap the call to establish_connection() with a conditional that checks

the connected?() property for the model to determine whether a connection is already

open.

http://media.pragprog.com/titles/fr_rr/code/ConnectingToMultipleDatabases/app/models/external.rb
http://media.pragprog.com/titles/fr_rr/code/ConnectingToMultipleDatabases/app/models/product.rb
http://media.pragprog.com/titles/fr_rr/code/ConnectingToMultipleDatabases/app/models/tax_conversion.rb
http://books.pragprog.com/titles/fr_rr/errata/add?pdf_page=61

15. CONNECTING TO MULTIPLE DATABASES 62

Note that we’ve moved the establish_connection() call from Product to Exter-

nal. All subclasses of External will use the same connection. We also set

abstract_class to true to tell Active Record that the External class does not

have an underlying database table.

You won’t be able to instantiate an External, of course, since there is no

matching database table. If there is a table in your external database

called externals, choose a different name for your class to be on the safe

side.

Discussion

Though it’s possible to configure multiple database connections, it’s

preferable to do things the Rails Way. If you can, try to eventually

migrate all of your data to the same place. And, given the choice, for

new tables, always house them in the same database. There’s no sense

in making things harder than they have to be.

If you have to continue to use an external database, you might con-

sider migrating your data via a batch process. Though batch processes

offer their own set of management challenges, if your external data is

updated infrequently, batch data migration can make your Rails code

cleaner and dramatically improve database performance. Data housed

in the same database can often be retrieved via single SQL queries,

whereas externally housed data will always require a separate query

for retrieval.

http://books.pragprog.com/titles/fr_rr/errata/add?pdf_page=62

Recipe 16

Integrating with Legacy

Databases

Credit

Thanks to reader Frederick Ros for ideas he contributed to this recipe.

Problem

You need to connect to a database that doesn’t follow the Rails con-

ventions. You may have an old legacy system you’re replacing piece by

piece. Or perhaps you need to integrate with an external, non-Rails

application that follows its own naming conventions.

One of the Rails mantras is “convention over configuration.” It’s a great

idea. But the problem with conventions is there can be more than one.

In this recipe, you’ll learn how to not only buck the Rails conventions

but also how to snap your model onto another convention using the

Wordpress9 database schema.

Solution

Let’s start by looking at the definition of one of Wordpress’s more rep-

resentative tables. Here’s the Wordpress comments table:

CREATE TABLE ‘wp_comments‘ (

‘comment_id‘ bigint(20) unsigned NOT NULL auto_increment,

‘comment_post_id‘ int(11) NOT NULL default '0',

‘comment_author‘ tinytext NOT NULL,

‘comment_author_email‘ varchar(100) NOT NULL default '',

‘comment_author_url‘ varchar(200) NOT NULL default '',

‘comment_author_IP‘ varchar(100) NOT NULL default '',

‘comment_date‘ datetime NOT NULL default '0000-00-00 00:00:00',

‘comment_date_gmt‘ datetime NOT NULL default '0000-00-00 00:00:00',

‘comment_content‘ text NOT NULL,

‘comment_karma‘ int(11) NOT NULL default '0',

‘comment_approved‘ enum('0','1','spam') NOT NULL default '1',

‘comment_agent‘ varchar(255) NOT NULL default '',

‘comment_type‘ varchar(20) NOT NULL default '',

9Wordpress is a popular, open source weblog engine written in PHP and available

from http://www.wordpress.org.

http://www.wordpress.org

16. INTEGRATING WITH LEGACY DATABASES 64

‘comment_parent‘ int(11) NOT NULL default '0',

‘user_id‘ int(11) NOT NULL default '0',

PRIMARY KEY (‘comment_id‘),

KEY ‘comment_approved‘ (‘comment_approved‘),

KEY ‘comment_post_id‘ (‘comment_post_id‘)

)

The first step in hooking Active Record into this table is to generate a

model for it. By Rails conventions, the model name for this table would

have to be WpComment. That’s ugly, so we’ll generate a model called

Comment and deal with the incompatibility.

Active Record has a configuration option to set the table name prefix

for models. We can simply call ActiveRecord::Base.table_name_prefix=() to

set it. Since we want that setting to affect our entire application, we’ll

put it at the bottom of config/environment.rb:

Download LegacyDatabases/config/environment.rb

ActiveRecord::Base.table_name_prefix = "wp_"

There is also a _suffix form of this attribute for setting the suffix of table

names.

At this point, we can start the console and query the wp_comments table

with our model. Note that if the table names were really unusual, you

could always call set_table_name() in your model’s definition, passing in

the name of the table.

>> spam = Comment.find(:all).last

=> #<Comment:0x2524830 @attributes={"comment_date_gmt"=>"2006-01-20 18:50:05",

"comment_approved"=>"0", "comment_parent"=>"0", "comment_content"=>

"<a href=\"http://some-poker-spam.blogeasy.com\" ...

"comment_author"=>"texas holdem",

..."comment_id"=>"340"}>

>> spam.destroy

ActiveRecord::StatementInvalid: Mysql::Error:

Unknown column 'id' in 'where clause':

DELETE FROM wp_comments

WHERE id = NULL

Oops. No id field.

>> Comment.column_names.grep(/id/i)

=> ["comment_id", "comment_post_id", "user_id"]

The key is called comment_id. Scanning the other Wordpress tables,

it looks like this is a standard convention used throughout (most of)

the product. Fortunately, it’s also used widely enough throughout the

industry that Rails provides an easy way to accommodate it. Adding

http://media.pragprog.com/titles/fr_rr/code/LegacyDatabases/config/environment.rb
http://books.pragprog.com/titles/fr_rr/errata/add?pdf_page=64

16. INTEGRATING WITH LEGACY DATABASES 65

the following to the end of config/environment.rb will cause Active Record

to work correctly with this convention:

Download LegacyDatabases/config/environment.rb

ActiveRecord::Base.primary_key_prefix_type = :table_name_with_underscore

If we were working with a schema that used a convention such as com-

mentid, we could have set this parameter to :table_name.

Now we can find and destroy records by their primary keys:

<![[CDATA

>> Comment.find(441)

=> #<Comment:0x221a504 @attributes={"comment_date_gmt"=>"2006-02-08 13:24:35",

..."comment_id"=>"441"}>

>> Comment.destroy(441)

=> #<Comment:0x2218010 @attributes={"comment_date_gmt"=>"2006-02-08 13:24:35",

..."comment_id"=>"441"}>

]]>

Now what if the table had been called wp_comment and all the other

tables used singular forms of the name as well? Simply add the follow-

ing to config/environment.rb, and you’ll be in business:

ActiveRecord::Base.pluralize_table_names = false

Finally, if your schema were to use an arbitrary (but repeatable) pri-

mary key field name throughout, such as identifier, much in the same

way Rails uses id, you could set the primary key name using the follow-

ing:

ActiveRecord::Base.set_primary_key = "identifier"

Discussion

Though Rails allows some configuration to adapt to schemas outside

of its usual convention, the path of least resistance (and greatest joy!)

with Rails is to stick to its conventions when you can. Use these tips

if you have a legacy database to which you must adapt. But if you’re

creating a new application or migrating an old one, do yourself a favor

and just stick to the defaults. You’ll save a lot of time and have a lot

more fun.

http://media.pragprog.com/titles/fr_rr/code/LegacyDatabases/config/environment.rb
http://books.pragprog.com/titles/fr_rr/errata/add?pdf_page=65

Recipe 17

DRY Up Your Database

Configuration

Problem

DRY. It’s Pragmatic Programmer–speak for “Don’t Repeat Yourself.”10

Duplication is a waste of your time and a source of bugs and rework.

As programmers, we spend a lot of time learning how to design systems

that eliminate code duplication. How do you apply this same rule when

you’re dealing with a configuration file, such as the Rails database.yml?

Many applications will share host or login information across multiple

databases. How do you remove this duplication?

Solution

The database.yml file is so small and simple (by default) that it’s easy

to forget that it is written in a pretty robust markup language: YAML.

YAML has a little-used feature called merge keys. A merge key allows

you to literally merge one Hash into another.

Guess what the database.yml configuration entries are. That’s right:

they’re hashes. This means you can use YAML merge keys to convert a

duplication-ridden file like this one:

Download DRYUpYourDatabaseConfig/config/database.yml.yuck

development:

adapter: mysql

database: DRYUpYourDatabaseConfig_development

username: root

password:

socket: /tmp/mysql.sock

test:

adapter: mysql

database: DRYUpYourDatabaseConfig_test

username: root

password:

socket: /tmp/mysql.sock

10The Pragmatic Programmer [HT00]

http://media.pragprog.com/titles/fr_rr/code/DRYUpYourDatabaseConfig/config/database.yml.yuck

17. DRY UP YOUR DATABASE CONFIGURATION 67

production:

adapter: mysql

database: DRYUpYourDatabaseConfig_production

username: root

password:

socket: /tmp/mysql.sock

into something DRY and respectable like this:

Download DRYUpYourDatabaseConfig/config/database.yml

defaults: &defaults

adapter: mysql

username: root

password: secret

socket: /tmp/mysql.sock

development:

database: DRYUpYourDatabaseConfig_development

<<: *defaults

test:

database: DRYUpYourDatabaseConfig_test

<<: *defaults

production:

database: DRYUpYourDatabaseConfig_production

<<: *defaults

They’re functionally equivalent, but the second one is much less likely

to cause an embarrassing head-smacking moment down the road.

Discussion

We didn’t go into detail about how merge keys work. YAML is a rich lan-

guage with many features you might want to take advantage of in your

database configuration or your fixtures. Make an afternoon project out

of reading through the YAML specification, which is freely available at

http://yaml.org/spec/.

http://media.pragprog.com/titles/fr_rr/code/DRYUpYourDatabaseConfig/config/database.yml
http://yaml.org/spec/
http://books.pragprog.com/titles/fr_rr/errata/add?pdf_page=67

Recipe 18

Self-referential

Many-to-Many Relationships

Credit

Thanks to Luke Redpath for the ideas that led to this recipe.

Problem

You have a model that needs a many-to-many relationship with itself.

For example, you might want to keep track of a bunch of people and

who their friends are. In Active Record–speak, a Person has and belongs

to many friends, who are also people. But how do you represent a

has_and_belongs_to_many relationship when both ends of the relation-

ship are of the same class?

Solution

Let’s start by setting up a simple data model representing people and

their friends. To keep things simple, we’ll give people the bare mini-

mum of information in our system. The following is the Active Record

migration to create our data model:

class AddPeopleAndTheirFriendsRelationship < ActiveRecord::Migration

def self.up

create_table :people do |t|

t.column "name", :string

end

create_table :friends_people, :id => false do |t|

t.column "person_id", :integer

t.column "friend_id", :integer

end

end

def self.down

drop_table :people

drop_table :friends_people

end

end

18. SELF-REFERENTIAL MANY-TO-MANY RELATIONSHIPS 69

We now have a table structure that is capable of storing a dead-simple

Person and a link between people and friends. This looks like a typical

has_and_belongs_to_many relationship, given the existence of both a Per-

son model and a Friend model. Since we want to have Person objects on

both ends of the relationship, we’ll have to get more explicit than usual

as we specify the has_and_belongs_to_many relationship. The following

is the Person code.

class Person < ActiveRecord::Base

has_and_belongs_to_many :friends,

:class_name => "Person",

:join_table => "friends_people",

:association_foreign_key => "friend_id",

:foreign_key => "person_id"

end

This declaration creates an attribute on Person called friends. Since we’re

bucking the usual Rails naming conventions, we have to specify the

class name of the model that we are relating to—in this case, the class

Person. We have to specify :join_table, because the default naming con-

vention for a table relating people and people would be people_people.

We then set :association_foreign_key, which will store the IDs for our peo-

ple’s friends and :foreign_key, which will hold the ID of the person who

has the friends.

Loading the console, we can see that this works as expected:

chad> ruby script/console

Loading development environment.

>> person1 = Person.create(:name => "Chad")

=> #<Person:0x233db98 @errors=#<ActiveRecord::Errors:0x2312ee8 @errors={},

@base=#<Person:0x233db98 ...>>, @attributes={"name"=>"Chad", "id"=>7},

@new_record_before_save=false, @new_record=false>

>> person2 = Person.create(:name => "Erik")

=> #<Person:0x230e0f0 @errors=#<ActiveRecord::Errors:0x230d5ec @errors={},

@base=#<Person:0x230e0f0 ...>>, @attributes={"name"=>"Erik", "id"=>8},

@new_record_before_save=false, @new_record=false>

>> person1.friends << person2

=> [#<Person:0x230e0f0 @errors=#<ActiveRecord::Errors:0x230d5ec @errors={},

@base=#<Person:0x230e0f0 ...>>, @attributes={"name"=>"Erik", "id"=>8},

@new_record_before_save=false, @new_record=false>]

Great! But now that I think of it, as an idealist, I like to think that if I

count someone as being my friend, they reciprocate the feeling....

>> person2.friends

=> []

That makes me sad, though I’m convinced that the problem is not of

human nature but just a limitation of Active Record’s naming conven-

http://books.pragprog.com/titles/fr_rr/errata/add?pdf_page=69

18. SELF-REFERENTIAL MANY-TO-MANY RELATIONSHIPS 70

tions. Because we need one key for the possessor and another key for

the possessed party of a has_and_belongs_to_many relationship, there’s

no way for the relationship to be fully reciprocal on naming conven-

tion alone. Thankfully, as of Rails 0.13.1, Active Record gives us the

ability to make the world a friendlier place by introducing association

callbacks.

A quick change to our Person model gives us the following:

class Person < ActiveRecord::Base

has_and_belongs_to_many :friends,

:class_name => "Person",

:join_table => "friends_people",

:association_foreign_key => "friend_id",

:foreign_key => "person_id",

:after_add => :be_friendly_to_friend,

:after_remove => :no_more_mr_nice_guy

def be_friendly_to_friend(friend)

friend.friends << self unless friend.friends.include?(self)

end

def no_more_mr_nice_guy(friend)

friend.friends.delete(self) rescue nil

end

end

You’ll notice two new lines at the end of our has_and_belongs_to_many

declaration. The :after_add option expects either a Proc or the symbol

for a method to call, either of which will be executed after an object

is added to this association. Not surprisingly, the :after_remove option

takes a similar set of arguments, but to be called when an object is

removed from the association. So, now when we call the following code:

person.friends << another_person

Person’s be_friendly_to_friend() method will be called, with another_person

passed in as a argument. Our code will now encourage—OK, force—

another_person to accept person as his friend.

http://books.pragprog.com/titles/fr_rr/errata/add?pdf_page=70

Recipe 19

Tagging Your Content

Problem

By now, it’s a fairly safe bet that you (and many of the users of your soft-

ware) have heard of this thing called social networking. It was recently

all the rage. Cutting edge. A delight to use and a differentiator for

applications that used it.

Now, though, it’s expected that web applications will employ some kind

of social networking effect where relevant. If you’re looking for books,

you expect the online bookstore to leverage the shopping behavior of the

masses to help you find books you might like. Or music. Or whatever

you might be trying to do or explore. And, though it’s possible to hire

computer scientists to develop algorithms for predicting what each user

is going to be looking for, it’s a lot cheaper and easier to let your users

do the work.

So after the dust has settled, the heart of what’s left in the “social”

applications arena is tagging. You put simple, textual, nonhierarchical

identifiers on items in an application, and the cumulative effect of all

the application’s users doing this creates a self-organizing system. It’s

an idea made popular by sites like del.icio.us and Flickr that has now

taken over the Web. If you’re lucky, tags on your site will help users

find new favorite things they didn’t even know they liked.

So, how do we do this in Rails?

Ingredients

• David Heinemeier Hansson’s acts_as_taggable plugin, installable

from the root of your Rails application with the following:

chad> ruby script/plugin install acts_as_taggable

+ ./acts_as_taggable/init.rb

+ ./acts_as_taggable/lib/README

+ ./acts_as_taggable/lib/acts_as_taggable.rb

+ ./acts_as_taggable/lib/tag.rb

+ ./acts_as_taggable/lib/tagging.rb

+ ./acts_as_taggable/test/acts_as_taggable_test.rb

19. TAGGING YOUR CONTENT 72

• Rails 1.1 or higher. acts_as_taggable() relies on polymorphic asso-

ciations, a feature added after Rails 1.0 (see Recipe 23, Polymor-

phic Associations—has_many :whatevers, on page 94).

Solution

Assuming you have already installed the acts_as_taggable plugin, the

first step in adding tagging to your application is to set up the database

to hold the tags and their associations with your models. The migration

for the database should look something like the following:

Download Tagging/db/migrate/001_add_database_structure_for_tagging.rb

class AddDatabaseStructureForTagging < ActiveRecord::Migration

def self.up

create_table :taggings do |t|

t.column :taggable_id, :integer

t.column :tag_id, :integer

t.column :taggable_type, :string

end

create_table :tags do |t|

t.column :name, :string

end

end

def self.down

drop_table :taggings

drop_table :tags

end

end

So now we have the ability to tag something. We just need something

to tag! Let’s make a simple model to tag. In your own application, of

course, you’d already have models to tag. But for the sake of demon-

stration, let’s create a simple model for tracking contacts in an address

book application. As always, we’ll use an Active Record migration:

Download Tagging/db/migrate/002_add_contacts_table.rb

class AddContactsTable < ActiveRecord::Migration

def self.up

create_table :contacts do |t|

t.column :name, :string

t.column :address_line1, :string

t.column :address_line2, :string

t.column :city, :string

t.column :state, :string

t.column :postal_code, :string

end

end

http://media.pragprog.com/titles/fr_rr/code/Tagging/db/migrate/001_add_database_structure_for_tagging.rb
http://media.pragprog.com/titles/fr_rr/code/Tagging/db/migrate/002_add_contacts_table.rb
http://books.pragprog.com/titles/fr_rr/errata/add?pdf_page=72

19. TAGGING YOUR CONTENT 73

def self.down

drop_table :contacts

end

end

Next we’ll generate the model and make it taggable. We don’t need to

create models for the actual Tag objects, because they’re included in the

acts_as_taggable plugin.

Download Tagging/app/models/contact.rb

class Contact < ActiveRecord::Base

acts_as_taggable

end

Believe it or not, we now have taggable contacts. Let’s look in the con-

sole:

chad> ruby script/console

Loading development environment.

>> c = Contact.create(:name => "Josef K", :address_line1 => "123 Main St.",

:address_line2 => "Apt. 2", :city => "Vienna",

:state => "Colorado", :postal_code => "54321")

=> #<Contact:0x267a8f8 @new_record=false, @base=#<Contact:0x267a8f8 ...>>

>> c.tag_with("friends colorado existentialists")

=> ["friends", "colorado", "existentialists"]

Here we created an instance of Contact and used the tag_with() method

to tag it with a space-delimited list of tags. The acts_as_taggable plugin

automatically parses the list and either creates new Tag instances or

associates existing ones. The associated tags are then available via the

tags() method on the model:

>> c.tags

=> [#<Tag:0x264f450 @attributes={"name"=>"friends", "id"=>"1"}>,

#<Tag:0x264f414 @attributes={"name"=>"colorado", "id"=>"2"}>,

#<Tag:0x264f3d8 @attributes={"name"=>"existentialists", "id"=>"3"}>]

Now if we were to create a new contact and tag it with an already exist-

ing tag, we’ll see that the existing instance of the tag in the database is

reused and associated with the model:

>> c2 = Contact.create(:name => "John Barth", :address_line1 => "432 South End Rd.",

:city => "Gotham", :state => "North Carolina", :postal_code => "12345")

=> #<Contact:0x26463c8 @new_record=false, @base=#<Contact:0x26463c8 ...>>

>> c2.tag_with("friends carolina pragmatists")

=> ["friends", "carolina", "pragmatists"]

>> c2.tags

=> [#<Tag:0x2605bc0 @attributes={"name"=>"friends", "id"=>"1"}>,

#<Tag:0x2605b84 @attributes={"name"=>"carolina","id"=>"4"}>,

#<Tag:0x2605b48 @attributes={"name"=>"pragmatists", "id"=>"5"}>]

http://media.pragprog.com/titles/fr_rr/code/Tagging/app/models/contact.rb
http://books.pragprog.com/titles/fr_rr/errata/add?pdf_page=73

19. TAGGING YOUR CONTENT 74

OK. Our models are ready to be tagged! Let’s get our heads out of

the console and put the tags to use on a real web application. Most

tag-enabled applications will want to do three tasks: assign tags to an

item, view an item’s tags, and search for items by tag. We’ll start with

the easiest part: viewing an item’s tags.

The first thing we need is the ability to actually view an item, so we’ll

whip up a simple action for that. The following is the beginning of our

ContactsController class:

Download Tagging/app/controllers/contacts_controller.rb

class ContactsController < ApplicationController

def list

@contacts = Contact.find(:all)

end

This is a typical list action. We’ll get a little fancier with the view and

throw in some user-friendly Ajax effects. After all, these days tagging

without Ajax is like wearing a mink coat with an old, worn-out pair

of tennis shoes. Our contacts/list.rhtml is a simple wrapper for a partial

template that contains the real display logic for our contacts:

Download Tagging/app/views/contacts/list.rhtml

<ul id="contacts-list">

<% if @contacts.blank? %>

<li class="no-contacts">No contacts to display

<% else %>

<%= render :partial => "detail", :collection => @contacts %>

<% end %>

We use a partial template because it separates the code into smaller

more manageable chunks and and also because we’re going to use the

same partial view as the rendered response of our Ajax requests. The

template contacts/_detail.rhtml consists of two parts: the contact display

and a form for editing a contact’s tags. To support subsequent Ajax

requests, the display part is separated into another partial template,

contacts/_content.rhtml:

Download Tagging/app/views/contacts/_content.rhtml

<div class="name"><%= contact.name %>

<%=

if contact.tags.blank?

""

else

"(" + contact.tags.collect{|tag| tag.name}.join(", ") + ")"

end

http://media.pragprog.com/titles/fr_rr/code/Tagging/app/controllers/contacts_controller.rb
http://media.pragprog.com/titles/fr_rr/code/Tagging/app/views/contacts/list.rhtml
http://media.pragprog.com/titles/fr_rr/code/Tagging/app/views/contacts/_content.rhtml
http://books.pragprog.com/titles/fr_rr/errata/add?pdf_page=74

19. TAGGING YOUR CONTENT 75

%>

<%= link_to_function("Edit Tags", "Element.toggle($('#{form_id}'))") %>

</div>

<div class="address">

<%= contact.address_line1 %>

<%= contact.address_line2 %>

<%= contact.city %>, <%= contact.state %> <%= contact.postal_code %>

</div>

</div>

This is mostly typical display code. We display a contact’s tags, if any,

in parentheses next to the contact’s name. Here’s what it looks like in

the browser:

Each contact gets its own separate form for editing the contact’s tags.

This form starts out hidden and is displayed via the Element.toggle()()

JavaScript call when a user clicks the “Edit Tags” link. Completing

the contact display implementation, here’s the full contacts/_detail.rhtml

code that creates the form for editing a contact’s tags and references

the display partial:

Don’t forget to include the necessary JavaScript files for the Ajax effects to

work. Somewhere in the <head> section of your view, you’ll need this:

<%= javascript_include_tag :defaults %>

Download Tagging/app/views/contacts/_detail.rhtml

<li class="contact-item">

<% form_id = "tag-form-for-#{detail.id}" %>

<%= form_remote_tag :url => {:action => "tag", :id => detail},

:complete => "Element.toggle($('#{form_id}'))",

:success => visual_effect(:shake, "contact-#{detail.id}"),

:update => "contact-#{detail.id}",

:html => {:id => form_id, :style => "display:none"} %>

<%= text_field_tag "tag_list",

detail.tags.collect{|t| t.name}.join(" "),

:size => 40 %>

<%= hidden_field_tag "form_id", form_id %>

<%= submit_tag "save" %>

http://media.pragprog.com/titles/fr_rr/code/Tagging/app/views/contacts/_detail.rhtml
http://books.pragprog.com/titles/fr_rr/errata/add?pdf_page=75

19. TAGGING YOUR CONTENT 76

<%= end_form_tag %>

<div id="contact-<%=detail.id%>" class="contact-details">

<%= render :partial => "content",

:locals => {:contact => detail, :form_id => form_id} %>

</div>

We first generate an HTML ID for the form, which we use to toggle the

form’s display on and off. Then, since we want tag updates to be as

painlessly easy as possible, we create the form via form_remote_tag().

When a user submits the form, it will make an asynchronous HTTP

request in the background to the tag action of our ContactsController.

On successful completion of that request, the tag form will be toggled

closed, the contact display will be updated, and we’ll give the contact’s

display a little shake to let the user know something happened.

All that’s left to actually make tagging happen is to implement the tag

action. We already learned how to do this in our script/console session

earlier, so the implementation is easy:

Download Tagging/app/controllers/contacts_controller.rb

def tag

contact = Contact.find(params[:id])

contact.tag_with(params[:tag_list])

contact.save

render :partial => "content",

:locals => {:contact => contact, :form_id => params[:form_id]}

end

Now that we can display and edit a contact’s tags, all we lack is the

ability to search for a contact by tag. Since we already created the list()

action, it makes sense to modify it for our needs instead of creating yet

another action that displays a list. Here’s the revised version of our

action:

Download Tagging/app/controllers/contacts_controller.rb

def list

@contacts = if tag_name = params[:id]

Tag.find_by_name(tag_name).tagged

else

Contact.find(:all)

end

end

This code reads a tag name supplied in the URI and finds items tagged

with that name. So, for example, you could call the application with

the URI /contacts/list/colorado to list only those contacts tagged with

http://media.pragprog.com/titles/fr_rr/code/Tagging/app/controllers/contacts_controller.rb
http://media.pragprog.com/titles/fr_rr/code/Tagging/app/controllers/contacts_controller.rb
http://books.pragprog.com/titles/fr_rr/errata/add?pdf_page=76

19. TAGGING YOUR CONTENT 77

colorado. If no tag is supplied on the URI, it returns a list of all the

contacts in the database as before.

A nice feature of the acts_as_taggable() library is that you can use it to

tag more than one model type. For example, let’s say our little con-

tact database were to blossom into a full-blown personal information

manager and we added the ability to create both notes and calendar

appointments. Naturally, it would make sense to tag these features

along with our contacts.

Because acts_as_taggable() uses Active Record’s new polymorphic asso-

ciations feature, we can tag any model we’d like. All we need to do is

declare each model as acts_as_taggable(), and the plugin takes care of

the rest for us.

Discussion

In our schema, we haven’t yet added any database indexes. For a large

application, it would make sense to create indexes on various fields in

the supplied tables, including but not limited to the name column of

the tags table.

http://books.pragprog.com/titles/fr_rr/errata/add?pdf_page=77

Recipe 20

Versioning Your Models

Problem

Your application contains user-editable data. Sometimes users make

mistakes as they edit the data, and they’d like an “Undo” feature like

they’re used to in their spreadsheets and word processors. Sometimes

you’d just like to be able to compare two versions of a piece of data

to see what has changed. In some cases you might even have a legal

requirement to keep track of your data and its changes through time.

Ingredients

• Rick Olson’s acts_as_versioned plugin. Install with the following:

script/plugin discover

script/plugin install acts_as_versioned

Solution

The acts_as_versioned plugin allows you to easily cause a model to save

each version of its data in a special table, complete with a version iden-

tifier that can be used to list, retrieve, or roll back to previous arbitrary

versions of that data.

For demonstration, we’ll work on the model for a simple, collaborative

book-writing tool. In this application, each Book is divided into Chap-

ters, for which version history is stored. If one of the authors of a book

comes along and wipes out an important plot twist, our users will be

able to easily roll back to the previous version as well as to see a history

of the chapter’s development.

We’ll start by defining the model for our version-controlled Chapter

objects. Notice that we’re doing the model first. You’ll see why this

is important as we start defining the database tables to support the

model.

chad> ruby script/generate model Chapter

exists app/models/

exists test/unit/

exists test/fixtures/

create app/models/chapter.rb

create test/unit/chapter_test.rb

create test/fixtures/chapters.yml

20. VERSIONING YOUR MODELS 79

Now we’ll edit chapter.rb to declare that our Chapter model should be

version controlled. Because we already installed the acts_as_versioned

plugin, this is a simple one-liner.

Download ActsAsVersioned/app/models/chapter.rb

class Chapter < ActiveRecord::Base

acts_as_versioned

end

That single call to acts_as_versioned() is, in the background, defining a

bunch of filters that will stand between our code and the actual sav-

ing of our Chapter objects. Now that we have defined Chapter to be

versioned, the acts_as_versioned plugin takes care of everything else.

With our model defined, we’ll create the migration that will define the

tables to support a versioned Chapter model. (If you’re using Rails 1.1

or higher, the migration will have been created automatically when you

created the Chapter model, and will be called 001_add_chapter.rb.)

chad> ruby script/generate migration add_chapter_and_version_tables

create db/migrate

create db/migrate/001_add_chapter_and_version_tables.rb

The migration should look like the following:

Download ActsAsVersioned/db/migrate/001_add_chapter_and_version_tables.rb

class AddChapterAndVersionTables < ActiveRecord::Migration

def self.up

create_table :chapters do |t|

t.column "title", :string

t.column "body", :text

t.column "version", :integer

end

Chapter.create_versioned_table

end

def self.down

drop_table :chapters

Chapter.drop_versioned_table

end

end

Notice the call to Chapter.create_versioned_table() and its inverse, Chap-

ter.drop_versioned_table(). These special methods were added to our

model dynamically by the acts_as_versioned plugin. They define what

is essentially a copy of the table for a given model. If we hadn’t created

our model class first, we wouldn’t have been able to use these methods

in our migration file. Run rake migrate now to add these tables.

http://media.pragprog.com/titles/fr_rr/code/ActsAsVersioned/app/models/chapter.rb
http://media.pragprog.com/titles/fr_rr/code/ActsAsVersioned/db/migrate/001_add_chapter_and_version_tables.rb
http://books.pragprog.com/titles/fr_rr/errata/add?pdf_page=79

20. VERSIONING YOUR MODELS 80

Now that we have a versioned model and a database schema to support

it, let’s load up script/console and see what this thing can do.

chad> ruby script/console

>> chapter = Chapter.create(:title => "Ligeti's Legacy", :body =>

"Ligeti turned in time to see a look of terror sweep over his wife's face..")

=> #<Chapter:0x232ad68 @attributes={ "body"=>

"Ligeti turned in time to see a look of terror sweep over his wife's face..",

"title"=>"Ligeti's Legacy", "id"=>1, "version"=>1},

@changed_attributes=[], @new_record_before_save=false,

@new_record=false, =#<Chapter:0x232ad68 ...>, @errors={}>>

>> chapter.version

=> 1

>> chapter.title = "Ligeti's Legacy of Lunacy"

=> "Ligeti's Legacy of Lunacy"

>> chapter.version

=> 1

>> chapter.save

=> true

>> chapter.version

=> 2

>> chapter.body << "Ligeti didn't know what to think."

=> "Ligeti turned in time to see a look of terror sweep over

his wife's face..Ligeti didn't know what to think."

>> chapter.save

=> true

>> chapter.version

=> 3

We created a Chapter instance, and it was automatically assigned a

version of 1. Note that when we changed the title of the chapter, the

version didn’t get updated until we saved the object. Now we have a

Chapter instance with three versions. What can we do with them?

>> chapter.versions.size

=> 3

>> chapter.version

=> 3

>> chapter.find_version(1).title

=> "Ligeti's Legacy"

>> chapter.revert_to(2)

=> true

>> chapter.body

=> "Ligeti turned in time to see a look of terror sweep over his wife's face.."

>> chapter.versions.size

=> 3

>> chapter.title = "Another version's title"

=> "Another version's title"

>> chapter.save

=> true

>> chapter.version

=> 4

http://books.pragprog.com/titles/fr_rr/errata/add?pdf_page=80

20. VERSIONING YOUR MODELS 81

We can access data from previous versions and even revert the object

to a previous version. However, as we can see by the ending version

number from this session, reverting an object is itself a change that

acts_as_versioned tracks. To revert without saving a revision, we can

use the bang version of revert_to(). We’ll start a fresh Chapter object to

demonstrate:

>> chapter = Chapter.create(:title => "The Next Day",

:body => "Liget woke up with a throbbing headache...")

=> #<Chapter:0x231e4b4 @attributes={"title"=>"The Next Day",

"body"=>"Liget woke up with a throbbing headache...",

"id"=>1, "version"=>1}, @changed_attributes=[],

@base=#<Chapter:0x231e4b4 ...>, @errors={}>>

>> chapter.title = "different title"

=> "different title"

>> chapter.save

=> true

>> chapter.title = "different title again"

=> "different title again"

>> chapter.save

=> true

>> chapter.versions.size

=> 3

>> chapter.version

=> 3

>> chapter.revert_to!(1)

=> true

>> chapter.version

=> 1

>> chapter.title

=> "The Next Day"

>> chapter.versions.size

=> 3

So we see that calling Chapter’s revert_to!() method brings the version

and accompanying database back to the state of the referenced version

number without saving a new revision in the process. This is more akin

to a typical “Undo” scenario. You’ll also see that, though we’ve reverted

to version 1, versions 2 and 3 are still intact:

>> chapter.versions.size

=> 3

>> chapter.title = "What will my version be?"

=> "What will my version be?"

>> chapter.save

=> true

>> chapter.version

=> 4

>> chapter.versions(true).size

=> 4

http://books.pragprog.com/titles/fr_rr/errata/add?pdf_page=81

20. VERSIONING YOUR MODELS 82

Under the covers, acts_as_versioned is managing your model’s versions

through the additional table it set up when you ran your migration.

This is done, not surprisingly, using an Active Record model. The model

for your version tables is constructed in memory at runtime. You can

access it via the method versioned_class(), which acts_as_versioned adds

to your model’s class. With this class, you can do all the usual stuff

you’d expect to be able to do with an Active Record model. So, for

example, if you wanted to look at all the versions of every instance of

Chapter, you would do something like this:

>> Chapter.versioned_class.find(:all).collect do |version|

[version.chapter_id, version.title]

end

=> [[1, "Ligeti's Legacy"], [1, "Ligeti's Legacy of Lunacy"],

[1, "Ligeti's Legacy of Lunacy"], [1, "Another version's title"],

[2, "What will my version be?"]]

http://books.pragprog.com/titles/fr_rr/errata/add?pdf_page=82

Recipe 21

Converting to

Migration-Based Schemas

Credit

Thanks to Rails core developer Jamis Buck (http://jamis.jamisbuck.org),

whose original weblog post on this topic got me converted to migrations.

Problem

Active Record migrations are a wonderful, database-independent way

to evolve a database schema as your application’s code evolves. And

as a Ruby programmer, the ability to define schemas in a language

that I have some chance of remembering is a welcome relief from the

inevitable Google searches and head scratching every time I have to go

back to SQL DDL.

Unfortunately, many of our Rails applications either were started before

the migration functionality was added to Rails or were started before

we had the time to learn how migrations work. So now it feels like a

catch-22. You want to use migrations, but you can’t because you’re

not already using migrations! How do you go from a traditional, SQL-

managed schema to an Active Record migrations-managed schema?

Solution

To see a real conversion to migrations in action, let’s start with a small

set of example tables. The following is the DDL for three simple tables,

backing an online cooking recipe database. We’ll assume that these

tables already exist in our database and that they have data in them.

Download ConvertExistingAppToMigrations/db/initial_schema.sql

CREATE TABLE ‘ingredients‘ (

‘id‘ int(11) NOT NULL auto_increment,

‘recipe_id‘ int(11) default NULL,

‘name‘ varchar(255) default NULL,

‘quantity‘ int(11) default NULL,

‘unit_of_measurement‘ varchar(255) default NULL,

PRIMARY KEY (‘id‘)

);

http://jamis.jamisbuck.org
http://media.pragprog.com/titles/fr_rr/code/ConvertExistingAppToMigrations/db/initial_schema.sql

21. CONVERTING TO MIGRATION-BASED SCHEMAS 84

CREATE TABLE ‘ratings‘ (

‘id‘ int(11) NOT NULL auto_increment,

‘recipe_id‘ int(11) default NULL,

‘user_id‘ int(11) default NULL,

‘rating‘ int(11) default NULL,

PRIMARY KEY (‘id‘)

);

CREATE TABLE ‘recipes‘ (

‘id‘ int(11) NOT NULL auto_increment,

‘name‘ varchar(255) default NULL,

‘spice_level‘ int(11) default NULL,

‘region‘ varchar(255) default NULL,

‘instructions‘ text,

PRIMARY KEY (‘id‘)

);

The challenge is to move from this SQL-driven approach of maintaining

the schema to using Active Record migrations without losing any data.

Active Record migrations are managed using a domain-specific lan-

guage called ActiveRecord::Schema. ActiveRecord::Schema defines a pure-

Ruby, database-independent representation of a database schema. Of

Rails 1.0, Rails ships with a class called ActiveRecord::SchemaDumper

whose job is to inspect your databases and print their schema defini-

tions in ActiveRecord::Schema format.

After requireing active_record/schema_dumper (it’s not loaded by Rails by

default), a call to ActiveRecord::SchemaDumper.dump() will result in your

default database’s schema being dumped to your console. To see it in

action, do the following. (We’ve split the command across two lines to

make it fit.)

chad> ruby script/runner 'require "active_record/schema_dumper";

ActiveRecord::SchemaDumper.dump'

But the Rails developers have made it even easier than this. Using the

supplied Rake task, db:schema:dump,11 you can dump your schema

into the file db/schema.rb at any time. Let’s do that with our existing

schema:

chad> rake db:schema:dump

(in /Users/chad/src/FR_RR/Book/code/ConvertExistingAppToMigrations)

Now we have our existing schema converted to an ActiveRecord::Schema

format in db/schema.rb. Here’s what it looks like:

11Or db:schema:dump if you’re using Rails 1.0

http://books.pragprog.com/titles/fr_rr/errata/add?pdf_page=84

21. CONVERTING TO MIGRATION-BASED SCHEMAS 85

Download ConvertExistingAppToMigrations/db/schema.rb

Line 1 # This file is autogenerated. Instead of editing this file, please use the

- # migrations feature of ActiveRecord to incrementally modify your database, and

- # then regenerate this schema definition.

-

5 ActiveRecord::Schema.define(:version => 1) do

-

- create_table "ingredients", :force => true do |t|

- t.column "recipe_id", :integer

- t.column "name", :string

10 t.column "quantity", :integer

- t.column "unit_of_measurement", :string

- end

-

- create_table "ratings", :force => true do |t|

15 t.column "recipe_id", :integer

- t.column "user_id", :integer

- t.column "rating", :integer

- end

-

20 create_table "recipes", :force => true do |t|

- t.column "name", :string

- t.column "spice_level", :integer

- t.column "region", :string

- t.column "instructions", :text

25 end

- end

That was nice and simple. And, because this format is the same format

that migrations use, the create_table() code in this file will be the very

code that makes up our first migration! Let’s create that migration now:

chad> ruby script/generate migration InitialSchema

exists db/migrate

create db/migrate/001_initial_schema.rb

Now we can take the code from db/schema.rb and paste it into our

freshly generated migration file, db/migration/001_initial_schema.rb. Here

is what the migration file should look like (note: don’t jump the gun—

read ahead before you run this migration, or you might lose data!):

Download ConvertExistingAppToMigrations/db/migrate/001_initial_schema.rb

class InitialSchema < ActiveRecord::Migration

def self.up

create_table "ingredients" do |t|

t.column "recipe_id", :integer

t.column "name", :string

t.column "quantity", :integer

t.column "unit_of_measurement", :string

end

http://media.pragprog.com/titles/fr_rr/code/ConvertExistingAppToMigrations/db/schema.rb
http://media.pragprog.com/titles/fr_rr/code/ConvertExistingAppToMigrations/db/migrate/001_initial_schema.rb
http://books.pragprog.com/titles/fr_rr/errata/add?pdf_page=85

21. CONVERTING TO MIGRATION-BASED SCHEMAS 86

create_table "ratings" do |t|

t.column "recipe_id", :integer

t.column "user_id", :integer

t.column "rating", :integer

end

create_table "recipes" do |t|

t.column "name", :string

t.column "spice_level", :integer

t.column "region", :string

t.column "instructions", :text

end

end

def self.down

drop_table :ingredients

drop_table :ratings

drop_table :recipes

end

end

Notice that we also added drop_table() calls to the migration’s self.down()

definition, which tell Active Record to remove those tables if we ever

downgrade beyond this version (though that’s unlikely to happen given

that this is the initial version of the schema). If you do this, remember

to drop the tables in such a way that you don’t break any foreign key

constraints.

At this point, our application has been converted to use migrations. On

a fresh database, we can run rake migrate to install our schema. We can

also start generating subsequent migrations and evolve our database.

But we still have a problem. Our migration isn’t quite ready yet. In its

present form, this migration will wipe out our existing data:

chad> ruby script/runner 'puts Recipe.count'

253

chad> rake migrate

chad> ruby script/runner 'puts Recipe.count'

0

Oops! You may have noticed that in our migration, the create_table()

calls are passed the :force parameter with a value of true. This param-

eter causes Active Record to first drop the table if it already exists and

then re-create it. And with the initial table goes all of its rows.

Remove the :force parameter from your migration before you try to run

it. It won’t get us all the way there, but we should get rid of it to avoid

http://books.pragprog.com/titles/fr_rr/errata/add?pdf_page=86

21. CONVERTING TO MIGRATION-BASED SCHEMAS 87

losing any data. Here’s what happens when we try to run the migration

now:

chad> rake migrate

(in /Users/chad/src/FR_RR/Book/code/ConvertExistingAppToMigrations)

rake aborted!

Mysql::Error: #42S01Table 'ingredients' already exists:

CREATE TABLE ingredients (‘id‘ int(11) DEFAULT NULL auto_increment PRIMARY KEY,

‘recipe_id‘ int(11), ‘name‘ varchar(255), ‘quantity‘ int(11),

‘unit_of_measurement‘ varchar(255)) ENGINE=InnoDB

It can’t create the tables, because they already exist. At this point, we

have two choices.

The first choice is the brute-force solution. We could dump our existing

data as fixtures (see Recipe 42, Extracting Test Fixtures from Live Data,

on page 150 to learn now). This would allow us to drop and re-create

our entire database, starting over using migrations from the beginning.

After re-creating the database, we would run rake migrate and then rake

load_fixtures to restore the data. Our application would then be ready for

any future migrations without any hassle.

The alternative is probably both easier and safer. Active Record was try-

ing to re-create tables that already exist because its method of deter-

mining which version of the schema it’s on wasn’t available. Active

Record uses a special table called schema_info to keep track of the

database’s current schema version. This table contains a single row

with a single column called version. You probably noticed when you

generated the migration file that its file name started with the number

001. It’s this number, prepended to every migration’s file name, that

Active Record uses to determine which files are newer than the last run

of rake migrate and therefore in need of processing.

So our file, labeled as version 1 of the schema, was newer than the

version number 0 that Active Record assigned for this first run. (If you

check your database, you’ll see that it did in fact create the schema_info

table and set the version to 0 during your failed run.)

The alternative way to make things work, therefore, is to set the schema

version before the migration runs. Here’s a command that will do just

that (again, split onto two lines for formatting reasons):

chad> ruby script/runner 'ActiveRecord::Base.connection.execute(

"UPDATE schema_info SET version = 1")'

Sure enough, after setting the schema version to 1, a call to rake migrate

works as advertised. Congratulations! You are now one step closer to

http://books.pragprog.com/titles/fr_rr/errata/add?pdf_page=87

21. CONVERTING TO MIGRATION-BASED SCHEMAS 88

Rails Nirvana. Be careful, though. Migrations will spoil you. Once

you’ve used them, you’ll never want to go back.

Also See

For more information about using migrations, see the Rails API docu-

mentation.12

12http://api.rubyonrails.org/classes/ActiveRecord/Migration.html

http://api.rubyonrails.org/classes/ActiveRecord/Migration.html
http://books.pragprog.com/titles/fr_rr/errata/add?pdf_page=88

Recipe 22

Many-to-Many Relationships

with Extra Data

Credit

Thanks to Marcel Molina Jr. for the example idea for this recipe.

Problem

Usually, a relationship between two models is just a relationship. For

example, a person has and belongs to many pets, and you can leave it

at that. This kind of relationship is straightforward. The association

between the two models is all there is to track.

But sometimes the relationship has its own data. For example, a mag-

azine has (and belongs to) many readers by way of their subscrip-

tions. Subscriptions are interesting entities in their own right that a

magazine-related application would probably want to track.

How can you achieve a many-to-many relationship while enabling the

relationship to have attributes of its own?

Ingredients

• Rails 1.1 or higher.

Solution

We’re taught that when we have a many-to-many relationship to model

in a Rails application, we should use the has_and_belongs_to_many()

(habtm) macro with its associated join table. But habtm is best suited to

relationships that have no attributes of their own. It is possible to add

attributes to the join table in a has_and_belongs_to_many() setup, but it

has proven unwieldy in many cases and is on the list of features to be

deprecated in a future release of Rails.

Rails 1.1 introduces a new idea called join models. Don’t panic: this

isn’t a whole new type of model you have to learn. You’ll still be using

and extending ActiveRecord::Base. In fact, join models are more of a

technique or design pattern than they are a technology. The idea with

22. MANY-TO-MANY RELATIONSHIPS WITH EXTRA DATA 90

join models is that if your many-to-many relationship needs to have

some richness in the association, instead of putting a simple, dumb

join table in the middle of the relationship, you can put a full table with

an associated Active Record model.

Let’s look at an example. We’ll model a magazine and its readership.

Magazines (they hope) have many readers, and readers can potentially

have many magazines. So a typical way to model that in Rails would be

to use habtm. Here’s a sample schema to implement this:

Download ManyToManyWithAttributesOnTheRelationship/db/migrate/001_add_tables_for_typical_habtm.rb

def self.up

create_table :magazines do |t|

t.column :title, :string

end

create_table :readers do |t|

t.column :name, :string

end

create_table :magazines_readers, :id => false do |t|

t.column :magazine_id, :integer

t.column :reader_id, :integer

end

You would then say that the Magazine model has_and_belongs_to_many

:readers, and vice versa.

Now imagine you needed to track not only current readers but everyone

who has ever been a regular reader of your magazine. The natural way

to do this would be to think in terms of subscriptions. People who have

subscriptions are the readers of your magazine. Subscriptions have

their own attributes, such as the length of the subscription and the

date it was last renewed.

It is possible with Rails to add these attributes to a habtm relationship

and to store them in the join table (magazines_readers in this case) along

with the foreign keys for the associated Magazine and Reader entities.

But, what this technique does in effect is relegate a real, concrete, first-

class concept in our domain to what amounts to an afterthought. We’d

be taking what should be its own class and making it hang together

as a set of attributes hanging from an association. It feels like an

afterthought because it is.

This is where join models come in. Using a join model, we can maintain

the convenient, directly accessible association between magazines and

readers while representing the relationship itself as a first-class object:

a Subscription in this case.

http://media.pragprog.com/titles/fr_rr/code/ManyToManyWithAttributesOnTheRelationship/db/migrate/001_add_tables_for_typical_habtm.rb
http://books.pragprog.com/titles/fr_rr/errata/add?pdf_page=90

22. MANY-TO-MANY RELATIONSHIPS WITH EXTRA DATA 91

Let’s put together a new version of our schema, but this time supporting

Subscription as a join model. Assuming we already have a migration that

set up the previous version, here’s the new migration:

Download ManyToManyWithAttributesOnTheRelationship/db/migrate/002_create_join_model_readership_schema.rb

def self.up

drop_table :magazines_readers

create_table :subscriptions do |t|

t.column :reader_id, :integer

t.column :magazine_id, :integer

t.column :last_renewal_on, :date

t.column :length_in_issues, :integer

end

end

Our new schema uses the existing magazines and readers tables but

replaces the magazines_readers join table with a new table called subscrip-

tions. Now we’ll also need to generate a Subscription model and modify all

three models to set up their associations. Here are all three models:

Download ManyToManyWithAttributesOnTheRelationship/app/models/subscription.rb

class Subscription < ActiveRecord::Base

belongs_to :reader

belongs_to :magazine

end

Download ManyToManyWithAttributesOnTheRelationship/app/models/reader.rb

class Reader < ActiveRecord::Base

has_many :subscriptions

has_many :magazines, :through => :subscriptions

end

Download ManyToManyWithAttributesOnTheRelationship/app/models/magazine.rb

class Magazine < ActiveRecord::Base

has_many :subscriptions

has_many :readers, :through => :subscriptions

end

Subscription has a many-to-one relationship with both Magazine and

Reader, making the implicit relationship between Magazine and Reader

a many-to-many relationship. Although this was indeed possible with

Rails 1.0, a bit of magic is happening in both the Magazine and Reader

classes.

We can now specify that a Magazine object has_many() readers, through

their associated subscriptions. This is both a conceptual association

and a technical one. Let’s load the console to see how it works:

http://media.pragprog.com/titles/fr_rr/code/ManyToManyWithAttributesOnTheRelationship/db/migrate/002_create_join_model_readership_schema.rb
http://media.pragprog.com/titles/fr_rr/code/ManyToManyWithAttributesOnTheRelationship/app/models/subscription.rb
http://media.pragprog.com/titles/fr_rr/code/ManyToManyWithAttributesOnTheRelationship/app/models/reader.rb
http://media.pragprog.com/titles/fr_rr/code/ManyToManyWithAttributesOnTheRelationship/app/models/magazine.rb
http://books.pragprog.com/titles/fr_rr/errata/add?pdf_page=91

22. MANY-TO-MANY RELATIONSHIPS WITH EXTRA DATA 92

chad> ruby script/console

>> magazine = Magazine.create(:title => "Ruby Illustrated")

=> #<Magazine:0x26a3708 @errors=#<ActiveRecord::Errors:0x26a227c @errors={},

...@attributes={"title"=>"Ruby Illustrated", "id"=>1}>

>> reader = Reader.create(:name => "Anthony Braxton")

=> #<Reader:0x26993c0 @errors=#<ActiveRecord::Errors:0x2697b74 @errors={},

...@attributes={"name"=>"Anthony Braxton", "id"=>1}>

>> subscription = Subscription.create(:last_renewal_on => Date.today,

:length_in_issues => 6)

=> #<Subscription:0x26da3d4 @errors=#<ActiveRecord::Errors:0x26b6204

... "length_in_issues"=>6, "reader_id"=>nil, "magazine_id"=>nil}>

>> magazine.subscriptions << subscription

=> [#<Subscription:0x26da3d4 @errors=#<ActiveRecord::Errors:0x26b6204

...}>]

>> reader.subscriptions << subscription

=> [#<Subscription:0x26da3d4 @errors=#<ActiveRecord::Errors:0x26b6204

... "reader_id"=>1, "magazine_id"=>1}>]

>> subscription.save

=> true

This doesn’t contain anything new yet. But, now that we have this

association set up, look what we can do:

>> magazine.readers

=> [#<Reader:0x267cc20 @attributes={"name"=>"Anthony Braxton", "id"=>"1"}>]

>> reader.magazines

=> [#<Magazine:0x267aed4 @attributes={"title"=>"Ruby Illustrated", "id"=>"1"}>]

Though we never explicitly associated the reader to the magazine, the

association is implicit through the :through parameter to the has_many()

declarations.

Behind the scenes, Active Record is generating an SQL select that joins

the tables for us. For example, calling reader.magazines generates the

following:

SELECT magazines.*
FROM subscriptions, magazines

WHERE (magazines.id = subscriptions.magazine_id AND

subscriptions.reader_id = 1)

With a join model relationship, you still have access to all the same

has_many options you would normally use.13 For example, if we wanted

an easy accessor for all of a magazine’s semiannual subscribers, we

could add the following to the Magazine model:

13One exception to this is the :class_name option. When creating a join model, you

should instead use :source, which should be set to the name of the association to use,

instead of the class name.

http://books.pragprog.com/titles/fr_rr/errata/add?pdf_page=92

22. MANY-TO-MANY RELATIONSHIPS WITH EXTRA DATA 93

Download ManyToManyWithAttributesOnTheRelationship/app/models/magazine.rb

class Magazine < ActiveRecord::Base

has_many :subscriptions

has_many :readers, :through => :subscriptions

has_many :semiannual_subscribers,

:through => :subscriptions,

:source => :reader,

:conditions => ['length_in_issues = 6']

end

We could now access a magazine’s semiannual subscribers as follows:

chad> ruby script/console

>> Magazine.find(1).semiannual_subscribers

=> [#<Reader:0x26ba05c @attributes={"name"=>"Anthony Braxton", "id"=>"1"}>]

http://media.pragprog.com/titles/fr_rr/code/ManyToManyWithAttributesOnTheRelationship/app/models/magazine.rb
http://books.pragprog.com/titles/fr_rr/errata/add?pdf_page=93

Recipe 23

Polymorphic

Associations—has_many

:whatevers

Problem

Active Record’s has_many() and belongs_to() associations work really

well when the two sides of the relationship have fixed classes. An Author

can have many Books. A Library can have Books.

But sometimes you may want to use one table and model to repre-

sent something that can be associated with many types of entities. For

example, how do you model an Address that can belong to both peo-

ple and companies? It’s clear that both a person and a company can

have one or more addresses associated with them. But a has_many()

relationship relies on a foreign key, which should uniquely identify the

owner of the relationship. If you mix multiple owning tables, you can’t

rely on the foreign key to be unique across the multiple tables. For

instance, there may be a person with id number 42 and a company

with id number 42.

Ingredients

• Rails 1.1 or higher.

Solution

Rails 1.1 introduced polymorphic associations. Although its name is

daunting, it’s actually nothing to fear. Polymorphic associations allow

you to associate one type of object with objects of many types. So,

for example, with polymorphic associations an Address can belong to a

Person or a Company or to any other model that wants to declare and

use the association.

Let’s work through a basic example. We’ll create a simple set of models

to represent people, companies, and their associated addresses. We’ll

start with an Active Record migration that looks like the following:

23. POLYMORPHIC ASSOCIATIONS—HAS_MANY :WHATEVERS 95

Download PolymorphicAssociations/db/migrate/001_add_people_company_and_address_tables.rb

class AddPeopleCompanyAndAddressTables < ActiveRecord::Migration

def self.up

create_table :people do |t|

t.column :name, :string

end

create_table :companies do |t|

t.column :name, :string

end

create_table :addresses do |t|

t.column :street_address1, :string

t.column :street_address2, :string

t.column :city, :string

t.column :state, :string

t.column :country, :string

t.column :postal_code, :string

t.column :addressable_id, :integer

t.column :addressable_type, :string

end

end

def self.down

drop_table :people

drop_table :companies

drop_table :addresses

end

end

You’ll immediately notice something unusual about the addresses table.

First, the name of the foreign key is neither people_id nor company_id,

which is a departure from the usual Active Record convention. It’s

called addressable_id instead. Also, we’ve added a column called address-

able_type. You’ll see in a moment how we’re going to use these columns.

You get extra credit if you can guess before reading on!

Now that we have a database schema to work with, let’s create models

using the generator. We’ll generate models for Person, Company, and

Address. We’ll then add has_many() declarations to the Person and Com-

pany models, resulting in the following:

Download PolymorphicAssociations/app/models/person.rb

class Person < ActiveRecord::Base

has_many :addresses, :as => :addressable

end

Download PolymorphicAssociations/app/models/company.rb

class Company < ActiveRecord::Base

has_many :addresses, :as => :addressable

end

http://media.pragprog.com/titles/fr_rr/code/PolymorphicAssociations/db/migrate/001_add_people_company_and_address_tables.rb
http://media.pragprog.com/titles/fr_rr/code/PolymorphicAssociations/app/models/person.rb
http://media.pragprog.com/titles/fr_rr/code/PolymorphicAssociations/app/models/company.rb
http://books.pragprog.com/titles/fr_rr/errata/add?pdf_page=95

23. POLYMORPHIC ASSOCIATIONS—HAS_MANY :WHATEVERS 96

As you can see, the has_many() calls in the two models are identical.

And now we start to get some insight into the addressable columns in the

addresses table. The :as option, part of the new polymorphic associations

implementation, tells Active Record that the current model’s role in this

association is that of an “addressable,” as opposed to, say, a “person”

or a “company.” This is where the term polymorphic comes in. Though

these models exist as representations of people and companies, in the

context of their association with an Address they effectively assume the

form of an “addressable” thing.

Next we’ll modify the generated Address model to say that it belongs_to()

addressable things:

Download PolymorphicAssociations/app/models/address.rb

class Address < ActiveRecord::Base

belongs_to :addressable, :polymorphic => true

end

If we had omitted the :polymorphic option to belongs_to(), Active Record

would have assumed that Addresses belonged to objects of class Address-

able and would have managed the foreign keys and lookups in the

usual way. However, since we’ve included the :polymorphic option in

our belongs_to() declaration, Active Record knows to perform lookups

based on both the foreign key and the type. The same is true of the

has_many() lookups and their corresponding :as options.

The best way to understand what’s going on here is to see it in action.

Let’s load the Rails console and give our new models a spin:

chad> ruby script/console

Loading development environment.

>> person = Person.create(:name => "Egon")

=> #<Person:0x22c2434 @new_record_before_save=true,

@errors=#<ActiveRecord::Errors:0x2293a94 @errors={},

@base=#<Person:0x22c2434 ...>>, @new_record=false,

@attributes={"name"=>"Egon", "id"=>1}>

>> address = Address.create(:street_address1 => "Wiedner Hauptstrasse 27-29",

:city => "Vienna", :country => "Austria", :postal_code => "091997")

=> #<Address:0x2289864 @errors=#<ActiveRecord::Errors:0x2285160 @errors={},

@base=#<Address:0x2289864 ...>>,

@new_record=false, @attributes={"city"=>"Vienna", "postal_code"=>"091997",

"addressable_type"=>nil, "country"=>"Austria", "id"=>1,

"addressable_id"=>nil,

"street_address1"=>"Wiedner Hauptstrasse 27-29",

"street_address2"=>nil, "state"=>nil}>

>> address.addressable = person

=> #<Person:0x22c2434 @new_record_before_save=true,

@errors=#<ActiveRecord::Errors:0x2293a94

http://media.pragprog.com/titles/fr_rr/code/PolymorphicAssociations/app/models/address.rb
http://books.pragprog.com/titles/fr_rr/errata/add?pdf_page=96

23. POLYMORPHIC ASSOCIATIONS—HAS_MANY :WHATEVERS 97

@errors={}, @base=#<Person:0x22c2434 ...>>, @new_record=false,

@attributes={"name"=>"Egon", "id"=>1}>

>> address.addressable_id

=> 1

>> address.addressable_type

=> "Person"

Aha! Associating a Person with an Address populates both the address-

able_id field and the addressable_type field. Naturally, associating a

Company with an Address will have a similar effect:

>> company = Company.create(:name => "TCB, Inc.")

=> #<Company:0x2262df4 @new_record_before_save=true,

@errors=#<ActiveRecord::Errors:0x2260194 @errors={},

@base=#<Company:0x2262df4 ...>>, @new_record=false,

@attributes={"name"=>"TCB, Inc.", "id"=>1}>

>> address = Address.create(:street_address1 => "123 Main",

:city => "Memphis", :country => "US", :postal_code => "38104")

=> #<Address:0x2256dc4 @errors=#<ActiveRecord::Errors:0x2255bb8

@errors={}, @base=#<Address:0x2256dc4 ...>>,

@new_record=false, @attributes={"city"=>"Memphis",

"postal_code"=>"38104", "addressable_type"=>nil,

"country"=>"US", "id"=>3, "addressable_id"=>nil,

"street_address1"=>"123 Main",

"street_address2"=>nil, "state"=>nil}>

>> address.addressable = company

=> #<Company:0x2262df4 @new_record_before_save=true,

@errors=#<ActiveRecord::Errors:0x2260194 @errors={},

@base=#<Company:0x2262df4 ...>>, @new_record=false,

@attributes={"name"=>"TCB, Inc.", "id"=>1}>

>> address.addressable_id

=> 1

>> address.addressable_type

=> "Company"

Notice that in both examples, the addressable_id values have been set

to 1. If the relationship wasn’t declared to be polymorphic, a call to

Company.find(1).addresses would result in the same (incorrect) list that

Person.find(1).addresses would return, because Active Record would have

no way of distinguishing between person number 1 and company num-

ber 1.

Instead, a call to Company.find(1).addresses will execute the following

SQL:

SELECT *
FROM addresses

WHERE (addresses.addressable_id = 1 AND

addresses.addressable_type = 'Company')

http://books.pragprog.com/titles/fr_rr/errata/add?pdf_page=97

23. POLYMORPHIC ASSOCIATIONS—HAS_MANY :WHATEVERS 98

Discussion

You could achieve a similar effect by hand with Rails 1.0. To do so,

you would have to manually manage the addressable_type field in the

addresses table. When you saved a new association, you would need

to set the addressable_type field, and as you declared any associations,

you would need to set the :conditions option to include a query for the

right addressable_type. For example, the has_many() declaration in the

Person model would need to look like the following:

has_many :addresses,

:foreign_key => "addressable_id",

:conditions => ['addressable_type = ?', 'Person']

http://books.pragprog.com/titles/fr_rr/errata/add?pdf_page=98

Recipe 24

Add Behavior to Active

Record Associations

Problem

When you access a has_many or has_and_belongs_to_many association on

an Active Record model object, it returns an array-like object that pro-

vides access to the individual objects that are associated with the object

you started with. Most of the time, the stock array-like functionality of

these associations is good enough to accomplish what you need to do.

Sometimes, though, you might want to add behavior to the association.

Adding behavior to associations can make your code more expressive

and easier to understand. But, since these associations are generated

by Rails, how do you extend them? There isn’t an easily accessible class

or object to add the behavior to. So how do you do it?

Solution

Before we get started, let’s create a simple model with which to demon-

strate. For this example, we’ll create models to represent students and

their grades in school. The following is the Active Record migration to

implement the schema:

Download AddingBehaviorToActiveRecordAssociations/db/migrate/001_add_students_tables.rb

class AddStudentsTables < ActiveRecord::Migration

def self.up

create_table :students do |t|

t.column :name, :string

t.column :graduating_year, :integer

end

create_table :grades do |t|

t.column :student_id, :integer

t.column :score, :integer # 4-point scale

t.column :class, :string

end

end

def self.down

drop_table :students

drop_table :grades

end

end

http://media.pragprog.com/titles/fr_rr/code/AddingBehaviorToActiveRecordAssociations/db/migrate/001_add_students_tables.rb

24. ADD BEHAVIOR TO ACTIVE RECORD ASSOCIATIONS 100

We’ll next create simple Active Record models for these tables. We’ll

declare the Student class has_many() Grades. Here are the models:

Download AddingBehaviorToActiveRecordAssociations/app/models/student.rb

class Student < ActiveRecord::Base

has_many :grades

end

Download AddingBehaviorToActiveRecordAssociations/app/models/grade.rb

class Grade < ActiveRecord::Base

end

Now that we have a working model, let’s create some objects:

chad> ruby script/console

>> me = Student.create(:name => "Chad", :graduating_year => 2006)

=> #<Student:0x26d18d8 @new_record=false, @attributes={"name"=>"Chad",

"id"=>1, "graduating_year"=>2006}>

>> me.grades.create(:score => 1, :class => "Algebra")

=> #<Grade:0x269cb10 @new_record=false, @errors={}>, @attributes={"score"=>1,

"class"=>"Algebra", "student_id"=>1, "id"=>1}>

(I was never very good at math—a 1 is a failing grade.)

If you’re paying close attention, you’ll notice that this has already gotten

interesting. Where does this create() method come from? I don’t recall

seeing create() defined for the Array class. Maybe these associations

don’t return arrays after all. Let’s find out:

>> me.grades.class

=> Array

>> Array.instance_methods.grep /create/

=> []

Just what is going on here? The association claims to return an Array,

but where’s the create() method coming from?

Ruby is a very dynamic language. When I encounter something magical

like this, I find myself mentally working through all the possible ways

it could be implemented and then ruling them out. In this case, I might

start by assuming that the association is indeed an instance of Array

with one or more singleton methods added.

But, looking at the Rails source code for verification, it turns out I’d

be wrong. What’s really going on is that the call to grades() returns an

instance of ActiveRecord::Associations::AssociationProxy. This sits between

your model’s client code and the actual objects the model is associated

with. It masquerades as an object of the class you expect (Array in

http://media.pragprog.com/titles/fr_rr/code/AddingBehaviorToActiveRecordAssociations/app/models/student.rb
http://media.pragprog.com/titles/fr_rr/code/AddingBehaviorToActiveRecordAssociations/app/models/grade.rb
http://books.pragprog.com/titles/fr_rr/errata/add?pdf_page=100

24. ADD BEHAVIOR TO ACTIVE RECORD ASSOCIATIONS 101

this example) and delegates calls to the appropriate application-specific

model objects.

So, where does create() come from? It is defined on the association

itself, and it delegates to the Grade class to create grades.

Understanding that an association call really returns a proxy, it’s easy

to see how you could add behaviors to the association. You would

just need to add the behavior to the proxy. Since each access to an

association can create a new instance of AssociationProxy, we can’t just

get the association via a call to grades() and add our behaviors to it.

Active Record controls the creation and return of these objects, so we’ll

need to ask Active Record to extend the proxy object for us.

Fortunately, Active Record gives us two ways to accomplish this. First,

we could define additional methods in a module and then extend the

association proxy with that module. We might, for example, create a

module for doing custom queries on grades, including the ability to

select below-average grades. Such a module might look like the follow-

ing:

Download AddingBehaviorToActiveRecordAssociations/lib/grade_finder.rb

module GradeFinder

def below_average

find(:all, :conditions => ['score < ?', 2])

end

end

This is a simple extension that adds a below_average() method to the

grades() association, which will find all grades lower than a C (repre-

sented as a 2 on the 4-point scale). We could then include that module

in our model with the following code:

Download AddingBehaviorToActiveRecordAssociations/app/models/student.rb

require "grade_finder"

class Student < ActiveRecord::Base

has_many :grades, :extend => GradeFinder

end

The new method is now accessible on the association as follows:

chad> ruby script/console

>> Student.find(1).grades.below_average

=> [#<Grade:0x26aecc0 @attributes={"score"=>"1", "class"=>"Algebra",

"student_id"=>"1", "id"=>"1"}>]

Alternatively, we could have defined this method directly by passing a

block to the declaration of the has_many() association:

http://media.pragprog.com/titles/fr_rr/code/AddingBehaviorToActiveRecordAssociations/lib/grade_finder.rb
http://media.pragprog.com/titles/fr_rr/code/AddingBehaviorToActiveRecordAssociations/app/models/student.rb
http://books.pragprog.com/titles/fr_rr/errata/add?pdf_page=101

24. ADD BEHAVIOR TO ACTIVE RECORD ASSOCIATIONS 102

Download AddingBehaviorToActiveRecordAssociations/app/models/student.rb

class Student < ActiveRecord::Base

has_many :grades do

def below_average

find(:all, :conditions => ['score < ?', 2])

end

def foo

raise self.inspect

end

end

end

These association proxies have access to all the same methods that

would normally be defined on the associations, such as find(), count(),

and create().

Discussion

An interesting point to notice is that inside the scope of one of these

extended methods, the special variable self refers to the Array of asso-

ciated Active Record objects. This means you can index into the array

and perform any other operations on self that you could perform on an

array.

http://media.pragprog.com/titles/fr_rr/code/AddingBehaviorToActiveRecordAssociations/app/models/student.rb
http://books.pragprog.com/titles/fr_rr/errata/add?pdf_page=102

Snack Recipe 25

Dynamically Configure Your

Database

The Rails database configuration file, config/database.yml is a YAML file.

But before it is fed to the YAML parser, it is preprocessed using ERb.

This means you can embed Ruby code in the file just like you do with

your view templates, giving you the full power of the language.

I work with a team of three developers. We all use Macintoshes at

work, so our configurations are usually the same. But sometimes we

each find ourselves developing in a Linux environment, and our config-

urations vary. This can get annoying, because our database.yml files all

need to point to different MySQL socket files. If one of us makes a local

change and accidentally checks it in, the next person who updates is

confronted with an error message.

So now we use ERb in our database.yml file to look for the MySQL socket

file in all the places our various computers may store it and then select

the right one:

Download DynamicDatabaseConfiguration/config/database.yml

development:

adapter: mysql

database: DynamicDatabaseConfiguration_development

username: root

password:

socket: <%= ["/tmp/mysqld.sock",

"/tmp/mysql.sock",

"/var/run/mysqld/mysqld.sock",

"/var/lib/mysql/mysql.sock"].detect{|socket|

File.exist?(socket)

} %>

This is just one example of the ways you can use ERb to add smarts

to your database.yml. Keep your mind open, and you’re likely to find

other ways to save time and avoid frustration with dynamic database

configuration.

http://media.pragprog.com/titles/fr_rr/code/DynamicDatabaseConfiguration/config/database.yml

Snack Recipe 26

Use Active Record Outside of

Rails

The Rails environment is really well configured. It’s so well configured

that we rarely (if ever) have to concern ourselves with the process of

initializing the Rails subframeworks.

In fact, you might not even realize it’s possible to use, for example,

Active Record outside of the context of a Rails application. It’s not only

possible, but it’s really easy.

Here’s a script that uses Active Record to connect to a database and

search for pending orders. It then shells out to an external program

that sends those orders to a legacy mainframe system for fulfillment.

Download UseActiveRecordOutsideOfRails/process_orders_nightly.rb

require 'active_record'

ActiveRecord::Base.establish_connection(

:adapter => "mysql",

:host => "localhost",

:username => "nightlybatch",

:password => "secret",

:database => "web_orders"

)

class Order < ActiveRecord::Base

end

ActiveRecord::Base.logger = Logger.new(STDOUT)

Order.find(:all).each do |o|

puts "Processing order number #{o.id}"

‘./sendorder -c #{o.customer_id} \

-p #{o.product_id} \

-q #{o.quantity}‘

end

If you work in an environment that has any non-Rails applications, this

kind of lightweight script can really come in handy. You don’t need to

create an entire Rails application or to incur the start-up overhead of

the full Rails environment for something this simple.

http://media.pragprog.com/titles/fr_rr/code/UseActiveRecordOutsideOfRails/process_orders_nightly.rb

Recipe 27

Perform Calculations on Your

Model Data

Credit

Thanks to Rails core team member Rick Olson for his help on this recipe

and for writing the Active Record calculations code.

Problem

You want to perform numeric calculations on the data in your database.

You don’t want to have to drop to SQL, but your data sets are too big to

select all the data and perform the calculations in Ruby.

Ingredients

• Rails 1.1 or higher.

Solution

The ActiveRecord::Calculations module, introduced in Rails 1.1, is just

what you need. It wraps the SQL necessary to perform in-database

applications while also providing a friendly interface that will be com-

fortably familiar to everyone who already uses Active Record.

ActiveRecord::Calculations provides model-level methods for querying the

count, sum, average, maximum, and minimum values of data in a

model. For example, if you wanted to find out the number of people

older than 21 in your system, you could do this:

>> Person.count("age > 21")

=> 23

Under the covers, Active Record generates something like this:

SELECT count(*) AS count_all FROM people WHERE (age > 21)

To find the average, minimum, and maximum ages of all the people in

your system you could do this:

>> Person.average(:age)

=> 26.1765

>> Person.minimum(:age)

=> 1

27. PERFORM CALCULATIONS ON YOUR MODEL DATA 106

>> Person.maximum(:age)

=> 42

Because ActiveRecord::Calculations uses much of the same code that

find() uses, its interface is similar. For example, you can pass in the

:conditions option just like you would with find(). The following code

averages the ages of everyone whose name contains the letter T :

>> Person.average(:age, :conditions => ["name like ?", '%T%'])

=> 20.6

You can also group your calculations by an attribute of the model. For

example, to sum the number of donations to a charity for each day in

a pledge drive, you could do this:

>> Donation.sum(:amount, :group => :created_at)

=> [[Sun Mar 26 18:48:43 MST 2006, 3053], [Mon Mar 27 18:48:43 MST 2006,

1597], [Tue Mar 28 18:48:43 MST 2006, 3809],etc.

You can also use SQL functions in the :group parameter. To perform

the same operation but group by year, you could do this:

>> Donation.sum(:amount, :group => 'YEAR(created_at)')

=> [[2005, 450243], [2006, 23503]]

If you need your code to be database-agnostic, beware of using SQL in

the :group. Not all databases support the same functions.

You can group by associations, too. If you had a weblog with a rating

system and wanted to get the average rating for each post in the system,

you could do this:

>> Rating.average(:value,

:group => :post).collect{|post, rating| [post.title, rating]}

=> [["Increase your life time earnings chadfowler", 3.6667],

["All m3mory enhancers on one portal!", 0.6667],

["300 free welcome bonus!", 4.0], ["A Free ...etc.

Grouping on associations yields an OrderedHash whose key is the full,

instantiated associated object. So if you wanted to get the average of a

specific post, given the full list, you could do this:

>> Rating.average(:value, :group => :post)[Post.find(2)]

=> 0.6667

Finally, if you wanted to perform calculations within a certain scope,

they work the same as the rest of Active Record. For example, to aver-

age the rating of posts by a specific person, you could do this:

>> Person.find_by_name("Adam").ratings.average(:value)

=> 2.0

http://books.pragprog.com/titles/fr_rr/errata/add?pdf_page=106

Snack Recipe 28

DRY Up Active Record Code

with Scoping

You often need to limit most or all of your application’s queries based

on some kind of key. Maybe you have a bunch of users who share

documents with each other within the context of a single account. Or

you want to let a user work with to-do lists but you don’t want to show

them any lists that they didn’t create.

You could sprinkle :conditions throughout your find() calls and always

throw a parameter into your create() calls. That would create a lot of

duplication and make your code more brittle (not to mention ugly).

Active Record gives you a few tools for DRYing up your code in a sit-

uation like this. A good one to start with is with_scope(). Here’s an

example. Say you’re creating a user administration page that account

owners can use to manage users within their companies. You want to

allow them to see or create users only within their context.

User.with_scope(

:find => {:conditions => ["account_id = ?", current_account()]},

:create => {:account_id => current_account()}) do

@users = User.find(:all)

@new_user = User.create(:name => "Jerry")

end

with_scope() sets the scope of database operations within its block. If

current_account() returns the account number of the currently logged in

user, any calls involving Users inside this block are automatically scoped

for you. Wrap actions in a before_filter() method and you end up with

not only a cleaner code base but much less of a chance of forgetting to

scope your database queries (which would result in users seeing other

users outside their accounts—not good!).

Another trick you can use to scope things properly is to find() objects

through associations. For example, if you want to select only the users

in a certain account, instead of doing this:

User.find(:all, :conditions => ['account_id = ? AND name = ?',

current_account, "Chad"])

you can do this:

@account.users.find(:all, :conditions => ['name = ?', "Chad"])

Recipe 29

Make Dumb Data Smart with

composed_of()

Problem

Sometimes, though it makes sense to store simple data in flattened

structures in your database tables, you want a rich, object-oriented

representation of the data in your Ruby code. How do you construct

intelligent, structured objects from flat data?

Solution

For a long time, Active Record has shipped with a powerful but poorly

understood macro called composed_of(). The basic syntax of the macro

looks like this:

class SomeModel < ActiveRecord::Base

composed_of :some_attribute,

:class_name => 'SomeSpecialClass',

:mapping => [%w(model_attr_name special_class_attr)]

end

The problem here is that it reads like: “SomeModel is composed of some

attribute.” That doesn’t quite capture the meaning of composed_of().

How it should really read is as follows: “Add some attribute, composed

of SomeSpecialClass, and map SomeModel’s model_attr_name field to

special_class_attr.”

Imagine we’re managing student records for a school. We want to use

each student’s course history to determine whether they meet the aca-

demic requirements to participate in various school-sponsored extra-

curricular activities. For example, we might say that a student has to

have completed Algebra II with a grade of B or better to be part of the

math club.

For each record of a student having completed a course, we store the

letter grade that student received for the course. Letter grades can be

A through F and be modified with a plus or minus sign such as B+. We

store the letter grade as a string in the database.

29. MAKE DUMB DATA SMART WITH COMPOSED_OF() 109

This is a perfect place to use a composed_of() mapping. Our internal

field is “dumb”: it’s just a string with no grade-specific behavior. But

we need to ensure that A- is higher than F without case sensitivity.

Here’s what the relevant code from our CourseRecord class would look

like:

Download MakeDumbDataSmart/app/models/course_record.rb

class CourseRecord < ActiveRecord::Base

composed_of :grade,

:class_name => 'Grade',

:mapping => [%w(letter_grade letter_grade)]

end

The CourseRecord model has a table attribute called letter_grade that

will be mapped to an identically named field in the class, Grade, which

will be accessible via CourseRecord’s grade() attribute. The class name

Grade is determined by the same conventions used to translate model

and controller class names to their associated source files.14 The com-

posed_of() macro assumes that it can instantiate the composing class,

passing each of the mapped values into its constructor. So, we’ll make

sure our Grade class accepts a single argument. Here’s the class now:

Download MakeDumbDataSmart/app/models/grade.rb

class Grade

include Comparable

attr_accessor :letter_grade

SORT_ORDER = ["f", "d", "c", "b", "a"].inject({}) {|h, letter|

h.update "#{letter}-" => h.size

h.update letter => h.size

h.update "#{letter}+" => h.size

}

def initialize(letter_grade)

@letter_grade = letter_grade

end

def <=>(other)

SORT_ORDER[letter_grade.downcase] <=> SORT_ORDER[other.letter_grade.downcase]

end

end

We’ve defined the <=> method and included the Comparable module,

which is all any Ruby class needs to do to implement comparison func-

tionality. The <=> method returns one of 1, 0, or -1 depending on

whether the receiving object is semantically greater than, equal to, or

14You can override the naming convention by passing the :class_name option to the

composed_of() method.

http://media.pragprog.com/titles/fr_rr/code/MakeDumbDataSmart/app/models/course_record.rb
http://media.pragprog.com/titles/fr_rr/code/MakeDumbDataSmart/app/models/grade.rb
http://books.pragprog.com/titles/fr_rr/errata/add?pdf_page=109

29. MAKE DUMB DATA SMART WITH COMPOSED_OF() 110

less than the supplied argument. The SORT_ORDER hash defines how

letter grades should be sorted, including the pluses and minuses.

Let’s take a look at how this works in the console:

chad> ruby script/console

>> grade = CourseRecord.find(:first).grade

=> #<Grade:0x2241618 @letter_grade="a">

>> grade > Grade.new("a-")

=> true

>> grade > Grade.new("a+")

=> false

The value objects that we create in a composed_of() scenario should be

treated as immutable. You can modify these objects in place all you

want, but the values will never get saved:

>> course = CourseRecord.find(:first)

=> #<CourseRecord:0x2237514 @attributes={"student_id"=>..."letter_grade"=>"a"...>

>> course.grade

=> #<Grade:0x22364c0 @letter_grade="a">

>> course.grade.letter_grade = "f"

=> "f"

>> course.save

=> true

>> course = CourseRecord.find(:first)

=> #<CourseRecord:0x222e900 @attributes={"student_id"=>..."letter_grade"=>"a"...>

To actually modify the value stored in the database, you have to create

a new Grade object and assign it to the CourseRecord class:

>> course.grade = Grade.new("f")

=> #<Grade:0x222c54c @letter_grade="f">

>> course.save

=> true

>> course = CourseRecord.find(:first)

=> #<CourseRecord:0x2226d90 @attributes={"student_id"=>"..."letter_grade"=>"f",...>

Discussion

You can also use the composed_of() macro to make a flat structure look

normalized. If for some reason you needed to store structured data,

such as an address, in the same table with the entity that data belongs

to, you could map multiple fields into a single object. For example:

class Person < ActiveRecord::Base

composed_of :address, :mapping => [%w(address_street street),

%w(address_city city),

%w(address_state state),

%w(address_country country)]

end

http://books.pragprog.com/titles/fr_rr/errata/add?pdf_page=110

29. MAKE DUMB DATA SMART WITH COMPOSED_OF() 111

This would map the fields address_street, address_city, address_state, and

address_country of the people table to the Address class, allowing you to

work with addresses as first-class objects, even though they’re stored

as flat attributes in the database.

http://books.pragprog.com/titles/fr_rr/errata/add?pdf_page=111

Snack Recipe 30

Safely Use Models in

Migrations

Thanks to Tim Lucas for inspiring and supplying code for this recipe.

Active Record migrations are wonderful things in that they support con-

stant evolution of your database schema. Where it used to be painful

to rename, add, or drop columns, migrations makes it easy.

But with this flexibility comes the increasing probability that we’ll want

to not only add, drop, and rename tables and columns but we’ll want

and need to do the same with our models as well. This can lead to prob-

lems. Since you sometimes need to manipulate data during a migra-

tion, it’s tempting to use your Active Record models in the migrations

themselves. After all, Active Record is usually quite a bit easier and less

wordy to use than raw SQL.

But what if you rename your models? Early migrations will cease to

work, since your file system (and even your source control tool) doesn’t

have a built-in versioning system that would be compatible with migra-

tions. Your earlier migrations would be relying on models that were

either deleted or removed.

The solution? Define your models (even if they already exist in the

usual place) in the migration itself. For example:

class AddPositionToProducts < ActiveRecord::Migration

class Product < ActiveRecord::Base; end

class SoftwareProduct < Product; end

class CourseProduct < Product; end

def self.up

add_column :products, :position, :integer

Product.reset_column_information

Set default list orders

SoftwareProduct.find(:all).each_with_index {|p, i| p.position = i; p.save!) }

CourseProduct.find(:all).each_with_index {|p, i| p.position = i; p.save! }

end

def self.down

remove_column :products, :position

end

end

30. SAFELY USE MODELS IN MIGRATIONS 113

Regardless of what models exist on your file system, this migration will

always work. Take notice that the models are defined inside the migra-

tion class. This is important, because they are separated by names-

pace, just in case you need to use different versions of the model classes

in other migrations. For example, the Product class is really AddPosi-

tionToProducts::Product. This guarantees that the model will be unique

among your migrations.

http://books.pragprog.com/titles/fr_rr/errata/add?pdf_page=113

Part III

Controller Recipes

114

Recipe 31

Authenticating Your Users

Credit

Thanks to reader Tom Moertel for his suggestions and for the salt-

related code in this recipe.

Problem

You’re developing an application that has a separate piece of function-

ality supporting administrative features. Perhaps it’s an online trivia

game that has an interface for adding questions and their answers.

Naturally, you don’t want all the players to have access to the answers,

so you’d like to protect the administrative interface with a username

and password.

Solution

Although several authentication libraries are available as plugins and

generators, simple authentication is so easy to do with Rails, that it is

often not worth the extra baggage of depending on a third-party add-on

to handle authentication. A quick mixture of a new user model and an

Action Controller before_filter can have you up and running with login-

protected actions in a matter of minutes.

For the sake of simplicity, it’s best to put all the sensitive functional-

ity in a separate controller. For our example, let’s assume we have a

controller named AdminController for which we would like to shield all

actions behind a username and password.

The first step is to create a model to hold our authentication informa-

tion. We’ll do this by generating an Active Record migration to create

a simple table. From the root directory of our application, we use the

generate script to create the migration skeleton. (If you’re using Rails

1.1 or higher, the migration will have been created automatically when

you created the User model and will be called 001_add_user.rb.)

chad> ruby script/generate migration add_user_table

We then fill out the migration to look like this:

31. AUTHENTICATING YOUR USERS 116

Download Authentication/db/migrate/001_add_user_table.rb

class AddUserTable < ActiveRecord::Migration

def self.up

create_table :users do |t|

t.column "username", :string

t.column "password_salt", :string

t.column "password_hash", :string

end

end

def self.down

drop_table :users

end

end

The schema is simple. Users have a username, a hashed password,

and a salt, which, as you’ll see shortly, we’ll use to generate the hashed

password. We’ll then use the migration to generate the database table

with the following:

chad> rake migrate

Next, we’ll need an Active Record model to support our new table. We

can generate that as well:15

chad> ruby script/generate model User

Next we’ll add some authentication-specific code to the User model.

Here’s the user.rb file:

Download Authentication/app/models/user.rb

require 'digest/sha2'

class User < ActiveRecord::Base

def password=(pass)

salt = [Array.new(6){rand(256).chr}.join].pack("m").chomp

self.password_salt, self.password_hash =

salt, Digest::SHA256.hexdigest(pass + salt)

end

end

Since we don’t want to store plain-text passwords in the database, we

use Ruby’s SHA2 library to create a hash of the plain-text password

for storage. We’re not actually storing the password. We’re storing only

a string that can be reproducibly generated given the plain-text pass-

15Note that in Rails 1.1 or higher, the generation of a model automatically results in

the generation of a migration for that model’s matching table. If you are running Rails

1.1 or higher, you’ll need to append --skip-migration to any model-generation commands in

this recipe or simply use the migrations created with the model.

http://media.pragprog.com/titles/fr_rr/code/Authentication/db/migrate/001_add_user_table.rb
http://media.pragprog.com/titles/fr_rr/code/Authentication/app/models/user.rb
http://books.pragprog.com/titles/fr_rr/errata/add?pdf_page=116

31. AUTHENTICATING YOUR USERS 117

word. We’re also adding a string (the salt) to the prehashed password to

make it extra-difficult for malicious users to guess passwords by brute

force. We store the salt and the hashed password in the database.

When we want to authenticate a user, we look them up by username

and then hash the salt and the supplied password to see whether they

match the stored hash.

Now that we have a data model to support our User objects, we need

to create a user. This is a simple model, so we could easily create a

user administration form (probably also under our new AdminController)

or even use simple scaffolding. But for now, we’ll just create one using

the Rails console:

chad> ruby script/console

Loading development environment.

>> chad = User.create(:username => "chad")

=> #<User:0x2416350 @errors=#<ActiveRecord::Errors:0x241598c...@new_record=false>

>> chad.password = "secret"

=> "secret"

>> chad.password_hash

=> "fa56838174d3aef09623ea003cb5ee468aa1b0aa68a403bd975be84dd999e76c"

>> chad.password_salt

=> "luBKiKLa"

>> chad.save

=> true

Now that we have a User with which to sign in, we can modify our Admin-

Controller to require authentication before executing any actions. We

can do this using the before_filter macro included with Action Controller.

At the top of the AdminController’s class definition, let’s add the following:

Download Authentication/app/controllers/admin_controller.rb

before_filter :check_authentication

def check_authentication

unless session[:user]

session[:intended_action] = action_name

session[:intended_controller] = controller_name

redirect_to :action => "signin"

end

end

This tells Rails to always execute the method check_authentication()

before executing any actions in this controller. This method checks for

a user id in the session object. If the user does not exist (which means

the user hasn’t yet authenticated), the application redirects to the signin

action, which will collect the user’s username and password. As you’ll

http://media.pragprog.com/titles/fr_rr/code/Authentication/app/controllers/admin_controller.rb
http://books.pragprog.com/titles/fr_rr/errata/add?pdf_page=117

31. AUTHENTICATING YOUR USERS 118

soon see, saving session[:intended_action] and session[:intended_controller]

will allow us to keep track of what the user was trying to do before

authenticating, so we can place them gently back on their intended

paths after checking their credentials. This is especially important to

support bookmarks.

With the code in its current state, we have a problem. The method

check_authentication() will redirect us to the signin action, which will

again fire the controller’s before_filter, bringing us full circle. To avoid

an infinite loop, we’ll need to modify the call to before_filter to exclude

the sign-in–related action from the authentication check:

before_filter :check_authentication, :except => [:signin]

Now we can always access the signin action.

The signin action will handle both the display of the sign-in form and the

actual authentication process that this form posts to. Here’s the HTML

form, app/views/admin/signin.rhtml, for collecting the user’s credentials:

<html>

<head>

<title>Signin for Admin Access</title>

</head>

<body>

<%= start_form_tag :action => "signin" %>

<label for="username">Username:</label>

<%= text_field_tag "username" %>

<label for="password">Password:</label>

<%= password_field_tag "password" %>

<%= submit_tag "Sign in" %>

<%= end_form_tag %>

</body>

</html>

The user then submits their username and password back to the signin

action, which checks them against our User model in the database:

def signin

if request.post?

user = User.find(:first, :conditions => ['username = ?', params[:username]])

if user.blank? ||

Digest::SHA256.hexdigest(params[:password] + user.password_salt) !=

user.password_hash

raise "Username or password invalid"

end

session[:user] = user.id

redirect_to :action => session[:intended_action],

:controller => session[:intended_controller]

end

end

http://books.pragprog.com/titles/fr_rr/errata/add?pdf_page=118

31. AUTHENTICATING YOUR USERS 119

The SQL and SHA2 code in this action is unsightly and gives too much

of the model’s implementation away, so we can move it into the User

model. While we’re in there, we’ll add a validator to ensure that only

one User can be created with a given username:

Download Authentication/app/models/user.rb

require 'digest/sha2'

class User < ActiveRecord::Base

validates_uniqueness_of :username

def self.authenticate(username, password)

user = User.find(:first, :conditions => ['username = ?', username])

if user.blank? ||

Digest::SHA256.hexdigest(password + user.password_salt) != user.password_hash

raise "Username or password invalid"

end

user

end

end

We can now simplify the signin action to look like this:

def signin

if request.post?

session[:user] = User.authenticate(params[:username], params[:password]).id

redirect_to :action => session[:intended_action],

:controller => session[:intended_controller]

end

end

Finally, to top this recipe off with a little icing, we’ll add the ability to

sign out of the application. The signout action will simply remove the

user id from session and redirect to the application’s home page. The

full AdminController now looks like the following:

class AdminController < ApplicationController

before_filter :check_authentication, :except => [:signin]

def check_authentication

unless session[:user]

session[:intended_action] = action_name

session[:intended_controller] = controller_name

redirect_to :action => "signin"

end

end

def signin

session[:user] = User.authenticate(params[:username], params[:password]).id

redirect_to :action => session[:intended_action],

:controller => session[:intended_controller]

end

http://media.pragprog.com/titles/fr_rr/code/Authentication/app/models/user.rb
http://books.pragprog.com/titles/fr_rr/errata/add?pdf_page=119

31. AUTHENTICATING YOUR USERS 120

def signout

session[:user] = nil

redirect_to home_url

end

...the real application's actions would be here.

end

Note that home_url() refers to a hypothetical named route that you

would need to configure. See Recipe 36, Make Your URLs Meaningful

(and Pretty), on page 131 to find out how.

What would we do if we needed authentication to apply to multiple

controllers? Simple: move the authentication-related code, including

the filter declarations, to our ApplicationController class. Since all our

controllers extend ApplicationController by default, they will all inherit

the filters and methods we define there.

Discussion

If you need to store extra profile information along with a user object,

it may be tempting to put the entire User object in session on authentica-

tion. It’s best to avoid doing this, because you’ll invariably find yourself

debugging your application, wondering why data changes to your user’s

profile don’t seem to be taking effect, only to realize that you’re looking

at a stale copy of the data from session.

On the other end of the spectrum, sometimes you don’t actually need

a user object or model at all. If you don’t need to track who is sign-

ing into your application, sometimes a simple password will do. For

example, though some weblog systems support multiple authors and

can display the author of each post, many do not. Simply protecting

the right to post a story would be sufficient for such a system, and for

that, a password (even a hard-coded password!) could meet your needs

while saving you time.

One caveat to note with this approach: even though we’re redirecting to

the initially requested action, we’ll lose any parameters passed during

the initial, preauthenticated request. Using the same pattern we used

to capture the intended action and controller, how could you save the

request parameters and pass them along?

Also See

If you need finer-grained access control, see the next recipe.

http://books.pragprog.com/titles/fr_rr/errata/add?pdf_page=120

Recipe 32

Authorizing Users with Roles

Problem

Different parts of your application should be accessible to different peo-

ple, based on who they are and what roles they play. For example, you

might have built an online community recipe book for which a number

of contributors have rights to add and edit the recipes in your database.

These users are more privileged than those who have an account sim-

ply to post comments, but they’re less privileged than you and your few

chosen helpers who have administrative rights to the website. In the

admin interface, you can grant permissions to other users and change

the look and feel of the entire site.

Ingredients

• Completed Recipe 31, Authenticating Your Users, on page 115

Solution

For this recipe, we’ll assume you have already set up an authentica-

tion system for your application that looks like the one described in

Recipe 31, Authenticating Your Users, on page 115. If your authenti-

cation system is different from the one described in this book, don’t

worry. Essentially, we’ll need two things from it: some kind of user

identifier in session and an Active Record model to represent your user

object. In this recipe, those will be session[:user] (containing the user’s id

as a number) and User, respectively.

The basic parts of our role-based authorization scheme are users, roles,

and rights. A user plays many roles. Each role affords the user zero or

more rights. Assuming we already have a User model created, we’ll start

by generating models to represent roles and rights:

chad> ruby script/generate model Role

chad> ruby script/generate model Right

Next, we’ll set up the relationships between User, Role, and Right:

class User < ActiveRecord::Base

has_and_belongs_to_many :roles

abbreviated for clarity

end

32. AUTHORIZING USERS WITH ROLES 122

class Role < ActiveRecord::Base

has_and_belongs_to_many :users

has_and_belongs_to_many :rights

end

class Right < ActiveRecord::Base

has_and_belongs_to_many :roles

end

This doesn’t contain anything too unusual so far. Users have Roles,

which give them associated Rights. Now we’ll get a more concrete idea

of what Roles and Rights look like by generating the supporting database

tables. (If you’re using Rails 1.1 or higher, the migrations were created

automatically when you created the models. You’ll find them in the files

called ###_add_role.rb and ###_add_right.rb, respectively.)

chad> ruby script/generate migration add_roles_and_rights_tables

We’ll then edit the generated migration file to look like this:

class AddRolesAndRightsTables < ActiveRecord::Migration

def self.up

create_table :roles_users, :id => false do |t|

t.column "role_id", :integer

t.column "user_id", :integer

end

create_table :roles do |t|

t.column "name", :string

end

create_table :rights_roles, :id => false do |t|

t.column "right_id", :integer

t.column "role_id", :integer

end

create_table :rights do |t|

t.column "name", :string

t.column "controller", :string

t.column "action", :string

end

end

def self.down

drop_table :roles_users

drop_table :roles

drop_table :rights

drop_table :rights_roles

end

end

http://books.pragprog.com/titles/fr_rr/errata/add?pdf_page=122

32. AUTHORIZING USERS WITH ROLES 123

The roles_users and rights_roles table definitions set :id => false to tell Rails

that they are lookup tables and don’t need a generated id field. The roles

table acts simply as a link between users and their rights, so it has

nothing but the implicit generated id field and a name.

The most notable part of our authorization scheme’s data model is the

rights table. A Right signifies something a user can do, and in the world

of Rails, things are done via controllers and their actions. So for our

model, we’re going to express rights in terms of the controllers and

actions that implement the actions that a Right grants a user. Using the

example of an online recipe book, you might create a Right named Create

Recipe with the controller set to "recipe" and the action set to "create".

This Right would then be granted to one or more Roles that should have

access to creating recipes. For example, we might have some users

that play the role of Author. We’ll look at some more specific examples

shortly.

After using the migration to create our database tables, we’re ready to

put this new model into action. This means setting up our controllers

to allow a user access only to the actions they have been granted access

to. As with the authentication recipe (see Recipe 31, Authenticating Your

Users, on page 115), we’ll accomplish this using a before_filter. With the

combination of the authentication and authorization code, our Applica-

tionController will look like the following:

class ApplicationController < ActionController::Base

layout 'standard'

before_filter :check_authentication,

:check_authorization,

:except => [:signin_form, :signin]

def check_authentication

unless session[:user]

session[:intended_action] = action_name

redirect_to :controller => "admin", :action => "signin_form"

return false

end

end

def check_authorization

user = User.find(session[:user])

unless user.roles.detect{|role|

role.rights.detect{|right|

right.action == action_name && right.controller == self.class.controller_path

}

}

flash[:notice] = "You are not authorized to view the page you requested"

http://books.pragprog.com/titles/fr_rr/errata/add?pdf_page=123

32. AUTHORIZING USERS WITH ROLES 124

request.env["HTTP_REFERER"] ? (redirect_to :back) : (redirect_to home_url)

return false

end

end

end

The new method, check_authorization(), gets the User from session and

searches the user’s roles for a Right that matches the current controller

and action names. If no matching Right is found, a message is put into

flash, and the browser is redirected to either the page from which it

came (if any) or the application’s unprotected home page (see Recipe

36, Make Your URLs Meaningful (and Pretty), on page 131). We could

display such error messages by decorating our application’s standard

layout with a snippet like the following:

<% if flash[:notice] %>

<div class="errors">

<%= flash[:notice] %>

</div>

<% end %>

class HomeController < ApplicationController

skip_before_filter :check_authentication, :check_authorization

def index

render :text => "A page that doesn't require a signin or any rights"

end

end

Notice that our filter methods return false if they fail. This is necessary

to stop additional processing down the filter chain. For example, if

we left out the return false in check_authentication(), check_authorization()

would be executed even when no user was found in session, causing

senseless errors.

Finally, with all these filters set up, we are ready to try our new autho-

rization scheme! So far, we haven’t added any roles or rights to the sys-

tem, so our once-omnipotent users will now have access to nothing but

the application’s home page and sign-in forms. For a real application,

you’ll want to build an administrative interface for managing rights and

roles. For our little recipe application, we’ll add them manually.

chad> ruby script/console

Loading development environment.

>> user = User.find_by_username("chad")

=> #<User:0x230ed5c @attributes={"username"=>"chad", "id"=>"5",

"password"=>"2034f6e32958647fdff75d265b455ebf"}>

>> role = Role.create :name => "Recipe Author"

=> #<Role:0x230bc88 @errors=#<ActiveRecord::Errors:0x230903c @errors={},

@base=#<Role:0x230bc88 ...>>, @new_record=false,

http://books.pragprog.com/titles/fr_rr/errata/add?pdf_page=124

32. AUTHORIZING USERS WITH ROLES 125

@new_record_before_save=false,

@attributes={"name"=>"Recipe Author", "id"=>2}>

>> user.roles << role

=> [#<Role:0x230bc88 @errors=#<ActiveRecord::Errors:0x230903c @errors={},

@base=#<Role:0x230bc88 ...>>, @new_record=false,

@new_record_before_save=false,

@attributes={"name"=>"Recipe Author", "id"=>2}>]

>> user.save

=> true

>> right = Right.create :name => "Create Recipes",

:controller => "recipe", :action => "create"

=> #<Right:0x22f53ac @errors=#<ActiveRecord::Errors:0x22f1d88 @errors={},

@base=#<Right:0x22f53ac ...>>, @new_record=false,

@new_record_before_save=false, @attributes={"name"=>"Create Recipes",

"action"=>"create", "id"=>2, "controller"=>"recipe"}>

>> role.rights << right

=> [#<Right:0x22f53ac @errors=#<ActiveRecord::Errors:0x22f1d88 @errors={},

@base=#<Right:0x22f53ac ...>>, @new_record=false,

@new_record_before_save=false, @attributes={"name"=>"Create Recipes",

"action"=>"create", "id"=>2, "controller"=>"recipe"}>]

>> role.save

=> true

We have created a role called Recipe Author and assigned it to the user

named chad. We then created a right called Create Recipes and added it

to the list of rights afforded to our freshly created Role. Since the Create

Recipes right grants access to the create action of the recipe controller,

the user chad will now be able to access that action.

Discussion

This recipe shows a simple starting point from which you could build

more complex authorization schemes. Basing rights on controllers and

actions doesn’t allow you to, for example, protect access to specific

instances of models in your database. For more complex needs, this

recipe will provide a solid building point, or you can explore third-party

options such as Bruce Perens’s ModelSecurity,16 which takes autho-

rization to such an extreme level of granularity that it allows you to set

rights on the individual operations of an Active Record model.

16http://perens.com/FreeSoftware/ModelSecurity/

http://perens.com/FreeSoftware/ModelSecurity/
http://books.pragprog.com/titles/fr_rr/errata/add?pdf_page=125

Snack Recipe 33

Cleaning Up Controllers with

Postback Actions

Thanks to Marcel Molina Jr. for the code example used in this recipe.

When you’re first learning Rails, you start with the one-action-per-

request paradigm. For every click or form submission, there is an

action in a controller somewhere waiting to respond.

But sometimes the one-action-per-request convention is unnecessary

and leads to code that is less clear than it could be.

For example, when you write code to edit or create new instances of

an Active Record model, there will be requests for both the forms and

the forms’ submission. This could result in four separate actions: new

object form, new object creation, edit object form, and update object.

You’ll end up with a bunch of ambiguously named actions such as

edit(), create(), new(), and update(), which is confusing when you have

to return to it later.

It turns out that all of these requests can be handled by a single

action:17

def edit

@recipe = Recipe.find_by_id(params[:id]) || Recipe.new

if request.post?

@recipe.attributes = params[:recipe]

redirect_to :main_url and return if @recipe.save

end

end

That’s clean and DRY.

17You’ll notice that we’re explicitly calling return after the redirect. Although it’s not

necessary in this example, since the redirect is the last executable line of the method, it’s

important to note that a redirect does not result in a return in Rails. Any code after a

redirect_to() call will be executed unless there is an explicit return.

Recipe 34

Monitor Expiring Sessions

Credit

Thanks to Dave Thomas for the idea and implementation of this recipe.

Problem

Your application explicitly expires sessions after a period of inactivity

(you know—like one of those online banking applications), and you’d

like to help your users keep track of how long they have before the

application signs them out.

Ingredients

• Rails 1.1 or higher

Solution

With a mixture of an after_filter(), a periodically_call_remote() call, and

an RJS template, we can quickly whip up a nice effect. Here are the

salient parts of a BankAccountController that times a session out after

ten minutes of inactivity:

Download KeepAnEyeOnYourSessionExpiry/app/controllers/bank_account_controller.rb

class BankAccountController < ApplicationController

before_filter :update_activity_time, :except => :session_expiry

def update_activity_time

session[:expires_at] = 10.minutes.from_now

end

def session_expiry

@time_left = (session[:expires_at] - Time.now).to_i

unless @time_left > 0

reset_session

render '/signin/redirect'

end

end

end

Before almost all the requests in our application, we call the filter

method update_activity_time. This filter sets the time that the user’s

session should be expired based on the last time the user showed any

activity in the application.

http://media.pragprog.com/titles/fr_rr/code/KeepAnEyeOnYourSessionExpiry/app/controllers/bank_account_controller.rb

34. MONITOR EXPIRING SESSIONS 128

We don’t run the update_activity_time filter for the session_expiry action.

Looking at a sample view for this controller will show you why:

Download KeepAnEyeOnYourSessionExpiry/app/views/bank_account/index.rhtml

<html>

<head>

<%= javascript_include_tag :defaults %>

</head>

<body>

<div id='header'></div>

<%= periodically_call_remote :url => {

:action => 'session_expiry'},

:update => 'header' %>

<div id='body'>Here's where your application's real functionality goes.</div>

</body>

Using periodically_call_remote(), we call the session_expiry() action (every

ten seconds—the default), placing the action’s contents in the initially

empty <div> tag called header. If it’s not yet time for the session to be

expired, the session_expiry() action renders its view:

Download KeepAnEyeOnYourSessionExpiry/app/views/bank_account/session_expiry.rhtml

<% if @time_left < 1.minute %>

Your session will expire in <%= @time_left %> seconds

<% end %>

If the session is due to expire in less than a minute, session_expiry’s

view will display a warning in bold red, which will be updated every ten

seconds.

If the session is due to time out, session_expiry() will reset the session

and invoke an RJS template (see Recipe 6, Update Multiple Elements

with One Ajax Request, on page 26) that redirects the browser to the

application’s sign-in URL:

Download KeepAnEyeOnYourSessionExpiry/app/views/signin/redirect.rjs

page << "window.location = '#{signin_url}';"

Why didn’t we use redirect_to() in session_expiry() to handle the redirect?

Why resort to JavaScript? Browsers won’t do a full redirect when they

receive a 302 HTTP response code via an Ajax request. So we cheat a

little and use RJS to generate a client-side redirect.

http://media.pragprog.com/titles/fr_rr/code/KeepAnEyeOnYourSessionExpiry/app/views/bank_account/index.rhtml
http://media.pragprog.com/titles/fr_rr/code/KeepAnEyeOnYourSessionExpiry/app/views/bank_account/session_expiry.rhtml
http://media.pragprog.com/titles/fr_rr/code/KeepAnEyeOnYourSessionExpiry/app/views/signin/redirect.rjs
http://books.pragprog.com/titles/fr_rr/errata/add?pdf_page=128

Snack Recipe 35

Rendering

Comma-Separated Values

from Your Actions

Thanks to Mike Clark for his ideas on this recipe.

Sometimes the easiest and most satisfying (for you and your users)

way to implement a reporting requirement is to simply provide your

application’s data in a format your users can import into their favorite

reporting and analytical tools. The most common format for such a

thing is CSV, or Comma-Separated Values.

Here’s how you generate CSV from Rails.

Imagine you have an Order model that tracks product orders. Here’s a

simple controller that will export your orders to a CSV file:

Download RenderCSV/app/controllers/export_controller.rb

class ExportController < ApplicationController

def orders

content_type = if request.user_agent =~ /windows/i

'application/vnd.ms-excel'

else

'text/csv'

end

CSV::Writer.generate(output = "") do |csv|

Order.find(:all).each do |order|

csv << [order.id, order.price, order.purchaser, order.created_at]

end

end

send_data(output,

:type => content_type,

:filename => "orders.csv")

end

end

The first line of orders() is a fun hack. If the browser’s USER_AGENT con-

tains the string windows, we set the content type of the response to one

that will cause Microsoft Excel to pop open if it’s installed. Otherwise,

the content type is set to the standard text/csv.

This action renders something like the following:

http://media.pragprog.com/titles/fr_rr/code/RenderCSV/app/controllers/export_controller.rb

35. RENDERING COMMA-SEPARATED VALUES FROM YOUR ACTIONS 130

1,123.22,Kilgore Trout,Sun Apr 02 17:14:58 MDT 2006

2,44.12,John Barth,Sun Apr 02 17:14:58 MDT 2006

3,42.44,Josef K,Sun Apr 02 17:14:58 MDT 2006

Here we use Ruby’s CSV library in its most basic incarnation. If you

need more customizable output, consult the documentation for the CSV

library.

http://books.pragprog.com/titles/fr_rr/errata/add?pdf_page=130

Recipe 36

Make Your URLs Meaningful

(and Pretty)

Problem

You want your URLs to be meaningful and easy to remember. The pop-

ular “Web 2.0” applications of today, such as Flickr and del.icio.us,

have cast aside the hideous, obfuscated, Active Server Page–generated

URLs of days past in favor of clean, short URLs that users can under-

stand. For example, popular bookmarks tagged with “rails” are acces-

sible in del.icio.us via http://del.icio.us/popular/rails. The most interesting

photographs posted to Flickr during March of 2006 are accessible via

http://flickr.com/explore/interesting/2006/03/.

How do you support this style of URL in your application without having

to copy and paste code into multiple controllers and views? How do you

cleanly turn components of your application’s URLs into parameters

that will drive the application’s business logic?

Solution

Action Controller ships with a powerful framework called Routes. With

this framework, routes enable you to map incoming URLs to specific

controllers, actions, and even parameters in your application. Unlike

technologies such as Apache’s mod_rewrite plugin, Action Controller’s

routes are written in pure Ruby.

Routes are declared in the file config/routes.rb in your application’s root

directory. When you generate a new application, a default set of routes

is created for you. The following is the default routes.rb as of Rails 1.0

(with comments removed for brevity):

Download MeaningfulURLs/config/routes.rb

ActionController::Routing::Routes.draw do |map|

map.connect ':controller/service.wsdl', :action => 'wsdl'

map.connect ':controller/:action/:id'

end

Routes are created via the connect() method. The first argument to

connect() is the incoming path to match. The second argument is an

http://del.icio.us/popular/rails
http://flickr.com/explore/interesting/2006/03/
http://media.pragprog.com/titles/fr_rr/code/MeaningfulURLs/config/routes.rb

36. MAKE YOUR URLS MEANINGFUL (AND PRETTY) 132

optional Hash of additional parameters. The first route in the default

routes.rb file supports Web Services Description Language URLs. The

:controller part of the first argument is special. Any path components

that start with a colon are interpreted as variables. :controller is, not

surprisingly, the variable where the controller should go. With this

route in place, an incoming request for /photos/service.wsdl would trans-

late into the invocation of the wsdl() action in the PhotosController class.

The second (and last) route in our default routes.rb file should be famil-

iar to anyone who has done any Rails development. It is the heart of

the Rails URL convention, supporting URLs such as /photos/show/905,

which would invoke the show() action on the PhotosController class, set-

ting the :id parameter to 905.

Now that we know where the routes go and what they generally look

like, let’s make some of our own. Imagine we’re working on a site that

lets users post and share cooking recipes. We have a controller called

RecipesController that houses much of the logic for the application. The

RecipesController has an action, list(), that can search for and display

lists of recipes based on assorted criteria, such as the recipe’s author.

This controller and its associated view are generic enough to be used to

display lists of recipes in any part of the application that may require a

recipe list.

Let’s start by making a route that will let users display all recipes cre-

ated by a certain author. Since the whole site centers around recipes,

having the word recipes in the URL would be redundant. We want

to support a URL that looks like this (assuming the application is

installed on railsrecipes.com): http://railsrecipes.com/chad. Accessing this

URL should display a list of all recipes authored by the user chad.

For the purpose of learning, we’ll add a temporary version of our list

action that will simply raise an exception, passing any supplied param-

eters. This causes the application to fail and display these parameters

in the web browser. We won’t go into the details of performing the

search, since once you know how to get the parameters, the search is

nothing new. Here’s what the controller should look like:

Download MeaningfulURLs/app/controllers/recipes_controller.rb

class RecipesController < ApplicationController

def list

raise params.inspect

end

end

http://media.pragprog.com/titles/fr_rr/code/MeaningfulURLs/app/controllers/recipes_controller.rb
http://books.pragprog.com/titles/fr_rr/errata/add?pdf_page=132

36. MAKE YOUR URLS MEANINGFUL (AND PRETTY) 133

Now we can create our route. Open your config/routes.rb, and add the

following line after all the other routes’ definitions:

map.connect ':user', :controller => 'recipes',

:action => 'list',

:filter => 'user'

With your local server running on the default port of 3000, you should

now be able to access http://localhost:3000/chad. You should see an error

page with the heading RuntimeError in Recipes#list. This is a good thing. It

means your request was routed to the list action you just created. Just

below the heading, you should see a dump of the request’s parameters.

This dump will contain four pairs of items: the user parameter, the

action, the controller, and the filter parameter, which we could use in

our action to determine what we’re filtering on.

Cool. Now, what if we wanted to narrow our search to recipes that

were authored by a specified user and tagged as appetizer? We have

multiple ways to achieve this affect, but one way would be to modify

the previous route declaration to look like this:

map.connect ':user/:tag', :controller => 'recipes',

:action => 'list',

:filter => 'user',

:tag => ''

This route matches URLs such as http://localhost:3000/chad/appetizer,

populating both the :user and :tag parameters. If no tag parameter is

supplied, the route will still match, and the default value of an empty

string will be placed in the :tag parameter. Default parameter values

can be set to any Ruby expression, so if we wanted all searches to

default to south indian, we could replace the last option with :tag =>

’south indian’.

Now, let’s create a route that will match http://localhost:3000/popular and

display the site’s top-ranked recipes. We’ll also provide support for

optionally adding a tag, like we did in our previous example. We can

accomplish this with the following addition to routes.rb:

map.connect 'popular/:tag', :controller => 'recipes',

:action => 'list',

:tag => '',

:filter => 'popular'

There are two points of interest here. First, you’ll notice that if you put

this rule under the existing routes in routes.rb, the wrong parameters get

populated. Why is that? Because the Routes engine processes routes

http://localhost:3000/chad
http://localhost:3000/chad/appetizer
http://localhost:3000/popular
http://books.pragprog.com/titles/fr_rr/errata/add?pdf_page=133

36. MAKE YOUR URLS MEANINGFUL (AND PRETTY) 134

in the order they appear in the file, and there’s nothing to distinguish

the word popular from a user’s name. So what happens is our previous

route matches, and popular gets placed in the user parameter.

Second, this example demonstrates the use of string literals as part of

routes. In fact, a route can consist entirely of literals as in the following

contrived example:

map.connect 'uta/tumba/chennaagide', :controller => 'recipes',

:action => 'list',

:filter => 'popular',

:tag => 'south indian'

The static URL, http://locahost:3000/uta/tumba/chennaagide, will always

return a list of popular South Indian recipes.

Finally, let’s provide support for seeing the recipes that were added on

a specific day, defaulting to the current day. Put this route before the

user route:

map.connect 'daily/:month/:day/:year',

:controller => 'recipes',

:action => 'list',

:filter => 'daily',

:month => Time.now.month,

:day => Time.now.day,

:year => Time.now.year,

:requirements => {

:year => /\d+/,

:day => /\d+/,

:month => /\d+/

}

This is a big one. It accepts URLs that look like: http://localhost:3000/daily/09/06/1997

and populates :month, :day, and :year parameters. If the year is left off

the URL, it will default to the current year. It’s the same with day and

month. Through the :requirements option to the connect() call, we also

specify that the year, day, and month must be numeric digits for this

route to match.

Finally, Routes comes with a great perk that we shouldn’t leave unmen-

tioned: named routes. Instead of calling connect() in your route defini-

tion, you can call a nonexistent method on the map object like this:

map.popular 'popular/:tag', :controller => 'recipes',

:action => 'list',

:tag => '',

:filter => 'popular'

http://locahost:3000/uta/tumba/chennaagide
http://localhost:3000/daily/09/06/1997
http://books.pragprog.com/titles/fr_rr/errata/add?pdf_page=134

36. MAKE YOUR URLS MEANINGFUL (AND PRETTY) 135

With this in place, from your controllers, your views, and your func-

tional and integration tests, you can construct a URL for this route

using the autogenerated method popular_url(). You can even provide

parameters to the generated URL by calling the generated method with

a Hash, like this:

popular_url(:tag => 'south indian')

This not only saves typing but makes your applications less brittle. If

for some reason you have to change the name of a controller or action,

if you’re using named routes, you have to change references to that

controller or action in only one place.

http://books.pragprog.com/titles/fr_rr/errata/add?pdf_page=135

Snack Recipe 37

Stub Out Authentication

This recipe was written by Rails core team member Marcel Molina Jr.

You know that your Rails application will include authentication even-

tually. Focus first on what is most important. Authentication is a

requirement, but it’s rarely the core of what your application does.

Wrap your authentication logic in a method called logged_in?. Always

use this method to determine whether the user is authenticated. When

you start developing your project, add a stub for logged_in? in your

ApplicationController that just returns true.

def logged_in?

true

end

helper_method :logged_in?

You can then start using the logged_in? method throughout your appli-

cation as you intended to without worrying about the implementation

details.

Later, when you’re ready to implement an authentication scheme, you

can just replace true with the actual authentication code.

If you needed to not only check whether someone had authenticated but

to access their user profile, you could use a method like the following:

def current_user

Struct.new("User", :name, :password).new("chad", "secret")

end

You could then use the current_user method throughout the application

and replace its implementation when you’re ready.

Snack Recipe 38

Convert to Active Record

Sessions

By default, for ease of development, Rails stores its sessions on the file

system as serialized Ruby objects. This works fine on a single computer

for a developer, but it doesn’t scale very well when you go to production.

A much faster and more maintainable solution is to store your sessions

in the database using Active Record.

Configuring something like this might sound like a daunting task, but

it’s actually one of the most surprisingly easy tasks you’ll encounter in

Rails. It takes only a minute:

1. The default config/environment.rb file ships with the necessary con-

figuration to store your sessions in the database in the file but

commented out by default. Find the following line in that file, and

uncomment it:

config.action_controller.session_store = :active_record_store

2. Now we need to create the table that will store our session data.

Use the included Rake task to generate an Active Record migration

that will create the table: rake db:sessions:create for Rails 1.1 or rake

create_sessions_table for version 1.0.

3. Run the migration: rake migrate

4. Restart your server.

You can now hit any session-enabled action of your application, and

you should be able to see a new row if you execute the following SQL:

select * from sessions;

Recipe 39

Write Code That Writes Code

Problem

You notice a recurring pattern in your application. You’re writing essen-

tially the same actions over and over again in various controllers.

Looking at the declarative style of many of the Rails helpers such as

in_place_edit_for() and auto_complete_for(), you want your own code to

be expressed as succinctly.

How does Rails implement these so-called macros—code that writes

your actions for you?

Solution

Ruby is an extremely dynamic language. We are all exposed to its

dynamic typing system daily, but the dynamism doesn’t end there.

Ruby, like Lisp and Smalltalk before it, allows programmers to easily

write code that writes and loads code at runtime. This is a really deep

topic, and we’re not going to attempt to dig too far into it here. Instead,

we’ll focus on the details necessary to implement our own Action Con-

troller macros.

Let’s imagine we have a complex application with a large domain model

for which we have many actions that implement a simple search. You

have standardized the look and feel of this search across the application

so that users have a consistent interface. In fact, you’ve made the look

and feel so consistent that you are able to reuse the same view for all

the search actions.

A typical instance of one of these actions might look like the following

simplified example. This one is for searching through contacts in a

contact database.

Download WriteCodeThatWritesCode/app/controllers/contacts_controller.rb

def search

Contact.with_scope(:find => {

:conditions => ['account_id = ?', current_user.account_id]}) do

@title = "Your Contacts"

@results = Contact.find(:all,

:conditions => ['name like ?', "%#{params[:term]}%"])

@display_as = :name

http://media.pragprog.com/titles/fr_rr/code/WriteCodeThatWritesCode/app/controllers/contacts_controller.rb

39. WRITE CODE THAT WRITES CODE 139

@display_action = "view"

render :template => 'shared/search_results'

end

end

Over the life of our application, because we have refactored separate

actions into being able to use a single view, we ended up with this

“configure by instance variable” style. We set several variables in this

action that influence the behavior of the shared view. Let’s look at the

shared view now:

Download WriteCodeThatWritesCode/app/views/shared/search_results.rhtml

<h2 class='search_header'>

<%= @title %>

</h2>

<% @results.each do |result| %>

<%= link_to result.send(@display_as),

:action => @display_action,

:id => result

%>

<% end %>

We see here that the view of search results is structurally the same

across all search actions and uses the instance variables set in the

search action to decide what heading to use, which action to link each

result to, and which attribute of the returned item to use as the display

value for the link. We can now easily use this same view to display

search results for practically any Active Record model, provided we cre-

ate a search action that follows the expected protocol.

The problem here is that although the view has been nicely cleaned up

of duplication, we still have a ton of duplicated code in our controllers.

In a big application, this kind of pattern might propagate itself tens of

times. If we needed to change the behavior of the search results view,

we would have to edit each action that references it. Bad news.

Notice also that our action uses with_scope() to limit the search to

include contacts only within a certain set of criteria. In this case, we’re

modeling a situation wherein the system has multiple accounts (one per

subscribed company), inside of which are many users. Users shouldn’t

be able to view data that was created by people in other companies

in the context of other accounts, so we need to consistently take care

http://media.pragprog.com/titles/fr_rr/code/WriteCodeThatWritesCode/app/views/shared/search_results.rhtml
http://books.pragprog.com/titles/fr_rr/errata/add?pdf_page=139

39. WRITE CODE THAT WRITES CODE 140

to limit the scope of our queries. If we forget to do this in one of our

search actions, it could be embarrassing and damaging to the applica-

tion’s credibility. It would be greatly preferable to automate this so we

don’t have to worry about remembering it each time.

What would be great is if we could simply do something like the follow-

ing in our controllers whenever we wanted a search action:

search_action_for :contacts, :title => "Your Contacts"

In idiomatic Rails style, this would create a search action for the Contact

model with a sensible set of defaults that could be overridden by an

options Hash passed in as the second parameter to the method. Let’s

convert our existing search() action to a macro-driven implementation.

The quickest and easiest way to make this macro available from any

controller in the application is to define it in ApplicationController. Here’s

our ApplicationController with the macro defined:

Download WriteCodeThatWritesCode/app/controllers/application.rb

Line 1 class ApplicationController < ActionController::Base

- def self.search_action_for(table, options = {})

- model_class = Object.const_get(table.classify)

- define_method(:search) do

5 search_code = lambda do

- @title = options[:title] || "Your #{table.humanize}"

- search_column = options[:search_column] || 'name'

- @display_as = options[:display_as] || :name

- @display_action = options[:display_action] || "view"

10 @results = model_class.find(:all, :conditions =>

- ["#{search_column} like ?", "%#{params[:term]}%"])

- render :template => 'shared/search_results'

- end

- (options[:scoped] == false) ?

15 search_code.call : scope(model_class, &search_code)

- end

- end

- def scope(model_class, &block)

- model_class.with_scope(

20 :find => { :conditions => ['account_id = ?', current_user.account_id] },

- &block)

- end

- end

Walking through the code, you’ll see that search_action_for() is defined

using self.search_action_for(). This is because we’re defining the method

to be called on the controller class itself—not on instances of that class.

When we call a method inside a class definition, it gets called on that

class. This method uses const_get() to dynamically look up a constant

http://media.pragprog.com/titles/fr_rr/code/WriteCodeThatWritesCode/app/controllers/application.rb
http://books.pragprog.com/titles/fr_rr/errata/add?pdf_page=140

39. WRITE CODE THAT WRITES CODE 141

by name. In Ruby, classes are constants, so in this case we’re actually

looking up the class using its name.

Rails actions are simply methods defined on controllers. So to write

code that writes Rails actions for us, we need to be able to define meth-

ods dynamically. We can do this with Ruby’s define_method() method.

We name the method search(), because we want the action to be called

search(). Although we’re defining this code in ApplicationController, it will

be run in the context of the controller from which it is called. So if we

call it inside ContactsController, it will define a method called search() in

that controller—not in ApplicationController.

Next we use the lambda() method to define a block of code. This is

the code that makes up the search() action’s real logic. We could have

skipped using a lambda here and just written the code inline, but we’re

going to need the code in block form so that we can conditionally call

with_scope() later in the method. We’ll get to that in a bit, so for now

just take it on faith.

The first step of the search code’s logic is setting up our configuration.

We support a set of sensible defaults, which users can optionally over-

ride using the options parameter. In addition to the variables we set in

our contact-specific version of search(), we’re also providing the abil-

ity to override which column the query will use in its WHERE condition,

which we’ve named search_column in the options parameter.

Now that we have all of the configuration taken care of, on line 10 we

actually do the find(). Notice that we’re calling find() on the model_class

variable. This was set outside the scope of our dynamic method definition

to the model class for which we’re creating a search action. That class,

by virtue of Ruby’s support for closures, gets embedded in the action

and won’t be looked up again when the action is invoked.

Finally, there may be some cases for which we don’t want to scope on

account_id for a model. In our simple example, we allow an option to

turn scoping off, with scoping as the default behavior. On line 14, we

conditionally apply scoping to the code by either calling it bare or pass-

ing it as a block to the scope() method. The scope() method assumes

that any model it receives has an account_id column. I’ll leave support-

ing additional methods of scoping as an exercise for you, should you

need that capability.

So now we have a search() action maker that we can use in any con-

troller we want and with any model. If we had a controller for managing

http://books.pragprog.com/titles/fr_rr/errata/add?pdf_page=141

39. WRITE CODE THAT WRITES CODE 142

appointments and wanted to support searching them, all we’d have to

do is add something like the following to our appointments controller:

search_action_for :appointments,

:title => "Upcoming appointments",

:search_column => 'description',

:display_as => :subject

This is a great way to use less code for the same features, remove dupli-

cation, and make life easier. We’ve gone through a simple example here,

but these basic building blocks can be applied to a diverse set of prob-

lems. Now that you’ve seen it once, let your imagination take over, and

you’re sure to find many ways this technique could help you on your

own projects.

Discussion

You can confront reuse in many ways. The two most prevalent ways are

either to generate code or to create a runtime framework. This recipe

combines those two. We generate code at runtime.

This kind of runtime code generation can be powerful. But it comes

at a price. Creating powerful abstractions such as these requires code

that is sometimes complex and uses the most advanced features of

Ruby. During development, it can be difficult to debug problems with

generated code.

Typically, though, generated code done well creates an expressive, pro-

ductive environment. It’s a balancing act and a decision you shouldn’t

take lightly.

Also See

If you create something reusable in this manner, you might consider

packaging it as a plugin. See Rick Olson’s Recipe 52, Making Your Own

Rails Plugins, on page 204, for more information.

And as an experiment, see how much of what you’ve learned in this

recipe could be applied to creating macros for Active Record models.

You’ll be surprised by how much you can already do!

http://books.pragprog.com/titles/fr_rr/errata/add?pdf_page=142

Snack Recipe 40

Manage a Static Site with

Rails

After spending enough time in Rails, I find myself getting used to the

Rails layout mechanism and seriously missing it when I’m doing static

sites. Sure, other systems are specifically geared toward creating static

sites. But I use Ruby and Rails, and I’d rather not learn another system

that I have to use in static-site situations.

Given that Rails has a simple and robust caching mechanism, we can

use Rails as a static-site management tool. Just set up a controller

under which to store your static content (I called mine pages), and add

the following line inside the controller’s class definition:

after_filter { |c| c.cache_page }

This tells the controller to cache every action as it is accessed. Now,

when you access this page via your browser, Rails will create a static,

cached version of it that will be served directly by the web server on

subsequent requests.

The generated pages will include any layouts that would normally be

applied, or even partials that have been rendered within your views.

This is a great way to componentize your static content. If your site

displays the same contact list in several places, for example, you can

create a partial view with that information and render it where appro-

priate.

Keep in mind that if you use this method on a page that requires

authentication, the page that is cached will be the version that the first

user saw. So if this page showed sensitive account information, that

user’s information would show up for every user who accessed the site.

Only use this technique with content that is the same for all users!

Part IV

Testing Recipes

144

Recipe 41

Creating Dynamic Test

Fixtures

Problem

The Rails framework has done us all a service by building in the abil-

ity to manage test data through fixture files. These files can be either

comma-separated text files or, more commonly, YAML files. You place

sample data in fixtures that are then loaded before your tests run, giv-

ing you test subjects on which to ensure that your code behaves as you

expect.

Even though testing is much easier in the Rails world, creating fixture

data can become tedious when you’re working on a big application with

a rich domain. You want to make sure you have samples that rep-

resent normal application usage scenarios as well as edge cases, and

creating all that data—especially when many of the attributes are often

inconsequential to the test you’re creating them for—can be tiring and

time-consuming.

Rails development is supposed to be fun! How can we take away the

tedium of creating large quantities of test fixtures?

Solution

An often-overlooked feature of the way Rails deals with fixture files is

that before passing them into the YAML parser, it runs them through

ERb. ERb is the same templating engine that powers our .rhtml tem-

plates. It allows you to embed arbitrary Ruby expressions into other-

wise static text.

When used in YAML test fixtures, this approach can be extremely pow-

erful. Consider the following example. This fixture data is a sample of

a larger file used for testing posts to a message board application. A

Post in this application can be a reply to an existing Post, which is spec-

ified by the parent_id field. Imagine how bored you’d get (and how many

errors you’d probably commit) if you had to create dozens more of such

posts to test various edge conditions.

41. CREATING DYNAMIC TEST FIXTURES 146

Download DynamicTestFixtures/test/fixtures/posts.yml

first_post:

id: 1

title: First post!

body: I got the first post! I rule!

created_at: 2006-01-29 20:03:56

updated_at: 2006-01-29 21:00:00

user_id: 1

reply_to_first_post:

id: 2

title: Very insightful

body: It's people like you that make participation in

this message board worthwhile. Thank you.

parent_id: 1

created_at: 2006-01-30 08:03:56

created_at: 2006-01-30 08:03:56

user_id: 2

third_level_nested_child_post:

id: 3

title: This post is buried deep in the comments

body: The content isn't really important. We just want to test

the application's threading logic.

created_at: 2006-01-30 08:03:56

created_at: 2006-01-30 08:03:56

parent_id: 2

user_id: 1

As I was entering this data into the posts.yml file, by the time I reached

the third entry I was annoyed and starting to copy and paste data

without much thought. For example, the third entry’s purpose in our

fictional application is to provide sample data for testing nested com-

ments. We might need to be able to show the total nested child count of

replies to a post to get a high-level idea of the activity going on in that

part of the discussion.

If that were the case, the only field in the third fixture with any real

meaning is the parent_id field. That’s the one that associates this post

with the child of the root post. I don’t care what the post’s title or body

is or who posted it. I just need a post to be there and be counted.

Since fixtures are preprocessed through ERb, we can use embedded

Ruby snippets to generate fixture data. Assuming we want to test with

greater numbers of posts than three, let’s generate a block of posts,

randomly disbursed under the existing thread:

Download DynamicTestFixtures/test/fixtures/posts.yml

<% 1.upto(50) do |number| %>

child_post_<%= number %>:

http://media.pragprog.com/titles/fr_rr/code/DynamicTestFixtures/test/fixtures/posts.yml
http://media.pragprog.com/titles/fr_rr/code/DynamicTestFixtures/test/fixtures/posts.yml
http://books.pragprog.com/titles/fr_rr/errata/add?pdf_page=146

41. CREATING DYNAMIC TEST FIXTURES 147

id: <%= number + 3 %>

title: This is auto-generated reply number <%= number %>

body: We're on number <%= number %>

created_at: 2006-01-30 08:03:56

created_at: 2006-01-30 08:03:56

<%# Randomly choose a parent from a post we've already generated -%>

parent_id: <%= rand(number - 1) + 1 %>

user_id: <%= rand(5) + 1 %>

<% end %>

Now, if we load our fixtures, we can see that we have 53 Posts in our

database:

chad> rake load_fixtures

(in /Users/chad/src/FR_RR/Book/code/DynamicTestFixtures)

chad> ruby script/runner 'puts Post.count'

53

chad> ruby -rpp script/runner 'pp Post.find(53)'

#<Post:0x23311e0

@attributes=

{"updated_at"=>nil,

"body"=>"We're on number 50",

"title"=>"This is autogenerated reply number 50",

"id"=>"53",

"user_id"=>"4",

"parent_id"=>"36",

"created_at"=>"2006-01-30 08:03:56"}>

Wonderful! Now what if we wanted to do something smart with the

dates? For example, we might want to test that when a post is updated,

it is sorted back to the top of the list and redisplayed as if new. Of

course, we could do that by copying and pasting dates and then hand-

editing them, but who wants to spend their time that way? We can save

ourselves some time, some pain, and probably a few self-inflicted bugs

by delegating to some helper methods.

Here’s how we’d do that:

Download DynamicTestFixtures/test/fixtures/posts.yml

<%

def today

Time.now.to_s(:db)

end

def next_week

1.week.from_now.to_s(:db)

end

def last_week

1.week.ago.to_s(:db)

end

%>

http://media.pragprog.com/titles/fr_rr/code/DynamicTestFixtures/test/fixtures/posts.yml
http://books.pragprog.com/titles/fr_rr/errata/add?pdf_page=147

41. CREATING DYNAMIC TEST FIXTURES 148

post_from_last_week:

id: 60

title: Pizza

body: Last night I had pizza. I really liked that story from AWDWR. :)

created_at: <%= last_week %>

updated_at: <%= last_week %>

user_id: 1

post_created_in_future_should_not_display:

id: 61

title: Prognostication

body: I predict that this post will show up next week.

created_at: <%= next_week %>

updated_at: <%= next_week %>

user_id: 1

updated_post_displays_based_on_updated_time:

id: 62

title: This should show up as posted today.

body: blah blah blah

created_at: <%= last_week %>

updated_at: <%= today %>

user_id: 2

Not only does this technique save time and reduce the chance for error,

but it’s also a lot easier to read. The words next week carry a lot

more semantic significance than a hard-coded date. They tell you not

just what the data is but a little of why it’s set the way it is. Other

dated-related method names such as month_end_closing_date() or ran-

dom_date_last_year() could convey significance (or insignificance) of a

value. And, of course, there’s no reason to stop with dates. This is

ERb, which means it’s Ruby, and anything that’s possible with Ruby is

possible in these fixtures.

You probably noticed the calls to, for example, 1.week.ago(). These

aren’t included with Ruby; also not included is the ability to format a

Time object for use with a database. These methods ship with Rails.

Since your fixtures are loaded in the context of a Rails application, all

your model classes, helper libraries, and the Rails framework itself are

available for your use.

Discussion

Though you can generate fixtures at runtime with ERb, sometimes it’s

easier to pregenerate your fixtures. If you just need a bunch of static

data that isn’t going to change much, you might consider writing a

script that creates static YAML fixtures that you then just check in and

manage like usual.

http://books.pragprog.com/titles/fr_rr/errata/add?pdf_page=148

41. CREATING DYNAMIC TEST FIXTURES 149

Another way to quickly generate fixture data is to generate scaffolding

for your models, enter your data via the autogenerated forms, and then

dump your live data into fixtures files. For more information about how

to dump data into fixtures, see Recipe 42, Extracting Test Fixtures from

Live Data, on the next page.

Also See

Since fixture files are usually declared in YAML format, a thorough

understanding of the YAML can make for a more enjoyable experience

when creating them. The YAML specification, like YAML itself, has an

open license and can be downloaded at http://yaml.org/spec/.

http://yaml.org/spec/
http://books.pragprog.com/titles/fr_rr/errata/add?pdf_page=149

Recipe 42

Extracting Test Fixtures from

Live Data

Credit

Thanks to Rails core developer, Jeremy Kemper (bitsweat), for the code

on which this recipe is based.

Problem

You want to take advantage of the unit testing features in Rails, but

your data model is complex, and manually creating all those fixtures

sounds like a real drag. You’ve implemented enough of your appli-

cation that you’re able to populate its database via the application’s

interface—a far better interface than plain-text YAML files! Now you

have a rich set of data that would be great for unit testing. How do you

create fixtures from that existing data?

Solution

Active Record gives us all the ingredients we need to generate fixtures

from our existing data. The basic steps are as follows:

• Establish a connection to the database.

• Query the database for the names of its tables.

• Select the data for each table in turn, and convert it into YAML.

• Generate a unique name for the data in the row.

• Write the results to a file named after the table name.

Let’s use a simple database model to demonstrate. We’ll create a model

to represent people and the clubs they are members of. First we’ll

create the models. We might normally create the table definitions first,

but we’re going to use the models to create sample data during our

migration.

Download CreateFixturesFromLiveData/app/models/person.rb

class Person < ActiveRecord::Base

has_and_belongs_to_many :clubs

end

http://media.pragprog.com/titles/fr_rr/code/CreateFixturesFromLiveData/app/models/person.rb

42. EXTRACTING TEST FIXTURES FROM LIVE DATA 151

Download CreateFixturesFromLiveData/app/models/club.rb

class Club < ActiveRecord::Base

has_and_belongs_to_many :people

end

People can belong to many clubs and clubs can have many members.

For the sake of demonstration, we’ll generate some sample data in our

migration file. In the real world, we would probably set up a simple set

of scaffolds for data entry, and we could easily create a lot more sample

data. The Active Record migration file should look like the following:

Download CreateFixturesFromLiveData/db/migrate/001_create_people_and_clubs_tables.rb

class CreatePeopleAndClubsTables < ActiveRecord::Migration

def self.up

create_table :people do |t|

t.column :name, :string

end

create_table :clubs do |t|

t.column :name, :string

end

create_table :clubs_people, :id => false do |t|

t.column :person_id, :integer

t.column :club_id, :integer

end

chad = Person.create(:name => "Chad")

kelly = Person.create(:name => "Kelly")

james = Person.create(:name => "James")

hindi_club = Club.create(:name => "Hindi Study Group")

snow_boarders = Club.create(:name => "Snowboarding Newbies")

chad.clubs.concat [hindi_club, snow_boarders]

kelly.clubs.concat [hindi_club, snow_boarders]

james.clubs.concat [snow_boarders]

[chad, kelly, james].each {|person| person.save}

end

def self.down

drop_table :people

drop_table :clubs

drop_table :clubs_people

end

end

After we’ve run this migration, we should have two Club objects and

three Person objects in our database. Now let’s load the Rails console

http://media.pragprog.com/titles/fr_rr/code/CreateFixturesFromLiveData/app/models/club.rb
http://media.pragprog.com/titles/fr_rr/code/CreateFixturesFromLiveData/db/migrate/001_create_people_and_clubs_tables.rb
http://books.pragprog.com/titles/fr_rr/errata/add?pdf_page=151

42. EXTRACTING TEST FIXTURES FROM LIVE DATA 152

and take some of the steps toward accomplishing our end goal of cre-

ating fixtures from this data:

chad> ruby script/console

Loading development environment.

>> ActiveRecord::Base.establish_connection

=> #<ActiveRecord::Base::ConnectionSpecification:0x233cd38 @config...

>> ActiveRecord::Base.connection.tables

=> ["clubs", "clubs_people", "people", "schema_info"]

Based on the set of steps we laid out at the beginning of this recipe,

we’re almost halfway there! But there’s one table in the list that we

don’t want to create fixtures for. The special schema_info table is used

by Active Record to manage migrations, so we wouldn’t want to create

fixtures for that. Make a mental note, and let’s continue through our

checklist. We need to issue a query for each table’s data and convert

each row to YAML. We’ll start with a single table:

>> ActiveRecord::Base.connection.select_all("select * from people")

=> [{"name"=>"Chad", "id"=>"1"}, {"name"=>"Kelly", "id"=>"2"},

{"name"=>"James", "id"=>"3"}]

The Active Record connection adapter’s select_all() method returns an

array of hash objects, each containing key/value pairs of column name

and value for its respective row. Not coincidentally, it’s trivial to trans-

late these hash objects into the required YAML format for a fixture:

>> puts ActiveRecord::Base.connection.select_all("select * from people").map do |row|

row.to_yaml

end

name: Chad

id: "1"

name: Kelly

id: "2"

name: James

id: "3"

=> nil

We’re almost there! At this point, we’ve tackled all the hard stuff that

needs to be done, so it makes sense to put this code together in a

script that we can keep handy to run when needed. Since most Rails

automation tasks are handled using Rake, we’ll throw together a quick

Rake task. You can refer to Recipe 48, Creating Your Own Rake Tasks,

on page 180, for a full description of how to create a Rake task. We’ll

create a file called lib/tasks/extract_fixtures.rake and populate it with the

fruits of our exploration:

http://books.pragprog.com/titles/fr_rr/errata/add?pdf_page=152

42. EXTRACTING TEST FIXTURES FROM LIVE DATA 153

Download CreateFixturesFromLiveData/lib/tasks/extract_fixtures.rake

desc 'Create YAML test fixtures from data in an existing database.

Defaults to development database. Set RAILS_ENV to override.'

task :extract_fixtures => :environment do

sql = "SELECT * FROM %s"

skip_tables = ["schema_info"]

ActiveRecord::Base.establish_connection

(ActiveRecord::Base.connection.tables - skip_tables).each do |table_name|

i = "000"

File.open("#{RAILS_ROOT}/test/fixtures/#{table_name}.yml", 'w') do |file|

data = ActiveRecord::Base.connection.select_all(sql % table_name)

file.write data.inject({}) { |hash, record|

hash["#{table_name}_#{i.succ!}"] = record

hash

}.to_yaml

end

end

end

We can now invoke this task by typing rake extract_fixtures in the root

directory of our application. The task uses the Rails environment, so

by default it will dump the fixtures from your development database.

To extract the fixtures from your production database, you would set

the RAILS_ENV environment variable to "production".

Note that this task will overwrite any existing fixtures you may have, so

be sure to back up your files before running it.

Running our new Rake task results in fixture files being created under

the test/fixtures/ directory of our application as in the following people.yml

file:

Download CreateFixturesFromLiveData/test/fixtures/people.yml

--

people_001:

name: Chad

id: "1"

people_002:

name: Kelly

id: "2"

people_003:

name: James

id: "3"

These fixture files are ready to be loaded using the load_fixtures Rake

task or through your unit or functional tests.

http://media.pragprog.com/titles/fr_rr/code/CreateFixturesFromLiveData/lib/tasks/extract_fixtures.rake
http://media.pragprog.com/titles/fr_rr/code/CreateFixturesFromLiveData/test/fixtures/people.yml
http://books.pragprog.com/titles/fr_rr/errata/add?pdf_page=153

42. EXTRACTING TEST FIXTURES FROM LIVE DATA 154

Discussion

You may occasionally encounter data that, when extracted, won’t load

properly. Since the fixtures files are in YAML format, the extracted data

must be parseable by the YAML parser. If you encounter strings that

won’t parse properly, you need to make sure they are being escaped

when you extract them. To do that, you can override the to_yaml()

method on the String class. Add the following to the top of your Rake file

(before any task definitions):

require 'yaml/encoding'

class String

alias :old_to_yaml :to_yaml

def to_yaml(opts = {})

YAML.escape(self).old_to_yaml(opts)

end

end

http://books.pragprog.com/titles/fr_rr/errata/add?pdf_page=154

Recipe 43

Testing Across Multiple

Controllers

Credit

Rails core team member Jamis Buck wrote this recipe.

Problem

You want to write tests for a multistep process in your application that

spans multiple controllers.

Ingredients

• Rails 1.1 or higher

Solution

Integration tests are a new feature of Rails 1.1 that take testing your

applications to a new level. They are the next logical progression in the

existing series of available tests:

• Unit tests are narrowly focused on testing a single model.

• Functional tests are focused on testing a single controller and the

interactions between the models it employs.

• Integration tests are broad, story-level tests that verify the inter-

actions between the various actions supported by the application,

across all controllers.

This makes it easier to duplicate session management and routing bugs

in your tests. What if you had a bug that was triggered by certain

cruft accumulating in a user’s session? It’s hard to mimic that with

functional tests.

For an example, consider a fictional financial application. We have a

set of “stories” that describe how the application should function:

• Bob wants to sign up for access. He goes to the login page, clicks

the “Sign Up” link, and fills out the form. After submitting the

43. TESTING ACROSS MULTIPLE CONTROLLERS 156

form, a new ledger is created for him, and he is automatically

logged in and taken to the overview page.

• Jim, an experienced user, has received a new credit card and

wants to set up a new account for it. He logs in, selects the ledger

he wants to add the account to, and adds the account. He is then

forwarded to the register for that account.

• Stacey’s a disgruntled user who has decided to cancel her account.

Logging in, she goes to the “account preferences” page and cancels

her account. Her data is all deleted, and she is forwarded to a

“sorry to see you go” page.

Starting with the first story, we might write something like the following.

We’ll create the file stories_test.rb in the test/integration directory.

Download IntegrationTesting/test/integration/stories_test.rb

require "#{File.dirname(__FILE__)}/../test_helper"

class StoriesTest < ActionController::IntegrationTest

fixtures :accounts, :ledgers, :registers, :people

def test_signup_new_person

get "/login"

assert_response :success

assert_template "login/index"

get "/signup"

assert_response :success

assert_template "signup/index"

post "/signup", :name => "Bob", :user_name => "bob", :password => "secret"

assert_response :redirect

follow_redirect!

assert_response :success

assert_template "ledger/index"

end

end

Run this by invoking the file directly via ruby or by typing the following:

chad> rake test:integration

The code is pretty straightforward: first, we get the /login URL and

assert that the response is what we expect. Then we get the /signup

URL, post the data to it, and follow the redirect through to the ledger.

http://media.pragprog.com/titles/fr_rr/code/IntegrationTesting/test/integration/stories_test.rb
http://books.pragprog.com/titles/fr_rr/errata/add?pdf_page=156

43. TESTING ACROSS MULTIPLE CONTROLLERS 157

However, one of the best parts of the integration framework is the ability

to extract a testing DSL18 from your actions, making it really easy to

tell stories like this. At the simplest, we can do that by adding some

helper methods to the test. Here’s a revised version of our test method

and its new helpers:

Download IntegrationTesting/test/integration/stories_test.rb

def test_signup_new_person

go_to_login

go_to_signup

signup :name => "Bob", :user_name => "bob", :password => "secret"

end

private

def go_to_login

get "/login"

assert_response :success

assert_template "login/index"

end

def go_to_signup

get "/signup"

assert_response :success

assert_template "signup/index"

end

def signup(options)

post "/signup", options

assert_response :redirect

follow_redirect!

assert_response :success

assert_template "ledger/index"

end

Now, you can reuse those actions in other tests, making your tests very

readable and easy to build. But it can be even neater! Taking advantage

of ActionController::IntegrationTest’s open_session() method, you can create

your own session instances and decorate them with custom methods.

Think of a session as a single user’s experience with your site. Consider

this example:

18Domain-Specific Language

http://media.pragprog.com/titles/fr_rr/code/IntegrationTesting/test/integration/stories_test.rb
http://books.pragprog.com/titles/fr_rr/errata/add?pdf_page=157

43. TESTING ACROSS MULTIPLE CONTROLLERS 158

Download IntegrationTesting/test/integration/stories_test.rb

class StoriesTest < ActionController::IntegrationTest

fixtures :accounts, :ledgers, :registers, :people

def test_signup_new_person

new_session do |bob|

bob.goes_to_login

bob.goes_to_signup

bob.signs_up_with :name => "Bob", :user_name => "bob", :password => "secret"

end

end

private

module MyTestingDSL

def goes_to_login

get "/login"

assert_response :success

assert_template "login/index"

end

def goes_to_signup

get "/signup"

assert_response :success

assert_template "signup/index"

end

def signs_up_with(options)

post "/signup", options

assert_response :redirect

follow_redirect!

assert_response :success

assert_template "ledger/index"

end

end

def new_session

open_session do |sess|

sess.extend(MyTestingDSL)

yield sess if block_given?

end

end

end

The new_session() method at the bottom simply uses open_session() to

create a new session and decorate it by mixing in our DSL module.

By adding more methods to the MyTestingDSL module, you build up your

DSL and make your tests richer and more expressive. You can even use

named routes in your tests (see Recipe 36, Make Your URLs Meaningful

http://media.pragprog.com/titles/fr_rr/code/IntegrationTesting/test/integration/stories_test.rb
http://books.pragprog.com/titles/fr_rr/errata/add?pdf_page=158

43. TESTING ACROSS MULTIPLE CONTROLLERS 159

(and Pretty), on page 131) to ensure consistency between what your

application is expecting and what your tests are asserting! For example:

def goes_to_login

get login_url

...

end

Note that the new_session() method will actually return the new session

as well. This means you could define a test that mimicked the behavior

of two or more users interacting with your system at the same time:

Download IntegrationTesting/test/integration/stories_test.rb

class StoriesTest < ActionController::IntegrationTest

fixtures :accounts, :ledgers, :registers, :people

def test_multiple_users

jim = new_session_as(:jim)

bob = new_session_as(:bob)

stacey = new_session_as(:stacey)

jim.selects_ledger(:jims)

jim.adds_account(:name => "checking")

bob.goes_to_preferences

stacey.cancels_account

end

private

module MyTestingDSL

attr_reader :person

def logs_in_as(person)

@person = people(person)

post authenticate_url, :user_name => @person.user_name, :password => @person.password

is_redirected_to "ledger/list"

end

def goes_to_preferences

...

end

def cancels_account

...

end

end

def new_session_as(person)

new_session do |sess|

sess.goes_to_login

sess.logs_in_as(person)

yield sess if block_given?

end

end

end

http://media.pragprog.com/titles/fr_rr/code/IntegrationTesting/test/integration/stories_test.rb
http://books.pragprog.com/titles/fr_rr/errata/add?pdf_page=159

43. TESTING ACROSS MULTIPLE CONTROLLERS 160

To further demonstrate how these DSLs can be built, let’s implement

the second of the three stories described at the beginning of this article:

Jim adding a credit-card account:

Download IntegrationTesting/test/integration/stories_test.rb

def test_add_new_account

new_session_as(:jim) do |jim|

jim.selects_ledger(:jims)

jim.adds_account(:name => "credit card")

end

end

private

module MyTestingDSL

attr_accessor :ledger

def is_redirected_to(template)

assert_response :redirect

follow_redirect!

assert_response :success

assert_template(template)

end

def selects_ledger(ledger)

@ledger = ledgers(ledger)

get ledger_url(:id => @ledger.id)

assert_response :success

assert_template "ledger/index"

end

def adds_account(options)

post new_account_url(:id => @ledger.id), options

is_redirected_to "register/index"

end

end

Integration tests with DSLs make your code more readable and make

testing more fun. And, if testing is fun, you’re more likely to do it.

Discussion

You may notice that individual integration tests run slower than indi-

vidual unit or functional tests. That’s because they test so much more.

Each of the tests shown in this recipe tests multiple requests. Most

functional tests test only one. Also, integration tests run through the

entire stack—from the dispatcher, through the routes, into the con-

troller, and back. Functional tests skip straight to the controller.

http://media.pragprog.com/titles/fr_rr/code/IntegrationTesting/test/integration/stories_test.rb
http://books.pragprog.com/titles/fr_rr/errata/add?pdf_page=160

Snack Recipe 44

Write Tests for Your Helpers

Thanks to Rails core team member Scott Barron for the idea for this recipe.

You have been extracting your view logic into nice, clean helpers. Since

these helpers are used throughout your application, you want to make

sure they’re well tested. But how do you write unit tests for your

helpers?

Let’s say we’re developing an online recipe book, and we have a helper

that looks like this:

Download WriteTestsForHelpers/app/helpers/application_helper.rb

Methods added to this helper will be available to all templates in the application.

module ApplicationHelper

def recipe_link(recipe)

link_to "#{recipe.name} (#{recipe.comments.count})",

{ :controller => 'recipes',

:action => 'show',

:id => recipe},

:class => "recipe-link#{recipe.comments.count > 0 ? '-with-comments' : ''}"

end

end

The helper allows us to easily link to specific recipes from throughout

the site, adjusting the CSS class depending on whether any users have

commented on the recipe, without having to type all the same code in

over and over again. Now we want to write automated tests for this

functionality.

Helpers aren’t usually accessible from unit tests, so unlike most things

in Rails, it’s not immediately obvious how to get access to them. First

we’ll need to create a Ruby source file under our test/unit/ directory to

house the test. Let’s call it recipe_link_helper_test.rb. In the file, in addi-

tion to the usual Test::Unit boilerplate code, we’ll include our Application-

Helper and the Rails helpers on which it depends. Here’s the beginning

of the file, test/unit/recipe_link_helper_test.rb:

Download WriteTestsForHelpers/test/unit/recipe_link_helper_test.rb

require File.dirname(__FILE__) + '/../test_helper'

class RecipeLinkHelperTest < Test::Unit::TestCase

include ActionView::Helpers::UrlHelper

include ActionView::Helpers::TextHelper

include ActionView::Helpers::TagHelper

include ApplicationHelper

http://media.pragprog.com/titles/fr_rr/code/WriteTestsForHelpers/app/helpers/application_helper.rb
http://media.pragprog.com/titles/fr_rr/code/WriteTestsForHelpers/test/unit/recipe_link_helper_test.rb

44. WRITE TESTS FOR YOUR HELPERS 162

Now we can write a test that exercises our helper:

Download WriteTestsForHelpers/test/unit/recipe_link_helper_test.rb

def test_link_to_recipe_with_comments_shows_count

r = Recipe.create(:name => "test")

3.times {r.comments.create}

assert_match(/\(3\)/, recipe_link(r))

end

Unfortunately, running this test results in an ugly error complaining

about url_for() being called on nil. Following that error into the Rails

source will lead to a series of patches and errors. I’ll save you the

trouble by giving you the following setup() method you can add to your

test, which sets things up to sufficiently test helpers:

Download WriteTestsForHelpers/test/unit/recipe_link_helper_test.rb

def setup

@controller = RecipesController.new

request = ActionController::TestRequest.new

@controller.instance_eval { @params = {}, @request = request }

@controller.send(:initialize_current_url)

end

If you needed this functionality (or more) throughout your tests, you

could define this setup() method in a module and include it in the tests

that needed it.

http://media.pragprog.com/titles/fr_rr/code/WriteTestsForHelpers/test/unit/recipe_link_helper_test.rb
http://media.pragprog.com/titles/fr_rr/code/WriteTestsForHelpers/test/unit/recipe_link_helper_test.rb
http://books.pragprog.com/titles/fr_rr/errata/add?pdf_page=162

Part V

Big-Picture Recipes

163

Recipe 45

Automating Development

with Your Own Generators

Problem

You find yourself repeating the same set of steps to create pieces of

an application. Perhaps you’ve created a framework or a pattern that

you use consistently throughout your code. As a result, every time you

create a new application or a new widget within your application, you

find yourself robotically applying the pattern.

Solution

Rails generators. If you’re using Rails, you’ve seen them. You probably

at the least use them to create the initial structure of your application,

to create new controllers and views, to add new models, and to generate

new migrations. And, of course, the most infamous Rails generator is

the Scaffolding generator, which creates code to implement the CRUD

elements of a given model. Thankfully, instead of just creating a one-off

hack to implement these generators, the Rails developers came up with

a reusable framework for template-driven code generation.

This makes it easy to create your own generators and install them so

that they’re first-class citizens in the eyes of the generate script.

Generators can come in handy either for repeating a pattern across

multiple applications or for creating a similar structure for multiple ele-

ments in a single application. For a concrete example, imagine you’ve

created a Tumblelog,19 which is like a weblog but with many small posts

of different types. You may, for example, post pictures, quotes, links,

or sound clips, and each type of post would have its own input form

and its own specialized view. A picture might need a form with a title

and a URL, while a quote would require fields for a body and an attri-

bution. For every type, you would also need to create model files, and

you’ve decided it would be easiest to separate specialized behavior into

one controller per post type. With just a few post types implemented,

you end up with a structure that looks something like this:

19For an example, see http://project.ioni.st.

http://project.ioni.st

45. AUTOMATING DEVELOPMENT WITH YOUR OWN GENERATORS 165

In this structure, each model class inherits from Post to take advantage

of Rails’ single-table inheritance model. All the controllers inherit from

PostController to get access to functionality that is common to all types

of posts. And to get up and running quickly when you add a new

type of post, it’s convenient to have _view.rhtml and _form.rhtml partials

that include every possible field for a Post so you can immediately add

posts of the new type and then incrementally modify the views to be

appropriate to that type.

If you had an active imagination, you could concoct an unending list

of post types to add to your new Tumblelog system. Even using the

built-in generators for models and controllers that come with Rails,

adding new post types would quickly become a burden. This is a perfect

opportunity to whip up your very own generator.

The first step in creating your generator is to set up the generator’s

directory structure in one of the places the Rails framework is expecting

it. Rails looks for user-defined generators in the following locations

when the script/generate command is invoked (where RAILS_ROOT is

the root directory of your application and ~ is your home directory):

http://books.pragprog.com/titles/fr_rr/errata/add?pdf_page=165

45. AUTOMATING DEVELOPMENT WITH YOUR OWN GENERATORS 166

Figure 45.5: Directory Layout for Generators

• RAILS_ROOT /lib/generators

• RAILS_ROOT /vendor/generators

• RAILS_ROOT /vendor/plugins/any subdirectory/generators

• ~/.rails/generators

In addition to these paths, the script/generate command will look for

installed gems whose names end in _generator.

Typically, the vendor directory is used to store third-party software—

stuff developed by someone else. And, since this generator is tightly

linked to our Tumblelog application, we’d like to keep it in the same

directory structure as our application instead of putting it in our home

directory. So by process of elimination, we’ll create our generator under

lib/generators in our application’s root directory.

By convention, a generator is laid out as shown in Figure 45.5 . You

should name the generator’s directory whatever you want to call the

generator. In the example here, the generator would be called tumblepost

and would be invoked by calling this:

ruby script/generate tumblepost

The file tumblepost_generator.rb in the tumblepost directory holds our gen-

erator’s main logic.USAGE is a text file containing usage instructions

that will be displayed when invoking our generator without any argu-

http://books.pragprog.com/titles/fr_rr/errata/add?pdf_page=166

45. AUTOMATING DEVELOPMENT WITH YOUR OWN GENERATORS 167

ments, and templates is a directory where we’ll put the source templates

from which our code will be generated. For our Tumblelog Post genera-

tor, we’ll create one template for every file the generator should create.

The heart of the generator is the Manifest, which is defined in tumble-

post_generator.rb. Let’s look at that file:

class TumblepostGenerator < Rails::Generator::NamedBase

def manifest

record do |m|

m.class_collisions class_name

m.template "app/controllers/controller_template.rb",

"app/controllers/#{file_name}_controller.rb"

m.template "app/models/model_template.rb",

"app/models/#{file_name}.rb"

m.directory File.join('app/views', file_name)

m.template "app/views/form_template.rhtml",

"app/views/#{file_name}/_form.rhtml"

m.template "app/views/view_template.rhtml",

"app/views/#{file_name}/_view.rhtml"

m.readme "POST_GENERATION_REMINDER"

end

end

end

Rails ships with two classes from which you can extend your genera-

tors: Rails::Generator::Base and Rails::Generator::NamedBase. NamedBase is

an extension of the bare-bones Base generator, providing a lot of helpful

functionality for dealing with a single named argument on the com-

mand line (for example, the name of a controller or model you want to

create). Unless you’re doing something extremely simple with genera-

tors, you probably want to use NamedBase.

A generator’s primary job is to create a Manifest, which Rails expects

to be accessible via a method called manifest(). The record() method

provides an easy way to create a new manifest, which it yields (as the

variable m in this case) to the block it is called with. The manifest’s

job is to hold the information about what a generator should do. This

includes actions such as copying files, creating directories, and check-

ing for naming collisions. When you make a generator, you write a list of

actions into a manifest that will then be executed by the script/generate

command. Because the manifest doesn’t actually do the requested

actions, Rails can do helpful things by using them as the list of files

to remove via the script/destroy command.

http://books.pragprog.com/titles/fr_rr/errata/add?pdf_page=167

45. AUTOMATING DEVELOPMENT WITH YOUR OWN GENERATORS 168

Our manifest is pretty simple. First it checks, using the class_name()

method of class NamedBase, to make sure that the requested class

name isn’t yet taken by Ruby or Rails. This prevents you from doing

something like this:

chad> ruby script/generate tumblepost File

A File Post type in a Tumblelog might seem like a good idea for creating

a post that consists of nothing but an attached file, but naming the

class File might result in some unexpected behavior since it overlaps

with Ruby’s core File class. class_name will help you catch oddities like

that before they occur.

Next in the manifest, we have two calls to template(). Each tells the gen-

erator to use the first argument as a template from which to generate

the second argument. By convention, your template files should live in

a directory called templates, while the generated files will be placed in

the relative path from the root of your application’s directory. Here, we

use NamedBase’s file_name() method to generate the properly inflected

version of the generated object’s name for a file name. Because we’ve

used the template() method, the source file will be run through eRB

before being written to the destination. This allows us to programat-

ically construct the contents of the generated files. For example, the

beginning of our controller_template.rb might look like this:

class <%= class_name %>Controller < TumblepostController

def new

@thing = <%= class_name %>.new

end

end

If we had instead used NamedBase’s file() method, the generator would

have done a simple copy from the source to the destination. file() and

template() both support options for setting file permissions on the gen-

erated files as well as autocreating the generated file’s shebang line (the

magic first line of a UNIX shell script, which tells the operating system

which program to execute the script with). So, for a script that is meant

to be executable, you might do something like this:

m.file "bin/source_script",

"scripts/generated_script",

:chmod => 0755,

:shebang => '/some/weird/path/to/ruby'

This would set the script’s permissions to be readable and executable

by everyone and would set its first line to look like this:

http://books.pragprog.com/titles/fr_rr/errata/add?pdf_page=168

45. AUTOMATING DEVELOPMENT WITH YOUR OWN GENERATORS 169

#!/some/weird/path/to/ruby

In addition to these options, the template() method can accept a hash

of local assigns, just like regular Action View ERb templates. So, for

example, the following:

m.template "source_file.rb",

"destination_file.rb",

:assigns => {:name_for_class => "HelloWorld"}

binds the local variable name_for_class to the value "HelloWorld" for use

within the template file.

Since templates are evaluated by ERb, we could run into problems if

our source files are ERb templates that have dynamic snippets to be

called at runtime by our application. For example, the inclusion of <%=

flash[:notice] %> in a source .rhtml file would cause the generator to sub-

stitute the value in flash[:notice] while it generates the destination files,

which is obviously not what we want. To prevent that from happening,

.rhtml templates can escape these tags by using two percent signs, such

as <%%= flash[:notice] %>. These tags will be replaced by their single–

percent sign equivalents in the generated .rhtml files.

Finishing our walk through the manifest, we see calls to directory() and

readme(). The call to directory() tells the generator to create a directory

in the destination with the given relative path. In our case, we need to

create directories for our view templates before we can write them into

their respective homes. The readme() method allows generator creators

to specify one or more text files to be displayed during code generation.

If, for example, there are postgeneration steps that should be taken

manually to create a post in the Tumblelog of the new type, we could

display a message (stored in templates/POST_GENERATION_REMINDER) that

would be displayed at the end of our generator’s run.

Now that we have our generator set up, we can call it from our applica-

tion’s root directory. If we wanted to create a new Post type that would

allow us to upload sound files, we could generate the structure for that

type with the following:

chad> ruby script/generate tumblepost SoundClip

create app/controllers/sound_clip_controller.rb

create app/models/sound_clip.rb

create app/views/sound_clip

create app/views/sound_clip/_form.rhtml

create app/views/sound_clip/_view.rhtml

readme POST_GENERATION_REMINDER

Don't forget to customize the auto-generated views!

http://books.pragprog.com/titles/fr_rr/errata/add?pdf_page=169

45. AUTOMATING DEVELOPMENT WITH YOUR OWN GENERATORS 170

Discussion

Code generation is a contentious topic. If a code generator is buggy,

it will propagate bugs in such a way that they are hard to fix when

they’re discovered. You may think you’ve fixed a bug to find that you

have fixed only one of many occurrences of the bug. There is a fine

line between when it’s the right choice to use a code generator and

when the same thing could be accomplished more cleanly with runtime

framework code.

What if your generator needs to create database tables? Rails gener-

ators support the creation of Active Record migrations. If you use the

migration_template() method, the generator is smart enough to find the

last migration number available and to name the new file appropriately.

The call looks like this:

m.migration_template "db/migrations/migration_template.rb", "db/migrate"

Unlike template(), with migration_template() you don’t specify the full

destination file’s path in the second parameter. You specify only the

destination directory, and migration_template() will create the file name

for you.

Also See

If you have RubyGems installed, try running the following command:

gem search -r generator

You’ll see a listing of many Rails generators that have been created and

deployed as gems. This is not only a great source of examples from

which to learn more about how to implement your own generators, but

you may even find that the generator you thought you needed to create

already exists in some shape or form. Install a few and play around

with them. Some great stuff has already been done for you.

http://books.pragprog.com/titles/fr_rr/errata/add?pdf_page=170

Recipe 46

Continuously Integrate Your

Code Base

Problem

You and your team members occasionally forget to make sure all of your

tests run properly before checking in your code. Occasionally, you even

forget to add a critical file to source control, rendering the “golden” copy

of your application unusable.

Ingredients

• The continuous_builder plugin, installable from the root of your Rails

application with the following:

chad> ruby script/plugin install continuous_builder

+ ./continuous_builder/README.txt

+ ./continuous_builder/lib/continuous_builder.rb

+ ./continuous_builder/tasks/test_build.rake

• This recipe requires that you manage your source code with the

Subversion (http://subversion.tigris.org) version control system. If you

need to support other version control systems, try Damage Control

(http://dev.buildpatterns.com/trac/wiki/DamageControl).

Solution

Hidden in the Rails plugin repository is a charming little program that

will allow you to watch your Subversion repository and to run your

application’s unit and functional tests every time anyone commits any-

thing. Continuous integration systems like this are nothing new, but

this one takes the cake in terms of simplicity. Created by Rails core

developers David Heinemeier Hansson and Tobias Lütke, the Contin-

uous Builder plugin is a simple Rake task that gets executed with

each commit to your source repository and then emails any exceptional

results to the destination of your choice.

With the proper guidance (this recipe, of course), the plugin is easy to

set up. Assuming you already have it installed and checked into your

application’s vendor/plugins directory, the first step is to set up your

Subversion server.

http://subversion.tigris.org
http://dev.buildpatterns.com/trac/wiki/DamageControl

46. CONTINUOUSLY INTEGRATE YOUR CODE BASE 172

The Continuous Builder must be installed as a commit hook into the

Subversion server. To install it, you’ll need to have permissions to the

actual repository where your application resides. If you don’t know the

location of your repository, ask the person who set it up to help you.

In your repository’s directory, you will find a subdirectory called hooks.

Look for a file named post-commit. If the file does not exist, you can

create it with your text editor of choice.

A fresh file should look something like this:

#!/bin/sh

DEVELOPERS=chad@chadfowler.com

BUILDER="'Continuous Builder' <cb@chadfowler.com>"

BUILD_DIRECTORY=/path/to/build_directory

APP_NAME=MyApp

RAKE=/usr/local/bin/rake

cd $BUILD_DIRECTORY/my_app_under_svn && \

$RAKE -t test_latest_revision NAME="$APP_NAME" \

RECIPIENTS="$DEVELOPERS" \

SENDER="$BUILDER" &

You should, of course, tweak the settings to match your application

and environment. DEVELOPERS should be set to a comma-separated list

of email addresses that will receive messages when a build fails.

Each time you commit your code, Continuous Builder will go to your

BUILD_DIRECTORY, run a Subversion update, and then execute your tests.

Once you’ve decided where that directory will be, create the directory

and svn co your code to it. You should not use your BUILD_DIRECTORY for

development.

APP_NAME gives your application a unique name that will identify it in

the emails Continuous Builder sends when there’s a problem. And

finally, RAKE should specify the full path to your Rake executable. For

security reasons, Subversion executes its hooks with an empty envi-

ronment, so you’ll need to specify an absolute path here.

After you’ve saved the file, make sure it is set to be executable by the

process Subversion runs as. If you’re running Subversion as a module

inside Apache, that will be the user the Apache server is running as

(ps aux|grep httpd will probably show you that if you’re not immediately

sure how to find out). You’ll also need to make sure your specified

BUILD_DIRECTORY is both readable and writable by the same user.

In case you skipped the previous paragraph, go back and read it. Sub-

version is not very nice about reporting errors in its hooks. If you com-

http://books.pragprog.com/titles/fr_rr/errata/add?pdf_page=172

46. CONTINUOUSLY INTEGRATE YOUR CODE BASE 173

mit a change to your application and nothing at all seems to happen on

the Subversion server, it’s probably a permissions problem.

Now go to your BUILD_DIRECTORY, and ensure that you can successfully

run your tests. Unless you’ve made some serious modifications to your

default Rakefile, issuing a bare rake command should run the tests.

Keep in mind that if your application uses one, you’ll need to have

access to your database (along with the proper database.yml configura-

tion) for your tests to run. If all goes well with the test run, let’s test the

commit hook.

Go back to your development environment and make a change to your

tests that deliberately breaks one. Instead of changing an existing test

method, I would just add a new one like this:

def test_check_to_see_if_the_post_commit_hook_is_listening

assert false

end

Run your tests, and witness the failure. Now check in your code. Within

a minute or two, you should receive an email from the address you

configured as BUILDER telling you the build is broken, as shown in Fig-

ure 46.6, on the next page. Once you’ve received the email, remove the

failing test and commit your change. You should now receive an email

saying that you have fixed the build.

If you want to monitor multiple applications in this way, you can add a

line to the end of your post-commit file for each application you want to

autobuild, like this:

cd $BUILD_DIRECTORY/my_other_app_under_svn &&

$RAKE -t test_latest_revision NAME="Other Application Name" \

RECIPIENTS="$DEVELOPERS" \

SENDER="$BUILDER" &

Now that you have this running, you and your teammates can leave

the office in peace, without that nagging feeling that you’ve forgotten to

check something in.

Discussion

What if no email shows up when you intentionally break the build?

Unfortunately, Subversion post-commit hooks are not very friendly when

things go wrong. They just sit there quietly, leaving you to wonder what

happened.

http://books.pragprog.com/titles/fr_rr/errata/add?pdf_page=173

46. CONTINUOUSLY INTEGRATE YOUR CODE BASE 174

Figure 46.6: The Continuous Integration Phones Home

If this happens to you, first check permissions on the post-commit hook

itself. Make sure it’s executable by the user who Subversion runs as.

Then try running it manually just to make sure there are no obvious

errors:

chad> ./post-commit

Next, look in your checked-out application directory on the Subversion

server, and see whether there is a file called log/last_build.log. If the

file does not exist, it means Continuous Builder was probably never

invoked or there was a problem early in the process. If the file does

exist and contains text such as failed, you know the post-commit hook is

running but there’s a problem with email delivery. In either case, if you

can, log in as (or use sudo to become) the user who Subversion runs

as, and try running the rake command manually:

rake -t test_latest_revision NAME=MyApp \

RECIPIENTS=youremail@example.com \

SENDER=youremail@example.com

http://books.pragprog.com/titles/fr_rr/errata/add?pdf_page=174

46. CONTINUOUSLY INTEGRATE YOUR CODE BASE 175

If that doesn’t shed any light, check your spam filters to make sure the

email isn’t being filtered out.

If the problem appears to be in the post-commit hook, the only way to

get error messages is to redirect your process’s output to a log file. You

can change the last line of your post-commit hook to look like this:

cd $BUILD_DIRECTORY/my_app_under_svn &&

$RAKE -t test_latest_revision NAME="$APP_NAME" \

RECIPIENTS="$DEVELOPERS" \

SENDER="$BUILDER" 2> /tmp/post-commit.log

This will direct the error output to the file /tmp/post-commit.log on your

next commit. If you still can’t find the problem, the Subversion FAQ20

has a section on debugging post-commit hooks that might be helpful.

20http://subversion.tigris.org/faq.html#hook-debugging

http://subversion.tigris.org/faq.html#hook-debugging
http://books.pragprog.com/titles/fr_rr/errata/add?pdf_page=175

Recipe 47

Getting Notified of Unhandled

Exceptions

Problem

You’ve reached what you think is a pragmatic balance between action-

specific exception handling and letting your application’s errors bubble

up to the top of the framework. You believe that most of the critical

errors are accounted for and unhandled exceptions will be rare in pro-

duction.

However, you’d like to be sure that’s the case, and you’d like to know

about any exceptions you haven’t caught, just in case there are any

lingering showstoppers after you go live.

Ingredients

• The exception_notification plugin, installable from the root of your

Rails application with:

chad> ruby script/plugin install exception_notification

• Rails 1.1 or higher

Solution

When an action results in an unhandled exception, Action Controller

calls its rescue_action_in_public() method. In Rails 1.0, the implementa-

tion of that method looks like this:

def rescue_action_in_public(exception)

case exception

when RoutingError, UnknownAction then

render_text(IO.read(File.join(RAILS_ROOT, 'public', '404.html')),

"404 Not Found")

else

render_text "<html><body><h1>Application error (Rails)</h1></body></html>"

end

end

If you’ve ever fat-fingered a URL for your application or written code

that generates an unhandled exception, you’ve seen the output of this

47. GETTING NOTIFIED OF UNHANDLED EXCEPTIONS 177

method. It’s not very friendly, and it doesn’t provide you with much

information about what went wrong. The good news is that you can

override this method’s behavior in your own application. This is a great

place to add code that will notify you when something goes wrong. You

can customize it to your heart’s content.

Let’s drop our own version in as an experiment, just to see it work.

Since we’re doing this in development, the first thing we need to do is

set the application up to not treat all requests as “local.” Rails differ-

entiates between local and nonlocal requests, so it can spill its guts to

programmers during application development (usually on the loopback

IP address of 127.0.0.1) while keeping its dirty laundry out of sight

when deployed for the public.

What we want in our experimentation is for Rails to behave in devel-

opment as it would in production. So, we want none of our requests

to appear to be local. First, open config/environments/development.rb and

look for the line that starts with this:

config.action_controller.consider_all_requests_local

Make sure that variable is set to false.

Next, we can go into the controller of our choice and add the following

code:

def local_request?

false

end

This overrides the local_request? method in ActionController::Base, in a

hackish but adequate way. We’re going to remove this code when we’re

done, so a hack is OK.

Next, in the same file, add the following method definition:

def rescue_action_in_public(exception)

render :text => "Something bad happened."

end

Finally, we need to write some bad code that will demonstrate the error

handler. The following action will do the trick:

def boom

raise "boom!"

end

http://books.pragprog.com/titles/fr_rr/errata/add?pdf_page=177

47. GETTING NOTIFIED OF UNHANDLED EXCEPTIONS 178

You can now start your application and visit the boom action via the

appropriate URL. You should see an otherwise blank page with the text

“Something bad happened.”

So now, you can imagine enhancing this method to bundle all man-

ner of diagnostic information and ship it to you in an email. You

would probably want to include all the parameters that were sent to

the action, anything in session, detailed information about your current

environment, and any relevant backtrace, all nicely formatted so that

it’s easy to read when trouble strikes.

As if reading your mind, it turns out that Rails core contributor Jamis

Buck has already done all this work for you. In the central Rails plu-

gin repository, you’ll find the Exception Notifier plugin. If you haven’t

already installed it, do that now.

First we’ll need to remove the experimental code from our controller.

Leave the boom() method in for now (we’ll use that to demonstrate

the Exception Notifier), but remove your rescue_action_in_public() and

local_request?() methods. Now, in the same controller, after the class

definition line, add the following two lines of code:

include ExceptionNotifiable

local_addresses.clear

The Rails plugin loader finds the plugin and loads it for us. So, these

two lines are all you need to tell the Exception Notifier to start handling

exceptions for your controller. The call to local_addresses.clear is equiv-

alent in purpose to our previously overridden local_request? method.

We will remove the local_addresses.clear call once we have the notifier

working.

One last bit of configuration, and we can give this a try. Edit your

application’s config/environment.rb and add the following to the bottom:

ExceptionNotifier.exception_recipients = %w(you@yourdomain.com)

ExceptionNotifier.sender_address =

%("Application Error" <notifier@yourdomain.com>)

ExceptionNotifier.email_prefix = "[Your Application Name]"

This code sets who receives the error notifications, who the messages

appear to be sent from, and what the beginning of the email Subject line

will look like, respectively. Be sure to change these values to fit your

own email address and application name. If you don’t know what to set

the sender_address to, you can set it to your own email address. After

making these changes, restart your Rails application for the changes to

take effect.

http://books.pragprog.com/titles/fr_rr/errata/add?pdf_page=178

47. GETTING NOTIFIED OF UNHANDLED EXCEPTIONS 179

Figure 47.7: Mail Notifying Us of an Exception in Our Application

Now, if you visit your boom action, you should see your application’s

public/500.html page, and in the background an email like the one in

Figure 47.7 should be in transit to your inbox.

Discussion

If for some reason you don’t get an email, tell Rails to be noisy about

mail delivery failures. Edit your config/environments/development.rb file,

and look for the line that sets config.action_mailer.raise_delivery_errors. Set

this to true, and restart your application. Next time you reload the

boom action, you should see any mail delivery errors reported in your

browser.

http://books.pragprog.com/titles/fr_rr/errata/add?pdf_page=179

Recipe 48

Creating Your Own Rake

Tasks

Problem

Software development is full of repetitive, boring, and therefore error-

prone tasks. Even in the ultraproductive Rails environment, any com-

plex application development will result in at least some work that

would be better automated. And if you’re after automation, the Rails

Way to do it is with Jim Weirich’s Rake.

Rails comes with its own set of helpful Rake tasks. How do you add

your own?

Solution

Rake, like make before it, is a tool whose primary purpose is to auto-

mate software builds. Unlike make, Rake is written in Ruby, and its

command language is also pure Ruby. As a brief introduction to Rake,

we’ll start by looking at a couple of simple, non-Rails-dependent Rake

tasks that will demonstrate the basics of how Rake works.

Imagine you’re maintaining a website that keeps a catalog of jazz musi-

cians, categorized by musical instrument and genre, so users of the site

can browse through and discover musicians that they might not know.

You accept submissions to the site as comma-separated text files that

you review, then convert to XML, and upload to your web server for

further processing. This is a perfect candidate for automation.

Commands for Rake should be specified in a Rakefile. By convention,

Rake will automatically look in the current directory for a file called

Rakefile if you don’t specify a file name when invoking the rake command.

Otherwise, you can tell rake which file to load by passing the file name

to its -f parameter. Here’s what a simple Rakefile for processing our

musician list would look like:

Download CreatingYourOwnRakeTasks/SimpleRakefile

Line 1 desc "Convert musicians.csv to musicians.xml if the CSV file has changed."

- file 'musicians.xml' => 'musicians.csv' do |t|

- convert_to_xml(t.prerequisites.first, t.name)

- end

http://media.pragprog.com/titles/fr_rr/code/CreatingYourOwnRakeTasks/SimpleRakefile

48. CREATING YOUR OWN RAKE TASKS 181

5

- require 'rake/contrib/sshpublisher'

- desc "Upload Musicians list XML file to web server for processing."

- task :upload => 'musicians.xml' do |t|

- puts "Transferring #{t.prerequisites.last}..."

10 publisher = Rake::SshFilePublisher.new(

- "www.chadfowler.com",

- "/var/www/html/jazz_people",

- File.dirname(__FILE__),

- t.prerequisites.first)

15 publisher.upload

- end

-

- task :default => :upload

In a nutshell, this Rakefile will look for changes to the file musicians.csv

and, if it’s changed, will convert that file into XML. Then it will transfer

the new musicians.xml file to a server. Assuming you’ve saved this in a

file named Rakefile, you can invoke all this logic by typing rake.

And now for how it works. On line 8 we define a Rake task called

upload. This name is what we use to tell the rake command what to

do when it runs. When defining a Rake task, after the name you can

optionally define one or more dependencies. In this case, we’ve declared

a dependency on the file musicians.xml. This is the file that our pro-

gram will upload to the web server. On line 9 we see a reference to

the task’s prerequisites() method. Not surprisingly, this is a list of the

prerequisites that were specified in the task’s definition—in this case,

the musicians.xml file.

Tasks and dependencies are what makes Rake tick. The dependency

on line 8 is more than just a static reference to a file name. Because we

declared a file task on line 2, our musicians.xml now depends on another

file named musicians.csv. In English, what we’ve declared in our Rakefile

is that before we perform the upload, we need to make sure musicians.xml

is up-to-date. musicians.xml is up-to-date only if it was last processed

after musicians.csv’s last update. Rake’s file() method handles the auto-

matic creation of a task that checks these time stamps for us. If musi-

cians.csv is more recent than its XML sibling, line 3 will cause a new

musicians.xml file to be created from its contents. (The convert_to_xml()

method is defined elsewhere in the Rakefile but left out of the example

for the sake of brevity.)

The last line declares the upload() task to be the default task, meaning

a bare invocation of the rake command will execute the upload() task.

http://books.pragprog.com/titles/fr_rr/errata/add?pdf_page=181

48. CREATING YOUR OWN RAKE TASKS 182

The calls to desc, such as the one on line 1, describe the purpose of

each task. They have two functions: they’re a static code comment for

when you’re reading the Rakefile, and they provide a description when

the rake command needs to list its available tasks:

chad> rake --tasks

rake musicians.xml # Convert musicians.csv to musicians.xml if the CSV file has changed.

rake upload # Upload Musicians list XML file to web server for processing.

If we were to create a musicians.csv file that looks like this:

Download CreatingYourOwnRakeTasks/musicians.csv

Albert, Ayler, Saxophone

Dave, Douglas, Trumpet

Bill, Frisell, Guitar

Matthew, Shipp, Piano

Rashid, Ali, Drums

William, Parker, Bass

invoking our upload task would result in the following output:

chad> rake

(in /Users/chad/src/FR_RR/Book/code/CreatingYourOwnRakeTasks)

Converting musicians.csv to musicians.xml

Transferring musicians.xml...

scp -q ./musicians.xml www.chadfowler.com:/var/www/html/jazz_people

But if we immediately run it again, we see this:

chad> rake

(in /Users/chad/src/FR_RR/Book/code/CreatingYourOwnRakeTasks)

Transferring musicians.xml...

scp -q ./musicians.xml www.chadfowler.com:/var/www/html/jazz_people

Since musicians.xml was already up-to-date, Rake skipped its generation

and continued with the upload.

So now we know how to define Rake tasks that depend on other Rake

tasks and how to set up file generation that depends on other files.

Though we obviously haven’t touched every detail of Rake, since its

command language is Ruby, we know enough to be productive imme-

diately.

Suppose we decide to rewrite our jazz musician database using Rails,

and instead of generating and transferring an XML file, we want to

simply insert the records from our CSV files into a database. We have

a Musician model with string attributes for given_name, surname, and

instrument. Let’s take our previous example and make it work with Rails.

http://media.pragprog.com/titles/fr_rr/code/CreatingYourOwnRakeTasks/musicians.csv
http://books.pragprog.com/titles/fr_rr/errata/add?pdf_page=182

48. CREATING YOUR OWN RAKE TASKS 183

The first thought you might have is to edit the Rails-generated Rakefile

in your application’s root directory and add your tasks there. How-

ever, to avoid code duplication, the Rails developers have separated

their Rake tasks into external files that are distributed with the Rails

framework. On opening the generated Rakefile, you’ll see that it’s all but

empty with a friendly comment at the top instructing you to put your

own tasks in the lib/tasks directory under your application root. When

you invoke the Rails-generated Rakefile, the Rails framework will auto-

matically load any files in that directory with the file extension .rake.

This way, upgrading the core Rails Rake tasks is easier and less likely

to result in a file conflict.

So let’s create our own tasks in a file called lib/tasks/load_musicians.rake

under our application’s root directory:

Download CreatingYourOwnRakeTasks/lib/tasks/load_musicians.rake.first_attempt

desc "Load musicians and the instruments they play into the database."

task :load_musicians => 'musicians.csv' do |t|

before_count = Musician.count

File.read(t.prerequisites.first).each do |line|

given_name, surname, instrument = line.split(/,/)

Musician.create(:given_name => given_name,

:surname => surname,

:instrument => instrument)

end

puts "Loaded #{Musician.count - before_count} musicians."

end

This task is relatively simple. It depends on the existence of the musi-

cians.csv file, which it naively reads, creating a new Musician entry for

each line read. It concludes with an announcement of how many

records were loaded.

Unfortunately, running this task as is doesn’t result in the desired

behavior:

chad> rake load_musicians

(in /Users/chad/src/FR_RR/Book/code/CreatingYourOwnRakeTasks)

rake aborted!

ActiveRecord::ConnectionNotEstablished

Hmm. We’re apparently not connected to our database. And, come to

think of it, we haven’t told the Rake task which of our databases to con-

nect to. In a typical Rails application, this is all handled for us implicitly

via the environment. Fortunately, the Rails developers have provided

a way for us to write Rake tasks that are dependent on the Rails envi-

http://media.pragprog.com/titles/fr_rr/code/CreatingYourOwnRakeTasks/lib/tasks/load_musicians.rake.first_attempt
http://books.pragprog.com/titles/fr_rr/errata/add?pdf_page=183

48. CREATING YOUR OWN RAKE TASKS 184

ronment. Intuitively, this is implemented via a Rake dependency called

:environment. Let’s add :environment to our task’s dependency list:

Download CreatingYourOwnRakeTasks/lib/tasks/load_musicians.rake

desc "Load musicians and the instruments they play into the database."

task :load_musicians => ['musicians.csv', :environment] do |t|

before_count = Musician.count

File.read(t.prerequisites.first).each do |line|

given_name, surname, instrument = line.split(/,/)

Musician.create(:given_name => given_name,

:surname => surname,

:instrument => instrument)

end

puts "Loaded #{Musician.count - before_count} musicians."

end

With a musicians.csv file in place, the task now works as expected:

chad> rake load_musicians

(in /Users/chad/src/FR_RR/Book/code/CreatingYourOwnRakeTasks)

Loaded 6 musicians.

Lovely. But our application is really simple right now, and we’re plan-

ning to evolve it. What do we do if our data model changes fairly often?

First, we can make our parsing and loading logic a little smarter. Here’s

an enhanced version of the task that will adapt to change a little better.

It assumes that the first line of the file contains the column names for

the data values in the rest of the file.

Download CreatingYourOwnRakeTasks/lib/tasks/load_musicians.rake

desc "Load musicians and the instruments they play into the database."

task :load_musicians_enhanced =>

['musicians_with_column_names.csv', :migrate] do |t|

before_count = Musician.count

lines = File.read(t.prerequisites.first).split("\n")

Strip white space

attributes = lines.shift.split(/,/).collect{|name| name.strip}

lines.each do |line|

values = line.split(/,/)

data = attributes.inject({}) do |hash,attribute|

hash[attribute] = values.shift

hash

end

Musician.create(data)

end

puts "Loaded #{Musician.count - before_count} musicians."

end

Now, we can lay the files out more flexibly and even add columns to

the files. Of course, if we add columns to the file, we’ll need to add

http://media.pragprog.com/titles/fr_rr/code/CreatingYourOwnRakeTasks/lib/tasks/load_musicians.rake
http://media.pragprog.com/titles/fr_rr/code/CreatingYourOwnRakeTasks/lib/tasks/load_musicians.rake
http://books.pragprog.com/titles/fr_rr/errata/add?pdf_page=184

48. CREATING YOUR OWN RAKE TASKS 185

them to the database as well. If we’re managing our data model via

Active Record migrations, we can save ourselves the trouble of trying to

remember to keep it updated by adding the :migrate task to the depen-

dency list for our task. Since the :migrate task already initializes the

Rails environment, we can replace the :environment dependency with

:migrate. Now whenever we run the :load_musicians_enhanced task, our

database schema will be automatically updated first!

Also See

Martin Fowler has written an excellent introduction to Rake, which is

freely available from his website at http://www.martinfowler.com/articles/rake.html.

http://www.martinfowler.com/articles/rake.html
http://books.pragprog.com/titles/fr_rr/errata/add?pdf_page=185

Recipe 49

Dealing with Time Zones

Credit

Thanks to Rails core developers Jamis Buck and Scott Barron for their

input and ideas on this recipe.

Problem

Web applications, centrally hosted as they are, often cater to users all

over the globe. The way you consume and display dates in a desk-

top application or a small, wholly co-located company’s intranet isn’t

sufficient for a globally distributed user base.

How do you store, retrieve, and display dates in a Rails application in

such a way that it honors the users’ time zones?

Solution

You can implement time zone support in two main ways. You can store

dates in the user’s time zone and translate them behind the scenes

in case you need to do calculations against other users’ dates or the

system time (both of which may be in other time zone). Or you can

store all dates assuming the same time zone and translate all date-

related user interactions to the appropriate time zone on a per-user

basis.

Though we in different time zone have many ideas of how we should

express what time it is locally, barring deep metaphysical arguments,

time really is a centralized concept here on planet Earth. There is only

one current time. The only variance is in how we express it relative to

where we are. You can think of time zone, then, as analogous to sym-

bolic links on a file system or normalized data structures in a database.

There is only one time, but the time zones provide a symbolic, localized

representation of that time.

So, we’ll choose to store our times in this manner. Specifically, we’ll

store times in coordinated universal time, known more popularly by its

abbreviated form, UTC.

49. DEALING WITH TIME ZONES 187

Since we’re storing the time as UTC, we need two things: some way

of knowing what our users’ time zones are and some way of translat-

ing those local times to and from UTC as our users interact with the

application.

To demonstrate, let’s create a simple application for tracking reminders

for tasks. We’ll need a model to represent users and another for their

tasks. Starting with the database schema, here’s a migration to imple-

ment a simple version of the application:

Download DealingWithTimeZones/db/migrate/001_add_users_and_task_reminders_tables.rb

class AddUsersAndTaskRemindersTables < ActiveRecord::Migration

def self.up

create_table :users do |t|

t.column :name, :string

t.column :time_zone, :string

end

create_table :task_reminders do |t|

t.column :user_id, :integer

t.column :due_at, :datetime

t.column :description, :text

end

end

def self.down

drop_table :users

drop_table :task_reminders

end

end

As you can see in the migration, users have a name and a time zone.

And as you can probably tell by the column names, we’ll also set up

a has_many() relationship between users and task reminders. Here are

the associated model files:

Download DealingWithTimeZones/app/models/user.rb

class User < ActiveRecord::Base

has_many :task_reminders, :order => "due_at"

end

Download DealingWithTimeZones/app/models/task_reminder.rb

class TaskReminder < ActiveRecord::Base

belongs_to :user

end

Now that we have our model set up, let’s look more closely at the

time_zone attribute of the users table. What should we store there? Since

we’re going to be thinking of local times as relative to UTC and we’re

http://media.pragprog.com/titles/fr_rr/code/DealingWithTimeZones/db/migrate/001_add_users_and_task_reminders_tables.rb
http://media.pragprog.com/titles/fr_rr/code/DealingWithTimeZones/app/models/user.rb
http://media.pragprog.com/titles/fr_rr/code/DealingWithTimeZones/app/models/task_reminder.rb
http://books.pragprog.com/titles/fr_rr/errata/add?pdf_page=187

49. DEALING WITH TIME ZONES 188

going to be making conversions (read doing math) to and from UTC, it

would be really helpful to store the time zone’s offset from UTC so we

can just add or subtract when we need to convert.

It’s tempting to set the type of the time_zone column to :integer and

to store the offset directly in the users table in seconds. The prob-

lem is that just the offset isn’t enough information. To illustrate, take

the USA’s Mountain Time and Arizona Time and Mexico’s Chihuahua.

These three time zone all share the same offset (-7 hours from UTC).

But they are three distinct time zones. You don’t want your Mexican

users to have to select “Mountain Time” for their time zone. They won’t

recognize it.

Worse, Arizona, unlike Mountain Time and Chihuahua, doesn’t observe

daylight saving time. This means that during the summer months, their

translations are in fact different.

So instead, we’ll store the name of the time zone and we’ll map that to

the right offset from UTC. For example, Mountain Time in the USA will

be referred to as “Mountain Time (US & Canada).” Now we just have to

figure out where to get and store all these mappings.

It turns out that if you have Rails installed, you already have these

mappings. The ActiveSupport framework provides a class called Time-

Zone, which stores a big list of virtually all the world’s time zones and

can translate time for a given zone to and from UTC.

Let’s take TimeZone for a test drive in the Rails console:

chad> ruby script/console

>> TimeZone.all.size

=> 142

>> TimeZone['Wellington']

=> #<TimeZone:0x22df354 @name="Wellington", @utc_offset=43200>

>> now = Time.now

=> Thu Feb 09 09:13:11 MST 2006

>> time_in_wellington = TimeZone['Wellington'].adjust(now)

=> Fri Feb 10 04:13:11 MST 2006

>> TimeZone['Wellington'].unadjust(time_in_wellington)

=> Thu Feb 09 09:13:11 MST 2006

So as we can see by the sample, if we know that a user is in the Welling-

ton time zone, we can get a reference to the matching TimeZone instance

and easily adjust to and from Wellington time. With this knowledge, we

can put together the model-facing ingredients of the recipe. Imagine

we have a Time object, due_date, that was created in a user’s config-

ured time zone (in this case we’ll say New Delhi). Before creating a new

http://books.pragprog.com/titles/fr_rr/errata/add?pdf_page=188

49. DEALING WITH TIME ZONES 189

TaskReminder with this time, we’ll need to convert it to UTC. And if we

wanted to retrieve and display the time to the user, we would need to

convert it back. Here’s how we could do that:

chad> ruby script/console

>> u = User.create(:name => "Chad", :time_zone => "New Delhi")

=> #<User:0x22dbb28 @attributes={"name"=>"Chad", "id"=>1,

"time_zone"=>"New Delhi"},

... @base=#<User:0x22dbb28 ...>, @errors={}>>

>> due_date # (imagine this was supplied by the user)

=> Sun Feb 19 10:30:15 MST 2006

>> utc_due_date = TimeZone[u.time_zone].unadjust(due_date)

=> Sat Feb 18 22:00:15 MST 2006

>> reminder = u.task_reminders.create(:due_at => utc_due_date,

:description => "Return library books")

=> #<TaskReminder:0x227fb84 @attributes={"id"=>1,

"description"=>"Return library books",

"due_at"=>Sat Feb 18 22:00:15 MST 2006, "user_id"=>1}, ... @errors={}>>

>> # Then, to display to the user:

?> puts "Task '#{reminder.description}' due at \

#{TimeZone[u.time_zone].adjust(reminder.due_at)}"

Task 'Return library books' due at Sun Feb 19 10:30:15 MST 2006

That was not so difficult, eh? But it’s kind of ugly with all that TimeZone

lookup code. We can significantly clean it up using the Active Record’s

composed_of() macro. Here’s the new User class definition:

Download DealingWithTimeZones/app/models/user.rb

class User < ActiveRecord::Base

has_many :task_reminders, :order => "due_at"

composed_of :tz,

:class_name => 'TimeZone',

:mapping => %w(time_zone name)

end

And now we can access it like this:

chad> ruby script/console

>> u = User.find(:first)

=> #<User:0x2255dd4 @attributes={"name"=>"Chad", "id"=>"1",

"time_zone"=>"New Delhi"}>

>> u.tz

=> #<TimeZone:0x22abba8 @name="New Delhi", @utc_offset=19800>

>> u.tz = TimeZone['Wellington']

=> #<TimeZone:0x22ab770 @name="Wellington", @utc_offset=43200>

>> u.tz.adjust(Time.now)

=> Fri Feb 10 05:43:51 MST 2006

Now we just need a way to allow each user to select their time zone.

We could use the TimeZone.all() method and build a list to select from.

Thankfully, though, Rails lends another hand with the built-in helper

http://media.pragprog.com/titles/fr_rr/code/DealingWithTimeZones/app/models/user.rb
http://books.pragprog.com/titles/fr_rr/errata/add?pdf_page=189

49. DEALING WITH TIME ZONES 190

time_zone_select(). Here’s a sample view that allows the user to select

his or her time zone to be saved with the user profile:

Download DealingWithTimeZones/app/views/user/time_zone.rhtml

<% form_for :user, @user, :url => {:action => "update_time_zone"} do |f| %>

<label for="time_zone">

Select your time zone:

</label>

<%= f.time_zone_select :time_zone %>

<%= submit_tag %>

<% end%>

Note that we’ve used form_for() for this example, which requires Rails

1.1.

Using time_zone_select(), the form we’ve generated will look like:

After you’ve added time zone support to your application, you’ll quickly

notice that it results in a lot of conversion code in both your controllers

and your views. Duplication, being the root of all evil and all that, can

be removed pretty simply with the following inclusions in your Applica-

tionController class (assuming that you’re storing the user id in session):

Download DealingWithTimeZones/app/controllers/application.rb

class ApplicationController < ActionController::Base

def user2utc(time)

current_user.tz.unadjust(time)

end

def utc2user(time)

current_user.tz.adjust(time)

end

def current_user

User.find(session[:user])

end

end

These methods simplify your controllers and views, allowing you to con-

vert times based on the currently logged in user’s time zone.

http://media.pragprog.com/titles/fr_rr/code/DealingWithTimeZones/app/views/user/time_zone.rhtml
http://media.pragprog.com/titles/fr_rr/code/DealingWithTimeZones/app/controllers/application.rb
http://books.pragprog.com/titles/fr_rr/errata/add?pdf_page=190

49. DEALING WITH TIME ZONES 191

Discussion

The current implementation of TimeZone doesn’t yet take daylight saving

time into account. If you need to support daylight saving time, Philip

Ross’s TZInfo gem should do the trick for you. You can install it with

(sudo) gem install tzinfo. The TZInfo gem is considerably slower to use

than the Rails built-in TimeZone class, so use it only if you need daylight

saving time support.

Jamis Buck has also created a plugin that can be used to bridge the

Rails built-in time zone functionality and the TZInfo gem. You can

install it with the command ruby script/plugin install tzinfo_timezone. The

overridden TimeZone functionality works like the Rails built-in TimeZone

class, except that instead of calling adjust() and unadjust(), you should

call local_to_utc() and utc_to_local(), respectively.

http://books.pragprog.com/titles/fr_rr/errata/add?pdf_page=191

Recipe 50

Living on the Edge (of Rails

Development)

Problem

One of the exciting things about a young, innovative framework like

Rails is that it’s in a constant state of change. New features are added

and bugs are fixed on a daily basis.

How can your application take advantage of the newest Rails features

as they happen?

Solution

You’ve got three major ways to keep your application in sync with the

latest in Rails development.

The Rails Way to stay on the bleeding edge assumes that your appli-

cation is being managed by the Subversion version control system. It

involves using the Subversion property svn:externals to set up the Rails

Subversion repository as an external module. The svn:externals property

is set on a directory in your repository, telling Subversion that when

it updates that directory, it should retrieve the named subdirectories

from an external Subversion repository. It’s kind of like a symbolic link

for your version control system.

To set your application up this way (the Rails core team calls this Edge

Rails), go into your Rails application’s vendor/ directory, and execute

the following command:

chad> svn propset svn:externals \

"rails http://dev.rubyonrails.org/svn/rails/trunk" .

Now you’ve told Subversion that it should check out the Rails reposi-

tory’s trunk under vendor/rails the next time you update your working

copy. A simple Subversion update in your application’s root directory

will install Edge Rails, meaning that your Rails installation will be up-

to-date as of the last time you updated your application’s source tree.

chad> svn up

Fetching external item into 'rails'

A vendor/rails/cleanlogs.sh

50. LIVING ON THE EDGE (OF RAILS DEVELOPMENT) 193

A vendor/rails/release.rb

A vendor/rails/actionmailer

A vendor/rails/actionmailer/test

A vendor/rails/actionmailer/test/mail_helper_test.rb

...

The directory vendor/rails is special in the Rails environment. When your

application boots, the config/boot.rb file checks for the existence of this

directory and, if it exists, loads Rails from it instead of any installed

gems. Under the vendor/rails directory, you’ll find subdirectories for

all the major Rails components: actionmailer, activerecord, actionpack,

activesupport, railties, and actionwebservice.

So, what if you’re not using Subversion to manage your application’s

code? No problem. We’ve got two more ways for you to stay on the

Edge.

If you have the Subversion client installed, you can check the Rails

repository’s trunk out into your vendor/rails directory. Remember that

if you have a properly structured vendor/rails directory, your applica-

tion will load it instead of any installed gems—regardless of where it

originated.

From your vendor/ directory, run the following command:

chad> svn co http://dev.rubyonrails.org/svn/rails/trunk rails

A rails/cleanlogs.sh

A rails/release.rb

A rails/actionmailer

A rails/actionmailer/test

A rails/actionmailer/test/mail_helper_test.rb

...

The disadvantage of running it this way is that if you want your Rails

installation to stay truly at the Edge, you’ll need to explicitly svn up the

vendor/rails directory. This method is also not as portable between devel-

opment environments, since the checkout will have to be replicated on

every new computer and in every new checked-out copy of your appli-

cation.

True to the opinionated nature of Rails, the path of least resistance is

clearly to use Subversion to manage not just Rails but your applica-

tion’s source code as well.

Now that you’re running Edge Rails, you may occasionally need the

stability that a specific release brings. For example, you might have

a schedule demo of your application for which you need bleeding-edge

http://books.pragprog.com/titles/fr_rr/errata/add?pdf_page=193

50. LIVING ON THE EDGE (OF RAILS DEVELOPMENT) 194

features, but you can’t risk messing up with an unknown incompati-

bility introduced in the Rails trunk. If you’re running a version of Edge

Rails that works, you can freeze your application to that specific version

with the following command:

chad> rake freeze_edge

(in /Users/chad/src/FR_RR/Book/code/LivingOnTheEdge)

rm -rf vendor/rails

mkdir -p vendor/rails

mkdir -p vendor/rails/railties

A vendor/rails/railties/lib

A vendor/rails/railties/lib/rails_generator

A vendor/rails/railties/lib/rails_generator/commands.rb

...

When you’re ready to go back to the bleeding edge, you can do so with

rake unfreeze_rails.

If for some reason you can’t even install Subversion (much less manage

your code with it), you have one more option for staying on the leading

edge of Rails development: beta gems. The Rails team releases periodic

gem updates to a special beta server, and you can install these Beta

releases using the usual RubyGems install method:

chad> sudo gem install rails -s http://gems.rubyonrails.org

This won’t get you onto the true edge of Rails development, but it’s

an easy alternative for those that want to move a little faster than the

stable releases while sticking with their usual RubyGems-based instal-

lation procedures.

Discussion

Living on the edge is not without its risks. Bugs are fixed but also

injected into the source tree as development progresses. Needless to

say, it’s best to deploy your application against a stable Rails release.

If you’re running Edge or Beta Rails in your development environment,

you may occasionally experience unusual behavior that’s hard to track

down. To avoid long, fruitless application debugging sessions, you

would be well served to place some kind of reminder at your work-

station that says, “Are you sure it’s not a Rails bug?” It’s rare that the

Rails trunk is seriously broken, but speaking from experience, it’s frus-

trating to burn an hour looking for your own bug only to find that the

framework is at fault.

http://books.pragprog.com/titles/fr_rr/errata/add?pdf_page=194

50. LIVING ON THE EDGE (OF RAILS DEVELOPMENT) 195

That being said, one of the benefits of running Edge Rails is that you

can more easily contribute to Rails itself. If you were to run into a

legitimate Rails bug while working on your own application, an Edge

Rails installation puts you in a prime position to both fix the bug and

submit your changes. Since you’re running against the latest Rails

version, submitting your changes as a patch is as simple as doing this:

chad> cd vendor/rails

chad> svn diff > descriptive_patch_name.diff

You can then submit this patch (including automated tests!) with a

description of the problem it solves at http://dev.rubyonrails.org/newticket.

Be sure to start the ticket’s summary field with the string [PATCH] to

alert the Rails core team that you are not just reporting an issue but

also including a fix.

It’s satisfying to see your changes trickle back down to you when your

fix is added to the core framework.

http://dev.rubyonrails.org/newticket
http://books.pragprog.com/titles/fr_rr/errata/add?pdf_page=195

Recipe 51

Syndicate Your Site with RSS

Problem

RSS and Atom feeds are ubiquitous. Although they were originally cre-

ated to track news stories, it’s now common for an application to offer a

feed for just about anything that might update over time. Applications

offer RSS and Atom feeds to allow their users to track comments, new

product releases, version control commits, and pretty much anything

you can imagine.

With syndication becoming more and more common, your users are

going to start to expect it of you. How do you add syndication to your

Rails applications?

Solution

Two major syndication formats21 are in play today: RSS (Really Sim-

ple Syndication) and Atom. Although there are some technical differ-

ences between these formats, the end-user experience is the same: RSS

and Atom provide the ability to syndicate chronologically sensitive site

updates via XML feeds.

Plenty of Web resources are available22 that detail these formats and

how they work architecturally, so we won’t belabor the points here.

Suffice it to say that RSS and Atom both involve the production of an

XML file by a server of some sort and the consumption and display of

the contents of this file (usually in reverse chronological order) by one

or more clients, known as news aggregators. These aggregators allow

a simple, unified view of what has changed across a potentially large

number of websites.

So, if you want your site to produce a feed that one of these aggregators

is capable of displaying, you need to publish with the aggregator in

mind. All the major news aggregators these days support both RSS

and Atom, so for this recipe we’ll focus on just one of the formats: RSS.

21Actually, RSS is the subject of a huge amount of political tension on the Web, so it

has splintered into at least three separate flavors. Save yourself a headache, and don’t

worry about any of those flavors except for RSS 2.0.
22http://en.wikipedia.org/wiki/Web_feed

http://en.wikipedia.org/wiki/Web_feed

51. SYNDICATE YOUR SITE WITH RSS 197

The concepts involved in producing an RSS feed are nearly identical

to those of producing an Atom feed, so with a little research, you can

easily produce either. So let’s stop talking and start cooking up a feed!

As an example, we’ll create a feed to syndicate new recipes added to an

online cookbook application. Whenever a recipe is added or updated,

users should be able to receive updates in their news aggregators. Let’s

create a simple model to represent users and recipes in the cookbook.

We’ll start with a migration to define the database schema:

Download SyndicateYourSite/db/migrate/001_add_users_and_recipes.rb

class AddUsersAndRecipes < ActiveRecord::Migration

def self.up

create_table :recipes do |t|

t.column :title, :string

t.column :instructions, :text

t.column :author_id, :integer

t.column :created_at, :datetime

t.column :updated_at, :datetime

end

create_table :ingredients do |t|

t.column :recipe_id, :integer

t.column :name, :string

t.column :unit, :string

t.column :amount, :float

end

create_table :users do |t|

t.column :name, :string

t.column :password, :string

end

end

def self.down

drop_table :recipes

drop_table :ingredients

drop_table :users

end

end

The basic story with our schema is that we have users who author

many recipes, and the recipes have zero or more ingredients. It’s a

simplistic schema, but it works. Here are the associated models:

Download SyndicateYourSite/app/models/recipe.rb

class Recipe < ActiveRecord::Base

has_many :ingredients

belongs_to :author, :foreign_key => 'author_id', :class_name => 'User'

end

http://media.pragprog.com/titles/fr_rr/code/SyndicateYourSite/db/migrate/001_add_users_and_recipes.rb
http://media.pragprog.com/titles/fr_rr/code/SyndicateYourSite/app/models/recipe.rb
http://books.pragprog.com/titles/fr_rr/errata/add?pdf_page=197

51. SYNDICATE YOUR SITE WITH RSS 198

Download SyndicateYourSite/app/models/ingredient.rb

class Ingredient < ActiveRecord::Base

belongs_to :recipe

end

Download SyndicateYourSite/app/models/user.rb

class User < ActiveRecord::Base

has_many :recipes, :foreign_key => 'author_id'

end

What do we want to accomplish with our RSS feed? If the core function-

ality of the application is to allow users to share recipes, we would like

to add a feed to the application that will enable our users to subscribe

to the running stream of new and updated recipes. With information

overload plaguing so many of us these days, the ability to let the system

keep track of what’s new for you can make a huge difference.

We’ll start by creating a separate controller for the feed. You don’t have

to serve feeds through a separate controller, but you’ll frequently find

that in a complex application, the behavior of the typical action doesn’t

apply to an RSS feed. You won’t want to apply the same authentication

or authorization rules to an RSS feed (more on this later). You won’t

want to run an RSS feed through the same kinds of filters that you

might run an HTML action through. It just tends to be cleaner and

easier to keep things separate.

This being a food-related website, we’ll give the controller a name with

two meanings: FeedController:

chad> ruby script/generate controller Feed

exists app/controllers/

: :

Let’s create a simple action that grabs the 15 latest recipes from the

database. We’ll call it recipes(). This leaves the FeedController open to

serve other feeds, should we eventually have the need.

Download SyndicateYourSite/app/controllers/feed_controller.rb

def recipes

@recipes = Recipe.find(:all, :order => "updated_at, created_at", :limit => 15)

@headers["Content-Type"] = "application/rss+xml"

end

Now we’ve done the easy part. Our FeedController has selected the latest

recipes to be added to the feed. Note that we set the content type of

the action to "application/rss+xml". This lets HTTP clients know that we’re

feeding them RSS, so they can respond appropriately. Nowadays, even

http://media.pragprog.com/titles/fr_rr/code/SyndicateYourSite/app/models/ingredient.rb
http://media.pragprog.com/titles/fr_rr/code/SyndicateYourSite/app/models/user.rb
http://media.pragprog.com/titles/fr_rr/code/SyndicateYourSite/app/controllers/feed_controller.rb
http://books.pragprog.com/titles/fr_rr/errata/add?pdf_page=198

51. SYNDICATE YOUR SITE WITH RSS 199

some web browsers can support RSS, so you’ll see nicer behavior from

the clients if you tell them what you’re giving them.

Now it’s time to generate the feed itself. And now we have a decision to

make: how should we create the feed’s XML?

We have three fairly good ways to create the feed file. We could use

Ruby’s built-in RSS library. This library provides a nice, clean API

for both generating and consuming RSS. Alternatively, we could create

an ERb template (an .rhtml file) that is preformatted as an RSS feed

and uses dynamically inserted Ruby snippets to generate the recipe’s

content. Finally, we could use the XML Builder library to generate the

RSS feed via an .rxml template.

Each possible approach has its merits. Since we want to keep this

recipe as Atom-compatible as possible, we’ll rule out using Ruby’s built-

in RSS library. That leaves us with either ERb or XML Builder. This

being an XML feed, we’re likely to have a cleaner experience with XML

Builder, so we’ll go with that.

Just as with ERb templates, XML Builder templates should be named

after the actions they provide a view for. Here’s what our recipes.rxml

template looks like:

Download SyndicateYourSite/app/views/feed/recipes.rxml

xml.instruct!

xml.rss "version" => "2.0", "xmlns:dc" => "http://purl.org/dc/elements/1.1/" do

xml.channel do

xml.title 'Recipes on Rails'

xml.link url_for(:only_path => false,

:controller => 'recipes',

:action => 'list')

xml.pubDate CGI.rfc1123_date(@recipes.first.updated_at)

xml.description h("Recipes created for and by guys who shouldn't be cooking.")

@recipes.each do |recipe|

xml.item do

xml.title recipe.title

xml.link url_for(:only_path => false,

:controller => 'recipes',

:action => 'show',

:id => recipe)

xml.description h(recipe.instructions.to_s)

xml.pubDate CGI.rfc1123_date(recipe.updated_at)

xml.guid url_for(:only_path => false,

:controller => 'recipes',

:action => 'show',

:id => recipe)

http://media.pragprog.com/titles/fr_rr/code/SyndicateYourSite/app/views/feed/recipes.rxml
http://books.pragprog.com/titles/fr_rr/errata/add?pdf_page=199

51. SYNDICATE YOUR SITE WITH RSS 200

xml.author h(recipe.author.name)

end

end

end

end

In case you’ve never seen a XML Builder template before, here’s XML

Builder in the shell of a really, really small nut: all those method calls

on the implicitly available object, xml, end up generating XML tags of

the same name. The tags get whatever value you pass into the method

calls, and if you pass in a block, all the nested calls create nested tags.

XML Builder templates are Ruby code, and they run as Rails views,

which means you can call all those wonderful helpers you normally

use in your .rhtml files. In this example, we use the Action View method

url_for(). We could have just as easily used any other built-in Rails

helpers or even custom helpers defined in our application.

We won’t go into too much detail on the RSS specification and what

each element in this feed means. You can read the full RSS 2.0 spec-

ification at http://blogs.law.harvard.edu/tech/rss if you’re into that kind of

thing. This is the high-level overview.

RSS feeds have channels. Channels are named and have URLs, titles,

and descriptions. More important, channels have items in them that

also have URLs, titles, and descriptions as well as authors and the time

stamp of when they were created. In our case, as you can see, these

items are going to be recipes.

With this overview of XML Builder and RSS, the workings of recipes.rxml

become self-apparent. The one little critical nugget you may not have

noticed is the use of the :only_path option to url_for(). This one is easy

to forget, because it’s seldom necessary in everyday Rails development.

It tells Rails to generate a URL with the full protocol and host name as

opposed to just the relative path to the URL. Since these feeds will be

consumed outside our application, a relative path won’t do.

Here’s an abbreviated example of the RSS feed we generate:

Download SyndicateYourSite/sample.xml

<?xml version="1.0" encoding="UTF-8"?>

<rss version="2.0" xmlns:dc="http://purl.org/dc/elements/1.1/">

<channel>

<title>Recipes on Rails</title>

<link>http://myserver:2003/recipes/list</link>

<pubDate>Fri, 03 Mar 2006 04:53:50 GMT</pubDate>

http://blogs.law.harvard.edu/tech/rss
http://media.pragprog.com/titles/fr_rr/code/SyndicateYourSite/sample.xml
http://books.pragprog.com/titles/fr_rr/errata/add?pdf_page=200

51. SYNDICATE YOUR SITE WITH RSS 201

<description>

Recipes created for and by guys who shouldn't be cooking.

</description>

<item>

<title>Canned Fish and Chips</title>

<link>http://myserver:2003/recipes/show/6</link>

<description>

1. Open can. 2. Empty contents into bowl. 3. Serve.

</description>

<pubDate>Fri, 03 Mar 2006 04:58:42 GMT</pubDate>

<guid>http://:2003/recipes/show/6</guid>

<author>David</author>

</item>

</channel>

</rss>

And here’s what a full feed would look like in an RSS aggregator:

Now that we have a feed available, we naturally want the world to know

about it. Of course, there’s always the tried-and-true method of putting

a big RSS button on your website with a link to the feed. But there’s

also a trick for helping web browsers and aggregators automatically dis-

cover available feeds. Although it’s not a published, official standard, a

de facto standard for RSS autodiscovery has emerged using the HTML

<link> tag. The tag goes in your page’s <head> element and looks like

this (from my website):

<link href="http://www.chadfowler.com/index.cgi?rss"

rel="alternate"

title="RSS"

type="application/rss+xml" />

http://books.pragprog.com/titles/fr_rr/errata/add?pdf_page=201

51. SYNDICATE YOUR SITE WITH RSS 202

Browsers and aggregators know how to extract these tags from web

pages to find the feed links. This is a really good thing to put in your

layouts. It’s much easier for your users to remember mycooldomain.com

when they’re trying to subscribe to your feed than some technical URL.

Thankfully, Rails makes adding an autodiscovery link trivial. Inside the

<head> of your page template, insert the following:

<%= auto_discovery_link_tag(:rss, {:controller => 'feed', :action => 'recipes'}) %>

If you had created an Atom feed, you could replace :rss with :atom. Rails

will generate the <link> code for you, so you don’t have to remember

the syntax.

Finally, as an optimization measure, since we’ve put our RSS code in

a separate controller, we can add the following to the top of the feed

controller, just below the class definition:

session :off

RSS requests are stateless, so there’s no need to generate a session for

every request. Since aggregators generally won’t send any cookies with

their requests, leaving session enabled for a feed could translate into

hundreds of thousands of sessions needlessly created in a short span

of time.

Discussion

RSS feeds are a great way to keep track of a large amount of time-

sensitive data. They’re good for tracking public sites, but they’re also

good for keeping track of your private information. For example, an

RSS aggregator is a powerful tool for managing a software project when

attached to a bug tracker, source control repository, and a discussion

forum.

The problem is that this kind of data is private and usually requires

authentication. RSS aggregators are hit or miss when it comes to

supporting authentication schemes, so it will probably be necessary

to work around the problem. One way to do that is by using obfus-

cated, resource-specific URLs. You can read more about how to do that

in Recipe 53, Secret URLs, on page 208.

Also See

Another point to consider when you start serving feeds is that they

can result in a lot of site traffic. Since feed aggregators poll the server

http://books.pragprog.com/titles/fr_rr/errata/add?pdf_page=202

51. SYNDICATE YOUR SITE WITH RSS 203

at fixed intervals, you may find your site experiencing an exponential

jump in hits.

To reduce the amount of actual traffic this translates into, you can set

up your actions to respond to the If-Modified-Since HTTP header. Most

feed aggregators will send this header with each request, indicating the

last time they received a content update. Your application can use the

date sent in this header field to determine whether there are any new

feed items and, if not, return an HTTP response code of 304, which

means “not modified.”

For more information about the If-Modified-Since header, see the HTTP

1.1 specification.23 For an example of how to support this header in

Rails, see the discussion of HTTP caching in the online Rails Cookbook

at http://manuals.rubyonrails.com/read/chapter/62.

23http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.25

http://manuals.rubyonrails.com/read/chapter/62
http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.25
http://books.pragprog.com/titles/fr_rr/errata/add?pdf_page=203

Recipe 52

Making Your Own Rails

Plugins

Credit

Rails plugin guru and core team member Rick Olson (a.k.a. technowee-

nie) wrote this recipe.

Problem

You’ve developed a few applications already, and you’re getting ready

to start on a new application. You noticed that you’ve implemented a

handy search method in a previous project that would be helpful for

the new application’s models. It would be nice if you could extract this

into a common library for not only your applications but also the rest

of the Rails community’s applications.

Solution

Plugins are a simple way to extend the Rails framework. They let you

implement slices of functionality by adding new or reopening existing

classes in Ruby or Rails. This functionality can solve more specific

problems that may not have common use cases for most applications.

Or, it could simply fix a bug by monkey patching24 specific methods.

Plugins usually begin life as integral parts of real applications. The best

reusable code comes from real, concrete need. With this in mind, let’s

walk through the process of extracting code from an existing applica-

tion into a reusable plugin.

Imagine you have created a weblog application that implements a sim-

ple interface to search multiple fields of a model (in this case, Post) for

a given string. With this code, it is easy to search your weblog’s posts

for any post whose title, body, or short description matches the given

string. The following is what this might look like in your Post model:

24A term coined by Python programmers to describe the use of a language’s dynamism

to patch core language features at runtime. The term has a derogatory flavor in the

Python community but is used by Rubyists with pride.

52. MAKING YOUR OWN RAILS PLUGINS 205

class Post < ActiveRecord::Base

has_many :comments

def self.search(query, fields, options = {})

find :all,

options.merge(:conditions => [[fields].flatten.map { |f|

"LOWER(#{f}) LIKE :query"}.join(' OR '),

{:query => "%#{query.to_s.downcase}%"}])

end

end

As you move on to develop new applications, you realize that this func-

tionality comes up again and again, and it would be a great candidate

for extraction into a plugin. Let’s do that.

First, we’ll create the stub plugin files with the plugin generator. Rails

comes with a convenient generator to make this easy for you. Enter

ruby script/generate plugin to see the included documentation:

rick> script/generate plugin active_record_search

create vendor/plugins/active_record_search/lib

; : :

Now, let’s extract the method from the Post model to an ActiveRecord-

Search module. Make these changes to the file active_record_search.rb in

the directory vendor/plugins/active_record_search/lib/.

Adds a search method to query your ActiveRecord models

module ActiveRecordSearch

Query your ActiveRecord models.

#

Post.search 'foo', [:title, :summary]

=> [#<Post>, #<Post>, #<Post>]

#

def search(query, fields, options = {})

find :all, options.merge(:conditions => [[fields].flatten.map { |f|

"#{f} LIKE :query"}.join(' OR '), {:query => "%#{query}%"}])

end

end

Now that you’ve created your library, you need to write the code Rails

uses to bootstrap the plugin. Your plugin’s init.rb files are always run

as the final step of the initialization process of your Rails application.

It is at this point that you can perform the steps to load the plugin.

Not only will we need to load the ActiveRecordSearch module, but we

need to extend ActiveRecord::Base with it. extend() is used here instead

of include() because the search() method needs to be a class method on

your model (as opposed to an instance method that can be invoked on

the instances of your model).

http://books.pragprog.com/titles/fr_rr/errata/add?pdf_page=205

52. MAKING YOUR OWN RAILS PLUGINS 206

Special init.rb Variables

init.rb has access to some variables set up by Rails Initializer:

• directory is the full path on your system to the plugin.

• name stores the plugin’s name, which is taken from its
directory name.

• loaded_plugins is a set of the plugins that have been cur-
rently loaded.

• config contains a reference to the current configuration
object.

install.rb is another special plugin file. It is run immediately after
the plugin is installed. I like to print the contents of the README
file with this:

puts IO.read(File.join(directory, 'README'))

Note: The install.rb functionality currently requires Rails 1.1.

require 'active_record_search'

ActiveRecord::Base.extend ActiveRecordSearch

Now that this plugin exists, every model of every application into which

it is installed will magically have a search() method that can match

against one or many fields in the model.

Discussion

Plugins are rapidly gaining traction in the Rails community. They pro-

vide a convenient platform for developers to distribute functionality that

may not be appropriate in Rails for one reason or another. Here are

some common examples:

• Custom Active Record functionality provided through Acts (such

as the built-in acts_as_list()).

• New Action View template alternatives to RHTML.

• Controller filters providing features such as output compression,

request filtering, etc.

• Helpers that integrate with external products or services.

http://books.pragprog.com/titles/fr_rr/errata/add?pdf_page=206

52. MAKING YOUR OWN RAILS PLUGINS 207

Also See

The best way to learn how to create a plugin is to look at existing plug-

ins. The Rails wiki lists plugins,25 and plugins by the core developers

are also available.26

25http://wiki.rubyonrails.org/rails/pages/Plugins
26http://dev.rubyonrails.org/svn/rails/plugins/

http://wiki.rubyonrails.org/rails/pages/Plugins
http://dev.rubyonrails.org/svn/rails/plugins/
http://books.pragprog.com/titles/fr_rr/errata/add?pdf_page=207

Recipe 53

Secret URLs

Problem

Sometimes, you need to restrict access to a resource—be it a URL, an

email address, or an instant messaging destination—and it’s inconve-

nient or impractical to use a normal username/password authentica-

tion mechanism. A commonly occurring example of this is RSS feeds.

You don’t want to require a username and password, because your

aggregator may not support that kind of authentication. Or you may be

using a public RSS aggregation service such My Yahoo or Bloglines and

(understandably) unwilling to type in your username and password.

Another common example is that of an account activation link. A user

signs up for your site, and you send them an email confirmation to

ensure that they can at least be traced back to that email address. You

want to give them an easy way to get back from the email to the site, so

you give them an easy activation link.

So how do you protect these resources while eliminating the need for a

username and password?

Solution

A common solution to this problem is to generate an obfuscated URL

that will sign someone directly into an account or allow them to gain

access to a protected resource.

Let’s walk through a simple example. Imagine we are developing a

simple messaging module for a larger application. The application gives

each user an inbox. Application users can then send and receive simple

messages within the context of our larger application.

It’s a nice feature that our users have been asking for, but in practice,

it’s yet another place (in addition to their email and other websites) that

users have to go to keep up with the flow of information. To counteract

this problem, we decide to set up a simple RSS feed to allow each user

to track his or her inbox.

We can easily create a feed for each inbox using the instructions found

in Recipe 51, Syndicate Your Site with RSS, on page 196. The problem

now is that these messages are private, so they need to be protected.

53. SECRET URLS 209

But we may not be able to get our RSS aggregator to work with a user-

name and password. So, we’ll generate an obfuscated URL through

which to access these feeds.

First let’s look at the schema describing users, their inboxes, and the

messages in those inboxes. Here’s the migration file that defines it:

Download SecretURLs/db/migrate/001_add_users_inboxes_messages.rb

class AddUsersInboxesMessages < ActiveRecord::Migration

def self.up

create_table :users do |t|

t.column :name, :string

t.column :password, :string

end

create_table :inboxes do |t|

t.column :user_id, :integer

t.column :access_key, :string

end

create_table :messages do |t|

t.column :inbox_id, :integer

t.column :sender_id, :integer

t.column :title, :string

t.column :body, :text

t.column :created_at, :datetime

end

end

def self.down

drop_table :users

drop_table :inboxes

drop_table :messages

end

end

This is a simple model. Users have inboxes, and inboxes have mes-

sages. The only unusual part of the model is on line 9 where the

access_key column is defined for the inboxes table. This is the magic

key we’ll use to let our users into select parts of the application without

a username and password.

Next we’ll use the standard Rails model generators to create User, Inbox,

and Message models. Here are the models and their associations.

Download SecretURLs/app/models/user.rb

class User < ActiveRecord::Base

has_one :inbox

end

http://media.pragprog.com/titles/fr_rr/code/SecretURLs/db/migrate/001_add_users_inboxes_messages.rb
http://media.pragprog.com/titles/fr_rr/code/SecretURLs/app/models/user.rb
http://books.pragprog.com/titles/fr_rr/errata/add?pdf_page=209

53. SECRET URLS 210

Download SecretURLs/app/models/inbox.rb

class Inbox < ActiveRecord::Base

has_many :messages

end

Download SecretURLs/app/models/message.rb

class Message < ActiveRecord::Base

belongs_to :inbox

end

Now how do we populate the inbox’s access_key? Since every inbox is

going to need one, we can populate it at the time of the inbox’s creation.

The most reliable way to make sure this happens is to define it in the

model’s before_create() method. This way, we can set the access_key

whenever an Inbox is created without having to remember to set it in

our calling code. Here’s the new inbox.rb:

Download SecretURLs/app/models/inbox.rb

class Inbox < ActiveRecord::Base

has_many :messages

before_create :generate_access_key

def generate_access_key

@attributes['access_key'] = MD5.hexdigest((object_id + rand(255)).to_s)

end

end

In Inbox’s before_create() callback, we create a random access key and

assign the attribute. Then Active Record’s instance creation life cycle

runs its course, and the Inbox is saved—access key and all.

For this example, we’ve created a random access key using the Ruby-

assigned object id and a random number. The access key is not guaran-

teed to be unique, which could theoretically be a problem. For a more

reliably unique id, see Bob Aman’s UUIDTools library.27

Now each Inbox has its own obfuscated access key. All that’s left is to

set up access control for the Inbox’s RSS feed, allowing passage to those

with the proper key.

We’ll assume that the feed is set up in a separate FeedController with no

authentication or authorization applied (those should be applied to, for

example, the InboxesController, which is one good reason for putting RSS

feeds in their own controller). We can set up a security check on the

Inbox feed with a before_filter. Here’s the (abbreviated) FeedController:

27http://rubyforge.org/projects/uuidtools/

http://media.pragprog.com/titles/fr_rr/code/SecretURLs/app/models/inbox.rb
http://media.pragprog.com/titles/fr_rr/code/SecretURLs/app/models/message.rb
http://media.pragprog.com/titles/fr_rr/code/SecretURLs/app/models/inbox.rb
http://rubyforge.org/projects/uuidtools/
http://books.pragprog.com/titles/fr_rr/errata/add?pdf_page=210

53. SECRET URLS 211

Download SecretURLs/app/controllers/feed_controller.rb

class FeedController < ApplicationController

before_filter :authenticate_access_key, :only => [:inbox]

def authenticate_access_key

inbox = Inbox.find_by_access_key(params[:access_key])

if inbox.blank? || inbox.id != params[:id].to_i

raise "Unauthorized"

end

end

def inbox

@inbox = Inbox.find(params[:id])

end

end

The before_filter() tells Action Controller to run authenticate_access_key()

whenever the inbox action is requested. authenticate_access_key() looks

for an Inbox with a matching access key and then validates that the

returned Inbox is the one the user requested. If no Inbox matches, an

error is raised. Otherwise, the request continues, and the RSS feed is

rendered.

The URL for the feed for inbox number 5 would look something like

this: http://localhost/feed/inbox/5?access_key=b6da56...92f98287b12c04d47.

We can generate the URL for this feed (so our users can subscribe) in

our views with the following code (assuming we have an @inbox instance

variable available):

<%= url_for :controller => 'feed',

:action => 'inbox',

:id => @inbox,

:access_key => @inbox.access_key

%>

Also See

To make the obfuscated URLs a little easier on the eyes, see Recipe 36,

Make Your URLs Meaningful (and Pretty), on page 131.

http://media.pragprog.com/titles/fr_rr/code/SecretURLs/app/controllers/feed_controller.rb
http://localhost/feed/inbox/5?access_key=b6da56...92f98287b12c04d47
http://books.pragprog.com/titles/fr_rr/errata/add?pdf_page=211

Snack Recipe 54

Quickly Inspect Your Sessions’

Contents

Sometimes weird things happen with session data during development.

And, unfortunately, when things go wrong with session data in Rails,

it’s pretty easy to get stuck. At times like these, it’s helpful to be able

to inspect the contents of your sessions from the console.

By default, Rails sessions are stored as marshaled Ruby objects on the

file system. In Rails 1.0, their default location is /tmp, though as of

Rails 1.1 are stored in a tmp directory under your application’s root (if

one exists).

I use the following script to print the contents of all the session files in

my /tmp directory. When things start going crazy and I don’t know why,

I know it’s time to run the script.

Download DumpingSessionContentsDuringDevelopment/script/dump_sessions

#!/usr/bin/env ruby

require 'pp'

require File.dirname(__FILE__) + '/../config/environment'

Dir['app/models/**/*rb'].each{|f| require f}

pp Dir['/tmp/ruby_sess*'].collect {|file|

[file, Marshal.load(File.read(file))]

}

You can call it like this:

chad> ruby script/dump_sessions

[["/tmp/ruby_sess.073009d69aa82787", {"hash"=>{"flash"=>{}}}],

["/tmp/ruby_sess.122c36ca72886f45", {"hash"=>{"flash"=>{}}}],

["/tmp/ruby_sess.122f4cb99733ef40", {"hash"=>

{:user=>#<User:0x24ad71c @attributes={"name"=>"Chad", "id"=>"1"}>,

"flash"=>{}}}

]

]

Mike Clark suggests that you can also dump sessions from an Active

Record session store. He supplied the Rake task listed on the following

page that does it for you:

http://media.pragprog.com/titles/fr_rr/code/DumpingSessionContentsDuringDevelopment/script/dump_sessions

54. QUICKLY INSPECT YOUR SESSIONS’ CONTENTS 213

namespace :db do

namespace :sessions do

desc "Dumps the database-backed session data"

task :dump => [:environment] do |t|

require 'pp'

Dir['app/models/**/*rb'].each{ |f| require f}

sessions = CGI::Session::ActiveRecordStore::Session.find_all

sessions.each do |session|

pp session.data

end

end

end

end

http://books.pragprog.com/titles/fr_rr/errata/add?pdf_page=213

Recipe 55

Sharing Models between Your

Applications

Problem

You have a single set of models that you need to use from multiple Rails

applications. The Rails applications have different functionality but use

the same database and the same model logic.

Solution

You can, of course, install your models as regular Ruby libraries or

RubyGems. This would involve placing them somewhere in Ruby’s

$LOAD_PATH, where they would be accessible via normal require calls.

You could add the require calls to your config/environment.rb file, and

your application would have access to the models.

But this isn’t a very usable solution for development. Rails plays a

lot of fancy games to make sure you don’t have to stop and start your

development web server every time you change a piece of code. You

would find that using the require method would result in your code not

reloading properly. But switching to the load method, which reloads

the files every time, would be inefficient in production.

You also don’t want to have to reinstall your models every time you

change them. It would be most convenient if the place where you

develop your models is the same place your applications’ development

environments look for them.

The simplest solution to this problem, if you’re on a system that sup-

ports the facility, is to use symbolic links. Say you had your models in

the directory ~/development/rails/shared_models/ and your applications

in the directories ~/development/rails/app1 and ~/development/rails/app2.

Create a symbolic link from ~/development/rails/app1/app/models to the

directory ../../../shared_models. Then, if ~/development were the root of

your source control tree, checking out all three projects would always

result in a correct path to the models, since we used a relative path

name in the link.

55. SHARING MODELS BETWEEN YOUR APPLICATIONS 215

A cleaner and more cross-platform approach, if you’re using Subver-

sion for version control, would be to use the svn:externals property of

Subversion to point your app/models directory to an external repository

path. For example, if your models were managed in the repository at

http://railsrecipes.com/svn/shared_models, you could change your applica-

tion’s models directory to reference it by changing to your app directory

and typing the following:

svn propset svn:externals "models http://railsrecipes.com/svn/shared_models" .

Future updates of your application’s code (via svn up) would pull any

updates to the shared models code as well. Additionally, if you changed

the code under app/models, you could actually commit it directly from

there and it would update your shared repository.

Finally, you could install your models as a Rails plugin. You would

initially generate the plugin structure with the Rails generator:

chad> ruby script/generate plugin shared_models

: : :

create vendor/plugins/shared_models/init.rb

create vendor/plugins/shared_models/lib/shared_models.rb

create vendor/plugins/shared_models/tasks/shared_models_tasks.rake

create vendor/plugins/shared_models/test/shared_models_test.rb

You would then place your model files directly under the directory ven-

dor/plugins/shared_models/lib. Code distributed as a plugin is automati-

cally reloaded by the usual Rails reloading mechanism.

Installing your shared models as a plugin is a really good choice when

the shared models represent only a subset of the models required by

each application. For example, if you had specialized models for an

administrative application and for a consumer-facing application that

both manipulated the same core data, you could distribute those core

models as a plugin while allowing each specializing application to have

its own app/models directory with its own application-specific models.

To enable easy installation of these models, you could use the built-

in Rails plugin installer and house your models either in a Subversion

repository or in an HTTP-accessible directory.

Also See

For further information about making Rails plugins, see Recipe 52,

Making Your Own Rails Plugins, on page 204.

http://railsrecipes.com/svn/shared_models
http://books.pragprog.com/titles/fr_rr/errata/add?pdf_page=215

Snack Recipe 56

Generate Documentation for

Your Application

Ruby comes with a powerful documentation system called RDoc. How

do you use RDoc to generate and browse documentation for your appli-

cation and its dependencies?

The first thing you’ll probably want to have documentation for is Rails

itself. If you’ve installed Rails using RubyGems, you can always get to

the documentation for all your installed Rails versions (and every other

gem on your system!) using the gem_server command.

Just run gem_server, and direct your web browser to http://localhost:8808.

If you need to run it on a different port, you can set the port with the

-p option: gem_server -p 2600. You’ll see a list of all your installed gems,

and you can click the gem to browse its documentation.

If you are running Edge Rails (see Recipe 50, Living on the Edge (of

Rails Development), on page 192), you can use the built-in Rake task

doc:rails to generate documentation. The generated HTML will go into

doc/api. This is especially helpful since the main site doesn’t maintain

current documentation for the evolving world of the Rails trunk. If you

like, you can change the RDoc template used by setting the template

environment variable to the name of the template in question.

If you’re using one or more plugins, you can generate HTML docu-

mentation for them with rake doc:plugins, which will deposit the docs

in doc/plugins/each_plugin_name (one directory for each plugin you have

installed).

Finally, you can generate documentation for your own application with

rake doc:app. This will, predictably, store its generated documents in

doc/app.

http://localhost:8808

Recipe 57

Processing Uploaded Images

Credit

Bruce Williams wrote this recipe.

Problem

You’re planning an image upload feature, and you’d like your applica-

tion to resize large images into thumbnails for viewing.

Ingredients

For this recipe you’ll need RMagick, the Ruby API to ImageMagick and

GraphicsMagick. Once you have ImageMagick and GraphicsMagick

(and their headers), just install the gem:

bruce> sudo gem install rmagick

Solution

Let’s say we’re implementing a small personal gallery application to

store family pictures. We’re not planning to store a lot of information

here—just a name, a description, and the image files themselves.

Let’s get right into the code. Here is the upload form:

<% form_for :image,

@image,

:url => { :action => 'create'},

:html => { :multipart=>true } do |f| %>

<label for='image_name'>Name:</label>

<%= f.text_field :name %>

<label for='image_file_data'>Image File:</label>

<%= f.file_field :file_data %>

<label for='image_description'>Description:</label>

<%= f.text_area :description, :cols => 80, :rows => 5 %>

<%= submit_tag "Save" %>

<% end %>

Don’t forget to use the :multipart => true option in your forms, or nothing will

be uploaded at all.

Notice we’re not using file_field_tag(); the file_data parameter will end up

being accessible via params[:image][:file_data] and won’t get any special

treatment from the controller:

57. PROCESSING UPLOADED IMAGES 218

def create

@image = Image.create params[:image]

end

The controller code is dead simple. The details of image storage and

processing are tucked away in the Image model where they belong:

Download ProcessingImages/app/models/image.rb

Line 1 require 'RMagick'

-

- class Image < ActiveRecord::Base

-

5 DIRECTORY = 'public/uploaded_images'

- THUMB_MAX_SIZE = [125,125]

-

- after_save :process

- after_destroy :cleanup

10

- def file_data=(file_data)

- @file_data = file_data

- write_attribute 'extension',

- file_data.original_filename.split('.').last.downcase

15 end

-

- def url

- path.sub(/^public/,'')

- end

20

- def thumbnail_url

- thumbnail_path.sub(/^public/,'')

- end

-

25 def path

- File.join(DIRECTORY, "#{self.id}-full.#{extension}")

- end

-

- def thumbnail_path

30 File.join(DIRECTORY, "#{self.id}-thumb.#{extension}")

- end

-

- #######

- private

35 #######

-

- def process

- if @file_data

- create_directory

40 cleanup

- save_fullsize

- create_thumbnail

- @file_data = nil

http://media.pragprog.com/titles/fr_rr/code/ProcessingImages/app/models/image.rb
http://books.pragprog.com/titles/fr_rr/errata/add?pdf_page=218

57. PROCESSING UPLOADED IMAGES 219

- end

45 end

-

- def save_fullsize

- File.open(path,'wb') do |file|

- file.puts @file_data.read

50 end

- end

-

- def create_thumbnail

- img = Magick::Image.read(path).first

55 thumbnail = img.thumbnail(*THUMB_MAX_SIZE)

- thumbnail.write thumbnail_path

- end

-

- def create_directory

60 FileUtils.mkdir_p DIRECTORY

- end

-

- def cleanup

- Dir[File.join(DIRECTORY, "#{self.id}-*")].each do |filename|

65 File.unlink(filename) rescue nil

- end

- end

-

- end

The basic idea is that Image.create() calls file_data= and sets @file_data

and the extension attribute (that we save for later). The image object is

saved to the database, and process() is called afterward. The process()

method does a bit of housekeeping first, making sure our image storage

directory exists and removing any old files for this image object that

may already exist (in the case of an update). Once that’s done, process()

answers its true calling and saves the full-size image and the related

thumbnail.

The rest of the model is for convenience—methods to find file paths

and URLs of images for use in views. The important remaining piece

of code is the cleanup() method, which is called if the model instance

is destroyed. When an image record is destroyed, we presumably won’t

need its associated files any longer.

Discussion

This is only one way to do it. The main point to remember is that

the model (not the controller) should be handling the details of saving,

processing, and removing its related files.

http://books.pragprog.com/titles/fr_rr/errata/add?pdf_page=219

57. PROCESSING UPLOADED IMAGES 220

The basic concept of processing files in an after_save lends itself to a

lot of other applications. You could use the same type of hook to han-

dle document conversion or any number of other model housekeeping

chores.

We’ve barely scratched the surface of what RMagick can do in this

recipe. For more information about RMagick, check out the RMagick

web page at http://rmagick.rubyforge.org.

Also See

You might want to look at Sebastian Kanthak’s file_column plugin,28

which wraps up this type of functionality with some template helpers

and a small framework. We chose to implement our own recipe from

scratch to demonstrate the concepts. If you need something more

advanced than what’s presented here, file_column might be a good start-

ing point.

28http://www.kanthak.net/opensource/file_column/.

http://rmagick.rubyforge.org
http://www.kanthak.net/opensource/file_column/
http://books.pragprog.com/titles/fr_rr/errata/add?pdf_page=220

Snack Recipe 58

Easily Group Lists of Things

Rails 1.1 includes two new small but powerful methods to make dealing

with lists easier. Enumerable#group_by() and Array#in_groups_of() solve

two problems that often arise during web development.

Here is Enumerable#group_by():

<%

employees = Employee.find(:all).group_by {|employee|

employee.title

}

%>

<% employees.each do |title, people| %>

<h2><%= title %></h2>

<% people.each do |person| %>

<%= person.name %>

<% end %>

<% end %>

The group_by() accepts a block that returns a grouping value, and

returns a hash with all the items in the initial list grouped under keys

that are set to the values returned by the group_by() block.

Then, if you’re trying to build a grid of values where the number of

items in the grid is variable, the new Array#in_groups_of() method will

make life much easier for you:

<table class="calendar">

<% (1..DAYS_IN_MARCH).to_a.in_groups_of(7) do |group| %>

<tr>

<% group.each do |day| %>

<td><%= day %></td>

<% end %>

</tr>

<% end %>

</table>

Array#in_groups_of() divides an array into groups of the size specified by

its first parameter and yields those groups to a block for processing.

By default, in_groups_of() pads empty cells in the groups with nil. You

can optionally add a second parameter to the call, which will cause the

method to pad with the argument supplied instead.

Recipe 59

Keeping Track of Who Did

What

Credit

Thanks to Dave Thomas for the idea for this recipe.

Problem

Your application contains sensitive information, and for auditing pur-

poses you need to keep track of who changes that information and

when it is changed. Whether it’s whiny users complaining (incorrectly)

that your application is changing their data or compliance with a gov-

ernment regulation, there are many times when you might need an

audit trail.

How do you create this audit trail without cluttering up your applica-

tion’s real code with logging statements?

Solution

If you want to observe updates to a model in a decoupled way, Active

Record observers are a great choice. However, if you need access to

session state or other controller-level data elements at the time of an

update, observers are (rightly) unable to access that information.

That’s the dilemma with application auditing. The “who” of a web appli-

cation is usually stored in session. And session is not something you

should couple with your model layer if you want to keep your applica-

tion clean.

Enter Action Controller’s Cache::Sweeper objects. These beauties are

intended to be used for clearing an application’s page cache when the

cached pages’ underlying data are updated. But if you take a step

back and look at them with an open mind, they’re really just loosely

coupled observers that bridge the model and controller layers of your

application.

Cache sweepers can observe your Active Record models in the same

way that Active Record observers do. But when their callbacks are

59. KEEPING TRACK OF WHO DID WHAT 223

invoked, they have access to the instantiated controller that is handling

the request as it happens!

Let’s demonstrate with a simple example. We’ll create a simple system

for managing the results of people’s IQ tests. To secure the system, we’ll

use the authentication implementation from Recipe 31, Authenticating

Your Users, on page 115. Here’s a migration implementing a simplified

schema for the application:

Download KeepingTrackOfWhoDidWhat/db/migrate/001_add_people_table.rb

class AddPeopleTable < ActiveRecord::Migration

def self.up

create_table :people do |t|

t.column :name, :string

t.column :age, :integer

t.column :iq, :integer

end

end

def self.down

drop_table :people

end

end

For the sake of demonstration, after applying this migration, let’s gen-

erate a scaffolding for objects of type Person:

chad> ruby script/generate scaffold Person

exists app/controllers/

: :

Now we have a simple model and a set of actions for managing the

model. Following the instructions in Recipe 31, Authenticating Your

Users, on page 115, we will simply add authentication to the application

in app/controllers/application.rb. Now we can not only restrict access to

certain individuals, but we can find out who is performing an action.

Now we’ll create a simple Cache::Sweeper that will observe changes to

Person instances and log those changes to the database. We’ll name the

class AuditSweeper and will put it in app/models/. Here’s what it looks

like:

Download KeepingTrackOfWhoDidWhat/app/models/audit_sweeper.rb

class AuditSweeper < ActionController::Caching::Sweeper

observe Person

def after_destroy(record)

log(record, "DESTROY")

end

http://media.pragprog.com/titles/fr_rr/code/KeepingTrackOfWhoDidWhat/db/migrate/001_add_people_table.rb
http://media.pragprog.com/titles/fr_rr/code/KeepingTrackOfWhoDidWhat/app/models/audit_sweeper.rb
http://books.pragprog.com/titles/fr_rr/errata/add?pdf_page=223

59. KEEPING TRACK OF WHO DID WHAT 224

def after_update(record)

log(record, "UPDATE")

end

def after_create(record)

log(record, "CREATE")

end

def log(record, event, user = controller.session[:user])

AuditTrail.create(:record_id => record.id, :record_type => record.type.name,

:event => event, :user_id => user)

end

end

If you’ve worked at all with Active Record callbacks, you’ll recognize the

three methods starting with after_. They are called after each of the

three named events on the models this sweeper observes. Note that

we need to use after filters and not before filters so we’ll have access

to freshly created records’ ids, which don’t get set until after an initial

save. As you can see on line 2, this sweeper observes the Person model.

The real work of this sweeper takes place in the log() method. For each

change to any Person, the log() method creates an AuditTrail record, not-

ing who performed the change, which record was modified, and what

action (update, create, or destroy) was taken. Note that we access

the user from session via Cache::Sweeper’s controller attribute, which

returns the instance of the current controller that is processing the

request.

You’re probably wondering where this AuditTrail model came from and

where it’s storing its data. Rightly so, because we haven’t created it yet.

Let’s do that.

Here’s the migration that defines this schema (if you’re using Rails 1.1

or later, the migration file will be created automatically when you create

the AuditTrail model in the next step):

Download KeepingTrackOfWhoDidWhat/db/migrate/002_add_audit_trails_table.rb

class AddAuditTrailsTable < ActiveRecord::Migration

def self.up

create_table :audit_trails do |t|

t.column :record_id, :integer

t.column :record_type, :string

t.column :event, :string

t.column :user_id, :integer

t.column :created_at, :datetime

end

end

http://media.pragprog.com/titles/fr_rr/code/KeepingTrackOfWhoDidWhat/db/migrate/002_add_audit_trails_table.rb
http://books.pragprog.com/titles/fr_rr/errata/add?pdf_page=224

59. KEEPING TRACK OF WHO DID WHAT 225

def self.down

drop_table :audit_trails

end

end

We then generate an Active Record model for this schema. The gener-

ated class is good enough to suit our needs.

chad> ruby script/generate model AuditTrail

: : :

After applying the new migration, we’re ready to create AuditTrail records

with our sweeper. But our PeopleController doesn’t yet know about the

sweeper, so left as is, it will never be invoked. To tell PeopleController

to enable the sweeper, we can add the following line to the top of our

scaffolding-generated app/controllers/people_controller.rb file:

Download KeepingTrackOfWhoDidWhat/app/controllers/people_controller.rb

cache_sweeper :audit_sweeper

Finally, to try this, we’ll need to make sure we have caching enabled.

Even though we’re not technically doing any caching, our auditing

mechanism relies on Rails’ caching code, and the default setting for

Rails in development is to turn caching off. To turn it on, edit your con-

fig/environments/development.rb file, and look for the line that starts with

config.action_controller.perform_caching. Set its value to true, and restart

your local server if it’s already running.

Because we’re using the Rails caching mechanism for our auditing code,

we may end up turning on actual caching in development. This could

lead to confusing application behavior if you forget that it is enabled. After

you have your cache sweeper working, turn it off in development, and use

your unit and functional tests to ensure that it’s working properly as you

evolve your application.

Now if we create, modify, or delete Person records via our PeopleCon-

troller, new AuditTrail records will be created, detailing what change was

made, who made it, and when it happened. For example, if I created

a new Person named Barney via the generated scaffolding, I would see

something like the following in the Rails console:

chad> ruby script/console

Loading development environment.

>> AuditTrail.find(:all)

=> [#<AuditTrail:0x26b6a60 @attributes={"record_type"=>"Person",

"event"=>"CREATE", "id"=>"1", "user_id"=>"2", "record_id"=>"1",

"created_at"=>"2006-03-12 12:31:02"}>]

http://media.pragprog.com/titles/fr_rr/code/KeepingTrackOfWhoDidWhat/app/controllers/people_controller.rb
http://books.pragprog.com/titles/fr_rr/errata/add?pdf_page=225

59. KEEPING TRACK OF WHO DID WHAT 226

Discussion

What we’ve created so far tells us who performed what action and when

they did it. But, in the case of a create or update, it doesn’t tell us what

the record’s attributes were set to.

If we wanted that kind of verbose logging, we would have a number of

ways to accomplish it. Since the audit_trails table is meant to be usable

to track changes to any type of model, we could add a text field for the

model’s data and set it to be serializable (into YAML) by Active Record.

http://books.pragprog.com/titles/fr_rr/errata/add?pdf_page=226

Recipe 60

Distributing Your Application

As One Directory Tree

Credit

Thanks to Tim Case for the idea for this recipe.

Problem

Your application depends on third-party libraries. Although you can

install and manage those libraries with RubyGems, you prefer to dis-

tribute your entire application as one, self-contained bundle. This

means the root of your application should contain Rails and all its com-

ponents plus any of other dependencies your application may have.

Solution

First we’ll take care of Rails, because the Rails team has taken care of

this one for us. If you’re running from RubyGems, Rails ships with a

Rake task to pull all the gems into your application’s root in such a way

that they will be automatically used when your application is initialized.

chad> rake freeze_gems

(in /Users/chadfowler/topsecretapp)

Freezing to the gems for Rails 1.0.0

rm -rf vendor/rails

mkdir -p vendor/rails

Unpacked gem: 'activesupport-1.2.5'

Unpacked gem: 'activerecord-1.13.2'

Unpacked gem: 'actionpack-1.11.2'

Unpacked gem: 'actionmailer-1.1.5'

Unpacked gem: 'actionwebservice-1.0.0'

Unpacked gem: 'rails-1.0.0'

The freeze_gems Rake task grabs the Rails gems and unpacks them

under the application root’s vendor directory. Whatever version your

application would have used is the version that will be unpacked and

frozen. This is typically the latest version available on your system,

though it can be hard-coded to any version you like in your environ-

ment.rb file.

60. DISTRIBUTING YOUR APPLICATION AS ONE DIRECTORY TREE 228

After freezing the gems, your vendor directory will look something like

this:

If you ever want to switch back to the RubyGems version (perhaps you

want to upgrade the version you have frozen, for example), you can

easily do it with another supplied Rake task:

chad> rake unfreeze_rails

(in /Users/chadfowler/topsecretapp)

rm -rf vendor/rails

This task simply removes the rails directory from vendor. That’s all Rails

needs to know to return to using the system-installed gems.

What about non-Rails libraries? Perhaps you rely on Mike Granger’s

BlueCloth library for transforming Markdown text into HTML.29 How

could you include that in your application’s root directory to avoid hav-

ing to install it on every system on which you might want to run your

application?

Rails is a Ruby framework, so there are as many ways to accomplish

this as Ruby allows. But, as with most Rails tasks, there is a con-

vention. The convention is to put third-party libraries into the vendor

directory. That’s why it’s called vendor.

Before Rails plugins (see Recipe 50, Living on the Edge (of Rails Devel-

opment), on page 192), the best way to freeze external libraries into

your Rails application would have have been to unpack them into your

application’s vendor directory and edit your config/environment.rb to add

that directory to Ruby’s $LOAD_PATH. So for BlueCloth, you would run

the following from your application’s vendor directory:

chad > gem unpack BlueCloth

Unpacked gem: 'BlueCloth-1.0.0'

29http://daringfireball.net/projects/markdown/

http://daringfireball.net/projects/markdown/
http://books.pragprog.com/titles/fr_rr/errata/add?pdf_page=228

60. DISTRIBUTING YOUR APPLICATION AS ONE DIRECTORY TREE 229

This creates a directory called BlueCloth-1.0.0, which you can add to your

application’s $LOAD_PATH by adding the following to the end of your con-

fig/environment.rb:

$LOAD_PATH.unshift "#{RAILS_ROOT}/vendor/BlueCloth-1.0.0/lib"

This makes the files in BlueCloth’s lib directory available to Ruby’s

require() method.

But most applications follow a convention for their directory layouts.

And that convention happens to be compatible with the Rails plugin

system. The convention is that they all tend to have a lib subdirectory

that should be added to the load path. The Rails plugin system auto-

matically adds all such directories to Ruby’s load path when it starts.

So if the library you want to install follows this convention (as Blue-

Cloth does), you can run the gem unpack from your application’s ven-

dor/plugins directory instead of its vendor directory and skip the modifi-

cation to config/environment.rb.

Now you can check all this structure into your source control repository

or include it in the application archive in which you distribute your

application, and the application will be runnable without having to set

up a bunch of dependencies.

http://books.pragprog.com/titles/fr_rr/errata/add?pdf_page=229

Recipe 61

Adding Support for

Localization

Credit

Long-time Ruby programmer and designer Bruce Williams (who, in a

past life, worked as an Arabic translator) wrote this recipe.

Problem

Your application is (or will be) used all over the world. You’d like it to

support multiple languages and format information such as times and

currency specifically for each user’s locale.

Ingredients

Josh Harvey and Jeremy Voorhis’s Globalize plugin, installable from

the root of your Rails application with the following:

bruce> ruby script/plugin install \

http://svn.globalize-rails.org/svn/globalize/globalize/trunk

Solution

For this recipe, we’re going to model a small online store that specializes

in Middle Eastern and Asian food imports. The store’s customer base is

made up primarily of non-English-speaking Middle Eastern and Asian

people, so localization is a must.

Assuming you have the Globalize plugin installed, the first thing you’ll

need to do is to set up its required tables and data:

bruce> rake globalize:setup

Next, you’ll need to set your base language and default locale in con-

fig/environment.rb. You can add this anywhere at the end of the file. For

an English speaker in the United States, it would be:

include Globalize

Locale.set_base_language 'en-US'

Locale.set 'en-US'

61. ADDING SUPPORT FOR LOCALIZATION 231

International Characters

By default, Rails isn’t set up to handle non-English characters.
Here’s what you’ll need to do to make it work:

1. Add the following to your config/environment.rb file:

$KCODE = 'u'
require 'jcode'

This sets Ruby’s character encoding to UTF-8.

2. Next you need to set your database connection to trans-
fer using UTF-8. For MySQL and PostgreSQL, you can do this
by adding a line to your database’s configuration in your
config/database.yml file. For MySQL it would be this:

encoding: utf8

And for PostgreSQL:

encoding: unicode

For SQLite, simply compiling UTF-8 support in is all you need
to do. For other database systems, consult the system’s
documentation on how to set character encoding for
connections.

3. Set the character encoding and collation for the
database and/or tables you’ll be accessing. Collation

refers to the method that will be used for sorting. If you
change your character set to Unicode but leave your
database’s collation untouched, you may end up with
some unexpected results coming from ORDER BY clauses.
For details on how to set character set and collation for
your database, check your database software’s manual.

4. Set encoding information in the content type your appli-
cation returns for each request. The easiest way to do this
is to put an after_filter() in your ApplicationController. Here’s
an example filter that will work in most cases (including RJS
templates):

after_filter :set_charset
def set_charset

unless @headers["Content-Type"] =~ /charset/i
@headers["Content-Type"] ||= ""
@headers["Content-Type"] += "; charset=utf-8"

end
end

http://books.pragprog.com/titles/fr_rr/errata/add?pdf_page=231

61. ADDING SUPPORT FOR LOCALIZATION 232

International Characters (continued)

5. Add encoding information to your templates. Even if you
are transferring documents using Unicode, if a user saves
them to his or her local hard disk, there needs to be some
way of identifying the encoding. Prepend the following
inside your layout’s <head> section:

<![[CDATA
<meta http-equiv="Content-Type"

content="text/html; charset=utf-8">
]]>

As long and drawn out as this procedure may seem, it’s still not
a total solution. There are major fixes in the works for Ruby 2.0,
but for now internationalization is a difficult area for Ruby. There
are several efforts underway to work around this. At the time of
this writing they are all still experimental. Watch the Rails mailing
list for announcements.

Congratulations, you’re ready to start translating!

! Yª�J�Ó �I	K
�
@ ! ¼ðQ�.Ó

Now, digging into our little grocery store application, we’ll turn our

attention to setting the user’s language/locale. We’ll allow the user to

do this in two ways:

• Set it when the user logs in (for users who log in before browsing

our products)

• Allow users who are not logged in to manually set it (for users

who want to browse first, creating or logging into an account right

before checking out)

We’ll use these two techniques to set a session variable and have a

before_filter() that will call Locale.set() for each request. This will involve

adding code to AccountsController (our controller that handles authenti-

cation) to set the session variable and adding a before_filter in Applica-

tionController to use Locale.set() to set the locale for each request.

Here’s AccountsController; all we do here is set the session variable in

login and the manual change_locale actions:

http://books.pragprog.com/titles/fr_rr/errata/add?pdf_page=232

61. ADDING SUPPORT FOR LOCALIZATION 233

Download Globalize/app/controllers/accounts_controller.rb

class AccountsController < ApplicationController

def login

case request.method

when :post

begin

user = User.authenticate(@params[:email], @params[:password])

session[:user] = user.id

session[:locale] = user.locale

go_to = session[:destination]

session[:destination] = nil

redirect_to (go_to || home_url) unless performed?

rescue User::InvalidLoginException => e

flash[:notice] = e.message

redirect_to login_url unless performed?

end

when :get

end

end

def logout

@session[:user] = nil

redirect_to home_url

end

def change_locale

session[:locale] = params[:locale] unless params[:locale].blank?

redirect_to :back

end

end

Nothing special appears there. In login we just use the stored locale

value for the user, and in change_locale we use a CGI parameter. Now

let’s look at our before_filter in ApplicationController that will handle actu-

ally setting the locale during each request:

before_filter :set_locale

def set_locale

Locale.set session[:locale] unless session[:locale].blank?

true

end

So, we have a working system that can handle the selection of a locale.

This is where things start to get fun.

Probably the easiest way to preview the usefulness of localization is in

views; we’ll get into models a bit later.

http://media.pragprog.com/titles/fr_rr/code/Globalize/app/controllers/accounts_controller.rb
http://books.pragprog.com/titles/fr_rr/errata/add?pdf_page=233

61. ADDING SUPPORT FOR LOCALIZATION 234

Globalize gives you a few easy-to-use string methods to handle view

translations; translate() and t() (which is just an alias) are for simple

translations, and /() is for printf-looking functionality. Here are a few

examples from our application:

<% unless params[:search].blank? %>

<p><%= "Found %d products." / @products.size %></p>

<% end %>

For quick, easy, little bits of translation, use the t() method. We use

that on the page where customers can manage their order:

<%= link_to "Remove".t, :action => 'remove', :id => item.product_id %>

It turns out String#/() is really just syntactic sugar for String#translate()

with a few arguments preset. Refer to Globalize’s core_ext.rb for details.

Offering locale-friendly versions of dates and currency is also simply

done, courtesy of the loc() (localize()) method:

<%= Time.now.loc "%H:%M %Z" %>

So, it turns out translating views is really easy. Since the translations

themselves are stored in globalize_translations, it’s just a matter of throw-

ing up some scaffolding to edit them.

Now, in our little grocery app, the majority of what we’re going to be

displaying will be model data: our products. For this to really work as

a truly international app, we’ll have to be able to translate attributes on

the model as well. It won’t do to have “Place Order” in 25 languages if

the only way to figure out what you’re buying is by looking at pictures.

Good news—this is where Globalize really shines. Let’s take a quick

look at our Product model for an example:

class Product < ActiveRecord::Base

translates :name, :description

end

The translates() method call lets Globalize know it will be handling trans-

lation of the name() and description() attributes. Now let’s look at how

you save a model with multiple translations by adding a new product:

Locale.set 'en-US'

prod = Product.create(:name => "Yemenese Coffee",

:description => "Coffee from the South of Yemen")

Locale.set 'ar-LB'

prod.name = "
�éJ

	JÖß
 �èñê�̄"

prod.description = " 	áÒJ
Ë @ H. ñ
	Jk. 	áÓ �èñê�̄"

prod.save

http://books.pragprog.com/titles/fr_rr/errata/add?pdf_page=234

61. ADDING SUPPORT FOR LOCALIZATION 235

As you can see, Locale.set is very important. When a model’s attributes

are handled by Globalize, Globalize interprets any assignments to those

attributes as their translation in the current locale. Globalize makes the

process easy by handling the details behind the scenes using the glob-

alize_translations table and some creative overriding of some of ActiveRe-

cord::Base’s internals (such as find()); this is a detail that you’ll need to

keep in mind if you’re using find_by_sql(), which it doesn’t override.

The locale name given to Locale.set consists of a language code (from

globalize_languages) and a country code (from globalize_countries). This is

nice, but as translations are stored by language, not locale, if we wanted

a specific translation for Canadian English, for instance, a new language

row would need to be added to the globalize_languages table.

Localization is fun stuff—it can seem a little complex, but with Global-

ize, it’s easily manageable and simple to get running.

Discussion

Not all languages are read from left to right! Be kind to languages such

as Arabic and Hebrew and support right-handed page layouts (hint:

load another style sheet by checking Locale.active.language.direction() to

change text alignment, and maybe even place labels for form fields on

the left or right hand side depending on direction).

We certainly haven’t touched on everything relating to Globalize; it has

features such as support for pluralization, routing to locale-specific

templates, and the Currency class that we haven’t even looked at here.

Globalize is just chock-full of goodies, so check it out—this was just an

appetizer!

Also See

The Globalize website30 has more background on the plugin, including

a FAQ, examples, and information on more complex topics.

30http://www.globalize-rails.org

http://www.globalize-rails.org
http://books.pragprog.com/titles/fr_rr/errata/add?pdf_page=235

Snack Recipe 62

The Console Is Your Friend

One of the best things about switching to Rails from another platform

is the script/console command. It’s good to quickly develop the habit of

always leaving a console window open when you’re working on a Rails

application. It’s a great tool for both exploration during development

and administration in production.

chad> ruby script/console

Loading development environment.

>>

Instead of going directly to your database when you need to query for

application data, use your models directly from the console instead of

typing SQL into your database server’s monitor console. The behavior

you experience in the Rails console is a closer match to what your end

users will experience, since you’re using the same code:

>> Person.find_by_first_name("Chad").email

=> "chad@chadfowler.com"

Always forgetting the column names for your tables? Just ask for them:

>> Calendar.column_names

=> ["id", "creator_id", "description", "org_id"]

If your Ruby is compiled with readline support,31 you can autocomplete

class and method names using the Tab key. Type part of a method

name, press Tab, and you’ll see a list of all matching method names.

Who needs an IDE?!

If you’re working repeatedly on the same class or object, you can change

your session’s scope to that object so all method calls are sent to it:

>> me = Person.find_by_first_name("Chad")

...

>> irb me

>> name

=> "Chad Fowler"

>> email

=> "chad@chadfowler.com"

Just type exit to shift to the original context.

31To find out, type ruby -rreadline -e ’p Readline’. If Ruby echoes Readline back to you, you

have it!

62. THE CONSOLE IS YOUR FRIEND 237

If you make changes to your models or supporting classes and want

those changes to be reflected in your running console, you don’t have to

exit and restart it. In Rails 1.0, Dispatcher.reset_application!() will cause

a class reload. Rails 1.1 makes it even simpler with reload!().

Speaking of Rails 1.1, the console now gives you an implicit variable,

app, which is an instance of ActionController::Integration::Session. You can

directly call methods on it as if you were inside a live integration test.32

>> app.get "/"

=> 302

>> app.follow_redirect!

=> 200

32See Recipe 43, Testing Across Multiple Controllers, on page 155.

http://books.pragprog.com/titles/fr_rr/errata/add?pdf_page=237

Recipe 63

Automatically Save a Draft of

a Form

Credit

Thanks to reader David Vincelli for the idea for this recipe.

Problem

Some forms take a long time to complete. As application developers,

we try to minimize this where possible by making more user-friendly

choices in our designs, but sometimes there’s nothing we can do. For

example, email systems, message boards, and weblogs are all systems

that inherently involve a lot of data entry before a form is submitted.

When I’m typing a post for the whole world to see, I want to make sure

it’s just right before I click Submit .

But all that typing in between saves makes me really nervous. And it

makes your users nervous too. What if your browser crashes or the

power goes out and your computer shuts off? You’ll lose your work. I

don’t know about you, but after I’ve spent ten minutes typing some-

thing only to lose it, I don’t want to do it again. It’s frustrating and

demotivating.

That’s not the kind of negative experience we want our users to have.

How can we give them the ability to save a quick, unpublished draft of

their work on a form before fully submitting it? Better yet, how can we

do it for them so they don’t even have to remember to click Save Draft?

Solution

For this recipe, we’ll create a quick-and-dirty model to represent a

weblog system. Weblog posts have an author, a title, a body, and a

time stamp showing the date on which they were created. Here’s the

Active Record migration defining the schema. (If you’re using Rails 1.1

or higher, the migration file will be created automatically when you cre-

ate the Post model in the next step.)

63. AUTOMATICALLY SAVE A DRAFT OF A FORM 239

Download AutomaticallySaveADraft/db/migrate/001_add_posts_table.rb

def self.up

create_table :posts do |t|

t.column :author, :string

t.column :title, :string

t.column :body, :text

t.column :created_at, :datetime

end

end

We’ll use the default generated model to support this schema:

chad> ruby script/generate model Post

exists app/models/

exists test/unit/

exists test/fixtures/

create app/models/post.rb

create test/unit/post_test.rb

: :

To make this as painless for the user as possible, we’re going to save

our drafts asynchronously using Ajax. So, remember to include the

built-in Rails JavaScript files. I usually put them in the <head> tag in

my application’s layout:

<%= javascript_include_tag :defaults %>

We’ll generate a controller called PostsController to handle our weblog’s

posts. Then we’ll create a simple action and form for making a new

message. Here’s the action, that will handle both the new Post form and

the form’s callback, which saves the Post to the database:

Download AutomaticallySaveADraft/app/controllers/posts_controller.rb

def new

if request.get?

@post = session[:post_draft] || Post.new

else

@post = Post.create(params[:post])

session[:post_draft] = nil

redirect_to :action => 'list'

end

end

This should be a pretty familiar pattern, with the exception of the ses-

sion[:post_draft] session variable. We’ll get to that in a minute, but you

can probably begin to guess what’s happening.

Here’s the associated view. This view uses the new Rails 1.1 form_for()

method. If you’re not using Rails 1.1 or higher, you’ll need to adjust it

to use the old-style Rails form helpers.

http://media.pragprog.com/titles/fr_rr/code/AutomaticallySaveADraft/db/migrate/001_add_posts_table.rb
http://media.pragprog.com/titles/fr_rr/code/AutomaticallySaveADraft/app/controllers/posts_controller.rb
http://books.pragprog.com/titles/fr_rr/errata/add?pdf_page=239

63. AUTOMATICALLY SAVE A DRAFT OF A FORM 240

Download AutomaticallySaveADraft/app/views/posts/new.rhtml

<% form_for :post, @post,

:url => { :action => "new" },

:html => {:id => 'post_form'} do |f| %>

Title: <%= f.text_field :title %>

Body: <%= f.text_area :body %>

<%= submit_tag "Save Post" %>

<% end %>

<div id='draft-message' style='color:red;'>

</div>

<%= observe_form 'post_form',

:url => {:action => 'save_draft'},

:update => 'draft-message',

:frequency => 30 %>

This is not a remarkable form. What is interesting is the code that

follows the form definition. We have an empty <div> tag named draft-

message and a form observer that updates this <div> with its results.

Every 30 seconds, the contents of the form get sent to this action:

Download AutomaticallySaveADraft/app/controllers/posts_controller.rb

def save_draft

session[:post_draft] = Post.new(params[:post])

render :text => "<i>draft saved at #{Time.now}</i>"

end

Simple but effective. The save_draft() action saves the form’s contents

in session as a Post object and then renders a message (which fills our

previously empty draft-message HTML <div>) alerting the user that a

draft has been saved.

Looking back at our new() action, we can see that the following line

uses this Post object from session if it exists, otherwise instantiating a

new one:

@post = session[:post_draft] || Post.new

When the Post is finally submitted, the new() action clears it from session.

Now you can load the form, type some thoughts into it, and wait for

the draft message to appear. It’s now safe to go surf the Web before

submitting the form. You can return to it, and all your musings will

still be there, ready to unleash on the world.

http://media.pragprog.com/titles/fr_rr/code/AutomaticallySaveADraft/app/views/posts/new.rhtml
http://media.pragprog.com/titles/fr_rr/code/AutomaticallySaveADraft/app/controllers/posts_controller.rb
http://books.pragprog.com/titles/fr_rr/errata/add?pdf_page=240

Recipe 64

Validating Non–Active

Record Objects

Problem

You have non-database-backed model objects that require validations.

You’d like to reuse the Active Record validation framework to declare

how these objects should be validated. You also want to use the helpers

error_messages_on() and error_messages_for() in your views.

How do you make your custom model objects work with Active Record

validations?

Solution

The Active Record validations framework is implemented inside a mod-

ule that is mixed into ActiveRecord::Base. The module contains all the

code required to declare validations, actually validate, and manage and

report validation error messages. In an ideal world, reusing this func-

tionality would be as simple as this:

class MySpecialModel < SomeOtherInfrastructure

include ActiveRecord::Validations

end

Sadly, this world isn’t ideal, and we can’t reuse Active Record’s valida-

tion framework quite so easily. If you were to try to use the code as is,

you would see that when ActiveRecord::Validations is mixed into MySpe-

cialModel, it tries to alias a few save-related methods that we haven’t

defined. It will also fail when we call the valid?() method because of an

attempt to call one or more dynamically generated missing methods.

If you were to follow this trail of errors, patching as you go, you might

come up with the following module:

Download ValidatingNonARObjects/lib/validateable.rb

module Validateable

[:save, :save!, :update_attribute].each{|attr| define_method(attr){}}

def method_missing(symbol, *params)

if(symbol.to_s =~ /(.*)_before_type_cast$/)

send($1)

end

end

http://media.pragprog.com/titles/fr_rr/code/ValidatingNonARObjects/lib/validateable.rb

64. VALIDATING NON–ACTIVE RECORD OBJECTS 242

def self.append_features(base)

super

base.send(:include, ActiveRecord::Validations)

end

end

Place this module in lib/validateable.rb, and you can mix it into your own

non–Active Record models as needed. Now, in terms of validation and

error reporting, your model is virtually indistinguishable from a real

Active Record model.

Here’s an example of a non–Active Record model that supports Active

Record validations:

Download ValidatingNonARObjects/app/models/person.rb

class Person

include Validateable

attr_accessor :age

validates_numericality_of :age

end

To trigger the validations, just call the model’s valid?() method in your

controllers. This will both return true or false depending on whether the

object passes validations and will populate the model’s errors() so that

they can be accessed from the Active Record view helpers.

Here’s an example of how you can interact with the validations from

the Rails console:

chad> ruby script/console

>> person = Person.new

=> #<Person:0x236e180>

>> person.age = "NOT A NUMBER"

=> "NOT A NUMBER"

>> person.valid?

=> false

>> person.errors

=> #<ActiveRecord::Errors:0x236b430 ...@age="NOT A NUMBER",

@errors=#<ActiveRecord::Errors:0x236b430 ...>>,

@errors={"age"=>["is not a number"]}>

>> person.age = 30

=> 30

>> person.valid?

=> true

>> person.errors

=> #<ActiveRecord::Errors:0x236b430 @base=#<Person:0x236e180 @age=30..>

http://media.pragprog.com/titles/fr_rr/code/ValidatingNonARObjects/app/models/person.rb
http://books.pragprog.com/titles/fr_rr/errata/add?pdf_page=242

64. VALIDATING NON–ACTIVE RECORD OBJECTS 243

Discussion

Ruby, being as dynamic as it is, lets us do a lot of tricks to let our

objects behave however we like. This is both powerful and danger-

ous. In this case, we’re relying on intimate knowledge of the internals

of Active Record’s validation support to make things work. The prob-

lem with this approach is that if the internal behavior of Active Record

changes in an incompatible way, our validation shim will stop working.

That’s OK if you’re expecting it and you know how to fix it. If not, you

might want to make your own validator.

http://books.pragprog.com/titles/fr_rr/errata/add?pdf_page=243

Recipe 65

Easy HTML Whitelists

Credit

This recipe was written by beta book reader Sean Mountcastle based

on an idea posted in the book’s forum by Koen Eijsvogels.

Problem

You want to allow your users to use certain HTML tags in their input

while restricting all other HTML tags. This can help combat problems

such as users creating accidental formatting problems on your site or

more malicious issues such as comment spam.

Solution

You can go about implementing whitelist functionality in two ways. You

can filter a user’s input as it is collected, saving your filtered version to

the database. Or you can filter user-entered text only when it’s being

displayed. We’ll choose the latter, because when things go wrong it’s

much better to have a record of what the user actually entered as you

attempt to troubleshoot.

We’ll accomplish this task by creating a helper to be used from our

views. We’ll call it whitelist(). Create a new file called text_helper.rb in the

directory lib/rails_patch/text_helper.rb, and add the following code:

Download EasyHTMLWhitelists/lib/rails_patch/text_helper.rb

module ActionView

module Helpers

module TextHelper

ALLOWED_TAGS = %w(a img) unless defined?(ALLOWED_TAGS)

def whitelist(html)

only do this if absolutely necessary

if html.index("<")

tokenizer = HTML::Tokenizer.new(html)

new_text = ""

while token = tokenizer.next

node = HTML::Node.parse(nil, 0, 0, token, false)

new_text << if node === HTML::Tag && ALLOWED_TAGS.include?(node.name)

node.to_s

http://media.pragprog.com/titles/fr_rr/code/EasyHTMLWhitelists/lib/rails_patch/text_helper.rb

65. EASY HTML WHITELISTS 245

else

node.to_s.gsub(/</, "&LT;")

end

end

html = new_text

end

html

end

end

end

end

This code adds the helper directly to the ActionView::Helpers::TextHelper

module, which is where the other similar helpers that come with Rails

are defined. This makes the helper available to any view in our appli-

cation. You’ll notice that this helper uses the HTML::Tokenizer class. This

is a simple HTML parser that ships with Rails. The basic flow is that

we parse a chunk of text (but only if it appears to have any HTML tags

in it), and we replace the opening < symbol of any nonlisted HTML tag

with the string &LT;.

Now we need to make this helper available to our application. The

easiest way to accomplish this is to add the following line to the end of

your config/environment.rb:

require_dependency 'rails_patch/text_helper'

After restarting your application, the whitelist() method should be avail-

able from all your views. Anywhere you want to whitelist data from a

user, you can call:

<%= whitelist(@the_data) %>

Discussion

In this recipe we are taking advantage of the fact that classes (and mod-

ules, in this case) in Ruby are open by patching our own method into

Rail’s TextHelper module. This is a technique known as monkey patch-

ing. Alternatively, we could have defined this helper in our application’s

application_helper.rb file. Either way works, but doing it this way enables

us to simply lift and drop the single file to use it in another application.

If you want to allow more tags than just anchors and images, add the

additional tags to %w()() in following line:

ALLOWED_TAGS = %w(a img) unless defined?(ALLOWED_TAGS)

http://books.pragprog.com/titles/fr_rr/errata/add?pdf_page=245

65. EASY HTML WHITELISTS 246

Also See

You can see further examples of monkey patching in the source code

for the Typo weblog where it patches ActiveRecord::Base and also Action-

Controller::Components.

http://books.pragprog.com/titles/fr_rr/errata/add?pdf_page=246

Recipe 66

Adding Simple Web Services

to Your Actions

Problem

You need to access the same business logic via a web browser from

posts, an XML service, and Ajax requests. How do you cleanly support

multiple sets of view logic within the same action?

Ingredients

• Rails 1.1 or higher

Solution

The following simple action creates a new Contact row in the database.

It follows the fairly typical pattern of saving the contact and then redi-

recting to a page that lists all contacts.

Download AddDeadSimpleWebServiceSupportToExistingActions/app/controllers/contacts_controller.rb

def create

@contact = Contact.new(params[:contact])

if @contact.save

flash[:notice] = 'Contact was successfully created.'

redirect_to :action => 'list'

else

render :action => 'new'

end

end

What if the client were posting XML instead of the usual encoded data?

And now what if we wanted to change the output based on what kind

of client was accessing the action?

We’ll start with the first question, because it’s the easiest. How could

we modify this action to accept XML? What if we had, say, the follow-

ing Java program making a post from a legacy system to a new Rails

application?

http://media.pragprog.com/titles/fr_rr/code/AddDeadSimpleWebServiceSupportToExistingActions/app/controllers/contacts_controller.rb

66. ADDING SIMPLE WEB SERVICES TO YOUR ACTIONS 248

Download AddDeadSimpleWebServiceSupportToExistingActions/CommandLinePost.java

import java.io.BufferedReader;

import java.net.URLConnection;

import java.net.URL;

import java.io.InputStreamReader;

import java.io.OutputStreamWriter;

public class CommandLinePost {

private static void usage()

{

System.err.println("usage: java CommandLinePost <url>");

System.exit(1);

}

public static void main(String args[])

{

if(args.length > 2)

usage();

String endPoint = args[0];

try {

String data = "<contact>" +

"<name>Kurt Weill</name>" +

"<phone>501-555-2222</phone>" +

"</contact>";

URL url = new URL(endPoint);

URLConnection conn = url.openConnection();

conn.setRequestProperty("Content-Type", "application/xml");

conn.setDoOutput(true);

OutputStreamWriter wr =

new OutputStreamWriter(conn.getOutputStream());

wr.write(data);

wr.flush();

BufferedReader rd =

new BufferedReader(new InputStreamReader(conn.getInputStream()));

String line;

while ((line = rd.readLine()) != null) {

// Imagine this was putting the data back into a legacy

// Java system. For simplicity's sake, we'll just print

// it here.

System.out.println(line);

}

wr.close();

rd.close();

} catch (Exception e) {

e.printStackTrace();

}

}

}

http://media.pragprog.com/titles/fr_rr/code/AddDeadSimpleWebServiceSupportToExistingActions/CommandLinePost.java
http://books.pragprog.com/titles/fr_rr/errata/add?pdf_page=248

66. ADDING SIMPLE WEB SERVICES TO YOUR ACTIONS 249

How do we modify our action to accept XML input like this and parse it

into a form that we can work with? We don’t.

By default, any POST made with a content type of application/xml will

be parsed by the Rails built-in XmlSimple class and converted into a

familiar hash of parameters that will be available, as always, via the

params method in your controller. Rails uses simple but effective rules

for translating the XML into a hash. If your root element is (as it is in

this case) <contact>, a parameter will be available via params[:contact].

If the <contact> tag contains a set of children, it will be converted

into an array in the params list. Otherwise, as in this case, it will be

converted into a hash with its child element names as keys.

So if you construct your XML the way Rails expects it to be constructed,

the parameters will be populated exactly as if they had been submitted

via an HTML form.

Let’s move on to the second question we started with: how do we render

a different response depending on what kind of client is accessing our

action? We could hack something together where different clients pass

a special parameter. Or we could inspect the HTTP USER_AGENT field if

it’s set. We could make our judgment based on the content type of the

input to our action.

But there’s a cleaner way. The HTTP specification supports a header

field called Accept. In this field, a client can list all of the MIME types

(technically called media ranges in this context) it is capable of accept-

ing. So, to cook up a simple example, a browser might pass something

like text/html,text/plain to indicate that either of these formats is OK.

Clients can also pass wildcards such as text/* or even */*. The server

should then deliver content of the most specific type requested (that the

server is capable of returning). It’s also possible for clients to include

a parameter, q, appended to each content type and connected by a

semicolon. This is called the quality parameter and can be used to

further specify an order of preference for the media ranges reported.

The advantage of this approach is that it uses the HTTP standard in

the way it was intended. Many HTTP clients support this behavior,

and it’s easy to code an Accept header into your web service clients.

The disadvantage here is that, as many standards can be, the logic to

implement this would be far more complex than our initial simple hack

ideas.

http://books.pragprog.com/titles/fr_rr/errata/add?pdf_page=249

66. ADDING SIMPLE WEB SERVICES TO YOUR ACTIONS 250

Thankfully, as of Rails 1.1, this logic is already integrated into the

framework. Via a new method, respond_to(), it’s trivial to set up a single

action to respond to various media ranges and, therefore, client types.

Here’s a revised version of our create() action from before:

Download AddDeadSimpleWebServiceSupportToExistingActions/app/controllers/contacts_controller.rb

def create

@contact = Contact.create(params[:contact])

respond_to do |wants|

wants.html do

flash[:notice] = 'Contact was successfully created.'

redirect_to :action => 'list'

end

wants.xml do

render(:xml => @contact.to_xml, :status => "201 Created")

end

wants.js

end

end

The new version of our action behaves similarly to the last one if the

client expects HTML. However, if the client expects XML, it sets the

HTTP status code to 201 (which means, appropriately, created) and

then uses the new to_xml() method on our model to render XML to the

client. The to_xml() method renders XML that follows the same basic

convention that the XML input mechanism expects. Since we used the

:xml option when we called render(), the content type of the response is

automatically set to application/xml for us.

Finally, if the client expects JavaScript (as would be the case with an

asynchronous request generated by the Rails built-in Prototype library),

no special code is invoked, which means the default Rails behavior is

in effect, and the action will fall through to render a template called

create. This would be useful for Ajax actions for which you would like

to use RJS33 templates.

Note that for this behavior to be enabled for our client, we’d have to add

the Accept header to our client program. Here’s the Java code to set

the client from our earlier example to accept XML:

conn.setRequestProperty("Accept", "application/xml");

That’s it! If we recompile our Java code and run it against our create()

action, we should receive a nice, usable XML response.

33For more information on RJS, see Recipe 6, Update Multiple Elements with One Ajax

Request, on page 26.

http://media.pragprog.com/titles/fr_rr/code/AddDeadSimpleWebServiceSupportToExistingActions/app/controllers/contacts_controller.rb
http://books.pragprog.com/titles/fr_rr/errata/add?pdf_page=250

66. ADDING SIMPLE WEB SERVICES TO YOUR ACTIONS 251

Discussion

If the default parameter parsing rules aren’t sufficient for your needs,

you can define your own. For example, if we wanted to parse RSS docu-

ments differently than other XML document types, we could define our

own parameter parser in our config/environment.rb like this (borrowed

and corrected from the Rails API docs):

mime_type = Mime::Type.lookup('application/rss+xml')

ActionController::Base.param_parsers[mime_type] = Proc.new do

|data|

node = REXML::Document.new(data)

{ node.root.name => node.root }

end

http://books.pragprog.com/titles/fr_rr/errata/add?pdf_page=251

Part VI

Email Recipes

252

Recipe 67

Send Gracefully Degrading

Rich-Content Emails

Problem

Despite the historic hoopla over the World Wide Web, the real killer

app of the Internet has always been email. Even in the ultrahip Web

2.0 world, email is taking on an ever-increasing role in information

dissemination. Web 2.0 applications are about making things easier for

the user. And with the Web’s information fire hose showing no sign of

letting up, receiving information by email makes it easier for the user to

keep up with what’s happening in each of many web applications that

he or she may be subscribed to.

That said, the Web has spoiled all of us email users. We’re so used

to the rich experience of using a well-designed HTML-based applica-

tion that the plain-text emails that suited us in the past look dull by

comparison. It’s so much harder to make out what’s important in a

plain-text message. So email gets richer and richer as time goes by.

But, then again, the growth in cell phone use is staggering. And, with

email and SMS capabilities, cell phones have become first-class citizens

in the world of Internet applications. And the easiest, most ubiquitous

way to get a message to a cell phone? That’s right. Email.

So we have these finicky users with their rich mail clients and their cell

phones with bare-bones text interfaces. How do we build our applica-

tions so that we can send one mail without having to know whether it’s

going to a cell phone or the Apple Mail client?

Solution

The Internet Engineering Task Force (IETF) has defined a standard

MIME type called multipart/alternative that is designed to solve this prob-

lem. Messages with the multipart/alternative MIME type are structured

exactly like messages of type multipart/mixed, which is the typical MIME

type of a mail message with one or more attachments. But, though

structurally identical, multipart/alternative messages are interpreted dif-

ferently by their receivers.

67. SEND GRACEFULLY DEGRADING RICH-CONTENT EMAILS 254

Each part of a multipart/alternative-encoded message is assumed to be

an alternative rendering of the same information. Upon receiving a

message in the multipart/alternative format, a mail client can then choose

which format suits it best.

We have two main ways to send multipart/alternative messages with Rails.

Let’s explore them.

Assuming we’ve already generated an application to work with, we’ll

generate a new mailer class to hold our code:

chad> ruby script/generate mailer Notifier multipart_alternative

exists app/models/

: :

We also asked the generator to set up multipart_alternative() as a mail

method for us. We’ll edit this method to add our own logic. The multi-

part_alternative() method should look like the following:

Download GracefullyDegradingRichTextEmails/app/models/notifier.rb

Line 1 def multipart_alternative(recipient, name, sent_at = Time.now)

- subject "Something for everyone."

- recipients recipient

- from 'barnam@chadfowler.com'

5 sent_on sent_at

- content_type "multipart/alternative"

-

- part :content_type => "text/plain",

- :body => render_message("multipart_alternative_plain", :name => name)

10

- part :content_type => "text/html",

- :body => render_message("multipart_alternative", :name => name)

- end

Line 6 sets the MIME type of the message to multipart/alternative. Then,

on lines 8 and 11, just as we would in a message of MIME type multi-

part/mixed, we add additional parts to the message, setting the content

type of each. The calls to render_message() specify the extensionless

names of view templates stored under app/views/notifier.

The plain-text version of the view looks like this:

Download GracefullyDegradingRichTextEmails/app/views/notifier/multipart_alternative_plain.rhtml

Hi <%= @name %>!

This is a plain-text message. Enjoy!

And, true to the intention of the word alternative, the HTML version

looks like this:

http://media.pragprog.com/titles/fr_rr/code/GracefullyDegradingRichTextEmails/app/models/notifier.rb
http://media.pragprog.com/titles/fr_rr/code/GracefullyDegradingRichTextEmails/app/views/notifier/multipart_alternative_plain.rhtml
http://books.pragprog.com/titles/fr_rr/errata/add?pdf_page=254

67. SEND GRACEFULLY DEGRADING RICH-CONTENT EMAILS 255

Download GracefullyDegradingRichTextEmails/app/views/notifier/multipart_alternative.rhtml

<html>

<body>

<h1>Hi <%= @name %>!</h1>

This is a rich-text message. Enjoy!

</body>

</html>

That’s all there is to it! We can now deliver a message and see how it

looks:

chad> ruby script/runner 'Notifier.deliver_multipart_alternative(\

"Chad Fowler <chad@chadfowler.com>", \

"Chad")'

On my Macintosh, this message looks like this:

On the console-based mutt email client (http://www.mutt.org/), the same

message looks like this:

Now that we’ve gotten it to work, let’s make it easier. I don’t know about

you, but when I see all those calls to the part() method, explicitly setting

up the pieces of this message, it just doesn’t look very Rails-like. Why

can’t it be like the rest of Rails and just know what I’m trying to do?

http://media.pragprog.com/titles/fr_rr/code/GracefullyDegradingRichTextEmails/app/views/notifier/multipart_alternative.rhtml
http://www.mutt.org/
http://books.pragprog.com/titles/fr_rr/errata/add?pdf_page=255

67. SEND GRACEFULLY DEGRADING RICH-CONTENT EMAILS 256

It can. Let’s create another method in the Notifier class to demonstrate:

Download GracefullyDegradingRichTextEmails/app/models/notifier.rb

def implicit_multipart(recipient, name, sent_at = Time.now)

subject "Something for everyone."

recipients recipient

from 'barnam@chadfowler.com'

sent_on sent_at

body(:name => name)

end

Where did all the code go? The answer to that question lies in the

names of the corresponding view files. The same views from the pre-

vious example have been stored in the directory app/views/notifier/ as

implicit_multipart.text.html.rhtml and implicit_multipart.text.plain.rhtml, respec-

tively. Action Mailer sees these templates, recognizes the pattern in

their file names, automatically sets the MIME type of the message to

multipart/alternative, and adds each rendered view with the content type

in its file name.

As I write this, there are known incompatibilities between Rails and the

Localization Plugin. Until these are sorted out, the implicit, filename–based

multipart/alternative technique will not work correctly. You’ll need to do

things explicitly as in the first example.

Since Rails makes it so easy to send multipart/alternative-formatted mes-

sages, don’t risk sending HTML to a cell phone again.

Discussion

Reader Peter Michaux points out that, going beyond the simple HTML

example here, you might want to use images and CSS in your HTML-

formatted mails. You need to consider a number of issues when doing

this. CampaignMonitor has an excellent write-up available at http://www.campaignmonitor.com/blog/ar

http://media.pragprog.com/titles/fr_rr/code/GracefullyDegradingRichTextEmails/app/models/notifier.rb
http://www.campaignmonitor.com/blog/archives/2006/03/a_guide_to_css_1.html
http://books.pragprog.com/titles/fr_rr/errata/add?pdf_page=256

Recipe 68

Testing Incoming Email

Problem

You are developing an application that processes incoming email mes-

sages. Your development process is too slow and complicated if you

have to send an email and wait every time you make a change to

the email processor. Some of your team’s developers don’t have the

ability to easily start up an email server on their development com-

puters, so until now, development of the email-processing component

has been limited to developers whose computers have a working email

server. You need a working test harness that will let you test your

email-processing code.

Solution

Support for testing incoming email with Action Mailer isn’t as explicit as

it is with outgoing email. There are test harnesses in place to access all

the mail you’ve sent with Action Mailer, but there are no such explicit

clues as to how to test incoming mail processing.

Fortunately, though not quite as obvious as testing outgoing email, it’s

not any more difficult to test incoming email. To understand it, let’s

quickly review how to set up an incoming email processor. For the sake

of a brief discussion, we’ll assume we’re using sendmail and procmail.

For detailed information on setting up your system to process mail with

Rails, see Chapter 19 of Agile Web Development with Rails [TH05] or

http://wiki.rubyonrails.com/rails/pages/HowToReceiveEmailsWithActionMailer.

On a typical sendmail system, you can set up a .forward file in your

home directory, specifying an email address to which to forward your

incoming mail. If, instead of an email address, you specify a pipe sym-

bol (|) followed by the name of a program, incoming email will be piped

to that program’s standard input for processing. A simple example .for-

ward file might look like the following.

"|procmail"

The procmail program will then look in the user’s home directory for a

file called .procmailrc, which will tell procmail how to process incoming

mail based on a configurable set of rules. We won’t go into what those

http://wiki.rubyonrails.com/rails/pages/HowToReceiveEmailsWithActionMailer

68. TESTING INCOMING EMAIL 258

rules mean here, but suffice it to say that the following .procmailrc file

tells procmail to pipe all incoming email to a Rails application called

mail_receiver—specifically to its Receiver class. (We’ve split the command

onto multiple lines to make it fit the page.)

:0 c

*
| cd /home/listener/mail_receiver && \

/usr/bin/ruby script/runner 'Receiver.receive(STDIN.read)'

This is where it gets interesting from the perspective of writing tests:

Receiver.receive(STDIN.read)

The Action Mailer mail receiver simply accepts a raw email message,

which in this case we’ve configured to come in via the application’s

standard input. What this means is that to run the mail receiver in a

test, all we have to do is get the raw text of an email message and pass

it into our mail receiver’s receive() method.

Let’s stop talking about it and start cookin’!

If you’re like me, your email inbox is flooded with not-to-miss business

opportunities every day. Whether it’s a sweet deal on a miracle diet

pill or the chance to make millions of dollars just by helping someone

transfer some money from one bank account to another, I’m constantly

worried that I get too many emails from friends and family, and I might

not notice one of these gems as a result. So to demonstrate how to test

incoming email processors in Rails, we’ll start on a little application to

help us sort through all of these incoming opportunities to make sure

we don’t miss any of them.

First we’ll set up a mailer using the script/generate command:

chad> ruby script/generate mailer Receiver

: :

create app/models/receiver.rb

create test/unit/receiver_test.rb

As is typical in Rails Land, the generator not only created a skeleton for

our mail receiver implementation, but it set up a unit test file for us as

well. Let’s look at the file in its pristine form before we start spicing it

up:

Download TestingIncomingEmail/test/unit/receiver_test_pristine.rb

require File.dirname(__FILE__) + '/../test_helper'

require 'receiver'

http://media.pragprog.com/titles/fr_rr/code/TestingIncomingEmail/test/unit/receiver_test_pristine.rb
http://books.pragprog.com/titles/fr_rr/errata/add?pdf_page=258

68. TESTING INCOMING EMAIL 259

class ReceiverTest < Test::Unit::TestCase

FIXTURES_PATH = File.dirname(__FILE__) + '/../fixtures'

CHARSET = "utf-8"

include ActionMailer::Quoting

def setup

ActionMailer::Base.delivery_method = :test

ActionMailer::Base.perform_deliveries = true

ActionMailer::Base.deliveries = []

@expected = TMail::Mail.new

@expected.set_content_type "text", "plain", { "charset" => CHARSET }

end

private

def read_fixture(action)

IO.readlines("#{FIXTURES_PATH}/receiver/#{action}")

end

def encode(subject)

quoted_printable(subject, CHARSET)

end

end

Most of this structure is there to support testing of outgoing email.

Other than the standard Test::Unit scaffolding, the part that is most

applicable to us is the read_fixture() method. It’s not magic, but it gives

us a clue as to how we should manage the raw email text we’re going to

be stuffing into our mail receiver. Namely, we can store each message

in a text file under our application’s test/fixtures/receiver directory. If we

do that, we need call only the generated read_fixture() method and pass

the returned data into our Receiver class’s receive() method.

So all we need is some raw email text. Since it’s just text, we could

construct it by hand, but we’ve got spam to read, and time is money! It

turns out that though most of us don’t need to use it much, most email

clients have the ability to show you the raw source of an email message.

If you can do this with your email client, you can send yourself test

emails with the desired characteristics or pull existing email from your

inbox and then just copy and paste their raw source into a text file to

save into your fixtures directory.

Since we’re going to be writing code to help us sort through the many

money-making opportunities in our inboxes, I’ll pull out a relevant

email. The text of the raw email is as follows:

http://books.pragprog.com/titles/fr_rr/errata/add?pdf_page=259

68. TESTING INCOMING EMAIL 260

Thunderbird

If your client doesn’t give you the option of viewing a message’s
source, try Thunderbird (http://www.mozilla.com). It’s free and
cross-platform and has the the ability to show you a message’s
raw source. Look in the View menu for Message Source.

Return-Path: <webmaster@elboniabank.com>

Received: from [192.168.0.100] (c-192-168-0-1.sd.o.nonex.net [192.168.0.100])

by rasp.chadfowler.com (8.12.10/8.12.10) with ESMTP id jBLUc021232

for <chad@chadfowler.com>; Wed, 21 Dec 2005 11:19:40 -0500

Mime-Version: 1.0 (Apple Message framework v746.2)

Content-Transfer-Encoding: 7bit

Message-Id: <E75372B2-32AD-402B-B930-5421238557921@chadfowler.com>

Content-Type: text/plain; charset=US-ASCII; format=flowed

To: chad@chadfowler.com

From: N'Dugu Wanaskamya <webmaster@elboniabank.com>

Subject: CONFIDENTIAL OPPORTUNITY

Date: Wed, 21 Dec 2005 04:19:00 -0700

Bulwayo, Republic of Elbonia.

MY PLEASURE,

This is a proposal in context but actually an appeal soliciting for your

unreserved assistance in consummating an urgent transaction requiring

maximum confidence. Though this approach appears desperate,I can assure

you that whatever questions you would need to ask or any other thing you

will need to know regarding this proposal, will be adequately answered

to give you a clearer understanding of it so as to arrive at a

successful conclusion.

No doubt this proposal will make you apprehensive, please i employ you

to observe utmost confidentiality and rest assured that this transaction

would be most profitable for both of us. Note also that we shall require

your assistance to invest our share in your country.

Thanks and Regards,

Mr. N'Dugu Wanaskamya

First Bank of Elbonia

We’ll save this text in a file called confidential_opportunity in the directory

test/fixtures/receiver under our application’s root directory. We can now

write a simple test to make sure things are working as expected. Add

the following to your receiver_test.rb file (above the methods that are

declared private):

http://www.mozilla.com
http://books.pragprog.com/titles/fr_rr/errata/add?pdf_page=260

68. TESTING INCOMING EMAIL 261

Download TestingIncomingEmail/test/unit/receiver_test.rb

def test_fixtures_are_working

email_text = read_fixture("confidential_opportunity").join

assert_match(/opportunity/i, email_text)

end

This is just a smoke test to make sure we can get to the fixture and

that it produces a String that can be fed into our mail receiver. Run the

test. It should work. If it doesn’t, you probably have a file in the wrong

place. If you retrace your steps, you’ll find it in a jiffy:

chad> ruby test/unit/receiver_test.rb

Loaded suite test/unit/receiver_test

Started

.

Finished in 0.068315 seconds.

1 tests, 1 assertions, 0 failures, 0 errors

Now that we have the safety net set up, we can start actually writing

some code. The goal of our application is to somehow separate the

emails we care about from the ones that just clutter up our mailboxes.

To that end, we’ll create a simple model to store messages and to rate

them numerically. The higher the rating, the more “interesting” the

message is. We won’t look at the details of the data model here, but just

keep in mind that we have a model named Mail (with a corresponding

mails table) that has the expected subject, body, sender, etc., attributes

as well as a numeric rating attribute.

We’ll start small and test the simple processing of a message to make

sure it gets added to the database. Let’s write the test first:

Download TestingIncomingEmail/test/unit/receiver_test.rb

def test_incoming_email_gets_added_to_database

count_before = Mail.count

email_text = read_fixture("confidential_opportunity").join

Receiver.receive(email_text)

assert_equal(count_before + 1, Mail.count)

assert_equal("CONFIDENTIAL OPPORTUNITY", Mail.find(:all).last.subject)

end

This test will fail, since our mail receiver is unimplemented. Go ahead

and run it. Watch it fail now, and it’ll feel better when it passes.

chad> rake test_units

(in /Users/chad/src/FR_RR/Book/code/TestingIncomingEmail)

/usr/local/bin/ruby -Ilib:test

"/usr/local/lib/ruby/.../rake_test_loader.rb" "test/unit/mail_test.rb"

"test/unit/receiver_test.rb"

http://media.pragprog.com/titles/fr_rr/code/TestingIncomingEmail/test/unit/receiver_test.rb
http://media.pragprog.com/titles/fr_rr/code/TestingIncomingEmail/test/unit/receiver_test.rb
http://books.pragprog.com/titles/fr_rr/errata/add?pdf_page=261

68. TESTING INCOMING EMAIL 262

Loaded suite /usr/local/lib/ruby/.../rake_test_loader

Started

..F

Finished in 0.157008 seconds.

1) Failure: test_incoming_email_gets_added_to_database(ReceiverTest)

[./test/unit/receiver_test.rb:31]:

<3> expected but was <2>.

3 tests, 3 assertions, 1 failures, 0 errors

Now we’ll make it pass. Let’s implement the mail receiver. Edit your

app/models/receiver.rb to look like this:

Download TestingIncomingEmail/app/models/receiver_2.rb

class Receiver < ActionMailer::Base

def receive(email)

Mail.create(:subject => email.subject, :body => email.body,

:sender => email.from, :rating => 0)

end

end

We simply create a new instance of the Mail class and populate it with

the contents of the incoming email. But we have the rating() set to

0. Let’s put in a simple rule to increase the rating of any email that

contains the word opportunity. Again we’ll start with the test:

Download TestingIncomingEmail/test/unit/receiver_test.rb

def test_email_containing_opportunity_rates_higher

email_text = read_fixture("confidential_opportunity").join

Receiver.receive(email_text)

assert(Mail.find_by_subject("CONFIDENTIAL OPPORTUNITY").rating > 0)

end

And the simplest possible implementation would look like some varia-

tion of this:

Download TestingIncomingEmail/app/models/receiver_2a.rb

class Receiver < ActionMailer::Base

def receive(email)

rating = 0

if(email.subject + email.body =~ /opportunity/i)

rating += 1

end

Mail.create(:subject => email.subject, :body => email.body,

:sender => email.from, :rating => rating)

end

end

http://media.pragprog.com/titles/fr_rr/code/TestingIncomingEmail/app/models/receiver_2.rb
http://media.pragprog.com/titles/fr_rr/code/TestingIncomingEmail/test/unit/receiver_test.rb
http://media.pragprog.com/titles/fr_rr/code/TestingIncomingEmail/app/models/receiver_2a.rb
http://books.pragprog.com/titles/fr_rr/errata/add?pdf_page=262

68. TESTING INCOMING EMAIL 263

It’s easy to see how you could continue to iterate this way, decreasing

a message’s rating if it’s from a friend or family member or increasing

the rating if the mail’s origin is the Republic of Elbonia (known to be

a hotbed of high-return financial opportunities for the open-minded

entrepreneur). We’ll leave you to season to taste in this regard. But

what if you need to check a message’s attachments? How do you test

that?

Mail attachments, though usually made of nontextual materials, are

encoded as text for transfer over the Internet. This is lucky for us,

because it means we don’t have to change our approach at all. The

following is what the raw text of an email with an attachment would

look like:

Download TestingIncomingEmail/test/fixtures/receiver/latest_screensaver

Return-Path: <chad@chadfowler.com>

Received: from [192.168.0.100] (c-24-8-92-53.hsd1.co.comcast.net [24.8.92.53])

by ns1.chadfowler.com (8.12.10/8.12.10) with ESMTP id jBN2fhUc007473

for <chad@chadfowler.com>; Thu, 22 Dec 2005 21:41:43 -0500

Mime-Version: 1.0 (Apple Message framework v746.2)

To: chad@chadfowler.com

Message-Id: <689771CD-862F-49CB-B0E8-94C1517EB5C5@chadfowler.com>

Content-Type: multipart/mixed; boundary=Apple-Mail-1-231420468

From: Chad Fowler <chad@chadfowler.com>

Subject: The latest new screensaver!

Date: Thu, 22 Dec 2005 19:28:46 -0700

X-Mailer: Apple Mail (2.746.2)

X-Spam-Checker-Version: SpamAssassin 2.63 (2004-01-11) on ns1.chadfowler.com

X-Spam-Level: *
X-Spam-Status: No, hits=1.2 required=5.0 tests=BAYES_01,RCVD_IN_DYNABLOCK,

RCVD_IN_SORBS autolearn=no version=2.63

-Apple-Mail-1-231420468

Content-Transfer-Encoding: 7bit

Content-Type: text/plain;

charset=US-ASCII;

delsp=yes;

format=flowed

Hey bro, I thought you would like to see this. It's the latest new

screensaver. Everyone at the office loves it!

-Apple-Mail-1-231420468

Content-Transfer-Encoding: base64

Content-Type: application/zip;

x-unix-mode=0644;

name="screensaver.zip"

http://media.pragprog.com/titles/fr_rr/code/TestingIncomingEmail/test/fixtures/receiver/latest_screensaver
http://books.pragprog.com/titles/fr_rr/errata/add?pdf_page=263

68. TESTING INCOMING EMAIL 264

Content-Disposition: attachment;

filename=screensaver.zip

iVBORw0KGgoAAAANSUhEUgAAABAAAAFTCAIAAAC/KhtAAAAB6GlDQ1BJQ0MgUHJvZmlsZQAAeJyV

kbFrE3EUxz+/O7UVS9QapEOHHyjSQlJCglC7mJigrUQINWqS7Xo5k4O7y4+7S2vAVaSrQv8BQcS1

QkUHMzroIKIWHV3E0UIXCedwDRlKKD548HlfeLz3vg/0mqGUowGuF/qrN67JWr0hJ74wxUlOs0Ta

...

4Bv4JE4RyYntVaLtouSfBg28b6Dgse+7vFJvL6V/J+g+lnVdl2XZtu2eGIZhmqaU0umGlJLW+ulI

rfWRPj2ptWatvaStta21rzufwHsfY7yAGKP3/jkQkVKKMeZojTGllMuIE+j7fp7no53nue/774CI

5JydcyLinMs5y62uQClVa+26rtaqlPoZiEgIYRzHEML9SEQe//G3AgAAAAAAAAAAAAAAAAAAAAAA

AAAMBfAe8r3B9sCnIPeQAAAABJRU5ErkJg

gg==

-Apple-Mail-1-231420468-

If we were interested in tracking screensavers and other similar attach-

ments that were sent to us at random, we could add another rule and

assert in our tests that an attached zip file increases the rating() of an

email:

Download TestingIncomingEmail/test/unit/receiver_test.rb

def test_zip_file_increases_rating

email_text = read_fixture("latest_screensaver").join

Receiver.receive(email_text)

assert(Mail.find_by_subject("The latest new screensaver!").rating > 0)

end

We could then add the code to our mail receiver to check for zip files,

and the test would run:

Download TestingIncomingEmail/app/models/receiver_3.rb

class Receiver < ActionMailer::Base

def receive(email)

rating = 0

if(email.subject + email.body =~ /opportunity/i)

rating += 1

end

if email.has_attachments?

email.attachments.each do |attachment|

rating += 1 if attachment.original_filename =~ /zip$/i

end

end

Mail.create(:subject => email.subject, :body => email.body,

:sender => email.from, :rating => rating)

end

end

As we continued to expand this application, we would want to refactor

it into a more flexible set of rules, and with our tests in place, we would

be in great shape to do just that.

http://media.pragprog.com/titles/fr_rr/code/TestingIncomingEmail/test/unit/receiver_test.rb
http://media.pragprog.com/titles/fr_rr/code/TestingIncomingEmail/app/models/receiver_3.rb
http://books.pragprog.com/titles/fr_rr/errata/add?pdf_page=264

Recipe 69

Sending Email with

Attachments

Problem

You need to send emails with attachments from your Rails application.

Solution

Action Mailer makes it easy to send rich email with attachments. Let’s

walk through a simple example.

First we’ll generate a controller to provide an interface to the user. Let’s

call it SpamController:

chad> ruby script/generate controller Spam

exists app/controllers/

: :

Next we’ll generate a mailer. We’ll call our mailer Spammer and have the

generator create a single mail method called spam_with_attachment():

chad> ruby script/generate mailer Spammer spam_with_attachment

: :

create app/views/spammer/spam_with_attachment.rhtml

create test/fixtures/spammer/spam_with_attachment

We’ll look at the implementation of the mailer shortly. First let’s focus

on the user interface.

We’ll start with a mail form. We’ll put it in the file index.rhtml in the

app/views/spam/ directory. The form accepts a name, a recipient email

address, and a file upload. Notice that the call to form_tag() declares

the form to be multipart. This is necessary in order to submit both the

normal form data and the uploaded files. Here’s the code for the form:

Download SendingEmailsWithAttachments/app/views/spam/index.rhtml

<%= form_tag({:action => "spam"}, :multipart => true) %>

<label for="name">Name of recipient:</label>

<%= text_field_tag "name" %>

<label for="email">Email address to send to:</label>

<%= text_field_tag "email" %>

<label for="file">File to upload:</label>

http://media.pragprog.com/titles/fr_rr/code/SendingEmailsWithAttachments/app/views/spam/index.rhtml

69. SENDING EMAIL WITH ATTACHMENTS 266

<%= file_field_tag "file" %>

<%= submit_tag "Spam!" %>

<%= end_form_tag %>

As you can see, the form submits to an action called spam(). The spam()

action’s primary job is to delegate to an Action Mailer class. We’ll do

that and just redirect back to the form. After all, we’ve called this thing

Spammer so it’s safe to assume that its users will want to send one

mail after another.

Here’s the entire SpamController class:

Download SendingEmailsWithAttachments/app/controllers/spam_controller.rb

class SpamController < ApplicationController

def spam

Spammer.deliver_spam_with_attachment(params[:name],

params[:email],

params[:file])

redirect_to :action => "index"

end

end

We’re almost there. All that’s left is to implement the actual mailer.

The mailer is implemented as a pair of files: the mailer itself and the

template it uses to render a message body. The view is a dead-simple

ERb template, named after the send method on the mailer class, in this

case spam_with_attachment.rhtml.

Download SendingEmailsWithAttachments/app/views/spammer/spam_with_attachment.rhtml

Hey <%= @name %>,

I thought you'd appreciate this file.

Regards,

Chad

The real work happens in the mailer class. Here’s what ours looks like:

Download SendingEmailsWithAttachments/app/models/spammer.rb

Line 1 class Spammer < ActionMailer::Base

- def spam_with_attachment(name, email, file)

- @subject = 'Have a Can of Spam!'

- @body = {:name => name}

5 @recipients = email

- @from = 'spam@chadfowler.com'

- unless file.blank?

- attachment :body => file.read, :filename => file.original_filename

- end

10 end

- end

http://media.pragprog.com/titles/fr_rr/code/SendingEmailsWithAttachments/app/controllers/spam_controller.rb
http://media.pragprog.com/titles/fr_rr/code/SendingEmailsWithAttachments/app/views/spammer/spam_with_attachment.rhtml
http://media.pragprog.com/titles/fr_rr/code/SendingEmailsWithAttachments/app/models/spammer.rb
http://books.pragprog.com/titles/fr_rr/errata/add?pdf_page=266

69. SENDING EMAIL WITH ATTACHMENTS 267

The method starts by setting instance variables that Action Mailer uses

to determine things like who it should send a message to and what the

subject should be. The @body variable contains a hash of values that

will be visible as local variable to our view template.

Line 8 and its surrounding unless() block contain the code for adding the

attachment. The :body parameter contains the actual attachment data,

which in this case is read from the multipart form submission from the

user’s browser. We could have also included an optional :content_type

parameter, which would have set the MIME type for the attachment in

the mail message. Without an explicit :content_type, Rails will default to

sending a MIME type of text/plain. Most modern mail clients will make

a best guess of MIME type based on file name, so though it’s certainly

cleaner to send the MIME type, it’s not always necessary.

If we needed to, we could have attached multiple files here. Each suc-

cessive call to the attachment() method creates another attachment in

the message.

Discussion

Rails 1.0 shipped with a bug, affecting mail with both an attachment

and a message body. The inclusion of an attachment in a message

would cause the message’s template not to be loaded, resulting in an

empty message body. If you encounter this problem, you need to either

upgrade to an official post-1.0 release of Rails or use Edge Rails.

Also See

Austin Ziegler’s MIME::Types library34 makes it extremely easy to find

the correct MIME type for a given file name. MIME::Types is installable

via RubyGems:

chad> gem install mime-types

34http://mime-types.rubyforge.org/

http://mime-types.rubyforge.org/
http://books.pragprog.com/titles/fr_rr/errata/add?pdf_page=267

Recipe 70

Handling Bounced Email

Credit

Thanks to Shaun Fanning for the idea for this recipe.

Problem

Your web application, as most do these days, occasionally sends email

to its users. Since you are sending the mail programmatically, prob-

ably from a system account, it’s difficult to know whether the invita-

tions, reminders, or various other notifications they’ve sent have actu-

ally arrived at their intended destinations. A mistyped email address or

a network issue could result in your users thinking they’ve caused the

system to send a message when in fact the message is never delivered.

Although it’s not always possible to track the successful delivery of an

email, we can usually tell when one has failed to be delivered. Mail

servers send bounce messages when they cannot deliver a message

they receive.

How can we programmatically use these bounce messages to notify our

systems and our users of delivery failures?

Solution

Not surprisingly, the Internet Powers That Be already thought of this

scenario and helped to address it back in 1996 with the introduction of

the Internet Engineering Task Force RFC documents numbered 189135

and 1892.36 Don’t be alarmed if this sounds like a form you’d have to

fill out at tax time. We won’t make you read the RFCs.

In a nutshell, RFC 1892 defines a MIME type called multipart/report for

sending reports that are relevant to a mail system. If you look at the

source of a bounced email in your inbox, you’ll see what it looks like.

The syntax of an RFC 1892–compliant message is exactly like the more

35http://www.ietf.org/rfc/rfc1891.txt?number=1891: SMTP Service Extension for Delivery Sta-

tus Notifications
36http://www.ietf.org/rfc/rfc1892.txt?number=1892: The Multipart/Report Content Type for

the Reporting of Mail System Administrative Messages

http://www.ietf.org/rfc/rfc1891.txt?number=1891
http://www.ietf.org/rfc/rfc1892.txt?number=1892

70. HANDLING BOUNCED EMAIL 269

familiar multipart/mixed that you use when you send mail attachments.

This means that a multipart/report-encoded message is a container for

other submessages that would have their own MIME types.

That’s where RFC 1891 comes in. It defines a format for messages

describing the delivery status of messages. Failure, for example, is a

delivery status that can be reported by a RFC 1891–encoded message.

Let’s look at the source of an actual bounced message. I sent a message

to an email address that I knew didn’t exist, and when I received the

bounce notification, I viewed the message’s source in my mail client.

Here it is in pieces, starting with the headers:

Download HandlingBouncedMail/bounce_example.txt

Return-Path: <MAILER-DAEMON@ns1.chadfowler.com>

Received: from localhost (localhost)

by ns1.chadfowler.com (8.12.10/8.12.10) id k25GHX28007404;

Sun, 5 Mar 2006 11:17:33 -0500

Date: Sun, 5 Mar 2006 11:17:33 -0500

From: Mail Delivery Subsystem <MAILER-DAEMON@ns1.chadfowler.com>

Message-Id: <200603051617.k25GHX28007404@ns1.chadfowler.com>

To: <Chad@chadfowler.com>

MIME-Version: 1.0

Content-Type: multipart/report; report-type=delivery-status;

boundary="k25GHX28007404.1141575453/ns1.chadfowler.com"

Subject: Returned mail: see transcript for details

Auto-Submitted: auto-generated (failure)

Notice the line that sets the Content-Type of the message. If you’ve dealt

with multipart/mixed messages in the past, you’ll recognize the pattern

here. The Content-Type is set, the type of report is specified, and the

boundary is declared. This boundary will be used by the receiver of the

mail as the delimiter for breaking the message into its parts.

Next is a human-readable text message. This is the part you usually

see in your mail client when you receive a bounced email:

Download HandlingBouncedMail/bounce_example.txt

-k25GHX28007404.1141575453/ns1.chadfowler.com

The original message was received at Sun, 5 Mar 2006 11:17:22 -0500

from c-67-190-70-79.hsd1.co.comcast.net [67.190.70.79]

--- The following addresses had permanent fatal errors ---

<randomaddress@pragprog.com>

(reason: 550 <randomaddress@pragprog.com>: Recipient address rejected:

User unknown in local recipient table)

http://media.pragprog.com/titles/fr_rr/code/HandlingBouncedMail/bounce_example.txt
http://media.pragprog.com/titles/fr_rr/code/HandlingBouncedMail/bounce_example.txt
http://books.pragprog.com/titles/fr_rr/errata/add?pdf_page=269

70. HANDLING BOUNCED EMAIL 270

--- Transcript of session follows ---

... while talking to mail.pragprog.com.:

>>> DATA

<<< 550 <randomaddress@pragprog.com>: Recipient address rejected:

User unknown in local recipient table

550 5.1.1 <randomaddress@pragprog.com>... User unknown

<<< 554 Error: no valid recipients

You’ve seen that one before, and we’re not going to have to do anything

with it. The part we’re most interested in is the following:

Download HandlingBouncedMail/bounce_example.txt

-k25GHX28007404.1141575453/ns1.chadfowler.com

Content-Type: message/delivery-status

Reporting-MTA: dns; ns1.chadfowler.com

Received-From-MTA: DNS; c-67-190-70-79.hsd1.co.comcast.net

Arrival-Date: Sun, 5 Mar 2006 11:17:22 -0500

Final-Recipient: RFC822; randomaddress@pragprog.com

Action: failed

Status: 5.1.1

Remote-MTA: DNS; mail.pragprog.com

Diagnostic-Code: SMTP; 550 <randomaddress@pragprog.com>:

Recipient address rejected: User unknown in local recipient table

Last-Attempt-Date: Sun, 5 Mar 2006 11:17:33 -0500

This section is a computer-readable explanation of the status of a spe-

cific delivery attempt. All the fields here may be useful at some point,

but the really important ones to us right now are the Final-Recipient

and Status fields. Final-Recipient is, of course, the ultimate destination

address that the message was to be delivered to, and Status is a special

code (defined in RFC 1893)37 that represents the delivery status.

We won’t go into detail on the specific meanings of the codes here, but

what you’re going to want to know is that the first segment of the dot-

separated code indicates the class of delivery status. Namely:

• 2.X.X means the message was successfully delivered.

• 4.X.X indicates a temporary failure to deliver the message. Later

retries may still succeed. This might happen if the recipient’s

email server was temporarily unavailable.

• 5.X.X means that there was a delivery failure, and there will be no

more attempts. That’s what you get, to use our current example,

37http://www.ietf.org/rfc/rfc1893.txt?number=1893

http://media.pragprog.com/titles/fr_rr/code/HandlingBouncedMail/bounce_example.txt
http://www.ietf.org/rfc/rfc1893.txt?number=1893
http://books.pragprog.com/titles/fr_rr/errata/add?pdf_page=270

70. HANDLING BOUNCED EMAIL 271

when you attempt to send a message to a bogus email account.

The receiving server definitely says, “Wrong number. Buzz off.”

Finally, a multipart/report-encoded message contains the original mes-

sage, including the headers that were sent with the original message.

This is useful when you get a bounce message in case you can’t remem-

ber what you originally sent. It’s also important when programmatically

processing bounced mail, because we have access to the message ID of

the original mail. This is important and will be what we use to match

failed deliveries with the messages we were attempting to send.

Download HandlingBouncedMail/bounce_example.txt

-k25GHX28007404.1141575453/ns1.chadfowler.com

Content-Type: message/rfc822

Return-Path: <Chad@chadfowler.com>

Received: from [192.168.0.107] (xyz.comcast.net [67.190.70.79])

by ns1.chadfowler.com (8.12.10/8.12.10) with ESMTP id k25GH628007376

for <randomaddress@pragprog.com>; Sun, 5 Mar 2006 11:17:22 -0500

Content-Transfer-Encoding: 7bit

Message-Id: <6624C411-80B4-40AD-AF6D-DFA5878A1A3C@chadfowler.com>

Content-Type: text/plain; charset=US-ASCII; format=flowed

To: randomaddress@pragprog.com

From: Chad Fowler <Chad@chadfowler.com>

Subject: You will never get this...

Date: Sun, 5 Mar 2006 09:16:52 -0700

X-Mailer: Apple Mail (2.746.2)

...because you don't exist.

-k25GHX28007404.1141575453/ns1.chadfowler.com-

OK. Now we know how bounced messages are reported, and we know

what the report format looks like. We’re ready to write some code.

We’ll start with a quick mailer, which will send out fictitious meeting

reminders and will store the fact that the reminders were sent. Here’s

the mailer code:

Download HandlingBouncedMail/app/models/reminder.rb

class Reminder < ActionMailer::Base

def reminder(recipient, text)

@subject = 'Automated Reminder!'

@body = {:text => text}

@recipients = recipient

@from = 'chad@chadfowler.com'

@sent_on = Time.now

@headers = {}

end

end

http://media.pragprog.com/titles/fr_rr/code/HandlingBouncedMail/bounce_example.txt
http://media.pragprog.com/titles/fr_rr/code/HandlingBouncedMail/app/models/reminder.rb
http://books.pragprog.com/titles/fr_rr/errata/add?pdf_page=271

70. HANDLING BOUNCED EMAIL 272

Nothing too special. It just takes a recipient’s email address and some

text to send and does the needful. We invoke this mailer with the fol-

lowing super-simple controller code:

Download HandlingBouncedMail/app/controllers/reminder_controller.rb

class ReminderController < ApplicationController

def deliver

mail = Reminder.deliver_reminder(params[:recipient], params[:text])

Delivery.create(:message_id => mail.message_id, :recipient => params[:recipient],

:content => params[:text], :status => 'Sent')

render :text => "Message id #{mail.message_id} sent."

end

end

The controller accepts the same parameters that the mailer accepts and

invokes the mailer. What’s notable is that it then takes the message ID

from the delivered mail object and stores it in the deliveries table in our

local database. This is the table we will use to keep track of all the

reminder notifications we’ve sent and their delivery statuses. Here’s

the migration that defines that table:

Download HandlingBouncedMail/db/migrate/001_add_deliveries_table.rb

class AddDeliveriesTable < ActiveRecord::Migration

def self.up

create_table :deliveries do |t|

t.column :message_id, :string

t.column :recipient, :string

t.column :content, :text

t.column :status, :string

end

end

def self.down

drop_table :deliveries

end

end

The default generated model, Delivery, is sufficient for our needs on the

Ruby side of the house.

So now we’re delivering messages (or attempting to, at least) and storing

enough information that if a message were to bounce back to us, we

could update the status of the delivery in our local database for display

to our users. Let’s do that.

First we’ll make a new mailer whose exclusive job it is to receive bounce

messages. We’ll call it BounceReceiver. Here’s what our receive() method

looks like:

http://media.pragprog.com/titles/fr_rr/code/HandlingBouncedMail/app/controllers/reminder_controller.rb
http://media.pragprog.com/titles/fr_rr/code/HandlingBouncedMail/db/migrate/001_add_deliveries_table.rb
http://books.pragprog.com/titles/fr_rr/errata/add?pdf_page=272

70. HANDLING BOUNCED EMAIL 273

Download HandlingBouncedMail/app/models/bounce_receiver.rb

def receive(email)

return unless email.content_type == "multipart/report"

bounce = BouncedDelivery.from_email(email)

msg = Delivery.find_by_message_id(bounce.original_message_id)

msg.update_attribute(:status, bounce.status)

end

Our receiver is simple. If a message is not a multipart/report, the receiver

ignores it. Otherwise, it parses the bounce notification (more on that in

a minute) and updates the delivery record with its status.

The receiver method was simple, because we hid the hard stuff away in

the BouncedDelivery class. We defined that class right in the same file

as our BounceReceiver. Here’s what it looks like:

Download HandlingBouncedMail/app/models/bounce_receiver.rb

Line 1 class BouncedDelivery

- attr_accessor :status_info, :original_message_id

- def self.from_email(email)

- returning(bounce = self.new) do

5 status_part = email.parts.detect do |part|

- part.content_type == "message/delivery-status"

- end

- statuses = status_part.body.split(/\n/)

- bounce.status_info = statuses.inject({}) do |hash, line|

10 key, value = line.split(/:/)

- hash[key] = value.strip rescue nil

- hash

- end

- original_message_part = email.parts.detect do |part|

15 part.content_type == "message/rfc822"

- end

- parsed_msg = TMail::Mail.parse(original_message_part.body)

- bounce.original_message_id = parsed_msg.message_id

- end

20 end

- def status

- case status_info['Status']

- when /^5/

- 'Failure'

25 when /^4/

- 'Temporary Failure'

- when /^2/

- 'Success'

- end

30 end

- end

http://media.pragprog.com/titles/fr_rr/code/HandlingBouncedMail/app/models/bounce_receiver.rb
http://media.pragprog.com/titles/fr_rr/code/HandlingBouncedMail/app/models/bounce_receiver.rb
http://books.pragprog.com/titles/fr_rr/errata/add?pdf_page=273

70. HANDLING BOUNCED EMAIL 274

The job of the BouncedDelivery class is to parse a multipart/report-encoded

message into its relevant parts. That job is made substantially easier by

the fact that Rails (via the bundled TMail library) does the basic parsing

for us automatically.

Let’s not get bogged down in the details of BouncedDelivery’s implemen-

tation. We’ll just walk through the major points that are essential

for understanding what’s happening. First, from the multiple parts

of the incoming email, on line 5 we locate the part that contains the

computer-readable status information. We then convert the text of the

status information to a nice, convenient Hash with the block starting

on line 9. Next we locate the message part that contains the original

message text, and on line 17, we use TMail to parse it into an object

from which we can easily grab the original message ID.

The final interesting part of the implementation is on line 21, where our

status method returns a friendly status code that we’ll use to update

the status field of our deliveries table.

With this code deployed and configured to receive incoming mail for the

account to which the bounce messages will be delivered (the account

the outgoing message was from),38 our receiver will update the deliveries

table, so our users can easily see which messages have had delivery

failures.

Though it’s impossible to accurately measure which messages get deliv-

ered (unless, of course, you want to call all intended recipients on the

phone and ask them whether they received the email), we’re now at

least one step closer to a feeling of confidence that when we send a

message, it’s not being sent to a bogus email address.

38For detailed information about setting up your system to process mail with Rails,

see Chapter 19 of Agile Web Development with Rails [TH05].

http://books.pragprog.com/titles/fr_rr/errata/add?pdf_page=274

Part VII

Appendix

275

Appendix A

Resources
A.1 Bibliography

[HT00] Andrew Hunt and David Thomas. The Pragmatic Program-

mer: From Journeyman to Master. Addison-Wesley, Reading,

MA, 2000.

[TH05] David Thomas and David Heinemeier Hansson. Agile Web

Development With Rails. The Pragmatic Programmers, LLC,

Raleigh, NC, and Dallas, TX, 2005.

A.2 Source Code

The source code in tis book is available for download from our website:

• http://pragmaticprogrammer.com/titles/fr_rr/code.html

If you are reading a PDF version of the book, you can click on the gray

lozenge above a listing to link directly to the code in that listing.

http://pragmaticprogrammer.com/titles/fr_rr/code.html

Index
Symbols
/() method, 234

#! (shebang) line, 168

37signals, 29

A
Accept header (HTTP), 249

Action Controller, see Controller

Action Mailer/Action Web Service, not

loading into Rails, 54

Active Record, see Model

acts_as_list() method, 21

acts_as_taggable, 71

acts_as_versioned, 78

adjust() method, 189

:after_add, 70

:after_remove, 70

after_filter() method, 127

after_save() method, 220

Aggregator, see Syndication

Ajax

debugging, 39

form_observer, 240

include libraries for, 3

static, 37

see also JavaScript

Ajax recipes, 2–35, 37, 39–40, 71–77,

127–128, 238–240

alert() method, 29

Alternate colors of rows in form, 44

Aman, Bob, 210

API Tips recipes, 38, 221

Application

auditing, 222

default layout, 3

documentation, 216

error reporting via e-mail, 176

packaging, 227

statistics, 46

application/rss+xml Content-type, 198

ApplicationController class, 120

Area chart, 45

:as option to has_many, 96

Association proxy, 100

AssociationProxy class, 101

Atom, see Syndication

Attachments (sending e-mail), 265

Audit your application, 222

Authentication, 115

and bookmarks, 118

don’t store User objects in session,

120

rights, role-based, 121

and static content, 143

stubbing out, 136

via secure URLs, 209

Authorization, see Authentication,

role-based

auto_discovery_link_tag() method, 202

Autocomplete, 18

Autocompleter.local library, 32

improve performance, 31

Automated integration and testing, 171

Automation recipes, 41–44, 66–67,

83–88, 107, 112–113, 145–154,

164–175, 180–185, 216–220,

268–274

average() database function, 105

B
Bar chart, 45

Barron, Scott, ix, x, 161, 186

before_filter() method, 117, 123, 232

belongs_to() method, 94, 96

Beta Gems, 194

Black, David Alan, ix, 36

Block, passing to :has_many, 101

Blog, 164

BLUECLOTH 278 DATABASE

BlueCloth, 228

Bookmark (and authentication), 118

Bounced e-mail, handling, 268

Buck, Jamis, ix, x, 83, 155, 178, 186,

191

Bug, submitting fix for, 195

Builder, see View, Builder template

:builder option of form_for, 41

Bundling your application, 227

C
Caching

enabling, 225

generate static content with, 143

sweeper, 223

Calculations module, Active Record, 105

Case, Tim, ix, 227

Character set (UTF-8), 231

Clark, Mike, ix, 41, 129, 212

Code

downloading, ix

statistics, 46

Code generation, 138

JavaScript helper, 8

see also Generators,

Metaprogramming

Comma-Separated Values (CSV), 129

composed_of() method, 108, 110, 189

Composite attribute (in models), 108

Configuration

caching, 225

database, 66

database.yml, 55, 103

debug e-mail delivery failures, 179

debug_rjs, 39

dynamic database, 103

exception notification, 178

globalize, 230

international characters, 231

loading of libraries, 229

making helper available, 245

parameter parsing, 251

pluralize_table_names, 65

primary_key_prefix_type, 65

routes, 131

sessions in database, 137

skipping frameworks, 54

table_name_prefix=, 64

Configuration recipes, 50–62, 66–67,

103–104, 131–135, 137, 143,

192–195, 214–216, 227–229

Connection, problems with Oracle, 61n

script/console command, 236

Content-type

application/xml, 249

and RJS, 30

and RSS, 198

and UTF-8, 231

Continuous integration, 171

configuration, 172

sends e-mail on failure, 173

Controller

access rights to actions in, 123

after_filter(), 127

before_filter(), 117, 123, 232

cache sweeper, 223

filter, 117, 123

in_place_edit_for(), 5

logged_in(), 136

named routes, 135

redirecting in, 124

rescue_action_in_public(), 176

respond_to(), 250

routes, see Routes

send_data(), 48, 129

single-action action request

handling, 126

Coordinated universal time, see UTC

count() database function, 105

create_versioned_table() method, 79

createEditField() method, 10

createForm() method, 10

Cross-site scripting (XSS), 244

CSS, customize in-place editor fields, 6

CSV, see Comma Separated Values

(CSV)

Customer form helper, 41

D
Damage Control, 171

Database

calculations using SQL in, 105

composite attribute, 108

configuration, 66

connecting to multiple, 55

creating tables in generators, 170

defining model in migration, 112

dump schema, 84

flattening structured data in, 110

format dates and times for, 148

grouping results, 106

join model, see Join model

DATABASE RECIPES 279 FORM

join table to itself, 68

legacy, 63, 83

many-to-many relationship, 68, 89

migration, 83, 112

overwrite data during migration, 86

polymorphic associations, see

Polymorphic associations

primary key prefix, 64

running application without, 50

schema_info table, 87

scoping queries, 107

sessions in, 137

setting encdoding, 231

store times in UTC, 186

use model outside Rails, 104

using data in test fixtures, 150

Database recipes, 20–25, 50–65,

68–113, 115–125, 137, 150–154,

186–191, 214–215, 217–220,

222–226, 230–235

database.yml, 55, 66, 103

Date

format for database, 148

see also Time zone

Daylight saving time, 191

Debugging Ajax and JavaScript, 39

del.icio.us, 131

delay() method, 29

Delivery status (e-mail), 269

Development Process recipes, 136,

138–142, 164–170, 236–237

Digest, see SHA2 library

Discussion group for recipes, viii

Distributing your application, 227

Document (using RDoc), 216

Domain-specific language, see Testing,

domain-specific language

Don’t Repeat Yourself (DRY) principle

applied to database configuration, 66

using plugins to foster, 204

Downloading code, ix

Drag and drop, 20

drop_versioned_table() method, 79

DSL, see Testing, domain-specific

language

Dump session content, 212

Duplication, removing, see Don’t

Repeat Yourself (DRY) principle

Dynamic test fixtures, see Testing,

dynamic test fixtures

E
Edge Rails, 192

Edit, live preview during, see Live

preview

Eijsvogels, Koen, 244

E-Mail

and CSS, 256

debug delivery failures, 179

.forward file, 257

handling bounced, 268

mime type, 253

rich content, 253

send on exception, 176

sending on test failure, 173

sending with attachments, 265

test fixtures, 259

testing incoming, 257

Enumerations

group_by(), 221

in_groups_of(), 221

ERb

database configuration using, 103

test fixture generation using, 145

Error reporting via e-mail, 176

error_messages_for() method, 241

error_messages_on() method, 241

Escape, HTML, 245

establish_connection() method, 56, 59

Example code, 276

Excel (Microsoft), 129

Exception

JavaScript, 39

send e-mail on, 176

ExceptionNotifiable module, 178

Expiring sessions, 127

Extending Rails recipes, 41–44,

180–185

F
Fanning, Shaun, ix, 268

File upload, 217

file_column, 220

Filter, see Controller, filter

find() method, 107

FireBug (debugging extension for

Firefox), 40

Fixtures, see Testing

Flattening structured data, 110

Flickr, 131

:force option to add_table, 86

Form

FORM_FOR() METHOD 280 IN_GROUPS_OF() METHOD

alternate colors of rows, 44

custom helper, 41

edit in place, see In-place edit

live preview during edit, see Live

preview

observer, 240

save draft while editing, 238

tabular, 41

using mutipart for file uploads, 217

form_for() method, 41, 239

form_remote_tag() method, 76

Forum for discussing recipes, viii

.forward file (e-mail), 257

Fowler, Kelly, x

Fowler, Martin, 185

Framework, not loading components

into Rails, 54

freeze_gems, 227

:frequency (parameter to observe_xxx), 17

Fuchs, Thomas, x

Functional test, see Testing

G
gem_server command starts

documentation web server, 216

Gems

documentation, 216

freezing Rails, 227

Gems, Beta, 194

Generators, 164

create database tables, 170

file permission, 168

manifest, 167

README file, 169

RubyGems as, 166

shebang (#!) line and, 168

standard files, 166

see also Code generation

Globalize plugin, 230

/(), 234

loc(), 234

setting up, 230

setup, 230

t(), 234

translate(), 234

Granger, Michael, 228

Graph, generating, 45

GraphicsMagick, 217

Green-bar listing in form, 44

Grocery list, 20

Grossenbach, Geoffrey, 45

GROUP BY, database results, 106

group_by() method, 221

Grouping enumerations, 221

Gruff graphing library, 45

H
Hansson, David Heinemeier, ix, x, 71,

171

Harvey, Josh, 230

has_and_belongs_to_many() method, 59,

68, 89

has_many() method, 94, 96

has_many() method

extending with block, 101

Helper

custom form, 41

HTML whitelist, 244

JavaScript, 8

making available to application, 245

test_helper.rb, 52

testing, 161

Hewitt, Joe, 40

Hook

:after_add, 70

:after_remove, 70

Subversion, 172

HTML

allowing only certain elements in

user data, 244

escaping, 245

include JavaScript libraries in, 3

static site generation, 143

HTML recipes, 2–7, 31–37, 41–44,

244–246

HTTP

Accept header, 249

request parameter parsing, 251

Hunt, Andy, ix

I
If-Modified-Since header, 203

Image, 217

file_column, 220

upload via form, 217

ImageMagick, 45, 217

In-place edit, 2

customize appearance of, 6

select tag, 8

no validatation, 6

write helper for, 8

in_groups_of() method, 221

IN_PLACE_EDIT_FOR() METHOD 281 MODEL

in_place_edit_for() method, 5

in_place_editor_field() method, 4, 9

Inflector class, 38

init.rb (plugin), 205, 206

Initializer, Rails, 56

innerHTML (DOM property), 11

and Internet Explorer, 11n

InPlaceEditor class, 2

insert_html() method, 29

Integration recipes, 63–65, 104,

129–130, 196–203, 208–211,

214–215, 241–243, 247–251

Integration test, see Testing

Internationalization, see Globalize

plugin

Internet Explorer, innerHTML and, 11n

install.rb (plugin), 206

irb (interactive Ruby), 236

irregular() method, 38

J
Java/Ruby integration, 247

JavaScript

createEditField(), 10

createForm(), 10

debugging, 39

error diagnosis, 30

exception, 39

generate using template, 32

helpers, writing your own, 8

include library in HTML, 3

observe_field(), 17

observe_form(), 16

prototype library, 15

RJS template, see RJS template

javascript_include_tag() method, 3

jcode library, 231

Join model, 90

:through attribute, 91

see also has_and_belongs_to_many

K
Kanthak, Sebastian, 220

$KCODE variable, 231

Kemper, Jeremy, ix, x, 150

Key, generating unique, 210

Koziarski, Michael, x

L
Lütke, Tobias, x, 171

Typo author, 15

Legacy database, see Database, legacy

Line chart, 45

<link> header, 201

Link, symbolic, 214

link_to_remote() method, 28

Live preview, 15

Live search, see Autocomplete

$LOAD_PATH variable, 214, 229

loc() method, 234

local_to_utc() method, 191

Locale, 232

Localization, see Globalize plugin

Log, access to application, 222

logged_in() method, 136

Login, see Authentication

Logout, automatic, 127

Lucas, Tim, ix, 112

M
Macro, see Metaprogramming

Mailer, see E-Mail

Many-to-many relationship, see

Database, many-to-many

relationship

maximum() database function, 105

Merge keys (YAML), 66

Message digest, see SHA2 library

Metaprogramming, 42, 140

and scoping, 141

Michaux, Peter, 256

Microsoft Excel (generate CSV for), 129

Migration, see Database, migration

MIME type

bounced e-mail, 268

Mime type

Accept header, 249

e-mail, 253

MIME::Types library, 267

minimum() database function, 105

Model

acts_as_list(), 21

after_save(), 220

belongs_to(), 94

calculations in database, 105

callbacks, 224

composed_of(), 108, 110, 189

composite attribute, 108

create_versioned_table(), 79

defining in migration, 112

drop_versioned_table(), 79

MODELSECURITY (BRUCE PERENS) 282 RAILS

error_messages_for(), 241

error_messages_on(), 241

establish_connection(), 56, 59

find(), 107

flattening structured data in, 110

grouping results, 106

has_and_belongs_to_many(), 59, 68, 89

has_many(), 94

loading fixture data into, 147

pluralization of table names, 38

polymorphic associations, see

Polymorphic associations

problem connecting to Oracle, 61n

revert_to!(), 81

scoping queries, 107

sharing between applications, 214

using outside Rails, 104

with_scope(), 107, 139

without a database, 50

validating, 241

ModelSecurity (Bruce Perens), 125

Moertel, Tom, ix, 115

Molina Jr., Marcel, ix, x, 89, 126, 136

Money-making opportunity, 259

Monkey patch, 204, 245

Mountcastle, Sean, ix, 244

Multipart e-mail, 256

multi-part/report MIME type, 268

N
Named routes, 134

O
Obfuscated URL, 208

observe_field() method, 17

observe_form() method, 16

Olson, Rick, ix, x, 39, 78, 105, 204

:only_path option to url_for(), 200

open_session() method, 157

Oracle, problems connecting, 61n

P
Packaging your application, 227

Parameter parsing (HTTP), 251

Password, see Authentication

Patch, submitting to core team, 195

Perens, Bruce, 125

Performance

autocomplete, 31

and field observers, 17

If-Modified-Since header, 203

indexing database, 77

of integration tests, 160

optimizing shopping, 20

speed static pages using Ajax, 37

and time zone conversion, 191

turn off sessions for syndicated

feeds, 202

periodically_call_remote() method, 128

Pie chart, 45

Plugin

acts_as_taggable, 71

acts_as_versioned, 78

Continuous Builder, 171

documentation, 216

Exception Notifier, 178

exception_notification, 176

file_column, 220

generator, 205

Globalize, 230

init.rb, 205, 206

install.rb, 206

share models using, 215

write your own, 204

Plugins recipes, 45–48, 71–82,

171–179, 204–207, 230–235

pluralize_table_names, 65

Plurals, customizing, 38

:polymorphic option to belongs_to, 96

Polymorphic associations

belongs_to(), 96

has_many(), 96

postion column and acts_as_list, 21

Postback actions, 126

Prerequisite (clearing in rake), 53

Pretty URLs, see Routes

Preview, during edit, see Live preview

Primary key, adding prefix to, 64

primary_key_prefix_type, 65

procmail, 257

.procmailrc file (e-mail), 257

Prototype library, 15

see also Ajax

Proxy (for associations), 100

R
Rails

documentation, 216

freeze_gems, 227

freezing version, 194

initializer, 56

RAILS 1.1+ RECIPES 283 ROUTES

Java integration, 247

not loading specified frameworks, 54

submitting patches, 195

unfreeze_gems, 228

using latest version, 192

using latest version via Gems, 194

version used in book, viii

Rails 1.1+ recipes, 71–77, 89–98,

105–106, 127–128, 155–160,

176–179, 221

Rails Internals recipes, 8–14, 38,

138–142, 161–162, 164–170,

204–207, 241–243

RAILS_ENV constant, 56

RAILS_ROOT constant, 165

rake

-P option, 51

extending, 53, 152, 180–185

integrate tasks with Rails

environment, 184

Martin Fowler’s introduction to, 185

prerequisite, 53

Rakefile, 180

describing tasks, 182

format of, 181

RDoc (documentation tool), 216

Really Simple Syndication (RSS), see

Syndication

Recipe discussion group, viii

Recipes

Ajax, 2–35, 37, 39–40, 71–77,

127–128, 238–240

API Tips, 38, 221

Automation, 41–44, 66–67, 83–88,

107, 112–113, 145–154, 164–175,

180–185, 216–220, 268–274

Configuration, 50–62, 66–67,

103–104, 131–135, 137, 143,

192–195, 214–216, 227–229

Database, 20–25, 50–65, 68–113,

115–125, 137, 150–154, 186–191,

214–215, 217–220, 222–226,

230–235

Development Process, 136, 138–142,

164–170, 236–237

Extending Rails, 41–44, 180–185

HTML, 2–7, 31–37, 41–44, 244–246

Integration, 63–65, 104, 129–130,

196–203, 208–211, 214–215,

241–243, 247–251

Plugins, 45–48, 71–82, 171–179,

204–207, 230–235

Rails 1.1+, 71–77, 89–98, 105–106,

127–128, 155–160, 176–179, 221

Rails Internals, 8–14, 38, 138–142,

161–162, 164–170, 204–207,

241–243

Search, 18–19

Security, 115–125, 127–128,

208–211, 222–226, 244–246

Style, 126, 136, 138–142

Testing, 145–162, 257–264

Troubleshooting, 39–40, 171–179,

212–213, 236–237

XML, 196–203, 247–251

Redirect

doesn’t return from action, 126n

via RJS, 128

to referrer, 124

Redpath, Luke, ix, 68

remove() method, 29

replace_html() method, 29

Request handling, in single action, 126

require to load models, 214

rescue_action_in_public() method, 176

respond_to() method, 250

revert_to!() method, 81

RJS template, 26

alert(), 29

content-type, 30

debugging, 39

delay(), 29

error diagnosis, 30

insert_html(), 29

redirect using, 128

remove(), 29

replace_html(), 29

show(), 29

visual_effect(), 29

RMagick, ImageMagick binding for

Ruby, 45, 217, 220

Role-based authentication, see

Authentication

Ros, Frederick, ix, 63

Ross, Philip, 191

Routes, 131

custom, 133

default, 131

defaults

dynamic, 134

named, 134

ROUTES.RB (CONFIGURATION) 284 TESTING

order of processing, 134

routes.rb (configuration), 131

RSS, see Syndication

Ruby

irb (interactive Ruby), 236

metaprogramming, 42

RMagick (ImageMagick) binding, 45

RubyGems

beta, 194

documentation, 216

freezing Rails, 227

as generators, 166

S
Salted login, see Authentication

Sample programs, 276

Save form content while editing, 238

Schema, see Database

schema_info table, 87

:scope parameter to acts_as_list, 21

Scoping queries, 107

and metaprogramming, 141

<script> tag, 32

script.aculo.us, 18

in-place editor, 2

script/console command, 236

Search

for tags, 76

see also Live search

Search recipes, 18–19

Seckar, Nicholas, x

Secure URL, 208

Security

cross-site scripting, 244

see also Authentication

Security recipes, 115–125, 127–128,

208–211, 222–226, 244–246

select tag, 8

send_data() method, 48, 129

sendmail, 257

Session

in database, 137

dump contents of, 212

expiry, 127

in script/console, 237

and User objects, 120

SHA2 library, 116

Shebang (#!) line, 168

Shopping, 20

show() method, 29

Sign in/out, see Authentication

Single action request handling, 126

Singular form of names, 38

Smith, Steve, ix

Social networking, see Tagging

Sortable list, 20

determining order, 22

sortable_element() method, 24

Source code, 276

Source code, downloading, ix

Spreadsheet (generate CSV for), 129

Stacked bar chart, 45

start_form_tag() method, 41

Static content

fetching with Ajax, 37

generation, 143

Statistics, application, 46

Stephenson, Sam, x

Structured data, flattening, 110

Style recipes, 126, 136, 138–142

stylesheet_link_tag() method, 36

Subversion, 171

debugging hooks, 174

hooks, 172

using svn:externals

to share models, 215

using svn:externals

to access Edge Rails, 192

sum() database function, 105

Symbolic link, 214

Syndication, 196

auto_discovery_link_tag(), 202

content-type header, 198

discover via <link> headers, 201

If-Modified-Since header, 203

turning off sessions for feeds, 202

T
t() method, 234

Table names, pluralizing, 38

table_name_prefix=, 64

Tabular form, 41

Tagging, 71

multiple models, 77

search, 76

specify using routes, 133

viewing tags, 74

Tasks (rake), 53

Template, see View

Testing

automatically, 171

domain-specific language, 157

TESTING RECIPES 285 WORDPRESS

dynamic test fixtures, 145

e-mail fixtures, 259

helper methods, 161

incoming e-mail, 257

integration, 155

loading fixture data, 147

open_session(), 157

using live data in, 150

without database, 50

Testing recipes, 145–162, 257–264

text_field_with_auto_complete() method,

19

Theme support, 36

Thomas, Dave, ix, 55, 127, 222

:through (to create join models), 91

Thunderbird (e-mail client), 260

Time

format for database, 148

see also Time zone

Time zone, 186

adjust(), 189

converting times using, 189

and daylight saving time, 191

let users select, 190

local_to_utc(), 191

unadjust(), 189

utc_to_local(), 191

time_zone_select() method, 190

Timeout sessions, 127

TimeZone class, 188

TMail library, 274

translate() method, 234

Troubleshooting recipes, 39–40,

171–179, 212–213, 236–237

Tumblelog, 164

Typo weblog, 15

TZInfo Gem, 191

U
unadjust() method, 189

uncountable() method, 38

unfreeze_gems, 228

Unicode support, 231

setting database encoding, 231

Unit test, see Testing

:update parameter to Ajax actions, 26

Uploading images, 217

URL mapping, see Routes

URL, secure, 208

url_for() method, 200

USER_AGENT request parameter, 129,

249

User object, don’t store in session, 120

Users, see Authentication

UTC, 186

utc_to_local() method, 191

UUIDTools library, 210

V
Validation

bypassed by in-place editing, 6

non-database-backed models, 241

see also Model

vendor directory, 228

Version control, 171

Version, using latest Rails, 192

Versioned table, see acts_as_versioned

View

Builder template, 199

content-type and rjs, 30

form_for(), 41, 239

form_remote_tag(), 76

generate JavaScript using, 32

in_place_editor_field(), 4, 9

javascript_include_tag(), 3

layout, including JavaScript in, 3

link_to_remote(), 28

multipart e-mail support, 256

periodically_call_remote(), 128

RJS template, see RJS template

sortable_element(), 24

start_form_tag(), 41

stylesheet_link_tag(), 36

text_field_with_auto_complete(), 19

adding theme support, 36

time_zone_select(), 190

url_for(), 200

write helper for, 8

Vincelli, David, ix, 238

visual_effect() method, 29

Voohis, Jeremy, 230

W
Web service, 247

Weber, Florian, x

Weirich, Jim, 180

Whitelist (HTML), 244

Williams, Bruce, ix, 20, 41, 217, 230

with_scope() method, 107, 139

Wordpress, 63n

XML 286 ZEIGLER

X
XML

automatic conversion to a hash, 249

generate with Builder, 199

XML recipes, 196–203, 247–251

XSS (Cross-Site Scripting), 244

Y
YAML, 66

encoding data for, 154

Yellow Fade Technique, 29

Z
Zeigler, Austin, 267

	Rails Recipes
	Contents
	Introduction
	Part I—User Interface Recipes
	Part II—Database Recipes
	Part III—Controller Recipes
	Part IV—Testing Recipes
	Part V—Big-Picture Recipes
	Part VI—Email Recipes
	Part VII—Appendix
	Index

